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Abstract
Given an undirected n-vertex planar graph G = (V, E, ω) with non-negative edge weight function
ω : E → R and given an assigned label to each vertex, a vertex-labeled distance oracle is a data
structure which for any query consisting of a vertex u and a label λ reports the shortest path
distance from u to the nearest vertex with label λ. We show that if there is a distance oracle for
undirected n-vertex planar graphs with non-negative edge weights using s(n) space and with query
time q(n), then there is a vertex-labeled distance oracle with Õ(s(n))1 space and Õ(q(n)) query
time. Using the state-of-the-art distance oracle of Long and Pettie [12], our construction produces a
vertex-labeled distance oracle using n1+o(1) space and query time Õ(1) at one extreme, Õ(n) space
and no(1) query time at the other extreme, as well as such oracles for the full tradeoff between space
and query time obtained in their paper. This is the first non-trivial exact vertex-labeled distance
oracle for planar graphs and, to our knowledge, for any interesting graph class other than trees.
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1 Introduction

Efficiently answering shortest path distance queries between pairs of vertices in a graph is
a fundamental algorithmic problem with a wide range of applications. An algorithm like
Dijkstra’s can answer such a query in near-linear time in the size of the graph. If we allow
for precomputations, we can break this bound, for instance by simply storing the answers
to all possible queries in a look-up table. However, a fast query time should preferably not
come at the cost of a large space requirement. A distance oracle is a compact data structure
that can answer a shortest path distance query in constant or close to constant time.

1 We use Õ-notation to suppress poly(log n)-factors.
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A lot of research has focused on approximate distance oracles which allow for some
approximation in the distances output. This is reasonable since there are graphs for which
the trivial look-up table approach is the best possible for exact distances. However, for
restricted classes of graphs, it may be possible to obtain exact oracles with a much better
tradeoff between space and query time. Indeed, for any planar n-vertex digraph, there is an
exact distance oracle with space close to linear in n and query time close to constant [7, 2, 12].

A related problem is that of obtaining a vertex-labeled distance oracle. Here, we are
given a graph with each vertex assigned a label. A query consists of a pair (u, λ) of a vertex
u and a label λ and the output should be the distance from u to the nearest vertex with
label λ. Each vertex is given only one label but the same label may be assigned to multiple
vertices. To give some practical motivation, if the graph represents a road network, a label λ

could represent supermarkets and the output of query (u, λ) gives the distance to the nearest
supermarket from the location represented by u.

Note that this is a generalization of the distance oracle problem since vertex-to-vertex
distance queries can be answered by a vertex-labeled distance oracle if each vertex is given
its own unique label. If L is the set of labels, a trivial vertex-labeled distance oracle with
constant query time is a look-up table that simply stores the answers to all possible queries,
requiring space O(n|L|). This bound can be as high as quadratic in n.

Our main result, which we shall state formally later in this section, is that for undirected
edge-weighted planar graphs, the vertex-labeled distance oracle problem can be reduced
to the more restricted distance oracle problem in the sense that up to log n-factors, any
space/query time tradeoff for distance oracles also holds for vertex-labeled distance oracles.
Hence, the tradeoff from [12] translates to vertex-labeled distance oracles, assuming that
the planar graph is undirected. To the best of our knowledge, this is the first non-trivial
upper bound for vertex-labeled distance oracles in any interesting graph class other than
trees [8, 15]. A strength of our result is that any future progress on distance oracles in
undirected planar graphs immediately translates to vertex-labeled distance oracles.

1.1 Related work on vertex-labeled distance oracles
Vertex-labeled distance oracles have received considerably more attention in the approximate
setting. With (1 + ϵ) multiplicative approximation, it is known how to get Õ(n) space and
Õ(1) query time both for undirected [11] and directed planar graphs [13] and it has been
shown how oracles with such guarantees can be maintained dynamically under label changes
to vertices using Õ(1) time per vertex relabel.

For general graphs, vertex-labeled distance oracles with constant approximation have
been presented [9, 3, 14] with state of the art being an oracle with O(kn|L|1/k) space, 4k− 5
multiplicative approximation, and O(log k) query time, for any k ∈ N.

1.2 Our contributions
We now state our reduction and its corollary:

▶ Theorem 1. If there is an exact distance oracle for n-vertex undirected edge-weighted
planar graphs with s(n) space, q(n) query time, and t(n) preprocessing time, then there exists
an exact vertex-labeled distance oracle for such graphs with s(n) + O(n log2 n) space, and
with O(q(n) log n + log3 n) query time, and t(n) + poly(n) preprocessing time.

Plugging in the distance oracle of Long and Pettie et al. [12] gives the following corollary
which can be seen as a generalization of their result:
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▶ Corollary 2. For n-vertex undirected edge-weighted planar graphs, there exist exact vertex-
labeled distance oracles with the following tradeoffs between space and query time:
1. n1+o(1) space and Õ(1) query time,
2. Õ(n) space and no(1) query time.
All oracles have preprocessing time polynomial in n.

Up to logarithmic factors, the full tradeoff between space and query time in their paper
similarly extends to vertex-labeled distance oracles in undirected edge-weighted planar graphs.

The rest of the paper is organized as follows. In Section 2, we introduce basic definitions
and notation and present tools from the literature that we will need for our oracle. In
Section 3 we state the key lemmas but defer their proofs until later sections, and thus
immediately present our reduction by describing how to obtain a vertex-labeled distance
oracle given a distance oracle as a black box. In Section 4, we present a point location
structure similar to [7] but with some important modifications to improve space in our
setting.

2 Preliminaries

Let G = (V, E, ω) be a graph with edge weight function ω : E → R ∪ {∞}. We denote by
V (G) = V and E(G) = E the vertex and edge-set of G, respectively, and by n = |V (G)| the
number of vertices of G. A graph G′ is said to be a subgraph of G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). We denote by u ⇝G v a shortest path from u to v in G, by dG(u, v) the
weight of u⇝G v, and write u⇝ v = u⇝G v and d(u, v) = dG(u, v) when G is clear from
context. For a shortest path p = u⇝ v = (u = p1), p2, . . . , (pk = v) we define vertex pi to
occur before pj on p if i < j and similarly for edges pipi+1 and pjpj+1. Thus statements such
as “the first/last vertex/edge on p satisfying some property P” will always be made w.r.t.
this ordering. We also write p ◦ p′ to denote the concatenation of paths (or edges) p and p′,
assuming the last vertex of p equals the first vertex of p′. Given u, v, v′ ∈ V ; we say that v is
closer than v′ to u in G if dG(u, v) < dG(u, v′) or dG(u, v) = dG(u, v) and v < v′, assuming
some lexicographic ordering on vertices. We denote by V (p), respectively E(p), the set of
vertices, respectively edges, on a path p.

Assume in the following that G is undirected. G is said to be connected, respectively
biconnected, if any pair of vertices are connected by at least one, respectively two, vertex-
disjoint paths. For a rooted spanning tree T in G and for any edge e = uv not in T , we
define the fundamental cycle of uv w.r.t. T as the cycle obtained as the concatenation of uv

and the two paths of T from the root to u and v, respectively.

2.1 Planar graphs and embeddings
An embedding of a planar graph G assigns to each vertex a point in the plane and to each
edge a simple arc such that its endpoints coincide with those of the points assigned to its
vertices. A planar embedding of G is an embedding such that no two vertices are assigned the
same point and such that no pair of arcs coincide in points other than those corresponding
to vertices they share. A graph is said to be planar if it admits a planar embedding. When
we talk about a planar graph we assume that it is planar embedded and hence some implicit,
underlying planar embedding of the graph. When it is clear from the context we shall refer
interchangeably to a planar graph and its embedding, its edges and arcs and its vertices and
points. Thus the term graph can refer to its embedding, an edge to its corresponding arc
and a vertex to its corresponding point in the embedding.

ISAAC 2021



23:4 Near-Optimal Distance Oracles for Vertex-Labeled Planar Graphs

Assumptions about the input

Unless stated otherwise, we shall always assume that G refers to a graph which is weighted,
undirected and planar with some underlying embedding. Furthermore, we shall make the
structural assumption that G is triangulated. Triangulation can be achieved by standard
techniques, i.e. adding to each face f an artificial vertex and artificial edges from the artificial
vertex to each vertex of V (f) with infinite weight. This transformation preserves planarity,
shortest paths and ensures that the input graph consists only of simple faces. We also assume
that shortest paths in the input graph are unique; this can be ensured for any input graph
by either randomly perturbing edge weights or with e.g. the deterministic approach in [6]
which gives only an O(1)-factor overhead in running time. Finally, it will be useful to state
the following lemma when talking about separators in a graph with unique shortest paths:

▶ Lemma 3. Let u, v, x, y ∈ V (G). Then u⇝ v and x⇝ y share at most one edge-maximal
subpath.

Proof. Assume that x⇝ y intersects u⇝ v and let a resp. b be the first resp. last intersection
along u ⇝ v. Since G is undirected, uniqueness of shortest paths implies that a ⇝ b is a
subpath of u⇝ v shared by x⇝ y. ◀

Edge orderings, path turns and path intersections

For an edge e = uv of a planar embedded graph H, we let <H
e be the clockwise ordering

of edges of H incident to v starting at e (ignoring edge orientations). Hence <H
e is a strict

total order of these edges and e is the first edge in this order.
For vertices u, v ∈ V (H), x ∈ V (u⇝ v) \ {u, v} and y ∈ V (H) \ V (u⇝ v), let pq be the

last edge shared by u⇝ v and x⇝ y. Furthermore let qz resp. qz′ be the edge following pq

in the traversal of u⇝ v and x⇝ y, respectively. We say that x⇝ y emanates from the left
of u⇝ v if qz′ <H

pq qz, and otherwise it emanates from the right. We dually say that y ⇝ x

intersects u⇝ v from the left (right) if x⇝ y emanates from the left (right).
Given a face f of H, vertices u ∈ V (f), and v, v′ ∈ V , let H ′

f be a copy of H with an
artificial vertex f∗ embedded in the interior of f along with an additional edge f∗u. Define
the paths pv = f∗u ◦ u⇝H′

f
v and pv′ = f∗u ◦ u⇝H′

f
v′ and assume that neither path is a

prefix of the other. By assumption and Lemma 3, pv and pv′ share exactly one edge-maximal
subpath f∗ ⇝ x. We say that u ⇝H v makes a left turn w.r.t u ⇝H v′ from f if x ⇝ v

emanates from the left of pv, and otherwise it makes a right turn; we will omit mention of
f when the context is clear. Note that the notion of a turn is symmetric in the sense that
u⇝H v makes a left turn w.r.t u⇝H v′ iff u⇝H v′ makes a right turn w.r.t u⇝H v.

2.2 Voronoi Diagrams
The definitions in this subsection will largely be made in a manner identical to those
of [7], but are included as they are essential to a point location structure which will be
presented in Section 4. Given a planar graph G = (V, E, ω), S ⊆ V , the Voronoi diagram
of S in G, denoted by VD(S) in G is a partition of V into disjoint sets, Vor(u), referred
to as Voronoi cells, with one such set for each u ∈ S. The set Vor(u) is defined to be
{v ∈ V | d(u, v) < d(u′, v) for all u′ ∈ S \ {u}}, that is the set of vertices that are closer to
u than any other site in terms of d(·, ·). We shall simply write VD when the context is clear.

It will also be useful to work with a dual representation of Voronoi diagrams. Let VD∗
0

be the subgraph of G∗ s.t. E(VD∗
0) is the subset of edges of G∗ where uv∗ ∈ VD∗

0 iff u and
v belong to different Voronoi cells in VD. Let VD∗

1 be the graph obtained by repeatedly



J. Evald, V. Fredslund-Hansen, and C. Wulff-Nilsen 23:5

contracting edges of VD∗
0 incident to degree 2 vertices until no such vertex remains2. We

refer to the vertices of VD∗
1 as Voronoi vertices, and each face of the resulting graph VD∗

1
can be thought of as corresponding to some Voronoi cell in the sense that its edges enclose
exactly the vertices of some Voronoi cell in the embedding of the primal. We shall restrict
ourself to the case in which all vertices of S lie on a single face h. In particular, h∗ is a
Voronoi vertex, since each site is a vertex on the boundary of h in the primal. Finally, let
VD∗ be the graph obtained by replacing h∗ with multiple copies, one for each edge. We
note that since there are |S| Voronoi sites (and thus faces in VD∗), the number of Voronoi
vertices in VD∗ is O(|S|) due to Euler’s formula. Furthermore, [7] show that when assuming
unique shortest paths and a triangulated input graph, VD∗ is a ternary tree. It follows that
the primal face corresponding to a Voronoi vertex f∗ consists of exactly three vertices, each
belonging to different Voronoi cells. We refer to the number of sites in a Voronoi diagram as
its complexity.

Finally, they also note that a centroid decomposition, T ∗, can be computed from VD∗ s.t.
each node of T ∗ corresponds to a Voronoi vertex f∗ and the children of f∗ in T ∗ correspond
to the subtrees resulting from splitting the tree at f∗, and s.t. the number of vertices of
each child is at most a constant fraction of that of the parent. We remark that VD∗(S) can
be computed by connecting all sites to a super-source and running a single-source shortest
paths algorithm, and its centroid decomposition in time proportional to |V (VD∗(S))|.

2.3 Separators and decompositions
In the following, we will outline the graph decomposition framework used by our construction.
As part of the preprocessing step, we will recursively partition the input graph using balanced
fundamental cycle separators until the resulting graphs are of constant size. We shall associate
with the recursive decomposition of G a binary decomposition tree, T , which is a rooted tree
whose nodes correspond to the regions of the recursive decomposition of G. We will refer to
nodes and their corresponding regions interchangeably. The root node of T corresponds to
all of G. The following lemma states the invariants of the decomposition that will be used in
our construction:

▶ Lemma 4. Let G = (V, E, ω) be an undirected, planar embedded, edge-weighted, triangulated
graph and let T be a spanning tree3 of G. Then there is an Õ(n) time algorithm that returns
a binary decomposition tree T of G s.t.
1. for any non-leaf node G′ ∈ T , its children G′

l, respectively G′
r corresponds to the non-strict

interior, respectively non-strict exterior of some fundamental cycle in G′ w.r.t. T ,
2. for any child node, it contains at most a constant fraction of the faces of its parent,
3. for any leaf node it contains a constant number of faces of G,
4. for all nodes at depth i, Ti,

∑
G′∈Ti

|V (G′)| = O(n)

Properties 1-3 follow from recursively applying a classic linear time algorithm for finding
fundamental cycles. Property 4 follows from employing standard techniques that involve
contracting degree-two vertices of the separators found at each level of recursion and weighting
the resulting edges accordingly. This transformation results in a decomposition where the
sum of faces of all regions at any level is preserved. We stress that our construction does
not rely on the usual sparse simple cycle separators (of size O(

√
n)) but rather fundamental

cycle separators of size O(n).

2 Formally, given a degree 2 vertex v with incident edges vw, vw′, we replace these edges by ww′,
concatenate their arcs and embed ww′ using this arc in the embedding.

3 For our purposes, the spanning tree will be a shortest path tree.

ISAAC 2021
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3 The vertex labeled distance oracle

In this section we describe our reduction which shows our main result. The reduction can be
described assuming Lemma 4 and the existence of the point location structure which we will
state in the following lemma, the proof of which is deferred to Section 4:

▶ Lemma 5. Let G = (V, E, ω) be an undirected, planar embedded, edge-weighted graph with
labeling l : V → L and let p be a shortest path in G. There is a data structure OG,p with
O(|V | log |V |) space which given u ∈ V and λ ∈ L returns a subset C ⊂ V of constant size,
s.t. if v is the vertex with label λ closest to u and v ⇝ u intersects p, then v ∈ C. Each such
query takes time at most O(log2 |V |).

3.1 Preprocessing
Given the input graph G = (V, E, ω), the preprocessing phase initially computes the decom-
position tree, T , of Lemma 4. Associated with each non-leaf node G′ ∈ T is a fundamental
cycle separator of ab ∈ E(G′) w.r.t. the shortest path tree T rooted at some c ∈ V (G′). For
such a G′ we shall refer to S1(G′) = c⇝G′ a and S2(G′) = c⇝G′ b. Thus the fundamental
cycle separator is given by S1(G′) ◦ ab ◦ S2(G′). The preprocessing phase proceeds as follows:
For all non-leaf nodes G′ ∈ T , compute and store data structures OG′,S1(G′) and OG′,S2(G′)
of Lemma 5. Finally, a distance oracle D with O(s(|V |)) space capable of reporting vertex-
to-vertex shortest path distances in time O(t(|V |)) is computed for G and stored alongside
the decomposition tree and the point location structures.

Space complexity

The decomposition tree T can be represented with O(|V | log |V |) space and D with O(s(n))
space. For each node G′ ∈ T , we store data structures S1(G′) and S2(G′), so by Lemma 4
and 5, we get

∞∑
i=0

∑
G′∈Ti

|V (G′)| log |V (G′)| =
c log n∑

i=0
O(|V | log |V |) = O(|V | log2 |V |)

for a total space complexity of O(s(|V |) + |V | log2 |V |).

3.2 Query
Let G′ ∈ T and consider the query dG′(u, λ). If G′ is a leaf node, the query is resolved in
time O(t(n)) by querying D once for each vertex of G′. If G′ is a non-leaf node, the query is
handled as follows: First, data structures OG′,S1(G′) and OG′,S2(G′) are queried with u and
λ, resulting in two “candidate sets”, C1 and C2, one for each query. By Lemma 5, C1 ∪ C2
contains the nearest vertex with label λ for which u⇝G′ v′ intersects either S1 or S2 if such
a vertex exists. Compute dG′ = min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞} by querying D once for
each vertex of C1 ∪ C2. The query then recursively resolves dG′′ = dG′′(u, λ) where G′′ is a
child of G′ in T containing u. Finally, the query returns min {dG′ , dG′′}.

Correctness

Denote by v the vertex of G with label λ nearest to u in G′, and consider the case in which
u⇝G′ v intersects S1(G′) or S2(G′). In this case, v ∈ C by Lemma 5 and C ̸= ∅, so

dG′ = min {dG(u, c) | c ∈ C} = dG(u, v) = dG′(u, v) = dG′(u, λ) ≤ dG′′
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Algorithm 1 Query procedure for the distance oracle.

1: procedure Query(u, λ, G′)
2: if G′ is a leaf node in T then
3: return min {dG′(u, v) | v ∈ V (G′) and l(v) = λ}
4: else
5: C1 ← OG′,S1(G′)(u, λ); C2 ← OG′,S2(G′)(u, λ)
6: G′′ ← A child of G′ in T containing u

7: dG′ ← min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞}
8: dG′′ ← Query(u, λ, G′′)
9: return min {dG′ , dG′′}

with the inequality following from definition of v. Note that in case u is a vertex of either S1
or S2, the correct estimate is returned at the current level, but for a simpler description, the
recursion proceeds anyways. Otherwise u⇝′

G v intersects neither S1 and S2 in which case,
the path must be fully contained in the (unique) child node, G′′, of G′ containing u. In this
case, the query reports dG′′ = dG′′(u, λ) = dG′′(u, v) ≤ dG′ , showing the correctness.

Time complexity

At each level of the recursion, OG′,S1(G′) and OG′,S2(G′) are queried in time O(log2 |V |).
Furthermore, D is queried |C| = O(1) times in total time O(1) · O(t(|V |)) = O(t(|V |)).
By Lemma 4, the query is recursively resolved on a problem instance which is a constant
fraction smaller at each level of recursion, giving rise to the recurrence relation T (n) =
T (n/a)+O(t(n)+log2 n). When G′ is a leaf node, then by Lemma 4, G′ consists of a constant
number of faces, described by the base case T (n) = O(t(n)) when n ≤ b for sufficiently small
b. It is easily verified that a solution to the recurrence is bounded by O(log3 n + t(n) log n).
This shows the main theorem, and the rest of this paper is devoted to proving Lemma 5.

4 The point location data structure

Our point-location data-structure uses techniques similar to those of [7] for point location
in additively weighted Voronoi diagrams, but with some crucial differences in order to save
space.

Both structures rely on being able to determine left/right turns of shortest paths in
shortest path trees rooted at sites in G, but to facilitate this, the data structure of [7]
explicitly stores an (augmented) shortest path tree rooted at each site as well as a data
structure for answering least common ancestor (LCA) queries. The point location structure
thus requires Θ(|S|n) space where S is the number of sites, and since S may be large as
Θ(
√

n) (corresponding to the size of a sparse balanced separator in a planar graph), this
translates to Θ(n3/2) space for their problem. This will not work in our case since the number
of sites can in fact be as high as Θ(n), leading to a quadratic space bound.

The second issue with applying the techniques from [7] directly to our setting, is that it
requires us to store a Voronoi diagram for each label, for each shortest path. Each vertex of
the path separator would then be a site in the stored Voronoi diagram but as each separator
may be large, i.e. Θ(n), we may use as much as Θ(n|L|) space over all labels of L for a single
separator. What we need is for the number of sites involved for a label λ to be proportional
to the number of vertices with label λ; this would give a near-linear bound on the number
of sites when summing over all λ ∈ L across all levels of the recursive decomposition. We
address these issues in the following sections.

ISAAC 2021
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4.1 MSSP structure
To compactly represent shortest path trees, our point location structure uses an augmented
version of the multiple-source shortest-path (MSSP) data structure of Klein [10]. It cleverly
uses the persistence techniques of [5] in conjunction with top trees [1] to obtain an implicit
representation of shortest path trees rooted at each site. Top-trees allow for shortest path
distance queries and least-common ancestor (LCA) queries in time O(log n) per query while
using O(n log n) space, and can easily be augmented to support turn queries, as we shall see
shortly. To be used as a black box, the MSSP structure relies on being initialized from a
face of G. In our construction, we wish to use it for querying left/right turns of paths and
distances from vertices residing on shortest paths of fundamental cycle separators, and thus
some further preprocessing is required. The guarantees of the augmented MSSP structure
used for the point location structure are summarized in the following lemma:

▶ Lemma 6. Let G = (V, E, ω) be an edge-weighted planar graph, f be a face of G and let
Tu denote the shortest path tree rooted at u. Then there exists a data structure MSSP(G, f)
with O(n log n) space which given u ∈ V (f) and c, v ∈ V supports queries
1. Dist(u, v): report dG(u, v),
2. LCA(u, c, v): report the least common ancestor of v, c in Tu,
3. Turn(u, c, v): report whether u ⇝Tu

c makes a left or right turn w.r.t. u ⇝Tu
v or if

one is a prefix of the other.
in time O(log n) per query. The data structure can be preprocessed in O(n log n) time.

Descriptions of Dist and LCA are available in [10] and [1], and a description of how
to implement Turn is provided in Appendix A in terms of the vocabulary and interface
specified in [1] for completeness. A top-tree representing any shortest path tree rooted at a
vertex on f can be accessed in time O(log n) by using persistence in the MSSP structure.
Lemma 6 then readily follows from applying the bound of Lemma 13 in Appendix A.

4.2 Label sequences
To address the second issue, we first need to make the following definition and state some of
its properties when applied in the context of planar graphs:

▶ Definition 7. Let G = (V, E) be a graph, p = p1, . . . , pk a sequence of vertices and
S ⊆ V . The label-sequence of p w.r.t. S is a sequence MG,S,p ∈ Sk satisfying MG,S,p(i) =
arg mins∈S distG(s, pi). The alternation number on p w.r.t. S in G is defined as |MG,S,p| =∑k−1

i=1 [MG,S,p(i) ̸= MG,S,p(i + 1)].

When G, S and p are clear from the context, we shall simply write M , and also note that
the sequence is well-defined due the tie-breaking scheme chosen in the preliminaries. The
alternation number can be thought of as the number of times consecutive vertices on p change
which vertex they are closest to among S when “moving along” p.

When G is an undirected planar graph and p is a shortest path in G, it can be observed4

that M is essentially a Davenport-Schinzel sequence of order 2, and it immediately follows
that the alternation number is “small” in the sense it is proportional to S while being agnostic
towards the length of p altogether.

4 We thank the anonymous reviewer for this observation which saved a tedious proof.
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vi2 vi3 vi4
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x

(a) Vertex v not contained in C.

vi1
vi2 vi3 vi4

u

v

x

f

(b) Vertex v contained in C.

Figure 1 Illustration of the proof of Lemma 10. The concatenation of u⇝ vi1 , vi1 ⇝ vi3 , and
the reverse of u⇝ vi3 forms a cycle C and v ⇝ vi2 intersects u⇝ vi3 in x. Note that w.l.o.g. C is
not necessarily simple, that v ⇝ vi2 may intersect the cycle more than once and that v may be a
vertex of C.

▶ Definition 8 (Davenport-Schinzel [4]). A sequence u1, u2, . . . , uk over an alphabet Σ on n

symbols is said to be a (n, s)-Davenport-Schinzel sequence if
1. ui ̸= ui+1 for all 1 ≤ i < k and
2. There do not exist s + 2 indices 1 ≤ i1 < i2 < . . . < is+2 ≤ k for which ui1 = ui3 = . . . =

uis+1 = u and ui2 = ui4 = . . . = uis+2 = v for u ̸= v ∈ Σ.

▶ Lemma 9 (Davenport-Schinzel [4]). Let U be a (n, 2)-Davenport-Schinzel sequence of length
m. Then |U | ≤ 2n− 1.

For a sequence of S = u1, u2, . . . , uk over an alphabet Σ, the contraction of S is the
subsequence obtained from S by replacing every maximal substring s, s, . . . , s of S consisting
of identical symbols s by a single occurence of s. As an example with Σ = {0, 1, 2}, the
contraction of 0, 0, 1, 2, 2, 1, 1, 0, 1, 0, 0, 2 is 0, 1, 2, 1, 0, 1, 0, 2.

▶ Lemma 10. Let G be an undirected, weighted planar graph, let S ⊆ V , and let p be a
shortest path of G contained in (the boundary of) a face of G. Then the contraction of M is
a (|S|, 2)-Davenport-Schinzel sequence.

Proof. Define v1, . . . , vk = p and assume for the sake of contradiction that for some 1 ≤
i1 < i2 < i3 < i4 ≤ k and u, v ∈ S with u ̸= v, it holds that u = M(i1) = M(i3) and
v = M(i2) = M(i4). Then the concatenation of u ⇝ vi1 , vi1 ⇝ vi3 , and the reverse of
u⇝ vi3 forms a cycle. Thus, either v ⇝ vi2 intersects u⇝ vi1 ∪u⇝ vi3 or v ⇝ vi4 intersects
u⇝ vi1 ∪ u⇝ vi3 ; see Figure 1a and 1b. By symmetry, we only need to consider the former
case. If v ⇝ vi2 intersects u ⇝ vi3 in some vertex x then v ⇝ x has the same weight as
u⇝ x. By the “closer than”-relation, u = M(i3) = M(i2) = v, contradicting our assumption
that u ̸= v. A similar contradiction is obtained if v ⇝ vi2 intersects u⇝ vi1 . ◀

▶ Corollary 11. Let G, S and p be as in Lemma 10. Then |MG,S,p| = O(|S|).

We remark that M can be readily computed in polynomial time by adding a super-source
connected to each vertex of S and running an SSSP algorithm. Furthermore M can be
represented with O(S) space, by storing only the indices for which M(i) ̸= M(i + 1) and
M(i) for each such index.

We will now describe how to achieve O(n) space for storing Voronoi diagrams for all
labels λ ∈ L at any level of the recursive decomposition. We do so by modifying the
preprocessing steps and query scheme of [7] in a manner suitable for application of Lemma
10 and Corollary 11.

ISAAC 2021
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p1 pl

(a) G before incision. Here p as indicated by the
dashed line.

p1 plfp?

(b) The resulting graph Gp after the incision; p is
replaced by two paths p′ and p′′ that enclose the
face fp.

r1 r2 r3
a1 b1/a2

b2/a3
b3

f ′
p?

(c) The face f ′
p resulting from adding edges to ri.

Here b1 = a2 and b2 = a3.

r1 r2 r3f ′
p?

(d) The Voronoi diagram is represented by a colored
shortest-path tree for each site ri.

Figure 2 Preprocessing steps for the point-location structure.

4.3 Preprocessing

Let us briefly recall the statement of Lemma 5; that is, we let G be an undirected, edge-
weighted, planar embedded graph with associated labeling l : V → L and let p = p1 ⇝ pk be
a shortest path in G. Given a query (u, λ) ∈ V × L, we want to identify a small “candidate”
set of vertices C ⊆ V such that if v is the vertex with label λ closest to u and u⇝ v intersects
p, then v ∈ C.

Here, we first describe how to compute a data structure which provides the guarantees
of Lemma 5, but restricts itself to the case only where u ⇝ v intersects p from the left.
The description of the data structure for handling paths that intersect p from the right is
symmetric (e.g. by swapping the endpoints of p). Lemma 5 thus readily follows from the
existence of such structures.

First, a copy, Gp, of G is stored and an incision is added along p in Gp. This results in a
planar embedded graph Gp, which has exactly one more face than G. Define by p′ = p′

1, . . . , p′
l

and p′′ = p′′
1 , . . . , p′′

l the resulting paths along the incision, where p′
1 = p′′

1 and p′
l = p′′

l . We
denote by fp the face whose boundary vertices are V (p′) ∪ V (p′′). An illustration of this is
provided in Figure 2a and 2b.

Next, the MSSP data structure of Lemma 6, MSSP(Gp, fp), is computed and stored as
part of the point-location data structure. This structure will be used for the point location
query.

Centroid decompositions of Voronoi diagrams

The following preprocessing is now done for each label λ ∈ L: First a copy, Gλ
p , of Gp is

made. Next, MGp,Sλ,p′ is computed for Sλ = {v ∈ V | l(v) = λ}. For convenience we assume
that M(0) = nil. The preprocessing phase now consists of modifying Gλ

p before computing
the Voronoi diagram and the associated centroid decomposition associated with λ as follows:
For i← 1, . . . , l, whenever M(i) ̸= M(i− 1), a new vertex is added to Gλ

p and embedded in
fp along the curve formed by the deleted arc of the embedding of p. Denoting by ri the most
recently added vertex after iteration i, edge p′

iri with ω(p′
iri) = dG(M(i), p′

i) is added to Gλ
p
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and embedded for all i. Once again, it is fairly easy to see that Gλ
p is planar embedded. See

Figure 2c for an illustration of this. Denote by ai and bi the endpoints of the first and last
edges added incident to ri (w.r.t. the order in which they were added). Denote by f ′

p that
has {ri, ai, bi | 1 ≤ i ≤ l} ∪ V (p′′) as its boundary vertices. Now the Voronoi diagram, its
dual and subsequently its corresponding centroid decomposition, T ∗

p,λ, is computed in (the
now modified) Gλ

p using R = {ri | 1 ≤ i ≤ l} as Voronoi sites, see Figure 2d. The intuition is
that each site in R corresponds to a contiguous subsequence M(k), . . . , M(l) of M for which
M(j) = M(j + 1) = v where v is the vertex with label λ closest to p′

j for k ≤ j < l. This
implies that the number of sites is proportional to the number of vertices with label λ instead
of the length of the original separator p: By Lemma 11, |M | = O(|Sλ|) and since |R| = |M |
it follows that |R| = O(|Sλ|) bounds the complexity of T ∗

p,λ, which is stored as part of the
data structure. As aforementioned, each centroid c ∈ T ∗

p,λ corresponds to some degree three
Voronoi vertex, f∗

c , with vertices, {x1, x2, x3} in the corresponding primal face fc s.t. each
xj belongs to a different Voronoi site rij

for j ∈ {1, 2, 3}. For each such j, the centroid c

stores a pointer to its corresponding face fc, the first vertex pkj of p′ on rij ⇝G′
p

xj and the
weight ω(pkj

rij
).

Space complexity

The space used for storing the MSSP structure is O(|V | log |V |) by Lemma 6. For each
centroid, we store a constant amount of data, so the space required for storing the centroid
decompositions is∑

λ∈L

O(1) · |T ∗
p′,λ| =

∑
λ∈L

O(|Sλ|) = O(V )

since Sλ ∩ Sλ′ = ∅ for λ ̸= λ′ ∈ L as each vertex has exactly one label. The total space used
is thus O(|V | log |V |).

4.4 Handling a point location query
We now show how to handle a point location query. Note that in the following, we can
assume that the vertices of p′ appear in increasing order of their indices when traversing
the boundary of fp in a clockwise direction. Recall that given u ∈ V and λ ∈ L, we wish to
find a subset C ⊂ V of constant size, s.t. if v is the closest vertex with label λ where u⇝ v

intersects p from the left, then v ∈ C. The query works by identifying a subset P ⊆ V (p′)
s.t. for some p′

k ∈ P it holds that MGp,Sλ,p′(k) = v. We first show how to identify the subset
by recursively querying the centroid decomposition T ∗

p,λ according to the following lemma,
which we note is modified version of the query in [7]:

▶ Lemma 12. Given a query (u, λ) ∈ V × L, consider the centroid decomposition tree T ∗
p,λ

computed from Gλ
p in the preprocessing. Let c be a centroid c ∈ T ∗

p,λ corresponding to some
Voronoi vertex, f∗

c , with associated primal triangle containing vertices {x0, x1, x2} = V (fc)
where xj belongs to the Voronoi cell of rij

for j ∈ {0, 1, 2} and i0 < i1 < i2. Furthermore
let e∗

j be the dual edge incident to f∗
c , s.t. ej = xjx(j+1) mod 3, let pkj

be the successor
of rij

on rij
⇝Gλ

p
xj, let Pj = pkj

⇝Gp
u, and let T ∗

j be the subtree of T ∗
p,λ attached

to c by e∗
j for j ∈ {0, 1, 2}. Finally, let j∗ = arg minj∈{0,1,2}{dGp(pkj , u) + ω(rij pkj )} =

arg minj∈{0,1,2}{dGλ
p
(rij

, u)}. Then
1. If pkj∗ ⇝Gp u emanates from the left of Pj∗ or u ∈ Pj∗ , then the site closest to u in

Gλ
p belongs to R− = {r(i(j∗−1) mod 3 , . . . , rij∗} and the second vertex on the shortest path

from that site to u in Gλ
p belongs to P − = {p(i(j∗−1) mod 3 , . . . , pij∗}; furthermore, T ∗

j∗ is
the centroid decomposition tree for Gλ

p when restricted to shortest paths from sites in R−

through successors in P −.

ISAAC 2021
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x0

x2

x1

ri0 ri1

ri2

pk1

pk2

e∗0

e∗1

e∗2

u

pk0

R+, P+R−, P−

p′

T ∗1

Figure 3 Illustration of Lemma 12. The dashed green lines represent Voronoi edges in the centroid
decomposition and the red lines the primal shortest paths to the primal vertices of the centroid.
In this case, j∗ = 1, so u is contained in primal faces spanned by the subtree T ∗

1 contained in the
region highlighted in yellow.

2. otherwise, the site closest to u in Gλ
p belongs to R+ = {rij∗ , . . . , ri(j∗+1) mod 3}

and the second vertex on the shortest path from that site to u belongs to P + =
{pij∗ , . . . , pi(j∗+1) mod 3}; furthermore, T ∗

(j∗+1) mod 3 is the centroid decomposition tree for
Gλ

p when restricted to shortest paths from sites in R+ through successors in P +.

Proof. By symmetry, we only consider the first case since the second case occurs when
pkj∗ ⇝Gp u emanates from the right of Pj∗ and the first case also includes the case where
u ∈ Pj∗ .

By the choice of j∗, pkj∗ ⇝Gp u cannot intersect any of the paths Pj′ with j′ ∈ {(j∗ − 1)
mod 3, (j∗ + 1) mod 3} since these two paths are subpaths of shortest paths from sites
rij′ ≠ rij∗ in Gλ

p and we assume unique shortest paths. Let x be the first vertex of pkj∗ ⇝Gp u

such that either x = u or the path emanates from the left of Pj∗ at x. The rest of pkj∗ ⇝Gp
u

following x will not intersect Pj∗ again due to uniqueness of shortest paths. Thus u belongs
to the region of the plane enclosed by paths P(j∗−1) mod 3, Pj∗ , edge e(j∗−1) mod 3, and
path pk(j∗−1) mod 3 , . . . , pkj∗ . Note that T ∗

j∗ is the subtree of T ∗
p′,λ spanning the primal faces

contained in this region. Hence, T ∗
j∗ is the centroid decomposition tree for Gλ

p when restricted
to shortest paths from sites in R− through successors in P −. ◀

For an illustration of Lemma 12, see Figure 3. The Lemma implies a fast recursive point
location scheme. On query (u, λ), obtain centroid c from T ∗

p′,λ. Since weights of edges from
sites have been precomputed, MSSP(Gp, fp) is applied to find j∗. MSSP(Gp, fp) is also used
to determine if pkj∗ ⇝Gp

u emanates from the left of Pj∗ and hence whether the first or
second case of the lemma applies. The point location structure now recurses on a subset of
sites and vertices of p′ and on a subtree of T ∗

p′,λ, depending on which case applies.
The recursion stops when reaching a subtree corresponding to a bisector for two sites.

The vertices of V with label λ corresponding to these two sites are reported as the set C,
yielding the desired bound.

Time complexity

The O(log2 |V |) query time bound of Lemma 5 follows since there are O(log |V |) recursion
levels and in each step, a constant number of queries to MSSP(Gp, fp) are executed, each
taking O(log |V |) time.
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A Appendix

A description of how to implement Turn in Lemma 6 is provided here in terms of the
terminology and the interface specified in [1]. Readers that are not familiar with the
terminology and interface pertaining to top-trees are referred to [1].

▶ Lemma 13. Let G = (V, E, ω) be a weighted planar graph, and let T be the root-cluster of
a top-tree corresponding to some tree T in G. Then in addition to Dist and LCA, we can
support Turn queries: For u, c, v ∈ V , report whether u⇝ c makes a left or right turn w.r.t.
u⇝T v, or if one is a prefix of the other in time O(log n) per query.

Proof. A description of how to perform LCA queries is found in [1]. Assume that u, c, v ∈ T

and w.l.o.g. that u is strictly more rootward in T than v. First use T to determine the LCA
c′ of (v, c). If c′ is on both u ⇝ c and u ⇝ v one path is a prefix of the other. Otherwise
invoke expose(u, c′) and traverse T until a leaf of T corresponding to the edge, ev ∈ E(T )
is reached, which connects c′ to the subtree containing v in T . This can be done in time
O(log n). The same is done for (u, c′) and (c, c′), exposing edges eu, ec ∈ T . Now, if ec = ev

or ec = eu, c must be on u ⇝T v. Otherwise it is easily checked, by maintaining a cyclic
order of edges in the adjacency list of c′, in constant time, whether ec emanates to the left or
right of the subpath euev and hence u⇝T v. The total time spent is O(log n). ◀
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