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—— Abstract
We consider a multidimensional space partitioning problem, which we call ANONYMITY-PRESERVING
PARTITION. Given a set P of n points in R? and a collection H of m axis-parallel hyperplanes,
the hyperplanes of H partition the space into an arrangement A(H) of rectangular cells. Given
an integer parameter ¢ > 0, we call a cell C' in this arrangement deficient if 0 < |C' N P| < t; that
is, the cell contains at least one but fewer than ¢ data points of P. Our problem is to remove the
minimum number of hyperplanes from H so that there are no deficient cells. We show that the
problem is NP-complete for all dimensions d > 2. We present a polynomial-time d-approximation
algorithm, for any fixed d, and we also show that the problem can be solved exactly in time
(2d — 0.924)*m°® + O(n), where k is the solution size. The one-dimensional case of the problem,
where all hyperplanes are parallel, can be solved optimally in polynomial time, but we show that a
related INTERVAL ANONYMITY problem is NP-complete even in one dimension.

2012 ACM Subject Classification Theory of computation — Design and analysis of algorithms

Keywords and phrases Anonymity, Hitting Set, LP, Constant Approximation, Fixed-Parameter
Tractable, Space Partitions, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.32

Funding Subhash Suri: in part supported by NSF grant CCF-1814172.

Acknowledgements We thank Daniel Lokshtanov for discussions relating to our approximation
algorithm for ANONYMITY-PRESERVING PARTITION, as well as an anonymous reviewer, whose

comments helped to improve the aforementioned result.

1 Introduction

Consider the following geometric problem. We are given a set P of n points and a family
H of m axis-parallel hyperplanes in R%. The hyperplanes of H partition the space into an
arrangement A(H) of rectangular cells. Given an integer parameter ¢ > 0, we call a cell
C deficient if 0 < |C' N P| < t; that is, the cell contains at least one but fewer than ¢ data
points of P. We then ask: What is the minimum number of hyperplanes we must delete
so that there are no deficient cells? See Figure 1 for an example. The problem turns out
to be nontrivial even in two dimensions and, in fact, also in one dimension under a dual
formulation.

While we are mainly interested in this as a natural geometric problem, it can also be
relevant in the study of data anonymity. For instance, given a real-valued scalar data set, a
common technique for group anonymization is to partition the domain into buckets, defined
by a set of boundary values {x1,z2,...,2;}. Given an integer target t > 0, the buckets are
chosen to ensure that any bucket [z;, z;11] is either empty or contains at least ¢ different
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32:2 Anonymity-Preserving Space Partitions

Figure 1 A 2-dimensional Anonymity-Preserving Partition instance with ¢ = 4. The deficient
cells are highlighted in gray and the two bold lines denote the optimal solution.

data records, thereby ensuring t-anonymity for each individual data value. Generalizing
this to multidimensional data, the buckets are defined independently for each of the d axes,
which geometrically creates a set of axis-parallel hyperplanes — the hyperplanes with normals
parallel to the i-th coordinate axis correspond to the bucketing of the i-th dimension. Given
a set of multidimensional data points and a set of candidate hyperplanes, the problem of
discarding the fewest number of hyperplanes to achieve t-anonymity is precisely our space
partitioning problem. For instance, one can imagine points being user locations in a two-
dimensional coordinate system, and the problem is to specify those locations to within some
“longitude” and “latitude” values so that every user’s location is t-anonymized. Inspired by
these connections, we have chosen to call our problem ANONYMITY-PRESERVING PARTITION
for convenience, but our research focus in this work is purely algorithmic, and not related to
anonymity.

Space partitioning problems are fundamental to many domains, including computational
geometry, databases, robotics, etc. [12, 4, 6, 9, 5, 2]; however, to the best of our knowledge,
this particular partition problem has not been studied. In computational geometry, for
instance, space partitioning is frequently used for range query data structures such as kD-
trees, range trees, etc. [7, 22, 1, 18, 20]. The primary focus in those algorithms is a hierarchical
partitioning of the space to represent a set of points so that all points inside a query range
can be reported efficiently. In contrast, our goal is to sparsify the (flat) partition induced by
a given set of hyperplanes. A different type of multidimensional partitioning is investigated
in [15, 21], where the goal is to partition a d-dimensional array, with nonnegative entries, into
a fixed number of subarrays with roughly equal weights. Those approaches are motivated by
an interest in constructing a compact histogram of the multidimensional data. In contrast,
in our anonymizing partition, the goal is not to balance the weight but rather to avoid
small-weight regions. In addition, while in the histogram problem the array is partitioned
into arbitrarily arranged rectangular boxes, in our setting the partition is induced by full
hyperplanes. In [17], LeFevre et al. also consider an anonymity-related partitioning problem,
but they compute an arbitrary rectangular subdivision, not an arrangement of hyperplanes.
They also show that their problem is NP-complete, but their proof requires the dimension of
the space to be unbounded — in particular, d > n in the constructed instances. In contrast,
we show our problem is NP-complete even for dimension d = 2.

1.1 Qur Contributions

We now discuss the main results of this paper. Given a set P of n points in R%, a set H of
m axis-parallel hyperplanes, and an integer target 0 < t < n, we define a deletion set to be a
subset of hyperplanes so that no cell in the remaining arrangement is deficient. The goal of
the ANONYMITY-PRESERVING PARTITION problem is to find a minimum deletion set.
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For notational convenience, suppose H; C H is the subset of planes whose normals are
parallel to the i-th coordinate axis, for ¢ = 1,2,...,d. Then, if the number of nonempty
families H; is p, then our problem is essentially a p-dimensional problem, for p <d. If p =1,
then it is easy to solve the problem optimally using dynamic programming in time O(nm).
Surprisingly, we show that the problem is already NP-hard if p = 2, namely, the input is
two-dimensional.

We then propose a polynomial-time p-approximation algorithm for the problem for any
fixed p < d. For this, we reduce the problem to a variant of the well-known HITTING
SET problem which we show to have an approximation algorithm using LP rounding. The
approximate solution for the reduced HITTING SET instance will yield a p-approximate
solution for our problem. We also give an FPT algorithm for the problem, with running
time (2d — 0.924)*m®®) + O(n). From now on, for convenience of the reader, we assume
that p = d and state the results in terms of d.

Finally, we also introduce an interval anonymity problem in one dimension which can be
viewed as a geometric dual of ANONYMITY-PRESERVING PARTITION when d = 1 — the roles
of lines and points are interchanged. Specifically, we are given a set P of n points, which
we call markers, a multiset S of m segments (intervals) on the real line R, and an (integer)
anonymity parameter 0 < t < n. The set of markers P partitions S into equivalence classes,
where two segments s, s’ are in the same class if they contain the same set of marker points,
namely, s\ P = s’ N P. We say a segment is nonempty if it contains at least one marker.
We call an equivalence class consisting of nonempty segments deficient if it contains less
than ¢ segments. In the INTERVAL ANONYMITY problem, the aim is to remove a minimum
number of points from P so that every nonempty segment of S belongs to a non-deficient
equivalence class. For motivation, one can imagine segments as movement trajectories of m
users, and markers as location sensors, and the goal is to report user locations in such a way
that each user has t-anonymity. Somewhat surprisingly, this one-dimensional problem turns
out to be NP-hard.

2 NP-Hardness of Anonymity-Preserving Partition

In this section, we prove that ANONYMITY-PRESERVING PARTITION is NP-hard even in two
dimensions. This problem is easy to solve in one dimension, which we discuss in Section 3.

Let (P, H,t) be an instance of ANONYMITY-PRESERVING PARTITION in two dimensions.
Without loss of generality, we assume that Hy, H, C H are the sets of hyperplanes having
normals parallel to the z- and y-axes, respectively. Furthermore, we denote the hyperplanes
h1 € Hy and hy € Hs by equations of the form h; = z’ and he = ¢/, respectively, where
',y € R are constants. To show NP-hardness, we reduce from a structured variant of
SAT called LINEAR NEAR EXACT SATISFIABILITY (LNES), which is known to be NP-
complete [11]. The main idea here is to associate literals with hyperplanes and clauses with
deficient cells, and to make satisfying assignments correspond to deletion sets.

» Theorem 1. ANONYMITY-PRESERVING PARTITION is NP-complete for all dimensions
d>2.

Proof. Clearly, the decision version of our problem belongs to NP. We now show NP-hardness
for just d = 2 as these instances can be easily embedded into any higher dimension. An
instance J of LNES consists of 5s clauses, for s € N, and is denoted by

C= {Ulv‘/laU{7‘/1/a"' ,Us,%7U;,%,}U{Cl7"' 7Cs}~
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(b) This figure shows core cells and variable cells. We
consider the following four core clauses: U; := (y; V
23), Vi := (Yo Va3), U] := (U3, Ts), Vi := (Y4, T:). Moreover,
we assume the literals yi,ys,ys are associated with the
hyperplanes in Hs forming the auxiliary cells, and y2 is
associated with the hyperplane in Hy. The core cells are
colored light gray, and the wvariable cell is colored dark

gray.

(a) This figure shows nine nonempty cells
corresponding to an auxiliary clause C' :=
(y1 Vy2VysVya). The middle cell with one
point is an auziliary cell, and the four gray
cells on its boundary are shadow auxiliary
cells. The nonempty white cells denote the
helpers.

Figure 2 Example construction of auxiliary, core, and variable cells.

We refer to the first 4s clauses as the core clauses, and the remaining s clauses as the
auxiliary clauses. The set of variables consists of s main variables x1,...,xs and 4s shadow
variables yi,...,yss. Fach core clause consists of two literals (one corresponding to a
main variable, and the other to a shadow variable) and it has the following structure:
Viels|,U NV, ={x;} and U NV = {z;}.

Each main variable x; occurs exactly twice as a positive literal and twice as a negative
literal. The main variables only occur in the core clauses. Each shadow variable makes
two appearances: as a positive literal in an auxiliary clause and as a negative literal in a
core clause. Each auxiliary clause consists of four literals, each corresponding to a positive
occurrence of a shadow variable.

The LNES problem asks whether, given a set of clauses with the aforementioned structure,
there exists an assignment 7 of truth values to the variables such that ezactly one literal in
every core clause and ezactly two literals in every auxiliary clause evaluate to TRUE under 7.

Construction. We construct the set of hyperplanes H = H; U Hy by adding hyperplanes
placed at integer coordinates starting at one, i.e., H = {hy =2’ | 2’ € {1,2,...,3¢s}}U{hy =
v |y € {1,2,...,3¢qs}}. These hyperplanes are numbered from left to right and top to
bottom. For 4,5 € N, let O, ;) denote a 1 x 1 cell [i,4 + 1] x [j,j + 1] on A(H). We set
q = 5s + 4 (recall s is a parameter from the LNES instance) which is sufficiently larger
than the desired size of the deletion set (5s). During the construction, we use ¢ hyperplanes
between a cluster of non-empty cells introduced so the sets remain independent, i.e., deleting
lines from one cluster does not affect the other. We set the target ¢ to 4. We associate a
hyperplane from H with each of the 10s literals (H may contain additional hyperplanes
which are not associated with any literal). Of these 10s hyperplanes, 8s are associated with
the shadow literals and 2s with the main literals. By default, each cell in A(L) is empty. We
introduce the nonempty cells and organize them into the following three groups (also, we
describe the locations of the 4s hyperplanes associated with the positive shadow literals in
the auxiliary cells group, and the locations of the remaining hyperplanes in the core cells
group):

Auxiliary cells: We introduce a set of nine nonempty cells for each auxiliary clause.

For i € [s], we call Og; q) the auziliary cell for clause C;. The first two literals in C; are

associated with the two adjacent hyperplanes © = gi and x = qi + 1 from H;, and the
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remaining two literals are associated with the hyperplanes y = ¢i and y = ¢i + 1 from
Hy.' We add one point to Oy ) (note that 1 < ¢/2). Moreover, we add t/2 points
to each of Uyi—1,¢i), U(gi+1,9i)s DOiqirgi+1)> Diqi,gi—1), and refer to them as shadow cells,
while we add ¢ points to each of Ugi—1,4i—1), U(gi—1,qi+1)> D(git1,qgi—1)s D(gi+1,qi+1), and
refer to them as helpers (see Fig. 2a). Observe that for each C;, one needs to remove
at least two of the four hyperplanes associated with the shadow literals appearing in C;
forming the corresponding auxiliary cell U4 44)- This is to ensure that we have at least
t points in all the remaining cells among the nine initial cells without exceeding the 5s
deletion limit.

Core cells: For each core clause, we introduce two nonempty cells. For each main

variable x;, we construct eight cells for the four core clauses U;,V;, U/, V/ together.

Without loss of generality, let U; := (7, Va;), and V; := (g, V a;). Define z; = ¢q(s+2i) for
convenience.?2 We call Oz;,2) and Oz, 41,2,) the core cells corresponding to the clauses
U;, V;, respectively. We add two points to each of these cells and associate the common
hyperplane = z; + 1 from H; to the literal x;. Next, two cases arise according to the
orientation of the hyperplanes associated with the literals y1,y2, say p(y1), p(y2) (recall
that orientation of these hyperplanes is decided while constructing the auxiliary cells):

1. p(y1) € H1: We associate the hyperplane y = z; from Hs which forms the upper
boundary of O, .,y with 7;, and add four points to O, ., 1. Similarly, if p(y2) € Hx,
we associate the hyperplane y = z; + 1 from Hs which forms the lower boundary of
O(z;41,2,) With 75, and add four points to O, 41 2, 41)-

2. p(y1) € Ho: We associate the hyperplane x = z; from H; which is the left boundary
of O, ,) with 7;, and add four points to 0., .,). Similarly, if p(y2) € Ha, we
associate the hyperplane x = z; + 1 from H; which is the right boundary of 0., 41,-,)
with 7, and add four points to O,,42,.,)-

The construction above ensures that hyperplanes associated with y; and 7, have orthogonal
normals. We call the two nonempty cells introduced in either of the cases above as shadow
core cells.

We associate the literal T; to the hyperplane y = z; + ¢+ 1 from Hs, and use a procedure
symmetric to the one above to construct four nonempty cells. Here, U, 11 z,44) and
O(z,41,2:4q+1) are core cells for the clauses Uj, V/, respectively (note that, here, the two
core cells are one below the other as opposed to side-by-side as we did for z;). We complete
the rest of the construction as described above. For an example, refer to Fig. 2b. Observe
that removal of the hyperplane associated with the positive literal z; makes both core
cells (corresponding to U;, V;) non-deficient as these are merged together. Alternatively,
removing the hyperplane corresponding to each ¥;,%, makes the core cells non-deficient.
The case of the literal ; and the core clauses U/, V; is symmetric.

Variable cells: Recall that our construction of core cells ensures that for each main and
shadow variable, the two hyperplanes associated with its two literals have orthogonal
normals. Next, we introduce three nonempty cells for each of these variables. For each
main variable x;, the two hyperplanes associated with x; and T; form the top and left
boundaries of the cell U, 41 ., 4q+1)- We refer to U, 1 2,4441) as a variable cell, and
add two points to it. Furthermore, we add four points each to U, ., 1q+1), Uz +1,2i44)»
and call them literal cells. These cells are adjacent to the left and the upper boundaries
of the variable cell. Refer to Fig. 2b.

L If for a main variable x;, the two shadow variables appearing in the core clauses U;, V; are also the first
two or the last two literals for some auxiliary clause, then we associate those literals with a pair of
orthogonal hyperplanes y = ¢qi and « = ¢i rather than with the default of a pair of parallel hyperplanes
described earlier.

2 Observe that we add an offset of ¢s so that the core and auxiliary cells are independent.
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Next, we repeat the same procedure of introducing three nonempty cells for each shadow
variable at the intersection of the hyperplanes associated with its literals. Notice that
it is imperative to remove at least one of the two hyperplanes associated with the two
literals for every variable so as to merge and make the variable cell non-deficient while
staying within the deletion budget of 5s hyperplanes.

For the constructed ANONYMITY-PRESERVING PARTITION instance I, we ask if there exists
a deletion set with size at most 5s. We now turn to the argument of equivalence.

Forward direction. Recall that we start with an instance J of LNES. Let 7 be a satisfying
assignment for J; then we claim that the set S consisting of 5s hyperplanes associated with
5s literals set to TRUE under 7 gives a valid deletion set for I. We now show that A(H\S)
does not contain any deficient cell. First, we observe that 7 sets exactly one of the two literals
associated with each of the 5s variables to TRUE (since 7 is a valid assignment). Hence, the
deficient variable cell introduced for each variable (see the dark gray cell from Fig. 2b) is
merged with one of the literal cells and becomes non-deficient. Next, for each auxiliary clause
C; for 1 <1 < s, exactly two literals are set to TRUE. From the construction of the auxiliary
cells group, one can verify that removing exactly two of the four hyperplanes associated
with the four literals in C; makes the auxiliary cell and the four shadow cells non-deficient
(see Fig. 2a). Similarly, 7 sets exactly one literal from each core clause to TRUE. Hence, we
remove exactly one hyperplane on the boundary of each deficient core cell. Due to this, the
core cell merges with either a shadow core cell or another core cell, making it non-deficient
(see Fig. 2b). This accounts for all the deficient cells in I; hence, we conclude our argument
for the forward direction.

Reverse direction. Let S be a valid deletion set of size at most 5s; we construct an
assignment 7 for J by setting the literals associated with hyperplanes in S to TRUE. From
the construction of the variable cells, we first observe that S contains exactly one of the two
hyperplanes associated with the two literals for each of the 5s variables in J (since |S| < 5s).
Hence, S is a valid SAT assignment, i.e., each variable is either set to TRUE or FALSE. Next,
using a counting argument, we show that 7 is a satisfying assignment for J. Recall that
each main variable x; occurs twice as a positive literal and twice as a negative literal in the
core clauses. Hence, the s literals associated with the s main variables set to TRUE under 7
satisfy exactly 2s core clauses. Next, for the remaining 2s core clauses, 7 sets exactly one
negative shadow literal appearing in each of those clauses to TRUE. This is because from
the construction of a core cell corresponding to each core clause, at least one of the two
hyperplanes associated with the literals in the clause must be in S (and literals corresponding
to main variables cannot be set to TRUE for this set of core clauses). Similarly, 7 sets at least
two positive shadow literals appearing in each auxiliary clause to TRUE. At this stage, we use
a counting argument: Among the 4s shadow literals set to TRUE under 7, exactly 2s negative
shadow literals and exactly 2s positive shadow literals are TRUE (due to the argument above).
Hence, with s main literals and 2s negative shadow literals set to TRUE, each core clause is
satisfied exactly once. With 2s positive shadow literals set to TRUE, each auxiliary clause is
satisfied exactly twice. This completes the proof for the reverse direction. <

3 Approximation and FPT Algorithms

In this section, we present a d-approximation algorithm for ANONYMITY-PRESERVING
PARTITION. We first note that an O(d)-approximation can be easily achieved using a
HITTING SET approximation, since we have a set system of VC dimension O(d) [13, §].
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Unfortunately, the constant factors in these HITTING SET approximations tend to be large,
and in fact a much simpler greedy algorithm can directly give us a 2d-approximation as
follows: while there exists a deficient cell C, we remove all of its (at most) 2d bounding
hyperplanes, and iterate until no deficient cell remains. The approximation guarantee follows
because for each deficient cell, the optimal solution must remove at least one hyperplane and
the greedy algorithm removes 2d hyperplanes. Thus, the main challenge is to improve on
this naive bound, which is the main result of this section.

Our algorithm first reduces the ANONYMITY-PRESERVING PARTITION problem to a
special case of HITTING SET in which all sets have a small size, and then we design an
LP-rounding-based algorithm to obtain a d-approximation for this problem. We also present a
fixed-parameter tractable algorithm running in time (2d —0.924)*m®®) +O(n) parameterized
by the solution size k.3

The one-dimensional case of ANONYMITY-PRESERVING PARTITION can be easily solved
in linear time; please see Appendix A for a proof of the following result:

» Theorem 2. The ANONYMITY-PRESERVING PARTITION problem in one dimension can
be solved in time O(mn), where m is the number of hyperplanes and n is the number of
points. Further, if every cell in the arrangement is nonempty, then it can be solved in time
O(m+n).4

3.1 A d-Approximation Algorithm

We start by defining a HITTING SET variant. Given a universe of elements U and a family
F of subsets of U, the HITTING SET problem asks us to find a minimum-sized set S C U
such that S intersects with every set in F. When every set in F has size at most [, we call it
the [-HITTING SET problem.

» Lemma 3. Given an instance (P,H,t) of the d-dimensional ANONYMITY-
PRESERVING PARTITION problem, we can construct an instance (U, F) of 2d-HITTING
SET such that U = H, |F| < |H|?*?, and (U,F) has a hitting set of size k if and only if
(P,H,t) has a deletion set of size k, for any k € N.

Proof. Given an instance (P, H,t) of ANONYMITY-PRESERVING PARTITION, we construct
a 2d-HITTING SET instance with universe U = H and the family F being the set of all
nonempty subsets X of H such that A(X) has a deficient cell and such that X contains at
most two hyperplanes from each H; with 1 <1 <d.

> Claim 4. If (P, H,t) has a deletion set of size k, then (U, F) has a hitting set of size k.

Proof. Let H' C H be a deletion set of size k for (P, H,t). Then, there is no deficient cell
in A(H\H'). Since U = H, we now show that H' is also a hitting set of (U, F). Suppose
not; then there is a set X in F that has no hyperplanes from H’ in it. We know by the
construction of F that X has a cell that is deficient in A(X). Observe that even if we add
any new hyperplanes to the arrangement A(X), there will still be a deficient cell. Thus,
A(H\H') will have a deficient cell, which contradicts our assumption that H' was a deletion
set. <

3 Fixed-parameter tractability (FPT) is studied in the realm of parameterized complexity. FPT algorithms
admit running time of the form f(k)n®®), where k is the parameter under consideration and n is the
size of the instance [10].

4 We assume the points and hyperplanes in the input are sorted.
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minimize Z Th
heH
s.t. thzl VEFeF
heF

xp €[0,1] Vhe H

Figure 3 LP for 2d-Hitting Set.

> Claim 5. If (U, F) has a hitting set of size k, then (P, H,t) has a deletion set of size k.

Proof. Let H' be a hitting set of (U, F) of size k. Since U = H, we now show that H’ is also
a deletion set of (P, H). Suppose not; then there is a cell C that is deficient in A(H\H').
Let X be the set of hyperplanes adjacent to C' in this arrangement. Since all the hyperplanes
in H are axis parallel and we are in the d-dimensional version of the problem, it follows that
X contains at most two hyperplanes from each H; with 1 <+¢ < p. Also, observe that A(X)
has the cell C in it. Since C is deficient, by construction of the family F, we know X must
be in F. But since H' N X = (), this contradicts the fact that H’ is a hitting set. N

This completes the proof of Lemma 3. Observe that the V C-dimension of the constructed
set system is 2d, hence, rounding algorithm from [13] would give an O(d)-approximation. <«

We now observe the following simple fact:

» Lemma 6. For each set X € F of the 2d-HITTING SET instance (U, F) obtained by
applying the reduction in Lemma 3 to (P, H,t), it holds that |H; N X| < 2, for 1 <i <d.

Our approximation algorithm uses LP rounding; see Figure 3. While the integrality gap of
this LP is known to be at most d, the proof is non-constructive [3, Theorem 1]° and therefore
it is not known how to efficiently compute a rounded solution with approximation factor
less than 2d. (The size of each set in the LP is 2d and so in any fractional LP solution each
set is only guaranteed to have some variable with value at least 2*1(1 Thus a straightforward
rounding of the LP solution only leads to a 2d-approximation.) Our main contribution,
therefore, is to design a polynomial-time rounding algorithm that achieves a d-approximation
for 2d-HITTING SET, and thus also for d-dimensional ANONYMITY-PRESERVING PARTITION.

» Theorem 7. For every fixed dimension d > 2, there exists a polynomial-time algorithm that
given a d-dimensional ANONYMITY-PRESERVING PARTITION instance, computes a deletion
set with size at most d times the optimal size.

Proof. We describe our rounding algorithm for d = 2 and defer the general case to Appendix B.
We first use Lemma 3 to reduce the 2-dimensional ANONYMITY-PRESERVING PARTITION
instance to a HITTING SET instance (U = H; U H, F). Observe that by Lemma 6, for
each set X € F, we have |H; N X| < 2 and |Hy N X| < 2. We now give a 2-approximation
algorithm for (U, F) by extending the integrality gap result for the LP in [3] (see Figure 3).

5 Note that in [3], Theorem 1 shows the integrality gap for a variant of hypergraph Vertex Cover. It
is fairly straightforward to see that the Hitting Set instances obtained by applying the reduction in
Lemma 3 can be equivalently expressed as instances of that same hypergraph Vertex Cover variant;
hence, Lemma 3 also gives a reduction to hypergraph Vertex Cover.
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For completeness, we first include the proof that the integrality gap is at most 2, and then
describe our algorithm.

Let g : U — [0, 1] be an optimal fractional hitting set of (U, F) with value 7*(U, F). Also,
let 7(U,F) be the size of an optimal integral hitting set of (U, F). Let B = {(x1,22) €
[0,3] x [0,4] : @1 + 22 = 3}, and for each © = (z1,22) € B, let

T(x)={he€ Hy:g(h) >z} U{h € Hy: g(h) > x2}.

In other words, B can be viewed as the set of all points on the line segment x, + xo = % for
z1,22 € [0, 3], and T'(z) can be viewed as the set obtained by rounding g using z; as the
threshold for each H;.

We now prove that for any @ € B, T'(z) is a hitting set of (U, F). Suppose not; then
there must be a set X € F such that X N T(z) = (. By the definition of T'(z), for each
hyperplane h € X N H;, i € {1,2}, it holds that g(h) < x;. Combining this with the fact
that | X N Hy| <2 and | X N Hy| <2, we get ), g(h) <2(x1 4+ x2) = 1. This contradicts
the fact that g is a feasible fractional hitting set of (U, F), and thus T'(x) is a hitting set.

Observe that for any given a,b € [0,1/2] with a < b, for a uniformly random z =
(z1,%2) € B, we have Pr(a < z; <b) = 1’175 for i € {1,2}, i.e., z; and x5 have a uniform
distribution over the interval [0,1/2]. We will now use a probabilistic argument to prove that
the integrality gap is bounded by 2. If we choose a uniformly random z = (z1, z2) from B,

and let E(-) denote the expected value, then we have

U, F) S E(T@)= )  Prigh)22;) =) min ( gl(/@)

heH; ie{1,2} heU

Let T := {T(z) : = € B}. By the above argument, there exists x € B such that T'(z)
is a hitting set of size at most 27*(U, F). Thus, to get a 2-approximation we will show
that |T'| < 2m + 2 and that T can be constructed in polynomial time (see Appendix B,
Algorithm 1 for pseudocode). We now build a set B’ C B of size at most 2m + 2 such
that 7" := {T'(z) : « € B’} = T. We include one point for each hyperplane h € H; with
g(h) < 1/2, and we include an arbitrarily chosen point between each consecutive pair of
these points on the line z1 + x5 = 1/2.

Formally, define By and Bj as follows: For each h € Hy, add (g(h),1/2 — g(h)) to By if
g(h) <1/2, and for each h € Hs, add (1/2—g(h), g(h)) to By if g(h) < 1/2. Finally, add the
point (1/2,0) to B;. Choose a value € > 0 such that for any distinct (z1,22), (2}, 25) € B,
we have e < |z} —x1|. For each x = (21, z2) € By such that z1 # 1/2, add (z1+¢,1/2—21—¢)
to Bs. Finally, add (0,1/2) to Ba. Now let B’ = By U Bs.

We now prove that 7/ = T. We only need to argue that for all z € B\B', T'(z) € T".

Given z = (x1,22) € B\B’, let 2/ = («),x)}) be the pair in B; having the largest z} such

that ) < x1. If such an 2’ does not exist, then it is easy to see that T'(y = (0,1/2)) = T'(x).

If © exists, then T(y = (x1 +¢,1/2 —x1 —€)) = T(x) since ¢ B’. In both cases y is in
B’ and thus T'(y) = T(x) is in T’. This proves that 7/ = T and that |T| < 2m + 2. Our

approximation algorithm constructs 7" and outputs the set in 7" having the smallest size.

This completes the proof for d = 2. The complete algorithm as well as the details of the
general case for dimensions d > 2 are presented in Appendix B. |

The approximation ratio in Theorem 7 is the best possible that can be obtained using
the particular LP formulation from Fig. 3 because it has an integrality gap of d for the
constructed hitting set instances [3].
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3.2 Fixed-Parameter Tractable Algorithm

Given the equivalence of 2d-HITTING SET and ANONYMITY-PRESERVING PARTITION (refer
to Lemma 3), an FPT algorithm follows easily (when d is a constant). This is because
the [-Hitting Set problem is known to admit an exact algorithm running in time® (I —
0.924)*|U|°M) [14], where k is the size of the hitting set.

» Theorem 8. The ANONYMITY-PRESERVING PARTITION problem in d dimensions can be
solved in time (2d — 0.92)%(m)°®) 4 O(n), where k is the size a minimum deletion set, m is
the number of hyperplanes, and n is the number of points.

4 An NP-hard Anonymity Problem on the Line

In this section, we show that the INTERVAL ANONYMITY problem is NP-complete and
give an exact algorithm running in time 3.08n°M) + O(m), where k is the solution size.
Recall that here we are given a set P of n points, which we call markers, a multiset S of
m segments (intervals) on the real line R, and an integral anonymity parameter ¢ > 0. For
convenience, when we consider any set of points, we consider them to be ordered from left to
right according to their relative positions on the line. The set of markers P partitions S into
equivalence classes, where two segments s and s’ are in the same class if they contain the
same set of marker points, namely, s N P = s’ N P. We call an equivalence class consisting of
nonempty segments deficient if it contains less than ¢ segments. The INTERVAL ANONYMITY
problem asks us to remove a minimum number of points from P so that every segment of S
belongs to a non-deficient equivalence class. We now show that INTERVAL ANONYMITY is
NP-complete.

» Theorem 9. INTERVAL ANONYMITY is NP-complete, and is NP-hard to approximate
within a factor of (2 — ), for any € > 0, assuming the unique games conjecture (UGC).

Proof. Clearly, the decision version of INTERVAL ANONYMITY belongs to NP. We give a
polynomial-time approximation-preserving reduction from VERTEX COVER, which is NP-hard
to approximate within a factor less than 2, assuming UGC [16].

Construction. Let G be a graph for which we seek a vertex cover of size at most k, and
let n = |V(G)|. We can assume k < n. We construct an instance (P, S,t) of INTERVAL
ANONYMITY having |P| =n+ (n — 1)k and ¢ = 2, where we seek the same solution size k.

Let vq,...,v, be the vertices of GG. For each vertex v;, we create k + 2 markers labeled as
(1) (2 (k+1)
v

B A

Vi, U , with one exception: the last vertex corresponds to just one marker,

v,. These markers occur in the following order:

(1) (k+1) 1 (k+1)
V1,V ..., 0] s ey Un_ 1,V 4,y Uy, U

For each (v;,v;) € E(G) with i < j, we add the following five (closed) intervals to S: [v;, v;],

(k+1) (1)

two copies of [v;,v;~ '], and two copies of [v;", v;]. Since t = 2, we can see that the deficient

intervals are exactly the ones of the form [v;, v;].

5 When 2d > 15, there is an algorithm that runs in time O(c® +m), c=d — 1+ = [19].
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Proof of equivalence. For any vertex cover S of G, if we remove the markers (without
superscripts) corresponding to the vertices in S, we obtain a solution for the Interval
Anonymity instance. For the reverse direction, suppose we have a deletion set S for (P, S,t)

1 k41
),orvng),

of size at most k. Since our segments only have endpoints of the form wv;, vE
we would have had to include in S all of the (k + 1)-superscripted markers between two
consecutive vertices if we wished for these to affect feasibility. Therefore, we can remove
from S any superscripted markers and still maintain a feasible solution. Now, S naturally

corresponds to a vertex cover for G. <

We now turn to a 4-approximation and an exact algorithm for the Interval Anonymity
problem. Since this problem only cares about segments s such that s N P # ), we will from
now on assume that for all segments s € S, sN P # (. Given an instance (P, S,t) of the
Interval Anonymity problem, we now associate a set of at most four markers from P to every
equivalence class X. We denote this set by Mx. Let s be a segment in X, and let [ and r be
the leftmost and the rightmost markers in the set s N P. Also, let I’ and 7’ be the markers in
P to the left of [ and to the right of r, respectively, if they exist. Then, Mx = {l',,r,7'} is
the set containing these markers. Note that [ might be equal to r and I’ and v’ might not
exist, and thus M is a set of size at most four.

4-Approximation. The idea that each equivalence class can be associated with a set of at
most four markers immediately gives us a polynomial-time 4-approximation algorithm and
an exact algorithm running in time 4% (m +n)°() | where k is the size of a minimum deletion
set. The key here is to observe that (i) All segments in an equivalence class will remain in the
same equivalence class in the final solution, and (i¢) In order to make a deficient equivalence
class X non-deficient, we need to remove at least one of the markers from M.

Then, the 4-approximation algorithm is as follows: (i) Initialize the deletion set D = §);
(ii) Repeatedly pick an arbitrary deficient equivalence class X and add all the markers in
Mx to D, as long as there is a deficient equivalence class; (iii) Finally, output D. For the
exact algorithm, instead of adding all of the markers from Mx to the deletion set, we guess
which one of these markers to add to the deletion set (branching).

We obtain a better exact algorithm for this problem, similarly to the ANONYMITY-
PRESERVING PARTITION problem, by reducing to 4-Hitting Set.

» Theorem 10. The INTERVAL ANONYMITY problem can be solved in time 3.08*n°™) +O(m),
where k is the size a minimum deletion set.

Proof. We first reduce our problem to 4-HITTING SET and then use the known (3.08)% ||
time algorithm [14] for 4-HITTING SET to solve our problem. Our focus now is to describe the
reduction. Given an instance (P, S,t) of the INTERVAL ANONYMITY problem, we construct a
4-HITTING SET instance with universe U = P and family F being the set of all nonempty
subsets Q) of P of size at most four such that the instance (Q, S,t) contains some deficient
equivalence class.

Now we prove the forward direction: If (P, S,t) has a deletion set of size k, then (U, F)
has a hitting set of size k. Let P’ C P be a deletion set of size k of (P, S,t). Then, there is
no equivalence class in (P\P’,S,t) that is deficient. Since U = P, we now show that P’ is
also a hitting set of (U, F). Suppose not; then there is a set @ € F that contains no markers
from P’. We know by construction of F that there is some deficient equivalence class X in
(Q, S,t). Let s be a segment in X, and let X’ be the equivalence class that s belonged to
in (P\P’,S,t). Since segments in X’ always remain together in their resulting equivalence
class even after removing additional markers, it is easy to see that if X’ is not deficient in
(P\P’,S,t), then X is not deficient in (Q, S,t). This contradicts the fact that X is deficient
and thus completes the forward direction.
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Next, we show the reverse direction: If (U, F) has a hitting set of size k, then (P, S,t) has
a deletion set of size k. Let P’ be a hitting set of (U, F) of size k. Since U = P, we now show
that P’ is also a deletion set of (P, S,t). Suppose not; then there is a deficient equivalence
class X in (P\FP’, S,t). We show that Mx from (P\P’, S,t) belongs to F, thus contradicting
the fact that P’ is a hitting set of (U, F) since Mx does not have any marker from P’. To
satisfy an equivalence class F, at least one of the markers in Mz must be deleted. Therefore,
deleting all markers from P\ P’ except those from My will make X a deficient equivalence
class in (Mx,S,t). Thus, by construction, Mx belongs to F. <

5 Conclusion

We considered a natural multidimensional space partitioning problem, showed that it is
NP-complete in all dimensions d > 2, and designed a d-approximation algorithm and an
FPT algorithm parameterized by solution size. Although we described our results for the
case p = d, it is easy to see that the algorithm in fact guarantees a p-approximation for the
more general case, where p < d is the number of nonempty families of hyperplanes. We also
showed that a simple INTERVAL ANONYMITY problem is NP-complete even in one dimension,
and gave approximation and FPT algorithms for that as well. Improving our approximation
factors is an interesting open problem.
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A Proof of Theorem 2

We show that the Anonymity-Preserving Partition problem is easy to solve in the one-
dimensional case in time O(mn). Furthermore, this special case can be solved in time
O(m + n) if every cell in the arrangement is nonempty. In both cases, we assume the points
and hyperplanes in the input are pre-sorted.

Proof (of Theorem 2). We design a dynamic-programming algorithm to solve the problem
in the one-dimensional case. Let ¢ be the dimension in which we have a nonempty set of
hyperplanes. We have m = |H;| = |H|. We will denote the cells by f1,..., fint1 and the
hyperplanes by h1, ..., s, so that they occur in the following order in space:

fl7h17,f27h2"'?hmaf’m+l-

Let n; be the number of points in the cell f;. We will think of hyperplanes and cells with
smaller indices in this ordering as being “to the left.”

For each 1 < i <m+ 1, let L; be the set of hyperplanes to the left of the cell f;. We
have L1 = (). For a set of hyperplanes H', let f;(H') denote the cell containing f; in the
arrangement A(H\H'). For example, if H' = {hy}, then fo(H’) is the cell formed by the
union of f; and f5. For every 1 <i < m+ 1 and every 0 < s < t, we define the following
value:

f(i,8) = minimum possible size of a set H' C L; such that in the arrangement A(H\H'),
any nonempty cell to the left of f;(H’) contains at least ¢ points, and the cell f;(H')
contains at least s points.
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The value we need to compute is f(m + 1,t). We compute f(m + 1,t) using the following
recursive formula:

0 ifi=1and s <mnyg

) 00 ifi=1and s > ny
f(Z,S): . . . -

mm(f(z—l,O)—i—l,f(z—l,t)) ifi>1and s<m,

fi—1,s—n;)+1 ifi >1and s > n;.

The return value f(m + 1,t) is always finite since we assume n > ¢. This concludes the
algorithm — we leave the formal proof of correctness to the reader. It is easy to see that the
running time is O(mt 4 n), which is bounded by O(mn).

We now proceed to the case when the instance is not only one-dimensional, but also has
the property that every cell in the arrangement is nonempty. In this case, the problem can
be solved by a greedy algorithm, which proceeds as follows:

Initially, set ¢ = 1 and set S = 0.

Repeat the following steps while ¢ < m + 1:

Set j to be the smallest j such that Zg:q n; >t. Set 8" ={hg,...,hj1}. Ifj=gq,
then S’ is empty.) If there is no such j, this means we have reached the last of the cells.
In that case, set j to be the largest j such that ZZEI n; > t,set 8" ={hj,..., i},
and break once this iteration is complete.

Set S =SUS".
Set g =4+ 1.
Return S.
Note that there always exists a j such that Z?z;l n; > t since we assume Z’iﬁl n; =n >t.
The formal proof of correctness is straightforward, and we leave it to the reader. <

B Proof of Theorem 7 for d > 3

In this section, we prove Theorem 3 for d > 3 and provide the pseudocode for the d = 2
case. Recall that Theorem 7 promises a d-approximation algorithm for the d-dimensional
Anonymity-Preserving Partition problem.

Proof (of Theorem 3 — for d > 3). Given an instance (P, H,t) of the d-dimensional Ano-
nymity-Preserving Partition problem, we use the reduction in Lemma 3 to obtain a 2d-Hitting
Set instance (U, F). Recall that U = H = |J, ;<4 Hi, i.e., U is a union of d disjoint sets of
hyperplanes H;. o

Next, we partition U into three sets S, S2, 53 such that for all X € F, | X NS;| < d for
1 <4< 3. When d is even, we let

Sl = U HZ', Sg = U Hi, Sg = @

1<i<4 441<i<d
When d is odd, we let

Sl == U Hl', SQ - U Hl Sg == Hd.
1<i<| 4] |4]+1<i<d—1
We define s; = r)r(lagc_jX NS;|, for i € {1,2,3}. From Lemma 2, we know that for all X € F,
€

|X N H;| < 2; hence, s1 + s2 + s3 < 2d. We now describe a d-approximation algorithm for
(U, F). To this end, we first use a result from [3] which bounds the integrality gap for the
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LP from Fig. 3 on the instance (U, F) by d. For completeness, we include the proof from [3],
and then build upon it to give an approximation algorithm.

Let g : U — [0,1] be an optimal fractional hitting set of (U, F) with value 7*(U, F).
Furthermore, let 7(U, F) be the size of an optimal integral hitting set. We now construct a
set B C [0,1/d]3. Fix four points:

. 81+82—5301 . 1824—83—810
q1 = 2d51 gl q2 = d’ 2d52 ’

o 51+53752 1 0 — (o 81+82783 1
q3 = 2d81 "d’ ) qa = )

2d82 ’ d
and let

BW = g1, g2], B® = 43, 4], B®) = [q1,q3], BW = (92, q4],

where [g;, g;] denotes the line segment between the points ¢; and ¢;. We define B =
BOUB® yBG yYUB®W,

Notice that the coordinates of q1, o, g3, g4 all satisfy the equation syx1 4 soxo + s3x3 = 1,
and hence, this equation is satisfied by all tuples z = (z1,22,23) € B. Hence, using an
argument similar to that used for d = 2, the sets T'(z) constructed as follows are indeed
hitting sets:

T(x)={heS1:g9(h) >z} U{h € Sa:g(h) >zt U{h€Ss:g(h)>x3}.

Let T = {T(z) : = € B}. Next, we define a probability measure p over B such that for
any given a,b € [0,1/d] with a < b, for a randomly chosen tuple (z1,x2,73) € B, we have
Pr(a < xz; <b) = b—a for 1 < 4 < 3, i.e., the x;’s have a uniform distribution over the

1/d
interval [0,1/d]. For 1 < i < 4, let y; be the uniform measures on the line segments B(®)
such that

(s1+ s3 — s2)(s2 + 53 — $1)

By = B®)Y =
i (BY) = pa(B) = LI L

3

(52 — 53)(82 + 53 — 51)

B®)Y =
Ha( ) s3(s1 + 52 — 53)

)

(51— s3)(s1+ 53 — 82).

B@W)y =
Hal ) s3(51 + 52 — 53)

We set u = pq + po + p3 + pg. It can be verified that Zle pi(B®W) =1, and hence,
u(B) = 1. At this stage, to argue as in the case d = 2 in order to show the bound on the
integrality gap, it remains to show that x; indeed has a uniform distribution on [0,1/d] for
all1 <7< 3.

It is easy to see that for a randomly chosen x = (x1,z2,23) € B, x3 has a uniform
distribution over [0,1/d]. This is because each p; is a uniform measure over B, and
x3 takes all values from [0,1/d] on each B®W with 1 < i < 4. It is easy to see that z;
is uniform over B*) using the same argument. Next, we observe that z; is uniform on
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2ds, 2dsy 2ds, 2dsy v d
p1(BM) = 1y (B®)); hence, the situation for the first and the third line segment is the same.
Without loss of generality, assume that 0 < s3 < so < 51 < d. Hence, we only need to check

each of the line segments [O, 51“3*52}, [51“3*32, 51“2*53}, [51“2*53 1] Recall that

3 S1t+S2—83 _ sSi1+S3—S2
ps(BB) S5 3ds

() T aggm

which indeed holds. Hence, x; is uniformly distributed. With a similar argument, it can be
shown that o is uniformly distributed. At this stage, similarly to the d = 2 case, we can
compute the expected size of T'(z) to obtain the desired bound d on the integrality gap.

Next, we show that there are only O(m) distinct rounded hitting sets T'(x) constructed
using € B. Observe that while traversing on any line segment B for 1 < i < 4, the
hitting set T'(z) may change at points 2 € B(*) for which there exists 1 < j < 3 such that
g(h) = x; for some h € S;, i.e., when the plane x; = g(h) intersects B. Note that the hitting
set T'(z) does not change for the points on the open line segment between two consecutive
intersection points on B obtained from the aforementioned planes (here, the open line
segment (x;,x;) is the set of all points on the line segment [z;, z;] except for the endpoints).
Since each such plane can have at most four intersection points with B, the number of
distinct rounded solutions is O(m), where m = |U].

We iterate through all distinct rounded solutions and return a hitting set with minimum
cardinality. This completes the proof of Theorem 7. |

Algorithm 1 2-approximation for Anonymity-Preserving Partition in 2 dimensions.

1: Input: Anonymity-Preserving Partition instance (P, H = Hy U Ho,t)

2: Qutput: 2-approximate Deletion Set

3: U+ H

4 F+ {X CU: A(X) is deficient, | X N H;| < 2,Vi € {1,2}}

5: g < optimum fractional hitting set of (U, F) >g:U —[0,1]
6:

By« {(9(v),1/2 = g(v)) : v € Hy,9(v) <1/2}U
{(1/2=g(v),9(v)) : v € Ha,g(v) < 1/2}U{(1/2,0)}

7: € < arbitrary positive value less than min |x1 — x|

(z1,22),(2],25)€B1

8: By {(Il +&,22 — 6) : (Il,xz) € B,z 7é 1/2} U {(071/2)}

9: B« B1 U B2

10: for z = (z1,22) € B do

11: T, + {’Ul € Hy: g(Ul) > l‘l} @] {UQ € Hy : g(’Ug) > IL’Q}

12: Tppip < argmin |7,
reB
> T,

Tmin

13: return 7,

Tmin

is a 2-approximate deletion set




	1 Introduction
	1.1 Our Contributions

	2 NP-Hardness of Anonymity-Preserving Partition
	3 Approximation and FPT Algorithms
	3.1 A d-Approximation Algorithm
	3.2 Fixed-Parameter Tractable Algorithm

	4 An NP-hard Anonymity Problem on the Line
	5 Conclusion
	A Proof of Theorem 2
	B Proof of Theorem 7 for d > = 3

