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Abstract
We study kernelization of classic hard graph problems when the input graphs fulfill triadic closure
properties. More precisely, we consider the recently introduced parameters closure number c and
weak closure number γ [Fox et al., SICOMP 2020] in addition to the standard parameter solution
size k. The weak closure number γ of a graph is upper-bounded by the minimum of its closure
number c and its degeneracy d. For Capacitated Vertex Cover, Connected Vertex Cover,
and Induced Matching we obtain the first kernels of size kO(γ), kO(γ), and (γk)O(γ), respectively.
This extends previous results on the kernelization of these problems on degenerate graphs. These
kernels are essentially tight as these problems are unlikely to admit kernels of size ko(γ) by previous
results on their kernelization complexity in degenerate graphs [Cygan et al., ACM TALG 2017].
For Capacitated Vertex Cover, we show that even a kernel of size ko(c) is unlikely. In contrast,
for Connected Vertex Cover, we obtain a problem kernel with O(ck2) vertices. Moreover, we
prove that searching for an induced subgraph of order at least k belonging to a hereditary graph
class G admits a kernel of size kO(γ) when G contains all complete and all edgeless graphs. Finally,
we provide lower bounds for the kernelization of Independent Set on graphs with constant closure
number c and kernels for Dominating Set on weakly closed split graphs and weakly closed bipartite
graphs.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Fixed-parameter tractability, kernelization, c-closure, weak γ-closure, Inde-
pendent Set, Induced Matching, Connected Vertex Cover, Ramsey numbers, Dominating Set

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.35

Related Version A continously updated version of the paper is available at: https://arxiv.org/
abs/2103.03914

Funding Tomohiro Koana: Supported by the Deutsche Forschungsgemeinschaft (DFG), project
DiPa, NI 369/21.
Frank Sommer : Supported by the Deutsche Forschungsgemeinschaft (DFG), project EAGR,
KO 3669/6.

Acknowledgements We would like to thank the anonymous reviewers of ISAAC’21 for their many
helpful remarks that have substantially improved the presentation of the results in this paper.

1 Introduction

A main tool for coping with hard computational problems is to shrink large input data to
a computationally hard core by removing easy parts of the instance in polynomial time.
Parameterized algorithmics provides the framework of kernelization for analyzing the power
and limits of polynomial-time data reduction algorithms. In addition to the input instance I,
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a parameterized problem comes equipped with a parameter k which describes the structure of
the input or is a bound on the solution size. A kernelization for a parameterized problem L

is an algorithm that replaces every input instance (I, k) of L in polynomial time by an
equivalent instance (I ′, k′) of L (the kernel) whose size depends only on the parameter k,
that is, |I ′| + k′ ≤ g(k) for some computable function g. The kernel is guaranteed to be
small if k is small and g grows only modestly. A particularly important special case is thus a
kernelization where g is a polynomial function. Such kernels are referred to as polynomial
kernelizations.

Many problems do not admit a kernel simply because they are believed to be not fixed-
parameter tractable. That is, it is assumed that they are not solvable in f(k) · |I|O(1) time.
A classic example is Dominating Set parameterized by the solution size k. Moreover, even
problems that do admit kernels are known to not admit polynomial kernels [2, 7, 21, 22]1; a
classic example is Connected Vertex Cover parameterized by the solution size k [7].

To devise kernelization algorithms for such problems, one considers either additional
parameters or restricted classes of input graphs. One example for this approach is kernelization
in degenerate graphs [4, 5, 24]. A graph G is d-degenerate if every subgraph of G contains
at least one vertex with degree at most d. Dominating Set, for example, admits a kernel
of size kO(d2) where d is the degeneracy of the input graph [24]. Thus, the exponent of the
kernel size depends on d; we will say that Dominating Set admits a polynomial kernel on
d-degenerate graphs. This kernelization was shown to be tight in the sense that there is no
kernel of size ko(d2) [4]. The situation is different for Independent Set which admits a
trivial problem kernel with O(dk) vertices: here the kernel size is polynomial in d + k.

Real-world networks have small degeneracy d, making d an interesting parameter from an
application point of view. Moreover, bounded degeneracy imposes combinatorial structure
that can be exploited algorithmically as evidenced by the discussion above. Recently, Fox et
al. [13] discovered two new parameters that share these two features; they are well-motivated
from a practical standpoint and describe interesting and useful combinatorial features of
graphs. The first parameter is the closure of a graph, defined as follows.

▶ Definition 1.1 ([13, Definition 1.1]). Let clG(v) := maxw∈V (G)\N [v]{|N(v) ∩ N(w)|, 0}
denote the closure number of a vertex v in a graph G. A graph G is c-closed if clG(v) < c

for all v ∈ V (G).

In other words, a graph is c-closed if every pair of nonadjacent vertices has at most c − 1
common neighbors. The parameter models triadic closure in social networks, the observation
that people with many common acquaintances are likely to know each other. Fox et al. [13]
devised a another parameter, the weak closure which relates to c-closure as degeneracy relates
to maximum degree: instead of demanding a bounded closure number for every vertex, one
demands that every induced subgraph has some vertex with bounded closure number.

▶ Definition 1.2 ([13, Definition 1.3]). A graph G is weakly γ-closed if
there exists a weak closure ordering σ := v1, . . . , vn of the vertices of G such that
clGi

(vi) < γ for all i ∈ [n] where Gi := G[{vi, . . . , vn}], or, equivalently, if
every induced subgraph G′ of G has a vertex v ∈ V (G′) such that clG′(v) < γ.

The weak closure number of a graph G is the minimum integer γ such that the graph G is
weakly γ-closed.

1 All kernelization lower bounds mentioned in this work are based on the assumption coNP ̸⊆ NP/poly.
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Let G be a graph and let d, c, and γ be the degeneracy, the closure number and the weak
closure number of G. The three parameters d, c, and γ are related as follows:
1. The weak closure number γ is at most max(d + 1, c).
2. The weak closure number γ can be arbitrarily smaller than d as witnessed by large

complete graphs.
3. The degeneracy d and the closure number c are incomparable as witnessed by large

complete graphs (these have large degeneracy and are 1-closed) and large complete
bipartite graphs where one part has size two (these are 2-degenerate and have large
closure number).

4. The latter example also shows that γ can be much smaller than the closure number c

which is very often the case in real-world data [13, 19].
Akin to degeneracy, c-closure and weak γ-closure have proven to be very useful parameters.

In particular, all maximal cliques of a graph can be enumerated in 3γ/3 · nO(1) time [13].
By the above discussion on the relation of γ and d, this result thus extends the range of
tractable clique enumeration instances from the class of bounded-degeneracy graphs [9] to
the larger class of graphs with bounded weak closure. The clique enumeration algorithm
for weak closed graphs [13] has also been extended to the enumeration of other clique-like
subgraphs [16, 19]. Concerning kernelization, in previous work, we showed that Independent
Set and Induced Matching admit polynomial kernels with respect to the parameter k + c

and that Dominating Set admits a polynomial kernel on c-closed graphs [20]. Later, we
extended the kernelization result for Independent Set to parameterization by weak closure.
More generally, we showed that G-Subgraph, where one wants to find a subgraph on at
least k vertices belonging to G admits a kernel with O(γk2) vertices if G is closed under
taking subgraphs [19]. To the best of our knowledge, this is is the only known kernelization
result for the weak closure parameterization.

In this work we study the kernelization of several further hard graph problems on weakly
closed graphs. In a nutshell, we provide kernels for a range of problems that have not been
considered on weakly closed graphs so far. Our kernels are based on several combinatorial
observations on the structure of weakly closed graphs that might be of more general interest.

Our Results. Building on a combinatorial lemma of Frankl and Wilson [14], we obtain a
general lemma (Lemma 2.2) which can be used to bound the size of graphs in terms of their
vertex cover number and weak closure number. More precisely, we show that in a graph G

with vertex cover S of size k and weak closure γ, the number of different neighborhoods in
the independent set I := V (G) \ S is kO(γ). Lemma 2.2 gives a general strategy for obtaining
kernels in weakly closed graphs: Devise reduction rules that 1) bound the size of the vertex
cover and 2) decrease the size of neighborhood classes. We also show that Lemma 2.2 can be
extended to a more general notion of neighborhood types (Lemma 2.4).

We then show that this strategy helps in obtaining kernels on weakly closed graphs for
Capacitated Vertex Cover, Connected Vertex Cover, Connected ℓ-Component
Order Connectivity (Connected ℓ-COC), and Induced Matching all parameterized
by the natural parameter solution size k. For these problems, polynomial kernels in degenerate
graphs are known [4, 5, 11, 17]. Our results thus extend the class of graphs for which
polynomial kernels are known for these problems. The kernels have size kO(γ) and (γk)O(γ),
respectively, and by previous results on degenerate graphs the dependence on γ in the exponent
cannot be avoided [4, 5]. We complement these findings with a study of Capacitated
Vertex Cover and Connected Vertex Cover on c-closed graphs. Interestingly, the
kernelization complexity of the problems differs: Capacitated Vertex Cover does not
admit a kernel of size O(k c−1

2 −ϵ) for all ϵ > 0 whereas Connected Vertex Cover admits
a kernel with O(ck2) vertices.
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Next, we study the kernelization complexity of Independent Set on c-closed graphs.
We show that Independent Set does not admit a kernel of size O(k2−ϵ) on c-closed graphs
for constant c. This complements previous kernels of size O(c2k3) [20] and O(γ2k3) [19],
narrowing the gap between upper and lower bound for the achievable kernel size on (weakly)
closed graphs. We also obtain a lower bound of Ω(k4/3−ϵ) on the number of vertices in the
graph in case of constant c and show that at least a linear dependence on c is necessary in any
kernelization of Independent Set in c-closed graphs: under standard assumptions, there
is no kernel of size c(1−ϵ) · kO(1). Some of our results also hold for Ramsey-type problems
where one wants to find a large subgraph belonging to a class G containing all complete
and all edgeless graphs. In this context, we observe that weakly γ-closed graphs fulfill the
Erdős–Hajnal property [10] with a linear dependence on γ: There is a constant q such that
every weakly γ-closed graph on kqγ vertices has either a clique of size k or an independent
set of size k. We believe that this observation is of independent interest and that it will be
useful in the further study of weakly γ-closed graphs.

Finally, we consider Dominating Set which admits a kernel of size kO(c) [20]. It is
open whether Dominating Set admits a kernel of size kf(γ) for some function f , which
would extend the class of kernelizable input graphs from degenerate to weakly closed. We
make partial progress towards answering this question by showing that there is a kernel of
size kO(γ2) on graphs with constant clique number (such as bipartite graphs) and a kernel of
size (γk)O(γ) in split graphs. In both cases these bounds are tight in the sense that kernels
of size ko(d2) and of size ko(c) are unlikely to exist [4, 19].

Due to lack of space, several proofs (marked with (∗)) and all results for Dominating
Set on bipartite and split graphs are deferred to the full version of this article.

Preliminaries. By [n] we denote the set {1, . . . , n} for some n ∈ N. For a graph G, let V (G)
denote its vertex set, E(G) its edge set, and n := |V (G)| the number of vertices. Let X ⊆ V (G)
be a vertex set. By G[X] we denote the subgraph induced by X and by G−X := G[V (G)\X]
we denote the graph obtained by removing the vertices of X. If the vertices of X are
pairwise adjacent (nonadjacent), then X is a clique (an independent set, respectively). We
denote by NG(X) := {y ∈ V (G) \ X | xy ∈ E(G), x ∈ X} the open neighborhood of X

and by NG[X] := NG(X) ∪ X the closed neighborhood of X. The maximum degree of G

is ∆G := maxv∈V (G) degG(v). In the remainder of this paper we fix a weak closure ordering σ.
Note that such an ordering can be computed in polynomial time [13]. We define P σ

G(v) :=
{u ∈ NG(v) | u appears before v in σ} and Qσ

G(v) := {u ∈ NG(v) | u appears after v in σ}.
We say that P σ

G(v) are prior neighbors of v and Qσ
G(v) are posterior neighbors of v. A

matching M is a set of vertex-disjoint edges. By V (M) we denote the union of all endpoints
of edges in M . We omit the superscripts and subscripts when they are clear from the context.
The following observation follows from the definition of weak closure.

▶ Observation 1.3. For nonadjacent vertices u, v ∈ V (G), it holds that |Q(u) ∩ Q(v)| ≤
|Q(u) ∩ N(v)| ≤ γ − 1.

Proof. Let Gu and Gv be the graph induced by the vertices that appear after u and v,
respectively. We have two cases based on whether u or v appears first in the weak closure
ordering σ.

u precedes v. By the definition of Q-neighbors, we have QG(u) ∩ QG(v) ⊆ QG(u) ∩ NG(v)
and QG(u) ∩ NG(v) = NGu

(u) ∩ NGu
(v). Since |NGu

(u) ∩ NGu
(v)| ≤ clGu

(u), it follows
from the definition of weak closure that |NGu(u) ∩ NGu(v)| ≤ γ − 1.
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v precedes u. Clearly, QG(u) ∩ PG(v) = ∅. We then have QG(u) ∩ NG(v) = QG(u) ∩
(PG(v) ∪ QG(v)) = QG(u) ∩ QG(v). It follows from the definition of Q-neighbors
that |QG(u) ∩ QG(v)| = |NGu

(u) ∩ NGv
(v)| ≤ |NGv

(u) ∩ NGv
(v)| ≤ clGv

(v) ≤ γ − 1.
We have shown that |Q(u) ∩ Q(v)| ≤ |Q(u) ∩ N(v)| ≤ γ − 1 for both cases. ◀

A parameterized problem is fixed-parameter tractable if every instance (I, k) can be solved
in f(k) · |I|O(1) time for some computable function f . An algorithm with such a running
time is an FPT algorithm. A kernelization is a polynomial-time algorithm which transforms
every instance (I, k) of a parameterized language Q into an equivalent instance (I ′, k′) of Q

such that |I ′| + k′ ≤ g(k) for some computable function g. A compression of a parameterized
language Q into a language R is an algorithm that takes as input an instance (x, k) ∈ Σ∗ ×N
and returns a string y in time polynomial in |x| + k such that |y| is bounded by some
polynomial in k, and y ∈ R if and only if (x, k) ∈ Q. It is widely believed that W[t]-hard
problems (t ∈ N) do not admit an FPT algorithm. For more details on parameterized
complexity, we refer to the standard monographs [3, 8].

2 Bounding the Size of Weakly Closed Graphs with Small Twin Sets

Frankl and Wilson [14] proved the following bound on the size of set systems where the
number of different intersection sizes is bounded.

▶ Proposition 2.1 ([14, Theorem 11]). Let F be a collection of pairwise distinct subsets
of [n] and let L ⊆ {0} ∪ [n] be some subset. If |S ∩ S′| ∈ L for all distinct S, S′ ∈ F ,
then |F| ∈ O(n|L|).

We now use this proposition to achieve a bound on the size of weakly closed graphs
when every vertex has few false twins and the size of the vertex cover is small. Herein, two
vertices u and v are false twins if N(u) = N(v).

▶ Lemma 2.2. Let G be a weakly γ-closed graph and let I be an independent set of G.
Suppose that each vertex v ∈ I has at most t − 1 false twins. Then, |I| ∈ t · O(3γ/3 · k2γ+3),
where k := n − |I|.

Proof. We say that two vertices v, v′ ∈ I are P -equivalent, Q-equivalent, and N -equivalent if
P (v) = P (v′), Q(v) = Q(v′), and N(v) = N(v′), respectively. Let P, Q, and N denote the
collection of P -equivalence, Q-equivalence, and N -equivalence classes, respectively. We extend
the notation of P , Q, and N to an equivalence classes A by defining P (A) := P (v), Q(A) :=
Q(v), and N(A) := N(v) for some v ∈ A. Since there is at most one N -equivalence class
for every pair of P -equivalent and Q-equivalent classes, we have |N | ≤ |P| · |Q|. By the
assumption that there are at most t vertices in each N -equivalence class, we also have
|I| ≤ t · |N |. Thus, it suffices to show suitable bounds on |P| and |Q|.

First, we prove that |Q| ∈ O(kγ), using the result of Frankl and Wilson (Proposi-
tion 2.1 [14]). Since I ⊇ A is an independent set, Q(A) ⊆ S := V (G) \ I. Moreover, for two
distinct Q-equivalence classes A and A′, we have |Q(A) ∩ Q(A′)| < γ by Observation 1.3,
and equivalently, |Q(A) ∩ Q(A′)| ∈ L for L := {0} ∪ [γ − 1]. By Proposition 2.1 we obtain
|Q| ∈ O(|S||L|) = O(kγ).

Next, we bound the size of P. Let I0 := {v ∈ I | ∃u, w ∈ P (v) : uw /∈ E(G)} be the
set of vertices in I with nonadjacent prior neighbors. By the definition of weak γ-closure,
there are at most γ − 1 vertices of I0 for every pair of nonadjacent vertices in S. Thus, we
have |I0| < γ

(|S|
2

)
∈ O(γk2).

ISAAC 2021
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Let I1 := I \ I0 and let P1 be the collection of P -equivalence classes in I1. Note that
for every A ∈ P1, its neighborhood P (A) is a clique. Since a weakly γ-closed graph on n

vertices has O(3γ/3n2) maximal cliques [13], there are O(3γ/3k2) equivalence classes A such
that P (A) constitutes a maximal clique in G[S]. Consider an equivalence class A such
that P (A) ⊂ C for some maximal clique C in G[S]. We will show that there are kO(γ) such
equivalence classes. Let u be the first vertex of C \ P (A) in the weak closure ordering σ.
Since P (A) ⊂ C ⊆ N(u) = P (u) ∪ Q(u), we have P (A) = (P (A) ∩ P (u)) ∪ (P (A) ∩ Q(u)).
As P (A) ∩ P (u) = C ∩ P (u) by the choice of u, we can rewrite P (A) = (C ∩ P (u)) ∪ B,
where B := P (A) ∩ Q(u). Thus, there is at most one equivalence class of P1 for every
maximal clique C in G[S], vertex u ∈ S, and vertex subset B ⊆ S, and thereby, we have
|P1| ∈ O(3γ/3k2·k·b), where b denotes the number of choices for B. Observe that P (A) = P (v)
for some vertex v ∈ I1 and thus that B = Q(u) ∩ P (v) ⊆ Q(u) ∩ N(v). Recall that u and v

are not adjacent by the choice of u. It follows that |B| ≤ |Q(u) ∩ N(v)| ≤ γ − 1 by
Observation 1.3, and hence b ∈ O(kγ) and |P1| ∈ O(3γ/3 · k3 · kγ) = O(3γ/3 · kγ+3). Overall,
we have |P| ≤ (|I0| + |P1|) ∈ O(3γ/3 · kγ+3). The total number of N -equivalence classes is
thus at most |Q| · |P| ∈ O(3γ/3 · k2γ+3). ◀

We now show that Proposition 2.1 can be also applied to bound the graph size in terms
of the ℓ-COC number, which is the smallest size of a vertex set S such that every connected
component in G − S has size at most ℓ, where ℓ is a fixed constant. The 1-COC number is
the vertex cover number. To obtain this generalization, we extend the notion of twins.

▶ Definition 2.3. Let G = (V, E) be a graph and let A, B ⊆ V (G) such that |A| = |B| = ℓ.
The sets A and B are ℓ-twins if there exists an ordering a1, . . . , aℓ of A and an order-
ing b1, . . . , bℓ of B such that N(ai) \ A = N(bi) \ B for each i ∈ [ℓ].

Note that u and v are false twins if and only if {u} and {v} are 1-twins.

▶ Lemma 2.4 (*). Let G be a graph and let D ⊆ V (G) be such that each connected component
in G[D] has size at most ℓ. Suppose that for every connected component Z in G[D], there are
at most t − 1 other connected components Z ′ in G[D] − Z such that Z and Z ′ are |Z|-twins.
Then, |D| ∈ O(t · kO(γ)), where k = n − |D|.

3 Applications of our Framework

We now apply Lemma 2.2 and Lemma 2.4 to obtain kernels for several well-known problems.

3.1 Capacitated Vertex Cover
The first problem to which we apply Lemma 2.2 is Capacitated Vertex Cover.

Capacitated Vertex Cover
Input: A graph G, a capacity function cap : V (G) → N, and k ∈ N.
Question: Is there a set S of at most k vertices and a function f mapping each edge

of E(G) to one of its endpoints in S such that |{e ∈ E(G) | f(e) = v}| ≤
cap(v) for all v ∈ S?

Capacitated Vertex Cover admits a kernel with O(kd+1) vertices. Furthermore, this
kernel is essentially tight: a kernel with O(kd−ϵ) vertices would imply coNP ⊆ NP/poly [4].
We will show that the reduction rule used to obtain a kernel in degenerate graphs also leads
to a kernel in graphs with bounded weak closure. One may view this result as a way of
showing that the rules are more powerful than what was previously known. The kernel uses
the following rule.
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▶ Reduction Rule 3.1 ([4, Rule 3]). If S ⊆ V (G) is a subset of false twin vertices with
a common neighborhood N(S) such that |S| = k + 2 ≥ |N(S)|, then remove a vertex with
minimum capacity in S from G, and decrease all the capacities of vertices in N(S) by one.

We omit the proof for the correctness of Reduction Rule 3.1, referring to Cygan et al. [4,
Lemma 20]. One can easily verify that it does not increase the weak γ-closure. In the following
theorem, we show that Reduction Rule 3.1 indeed gives us a kernel with kO(γ) vertices.

▶ Theorem 3.2. Capacitated Vertex Cover has a kernel of size kO(γ).

Proof. We show that a Yes-instance which is reduced with respect to Reduction Rule 3.1 has
size kO(γ). Let S be a capacitated vertex cover of size at most k of (G, cap). Let I := V (G)\S.
By definition, I is an independent set and N(v) ⊆ S for all v ∈ I. Moreover, since (G, cap)
is reduced with respect to Reduction Rule 3.1 there is no set of k + 2 vertices in I that
have the same neighborhood. Hence, I fulfills the condition of Lemma 2.2 with t = k + 2.
Thus, |I| ∈ k · kO(γ) which implies |V (G)| = |S| + |I| ∈ kO(γ). ◀

We also show that this kernel is essentially tight even if γ is replaced by c.

▶ Theorem 3.3 (*). For c ≥ 4, Capacitated Vertex Cover has no kernel of size
O(k c−1

2 −ϵ) unless coNP ⊆ NP/poly.

3.2 Connected Vertex Cover

We now provide kernels for Connected Vertex Cover, a well-studied variant of Vertex
Cover which is notoriously hard and does not admit a polynomial kernel when parameter-
ized k [7].

Connected Vertex Cover
Input: A graph G and k ∈ N.
Question: Is there a vertex cover S of size at most k in G such that G[S] is connected?

We will show that by applying Lemma 2.2 we obtain a kernel of size kO(γ). We may use
the following known rule.

▶ Reduction Rule 3.4 ([4, Rule 2]). If S ⊆ V (G) is a set of at least two twin vertices with a
common neighborhood N(S) such that |S| > |N(S)|, then remove one vertex v of S from G.

After exhaustive application of Reduction Rule 3.4 we have, again by Lemma 2.2, that
every Yes-instance has size kO(γ). The proof is completely analogous to that of Theorem 3.2.

▶ Theorem 3.5. Connected Vertex Cover admits a kernel of size kO(γ).

This kernel is essentially tight, because there is no kernel of size ko(d) [4]. We now show
a polynomial kernel for k + c.

▶ Theorem 3.6 (*). Connected Vertex Cover has a kernel with O(ck2) vertices.

This result stands in contrast to Capacitated Vertex Cover, which has no kernel of
size ko(c) unless coNP ⊆ NP/poly (Theorem 3.3).

ISAAC 2021
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An Extension to Connected ℓ-COC. In Connected ℓ-COC the task is to find a set S of
at most k vertices such that G[S] is connected and every connected component of G − S has
size at most ℓ, where ℓ is a fixed constant. We show that this problem also admits a kernel
of size kO(γ). The main idea lies in the extension of Reduction Rule 3.4:

▶ Reduction Rule 3.7. Let T1, . . . , Tx ⊆ V (G) be a set of x many r-twins, for some r ∈ [ℓ].
If x ≥ k + ℓ + 2 , then remove all vertices in Tx from G.

Note that Reduction Rule 3.7 can be exhaustively performed in polynomial time since
the r-twin relation can be computed in n2r+O(1) time. We then obtain the following theorem
from Lemma 2.4.

▶ Theorem 3.8 (*). Connected ℓ-COC has a kernel of size kO(γ) for constant ℓ.

3.3 Induced Matching
In this section, we provide a kernel of size (γk)O(γ) for Induced Matching:

Induced Matching
Input: A graph G and k ∈ N.
Question: Is there a set M of at least k edges such that the endpoints of distinct

edges are pairwise nonadjacent?

Induced Matching is W[1]-hard for the parameter k on general graphs. For c-closed
graphs, we developed a kernel with O(c7k8) vertices [20]. For d-degenerate graphs, Kanj et
al. [17] and Erman et al. [11] independently presented kernels of size kO(d). Later, Cygan et
al. [4] provided a matching lower bound ko(d) on the kernel size. Note that this also implies
the nonexistence of ko(γ)-size kernels unless coNP ⊆ NP/poly.

It turns out that Lemma 2.2 is again helpful in designing a kO(γ)-size kernel for Induced
Matching. In a nutshell, we show that the application of a series of reduction rules results in
a graph with a (γk)O(1)-size vertex cover. We do so by combining the kernelization of Erman
et al. [11] for degenerate graphs with our previous one for c-closed graphs [20]. Lemma 2.2
and the reduction rule which removes twin vertices then give us a kernel of size (γk)O(γ).

Erman et al. [11] use the following observation for degenerate graphs.

▶ Lemma 3.9 ([11, Proof of Theorem 2.10]). Any graph G with a matching M has an induced
matching of size |M |/(4dG + 1).

Ideally, we would like to prove a lemma analogous to Lemma 3.9 on weakly γ-closed
graphs. Note, however, that a complete graph on n vertices (which is weakly 1-closed) has
no induced matching of size 2, although it contains a matching of size ⌊n/2⌋. So we follow a
different route, and prove an analogous lemma on weakly γ-closed bipartite graphs (there
exist bipartite 2-closed graphs whose degeneracy is unbounded; see e.g. Eschen et al. [12]).
As we shall see, this serves our purposes.

▶ Lemma 3.10. Suppose that G is a bipartite graph with a bipartition (A, B). If G has a
matching M of size fγ(k) := 4γk2 + 3k, then G has an induced matching of size k.

Proof. Recall that Qσ(v) := {u ∈ N(v) | u appears after v in σ}. Let S ⊆ V (G) be the
set of vertices v such that |Q(v)| ≥ γk. Suppose that |S| ≥ 2k. Then, we may assume
that |A ∩ S| ≥ k. Let A′ ⊆ A ∩ S be an arbitrary vertex set of size exactly k and consider
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some vertex v ∈ A′. Since |Q(v) ∩ N(v′)| < γ for every v′ ∈ A′ \ {v} by Observation 1.3,
we have |Q(v) \

⋃
v′∈A′\{v} N(v′)| > 0 for each v ∈ A′. Consequently, there is at least one

vertex qv ∈ Q(v) \
⋃

v′∈A′\{v} N(v′). Then, the edge set {vqv | v ∈ A′} forms an induced
matching of size k in G.

Now, consider the case |S| < 2k. By the definition of S, it holds that |QG−S(v)| ≤
|QG(v)| ≤ γk for each vertex v ∈ V (G) \ S. Hence, the degeneracy of G − S is at most γk.
Since G − S has a matching MG−S of size at least |M | − |S| ≥ fγ(k) − 2k = 4γk2 + k,
Lemma 3.9 yields an induced matching of size |MG−S |/(4dG−S + 1) ≥ k. ◀

We use the following reduction rule to sparsify the graph G so that every sufficiently
large vertex set contains a large independent set (see Lemma 3.13).

▶ Reduction Rule 3.11. If for some vertex v ∈ V (G), there is a maximum matching Mv of
size at least 2γk in G[Q(v)], then delete v.

▶ Lemma 3.12. Reduction Rule 3.11 is correct.

Proof. Let G′ := G − v. Suppose that G has an induced matching M of size k. If v /∈ V (M),
then M is also an induced matching in G′. So assume that vv′ ∈ V (M) for some vertex v′ ∈
V (G). Then, we have |N(u) ∩ Q(v)| < γ for any vertex u ∈ V (M \ {vv′}) by Observation 1.3
and thus |V (Mv)\

⋃
u∈V (M\{vv′}) N(u)| ≥ 2|Mv|−(γ −1)(2k−2) > |Mv|. By the pigeon-hole

principle, this implies that there is an edge e ∈ Mv not incident with any vertex in V (M)
and no endpoint of e is adjacent to any vertex in V (M \ {vv′}). Then, (M \ {vv′}) ∪ {e} is
an induced matching of size k in G′. ◀

▶ Lemma 3.13. Suppose that G is a graph in which Reduction Rule 3.11 is applied on every
vertex. Then, every vertex set S ⊆ V (G) of size at least gγ(k) := 4γk2 + k2 contains an
independent set I ⊆ S of size k.

Proof. Suppose that there is no independent set of size k in G′ := G[S] for some vertex
set S of size gγ(k). For every vertex v ∈ S, let Mv be a maximum matching in QG′(v)
and let Iv := QG′(v) \ V (Mv). By Reduction Rule 3.11, we have |V (Mv)| = 2|Mv| ≤ 4γk.
Since Iv is an independent set, we then have |QG′(v)| = |Mv| + |Iv| < 4γk + k for every
vertex v ∈ S, and thus dG′ < 4γk + k. Note, however, that G′ has an independent set of
size |S|/(dG′ + 1) ≥ k, which is a contradiction. ◀

To identify a part of the graph with a sufficiently large induced matching, we rely on
the LP relaxation of Vertex Cover, following our approach [20] to obtain a polynomial
kernel on c-closed graphs. Recall that Vertex Cover can be formulated as an integer linear
program as follows, using a variable xv for each v ∈ V (G):

min
∑

v∈V (G)

xv subject to xu + xv ≥ 1 ∀uv ∈ E(G),
xv ∈ {0, 1} ∀v ∈ V (G).

We will refer to the LP relaxation of Vertex Cover as VCLP. We use the well-known facts
that VCLP always admits an optimal solution in which xv ∈ {0, 1/2, 1} for each v ∈ V (G)
and that such a solution can be found in polynomial time. Suppose that we have such an
optimal solution (xv)v∈V (G). Let V0 := {v ∈ V (G) | xv = 0}, V1 := {v ∈ V (G) | xv = 1},
and V1/2 := {v ∈ V (G) | xv = 1/2}. Also, let opt(G) be the optimum of VCLP. We show
that we can immediately return Yes, whenever opt(G) is sufficiently large:

▶ Reduction Rule 3.14. If opt(G) ≥ 2gγ(gγ(fγ(k))), then return Yes.
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Here, the functions fγ and gγ are as specified in Lemmas 3.10 and 3.13, respectively.

▶ Lemma 3.15. Reduction Rule 3.14 is correct.

Proof. We show that G has an induced matching of size k whenever opt(G) ≥ 2gγ(gγ(fγ(k))).
Let M be an arbitrary maximal matching in G. Since V (M) is a vertex cover, we
have opt(G) ≤ |V (M)| = 2|M |, and hence |M | ≥ opt(G)/2 ≥ gγ(gγ(fγ(k))). Let M :=
{a1b1, . . . , a|M |b|M |} and let A := {a1, . . . , a|M |} and B := {b1, . . . , b|M |}. By Lemma 3.13,
there exists an independent set A′ ⊆ A of size s′ := gγ(fγ(k)). Without loss of generality,
suppose that A′ = {a′

1, . . . , a′
s′} and let B′ := {b′

1, . . . , b′
s′} be the set of vertices matched

to A′ in M . Again by Lemma 3.13, we obtain an independent set B′′ ⊆ B′ of size s′′ := fγ(k).
We assume without loss of generality that B′′ = {b′′

1 , . . . , b′′
s′′}. Let A′′ := {a′′

1 , . . . , a′′
s′′} be

the set of vertices matched to B′′ in M . Then, G[A′′ ∪ B′′] is a bipartite graph with a
matching of size at least s′′ = fγ(k). By Lemma 3.10, G[A′′ ∪ B′′] has an induced matching
of size k. ◀

Since opt(G) = |V1/2|/2 + |V1|, it holds that |V1/2|/2 + |V1| ≤ 2gγ(gγ(fγ(k))) ∈ O(γ7k8)
after the application of Reduction Rule 3.14. Hence, it remains to bound the size of V0. To
do so, it suffices to remove twins:

▶ Reduction Rule 3.16. If N(u) = N(v) for some vertices u, v ∈ V (G), then delete v.

Since an induced matching contains at most one of u and v, the rule is obviously correct.
We are finally ready to utilize Lemma 2.2 to derive an upper bound on V0: Since V0 is an
independent set, Lemma 2.2 gives us |V0| ∈ |V1/2 ∪ V1|O(γ) ∈ (γk)O(γ). Thus, we have the
following result.

▶ Theorem 3.17. Induced Matching has a kernel of size (γk)O(γ).

4 Independent Set and Ramsey-Type Problems

We now investigate the kernelization complexity of Independent Set, where we are given a
graph G and an integer k, and ask whether G has an independent set of size k. Independent
Set admits a kernel with O(ck2) vertices and O(c2k3) edges [20] and a kernel with O(γk2)
and O(γ2k3) edges [19]. We show a lower bound for these parameterizations: unless coNP
⊆ NP/poly, Independent Set admits no kernel of size k2−ϵ and no kernel with k4/3−ε

vertices even if the c-closure is constant. We also show a kernel lower bound of size c1−εkO(1)

for any ε. We also consider the following related problem where G is a hereditary graph class
containing all complete graphs and edgeless graphs.

G-Subgraph
Input: A graph G and k ∈ N.
Question: Is there a set S of at least k vertices such that G[S] ∈ G?

Khot and Raman [18] showed that G-Subgraph is FPT when parameterized by k, using
Ramsey’s theorem: for any k ∈ N, any graph G on at least R(k) ∈ 2O(k) vertices contains
a clique of size k or an independent set of size k. Ramsey, the special case where G is
the family of all complete and edgeless graphs, admits no polynomial kernel unless coNP
⊆ NP/poly [21]. Similarly, G-Subgraph admits no polynomial kernel for several graph
classes G, such as cluster graphs [23]. Our contribution for G-Subgraph is two-fold: First, we
observe that the lower bounds for Independent Set on graphs with constant c-closure also
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Figure 1 An illustration of P i
r and P i+1

r for t = 5.

hold for Ramsey. This complements a kernel for G-Subgraph with O(ck2) vertices [20].2
Second, we provide a kernel of size kO(γ). To show our kernel lower bounds, we will use
weak q-compositions. Weak q-compositions exclude kernels of size O(kq−ε) for ε > 0.

▶ Definition 4.1 ([6, 15]). Let q ≥ 1 be an integer, let L1 ⊆ {0, 1}∗ be a decision problem,
and let L2 ⊆ {0, 1}∗ ×N be a parameterized problem. A weak q-composition from L1 to L2 is
a polynomial-time algorithm that on input x1, . . . , xtq ∈ {0, 1}n outputs an instance (y, k′) ∈
{0, 1}∗ ×N such that:

(y, k′) ∈ L2 ⇔ xi ∈ L1 for some i ∈ [tq], and
k′ ≤ t · nO(1).

▶ Lemma 4.2 ([3, 6, 15]). Let q ≥ 1 be an integer, let L1 ⊆ {0, 1}∗ be an NP-hard problem,
and let L2 ⊆ {0, 1}∗ ×N be a parameterized problem. If there is a weak q-composition from L1
to L2, then L2 has no compression of size O(kq−ϵ) for any ϵ > 0, unless coNP ⊆ NP/poly.

Weak Composition. We give a weak composition from the following problem:

Multicolored Independent Set
Input: A graph G and a partition (V1, . . . , Vk) of V (G) into k cliques.
Question: Is there an independent set of size exactly k?

A standard reduction from a restricted variant of 3-SAT (for instance, each literal
appears exactly twice [1]) shows that Multicolored Independent Set is NP-hard even
when ∆G ∈ O(1) and |Vi| ∈ O(1) for all i ∈ [k]. Let [t]q be the set of q-dimensional
vectors whose entries are in [t]. Suppose that q ≥ 2 is a constant and that we are given tq

instances Ix = (Gx, (V 1
x , . . . , V k

x )) for x ∈ [t]q, where ∆Gx ∈ O(1) and |V i
x | ∈ O(1) for

all x ∈ [t]q and i ∈ [k]. We construct an Independent Set instance (H, k′). The kernel
lower bound of size k2−ϵ will be based on the special case q = 2. To obtain the lower bound
of c1−ϵkO(1), however, we need the composition to work for all q ∈ N. Hence, we give a
generic description in the following. First, we construct a graph Hi as follows for every i ∈ [k]:

For every x ∈ [t]q, include V i
x into V (Hi).

For every r ∈ [q], introduce a path P i
r on 2t − 2 vertices. We label the (2j − 1)-th

vertex as pi
r,j,1 and the 2j-th vertex as pi

r,j+1,2 (see Figure 1 for an illustration). Note
that V (P i

r) = {pi
r,j,1, pi

r,j+1,2 | j ∈ [t − 1]}. For every j ∈ [t], we new define the set P i
r,j :

let P i
r,1 = {pi

r,1,1}, P i
r,t = {pi

r,t,2}, and P i
r,j = {pi

r,j,1, pi
r,j,2} for j ∈ [2, t − 2].

For every r ∈ [q] and j ∈ [t], add edges such that P i
r,j ∪

⋃
x∈[t]q,xr=j V i

x forms a clique
(see Figure 1 for an illustration).

2 Any c-closed n-vertex graph contains a clique or an independent set of size Ω(
√

n/c) [20].
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Now, construct H by taking the disjoint union of the Hi, i ∈ [k], and adding the following:
For every x ∈ [t]q, add edges such that H[V (Gx)] = Gx.
For every i ∈ [k − 1], r ∈ [q], and j ∈ [t − 1], add edges pi

r,j,1pi+1
r,j+1,2 and pi+1

r,j,1pi
r,j+1,2.

This concludes the construction of H. Let k′ := qkt − qk + k.
We call the vertices of

⋃
x∈[t]q,i∈[k] V i

x the instance vertices. The other vertices, which
are on P i

r for some i ∈ [k] and r ∈ [q], serve as instance selectors: As we shall see later,
any independent set J of size k′ in H contains exactly t − 1 vertices of P i

r for every i ∈ [k]
and r ∈ [q]. In fact, there is exactly one j ∈ [t] such that J ∩ P i

r,j = ∅ and |J ∩ P i
r,j′ | = 1 for

all j′ ∈ [t] \ {j}. Consequently, J contains no instance vertex in V i
x for xr ̸= j, and thereby, j

is selected for the r-th dimension. We bound the c-closure of H and prove the correctness.

▶ Lemma 4.3 (*). It holds that clH ∈ O(tq−2).

▶ Lemma 4.4 (*). The graph Gx has a multicolored independent set of size k for some x ∈ [t]q
if and only if the graph H has an independent set I of size k′.

For q = 2, we have a weak 2-composition from Multicolored Independent Set
to Independent Set on O(tq−2) = O(1)-closed graphs by Lemmas 4.3 and 4.4. Since
the constructed graph H has no clique of size k′, the construction also constitutes a weak
2-composition to Ramsey on O(1)-closed graphs. Thus, Lemma 4.2 implies the following:

▶ Theorem 4.5. For any ε > 0, neither Independent Set nor Ramsey has a kernel of
size k2−ε on graphs of constant c-closure, unless coNP ⊆ NP/poly.

By Theorem 4.5, neither Independent Set nor Ramsey admit a kernel of k1−ε vertices.
We improve this bound on the number of vertices, taking advantage of the fact that any
n-vertex c-closed graph can be encoded using O(cn1.5 log n) bits in polynomial time [12].
Assume for a contradiction that Independent Set or Ramsey admit a kernel of k4/3−ε′

vertices for constant c. Using the above-mentioned encoding, we obtain a string with
O(k(4/3−ε′)1.5 log k) = O(k2−ε) bits. So a kernel of k4/3−ε′ vertices implies that there is a
compression of Independent Set or Ramsey with bitsize O(k2−ε), a contradiction. Thus,
we have the following:

▶ Theorem 4.6. For any ε > 0, neither Independent Set nor Ramsey has a compression
of k4/3−ε vertices on graphs of constant c-closure, unless coNP ⊆ NP/poly.

We also obtain another kernel lower bound for Independent Set; this bound excludes
the existence of polynomial kernels (in terms of c + k) whose dependence on c is sublinear.

▶ Theorem 4.7. For any ε > 0, Independent Set has no kernel of size c1−εkO(1) unless
coNP ⊆ NP/poly.

Proof. We show that Independent Set admits no kernel of size c1−εki for any ε, i > 0,
unless coNP ⊆ NP/poly. Let q be a sufficiently large integer with q−ε−i

q−2 > 1 − ε (that
is, q > i+3ε−2

ε ). Recall, that in the constructed instance we have c ∈ O(tq−2) and k′ :=
qkt − qk + k. A straightforward calculation shows that ℓ := c

1
q−2 (1− i

q−ε )k′ i
q−ε ∈ O(t), and

hence Independent Set admits a weak q-decomposition for the parameterization ℓ. Thus,
Lemma 4.2 implies that there is no kernel of size ℓq−ε = c

q−ε−i
q−2 k′i > c1−εk′i. ◀

Finally, we show that G-Subgraph has a kernel of size kO(γ) for any graph class G
containing all complete graphs and empty graphs.
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▶ Proposition 4.8. Any graph G on at least Rγ(a, b) ∈ (a · b)γ+O(1) vertices has a clique of
size a or an independent set of size b.

Proof. The Ramsey number R(a, b) denotes the smallest number such that every graph
on R(a, b) vertices contains a clique of size a or an independent set of size b. It is known
that R(a, b) ≤

(
a+b

b

)
. So whenever a ≤ γ or b ≤ γ, we have Rγ(a, b) ≤

(
a+b

γ

)
∈ O((a + b)γ).

For a, b > γ, let Rγ(a, b) be some number greater than ab
(

b
γ

)
+ b

(
a
γ

) ∑
b′∈[b]

(
b′−1

γ

)
.

Let n = |V (G)| and let v1, . . . , vn be a weak closure ordering σ of G. Divide V (G)
into b subsets V1, . . . , Vb of equal size3: let Vi = {v((b−i)n/b)+1, . . . , v(b−i+1)n/b} for each
i ∈ [b]. Notably, V1 is the set of n/b vertices occurring last in σ and Vb is the set of n/b

vertices occurring first in σ. Moreover, let Gi := G[{v(b−i)n/b+1, . . . , vn}] be the subgraph
induced by

⋃
i′∈[i] Vi′ for each i ∈ [b]. Suppose that G contains no clique of size a. We show

that G contains an independent set of size b. More precisely, we prove by induction that Gi

contains an independent set of size i for each i ∈ [b].
This clearly holds for i = 1. For i > 1, assume that there is an independent set I of

size i − 1 in Gi−1 by the induction hypothesis. In the following, we consider subsets X of
size at most γ of I to obtain an independent set I ′ of size at least i.

First, consider vertex sets X ⊆ I of size γ and VX := {v ∈ Vi | NG(v) ⊇ X}. Note
that X ⊆ Q(v) for each v ∈ VX . Hence, since G is weakly γ-closed, VX is a clique. It follows
that |VX | < a. Therefore, less than a

(
b
γ

)
vertices of Vi are adjacent to at least γ vertices in I.

Second, consider vertex sets X ⊆ I with X ̸= ∅ and |X| < γ. Furthermore, let V ′
X =

{v ∈ Vi | NG(v) ∩ I = X}. Since n > Rγ(a, b), there exists X ⊆ I of size at most γ − 1 such
that |V ′

X | > R(a, γ). By Ramsey’s theorem, we then find an independent set I ′ ⊆ V ′
X of

size γ (recall that G has no clique of size a). It follows that (I \ X) ∪ I ′ is an independent
set of size at least i in Gi. ◀

Now, we directly obtain to a kernel for G-Subgraph where G contains all cliques and all
independent sets since each graph on kO(γ) vertices contains either a clique or an independent
set of size at least k by the bound on the Ramsey number in weakly closed graphs shown in
Proposition 4.8.

▶ Corollary 4.9. Let G be a class of graphs containing all cliques and independent sets.
G-Subgraph has a kernel of size kO(γ).

5 Conclusion

We have provided several kernelization algorithms and kernelization lower bounds for classic
graph problems on (weakly) closed graphs. How far can our results for Connected Vertex
Cover and Capacitated Vertex Cover be extended to other cases of connected or
capacitated vertex deletion problems? We did show that Connected ℓ-COC admits a
kernel of size kO(γ). In contrast, Connected Feedback Vertex Set does not admit a
polynomial kernel for the solution size k even in 2-closed graphs [5]. Drawing a borderline
between those desired graph properties where connected and capacitated vertex deletion
problems do admit a kernel on (weakly) closed graphs and those where they do not would
improve our understanding when (weak) closure can be exploited algorithmically. It is also
open whether the Ramsey number of weakly closed graphs can be bounded by (a + b + γ)O(1),
such a bound would immediately improve some of our kernels. The most important open

3 For ease of presentation we assume that |V (G)| is divisible by b.
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problem is arguably whether Dominating Set parameterized by the solution size k admits
a polynomial kernel on weakly closed graphs. We made partial progress by showing that
Dominating Set admits a kernel on weakly closed bipartite graphs and on weakly closed
split graphs. Answering this question positively would need further insights into the structure
of weakly closed graphs, however.
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