
Grid Recognition: Classical and Parameterized
Computational Perspectives
Siddharth Gupta #

Ben Gurion University of the Negev, Beer Sheva, Israel

Guy Sa’ar #

Ben Gurion University of the Negev, Beer Sheva, Israel

Meirav Zehavi #

Ben Gurion University of the Negev, Beer Sheva, Israel

Abstract

Grid graphs, and, more generally, k × r grid graphs, form one of the most basic classes of geometric
graphs. Over the past few decades, a large body of works studied the (in)tractability of various
computational problems on grid graphs, which often yield substantially faster algorithms than
general graphs. Unfortunately, the recognition of a grid graph (given a graph G, decide whether
it can be embedded into a grid graph) is particularly hard – it was shown to be NP-hard even
on trees of pathwidth 3 already in 1987. Yet, in this paper, we provide several positive results
in this regard in the framework of parameterized complexity (additionally, we present new and
complementary hardness results). Specifically, our contribution is threefold. First, we show that the
problem is fixed-parameter tractable (FPT) parameterized by k + mcc where mcc is the maximum
size of a connected component of G. This also implies that the problem is FPT parameterized
by td + k where td is the treedepth of G, as td ≤ mcc (to be compared with the hardness for
pathwidth 2 where k = 3). (We note that when k and r are unrestricted, the problem is trivially
FPT parameterized by td.) Further, we derive as a corollary that strip packing is FPT with respect
to the height of the strip plus the maximum of the dimensions of the packed rectangles, which was
previously only known to be in XP. Second, we present a new parameterization, denoted aG, relating
graph distance to geometric distance, which may be of independent interest. We show that the
problem is para-NP-hard parameterized by aG, but FPT parameterized by aG on trees, as well as
FPT parameterized by k + aG. Third, we show that the recognition of k × r grid graphs is NP-hard
on graphs of pathwidth 2 where k = 3. Moreover, when k and r are unrestricted, we show that the
problem is NP-hard on trees of pathwidth 2, but trivially solvable in polynomial time on graphs of
pathwidth 1.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Mathem-
atics of computing → Graph algorithms

Keywords and phrases Grid Recognition, Grid Graph, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.37

Related Version Full Version: https://arxiv.org/abs/2106.16180

Funding Supported in part by the United States – Israel Binational Science Foundation (BSF) grant
no. 2018302 and Israel Science Foundation (ISF) individual research grant no. 1176/18.
Siddharth Gupta: Supported in part by the Zuckerman STEM Leadership Program.
Guy Sa’ar : Supported in part by the Israeli Smart Transportation Research Center (ISTRC).

© Siddharth Gupta, Guy Sa’ar, and Meirav Zehavi;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siddhart@post.bgu.ac.il
mailto:saag@post.bgu.ac.il
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.ISAAC.2021.37
https://arxiv.org/abs/2106.16180
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Grid Recognition

1 Introduction

Geometrically, a grid graph is a graph that can be drawn on the Euclidean plane so that all
vertices are drawn on points having positive integer coordinates, and all edges are drawn
as axis-parallel straight line segments of length 1;1 when the maximum x-coordinate is at
most r and the maximum y-coordinate is at most k, we may use the term k × r grid graph
(see Figure 2). Grid graphs form one of the simplest and most intuitive classes of geometric
graphs. Over the past few decades, algorithmic research of grid graphs yielded a large
body of works on the tractability or intractability of various computational problems when
restricted to grid graphs (e.g., see [14, 15, 3, 37, 48, 17, 4] for a few examples). Even for
problems that remain NP-hard on grid graphs, we know of practical algorithms for instances
of moderate size (e.g., the Steiner Tree problem on grid graphs is NP-hard [27], but
admits practical algorithms [25, 49]). Thus, the recognition of a graph as a grid graph
unlocks highly efficient tools for its analysis. In practice, grid graphs can represent layouts or
environments, and have found applications in several fields, such as VLSI design [45], motion
planning [32] and routing [46]. Indeed, grid graphs naturally arise to represent entities and
the connections between them in existing layouts or environments. However, often we are
given just a (combinatorial) graph G – i.e., we are given entities and the connections desired
to have between them, and we are to construct the layout or environment; specifically, we
wish to test whether G can be embedded into a grid graph (where if it can so, realize it as
such a graph). Equivalently, the recognition of a grid graph can be viewed as an embedding
problem, where a given graph is to be embedded within a rectangular solid grid.

Accordingly, the problem of recognizing (as well as realizing) grid graphs is a basic
recognition problem in Graph Drawing. In what follows, we discuss only recognition –
however, it would be clear that all of our results hold also for realization (with the same time
complexity in case of algorithms). Formally, in the Grid Embedding problem, we are given
a (simple, undirected) n-vertex graph G, and need to decide whether it can be embedded
into a grid graph. In many cases, taking into account physical constraints, compactness or
visual clarity, we would like to not only have a grid graph, but also restrict its dimensions.
This yields the k × r-Grid Embedding problem, where given an n-vertex graph G and
positive integers k, r ∈ N, we need to decide whether G is a k × r grid graph. Notice that
Grid Embedding is the special case of k × r-Grid Embedding where k = r = n (which
virtually means that no dimension restriction is posed).

The Grid Embedding problem has been proven to be NP-hard already in 1987, even on
trees of pathwidth 3 [9]. Shortly afterwards, it has been proven to be NP-hard even on binary
trees [29]. On the positive side, there is research on practical algorithms for this problem [7].
The related upward planarity testing and rectilinear planarity testing problems are also
known to be NP-hard [28], as well as HV-planarity testing even on graphs of maximum
degree 3 [20]. We remark that when the embedding is fixed, i.e., the clockwise order of the
edges is given for each vertex, the situation becomes drastically easier computationally; then,
for example, a rectangular drawing of a plane graph of maximum degree 3, as well as an
orthogonal drawing without bends of a plane graph of maximum degree 3, were shown to be
computable in linear time in [43] and [44], respectively.

In this paper, we study the classical and parameterized complexity of the Grid Embed-
ding and k × r-Grid Embedding problems. To the best of our knowledge, this is the first
time that these problems are studied from the perspective of parameterized complexity. Let

1 Some papers in the literature use the term grid graphs to refer to induced grid graphs, where we require
also that every pair of vertices at distance 1 from each other have an edge between them.

S. Gupta, G. Sa’ar, and M. Zehavi 37:3

Π be an NP-hard problem. In the framework of parameterized complexity, each instance
of Π is associated with a parameter k. We say that Π is fixed-parameter tractable (FPT) if
any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where f is an arbitrary computable
function of k. Nowadays, Parameterized Complexity supplies a rich toolkit to design FPT
algorithms as well as to prove that some problems are unlikely to be FPT [22, 16, 24].
In particular, the term para-NP-hard refers to problems that are NP-hard even when the
parameter is fixed, which implies that they are not FPT unless P=NP.

Research at the intersection of graph drawing and parameterized complexity (and para-
meterized algorithms in particular) is in its infancy. Most (in particular, the early efforts)
have been directed at variants of the classic Crossing Minimization problem, introduced by
Turán in 1940 [47], parameterized by the number of crossings (see, e.g., [30, 38, 23, 35, 36, 39]).
However, in the past few years, there is an increasing interest in the analysis of a variety of
other problems in graph drawing from the perspective of parameterized complexity (see, e.g.,
[1, 10, 2, 31, 13, 34, 6, 19, 18, 11, 21, 41, 40].

Our Contribution and Main Proof Ideas
I. Parameterized Complexity: Maximum Connected Component Size. Our contribution
is threefold. First, we prove that k × r-Grid Embedding is FPT parameterized by mcc + k.
Here, the idea of the proof is first to recognize all possible embeddings of any choice of
connected components or parts of connected components of G into k × mcc(G) grids, called
blocks. These blocks then serve as vertices of a new digraph, where there is an arc from one
vertex to another if and only if the corresponding blocks can be placed one after the other.
After that, we also guess which blocks should occur at least once in the solution, as well as a
spanning tree of the underlying undirected graph of the graph induced on them. This then
leads us to a formulation of an Integer Linear Program (ILP), where we ensure that each
connected component is used as many times as it is in the input, and that overall we get an
Eulerian trail in the graph – having such a trail allows us to place the blocks one after the
other, so that every pair of consecutive blocks are compatible. The ILP can then be solved
using known tools.
▶ Theorem 1.1. k × r-Grid Embedding is FPT parameterized by mcc + k where mcc is
the maximum size of a connected component in the input graph.

One almost immediate corollary of this theorem concerns the 2-Strip Packing problem.
In this problem, we are given a set of n rectangles S, and positive integers k, W ∈ N, and
the objective is to decide whether all the rectangles in S can be packed in a rectangle (called
a strip) of dimensions k × W . In [5], it was shown that if the maximum of the dimensions of
the input rectangles, denoted by ℓ, is fixed, then the problem is FPT by k. Thus, the question
whether the problem is FPT parameterized by k + ℓ remained open. By a straightforward
reduction, we resolve this question as a corollary of our theorem.
▶ Corollary 1.2. 2-Strip Packing is FPT parameterized by ℓ + k where ℓ is the maximum
of the dimensions of the input rectangles.

We remark that in case k and r are unrestricted, the problem is trivially FPT with respect
to mcc, since one can embed each connected component (using brute-force) individually.
This implies that Grid Embedding is FPT parameterized by mcc.

As a corollary of Theorem 1.1 and the above observation, we obtain that k × r-Grid
Embedding is FPT parameterized by td+k, and Grid Embedding is FPT parameterized by
td, where td is the treedepth of the input graph. This finding is of interest when contrasted
with the hardness of these problems when pathwidth equals 2 and k = 3 or unrestricted.
Thus, this also charts a tractability border between pathwidth and treedepth.

ISAAC 2021

37:4 Grid Recognition

II. Parameterized Complexity: Difference Between Graph and Geometric Distances.
Secondly, we introduce a new parameterization that relates graph distance to geometric
distance, and may be of independent interest. Roughly speaking, the rationale behind this
parameterization is to bound the difference between them, so that graph distances may act
as approximate indicators to geometric distances. In particular, vertices that are close in the
graph, are to be close in the embedding, and vertices that are distant in the graph, are to be
distant in the embedding as well. Specifically, with respect to an embedding f of G in a grid,
we define the grid distance between any two vertices as the distance between them in f in L1
norm. Then, we define the measure of distance approximation of f as the maximum of the
difference between the graph distance (in G) and the grid distance of two vertices, taken
over all pairs of vertices in G. Here, it is implicitly assumed that G is connected. Then,
the parameter aG is the minimum distance approximation af of any embedding f of G in a
(possibly k × r) grid, defined as |V (G)| if no such embedding exists. A more formal definition
as well as motivation is given in Section 2.

We first prove that the problems are para-NP-hard parameterized by aG. This reduction
is quite technical. On a high level, we present a construction of “blocks” that are embedded
in a grid-like fashion, where we place an outer “frame” of the form of a grid to guarantee
that the boundary (which is a cycle) of each of these blocks must be embedded as a square.
Each variable is associated with a column of blocks, and each clause is associated with a row
of blocks. Within each block, we place two gadgets, one which transmits information in a
row-like fashion, to ensure that the clause corresponding to the row has at least one literal
that is satisfied, and the other (which is very different than the first) transmits information
in a column-like fashion, to ensure consistency between all blocks corresponding to the same
variable (i.e., that all of them will be embedded internally in a way that represents only
truth, or only false). For clarity, in the full version we split the reduction into two, and use
as an intermediate problem a new problem that we call the Batteries problem.

▶ Theorem 1.3. Grid Embedding (and hence also k×r-Grid Embedding) is para-NP-hard
parameterized by aG.

When we enrich the parameterization by k, then k × r-Grid Embedding problem
becomes FPT. (Recall that parameterized by k alone, the problem is para-NP-hard). The
idea of the proof is to partition a rectangular solid k × r grid in which we embed our graph
into blocks of size k × (aG +k), and “guess” one vertex that is to be embedded in the leftmost
column of the leftmost block. Then, the crux is in the observation that, for every vertex,
the block in which it should be placed is “almost” fixed – that is, we can determine two
consecutive blocks in which the vertex may be placed, and then we only have a choice of one
among them. This, in turn, leads us to the design of an iterative procedure that traverses
the blocks from left to right, and stores, among other information, which vertices were used
in the previous block.

▶ Theorem 1.4. k × r-Grid Embedding is FPT parameterized by aG + k.

Lastly, we prove that when restricted to trees, the problems become FPT parameterized
by aG alone. Here, a crucial ingredient is to understand the structure of the tree, including
a bound on the number of vertices of degree at least 3 in the tree that split it to “large”
subtrees. For this, one of the central insights is that, with respect to an internal vertex v

and any two “large” subtrees attached to it (there can be up to four subtrees attached to
it), in order not to exceed the allowed difference between the graph and geometric distances,
one of the subtrees must be embedded in the “opposite” direction of the other (so, both

S. Gupta, G. Sa’ar, and M. Zehavi 37:5

af1 = 6

af2 = 0

af3 = 0

Figure 1 Example of a path P on 8 vertices with three different grid graph embeddings f1, f2

and f3. Since af2 = af3 = 0, we get that aP = 0.

are embedded roughly on the same vertical or horizontal line in opposite sides). Now, for
an internal vertex of degree at least 3, there must be two attached subtrees that are not
embedded in this fashion (as a line can only accommodate two subtrees), which leads us
to the conclusion that all but two of the attached subtrees are small. Making use of this
ingredient, we argue that a dynamic programming procedure (somewhat similar to the one
mentioned for the previous theorem but much more involved) can be used.

▶ Theorem 1.5. k × r-Grid Embedding (and hence also Grid Embedding) on trees is
FPT parameterized by aG.

III. Classical Complexity. Lastly, we extend current knowledge of the classical complexity
of Grid Embedding and k × r-Grid Embedding at several fronts. Here, we begin
by developing a refinement of the classic reduction from Not-All-Equal 3SAT in [9]
(which asserted hardness on trees of pathwidth 3) to derive the following result. While
the reduction itself is similar, our proof is more involved and requires, in particular, new
inductive arguments.

▶ Theorem 1.6. Grid Embedding is NP-hard even on trees of pathwidth 2. Thus, it is
para-NP-hard parameterized by pw, where pw is the pathwidth of the input graph.

In particular, now the hardness result is tight with respect to pathwidth due to the simple
observation that Grid Embedding is polynomial time solvable on graphs of pathwidth 1.
Because Grid Embedding is a special case of k × r-Grid Embedding, the above theorem
has the following result as an immediate corollary: k × r-Grid Embedding is NP-hard even
on trees of pathwidth 2.

Additionally, we show that k × r-Grid Embedding is NP-hard on graphs of pathwidth
2 even when k = 3. Here, we give a relatively simple reduction from 3-Partition (whose
objective is to partition a set of numbers encoded in unary into sets of size 3 that sum up to
the same number), where the idea is to encode “containers” by special identical connected
components whose embedding is essentially fixed, and then each number as a simple path on
a corresponding number of vertices.

▶ Theorem 1.7. k × r-Grid Embedding is NP-hard even on graphs of pathwidth 2 when
k = 3. Thus, it is para-NP-hard parameterized by k + pw, where pw is the pathwidth of the
input graph.

ISAAC 2021

37:6 Grid Recognition

2 Preliminaries

Definitions of various standard concepts can be found in the full version. For every k ∈ N,
denote [k] = {1, 2, . . . k}, and for i, j ∈ N, denote [i, j] = {i, i + 1, . . . , j}. Given a set W of
integers,

∑
W denotes the sum of its elements. Given a function g defined on a set W , we

denote the set of images of its elements by g(W). Given a graph G, we denote its vertex set
and edge set by V (G) and E(G), respectively. For a vertex v ∈ V (G), we denote the degree
of v in G by degG(v). Given a set V ′ ⊆ V (G), the subgraph of G induced by V is denoted
by G[V ′]. Given u, v ∈ V (G), the distance d(u, v) between u and v in G is the length of a
shortest path between them. The pathwidth of a graph G is denoted by pw(G).

We now define basic notions related to grids and grid embeddings. Let f : V (G) → N×N
be a function that maps each vertex v of G to a point (i, j) of an integer grid; then, i and
j are also denoted as frow(v) and fcol(v), respectively, that is, f(v) = (frow(v), fcol(v)). Let
u, v ∈ V (G) be two vertices. The grid graph distance of u and v induced by f , denoted
by df (u, v), is defined to be df (u, v) = |frow(u) − frow(v)| + |fcol(u) − fcol(v)|. A k × r grid
graph embedding of G is an injection f : V (G) → [k] × [r] such that for every {u, v} ∈ E(G)
it follows that df (u, v) = 1. Moreover, a grid graph embedding of G is a |V (G)| × |V (G)|
grid graph embedding of G. We say that G is a (resp. k × r) grid graph if there exists a
(resp. k × r) grid graph embedding of G. Now, the k × r-Grid Embedding and Grid
Embedding problems are defined as follows. Given a graph G and two positive integers k, r,
the k × r-Grid Embedding and Grid Embedding problems ask whether G is a k × r grid
graph or a grid graph, respectively.

We now define the distance approximation parameter formally and discuss some of the
motivation behind it. Towards this, we first present the following simple observation. Let G be
a connected grid graph with a grid embedding f , and let u, v ∈ V (G). Then, df (u, v) ≤ d(u, v).
Keeping this in mind, we drop the absolute value notation from the following definition: For
any k × r grid graph embedding f of G, define af = maxu,v∈V (G)(d(u, v) − df (u, v)). Then,
if G is a k × r grid graph, let aG(k, r) = min{af | f is a k × r grid graph embedding of G};
otherwise, aG(k, r) = |V (G)|. When k and r are clear from context, we write “distance
approximation parameter” and aG rather than “k ×r distance approximation parameter” and
aG(k, r), respectively. When k and r are unrestricted, aG(k, r) = aG(|V (G)|, |V (G)|). See
Figure 1. We also remark that whenever G is a k × r grid graph, then aG(k, r) ≤ |V (G)| − 2
(because for any grid graph embedding f of G and two different vertices u, v ∈ V (G),
d(u, v) ≤ |V (G)| − 1 and df (u, v) ≥ 1).

This rationale behind this parameter makes sense in various scenarios. Suppose that
vertices represent utilities, factories or organizations, or, very differently, components to
be placed on a chip. On the one hand, those that are closer to each other in the graph
might need to cooperate more often: they have direct and indirect (through other entities
on the path) connections between them; the more “links on the chain”, the less is directed
interaction required. On the other hand, we may have a competitive constraint – we may
want these entities to also be “as far as possible”. In particular, if they are far in the graph, we
will take advantage of this to place them far in the embedding (proportionally). For example,
these entities may cause pollution, radiation or heat [8, 26]. Alternatively, in the case of
utilities, we may want to cover as large area as we can. Recently, due to the COVID-19
pandemic, many governments around the world have introduced social distancing. Briefly,
social distancing means that people should be physically away from each other, if possible.
According to experts, one of the most effective ways to reduce the spread of coronavirus is
social distancing [12, 33, 42]. Suppose that the vertices represent people, the edges represent

S. Gupta, G. Sa’ar, and M. Zehavi 37:7

social (or other) relations between them, and we want to find a seating arrangement. In
order to preserve the social distancing, we would like that people who do not need to be
close to each other, to be relatively far away from each other. In another example, suppose
that the vertices represent some facilities that “attract” people, like stores. Placing the
stores far away from each other, if possible, contributes to social distancing. More intuition
is given in the full version. We remark that the embeddings that our algorithms compute
satisfy the conditions of being a grid graph embedding, in particular, the embeddings are
planar. Furthermore, we do not need to know the value of aG in advance, in order to use our
algorithm, as we iterate over all the potential values for aG.

3 FPT Algorithm on General Graphs

In this section, we show that k × r-Grid Embedding is FPT parameterized by mcc(G) + k.
We first give the definition of a k × r rectangular grid graph and some related terms. An
undirected graph H is a k×r rectangular grid graph if there exists a bijection f : V → [k]× [r],
such that for every pair of vertices u, v ∈ V (H), {v, u} ∈ E(H) if and only if df (u, v) = 1.
Given a k × r rectangular grid graph H and a corresponding bijective function f , we define
the columns of H as follows: For every and j ∈ [r], let Cj(H) = {u ∈ V (H)|fcol(u) = j}.
Clearly, V (H) =

⋃r
j=1 Cj(H). We refer to C1(H) and Cr(H) as the left boundary column

and right boundary column, respectively, of H.
Given a subgraph S of a k × r rectangular grid graph H, we denote by FC(S) the set of

fully contained connected components of S defined as all the connected components of S that
either do not intersect the boundary columns of H or intersect both boundary columns of H.
Moreover, we denote by LC(S) (RC(S)) the set of left contained (right contained) connected
components of S defined as all the connected components of S that intersect the left (right)
boundary column of H but do not intersect the right (left) boundary column of H. Note that
the three sets FC(S), LC(S) and RC(S) are pairwise disjoint and S = FC(S)∪LC(S)∪RC(S).
See Figure 2. We now prove that k × r-Grid Embedding is FPT.

Proof Sketch of Theorem 1.1. The FPT algorithm is based on ILP. To this end, let G be
an instance of the k × r-Grid Embedding problem. Due to lack of space, we only give a
sketch of the algorithm. For completeness, please refer to the full version.

Algorithm. Let H be a k×r rectangular grid graph. Let B = {B1, B2, . . . , Bp} be an almost
partition of H into blocks of size k × mcc(G) such that V (Bi) =

⋃i(mcc(G)−1)+1
j=(i−1)(mcc(G)−1)+1 Cj(H),

for each i ∈ [p] where p = (r − 1)/(mcc(G) − 1). Here, we consider the case where r − 1 is a
multiple of mcc(G) − 1. Note that each block Bi is a k × mcc(G) rectangular grid graph,
and for all i ∈ [p − 1], Bi and Bi+1 share a boundary column.

We can restate the k × r-Grid Embedding problem as follows: is G a subgraph of
H? As H is a planar graph, G must be planar. So, we first check if G is planar. Let
Comp(G) = {G1, G2, . . . , Gt} be the set of all non-isomorphic connected components of G.
For every i ∈ [t], let num(Gi) be the number of times Gi appears in G. As the size of any
connected component of G is at most mcc(G), any connected component C of G (when
embedded as a subgraph of H, if possible) intersects (i) only one block Bi (in particular, it
does not intersect either the right or the left boundary of Bi), or (ii) exactly two consecutive
blocks Bi and Bi+1 through the right boundary column of Bi, or (iii) exactly three consecutive
blocks Bi−1, Bi and Bi+1 through the left and right boundary columns of Bi.

Based on the above observation, we compute the set S of all the possible snapshots of
a k × mcc(G) rectangular grid graph R, i.e. the set of all the subgraphs of R, and the left
and right adjacencies between snapshots. For every subgraph S of R, if FC(S) ⊆ Comp(G),

ISAAC 2021

37:8 Grid Recognition

C1(H) C6(H)

Figure 2 A 5 × 6 rectangular grid graph H, its boundary columns and a subgraph S of H shown
by colored vertices and thick colored edges. The blue, red and orange colored connected components
belong to FC(S), LC(S) and RC(S), respectively.

then we add S to S. Note that, if there exists a connected component of S in FC(S) that
does not belong to Comp(G), then S cannot “contribute to” a valid solution. We also find
the set, denoted Source, of snapshots that may correspond to B1 and the set, denoted Sink,
of snapshots that may correspond to Bp. Note that we make this distinction, as except for
blocks B1 and Bp, all the other blocks share both boundary columns, but B1 (Bp) only share
their right (left) boundary column. So for every S ∈ S, if LC(S) ⊆ Comp(G), then add S to
Source, and if RC(S) ⊆ Comp(G), then add S to Sink. For every snapshot S ∈ S and i ∈ [t],
let freqcen(Gi, S) be the number of times Gi appears in FC(S). Similarly, for every snapshot
S ∈ Source (S ∈ Sink) and i ∈ [t], let freqleft(Gi, S) (freqright(Gi, S)) be the number of times
Gi appears in LC(S) (RC(S)).

We now find the set Adj ⊆ S × S of all possible adjacencies between pairs of snapshots in
S. Let R′ be a k×(2mcc(G)−1) rectangular grid graph. We divide R′ into two blocks B′

1 and
B′

2 of size k × mcc(G) such that V (B′
1) =

⋃mcc(G)
i=1 Ci(R′) and V (B′

2) =
⋃2mcc(G)−1

i=mcc(G) Ci(R′).
For every i ∈ {1, 2} and subgraph S′ of R′, let S′

i = S′[V (S′) ∩ V (B′
i)] be the subgraph of

S′ in block B′
i. We look only at those subgraphs S′ for which both S′

1 and S′
2 belong to

S. For every such S′, we add the pair (S′
1, S′

2) to Adj if all the connected components of
S′

1 ∪ S′
2 = S′ that intersect both B′

1 and B′
2 (i.e., intersect column Cmcc(G)(R′)) belong to

Comp(G). Let BC(S′
1, S′

2) be the set of all the connected components of S′
1 ∪ S′

2 = S′ that
intersect the column Cmcc(G)(R′) but intersect neither C1(R′) nor C2mcc(G)−1(R′). For every
i ∈ [t], we denote the number of times Gi appears in BC(S′

1, S′
2), by freqboun(Gi, (S′

1, S′
2)).

For every pair of snapshots (start, end) such that start ∈ Source and end ∈ Sink and a set
S ′ ⊆ S of snapshots, we create a directed graph D as follows. We add all the snapshots in S ′

as vertices of D, and for every pair of snapshots S, S′ ∈ S ′, if (S, S′) ∈ Adj, then add an arc
from S to S′ in D. We then add both start and end as vertices of D and for every snapshot
S ∈ S, if (start, S) ∈ Adj ((S, end) ∈ Adj), add an arc from start to S (S to end) in D. We
then find the number of times X(S, S′), each arc (S, S′) should be duplicated in D to get a
new multidigraph D′ such that we get a (connected) Eulerian trail in D′ from start to end

of length p and all the connected components of G are covered by the Eulerian trail. Finally,
we use the path to get the correspondence between the blocks of H and the snapshots in S ′

with a correct placement from left to right. The algorithm to find D′ proceeds as follows.
Find the set T of all spanning trees of the underlying undirected graph of D.
For every spanning tree T ∈ T , solve the following ILP to find X(S, S′) for every edge
(S, S′) ∈ E(D).

∀S ∈ V (D) \ {start, end} :
∑

(S,S′)∈E(D)

X(S, S′) =
∑

(S′′,S)∈E(D)

X(S′′, S). (1a)

S. Gupta, G. Sa’ar, and M. Zehavi 37:9

∑
(start,S)∈E(D)

X(start, S) = 1. (1b)

∑
(S,end)∈E(D)

X(S, end) = 1. (1c)

∑
(S,S′)∈E(D)

X(S, S′) = p − 1. (1d)

∀i ∈ [t] : freqleft(Gi, start) +
∑

(S,S′)∈E(D)

X(S, S′) · freqboun(Gi, (S, S′))+

∑
S∈V (D)

(∑
(S,S′)∈E(D)

X(S, S′)
)

· freqcen(Gi, S) + freqright(Gi, end) = num(Gi). (1e)

∀(S, S′) ∈ E(T) : X(S, S′) + X(S′, S) ≥ 1. (1f)
∀(S, S′) ∈ E(D) \ E(T) : X(S, S′) ≥ 0. (1g)

If the ILP returns a feasible solution, then return Yes.

Recall that we run the algorithm for every possible D. If for none of them we return
Yes, we eventually return No. Equation 1f ensures that the digraph D′ is connected, and, in
this context, recall that we go over all the possible spanning trees to check all the different
possible connectivities between the vertices of D′. Equations 1a, 1b and 1c ensure that there
exists an Eulerian trail in D from start to end. Equation 1d ensures that the total number
of edges in D′ is p − 1, which in turn means that the Eulerian trail from start to end in D′ is
of length p, which is equal to the number of required blocks. Given a multidigraph D′, each
connected component of G can “contribute to” only one set out of LC(start), BC(S′, S′′),
FC(S) and RC(end), for S, S′, S′′ ∈ S ′ such that (S′, S′′) ∈ E(D), as there exists no S ∈ S ′

such that (S, start) ∈ E(D) or (end, S) ∈ E(D). So, Equation 1e ensures that all the
connected components of G are covered by the path exactly once. ◀

4 Distance Approximation Parameter

In this section, we consider the distance approximation parameter, and sketch the proofs of
Theorems 1.3 and 1.4. The proof of Theorem 1.5 is deferred to the full version.

4.1 Para-NP-hardness with Respect to aG on General Graphs
We show a reduction from SAT to Grid Embedding where aG is upper bounded by a
constant if the output is a Yes instance. For this purpose, we present the battery gadget (see
Figure 3), composed of a 13 × 9 rectangle. It has a positive side and a negative side, two
wire vertices and six synchronization vertices attached to the top and bottom sides of the
rectangle. On the top and bottom halves of the gadget, it has an optional extra edge, called
the positive voltage and the negative voltage, respectively. We describe the battery gadget
by a boolean pair H = (x1, x2), x1, x2 ∈ {0, 1} where x1 = 1 (resp. x2 = 1) if and only if we
added the positive voltage edge (resp. negative voltage edge).

Given an instance π of SAT with variables x1, . . . , xn and clauses µ1, . . . , µm, the reduction
output is reduc(π) = Gπ where Gπ defined as follows. Gπ is composed of m · n battery
gadgets ordered in a “matrix shape”, i.e. the battery gadget Hi,j is located at the i-th
“row” and j-th “column” (see Figure 4). Every column j ∈ [n] of gadgets corresponds to the
variable xj , and every row i ∈ [m] of gadgets corresponds to the clause µi. Now, for each
i ∈ [m] and j ∈ [n] we set Hi,j = (xi,j

1 , xi,j
2) where xi,j

1 = 0 (resp. xi,j
2 = 0) if and only if

ISAAC 2021

37:10 Grid Recognition

1 2

3 4 5

6 7 8

Figure 3 The battery gadget. The positive side is in blue and the negative side is in red. The
positive voltage is in dashed blue and the negative voltage is in dashed red. The wire vertices are
numbered 1, 2. The synchronization vertices are numbered 3 to 8.

the literal xj (resp. xj) appears in µi. We add the positive (resp. negative) voltage edge to
the gadget Hi,j if and only if the literal xj (resp. x̄j) does not appear in µi. In addition,
the “matrix” of battery gadgets is encircled by an m × n-grid frame (see Figure 4). Lastly,
we delete the “redundant” topmost and bottommost synchronization edges, i.e. those not
attached to a side shared by two rectangles. More precisely, for every j ∈ [n], we delete the
three edges attached to the top side of the rectangle of H1,j and the three edges attached
to the bottom side of the rectangle of Hm,j . Observe that each synchronization vertex is
common to two battery gadgets, that is, for every i ∈ [m−1] and j ∈ [n], the synchronization
vertices 3, 4, 5 of Hi+1,j are the synchronization vertices 6, 7, 8 of Hi,j .

For the correctness of the reduction, we distinguish between “parts” (of the graph) that
must have a fixed embedding and “parts” that might have several embeddings. We show
that the embedding of the m × n-grid frame is “almost fixed”. More precisely, the embedding
is fixed once we choose an embedding of three specific vertices of it. Intuitively, the “shape”
of the m × n-grid frame is fixed in every embedding, up to “rotation” of the frame in 90, 180
or 270 degrees, or “movement” (shifting) to another “location”, which are immaterial for our
purposes. In addition to the m × n-grid frame, the embeddings of the sides of the rectangles,
as well as the “middle crossing lines”, of the battery gadgets are also fixed once we choose an
embedding for the aforementioned three vertices.

Now, observe that given a battery gadget, we might be able to choose to embed the
positive or the negative side on the top of the gadget. For a battery gadget H with a grid
graph embedding f , we set pf (H) = + if the positive side of the gadget is embedded to the
top of the gadget; otherwise the negative side is embedded to the top of the gadget, and
we set pf (H) = −. In addition, we denote by Vf (H) the voltage of the side of the battery
gadget that f embeds at the top of H. That is, given H = (x1, x2), if pf (H) = +, then
Vf (H) = x1, and if pf (H) = −, then Vf (H) = x2.

Next, we show that for any j ∈ [n], the gadgets in the j-th column are “synchronized”: for
every 1 ≤ i, i′ ≤ m, pf (Hi,j) = pf (Hi′,j). For intuition, observe that the six synchronization
vertices in the battery gadget maybe embedded inside or outside the rectangle and consider
two adjacent battery gadget in the same column, Hi,j and Hi+1,j . If pf (Hi+1,j) = +, then
vertices 1 and 3 of Hi+1,j (see Figure 3) must be embedded outside Hi+1,j , so they are
embedded inside Hi,j . Then, in Hi,j the positive side cannot be embedded at the bottom,
and hence pf (Hi,j) = +. Similarly, if pf (Hi+1,j) = −, then vertex 4 must be embedded
outside Hi+1,j , so it is embedded inside Hi,j . Then, in Hi,j the negative side cannot be
embedded at the bottom, and hence pf (Hi,j) = −. Formally, we prove the following.

S. Gupta, G. Sa’ar, and M. Zehavi 37:11

H1,1 H1,2

H2,1 H2,2

Figure 4 Construction of Gπ where π = (x̄1 ∨ x2) ∧ (x1 ∨ x2). The 2 × 2-grid frame is in blue.

▶ Lemma 4.1 (*). Let π be an instance of SAT with n variables and m clauses. Let f be a
grid graph embedding of Gπ. For every j ∈ [n], there exists pj ∈ {+, −} such that for every
i ∈ [m] it follows that pf (Hi,j) = pj.

Next, we show that for every i ∈ [m], there exists j ∈ [n] such that Vf (Hi,j) = 0. As
intuition, note that if vertex 1 of Hi,j is embedded inside Gi,j and Vf (Gi,j) = 1, then it must
be that vertex 2 is embedded outside Gi,j . So, since vertex 1 must be embedded inside Gi,1
and vertex 2 must be embedded inside Gi,n, there must be a j such that Vf (Hi,j) = 0.

▶ Lemma 4.2 (*). Let π be an instance of SAT with n variables and m clauses. Let f be a
grid graph embedding of Gπ. For every i ∈ [m], there exists j ∈ [n] such that Vf (Hi,j) = 0.

We are ready to prove the reverse direction of the correctness of the reduction. Due to
lack of space, we omit proof of the forward direction.

▶ Lemma 4.3. Let π be an instance of SAT with n variables and m clauses. Then Gπ is a
grid graph if and only π is a Yes instance of SAT.

Partial proof. Let f be a grid graph embedding of Gπ. By Lemma 4.1, for every j ∈ [n], there
exists pj ∈ {+, −} such that for every i ∈ [m], pf (Hi,j) = pj . We define s : {x1, . . . , xn} →
{T, F} as follows. For j ∈ [n], s(xj) = T if pj = +; otherwise, s(xj) = F . We show that s

is a satisfying assignment for π. Let i ∈ [m]. By Lemma 4.2, there exists j ∈ [n] such that
Vp(i, j) = 0. If p(i, j) = pj = +, then x

(i,j)
1 = 0, and by the definition of Gπ, xj appears

in µi. By the definition of s, since pj = +, we get that s(xj) = T , therefore µi is satisfied.
Similarly, if p(i, j) = pj = −, then x

(i,j)
2 = 0, and by the definition of Gπ, x̄j appears in µi.

By the definition of s, since pj = −, we get that s(xj) = F , therefore µi is satisfied. So, π is
a Yes instance of SAT. ◀

It only remains to show is that the distance approximation of Gπ is bounded by a constant
if Gπ is a grid graph. Due to lack of space, we omit this proof.

▶ Lemma 4.4 (*). Let π be an instance of SAT. If Gπ is a grid graph, then for every grid
graph embedding f of Gπ it follows that af ≤ 234.

Using Lemma 4.3 and Lemma 4.4, we can conclude Theorem 1.3.

ISAAC 2021

37:12 Grid Recognition

d(v, u) ∈
[
0, k + af

)

d(v, u) ∈
[
k + af , 2(k + af)

)

d(v, u) ∈
[
(dr/(k + af)e − 1)(k + afs), r

]
v

Figure 5 Sorting the vertices u of a k × r grid into small rectangles.

4.2 k × r-Grid Embedding is FPT with Respect to k + aG

We present an FPT algorithm with respect to k + aG for k × r-Grid Embedding. The
idea is as follows. We guess a leftmost vertex v in the k × r grid (i.e. satisfying fcol(v) = 0).
Then, going from left to right, we divide the k × r grid into

⌈
r

k+aG

⌉
“small rectangles” of

size k × (aG + k), except the last which might be smaller. After this, we sort the vertices
into the small rectangles: We put each vertex u, having graph distance d(v, u) from v, in the⌈

d(v,u)
k+aG

⌉
-th rectangle; if no such rectangle exists, we put u in the (

⌈
d(v,u)
k+aG

⌉
− 1)-th rectangle,

if this rectangle does not exist as well (as
⌈

d(v,u)
k+aG

⌉
− 1 is too large), we can conclude that

we have a no-instance. In particular, we show that in every k × r grid graph embedding f

of G with af = aG where v is a leftmost vertex, every u is embedded either in its sorted
rectangle or the previous one. For intuition, observe that u cannot be embedded into a
farther rectangle as then its shortest path(s) from v cannot be embedded. On the other hand,
if u is embedded into a closer rectangle, then the embedding does not respect the distance
approximation. After we know the “approximate location” of each vertex, we try to find a
k × r grid graph embedding of G using an iterative algorithm.

We start by proving the correctness of the “location approximation” of each vertex.
To this end, for any 0 ≤ s ≤ t, we define Cf (s, t) = {u ∈ V | s ≤ fcol(u) ≤ t} and
Dv(s, t) = {u ∈ V | s ≤ d(v, u) ≤ t}. See Figure 5.

▶ Lemma 4.5 (*). Let G = (V, E) be a k × r grid graph, and let f be a k × r grid
graph embedding of G. Let v ∈ V such that fcol(v) = 0. Let u ∈ V be a vertex. Then
u ∈ Cf (d(u, v) − af − k, d(u, v)), and u ∈ Dv(fcol(u), fcol(u) + af + k).

Therefore, every vertex must be embedded either in its sorted rectangle or in the one
to its left. In light of this, we try to find a k × r embedding of G by iteration on the small
rectangles from left to right. At each step, we seek k × (af + k) embeddings for the vertices in
the current rectangle and for a subset U of the vertices of the next rectangles. For each such
embedding, we only need to store the following information: the subset U and the “right
column” of the embedding (so as to “glue” embeddings of adjacent rectangles properly). In
the next rectangle, we try to embed (using brute-force) the vertices we did not embed in the
previous rectangle (those outside U) and some of the vertices of its next rectangle, such that
the left column of the current embedding “agrees” with the right column of the embedding of
the previous rectangle. Note that at each step we only store “FPT amount” of information,
and so we use only “FPT runtime”. A formal description of the algorithm can be found in
the full version. Here, we directly proceed to state the correctness.

▶ Lemma 4.6 (*). There exists an algorithm that given a graph and k, r ∈ N runs in time
O(|V |2(kaG)O(kaG+k2)) and returns “Yes instance” if and only if G is a k × r grid graph.

Using Lemma 4.6, we can conclude Theorem 1.4.

S. Gupta, G. Sa’ar, and M. Zehavi 37:13

References
1 Parameterized complexity in graph drawing (Dagstuhl Seminar 21062). URL: https://www.

dagstuhl.de/21062.
2 Akanksha Agrawal, Grzegorz Guspiel, Jayakrishnan Madathil, Saket Saurabh, and Meirav

Zehavi. Connecting the Dots (with Minimum Crossings). In Gill Barequet and Yusu Wang,
editors, Symposium on Computational Geometry (SoCG 2019), volume 129 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 7:1–7:17, Dagstuhl, Germany, 2019. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2019.7.

3 Eric Allender, Tanmoy Chakraborty, David A Mix Barrington, Samir Datta, and Sambuddha
Roy. Grid graph reachability problems. In 21st Annual IEEE Conference on Computational
Complexity (CCC’06), pages 15–pp. IEEE, 2006.

4 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S. B. Mitchell,
and Saurabh Sethia. Optimal covering tours with turn costs. SIAM J. Comput., 35(3):531–566,
2005.

5 Pradeesha Ashok, Sudeshna Kolay, Syed Mohammad Meesum, and Saket Saurabh. Para-
meterized complexity of strip packing and minimum volume packing. Theor. Comput. Sci.,
661:56–64, 2017.

6 Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized complexity of
1-planarity. J. Graph Algorithms Appl., 22(1):23–49, 2018.

7 Moritz Beck and Sabine Storandt. Puzzling grid embeddings. In 2020 Proceedings of the
Twenty-Second Workshop on Algorithm Engineering and Experiments (ALENEX), pages
94–105. SIAM, 2020.

8 Arnold D Bergstra, Bert Brunekreef, and Alex Burdorf. The effect of industry-related air
pollution on lung function and respiratory symptoms in school children. Environmental Health,
17(1):1–9, 2018.

9 Sandeep N Bhatt and Stavros S Cosmadakis. The complexity of minimizing wire lengths in
vlsi layouts. Information Processing Letters, 25(4):263–267, 1987.

10 Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized
algorithms for book embedding problems. In Graph Drawing and Network Visualization -
27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019,
Proceedings, pages 365–378, 2019.

11 Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Orthogonal graph
drawing with flexibility constraints. Algorithmica, 68(4):859–885, 2014.

12 CDC. Social distancing. URL: https://www.cdc.gov/coronavirus/2019-ncov/prevent-
getting-sick/social-distancing.html, November 2020.

13 Hubert Y. Chan. A parameterized algorithm for upward planarity testing. In European
Symposium on Algorithms (ESA 2004), volume 3221 of Lecture Notes in Computer Science,
pages 157–168. Springer, 2004. doi:10.1007/978-3-540-30140-0_16.

14 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Almost polynomial hardness of
node-disjoint paths in grids. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1220–1233,
2018.

15 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Improved approximation for node-
disjoint paths in grids with sources on the boundary. In 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, pages 38:1–38:14, 2018.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

17 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for eth-tight algorithms and lower bounds in geometric intersection
graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 574–586, 2018.

ISAAC 2021

https://www.dagstuhl.de/21062
https://www.dagstuhl.de/21062
https://doi.org/10.4230/LIPIcs.SoCG.2019.7
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-distancing.html
https://doi.org/10.1007/978-3-540-30140-0_16
https://doi.org/10.1007/978-3-319-21275-3

37:14 Grid Recognition

18 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Sketched representations
and orthogonal planarity of bounded treewidth graphs. In Graph Drawing and Network
Visualization (GD 2019), Lecture Notes in Computer Science. Springer, 2019. To appear.
arXiv:1908.05015.

19 Walter Didimo and Giuseppe Liotta. Computing orthogonal drawings in a variable embedding
setting. In Algorithms and Computation (ISAAC 1998), volume 1533 of Lecture Notes in
Computer Science, pages 79–88. Springer, 1998.

20 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. On the complexity of hv-rectilinear
planarity testing. In International Symposium on Graph Drawing, pages 343–354. Springer,
2014.

21 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. HV-planarity: Algorithms and
complexity. J. Comput. Syst. Sci., 99:72–90, 2019.

22 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

23 Vida Dujmovic, Michael R. Fellows, Matthew Kitching, Giuseppe Liotta, Catherine McCartin,
Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond, Sue Whitesides, and David R.
Wood. On the parameterized complexity of layered graph drawing. Algorithmica, 52(2):267–292,
2008. doi:10.1007/s00453-007-9151-1.

24 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory
of parameterized preprocessing. Cambridge University Press, 2019.

25 Joseph L Ganley. Computing optimal rectilinear steiner trees: A survey and experimental
evaluation. Discrete Applied Mathematics, 90(1-3):161–171, 1999.

26 Javier García-Pérez, Nerea Fernández de Larrea-Baz, Virginia Lope, Antonio J Molina, Cristina
O’Callaghan-Gordo, María Henar Alonso, Marta María Rodríguez-Suárez, Benito Mirón-Pozo,
Juan Alguacil, Inés Gómez-Acebo, et al. Residential proximity to industrial pollution sources
and colorectal cancer risk: A multicase-control study (mcc-spain). Environment International,
144:106055, 2020.

27 Michael R Garey and David S. Johnson. The rectilinear steiner tree problem is np-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

28 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and rectilinear
planarity testing. SIAM Journal on Computing, 31(2):601–625, 2001.

29 Angelo Gregori. Unit-length embedding of binary trees on a square grid. Information Processing
Letters, 31(4):167–173, 1989.

30 Martin Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.,
68(2):285–302, 2004. doi:10.1016/j.jcss.2003.07.008.

31 Magnús M. Halldórsson, Christian Knauer, Andreas Spillner, and Takeshi Tokuyama. Fixed-
parameter tractability for non-crossing spanning trees. In Algorithms and Data Structures
(WADS 2007), volume 4619 of Lecture Notes in Computer Science, pages 410–421. Springer,
2007.

32 Dan Halperin, Oren Salzman, and Micha Sharir. Handbook of discrete and computational
geometry. In Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of
Discrete and Computational Geometry, chapter 50, pages 1311–1342. CRC Press LLC, Boca
Raton, FL, 2017.

33 Cone Health. Social distancing faq: How it helps prevent covid-19 (coronavirus) and steps
we can take to protect ourselves. https://www.conehealth.com/services/primary-care/
social-distancing-faq-how-it-helps-prevent-covid-19-coronavirus-/, May 2020.

34 Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing
upward planarity. Int. J. Found. Comput. Sci., 17(5):1095–1114, 2006. doi:10.1142/
S0129054106004285.

35 Petr Hlinený and Marek Dernár. Crossing number is hard for kernelization. In Symposium
on Computational Geometry (SoCG 2016), volume 51 of LIPIcs, pages 42:1–42:10. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

http://arxiv.org/abs/1908.05015
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1016/j.jcss.2003.07.008
https://www.conehealth.com/services/primary-care/social-distancing-faq-how-it-helps-prevent-covid-19-coronavirus-/
https://www.conehealth.com/services/primary-care/social-distancing-faq-how-it-helps-prevent-covid-19-coronavirus-/
https://doi.org/10.1142/S0129054106004285
https://doi.org/10.1142/S0129054106004285

S. Gupta, G. Sa’ar, and M. Zehavi 37:15

36 Petr Hlinený and Abhisekh Sankaran. Exact crossing number parameterized by vertex cover.
In Graph Drawing and Network Visualization (GD 2019), Lecture Notes in Computer Science.
Springer, 2019. To appear. arXiv:1906.06048.

37 Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

38 Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time. In
Symposium on Theory of Computing (STOC 2007), pages 382–390. ACM, 2007.

39 Fabian Klute and Martin Nöllenburg. Minimizing crossings in constrained two-sided circular
graph layouts. In Symposium on Computational Geometry (SoCG 2018), volume 99 of LIPIcs,
pages 53:1–53:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

40 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta.
Subexponential-time and FPT algorithms for embedded flat clustered planarity. In
Graph-Theoretic Concepts in Computer Science – 44th International Workshop, WG 2018,
Cottbus, Germany, June 27-29, 2018, Proceedings, pages 111–124, 2018. doi:10.1007/
978-3-030-00256-5_10.

41 Giordano Da Lozzo, David Eppstein, Michael T. Goodrich, and Siddharth Gupta. C-planarity
testing of embedded clustered graphs with bounded dual carving-width. In 14th International
Symposium on Parameterized and Exact Computation, IPEC 2019, September 11-13, 2019,
Munich, Germany, pages 9:1–9:17, 2019. doi:10.4230/LIPIcs.IPEC.2019.9.

42 Lisa Lockerd Maragakis. Coronavirus, social and physical distancing and self-
quarantine. URL: https://www.hopkinsmedicine.org/health/conditions-and-diseases/
coronavirus/coronavirus-social-distancing-and-self-quarantine, July 2020.

43 Md Saidur Rahman, Shin-ichi Nakano, and Takao Nishizeki. Rectangular grid drawings of
plane graphs. Computational Geometry, 10(3):203–220, 1998.

44 Md. Saidur Rahman, Takao Nishizeki, and Mahmuda Naznin. Orthogonal drawings of plane
graphs without bends. J. Graph Algorithms Appl., 7(4):335–362, 2003. doi:10.7155/jgaa.
00074.

45 Sadiq M Sait and Habib Youssef. VLSI physical design automation: theory and practice,
volume 6. World Scientific Publishing Company, 1999.

46 Nathan R Sturtevant. Benchmarks for grid-based pathfinding. IEEE Transactions on Compu-
tational Intelligence and AI in Games, 4(2):144–148, 2012.

47 Paul Turán. A note of welcome. Journal of Graph Theory, 1(1):7–9, 1977. doi:10.1002/jgt.
3190010105.

48 Christopher Umans and William Lenhart. Hamiltonian cycles in solid grid graphs. In
Proceedings 38th Annual Symposium on Foundations of Computer Science (FOCS), pages
496–505. IEEE, 1997.

49 Martin Zachariasen. A catalog of hanan grid problems. Networks: An International Journal,
38(2):76–83, 2001.

ISAAC 2021

http://arxiv.org/abs/1906.06048
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.1007/978-3-030-00256-5_10
https://doi.org/10.4230/LIPIcs.IPEC.2019.9
https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/coronavirus-social-distancing-and-self-quarantine
https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/coronavirus-social-distancing-and-self-quarantine
https://doi.org/10.7155/jgaa.00074
https://doi.org/10.7155/jgaa.00074
https://doi.org/10.1002/jgt.3190010105
https://doi.org/10.1002/jgt.3190010105

	1 Introduction
	2 Preliminaries
	3 FPT Algorithm on General Graphs
	4 Distance Approximation Parameter
	4.1 Para-NP-hardness with Respect to a_G on General Graphs
	4.2 k x r-Grid Embedding is FPT with Respect to k+a_G

