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Abstract
Many public transportation systems are unable to keep up with growing passenger demand as
the population grows in urban areas. The slow or lack of improvement for public transportation
pushes people to use private transportation modes, such as carpooling and ridesharing. However,
the occupancy rate of personal vehicles has been dropping in many cities. In this paper, we describe
a centralized transit system that integrates public transit and ridesharing, which matches drivers
and transit riders such that the riders would result in shorter travel time using both transit and
ridesharing. The optimization goal of the system is to assign as many riders to drivers as possible for
ridesharing. We give an exact approach and approximation algorithms to achieve the optimization
goal. As a case study, we conduct an extensive computational study to show the effectiveness of the
transit system for different approximation algorithms, based on the real-world traffic data in Chicago
City; the data sets include both public transit and ridesharing trip information. The experiment
results show that our system is able to assign more than 60% of riders to drivers, leading to a
substantial increase in occupancy rate of personal vehicles and reducing riders’ travel time.
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1 Introduction

As the population grows in urban areas, commuting between and within large cities is
time-consuming and resource-demanding. Due to growing passenger demand, the number of
vehicles on the road for both public and private transportation has increased to handle the
demand. Public transportation systems are unable to keep up with the demand in terms of
service quality. This pushes people to use personal vehicles for work commute. In the United
States, personal vehicles are the main transportation mode [6]. However, the occupancy rate
of personal vehicles in the U.S. is 1.6 persons per vehicle in 2011 [12, 24] (and decreased to
1.5 persons per vehicle in 2017 [6]), which can be a major cause for congestion and pollution.
This is the reason municipal governments encourage the use of public transit; the major
drawback of public transit is the inconvenience of last mile and/or first mile transportation
compared to personal vehicles [28]. With the increasing popularity in ridesharing/ridehailing
service, there may be potential in integrating private and public transportation. From the
research report of [9], it is recommended that public transit agencies should build on mobility
innovations to allow public-private engagement in ridesharing because the use of shared
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modes increases the likelihood of using public transit. As pointed out by Ma et al. [20], some
basic form of collaboration between MoD (mobility-on-demand) services and public transit
already exists (for first and last mile transportation). There is an increasing interest for
collaboration between private companies and public sector entities [22].

The spareness of transit networks usually is the main cause of the inconvenience in public
transit. Such transit networks have infrequent transit schedule and can cause customers to
have multiple transfers. In this paper, we investigate the potential effectiveness of integrating
public transit with ridesharing to increase ridership in such sparse transit networks and
reduce traffic congestion for work commute (not very short trips). For example, people who
drive their vehicles to work can pick-up riders, who use public transit regularly, at designated
locations and drop-off them at some transit stops, and then those riders can take public
transit to their destinations. In this way, riders are presented with a cheaper alternative
than ridesharing for the entire trip, and it is more convenient than using public transit only.
The transit system also gets a higher ridership, which matches the recommendation of [9] for
a more sustainable transportation system. Our research focuses on a centralized system that
is capable of matching drivers and riders satisfying their trips’ requirements while achieving
some optimization goal; the requirements of a trip may include an origin and a destination,
time constraints, capacity of a vehicle, and so on. When a rider is assigned a driver, we call
this ridesharing route, and it is compared with the fastest public transit route for this rider
which uses only public transit. If the ridesharing route is faster than the public transit route,
the ridesharing route is provided to both the rider and driver. To increase the number of
rider participants, our system-wide optimization goal is to maximize the number of riders,
each of whom is assigned a ridesharing route. We call this the maximization problem (formal
definition in Section 2).

In the literature, there are many papers about standalone ridesharing/carpooling, from
theoretical to empirical studies (e.g., [1, 4, 14, 29]). For literature reviews on ridesharing,
readers are referred to [2, 10, 21, 27]. On the other hand, there are only few papers study
the integration of public transit with dynamic ridesharing. Aissat and Varone [3] and Huang
et al. [17] proposed approaches which find a route with ridesharing that substitutes part of a
public transit route for each rider in the first-come first-serve basis (system-wide optimization
goal is not considered). Ma [19] and Stiglic et al. [26] proposed models to integrate ridesharing
and public transit as graph matching problems to achieve system-wide optimization goals;
their approaches are similar, except the work in [26] supports more rideshare match types.
The graph matching problems in [19, 26] are formulated as integer linear program (ILP) and
solved by standard branch and bound (CPLEX). The optimization goal in [19] is to minimize
the cost related to waiting time and travel time, but ridesharing routes are not guarantee to
be better than transit route. Although the optimization goal in [26] aligns with ours, there
are some limitations in their approach; they limit at most two riders for each rideshare match,
each rider must travel to the transit stop that is closest to the rider’s destination, and more
importantly, ridesharing routes assigned to riders can be longer than public transit routes.

In this paper, we use a similar model as in [19, 26]. We extend the work in [26] to eliminate
the limitations described above and give approximation algorithms for the optimization
problem to ensure solution quality. Our discrete algorithms allow to control the trade-off
between quality and computational time. Our main contributions are summarized as follows:
1. We give an exact algorithm approach (an ILP formulation based on a hypergraph

representation) for integrating public transit and ridesharing.
2. We prove our maximization problem is NP-hard and give a 2-approximation algorithm

for the problem. We show that previous O(k)-approximation algorithms [5, 7] for the
k-set packing problem are 2-approximation algorithms for our maximization problem.
Our algorithm is more time and space efficient than previous algorithms.
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3. As a case study, we conduct an extensive numerical study based on real-life data in
Chicago City to evaluate the potential of having an integrated transit system and the
effectiveness of different approximation algorithms.

The rest of the paper is organized as follows. In Section 2, we give the preliminaries of the
paper, describe a centralized system that integrates public transit and ridesharing, and define
the maximization problem. In Section 3, we describe our exact algorithm approach. We then
propose approximation algorithms in Section 4. We discuss our numerical experiments and
results in Section 5. Finally, Section 6 concludes the paper.

2 Problem definition and preliminaries

In the problem multimodal transportation with ridesharing (MTR), we have a centralized
system, and for every fixed time interval, the system receives a set A = D ∪ R of trips with
D ∩ R = ∅, where D is the set of driver trips and R is the set of rider trips. Each trip is
expressed by an integer label i and consists of an individual, a vehicle (for driver trip) and
some requirements. A connected public transit network with a fixed timetable T is given.
We assume that for any source o and destination d in the public transit network, T gives the
fastest travel time from o to d. A ridesharing route πi for a rider i ∈ R is a travel plan using
a combination of public transportation and ridesharing to reach i’s destination satisfying i’s
requirements, whereas a public transit route π̂i for a rider i is a travel plan using only public
transportation. The multimodal transportation with ridesharing problem asks to provide at
least one feasible route (πi or π̂i) for every rider i ∈ R. We denote an instance of multimodal
transportation with ridesharing problem by (N, A, T ), where N is an edge-weighted directed
graph (network) for both private and public transportation. We call a public transit station
or stop just station. The terms rider and passenger are used interchangeably (although
passenger emphasizes a rider has been provided with a ridesharing route).

The requirements of each trip i in A are specified by i’s parameters submitted by the
individual. The parameters of a trip i contain an origin location oi, a destination location di,
an earliest departure time αi, a latest arrival time βi and a maximum trip time γi. A driver
trip i also contains a capacity ni of the vehicle, a limit δi on the number of stops a driver
wants to make to pick-up/drop-off passengers, and an optional path to reach its destination.
The maximum trip time γi of a driver i includes a travel time from oi to di and a detour time
limit i can spend for offering ridesharing service. A rider trip i also contains an acceptance
rate θi for a ridesharing route πi, that is, πi is given to rider i if t(πi) ≤ θi · t(π̂i) for every
public transit route π̂i and 0 < θi ≤ 1, where t(·) is the travel time. Such a route πi is called
an acceptable ridesharing route (acceptable route for brevity). For example, suppose the best
public transit route π̂i takes 100 minutes for i and θi = 0.9. An acceptable route πi implies
that t(πi) ≤ θi · t(π̂i) = 90 minutes. We consider two match types for practical reasons.

Type 1 (rideshare-transit): a driver may make multiple stops to pick-up different
passengers, but makes only one stop to drop-off all passengers. In this case, the pick-up
locations are the passengers’ origin locations, and the drop-off location is a public station.
Type 2 (transit-rideshare): a driver makes only one stop to pick-up passengers and
may make multiple stops to drop-off all passengers. In this case, the pick-up location is a
public station and the drop-off locations are the passengers’ destination locations.

Riders and drivers specify one of the match types to participate in; they are allowed to choose
both in hope to increase the chance being selected, but the system will assign them only one
of the match types such that the optimization goal of the MTR problem is achieved, which
is to assign acceptable routes to as many riders as possible. Formally, the maximization
problem we consider is to maximize the number of passengers, each of whom is assigned an
acceptable route πi for every i ∈ R.

ISAAC 2021
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For a driver i and a set J ⊆ R of riders, σ(i) = {i} ∪ J is called a feasible match if the
routes for all trips of σ(i) satisfy the requirements (constraints) specified by the parameters
of the trips collectively as listed below (a summary of notation and constraints can be found
in [13], Section 3.2):
1. Ridesharing route constraint: for J = {j1, . . . , jk}, there is a path (oi, oj1 , . . . , ojk

, s, di) in
N , where s is the drop-off location for Type 1 match; or there is a path (oi, s, dj1 , ..., djk

, di)
in N , where s is the pick-up location for Type 2 match.

2. Capacity constraint: 1 ≤ |J | ≤ ni.
3. Acceptable constraint: each passenger j ∈ J is given an acceptable route πj offered by i.
4. Travel time constraint: each trip j ∈ σ(i) departs from oj no earlier than αj , arrives at

dj no later than βj , and the total travel duration of j is at most γj .
5. Stop constraint: the number of unique locations visited by driver i to pick-up (for Type 1)

or drop-off (for Type 2) all passengers of σ(i) is at most δi.
Two feasible matches σ(i), σ(i′) are disjoint if σ(i) ∩ σ(i′) = ∅. Then, the maximization
problem considered is to find a set of pairwise disjoint feasible matches such that the number
of passengers included in the feasible matches is maximized.

Intuitively, a rideshare-transit (Type 1) feasible match σ(i) is that all passengers in σ(i)
are picked-up at their origins and dropped-off at a station, and then i drives to destination
di while each passenger j of σ(i) takes transit to destination dj . A transit-rideshare (Type 2)
feasible match σ(i) is that all passengers in σ(i) are picked-up at a station and dropped-off
at their destinations, and then i drives to destination di after dropping the last passenger.
We give algorithms to find pairwise disjoint feasible matches to maximize the number of
passengers included in the matches. We describe our algorithms for Type 1 only. Algorithms
for Type 2 can be described with the constraints on the drop-off location and pick-up location
of a driver exchanged, and we omit the description. Further, it is not difficult to extend to
other match types, such as rideshare only and park-and-ride, as described in [26].

3 Exact algorithm

An exact algorithm for the maximization problem is presented in this section, which is similar
to the matching approach described in [4, 23] for ridesharing and in [19, 26] for MTR. The
exact algorithm is summarized as follows. First, we compute all feasible matches for each
driver i. Then, we create a bipartite (hyper)graph H(D, R, E), where D(H) is the set of
drivers, and R(H) is the set of riders. There is a hyperedge e = (i, J) in E(H) between
i ∈ D(H) and a non-empty subset J ⊆ R(H) if {i} ∪ J is a feasible match, denoted by σJ (i),
for driver i. An example is given in Figure 1. Any driver i and rider j with no feasible match
is removed from D(H) and R(H) respectively, namely, no isolated vertex (such riders must
use public transit routes). For an edge e = (i, J), let A(e) = {i} ∪ J and p(e) = |J | be the

Figure 1 A bipartite hypergraph for all possible matches of an instance (N, A, T ).
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number of riders represented by e. For a trip j ∈ A, define Ej = {e ∈ E | j ∈ A(e)} to be
the set of edges in E associated with j. To solve the maximization problem, we give an
integer program (ILP) formulation:

maximize
∑

e∈E(H)

p(e) · xe (1)

subject to
∑

e∈Ej

xe ≤ 1, ∀ j ∈ A (2)

xe ∈ {0, 1}, ∀ e ∈ E(H) (3)

The binary variable xe indicates whether the edge e = (i, J) is in the solution (xe = 1)
or not (xe = 0). If xe = 1, it means that all passengers in J are served by i. Inequality
(2) in the ILP formulation guarantees that each driver serves at most one feasible set of
passengers and each passenger is served by one driver. Note that the ILP (1)-(3) is similar
to a set packing formulation. An advantage of this ILP formulation is that the number of
constraints is substantially decreased, compared to traditional ridesharing formulation. From
Observation 1 in [25], it is not difficult to see that the following result holds (a proof of
Theorem 1 is given in [13], Sections 3.1).

▶ Theorem 1. Given a bipartite graph H(D, R, E) representing an instance of the multimodal
transportation with ridesharing maximization problem, an optimal solution to the ILP (1)-(3)
is an optimal solution to the maximization problem and vice versa.

Computing feasible matches. Let i be a driver in D and ni be the capacity of i (maximum
number of riders i can serve). The maximum number of feasible matches for i is

∑ni

p=1
(|R|

p

)
.

Assuming the capacity ni is a small constant (which is reasonable in practice), the above
summation is polynomial in R, that is, O((|R| + 1)ni). Let K = maxi∈D ni be the maximum
capacity among all vehicles (driver trips). Then, in the worst case, |E(H)| = O(|D|·(|R|+1)K).
We compute all feasible matches for each trip in two phases. In phase one, for each driver i,
we find all feasible matches σ(i) = {i, j} with one rider j. In phase two, for each driver i, we
compute all feasible matches σ(i) = {i, j1, .., jp} with p riders, based on the feasible matches
σ(i) with p − 1 riders computed previously, for p = 2 and upto the number of passengers i

can serve. Complete description and algorithms (Algorithm 1 for phase one and Algorithm 2
for phase two) for computing the feasible matches can be found in Sections 3.2.1 and 3.2.2
of [13]. We make two simplifications in our algorithms:

Given a source station so and a destination di of trip i with departure time t at so, we
use a simplified transit system in our experiments to calculate the fastest public transit
route from so to di.
We use a simplified model for the transit waiting time and ridesharing service time (time
it takes to pick-up and drop-off riders, walking time between locations and stations).

As shown in [13](Section 3.2.2), we compute a feasible path with minimum travel time for
driver i to pick-up p passengers in each feasible match σ(i).

4 NP-hardness and approximation algorithms

We show that the maximization problem is NP-hard and give approximation algorithms for
the problem. When every edge in H(D, R, E) consists of only two vertices (one driver and
one passenger), the maximization problem is equivalent to the maximum matching, which
can be solved in polynomial time (e.g., [16]). However, if the edges consist of more than two

ISAAC 2021
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vertices, they become hyperedges. In this case, the ILP (1)–(3) becomes a formulation of
the maximum weighted set packing problem (MWSP), which is NP-hard [11, 18]. In fact,
ILP (1)–(3) formulation gives a special case of MWSP (due to the structure of H(D, R, E)).
We prove that this special case is also NP-hard, and by Theorem 1, the maximization problem
is NP-hard (a proof of Theorem 2 is in [13], Section 4.1).

▶ Theorem 2. The maximization problem is NP-hard.

Next, we describe approximation algorithms for the maximization problem. For consistency,
we follow the convention in [5, 7] that a ρ-approximation algorithm for a maximization
problem is defined as ρ · w(C) ≥ OPT for ρ > 1, where w(C) and OPT are the values of
approximation and optimal solutions respectively.

4.1 2-Approximation algorithm
We first give a simple 2-approximation algorithm for our maximization problem. For a
maximization problem instance H(D, R, E), we use Γ to denote a current partial solution,
which consists of a set of matches represented by the hyperedges in E(H). Let P (Γ) =

⋃
e∈Γ Je

(called covered passengers). Initially, Γ = ∅. In each iteration, we add a match with the most
number of uncovered passengers to Γ, that is, select an edge e = (i, Je) such that |Je \ P (Γ)|
is maximum, and then add e to Γ. Remove Ee = ∪j∈A(e)Ej from E(H) (Ej is defined in
Section 3). Repeat until P (Γ) = R or |Γ| = |D|. The pseudo code of ImpGreedy is shown
in Algorithm 3. In the ImpGreedy algorithm, when an edge e is added to Γ, Ee is removed
from E(H), so Property 3 holds for Γ.

▶ Property 3. For every i ∈ D, at most one edge e from Ei can be selected in any solution.

Algorithm 3 ImpGreedy Algorithm.

input : The hypergraph H(D, R, E) for problem instance (N, A, T )
output : A solution Γ to (N, A, T ) with 2-approximation ratio

1 Γ = ∅; P (Γ) = ∅;
2 while (P (Γ) ̸= R and |V (Γ)| < |D|) do
3 compute e = argmaxe∈E(H)|Je \ P (Γ)|, Γ = Γ ∪ {e}, and remove Ee from E(H);
4 update P (Γ);
5 end

4.1.1 Analysis of ImpGreedy Algorithm
Let Γ = {x1, x2, . . . , xa} be a solution found by Algorithm 3, where xi is the ith edge
added to Γ. Throughout the analysis, we use OPT to denote an optimal solution, that is,
P (OPT ) ≥ P (Γ). Further, Γi =

⋃
1≤b≤i xb for 1 ≤ i ≤ a, Γ0 = ∅ and Γa = Γ. The driver

of match xi is denoted by d(xi). The main idea of our analysis is to add up the maximum
difference between the number of covered passengers by selecting xi in Γ and not selecting xi

in OPT . For each xi ∈ Γ, by Property 3, there is at most one y ∈ OPT with d(y) = d(xi).
We order OPT and introduce dummy edges to OPT such that d(yi) = d(xi) for 1 ≤ i ≤ a.
Formally, for 1 ≤ i ≤ a, define

OPT (i) = {y1, . . . , yi | 1 ≤ b ≤ i, d(yb) = d(xb) if yb ∈ OPT, otherwise yb a dummy edge}.
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A dummy edge yb ∈ OPT (i) is defined as d(yb) = d(xb) with Jyb
= ∅. The gap of an edge

xi ∈ Γ is defined as

gap(xi) = |Jyi | − |Jxi \ P (Γi−1)| + |J ′
xi

|,

where J ′
xi

= (Jxi
\P (Γi−1))∩P (OPT \Γ) is the maximum subset of passengers in Jxi

\P (Γi−1)
that are also covered in OPT \Γ. The intuition is that the sum of gap(xi) for all xi ∈ Γ states
the maximum possible number of passengers may not be covered by Γ. Let P (OPT (i)) =⋃

1≤b≤i Jyb
and P (OPT ′(i)) =

⋃
1≤b≤i J ′

xb
for any i ∈ [1, . . . , a]. Then the maximum gap

between Γ and OPT can be calculated as
∑

x∈Γa
gap(x) = |P (OPT (a))| + |P (OPT ′(a))| −

|P (Γa)|. First, we show that P (OPT ) = P (OPT (a)) ∪ P (OPT ′(a)).

▶ Proposition 4. Let Γ = {x1, . . . , xa}, P (OPT (a)) =
⋃

1≤i≤a Jyi
and P (OPT ′(a)) =⋃

1≤i≤a J ′
xi

. Then, P (OPT ) = P (OPT (a)) ∪ P (OPT ′(a)).

Proof. By definition, P (OPT ) = P (OPT (a)) ∪ P (OPT \ OPT (a)). For any z in OPT \
OPT (a), d(z) ̸= d(x) for every x ∈ Γ. If Jz \ P (Γ) ̸= ∅, then z would have been found
and added to Γ by Algorithm 3. Hence, Jz \ P (Γ) = ∅, implying Jz ⊆ P (OPT ′(a)) and
P (OPT \ OPT (a)) ⊆ P (OPT ′(a)). ◀

▶ Lemma 5. Let OPT be an optimal solution and Γ = {x1, x2, . . . , xa} be a solution found by
the algorithm. For any 1 ≤ i ≤ a,

∑
x∈Γi

gap(x) = |P (OPT (i))| − |P (Γi)| + |P (OPT ′(i))| ≤
|P (Γi)|.

Proof. Recall that OPT (i) = {y1, . . . , yi} as defined above. For yb ∈ OPT (i), 1 ≤ b ≤
i, d(yb) = d(xb). We prove the lemma by induction on i. Base case i = 1: |P (OPT (1))| −
|P (Γ1)| + |P (OPT ′(1))| ≤ |P (Γ1)|. By definition, gap(x1) = |Jy1 | − |Jx1 \ Γ0| + |J ′

x1
|. Since

x1 is selected by the algorithm, it must be that |Jx1 | ≥ |Ju| for all u ∈ V (G′), so |Jy1 | ≤ |Jx1 |.
Thus,

gap(x1) = |Jy1 | − |Jx1 \ Γ0| + |J ′
x1

|
≤ |J ′

x1
| ≤ |Jx1 |.

Assume the statement is true for i−1 ≥ 1, that is,
∑

x∈Γi−1
gap(x) ≤ |P (Γi−1)|, and we prove

for i ≤ a. By the induction hypothesis, both P (OPT (i−1)) and P (OPT ′(i−1)) are included
in the calculation of

∑
x∈Γi−1

gap(x). More precisely,
∑

x∈Γi−1
gap(x) = |P (OPT (i − 1))| −

|P (Γi−1)| + |P (OPT ′(i − 1))| ≤ |P (Γi−1)|. If |Jyi
| ≤ |Jxi

\ P (Γi−1)|, the lemma is true since
we can assume |J ′

xi
| ≤ |Jxi

|. Suppose |Jyi
| > |Jxi

\ P (Γi−1)|. Before xi is selected, the
algorithm must have considered yi and found that |Jxi

\ P (Γi−1)| ≥ |Jyi
\ P (Γi−1)|. Then,

|Jyi | > |Jxi \ P (Γi−1)| ≥ |Jyi \ P (Γi−1)|, implying Jyi ∩ P (Γi−1) ̸= ∅. We have

|Jxi
\ P (Γi−1)| + |Jyi

∩ P (Γi−1)| ≥ |Jyi
\ P (Γi−1)| + |Jyi

∩ P (Γi−1)| = |Jyi
|. (4)

Let J ′′
yi

⊆ (Jyi
∩P (Γi−1)) be the set of passengers covered by P (OPT (i−1))∪P (OPT ′(i−1)),

namely J ′′
yi

⊆ (P (OPT (i − 1)) ∪ P (OPT ′(i − 1))). Then by the induction hypothesis,∑
x∈Γi−1

gap(x) ≤ P (Γi−1) − |Jyi ∩ P (Γi−1)| + |J ′′
yi

|. (5)

Adding
∑

x∈Γi−1
gap(x) and gap(xi) together:

ISAAC 2021
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(
∑

x∈Γi−1

gap(x)) + (gap(xi))

= |P (OP T (i − 1))| − |P (Γi−1)| + |P (OP T ′(i − 1))| + |Jyi \ J ′′
yi

| − |Jxi \ P (Γi−1)| + |J ′
xi

|
≤ (|P (Γi−1)| − |Jyi ∩ P (Γi−1)| + |J ′′

yi
|) + |Jyi \ J ′′

yi
| − |Jxi \ P (Γi−1)| + |J ′

xi
| by (5)

= |P (Γi−1)| − |Jyi ∩ P (Γi−1)| + |Jyi | − |Jxi \ P (Γi−1)| + |J ′
xi

|
≤ |P (Γi−1)| − |Jyi ∩ P (Γi−1)| + |Jyi ∩ P (Γi−1)| + |J ′

xi
| by (4)

= |P (Γi−1)| + |J ′
xi

| ≤ |P (Γi−1)| + |Jxi \ P (Γi−1)| by defintion of J ′
xi

= P (Γi)

Therefore, by the property of induction, the lemma holds. ◀

▶ Theorem 6. Given the hypergraph instance H(D, R, E). Algorithm 3 computes a solution
Γ to H such that 2|P (Γ)| ≥ |P (OPT )|, where OPT is an optimal solution, with running
time O(|D| · |E|) and |E| ≤ |D| · (|R| + 1)K .

Proof. Let Γ = {x1, . . . , xa}, P (OPT (a)) =
⋃

1≤i≤a Jyi and P (OPT ′(a)) =
⋃

1≤i≤a J ′
xi

. By
Proposition 4, P (OPT ) = P (OPT (a)) ∪ P (OPT ′(a)), and by Lemma 5, |P (OPT (a))| +
|P (OPT ′(a))| − |P (Γa)| ≤ |P (Γa)|. We have

|P (OPT )| ≤ |P (OPT (a))| + |P (OPT ′(a))| ≤ 2|P (Γ)|.

In each iteration of the while-loop, it takes O(E) to find an edge x with maximum |Jx \P (Γ)|,
and there are at most |D| iterations. Hence, Algorithm 3 runs in O(|D| · |E|) time. ◀

4.2 Approximation algorithms for maximum weighted set packing
We briefly explain the algorithms for the maximum weighted set packing problem, which
solve our maximization problem. Given a universe U and a family S of subsets of U , a
packing is a subfamily C ⊆ S of sets such that all sets in C are pairwise disjoint. Every subset
S ∈ S has at most k elements and is given a real weight. The maximum weighted k-set
packing problem (MWSP) asks to find a packing C with the largest total weight. We can see
that the maximization problem on H(D, R, E) is a special case of the maximum weighted
k-set packing problem, where the trips of D ∪ R is the universe U and E(H) is the family
S of subsets, and every e ∈ E(H) represents at most k = K + 1 trips (K is the maximum
capacity of all vehicles). Hence, solving MWSP also solves our maximization problem. Hazan
et al. [15] showed that the k-set packing problem cannot be approximated to within O( k

lnk )
in general unless P = NP. Chandra and Halldórsson [7] presented a 2(k+1)

3 -approximation
and a 2(2k+1)

5 -approximation algorithms (refer to as BestImp and AnyImp respectively),
and Berman [5] presented a ( k+1

2 + ϵ)-approximation algorithm (refer to as SquareImp) for
the weighted k-set packing problem (here, k = K + 1), where the latter still has the best
approximation ratio. These three algorithms in [5, 7] (AnyImp, BestImp and SquareImp)
solve the weighted k-set packing problem by first transferring it into a weighted independent
set problem, which consists of a vertex weighted graph G(V, E) and asks to find a maximum
weighted independent set in G(V, E). These algorithms use a greedy algorithm (refer to as
Greedy) to find an initial independent set solution I and then use local searches to improve
the weight of the solution. Algorithm Greedy can be summarized as follows: Select a vertex
u ∈ V (G) with largest weight and add u to I. Eliminate u and all u’s neighbors from being
selected. Repeatedly select the largest weight vertex until all vertices are eliminated from G.
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To apply these algorithms to our maximization problem, we need to convert the bipartite
hypergraph H(D, R, E) to a weighted independent set instance G(V, E). The details of the
conversion can be found in [13], Section 4.3. Notice that Algorithm 3 is a simplified version
of algorithm Greedy, and Greedy is used to get an initial solution in algorithms AnyImp,
BestImp and SquareImp. From Theorem 6, we have Corollary 7.

▶ Corollary 7. Greedy, AnyImp, BestImp and SquareImp algorithms compute a solution to
H(D, R, E) with 2-approximation ratio.

Since Algorithm 3 finds a solution directly on H(D, R, E) without converting it to G(V, E)
and solving the independent set problem of G(V, E), it is more time and space efficient than
the algorithms for MWSP. In the rest of this paper, Algorithm 3 is referred to as ImpGreedy.

5 Numerical experiments

We create a simulation environment consists of a centralized system that integrates public
transit and ridesharing. We implement our proposed approximation algorithm (ImpGreedy)
and Greedy, AnyImp and BestImp algorithms for the k-set packing problem to evaluate
the benefits of having an integrated transportation system supporting public transit and
ridesharing. The exact algorithm, ILP (1)-(3), is not evaluated because it takes too long to
complete for the instances in our study. The results of SquareImp are not discussed because its
performance is same as AnyImp; this is due to the implementation of the search/enumeration
order of the vertices and edges in the independent set instance G(V, E) being fixed, and
each vertex in V (G) has integer weight. We use a simplified transit network of Chicago to
simulate the public transit and ridesharing.

5.1 Description and characteristics of datasets
We built a simplified transit network of Chicago to simulate practical scenarios of public
transit and ridesharing. The roadmap data of Chicago is retrieved from OpenStreetMap1.
We used the GraphHopper2 library to construct the logical graph data structure of the
roadmap. The Chicago city is divided into 77 officially community areas, each of which is
assigned an area code. We examined two different dataset in Chicago to reveal some basic
traffic pattern (the datasets are provided by the Chicago Data Portal (CDP) and Chicago
Transit Authority (CTA)3, maintained by the City of Chicago). The first dataset is bus
and rail ridership, which shows the monthly averages and monthly totals for all CTA bus
routes and train station entries. We denote this dataset as PTR, public transit ridership.
The PTR dataset contains data for the month June, 2019. The second dataset is rideshare
trips reported by Transportation Network Providers (sometimes called rideshare companies)
to the City of Chicago. We denote this dataset as TNP. The TNP dataset range is chosen
from June 3rd, 2019 to June 30th, 2019, total of 4 weeks of data. Table 1 and Table 2 show
some basic stats of both datasets.

We examined the 12 busiest bus routes based on the total ridership and selected 7 out of
the 12 routes as listed in Table 1 to build the transit network. We also selected all major
trains/metro lines within Chicago. Each record in the TNP dataset describes a passenger trip

1 Planet OSM. https://planet.osm.org
2 GraphHopper 1.0. https://www.graphhopper.com
3 CDP. https://data.cityofchicago.org. CTA. https://www.transitchicago.com
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Table 1 Basic stats of the PTR dataset.

Total Bus Ridership 20,300,416
Total Rail Ridership 19,282,992
12 busiest bus routes 3, 4, 8, 9, 22, 49, 53,

66, 77, 79, 82, 151
The busiest bus routes
selected

4, 9, 49, 53, 77, 79,
82

Table 2 Basic stats of the TNP dataset.

# of original records 8,820,037
# of records considered 7,427,716
# of shared trips 1,015,329
# of non-shared trips 6,412,387
The most visited com-
munity areas selected

1, 4, 5, 7, 22, 23,
25, 32, 41, 64, 76

served by a driver who provides the rideshare service; a trip record consists of the pick-up and
drop-off time and the pick-up and drop-off community area of the trip, and exact locations
are provided sometimes. We selected 11 of the 20 most visited areas as listed in Table 2
(area 32 is Chicago downtown, areas 64 and 76 are airports) to build the transit network
for our simulation. From the selected bus routes, trains and community areas, we create a
simplified public transit network connecting the selected areas, depicted in Figure 2. More
details on selecting areas and the public transit network are included in [13] (Section 5.1).

Figure 2 Simplified public transit network of Chicago with 13 urban communities and 3 designated
locations. Figure on the right has the Chicago city map overlay for scale.

The travel time between two locations uses the fastest/shortest route computed by
GraphHopper, based on personal cars. The shortest paths are computed in real-time,
unlike many previous simulations where the shortest paths are precomputed and stored. As
stated in Section 3, waiting time and service time are considered in a simplified model; we
multiply a small constant ϵ > 1 to the fastest route to mimic waiting time and service time.

5.2 Generating instances
In our simulation, we partition each day from 6:00 to 23:59 into 72 time intervals (each has
15 minutes), and we only focus on weekdays. To see ridesharing traffic pattern, we calculated
the average number of served trips per hour for each day of the week using the TNP dataset.
The dashed (orange) line and solid (blue) line of the plot in Figure (3a) represent shared
trips and non-shared trips respectively. A set of trips are called shared trips if this set of trips
are matched for the same vehicle consecutively such that their trips may potentially overlap
(one or more passengers are in the same vehicle). For all other trips, we call them non-shared
trips. The number of trips generated for each interval is plotted in Figure (3b), which is a
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(a) Average numbers of shared and non-shared trips in TNP
dataset.

(b) Total number of driver and rider
trips generated for each time interval.

Figure 3 Plots for the number of trips for every hour from data and generated.

scaled down and smoothed version of the TNP dataset for weekdays. The ratio between
the number of drivers and riders generated is roughly 1:3 (1 driver and 3 riders) for each
interval. Such a ratio is chosen because it should reflect the system’s potential as capacity of
3 is common for most vehicles. For each time interval, we first generate a set R of riders and
then a set D of drivers. We do not generate a trip where its origin and destination are close.

The main idea of generating rider trips is described as follows. Each day is divided into 6
different consecutive time periods (each consists of multiple time intervals): morning rush,
morning normal, noon, afternoon normal, afternoon rush, and evening time periods. Each
time period determines the probability and distribution of origins and destinations. Based
on the PTR dataset and Rail Capacity Study [8], many riders are going into downtown in
the morning and leaving downtown in the afternoon. To generate a rider trip j during a time
period, we first select a pick-up area and a drop-off area randomly following the probability
distribution for the time period (e.g., downtown is selected with higher probability as drop-off
area for the morning rush period). The origin oj and destination dj are random points
within the pick-up and drop-off areas respectively. The above is repeated until at riders are
generated, where at + at/3 (riders + drivers) is the total number of trips for time interval
t shown in Figure (3b). The probability distribution for each time period and detailed
description of generating rider trips can be found in Section 5.2 of [13].

The main idea of generating driver trips is described as follows. We examined the TNP
dataset to create a grid heatmap (Figure 8 in [13]) for traffic for each hour. Each cell (c, r)
in the heatmap represents the the average number of trips per hour originated from area c

to destination area r in the transit network (Figure 2). Let d(c, r, h) be the value at the cell
(c, r) for origin c, destination r and hour h in the heatmap. Let P (c, h) =

∑
r d(c, r, h) be

the sum of the values of the whole column c for hour h. Given a time interval t in hour h, let
ct be the number of generated riders with origin in area c; and for each area c, we generate
ct/3 drivers such that each driver i has origin oi = c and destination di = r with probability
d(c, r, h)/P (c, h). The probability of selecting an airport as destination is fixed at 5%.

After the origin and destination of a rider/driver trip have been determined, we decide
other parameters of the trip (e.g., the vehicle capacity of a driver i is at most 6). Details of
these parameters are specified in Section 5.2 of [13].

When the number of trips increases, the running time for Algorithm 2 and the time needed
to construct the k-set packing instance also increase. In a practical setup, we may restrict
the number of feasible matches a driver can have. Each match produced by Algorithm 1 is
called a base match. To make the simulation feasible, we heuristically limit the numbers of
base matches for each driver and each rider and the number of total feasible matches for each
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driver. We use (x%, y, z), called reduction configuration (Config for short), to denote that for
each driver i, the number of base matches of i is reduced to x percentage and at most y total
feasible matches are computed for i; and for each rider j, at most z base matches containing
j are used. Details of the reduction procedure can be found in the end of Section 5.2 of [13].

5.3 Computational results
We use the same transit network and same set of generated trip data for all algorithms.
All experiments were implemented in Java and conducted on Intel Core i7-2600 processor
with 1333 MHz of 8 GB RAM available to JVM. Since the optimization goal is to assign
feasible acceptable routes to as many riders as possible, the performance measure is focused
on the number of riders served by ridesharing routes, followed by the total time saved for the
riders as a whole. The base case instance uses the parameter setting described in Section 5.2
and Config (30%, 600, 20). The experiment results are shown in Table 3. The results of

Table 3 Base case solution comparison between the approximation algorithms.

ImpGreedy Greedy AnyImp BestImp
Total number of riders served 27413 27413 28248 28258
Avg number of riders served per interval 380.736 380.736 392.333 392.472
Total time saved of all riders (minute) 354568.2 354568.2 365860.6 365945.8
Avg time saved of riders per interval (minute) 4924.56 4924.56 5,081.40 5082.58
Total number of riders and public transit duration 45314 and 1383743.97 minutes

ImpGreedy and Greedy are aligned since they are essentially the same algorithm – 60.5%
of total passengers are assigned ridesharing routes and 25.6% of total time are saved. The
results of AnyImp and BestImp are similar because of the density of the graph G(V, E). For
AnyImp and BestImp, roughly 62.4% of total passengers are assigned ridesharing routes
and 26.4% of total time are saved. On average, passengers are able to reduce their travel
duration from 30.5 minutes to 22.5 minutes by using public transit plus ridesharing. The
results of these four algorithms are not too far apart. However, it takes too long for AnyImp
and BestImp to run to completion. A 10-second limit is set for both algorithms in each
iteration for finding an independent set improvement. With this time limit, AnyImp and
BestImp run to completion within 15 minutes for almost all intervals. We also recorded the
mean occupancy rate of drivers. The mean occupancy rate is calculated as, in each interval,
the number of passengers served divided by the number of drivers who serve them. The
results are depicted in Figure 9 in [13], which show that mean occupancy rate of a personal
vehicle is 2.9–3 (including the driver) on average. Further discussions can be found in [13]
(Section 5.3).

Another major component of the experiment is to measure the computational time of the
algorithms, which is highly affected by the base match reduction configurations. By reducing
more matches, we are able to improve the running time of AnyImp and BestImp significantly,
but sacrifice performance slightly. We tested 12 different Configs:

Small1 (20%,300,10), Small2 (20%,600,10), Small3 (20%,300,20), Small4-10 (20%,600,20), Medium1
(30%,300,10), Medium2 (30%,600,10), Medium3 (30%,300,20), Medium4-10 (30%,600,20), Large1
(40%,300,10), Large2 (40%,600,10), Large3-10 (40%,300,20), and Large4-10 (40%,600,20).

Configs with label “-10” have a 10-second limit to find an independent set improvement,
and all other Configs have 20-second limit. Notice that all 12 Configs have the same sets
of driver/rider trips and base match sets but generate different feasible match sets. The
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Figure 4 Average performance of peak and off-peak hours for different configurations.

performance and running time results of all 12 Configs are depicted in Figures 4 and 5
respectively. The results are divided into peak and off-peak hours for each Config (averaging
all intervals of peak hours and off-peak hours). The running time of ImpGreedy and Greedy
are within seconds for all Configs for each interval. On the other hand, it may not be practical
to use AnyImp and BestImp for peak hours since they require around 15 minutes for most
Configs. Since AnyImp and BestImp provide better performance than ImpGreedy/Greedy
when each Config is compared side-by-side, one can use ImpGreedy/Greedy for peak hours
and AnyImp/BestImp for off-peak hours so that it becomes practical. The increase in
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Figure 5 Average running time of peak and off-peak hours for different configurations.

performance from Small1 to Small3 is much larger than that from Small1 to Small2 (same
for Medium and Large), implying any parameter in a Config should not be too small.
The increase in performance from Large1 to Large4 is higher than that from Medium1 to
Medium4 (similarly for Small). Therefore, a balanced configuration is more important than
a configuration emphasizes only one or two parameters.

Because ImpGreedy does not create the independent set instance, it runs quicker than
Greedy. More importantly, ImpGreedy uses less memory space than Greedy does. We
tested ImpGreedy and Greedy with the following Configs: Huge1 (100%,600,10), Huge2
(100%,2500,20) and Huge3 (100%,10000,30) (these Configs have the same sets of driver/rider
trips and base match sets as those in the previous 12 Configs). The focus of these Configs
is to see if Greedy can handle large number of feasible matches. The results are shown in
Table 4. Greedy cannot run to completion for all Configs because in many intervals, the whole
graph G(V, E) of the independent set instance is too large to hold in memory. The average
number of edges for afternoon peak hours is 0.02, 0.38 and 5.47 billion for Huge1, Huge2 and
Huge3 respectively. Further, the time it takes to create G(V, E) excess practicality. Hence,
using Greedy (AnyImp/BestImp) for large instances may not be practical. In addition, the
performance of ImpGreedy with Huge3 is better than that of AnyImp/BestImp with Large4.
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Table 4 The results of ImpGreedy and Greedy using Unlimited reduction configurations.

ImpGreedy Huge1 Huge2 Huge3
Avg running time for peak/off-peak hours (sec) 0.08 / 0.03 0.43 / 0.12 1.2 / 0.29
Avg number of riders served for peak/off-peak hours 406.9 / 339.0 458.8 / 355.4 484.1 / 361.9
Avg time saved of riders per interval (sec) 284891.8 302774.1 310636.9
Greedy Huge1 Huge2 Huge3
Avg running time N/A N/A N/A
Avg instance size G(V, E) of afternoon peak (|E(G)|) 0.02 billion 0.38 billion 5.47 billion
Avg time creating G(V, E) of afternoon peak (sec) 14.6 320.9 3726.79

We also looked at the total running times of the approximation algorithms including the
time for computing feasible matches (Algorithms 1 and 2). The running time of Algorithm 1
solely depends on computing the shortest paths between the trips and stations. Table 5
shows that Algorithm 1 runs to completion within 500 seconds for each interval on average
for peak hours. As for Algorithm 2, when many trips’ origins/destinations are concentrated

Table 5 Average computational time (in seconds) of peak hours for all algorithms.

Alg1 Alg2 ImpGreedy Greedy AnyImp BestImp Total computational time
ImpGreedy Greedy AnyImp BestImp

Small3 485.2 26.8 0.021 2.0 840.5 876.4 512.1 514.1 1352.5 1388.5
Small4 485.2 28.2 0.029 3.6 599.1 629.9 513.4 517.0 1112.5 1143.3
Medium3 485.2 43.6 0.031 3.7 1312.1 1371.0 532.5 543.0 1840.9 1899.9
Medium4 485.2 50.1 0.048 7.7 971.5 990.0 535.3 543.0 1506.8 1525.3
Large4 485.2 72.0 0.076 12.2 1121.3 1167.2 557.3 569.5 1678.6 1724.4
Huge3 485.2 339.4 1.2 N/A N/A N/A 825.8 N/A N/A N/A

in one area, the running time increases significantly, especially for drivers with high capacity.
Combining the results of this and previous (Table 4) experiments, ImpGreedy is capable of
handling large instances while providing quality solution compared to other approximation
algorithms.

From the experiment results in Figures 4 and 5, it is beneficial to dynamically select
different algorithms and reduction configurations for each interval depending on the number
of trips. With large problem instances, previous approximation algorithms are not efficient
(time and memory consuming), so they require aggressive reduction to reduce the instance
size. On the other hand, ImpGreedy is much faster and capable of handling large instances.
The running time of ImpGreedy can also be an advantage to improve the quality of solutions.
For example, as shown in Figures 4 and 5, for the same set of drivers and riders, ImpGreedy
assigns more riders when taking Meduim/Medium4 as inputs than AnyImp/BestImp on
Small1/Small2, and uses less time than AnyImp/BestImp. When the size of an instance
is not small and a solution must be computed within some time-limit, ImpGreedy has a
distinct advantage over the previous approximation algorithms.

6 Conclusion

Based on real-world transit datasets in Chicago, our study has shown that integrating public
and private transportation can benefit the transit system as a whole, more than 60% of the
passenger are assigned ridesharing routes and able to save 25% of travel time. Majority of the
drivers are matched with at least one passenger, and vehicle occupancy rate has improved
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close to 3 (including the driver) on average. These results suggest that ridesharing can be a
complement to public transit. Our experiments show that the whole system is capable of
handling more than 1100 trip requests in real-time using ordinary computer hardware. The
performance results of ImpGreedy may be further improved by extending it with the local
search strategy. Perhaps the biggest challenge for scalability comes from computing the base
matches (Algorithm 1) since it has to compute many shortest paths; it may be worth to apply
heuristics to speed-up Algorithm 1. To better understand practicality, a more sophisticated
simulation incorporating traffic and transit schedule and demand may be needed.
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