
Augmenting Graphs to Minimize the Radius
Joachim Gudmundsson #

The University of Sydney, Australia

Yuan Sha #

The University of Sydney, Australia

Fan Yao
The University of Sydney, Australia

Abstract
We study the problem of augmenting a metric graph by adding k edges while minimizing the radius
of the augmented graph. We give a simple 3-approximation algorithm and show that there is no
polynomial-time (5/3 − ϵ)-approximation algorithm, for any ϵ > 0, unless P = NP .

We also give two exact algorithms for the special case when the input graph is a tree, one of
which is generalized to handle metric graphs with bounded treewidth.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases graph augmentation, radius, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.45

1 Introduction

We study the problem of minimizing the radius of a metric graph by inserting k new edges.
Let G = (V, E) be a non-negative weighted graph with n vertices, and V 2 be the set of all

possible edges on V . A non-edge of G, also referred to as shortcut, is an edge in Ē = V 2 \E.
The graph distance dG(u, v) between two vertices u, v ∈ V is the smallest weight of any path
in G joining u and v. The eccentricity of a vertex v ∈ V is the maximum graph distance
between v and any vertex in V . The radius of G is the minimum eccentricity of any vertex
in G and the center of G is a vertex with minimum eccentricity.

The radius of a graph is closely related to the diameter. The diameter of a graph is
the maximum graph distance between any pair of vertices. The problem of minimizing the
diameter of a graph by adding k new edges has been extensively studied [2, 6, 7, 8, 9, 14]
and has applications in areas such as communication networks, information networks, flight
scheduling and protein interaction.

In the general case each added edge may also have a cost, and the edge augmentation
problem for minimizing the radius or diameter can then be seen as a bicriteria optimization
problem. The two criteria are: (1) the total cost of the added edges, and (2) the radius
or diameter of the augmented graph. A bicriteria optimization problem is then either (1)
given a budget on the total cost of the added edges, minimize the radius or diameter, or (2)
given a target on the radius or diameter of the augmented graph, minimize the total cost of
the added edges. For radius, the first bicriteria optimization problem is formally defined as
follows.

PROBLEM: Bounded Cost Minimum Radius Edge Addition (bcmr)
INPUT: An undirected graph G = (V, E) with weight function ℓ : V 2 → R+ ∪ {0}, a cost
function ς : Ē → R+ ∪ {0} and a positive number B.
GOAL: Add a set F ⊆ Ē with

∑
e∈F ς(e) ⩽ B such that the radius of Ĝ = (V, E ∪ F) is

minimized.

© Joachim Gudmundsson, Yuan Sha, and Fan Yao;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 45; pp. 45:1–45:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joachim.gudmundsson@sydney.edu.au
mailto:ysha3185@uni.sydney.edu.au
https://doi.org/10.4230/LIPIcs.ISAAC.2021.45
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Augmenting Graphs to Minimize the Radius

In this paper we consider the bcmr problem restricted to the special case when the
costs are unit and the weights satisfy the triangle inequality. That is, given a metric graph
G = (V, E, ℓ), add k = ⌊B⌋ shortcuts to G to minimize the radius of the augmented graph.
We will refer to our restricted variant of the bcmr problem as the metric bcmr problem.

Related results

To the best of the authors’ knowledge there is only one paper on the bcmr problem. Johnson
and Wang [13] showed a linear-time algorithm for the special case when k = 1 and G is a
path embedded in a metric space. They considered the continuous version where the center
of the graph can be in the interior of an edge. However, the closely related problem of
minimizing the diameter of the augmented graph has a long and rich history.

The problem of minimizing the diameter of the augmented graph such that the total cost
of the shortcuts is within a budget (referred to as bcmd) and the problem of minimizing the
cost of added shortcuts such that the diameter of the augmented graph is within a given
value (referred to as bdmc) were shown to be NP-hard in [16] and W [2]-hard in [9, 11]. Li et
al. [14] gave a constant factor approximation algorithm for the bcmd problem restricted to
unit weights and unit costs. Later Bilò et al. [2] improved the analysis of Li et al.’s algorithm.
Bilò et al.’s analysis also implies that Li et al.’s algorithm gives a 4-approximation for bcmd
on metric graphs. Demaine and Zadimoghaddam [7] considered a variant of bcmd where
the costs are unit and all non-edges have length δ, where δ is a small constant compared
to the diameter of the graph. We will refer to this model as the DZ model. Demaine and
Zadimoghaddam gave a constant factor approximation algorithm for the bcmd problem in
the DZ model, which was later improved by Bilò et al. [2]. For the general bcmd problem
where the weights and costs are arbitrary integers, Frati et al. [9] gave a 4-approximate
Fixed-Parameter Tractable (FPT) algorithm (under the cost parameter). More restricted
variants of the bcmd problem have also been considered in the literature, where the input
graph is either a path or a tree and one shortcut is added. Section 1.1 in [13] gives a nice
overview of these results.

Compared to the bcmd problem, the bdmc problem is traditionally harder to approximate.
Dodis and Khanna [8] studied the bdmc problem in depth and gave extensive inapproximab-
ility results for different weight and cost functions. They also gave almost matching upper
bounds for these variants of the bdmc problem.

Our results

In this paper we study the metric bcmr problem. Our main results are:
1. A simple O(kn(m+n log n)) time 3-approximation algorithm and a (5/3−ϵ) approximation

hardness bound, even for metric bcmr on geometric graph1.
2. An exact O(n3 log n) time algorithm for metric bcmr when the input graph is a tree and

an exact O((k2b2 + kb32b) · n2b+2) time algorithm when the input graph has treewidth
b− 1.

Our second result shows that the metric bcmr problem on trees is in P , while whether
the bcmd problem on trees is in P is still an open problem, even for unit weights and unit
costs.

1 A geometric graph is a graph where all vertices are embedded in the Euclidean space.

J. Gudmundsson, Y. Sha, and F. Yao 45:3

Similar to Lemma 3 in [7], we can prove that any α-approximation for the bcmr problem
is a 2α-approximation for the corresponding bcmd problem. Thus our algorithm for bcmr
on metric graphs with bounded treewidth is a 2-approximation for bcmd on metric graphs
with bounded treewidth, which is slightly better than Li et al.’s 4-approximation (however,
their result holds for metric graphs).

Paper organization

The rest of the paper is organized as follows. The 3-approximation algorithm for the metric
bcmr problem is presented in Section 2 and the approximation hardness results are given in
Section 3. Section 4 describes our algorithms for the metric bcmr problem on trees. Finally,
we present an algorithm on graphs with bounded treewidth in Section 5.

2 3-approximation algorithm

Let G = (V, E, ℓ) and k be an instance of the metric bcmr problem. Let F ∗ be an optimal
solution for the instance, and let c∗ be a center of G∗ = (V, E ∪ F ∗, ℓ).

If the center c∗ is known, then the metric bcmr problem is just adding k shortcuts to
minimize the eccentricity of c∗. However, since c∗ is not known, we will just try every vertex
in V as a candidate. We define the Graph Augmentation Eccentricity Minimization problem,
gaem for short, as follows: given a metric graph G = (V, E, ℓ), an integer k and a vertex s in
V , add k shortcuts in Ē to G such that the eccentricity of s is minimized. Obviously solving
gaem for every vertex in V gives us an optimal solution to the metric bcmr problem. Thus
in the rest of this paper we will focus our attention on solving the gaem problem.

The following lemma gives an important property for the gaem problem, which we will
utilize throughout the paper. The proof can be found in Appendix A.

▶ Lemma 1. Given a metric graph G = (V, E, ℓ), an integer k and a vertex s in V for the
gaem problem, there is an optimal solution where every shortcut is incident to s.

Lemma 1 allows us to only consider solutions in which all the shortcuts are incident to s.
It also applies when we consider approximate solutions. Our 3-approximation algorithm uses
the well-known farthest-first traversal technique popularized by Gonzalez [12]. Next we state
the approximation algorithm.

Algorithm 1 FarthestAdditionGAEM(G, k, s).

Require: A metric graph G = (V, E, ℓ), an integer k and a vertex s in V .
Ensure: An approximate optimal solution for the gaem instance.

1: Ĝ ← G

2: for i← 1 to k do
3: find the vertex u farthest from s in Ĝ.
4: add (s, u) to Ĝ.
5: end for
6: return Ĝ

The approximation bound of Algorithm 1 is given in Lemma 2. The proof is found in
Appendix B.

▶ Lemma 2. Algorithm 1 is a 3-approximation algorithm for the gaem problem.

ISAAC 2021

45:4 Augmenting Graphs to Minimize the Radius

Algorithm 1 is very simple and can be implemented using standard graph algorithms.
Let n = |V | and m = |E|. In each iteration of the for loop, we use Dijkstra’s algorithm to
compute the single-source shortest paths from s to all other vertices in V . Using Fibonacci
heaps [10], Dijkstra’s algorithm runs in time O(m′ + n log n), where m′ < m + k. Without
loss of generality, we may assume that k ⩽ n − 1 ⩽ m. The total running time is thus
O(km + kn log n).

Running Algorithm 1 for n times gives our main result in this section.

▶ Theorem 3. There is an O(kn(m + n log n)) time, 3-approximation algorithm for the
metric bcmr problem.

When the input graph is unweighted or in the DZ model, arguments similar to the proof
of Lemma 2 give an approximation factor of 2. For unweighted graphs, the 3-approximation
algorithm runs in O(knm) time by using BFS instead of Dijkstra’s algorithm in Step 3 of
Algorithm 1. Note that for general metric graphs we cannot use BFS in Step 3.

3 Approximation hardness

We show the approximation hardness of the metric bcmr problem by showing the approxim-
ation hardness of the gaem problem. This follows from the fact that any polynomial time
α-approximation algorithm for gaem will trivially lead to a polynomial time α-approximation
algorithm for the metric bcmr problem. The hardness proof is done using a reduction from
the Dominating Set problem.

Given a graph G = (V, E) and an integer k, the Dominating Set decision problem asks
whether there is a subset S ⊂ V of size k such that every vertex not in S is adjacent to a
vertex in S. The gaem decision problem is: given a metric graph G = (V, E, ℓ), a vertex
s ∈ V , an integer k and a target value r, decide if there is a set F of k shortcuts such that
their addition to G reduces the eccentricity of s to at most r.

G G′ s

1 1

2 2

2
2

Figure 1 Reduction from the Dominating Set decision problem. Edges in E′ are colored blue
and have weight 2. All shortcuts are dashed and have weight 1.

▶ Theorem 4. For any ϵ > 0, finding a (5
3 − ϵ) approximate solution for the gaem problem

is NP-hard.

Proof. Let G = (V, E) be a graph. Let I = (G, k) be an instance of the Dominating Set
decision problem. We transform I into an instance I ′ = (G′, s, k, 3) of the gaem decision
problem by adding an extra vertex s, that is, G′ = (V ′ = V ∪ {s}, E′ = E, ℓ). We set the
weight function ℓ as: the weight of any shortcut in [V ′]2 \E′ is 1 and the weight of any edge
in E′ is 2. See Figure 1. Note that ℓ satisfies triangle inequality.

J. Gudmundsson, Y. Sha, and F. Yao 45:5

If there is a dominating set S ⊂ V of size k in G, we can choose the same k vertices in
G′ and add k shortcuts from s to every vertex in this subset. It follows that every vertex in
V is connected to s by 1 shortcut and at most 1 edge in E. The eccentricity of s is thus at
most 3.

If we can add k shortcuts to G′ such that the eccentricity of s in the resulting graph is at
most 3, we can add such k shortcuts which are all incident to s, by Lemma 1. For such k

shortcuts, all other vertices of the shortcuts except s form a subset S′ ⊂ V of size k. Since
the eccentricity of s is at most 3, every vertex in V \ S′ must be adjacent to a vertex in S′

by an edge in E. Thus S′ is dominating set of G.
Any vertex that is connected to s through 1 shortcut and 1 edge in E has distance 3 to s.

Any vertex that is connected to s through 1 shortcut and 2 edges in E has distance 5 to s.
If there is a (5

3 − ϵ) approximation algorithm for the gaem problem then we can use it to
solve I ′ and thus any dominating set instance. Thus finding a (5

3 − ϵ) approximate solution
for the gaem problem is NP-hard. ◀

The same construction can be used for the DZ model while only modifying the length
function. Assuming the length of all non-edges to be very small, we get:

▶ Lemma 5. For any ϵ > 0, finding a (2− ϵ) approximate solution for the gaem problem in
the DZ model is NP-hard.

Note that this is a tight lower bound since Algorithm 1 is a 2-approximation algorithm
for the gaem problem in the DZ model.

Somewhat surprising is that the gaem problem on geometric graphs (the weights are
Euclidean distances) is as hard to approximate as the gaem problem. This is stated in
Lemma 6 and the proof is found in Appendix C.

▶ Lemma 6. For any ϵ > 0, finding a (5
3 − ϵ) approximate solution for the gaem problem

on geometric graphs is NP-hard.

4 The GAEM problem on metric trees

In this section we consider the gaem problem on trees. We give two algorithms: (1) a near
quadratic-time algorithm, and (2) a slower algorithm with running time O(min{k2n3, n4}).
The first algorithm is more efficient and elegant, however, we are not able to generalize it
to graphs of bounded treewidth. Therefore we will describe the second algorithm below
(Section 4.1) while the description of the first algorithm can be found in Appendix D. We
state the result of the first algorithm here:

▶ Theorem 7. The gaem problem on trees can be solved in O(n2 log n) time.

Note that while Theorem 7 proves that the metric bcmr problem on trees can be solved
in polynomial time, the complexity status for the bcmd problem on trees remains open, even
for unit weights and unit costs.

Throughout this section we will assume that the input tree has degree at most 3. Otherwise,
we transform it into a tree of degree 3 by splitting vertices with degree greater than 3. When
a vertex of degree 3 is picked as the root, we split the vertex and get a binary tree. In the
following, we assume that the input is a binary tree rooted at s.

ISAAC 2021

45:6 Augmenting Graphs to Minimize the Radius

4.1 The second algorithm for trees

By Lemma 1 all the shortcuts we add are incident to s. For a binary tree T = (V, E, ℓ)
rooted at s, we aim to add k shortcuts all incident to s so that the eccentricity of s in the
augmented graph is minimized.

Our algorithm is a dynamic programming approach with three parameters. Before we
define the subproblems we need to define some notations.

For a vertex v in V , let lc(v) and rc(v) denote the left and right child of v, respectively.
Let Tv denote the subtree of T rooted at v. Let D↑(v) =

⋃
u∈T \Tv

{dT (v, u) + |us|} and
let D↓(v) =

⋃
u∈Tv
{dT (v, u) + |us|}. Each distance in D↑(v) is the weight of a tree path

from v to a vertex u in T \ Tv, plus the shortcut (u, s). The distances in D↓(v) are defined
in the same way but through a vertex u in Tv. This is illustrated in Fig. 2(a), where the
weight of the blue path is in D↑(v) and the weight of the red path is in D↓(v). Note that
the number of distances in D↓(v) is |Tv| and the number of distances in D↑(v) is |T \ Tv|.
In our recursion we will need the subset D↓(v, d) of D↓(v) containing all distances in D↓(v)
that are at least d.

For a subtree Tv and three parameters d↑, d↓ and k̄, the subproblem is to find a set of k̄

shortcuts from s to vertices in Tv so that the maximum distance from vertices in Tv to s is
minimized. The parameter d↑ is the (assumed) weight of the shortest path from v to s via
the parent of v (thus through a shortcut added to a vertex out of Tv), and the parameter d↓

is the (assumed) weight of the shortest path from v to s not going through the parent of v

(thus through one of the k̄ shortcuts). Note that d↑ is in D↑(v) and its path goes through
shortcut (v↑, s) for some vertex v↑ in T \ Tv. Also d↓ is in D↓(v) and its path goes through
shortcut (v↓, s) for some vertex v↓ in Tv.

For given d↑, d↓ and k̄, let Rv[d↑][d↓][k̄] denote the minimum maximum distance from a
vertex in Tv to s, when k̄ shortcuts are allowed to be added from s to vertices in Tv.

We have two base cases. If k̄ = 0 then, by definition, d↓ =∞ and

Rv[d↑][d↓][0] = d↑ + max
u∈Tv

{dT (u, v)},

and if v is a leaf and k̄ = 1 then

Rv[d↑][d↓][1] = |vs|.

Next we state the recursion. Depending on the location of v↓, we have three different
cases for k̄ > 0: (a) v↓ lies in Tlc(v), (b) v↓ lies in Trc(v), or (c) v = v↓ which implies that
there is a shortcut connecting s to v. In all three cases, the allowed k̄ shortcuts are split
between Tlc(v) and Trc(v).

Case (a): v↓ lies in Tlc(v).

Rv[d↑][d↓][k̄] = min
1⩽k′⩽k̂

{max{Rlc(v)[d↑ + |v, lc(v)|][d↓ − |v, lc(v)|][k′],

min
d∈D↓(rc(v),d↓−|v,rc(v)|)

{Rrc(v)[min{d↑, d↓} + |v, rc(v)|][d][k̄ − k′]}, min{d↑, d↓}}},

where k̂ = min{k̄, |Tlc(v)|}. Note that k′ shortcuts are added to vertices in Tlc(v) and k̄ − k′

shortcuts are added to vertices in Trc(v). Since v↓ lies in Tlc(v), the second parameter to
Rlc(v) equals d↓ − |v, lc(v)| and the second parameter to Rrc(v) is at least d↓ − |v, rc(v)|. See
Figure 2(b). Finally, min{d↑, d↓} is the distance from v to s.

J. Gudmundsson, Y. Sha, and F. Yao 45:7

v

s

lc(v)

v

rc(v)

d↑

k′ k̄ − k′

L↑

L↓

(a) (b) (c)

Rv

Wv

v↓

Figure 2 (a) Shortest paths from v to s. (b) v↓ lies in Tlc(v). (c) Illustrating the list structures
defined in Section 4.1.1.

Case (b): v↓ lies in Trc(v).

Rv[d↑][d↓][k̄] = min
1⩽k′⩽k̂

{max{Rrc(v)[d↑ + |v, rc(v)|][d↓ − |v, rc(v)|][k′],

min
d∈D↓(lc(v),d↓−|v,lc(v)|)

{Rlc(v)[min{d↑, d↓} + |v, lc(v)|][d][k̄ − k′]}, min{d↑, d↓}}},

where k̂ = min{k̄, |Trc(v)|}. The formula is symmetric to the formula for Case (a).

Case (c): v = v↓.

Rv[d↑][d↓][k̄] = min
0⩽k′⩽k̂

{max{ min
dl∈D↓(lc(v),|s,lc(v)|)

{Rlc(v)[|s, v|+ |v, lc(v)|][dl][k′]},

min
dr∈D↓(rc(v)),|s,rc(v)|)

{Rrc(v)[|s, v|+ |v, rc(v)|][dr][k̄ − k′ − 1]}, |vs|}}},

where k̂ = min{k̄ − 1, |Tlc(v)|}. The distance from v to s equals |vs|.

4.1.1 Data structures for DP
For efficient computation we define:

Wv[d↑][d↓][k̄] = min
d∈D↓(v,d↓)

{Rv[d↑][d][k̄]}.

Then the min
d∈D↓(...)

terms in the formulae of Rv in the last subsection are replaced by Wv

terms. By definition, Wv can be computed from Rv in an ordered manner.
For efficiency, we will use the following list structure for Rv and Wv in the dynamic

programming steps. The first level is a list, L↑, ordered on the values of d↑. Each node in L↑

contains a second level list, denoted L↓, ordered on the values of d↓. And each node in L↓

contains two arrays of size at most k, one for Rv and one for Wv. See Fig. 2(c).
The dynamic programming is done in a bottom-up manner. At a leaf node v, d↑ has

n − 1 values and dl
v has one value. We perform a tree traversal starting from v to get all

the values of d↑, and order these values in L↑. For each d↑ value, build an L↓ list containing
one node. At an internal node v, the values of its L↑ are obtained from the L↓ of its right
child and the L↑ of its left child. Its L↓ is formed by merging the L↓ lists of its left and right
child. The array elements of Rv are computed by using the formulae in the last subsection.
Array elements of Wv are computed accumulatively from the array elements of Rv.

ISAAC 2021

45:8 Augmenting Graphs to Minimize the Radius

To get the shortcuts of an optimal solution, we need to keep some additional information.
At a node v, the L↑ list also stores the vertex v↑ for each d↑ value. The L↓ list also stores
the v↓ for each d↓ value. At an internal node v, when we use the formulae of Rv to compute
an array element, we also keep track of the array elements of lc(v)’s structure and rc(v)’s
structure that together give the solution for the current array element of Rv. When using the
formula of Wv, we keep track of the array element of Rv that gives the value for the current
array element of Wv. We can then backtrack with the above information to get the shortcuts
of the optimal solution. The extra information we kept is constant per array element.

4.1.2 Running time
To analyze the running time, we first give two bounds. Their proofs are available in
Appendix E. T is a rooted binary tree with n vertices.

▶ Lemma 8.
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ n2.

▶ Corollary 9.
∑

v∈T

|Tv| ·min{|Tlc(v)|, |Trc(v)|} ⩽ 2n2 + n log n.

At a leaf node v, the tree traversal for computing values of d↑ takes O(n) time. Sorting
these values takes O(n log n) time. Plus computing Rv and Wv, we spend O(n log n) time in
total. At an internal node v, O(n) time is spent on obtaining the sorted d↑ values for L↑

and the sorted d↓ values for L↓. 0 ⩽ k′ ⩽ min{k̄, |Tvs|}, where |Tvs| = min{|Tlc(v)|, |Trc(v)|}.
k̄ ⩽ min{k, |Tv|}. Thus computing the array elements of Rv for given d↑ and d↓ takes
O(min{k2, |Tv| · |Tvs|}) time. Both d↑ and d↓ have at most n values. Using O(k2) as the
upper bound gives a total running time of O(k2n3). Using O(|Tv| · |Tvs|) as the upper bound
gives a total running time

∑
v∈T

n2 · |Tv| · |Tvs| = O(n4), by Corollary 9. So the total running

time is O(min{k2n3, n4}). To use less space, we can use depth first search. The space
requirement is thus O(k2n2), and we get:

▶ Theorem 10. When the input graph is a tree embedded in a metric space, gaem can be
solved in O(min{k2n3, n4}) time, using O(k2n2) storage.

5 Metric BCMR on graphs with bounded treewidth

Treewidth, introduced by Robertson and Seymour [15], measures how similar a graph is to
a tree. Many NP-hard graph problems can be solved efficiently when the input graph is
restricted to graphs with bounded treewidth [1, 3]. The notion of treewidth is based on the
notion of tree decomposition of a graph.

▶ Definition 11 ([15]). A tree decomposition of a graph G = (V, E), denoted by TD(G), is a
pair (X, T) in which T = (I, F) is a tree and X = {Xi|i ∈ I} is a family of subsets of V (G)
such that:
1.

⋃
i∈I Xi = V ;

2. for each edge e = {u, v} ∈ E there exists an i ∈ I such that both u and v belong to Xi;
and

3. for all v ∈ V , the set of nodes {i ∈ I|v ∈ Xi} forms a connected subtree of T .

Xi, a subset of V (G), is called the bag of node i. The maximum size of a bag in TD(G)
minus one is called the width of the tree decomposition. The treewidth of a graph, denoted
as tw(G), is the minimum width over all possible tree decompositions of the graph. The

J. Gudmundsson, Y. Sha, and F. Yao 45:9

problem of deciding whether the treewidth of a given graph is at most k is NP-complete.
However, there are efficient constructive algorithms when k is small (k ⩽ 4) or the input graph
is outerplanar. There are also FPT approximation algorithms that guarantee a constant
approximation factor [4].

A nice tree decomposition (X = {Xi|i ∈ I}, T = (I, F)) is a tree decomposition such that
|I| = O(tw(G) · |V |), T is a rooted binary tree with three types of internal nodes:
1. a join node that has two children lc(i), rc(i) , Xlc(i) = Xrc(i) = Xi.
2. a forget node that has one child lc(i), Xi ⊂ Xlc(i) and |Xi| = |Xlc(i)| − 1.
3. an introduce node that has one child lc(i), Xlc(i) ⊂ Xi and |Xlc(i)| = |Xi| − 1.
Note that a tree decomposition can be transformed into a nice tree decomposition in linear
time.

In this section, we assume that a nice tree decomposition (X, T) for G with width tw(G)
is given. We also assume that the bags of the root and the leaves are empty. Let Ti denote
the subtree of T rooted at node i. Let XTi

=
⋃

i∈Ti

Xi and b = tw(G) + 1.

We solve gaem for graphs with bounded treewidth by generalizing the dynamic program-
ming algorithm described in Section 4.1 for trees. Consider a tree T̂ = (V̂ , Ê). A node v̂ in
V̂ is the link point between the two subtrees T̂v̂ and T̂ \ (T̂v̂ \ {v̂}).

A tree decomposition defines a sequence of separators of the graph. The separator is
the link between the two separated parts of the graph. For any V ′ ⊆ V , let G(V ′) denote
the subgraph of the input graph G induced by vertices in V ′. For a node i of T in (X, T),
Xi is a separator between G(XTi

) and G(V \ (XTi
\ Xi)). Each vertex in Xi is a link

point. For each vertex vi,j in Xi, let D↑(vi,j) =
⋃

u∈V \(XTi
\Xi)(dG(vi,j , u) + |us|) and let

D↓(vi,j) =
⋃

u∈XTi
(dG(vi,j , u) + |us|). Each distance in D↑(vi,j) is the weight of a path from

vi,j to a vertex u in V \ (XTi \Xi), plus the shortcut (u, s). We say the distance is realized
by u. The distances in D↓(vi,j) are defined in the same way but through a vertex u in XTi

.
As in Section 4.1 we will need the subset D↓(vi,j , d) of D↓(vi,j), containing all distances in
D↓(vi,j) that are at least d.

At node i of (X, T), let t↑
i = (d↑

i,1, . . . , d↑
i,|Xi|) denote a tuple where d↑

i,j ∈ D↑(vi,j) is
the weight of the shortest path from vi,j to s going through a shortcut added to a vertex
in V \ (XTi

\ Xi), 1 ⩽ j ⩽ |Xi|. Similarly we can define t↓
i = (d↓

i,1, . . . , d↓
i,|Xi|). Let

v↑
i,j , 1 ⩽ j ⩽ |Xi| denote the vertex in V \ (XTi

\ Xi) that realizes d↑
i,j , and v↓

i,j denote
the vertex in XTi that realizes d↓

i,j . We say that d↑
i,j and d↓

i,j are components of t↑
i and t↓

i ,
respectively. For a given node i and three parameters t↑

i , t↓
i and k̄ the subproblem is to find

a set of k̄ shortcuts from s to vertices in XTi
so that the maximum distance from vertices in

XTi
to s is minimized, assuming the distance tuples t↑

i and t↓
i .

Before we define the recursive steps we will need a few more notations. Let Ri[t↑
i][t↓

i][k̄]
denote the minimum maximum distance from a vertex in XTi to s, where k̄ shortcuts are
allowed to be added between s and vertices in XTi

, assuming the distance tuples t↑
i and t↓

i .
In Section 4.1, we defined Wv̂ for a link point v̂ between T̂v̂ and T̂ \ (T̂v̂ \ {v̂}). For

graphs of bounded treewidth we have |Xi| link points at node i of (X, T). Assume i is a join
node with left child lc(i) and right child rc(i). A component d↓

i,j of t↓
i is realized by a vertex

v↓
i,j . If v↓

i,j is in the left subtree Tlc(i) of Ti then d↓
rc(i),j must be at least d↓

i,j . The reverse is
symmetrically true. So we let t↓

i = (t↓
i1; t↓

i2) = {d↓
i,1, . . . , d↓

i,|Xi|} be the t↓ parameter to a Wi.
If d↓

i,j ∈ t↓
i1 then the component equals d↓

i,j . If d↓
i,j ∈ t↓

i2 then the component is at least d↓
i,j .

ISAAC 2021

45:10 Augmenting Graphs to Minimize the Radius

Thus

Wi[t↑
i][t↓

i = (t↓
i1; t↓

i2)][k̄] = min{Ri[t↑
i][di,1, . . . , di,|Xi|][k̄]},

where di,j = d↓
i,j if d↓

i,j ∈ t↓
i1 and di,j ∈ D↓(vi,j , d↓

i,j) if d↓
i,j ∈ t↓

i2. There are 2|Xi|−1 nonempty
subset of Xi, so we need to define 2|Xi| − 1 Wis with different components in t↓

i1 and t↓
i2.

Additional complexity for graphs with bounded treewidth. The definitions and notations
above corresponds closely to similar concepts in Section 4.1. However, there are a couple of
complications that we have to take care of specifically for graphs with bounded treewidth.
Firstly, we have to handle the three types of nodes (join, introduce and forget nodes)
differently. This will be discussed in detail below. Secondly, two aspects of the computation
at a node of (X, T) become more complex.
1. Feasible values of t↑

i and t↓
i . Not every combination of the values of each d↑

i,j forms a
feasible value of t↑

i . We say a t↑
i is feasible only if it can be realized by some set of

shortcuts (The formal definition appears in Appendix F).
2. There are (2|Xi| − 1) Wis to be computed from Ri.
We discuss how to handle these two problems in Appendix F.

Next we explain the recursion steps at join, introduce and forget nodes.

Join nodes. A join node i has two children lc(i) and rc(i). We need to compute Ri from
Rlc(i), Wlc(i), Rrc(i) and Wrc(i). More specifically, we need to determine the tuples t↑

lc(i),
t↓
lc(i), t↑

rc(i) and t↓
rc(i) from t↑

i and t↓
i .

A partition of V for the separations between i and its children is shown in Figure 3(a).
We use three copies of Xi for ease of illustration. For a component d↓

i,j of t↓
i , v↓

i,j can be a
vertex in Xi, or in (XTlc(i) \Xi), or in (XTrc(i) \Xi). If v↓

i,j is in Xi, both d↓
lc(i),j and d↓

rc(i),j

equal d↓
i,j . Any path from vi,j to s that goes through a shortcut incident to a vertex in

XTrc(i) \Xi has weight at least d↓
lc(i),j so we can set d↑

lc(i),j = d↑
i,j , and similarly d↑

rc(i),j = d↑
i,j .

If v↓
i,j is in XTlc(i) \ Xi, then d↓

lc(i),j = d↓
i,j and d↓

rc(i),j is at least d↓
i,j . Any path from

vi,j to s that goes through a shortcut incident to a vertex in XTrc(i) \ Xi has length at
least d↓

lc(i),j so we can set d↑
lc(i),j = d↑

i,j . For rc(i), it is possible that d↓
i,j < d↑

i,j , so we set
d↑

rc(i),j = min{d↑
i,j , d↓

i,j}. The case when v↓
i,j is in XTrc(i) \Xi is handled symmetrically.

The recursive relation for Ri is then:

Ri[t↑
i][t↓

i][k̄] = min
k1,k2
{max{Wlc(i)[t↑

lc(i)][(t
↓
lc(i)1; t↓

lc(i)2)][k1],

Wrc(i)[t↑
rc(i)][(t

↓
rc(i)1; t↓

rc(i)2)][k2]}},

where k1 plus k2 equals k̄ plus the number of shortcuts added to vertices in Xi. The t↑ and
t↓ tuples for Wlc(i) and Wrc(i) are derived as discussed above. Note that when t↓

lc(i)2 = ∅,
Wlc(i) = Rlc(i).

Next we analyze the time spent at a join node. As shown in Appendix F, computing all
feasible values of t↑

i and t↓
i for Ri requires O(bnb) time. For a given t↑

i value, computing Ri

for all feasible values of t↓
i and k̄ takes O(k2b · |XTi

||Xi|) = O(k2bnb) time. As discussed in
Appendix F, computing all values for a Wi takes O(kb2n2b) time. Since there are (2b − 1)
different Wis the total time spent at a join node is O((k2b + kb22b) · n2b).

J. Gudmundsson, Y. Sha, and F. Yao 45:11

i

lc(i) rc(i)

XTlc(i)
\Xi XTrc(i)

\Xi

V \XTi

Xi

Xi

Xi

i

XTc(i)
\Xi

V \XTi

Xi

(a) (b)

c(i)

Figure 3 (a) Partition of V at a join node i for the separations between i and its children. (b)
Separation at an introduce node i, vi,|Xi| is colored blue.

Introduce node. Consider an introduce node i and let c(i) be its child. Without loss of
generality, let vi,|Xi| be the vertex introduced at i. From the property of a tree decomposition,
any path from vi,|Xi| to a vertex in {XTi \Xi} must go through a vertex in Xi \ {v|Xi|}, see
Fig. 3(b). We compute Ri from Rc(i) or Wc(i). For given t↑

i , t↓
i and k̄, we need to determine

the corresponding t↑
c(i) and t↓

c(i). We consider two cases, depending on whether vi,|Xi| is
incident to one of the k̄ shortcuts, or not.
1. d↓

i,|Xi| ̸= |s, vi,|Xi||, that is, vi,|Xi| is not incident to any of the k̄ shortcuts. For any
d↑

i,j , j ̸= |Xi|, the corresponding d↑
c(i),j is realized by the same vertex as d↑

i,j . Thus
d↑

c(i),j = d↑
i,j , where j ̸= |Xi|. Similarly, d↓

c(i),j = d↓
i,j , where j ̸= |Xi|. For given t↑

i ,
t↓
i and k̄ at introduce node i, the maximum distance from all vertices in XTc(i) to s is

Rc(i)[t↑
c(i)][t

↓
c(i)][k̄]. The distance from vi,|Xi| to s is the minimum of d↑

i,|Xi| and d↓
i,|Xi|.

As a result we have:

Ri[t↑
i][t↓

i][k̄] = max{Rc(i)[t↑
i \ d↑

i,|Xi|][t
↓
i \ d↓

i,|Xi|][k̄], min{d↑
i,|Xi|, d↓

i,|Xi|}}.

2. d↓
i,|Xi| = |s, vi,|Xi||, that is, vi,|Xi| is incident to one of the k̄ shortcuts. By definition,

d↑
c(i),j , j ̸= |Xi|, equals the minimum of d↑

i,j and dG(vi,j , vi,|Xi|) + |s, vi,|Xi||. For any such
d↓

i,j , j ̸= |Xi|, that v↓
i,j is not vi,|Xi|, the corresponding d↓

c(i),j equals d↓
i,j . For any such

d↓
i,j , j ̸= |Xi|, that v↓

i,j is vi,|Xi|, the corresponding d↓
c(i),j is greater than d↓

i,j . For given
t↑
i , t↓

i and k̄ at an introduce node i, the maximum distance from all vertices in XTc(i) to
s is Wc(i)[t↑

c(i)][t
↓
c(i)][k̄ − 1]. The distance from vi,|Xi| to s is |s, vi,|Xi||. Thus,

Ri[t↑
i][t↓

i][k̄] = max{Wc(i)[(d↑
c(i),1, . . . , d↑

c(i),|Xi|−1)][(t↓
c(i)1; t↓

c(i)2)][k̄ − 1], |s, vi,|Xi||},

where d↑
c(i),j = min{d↑

i,j , dG(vi,j , vi,|Xi|) + |s, vi,|Xi||}, for j < |Xi|. If d↓
i,j is not realized

by vi,|Xi|, for j < |Xi|, then d↓
c(i),j = d↓

i,j and is a component of t↓
c(i)1. Otherwise,

d↓
c(i),j > d↓

i,j and is a component of t↓
c(i)2.

The time required to compute the Ri values is O(kbn2b). The Wis are computed from Ri

in the same way as for a join node, hence, in totally O(kb22bn2b) time. As a result, the time
spent at an introduce node is O(kb22b · n2b).

ISAAC 2021

45:12 Augmenting Graphs to Minimize the Radius

Forget node. Assume i is a forget node and c(i) is its child. Without loss of generality,
assume vc(i),|Xc(i)| is the vertex forgotten at i. As usual, we compute Ri from values of Rlc(i)

or Wc(i). vi,j = vc(i),j , j < |Xc(i)|. By definition, d↑
c(i),j = d↑

i,j , for all j < |Xc(i)|. In the
input graph G, any path from vc(i),|Xc(i)| to a vertex in V \XTi

must go through a vertex
in Xi. Thus the corresponding d↑

c(i),|Xc(i)| equals min{d↑
i,j + dG(vi,j , vc(i),|Xc(i)|)|j < |Xc(i)|}.

By definition, d↓
c(i),j = d↓

i,j for all j < |Xc(i)|. However, d↓
c(i),|Xc(i)| can take a number of

different values. The only constraint is that it forms a feasible t↓
c(i) together with all other

d↓
c(i),j values, j < |Xc(i)|. Thus Ri is computed from Wc(i) where d↓

c(i),|Xc(i)| is the only
component in t↓

c(i)2 and takes the minimum value that forms a feasible t↓
c(i) with all other

d↓
c(i),j , j < |Xc(i)|.

Ri[t↑
i][t↓

i][k̄] = Wc(i)[t↑
c(i)][t

↓
c(i)1 = t↓

i ; t↓
c(i)2][k̄],

where d↓
c(i),|Xc(i)| ∈ t↓

c(i)2. The Wis are computed from Ri as before. The time spent at a
forget node is O(kb22b · n2b).

Since there are O(bn) nodes in a nice tree decomposition we conclude this section with
the following theorem.

▶ Theorem 12. When the input graph G is a metric graph with bounded treewidth, gaem
problem can be solved in O((k2b2 + kb32b) · n2b+1) time, where b = tw(G) + 1. The metric
bcmr problem on graphs with bounded treewidth can be solved in O((k2b2 + kb32b) · n2b+2)
time.

References
1 Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems

restricted to partial k-trees. Discret. Appl. Math., 23(1):11–24, 1989.
2 Davide Bilò, Luciano Gualà, and Guido Proietti. Improved approximability and non-

approximability results for graph diameter decreasing problems. Theor. Comput. Sci., 417:12–
22, 2012.

3 Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proceedings of the
22nd International Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 19–36, 1997.

4 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016.

5 Gerard J. Chang and George L. Nemhauser. The k-domination and k-stability problems for
sun-free chordal graphs. SIAM J. Algebraic Discrete Methods, 5(3):332–345, 1984.

6 Victor Chepoi and Yann Vaxès. Augmenting trees to meet biconnectivity and diameter
constraints. Algorithmica, 33(2):243–262, 2002.

7 Erik D. Demaine and Morteza Zadimoghaddam. Minimizing the diameter of a network
using shortcut edges. In Proceedings of the 12th Scandinavian Symposium and Workshops on
Algorithm Theory, pages 420–431, 2010.

8 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pages 750–759,
1999.

9 Fabrizio Frati, Serge Gaspers, Joachim Gudmundsson, and Luke Mathieson. Augmenting
graphs to minimize the diameter. Algorithmica, 72(4):995–1010, 2015.

J. Gudmundsson, Y. Sha, and F. Yao 45:13

10 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In Proceedings of the 25th Annual Symposium on Foundations
of Computer Science, pages 338–346. IEEE Computer Society, 1984.

11 Yong Gao, Donovan R. Hare, and James Nastos. The parametric complexity of graph diameter
augmentation. Discret. Appl. Math., 161(10-11):1626–1631, 2013.

12 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985.

13 C. Johnson and H. Wang. A linear-time algorithm for radius-optimally augmenting paths in a
metric space. In Proceedings of the 15th International Symposium on Algorithms and Data
Structures, pages 466–480, 2019.

14 Chung-Lun Li, S. Thomas McCormick, and David Simchi-Levi. On the minimum-cardinality-
bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems.
Oper. Res. Lett., 11(5):303–308, 1992.

15 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986.

16 Anneke A. Schoone, Hans L. Bodlaender, and Jan van Leeuwen. Diameter increase caused by
edge deletion. Journal of Graph Theory, 11(3):409–427, 1987.

A Proof of Lemma 1

▶ Lemma 1 Given a metric graph G = (V, E, ℓ), an integer k and a vertex s in V for the
gaem problem, there is an optimal solution where every shortcut is incident to s.

Proof. Let F ∗ be an optimal solution and G∗ = (V, E∪F ∗, ℓ). Let ecc∗(s) be the eccentricity
of s in G∗ and let T be the shortest path tree rooted at s. If every edge in F ∗ is incident to
s then the lemma immediately holds. Otherwise there exists at least one edge (p, q) in F ∗

that is not incident to s. We will show that (p, q) can be replaced by either (s, p) or (s, q)
such that the eccentricity of s in the resulting graph does not increase.

If (p, q) is an edge in T , then there is a subset U of V that go through (p, q) on their
shortest paths to s in T . Without loss of generality assume dT (p, s) < dT (q, s), as shown in
Fig. 4. The set U is the vertices in the subtree Tq of T rooted at q. By triangle inequality
|sq| ≤ dT (s, q). Replace (p, q) by (s, q) to get T ′. Then every vertex in T ′

q now has a path to
s no longer than its shortest path in T , and every vertex not in Tq can still use their shortest
path in T . Consequently, ecc(s) in T ′ is at most ecc∗(s).

If (p, q) is not an edge in T then replace (p, q) by either (s, p) or (s, q). Since every vertex
can still use its shortest path in T the eccentricity of s does not increase. ◀

(a) (b) s

p

q

s

T

Tq

Figure 4 (a) An example where all the edges of the graph have unit length. The two shortcuts
in red show an optimal solution for the gaem instance with k = 2. (b) Illustrating the proof for
Lemma 1.

ISAAC 2021

45:14 Augmenting Graphs to Minimize the Radius

B Proof of Lemma 2

▶ Lemma 2 Algorithm 1 is a 3-approximation algorithm for the gaem problem.

Proof. Let A = {q1, q2, . . . , qt} be the set of vertices that are adjacent to s in G. If Algorithm
1 adds less than k shortcuts, the augmentation is optimal. Otherwise, let U = {p1, p2, . . . , pk}
be the set of vertices such that (s, pi)(i = 1, . . . , k) is a shortcut added by Algorithm 1.
Remember from Lemma 1 there is always an optimal solution F ∗ where all the shortcuts are
incident to s. Assume B = {c1, c2, . . . , ck} is the set of vertices such that (s, ci) is a shortcut
in F ∗. Let ecc∗(s) denote the eccentricity of s in G∗ = (V, E ∪ F ∗, ℓ). A ∪ B is the set of
vertices that are adjacent to s in G∗. Any vertex w other than s must go through exactly one
vertex v in A∪B (may be itself) on its shortest path to s in G∗

s . Let S(v), v ∈ A∪B denote
the set of vertices that go through v on their shortest paths to s in G∗. {S(v) : v ∈ A ∪B}
forms a partition of all the vertices other than s. We need to prove that the graph distance
from w to s in Ĝ is at most 3ecc∗(s).

If v ∈ A, dG(w, s) ⩽ ecc∗(s) so the distance from w to s in Ĝ is at most ecc∗(s). If any
pi ∈ U is in a S(qj) where qj ∈ A, dG(pi, s) ⩽ ecc∗(s). At the time pi is picked by Algorithm
1, pi is the farthest vertex to s, so Algorithm 1 returns an optimal solution. What is left
is when v ∈ B and no pi ∈ U is in any S(qj) where qj ∈ A. Any pi must be in some S(cl)
where cl ∈ B.

If there is a pi ∈ U in S(v), as in Figure 5(a), there is a path from w to s in Ĝ that goes
through v and pi and has weight dG(w, v) + dG(v, pi) + |spi|. Both dG(w, v) and dG(v, ui)
are at most ecc∗(s). By the triangle inequality, |spi| ⩽ ecc∗(s). Thus the distance from w to
s in Ĝ is at most 3ecc∗(s).

Otherwise, there is no pi ∈ U in S(v). |U | = |B|. By the pigeonhole principle, there must
exist a vertex v′ ∈ B such that two vertices pl, pm ∈ U are in S(v′), as shown in Figure 5(b).
Without loss of generality, assume pl is picked before pm in Ĝ. When pm is about to be
added a shortcut, it is the farthest vertex to s. The distance from w to s in Ĝ is thus at
most dG(pm, v′) + dG(v′, pl) + |spl| ⩽ 3ecc∗(s), which is an upper bound of pm’s distance to
s before it is added a shortcut. ◀

v

pi

v

v′

pm

pl

(a) (b)S(v)

S(v′)

Figure 5 (a) There is a vertex pi ∈ U in S(v). (b) There is no vertex pi ∈ U in S(v).

J. Gudmundsson, Y. Sha, and F. Yao 45:15

C Proof of Lemma 6

▶ Lemma 6 For any ϵ > 0, finding a (5
3 − ϵ) approximate solution for the gaem problem on

geometric graphs is NP-hard.

Proof. In [5], Chang and Nemhauser proved that the Dominating Set decision problem for
bipartite graphs is NP-hard. We use a reduction from this problem to show the approximation
hardness of gaem on geometric graphs.

Let G = (V = V1∪V2, E) be a bipartite graph where V1 and V2 are disjoint and every edge
in E connects one vertex in V1 to one vertex in V2. Let I = (G, k), k < |V1∪V2|, be an instance
of the Dominating Set decision problem for bipartite graphs. Without loss of generality,
assume |V1| ⩾ |V2| and let m = |V1|. We can embed G in the plane. Place vertices in V1 at
positions (0, 0),(ϵ/2(m− 1), ϵ/2(m− 1)),. . .,(ϵ/2, ϵ/2) and place vertices in V2 at positions
(2, 0),(2− ϵ/2(m−1), 2− ϵ/2(m−1)),. . .,(2− ϵ(n−1)/2(m−1), 2− ϵ(n−1)/2(m−1)). Then
add vertex s at position (1, 0). See Figure 6. We have a graph G′ = (V ′ = V ∪{s}, E′ = E, ℓ)
where ℓ is the Euclidean distance function. I is transformed into an instance I ′ = (G′, s, k, 3)
of gaem on geometric graphs. For any point p in V1 and any point q in V2, we have
1− ϵ/2 ⩽ |sp| ⩽ 1 and 2− ϵ ⩽ |pq| ⩽ 2 . G has a dominating set of size k if and only if we
can add k shortcuts to G′ so that the eccentricity of s in the resulting graph is at most 3.
The shortest path from a vertex to s that goes through 1 shortcut and 2 edges in E has
length at least 5 − 5ϵ/2. Since 3 · (5

3 − ϵ) = 5 − 3ϵ < 5 − 5ϵ/2, a (5
3 − ϵ) approximation

algorithm for gaem on geometric graphs solves I ′ and thus any instance of the Dominating
Set decision problem. ◀

(2,0)(1,0)

y = x y = −x

(0,0)

Figure 6 A bipartite graph embedded in the plane.

D An O(n2 log n) time algorithm for GAEM on trees

We first devise an O(min{k2n, n2}) time algorithm that solves the decision problem of gaem
on trees. Then we search for an optimal solution by using the decision algorithm as a
subroutine.

D.1 The decision algorithm
Given a value D, the decision algorithm decides whether we can add k shortcuts all incident
to s to the inpdarkredut tree such that the eccentricity of s in the augmented graph is at
most D. We introduce some notations that will be used in the discussion.

Let dT (u, v) denote the distance between any two vertices u and v in T . Let ζ be a set
of k̄ (k̄ ⩽ k) shortcuts added to vertices in Tv, where Tv is the subtree of T rooted at v. If
from a vertex in Tv we can go along a path inside Tv and then through a shortcut in ζ to
reach s within distance D, we say this vertex is covered by ζ, for example the red vertex

ISAAC 2021

45:16 Augmenting Graphs to Minimize the Radius

in Figure 7(a); otherwise we say it is uncovered by ζ. Let Uv(ζ) denote the set of vertices
uncovered by ζ in Tv. When Uv(ζ) is empty, we say Tv is covered by ζ; otherwise we say Tv

is uncovered by ζ. To reach s within D from an uncovered vertex in Uv(ζ), we have to go
along a path out of Tv and then through a shortcut2 added to a vertex in T \ Tv, if at all
possible. See the red vertex p in Figure 7(b) for an example. Let gv(ζ) = max

u∈Uv(ζ)
dT (u, v)

denote the maximum distance from a vertex in Uv(ζ) to v in T . Let dv(ζ) denote the length
of the shortest path from v to s that goes through a shortcut in ζ.

The decision algorithm is used to solve an optimization problem. The optimization
problem aims to find shortcuts that are optimal in incurring a “Yes” solution to the decision
problem. Generally, given any integer k̄ ⩽ k and any vertex v, the optimization problem is
to add k̄ shortcuts to vertices in Tv so that they are optimal in incurring a “Yes” solution
to the decision problem on T . Before we formally define the meaning of being optimal in
incurring a “Yes” solution, we first give a supporting lemma.

As discussed above, ζ is a set of k̄ shortcuts added to vertices in Tv.

T

v

s

lc(v)

v

rc(v)

s

p

x

o

(a) (b)

Figure 7 (a) k̄ shortcuts are added to Tv. (b) Some vertices in Tv are uncovered.

▶ Lemma 13. If Uv(ζ) is nonempty and ζ is part of a “Yes” solution to the decision problem
of gaem on T , then in the “Yes” solution
1) all vertices in Uv(ζ) go through the same shortcut added to a vertex in T \ Tv on their

shortest paths to s.
2) vertices in T \ Tv does not go through any shortcut in ζ on their shortest paths to s.

Proof. In the “Yes” solution, all vertices in Uv(ζ) must first go up to v, then follow the
v− s shortest path which cannot go through a shortcut in ζ. So property 1) is true. Uv(ζ) is
nonempty, thus

gv(ζ) + dv(ζ) > D. (1)

Let γ denote the shortcut that the shortest paths from vertices in Uv(ζ) to s go through. If
γ is incident to a vertex in Tv’s sibling Tw, for example the darkred vertex o in Figure 7(b),
we have

gv(ζ) + |uv|+ |uw|+ dw(ζ ′) ⩽ D, (2)

where ζ ′ is the set of shortcuts added to vertices in Tw. Equation 1 and 2 imply that
dv(ζ) > |uw|+ dw(ζ ′), which means for every vertex in T \ Tv, the shortest path through γ

to s is shorter than any shortest path through a shortcut in ζ. If γ is incident to a vertex in

2 For ease of discussion, we consider the edges that are incident to s in T as pre-added shortcuts.

J. Gudmundsson, Y. Sha, and F. Yao 45:17

T \Tv \Tw, like the blue vertex in Figure 7(b), we can similarly show that for every vertex in
T \ Tv, a shortest path through γ to s is shorter than any shortest path through a shortcut
in ζ. Property 2) is proved. ◀

We now discuss the meaning of a ζ being optimal in incurring a “Yes” solution to the
decision problem on T . Consider two sets ζ1 and ζ2:
1. if both Uv(ζ1) and Uv(ζ2) are nonempty. Without loss of generality, assume gv(ζ1) <

gv(ζ2). Assume ζ2 is part of a “Yes” solution to the decision problem. Replace ζ2 by ζ1.
Lemma 13 implies that the resulting solution is still a “Yes” solution. The reverse is not
true. ζ1 place lower requirement on shortcuts added to vertices outside Tv. Thus ζ1 is
better in making a “Yes” solution to the decision problem than ζ2.

2. one of Uv(ζ1) and Uv(ζ2) is empty while the other is nonempty. Without loss of generality,
assume Uv(ζ1) is empty. Assume ζ2 is part of a “Yes” solution to the decision problem.
Replace ζ2 by ζ1. From Lemma 13(b), the resulting solution is still a “Yes” solution. ζ1
places no requirement on the shortcuts added to vertices in T \ Tv but ζ2 does. Thus ζ1
is better in making a “Yes” solution to the decision problem than ζ2 .

3. both Uv(ζ1) and Uv(ζ2) are empty. Assume dv(ζ1) < dv(ζ2). If ζ2 is part of a “Yes”
solution to the decision problem, replacing ζ2 by ζ1 will still give a “Yes” solution. But
for vertices in T \ Tv, ζ1 provides better shortcut than ζ2. Thus ζ1 is better in making a
“Yes” solution to the decision problem.

We can formally define the above better in making a ’Yes’ solution relation on ζs. Use ≺ to
denote this relation. Then

Uv empty, smaller dv ≺ Uv empty, greater dv

≺ Uv nonempty, smaller gv ≺ Uv nonempty, greater gv.

A ζ that has no other ζs preceding it in the ≺ relation is an optimal ζ.
The optimization problem is well-defined. By the optimal substructure of the optimization

problem, we can use dynamic programming to solve the problem. Let opt(v, k̄) denote an
optimal solution of the problem on Tv with k̄. When a solution uncovers Tv, we keep track
of gv. When a solution covers Tv, we keep track of dv. The recursive formula of opt(v, k̄) is:

opt(v, k̄) = min
≺

{combine(f, opt(lc(v), k′), opt(rc(v), k̄ − k′ − f))|0 ⩽ k′ ⩽ k̄ − f, f = 0/1},

where min≺ is the “minimum” in relation “≺” and f flags whether a shortcut is added to v.
When combining the optimal sub-solutions of the left child lc(v) and the right child rc(v),

v

lc(v) rc(v)

s

v

lc(v) rc(v)

s

Figure 8 (a) (s, v) is not added as a shortcut. (b) (s, v) is added as a shortcut.

ISAAC 2021

45:18 Augmenting Graphs to Minimize the Radius

there are two cases: 1) v is not added a shortcut, 2) v is added a shortcut. For case 1), k′

shortcuts are added to vertices in Tlc(v) and k̄−k′ shortcuts are added to vertices in Trc(v). For
case 2), k′ shortcuts are added to vertices in Tlc(v) and k̄−1−k′ shortcuts are added to vertices
in Trc(v). See Figure 8 for an illustration. The combine procedures for case 1) and case 2)
are similar and we only discuss case 1) below. combine(0, opt(lc(v), k′), opt(rc(v), k̄ − k′))
works as follows:
Case 1: opt(lc(v), k′) covers Tlc(v) and opt(rc(v), k̄−k′) covers Trc(v).Check if min{|v, lc(v)|+

dlc(v), |v, rc(v)| + drc(v)} ⩽ D. If so, v and all other vertices in Tv are covered and
dv = min{|v, lc(v)|+ dlc(v), |v, rc(v)|+ drc(v)}; else Tv is uncovered and gv = 0.

Case 2: opt(lc(v), k′) covers Tlc(v) and opt(rc(v), k̄ − k′) uncovers Trc(v).We need to check
whether vertices in Trc(v) uncovered by opt(rc(v), k̄−k′) is covered by opt(lc(v), k′). Check
if grc(v) + |v, rc(v)|+ |v, lc(v)|+ dlc(v) ⩽ D. If so, Tv is covered and dv = |v, lc(v)|+ dlc(v);
else Tv is uncovered and gv = grc(v) + |v, rc(v)|.

Case 3: opt(lc(v), k′) uncovers Tlc(v) and opt(rc(v), k̄−k′) covers Trc(v).Symmetric to case 2.
Case 4: opt(lc(v), k′) uncovers Tlc(v) and opt(rc(v), k̄ − k′) uncovers Trc(v).Tv is uncovered

and dv = max{glc(v) + |v, lc(v)|, grc(v) + |v, rc(v)|}.
It is not hard to verify the correctness of the procedure. combine(1, opt(lc(v), k′),
opt(rc(v), k̄ − f − k′)) works similarly and is left to the interested reader. The combin-
ing procedure at the root is slightly different at the root, we omit the details here.

All that is left is analyzing the running time of the dynamic programming. Once
opt(lc(v), k′) and opt(rc(v), k̄ − f − k′) are known, the combine procedure takes constant
time. Thus we only need to count the number of times combine(0, . . .) and combine(1, . . .)
are called for computing every opt(v, k̄). k̄ ⩽ min{k, |Tv|} and k′ ⩽ min{k̄, |Tlc(v)}. Using

k̄ ⩽ k and k′ ⩽ k̄ as upper bounds, at a vertex v, combine(0, . . .) is called O(
k∑̄

k=1
k̄) = O(k2)

times. Similarly, combine(0, . . .) is called O(k2) times. So we spend O(k2) time at a vertex
v. This gives a total running time of O(k2n). We also use k̄ ⩽ |Tv| and k′ ⩽ |Tlc(v)| as upper
bounds. We assume that Tlc(v) = Tvs, otherwise we can just swap lc(v) and rc(v). Thus
for all vertices in T , combine(0, . . .) is called O(

∑
v∈T

|Tv| · |Tvs|) = O(n2) times, by Lemma 9.

Similarly, for all vertices, combine(1, . . .) is called O(n2) times. This gives a total running
time of O(n2). Thus the total running time is O(min{k2n, n2}).

▶ Theorem 14. The decision problem of gaem on trees can be solved in O(min{k2n, n2})
time.

D.2 The search algorithm
For any solution of k shortcuts all incident to s, there is a farthest vertex v to s in the
augmented graph. The shortest path from s to v goes from s to a vertex u (which may be v)
through a shortcut or an edge in T , then follows the shortest path from u to v in T . Both u

and v are vertices in T . So there are at most n2 possible values for the eccentricity of s in
any augmented graph.

▶ Lemma 15. There are at most n2 possible values for the eccentricity of s in any augmented
graph where all shortcuts are incident to s.

Since our input is a tree, we can compute all possible values in O(n2) time. Then we sort
the values and do a binary search over the sorted values, using the decision algorithm as a
subroutine. The minimum value for which the decision algorithm returns a “Yes” solution is
the minimum eccentricity incurred by an optimal solution. We can find an optimal solution
in O(min{k2n, n2} · log n + n2 log n) = O(n2 log n) time.

J. Gudmundsson, Y. Sha, and F. Yao 45:19

▶ Theorem 16. gaem on trees can be solved in O(n2 log n) time.

E Proofs of Lemma 8 and Corollary 9

▶ Lemma 8
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ n2.

Proof. We use induction on the number of tree nodes to prove the bound. When n = 1, the
tree contains only one node and the bound holds trivially.

Assume
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ n2 holds for all n < k. Then for trees of size n = k,∑
v∈T

|Tlc(v)| · |Trc(v)| =
∑

v∈Tlc(s)

|Tlc(v)| · |Trc(v)| +
∑

v∈Trc(s)

|Tlc(v)| · |Trc(v)| + |Tlc(s)| · |Trc(s)|,

where s is the root of T . By the induction hypothesis,
∑

v∈Tlc(s)

|Tlc(v)| · |Trc(v)| ⩽ |Tlc(s)|2,∑
v∈Trc(s)

|Tlc(v)| · |Trc(v)| ⩽ |Trc(s)|2. Thus
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ |Tlc(s)|2 + |Trc(s)|2 + |Tlc(s)| ·

|Trc(s)| ⩽ (|Tlc(s)|+ |Trc(s)|)2 < n2. ◀

▶ Corollary 9
∑

v∈T

|Tv| ·min{|Tlc(v)|, |Trc(v)|} ⩽ 2n2 + n log n.

Proof. Let Tvs be the subtree rooted at a child of v such that |Tvs| = min{|Tlc(v)|, |Trc(v)|}.
We know that

∑
v∈T

|Tv| · |Tvs| =
∑

v∈T

(|Tlc(v)|+ |Trc(v)|+1) · |Tvs|, and by Lemma 8,
∑

v∈T

(|Tlc(v)|+

|Trc(v)|) · |Tvs| ⩽ 2n2. For
∑

v∈T

|Tvs|, we can see that a node in T is counted at most log n

times since for any Tv, only nodes in the subtree rooted at a child of v with fewer nodes are
counted. Thus

∑
v∈T

|Tvs| ⩽ n log n and the corollary follows. ◀

F How to compute feasible values and Wis

We first formally define what is a feasible t↑
i value. The definition of a feasible t↓

i value
is similar. Let t↑

i = (d↑
i,1, . . . , d↑

i,|Xi|). For any two components d↑
i,k and d↑

i,l, the length of
the shortest path from vi,k to s that goes through shortcut (v↑

i,l, s) has to be at least d↑
i,k,

otherwise d↑
i,k would have a smaller value. Conversely, the length of the shortest path from

vi,l to s that goes through shortcut (v↑
i,k, s) has to be at least d↑

i,l. The definition follows.

▶ Definition 17. Let t↑
i = (d↑

i,1, . . . , d↑
i,|Xi|). t↑

i is feasible if and only if for any 1 ⩽ k < l ⩽

|Xi|, dG(vi,k, v↑
i,l) + |v↑

i,l, s| ⩾ d↑
i,k and dG(vi,l, v↑

i,k) + |v↑
i,k, s| ⩾ d↑

i,l.

To save space, we store feasible values of t↑
i (and t↓

i) in a multilist. As a preprocessing step,
we compute distances between any pair of vertices in G by using an all-pairs shortest paths
algorithm. The distance between any pair of vertices in G can then be obtained in constant
time. Let L↑

i denote the multilevel list for t↑
i . Levels of L↑

i are contain ordered values of
d↑

i,1, . . . , d↑
i,|Xi|, respectively. We store the sorted values of {dG(vi,j , u)+|us||u ∈ V \(XTi

\Xi)}
for each vi,j ∈ Xi in a list l↑

j , separately. We build L↑
i from {l↑

j}.
Besides d↑

i,j value, each node of the first level of L↑
i stores a (|Xi| − 1)-level list. Each

node of a second level of L↑
i stores a (|Xi| − 2)-level list, and so on. Generally, a node in a

kth (1 ⩽ k ⩽ |Xi|) level list stores a (|Xi| − k)-level list. A kth level list is built recursively
as follows. Assume d↑

i,1, . . . , d↑
i,k−1 are the distance values contained in nodes of previous

levels. We build this kth level list by l↑
k, . . . , l↑

|Xi|. For each d↑
i,k value in l↑

k, we check whether

ISAAC 2021

45:20 Augmenting Graphs to Minimize the Radius

the condition in Definition 17 is satisfied between d↑
i,k and each of d↑

i,1, . . . , d↑
i,k−1. If so, we

create a node with the current d↑
i,k value, and build its (|Xi| − k)-level list recursively by

l↑
k+1, . . . , l↑

|Xi|. In this way, we can build L↑
i in O(bnb) time. An example L↑

i is shown in
Figure 9(a). The d↑

i,2 value stored at a red node in a vertical (second level) list is realized by
the same vertex as the d↑

i,1 value stored at its first level list node. Feasible values of t↓
i are

constructed in the same way. To access values of Ri fast, we can encode feasible t↑
i and t↓

i

values as indices into a multidimensional array. We can then access Ri values in O(b) time.

▶ Lemma 18. For any node i of (X, T), the feasible values of t↑
i (t↓

i) can be computed in
O(bnb) time. Ri values can be accessed in O(b) time.

We now discuss how to compute a Wi. The feasible t↓
i values for a Wi are just the feasible

t↓
i values for Ri. However, to deal with the components in t↓

i2, we build the multilist for
t↓
i by using components in t↓

i1 for the first |t↓
i1| levels and using components in t↓

i2 for the
remaining |t↓

i2| levels. After building the multilist for t↓
i in this order, we computes values

of Wi in |t↓
i2| rounds. Assume t↓

i2 = (d↓
i,j1

, . . . , d↓
i,js

). The first round computes values such
that d↓

i,j1
, . . . , d↓

i,js−1
are fixed while d↓

i,js
is greater than or equal to the specified value. The

second round computes values such that d↓
i,j1

, . . . , d↓
i,js−2

are fixed while d↓
i,js−1

, d↓
i,js

are
greater than or equal to the specified values. And so on. By adding links between nodes
in the multilist, each round build its result on the previous round. An example is shown in
Figure 9(b). In the example, t↓

i2 = t↓
i and |Xi| = 2. The links added for the 2nd round are

drawn in blue.

▶ Lemma 19. For a given t↑
i , Wi values for all feasible t↓

i and k̄ can be computed in O(kb2nb)
time. All values of a Wi can be computed in O(kb2n2b) time.

Figure 9 (a) L↓
i where |Xi| = 2. (b) Blue links between nodes in L↓

i . The value stored in the
pointed to node is greater than or equal to the value stored in the pointed from node.

	1 Introduction
	2 3-approximation algorithm
	3 Approximation hardness
	4 The GAEM problem on metric trees
	4.1 The second algorithm for trees
	4.1.1 Data structures for DP
	4.1.2 Running time

	5 Metric BCMR on graphs with bounded treewidth
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 6
	D An O(n^2log n) time algorithm for GAEM on trees
	D.1 The decision algorithm
	D.2 The search algorithm

	E Proofs of Lemma 8 and Corollary 9
	F How to compute feasible values and W_is

