
Streaming Algorithms for Graph k-Matching with
Optimal or Near-Optimal Update Time
Jianer Chen #

Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA

Qin Huang #

Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA

Iyad Kanj #

School of Computing, DePaul University, Chicago, IL, USA

Qian Li #

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Ge Xia #

Department of Computer Science, Lafayette College, Easton, PA, USA

Abstract
We present streaming algorithms for the graph k-matching problem in both the insert-only and
dynamic models. Our algorithms, while keeping the space complexity matching the best known
upper bound, have optimal or near-optimal update time, significantly improving on previous results.
More specifically, for the insert-only streaming model, we present a one-pass randomized algorithm
that runs in optimal O(k2) space and has optimal O(1) update time, and that, w.h.p. (with high
probability), computes a maximum weighted k-matching of a weighted graph. Previously, the best
upper bound on the update time was O(log k), which was achieved by a deterministic streaming
algorithm that however only works for unweighted graphs [16]. For the dynamic streaming model, we
present a one-pass randomized algorithm that, w.h.p., computes a maximum weighted k-matching of
a weighted graph in Õ(W k2) space1 and with Õ(1) update time, where W is the number of distinct
edge weights. Again the update time of our algorithm improves the previous best upper bound
Õ(k2) [7]. Moreover, we prove that in the dynamic streaming model, any randomized streaming
algorithm for the problem requires k2 · Ω(W (log W + 1)) bits of space. Hence, both the space
and update-time complexities achieved by our algorithm in the dynamic model are near-optimal.
A streaming approximation algorithm for k-matching is also presented, whose space complexity
matches the best known upper bound with a significantly improved update time.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases streaming algorithms, matching, parameterized algorithms, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.48

1 Introduction

Streaming algorithms for graph matching have been studied extensively, in which most of
the work has been focused on approximating a maximum matching. A graph stream S
for an underlying graph G is a sequence of edge operations. In the insert-only streaming
model, each operation is an edge-insertion, while in the dynamic streaming model each
operation is either an edge-insertion or an edge-deletion (with a specified weight if G is
weighted). The majority of the work on streaming algorithms for graph matching has been on
the (simpler) insert-only model. More recently, streaming algorithms for graph k-matching

1 The notation Õ() hides a poly-logarithmic factor in the input size.

© Jianer Chen, Qin Huang, Iyad Kanj, Qian Li, and Ge Xia;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 48; pp. 48:1–48:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chen@cse.tamu.edu
mailto:huangqin@tamu.edu
mailto:ikanj@cdm.depaul.edu
mailto:liqian@ict.ac.cn
mailto:xiag@lafayette.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2021.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


48:2 Near-Optimal Streaming Algorithms for Graph Matching

(i.e., constructing a matching of k edges in an unweighted graph or a maximum weighted
matching of k edges in a weighted graph), in both insert-only and dynamic models, have
drawn increasing interests [7, 8, 9, 16].

The performance of streaming algorithms is measured by the limited memory (space)
and the limited processing time per item (update time). For the space complexity, a lower
bound Ω(k2) has been known for the graph k-matching problem on unweighted graphs
for randomized streaming algorithms, even in the simpler insert-only model [7]. Nearly
space-optimal streaming algorithms for graph k-matching have been developed [7].

The current paper will be focused on the update time of streaming algorithms for
graph k-matching. While there has been much work on space complexity of streaming
algorithms for graph matching, much less is known regarding the update time complexity of
the problem. Note that the update time sometimes could be even more important than the
space complexity [25], since the data stream can come at a very high rate. If the update
processing does not catch the updating rate, the whole system may fail (see, e.g., [3, 34]).

We start with the insert-only model. We present a one-pass randomized streaming
algorithm that constructs a maximum weighted k-matching in a weighted graph. Our
algorithm runs in O(k2) space and has O(1) update time, both are optimal. Our techniques
rely on partitioning the graph (using hashing), and defining an auxiliary graph whose vertices
are the different parts of the partition. The auxiliary graph is updated during the stream.
By querying this auxiliary graph, the algorithm can compute a “compact” subgraph of size
O(k2) that, w.h.p., contains the edges of the desired k-matching. A maximum weighted
k-matching can then be extracted from this compact subgraph.

Previously, Fafianie and Kratsch [16] studied kernelization streaming algorithms in the
insert-only model. Their result implies a one-pass deterministic streaming algorithm for
k-matching on unweighted graphs that uses O(k2) space and O(log k) update time. In
comparison, our algorithm achieves the same space complexity but has optimal update time
O(1). While improving the update time from O(log k) on the deterministic algorithm to O(1)
on randomized algorithms for unweighted graphs may not look surprising, our streaming
algorithm with optimal space and update time for weighted graphs is a significant advance.

We then study steaming algorithms for graph k-matching in the dynamic model. We
give a one-pass randomized streaming algorithm that, for a weighted graph G containing
a k-matching, constructs a maximum weighted k-matching of G with probability at least
1 − 11

20k3 ln(2k) , and in case G does not contain a k-matching, reports correctly. The algorithm
runs in Õ(Wk2) space and has Õ(1) update time, where W is the number of distinct weights
in the graph. This result directly implies a one-pass randomized streaming algorithm for
unweighted k-matching running in Õ(k2) space with Õ(1) update time.

In order to achieve the faster update time, we prove a structural result that can be useful
in its own right for k-subset problems. Intuitively, the result states that, for any k-subset
S ⊆ U , w.h.p. we can compute k subsets T1, . . . , Tk of U that interact “nicely” with S. More
specifically, (1) the sets Ti, for i ∈ [k], are pairwise disjoint, (2) S is contained in their
union

⋃
i∈[k] Ti, and (3) each Ti contains exactly one element of S. We then apply the above

result to obtain the sets Ti of vertices that w.h.p. induce the edges of the desired k-matching.
Afterwards, we use ℓ0-sampling to select a smaller subset of edges induced by the vertices of
the Ti’s that w.h.p. contains the desired k-matching. From this smaller subset of edges, a
maximum weighted k-matching can be extracted.

Employing lower bounds for communication complexity protocols, we prove that, modulo
a poly-logarithmic function of the input size, the space complexity Õ(Wk2) achieved by our
algorithm is optimal with respect to both k and W . More specifically, neither the linear



J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:3

term W nor the quadratic function k2 in the space complexity of our algorithm for weighted
k-matching can be improved/reduced (by more than a poly-logarithmic function). Given
that our algorithms have Õ(1) update time, this implies that our algorithms are essentially
near-optimal in terms of both space and update time complexities.

Chitnis et al. [7] proposed a streaming algorithm on the dynamic model for maximum
matching. Under the promise that the cardinality of the maximum matching is not larger
than k during the entire graph stream, their algorithm runs in space Õ(k2) and has update
time Õ(1) for unweighted graphs. The assumption that the cardinality of the maximum
matching is at most k during the entire graph stream is essential for their techniques to work
since it is used to upper bound the number of vertices of degree larger than or equal to 10k by
O(k), and the number of edges whose both endpoints have degree bounded by 10k by O(k2).
They also developed a streaming algorithm that approximates the maximum matching for
unweighted graphs. These two algorithms can be combined to construct a k-matching with
update time Õ(k2) and space Õ(k2) for unweighted graphs. The algorithm for unweighted
graphs can be extended to construct a maximum weighted k-matching for weighted graphs,
which runs in space Õ(Wk2) with update time Õ(k2). In comparison, our algorithm keeps
the space complexity Õ(Wk2) while has significantly improved update time Õ(1).

A byproduct of our result is a one-pass streaming approximation algorithm that, for any
ϵ > 0, w.h.p. computes a k-matching that is within a factor of 1+ϵ from a maximum weighted
k-matching in G. The algorithm runs in Õ(k2ϵ−1 log W ′) space and has Õ(1) update time,
where W ′ is the ratio of the maximum edge-weight to the minimum edge-weight in G. This
result improves the update time complexity over the approximation result in [7], which has
the same space complexity but has update time Õ(k2).

We observe that most work on weighted graph streams, including our current paper,
assumes that the weight of an edge remains the same during the stream (see, e.g., [1, 2, 7,
20, 23]). To justify this assumption, we present an interesting lower bound result showing
that, if this assumption is lifted, then the space complexity of the k-matching problem is at
least linear in the size of the graph, and hence, can be much larger than the desirable space
complexity for streaming algorithms.

The paper is organized as follows. Section 2 provides necessary definitions and a brief
review on the related research. Improved streaming algorithms for graph k-matching in
insert-only model and in dynamic model are presented and discussed in sections 3-5. Some
lower bound results are give in section 6. Section 7 concludes with remarks.

2 Preliminaries

We refer to the following books for more detailed definitions [14, 15, 30]. We use “u.a.r.” as an
abbreviation for “uniformly at random”. For an integer i, let [i]− denote the set {0, 1, . . . , i−1},
[i] the set {1, . . . , i}, and ⌞i⌟ the binary representation of i.

Computational Model and Problem Definition. In a parameterized graph streaming
problem Q, we are given an instance of the form (S, k), where S is graph stream of some
underlying graph G and k ∈ N, and we are asked to compute a solution for (S, k) [9]. A
k-matching in a graph G is a matching of k edges in G. We study the following problems:

p-Matching: Given a graph stream S of an unweighted graph G and a parameter k,
compute a k-matching in G or report that no k-matching exists.
p-WT-Matching: Given a graph stream S of a weighted graph G and a parameter k,
compute a k-matching of maximum weight in G or report that no k-matching exists.

ISAAC 2021



48:4 Near-Optimal Streaming Algorithms for Graph Matching

We will assume that V (G) = [n]−, and that the length of S is polynomial in n. We will
design parameterized streaming algorithms for the above problems. Our algorithms first
sample a subgraph G′ of the underlying graph G in the stream such that w.h.p. G′ contains
a desired k-matching of G if and only if G has one. In the case where the size of G′ is a
function of k, such algorithms are referred to as kernelization streaming algorithms [7]. We
note that result in [7] also computes a subgraph containing the edges of the desired matching,
without computing the matching itself, as there are efficient algorithms for extracting the
desired matching from that subgraph [18].

ℓ0-Sampler. Let S = (i1, ∆1), . . . , (ip, ∆p), . . . be a stream of updates of an underlying
vector x ∈ Rn, where ij ∈ [n] and ∆j ∈ R. The j-th update (ij , ∆j) updates the ij-th
coordinate of x by setting xij

= xij
+ ∆j . Fix a parameter 0 < δ < 1. An ℓ0-sampler for

x ̸= 0 either fails with probability at most δ, or conditioned on not failing, for any non-zero
coordinate xj of x, returns the pair (j, xj) with probability 1

||x||0
, where ||x||0 is the ℓ0-norm

of x, which is the same as the number of non-zero coordinates of x. (We refer to [12].)

▶ Lemma 1 (Follows from Theorem 2.1 in [7]). Let 0 < δ < 1 be a parameter. There exists an
ℓ0-sampler algorithm that, given a dynamic graph stream, either returns FAIL with probability
at most δ, or returns an edge chosen u.a.r. from the edges of the stream that have been
inserted and not deleted. This algorithm can be implemented using O(log2 n · log(δ−1)) bits
of space and Õ(1) update time, where n is the number of vertices in the underlying graph.

We give a brief review on the known work that is related to our current paper.
Most work on graph matching in the streaming model has focused on approximating

a maximum matching (e.g., [4, 5, 19, 21, 22, 24, 26, 31]), with the majority of the work
pertaining to the (simpler) insert-only model. The most relevant to ours are [7, 8, 9, 16],
which studied parameterized streaming algorithms for the maximum matching problem.

Under the promise that the cardinality of the maximum matching at every instant of the
stream is at most k, the authors of [8, 9] presented a one-pass dynamic streaming algorithm
that w.h.p. computes a maximum matching in an unweighted graph stream. The algorithms
given in [8, 9] run in Õ(k2) space and the algorithm in [9] has Õ(k2) update time.

The authors of [7] considered the problem of computing maximum matchings in the
dynamic streaming model. For an unweighted graph G, under the promise that the cardinality
of the maximum matching at every instant of the stream is at most k, a sketch-based algorithm
is presented, which w.h.p. computes a maximum matching of G, runs in Õ(k2) space, and
has Õ(1) update time. They proved an Ω(k2) lower bound on the space complexity of any
randomized algorithm for the parameterized maximum matching problem, even in the insert-
only model, thus showing that the space complexity of their algorithm is optimal (modulo a
poly-logarithmic factor). The algorithm for unweighted graphs has been extended to weighted
graphs: under the same promise, there is an algorithm for computing a maximum weighted
matching that runs in space Õ(k2W ) and has Õ(1) update time, where W is the number
of distinct edge weights. For unweighted graphs with larger matchings, an approximation
algorithm is proposed [7]. Specifically, if the graph contains matchings of size larger than k,
then for any 1 ≤ α ≤

√
k and 0 < ϵ ≤ 1, there exists an Õ(k2α−3ϵ−2)-space algorithm that

returns a matching of size at least (1−ϵ)k
2α . The algorithm has Õ(k2α−2ϵ−2) update time.

Fafianie and Kratsch [16] studied kernelization streaming algorithms in the insert-only
model for the NP-hard d-Set Matching problem (among others), which for d = 2, is
equivalent to the k-matching problem on unweighted graphs. Their result implies a one-pass
kernelization streaming algorithm for k-matching in unweighted graphs that computes a
kernel of size O(k2 log k), runs in O(k2) space, and has O(log k) update time.



J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:5

Chen et al. [6] studied algorithms for k-matching on the RAM model with limited
computational resources, which is clearly very different from the streaming model. In order to
translate their algorithm to the streaming model, it would require Ω(nk) space and multiple
passes. However, we remark that one of the steps of our algorithm in the insert-only model
was inspired by the constructition of reduced graphs introduced in [6].

Finally, there has been work on computing matchings in special graph classes, and with
respect to parameters other than the cardinality of the matching (e.g., see [27, 28]).

3 Algorithms in Insert-Only Streaming Model

In this section, we give a streaming algorithm for p-WT-Matching, and hence for p-
Matching as a special case, in the insert-only model. We start with some notations.

Given a weighted graph G = (V = [n]−, E) along with a weight function wt : E(G) → R≥0,
and a parameter k, we define a new function β : E(G) −→ R≥0 × [n]− × [n]− as follows: for
e = [u, v] ∈ E, where u < v, let β(e) = (wt(e), u, v). Observe that β is injective.

Define a partial order relation ≺ on E(G) as follows: for any two distinct edges e, e′ ∈ E(G),
e ≺ e′ if β(e) is lexicographically smaller than β(e′). For a vertex v ∈ V and an edge e

incident to v, define Γv to be the sequence of edges incident to v, sorted in a decreasing order
w.r.t. ≺. We say that e is the i-heaviest edge w.r.t. v if e is the i-th element in Γv.

Let f : V → [4k2]− be a hash function, and let H be a subgraph of G. The function f

partitions V (H) into a collection of subsets V = {V0, V1, . . . , V4k2−1}, where each Vi consists
of the vertices in V (H) that have the same image under f . A matching M in H is said to
be nice w.r.t. f if no two vertices of M belong to the same Vi in V. When the function f is
clear from the context, we will simply say that “M is nice.” We define the compact subgraph
of H under f , denoted Compact(H, f), as the subgraph of H consisting of the edges e in H

whose endpoints belong to different subsets Vi and Vj in V, with i ̸= j, and such that β(e)
is the maximum over all edges between Vi and Vj . Finally, we define the reduced compact
subgraph of H under f , denoted Red-Com(H, f), by (1) for each pair (Vi, Vj) of subsets,
selecting edges e ∈ Compact(H, f) with endpoints in Vi and Vj such that e is among the 8k

heaviest edges incident to vertices in Vi and among the 8k heaviest edges incident to vertices
in Vj (in both subsets, if there are not that many edges, then include all edges); and then (2)
retaining from the selected edges in (1) the q = k(16k − 1) heaviest edges (again if there are
not that many edges, include all edges). We have the following:

▶ Lemma 2. The subgraph Compact(H, f) has a nice k-matching if and only if Red-
Com(H, f) has a nice k-matching. If this is the case, then the weight of a maximum weighted
nice k-matching in Compact(H, f) is equal to that in Red-Com(H, f).

Proof. Define the auxiliary weighted graph Φ whose vertices are the subsets Vi in the
collection V, where i ∈ [4k2]−, such that there is an edge [Vi, Vj ] in Φ if some vertex u ∈ Vi

is adjacent to some vertex v ∈ Vj in Compact(H, f). We associate with edge [Vi, Vj ] the
value β([u, v]) and associate the edge [u, v] with [Vi, Vj ]. Obviously, there is one-to-one
correspondence between the nice k-matchings in Compact(H, f) and the k-matchings in Φ.
Let H be the subgraph of Φ formed by selecting edges [Vi, Vj ] such that [Vi, Vj ] is among
the 8k heaviest edges incident to Vi and among the 8k heaviest edges incident to Vj . Let H′

consist of the q = k(16k − 1) heaviest edges in H (if H has at most q edges, let H′ = H).
Since there is a one-to-one correspondence between the nice k-matchings in Compact(H, f)
and the k-matchings of Φ, it suffices to prove the statement of the lemma with respect to
matchings in Φ and H′: namely, if Φ has a maximum weighted k-matching M then H′ has a
maximum weighted k-matching of the same weight as M .

ISAAC 2021



48:6 Near-Optimal Streaming Algorithms for Graph Matching

Suppose that Φ has a maximum weighted k-matching M . Choose M such that the number
of edges in M that remain in H is maximized. We first show that all the edges in M remain
in H. Suppose not, then there is an edge [Vi0 , Vi1 ] ∈ M such that [Vi0 , Vi1 ] is not among the
8k heaviest edges incident to one of its endpoints, say Vi1 . Since |V (M)| = 2k < 8k, it follows
that there is a heaviest edge [Vi1 , Vi2 ] incident to Vi1 such that β([Vi1 , Vi2 ]) > β([Vi0 , Vi1 ]) and
Vi2 /∈ VM . If [Vi1 , Vi2 ] ∈ H, then (M−[Vi0 , Vi1 ])+[Vi1 , Vi2 ] is a maximum weighted k-matching
of Φ that contains more edges of H than M , contradicting our choice of M . It follows that
[Vi1 , Vi2 ] /∈ H. Then, [Vi1 , Vi2 ] is not among the 8k heaviest edges incident to Vi2 . Now
apply the above argument to Vi2 to select the heaviest edge [Vi2 , Vi3 ] such that β([Vi2 , Vi3 ]) >

β([Vi1 , Vi2 ]) > β([Vi0 , Vi1 ]) and Vi3 /∈ VM . By applying the above argument j times, we
obtain a sequence of j vertices Vi1 , Vi2 , . . . , Vij , such that (1) {Vi2 , . . . , Vij } ∩ VM = ∅; and (2)
Via

̸= Vib
for every a ̸= b ∈ [j], which is guaranteed by β([Via

, Via+1 ]) < β([Via+1 , Via+2 ]) <

· · · < β([Vib−1 , Vib
]) and [Via , Via+1 ] is the heaviest edge incident to Via such that Via+1 /∈ VM .

Since Φ is finite, the above process must end at an edge e not in M and such that β(e)
exceeds β([Vi0 , Vi1 ]), contradicting our choice of M . Therefore, M ⊆ E(H).

Now, choose a maximum weighted k-matching of H that maximizes the number of edges
retained in H′. Without loss of generality, call it M . We prove that the edges of M are
retained in H′, thus proving the lemma. Suppose that this is not the case. Since each vertex
in V (M) has degree at most 8k and one of its edges must be in M , the number of edges in
H incident to the vertices in M is at most 2k(8k − 1) + k = k(16k − 1) = q. It follows that
there is an edge e in H′ whose endpoints are not in M and such that β(e) is larger than the
β() value of some edge in M , contradicting our choice of M . ◀

▶ Lemma 3. Let f : V → [4k2]− be a hash function, and let H be a subgraph of G. There is
an algorithm Alg-Reduce(H, f) that constructs Red-Com(H, f) and has both its time and
space complexities bounded by O(|H| + k2).

We now present the streaming algorithm AInsert for p-WT-Matching. Let (S, k) be an
instance of p-WT-Matching, where S = (e1, wt(e1)), . . . , (ei, wt(ei)), . . .. For i ∈ N, let Gi

be the subgraph of G consisting of the first i edges e1, . . . , ei of S, and for j ≤ i, let Gj,i be
the subgraph of G whose edges are {ej , . . . , ei}; if j > i, we let Gj,i = ∅. Let f be a hash
function chosen u.a.r. from a universal set H of hash functions mapping V to [4k2]−. The
algorithm AInsert, after processing the i-th element (ei, wt(ei)), computes two subgraphs Gf

i

and Gs
i defined as follows. For i = 0, Gf

i = Gs
i = ∅. For i > 0, let î be the largest multiple of

q that is smaller than i, that is, i = î + p, where 0 < p ≤ q; and let i∗ be the largest multiple
of q that is smaller than î if î > 0, and 0 otherwise. The subgraph Gf

i is defined only when i

is a multiple of q, and is defined recursively for i = j · q > 0 as Gf
i = Red-Com(Gf

î
∪ Gi∗+1,̂i);

that is, Gf
i is the reduced compact subgraph of the graph consisting of Gf

î
plus the subgraph

consisting of the edges encountered after ei∗ , starting from ei∗+1 up to eî. The subgraph
Gs

i is defined as Gs
i = Gf

î
∪ Gi∗+1,i; that is, Gs

i consists of the previous (before i) reduced
compact subgraph plus the subgraph consisting of the edges starting after i∗ up to i. We
refer to Figure 1 for an illustration of the definitions of Gf

i and Gs
i .

▶ Lemma 4. For each i ≥ 1, if Gi contains a maximum weighted k-matching, then with
probability at least 1/2, Gs

i contains a maximum weighted k-matching of Gi.

Proof. Let M = {[u0, u1], . . . , [u2k−2, u2k−1]} be a maximum weighted k-matching in Gi, and
let VM = {u0, . . . , u2k−1}. Since f is a hash function chosen u.a.r. from a universal set H of
hash functions mapping V to [4k2]−, with probability at least 1/2, f is perfect w.r.t. VM [11].
Now, suppose that f is perfect w.r.t. VM . Thus, M is a nice matching (w.r.t. f) in Gi. By the



J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:7

. . . . .e1 eq e2q ei∗ ei∗+1 eî ei

1 q 2q i∗ i∗+1 î i = jq

Red-Com(Gi∗+1,̂i ∪ Gf

î
)The definition of Gf

i = Gf
i

. . . . .e1 eq e2q ei∗ ei∗+1 eî ei

1 q 2q i∗ i∗+1 î i ̸= jq

Gi∗+1,i ∪ Gf

î
= Gs

iThe definition of Gs
i

Figure 1 Illustration of the definitions of Gf
i and Gs

i .

definition of Compact(Gi, f), there is a set M ′ of k edges M ′ = {[u′
0, u′

1], . . . , [u′
2k−2, u′

2k−1]}
in Compact(Gi, f) such that {f(u′

2i), f(u′
2i+1)} = {f(u2i), f(u2i+1)} and β([u′

2i, u′
2i+1]) ≥

β([u2i, u2i+1]) for i ∈ [k]−. It follows that wt([u′
2i, u′

2i+1]) ≥ wt([u2i, u2i+1]) for i ∈
[k]−. Therefore, Compact(Gi, f) contains a maximum weighted k-matching of Gi, namely
{[u′

0, u′
1], . . . , [u′

2k−2, u′
2k−1]}; moreover, this matching is nice. By Lemma 2, Red-Com(Gi, f)

contains a maximum weighted k-matching of Compact(Gi, f).
Next, we prove that Gs

i contains a maximum weighted k-matching of Gi. If i ≤ 2q, then
Gs

i = G1,i = Gi by definition, and hence Gs
i contains a maximum weighted k-matching

of Gi. Suppose now that i > 2q. By definition, Gs
i = Gf

î
∪ Gi∗+1,i. (Recall that, by

definition, Gf
q =∅, Gf

2q = Red-Com(Gf
q ∪ G1,q), Gf

3q = Red-Com(Gf
2q ∪ Gq+1,2q), . . . , Gf

î
=

Red-Com(Gf
i∗ ∪ Gi∗−q+1,i∗).) For each j ≥ 1 that is multiple of q, let Gj be the graph

consisting of the edges that are in Gf

ĵ
∪ Gj∗+1,ĵ but are not kept in Gf

j . Consequently,
(
⋃

q≤j<î,j is a multiple of q Gj)
⋃

Gf

î
= Gi∗ . By the definition of Red-Com(Gi, f), it is easy to

verify that Red-Com(Gi, f) does not contain the edges in Gj , for each j ≥ 1. It follows
that Red-Com(Gi, f) is a subgraph of Gs

i , and hence, Gs
i contains a maximum weighted

k-matching of Red-Com(Gi, f), and hence of Compact(Gi, f) by the above discussion. Since
Compact(Gi, f) contains a maximum weighted k-matching of Gi, Gs

i contains a maximum
weighted k-matching of Gi. It follows that, with probability at least 1/2, Gs

i contains a
maximum weighted k-matching of Gi. ◀

The algorithm AInsert, when queried at the end of the stream, either returns a maximum
weighted k-matching of G or the empty set. To do so, at every instant i, it will maintain a
subgraph Gs

i that will contain the edges of the desired matching, from which this matching
can be extracted. To maintain Gs

i , the algorithm keeps track of the subgraphs Gs
i−1, Gf

î
, the

edges ei∗+1, . . . , ei, and will use them in the computation of the subgraph Gs
i as follows. If i

is not a multiple of q, then Gs
i = Gs

i−1 + ei, and the algorithm simply computes Gs
i as such.

Otherwise (i.e., i is a multiple of q), Gs
i = Gf

î
∪ Gi∗+1,i, and the algorithm uses Gf

î
and

Gi∗+1,i = {ei∗+1, . . . , ei} to compute and return Gs
i ; however, in this case (i.e., i is a multiple

of q), the algorithm will additionally need to have Gf
i already computed, in preparation for

the potential computations of subsequent Gs
j , for j ≥ i. By Lemma 3, the subgraph Gf

i can
be computed by invoking the algorithm Alg-Reduce in Lemma 3 on Gf

î
∪ Gi∗+1,̂i, which

runs in time O(q). Note that both Gf

î
and Gi∗+1,̂i are available to AInsert at each of the

steps î + 1, . . . , i. Therefore, the algorithm will stagger the O(q) many operations needed
for the computation of Gf

i uniformly (roughly equally) over each of the steps î + 1, . . . , i,

ISAAC 2021



48:8 Near-Optimal Streaming Algorithms for Graph Matching

yielding an O(1) operations per step. Note that all the operations in Alg-Reduce can be
explicitly listed, and hence, splitting them over an interval of q steps is easily achievable.
Combining the above discussions and lemmas, we conclude with:

▶ Lemma 5. The algorithm AInsert runs in space O(k2) and has update time O(1).

▶ Theorem 6. Let 0 < δ < 1 be a parameter. There is an algorithm for p-WT-Matching
such that, on input (S, k), the algorithm outputs a matching M ′ satisfying that (1) if G

contains a k-matching then, with probability at least 1 − δ, M ′ is a maximum weighted
k-matching of G; and (2) if G does not contain a k-matching then M ′ = ∅. The algorithm
runs in O(k2 log 1

δ ) space and has O(log 1
δ ) update time. In particular, for any constant δ,

the algorithm runs in space O(k2) and has O(1) update time.

Proof. Run ⌈log 1
δ ⌉-many copies of algorithm AInsert in parallel (i.e., using dove-tailing).

Then, by the end of the stream, there are ⌈log 1
δ ⌉ copies of Gs

m, where m is the length of
the stream. Let G′ be the union of all the Gs

m’s produced by the runs of AInsert. If G′ has a
k-matching, let M ′ be a maximum weighted k-matching of G′; otherwise, let M ′ = ∅.

By Lemma 4, if Gm, i.e., G, contains a maximum weighted k-matching, with probability
at least 1/2, one copy of Gs

m contains a maximum weighted k-matching of G. Hence, with
probability at least 1 − (1/2)⌈log 1

δ ⌉ ≥ 1 − δ, G′ contains a maximum weighted k-matching of
G. It follows that if G contains a maximum weighted k-matching M then, with probability
at least 1 − δ, G′ contains a maximum weighted k-matching of the same weight as M and
hence M ′ is a maximum weighted k-matching of G.

Observe that the graph G′ is a subgraph of G. Therefore, statement (2) in the theorem
clearly holds true. By Lemma 5, the above algorithm runs in space O(k2 log 1

δ ) and has
update time O(log 1

δ ), thus completing the proof. ◀

4 The Toolkit

In this section, we prove a theorem that can be useful in its own right for subset problems,
that is, problems in which the goal is to compute a k-subset S (k ∈ N) of some universe U

such that S satisfies certain prescribed properties. Intuitively, the theorem states that, for
any k-subset S ⊆ U , w.h.p. we can compute k subsets T1, . . . , Tk of U that interact “nicely”
with S. More specifically, (1) the sets Ti, for i ∈ [k], are pairwise disjoint, (2) S is contained
in their union

⋃
i∈[k] Ti, and (3) each Ti contains exactly one element of S.

The above theorem will be used in Section 5 to design algorithms for p-Matching and
p-WT-Matching in the dynamic streaming model. Intuitively speaking, the theorem will
be invoked to obtain the sets Ti of vertices that w.h.p. induce the edges of the desired
k-matching; however, these sets may not necessarily constitute the desired subgraph as they
may not have “small” cardinalities. Sampling techniques will be used to select a smaller set
of edges induced by the vertices of the Ti’s that w.h.p. contains the edges of the k-matching.

A family H of hash functions, each mapping U to [r]−, is called κ-wise independent
if for any κ distinct keys x1, x2, ..., xκ ∈ U , and any κ (not necessarily distinct) values
a1, a2, ..., aκ ∈ [r]−, we have Prh∈u.a.rH[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xκ) = aκ] = 1

rκ .
Let F be a finite field. A κ-wise independent family H of hash functions can be con-

structed as follows (See Construction 3.32 in [35]): H = {ha0,a1,...,aκ−1 : F → F}, where
ha0,a1,...,aκ−1(x) = a0 + a1x + · · · + aκ−1xκ−1 for a0, . . . , aκ−1 ∈ F.

The following theorem is proved in [35], and will be used in our discussion.



J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:9

▶ Theorem 7 (Corollary 3.34 in [35]). For every u, d, κ ∈ N, there is a family of κ-wise
independent functions H = {h : {0, 1}u → {0, 1}d} such that choosing a random function
from H takes space O(κ · (u + d)). Moreover, evaluating a function from H takes time
polynomial in u, d, κ.

To prove our theorem, we proceed in two phases. We give an intuitive description of these
two phases. In the first phase, we choose a hashing function f u.a.r. from an O(ln k)-wise
independent set of hash functions, which hashes U to a set of d1 = O(k/ ln k) integers.
We use f to partition the universe U into d1-many subsets Ui. Afterwards, we choose d1
families F0, . . . , Fd1−1 of hash functions, each containing d2 = O(ln k) functions, chosen
independently and u.a.r. from a universal set of hash functions. The family Fi, i ∈ [d1]−,
will be used restrictively to map the elements of Ui. Since each family Fi is chosen from a
universal set of hash function, for the subset Si = S ∩ Ui, w.h.p. Fi contains a hash function
fi that is perfect w.r.t. Si; that is, under the function fi the elements of Si are distinguished.
This concludes the first phase of the process, which is described in Algorithm 1.

Algorithm 1 : An algorithm for partitioning U and constructing families of hash functions.
Input: |U |, k ∈ N where |U | > 1
Output: A family of sets of hash functions

1: let u and d be the unique positive integers satisfying 2u−1 < |U | ≤ 2u and 2d−1 < k
ln k ≤ 2d

2: choose f u.a.r. from H, where H = {h : {0, 1}u → {0, 1}d} is a ⌈12 ln k⌉-wise independent
set of hash functions

3: let H′ be a set of universal hash functions from U to [⌈13 ln k⌉2]−
4: let Fi, for i ∈ [2d]−, be a set of ⌈8 ln k⌉ hash functions chosen independently and

u.a.r. from H′

5: return {f, F0, . . . , F2d−1}

In the second phase, we define a relation G (from U) that, for each x ∈ U , associates
a set G(x) of integers. This relation extends the hash functions in the Fj ’s above by (1)
ensuring that elements in different parts of U (w.r.t. the partitioning) are distinguished, in
the sense that they are associated with subsets of integers that are contained in disjoint
intervals of integers; and (2) maintaining the property that elements of the same part Uj

that are distinguished under some function in Fj remain so under the extended relation.
To do so, for each part Uj , we associate an “offset” and create a large gap between any
two (consecutive) offsets; we will ensure that all the elements in the same Uj fall within
the same interval determined by two consecutive offsets. To compute the set G(x), for an
element x ∈ Uj , we start with an offset oj that depends solely on Uj (oj = j · d2 · d3 in
Algorithm 2), and consider every function in the family Fj corresponding to Uj . For each
such function hi, we associate an offset o′

i (o′
i = (i − 1) · d3 in Algorithm 2), and for x and

that particular function hi, we add to G(x) the value g(j, i, x) = oj + o′
i + hi(x). The above

phase is described in Algorithm 2.
Now that the relations G(x), for x ∈ U , have been defined, we will show in the following

theorem that, for any k-subset S of U , w.h.p. there exist k distinct elements i0, . . . , ik−1,
such that their pre-images G−1(i0), . . . , G−1(ik−1) are pairwise disjoint, contain all elements
of S, and each pre-image contains exactly one element of S; those pre-images serve as the
desired sets Ti, for i ∈ [k].

Consider Algorithm 1 and Algorithm 2, and refer to them for the terminologies used
in the subsequent discussions. For i ∈ [d1 · d2 · d3]−, define Ti = {x ∈ U | i ∈ G(x)}. We
define next two sequences of intervals, and prove certain properties about them, that will

ISAAC 2021



48:10 Near-Optimal Streaming Algorithms for Graph Matching

Algorithm 2 : An algorithm that defines the relation G from U to [d1 · d2 · d3]−.
Input: x ∈ U , k ∈ N, {f, F0, . . . , Fd1−1} is from Algorithm 1, where |F0| = · · · = |Fd1−1|
Output: a set G(x)

1: let d2 = |F0| = · · · = |Fd1−1| and d3 = ⌈13 ln k⌉2

2: G(x) = ∅
3: compute f(⌞x⌟) and let j be the integer such that ⌞j⌟ = f(⌞x⌟)
4: for i = 1 to d2 do
5: let hi be the i-th function in Fj (assuming an arbitrary ordering on Fj)
6: let g(j, i, x) = j · d2 · d3 + (i − 1) · d3 + hi(x) and let G(x) = G(x) ∪ {g(j, i, x)}
7: return G(x)

be used in the proof of Theorem 9. For q ∈ [d1 · d2]−, let Iq = {r | q · d3 ≤ r < (q + 1) · d3}.
For t ∈ [d1]−, let I ′

t = {r | t · d2 · d3 ≤ r < t · d2 · d3 + d2 · d3}. Note that each interval I ′
t is

partitioned into the d2-many intervals Iq, for q = t · d2, . . . , t · d2 + d2 − 1.

▶ Lemma 8. The following statements hold: (A) For any two distinct integers a, b ∈ Iq,
where q ∈ [d1 · d2]−, we have Ta ∩ Tb = ∅. (B) For t ∈ [d1]−, we have G(Ut) ⊆ I ′

t. Moreover,
for any a ∈ I ′

t, b ∈ I ′
s, where s ̸= t, we have Ta ∩ Tb = ∅.

▶ Theorem 9. For any subset S ⊆ U of cardinality k ≥ 2, with probability at least 1 − 4
k3 ln k ,

there exist k sets Ti0 , . . . , Tik−1 such that: (1) |Tij ∩ S| = 1 for j ∈ [k]−, (2) S ⊆ ∪j∈[k]−Tij ,
and (3) Tij

∩ Til
= ∅ for j ̸= l ∈ [k]−.

Proof. For j ∈ [d1]−, let Uj be the set of elements in U whose image is ⌞j⌟ under f (defined
in Step 2 of Algorithm 1), that is Uj = {y ∈ U | f(⌞y⌟) = ⌞j⌟}. Clearly, the sets Uj , for
j ∈ [d1]−, partition the universe U . We will show that, with probability at least 1 − 4

k3 ln k ,
there exist k sets Ti0 , . . . , Tik−1 that satisfy conditions (1)–(3) in the statement of the theorem.

Let S ⊆ U be any subset such that |S| = k. For j ∈ [d1]− and y ∈ S, let Xy,j be the
random variable defined as Xy,j = 1 if f(⌞y⌟) = ⌞j⌟ and 0 otherwise. Let Xj =

∑
y∈S Xy,j ,

and Sj = {y ∈ S | f(⌞y⌟) = ⌞j⌟}. Thus, |Sj | = Xj . Since f is ⌈12 ln k⌉-wise independent,
the random variables Xy,j , for y ∈ S, are ⌈12 ln k⌉-wise independent and Pr(Xy,j = 1) = 1

d1
.

Thus, E[Xj ] = |S| · 1
d1

. Since d1 = 2d and 2d−1 < k
ln k ≤ 2d by definition, we have k

ln k ≤ d1 <
2k

ln k and ln k
2 < E[Xj ] ≤ ln k. Applying Theorem 2 in [33] with µ = E[Xj ] and δ = 12 ln k

E[Xj ] > 1,
we get Pr(Xj ≥ (1+δ)E[Xj ]) ≤ e−E[Xj ]δ/3 = 1

k4 . Since E[Xj ] ≤ ln k and δ = 12 ln k
E[Xj ] , we have

(1+δ)E[Xj ] ≤ 13 ln k. Hence, Pr(Xj ≥ 13 ln k) ≤ Pr(Xj ≥ (1+δ)E[Xj ]) ≤ 1
k4 . Let E denote

the event
∧

i∈[d1]−(Xi ≤ 13 ln k). By the union bound, we have Pr(E) ≥ 1 − d1
k4 ≥ 1 − 2

k3 ln k ,
where the last inequality holds since d1 < 2k/ ln k.

Assume that event E occurs, i.e., that |Sj | ≤ 13 ln k holds for j ∈ [d1]−. Consider Step 4
in Algorithm 1. Fix j ∈ [d1]−, and let Ej be the event that Fj does not contain any perfect
hash function w.r.t. Sj . Let h be a hash function picked from H′ u.a.r. Since |Sj | ≤ 13 ln k

(by assumption), by Theorem 11.9 in [11], with probability at least 1/2, h is perfect w.r.t. Sj .
Since Fj consists of ⌈8 ln k⌉ hash functions chosen independently and u.a.r. from H′, we have
Pr(Ej) ≤ (1/2)⌈8 ln k⌉ < 1

k4 . Applying the union bound, we have Pr(∪j∈[d1]−Ej) ≤ d1
k4 <

2
k3 ln k . Let E ′ be the event that there exist d1 functions f0, f1, . . . , fd1−1 such that fj ∈ Fj

and fj is perfect w.r.t. Sj , j ∈ [d1]−. Therefore, Pr(E ′) ≥ Pr(E)(1 − Pr(∪j∈[d1]−Ej)) ≥
1 − 4

k3 ln k + 4
k6 ln2 k

≥ 1 − 4
k3 ln k . Suppose that such a set {f0, . . . , fd1−1} of functions exists.

Let η(q) be the iteration number i in Step 5 of Algorithm 2 during which fq ∈ Fq is chosen,
for q ∈ [d1]−. We define the following (multi-)set B as follows. For each q ∈ [d1]−, and for



J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:11

element x ∈ Sq, add to B the element g(q, η(q), x)) defined in Steps 5–6 of Algorithm 2 (by
{f, f0, . . . , fk−1}). Observe that, by the definition of B, for every x ∈ S, there exists a ∈ B

such that x ∈ Ta. We will show next that B contains exactly k distinct elements, and that,
for any a ̸= b ∈ B, it holds that Ta ∩ Tb = ∅. The above will show that the sets {Ta | a ∈ B}
satisfy conditions (1)–(3) of the theorem, thus proving the theorem.

It suffices to show that for any two distinct elements of S, the corresponding elements
added to B are distinct. Let x1 and x2 be two distinct elements of S. Assume that x1 ∈ Sj

and x2 ∈ Sl, where j, l ∈ [d1]−. We distinguish two cases based on whether or not j = l.
If j = l, we have g(j, η(j), x1) = j · d2 · d3 + (η(j) − 1) · d3 + fj(x1) and g(j, η(j), x2) =

j · d2 · d3 + (η(j) − 1) · d3 + fj(x2). Since fj is perfect w.r.t. Sj , we have g(j, η(j), x1) ̸=
g(j, η(j), x2). Moreover, both g(j, η(j), x1) and g(j, η(j), x2) are in Ij·d2+(η(j)−1) (since
0 ≤ hj(x1), hj(x2) < d3), where j · d2 + (η(j) − 1) ≤ (d1 − 1) · d2 + (d2 − 1) ∈ [d1 · d2]−. By
part (A) of Lemma 8, it holds that Tg(j,η(j),x1) ∩ Tg(j,η(j),x2) = ∅.

Suppose now that j ̸= l. By definition of Sj , Sl, Uj , Ul, we have Sj ⊆ Uj and Sl ⊆ Ul.
Consequently, g(j, η(j), x1) ∈ G(Uj) and g(l, η(l), x2) ∈ G(Ul) hold. By part (B) of Lemma
8, we have G(Uj) ⊆ I ′

j and G(Ul) ⊆ I ′
l . Therefore, g(j, η(j), x1) ̸= g(l, η(l), x2). Moreover,

Tg(j,η(j),x1) ∩ Tg(l,η(l),x2) = ∅ holds by part (B) of Lemma 8 as well. ◀

▶ Theorem 10. Algorithm 1 runs in space O(k + (log k)(log |U |)), and Algorithm 2 runs
in space O(log k) and in time polynomial in log |U |.

Proof. In Algorithm 1, since f is ⌈12 ln k⌉-wise independent, by Theorem 7, storing f uses
space O(ln k · max{u, d}) = O((log k)(log |U |)) (since k ≤ |U |). Storing a universal hash
function uses O(1) space, and thus storing {F0, . . . , Fd1−1} uses O(d1 · d2) = O(k) space.
Therefore, Algorithm 1 can be implemented in space O(k + (log k)(log |U |)).

For Algorithm 2, since G(x) contains exactly d2 elements, storing G(x) takes O(d2) =
O(ln k) space. In Step 3, again by Theorem 7, computing f(⌞x⌟) takes time polynomial
in log |U | and log k, since f is a ⌈12 ln k⌉-wise independent hash function from {0, 1}u to
{0, 1}d. Computing j in Step 3 takes time polynomial in d = O(log k) since f(⌞x⌟) ∈ {0, 1}d.
Therefore, Step 3 can be performed in time polynomial in log |U | and log k, and hence
polynomial in log |U | (since k ≤ |U |). Step 6 can be implemented in time polynomial in
log k, since |Fj | = ⌈8 ln k⌉. Altogether, Algorithm 2 takes time polynomial in log |U |. This
completes the proof. ◀

5 Algorithms in Dynamic Streaming Model

In this section, we present results on p-Matching and p-WT-Matching in the dynamic
streaming model. The algorithm uses the toolkit developed in the previous section, together
with the ℓ0-sampling technique discussed in Section 2. We first give a high-level description
of how the algorithm works.

Let S be a graph stream of a weighted graph G = (V = [n]−, E) along with the weight
function wt : E(G) −→ R≥0, and k be a parameter. Suppose G has W distinct weights.
We will hash the vertices of the graph to a range R of size O(k log2 k). For each element
(e = [u, v], wt(e), op) ∈ S, where op is either insertion or deletion, we use the relation G,
discussed in Section 4, and compute the two sets G(u) and G(v). For each i ∈ G(u) and each
j ∈ G(v), we associate an instance of an ℓ0-sampler primitive, call it Ci,j,wt(u,v), and update
it according to the operation op. Recall that it is assumed that the weight of every edge does
not change throughout the stream.

ISAAC 2021



48:12 Near-Optimal Streaming Algorithms for Graph Matching

The solution computed by the algorithm consists of a set of edges created by invoking
each of the Õ(Wk2) ℓ0-sampler algorithms to sample at most one edge from each Ci,j,w, for
each pair of i, j in the range R and each edge-weight of the graph stream.

The intuition behind the above algorithm (i.e., why it achieves the desired goal) is the
following. Suppose that there exists a maximum weighted k-matching M in G, and let
M = {[u0, u1], . . . , [u2k−2, u2k−1]}. By Theorem 9, w.h.p. there exist i0, . . . , i2k−1 in the
range R such that uj ∈ Tij

, for j ∈ [2k]−, and such that the Tij
’s are pairwise disjoint.

Consider the k ℓ0-samplers Ci2j ,i2j+1,wt(u2j ,u2j+1), where j ∈ [k]−. Then, w.h.p., the k edges
sampled from these k ℓ0-samplers are the edges of a maximum weighted k-matching (since
the Tij

’s are pairwise disjoint) whose weight equals that of M .

Algorithm 3 The streaming algorithm Adynamic in the dynamic streaming model.

Adynamic-Preprocess: The preprocessing algorithm
Input: n = |V (G)| and a parameter k ∈ N
1: let C be a set of ℓ0-samplers and C = ∅
2: let {f, F0, F1, . . . , Fd1−1} be the output of Algorithm 1 on input (n, 2k)

Adynamic-Update: The update algorithm
Input: An update (e = [u, v], wt(e), op) ∈ S, where op is either insertion or deletion
1: let G(u) be the output of Algorithm 2 on input (u, 2k, {f, F0, F1, . . . , Fd1−1})
2: let G(v) be the output of Algorithm 2 on input (v, 2k, {f, F0, F1, . . . , Fd1−1})
3: for i ∈ G(u) and j ∈ G(v) do
4: if Ci,j,wt(uv) /∈ C then
5: create the ℓ0-sampler Ci,j,wt(uv)

6: feed ⟨[u, v], op⟩ to the ℓ0-sampler algorithm Ci,j,wt(u,v) with parameter δ

Adynamic-Query: The query algorithm after an update
1: let E′ = ∅
2: for each Ci,j,w ∈ C do
3: apply the ℓ0-sampler Ci,j,w with parameter δ to sample an edge e

4: if Ci,j,w does not FAIL then set E′ = E′ ∪ {e}
5: return a maximum weighted k-matching in G′ = (V (E′), E′) if any; otherwise, return ∅

Choose δ = 1
20k4 ln(2k) . Let Adynamic be the algorithm consisting of the sequence of

three subroutines/algorithms Adynamic-Preprocess, Adynamic-Update, and Adynamic-
Query, where Adynamic-Preprocess is applied at the beginning of the stream, Adynamic-
Update is applied after each operation, and Adynamic-Query is applied whenever the
algorithm is queried for a solution after some update operation. Without loss of generality,
and for convenience, we will assume that the algorithm is queried at the end of the stream S,
even though the query could take place after any arbitrary operation.

▶ Lemma 11. Let M ′ be the matching obtained by applying the algorithm Adynamic with
Adynamic-Query invoked at the end of S. If G contains a k-matching then, with probability
at least 1 − 11

20k3 ln(2k) , M ′ is a maximum weighted k-matching of G.

▶ Theorem 12. The algorithm Adynamic outputs a matching M ′ such that (1) if G contains
a k-matching then, with probability at least 1 − 11

20k3 ln(2k) , M ′ is a maximum weighted k-
matching of G; and (2) if G does not contain a k-matching then M ′ = ∅. Moreover, the
algorithm Adynamic runs in Õ(Wk2) space and has Õ(1) update time.



J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:13

Proof. First, observe that G′ is a subgraph of G, since it consists of edges sampled from
subsets of edges in G. Therefore, statement (2) in the theorem clearly holds true. Statement
(1) follows from Lemma 11. Next, we analyze the update time of algorithm Adynamic.

From Algorithm 1 and Algorithm 2, we have d1 = O( k
ln k ), d2 = O(ln k), d3 =

O(ln2 k) and |Fi| = O(ln k) for i ∈ [d1]−. Thus, |G(u)| = O(ln k) holds for all u ∈ V .
For the update time, it suffices to examine Steps 1–6 of Adynamic-Update By Theorem
10, Steps 1–2 take time polynomial in log n, which is Õ(1). For Step 4, we can index
C using a sorted sequence of triplets (i, j, w), where i, j ∈ [d1 · d2 · d3]− and w ranges
over all possible weights. Since d1 = O( k

ln k ), d2 = O(ln k) and d3 = O(ln2 k), we have
|C| = O((d1 · d2 · d3)2 · W ) = O(Wk2 ln4 k) = Õ(Wk2). Using binary search on C, one
execution of Step 4 takes time O(log W + log k). Since |G(u)| = O(ln k) for every u ∈ V ,
and since by Lemma 1 an ℓ0-sampler algorithm has Õ(1) update time, Steps 3–6 take time
O(ln2 k) · (O(log W + log k) + Õ(1)) = Õ(1). Therefore, the overall update time is Õ(1).

Now, we analyze the space complexity of the algorithm. First, consider Adynamic-
Preprocess. Obviously, Step 1 uses O(1) space. Steps 1–2 use space O(k+(log k)(log n)) (in-
cluding the space used to store {f, F0, . . . , Fd1−1,C}) by Theorem 10. Altogether, Adynamic-
Preprocess runs in space O(k +(log k)(log n)). Next, we discuss Adynamic-Update. Steps
1–2 take space O(ln k) by Theorem 10. Observe that the space used in Steps 3–6 is dominated
by the space used by the set C of ℓ0-samplers. Since δ = 1

20k4 ln(2k) , an ℓ0-sampler algorithm
uses space O(log2 n · log k), by Lemma 1. Since |C| = O(Wk2 ln4 k), Steps 3–6 use space
O(Wk2 log2 n log5 k) = Õ(Wk2). Finally, consider Adynamic-Query The space in Steps 1 –
4 is dominated by the space used by C and the space needed to store the graph G′, and hence
E′. By the above discussion, C takes space Õ(Wk2). Since at most one edge is sampled
from each ℓ0-sampler instance and |C| = O(Wk2 ln4 k), we have |E′| = |C| = Õ(Wk2). Step
5 utilizes space O(|E′|) [17, 18]. Therefore, Adynamic-Query runs in space Õ(Wk2). It
follows that the space complexity of Adynamic is Õ(Wk2). ◀

Using Theorem 12, and following the same approach in [7], we obtain the following:

▶ Theorem 13. Let 0 < ϵ < 1. There exists an algorithm for p-WT-Matching that
computes a matching M ′ such that (1) if G contains a maximum weighted k-matching M ,
then with probability at least 1 − 11

20k3 ln(2k) , wt(M ′) > (1 − ϵ)wt(M); and (2) if G does not
contain a k-matching then M ′ = ∅. Moreover, the algorithm runs in Õ(k2ϵ−1 log W ′) space
and has Õ(1) update time, where W ′ is the ratio of the max weight to min weight.

Proof. For each edge e ∈ E, round wt(e) and assign it a new weight of (1 + ϵ)i such that
(1 + ϵ)i−1 < wt(e) ≤ (1 + ϵ)i. Thus, there are O(ϵ−1 log W ′) distinct weights after rounding.
By Theorem 12, the space and update time are Õ(k2ϵ−1 log W ′) and Õ(1) respectively, and
the success probability is at least 1 − 11

20k3 ln(2k) . Now we prove that wt(M ′) > (1 − ϵ)wt(M).
Let e ∈ M and let e′ be the edge sampled from the ℓ0-sampler that e is fed to. It suffices

to prove that wt(e′) > (1 − ϵ)wt(e). Assume that wt(e) is rounded to (1 + ϵ)i. Then, wt(e′)
is rounded to (1 + ϵ)i as well. If wt(e′) ≥ wt(e), we are done; otherwise, (1 + ϵ)i−1 < wt(e′) <

wt(e) ≤ (1 + ϵ)i. It follows that wt(e′) > (1 + ϵ)i−1 ≥ wt(e)/(1 + ϵ) > (1 − ϵ)wt(e). ◀

The following theorem is a consequence of Theorem 12 (applied with W = 1):

▶ Theorem 14. There is an algorithm for p-Matching that computes a matching M ′

satisfying that (1) if G contains a k-matching then, with probability at least 1− 11
20k3 ln(2k) , M ′

is a k-matching of G; and (2) if G does not contain a k-matching then M ′ = ∅. Moreover,
the algorithm runs in Õ(k2) space and has Õ(1) update time.

ISAAC 2021



48:14 Near-Optimal Streaming Algorithms for Graph Matching

6 Lower Bound

In this section, we discuss lower bounds on the space complexity of randomized streaming
algorithms for p-Matching in the insert-only model (hence also in the dynamic model), and
for p-WT-Matching in the dynamic model. These lower bound results, in conjunction with
the algorithms given in the previous sections, show that the space complexity achieved by
our algorithms is optimal (modulo a poly-logarithmic factor in the input size).

We will use the one-way communication model to prove lower bounds on the space
complexity of randomized streaming algorithms for p-Matching and p-WT-Matching. In
this model, there are two parties, Alice and Bob, each receiving x and y respectively, who
wish to compute f(x, y). Alice is permitted to send Bob a single message M , which only
depends on x and Alice’s random coins. Then Bob outputs b, which is his guess of f(x, y).
Here, b only depends on y, M, and Bob’s random coins. We say the protocol computing f

with success probability 1 − δ if Pr(b = f(x, y)) ≥ 1 − δ for every x and y.
For p-Matching, we have the following theorem, which is implied from the space

complexity lower-bound proof given in [7] for maximum matching.

▶ Theorem 15 ([7]). Any randomized streaming algorithm for p-Matching that, with
probability at least 2/3, computing a k-matching uses Ω(k2) bits.

For p-WT-Matching, we start by defining the following problem:

Partial Maximization: Alice has a sequence a = ⟨a1, a2, . . . , an⟩ of numbers, where
each ai ∈ [1, n1+ϵ], and Bob has a subset T ⊂ [n]. Compute maxi∈[n]\T ai.

Let X, Y, Z, Z1, Z2 be random variables. Define the Shannon entropy of X as H(X) =∑
x Pr(X = x) log( 1

Pr(X=x) ). Define the conditional entropy of Z1 given Z as H(Z1 | Z) =∑
z H(Z1|Z = z) Pr(Z = z), and the mutual information as I(Z1; Z) = H(Z) − H(Z | Z1).

Define the conditional mutual information of Z1, Z2 given Z as I(Z1; Z2 | Z) = H(Z1 |
Z) − H(Z1 | Z2, Z). X → Y → Z is said to form a Markov chain if the conditional
distribution of Z depends only on Y and is conditionally independent of X.

▶ Theorem 16. For any constant 0 ≤ δ < 1, any randomized one-way communication
protocol for Partial Maximization with success probability at least 1−δ has communication
complexity Ω(n log n) bits.

Proof. The proof has a similar fashion as Augmented Indexing problem [29, 10]. Consider the
case where each Xj , for j ∈ [n], is picked uniformly at random from [(j−1)·nϵ +1, j ·nϵ]. Note
that X1 < X2 < · · · < Xn and that H(Xj) = ϵ log n for each j ∈ [n]. For each j ∈ [n], let
Tj = [j + 1, n] and let X ′

j be Bob’s guess of maxi∈[n]\Tj
Xi = Xj . Let M be the message sent

from Alice to Bob. Since Pr(X ′
j = Xj) ≥ 1−δ and Xj → (M, Xj+1, Xj+2, . . . , Xn) → X ′

j is a
Markov chain, by Fano’s Inequality [13], for all j ∈ [n], we have H(Xj | M, Xj+1, . . . , Xn) ≤
δ · ϵ log n + 1, and hence,

I(Xj ; M | Xj+1, . . . , Xn) = H(Xj | Xj+1, . . . , Xn) − H(Xj | M, Xj+1, . . . , Xn)
= H(Xj) − H(Xj | M, Xj+1, . . . , Xn)
≥ (1 − δ)ϵ log n − 1,

where the second equality holds because Xj , Xj+1, . . . , Xn are mutually independent. By
Theorem 2.5.2 of [13], H(M) ≥ I(X1, X2, . . . , Xn; M) =

∑n
j=1 I(Xj ; M |Xj+1, . . . , Xn) =

Ω(n log n). Finally, by Theorem 2.6.4 of [13] the message M has at least 2Ω(n log n) possibilities,
hence the length of the longest possible M is Ω(n log n), completing the proof. ◀



J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:15

Theorem 16, plus a reduction from the Partial Maximization problem to the p-WT-
Matching problem with parameter value k = 1, gives directly the following result.

▶ Theorem 17. Any randomized streaming algorithm for p-WT-Matching that has success
probability at least 2/3 requires space k2 · Ω(W (log W + 1)).

7 Concluding Remarks

In this paper, we presented streaming algorithms for the fundamental k-matching problem,
for both unweighted and weighted graphs, and in both the insert-only and dynamic streaming
models. While matching the best space complexity of known algorithms, which has been
proved to be either optimal or near-optimal, our algorithms have much faster update times.
For the insert-only model, our algorithm is optimal in both space and update time complexities.
For the dynamic model, according to the new lower bounds we developed, our algorithms
are near-optimal (i.e., optimal up to a poly-logarithmic factor) in both space and update
time complexities. Our result for the weighted k-matching problem was achieved using a
newly-developed structural result that is of independent interest. We believe that our results
and techniques can have wider applicability for other fundamental graph problems.

Most work on weighted graph streams, including ours, assumes that the weight of an edge
is unchanged in the stream [1, 2, 7, 20, 23]. We give an interesting observation below to justify
this assumption and show that, if this assumption is lifted, then the space complexity of the
k-matching problem can be much larger than the desirable space complexity for streaming
algorithms. This lower bound is derived by a reduction from the following problem:

Given a data stream S ′ = x1, x2, . . . , xm, where xi ∈ {1, . . . , n′}, let ci = |{j | xj = i}|
be the number of occurrences of i in the stream S ′. Compute F∞ = max1≤i≤n′ ci.

▶ Theorem 18 ([32]). For data streams of length m, any randomized streaming algorithm
computing F∞ to within a (1 ± 0.2) factor with probability 2/3 requires space Ω(min{m, n′}).

Now we consider the p-WT-Matching problem in the more generalized dynamic stream-
ing model, in which an instance of p-WT-Matching is given by a parameter k and a
stream S = (ei1 , ∆1(ei1)), . . . , (eij , ∆j(eij )), . . . of updates of edge weights in the underlying
graph G, where the update (eij

, ∆j(eij
)) changes the current weight wt(eij

) of edge eij
to

wt(eij
) = wt(eij

) + ∆j(eij
), assuming wt(·) = 0 initially and wt(·) ≥ 0 for all updates. This

model generalizes the dynamic graph streaming model in [7].

▶ Theorem 19. Under the more generalized dynamic streaming model, any randomized
streaming algorithm that, with probability at least 2/3, approximates the maximum weighted
1-matching of the graph to a factor of 6/5 uses space Ω(min{m, (n−1)(n−2)

2 }).

Proof. Given a data stream S ′ = x1, x2, . . . , xm, where each xi ∈ {1, . . . , n′}, we define a
graph stream S for a weighted graph G on n vertices, where n satisfies (n − 1)(n − 2)/2 <

n′ ≤ n(n − 1)/2. Let V = {0 . . . , n − 1} be the vertex-set of G. We first define a bijective
function χ : {(i, j) | i < j ∈ [n]−} −→ [ n(n−1)

2 ]. Let χ−1 be the inverse function of χ. Then,
we can translate S ′ to a general dynamic graph streaming S of underlying weighted graph
G by corresponding with xi the i-th element (χ−1(xi), 1) of S, for i ∈ [m]. Observe that
computing F∞ of S ′ is equivalent to computing a maximum weighted 1-matching for the
graph stream S of G. Let uv be a maximum weighted 1-matching of S, then χ(uv) is F∞ of
S ′. By Theorem 18, it follows that any randomized approximation streaming algorithm that
approximates the maximum weighted 1-matching of G to a 6

5 -factor with probability at least
2/3 uses space Ω({m, (n−1)(n−2)

2 }), thus completing the proof. ◀

ISAAC 2021



48:16 Near-Optimal Streaming Algorithms for Graph Matching

References
1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,

and subgraphs. In Proceedings of the 31st ACM Symposium on Principles of Database Systems
(PODS ’12), pages 5–14, 2012.

2 KookJin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation clustering in data streams. In Proceedings of the 32nd International Conference
on Machine Learning (ICML ’15), pages 2237–2246, 2015.

3 J. Alman and H. Yu. Faster update time for turnstile streaming algorithms. In Proceedings of
the 31st annual ACM-SIAM symposium on Discrete algorithms (SODA ’20), pages 1803–1813,
2020.

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’17), pages 1723–1742, 2017.

5 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’16), pages
1345–1364, 2016.

6 Jianer Chen, Ying Guo, and Qin Huang. Linear-time parameterized algorithms with limited
local resources. arXiv preprint, 2020. arXiv:2003.02866.

7 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Proceed-
ings of the 27th annual ACM-SIAM symposium on Discrete algorithms (SODA ’16), pages
1326–1344, 2016.

8 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, and
Morteza Monemizadeh. New streaming algorithms for parameterized maximal matching
and beyond. In Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA ’15), pages 56–58, 2015.

9 Rajesh Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza Monemizadeh.
Parameterized streaming: Maximal matching and vertex cover. In Proceedings of the 2015
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’15), pages 1234–1251, 2015.

10 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model.
In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 205–214.
ACM, 2009.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT press, 2009.

12 Graham Cormode and Donatella Firmani. A unifying framework for ℓ0-sampling algorithms.
Distributed and Parallel Databases, 32(3):315–335, 2014.

13 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

15 Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2005.
16 Stefan Fafianie and Stefan Kratsch. Streaming kernelization. In Proceedings of the 39th

International Symposium on Mathematical Foundations of Computer Science 2014 (MFCS
’14), pages 275–286, 2014.

17 Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’90), pages 434–443. SIAM, 1990.

18 Harold N. Gabow. Data structures for weighted matching and extensions to b-matching and
f-factors. ACM Transactions on Algorithms, 14(3), 2018.

http://arxiv.org/abs/2003.02866


J. Chen, Q. Huang, I. Kanj, Q. Li, and G. Xia 48:17

19 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’12), pages 468–485, 2012.

20 Ashish Goel, Michael Kapralov, and Ian Post. Single pass sparsification in the streaming
model with edge deletions. arXiv preprint, 2012. arXiv:1203.4900.

21 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’13), pages
1679–1697, 2013.

22 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’14), pages 734–751, 2014.

23 Michael Kapralov and David Woodruff. Spanners and sparsifiers in dynamic streams. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing (PODC
’14), pages 272–281, 2014.

24 Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in two-
party communication. In Proceedings of the 40th International Colloquium on Automata,
Languages, and Programming (ICALP ’13), pages 637–649, 2013.

25 K. Larsen, J. Nelson, and H. Nguyen. Time lower bounds for nonadaptive turnstile streaming
algorithms. In Proceedings of the 47st Annual ACM Symposium on Theory of Computing
STOC’15, pages 803–812. ACM, 2015.

26 Roie Levin and David Wajc. Streaming submodular matching meets the primal-dual method.
arXiv preprint, to appear in SODA ’21, 2020. arXiv:2008.10062.

27 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. A linear-time algorithm
for maximum-cardinality matching on cocomparability graphs. SIAM Journal on Discrete
Mathematics, 32(4):2820–2835, 2018.

28 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. The power of linear-time data
reduction for maximum matching. Algorithmica, 82(12):3521–3565, 2020.

29 Peter B. Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. Journal of Computer and System Sciences, 57(1):37–49,
1998.

30 Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press,
2nd edition, 2017.

31 Ami Paz and Gregory Schwartzman. A (2+ϵ)-approximation for maximum weight matching
in the semi-streaming model. ACM Transaction on Algorithms, 15(2):18:1–18:15, 2019.

32 Tim Roughgarden. Communication complexity (for algorithm designers). arXiv preprint, 2015.
arXiv:1509.06257.

33 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

34 M. Thorup and Y. Zhang. Tabulation-based 5-independent hashing with applications to linear
probing and second moment estimation. SIAM J. Comput., 41(2):293–331, 2012.

35 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

ISAAC 2021

http://arxiv.org/abs/1203.4900
http://arxiv.org/abs/2008.10062
http://arxiv.org/abs/1509.06257

	1 Introduction
	2 Preliminaries
	3 Algorithms in Insert-Only Streaming Model
	4 The Toolkit
	5 Algorithms in Dynamic Streaming Model
	6 Lower Bound
	7 Concluding Remarks

