
Nearly-Tight Lower Bounds for Set Cover and
Network Design with Deadlines/Delay
Noam Touitou
Tel Aviv University, Israel

Abstract
In network design problems with deadlines/delay, an algorithm must make transmissions over time
to satisfy connectivity requests on a graph. To satisfy a request, a transmission must be made that
provides the desired connectivity. In the deadline case, this transmission must occur inside a time
window associated with the request. In the delay case, the transmission should be as soon as possible
after the request’s release, to avoid delay cost.

In FOCS 2020, frameworks were given which reduce a network design problem with dead-
lines/delay to its classic, offline variant, while incurring an additional competitiveness loss factor of
O(log n), where n is the number of vertices in the graph. Trying to improve upon this loss factor is
thus a natural research direction.

The frameworks of FOCS 2020 also apply to set cover with deadlines/delay, in which requests
arrive on the elements of a universe over time, and the algorithm must transmit sets to serve them.
In this problem, a universe of sets and elements is given, requests arrive on elements over time, and
the algorithm must transmit sets to serve them.

In this paper, we give nearly tight lower bounds for set cover with deadlines/delay. These lower
bounds imply nearly-tight lower bounds of Ω(log n/ log log n) for a few network design problems,
such as node-weighted Steiner forest and directed Steiner tree. Our results imply that the frameworks
in FOCS 2020 are essentially optimal, and improve quadratically over the best previously-known
lower bounds.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms; Theory of computation → Online algorithms

Keywords and phrases Network Design, Deadlines, Delay, Online, Set Cover

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.53

1 Introduction

Network Design with Deadlines

In network design problems with deadlines, one is given a set of connectivity requests. Each
connectivity request has an associated time window, starting with a release time and ending
with a deadline. The input also contains items, with associated costs; usually, these items
are some characteristic of a given graph, such as the edges or the nodes. A solution consists
of a set of transmissions, taking place at various points in time, where each transmission is
of some set of items. Such a solution is feasible if for every connectivity request, there exists
a transmission which occurs within the request’s time window, and provides the connectivity
desired by the request.

This general description captures many network design problems. Two concrete examples
are node-weighted Steiner forest and directed Steiner tree, both of which are considered in
this paper.

In node-weighted Steiner forest with deadlines, the items are the nodes of a given graph,
with associated costs. A connectivity request is of some pair of terminal nodes in the
graph, demanding that a connection be made between these nodes. A set of items (i.e.

© Noam Touitou;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

nodes) which satisfies a request must contain a path connecting the request’s terminal
nodes; such a set must be transmitted within the request’s time window to satisfy that
request.
In directed Steiner tree with deadlines, the items are the edges of a directed graph, with
associated costs. A unique node in the graph is designated as the root of the graph;
each connectivity request is of some terminal node, demanding its connection to the
root node. A set of items (i.e. edges) which satisfies a request must contain a directed
path connecting the request’s terminal node to the root. Such a satisfying set must be
transmitted within the request’s time window for the solution to be feasible.

Network design with deadlines has been studied in the online setting, in which the
algorithm constructs a solution as time advances, deciding at each point in time whether
(and what) to transmit at that time. Each request is revealed to the algorithm at the
request’s release time. In line with previous work, we consider the clairvoyant model, where
all parameters of the request are revealed at release time (in particular its deadline).

A more general model is network design with delay. In this model, each request has
a (nondecreasing, continuous) delay function in lieu of a deadline. Each request can be
served by a satisfying transmission after its release time. However, in addition to the cost of
transmissions, a solution must also pay the delay cost of each request – the value of its delay
function at the time of the earliest transmission which satisfies it (after its release time).
This model can easily be seen to generalize the deadline model.

In [8], a framework for network design problems with deadlines is presented. This
framework is in fact a polynomial-time reduction from online network design with deadlines
to offline, classic network design: given a γ-approximation algorithm for the offline problem,
the framework yields an O(γ log |U |)-competitive algorithm for the online problem with
deadlines, where U is the set of items. For most problems, in which the items are either the
nodes or edges of a given simple graph G = (V, E), we have that log |U | = O(log n) – we
only consider such problems in this paper. A similar framework for network design with
delay is also given in [8], also based on a reduction with O(log n) loss1.

In [8], a lower bound of Ω(
√

log n) is given on the competitiveness of any (randomized)
algorithm for specific network design problems (node-weighted Steiner tree and directed
Steiner tree). This implies that every reduction incurs a loss factor of Ω(

√
log n) (indeed,

this information-theoretic lower bound applies even when we allow exponential time, which
admits a 1-approximation for the offline problem). This leaves a quadratic gap between the
upper and lower bounds; a natural research question would be to close this gap. In this
paper, we give a negative answer to this question; in fact, we show that the framework of [8]
is essentially tight.

Set Cover with Deadlines

The lower bounds of Ω(
√

log n)-competitiveness for node-weighted Steiner tree and directed
Steiner tree stem from a lower bound for the problem of set cover with deadlines, which is
a special case of both problems. In the problem of set cover with deadlines, one is given a
universe which consists of a set of elements E and a collection S of subsets from E, where
the sets have costs. The input contains a set of requests, such that each request has an

1 The reduction for the delay case given in [8] is to the prize-collecting offline problem, a similar offline
problem which is almost always approximable to the same degree as the classic offline problem (up to
some small constant).

N. Touitou 53:3

associated element in E and a time window (release time and deadline). A solution consists
of a set of transmissions, each of which occurs at some point in time, and consists of some
set in S. A solution is feasible if the associated element of every request belongs to the set
of some transmission which occurs during the request’s time window. While not classically
considered a network design problem, the set cover with deadlines problem does conform
to the model of this paper: the sets are the items of the problem, and the requests are of
specific elements.

Set cover with deadlines is indeed a special case of both node-weighted Steiner forest
with deadlines and directed Steiner tree with deadlines, as seen by folklore reductions. In
both reductions, the set cover input is reduced to graph comprising a root node, “set” nodes
and “element” nodes, where the root node must connect to “element’ nodes through the “set”
nodes; see [8] for a full description of these reductions.

The best known lower bounds for competitiveness in the set cover with deadlines problem,
described in [3], are Ω(

√
log ℓ) and Ω(

√
log m), where ℓ and m are the number of elements

and the number of sets in the universe, respectively. In this paper, we improve these lower
bounds to Ω

(
log ℓ

log log ℓ

)
and Ω

(
log m

log log m

)
respectively.

1.1 Our Results
In this paper, we present lower bounds for three network design problems with deadlines
which are tight up to a log log factor. For set cover with deadlines or delay, where ℓ and m

are the number of elements and sets respectively, we prove the following theorem.

▶ Theorem 1.1. There exist Ω
(

log ℓ
log log ℓ

)
and Ω

(
log m

log log m

)
lower bounds on the competitiveness

on any randomized online algorithm for set cover with deadlines (or delay).

For node-weighted Steiner tree with deadlines and directed Steiner tree with deadlines or
delay, for a graph with n vertices, we prove the following theorems.

▶ Theorem 1.2. There exists an Ω
(

log n
log log n

)
lower bound on the competitiveness on any

randomized online algorithm for node-weighted Steiner tree with deadlines (or delay).

▶ Theorem 1.3. There exists an Ω
(

log n
log log n

)
lower bound on the competitiveness on any

randomized online algorithm for directed Steiner tree with deadlines (or delay).

The lower bounds of Theorems 1.1–1.3 are nearly tight – the framework of [8] implies
O(log n)-competitive algorithms for both node-weighted Steiner forest with deadlines and
directed Steiner tree with deadlines, as well as O(log m)- and O(log ℓ)-competitive algorithms
for set cover with deadlines2.

We prove the lower bounds of Theorems 1.1–1.3 for the deadline case only; as deadlines
are a special case of delay, the lower bounds apply to the delay model as well.

1.2 Our Techniques
The lower bounds of this paper stem from describing a sequence of adversaries (A0,A1, · · ·)
for set cover with deadlines. As we advance in this sequence, we describe adversaries that
use a larger universe, and force a worse a competitive ratio on the online algorithm. The
growth rate of the universe (ℓ and m) together with the growth rate of the competitive ratio
yields the desired lower bound.

2 Note that the O(log ℓ)-competitive algorithm is not a direct application of the framework of [8], but
requires a simple observation.

ISAAC 2021

53:4 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

We construct each adversary Ai recursively from the description of Ai−1. The universe
of Ai, the elements Ei and sets Si, consists of multiple copies of Ei−1 and Si−1, but these
copies are interleaved in a way that creates increasing difficulty for the algorithm with each
iteration. As for requests, Ai makes recursive calls to Ai−1 on copies of Ei−1 (which appear
inside Ei) which have the structure of Ai−1 locally – specifically, restricting the sets of Si to
this copy of Ei−1 yields a copy of Si−1.

While the recursive nature of the construction is similar to the adversary in [3], the
underlying idea is different: in [3], the main idea of the adversary was to present the algorithm
with two options for sets, an “expensive” option (which serves some additional long-term
requests) and a “cheap” option (which only serves the most urgent requests). The idea
was to exploit the fact that the algorithm doesn’t know whether investing in preparation
for the future would pay off. However, our construction relies on a different principle – we
present the algorithm with many different options for sets (the number of which grows
logarithmically with the universe), the costs of which are identical (i.e. there is no cheap
option). The online algorithm will either pick some small number of these options (in which
case it would probably miss the correct one), or pick many of these options (which would be
very expensive compared to the optimal solution).

1.3 Related Work
Classic online variants for network design problems have been studied extensively in the past.
In such variants, the requests arrive over a sequence, and the items are bought rather than
transmitted, such that a bought item can be used until the end of the input sequence. Some
such problems were studied in [26, 23, 9, 29, 24, 1].

The relationship between this classic online and network design with deadlines is inter-
esting: the clairvoyant deadlines model, considered in this paper, is more closely related to
the offline problem (as shown in [8]), and can be much easier than the classic online variant.
However, the nonclairvoyant deadlines model, where the deadline becomes known only at
the end of the request’s time window, is as hard as the classic online variant: the reduction
showing this for set cover appears in [3].

The online set cover with deadlines/delay problem was first presented by Carrasco et
al. [19], who gave tight upper- and lower-bounds of logarithmic competitiveness in the
number of requests in the input. In [3], bounds referring to the size of universe (sets and
elements) were given, including an O(log ℓ log m)-competitive algorithm. This upper bound
of O(log ℓ log m) applies to the nonclairvoyant setting. As nonclairvoyant set cover with
deadlines/delay generalizes the classic online set cover, this algorithm is thus optimal for the
class of polynomial, randomized algorithms, conditioned on NP ⊊ BPP [28].

A specific network design problem which was previously considered is facility location with
deadlines/delay. In this problem, requests arrive on the nodes of a graph, and a transmission
consists of a facility at some node, to which some pending requests are connected. In [7],
O(log2 n)-competitive randomized algorithms for facility location with deadlines/delay were
presented, which only worked for the uniform case (i.e. identical facility opening costs), where
n is the number of nodes in the graph. These results were then improved to deterministic
O(log n)-competitive algorithms for both deadlines and delay in [8].

Another network design problem with deadlines/delay is multilevel aggregation, which is
in fact Steiner tree with deadlines/delay where the underlying metric space is a tree. This
problem was first presented by Bienkowski et al. [10], as a generalization to the previously
studied TCP acknowledgement [20, 27, 17] and joint replenishment [18, 15, 11] problems.
The algorithm of Bienkowski et al. had competitiveness which was exponential in the depth
of the tree D. This was first improved to O(D) for the deadline case by Buchbinder et al. [16]
and then to O(D2) for the general delay case by [7].

N. Touitou 53:5

Other problems with deadlines/delay, outside of network design, have also seen significant
interest. The k-server problem with delay was presented in [5], and studied in [14, 7, 25].
Interestingly, this problem is related to the network design problem of multilevel aggregation,
as discussed in [7].

Min-cost perfect matching with delays, presented in [21] is another such problem. This
problem is only tractable for specific delay functions (e.g. linear and concave), and is studied
in [2, 22, 21, 4, 12, 13, 6].

2 Preliminaries

Since our results for node-weighted Steiner forest and directed Steiner tree stem from our
result for set cover through a folklore reduction, we only provide a formal description for set
cover with deadlines.

Set cover with deadlines

In the set cover with deadlines problem, one is given a universe which consists of elements E

and a collection of sets S, such that s ⊆ E for every s ∈ S. In addition, each set s ∈ S has a
cost c(S). Additionally, the input contains a set of requests Q. Each request q ∈ Q has an
associated element eq ∈ E, a release time rq and a deadline dq (such that rq < dq).

A solution for the input is some collection of (instantaneous) transmissions {T1, · · · , Tk}
at various points in time, such that each transmission is of some set sT . The cost of this
solution is

∑k
i=1 c(sTi

), i.e. the sum of costs of transmitted sets. Note that a set can be
transmitted more than once in a solution; in this case, the set’s cost is incurred more than
once. A solution is feasible if for each request q ∈ Q, there exists a transmission T at some
time between rq and dq such that eq ∈ sT . In words, a set containing the element requested
by q must be transmitted within q’s time window.

Rigorously, the events at time t occur in the following order: first, any transmitted sets
at t serve pending requests; then, any request q with rq = t is released. Thus, in order to
serve a request q, a transmission must take place in the half-open time window (rq, dq]. We
remark that the results of this paper hold for any choice of order, and that our specific order
is chosen for ease of presentation. (Indeed, our lower bound can be stated with distinct
release/deadline times, which would bypass this issue.)

The online setting

An online algorithm receives the universe (i.e. E, S and {c(s)}s∈S) up front, while the requests
Q are revealed to the algorithm as time advances. Specifically, each request q ∈ Q appears
to the online solution only upon its release time rq. We consider the clairvoyant model, in
which all parameters of the request q are revealed at rq (in particular its deadline dq).

At any point in time, the algorithm is allowed to make a transmission T of any set s

(thus incurring a cost of c(s)).

3 Lower Bound for Set Cover

In this section, we describe and analyze an oblivious adversary for set cover with deadlines,
which we then use to prove Theorems 1.1–1.3.

ISAAC 2021

53:6 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

We define the sequence (ℓi)∞
i=0 recursively by ℓ0 := 1 and by ℓi := (6i + 1)ℓi−1 for i > 0.

Similarly, we define the sequence (mi)∞
i=0 recursively by m0 := 1 and by mi := 4i ·mi−1 for

i > 0. We prove the following lemma.

▶ Lemma 3.1. For every index i, there exists an oblivious adversary Ai which generates a
set cover with deadlines instance on a universe with ℓi elements and mi sets, such that any
deterministic algorithm is at least Ω(i)-competitive against Ai.

Lemma 3.1, together with Yao’s principle and some folklore reductions, is later used to
prove Theorems 1.1–1.3.

3.1 The Set Cover Adversary
To prove Lemma 3.1, we now introduce the oblivious adversary Ai. This adversary Ai

provides a universe with elements Ei and set collection Si. The adversary always provides
unweighted instances, i.e. the cost of every set in Si is always 1.

The Universe of Ai

In the base case of i = 0, we have a universe of a single element, (E0 = {e}) and a single set
(S0 = {s}).

For i > 0, we construct the universe of Ai recursively from the universe of Ai−1. Define
bi := 2i. The set Ei contains copies of elements from Ei−1. Specifically, each element
e ∈ Ei−1 has the following copies:
1. The copy es (define Es

i−1 := {es|e ∈ Ei−1}). This copy is called the special copy.
2. The bi copies ea,1, · · · , ea,bi (for every j, define Ea,j

i−1 :=
{

ea,j
∣∣e ∈ Ei−1

}
). These are

called the ancillary copies of elements.
3. The bi copies ep,1, · · · , ep,bi (for every j, define Ep,j

i−1 :=
{

ep,j
∣∣e ∈ Ei−1

}
). These are

called the positive copies of elements.
4. The bi copies en,1, · · · , en,bi (for every j, define En,j

i−1 :=
{

en,j
∣∣e ∈ Ei−1

}
). These are

called the negative copies of elements.
The elements of the instance of Ai are defined as

Ei := Es
i−1 ∪

 bi⋃
j=1

Ea,j
i−1

 ∪
 bi⋃

j=1
Ep,j

i−1

 ∪
 bi⋃

j=1
En,j

i−1


We can now observe that |Ei| = (3bi + 1)|Ei−1| = (6i + 1)|Ei|. Since |E0 = 1|, for every i we
have |Ei| = ℓi, as required by Lemma 3.1.

Figure 1 shows the elements of A0 (upper left), A1 (lower left) and A2 (right). Each
element in A1 and A2 is a copy of an element from the universe of the previous adversary;
each copy is special (purple), ancillary (brown), positive (blue) or negative (red).

As for the sets, each set s ∈ Si−1 has the following copies in Si:
1. The bi copies sp,1, · · · , sp,bi , such that

sp,j =
⋃
e∈s

{
es, ea,j , ep,j

}
(for each j, we define Sp,j

i−1 :=
{

sp,j
∣∣s ∈ Si−1

}
). These copies are called the positive copies

of sets.

N. Touitou 53:7

A0

A1

A2

Figure 1 The Elements of A0, A1 and A2.

2. The bi copies sn,1, · · · , sn,bi , such that

sn,j =
⋃
e∈s

{
en,j

}
∪

 ⋃
j′ ̸=j

{
ep,j′

}
(for each j, we define Sn,j

i−1 :=
{

sn,j
∣∣s ∈ Si−1

}
). These copies are called the negative

copies of sets.
Note that holds that |Si| = 2bi · |Si−1| = 4i · |Si−1|. Combined with the fact that |S0| = 1,
for every i we have |Si| = mi, as required by Lemma 3.1.

Figure 2 shows some (not all) of the sets in A0, A1 and A2. The gray set in S0 is the
only set of that universe. The blue and red sets in S1 are positive and negative copies of the
gray set, respectively. The purple set in S2 is a positive copy of the red set. The green set in
S2 is a negative copy of the blue set.

Request sequence of Ai

We now describe the sequence of requests generated by Ai.

Recursive calls to Ai−1

For i > 0, the adversary Ai relies on recursive calls to Ai−1. Note that the elements Ei

comprise copies of Ei−1 (Es
i−1, Ep,j

i−1, et cetera). Thus, for any copy E′
i−1 of Ei−1, it is

well-defined to call Ai−1 on E′
i−1: we release a request on a copy e′ ∈ E′

i−1 of e ∈ Ei−1
whenever a request is released on e by Ai−1.

ISAAC 2021

53:8 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

A0

A1

A2

Figure 2 Some Example Sets in A0, A1 and A2.

For abbreviation, we use the superscript denoting the copy of the elements on the
adversary. For example, calling Ap,j

i−1 means calling Ai−1 on the copy Ep,j
i−1.

Adversary time bounds

As we would like to pack multiple recursive Ai−1 adversaries into one timeline, we would like
to bound each Ai−1 by some time interval, so that we can charge the algorithm for solving
each Ai−1 disjointly.

Define Ti for i ≥ 0 recursively by T0 = 1 and Ti = 2bi · Ti−1. Informally, Ti defines a
time interval which contains Ai; formally, each request q which Ai can possibly release has
[rq, dq] ⊆ [0, Ti] (this can be verified for the construction of Ai we describe next).

Requests of Ai

For the case that i = 0, the adversary releases at time 0 a single request q on the single
element in E0, such that dq = 1.

For the case of i > 0, the adversary Ai is given in Procedure 1; we now provide a verbal
description of that procedure. The adversary Ai uses bi phases, each of which takes 2Ti−1
time, and makes two recursive calls to Ai−1. In the beginning of each phase k, “background”
requests are released on the elements in some positive copies of Ei−1, with deadlines at the
end of the phase (i.e. 2Ti−1 time after release). These requests are released on copies of Ei−1
whose index is in some set M , where M initially consists of all bi indices of positive copies of
Ei−1. In the first half of each phase, i.e. the first Ti−1 time units, Ai calls As

i−1 (and waits
Ti−1 time for its completion). Then, Ai chooses an index jk to remove from M , and calls
An,jk

i−1 which occurs in the second half of the phase.

N. Touitou 53:9

Intuitive Explanation

The intuition behind this construction of Ai is the following. When the online algorithm
handles the first recursive call in a phase, it has some choices to make. First, it has the
standard choices to make when addressing Ai−1 – that is, which sets from Si−1 to transmit.
In addition, for each set in Si−1 that it wishes to transmit, it must choose the appropriate
copy from Si. Note that the only copies of a set s ∈ Si−1 which can be used to solve As

i−1
are the positive copies, i.e. sp,j for some index j; moreover, since this first recursive call
is on the special copies, all choices of j are possible. (The purpose of the special copies is
exactly this: to be at the intersection of positive copies of sets, and force the algorithm to
make a choice.)

However, transmitting these positive copies of sets serves an additional purpose – serving
the background requests on M . For this reason, the online algorithm should choose to
transmit sp,j for some j ∈M . But note that for earlier phases, the set M is rather large –
its size is Ω(i). The size of M prohibits the algorithm from transmitting every positive copy
in M of every set – otherwise, the algorithm would incur a great cost. Instead, the algorithm
must focus on a small subset of M , which leaves many background requests unsatisfied.

The optimal solution, on the other hand, is provided a “shortcut”: it uses the second
recursive call of the phase, which is to An,jk

i−1 , to serve all background requests except for
those on Ep,jk

i−1 . The requests on Ep,jk

i−1 are served by the optimal solution in the first recursive
call to As

i−1, where the solution only transmits copies from Sp,jk

i−1 . Note that such efficient
handling of the background requests cannot be achieved by the online algorithm, since it
does not have knowledge of jk during the first half of phase k.

Near the end of a phase, when the online algorithm has (with high probability) a large
amount of pending background requests to serve, the algorithm must incur the cost of an
(offline) set cover for those pending requests; the only purpose of ancillary element copies
is to keep the cost of this offline cover large, which ensures high costs for the algorithm.
(Specifically, the ancillary element copies ensure that each positive set copy s has an element
unique to s, which forces s to be part of the offline set cover; this is used in Proposition 3.4.)

Procedure 1 Adversary Ai.

1 Function CreateInstance
2 Start with M ← {1, 2, · · · , bi}.
3 for k from 1 until bi do

// Start phase k at time 2(k − 1)Ti−1, by releasing background requests and
calling As

i−1.
4 For every j ∈M , release a request on every element in Ep,j

i−1, with a deadline
that’s 2Ti−1 time in the future.

5 Call As
i−1 and wait Ti−1 time until its completion.

// Ti−1 time after the start of phase k, call the second Ai−1 on a random
negative copy of Ei−1.

6 Choose jk ∈M uniformly at random from M .
7 Call An,jk

i−1 and wait Ti−1 time until its completion.
8 Set M ←M\{jk}.

The timeline of a possible instance created by A2 is shown in Figure 3. This figure shows
b2 = 4 phases, each of which contains two calls to Ai−1. In this figure, A2 randomly chose the
permutation (4, 2, 1, 3) of the elements of [b2]. The arrows above each phase show the release

ISAAC 2021

53:10 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

Figure 3 Request Timeline of A2.

times and deadlines of background requests – these requests are released at the beginning of
each phase, and have deadlines at the end of the phase. Above the arrows are the sets of
elements on which background requests are released.

3.2 Analysis
We now analyze the adversary described above, thus proving Lemma 3.1.

The Optimal Solution
The following lemma describes the optimal solution for instances generated by the adversary
Ai. Not only do they have a low cost relative to the algorithm, but they also buy every set
exactly once, which is useful due to recursion.

▶ Lemma 3.2. For every i, and for every instance generated by Ai, there exists an offline
solution that buys every set in Si exactly once, and thus has cost mi.

Proof. The proof is by induction on i. For i = 0, the adversary Ai releases a single request
on a single element at time 0, with deadline at time 1. Thus, transmitting the single set in
m at any time during the interval (0, 1] is a feasible solution.

Assume that the lemma holds for Ai−1 – i.e. there exists an offline solution sol which
buys every set in Si−1 exactly once.

Now, consider an instance generated by Ai. This instance was generated in bi phases,
each associated with some index in [bi] (the index chosen randomly by Ai in this phase).
These indices form a permutation on the elements of [bi], and we write them as a sequence
(jk)bi

k=1, such that jk is the index chosen by Ai in phase k.
We now describe an offline solution for the instance generated by Ai. Upon phase k,

consider the call to As
i−1 in the beginning of the phase. In the original universe of Ai−1,

i.e. Ei−1 and Si−1, the induction hypothesis implies that there exists an offline solution sol
for this instance which transmits every set of Si−1 exactly once. Thus, a solution for As

i−1
would be to transmit any positive copy of the set s whenever sol transmits s. Our offline
solution to Ai will transmit only the positive copies of index jk, i.e. sp,jk instead of s.

As for the call to An,jk

i−1 , which is the second recursive call in phase k, we use a similar
argument: we use the offline solution sol for Ai−1 in the original universe of Ai−1, and
transmit sn,jk whenever sol transmits j.

Observe that this offline solution for the instance generated by Ai is feasible:
The requests inside recursive calls to Ai are satisfied from the induction hypothesis.
The requests outside recursive calls, i.e. the background requests released in the beginning
of the phase, are also satisfied: in each phase k, we transmit all sets in Sp,jk

i−1 (which satisfy
all requests on Ep,jk

i−1) and Sn,jk

i−1 (which satisfy all requests on Ep,j
i−1 for every j ̸= jk).

N. Touitou 53:11

Now note that all sets in Si are bought exactly once: this is since in phase k the algorithm
buys all sets from Sp,jk

i−1 and Sn,jk

i−1 exactly once (and no other sets). Since (jk)bi

k=1 are a
permutation of [bi], this yields the desired claim. ◀

The Cost of the Algorithm
We now bound the expected cost of the algorithm. For every i, define ci := i

8 . The main
result here is the following lemma.

▶ Lemma 3.3. For every i, and for every deterministic online algorithm ALG against the
adversary Ai, it holds that the expected cost of the algorithm during the interval (0, Ti] is at
least ci ·mi (where the expectation is over the random choices of Ai).

We prove Lemma 3.3 by induction. For the base case of i = 0, note that this trivially
holds for Ai: the algorithm must transmit a set during (0, 1] at cost 1, which is more than
1
8 . For every i > 0, assuming that the lemma holds for i − 1, we prove the lemma for Ai.
We also henceforth fix ALG to be the online deterministic algorithm which runs against
the adversary Ai. Slightly abusing notation, we also use ALG to refer to the cost of the
online algorithm during the interval (0, Ti]; indeed, costs outside this interval are irrelevant
to Lemma 3.3.

First, we show an important property of the universe of Ai. For every universe with
elements E and sets S, denote by sc(E, S) the cost of the optimal (classic, offline) set cover
solution for this universe. For all (reasonable) universes, buying all sets is a feasible set cover
solution; Proposition 3.4 shows that for the universe of Ai, buying all sets is in fact the only
solution.

▶ Proposition 3.4. For every i, it holds that sc(Ei, Si) = mi.

Proof of Proposition 3.4. Clearly, buying each set in Si is a feasible solution of cost mi. It
now show that each set must be bought, which proves the proposition. To this end, we prove
that for each set s ∈ Si there exists an element e ∈ Ei such that e is in s, but in no other set
in Si. If this indeed holds for each s ∈ Si, each set must be bought, completing the proof.

We prove this claim by induction on i. For the base case of i = 0 this trivially holds.
Now, for i > 0, assume that for each set s̄ ∈ Si−1 there exists an element in Ei−1 which is in
s̄ and in no other set in Si−1.

Now, consider any set s ∈ Si. This set is a copy of some set s̄ ∈ Si−1, for which the
induction hypothesis provides an element ē ∈ Ei−1 which is in s̄ and not in any other set
in Si−1.
1. If s is a positive copy of s̄, i.e. s = s̄p,j for some j, then observe the element e := ēa,j ∈ Ei.

It holds that e is in s but in no other set in Si.
2. If s is a negative copy of s̄, i.e. s = s̄n,j for some j, then observe the element e := ēn,j ∈ Ei.

It holds that e is in s but in no other set in Si

This completes the proof of the claim, and thus the proposition. ◀

Note again that Proposition 3.4 refers to the offline cost of covering the universe of Ai;
this is not the same as the cost of the optimal solution against Ai (for example, ancillary
copies in the universe are never requested by Ai, and are only useful for future recursion).

We would now like to give a lower bound for the expected cost of the algorithm at each
phase. For every phase k, let ALGk be the cost of ALG during the phase k, i.e. during the
time interval ((2k − 2)Ti−1, 2kTi−1].

ISAAC 2021

53:12 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

▶ Lemma 3.5. For every phase k, it holds that:
1. If k ≤ bi

2 , then E[ALGk] ≥
(
ci−1 + 1

4
)
· 2mi−1

2. If k > bi

2 , then E[ALGk] ≥ ci−1 · 2mi−1

Proof. Fix any phase k, which starts at time τ := 2(k − 1) · Ti−1. For this proof, fix the
set of random choices made by Ai until the start of phase k; henceforth in the proof the
expectations are thus only on random choices from phase k onwards. Since we bound the
expected cost of the algorithm for every possible set of choices made up to phase k by Ai,
this lower bound also applies in expectation over those choices.

Let M denote the value of the variable of the same name in Ai at the beginning of phase
k (recall that M ⊆ [bi] is a set of indices). Since we have fixed the random choices of Ai

before phase k, the set M is some fixed set.
We divide the transmissions made by the algorithm during the phase into three disjoint

parts:
Part P1: transmissions of positive sets during (τ, τ + Ti−1] (the first half of the phase).
Part P2: transmissions of negative sets from Sn,jk

i−1 during (τ + Ti−1, τ + 2Ti−1] (the
second half of the phase).
Part P3: transmissions not in P1, P2.

We denote the number of transmissions in Pℓ (equivalently: the total cost of such transmis-
sions) by Cℓ.

Part P1. Observe that the positive sets are the only sets that can be used for As
i−1 in

the first part of the phase. Also note that intersecting all positive sets with Es
i−1 yields a

collection of sets which is identical to Si−1; that is, for every set s ∈
⋃

j Sp,j
i−1, there exists a

set s′ ∈ Si−1 such that

s ∩ Es
i−1 = {es|e ∈ s′}

(specifically, the set s′ is such that s is a positive copy of s′)
Thus, covering the elements of Es

i−1 with these sets is as hard as covering the elements of
Ei−1 with Si−1. Now, recall the induction hypothesis made for Lemma 3.3, which implied
that the expected cost of this part of the algorithm is at least ci−1 ·mi−1.

Part P2. Note that the sets of Sn,jk

i−1 are the only sets that contain elements from En,jk

i−1 ,
and are thus the only sets that can be used to serve An,jk

i−1 . Also note that intersecting the
sets of Sn,jk

i−1 with the elements En,jk

i−1 yields a collection of sets which is identical to Si−1 (in
a similar way to the argument for P1) We can thus again apply the induction hypothesis,
and see that the expected cost of the algorithm in buying the sets of Sn,jk

i−1 must be at least
ci−1 ·mi−1.

Combining Parts P1 and P2, we have

E[C1] + E[C2] ≥ ci−1 · 2mi−1 (1)

Equation (1) immediately implies the second claim of this lemma. It remains to prove
the first claim.

Assume henceforth that k ≤ bi

2 . If it holds that E[C1] ≥ bi

4 ·mi−1, then since bi

4 ·mi−1 =
i
2 ·mi−1 ≥

(
ci−1 + 1

2
)
mi−1, we have E[C1] + E[C2] ≥

(
ci−1 + 1

4
)
· 2mi−1, which completes

the proof of the second claim.
We therefore assume henceforth that E[C1] < bi

4 ·mi−1.

N. Touitou 53:13

Part P3. Consider the background requests of phase k which were released on Ep,j
i−1, for any

index j ∈ M . As the restriction of Si to Ep,j
i−1 is identical to Si−1, Proposition 3.4 implies

sc
(

Ep,j
i−1, Si

)
= mi−1. Thus, the algorithm has to transmit at least mi−1 sets that contain

elements from Ep,j
i−1 during the phase.

Consider the sets transmitted in Part P1. These sets are all positive sets. Each such
positive set sp,j , for some j, does not contain any positive elements outside Ep,j

i−1. Denote by
Cj

1 the number of sets from Sp,j
i−1 transmitted in P1, such that C1 =

∑
j Cj

1 . Then we know
that for each j ∈M we have that in P2 and P3 together, there must be at least mi−1 − Cj

1
transmissions of sets containing elements from Ep,j

i−1.
Now, observe that choosing j = jk, Part C2 transmits only sets from Sn,jk

i−1 , which do not
contain elements from Ep,jk

i−1 . This thus yields a lower bound of C3 ≥ mi−1 − Cjk

1 .
Overall, we have that:

E[C3] ≥
∑
j∈M

Pr(jk = j) · E
[
mi−1 − Cj

1

∣∣∣jk = j
]

= 1
|M |

∑
j∈M

(
mi−1 − E

[
Cj

1 |jk = j
])

= 1
|M |

∑
j∈M

(
mi−1 − E

[
Cj

1

])
= mi−1 −

1
|M |

E[C1] ≥ mi−1 −
2
bi
E[C1] ≥ mi−1

2

The second equality is due to the fact that Cj
1 is independent of the choice of jk (indeed, the

choice of jk only affects the input from time τ + Ti−1). The second inequality is from the fact
that k ≤ bi

2 , which implies that |M | ≥ bi

2 . The third inequality is from E[C1] < bi

4 ·mi−1.
Combining this with Equation (1), we obtain

E[C1] + E[C2] + E[C3] ≥ 2ci−1 ·mi−1 + mi−1

2 =
(

ci−1 + 1
4

)
· 2mi−1 ◀

Proof of Lemma 3.3. It holds that

E[ALG] =
bi∑

k=1
E[ALGk] ≥ bi

2

(
ci−1 + 1

4

)
· 2mi−1 + bi

2 ci−1 · 2mi−1

=
(

ci−1 + 1
8

)
2bi ·mi−1 = cimi

where the first inequality is due to applying Lemma 3.5 to the phases (using the stronger
claim for the earlier phases and the weaker claim for the later phases), and the final equality
uses the fact that mi = 2bi ·mi−1. ◀

Proof of Lemma 3.1. The lemma results immediately from Lemmas 3.2 and 3.3. ◀

3.3 Proofs of Theorems
We now use the construction above to prove the main theorems of this paper.

Proof of Theorem 1.1. Lemma 3.1 implies that any deterministic algorithm is Ω(i)-
competitive against Ai, which uses a universe of ℓi elements and mi sets. Yao’s principle
now implies that for every randomized online algorithm, there exists an instance with ℓi and
mi on which its competitive ratio is Ω(i).

For the set-based bound, note that mi = 4i · i! ≤ (4i)i, which implies i ≥ log mi

4 log i . Now
observe that mi ≥ 2i and thus i ≤ log mi. Together with the previous observation, we have
that i = Ω

(
log mi

log log mi

)
, which yields the desired Ω

(
log m

log log m

)
-competitiveness lower bound.

For the element-based bound, note that 2i ≤ ℓi ≤ (7i)i. A similar argument thus yields
that i = Ω

(
log ℓi

log log ℓi

)
, which gives us the Ω

(
log ℓ

log log ℓ

)
-competitiveness lower bound. ◀

ISAAC 2021

53:14 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

Proofs of Theorems 1.2 and 1.3. There exist folklore reductions from set cover to node-
weighted Steiner tree and directed Steiner tree, which reduce a set cover instance with ℓ

elements and m sets to graphs with ℓ + m + 1 nodes. These reductions carry over to the
deadline/delay setting (for a detailed description of these reductions, see e.g. [8]).

Now, Ai as described for set cover yields a graph with ℓi + mi + 1 nodes, which is at
most 3 · (7i)i nodes (and more than 2i nodes). Lemma 3.1, together with argument identical
to the proof of Theorem 1.1, yield an Ω

(
log n

log log n

)
on the competitiveness of any randomized

algorithm. ◀

4 Discussion and Open Problems

In this paper, we presented nearly-logarithmic lower bounds on competitiveness for some
network design problems with deadlines (which therefore also apply to the delay cases). In [8],
a framework is shown which solves every network design with deadlines problem using an
approximation algorithm for the corresponding offline problem, losing a logarithmic factor in
competitiveness; our results thus show that this logarithmic factor is nearly optimal.

However, the problems we consider in this paper might be tougher than other network
design problems with deadlines. While our paper shows that logarithmic loss in approximation
ratio is necessary for the general case, there exist many network design problems for which
no superconstant lower bound on competitiveness exists. Examples of such problems with
deadlines are (edge-weighted) Steiner tree and Steiner forest, facility location, and multicut.
Resolving the competitive ratio for these problems remains an interesting open problem.

References
1 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general

approach to online network optimization problems. ACM Trans. Algorithms, 2(4):640–660,
2006. doi:10.1145/1198513.1198522.

2 Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul M.
Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with
delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages
1:1–1:20, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.1.

3 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay –
clairvoyance is not required. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.8.

4 Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. In
Approximation and Online Algorithms – 16th International Workshop, WAOA 2018, Hel-
sinki, Finland, August 23-24, 2018, Revised Selected Papers, pages 21–35, 2018. doi:
10.1007/978-3-030-04693-4_2.

5 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 551–563, 2017. doi:10.1145/3055399.
3055475.

6 Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays
problem. CoRR, abs/2011.02017, 2020. arXiv:2011.02017.

7 Yossi Azar and Noam Touitou. General framework for metric optimization problems with
delay or with deadlines. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 60–71, 2019.
doi:10.1109/FOCS.2019.00013.

https://doi.org/10.1145/1198513.1198522
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.1
https://doi.org/10.4230/LIPIcs.ESA.2020.8
https://doi.org/10.1007/978-3-030-04693-4_2
https://doi.org/10.1007/978-3-030-04693-4_2
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1145/3055399.3055475
http://arxiv.org/abs/2011.02017
https://doi.org/10.1109/FOCS.2019.00013

N. Touitou 53:15

8 Yossi Azar and Noam Touitou. Beyond tree embeddings – a deterministic framework for
network design with deadlines or delay. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1368–1379.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00129.

9 Piotr Berman and Chris Coulston. On-line algorithms for steiner tree problems (extended ab-
stract). In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 344–353, New York, NY, USA, 1997. ACM. doi:10.1145/258533.258618.

10 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Veselý. Online algorithms for
multi-level aggregation. In 24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark, pages 12:1–12:17, 2016. doi:10.4230/LIPIcs.ESA.2016.12.

11 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and Jirí
Sgall. Better approximation bounds for the joint replenishment problem. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 42–54, 2014. doi:10.1137/1.9781611973402.4.

12 Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual online
deterministic algorithm for matching with delays. In Approximation and Online Algorithms –
16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-24, 2018, Revised
Selected Papers, pages 51–68, 2018. doi:10.1007/978-3-030-04693-4_4.

13 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine: De-
terministic online matching with delays. In Approximation and Online Algorithms – 15th
International Workshop, WAOA 2017, Vienna, Austria, September 7-8, 2017, Revised Selected
Papers, pages 132–146, 2017. doi:10.1007/978-3-319-89441-6_11.

14 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line.
In Structural Information and Communication Complexity – 25th International Colloquium,
SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, pages
237–248, 2018. doi:10.1007/978-3-030-01325-7_22.

15 Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgment: How much to wait? Algorithmica, 64(4):584–605,
2012. doi:10.1007/s00453-011-9567-5.

16 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 1235–1244, 2017. doi:10.1137/1.9781611974782.80.

17 Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for max-
imizing ad-auctions revenue. In Algorithms – ESA 2007, 15th Annual European Sym-
posium, Eilat, Israel, October 8-10, 2007, Proceedings, pages 253–264, 2007. doi:10.1007/
978-3-540-75520-3_24.

18 Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008, pages 952–961, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347186.

19 Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set aggreg-
ation problem. In LATIN 2018: Theoretical Informatics – 13th Latin American Sym-
posium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 245–259, 2018.
doi:10.1007/978-3-319-77404-6_19.

20 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic acknowledgment
delay: Theory and practice (extended abstract). In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 389–398,
1998. doi:10.1145/276698.276792.

ISAAC 2021

https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1145/258533.258618
https://doi.org/10.4230/LIPIcs.ESA.2016.12
https://doi.org/10.1137/1.9781611973402.4
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/978-3-319-89441-6_11
https://doi.org/10.1007/978-3-030-01325-7_22
https://doi.org/10.1007/s00453-011-9567-5
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-540-75520-3_24
http://dl.acm.org/citation.cfm?id=1347082.1347186
https://doi.org/10.1007/978-3-319-77404-6_19
https://doi.org/10.1145/276698.276792

53:16 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

21 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 333–344, 2016. doi:10.1145/2897518.
2897557.

22 Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays
for two sources. In Algorithms and Complexity – 10th International Conference, CIAC
2017, Athens, Greece, May 24-26, 2017, Proceedings, pages 209–221, 2017. doi:10.1007/
978-3-319-57586-5_18.

23 Dimitris Fotakis. On the competitive ratio for online facility location. Algorithmica, 50(1):1–57,
2008. doi:10.1007/s00453-007-9049-y.

24 Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi. Online and stochastic survivable
network design. SIAM J. Comput., 41(6):1649–1672, 2012. doi:10.1137/09076725X.

25 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

26 Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete
Math., 4(3):369–384, 1991. doi:10.1137/0404033.

27 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgment and other
stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.

28 Simon Korman. On the use of randomization in the online set cover problem. Master’s thesis,
Weizmann Institute of Science, 2005.

29 J. Naor, D. Panigrahi, and M. Singh. Online node-weighted steiner tree and related problems.
In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 210–219,
2011.

https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1007/978-3-319-57586-5_18
https://doi.org/10.1007/978-3-319-57586-5_18
https://doi.org/10.1007/s00453-007-9049-y
https://doi.org/10.1137/09076725X
https://doi.org/10.1145/3357713.3384277
https://doi.org/10.1137/0404033

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	3 Lower Bound for Set Cover
	3.1 The Set Cover Adversary
	3.2 Analysis
	3.3 Proofs of Theorems

	4 Discussion and Open Problems

