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—— Abstract

We present a linear space data structure for Dynamic Evaluation of k-CNF Boolean Formulas
which achieves O(mlfl/k) query and variable update time where m is the number of clauses in the
formula and clauses are of size at most a constant k. Our algorithm is additionally able to count the
total number of satisfied clauses. We then show how this data structure can be parallelized in the
PRAM model to achieve O(logm) span (i.e. parallel time) and still O(m'~*/*) work. This parallel
algorithm works in the stronger Binary Fork model.

We then give a series of lower bounds on the problem including an average-case result showing
the lower bounds hold even when the updates to the variables are chosen at random. Specifically,
a reduction from k—Clique shows that dynamically counting the number of satisfied clauses takes

2w—3
time at least n= 6 ‘/ﬁ—l—o(\@)’

where 2 < w < 2.38 is the matrix multiplication constant. We show

the Combinatorial k-Clique Hypothesis implies a lower bound of A=k A=0)

which suggests
our algorithm is close to optimal without involving Matrix Multiplication or new techniques. We
next give an average-case reduction to k-clique showing the prior lower bounds hold even when
the updates are chosen at random. We use our conditional lower bound to show any Binary Fork
algorithm solving these problems requires at least Q(log m) span, which is tight against our algorithm
in this model. Finally, we give an unconditional linear space lower bound for Dynamic k-CNF
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1 Introduction

Boolean formula evaluation is a fundamental problem in computer science. There are many
cases when one might want to evaluate the formula multiple times on related inputs. For
example some SAT solving algorithms evaluate all inputs within some small Hamming Ball
around certain variable settings, requiring many evaluations of a Boolean formula on very
similar inputs [39, 22, 35]. Another example is systems safety monitoring where one needs
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to check whether certain safety constraints have been violated [32, 18]. One may wonder
whether the new values in these settings can be calculated significantly faster than the time
it takes to reevaluate the entire formula.

In this paper we define a dynamically updating version of evaluating formulas on Boolean
variables in which variables are allowed to change value and the data-structure must maintain
whether the formula is still true and, in a harder version, the total number of currently
satisfied clauses. In particular, we are given a Boolean expression in k-CNF (where k is
taken to be a constant) with n variables and with m clauses. We achieve a sub-linear time
update cost for a generalized version of this problem, including counting the number of
satisfied clauses, and show a work-efficient parallelization (Section 3). We give lower bounds
on the space and time complexity of this problem, including a fine-grained average-case lower
bound when all the updates are given at random (Section 4). We find it exciting that these
average-case lower bounds are as strong as our worst case lower bounds, and that only a
small gap remains between those and our algorithmic upper bound.

The computational complexity of evaluating Boolean formulas has been well studied,
showing the problem is in ALOGTIME [17] and the related Boolean Circuit Evaluation
problem is complete for NC! [16]. There is even a classification of Boolean Formulas under
various families of allowed connectives [38]. Since we deal with formulas in k-CNF form, this
restriction of the problem would lie in ACO, as it is by definition depth 2. However, when
we consider the counting version in which we keep track of the number of clauses currently
satisfied, it must be outside ACO since it can trivially solve the Parity problem [25].

There has been significant work in the fine-grained complexity of dynamic problems
which give conditional lower bounds for a variety of problems such as dynamic shortest path,
graph connectivity, bipartite matching, max-flow, and graph diameter [37, 36, 3, 28, 20, 29].
Our results on the fine-grained complexity of Dynamic Boolean Formula Evaluation add
to this body of knowledge, more importantly it brings the field of average-case fine-grained
complexity to dynamic problems and data-structures. Although Alberts-Henzinger give
algorithms for some average-case dynamic problems [5], but we’re not aware of any work on
average-case lower bounds.

Common fine-grained complexity assumptions were used to establish the average-case
hardness of evaluating certain types of polynomials over finite fields in [7]. This was used
to show the average-case hardness of counting the number of k-cliques in certain easy to
sample random graphs [27]. This was then adapted to Erdés-Rényi random graphs in [14]
and to counting bicliques in [30]. More recently, hardness for evaluating lower dimensional
polynomials has been established from even weaker assumptions than those standard in
fine-grained complexity and these have been used to give average-case hardness for a variety
of problems such as Edit Distance and Max-Flow [21].

One of the goals of average-case fine-grained complexity is the development of fine-grained
cryptography where one hopes to actually prove cryptographic security from fine-grained
complexity assumptions and may offer cryptographic protocols that remain secure even if
more common cryptographic assumptions turn out to be false. One-way functions and public
key cryptography which is unconditionally secure against ACO circuits was shown in [24]. In
[8] fine-grained proof of work was shown from standard fine-grained complexity assumptions.
Finally, one-way functions and public key encryption were built based on the average-case
complexity of zero-k-clique [34].
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2 Preliminaries

We study the problem of dynamically updating queries to a Boolean formula. We define this
problem formally and then define the hypotheses from which we get lower bounds for this
dynamic problem. Note that in this paper we treat k as a constant.

» Definition 1. In Dynamic Boolean Formula Evaluation you are given a fized k-CNF
formula ¢ with m clauses and n variables. Further, the variables are given as an array &
and initially set to true. The objective is to maintain a data-structure which can answer
whether the formula evaluated on the current setting of the variables evaluates to true, subject
to updates which flip the value of a single variable. Specifically an update is given as a single
index i € [0,n — 1] indicating Z[i] =Z[i].

In the counting version of the problem, Counting Dynamic k-CNF Boolean Formula,
the query instead asks how many clauses are set false. In the parity version of the dynamic
formula evaluation problem the queries ask for the parity of the number of clauses set false.

2.1 Computational Hypotheses

We get computational lower bounds on the dynamic formula evaluation problem from variants
of the k-clique problem. In this context w is the matrix multiplication constant, that is, the
smallest real number such that an algorithm exists with running time O(n*+t°(1)) exists for
matrix multiplication. It is known that w € [2,2.37286] [6].

» Definition 2. The k-clique hypothesis states that the k-clique problem requires n®*/3—(k)

time with randomized or deterministic algorithms [2].

The next hypothesis has to do with combinatorial algorithms. These are an informally
defined set of algorithms which use only “combinatorial methods”, specifically excluding fast
matrix multiplication. Although informal, these lower bounds can help inform algorithm
design. In our case, the hypothesis will also allow for a better presentation of the reduction
and analysis. For a discussion of this hypothesis see [1].

» Definition 3. The combinatorial k-clique hypothesis states that for combinatorial algorithms

the k-clique problem requires n*—°W) time with randomized or deterministic algorithms [1].

There exist decision to parity reductions for the clique problem. Goldreich defines
CCQ(Z)(G) as the parity of the count of the number of ¢ cliques in G.

» Theorem 4 (Decision to parity £-clique [26, Theorem 1]). For every integer £ > 3, there is a
randomized reduction of determining whether a given n-vertex graph contains an £-clique to
computing CCéZ) on n-vertex graphs such that the reduction runs in time O(n?), and makes
exp(¢?) queries, and has error probability at most 1/3.

2.2 Binary-Forking Model

The Binary-forking model [12, 4, 9, 10, 11, 23], formally defined in [12], is designed to capture
the performance of algorithms in the modern multicore shared-memory machines. In this
model, the computation starts with a single thread, and as the computation progresses
threads are created dynamically and asynchronously. The binary-forking model better
captures the asynchronous events such as cache misses, varying clock speed, interrupts,
etc., than the well-studied and stronger PRAM model [31] where computation progresses
synchronously. Since modern multicore architectures employ multiple caches, processor
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pipelining, branch prediction, hyper-threading, etc., many asynchronous events arise in the
system, thus demanding the development of a parallel computation model where computation
can proceed asynchronously.

Computations in the binary-forking model can be described as max-degree 3 series-parallel
directed acyclic graphs (DAGs). A node in the DAG represents a thread’s instruction and
each node has at most two children. The root of the DAG is the first instruction of the
starting thread. If node u denotes the i-th instruction of thread ¢ and u has only one child v,
then v denotes the (i + 1)-th instruction of the same thread ¢. If node u has two children v
and w, then v represents the (i + 1)-th instruction of the same thread ¢ and w represents the
first instruction of the new forked thread ¢ . Note that whether w represents the 1-st thread
t or the (¢ + 1)-th instruction of thread t is arbitrary, we just want to model the overall
structure of the computation. The binary-forking model includes “join” instructions to join
the forking threads which are modeled as nodes with two incoming edges.

The work of the computation is the number of nodes in the series-parallel DAG and the
span of the computation is the length of the longest path in the DAG assuming unbounded
resources such as processors and space.

3 Algorithm

In this section we first describe our main algorithm which achieves an update time of
O(ml_% ), and then we describe how to parallelize it in the PRAM model with total work
O(m*~+) and span (parallel time) O(logm). We assume k is a constant.

3.1 Main Algorithm

The high level idea is to take as input a formula ¢ and handle the variables which appear
in many clauses (high frequency) and variables that appear in relatively few clauses (low
frequency) with different methods. For a low frequency variable we simply update each
clause in which it is involved. For high frequency variables we group all clauses with roughly
the same structure together and simply track the number of clauses with that structure.
Fundamentally, we will try to track for each clause how many variables are set true and how
many are set false.

» Theorem 5. Given a k-CNF formula ¢ with m clauses and n variables there is an algorithm
which takes O(km) preprocessing time and every further update takes O(m'~*) time to
solve the dynamic formula evaluation problem as well as the counting and parity variants of
the dynamic formula evaluation problem.

Proof. Given the formula ¢ with m clauses split the variables into two sets: H for high
frequency variables and L for low frequency variables. Variables in H appear in at least A
clauses. Variables in L appear in fewer than A clauses. Let @ be the current assignment,
without loss of generality assume the starting assignment is the all true assignment (@ = T)

Our goal will be to spend O(\) time updating each variable in L when it flips value. We
want to build a structure to make updates of variables in H faster than the number of clauses
that contain them. First, we will have k + 1 variables county,...,count;. The variable
count; will track the count of the number of clauses with 7 literals set true. Now we will build
k arrays Ay, ..., Ax. The A; array will keep track of clauses with ¢ high frequency variables.
An entry A;[z1][z2]...[z;][j] will hold a number. That number will be the count of the
number of clauses that contain literals x1,...,z; € H and have j variables (not necessarily
from x1,...,x;) set true. Note, although we construct the A; based only on high frequency
variables, there may be many clauses with a mix of high and low frequency variables and
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these arrays help track all of those clauses. So each A; has a total of (2|H|)® - k entries,
each entry has a number in [0, m]. There are 2|H| literals for the high-frequency variables
(both 2 and Z), each of the i chosen literals can be any one of those 2|H| literals, and for
each of these combinations we can have up to k literals true in a clause. Since ordering is
equivalent, this is actually an over-count of what is needed, but we work with this number
for convenience. For convenience and uniqueness, we give all variables an arbitrary order and
only fill out entries where x1 < x2 < ... < x;. We maintain another helpful Boolean array S
that tracks the current settings of all variables: S[x;] indicates the current value of z;. Yet
another array allows the variables in L to have quick update times. We build the array B of
size 2|L| where Blx] contains a representation of the at most A clauses in which the literal
x € L appears. This is 2|L| because we have both z and . We want these representations
to include a marking for which of the variables are high frequency variables.

Preprocessing. We fill in B with the representations of all clauses for low frequency variables.
Recall that we mark each clause with which of the variables in the clause are high frequency.

Set S[z;] = True for all z;. For all the A; we go through all m clauses in ¢ and update
the counts. Consider the following example and a clause ¢ = (z1 V 22 V ...V x}) where
the x; are literals. Suppose our initial assignment @ = I sets ¢ literals to true and i of
the literals are high frequency variables, x1, ..., z; € H, then increment A;[z1] ... [z;][¢(] by
one. We also want to update county, ..., county; note that count, is simply a sum of all
entries A;[x]...[*][¢] for all i. We can also compute these in the preprocessing stage in
O(km + (2|H|)* - k%) time to initilize the arrays and by simply evaluating each clause. We
will later see that this is O(km) with our selection of the size of |H]|.

Now every entry A;[x1]...[z;][¢] is a count of how many clauses with the associated
literals have ¢ of those literals set to true. We want to maintain this.

Updates for variables in L. If we flip a variable x;, € L then go to S[x;] to see the current
setting, call it b. Flip it so that now S[zz] = b. Next read Blzr] and B[Zz] to get all
clauses containing ;. We will deal with each clause differently depending on how many
high frequency variables it has.

If the clause ¢ has no high frequency variables, then read the k entries S for the settings
of the variable to determine how many literals were set true before the flip. Let £ denote
this number. Now, by flipping x; we either increment or decrement the number of literals
in ¢ that are set true (either +1 or —1 depending on the original setting and the literal).
Suppose the new number of literals set true is £+ A, then we decrement count, and increment
countyya (the clause is moving from being an ¢ literal true clause to an £+ A clause). All of
this takes O(k) time.

If the clause ¢ has i > 0 high frequency variables, then we have to make changes to A; as
well. First, we read the k entries for variable settings in S to evaluate the clause. Suppose
the high frequency variables are x1,...,z; and that ¢ had /¢ literals set true before the flip.
Suppose that after the flip of x;, the clause ¢ has £ + A literals set true. Then we decrement
Ailz1] ... [z:][€] and increment A;[x4]...[x;][¢ + A]. As before we decrement count, and
increment countyia. This takes O(k) time. With at most A clauses, the total time is O(k\).

The variable county now holds the correct total for the number of unsatisfied clauses.

Updates for variables in H. Now suppose we are flipping a variable in H, xy. For a
variable in H we cannot look at all of its clauses. However, we can look at all of the relevant
entries in A; arrays. First in O(1) time read our previous setting b = S(xy) and update
S(CCH) = l_)
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Now update the A; arrays. For all ¢ € [1,k] we will read all the entries that involve
our variable zz. Note that there are 2 - (2|H|)*~! - k entries with x5 in each A;, and so
O((2n)*~1) entries in total since |H| < n and k is assumed to be constant. Without loss of
generality assume that b = True and we are flipping the variable from false to true. Also,
for convenience of notation assume that g is the first variable in our arbitrary order (if
instead z5r appears elsewhere simply access with the variables in order). Then for all (2n)i 1
choices of variables xa, ..., z; we will do the following (from v = 0 to v = k):

0 ifo=k

Ajlzgllzs] ... [x][v] = {Az‘[xHHiw] w41 v <k

and (from v = k to v = 0)

0 ifo=0

AilZg)ze] ... [x][v] = {Ai[xHHM] o mv =1 ifv>0 .

The above procedure simply moves the appropriate number of clauses up or down a
bucket depending on whether the literal is now true or false. If zy appears, it used to be
true and is now false. So, every clause with xy now has one fewer literal true, we can move
all those clauses into the bucket of the array one below it. If zy appears, it used to be false
and is now set true. So we can move all those clauses to the buckets above them. We also
have to update our counts. If you move t clauses from A;[]...[*][v] to A;[x]... [¥][v+ 4]
then decrement count, by t and increment count,a by t.

The variable county now holds the correct total for the number of unsatisfied clauses.

Each entry A;[#]...[*][v] takes O(1) time to update (or O(lg(n)) time in the RAM model
instead of word RAM). We need to update a total of O(k(2|H|)*~!) entries.

Overall Runtime and Space. The space usage is m+n+k(2|H|)*. The runtime is (assuming
k is a constant) O(A + |H|*~1). Now, we can bound |H| < km/\ and so the runtime is
O(A + (m/X)*F~1). Optimizing, we choose A = (m/A\)*~1, and get A\ = m*F—D/k = pl=-1/k
For a total claimed runtime of O(m!~1/k). <

This algorithm gives a non-trivial improvement over the naive algorithm which requires
©(m) time updates. We will discuss lower bounds in Section 4, where we are able to show
this runtime is close to optimal if the k-clique hypothesis is true (for example a runtime of
O(n) are ruled out).

3.2 A Parallel Algorithm

We now show how to parallelize the algorithm of Section 3.1 in the PRAM CREW (concurrent
read exclusive write) model [31]. Our results also hold in a more restrictive parallel model
called the binary-forking model [12].

» Theorem 6. Given a k-CNFE formula ¢ with m clauses and n variables there is a parallel
algorithm (in PRAM CREW model and the binary-forking model) which for each variable-
update performs O(m = %) work in expectation and achieves O(logm) span (parallel runtime)
with high probability (in the number of clauses) to solve the dynamic formula evaluation
problem.

Proof. We use the same arrays in the parallel algorithm as in the serial algorithm to achieve
the work and span bounds.



R. Das, A. Lincoln, J. Lynch, and J.l. Munro

Updates for low frequency variables. There are at most A clauses where low frequency
variable x; might appear. For each clause ¢ where x appears, we do the following. Without
loss of generality assume that clause ¢ has ¢ high-frequency variables x1, xs, ..., x; and has £
true literals before flipping zy. Let £ + A be the number of true literals in ¢ after the flip.

We update A;[zq]. .. [x;][¢], Ailz1] ... [2;][¢ + A], count, and county A for each clause ¢
where zj, appears.

It might happen that multiple clauses trigger updates to the same entry A; or county,
since multiple clauses may have the same set of high-frequency variables and the same number
of true literals. When multiple updates try to edit the same entry in parallel, write-write
conflicts (race conditions) arise which lead to incorrect answers. We resolve race condition
using O(A) extra space as follows.

Since xp, is a low-frequency variable, x, could appear in A clauses at most. Suppose that
each A;[x1]...[x;][¢] has an ID. We allocate two arrays each of size O(A). One array is used
to compute the countys and the other array is used to compute the A;s. For each of the
A clauses, we allocate a designated O(1) space in each array. Recall that count, denotes
the number of clauses with £ literals set true. We would like to update count, after flipping
variable xp,.

We now describe how we decrement count, and increment countyya for each clause c.

Each ¢ computes corresponding county and countsia (as in the serial version) in O(k) time
(k is a constant here) and write them in the designated location in the array allocated to
compute county (see Figure 1 in the Appendix A). We perform semisort [13] (i.e. collect
equal values in groups) on the array so that all the count,; comes before all the count; where
i < j. The randomized semisort algorithm [13] performs O(\) work in expectation and takes
O(log \) parallel time with high probability. After that we do a binary reduction to get the
correct count;s. We do this binary reduction in O(log \) parallel time. Note that we avoid
race conditions by updating count; in different locations.

Similar analysis holds to calculate the A;s where we store the the value of the A;s
according to their IDs. Hence, a low frequency is updated in O(log A) parallel time and uses
O()\) extra space.

Updates for high frequency variables. We do not parse the clauses where the high frequency
variable occurs. Instead, we update the corresponding A;s and count;s as follows.
(from v =0 to v = k):

0 ifvo==k
Ailzp)lza] .. [zd] = { Aizgllze]. . [wlv+1] ifv<k

and (from v = k to v =0)

0 ifo=0

Ai[Zu][za] .. [w][v] = { Ailzg)[ms] .. [wllv—1] ifo>0"

In short, if zy appears it used to be true and is now false. So, every clause with xy now
has one fewer literal true, we can move all those clauses into the bucket of the array one
below it. If zy appears it used to be false and is now set true. So we can move all those
clauses to the buckets above them.

We can do all these updates in parallel in O(1) parallel time. We update the count,
after we update the A;s. We update O(k - 2| H|¥~1) entries of A; where zy is present. If we
move ¢ clauses from A;[*]...[*][v] to A;[%]...[*][v + A] then we decrement count, by ¢ and
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increment count, A by t. As multiple A; entries may update the same count; entry, we use
an array of O(k - 2| H|*~!) extra space to avoid the race condition for parallel updates. Like
before, we semisort the array based on the v of A;[x]...[*][v]. Then we perform a parallel
sum of the the entries with the same v and then add/subtract this sum to count;. Combining
all these the span to update a high frequency variable is O(log|H|) = O(logn).

As we set A = m!~ %, the span to update a low frequency variable is O(log A\) = O(logm)
and a high frequency variable is O(logn). Since we do not increase the work asymptotically,
the work in this parallel algorithm remains the same as in the serial version. Hence, total
work performed is O(A) = O(m!~%) in expectation. The span is O(logm) w.h.p. due to
semisort. <

We could replace the randomized semisort algorithm with a deterministic sorting algorithm.
Cole-Ramachandran’s [19] deterministic sorting algorithm performs O(zlogx) work and
takes O(log x loglog x) span to sort x items in the binary-forking model (in PRAM CREW
model also) giving the following theorem.

» Theorem 7. Given a k-CNF formula ¢ with m clauses and n variables there is a de-
terministic parallel algorithm (in PRAM CREW model and the binary-forking model) which
for each variable update performs O(m'~*% logm) work and achieves O(log mloglogm) span
(parallel running time) to solve the dynamic formula evaluation problem.

4 Lower Bounds for Dynamic Formula Evaluation

In this section we present lower bounds for the dynamic formula evaluation problem on
k-CNF formulas. First, we present an unconditional linear lower bound on the space of the
data-structure. Next, we present a series of conditional lower bounds on the running times
of preprocessing, updates, and queries. These are based on the k-Clique Hypothesis. This
culminates in an average-case lower bound for random updates to the variables based on
counting k-cliques in Erdés-Rényi graphs. Finally, we present a conditional lower bound on
the span of the algorithm in the binary forking model. Recall that we are treating k as a
constant in this section.

4.1 Linear Space Lower Bound

We show a space lower bound linear in the number of variables by a reduction from INDEX [33].
Details can be found in the Appendix.

» Theorem 8. FEvery randomized algorithm for dynamic-formula-evaluation which correctly
decides that the formula for each variable flip (with n variables, O(n) clauses, and clause
size at least 2) is satisfied or not with probability strictly larger than 1/2, uses Q(n) space in
the worst case.

4.2 The k-Clique Hypotheses and a General Reduction

We give these lower bounds from hypotheses related to the ¢-clique problem. We will use k for
the k-CNF Dynamic Counting Boolean Formula problem we reduce to. First, let us present
a generic reduction from all ¢-clique instances to a dynamic formula evaluation formula ¢ on
n = |V| variables, where each given instance of ¢-clique will correspond to a single setting of
the variables X.
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» Lemma 9. Consider a graph G, where we have not yet decided what edges exist or don’t.
There are |V| vertices and (l‘Q/') potential edges. There exists a formula ¢p with n = ("2/‘)
variables, width k = (g) clauses, and a total of m = (Hg‘) clauses such that when the n
variables X are set with a 1 if the edge exists in G and 0 if the edge doesn’t exist then the

number of false clauses in ¢o(X) corresponds to the number of k cliques in G.

Next we want a useful lemma which will help us bound the preprocessing time. We will
use many smaller instances of the clique problem so that our number of update calls to our
data-structure is large compared to its initial size. Variations on this lemma are folklore, but
a proof is provided for completeness.

» Lemma 10. Assume (existence/counting/parity) (combinatorial) £-clique requires
|V |c¢(=o() time for some constant c¢. Let T(-) be the time to solve a single instance
when given a list of instances. Then giving correct answers to g° instances each of size
\U| = €|V |/g takes g*T(|U|) time which is at least |V|*“(*=°M) time.

Consider value 0 < d < ¢ < 1 where we insist that ((|V|/g)" = O(|V|%) then T(|U])
requires at least |U\(675+d)£(1_°(1)) time.

Proof. Partition the vertex set into Vi,...,V, each partition of size |V|/g. Now we form
g" instances each of size at most |U| = £|V|/g. These instances are all possible choices of
at most ¢ of our vertex sets merged together. Using inclusion exclusion we can count the
number of cliques in the original graph using calls to these problems. This inclusion and
exclusion also allows parity to solve parity. We will find a clique in these instances if and
only if there is at least one clique in the original graph.

Given this reduction we can solve a (existence/counting/parity) (combinatorial) ¢-clique
problem with answers to g¢ instances each of size |U| = £|V|/g, giving the first statement.

For the second statement note that g = O(|V|*~%). Then note that |U| = O(|V|¢). Now
we can say that T'(|U]) must be at least |V|(¢=1+d)¢(1=0() time. So, in terms of |U|, T(|U])
must be at least

|| —o(w) <

Note that when ¢ = 1 you get no loss in efficiency regardless of the constant d < 1 you

pick. This case of ¢ = 1 happens for combinatorial /-clique. It is why we use it as an example.

It simplifies the reduction to not worry about the loss that comes from a large d.

4.3 From the Combinatorial k-Clique Hypothesis

Using the reduction in the prior section, we give a lower bound from the combinatorial
{-clique hypothesis. Note how we choose the value of d for the reduction from Lemma 10. We
want d to be small so that our preprocessing time is small. This is what will cause inefficiency
in the future reductions when ¢ # 1; we loose efficiency in the reduction when d is small.

» Theorem 11. Assume £ is a constant. If the combinatorial £-clique hypothesis is true
then any combinatorial algorithm A for the Dynamic Counting Boolean FEvaluation problem,
U(n,m, k), with polynomial preprocessing time P(n,m, k) = poly(n)-poly(m)-poly(k) requires
m(=EH(A=0(1) yime. We can also state the lower bound in terms of the number of variables

n, in which case U(n, m, k) requires at least n(1=o()(V2k=2)/2 time.
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4.4 From the k-Clique Hypothesis

We will now use the same reduction style as the previous section. However, now ¢ from
Lemma 10 will be ¢ = w/3 instead of 1. Here w is the matrix multiplication exponent
constant. The analysis proceeds similarly to that of Section 4.3. Details are in the Appendix.

» Theorem 12. Assume £ is a constant. If the {-clique hypothesis is true then any algorithm
A for the Dynamic Counting Boolean Fuvaluation problem, U(n,m,k), with polynomial
preprocessing time P(n,m,k) = O(m) requires m(EF2 k)=o) e We can also

state the lower bound in terms of the number of variables n, in which case U(n, m, k) requires
at least =5 V2k=1=0(VR) time,

4.5 Random Input Implications

Our goal is to show that with a worst-case fixed formula, specifically our k-clique formula, it
is still hard to evaluate updates to the formula when the updates are random. We will show
lower bounds against algorithms which always correctly implement updates, but, are allowed
error when responding to queries. The queries this dynamic formula evaluation algorithm
must support are queries on the number of falsified clauses.

For this result we will use a theorem from [26]'. At a high level, they show that
the counting/parity I-clique problem requires just as long over the uniform average-case
distribution as it does in the worst-case when [ is a constant. First we will define the model
of average-case inputs we are considering.

» Definition 13. Let Average-Case counting dynamic formula evaluation (AC#DFE) be the
problem where you are given a worst-case formula to evaluate but random (so average-case)
updates on the variables. More specifically, you are given a worst-case formula ¢, and a series
of updates where each update flips the assignment of a uniformly random chosen variable. A
data structure D for AC#DFE with error probability € takes as input a worst-case ¢ and
after each random update answers the count of the number of false clauses in the formula
with probability 1 — €.

» Definition 14 (Erdés-Rényi graphs). Create a graph with |V| vertices and no edges to
start with. Now, for every pair of vertices in the graph iid include an edge between them
with probability 1/2. Thus, every potential edge in the graph appears with probability 1/2
independently from all other edges.

Now we can describe one theorem from [26]. First we start by using a piece of their
notation. Define C’C’ée)(G) as the parity of the count of the number of £ cliques in G.

» Theorem 15 (Average-Case £-clique [26, Theorem 2]). For every integer £ > 3, there is
a randomized reduction of computing CCy~ on the worst-case n-vertex graph to correctly
computing CC;Z) on at least a 1 — exp(—¢?) fraction of the n-vertex graphs such that the
reduction runs in time O(n?), makes exp((?) queries, and has error probability at most 1/3.

So, up to sub-polynomial factors, average-case counting and parity ¢-clique are just as
hard on average as worst-case parity ¢-clique. Now, we can use these reductions to show
lower bounds for our problem with random inputs. First, we will show that if you start

! For an alternate presentation of the parity proof of this result see [15]. The formulation from [26] is
easier to build on in this case.
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from a graph and make (g) 1g? (n) random edge flips the resulting graph is drawn from a
distribution that has total variation distance less than 2~208* (™) from an Erdos-Rényi graph.
Note that, on an intuitive level, this means that when we sample from our edge flipping
distribution we “look like” we are sampling an Erdés-Rényi graph a 1 — 2218’ (M) fraction
of the time. Since our reduction represents edges as variables, flipping a random variable is
like flipping an edge in the original graph, and we want to argue that after not too many
flips we have a random looking graph.

» Lemma 16. Given a graph G let the procedure F be the process of selecting a uniformly
random pair of vertices (u,v) and either deleting edge (u,v) it if it exists or inserting (u,v)
if it doesn’t exist.

If we run the procedure F' © ((g) lg2(n)) times on any graph G the resulting distribution
over graphs has total variation distance at most n?~8(M) from the distribution over Erdds-
Rényi graphs.

The high level idea for the reduction is to take the worst-case reduction from the prior
section and at the last step add the randomized reduction. Specifically, in the worst case we
show that solving a list of instances G, ..., G, is still hard. Now, for the average-case we
will use the [26] reduction to turn each G; into exp(¢?) queries on random graphs, call these
Ggl), e ,Gl(-eXp(ﬁ)). Note that these graphs each look random, but have correlations. So,
we can’t ask the same AC#DFE data structure about two of these. However, we can spin
up exp ¢? instances of data structures for AC#DFE: Dy, ..., Dexp(ezy. We will, implicitly,
give the data structure D; graphs ng ), ceey Gg,-j ). These will be totally uncorrelated (each
are randomized under different random bits). This will correspond to random updates on
variables (which in our worst-case reduction co respond to edges in the graph).

We will show in this next theorem that even with random updates, the same lower bounds

hold (up to factors in time of 22¥ which if k is a constant is simply a constant).

» Theorem 17. Let k be a constant. Say there is a data structure D that can solve
the AC#DFE problem on worst-case k-CNF formulas ¢ with error e < exp(—2k)/3 with
Pp(n,m, k) pre-processing time and Up(n, m, k) time per query and update. We will note
the lower bounds for combinatorial D from the combinatorial {-clique hypothesis. We will
also note the lower bound for general D from the £-clique hypothesis.

If D is a combinatorial data structure, the combinatorial £-clique hypothesis is true, and

Pp(n,m, k) = poly(n) - poly(m) - poly(k), then Up(n,m,k) requires m—k"")(A-0(1)

time. We can also state the lower bound in terms of the number of variables n, in which

case Up(n,m, k) requires at least n(1=oW)(V2k=2)/2 yime.

If the £-clique hypothesis is true and Pp(n,m,k) = O(m) then Up(n,m,k) requires
22 kT2 1=0) time. We can also state the lower bound in terms of the number of

variables n, in which case Up(n,m, k) requires at least n = V2—1=0(VE) time.

ml(

Proof. First, let us describe the general reduction regardless of the hypothesis we start
with. We take the list of |[V|*0~9) sub-problems G4, .. - Glyppa-o and on each instance
individually we run the reduction from Theorem 15. So we take each problem, G;, of size
|V|? and use Theorem 15 to make a list of s = exp(¢?) queries Ggl), R Gz(»s). Now, we spin
up s different instances of D, call them D1, ..., Ds. Consider sampling the updates from GZ(-j )
to Gz(i)l uniformly at random from all random series of updates of length s = ©(n?1g?(n))
that flip edges to Gg_)l. Because every variable corresponds to an edge in the graph flipping a
variable and flipping an edge is a one to one relationship. So, after this series of flips that look
uniformly random up to a TVD of n20&(n) (by Lemma 16) we get the answer to the number

of ¢-cliques in Ggi)ll By the claims of the Theorem statement each D; has an error rate of

61:11

ISAAC 2021



61:12

Dynamic Boolean Formula Evaluation

€ < exp(—2k)/3 on the random updates of the average-case distribution of AC#DFE our
TVD tells us that the error rate of D; on this “nearly random” set of updates is at most
e + n18(M) Now note that if each instance Dy, ..., D, gives us the correct answer we can
correctly answer our query on all G; by Theorem 15. So, we get a correct answer on the
worst-case G; with probability 2/3 — exp (62) n~08(n) note this is large enough that this
procedure can be repeated to boost this probability. Note this means we get the same lower
bounds as we did in the worst-case, but with an overhead of exp (fz) which is a constant
from our perspective.

First we discuss the combinatorial k-clique case. Start by taking the reduction from
Theorem 11. So if D is a combinatorial data structure, the combinatorial ¢-clique hy-
pothesis is true, and Pp(n,m, k) = poly(n) - poly(m) - poly(k), then Up(n, m, k) requires
m(=k~"*)(1=0(1) time. We can also state the lower bound in terms of the number of
variables n, in which case Up(n, m, k) requires at least n(1=o(1)(V2k=2)/2 tina

Finally, we will address the f-clique hypothesis. As before we will get the same lower
bounds, up to a factor of exp(¢2) which is a constant from our perspective. So if the /-clique
hypothesis is true and Pp(n,m, k) = O(m) then Up(n,m, k) requires m (357 k) (e(1))
time. We can also state the lower bound in terms of the number of variables n, in which

case Up(n, m, k) requires at least n 25 V2k=1-0(Vk) time, <

4.6 Span Lower Bound in the Binary-Forking Model

In the Appendix we prove an §2(logn) span lower bound in the binary forking model. This
lower bound only requires that the work of the algorithm is 2(n¢) for some constant ¢, and
is thus a weaker condition than the k-Clique Hypothesis.

» Theorem 18. The span per update for dynamic boolean formula evaluation is Q(logn) in
the binary forking model.

5 Conclusion and Open Problems

Defining Dynamic Boolean Formula Evaluation and giving a data-structure with sub-linear
update time is an important first step in characterizing the complexity of this problem. Our
data-structure is simple enough and provides a large enough benefit for small k that we hope
it will inspire practical implementations. On the theoretical side, although we give upper
and lower bounds that show roughly what the complexity of this problem should be, there is
still a significant gap between them and plenty of room to generalize both types of results.

With a more careful analysis both our algorithms and lower bounds should hold for some
small super-constant k. Improving this analysis may be of interest, but more importantly
finding both algorithms and lower bounds that work for a greater range of k, especially when
k = m¢ for some constant c.

Closing the gap between our lower and upper bounds is one obvious open question.
The conditional lower bound giving ik comes directly cliques containing !> edges. Thus
perhaps one should be trying to use graph problems with sparse structures rather than
dense ones. However, one needs to be careful because there is only a single k-clique on k
vertices whereas there can be many isomorphic sparse structures. The larger issues comes
from the factor of the matrix multiplication constant in our lower bound. We see this
disappear with the combinatorial I-clique conjecture which suggests either 1) Dynamic
Boolean Formula Evaluation can be solved much faster, but doing so will likely require linear-
algebraic techniques or some other fundamentally different approach, 2) we need a slightly
more clever reduction. A common solution to strengthening “combinatorial” fine-grained
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assumptions is to move to a weighted version of the problem. However, the OR of variables
is symmetric under permutation and thus does not appear to be something that supports
any sort of arithmetic at the clause level. Further, our algorithms fundamentally require this
symmetry and will fail when trying to generalize in this direction.

Further, it would be interesting to have conditional lower bounds for the pure Dynamic
Boolean Formula problem rather than the counting version which seems much stronger.
Both giving lower bounds for more restricted versions of the problem and generalizing the
algorithm to handle more general formulas seems of interest. Generalizing the depth of the
formula (no longer requiring CNF form) is another obvious direction.

We believe that a log(n)-span lower bound should hold in a stronger model such as
CREW PRAM. Both improved lower bounds and whether there are better algorithms in
stronger concurrent data-structures models remains an interesting question to explore. Depth
2 Boolean formulas being in ACO strongly suggests at least this special case should be able
to be parallelized more efficiently, perhaps at the cost of work-efficiency.

One obvious problem to consider is a version of Dynamic Boolean Formula Evaluation
in which the formula itself can be altered, instead of or in addition to the values of the
variables. These problems are equivalent in the DynamicSAT case, but looking for sub-linear
update cost we have much less leeway in the efficiency of this reduction. We believe minor
alterations to our current algorithm will allow it to handle the insertion and deletion of
literals and clauses with the same amortized worst-case cost by simply rebuilding the table
whenever variables pass some threshold for their frequency of appearing in clauses. However,
de-amortizing this does not seem at all obvious.
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Parallel Algorithm Figure

\ e:-1f £41:1

1 Semisort

[ - Jeafeafeafeaeriaa Jevten Jesria | oo o |
\ Binary Reduction

[e0]  [e:2] [(r1:2] [e+1:1)

Figure 1 Clause ¢ writes whether count,; and count4; increment or decrement in their designated

locations (in color pink). We then semisort so that all the updates corresponding to count, come in
adjacent locations (in color yellow for count,). After that we do a binary reduction to get the net
update to county.
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B Lower Bounds Omitted Proofs

B.1 Proof of Linear Space Lower Bound

» Theorem 19. Every randomized algorithm for dynamic-formula-evaluation which correctly
decides that the formula for each variable flip (with n variables, O(n) clauses, and clause
size at least 2) is satisfied or not with probability strictly larger than 1/2, uses Q(n) space in
the worst case.

Proof. We prove this using communication complexity, specifically, reducing the problem to
the INDEX problem.

INDEX problem. Alice gets an n-bit string « € {0,1}" and Bob gets an integer i € {1,n}.
Alice can communicate to Bob, but Bob cannot send messages to Alice. The goal is to find
out x;, the i-th index of x.

We know the lower bound of the randomized one-way communication complexity of
INDEX is Q(n) [33].

We now do the following reduction. Given x € {0,1}", Alice construct a CNF formula F
as follows. There are n clauses and 2n variables in F'. For 1 < j < n, clause C; = (v;1 A v; 2).
If ; = 1, we assign v;; = TRUE and v; » = FALSE. Otherwise, we assign v; 1 = FALSE
and v; 2 = TRUE. Note that in formula F', every clause is initially satisfied and only one
variable is TRUE in every clause.

Now given index 4, we flip variable v; ;. If the formula remains satisfied, then z; = 0 in
Alice’s string, otherwise, z; = 1. <

B.2 Proofs about k-Clique reduction General Reduction

» Lemma 20. Consider a graph G, where we have not yet decided what edges exist or don't.
There are |V| vertices and (“2/‘) potential edges. There exists a formula ¢, with n = (I‘Q/‘)
variables, width k = (g) clauses, and a total of m = (“gl) clauses such that when the n
variables X are set with a 1 if the edge exists in G and 0 if the edge doesn’t exist then the

number of false clauses in ¢¢(X) corresponds to the number of k cliques in G.

Proof. In this reduction we will use variables to represent possible edges in the graph and we
will use clauses to detect cliques. Let us index our variables X with two numbers i, j such that
X|é, ] is a variable if ¢ < j and ,j € [|V]]. We will treat X[i, j] as the variable corresponding
to if the edge (i,7) exists in G. Now, for all 41 < ... < i, where 41,...,i; € [|V]] add the
following clause to ¢y:

(X[ir,i2) V Xir, i3] V...V Xir, i6] V X[ig, i3] V...V X[ig—1,%f]) -

Note that if the nodes i1, ...,7; in G are a {-clique given the setting of edges implied by X,
then this clause is false if any of the edges among vertices 1 to [ are missing.

Each clause has size k = (g) There are a total of m = (”Z') clauses. We need one variable
per potential edge in the graph, so there are n = (\‘;I) variables. Given a setting of X we
have a corresponding graph G, and the number of false clauses in ¢y is exactly equal to the
number of /-cliques in G. |

» Theorem 21. Assume ¢ is a constant. If the combinatorial (-clique hypothesis is true
then any combinatorial algorithm A for the Dynamic Counting Boolean FEvaluation problem,
U(n,m, k), with polynomial preprocessing time P(n, m, k) = poly(n)-poly(m)-poly(k) requires
m(=k"H(=0(1) time. We can also state the lower bound in terms of the number of variables
n, in which case U(n,m, k) requires at least n(1=0o(1)(V2k=2)/2 time.
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Proof. We are given an instance G of the /-clique problem with |V| vertices and |E| = O(|V|?)
edges. By the combinatorial ¢-clique hypothesis this problem requires |V|é(1_°(1)) time.

First note that, with Lemma 10, we want ¢ = 1 from our combinatorial k-clique hypothesis.
Next assume that P(n,m,k) = (n-m - k)/ for some constant f. Now set d = 8;726))){ for
some constant € > 0. Recall, with these settings, we can say that solving all |V|f(1*d) clique
problems requires |V|e(1*°(1)) time. This can be stated as a time for each of the problems of
size |V|¢, they each require (|V|d)€ time.

Now we will use Lemma 9 to produce our formula ¢ on our problems of size |V’| = |[V|<.
Note that n = ("%)1) = ©(|V'|2) and k = (&) = €(¢+1)/2 and m = (}1) = ©(|V'|%). Finally,
observe P(n,m, k) = O ((|V|*“+2)7) which can be written as P(n,m, k) = O ((|V|1=9)).
Thus all of the updates we do to solve our clique problem must take |V =°(1) time.

Note that with at most |E’| = O(|V|??) variable updates we can cause the number of
false clauses in ¢, to be equal to the number of /-cliques in a new instance. So |V|?>? updates
should take at least (|V|d)€ time. Further, U(n,m, k) must be at least |V|4(¢=2)1—o(1) =
|V!|(6=2)(0=0(1) " Now, lets re-state this in terms of n,m, k. First lets add our value of m
into this equation:

|V |(6=2)1=0(1)) — 1, (1=0(D)(E=2)/E _ 1, (1=2/0)(1=0(1)),

We can also write in terms of n:

|V’|(f*2)(1*0(1)) — p(t—o())(£=2)/2

Now note that 2vk > £ > v/2k. So we can re-write our above equations as

|V/|(f*2)(1*0(1)) — m(lfl/\/E)U*O(l))’

and

|V/|(f—2)(1—0(1)) — p(—o(1)(V2k=2)/2 <

» Theorem 22. Assume £ is a constant. If the £-clique hypothesis is true then any algorithm

A for the Dynamic Counting Boolean Fuvaluation problem, U(n,m,k), with polynomial
2w=3 _;—1/2

preprocessing time P(n,m,k) = O(m) requires m(*% )=o) time. We can also
state the lower bound in terms of the number of variables n, in which case U(n, m, k) requires

at least n =5 V2k—=1-0(Vk)

time.

Using in w = 2.37286 (from the best current upper bound [6]) these lower bounds per

(0.5819—k~1/?)(1-0(1)) 0.5819v2k—1—o0(Vk)

update are: m and n .

Using w = 2 (the smallest value w could be) the lower bounds per update are:
m(l/Bfk_1/2>(lfo(1)) and nV2k/3—1—o(Vk)

Proof. We are given an instance G of the /-clique problem with |V| vertices and |E| = O(|V|?)
edges. By the (-clique hypothesis we have that this problem requires |V |(}=0(1)«/3 time.

First note that with Lemma 10, we want ¢ = w/3 from our I-clique hypothesis. Next
we assumed that P(n,m,k) = O(m). Now set d = % for some constant € > 0 to be
set later. Recall, with these settings we can say that solving all |V|e(1*d) clique problems
requires |V|(1=2(1)«/3 time. For convenience call § = ew/3. This can be stated as a time for
each of the problems of size |V |?, they each require time

(e=2E4)p(1-0(1)) (25252 e(1—0(1))
R(V]) = (V|9 = (v :
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We will use the reduction from Lemma 9. Let |V’| = |V|¢ Now lets note that n = (“gll) =
O(V')?) and k = (&) = ¢(¢+ 1)/2 and m = (1)) = ©(|V'[").

Now note that as before if P(n,m,¢) = O(m) then it is also O(|V|#*) which can be
restated as |V|(1=9«¢/3_ This is small enough that the updates must take |V/|(1—o(1)wt/3
time.

We require O(|V|?¢) updates per instance. And each instance requires R(|V]) time. So
each update requires R(|V|)|V|72¢ time which we can expand to

(lvld) ( 2w3__35_5 )e(1—o(1))—2

time. Now note that 2vk > ¢ > /2k. If we re-state this with m we get:
22570 (1—0(1) -1/ VE

m( 3—48

If we treat € as a parameter we tune to be arbitrarily small we can re-state as follows:
2w373 71/\/E7€/

)

m

where €’ is some other arbitrarily small constant (a function of e implicitly). So, if someone
claims they have update time

2u.)373 —1/VEk—~

m

for a fixed constant v then we can tune e sufficiently small for that to give a contradiction
from the k-clique hypothesis.
Now, if we state in terms of n = O(|V'|?)

2e=320)¢(1—0(1))—1

n

we can use the same trick with € to get the simplified version

p(EFE -1 _ (n(%%’)\/ﬁq)

which gives a lower bound of
203 \/2k—1—0o(Vk)

n 6

time per update. |

» Lemma 23. Given a graph G let the procedure F' be the process of selecting a uniformly
random pair of vertices (u,v) and either deleting edge (u,v) it if it exists or inserting (u,v)
if it doesn’t exist.

If we run the procedure F' © ((g) ng(n)) times on any graph G the resulting distribution
over graphs has total variation distance at most n?—*(8
Rényi graphs.

(") from the distribution over Erdés-

Proof. Let p = (3)71, the probability any given edge is selected to be flipped by F. Let
s=0/((3) lgz(n)), the number of times we run F.

For any given edge (u,v) it is flipped a Binomially distributed number of times B(s, p).
The Pr[B(s,p) =0 mod 2] = 1/2+ (1 —2p)*®/2, which is the probability that (u,v) stays an
edge if it started with one and continues to have no edge if started without one. If this were
an Erdds-Rényi graph the probability an edge exists is 1/2 iid. So on each edge the TVD
from the probability of 1/2 is (1 —2p)°*. Now note that (1 — 2p)° = (1 — 2p)(2/(2p))®(1g2(")> <
e—2g%(n)  —Q(g(n)

We can now union bound over all edges to get a TVD between running the procedure F’
(2)1g?(n) times and Erdds-Rényi graphs of at most n~?0s(") = 2-2(e*(n)), <
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B.3 Proof of Span Lower Bound in the Binary-Forking Model

» Theorem 24. The span per update for dynamic boolean formula evaluation is Q(logn) in
the binary forking model.

Proof. We first show the work lower bound for a single update (or, the time required per
update), and then using the work lower bound we compute the span lower bound in the
binary-forking model. From Theorem 12, we know that the lower bound of work per update
is n® where ¢ = ©(1) for constant k.

In the binary forking model [12], it takes Q(logt) time to launch ¢ threads. This is due
to spawning t threads in a binary tree fashion where there are ¢ leaves in the binary tree and
the height is logt. The height logt specifies the span of this launching process.

Let p be the number of processors used for the dynamic formula evaluation problem with

n variables. The span Too(n) in the binary forking model is lower bounded by n¢/p and log p.

Combining them, we get the following:

Too(n) = Q(n®/p +logp)

Minimizing T, (n) over values of p, we get Too(n) = Q(logn). <
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