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Abstract
We revisit the fundamental problem of compressing an integer dictionary that supports efficient
rank and select operations by exploiting two kinds of regularities arising in real data: repetitiveness
and approximate linearity. Our first contribution is a Lempel-Ziv parsing properly enriched to also
capture approximate linearity in the data and still be compressed to the kth order entropy. Our
second contribution is a variant of the block tree structure whose space complexity takes advantage
of both repetitiveness and approximate linearity, and results highly competitive in time too. Our
third and final contribution is an implementation and experimentation of this last data structure,
which achieves new space-time trade-offs compared to known data structures that exploit only one
of the two regularities.
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1 Introduction

We focus on the fundamental problem of representing an ordered dictionary A of n distinct
elements drawn from the integer universe [u] = {0, . . . , u} while supporting the operation
rank(x), that returns the number of elements in A which are ≤ x; and select(i), that returns
the ith smallest element in A.

Rank/select dictionaries are at the heart of virtually any compact data structure [34],
such as text indexes [15,18,20,22,30,36], succinct trees and graphs [32,41], hash tables [4],
permutations [3], etc. Unsurprisingly, the literature is abundant in solutions, e.g. [2, 8,
21, 24, 31, 37, 40, 41]. Yet, the problem of designing theoretically and practically efficient
rank/select structures is anything but closed. The reason is threefold. First, there is
an ever-growing list of applications of compact data structures (in bioinformatics [13, 29],
information retrieval [33], and databases [1], just to mention a few) each having different
characteristics and requirements on the use of computational resources, such as time, space,
and energy consumption. Second, the hardware is evolving [23], sometimes requiring new
data structuring techniques to fully exploit it, e.g. larger CPU registers, new instructions,
parallelism, next-generation memories such as PMem. Third, data may present different
kinds of regularities, which require different techniques that exploit them to improve the
space-time performance.
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64:2 Repetition- and Linearity-Aware Rank/Select Dictionaries

Among the latest of such regularities to be exploited, there is a geometric concept
of approximate linearity [7]. Regard A as a sorted array A[1, n], so that select(i) can be
implemented as A[i]. The idea is to first map each element A[i] to a point (i, A[i]) in the
Cartesian plane, for i = 1, 2, . . . , n. Intuitively, any function f that passes through all the
points in this plane can be thought of as an encoding of A because we can recover A[i] by
querying f(i). Now the challenge is to find a representation of f which is both fast to be
computed and compressed in space. To this end, the authors of [7] implemented f via a
piecewise linear model whose error, measured as the vertical distance between the prediction
and the actual value of A, is bounded by a given integer parameter ε.

▶ Definition 1. A piecewise linear ε-approximation for the integer array A[1, n] is a partition
of A into subarrays such that each subarray A[i, j] of the partition is covered by a segment,
represented by a pair ⟨α, β⟩ of numbers, such that |(α · k + β)−A[k]| ≤ ε for each k ∈ [i, j].

Among all possible piecewise linear ε-approximations, one aims for the most succinct one,
namely the one with the least amount of segments. This is a classical computational geometry
problem that admits an O(n)-time algorithm [38]. The structure introduced by [7], named
LA-vector, uses this succinct piecewise linear ε-approximation as a lossy representation
of A, and it mends the information loss by storing the vertical errors into an array C of
⌈log(2ε + 1)⌉-bit integers, called corrections (all logarithms are to the base two). To answer
select(i), the LA-vector uses a constant-time rank structure on a bitvector of size n to find
the segment ⟨α, β⟩ covering i, and it returns the value ⌊(α · i + β)⌋ + C[i]. The rank(x)
operation is implemented via a sort of binary search that exploits the information encoded
in the piecewise linear ε-approximation [7]. In practical implementations, we allocate c ≥ 0
bits for each correction and set ε = 2c − 1. The space usage in bits of an LA-vector consists
therefore of a term O(nc) accounting for the corrections array C, and a term O(wm), where
w is the word size, that grows with the number of segments m in the piecewise linear
ε-approximation. Despite the apparent simplicity of the piecewise linear representation,
the experiments in [7] show that the LA-vector offers the fastest select and competitive
rank performance with respect to several well-established structures implemented in the
sdsl library [19]. In addition to its good practical performance, recent results [14,17] have
shown there are also theoretical reasons that justify the effectiveness of the piecewise linear
ε-approximation in certain contexts.

Despite their succinctness and power in capturing linear trends, piecewise linear ε-approx-
imations still lack the capacity to find and exploit one fundamental source of compressibility
arising in real data: repetitiveness [35]. Although the input consists in an array A of strictly
increasing values, there can be significant repetitiveness in the differences between consecutive
elements. Consider the gap-string S[1, n] defined as S[i] = A[i] − A[i − 1], with A[0] = 0,
and suppose the substring S[i, j] has been encountered earlier at S[i′, i′ + j − i] (we write
S[i, j] ≡ S[i′, i′ + j − i]). Then, instead of finding a new set of segments ε-approximating
the subarray A[i, j], we can use the segments ε-approximating the subarray A[i′, j′] properly
shifted. Note that, even if A[i′, j′] is covered by many segments, the same shift will transform
all of them into an approximation for A[i, j] (see example in Figure 1). Therefore, in this
case, we would need to store only the shift and the reference to the segments of A[i′, j′]. The
LA-vector is unable to take advantage of such regularities. In the extreme case where A

consists of the concatenation of a small subarray A′ shifted by some amounts ∆is for k times,
that is A = A′, A′ + ∆1, A′ + ∆2, . . . , A′ + ∆k−1, the overall cost of representing A with an
LA-vector will be roughly k + 1 times the cost of representing A′.

The goal of this paper is to harness the repetitions in the gap-string S to make the
LA-vector repetition aware. In fact, the approximate linearity and the repetitiveness of a
string are different proxies of its compressibility and therefore it is interesting to take both of
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Figure 1 The points in the top-right circle follows the same “pattern” (i.e. the same distance
between consecutive points) of the ones in the bottom-left circle. A piecewise linear ε-approximation
for the top-right set can be obtained by shifting the segments for the bottom-left set.

them into account. Take as an example an order-h De Bruijn binary sequence B[1, 2h] and
define A[i] = 2i + B[i], then the line with slope 2 and intercept 0 is a linear approximation
of the entire array A with ε = 1. Conversely, following the argument above and considering
the gap-string S[i] = A[i] − A[i − 1] = 2 + B[i] − B[i − 1], we would not find repetitions
longer than h− 1 in S. The challenge is to devise techniques that are able to exploit both
the presence of repetitions in the gap-string S and the presence of subarrays in A which
can be linearly ε-approximated well, while still supporting efficient rank/select primitives
on A. We point out that, although in this paper we consider only linear approximations, our
techniques can be applied also to other data approximation functions, such as polynomials
and rational functions.

Our contribution in context. The most common approach in the literature to design a
succinct dictionary for a set of distinct integers A over the universe {0, . . . , u} is to represent A

using the characteristic bitvector bv(A), which has length u + 1 and is such that bv(A)[i] = 1
iff i ∈ A. In this paper, we use instead linear ε-approximations of A and the gap string S,
and we show how to modify two known compression methods so that they can take advantage
of approximate linearity. The first method is the Lempel-Ziv (LZ) parsing [26–28,44], which
is one of the best-known approaches to exploit repetitiveness [35]. The second method is
the block tree [5], which is a recently proposed query-efficient alternative to LZ-parsing
and grammar-based representations [6] suitable also for highly repetitive inputs since its
space usage can be bounded in terms of the string complexity measure δ (see [25, 35] for the
definition and significance of this measure).

Our first contribution is a novel parsing scheme, the LZρ
ε parsing, whose phrases are

a combination of a backward copy and a linear ε-approximation, i.e., a segment and the
corresponding correction values. The LZρ

ε parsing encapsulates a piecewise linear ε-ap-
proximation of the array A and supports efficient rank/select primitives on A. Surprisingly,
this combination uses space bounded by the kth order entropy Hk(S) of the gap-string S

(see [26] for the definition and significance of kth order entropy). More precisely (Theorems 7
and 9), if σ denotes the number of distinct gaps in S, the LZρ

ε parsing supports rank in
O(log1+ρ n+log ε) time and select inO(log1+ρ n) time using nHk(S)+O(n/ logρ n)+o(n log σ)

ISAAC 2021
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bits of space, for any positive ρ and k = o(logσ n), plus the space to store the segments and
the correction values that are used to advance the parsing (like the explicit characters in
traditional LZ-parsing).

The best succinct data structure based on bv(A) is the one by Sadakane and Grossi [43]
that supports constant-time rank and select in uHk(bv(A)) + O(u log log u/ log u) bits of
space. This space bound cannot be compared to ours since it is given in terms of Hk(bv(A))
instead of Hk(S). To achieve space nHk(S) one can use an entropy-compressed representation
of S enriched with auxiliary data structures to support rank/select on A. For example, by
sampling one value of A out of log n and performing a binary search followed by a prefix sum
of the gaps one can support O(log n)-time rank and select queries. Using the representation
of [16], this solution uses nHk(S) +O(n log u/ log n) + o(n log σ) = nHk(S) + o(n log u) bits
of space, which is worse in space than our solution but faster in query time. Other trade-offs
are possible: the crucial point however is that none of the known techniques is able to exploit
simultaneously the presence of exact repetitions and approximate linearity in the input
data as instead our LZρ

ε does. In the best scenario, LZρ
ε parsing uses segments to quickly

consume any approximate linearity in A thus potentially reducing significantly the number
of LZ-phrases. On the other hand, if A cannot be linearly approximated, segments will be
short and the overall space occupancy of LZρ

ε parsing will be nHk(S) + o(n log σ) bits, i.e.
no worse than a traditional LZ-parsing.

Our second contribution is the block-ε tree, an orchestration of block trees [5, 25] and
linear ε-approximations. The main idea is to build the block tree over the gap-string S and
to prune the subtrees whose corresponding subarray can be covered more succinctly using a
linear ε-approximation in place of a block (sub)tree. We show that this solution supports
rank in O(log log u

δ +log n
δ +log ε) time and select in O(log n

δ ) time using O(δ log n
δ log n) bits

of space in the worst case, where δ is the string complexity of S [25, 35].
A block tree built on bv(A), instead, supports rank and select in O(log u

δ′ ) time using
O(δ′ log u

δ′ log u) bits of space, where δ′ is the string complexity measure on bv(A). The time
and space bounds achieved by the block tree and by our block-ε tree are not comparable
due to the use of δ′ instead of δ. Therefore, as our third contribution, we provide an
implementation of our block-ε tree built on S, and we compare it with the standard block
tree built on bv(A). Our proposal turns out to be more space-efficient for some of the
experimented sparse datasets and, as far as query time is concerned, it is 2.19× faster in
select, and it is either faster (1.32×) or slower (1.27×) in rank than the block tree.

In the Conclusions, we comment on several research directions that naturally arise from
the novel approaches described in this paper.

2 Tools

We use as a black box the Elias-Fano [9, 10] representation for compressing and random-
accessing monotone integer sequences [34, §4.4].

▶ Lemma 2 (Elias-Fano encoding). We can store a sequence of n increasing positive integers
over a universe of size u in n⌈log u

n⌉+ 2n + o(n) = n log u
n +O(n) bits and access any integer

of the sequence in O(1) time.

Henceforth, we always assume that a piecewise linear ε-approximation for an input
array A is the most succinct one in terms of the number of segments, or equivalently, that
we always maximise the length ℓ of the subarray A[i, i + ℓ− 1] covered by a segment starting
at i. This is possible thanks to the algorithm of O’Rourke [38], which in optimal O(n) time
computes the piecewise linear ε-approximation with the smallest number of segments for the
set of points {(i, A[i]) | i = 1, . . . , n}.
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Another key tool that we use is LZ-end [27]. Formally, the LZ-end parsing of a text
T [1, n] is a sequence f1, f2, . . . , fz of phrases, such that T = f1f2 · · · fz, built as follows. If
T [1, i] has been parsed as f1f2 · · · fq−1, the next phrase fq is obtained by finding the longest
prefix of T [i + 1, n] that appears also in T [1, i] ending at a phrase boundary, i.e. the longest
prefix of T [i + 1, n] which is a suffix of f1 · · · fr for some r ≤ q − 1. If T [i + 1, j] is the prefix
with the above property, the next phrase is fq = T [i + 1, j + 1] (notice the addition of T [j + 1]
to the longest copied prefix). The occurrence in T [1, i] of the prefix T [i + 1, j] is called the
source of the phrase fq.

Although LZ-end is less powerful than the classic LZ77 parsing, which allows the end of
a source to be anywhere in T [1, i], it compresses any text T up to its kth order entropy, and
it is more efficient than LZ77 in extracting any substring of T .

With the advent of large datasets containing many repetitions, researchers have observed
that the entropy does not always provide a meaningful lower bound to the information
content of such datasets [27]. Recently, [35] has given a complete picture of several alternative
measures of information content and has shown that they are all lower bounded by the
complexity measure δ defined as max{T (k)/k | 1 ≤ k ≤ n}, where T (k) is the number of
distinct length-k substrings of T [42]. In [25], it is shown that using the block tree [5] it is
possible to represent a text T [1, n] in space bounded in terms of δ while supporting: ranka(i),
which returns the number of occurrences of the character a in T [1, i], and selecta(j), which
returns the position of the jth occurrence of a in T . Specifically, their block tree supports
ranka and selecta in O(log n

δ ) time using O(σδ log n
δ log n) bits of space.

3 Two novel LZ-parsings: LZε and LZρ
ε

Assume that A contains distinct positive elements and consider the gap-string S[1, n] defined
as S[i] = A[i]−A[i− 1], where A[0] = 0. To make the LA-vector repetition aware, we parse
S via a strategy that combines linear ε-approximation with LZ-end parsing. We generalise
the phrases of the LZ-end parsing in a way that they are a “combination” of a backward
copy ending at a phrase boundary (as in the classic LZ-end), computed over the gap-string
S, plus a segment covering a subarray of A with an error of at most ε (unlike classic LZ-end,
which instead adds a single trailing character). We call this parsing the LZε parsing of S.

Suppose that LZε has partitioned S[1, i] into Z[1], Z[2], . . . , Z[q − 1]. We determine the
next phrase Z[q] as follows (see Figure 2):
1. We compute the longest prefix S[i + 1, j] of S[i + 1, n] that is a suffix of the concatenation

Z[1] · · ·Z[r] for some r ≤ q − 1 (i.e. the source must end at a previous phrase boundary).
2. We find the longest subarray A[j, h] that may be ε-approximated linearly, as well as the

slope and intercept of such approximation. Note that using the algorithm of [38] the time
complexity of this step is O(h− j), i.e. linear in the length of the processed array.

The new phrase Z[q] is then the substring S[i + 1, j] · S[j + 1, h]. If h = n, the parsing is
complete. Otherwise, we continue the parsing with i← h + 1. As depicted in Figure 2, we
call S[i + 1, j] the head of Z[q] and S[j + 1, h] the tail of Z[q]. Note that the tail covers also
the value A[j] corresponding to the head’s last position S[j]. When S[i + 1, j] is the empty
string (e.g. at the beginning of the parsing), the head is empty, and thus no backward copy is
executed. In the worst case, the longest subarray we can ε-approximate has length 2, which
nonetheless guarantees that Z[q] is nonempty. Experiments in [7] show that the average
segment length ranges from 76 when ε = 31 to 1480 when ε = 511.

ISAAC 2021



64:6 Repetition- and Linearity-Aware Rank/Select Dictionaries

S = . . .

1 n

i j h

Head of Z[q]
The longest prefix

S[i + 1, j] that is a suffix
of Z[1] · · ·Z[r], for some r < q

Tail of Z[q]
Associated to a segment
⟨mq, rq⟩ covering A[j, h].

Figure 2 Computation of the next phrase Z[q] in the parsing of the gap-string S of the array A,
where the prefix S[1, i] has already been parsed into Z[1], Z[2], . . . , Z[q − 1].

If the complete parsing consists of λ phrases, we store it using:
An integer vector PE[1, λ] (Phrase Ending position) such that h = PE[q] is the ending
position of phrase Z[q], that is, Z[q] = S[i + 1, h], where i = PE[q − 1] + 1.
An integer vector HE[1, λ] (Head Ending position) such that j = HE[q] is the last
position of Z[q]’s head. Hence, Z[q]’s head is S[PE[q − 1] + 1, HE[q]], and Z[q]’s tail is
S[HE[q] + 1, PE[q]].
An integer vector HS[1, λ] (Head Source) such that r = HS[q] is the index of the last
phrase in Z[q]’s source. Hence, the head of Z[q] is a suffix of Z[1] · · ·Z[r]. If the head of
Z[q] is empty then HS[q] = 0.
A vector of pairs TL[1, λ] (Tail Line) such that TL[q] = ⟨αq, βq⟩ are the coefficients of the
segment associated to the tail of Z[q]. By construction, such segment provides a linear
ε-approximation for the subarray A[HE[q], PE[q]].
A vector of arrays TC[1, λ] (Tail Corrections) such that TC[q] is an array of length
PE[q]−HE[q]+1 providing the corrections for the elements in the subarray A[HE[q], PE[q]]
covered by Z[q]’s tail. By construction, such corrections are smaller than ε in modulus.

Using the values in TL and TC we can recover the subarrays A[j, h] corresponding to the
phrases’ tails. We show that using all the above vectors we can recover the whole array A.

▶ Lemma 3. Let S[i + 1, j] denote the head of phrase Z[q], and let r = HS[q] and e = PE[r].
Then, for t = i + 1, . . . j, it holds

A[t] = A[t− (j − e)] + (A[j]−A[e]), (1)

where A[j] (resp. A[e]) can be retrieved in constant time from TL[q] and TC[q] (resp. TL[r]
and TC[r]).

Proof. By construction, S[i + 1, j] is identical to a suffix of Z[1] · · ·Z[r]. Since such a suffix
ends at position e = PE[r], it holds S[i + 1, j] ≡ S[e− j + i + 1, e] and

A[t] = A[j]− (S[j] + S[j − 1] + · · ·+ S[t + 1])
= (A[j]−A[e]) + A[e]− (S[e] + S[e− 1] + · · ·S[t + 1− (j − e)])
= (A[j]−A[e]) + A[t− (j − e)].

For the second part of the lemma, we notice that A[j] is the first value covered by Z[q]’s tail,
while A[e] is the last value covered by Z[r]’s tail. ◀

Using the above lemma, we can show by induction that given a position t ∈ [1, n] we
can retrieve A[t]. The main idea is to use a binary search on PE to retrieve the phrase
Z[q] containing t. Then, if t ≥ HE[q], we get A[t] from TL[q] and TC[q]; otherwise, we use
Lemma 3 and get A[t] by retrieving A[t− (j − e)] using recursion. In the following, we will
formalise this intuition in a complete algorithm, but before doing so, we need to introduce
some additional notation.
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Z[6]Z[4]Z[3]Z[2]Z[1] Z[5] Z[7]

Z[4]Z[3]Z[2] Z[5]

Figure 3 The LZε parsing with the definition of meta-characters. Cells represent meta-characters,
and the coloured cells are also tails. Z[7]’s head consists of a copy of a substring that starts inside
Z[2] and ends at the end of Z[5] (notice the diagonal patterns in Z[7]’s head with the same colours
of the tails in Z[2] · · · [5]). Meta-characters in Z[7]’s head are defined from the meta-characters in
the copy. Note that Z[7]’s first meta-character is a suffix of Z[2]’s first meta-character.

Using the LZε parsing, we partition the string S into meta-characters as follows. The
first phrase in the parsing Z[1] = S[1, PE[1]] is our first meta-character (note Z[1] has an
empty head, so HE[1] = 0 and the pair ⟨TL[1], TC[1]⟩ encodes the subarray A[0, PE[1]]).
Now, assuming we have already parsed Z[1] · · ·Z[q − 1] and partitioned S[1, PE[q − 1]] into
meta-characters, we partition the next phrase Z[q] into meta-characters as follows: Z[q]’s
tail will form a meta-character by itself, while Z[q]’s head “inherits” the partition into meta-
characters from its source. Indeed, recall that Z[q]’s head is a copy of a suffix of Z[1] · · ·Z[r],
with r = HS[q]. Such a suffix, say S[a, b], belongs to the portion of S already partitioned
into meta-characters. Since by construction Z[r]’s tail is a meta-character Xr, we know
that Xr is a suffix of S[a, b]. Working backwards from Xr we obtain the sequence X0 · · ·Xr

of meta-characters covering S[a, b]. Note that it is possible that X0, the meta-character
containing S[a], starts before S[a]. We thus define X ′

0 as the suffix of X0 starting at S[a] and
define the meta-character partition of Z[q]’s head as X ′

0X1 · · ·Xr. This process is depicted
in Figure 3. Note that each meta-character is either the tail of some phrase or it is the suffix
of a tail. We do not really compute the meta-characters but only use them in our analysis,
as in the following result.

▶ Lemma 4. Algorithm 1 computes select(t) = A[t] in O(log λ + Mmax) time, where λ is the
number of phrases in the LZε parsing and Mmax is the maximum number of meta-characters
in a single phrase.

Proof. The correctness of the algorithm follows by Lemma 3. To prove the time bound,
observe that Line 2 clearly takes O(log λ) time. Let ℓ denote the number of meta-characters
between the one containing position t up to the end of Z[q]. We show by induction on ℓ that
Select-Aux(t, q) takes O(ℓ) time. If ℓ = 1, then t belongs to Z[q]’s tail, and the value A[t]
is retrieved in O(1) time from TL[q] and TC[q].

If ℓ > 1, the algorithm retrieves the value A[t′] from a previous phrase Z[q′], with
q′ = r − k, where k is the number of times Line 13 is executed. Since Z[q] meta-characters
are induced by those in its source, we get that the number of meta-characters between the
one containing t′ and the end of Z[r] is ℓ− 1, and the number of meta-characters between the
one containing t′ and the end of Z[q′] is ℓ′ ≤ ℓ− 1− k. By the inductive hypothesis, the call
to Select-Aux(t′, q′) takes O(ℓ′), and the overall cost of Select-Aux(t, q) is O(k) +O(ℓ′)
= O(ℓ), as claimed. ◀

It is easy to see that for some input t Algorithm 1 takes Θ(Mmax) time. To reduce the
complexity, we now show how to modify the parsing so that Mmax is upper bounded by a
user-defined parameter M > 1. The resulting parsing could contain some repeated phrases,
but note that Lemma 4 does not require the phrases to be different: repeated phrases will
only affect the space usage.

ISAAC 2021
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Algorithm 1 Recursive select procedure.

1: procedure Select(t)
2: q ← the smallest i such that PE[i] ≥ t, found via a binary search on PE
3: return Select-Aux(t,q)

4: procedure Select-Aux(t,q) ▷ Invariant: PE[q − 1] < t ≤ PE[q]
5: if t > HE[q] then ▷ If t belongs to the tail of Z[q]
6: return A[t] ▷ A[t] is computed from TL[q], TC[q]
7: r ← q′ ← HS[q] ▷ The head of Z[q] is a suffix of Z[1] · · ·Z[r]
8: j ← HE[q] ▷ j is the last position of the head of Z[q]
9: e← PE[r] ▷ e is the last position of Z[r]

10: ∆← A[j]−A[e] ▷ ∆ can be computed in O(1) time by Lemma 3
11: t′ ← t− (j − e); ▷ A[t] = A[t′] + ∆ by Lemma 3
12: while t′ > PE[q′] do ▷ Find the phrase Z[·] containing t′

13: q′ ← q′ − 1 ▷ Go back one word
14: return Select-Aux(t′, q′) + ∆ ▷ The returned value is A[t] by Lemma 3

Z[6]Z[4]Z[3]Z[2]Z[1] Z[5] Z[7]

Z[4]Z[3]Z[2]

Z[8]

Figure 4 The LZε parsing of the same string of Figure 3 with M = 5. The phrase Z[7] from
Figure 3 is invalid since it has 13 meta-characters. Z[7] head can have at most 4 meta-characters, so
we define Z[7] by setting HS[7] = 3 (Step 2b). Next, we define Z[8] by setting HS[8] = 4 (Step 2c).

To build a LZε parsing in which each phrase contains at most M meta-characters, we
proceed as follows. Assuming S[1, i] has already been parsed as Z[1], . . . , Z[q − 1], we first
compute the longest prefix S[i + 1, j] which is a suffix of Z[1] · · ·Z[r] for some r < q. Let m

denote the number of meta-characters in S[i + 1, j]. Then (see Figure 4):
1. If m < M , then Z[q] is defined as usual with HS[q] = r. Since Z[q]’s tails constitute an

additional meta-character, Z[q] has m + 1 ≤M meta-characters, as required.
2. Otherwise, if m ≥M , we do the following.

a. We scan S[i + 1, j] backward dropping copies of Z[r], Z[r − 1], . . . until we are left
with a prefix S[i + 1, ks] containing less than M meta-characters. By construction,
S[i + 1, ks] is a suffix of Z[1] · · ·Z[s] for some s < r and since each phrase contains at
most M meta-characters, S[i + 1, ks] is non-empty.

b. We define Z[q] by setting S[i + 1, ks] as its head, HS[q] = s, and by defining Z[q]’s tail
as usual.

c. Next, we consider Z[s + 1] ≡ S[ks, ks+1]. By construction, Z[s + 1] contains at most
M meta-characters while S[i + 1, ks+1] contains more than M meta-characters. If Z[q]
ends before position ks+1 (i.e. PE[q] < ks+1), we define an additional phrase Z[q + 1]
with heads equal to S[PE[q]+1, ks+1], HS[q +1] = s+1 and with a tail defined as usual.
This ensures that Z[q] alone or Z[q]Z[q + 1] contains at least M meta-characters.

▶ Lemma 5. The LZε parsing with limit M contains at most 2n/M repeated phrases.
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Proof. In the algorithm described above, repeated phrases are created only at Steps 2b
and 2c. Indeed, both Z[q] defined in Step 2b and Z[q +1] defined in Step 2c could be identical
to a previous phrase. However, the concatenation Z[q]Z[q + 1] covers at least S[i + 1, ks+1]
so by construction contains at least M meta-characters. Hence, Steps 2b and 2c can be
executed at most n/M times. ◀

In the following, let σ denote the number of distinct gaps in S (i.e., the alphabet size
of S), for any ρ > 0, we denote by LZρ

ε the parsing computed with the above algorithm with
M = log1+ρ n. The following lemma shows that the space to represent the parsing can be
bounded in terms of the kth order entropy of the gap-string S plus o(n log σ) bits.

▶ Lemma 6. Let σ denote the number of distinct gaps in S. The arrays PE, HE, and HS
produced by the LZρ

ε parsing can be stored in nHk(S) +O(n/ logρ n) + o(n log σ) bits for any
positive k = o(logσ n), and still support constant-time access to their elements.

Proof. Let λ denote the number of phrases in the parsing. We write λ = λr +λd, where λr is
the number of repeated phrases, and λd is the number of distinct phrases. By Lemma 5 it is
λr ≤ n/(2 log1+ρ n), while for the number λd of distinct phrases it is [27, Lemmas 3.9 and 3.10]

λd = O
(

n

logσ n

)
and λd log λd ≤ nHk(S) + λd log n

λd
+O(λd(1 + k log σ)) (2)

for any constant k ≥ 0. The vectors PE and HE contain λ increasing values in the
range [1, n]. We encode each of them in λ log n

λ + O(λ) bits using Lemma 2. Since
f(x) = x log(n/x) is increasing for x ≤ n/e and λ = O(n/ logσ n), it is λ log n

λ + O(λ) =
O(n(log σ)(log log n)/ log n) = o(n log σ).

We encode HS using λ cells of size ⌈log λ⌉ = log λ +O(1) bits for a total of

λr log(λr + λd) + λd log(λr + λd) + O(λ) bits.

Since λd = O(n/ logσ n) and λr = O(n/ log1+ρ n), it is λd + λr = O(n/ logσ n) and the first
term is O(n/ logρ n). The second term can be bounded by noticing that, if λd ≤ λr, the
second term is smaller than the first. Otherwise, from (2) we have

λd log(λr + λd) ≤ λd log(2λd) ≤ nHk(S) + λd log n
λd

+O(λd(1 + k log σ)).

By the same reasoning as above, we have λd log n
λd

= o(n log σ) and λd(1 + k log σ) =
O((nk log σ)/ logσ n) = o(n log σ) for k = o(logσ n). ◀

Combining Lemma 6 with 4 and recalling that log λ = O(log1+ρ n), we get

▶ Theorem 7. Let σ denote the number of distinct gaps in S. Using the LZρ
ε parsing we can

compute select(t) in O(log1+ρ n) time using nHk(S) +O(n/ logρ n) + o(n log σ) bits of space
plus the space used for the λ segments (array TL) and for the corrections of the elements in
A covered by the tails in the parsing (array TC), for any positive k = o(logσ n).

In the proof of Lemma 6 one can see the interplay between the term O(n/ logρ n) coming
from the repeated phrases and the term o(n log σ) coming from the distinct phrases in
LZρ

ε . In particular, if σ is small (i.e., there are few distinct gaps), then o(n log σ) becomes
O(n log log n/ log n) and the space bound turns out to be nHk(S) +O(n/ logρ n) bits. Also,
note that the number of segments λ in LZρ

ε is always smaller than the number of segments
in a plain LA-vector. Also, the total length of the LZρ

ε tails is always smaller than n. Hence,
our approach is no worse than the LA-vector in space.
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We now show that the LZρ
ε parsing support efficient rank queries. The starting point is

the following lemma, whose proof is analogous to the one of Lemma 3.

▶ Lemma 8. Let S[i + 1, j] denote the head of phrase Z[q], and let r = HS[q] and e = PE[r].
Then, for any v such that A[i] < v ≤ A[j], it holds rank(v) = rank(v− (A[j]−A[e])) + (j− e).

▶ Theorem 9. Using the LZρ
ε parsing we can compute rank(v) in O(log1+ρ n + log ε) time

within the space stated in Theorem 7.

Proof. We answer rank(v) with an algorithm similar to Algorithm 1. First, we compute the
index q of the phrase Z[q] such that A[PE[q− 1]] < v ≤ A[PE[q]] with a binary search on the
values A[PE[i]]. If the parsing has λ phrases this takes O(log λ) time, since we can retrieve
A[PE[i]] in constant time using PE[i], TL[i] and TC[i].

Next, we set j = HE[q] and compare v with A[j] (which again we can retrieve in constant
time since it is the first value covered by Z[q]’s tail). If v ≥ A[j], we return j plus the rank
of v in A[j, PE[q]], which we can compute in O(log ε) time from TL[q] and TC[q] using the
algorithm in [7, §4]. If v < A[j], we set e = PE[HS[q]] and compute rank(v) recursively using
Lemma 8. Before the recursive call, we need to compute the index q′ of the phrase such
that A[PE[q′ − 1]] < v′ ≤ A[PE[q′]], for v′ = v − (A[j]−A[e]). To this end, we execute the
same while loop as the one in Lines 12–13 of Algorithm 1 with the test t′ > PE[q′] replaced
by v′ > A[PE[q′]]. Reasoning as in the proof of Lemma 4, we get that the overall time
complexity is O(log λ + Mmax + log ε) = O(log1+ρ n + log ε). ◀

4 The block-ε tree

In this section, we design a repetition aware version of the LA-vector by following an approach
that focuses on query efficiency and uses space bounded in terms of the complexity measure δ

reviewed in Section 2. We do so by building a variant of the block tree [5] on a combination of
the gap-string S and the piecewise linear ε-approximation. We name this variant block-ε tree,
and show that it achieves time-space bounds which are competitive with the ones achieved by
block trees and LA-vectors [7] because it combines both forms of compressibility discussed
in this paper: repetitiveness and approximate linearity.

The main idea of the block-ε tree consists in first building a traditional block tree structure
over the gap-string S[1, n] of A. Recall that every node of the block tree represents a substring
of S, and thus it implicitly represents the corresponding subarray of A. Then, we prune
the tree by dropping the subtrees whose corresponding subarray of A can be covered more
succinctly by segments and corrections (i.e. whose LA-vector representation wins over the
block-tree representation). Note that, compared to LA-vector, we do not encode segments
and corrections corresponding to substrings of S that have been encountered earlier, that
is, we exploit the repetitiveness of S to compress the piecewise linear ε-approximation at
the core of LA-vector. On the other hand, compared to block trees, we drop subtrees whose
substrings can be encoded more efficiently by segments and corrections, that is, we exploit
the approximate linearity of subarrays of A. Below we detail how to orchestrate this interplay
to achieve efficient queries and compressed space occupancy in the block-ε tree.

For simplicity of exposition, assume that n = δ2h for some integer h, where δ is the string
complexity of S. The block-ε tree is organised into h′ ≤ h levels. The first level (level zero)
logically divides the string S into δ blocks of size s0 = n/δ. In general, blocks at level ℓ have
size sℓ = n/(δ2ℓ), because they are recursively halved until possibly reaching the last level
h = log n

δ , where blocks have size sh = 1.
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At any level, if two blocks Sq and Sq+1 are consecutive in S and they form the leftmost
occurrence in S of their content, then we say that both Sq and Sq+1 are marked. A marked
block Sq that is not in the last level becomes an internal node of the tree. Such an internal
node has two children corresponding to the two equal-size sub-blocks in which Sq is split into.
On the other hand, an unmarked block Sr becomes a leaf of the tree because, by construction,
its content occurs earlier in S and thus we can encode it by storing (i) a leftward pointer q

to the marked blocks Sq, Sq+1 at the same level ℓ containing its leftmost occurrence, taking
log n

sℓ
bits; (ii) the offset o of Sr into the substring Sq · Sq+1, taking log sℓ bits. Furthermore,

to recover the values of A corresponding to Sr, we store (iii) the difference ∆ between the
value of A corresponding to the beginning of Sr and the value of A at the pointed occurrence
of Sr, taking log u bits. Overall, each unmarked block needs log n + log u bits of space.

To describe the pruning process, we first define a cost function c on the nodes of the
block-ε tree. For an unmarked block Sr, we define the cost c(Sr) = log n + log u, which
accounts for the space in bits taken by q, o and ∆. For a marked block Sq at the last level h,
we define the cost c(Sq) = log u, which accounts for the space in bits taken by its single
corresponding element of A. Instead, consider a marked block Sq at level ℓ < h for which there
exists a segment approximating with error εq ≤ ε the corresponding elements of A. Suppose
εq is minimal, that is, there is no ε′ < εq such that there exists a segment ε′-approximating
those same elements of A. Let κ be the space in bits taken by the parameters ⟨α, β⟩ of the
segment, e.g. κ = 2 log u + log n if we encode β in log u bits and α as a rational number with
a log u-bit numerator and a log n-bit denominator [7, §2]. We assign to such Sq a cost c(Sq)
defined recursively as

c(Sq) = min
{

κ + sℓ log εq + log log u

2 log n +
∑

Sx∈child(Sq) c(Sx)
(3)

The first branch of Equation (3) accounts for an encoding of the subarray of A corresponding
to Sq via an εq-approximate segment, the corrections of log εq bits for each of the sℓ elements
in Sq, and the exponent y of εq = 2y − 1 to keep track of its value, respectively. The second
branch of Equation (3) accounts for an encoding that recursively splits Sq into two children,
i.e. an encoding via two log n-bit pointers plus the optimal cost of the children. Finally, if
there is no linear ε-approximation (and thus no εq-approximation with εq ≤ ε) for Sq, we
assign to such Sq the cost indicated in the second branch of Equation (3).

A postorder traversal of the block-ε tree is sufficient to assign a cost to its nodes and
possibly prune some of its subtrees. Specifically, after recursing on the two children of a
marked block Sq at level ℓ, we check if the first branch of Equation (3) gives the minimum.
In that case, we prune the subtree rooted at Sq and store instead the encoding of the block
via the parameters ⟨α, β⟩ and the sℓ corrections in an array Cq. As a technical remark, this
pruning requires fixing the destination of any leftward pointer that starts from an unmarked
block Sr and ends to a (pruned) descendant of Sq. For this purpose, we first make Sr pointing
to Sq. Then, since any leftward pointer points to a pair of marked blocks (unless the offset is
zero), both or just one of them belongs to the pruned subtree. In the second case, we require
an additional pointer from Sr to the block that does not belong to the pruned subtree. This
additional pointer does not change the asymptotic complexity of the structure. Overall, this
pruning process yields a tree with h′ ≤ h levels.

In the full paper, we show how to support rank and select queries on the block-ε tree in
worst-case O(log logw

u
δ + h′ + log ε) time and O(h′) time, respectively.

We observe that the block-ε tree achieves space-time complexities no worse than a
standard block tree construction on S. This is due to the pruning of subtrees guided by the
space-conscious cost function c(·) and by the resulting reduction in the number of levels,
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which positively impact the query time. Compared to LA-vector, the block-ε tree can take
advantage of repetitions and avoid the encoding of subarrays of A corresponding to repeated
substrings of S. Furthermore, since the block-ε tree allocates the most succinct encoding for
a subarray of A by considering the smallest εq ≤ ε giving a linear εq-approximation, it could
be regarded as the repetition-aware analogous of the space-optimised LA-vector [7, §6], in
which all values of ε = 0, 20, 21, . . . , 2log u are considered. The block-ε tree has the advantage
of potentially storing fewer corrections at the cost of storing the tree topology. Using
the straightforward pointer-based encoding we discussed above, the tree topology takes
O(δ log n

δ log n) bits in the worst case, but for the next section we implement a more succinct
pointerless encoding (details in the full paper). We notice, nonetheless, that the more
repetitive is the string S, the smaller is δ, thus the overhead of the tree topology gets
negligible.

Finally, we mention that the block-ε tree could employ other compressed rank-select
dictionaries in its nodes, yielding a hybrid compression approach [39] that can benefit from
the orchestration of bicriteria optimisation and proper pruning of its topology to achieve the
best space occupancy, given a bound on the query time, or vice versa (à la [12,17,39]).

5 Experiments

We implemented the block-ε tree, as it is the simplest and most practical contribution of
this paper.

We compare our block-ε tree with the block tree of [5], built on the characteristic bitvector
bv(A), and with the space-optimised LA-vector of [7]. All these implementations are written
in C++ and build on the sdsl library [19]. For both the block tree and the block-ε tree, we use
a branching factor of two and vary the length b of the last-level blocks as b ∈ {23, 24, . . . , 29}.
Due to space limitations, we do not show the full space-time trade-off of each structure but
report only the most space-efficient configurations. A comparison with other rank/select
dictionaries is beyond the scope of our work, and it was already investigated in the literature
for the individual LA-vector and the block tree [5, 7]. On the other hand, we note that our
experimental study is the first to compare LA-vectors and block trees.

As datasets, we use (i) three postings lists with different densities n/u from the GOV2
inverted index [39]; (ii) six integers lists obtained by enumerating the positions of the first,
second and third most frequent character in each of the Burrows-Wheeler transform of two
text files: URL and 5GRAM [7]; (iii) three integers lists obtained by enumerating, respectively,
the positions of both Ts and Gs, of Ts, and of Gs in the Burrows-Wheeler transform of the
first gigabyte of the human reference genome GRCh38.p13.

For each tested structure, query operation, and dataset, we generate a batch of 105

random queries and measure the average query time in nanoseconds and the space occupancy
of the structure in bits per integer on a machine with 202 GB of RAM and a 2.30 GHz Intel
Xeon Gold 5118 CPU.

Table 1 shows the results. First and foremost, we note that LA-vector is 10.51× faster in
select and 4.69× faster in rank than the block tree on average, while for space there is no
clear winner over all the datasets. This comparison, which was not known in the literature,
illustrates that the combination of approximate linearity and repetitiveness is interesting not
only from a theoretical point of view, as commented in the introduction, but also from a
practical point of view.

Let us now compare the performance of our block-ε tree against the block tree and the
LA-vector. The block-ε tree is 2.19× faster in select than the block tree, and it is either faster
(1.32×) or slower (1.27×) in rank. With respect to LA-vector, the block-ε tree is always
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Table 1 The performance of LA-vector, the block tree over the characteristic bitvector bv(A)
and the block-ε tree over twelve datasets of different size n and universe size u. The select and rank
columns show the average query time of the operations in nanoseconds. The space of each structure
is shown in Bits Per Integer (BPI). For the block tree and the block-ε tree, the value b denotes the
length of the last-level block that gave the most space-efficient configuration.

Dataset LA-vector Block tree on bv(A) Block-ε tree on S

Name (n/u) n/106 u/106 select rank BPI b select rank BPI Depth b select rank BPI Depth (Avg)

GOV2 (76.6%) 18.85 24.62 69 130 1.85 64 668 519 0.69 12 16 451 825 1.89 14 (9.98)
GOV2 (40.6%) 9.85 24.62 60 129 3.48 128 686 531 1.56 11 256 367 638 3.26 10 (8.73)
GOV2 (4.1%) 1.00 24.62 33 96 3.01 32 645 573 4.62 13 128 407 465 2.92 10 (9.73)

URL (5.6%) 57.98 1039.92 124 144 2.83 32 1017 733 2.58 18 16 762 909 3.41 16 (12.94)
URL (1.3%) 13.56 1039.91 98 123 6.34 32 987 753 8.57 18 32 463 664 7.32 10 (8.39)
URL (0.4%) 3.73 1039.86 34 87 1.28 32 831 783 1.84 19 16 400 553 1.51 11 (7.92)

5GRAM (9.8%) 145.40 1476.73 171 249 4.40 32 1176 876 3.64 18 32 621 999 5.01 12 (10.27)
5GRAM (2.0%) 29.20 1476.73 132 177 6.37 32 1143 863 8.80 18 64 483 733 6.96 9 (7.81)
5GRAM (0.8%) 11.22 1476.69 95 125 7.56 32 1017 826 11.25 19 64 421 592 8.34 9 (7.61)

DNA (49.0%) 490.10 1000.00 250 446 5.27 512 1158 922 2.09 14 512 535 1070 3.65 3 (2.98)
DNA (29.5%) 294.68 1000.00 218 416 6.20 512 1227 989 3.46 14 512 368 718 4.57 2 (1.96)
DNA (19.6%) 195.42 1000.00 195 384 6.69 512 1206 972 5.21 14 512 335 654 5.01 2 (1.94)

slower. But, for what concerns the space, the block-ε tree improves both the LA-vector and
the block tree in the sparsest GOV2 and DNA, and in the vast majority of the remaining
datasets it is the second-best structure for space occupancy (except for the densest GOV2,
URL and 5GRAM). This shows that space-wise, the block-ε tree can be a robust data
structure in that it often achieves a good compromise by exploiting both kinds of regularities:
repetitiveness (block trees) and approximate linearity (LA-vectors).

For future work, we believe the block-ε tree can be improved along at least two avenues.
First, the block-ε tree at a certain level is constrained to use fixed-length blocks (and
thus segments), whilst the LA-vector minimises its space occupancy using segments whose
start/end positions do not have to coincide with a subdivision in blocks. Removing this
limitation, inherited from the block tree, would help to better capture approximate linearity
and improve the space occupancy of the block-ε tree. Second, the block-ε tree captures
the repetitiveness of the gap string S, while for the densest datasets of Table 1 it appears
worthwhile to consider the repetitiveness in bv(A), as done by the block tree. Therefore,
adapting our pruning strategy to bv(A) is likely to improve the space occupancy in these
densest datasets (though, the space-time bounds will then depend on u instead of n).

6 Conclusions

We introduced novel compressed rank/select dictionaries by exploiting two sources of regularity
arising in real data: repetitiveness and approximate linearity. Our first contribution, the
LZρ

ε parsing, combines backward copies with linear ε-approximation thus supporting efficient
queries within a space complexity bounded by the kth order entropy of the gaps in the
input data. Our second contribution, the block-ε tree, is a structure that adapts smoothly
to both sources of regularities by offering an improved query-time efficiency compared to
LZρ

ε . We experimented with a preliminary implementation of the block-ε tree showing that
it effectively exploits both repetitiveness and approximate linearity.

Our study opens up a plethora of opportunities for future research. Firstly, we notice that
the PGM-index [17] is also based on a variant of the piecewise linear ε-approximation, and
thus it can still benefit from the ideas presented in this paper to make its space occupancy
repetition aware. Secondly, the compression of segments and corrections in both LZρ

ε and
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the block-ε tree is an orthogonal problem for which one can devise further compression
mechanisms (see e.g. [17, Theorem 3]). Thirdly, the construction of the LZρ

ε phrases and
the block-ε tree could be investigated inside a bicriteria framework, which seeks to optimise
the query time and space usage under some given constraints [11]. Finally, inspired by
our preliminary results, we plan to engineer a more query-efficient implementation of the
block-ε tree that computes an optimal node pruning using a family of compressed data
structures in addition to ε-approximate segments.
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