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Abstract
In this paper, we study the problem of maximizing the difference between an adaptive submodular
(revenue) function and a non-negative modular (cost) function. The input of our problem is a set
of n items, where each item has a particular state drawn from some known prior distribution The
revenue function g is defined over items and states, and the cost function c is defined over items,
i.e., each item has a fixed cost. The state of each item is unknown initially and one must select an
item in order to observe its realized state. A policy π specifies which item to pick next based on
the observations made so far. Denote by gavg(π) the expected revenue of π and let cavg(π) denote
the expected cost of π. Our objective is to identify the best policy πo ∈ arg maxπ gavg(π) − cavg(π)
under a k-cardinality constraint. Since our objective function can take on both negative and positive
values, the existing results of submodular maximization may not be applicable. To overcome this
challenge, we develop a series of effective solutions with performance guarantees. Let πo denote the
optimal policy. For the case when g is adaptive monotone and adaptive submodular, we develop
an effective policy πl such that gavg(πl) − cavg(πl) ≥ (1 − 1

e
− ϵ)gavg(πo) − cavg(πo), using only

O(nϵ−2 log ϵ−1) value oracle queries. For the case when g is adaptive submodular, we present a
randomized policy πr such that gavg(πr) − cavg(πr) ≥ 1

e
gavg(πo) − cavg(πo).
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1 Introduction

Maximizing a submodular function subject to practical constraints has attracted increased
attention recently [3, 16, 17, 7]. Submodularity encodes a natural diminishing returns
property, which can be found in a wide variety of machine learning tasks such as active
learning [3], virtual marketing [16, 17], sensor placement [7], and data summarization [8].
Under the non-adaptive setting, where one must select a group of items all at once, [11]
shows that a classic greedy algorithm achieves 1− 1/e approximation ratio for the problem
of maximizing a monotone and non-negative submodular function subject to a cardinality
constraint. For non-monotone and non-negative objectives, [1] obtains an approximation of
1/e+ 0.004.

Very recently, [4] studies the problem of maximizing the difference between a monotone
non-negative submodular function and a non-negative modular function. Given that the
objective function of the above problem may take both positive and negative values, most
existing technologies, which require the objective function to take only non-negative values,
can not provide nontrivial approximation guarantees. They overcome this challenge by
developing a series of effective algorithms. In this paper, we extend their work to the adaptive
setting by considering the problem of adaptive regularized submodular maximization, i.e., our
goal is to adaptively select a group of items to maximize the difference between an adaptive
submodular (revenue) function and a non-negative modular (cost) function. We next provide
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more details about our adaptive setting. Following the framework of adaptive submodular
maximization [3], a natural stochastic variant of the classical non-adaptive submodular
maximization problem, we assume that each item is in a particular state drawn from a
known prior distribution. The state of each item is unknown initially and one must select an
item before observing its state. A policy π specifies which item to pick next based on the
observations made so far. Note that the decision on selecting an item is irrevocable, that is,
we can not discard any item that is previously selected. The revenue function g is defined
over items and states, and the cost function c is defined over items. Note that there are
two sources of randomness that make our problem more complicated than its non-adaptive
counterpart. One is the random realization of items’ states, and the other one is the random
decision that is made by the policy. We use gavg(π) to denote the expected revenue of π and
let cavg(π) denote the expected cost of π. Our objective is to identify the best policy:

max
π

gavg(π)− cavg(π)

under a k-cardinality constraint. The above formulation has its applications in many
domains [5, 12]. When gavg(π) represents the revenue of π and cavg(π) encodes the cost of
π, the above formulation is to maximize profits. In general, the above formulation may be
interpreted as a regularized submodular maximization problem under the adaptive setting.
Since our objective function can take on both negative and positive values, the existing results
of non-monotone adaptive submodular maximization [14, 15], which require the objective
function to take only non-negative values, may not be applicable.

Our contribution is threefold. We first consider the case when the revenue function g

is adaptive monotone and adaptive submodular. Letting πo denote the optimal policy, we
develop an effective policy πd such that gavg(πd) − cavg(πd) ≥ (1 − 1

e )gavg(πo) − cavg(πo),
using O(kn) value oracle queries. Our second result is the development of a faster policy πl
such that gavg(πl) − cavg(πl) ≥ (1 − 1

e − ϵ)gavg(π
o) − cavg(πo), using only O(nϵ−2 log ϵ−1)

value oracle queries. For the case when g is (non-monotone) adaptive submodular, we present
a randomized policy πr such that gavg(πr)− cavg(πr) ≥ 1

egavg(π
o)− cavg(πo).

2 Related Work

Submodular maximization is a well-studied topic due to its applications in a wide range of
domains including active learning [3], virtual marketing [16, 17], sensor placement [7]. Most
of existing studies focus on the non-adaptive setting where one must select a group of items
all at once. [11] shows that a classic greedy algorithm, which iteratively selects the item
that has the largest marginal revenue on top of the previously selected items, achieves a
1− 1/e approximation ratio when maximizing a monotone non-negative submodular function
subject to a cardinality constraint. The problem of maximizing a sum of a non-negative
monotone submodular function and an (arbitrary) modular function is first studied in [13].
Notably, their objective function may take on negative values. [2] develops a faster algorithm
using a surrogate objective that varies with time. For the case of a cardinality constraint
and a non-negative c, [4] develops the first practical algorithm. Their results have been
enhanced by [5] for the unconstrained case. Recently, [6, 12] extend this study to streaming
and distributed settings. Our work is different from theirs in that we focus on the adaptive
setting [3, 14, 15]. Moreover, we consider a more general problem of maximizing the difference
of a non-negative non-monotone adaptive submodular function and a non-negative modular
function.
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3 Preliminaries

In the rest of this paper, we use [m] to denote the set {0, 1, · · · ,m}. We mostly follow [3]
and adopt similar notations.

3.1 Items and States
The input of our problem is a set E of n items. Each item e ∈ E is in a random state Φ(e) ∈ O
where O represents the set of all possible states. We use a function ϕ : E → O, called a
realization, to represent the realized states of all items, i.e., ϕ(e) represents a realization
of Φ(e). There is a known prior probability distribution p = {Pr[Φ = ϕ] : ϕ ∈ U} over all
possible realizations U . The state Φ(e) of each item e ∈ E is unknown initially and one must
select e before observing its realized state. If we select multiple items S ⊆ E, then we are
able to observe a partial realization ψ : S → O and dom(ψ) = S is called the domain of
ψ. A partial realization ψ is said to be consistent with a realization ϕ, denoted ϕ ∼ ψ, if
they are equal everywhere in dom(ψ). A partial realization ψ is said to be a subrealization
of ψ′, denoted ψ ⊆ ψ′, if dom(ψ) ⊆ dom(ψ′) and they are equal everywhere in the domain
dom(ψ) of ψ. Let p(ϕ | ψ) denote the conditional distribution over realizations conditioned
on a partial realization ψ: p(ϕ | ψ) = Pr[Φ = ϕ | Φ ∼ ψ]. In the rest of this paper, we use
uppercase letters to denote random variables, and lowercase letters for realizations. For
example, Ψ refers to a random variable, and ψ is a realization of Ψ.

3.2 Revenue and Cost
For a set Y ⊆ E of items and a realization ϕ, let g(Y, ϕ) represent the revenue of selecting Y
conditioned on ϕ, where g is called revenue function. Moreover, each item e ∈ E has a fixed
cost ce. For any set subset of items Y ⊆ E, let c(Y ) =

∑
e∈Y ce denote the total cost of Y ,

where c is called cost function.

3.3 Problem Formulation
A policy specifies which item to select next based on the partial realization observed so far.
Mathematically, we represent a policy using a function π that maps a set of observations to
a distribution P(E) of E: π : 2E ×OE → P(E).

▶ Definition 1 ([3], Policy Concatenation). Given two policies π and π′, let π@π′ denote a
policy that runs π first, and then runs π′, ignoring the observation obtained from running π.

▶ Definition 2 ([3], Level-t-Truncation of a Policy). Given a policy π, we define its level-t-
truncation πt as a policy that runs π until it selects t items.

For each realization ϕ, let E(π, ϕ) denote the subset of items selected by π under realization
ϕ. Note that E(π, ϕ) is a random variable. The expected revenue gavg(π) of a policy π can
be written as

gavg(π) = EΦ,Π[g(E(π,Φ),Φ)]

where the expectation is taken over possible realizations according to p and the internal
randomness of the policy. Similarly, the expected cost cavg(π) of a policy π can be written as

cavg(π) = EΦ,Π[c(E(π,Φ))]

ISAAC 2021
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We next introduce the conditional expected marginal revenue g(e | ψ) of e conditioned
on a partial realization ψ:

g(e | ψ) = EΦ[g(dom(ψ) ∪ {e},Φ)− g(dom(ψ),Φ) | Φ ∼ ψ]

where the expectation is taken over Φ with respect to p(ϕ | ψ) = Pr(Φ = ϕ | Φ ∼ ψ).

▶ Definition 3 ([3], Adaptive Submodularity). For any two partial realizations ψ and ψ′ such
that ψ ⊆ ψ′, we assume that the following holds for each e ∈ E \ dom(ψ′):

g(e | ψ) ≥ g(e | ψ′) (1)

Let Ω = {π | ∀ϕ ∈ U+, |E(π, ϕ)| ≤ k} denote the set of all policies that select at most k
items where U+ = {ϕ ∈ U | p(ϕ) > 0}, our objective is listed in below:

max
π∈Ω

gavg(π)− cavg(π) (2)

Before presenting our solutions to the above problem, we introduce some additional
notations. By abuse of notation, for any partial realization ψ, we define g(ψ) =
EΦ∼ψ[g(dom(ψ),Φ)]. We next introduce two useful functions: Gi, the distorted object-
ive function, and Hi, which is used to analyze the trajectory of Gi. For any partial realization
ψ, and any iteration i ∈ [k] of our algorithms, we define

Gi(ψ) = (1− 1
k

)k−ig(ψ)− c(dom(ψ))

For any partial realization ψ, and any iteration i ∈ [k − 1] of our algorithms, we define

Hi(ψ, e) = (1− 1
k

)k−(i+1)g(e | ψ)− ce

4 Monotone g: Adaptive Distorted Greedy Policy

We start with the case when g is adaptive submodular and adaptive monotone [3], i.e., for
any realization ψ, the following holds for each e ∈ E \ dom(ψ): g(e | ψ) ≥ 0. Our approach
is a natural extension of the Distorted-Greedy algorithm, the first practical non-adaptive
algorithm developed in [4]. Note that there are two factors that make our problem more
complicated than its non-adaptive counterpart. First, since the objective function is defined
over random realization, the key of analysis is to estimate the expected utility under the
distribution of realizations p. Second, the policy itself might produce random outputs even
under the same realization, this adds an additional layer of difficulty to the design and
analysis of our policy. To address the above complications, we develop an Adaptive Distorted
Greedy Policy πd such that gavg(πd) − cavg(πd) ≥ (1 − 1

e )gavg(πo) − cavg(πo), where πo

denotes the optimal policy. We next explain the idea of πd (Algorithm 1), then analyze its
performance bound.

4.1 Design of πd

We first add a dummy item d to the ground set, such that, cd = 0, and for any partial
realization ψ, we have g(d | ψ) = 0. Let E′ = E ∪ {d}. We add this to ensure that our policy
will not select an item that has an negative profit. Note that d can be safely removed from
the final solution without affecting its performance. πd performs in k iterations: It starts
with an empty set. In each iteration i ∈ [k − 1], let ψi denote the current partial realization,
πd selects an item ei that maximizes Hi(ψi, ·):

ei ← arg max
e∈E′

Hi(ψi, e)
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After observing the state Φ(ei) of ei, we update the current partial realization ψi+1 using
ψi ∪ {(ei,Φ(ei))} and enter the next iteration. This process iterates until all k items have
been selected.

Algorithm 1 Adaptive Distorted Greedy Policy πd.

1: S0 = ∅; i = 0;ψ0 = ∅.
2: while i < k do
3: ei ← arg maxe∈E′ Hi(ψi, e);
4: Si+1 ← Si ∪ {ei};
5: ψi+1 ← ψi ∪ {(ei,Φ(ei))}; i← i+ 1;
6: return Sk

4.2 Performance Analysis
We first present three preparatory lemmas which are used to lower bound the marginal
gain in the distorted objective. Recall that Ψi+1 refers to a random variable, and ψi+1 is a
realization of Ψi+1.

▶ Lemma 4. In each iteration of πd,

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)] = Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

Proof. We start with the case when ei ∈ dom(ψi),

EΦ∼ψi
[Gi+1(Ψi+1)−Gi(ψi)]

= (1− 1
k

)k−(i+1)g(ψi)− (1− 1
k

)k−ig(ψi)

= (1− 1
k

)k−(i+1)g(ψi)− (1− 1
k

)(1− 1
k

)k−(i+1)g(ψi)

= 1
k

(1− 1
k

)k−(i+1)g(ψi)

= Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

The last equality is due to Hi(ψi, ei) = 0 when ei ∈ dom(ψi). We next prove the case when
ei /∈ dom(ψi),

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)]

= EΦ∼ψi [(1−
1
k

)k−(i+1)g(ψi ∪ {Φ(ei)})

−c(dom(ψi) ∪ {ei})−
(

(1− 1
k

)k−ig(ψi)− c(dom(ψi))
)

]

= EΦ∼ψi [(1−
1
k

)k−(i+1)g(ψi ∪ {Φ(ei)})]

−c(dom(ψi) ∪ {ei})−
(

(1− 1
k

)k−ig(ψi)− c(dom(ψi))
)

= EΦ∼ψi [(1−
1
k

)k−(i+1)g(ψi ∪ {Φ(ei)})]

−c(dom(ψi) ∪ {ei})− ((1− 1
k

)k−(i+1)(1− 1
k

)g(ψi)− c(dom(ψi))

= EΦ∼ψi [(1−
1
k

)k−(i+1)(g(ψi ∪ {Φ(ei)})− g(ψi))]− cei + 1
k

(1− 1
k

)k−(i+1)g(ψi)

ISAAC 2021
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= g(ei | ψi)− cei
+ 1
k

(1− 1
k

)k−(i+1)g(ψi)

= Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

The fourth equality is due to ei /∈ dom(ψi). ◀

▶ Lemma 5. In each iteration of πd,

Hi(ψi, ei) ≥ 1
k (1− 1

k )k−(i+1)EΦ∼ψi
[gavg(πo)− gavg(πdi )]− 1

kEΦ∼ψi
[cavg(πo)]

Proof. Let Ae be an indicator that e is selected by the optimal solution πo conditioned on a
partial realization ψi, then we have

Hi(ψi, ei) = (1− 1
k

)k−(i+1)g(ei | ψi)− cei

= max
e∈E′

[(1− 1
k

)k−(i+1)g(e | ψi)− ce]

≥ 1
k

∑
e∈E′

Pr[Ae = 1]
[
(1− 1

k
)k−(i+1)g(e | ψi)− ce

]
= 1
k

∑
e∈E′

Pr[Ae = 1]
[
(1− 1

k
)k−(i+1)g(e | ψi)

]
− 1
k

∑
e∈E′

Pr[Ae = 1]× ce

= 1
k

∑
e∈E′

Pr[Ae = 1]
[
(1− 1

k
)k−(i+1)g(e | ψi)

]
− 1
k
EΦ∼ψi [cavg(πo)]

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)− gavg(πdi )]− 1
k
EΦ∼ψi [cavg(πo)]

The second equality is due to the design of πd, i.e., it selects an item ei that maximizes
Hi(ψi, ·). The first inequality is due to

∑
e∈E′ Pr[Ae = 1] ≤ k since πo selects at most

k items. The third equality is due to the assumption that Pr[Ae = 1] is the probability
that e is selected by πo conditioned on ψi. The second inequality is due to g is adaptive
submodular. ◀

▶ Lemma 6. In each iteration of πd,

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]] ≥
1
k

(1− 1
k

)k−(i+1)gavg(πo)−
1
k
cavg(πo)

Proof. We first prove that for any fixed partial realization ψi, the following inequality holds:

EΦ∼ψi [Gi+1(Ψi+1) −Gi(ψi)] ≥ 1
k

(1 − 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)] − 1
k
EΦ∼ψi [cavg(πo)] (3)

Due to Lemma 4, we have

EΦ∼ψi
[Gi+1(Ψi+1)−Gi(ψi)]

= Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)− gavg(πdi )]

−1
k
EΦ∼ψi

[cavg(πo)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

= 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)]−
1
k
EΦ∼ψi [cavg(πo)]
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The inequality is due to Lemma 5 and the second equality is due to EΦ∼ψi [gavg(πdi )] = g(ψi).
Now we are ready to prove this lemma.

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]]

≥ EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo)]−

1
k
EΦ∼Ψi

[cavg(πo)]
]

= EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi [gavg(πo)]
]
− EΨi

[
1
k
EΦ∼Ψi [cavg(πo)]

]
= 1
k

(1− 1
k

)k−(i+1)gavg(πo)−
1
k
cavg(πo)

The inequality is due to (3). ◀

We next present the first main theorem of this paper.

▶ Theorem 7. gavg(πd)− cavg(πd) ≥ (1− 1
e )gavg(πo)− cavg(πo).

Proof. According to the definition of Gk, we have EΨk
[Gk(Ψk)] = EΨk

[(1 − 1
k )0g(Ψk) −

c(dom(Ψk))] = gavg(πd)−cavg(πd) and EΨ0 [G0(Ψ0)] = EΨ0 [(1− 1
k )kg(Φ(S0))−c(dom(Ψ0))] =

0. Hence,

gavg(πd)− cavg(πd) = EΨk
[Gk(Ψk)]− EΨ0 [G0(Ψ0)]

= EΨk−1

[
EΦ∼Ψk−1 [Gk(Ψk)]

]
− EΨ0 [EΦ∼Ψ0 [G0(Ψ0)]]

=
∑

i∈[k−1]

(EΨi [EΦ∼Ψi [Gi+1(Ψi+1)]]− EΨi [EΦ∼Ψi [Gi(Ψi)]])

=
∑

i∈[k−1]

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]]

≥
∑

i∈[k−1]

(
1
k

(1− 1
k

)k−(i+1)gavg(πo)−
1
k
cavg(πo)

)

=
∑

i∈[k−1]

(
1
k

(1− 1
k

)k−(i+1)gavg(πo)
)
− cavg(πo)

≥ (1− 1
e

)gavg(πo)− cavg(πo)

The first inequality is due to Lemma 6. ◀

5 Monotone g: Linear-time Adaptive Distorted Greedy Policy

We next propose a faster algorithm Linear-time Adaptive Distorted Greedy Policy, denoted
by πl, for the case when g is adaptive monotone. As compared with πd whose running time
is O(nk), our new policy πl achieves nearly the same performance guarantee with O(n log 1

ϵ )
value oracle queries. Our design is inspired by the sampling technique developed in [10] for
maximizing a monotone and submodular function. Very recently, [14] extends this approach
to the adaptive setting to develop a linear-time adaptive policy for maximizing an adaptive
submodular and adaptive monotone function. In this work, we apply this technique to design
a linear-time adaptive policy for our adaptive regularized submodular maximization problem.
Note that our objectives are not adaptive monotone and they may take negative values.

ISAAC 2021
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5.1 Design of πl

We present the details of our algorithm in Algorithm 2. We first add a set D of k− 1 dummy
items to the ground set, such that, each dummy item d ∈ D has zero cost, i.e., ∀d ∈ D, cd = 0,
and for any d ∈ D, and any partial realization ψ, we have g(d | ψ) = 0. Let E′ = E ∪D. We
next explain the idea of πl: It starts with an empty set. In each iteration i ∈ [k − 1], πl first
samples a set Ri of size n

k log 1
ϵ uniformly at random, then adds an item ei with the largest

Hi(ψi, ·) from Ri to the solution. After observing the state Φ(ei) of ei, we update the current
partial realization ψi+1 using ψi ∪ {(ei,Φ(ei))} and enter the next iteration. This process
iterates until all k items have been selected. It was worth noting that the technique of lazy
updates [9] can be used to further accelerate the computation of our algorithms in practice.

Algorithm 2 Linear-time Adaptive Distorted Greedy Policy πl.

1: S0 = ∅; i = 0;ψ0 = ∅.
2: while i < k do
3: Ri ← a random set sampled uniformly at random from E′;
4: ei ← arg maxe∈Ri Hi(ψi, e);
5: Si+1 ← Si ∪ {ei};
6: ψi+1 ← ψi ∪ {(ei,Φ(ei))}; i← i+ 1;
7: return Sk

5.2 Performance Analysis
We first present three preparatory lemmas.

▶ Lemma 8. In each iteration of πl,

EΦ∼ψi
[Gi+1(Ψi+1)−Gi(ψi)] = Eei

[Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

The above lemma immediately follows from Lemma 4.

▶ Lemma 9. In each iteration of πl, Eei [Hi(ψi, ei)] ≥ 1
k (1 − 1

k )k−(i+1)EΦ∼ψi [gavg(πo) −
gavg(πli)]− 1

kEΦ∼ψi
[cavg(πo)].

Proof. Let Ae be an indicator that e is selected by the optimal solution πo conditioned on a
partial realization ψi. Let Be be an indicator that e is selected by πl in iteration i conditioned
on a partial realization ψi. Let M(ψi) denote the top k items with the largest marginal
contribution to ψi in terms of Hi(ψi, ·), i.e., M(ψi) ← arg maxS⊆E′,|S|=k

∑
e∈S Hi(ψi, e).

Then we have

Eei
[Hi(ψi, ei)]

=
∑
e∈E′

Pr[Be = 1]
(

(1− 1
k

)k−(i+1)g(e | ψi)− ce
)

≥ Pr[Ri ∩M(ψi) ̸= ∅]
1
k

∑
e∈M(ψi)

((1− 1
k

)k−(i+1)g(e | ψi)− ce)

≥ (1− ϵ) 1
k

∑
e∈M(ψi)

(
(1− 1

k
)k−(i+1)g(e | ψi)− ce

)

≥ (1− ϵ) 1
k

∑
e∈E′

Pr[Ae = 1]
(

(1− 1
k

)k−(i+1)g(e | ψi)− ce
)

≥ (1− ϵ) 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo)− gavg(πli)]− (1− ϵ) 1

k
EΦ∼ψi

[cavg(πo)]
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The second inequality is due to Lemma 4 in [14], where they show that Pr[Ri∩M(ψi) ̸= ∅] ≥
1− ϵ given that Ri has size of n

k log 1
ϵ . The third inequality is due to

∑
e∈E′ Pr[Ae = 1] ≤ k.

The last inequality is due to g is adaptive submodular and c is modular. ◀

▶ Lemma 10. In each iteration of πl,

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥ (1− ϵ) 1
k

(1− 1
k

)k−(i+1)gavg(πo)− (1− ϵ) 1
k
cavg(πo)

Proof. We first show that for any fixed partial realization ψi,

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)] (4)
≥ (1− ϵ)( 1

k (1− 1
k )k−(i+1)EΦ∼ψi [gavg(πo)]− 1

kEΦ∼ψi [cavg(πo)])

Due to Lemma 8, we have

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)]

= Eei [Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ (1− ϵ) 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo)− gavg(πli)]

−(1− ϵ) 1
k
EΦ∼ψi [cavg(πo)] + 1

k
(1− 1

k
)k−(i+1)g(ψi)

= (1− ϵ)
(

1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo)]−

1
k
EΦ∼ψi

[cavg(πo)]
)

+ϵ1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ (1− ϵ)
(

1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)]−
1
k
EΦ∼ψi [cavg(πo)]

)
The first inequality is due to Lemma 9, the second equality is due to EΦ∼ψi

[gavg(πli)] = g(ψi),
and the last inequality is due to g is non-negative. Now we are ready to prove this lemma.

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]]

≥ (1− ϵ)EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo)]−

1
k
EΦ∼Ψi

[cavg(πo)]
]

= (1− ϵ)EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo)]

]
− EΨi

[
1
k
EΦ∼Ψi

[cavg(πo)]
]

= (1− ϵ) 1
k

(1− 1
k

)k−(i+1)gavg(πo)− (1− ϵ) 1
k
cavg(πo)

The first inequality is due to (4). ◀

We next present the second main theorem of this paper.

▶ Theorem 11. gavg(πl)− cavg(πl) ≥ (1− 1
e − ϵ)gavg(π

o)− cavg(πo).

Proof. According to the definition of Gk, we have EΨk
[Gk(Ψk)] = EΨk

[(1 − 1
k )0g(Ψk) −

c(dom(Ψk))] = gavg(πl)−cavg(πl) and EΨ0 [G0(Ψ0)] = EΨ0 [(1− 1
k )kg(Φ(S0))−c(dom(Ψ0))] =

0. Hence,
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gavg(πl)− cavg(πl)
= EΨk

[Gk(Ψk)]− EΨ0 [G0(Ψ0)]
= EΨk−1

[
EΦ∼Ψk−1 [Gk(Ψk)]

]
− EΨ0 [EΦ∼Ψ0 [G0(Ψ0)]]

=
∑

i∈[k−1]

(EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)]]− EΨi
[EΦ∼Ψi

[Gi(Ψi)]])

=
∑

i∈[k−1]

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥
∑

i∈[k−1]

(
(1− ϵ) 1

k
(1− 1

k
)k−(i+1)gavg(πo)− (1− ϵ) 1

k
cavg(πo)

)

=
∑

i∈[k−1]

(
(1− ϵ) 1

k
(1− 1

k
)k−(i+1)gavg(πo)

)
− (1− ϵ)cavg(πo)

≥ (1− ϵ)(1− 1
e

)gavg(πo)− (1− ϵ)cavg(πo)

≥ (1− 1
e
− ϵ)gavg(πo)− cavg(πo)

The first inequality is due to Lemma 10. ◀

6 Non-monotone g: Adaptive Random Distorted Greedy Policy

We next discuss the case when g is non-monotone adaptive submodular. We present an
Adaptive Random Distorted Greedy Policy πr for this case.

6.1 Design of πr

The detailed implementation of πr is listed in Algorithm 3. We first add a set D of k − 1
dummy items to the ground set, such that, for any d ∈ D, and any partial realization ψ, we
have cd = 0 and g(d | ψ) = 0. Let E′ = E ∪D. πr runs round by round: Starting with an
empty set. In each iteration i ∈ [k − 1], πr randomly selects an item from the set M(ψi).
Recall that M(ψi) is a set of k items that have the largest Hi(ψi, ·), i.e.,

M(ψi)← arg max
S⊆E′;|S|=k

∑
e∈S

Hi(ψi, e)

After observing the state Φ(ei) of ei, we update the current partial realization ψi+1 using
ψi ∪ {(ei,Φ(ei))} and enter the next iteration. This process iterates until all k items have
been selected.

Algorithm 3 Adaptive Random Distorted Greedy Policy πr.

1: S0 = ∅; i = 0;ψ0 = ∅.
2: while i < k do
3: M(ψi)← arg maxS⊆E′;|S|=k

∑
e∈S Hi(ψi, e);

4: sample ei uniformly at random from M(ψi);
5: Si+1 ← Si ∪ {ei};
6: ψi+1 ← ψi ∪ {(ei,Φ(ei))}; i← i+ 1;
7: return Sk
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6.2 Performance Analysis

We first present three preparatory lemmas. The first lemma immediately follows from
Lemma 4.

▶ Lemma 12. In each iteration of πr,

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)] = Eei [Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

▶ Lemma 13. In each iteration of πr, Eei [Hi(ψi, ei)] ≥ 1
k (1− 1

k )k−(i+1)EΦ∼ψi [gavg(πo@πri )−
gavg(πri )]− 1

kEΦ∼ψi
[cavg(πo)].

Proof. Recall that Ae is an indicator that e is selected by the optimal solution πo conditioned
on a partial realization ψi,

Eei [Hi(ψi, ei)]

= 1
k

∑
e∈M(ψi)

(
(1− 1

k
)k−(i+1)g(e | ψi)− ce

)

≥ 1
k

∑
e∈E′

Pr[Ae = 1]
(

(1− 1
k

)k−(i+1)g(e | ψi)− ce
)

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo@πri )− gavg(πri )]−

1
k
EΦ∼ψi

[cavg(πo)]

The equality is due to the design of πr, i.e., it selects an item ei uniformly at random from
M(ψi). The first inequality is due to

∑
e∈E′ Pr[Ae = 1] ≤ k since πo selects at most k items,

and M(ψi) contains a set of k items that have the largest Hi(ψi, ·). The second inequality is
due to g is adaptive submodular and c is modular. ◀

▶ Lemma 14. In each iteration of πr,

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]] ≥
1
k

(1− 1
k

)k−1gavg(πo)−
1
k
cavg(πo)

Proof. We first show that for any fixed partial realization ψi,

EΦ∼ψi [Gi+1(Ψi+1) −Gi(ψi)] ≥ 1
k

(1 − 1
k

)k−(i+1)EΦ∼ψi [gavg(πo@πri )] − 1
k
EΦ∼ψi [cavg(πo)] (5)

Due to Lemma 12, we have

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)]

= Eei [Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo@πri )− gavg(πri )]

−1
k
EΦ∼ψi [cavg(πo)] + 1

k
(1− 1

k
)k−(i+1)g(ψi)

= 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo@πri )]−

1
k
EΦ∼ψi

[cavg(πo)]

ISAAC 2021



69:12 Adaptive Regularized Submodular Maximization

The first inequality is due to Lemma 13. The second equality is due to EΦ∼ψi [gavg(πri )] =
g(ψi). The last inequality is due to g is non-negative. Now we are ready to prove this lemma.

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥ EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi [gavg(πo@πri )]−
1
k
EΦ∼Ψi [cavg(πo)]

]
= EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo@πri )]

]
− EΨi

[
1
k
EΦ∼Ψi

[cavg(πo)]
]

= 1
k

(1− 1
k

)k−(i+1)gavg(πo@πri )−
1
k
cavg(πo)

≥ 1
k

(1− 1
k

)k−(i+1)(1− 1
k

)igavg(πo)−
1
k
cavg(πo)

= 1
k

(1− 1
k

)k−1gavg(πo)−
1
k
cavg(πo)

The first inequality is due to (5), and the second inequality is due to Lemma 1 in [14], where
they show that gavg(πo@πri ) ≥ (1− 1

k )igavg(πo). ◀

We next present the third main theorem of this paper.

▶ Theorem 15. gavg(πr)− cavg(πr) ≥ 1
egavg(π

o)− cavg(πo).

Proof. According to the definition of Gk, we have EΨk
[Gk(Ψk)] = EΨk

[(1 − 1
k )0g(Ψk) −

c(dom(Ψk))] = gavg(πr)−cavg(πr) and EΨ0 [G0(Ψ0)] = EΨ0 [(1− 1
k )kg(Φ(S0))−c(dom(Ψ0))] =

0. Hence,

gavg(πr)− cavg(πr) = EΨk
[Gk(Ψk)]− EΨ0 [G0(Ψ0)]

= EΨk−1

[
EΦ∼Ψk−1 [Gk(Ψk)]

]
− EΨ0 [EΦ∼Ψ0 [G0(Ψ0)]]

=
∑

i∈[k−1]

(EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)]]− EΨi
[EΦ∼Ψi

[Gi(Ψi)]])

=
∑

i∈[k−1]

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥
∑

i∈[k−1]

(
1
k

(1− 1
k

)k−1gavg(πo)−
1
k
cavg(πo)

)
=

∑
i∈[k−1]

1
k

(1− 1
k

)k−1gavg(πo)− cavg(πo)

≥ 1
e
gavg(πo)− cavg(πo)

The first inequality is due to Lemma 14. ◀

7 Conclusion

In this paper, we study the adaptive regularized submodular maximization problem. Because
our objective function may take both negative and positive values, most existing technologies
of submodular maximization do not apply to our setting. We develop a series of effective
policies for this problem.
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