
41st IARCS Annual Conference
on Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2021, December 15–17, 2021, Virtual Conference

Edited by

Mikołaj Bojańczyk
Chandra Chekuri

LIPIcs – Vo l . 213 – FSTTCS 2021 www.dagstuh l .de/ l ip i c s

Editors

Mikołaj Bojańczyk
University of Warsaw, Poland
bojan@mimuw.edu.pl

Chandra Chekuri
University of Illinois, Urbana-Champaign, IL, US
chekuri@illinois.edu

ACM Classification 2012
Theory of computation; Computing methodologies; Software and its engineering

ISBN 978-3-95977-215-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-215-0.

Publication date
December, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2021.0

ISBN 978-3-95977-215-0 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:bojan@mimuw.edu.pl
mailto:chekuri@illinois.edu
https://www.dagstuhl.de/dagpub/978-3-95977-215-0
https://www.dagstuhl.de/dagpub/978-3-95977-215-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-215-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

FSTTCS 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Mikołaj Bojańczyk and Chandra Chekuri . 0:ix

Program Committee
. 0:xi

List of External Reviewers: Track A
. 0:xiii

List of External Reviewers: Track B
. 0:xv

Invited Talks

BQP After 28 Years
Scott Aaronson . 1:1–1:1

State Complexity of Population Protocols
Javier Esparza . 2:1–2:1

Approximately Counting Graph Homomorphisms and Retractions
Leslie Ann Goldberg . 3:1–3:1

Indistinguishability Obfuscation from Well-Founded Assumptions
Huijia (Rachel) Lin . 4:1–4:1

The Complexity of Gradient Descent
Rahul Savani . 5:1–5:2

Regular Papers

Scheduling in the Secretary Model
Susanne Albers and Maximilian Janke . 6:1–6:22

One-Way Functions and a Conditional Variant of MKTP
Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and
Ilya Volkovich . 7:1–7:19

Generalizations of Length Limited Huffman Coding for Hierarchical Memory
Settings

Shashwat Banchhor, Rishikesh Gajjala, Yogish Sabharwal, and Sandeep Sen 8:1–8:23

Approximation Algorithms for Flexible Graph Connectivity
Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur 9:1–9:14

Tight Chang’s-Lemma-Type Bounds for Boolean Functions
Sourav Chakraborty, Nikhil S. Mande , Rajat Mittal, Tulasimohan Molli,
Manaswi Paraashar, and Swagato Sanyal . 10:1–10:22

Approximate Trace Reconstruction via Median String (In Average-Case)
Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer 11:1–11:23

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Approximating the Center Ranking Under Ulam
Diptarka Chakraborty, Kshitij Gajjar, and Agastya Vibhuti Jha 12:1–12:21

Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture
Arkadev Chattopadhyay, Ankit Garg, and Suhail Sherif . 13:1–13:16

Functional Lower Bounds for Restricted Arithmetic Circuits of Depth Four
Suryajith Chillara . 14:1–14:15

On (Simple) Decision Tree Rank
Yogesh Dahiya and Meena Mahajan . 15:1–15:16

Reachability and Matching in Single Crossing Minor Free Graphs
Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and
Raghunath Tewari . 16:1–16:16

Approximating the Number of Prime Factors Given an Oracle to Euler’s Totient
Function

Yang Du and Ilya Volkovich . 17:1–17:10

Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update
Time

Franziska Eberle, Nicole Megow, Lukas Nölke, Bertrand Simon, and Andreas Wiese 18:1–18:17

Largest Similar Copies of Convex Polygons in Polygonal Domains
Taekang Eom, Seungjun Lee, and Hee-Kap Ahn . 19:1–19:13

A Faster Algorithm for Finding Closest Pairs in Hamming Metric
Andre Esser, Robert Kübler, and Floyd Zweydinger . 20:1–20:21

ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial
Space

Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, and Saket Saurabh 21:1–21:16

On Fair and Efficient Allocations of Indivisible Public Goods
Jugal Garg, Pooja Kulkarni, and Aniket Murhekar . 22:1–22:19

Time Space Optimal Algorithm for Computing Separators in Bounded Genus
Graphs

Chetan Gupta, Rahul Jain, and Raghunath Tewari . 23:1–23:15

Near-Optimal Cayley Expanders for Abelian Groups
Akhil Jalan and Dana Moshkovitz . 24:1–24:23

Matchings, Critical Nodes, and Popular Solutions
Telikepalli Kavitha . 25:1–25:19

Fast and Exact Convex Hull Simplification
Georgiy Klimenko and Benjamin Raichel . 26:1–26:17

Lower Bounds and Improved Algorithms for Asymmetric Streaming Edit
Distance and Longest Common Subsequence

Xin Li and Yu Zheng . 27:1–27:23

An ETH-Tight Algorithm for Multi-Team Formation
Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue 28:1–28:9

Contents 0:vii

Dominating Set in Weakly Closed Graphs is Fixed Parameter Tractable
Daniel Lokshtanov and Vaishali Surianarayanan . 29:1–29:17

Popular Matchings in the Hospital-Residents Problem with Two-Sided Lower
Quotas

Meghana Nasre, Prajakta Nimbhorkar, Keshav Ranjan, and Ankita Sarkar 30:1–30:21

Property B: Two-Coloring Non-Uniform Hypergraphs
Jaikumar Radhakrishnan and Aravind Srinivasan . 31:1–31:8

Harmonic Algorithms for Packing d-Dimensional Cuboids into Bins
Eklavya Sharma . 32:1–32:22

Resilience of Timed Systems
S. Akshay, Blaise Genest, Loïc Hélouët, S. Krishna, and Sparsa Roychowdhury . . 33:1–33:22

On the Complexity of Intersection Non-emptiness for Star-Free Language Classes
Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer,
Ismaël Jecker, Mateus de Oliveira Oliveira, and Petra Wolf . 34:1–34:15

Complexity of Coverability in Bounded Path Broadcast Networks
A. R. Balasubramanian . 35:1–35:16

On Classical Decidable Logics Extended with Percentage Quantifiers and
Arithmetics

Bartosz Bednarczyk, Maja Orłowska, Anna Pacanowska, and Tony Tan 36:1–36:15

Branching Automata and Pomset Automata
Nicolas Bedon . 37:1–37:13

History Determinism vs. Good for Gameness in Quantitative Automata
Udi Boker and Karoliina Lehtinen . 38:1–38:20

Local First-Order Logic with Two Data Values
Benedikt Bollig, Arnaud Sangnier, and Olivier Stietel . 39:1–39:15

Diagrammatic Polyhedral Algebra
Filippo Bonchi, Alessandro Di Giorgio, and Paweł Sobociński . 40:1–40:18

From Local to Global Determinacy in Concurrent Graph Games
Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux . 41:1–41:14

Quantitative Verification on Product Graphs of Small Treewidth
Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis 42:1–42:23

Synthesizing Computable Functions from Rational Specifications over Infinite
Words

Emmanuel Filiot and Sarah Winter . 43:1–43:16

Confluence of Conditional Rewriting in Logic Form
Raúl Gutiérrez, Salvador Lucas, and Miguel Vítores . 44:1–44:18

On the Expressive Equivalence of TPTL in the Pointwise and Continuous
Semantics

Raveendra Holla, Nabarun Deka, and Deepak D’Souza . 45:1–45:21

Separating Regular Languages over Infinite Words with Respect to the Wagner

FSTTCS 2021

0:viii Contents

Hierarchy
Christopher Hugenroth . 46:1–46:13

Normal Sequences with Non-Maximal Automatic Complexity
Liam Jordon and Philippe Moser . 47:1–47:16

Approximate Bisimulation Minimisation
Stefan Kiefer and Qiyi Tang . 48:1–48:16

Simple Derivation Systems for Proving Sufficient Completeness of
Non-Terminating Term Rewriting Systems

Kentaro Kikuchi and Takahito Aoto . 49:1–49:15

Parikh Images of Register Automata
Sławomir Lasota and Mohnish Pattathurajan . 50:1–50:14

Concrete Categorical Model of a Quantum Circuit Description Language with
Measurement

Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu 51:1–51:20

Linear-Time Temporal Logic with Team Semantics: Expressivity and Complexity
Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang 52:1–52:17

Preface

This volume contains the proceedings of the 41st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2021). The conference
was originally planned to be held on December 15–17, 2021 in BITS Pilani, K K Birla Goa
Campus, Goa, India. Due to the COVID-19 pandemic, the conference was moved to a virtual
format, with the same dates.

The conference has two tracks. Track A focusing on algorithms, complexity and related
issues, and Track B focusing on logic, automata and other formal method aspects of computer
science. Each track had its own Program Committee (PC) and chair (Chandra Chekuri for
Track A and Mikołaj Bojańczyk for Track B). This volume constitutes the joint proceedings
of the two tracks, published in the LIPIcs series under a Creative Common license, with free
online access to all.

The conference comprises of 5 invited talks, 27 contributed talks in Track A, and 20
in Track B. This volume contains all the contributed papers from the two tracks, and the
abstracts of all the invited talks. The conference received a total of 122 submissions with
73 in Track A and 49 in Track B. This edition of FSTTCS implemented, for the first time,
an author rebuttal phase during the paper review and selection process. We thank all the
authors who submitted their papers to FSTTCS 2021. We are especially grateful to the PC
members for their tireless work, and all the external reviewers for their expert opinion in the
form of timely reviews.

We thank all the invited speakers for accepting our invitation: Scott Aaronson (University
of Texas at Austin), Javier Esparza (Technische Universität München), Leslie Ann Goldberg
(University of Oxford), Huijia (Rachel) Lin (University of Washington), and Rahul Savani
(University of Liverpool).

The main conference is to be accompanied by four workshops: iVerif: Artificial Intelligence
and Verification (organized by Shibashis Guha and Guillermo A. Perez), QISE: Quantum
Information Science and Engineering (organized by Jaikumar Radhakrishnan and Manoj
Nambiar), Trends in Transformations (organized by Emmanuel Filiot and S. Krishna), and
VeriCrypt (organized by Karthikeyan Bhargavan and Aseem Rastogi).

We are indebted to the organising committee members: A. Baskar (BITS Pilani), Pritam
Bhattacharya (BITS Pilani), Amaldev Manuel (IIT Goa), and A.V. Sreejith (IIT Goa)
for managing the logistics of the conference and affiliated workshops. They made all the
necessary arrangements for the virtual conference, and they are doing this for a second year
in row due to the Covid pandemic. We thank S.P. Suresh (CMI, Chennai) for maintaining
the conference web page and promptly addressing our update requests. We thank the friendly
staff at Dagstuhl LIPIcs, Michael Didas and Michael Wagner, for helping us put together the
proceedings. Finally, we thank the members of the Steering Committee, especially Jaikumar
Radhakrishnan, and the PC Chairs from FSTTCS 2020 (Nitin Saxena and Sunil Simon), for
providing pertinent information and advice about various aspects of the conference.

Mikołaj Bojańczyk and Chandra Chekuri
November 2021

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committee

Track A

Amey Bhangale (University of California, Riverside)
Chandra Chekuri (University of Illinois, Urbana-Champaign) — co-chair
Ashish Chiplunkar (Indian Institute of Technology, Delhi)
Keerti Choudhary (Indian Institute of Technology, Delhi)
Omar Fawzi (INRIA, Lyon)
Uriel Feige (Weizmann Institute of Science)
Anna Gál (University of Texas, Austin)
Sushmita Gupta (Institute of Mathematical Sciences, Chennai)
Valentine Kabanets (Simon Fraser University)
Sanjeev Khanna (University of Pennsylvania)
Sudeshna Kolay (Indian Institute of Technology, Kharagpur)
Ravishankar Krishnaswamy (Microsoft Research India)
Kamesh Munagala (Duke University)
Sriram Pemmaraju (University of Iowa)
Rahul Saladi (Indian Institute of Science, Bengaluru)
Swagato Sanyal (Indian Institute of Technology, Kharagpur)

Track B

S Akshay (IIT Bombay)
Mikołaj Bojańczyk (University of Warsaw) — co-chair
Dmitry Chistikov (University of Warwick)
Thomas Colcombet (IRIF, Paris)
Anuj Dawar (University of Cambridge)
Manfred Droste (University of Leipzig)
Barbara König (University of Duisburg-Essen)
Rupak Majumdar (MPI-SWS)
Filip Mazowiecki (MPI-SWS)
Andrzej Murawski (University of Oxford)
Joanna Ochremiak (CNRS, Bordeaux)
M Praveen (Chennai Mathematical Institute)
Karin Quaas (University of Leipzig)
Ocan Sankur (IRISA, Rennes)
Helmut Seidl (Technical University Munich)
Georg Zetzsche (MPI-SWS)

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers: Track A

Akanksha Agrawal Amer Mouawad
Anastasios Sidiropoulos Arijit Ghosh
Aritra Banik Ashutosh Gupta
Bhaswar Bhattacharya Chaitanya Swamy
Daniel Lokshtanov Daniel Stefankovic
Denis Pankratov Devvrit K
Diptarka Chakraborty Dishant Goyal
Edin Husic Eduard Eiben
Fahad Panolan Gil Cohen
Gopinath Mishra Gramoz Goranci
Huan Li Janani Sundaresan
Jannik Peters Jayadev Acharya
Jie Xue Joeseph Mitchell
Josh Alman Kasturi Varadarajan
Katarina Cechlarova Lawqueen Kanesh
Lenwood Heath Meirav Zehavi
Michael Lampis Michal Wlodarczyk
Mrinal Kumar Nikhil Balaji
Nikhil Mande Nithin Varma
Oliver Kullmann Palash Dey
Pallavi Jain Pankaj Agarwal
Pingan Cheng Pooja Kulkarni
Pradeesha Ashok Prajakta Nimbhorkar
Pranabendu Misra Pratibha Choudhary
Ramprasad Saptharishi Rohit Gurjar
Rohit Vaish Roohani Sharma
Sagar Kale Sahil Singla
Sai Sandeep Sándor Kisfaludi-Bak
Sanjukta Roy Sathish Govindarajan
Satyadev Nandakumar Sayan Bandyapadhyay
Sayantan Chakraborty Sepehr Assadi
Shahbaz Khan Shahin Kamali
Shreyas Pai Soumen Maity
Sourya Roy Sujata Ghosh
Sundar Vishwanathan Syamantak Das
Tanmay Inamdar Tatiana Starikovskaya
Tom van der Zanden Varun Gupta
Vibha Sahlot Vijaykrishna Gurunathan
Waldo Gálvez Xinhang Lu
Yanyi Liu Yassine Hamoudi

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of External Reviewers: Track B

Mohamed Faouzi Atig Richard Mörbitz
Pascal Baumann Torsten Mütze
Damien Busatto-Gaston Masaki Nakamura
Olivier Carton Naoki Nishida
Antonio Casares Vincent Penelle
Frank Drewes Guillermo Perez
Petter Ericson Gabriele Puppis
Nathanaël Fijalkow Ritam Raha
Marie Fortin R. Ramanujam
Giovanna Guaiana Alexander Rubtsov
Shibashis Guha Arnaud Sangnier
Christoph Haase Markus L. Schmid
Willem Heijltjes Lia Schütze
Loic Helouet Anastasia Sofronova
Naohiko Hoshino S P Suresh
Rasmus Ibsen-Jensen Lidia Tendera
Petr Jancar K. S. Thejaswini
Arthur Jaquard Ramanathan Thinniyam Srinivasan
Kohei Kishida Marie Van Den Bogaard
Dietrich Kuske Gerco van Heerdt
Florin Manea Dominic Verdon
Tomas Masopust Fabio Zanasi
Karla Messing Damien Zufferey

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

BQP After 28 Years
Scott Aaronson # Ñ

University of Texas, Austin, TX, USA

Abstract
I will discuss the now-ancient question of where BQP, Bounded-Error Quantum Polynomial-Time,
fits in among classical complexity classes. After reviewing some basics from the 90s, I will discuss
the Forrelation problem that I introduced in 2009 to yield an oracle separation between BQP and
PH, and the dramatic completion of that program by Ran Raz and Avishay Tal in 2018. I will then
discuss very recent work, with William Kretschmer and DeVon Ingram, which leverages the Raz-Tal
theorem, along with a new “quantum-aware” random restriction method, to obtain results that
illustrate just how differently BQP can behave from BPP. These include oracles relative to which
NPBQP ̸⊂ BQPPH – solving a 2005 open problem of Lance Fortnow – and conversely, relative to which
BQPNP ̸⊂ PHBQP; an oracle relative to which P = NP and yet BQP ≠ QCMA; an oracle relative to
which NP ⊆ BQP yet PH is infinite; an oracle relative to which P = NP ̸= BQP = PP; and an oracle
relative to which PP = PostBQP ̸⊂ QMAQMA...

. By popular demand, I will also speculate about the
status of BQP in the unrelativized world.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases quantum computing, complexity theory, oracle separations, circuit lower
bounds

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.1

Category Invited Talk

© Scott Aaronson;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:scott@scottaaronson.com
https://www.scottaaronson.com/
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

State Complexity of Population Protocols
Javier Esparza #

Technische Universität München, Germany

Abstract
Population protocols were introduced by Angluin et al. in 2004 to study the theoretical properties of
networks of mobile sensors with very limited computational resources. They have also been proposed
as a natural computing model, with molecules, cells, or microorganisms playing the role of sensors.

In a population protocol an arbitrary number of indistinguishable, finite-state agents interact
randomly in pairs to collectively decide if their initial global configuration satisfies a given property.
The property is formalized as a predicate that maps each initial configuration to an output, 0 or 1.
Starting from an initial configuration, the agents eventually agree to the correct output almost
surely, and continue producing it forever. The protocol is said to stabilize to the correct output.

It is well known that population protocols can decide exactly the semilinear predicates, or,
equivalently, the predicates expressible in Presburger arithmetic. Current research concentrates on
investigating the amount of resources needed to decide a given predicate. The standard resources,
time and memory, translate for population protocols into expected time to stabilization, usually
called parallel runtime, and number of states of each agent. In this talk we concentrate on the latter.

A variant of population protocols allows for a leader, a distinguished finite-state agent that is
added to the initial configuration and, intuitively, helps the other agents to organize the computation.
In the last years my collaborators and I have obtained upper and lower bounds for the state
complexity of population protocols with and without a leader. Define the state complexity of a
predicate as the minimal number of states of a protocol that decides the predicate, and STATE(η) as
the maximum state complexity of the predicates of size at most η, where predicates are encoded as
quantifier-free formulas of Presburger arithmetic with coefficients written in binary. Using techniques
from the theory of Petri nets and Vector Addition Systems, we have shown that STATE(η) is
polynomially bounded, even for leaderless protocols; this improves on the exponential bound given
in 2004 by Angluin and collaborators. We have also proved that STATE(η) ∈ Ω(log log η) for
leaderless protocols, even for those deciding very simple predicates of the form x ≥ c for some
constant c. In the talk I report on these results, and on two very recent, still unpublished results.
Modulo the pending peer-review confirmation, the first result shows the existence of leaderless
protocols with a polynomial number of states and linear parallel runtime, and the second, due to
Leroux, gives a Ω((log log η)1/3) lower bound for protocols with a leader.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Automata over infinite objects

Keywords and phrases Population protocols, state complexity, Petri nets

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.2

Category Invited Talk

Funding Javier Esparza: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 787367 (PaVeS).

Acknowledgements I want to thank my collaborators Michael Blondin, Philipp Czerner, Blaise
Genest, Roland Guttenberg, Martin Helfrich, and Stefan Jaax.

© Javier Esparza;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esparza@in.tum.de
https://orcid.org/0000-0001-9862-4919
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Approximately Counting Graph Homomorphisms
and Retractions
Leslie Ann Goldberg #

University of Oxford, UK

Abstract
A homomorphism from a graph G to a graph H is a function from the vertices of G to the vertices
of H that preserves the edges of G in the sense that every edge of G is mapped to an edge
of H. By changing the target graph H, we can capture interesting structures in G. For example,
homomorphisms from G to a k-clique H correspond to the proper k-colourings of G. There has
been a lot of algorithmic work on the problem of (approximately) counting homomorphisms. The
goal is to figure out for which graphs H the problem of approximately counting homomorphisms
to H is algorithmically feasible. This talk will survey what is known. Despite much work, there
are still plenty of open problems. We will discuss the problem of approximately counting list
homomorphisms (where the input specifies, for each vertex of G, the list of vertices of H to which
it can be mapped). Because the lists add extra expressibility, it is easier to prove that counting
homomorphisms to a particular graph H is intractable. In fact, we have a full trichotomy (joint
work with Galanis and Jerrum, 2017). Here, the complexity of homomorphism-counting is related to
certain hereditary graph classes. The trichotomy will be explained in the talk – no prior knowledge
of the area will be assumed. In more recent work, with Focke and Živný, we have investigated
the complexity of counting retractions to H – this problem falls between homomorphism-counting
and list-homomorphism counting. Here we have only a partial classification, which applies to all
square-free graphs H. So again, there are plenty of open problems.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Graph homomorphisms, counting

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.3

Category Invited Talk

© Leslie Ann Goldberg;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esparza@in.tum.de
https://orcid.org/0000-0003-1879-6089
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Indistinguishability Obfuscation from Well-Founded
Assumptions
Huijia (Rachel) Lin # Ñ

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA

Abstract
Indistinguishability obfuscation, introduced by Barak et al. [Crypto 2001], aims to compile programs
into unintelligible ones while preserving functionality. It is a fascinating and powerful object that
has been shown to enable a host of new cryptographic goals and beyond. However, constructions of
indistinguishability obfuscation have remained elusive, with all other proposals relying on heuristics or
newly conjectured hardness assumptions. In this work, we show how to construct indistinguishability
obfuscation from the subexponential hardness of three well-founded assumptions. We prove the
following.

▶ Theorem 1 (Informal). Assume sub-exponential hardness for the following:
the Learning Parity with Noise (LPN) assumption over general prime fields Fp with polynomially
many LPN samples and error rate 1/kδ, where k is the dimension of the LPN secret, and δ > 0
is any constant;
the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ , where n

is the length of the PRG seed, and τ > 0 is any constant;
the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exist.

As a corollary, all cryptographic goals that can be achieved using indistinguishability obfuscation
can now be achieved assuming the above three assumptions. This includes fully homomorphic
encryption, functional encryption, multiparty non-interactive key-exchange, succinct garbled random
access machine, and many others.

This is joint work with Aayush Jain (UCLA and NTT Research) and Amit Sahai (UCLA).

2012 ACM Subject Classification Theory of computation → Cryptographic primitives

Keywords and phrases Cryptography, indistinguishability obfuscation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.4

Category Invited Talk

© Huijia (Rachel) Lin;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rachel@cs.washington.edu
https://homes.cs.washington.edu/~rachel/
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The Complexity of Gradient Descent
Rahul Savani #

Department of Computer Science, University of Liverpool, UK

Abstract
PPAD and PLS are successful classes that capture the complexity of important game-theoretic
problems. For example, finding a mixed Nash equilibrium in a bimatrix game is PPAD-complete, and
finding a pure Nash equilibrium in a congestion game is PLS-complete. Many important problems,
such as solving a Simple Stochastic Game or finding a mixed Nash equilibrium of a congestion
game, lie in both classes. It was strongly believed that their intersection, PPAD ∩ PLS, does not
have natural complete problems. We show that it does: any problem that lies in both classes
can be reduced in polynomial time to the problem of finding a stationary point of a continuously
differentiable function on the domain [0, 1]2. Thus, as PPAD captures problems that can be solved
by Lemke-Howson type complementary pivoting algorithms, and PLS captures problems that can
be solved by local search, we show that PPAD ∩ PLS exactly captures problems that can be solved
by Gradient Descent.

This is joint work with John Fearnley, Paul Goldberg, and Alexandros Hollender. It appeared at
STOC’21, where it was given a Best Paper Award [4].

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Mathematical optimization; Mathematics of computing → Continuous
functions

Keywords and phrases Computational Complexity, Continuous Optimization, TFNP, PPAD, PLS,
CLS, UEOPL

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.5

Category Invited Talk

Related Version Full Version: https://doi.org/10.1145/3406325.3451052

1 Talk summary

This talk is about the computational complexity of Gradient Descent, one of the oldest and
most widely-used algorithmic approaches to doing optimisation. The approach dates all the
way back to an 1847 paper of Cauchy.

When Gradient Descent is constrained to a bounded domain, there are not one but two
reasons why it must terminate at an approximate stationary point or boundary point where
the gradient is trying to take it outside the domain:

We are always going downhill, altitude must “bottom out”. This puts the search for a
solution in the complexity class PLS (polynomial local search).
Gradient Descent maps any point to a nearby point in the direction of the negative
gradient. Brouwer’s Fixed Point Theorem guarantees that such a mapping has a point
mapped to itself. This puts the search for a solution in the complexity class PPAD.

PPAD and PLS correspond to existence-of-solution proof principles that guarantee solutions,
but in a computationally-inefficient way. Both classes have become successful through the
fact that they have been shown to exactly characterise the complexity of important problems.
Our main result shows that the Gradient Descent solution-existence principle tastefully
combines the PLS principle with the PPAD principle:

© Rahul Savani;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 5; pp. 5:1–5:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Rahul.Savani@liverpool.ac.uk
https://orcid.org/0000-0003-1262-7831
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.5
https://doi.org/10.1145/3406325.3451052
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The Complexity of Gradient Descent

We show how to efficiently reduce any problem that is in both PPAD and PLS to the
problem of finding a stationary point of a continuously differentiable function from
[0, 1]2 to [0, 1].

This is the first natural problem to be shown complete for PPAD ∩ PLS. Our results also
imply that the class CLS (Continuous Local Search) [2] – which was defined by Daskalakis
and Papadimitriou as a more “natural” counterpart to PPAD ∩ PLS and contains many
interesting problems – is itself equal to PPAD ∩ PLS.

Our result has been used to show that computing a mixed equilibrium of a congestion game
is also complete for PPAD ∩ PLS [1], and, as we discuss in [4], it opens up the possibility of
PPAD ∩ PLS hardness for other important problems, such as finding Tarski fixed points [3,6]
or finding solutions that are guaranteed to exist by the Colorful Carathéodory theorem [7].
Several of the other problems in the original CLS paper [2], such as the P-matrix Linear
Complementarity Problem and finding the fixed point of (piecewise linear) Contraction map,
have unique solutions. For these problems, we believe that another class, called UEOPL, for
Unique End of Potential Line, is more likely than PPAD ∩ PLS to be the correct class to
capture their complexity [5].

References
1 Yakov Babichenko and Aviad Rubinstein. Settling the Complexity of Nash Equilibrium in

Congestion Games. In Proc. of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 1426–1437, 2021.

2 Constantinos Daskalakis and Christos H. Papadimitriou. Continuous Local Search. In Proc.
of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 790–804,
2011.

3 Kousha Etessami, Christos H. Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis.
Tarski’s Theorem, Supermodular Games, and the Complexity of Equilibria. In Proc. of the
11th Innovations in Theoretical Computer Science Conference (ITCS), pages 18:1–18:19, 2020.

4 John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The Complexity
of Gradient Descent: CLS = PPAD ∩ PLS. In Proc. of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 46–59, 2021.

5 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of Potential
Line. Journal of Computer and System Sciences, 114:1–35, 2020.

6 John Fearnley and Rahul Savani. A Faster Algorithm for Finding Tarski Fixed Points. In Proc.
of the 38th International Symposium on Theoretical Aspects of Computer Science (STACS),
pages 29:1–29:16, 2021.

7 Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The Rainbow
at the End of the Line – A PPAD Formulation of the Colorful Carathéodory Theorem with
applications. In Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1342–1351, 2017.

Scheduling in the Secretary Model
Susanne Albers
Department of Computer Science, Technische Universität München, Germany

Maximilian Janke
Department of Computer Science, Technische Universität München, Germany

Abstract
This paper studies online makespan minimization in the secretary model. Jobs, specified by their
processing times, are presented in a uniformly random order. The input size n is known in advance.
An online algorithm has to non-preemptively assign each job permanently and irrevocably to one
of m parallel and identical machines such that the expected time it takes to process them all, the
makespan, is minimized.

We give two deterministic algorithms. First, a straightforward adaptation of the semi-online
strategy LightLoad [4] provides a very simple approach retaining its competitive ratio of 1.75. A new
and sophisticated algorithm is 1.535-competitive. These competitive ratios are not only obtained in
expectation but, in fact, for all but a very tiny fraction of job orders.

Classically, online makespan minimization only considers the worst-case order. Here, no compet-
itive ratio below 1.885 for deterministic algorithms and 1.581 using randomization is possible. The
best randomized algorithm so far is 1.916-competitive. Our results show that classical worst-case
orders are quite rare and pessimistic for many applications.

We complement our results by providing first lower bounds. A competitive ratio obtained on
nearly all possible job orders must be at least 1.257. This implies a lower bound of 1.043 for both
deterministic and randomized algorithms in the general model.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Scheduling, makespan minimization, online algorithm, competitive analysis,
lower bound, random-order, secretary problem

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.6

Related Version Full Version: https://arxiv.org/abs/2103.16340

Funding Work Supported by the European Research Council, Grant Agreement No. 691672, Project
APEG.

1 Introduction

We study one of the most basic scheduling problems, the classic problem of makespan
minimization. For the classic makespan minimization problem, one is given an input set J
of n jobs, which have to be scheduled onto m identical and parallel machines. Preemption is
not allowed. Each job J ∈ J runs on precisely one machine. The goal is to find a schedule
minimizing the makespan, i.e. the completion time of the last job. This problem admits
a long line of research and countless practical applications in both, its offline variant see
e.g. [31, 34] and references therein, as well as in the online setting studied in this paper.

In the online setting, jobs are revealed one by one and each has to be scheduled by
an online algorithm A immediately and irrevocably without knowing the sizes of future
jobs. The makespan of online algorithm A, denoted by A(J σ), may depend on both the job
set J and the job order σ. The optimum makespan OPT(J) only depends on the former.
Traditionally, one measures the performance of A in terms of competitive analysis. The input
set J as well as the job order σ are chosen by an adversary whose goal is to maximize the
ratio A(J σ)

OPT(J) . The maximum ratio, c = supJ ,σ
A(J σ)

OPT(J) , is the (adversarial) competitive ratio.
The goal is to find online algorithms obtaining small competitive ratios.

© Susanne Albers and Maximilian Janke;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.6
https://arxiv.org/abs/2103.16340
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Scheduling in the Secretary Model

In the classical secretary problem, the goal is to hire the best secretary out of a linearly
ordered set S of candidates. Its size n is known. Secretaries appear one by one in a uniformly
random order. An online algorithm can only compare secretaries it has seen so far. It has to
decide irrevocably for each new arrival whether this is the single one it wants to hire. Once
a candidate is hired, future ones are automatically rejected even if they are better. The
algorithm fails unless it picks the best secretary. Similar to makespan minimization this
problem has been long studied, see [21, 24, 25, 35, 44, 46, 47] and references therein.

This paper studies makespan minimization under the input model of the secretary
problem. The adversary determines a job set of known size n. Similar to the secretary
problem, these jobs are presented to an online algorithm A one by one in a uniformly random
order. Again, A has to schedule each job without knowledge of the future. The expected
makespan is considered. The competitive ratio in the secretary (or random-order) model is
c = supJ Eσ

[
A(J σ)

OPT(J)

]
= supJ

1
n!

∑
σ∈Sn

A(J σ)
OPT(J) , the maximum ratio between the expected

makespan of A and the optimum makespan. The goal is again to obtain small competitive
ratios.

We propose the term secretary model to set this result apart from [6] where we provide a
1.8478-competitive where n, the number of jobs, is not known in advance. Not knowing n is
quite restrictive and has never been considered in any other scheduling algorithm designed
with random-order arrival in mind [3, 28, 51, 52]. We hope to raise attention to these two
surprisingly different models. Even though for the adversarial model such information is
useless; the secretary-model requires novel and significantly different approaches and leads
to, as our results show, vastly better performance guarantees.

Frameworks similar to the secretary model received a lot of recent attention in the
research community sparking the area of random-order analysis. Random-order analysis has
been successfully applied to numerous problems such as matching [29, 36, 38, 48], various
generalizations of the secretary problem [9, 24, 25, 33, 35, 44, 46], knapsack problems [10],
bin packing [42], facility location [49], packing LPs [43], convex optimization [32], welfare
maximization [45], budgeted allocation [50] and recently scheduling [3, 6, 28, 51, 52]. We
refer to the chapter [8] for a general overview over random-order models.

For makespan minimization, the role of randomization is poorly understood. The lower
bound of 1.581 from [14, 55] is considered pessimistic and exhibits quite a big gap towards
the best randomized ratio of 1.916 from [2]. A main consequence of the paper is that
random-order arrival allows to beat the lower bound of 1.581. This formally sets the secretary
model apart from the classical adversarial setting even if randomization is involved.

Previous work. Online makespan minimization and variants of the secretary problem have
been studied extensively. We only review results most relevant to this work, beginning with
the traditional deterministic adversarial setting. For m identical machines, Graham [31]
showed 1966 that the greedy strategy, which schedules each job onto a least loaded machine, is(
2− 1

m

)
-competitive. This was subsequently improved in a long line of research [27, 11, 37, 1]

leading to the currently best competitive ratio by Fleischer and Wahl [26], which approaches
1.9201 for m→∞. Chen et al. [15] presented a deterministic algorithm whose competitive
ratio is at most (1 + ε)-times the optimum one, although the actual ratio remains to be
determined. For general m, lower bounds are provided in [23, 12, 30, 53]. The currently best
bound is due to Rudin III [53] who shows that no deterministic online algorithm can be
better than 1.88-competitive.

The role of randomization in this model is not well understood. The currently best
randomized ratio of 1.916 [2] barely beats deterministic guarantees. In contrast, the best
lower bound approaches e

e−1 > 1.581 for m → ∞ [14, 55]. There has been considerable
research interest in tightening these bounds.

S. Albers and M. Janke 6:3

Recent results for makespan minimization consider variants where the online algorithm
obtains extra resources. In semi-online settings, additional information on the job sequence
is given in advance, such as the optimum makespan [13, 39] or the total processing time
of jobs [4, 16, 41, 40]. In the former model, the optimum competitive ratio lies in the
interval [1.333, 1.5], see [13], while for the latter the optimum competitive ratio is known to
be 1.585 cf. [4, 40]. Taking this further, the advice complexity setting allows the algorithm
to receive a certain number of advice bits from an offline oracle [5, 20, 41]. Other algorithms
can migrate jobs [54] or offer a buffer, which they use to reorder the job sequence [22, 41].

The secretary problem is even older than scheduling [25]. We only summarize the work
most relevant to this paper. Lindley [47] and Dynkin [21] first show that the optimum strategy
finds the best secretary with probability 1/e for n→∞. Recent research focusses on many
variants, among others generalizations to several secretaries [7, 44] or even matroids [9, 24, 46].
A modern version considers adversarial orders but allows prior sampling [18, 35, 8, 33]. Related
models are prophet inequalities and the game of googol [17, 19].

So far, little is known for scheduling in the secretary model. Osborn and Torng [52]
prove that Graham’s greedy strategy is still not better than 2-competitive for m→∞. We
study makespan minimization in the restricted random-order model where n is not known in
advance [6] and the dual problem, Machine Covering, in the secretary model [3]. Molinaro [51]
studies a very general scheduling problem. His algorithm uses n to restart itself after half
the jobs are seen and has expected makespan (1 + ε)OPT + O(log(m)/ε). Göbel et al. [28]
study scheduling on a single machine where the goal is to minimize weighted completion
times. Their competitive ratio is O(log(n)) whereas they show that adversarial models allow
no sublinear competitive ratios.

Our contribution. We study makespan minimization for the secretary (or random-order)
model in depth. We show that basic sampling ideas allow to adapt a fairly simple algorithm
from the literature [4] to be 1.75-competitive. A more sophisticated algorithm vastly improves
this competitive ratio to 1.535. Both algorithms are deterministic. This ratio of 1.535 beats
all lower bounds for adversarial scheduling, including the bound of 1.582 for randomized
algorithms. [14, 55]

Our main results focus on large number of machines, m→∞. This is in line with most
recent adversarial results [3, 2, 26] and all random-order scheduling results [6, 28, 51, 52],
excluding [28] who study scheduling on one machine. While adversarial guarantees are known
to improve for small numbers of machines, nobody has ever, to the best of our knowledge,
explored guarantees for random-order arrival on small number of machines. We prove that
our simple algorithm is

(
1.75 + O(1√

m
)
)
-competitive. Explicit bounds on the term hidden in

the O-notation are provided. This result indicates that the focus of contemporary analyses
on the limit case is sensible and does not hide unreasonably large terms.

All upper bounds in this paper abide to the stronger measure of nearly competitiveness
from [6]. An algorithm is required to achieve its competitive ratio not only in expectation but
on nearly all input permutations. Thus, input sequences where the competitive ratios are not
obtained can be considered extremely rare and pathological. Moreover, we require worst-case
guarantees even for such pathological inputs. This is relevant to practical applications, where
we do not expect fully random inputs. Both algorithms hold up to this stronger measure of
nearly competitiveness.

A basic approach in secretary models uses sampling statistics; a small part of the input
allows to predict the rest. Sampling lets us include techniques from semi-online and advice
settings with two further challenges. On the one hand, the advice is imperfect and may be,
albeit with low probability, totally wrong. On the other hand, the advice has to be learned,

FSTTCS 2021

6:4 Scheduling in the Secretary Model

rather than being available right from the start. In the beginning “mistakes” cannot be
avoided. This makes it impossible to adapt better semi-online algorithms than LightLoad,
namely [33, 16, 41, 40] to our model. These algorithms need to know the total processing
volume right from the start. The advanced algorithm in this paper out-competes the optimum
competitive ratio of 1.585 these semi-online algorithms can achieve [1, 40]. We conjecture that
this is not possible for order oblivious algorithms that solely use sampling. Order oblivious
algorithms first observe a random sample and then treat the input sequence in an adversarial
order [8, 33]. Our analysis indicates that LightLoad can be adapted as an order-oblivious
algorithm. The 1.535-competitive algorithm does not maintain its competitive ratio in such
a setting.

The 1.535-competitive main algorithm is based on a modern point of view, which,
analogous to kernelization, reduces complex inputs to sets of critical jobs. A set of critical
jobs is estimated using sampling. Critical jobs impose a lower bound on the optimum
makespan. If the bound is high, an enhanced version of Graham’s greedy strategy suffices;
called the Least-Loaded-Strategy. Else, it is important to schedule critical jobs correctly.
The Critical-Job-Strategy, based on sampling, estimates the critical jobs and schedules
them ahead of time. An easy heuristic suffices due to uncertainty involved in the estimates.
Uncertainty poses not only the main challenge in the design of the Critical-Job-Strategy. On
a larger scale, it also makes it hard to decide, which of the two strategies to use. Sometimes
the Critical-Job-Strategy is chosen wrongly. These cases comprise the crux of the analysis
and require using random-order arrival in a novel way beyond sampling.

The analyses of both algorithms follow three steps, which leads to the situation depicted
in Figure 1. In the first step, adversarial analyses give worst-case guarantees and take care of
simple job sets. These simple sets lack structure to be exploited via random reordering but
do not pose problems to online algorithms. We thus are reduced to non-simple inputs. Non-
simple random sequences have useful properties with high probability. They are “sampleable”
and do not have too many problematic jobs clustered at the end of the sequence. A second step
formalizes this, introducing stable sequences. Non-stable sequences are rare and negligible,
we are thus reduced to stable sequences. The third step is a classical adversarial analysis
that uses the properties of stable sequences to again establish worst-case guarantees.

The paper concludes with lower bounds. We show that no algorithm, deterministic or
randomized, is better than nearly 1.257-competitive. This immediately implies a lower bound
of 1.043 in the general secretary model.

Notation. We use the notation [J] or [J σ] to highlight values that depend on the job set J
or the ordered job sequence J σ. Such appendage is omitted when the dependency needs not
be highlighted. In similar vein, we may write OPT for OPT(J).

stable
Sn simple

Sn

Figure 1 The lay of the land in our analysis. The algorithm is (c + ε)-competitive on simple
and stable sequences. Only the small unstable remainder (hashed) is problematic. Dashed lines
mark orbits under the action of the permutation group Sn. Simple sequences stay simple under
permutation. Non-simple orbits have at most an ε-fraction, which is unstable (hashed). Thus, the
algorithm is (c + ε)-competitive with probability at least 1 − ε after random permutation.

S. Albers and M. Janke 6:5

2 A strong measure of random-order competitiveness

Consider a job set J = {J1, . . . , Jn} of known size n. Each job is fully defined1 by its
non-negative size (or processing time) p1, . . . , pn. Let Sn be the group of permutations of the
integers from 1 to n, which we consider a probability space under the uniform distribution.
We pick each permutation with probability 1/n!. Each permutation σ ∈ Sn, called an order,
gives us a job sequence J σ = Jσ(1), . . . , Jσ(n). Recall that traditionally an online algorithm
A is called c-competitive for some c ≥ 1 if we have for all job sets J and job orders σ that
A(J σ) ≤ cOPT(J). We call this the adversarial model.

In the secretary model we consider the expected makespan of A under a uniformly random
job order, i.e. Eσ∼Sn

[A(J σ)] = 1
n!

∑
σ∈Sn

A(J σ). We use the term secretary model, to
distinguish this setting from the random-order model in [6] where the input size n is not
known in advance. The algorithm A is c-competitive in the secretary model if we have
Eσ∼Sn

[A(J σ)] ≤ cOPT(J) for all input sets J .
The secretary model tries to lower the impact of particularly badly ordered sequences

by looking at competitive ratios only in expectation. Interestingly, the scheduling problem
allows for a stronger measure of random-order competitiveness for large m, called nearly
competitiveness [6]. One requires the given competitive ratio to be obtained on nearly all
sequences – not only in expectation – as well as a bound on the adversarial competitive ratio
as well. We recall the definition and the main fact, that an algorithm is already c-competitive
in the secretary model if it is nearly c-competitive.

▶ Definition 1. A deterministic online algorithm A is called nearly c-competitive if the
following two conditions hold.

The algorithm A achieves a constant competitive ratio in the adversarial model.
For every ε > 0, we can find m(ε) such that for all machine numbers m ≥ m(ε) and all
job sets J there holds Pσ∼Sn

[A(J σ) ≥ (c + ε)OPT (J)] ≤ ε.

▶ Lemma 2. If a deterministic online algorithm is nearly c-competitive, then it is c-competitive
in the secretary model for m → ∞, i.e. for its competitive ratio cm on m machines holds
lim

m→∞
cm = c.

3 Basic properties

Let us fix an input set J . Graham [31] establishes that his greedy strategy is 2-competitive.
He considers the average load L = L[J] = 1

m

∑m
i=1 pi, which is the same for any schedule

of the jobs in J , and the maximum size of any job pmax = maxi pi. Both are lower bounds
for OPT. Indeed, even the best schedule cannot have all machines loads below average, i.e.
smaller than L, and the machine containing the largest job has load at least pmax. Now,
Graham observes that the smallest load in any schedule cannot exceed the average load L.
Greedily using the least loaded machine causes makespan at most L + pmax ≤ 2OPT. The
greedy strategy is thus 2-competitive.

Graham’s argument builds the foundation for subsequent work on scheduling problems.
The following proposition guarantees a (small) constant adversarial ratio for almost every
sensible random-order algorithm, which is necessary for obtaining nearly competitiveness.

1 We propose for completeness that jobs of similar size are indistinguishable. A unique identification, say
the index or a hash value, could in theory be used to derandomize a randomized algorithm. All of the
results in this paper hold independently of whether such identification is possible.

FSTTCS 2021

6:6 Scheduling in the Secretary Model

▶ Proposition 3. Assume job J is scheduled on a machine M such that at most i−1 machines
have strictly smaller load than M . Then load of M is at most

(
m

m−i + 1
)

OPT afterwards.

Proof. Let l be the load of M prior to receiving job J . By assumption at least m−i machines
have load l. Thus L ≥ m−i

m l. We schedule job J of size at most OPT on machine M of load
at most l ≤ m

m−i L ≤ m
m−i OPT. The resulting load is at most

(
m

m−i + 1
)

OPT . ◀

The previous result cannot be improved in general. The most difficult adversarial sequences
have L ≈ pmax ≈ OPT. Random-order arrival faces further challenges. Certain degenerate
sequences, where few jobs carry all the load, are not suited for reordering arguments. See
Figure 2. This “degeneracy” is measured by R(J) = min(L

pmax
, 1). Adapting the previous

arguments we obtain the following result, which indicates good performance in almost all
situations if R(J) is small.

▶ Proposition 4. Let M be a machine such that at most i− 1 machines have strictly smaller
load than M . If M receives a job, its load is at most

(
m

m−i R(J) + 1
)

OPT afterwards.

Proof. Adapt the previous proof using that L ≤ R(J)OPT. ◀

Proposition 3 and 4 form the basis of our analyses. They give conditions when to use the
Least-Loaded-Strategy in the main algorithm, establish most of our worst-case guarantees
and explain why we can exclude simple sequences like the one in Figure 2. In the full paper,
we generalize these propositions further, which is required for the main algorithm.

Figure 2 A surprisingly difficult sequence for random-order arguments. The big job carries most
of the processing volume. Other jobs are negligible. Thus, all permutations look basically the same.
Such “simple” job sets need to be excluded before the main analysis.

3.1 Sampling for Scheduling Problems
We now explain how we use sampling in the secretary model. Consider any input per-
mutation J σ = Jσ(1) . . . Jσ(n). A standard technique is to sample the φ-fraction of jobs,
Jσ(1) . . . Jσ(⌈φn⌉), to make predictions about J σ. The previous section gives two prime
candidates for sampling which relate to OPT, namely L and pmax. Directly “sampling” OPT
is futile.

The size pmax is best estimated by pφt
max = max(pσ(t′) | σ(t′) < φn + 1). This corresponds

to how we try to estimate the best secretary in the secretary-problem. Of course, pφt
max

may vastly underestimate pmax. If the sequence contains only a single huge job, this job
is unlikely to be observed in the sample. Still, only very few jobs can have size exceeding
pφt

max on random-order sequences; only 1/φ in expectation. The main algorithm uses reserve
machines to catch these “exceptional” jobs.

For L we can get an unbiased2 estimator from the sample: Lφ = 1
φm

∑
σ(t)≤φn pi. Of

course, we still need to determine how close Lφ is to L. Can we say that with high probability
Lφ ≈ L? For the sequence in Figure 2 such a statement cannot be true. The main observation

2 The estimator is unbiased, i.e. E[Lφ] = L, if φn is a natural number. For general n, we could have
replaced the factor 1

φm in the definition of Lφ by the more complicated expression n
⌈φn⌉m .

S. Albers and M. Janke 6:7

50 100 1500
0.2
0.4
0.6
0.8

1

t

Lt

40 machines.

800 1,6000
0.2
0.4
0.6
0.8

1

t

400 machines.

8,000 16,0000
0.2
0.4
0.6
0.8

1

t

4000 machines.

Figure 3 A graphic depicting the average load over time on the classical lower bound sequence
from [1] for 40, 400 and 4000 machines. The dashed line corresponds to the original adversarial
order. The three solid lines, corresponding to random permutations, clearly approximate a straight
line. Thus, sampling allows to predict the (final) average load.

is that these counterexamples tend to have a small value R(J). Given a lower bound Rlow > 0
on R(J) the following Load Lemma establishes Lφ ≈ L. We have seen in the previous section
that sequences with R(J) < Rlow pose no major obstruction. The results in the previous
section guarantee arbitrarily good performance if we choose Rlow > 0 small enough.

The Load Lemma is quite potent and thus fundamental to random-order makespan
minimization. It may be somewhat surprising to researchers on related problems since it
makes implicit use of having non-small input sizes. Note that for our problem small inputs
of size less than m are trivially scheduled optimally.

▶ Lemma 5 (Load Lemma [6]). Let Rlow = Rlow(m) > 0, 1 ≥ φ = φ(m) > 0 and
ε = ε(m) > 0 be three functions in m such that ε−4φ−1R−1

low = o(m). Then there exists a
variable m(Rlow, φ, ε), depending on these three functions, such that for m ≥ m(Rlow, φ, ε)
machines and all job sets J with R(J) ≥ Rlow and |J | ≥ m:

Pσ∼Sn

[∣∣∣∣Lφ[J σ]
L[J] − 1

∣∣∣∣ ≥ ε

]
< ε.

A less general version of the Load Lemma already appeared in [6]. While the Load Lemma
gives only asymptotic guarantees simulations show that it requires not very large numbers
of machines. Figure 4 shows the expected value of

∣∣∣ L1/4[J σ]
L[J] − 1

∣∣∣ on a suitable benchmark
sequence.

For our more sophisticated algorithm we also use sampling to estimate the size of critical
jobs. Consider a job class C of size nC ∈ O(m). A consequence of Chebyshev’s inequality,
detailed in the full version, shows that we can estimate nC up to an additive summand of
m3/4 after sampling a 1

log(m) -fraction of the sequence. In fact the load lemma is proven by
sampling job classes obtained through geometric rounding.

4 A simple 1.75-competitive algorithm

We modify the semi-online algorithm LightLoad from the literature to obtain a very simple
nearly 1.75-competitive algorithm. For any 0 ≤ t ≤ n, let M t

mid be a machine having the
⌊m/2⌋-lowest load at time t, i.e. right before job Jt+1 is scheduled. Let lt

mid be its load and
let lt

low be the smallest load of any machine.
Let δ = δ(m) be a certain margin of error our algorithm allows. It is optimal to set δ = 0

but then the analysis requires a generalization of the result in [4]. In order for our main
result to be self-contained one may set δ = 1

log(m) , which allows to use results from [4] as a
black box.

FSTTCS 2021

6:8 Scheduling in the Secretary Model

Given an input sequence J σ we know from Section 3 that L̂pre = L̂pre[J σ] = L1/4[J σ]
1−δ

provides a good estimate of the (final) average load L = 1
m

∑m
i=1 pi. We use the index “pre”

since our main algorithm later will use a slightly different guess L̂. Consider the following
adaptation LightLoadROM of the algorithm LightLoad from Albers and Hellwig [4].

Algorithm 1 The algorithm LightLoadROM.

1: Let Jt be the job to be scheduled and let pt be its size.
2: if t < n/4 or lt−1

low ≤ 0.25L̂pre or lt−1
mid + pt > 1.75L̂pre then

3: Schedule Jt on any least loaded machine;
4: else schedule Jt on M t−1

mid ;

▶ Remark 6. The first condition in the if -statement, t < n/4, already implies lt−1
low ≤ 0.25L̂pre

and is thus technically superfluous. We added it to clarify that LightLoadROM can be
implemented as an online algorithm and only needs to know L̂pre once t ≥ n/4.

If we replace L̂pre in the previous pseudocode by the average load L, we recover the
semi-online algorithm LightLoad for makespan minimization, which has been analyzed by
Albers and Hellwig [4]. They show that the algorithm is 1.75-competitive for L = L̂pre. We
can show that the algorithm can also be used for general values L̂ ≈ L. The performance
gracefully decreases with |L− L̂pre|.

▶ Theorem 7. Let J σ be any (ordered) input sequence. The makespan of LightLoadROM
on J σ is at most 1.75

(
1 + |L̂pre[J σ]−L|

L

)
OPT.

Proof Sketch. For L̂pre = L, this is the main result in [4].
ItFor L̂pre ≥ L, we can reduce ourselves to the case L̂pre = L. Consider any machine M

in the optimum schedule of J that has load lM < max(L̂pre, OPT). We assign an additional
job JM of size pM = max(L̂pre, OPT(J)) − lM to this machine. For the resulting job set
J ′ clearly OPT(J ′) = L(J ′) = max(L̂pre, OPT). We can apply the main result of [4] to
see that LightLoad has makespan at most 1.75 max(L̂pre, OPT(J)) if it first schedules the
jobs J σ (in order σ) followed by the additional jobs. But on the prefix J σ LightLoad
behaves precisely like LightLoadROM on input J σ. Thus, LightLoadROM has makespan
at most 1.75 max(L̂pre[J σ], OPT(J)). Then, the theorem follows for L̂pre ≥ L since L̂pre ≤(
1 + L̂pre−L

L

)
L ≤

(
1 + |L̂pre[J σ]−L|

L

)
OPT.

If L̂pre ≤ L, the statement of the theorem still holds. can be derived similar to the
analysis in [4]. Unfortunately, it cannot be immediately deduced from their results. Instead,
their proofs need to be adapted. We sketch the necessary adaptations in the full version. ◀

The previous theorem already establishes a constant adversarial competitive ratio of 7.
Use that 0 ≤ L̂pre ≤ L1/4 ≤ 4L implies |L̂pre[J σ] − L| ≤ 3L. We can improve this result,
most importantly, if R(J) is small.

▶ Lemma 8. For any (ordered) job sequence J σ the makespan of LightLoadROM is at
most (1 + 2R(J))OPT(J). In particular, it is at most 3 OPT(J) in general and at most
1.75 OPT(J) for R(J) < 3/8.

Proof. Since LightLoadROM only considers the least or the ⌊m/2⌋-th least loaded machine,
the lemma follows from Proposition 4. ◀

We now establish the competitive ratio of LightLoadROM in the strong model of nearly
competitiveness. Corollary 10 follows immediately by Lemma 2.

S. Albers and M. Janke 6:9

▶ Theorem 9. The algorithm LightLoadROM is nearly 1.75-competitive.

▶ Corollary 10. LightLoadROM is 1.75-competitive in the secretary model for m→∞.

Proof of Theorem 9. Our analysis forms a triad outlining how we analyze the more soph-
isticated 1.535-competitive main algorithm. See Figure 1 for an illustration. Since we only
prove the case L̂ ≥ L of Theorem 7, we will not rely on the case L ≤ L̂ in this proof. For
this, we need to set δ(m) = 1

log(m) .

Analysis basics. By Lemma 8 algorithm LightLoadROM is 3-competitive in the adversarial
model. The first condition of nearly competitiveness is satisfied. We call input set J simple
if |J | ≤ m or R[J] < 3

8 . Observe that LightLoadROM is (adversarially) 1.75-competitive on
simple job sets. Indeed, if |J | < m LightLoadROM assigns every job to an empty least-loaded
machine, which is obviously optimal. If R[J] < 3

8 , Lemma 8 bounds the competitive ratio
by 1 + 2R[J] < 1.75. We thus are left to consider non-simple, so called proper, job sets.

Stable job sequences. We call a sequence J σ stable if L ≤ L̂pre ≤ 1+δ(m)
1−δ(m) L. If a sequence

is proper, it fulfills the conditions of the Load Lemma with φ = 1/4, Rlow = 3
8 and

ε(m) = δ(m) = 1/ log(m) ∈ ω(m−1/4). The Load Lemma guarantees that for m large
enough, Pσ∼Sn

[∣∣∣ Lφ[J σ]
L[J] − 1

∣∣∣ ≥ δ
]

< δ. Note that
∣∣∣ Lφ[J σ]

L[J] − 1
∣∣∣ < δ is equivalent to (1−δ)L <

Lφ[J σ] < (1 + δ)L, which in turn implies that L ≤ L̂pre ≤ 1+δ(m)
1−δ(m) L. Thus, the probability

of the sequence J σ being stable is at least 1− δ for m large enough and J proper.

Adversarial Analysis. By Theorem 7, the makespan of LightLoadROM on stable sequences
with L ≤ L̂pre ≤ 1+δ(m)

1−δ(m) L is at most 1.75 · 1+δ(m)
1−δ(m) OPT =

(
1.75 + 3.5·δ(m)

1−δ(m)
)
OPT(J). We only

require the easy case, L ≤ L̂pre of Theorem 7, which is fully proven in this paper.

Conclusion. Let ε > 0. Since δ(m)→ 0, we can choose m large enough such that 3.5δ(m)
1−δ(m) ≤ ε.

In particular Pσ∼Sn
[LightLoadROM(J σ) ≥ (1.75 + ε)OPT (J)] ≤ δ(m) ≤ ε since the only

sequences where the inequality does not hold are proper but not stable. This concludes the
second condition of nearly competitivity.

The δ-term. Setting δ = 0 can increase the |L̂pre[J σ]−L|
L -term in Theorem 7 by at most

1/ log(m), which vanishes for m → ∞. Of course, in reality LightLoadROM improves for
δ = 0. ◀

Analyzing the algorithm LightLoadROM on small numbers of machines.
From now on, we consider LightLoadROM with δ = 0. Thus, the average load L is estimated
by L̂pre = L1/4. The normalized absolute mean deviation of L̂pre = L1/4 is defined as
NMD(L̂pre) = Eσ∼Sn

[
|L̂pre[J σ]−L|

L

]
. The following is a consequence of Theorem 7 .

▶ Theorem 11. On input set J the competitive ratio of LightLoadROM in the secretary
model is at most 1.75(1 + NMD(L̂pre)).

In the full version we give an estimation on NMD(L̂pre), which leads to the following
result.

▶ Theorem 12. The competitive ratio of LightLoadROM is 1.75 + 18√
m

+ O
(1

m

)
.

FSTTCS 2021

6:10 Scheduling in the Secretary Model

The techniques presented in this section can, in theory, be extended to analyze the main
algorithm in the next section. This is impractical due to the complexity of the analysis at
hand. We are certain that the error term involved will be of the form m−1/a for a small.

The constant summand 18√
m

in Theorem 12 is pessimistic. We discuss several avenues of
further improvement in the full version. The best we are aware of allows for a competitive
ratio as small as 4.4√

m
+ 7

m + O
(1

m3/2

)
but there are ways to improve even further. The terms

still hidden in the O-notation result from the Stirling-approximation and are known to be
tiny. Figure 4 shows NMD(L̂pre) on the lower bound from [1], which is a sensible benchmark.

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,0000
0.02
0.05

0.1

250
number of machines m

An approximation of NMAD[L̂pre] for different numbers of machines.

Figure 4 The extra cost for small numbers of machines. The graph shows an estimation of
NMD(L̂pre) on the lower bound sequence from [1] based on 10, 000 random samples. Theorem 11
this indicates good performance of LightLoadROM in practice.

5 The nearly 1.535-competitive algorithm

The new main algorithm achieves a competitive ratio of c = 1+
√

13
3 ≈ 1.535. It consists of

three components: a sampling phase, the Least-Loaded-Strategy and the Critical-Job-Strategy.
We now give a simplified description of the algorithm.

The sampling phase. A few jobs are sampled to predict the whole sequence. These Jobs
are scheduled greedily with a some machines kept in reserve. This phase is uninformed and
“mistakes” are unavoidable. Such mistakes are few, since the processing volume scheduled
is small – at least if we exclude worst-case sequences. First, we sample B, which tries to
estimate max(pmax, L) ≤ OPT. We then use sampling to predict critical jobs of size in
between (c − 1)B and B. Intuitively, jobs smaller than (c − 1)B are too small to pose a
problem. Jobs larger than B are also critical but cannot be predicted since they did not
appear during sampling. This in turn means that they are rare. We keep a few reserve
machines to safely process them.

The Critical-Job-Strategy. Our plan is to assign critical jobs ahead of time. Formally,
placeholder jobs are used to reserve space for jobs yet to come. Critical jobs are assigned
according to an easy heuristic: Each machine gets either one big or two medium jobs. Reserve
machines handle errors in the predictions and unexpected huge jobs.

The Least-Loaded-Strategy. Sometimes the Critical-Job-Strategy is not feasible; there
simply are too many critical jobs. This may already by apparent from sampling predictions,
but for some job sets this cannot be predicted. The latter input sets form the crux of the
analysis. Once we find out, we pick the Least-Loaded-Strategy, which enhances a Graham’s

S. Albers and M. Janke 6:11

greedy approach by still maintaining reserve machines for particularly large jobs. Intuitively,
many critical jobs make it even for OPT impossible to schedule all jobs efficiently, which is
why we rely on this less sophisticated strategy.

Further challenges. Algorithm design and analysis have to deal with three further issues.
First, the Critical-Job-Strategy needs to take scheduling decisions made during sampling
into account. Second, a consequence of sampling is that no value is exact, small sources of
errors are imminent. Third, we need a constant competitive ratio against an adversary. All
these challenges impact details of the algorithm design in rather subtle ways.

5.1 Formal Description
Let δ = δ(m) = 1

log(m) be the margin of error our algorithm allows. Most of the time, it
is sensible to treat δ as a constant and forget about its dependency on m. Our algorithm
maintains a set of ⌈δm⌉ reserve machines. Their complement are the principal machines.
Let us fix an input sequence J σ. Let L̂ = L̂[J σ] = Lδ2 [J σ]. For simplicity, we hide the
dependency on J σ whenever possible. Our online algorithm uses B = max

(
pδ2n

max, L̂
)

as
an estimated lower bound for OPT. This bound is known after the first ⌊δ2n⌋ jobs are
treated. Our algorithm uses geometric rounding implicitly. Given a job Jt of size pt let
f(pt) = (1 + δ)⌊log1+δ pt⌋ be its rounded size. We also call Jt an f(pt)-job.

Using rounded sizes, we introduce job classes. Let psmall = c− 1 =
√

13−2
3 ≈ 0.535 and

pbig = c
2 = 1+

√
13

6 ≈ 0.768. We call job Jt

small if f(pt) ≤ psmallB and critical else,
big if f(pt) > pbigB,
medium if J is neither small nor big, i.e. psmallB ≤ f(pt) ≤ pbigB,
huge if its (not-rounded) size exceeds B, i.e. B < pt, and normal else.

Consider the set P = {(1 + δ)i | psmallB ≤ (1 + δ)i ≤ B} corresponding to rounded sizes
of critical jobs. Given p ∈ P let np be the total number of p-jobs. We could estimate np by
δ−2n̂p after sampling where n̂p = |{Jσ(j) | σ(j) ≤ δ2n ∧ Jσ(j) is a p-job}| after sampling. In
practice we need a more complicated guess: cp = max

(⌊(
δ−2n̂p −m3/4)

w(p)
⌋

, n̂p

)
w(p)−1.

It has two advantages. The value cp is close to np with high probability, but unlikely to
exceed it. Overestimating np turns out to be far worse than underestimating it. It also
simplifies the description of the algorithm allowing medium jobs to always “pair up”.

principal machines reserve machines

Sampling Phase

principal machines reserve machines

Critical-Job-Strategy

principal machines reserve machines

Least-Loaded-Strategy

Figure 5 The 1.535-competitive algorithm. First, few jobs are sampled. Then, the algorithm
decides between two strategies. The Critical-Job-Strategy tries to schedule critical jobs ahead of
time. The Least-Loaded-Strategy follows a greedy approach, which reserves some machines for large
jobs. Sometimes, we realize very late that the Critical-Job-Strategy does not work and have to
switch to the Least-Loaded-Strategy “on the fly”. We never switch in the other direction.

FSTTCS 2021

6:12 Scheduling in the Secretary Model

Statement of the algorithm. If there are less jobs than machines, each job is placed
onto a separate machine. This is optimal. Else, a short sampling phase greedily assigns
each of the first ⌊δ2n⌋ jobs to the least loaded principal machine. Now, B and (cp)p∈P are
known. We choose the Least-Loaded-Strategy if we predict the Critical-Job-Strategy to be
infeasible. Formally, if

∑
p∈P w(p)cp > m, where w(p) = 1/2 for p ≤ pbig and 1 > p ≤ pbig. If∑

p∈P w(p)cp ≤ m, we choose the Critical-Job-Strategy. The Critical-Job-Strategy requires a
one-time preparation. It may later switch to the Least-Loaded-Strategy but it never switches
the other way around.

The Least-Loaded-Strategy

principal machines reserve machines

Figure 6 The Least-Loaded-Strategy schedules jobs greedily. A few machines are reserved for
unexpected huge jobs. For example the largest job, which is unlikely to arrive in the sampling phase.

The Least-Loaded-Strategy places any normal job on a least loaded principal machine.
Huge jobs are scheduled on a least loaded reserve machine. This reserve machine will be
empty, unless we consider rare and pathological worst-case orders.

The Critical-Job-Strategy
For the Critical-Job-Strategy we introduce p-placeholder-jobs for every size p ∈ P . Sensibly,
the size of a p-placeholder-job is p. During the Critical-Job-Strategy we treat placeholder-jobs
similar to real jobs. They are assigned in the Preparation for the Critical-Job-Strategy.
We try to pair off medium jobs, some of which already arrived during sampling. Moreover it
is important to assign fewer processing volume to those machines, which have a higher load
after the sampling phase.

principal machines reserve machines

Figure 7 The Critical-Job-Strategy. Each machine gets either two medium, one large or no critical
job. Placeholder jobs (dotted) reserve space for critical jobs yet to come. Processing volume of small
jobs (dark) on the bottom arrived during the sampling phase. Reserve machines accommodate huge
jobs or, possibly, jobs without matching placeholders.

The Critical-Job-Strategy places small jobs on least-loaded principal machines taking
placeholders into account. Critical jobs of rounded size p ∈ P replace p-placeholder-jobs
whenever possible. If no matching placeholder is found or if the current job is exceptional,
the reserve machines are used. Again, medium jobs are paired up. If the reserve machines
are full, the algorithm fails. It switches to the Least-Loaded-Strategy.

The full description of the main algorithm is provided in Appendix B.

S. Albers and M. Janke 6:13

6 Analysis of the algorithm

Theorem 13 is main result of the paper.

▶ Theorem 13. Our algorithm is nearly c-competitive. Recall that c = 1+
√

13
3 ≈ 1.535.

Due to Lemma 2 this competitive ratio also holds in the general secretary model.

▶ Corollary 14. Our algorithm is c-competitive in the secretary model as m→∞.

The analysis of the algorithm proceeds along the same three reduction steps used in
the proof of Theorem 9. First, we assert that our algorithm has a constant adversarial
competitive ratio, which approaches 1 as R(J) → 0. Not only does this lead to the first
condition of nearly competitiveness, it also enables us to introduce simple job sets on which
we perform well due to basic considerations resulting from Section 3.

▶ Definition 15. A job set J is called simple if R(J) ≤ (1−δ)δ2

δ2+1 (c − 1) or if it consists
of at most m jobs. Else, we call it proper. We call any ordered input sequence J σ simple
respectively proper if the underlying set J has this property.

▶ Main Lemma 16. In the adversarial model our algorithm has competitive ratio 4 + O(δ)
on general input sequences and c + O(δ) on simple sequences.

We are thus reduced to treating proper job sets. In the second reduction we introduce
stable sequences. These have many desirable properties. Most notably, they are suited to
sampling. Their formal definition can be found later in Definition 22. The second reduction
shows that stable sequences arise with high probability if the order of a proper job set J is
picked uniformly randomly.

Formally, for m the number of machines, let P (m) be the maximum probability by which
the permutation of any proper sequence may not be stable, i.e.

P (m) = sup
J proper

Pσ∼Sn
[J σ is not stable] .

The second main lemma asserts that this probability vanishes as m→∞.

▶ Main Lemma 17. lim
m→∞

P (m) = 0.

In other words, non-stable sequences are very rare and of negligible impact in random-
order analyses. Thus, we only need to consider stable sequences. In the final, third, step
we analyze our algorithm on stable sequences. This analysis is quite general. In particular,
it does not rely further on random-order arrival. Instead, we work with worst-case stable
inputs, i.e. we allow an adversary to present any stable input sequence.

▶ Main Lemma 18. Our algorithm is adversarially (c+O(δ))-competitive on stable sequences.

These three main lemmas allow us to conclude the proof of Theorem 13.

Proof of Theorem 13. Recall that δ(m) → 0 for m → ∞. By Main Lemma 16, the first
condition of nearly competitiveness holds, i.e. our algorithm has a constant competitive
ratio. Moreover, by Main Lemma 16 and Main Lemma 18, given ε > 0, we can pick m0(ε)
such that our algorithm is (c + ε)-competitive on all sequences that are stable or simple, if
there are at least m0(ε) machines. This implies that for m ≥ m0(ε) the probability of our
algorithm not being (c + ε)-competitive is at most P (m), the maximum probability with
which a random permutation of a proper input sequence is not stable. By Main Lemma 17,
we can find m(ε) ≥ m0(ε) such that P (m) ≤ ε for m ≥ m(ε). This choice of m(ε) satisfies
the second condition of nearly competitiveness. ◀

FSTTCS 2021

6:14 Scheduling in the Secretary Model

Proof sketch of Main Lemma 16

The anticipated load l̃t
M of a machine M at time t denotes its load including placeholder-jobs.

We can obtain the following two bounds on the average anticipated load L̃ = supt
1
m

∑
M l̃t

M .

▶ Lemma 19. We have L̃ ≤ L + 2pmax, as well as L̃ ≤
(
1 + 1

δ2

)
L.

Thus the average anticipated load L̃ relates to the original values L, pmax. In the full
version, we generalize Proposition 4 to anticipated loads. We can then use Lemma 19 to
conclude Main Lemma 16. The only exception are reserve machines, which receives its
last job using the Critical-Job-Strategy. Their load needs to be bounded using different
techniques.

Formally, we can prove the following two statements, which imply Main Lemma 16.

▶ Proposition 20. The main algorithm is adversarially
(

1 + 3
1−δ + 2δ

)
-competitive.

▶ Proposition 21. The main algorithm has makespan at most (c + 2δ)OPT on simple
sequences J σ.

Stable job sequences and a proof sketch of Main Lemma 17

We introduce the class of stable job sequences. The first two conditions state that all estimates
our algorithm makes are accurate, i.e. sampling works. By the third condition there are less
exceptional jobs than reserve machines and the fourth condition states that these jobs are
distributed evenly. The final condition is a technicality. Stable sequences are useful since
they occur with high probability if we randomly order a proper job set.

▶ Definition 22. A job sequence J σ is stable if the following conditions hold:
The estimate L̂ for L is accurate, i.e. (1− δ)L ≤ L̂ ≤ (1 + δ)L.
The estimate cp for np is accurate, i.e. cp ≤ np ≤ cp + 2m3/4 for all p ∈ P.
There are at most ⌈δm⌉ exceptional jobs in J σ.
Let t̃ be the time the last exceptional job arrived and let np,t̃ be the number of p-jobs
scheduled at that time for a given p ∈ P. Then np,t̃ ≤

(
1− δ3)

np for every p ∈ P.
δ3 ⌊(

1− δ − 2δ2)
m/|P|

⌋
≥ 2|P|m3/4.

Proof sketch of Main Lemma 17. The first condition follows from Lemma 5. The second
condition can be derived using Chebyshev’s inequality as discussed at the end of Section 3.1.
Both conditions require that only proper sequences are considered. The third condition is
equivalent to demanding one of the ⌈δm⌉ largest jobs to occur during the sampling phase.
This is extremely likely. In expectation the rank of the largest job occurring in the sampling
phase is δ−2, a constant. The fourth condition states that the exceptional jobs are evenly
spread throughout the sequence compared to the p-jobs for any p ∈ P . Again, this is expected
of a random sequence and corresponds to how one would determine randomness statistically.
For the final condition it suffices to choose the number of machines m large enough. One
technical problem arises since the set of rounded critical job sizes P = P [J σ] is defined using
the value B[J σ]. It thus highly depends on the input permutation σ. We rectify this by
passing over to a larger class P̂ such that P ⊂ P̂ with high probability. ◀

Proof sketch of Main Lemma 18

We first consider the Critical-Job-Strategy. Main Lemma 18 holds as long as it is employed.

▶ Lemma 23. The makespan of our algorithm is at most (c + O(δ)) max (B, L, pmax) on
stable sequences till it employs the Least-Loaded-Strategy (or till the end of the sequence).

S. Albers and M. Janke 6:15

Proof sketch. Let us only consider critical jobs at any time the Least-Loaded-Strategy is
not employed. We can then show that a machine contains either one big job or at most
two medium jobs. In the first case we bound the size of this big, possibly exceptional,
job by pmax. Else, if the machine contains two medium jobs their total weight is at most
2(1+δ)pbigB = (1+δ)cB. The factor (1+δ) arises since we use rounded sizes in the definition
of medium jobs. Thus, critical jobs may cause a load of at most max(pmax, (c + O(δ))B).

Analyzing the load increase caused by small jobs requires techniques similar to the proof
of Main Lemma 16. ◀

Note that for stable sequences L̂ ≤ (1+δ)L ≤ (1+δ)OPT, in particular max (B, L, pmax) =
max

(
pδ2n

max, L̂, L, pmax

)
≤ (1 + δ)OPT. This proves the following corollary to Lemma 23.

▶ Corollary 24. Till our algorithm uses the Least-Loaded-Strategy its makespan is less than
(c + O(δ))OPT on stable sequences.

Hence, we are left to consider the Least-Loaded-Strategy. We say the algorithm fails if it
has to switch from the Critical-Job-Strategy to the Least-Loaded-Strategy. The following
lemma is crucial and relies deeply on the properties of stable sequences, in particular the
fourth one.

▶ Lemma 25. If the algorithm fails, every exceptional job has been scheduled.

The lemma shows that the Least-Loaded-Strategy only needs to deal with exceptional
jobs if it is picked immediately. In this case, all reserve machines are empty. The third
property of stable sequences ensures that there are enough reserve machines so that every
exceptional job is assigned to an empty machine.

Non-exceptional jobs, i.e. jobs of size at most B, are scheduled onto a least loaded principal
machine. This machine was among the δm + 1 least loaded machines and had load at most
mL/(m−δm+1) by Proposition 4. Afterwards, its load was at most mL/(m−δm+1)+B ≤
(2 + O(δ))B since (1 − δ)L ≤ B for stable sequences. The following lemma concludes the
proof of Main Lemma 18 since it implies that (2 + O(δ))B ≤ (c + O(δ))OPT.

▶ Lemma 26. If the Least-Loaded-Strategy is applied on a stable sequence, B ≤ c
2 OPT.

The proof of Lemma 26 is left to the full version.

7 Lower bounds

We establish the following theorem using two lower bound sequences. These results generalize
to randomized algorithms using appropriate notions of (nearly) competitiveness.

▶ Theorem 27. For every online algorithm A, deterministic or randomized, there exists a
job set J such that Pσ∼Sn

[
A(J σ) ≥

√
73−1
6 OPT(J)

]
≥ 1

6 . If A is randomized the previous
probability also includes its random choices.

The lower bound highlights the inability of the main algorithm to decide between the
Least-Loaded-Strategy and the Critical-Job-Strategy. If we could communicate this decision,
say through a single advice bit, our main algorithm would become nearly optimal, i.e. nearly
1-competitive, on the lower bound sets. Theorem 27 implies the following lower bounds.

▶ Corollary 28. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.

▶ Corollary 29. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.

The lower bounds are proven in the appendix.

FSTTCS 2021

6:16 Scheduling in the Secretary Model

References
1 S. Albers. Better bounds for online scheduling. SIAM Journal on Computing, 29(2):459–473,

1999. Publisher: SIAM.
2 S. Albers. On randomized online scheduling. In Proceedings of the thiry-fourth annual ACM

symposium on Theory of computing, pages 134–143, 2002.
3 S. Albers, W. Gálvez, and M. Janke. Machine covering in the random-order model. In 32nd

International Symposium on Algorithms and Computation (ISAAC 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

4 S. Albers and M. Hellwig. Semi-online scheduling revisited. Theoretical Computer Science,
443:1–9, 2012. Publisher: Elsevier.

5 S. Albers and M. Hellwig. Online makespan minimization with parallel schedules. Algorithmica,
78(2):492–520, 2017. Publisher: Springer.

6 S. Albers and M. Janke. Scheduling in the Random-Order Model. In 47th International
Colloquium on Automata, Languages, and Programming (ICALP 2020). unpublished, 2020.

7 S. Albers and L. Ladewig. New results for the k-secretary problem. arXiv preprint, 2020.
arXiv:2012.00488.

8 Pablo Azar, Robert Kleinberg, and S. Weinberg. Prophet inequalities with limited information.
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, July 2013. doi:
10.1137/1.9781611973402.100.

9 M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Matroid Secretary Problems. Journal
of the ACM (JACM), 65(6):1–26, 2018. Publisher: ACM New York, NY, USA.

10 M. Babaioff, N. Immorlica, D. Kempe, and Robert Kleinberg. A knapsack secretary prob-
lem with applications. In Approximation, randomization, and combinatorial optimization.
Algorithms and techniques, pages 16–28. Springer, 2007.

11 Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient scheduling
problem. In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing,
pages 51–58, 1992.

12 Y. Bartal, H. J. Karloff, and Y. Rabani. A better lower bound for on-line scheduling. Inf.
Process. Lett., 50(3):113–116, 1994.

13 Martin Böhm, Jiří Sgall, Rob Van Stee, and Pavel Veselỳ. A two-phase algorithm for bin
stretching with stretching factor 1.5. Journal of Combinatorial Optimization, 34(3):810–828,
2017.

14 B. Chen, A. van Vliet, and G. J. Woeginger. A lower bound for randomized on-line scheduling
algorithms. Information Processing Letters, 51(5):219–222, 1994. Publisher: Elsevier.

15 L. Chen, D. Ye, and G. Zhang. Approximating the optimal algorithm for online scheduling prob-
lems via dynamic programming. Asia-Pacific Journal of Operational Research, 32(01):1540011,
2015. Publisher: World Scientific.

16 T.C.E. Cheng, H. Kellerer, and V. Kotov. Semi-on-line multiprocessor scheduling with given
total processing time. Theoretical computer science, 337(1-3):134–146, 2005. Publisher:
Elsevier.

17 J. Correa, A. Cristi, B. Epstein, and J. Soto. The two-sided game of googol and sample-based
prophet inequalities. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2066–2081. SIAM, 2020.

18 J. Correa, A. Cristi, L. Feuilloley, T. Oosterwijk, and A. Tsigonias-Dimitriadis. The secretary
problem with independent sampling. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2047–2058. SIAM, 2021.

19 J. Correa, P. Dütting, F. Fischer, and K. Schewior. Prophet inequalities for iid random
variables from an unknown distribution. In Proceedings of the 2019 ACM Conference on
Economics and Computation, pages 3–17, 2019.

20 J. Dohrau. Online makespan scheduling with sublinear advice. In International Conference on
Current Trends in Theory and Practice of Informatics, pages 177–188. Springer, 2015.

http://arxiv.org/abs/2012.00488
https://doi.org/10.1137/1.9781611973402.100
https://doi.org/10.1137/1.9781611973402.100

S. Albers and M. Janke 6:17

21 E. B. Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics, 4:627–629, 1963.

22 M. Englert, D. Özmen, and M. Westermann. The power of reordering for online minimum
makespan scheduling. In 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 603–612. IEEE, 2008.

23 U. Faigle, W. Kern, and G. Turán. On the performance of on-line algorithms for partition
problems. Acta cybernetica, 9(2):107–119, 1989.

24 M. Feldman, O. Svensson, and R. Zenklusen. A simple O (log log (rank))-competitive algorithm
for the matroid secretary problem. In Proceedings of the twenty-sixth annual ACM-SIAM
symposium on Discrete algorithms, pages 1189–1201. SIAM, 2014.

25 T. S. Ferguson. Who solved the secretary problem? Statistical science, 4(3):282–289, 1989.
Publisher: Institute of Mathematical Statistics.

26 R. Fleischer and M. Wahl. On-line scheduling revisited. Journal of Scheduling, 3(6):343–353,
2000. Publisher: Wiley Online Library.

27 G. Galambos and G. J. Woeginger. An on-line scheduling heuristic with better worst-case ratio
than Graham’s list scheduling. SIAM Journal on Computing, 22(2):349–355, 1993. Publisher:
SIAM.

28 O. Göbel, T. Kesselheim, and A. Tönnis. Online appointment scheduling in the random order
model. In Algorithms-ESA 2015, pages 680–692. Springer, 2015.

29 G. Goel and A. Mehta. Online budgeted matching in random input models with applications
to Adwords. In SODA, volume 8, pages 982–991, 2008.

30 T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-
answer games. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, pages 564–565, 2000.

31 R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966. Publisher: Wiley Online Library.

32 A. Gupta, R. Mehta, and M. Molinaro. Maximizing Profit with Convex Costs in the Random-
order Model. arXiv preprint, 2018. arXiv:1804.08172.

33 A. Gupta and S. Singla. Random-order models. In Tim Roughgarden, editor, Beyond
worst-case analysis. Cambridge University Press, 2020.

34 D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. Journal of the ACM (JACM), 34(1):144–162, 1987.
Publisher: ACM New York, NY, USA.

35 H. Kaplan, D. Naori, and D. Raz. Competitive Analysis with a Sample and the Secretary
Problem. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2082–2095. SIAM, 2020.

36 C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions.
In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages
587–596, 2011.

37 D. R. Karger, S. J. Phillips, and E. Torng. A better algorithm for an ancient scheduling
problem. Journal of Algorithms, 20(2):400–430, 1996. Publisher: Elsevier.

38 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 352–358, 1990.

39 H. Kellerer and V. Kotov. An efficient algorithm for bin stretching. Operations Research
Letters, 41(4):343–346, 2013. Publisher: Elsevier.

40 H. Kellerer, V. Kotov, and M. Gabay. An efficient algorithm for semi-online multiprocessor
scheduling with given total processing time. Journal of Scheduling, 18(6):623–630, 2015.

41 H. Kellerer, V. Kotov, M. Grazia Speranza, and Z. Tuza. Semi on-line algorithms for the
partition problem. Operations Research Letters, 21(5):235–242, 1997. Publisher: Elsevier.

42 C. Kenyon. Best-Fit Bin-Packing with Random Order. In SODA, volume 96, pages 359–364,
1996.

FSTTCS 2021

http://arxiv.org/abs/1804.08172

6:18 Scheduling in the Secretary Model

43 T. Kesselheim, A. Tönnis, K. Radke, and B. Vöcking. Primal beats dual on online packing
LPs in the random-order model. In Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pages 303–312, 2014.

44 R. D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In SODA, volume 5, pages 630–631, 2005.

45 N. Korula, V. Mirrokni, and M. Zadimoghaddam. Online submodular welfare maximization:
Greedy beats 1/2 in random order. SIAM Journal on Computing, 47(3):1056–1086, 2018.
Publisher: SIAM.

46 O. Lachish. O (log log rank) competitive ratio for the matroid secretary problem. In 2014
IEEE 55th Annual Symposium on Foundations of Computer Science, pages 326–335. IEEE,
2014.

47 D. V. Lindley. Dynamic programming and decision theory. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 10(1):39–51, 1961. Publisher: Wiley Online Library.

48 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based
on strongly factor-revealing lps. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 597–606, 2011.

49 A. Meyerson. Online facility location. In Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pages 426–431. IEEE, 2001.

50 V.S. Mirrokni, S. O. Gharan, and M. Zadimoghaddam. Simultaneous approximations for
adversarial and stochastic online budgeted allocation. In Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms, pages 1690–1701. SIAM, 2012.

51 M. Molinaro. Online and random-order load balancing simultaneously. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1638–1650.
SIAM, 2017.

52 C. J. Osborn and E. Torng. List’s worst-average-case or WAC ratio. Journal of Scheduling,
11(3):213–215, 2008. Publisher: Springer.

53 J. Rudin III. Improved bounds for the on-line scheduling problem. PhD thesis, University of
Phoenix, 2001.

54 P. Sanders, N. Sivadasan, and M. Skutella. Online scheduling with bounded migration.
Mathematics of Operations Research, 34(2):481–498, 2009. Publisher: INFORMS.

55 J. Sgall. A lower bound for randomized on-line multiprocessor scheduling. Information
Processing Letters, 63(1):51–55, 1997. Publisher: Citeseer.

A Lower bounds

We establish the following theorem using two lower bound sequences.

▶ Theorem 27. For every online algorithm A, deterministic or randomized, there exists a
job set J such that Pσ∼Sn

[
A(J σ) ≥

√
73−1
6 OPT(J)

]
≥ 1

6 . If A is randomized the previous
probability also includes its random choices.

Theorem 27 implies the following lower bounds.

▶ Corollary 28. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.

▶ Corollary 29. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.

Let us now prove these results. For this section let c =
√

73−1
6 be our main lower bound

on the competitive ratio. We consider three types of jobs:
1. negligible jobs of size 0 (or a tiny size ε > 0 if one were to insist on positive sizes).
2. big jobs of size 1− c

3 = 17−
√

37
18 ≈ 0.581.

3. small jobs of size c
3 = 1+

√
37

18 ≈ 0.419

Let J be the job set consisting of m jobs of each type.

S. Albers and M. Janke 6:19

▶ Lemma 30. There exists a schedule of J where every machine has load 1. Every schedule
that has a machine with smaller load has makespan at least c.

Proof. This schedule is achieved by scheduling a type 2 and a type 3 job onto each machine.
The load of each machine is then 1. Every schedule which allocates these jobs differently
must have at least one machine M which contains at least three jobs of type 2 or 3 by the
pigeonhole principle. The load of M is then at least 3 c

3 = c. ◀

Given a permutation J σ of J and an online algorithm A, which expects 3m + 1 jobs to
arrive in total. Let A(J σ, 3m + 1) denote its makespan after it processes J σ expecting yet
another job to arrive. Let P = P[A(J σ, 3m + 1) = 1] be the probability that A achieves the
optimal schedule where every machine has load 1 under these circumstances. Depending on
P we pick one out of two input sets on which A performs bad.

Let j ∈ {1, 2}. We now consider the job set Jj consisting of m jobs of each type plus
one additional job of type j, i.e. a negligible job if j = 1 and a big one if j = 2. We call an
ordering J σ

j of Jj good if it ends with a job of type j or, equivalently, if its first 3m jobs are
a permutation of J . Note that the probability of J σ being good is m+1

3m+1 ≥
1
3 for σ ∼ S3m+1.

▶ Lemma 31. For job set J1 we have Pσ∼Sn
[A(J σ

1) ≥ cOPT(J)] ≥ 1−P
3 and for job set J2

furthermore Pσ∼Sn [A(J σ
2) ≥ cOPT(J)] ≥ P

3 .

Proof. Consider a good permutation of J1. Then with probability 1− P the algorithm A

does have makespan c even before the last job is scheduled. On the other hand OPT(J1) = 1.
Thus with probability 1−P

3 we have A(J σ
1) = c = cOPT(J1).

Now consider a good permutation of J2. Then, with probability P , algorithm A has to
schedule the last job on a machine of size 1. Its makespan is thus 2− c

3 = c2 by our choice
of c. The optimum algorithm may schedule two big jobs onto one machine, incurring load
2− 2c

3 < c, three small jobs onto another one, incurring load c and one job of each type onto
the remaining machines, causing load 1 < c. Thus OPT(J2) = c. In particular we have with
probability P

3 that A(J σ
2) = c2 = cOPT(J2). ◀

We now conclude the main three lower bound results.

▶ Theorem 27. For every online algorithm A, deterministic or randomized, there exists a
job set J such that Pσ∼Sn

[
A(J σ) ≥

√
73−1
6 OPT(J)

]
≥ 1

6 . If A is randomized the previous
probability also includes its random choices.

Proof. By the previous lemma we get that

max
j=1,2

(
Pσ∼Sn

[
A(J σ

j) ≥ cOPT(J)
])

= max
(

1− P

3 ,
P

3

)
≥ 1

6 . ◀

▶ Corollary 28. If an online algorithm A is nearly c-competitive, then c ≥
√

73−1
6 ≈ 1.257.

Proof. This is immediate by the previous theorem. ◀

▶ Corollary 29. The best competitive ratio possible in the secretary model is
√

73+29
36 ≈ 1.043.

Proof. Let A be any online algorithm. Pick a job set J according to Theorem 27. Then

Arom(J) = Eσ∼Sn [A(J σ)] ≥ 1
6 ·
√

73− 1
6 OPT(J) + 5

6OPT(J) =
√

73 + 29
36 OPT(J).◀

FSTTCS 2021

6:20 Scheduling in the Secretary Model

B Full description of the main algorithm

Our new algorithm achieves a competitive ratio of c = 1+
√

13
3 ≈ 1.535. Let δ = δ(m) = 1

log(m)
be the margin of error our algorithm allows. Throughout the analysis it is mostly sensible
to treat δ as a constant and forget about its dependency on m. Our algorithm maintains
a certain set Mres of ⌈δm⌉ reserve machines. Their complement, the principal machines,
are denoted by M. Let us fix an input sequence J σ. Let L̂ = L̂[J σ] = Lδ2 [J σ]. For
simplicity, we hide the dependency on J σ whenever possible. Our online algorithm uses
B = max

(
pδ2n

max, L̂
)

as an estimated lower bound for OPT. This bound B is known after the
first ⌊δ2n⌋ jobs are treated. Our algorithm uses geometric rounding implicitly. Given a job
Jt of size pt let f(pt) = (1 + δ)⌊log1+δ pt⌋ be its rounded size. We also call Jt an f(pt)-job.
Using rounded sizes, we introduce job classes. Let psmall = c − 1 =

√
13−2
3 ≈ 0.535 and

pbig = c
2 = 1+

√
13

6 ≈ 0.768. Then we call job Jt

small if f(pt) ≤ psmallB and critical else,
big if f(pt) > pbigB,
medium if J is neither small nor big, i.e. psmallB ≤ f(pt) ≤ pbigB,
huge if its (not-rounded) size exceeds B, i.e. B < pt, and normal else.

Consider the sets Pmed = {(1 + δ)i | (1 + δ)−1psmallB < (1 + δ)i ≤ pbigB} and Pbig =
{(1 + δ)i | pbigB < (1 + δ)i ≤ B} corresponding to all possible rounded sizes of medium
respectively big jobs, excluding huge jobs. Let P = Pmed∪Pbig. This subdivision gives rise to
a weight function, which will be important later. Let w(p) = 1/2 for p ∈ Pmed and w(p) = 1
for p ∈ Pbig. The elements p ∈ P define job classes Cp ⊆ J consisting of all p-jobs, i.e. jobs of
rounded size p. By some abuse of notation, we call the elements in P “job classes”, too. We
let np = |Cp| and n̂p = |{Jσ(j) | σ(j) ≤ δ2n ∧ Jσ(j) is a p-job}|. We want to use the values
n̂p, which are available to an online algorithm quite early, to estimate the values np, which
accurately describe the set of critical jobs. First, δ−2n̂p comes to mind as an estimate for
np. Yet, we need a more complicated guess: cp = max

(⌊(
δ−2n̂p −m3/4)

w(p)
⌋

, n̂p

)
w(p)−1.

It has three desirable advantages. First, for every p ∈ P the value cp is close to np with
high probability, but, opposed to δ−2n̂p, unlikely to exceed it. Overestimating np turns out
to be far worse than underestimating it. Second, w(p)cp is an integer and, third, we have
cp ≥ n̂pw(p)−1. A fundamental fact regarding the values (cp)p∈P and B is, of course, that
they are known to the online algorithm once ⌊δ2n⌋ jobs are scheduled.

Algorithm 2 The complete algorithm: How to schedule job Jt.

1: strat is initialized to Critical, Jt is the job to be scheduled.
2: if n ≤ m then Schedule Jt on any empty machine;
3: else if t ≤ φn then schedule Jt on a least loaded machine in M; ▷ Sampling phase
4: else
5: if we have t = ⌊φn⌋+ 1 then
6: if

∑
p∈P w(p)cp > m then strat← Least-Loaded

7: else proceed with the Preparation for the Critical-Job-Strategy (Algorithm 4);
8: if strat = Critical then proceed with the Critical-Job-Strategy (Algorithm 5);
9: else proceed with the Least-Loaded-Strategy (Algorithm 3);

Statement of the algorithm. If there are less jobs than machines, i.e. n ≤ m, it is optimal
to put each job onto a separate machine. Else, a short sampling phase greedily schedules
each of the first ⌊δ2n⌋ jobs to the least loaded principal machine M ∈M. Now, the values

S. Albers and M. Janke 6:21

B and (cp)p∈P are known. Our algorithm has to choose between two strategies, the Least-
Loaded-Strategy and the Critical-Job-Strategy, which we will both introduce subsequently. It
maintains a variable strat, initialized to Critical, to remember its choice. If it chooses the
Critical-Job-Strategy, some additional preparation is required. It may at any time discover
that the Critical-Job-Strategy is not feasible and switch to the Least-Loaded-Strategy but it
never switches the other way around.

The Least-Loaded-Strategy places any normal job on a least loaded principal machine.
Huge jobs are scheduled on any least loaded reserve machine. This machine will be empty,
unless we consider rare worst-case orders.

Algorithm 3 The Least-Loaded-Strategy: How to schedule job Jt.

1: if Jt is huge then schedule Jt on any least loaded reserve machine;
2: else schedule Jt on any least loaded principal machine;

For the Critical-Job-Strategy we introduce p-placeholder-jobs for every size p ∈ P . Sensibly,
the size of a p-placeholder-job is p. During the Critical-Job-Strategy we treat placeholder-jobs
similar to real jobs. The anticipated load l̃t

M of a machine M at time t is the sum of all jobs
on it, including placeholder-job, opposed to the common load lt

M , which does not take the
latter into account. Note that l̃t

M defines a pseudo-load as introduced in Section 3.
During the Preparation for the Critical-Job-Strategy the algorithm maintains a

counter c′
p of all p-jobs scheduled so far (including placeholders). A job class p ∈ P is called

unsaturated if c′
p ≤ cp. First, we add unsaturated medium placeholder-jobs to any principal

machine that already contains a medium real job from the sampling phase. We will see in
Lemma 32 that such an unsaturated medium job class always exists. Now, let mempty be the
number of principal machines which do not contain critical jobs. We prepare a set Jrep of
cardinality at most mempty, which we will then schedule onto these machines. The set Jrep
may contain single big placeholder-jobs or pairs of medium placeholder-jobs. We greedily
pick any unsaturated job class p ∈ P and add a p-placeholder-job to Jrep. If p is medium, we
pair it with a job belonging to any other, not necessarily different, unsaturated medium job
class. Such a job class always exists by Lemma 32. We stop once all job classes are saturated
or if |Jrep| = mempty. We then assign the elements in Jrep to machines. We iteratively pick
the element e ∈ Jrep of maximum size and assign the corresponding jobs to the least loaded
principal machine, which does not contain critical jobs yet. Sensibly, the size of a pair of
jobs in Jrep is the sum of their individual sizes. We repeat this until all jobs and job pairs in
Jrep are assigned to some principal machine.

Algorithm 4 Preparation for the Critical-Job-Strategy.

1: while there is a machine M containing a single medium job do
2: Add a placeholder p-job for an unsaturated size class p ∈ Pmed to M ; c′

p ← c′
p + 1;

3: while there is an unsaturated size class p ∈ P and |Jrep| < mempty do
4: Pick an unsaturated size class e = p ∈ P with c′

p minimal; w(e)← p; c′
p ← c′

p + 1;
5: if p is medium then pick q ∈ Pmed unsaturated. e← (p, q); w(e)← p+q; c′

q ← c′
q +1;

6: Add e to Jrep;
7: while Jrep ̸= ∅ do
8: Pick a least loaded machine M ∈M, which does not contain a critical job yet;
9: Pick e ∈ Jrep of maximum size w(e) and add the jobs in e to M ;

10: Jrep ← Jrep \ {e};

FSTTCS 2021

6:22 Scheduling in the Secretary Model

▶ Lemma 32. In line 2 and 5 of Algorithm 4 there is always an unsaturated medium size
class available. Thus, Algorithm 4, the Preparation for the Critical-Job-Strategy, is well
defined.

Proof. Concerning line 2, there are precisely
∑

p∈Pmed
n̂p machines with critical jobs while

there are at least
∑

p∈Pmed
(cp − n̂p) ≥

∑
p∈Pmed

n̂p placeholder-jobs available to fill them.
Here we make use of the fact that for medium jobs p ∈ Pmed we have cp ≥ n̂pw(p)−1 = 2n̂p.

Concerning line 5, observe that so far every machine and every element in Jrep contains
an even number of medium jobs. If the placeholder picked in line 4 was the last medium job
remaining,

∑
p∈Pmed

cp would be odd. But this is not the case since every cp for p ∈ Pmed is
even. ◀

Algorithm 5 The Critical-Job-Strategy.

1: if Jt is medium or big then let p denote its rounded size;
2: if there is a machine M containing a p-placeholder-job J then
3: Delete the p-placeholder-job J and assign Jt to M ;
4: else if Jt is medium and there exists M ∈Mres containing a single medium job then
5: Schedule Jt on M ;
6: else if there exists an empty machine M ∈Mres then schedule Jt on M ;
7: else stat← Least-Loaded; ▷ We say the algorithm fails.
8: use the Least-Loaded-Strategy (Algorithm 3) from now on;
9: else assign Jt to the least loaded machine in M (take placeholder jobs into account);

After the Preparation is done, the Critical-Job-Strategy becomes straightforward.
Each small job is scheduled on a principal machines with least anticipated load, i.e. taking
placeholders into account. Critical jobs of rounded size p ∈ P replace p-placeholder-jobs
whenever possible. If no such placeholder exists anymore, critical jobs are placed onto the
reserve machines. Again, we try pair up medium jobs whenever possible. If no suitable
machine can be found among the reserve machines, we have to switch to the Least-Loaded-
Strategy. We say that the algorithm fails if it ever reaches this point. In this case, it should
rather have chosen the Least-Loaded-Strategy to begin with. Since all reserve machines are
filled at this point, the Least-Loaded-Strategy is impeded, too. The most difficult part of
our analysis shows that, excluding worst-case orders, this is not a problem on job sets that
are prone to cause failing.

One-Way Functions and a Conditional Variant of
MKTP
Eric Allender # Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Mahdi Cheraghchi # Ñ

Department of EECS, University of Michigan, Ann Arbor, MI, USA

Dimitrios Myrisiotis # Ñ

Department of Computing, Imperial College London, London, UK

Harsha Tirumala # Ñ

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Ilya Volkovich # Ñ

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Abstract
One-way functions (OWFs) are central objects of study in cryptography and computational complexity
theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of
computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained
an open problem to establish such an equivalence for the average-case hardness of some natural
NP-complete problem. In this paper, we make progress on this question by studying a conditional
variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows.
1. First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances,

then there exist OWFs.
2. Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions.
3. Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of

McKTP.
Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete
problem. In fact, building on recently-announced results of Ren and Santhanam [28], we show that
McKTP is hard-on-average if and only if there are logspace-computable OWFs.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Cryptographic
primitives

Keywords and phrases Kolmogorov complexity, KT Complexity, Minimum KT-complexity Problem,
MKTP, Conditional KT Complexity, Minimum Conditional KT-complexity Problem, McKTP,
one-way functions, OWFs, average-case hardness, pseudorandom generators, PRGs, pseudorandom
functions, PRFs, distinguishers, learning algorithms, NP-completeness, reductions

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.7

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/009/

Funding Eric Allender : Partially supported by NSF Grants CCF-1909216 & CCF-1909683.
Mahdi Cheraghchi: Mahdi Cheraghchi’s research was partially supported by the National Science
Foundation under Grant No. CCF-2006455.
Dimitrios Myrisiotis: This work was partly carried out during a visit of Dimitrios Myrisiotis to
DIMACS, with support from the Special Focus on Lower Bounds in Computational Complexity
funded under NSF Grant CCF-1836666.
Harsha Tirumala: Harsha Tirumala was partially supported by NSF Grant CCF-1909216 and by
the Simons Collaboration on Algorithms and Geometry.

© Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 7; pp. 7:1–7:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:allender@cs.rutgers.edu
https://people.cs.rutgers.edu/~allender/
https://orcid.org/0000-0002-0650-028X
mailto:mahdich@umich.edu
https://mahdi.ch/
https://orcid.org/0000-0001-8957-0306
mailto:d.myrisiotis17@ic.ac.uk
https://dimyrisiotis.github.io/
https://orcid.org/0000-0001-9585-1227
mailto:hs675@scarletmail.rutgers.edu
https://sites.google.com/view/harsha-srimath-tirumala/
https://orcid.org/0000-0002-4600-3675
mailto:ilya.volkovich@bc.edu
https://sites.google.com/site/ilyavv/
https://orcid.org/0000-0002-7616-0751
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
https://eccc.weizmann.ac.il/report/2021/009/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 One-Way Functions and a Conditional Variant of MKTP

Acknowledgements We would like to thank Russell Impagliazzo for explaining his work [18] to us,
and Ján Pich and Ninad Rajgopal for illuminating discussions. We thank Ján Pich for bringing
his work [27] to our attention. We thank Mikito Nanashima and Hanlin Ren for helpful comments
and for spotting bugs in the proofs of earlier versions of Lemma 20 and Lemma 21, respectively. In
particular, we thank Hanlin Ren for asking the question of whether KT complexity would be an
appropriate complexity measure to consider in the context of our work. We thank Yanyi Liu and
Rafael Pass for the excellent correspondence regarding their work [20, 23, 24], and Rahul Santhanam
for bringing the work by Impagliazzo and Naor [19] to our attention. Finally, we would like to thank
the anonymous reviewers for their helpful feedback.

1 Introduction

One-way functions (OWFs) – that is, functions that are easy to compute but hard to invert –
are objects of great importance in cryptography and computational complexity. For example,
it is known that OWFs exist if and only if pseudorandom generators exist [12] and, moreover,
if OWFs exist, then P ̸= NP.

In this paper, we ask the following question:

Can the existence of OWFs be shown to be equivalent to the average-case hardness of
some NP-complete problem?

We take concrete steps toward giving an affirmative answer to this question, by presenting a
candidate problem. Note that by Impagliazzo and Naor [19] it is known that there exists
some NP-complete problem (Subset Sum) whose average-case hardness implies the existence
of OWFs. However, what we attempt to do is different: We want to make concrete progress
in characterizing OWFs by the average-case hardness of an NP-complete problem.

The importance of NP stems mainly from the fact that, for thousands of important
naturally-occurring computational problems, their worst-case computational complexity is
best explained by knowing that they are NP-complete. However, NP-completeness has not
been as relevant for the concerns of cryptographers, who require one-way functions, which
in turn require problems in NP that are hard-on-average. Liu and Pass [20] gave what is
arguably the first “natural” example of a problem in NP that is hard-on-average if and only if
one-way functions exist; but this problem (computing time-bounded Kolmogorov complexity,
Kt) is not known to be NP-complete. Although it is not hard to modify their language
to obtain an artificial NP-complete problem with the same average-case complexity (see
Proposition 24), there had been no “natural” example of an NP-complete problem whose
average-case complexity had been connected directly to the existence of one-way functions.
Our main contribution is to present such an example.

There are different ways to define time-bounded Kolmogorov complexity; the measure
KT (defined in [4]) has the property that KT(x) is approximately the same as the circuit
complexity of the function that has x as its truth table. Thus the problem MKTP =
{(x, i) | KT(x) ≤ i} has been useful [4] in studying the Minimum Circuit Size Problem
MCSP = {(f, i) | CC(f) ≤ i}, which has been the subject of much recent work. As with
most other Kolmogorov complexity measures, KT(x) is defined in [4] as a special case of the
conditional KT-complexity KT(x | y), where y is the empty string. Our results concern the
decision problem McKTP = {(x, y, i) | KT(x | y) ≤ i}. We show the following.
(a) If McKTP is hard-on-average, then one-way functions exist (Theorem 1).
(b) McKTP is NP-complete under randomized reductions (Theorem 2).
(c) If one-way functions exist, then McKTP is (somewhat) hard-on-average (Theorem 4).
(d) In fact, McKTP is hard-on-average if and only if logspace-computable one-way functions

exist (Theorem 3 and Theorem 5).

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:3

There has been a flurry of recent activity on this topic, and it may be helpful to present the
following timeline:
1. [20] is posted by Liu and Pass, proving an equivalence between the existence of OWFs

and the average-case hardness of Kt complexity.
2. [6] is posted by Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich, claiming to

characterize the existence of OWFs by the average-case complexity of an NP-complete
problem called Sparse Partial MCSP. This paper was retracted.

3. [5] is posted by Allender, Cheraghchi, Myrisiotis, Tirumala, and Volkovich, presenting
the proofs of Item a through Item c above.

4. [21] is posted by Liu and Pass, whereby they prove that subexponentially-hard OWFs
exist if and only if MKtP (a decision problem based on Kt complexity) is average-case
hard for sublinear-time non-uniform heuristics.

5. [24] is posted by Liu and Pass, showing that one-way functions exist if and only if the
EXP-complete language MKtP is hard-on-average1 and that logspace-computable one-way
functions exist if and only if the PSPACE-complete language MKSP is hard-on-average.

6. [28] is posted by Ren and Santhanam, showing that MKTP is hard-on-average if and only
if logspace-computable one-way functions exist. This allows us to prove Item d above.

7. [23] is posted by Liu and Pass (which is inspired by and in part a response to [6]), showing
that a conditional variant of Kt complexity is NP-complete, and is hard-on-average if
and only if one-way functions exist.

8. [16] is posted by Ilango, Ren, and Santhanam, showing that one-way functions exist if
and only if the undecidable problem MKP (i.e., a decision problem based on Kolmogorov
complexity) is hard-on-average under a samplable distribution, and if and only if MCSP
is hard-on-average under a locally-sampleable distribution.

9. [22] is posted by Liu and Pass, generalizing the results of Ilango, Ren, and Santhanam [16],
whereby they show that there exists some sparse language L such that OWFs exist if and
only if L is average-case hard with respect to some efficiently sampleable “high-entropy”
distribution.

1.1 Prior work
An early goal in cryptographic research was to base the existence of cryptographically secure
one-way functions on the worst-case complexity of some NP-complete problem. This goal
remains elusive; it was shown in [2] that no black-box argument of this sort can proceed
based on non-adaptive reductions. Non-adaptive worst-case-to-average-case reductions were
also studied by Bogdanov and Trevisan [8], who showed that such reductions to sets in NP
exist only for problems in NP/poly ∩ coNP/poly. Recent work by Nanashima [26] holds open
the possibility that the security of OWFs can be based on an adaptive black-box reduction,
by first establishing a non-adaptive black-box reduction basing the existence of auxiliary
input one-way functions on the worst-case complexity of an NP-complete problem, although
this would also require non-relativizing techniques. Instead of worst-case hardness, the focus
of our work is on average-case hardness assumptions. A nice survey on this area, that lays
out many of the issues about one-way functions and average-case complexity, is the one by
Bogdanov and Trevisan [7].

1 This is also proved in [28], and was posted to ECCC one day later.

FSTTCS 2021

7:4 One-Way Functions and a Conditional Variant of MKTP

Hirahara and Santhanam have discussed zero-error average-case complexity of problems
related to MKTP [14]. Santhanam [29] showed that a restricted type of hitting-set generator
exists if and only if MCSP is zero-error average-case hard. Hirahara also proved similar
results connecting the worst-case and the zero-error average-case complexity of problems
related to MCSP and Kolmogorov complexity [13].

More recently, Brzuska and Couteau [9] discuss basing OWFs on average-case hardness,
stating that it remains an open question to do this for the general notion of average-case
hardness. They present some negative results, indicating the difficulty of establishing the
existence of fine-grained one-way functions, based on the existence of average-case hardness,
via black-box reductions.

There is also an important line of work (including Ajtai [1] and Micciancio and Regev [25])
basing the existence of OWFs on the worst-case complexity of certain problems in NP
(including problems that are closely related to NP-complete problems, although they are not
themselves known to be NP-complete).

1.2 Our results
In this work, we connect the existence of OWFs to the average-case hardness of computing a
conditional (and NP-complete) variant of MKTP, which we term McKTP.

Initially, we prove that the average-case hardness of McKTP implies the existence of
OWFs.

▶ Theorem 1 (Informal). OWFs exist if McKTP is hard-on-average on a polynomial fraction
of its instances.

We also show that McKTP is NP-complete under randomized reductions.

▶ Theorem 2 (Informal). McKTP is NP-complete under polynomial-time one-sided-error
randomized reductions.

Moreover, Theorem 1 suggests an approach for excluding Impagliazzo’s Pessiland [17],
that is, a version of our world where there are average-case hard problems in NP and there are
no OWFs. This approach is based on the following observation. If McKTP is NP-hard under
average-case reductions, then by Theorem 1 the existence of an average-case hard problem in
NP would imply the existence of OWFs. Therefore proving that McKTP is NP-hard under
average-case reductions excludes Pessiland.

We are able to prove a stronger version of Theorem 1, building on the work of Ren and
Santhanam [28].

▶ Theorem 3 (Informal). Logspace-computable OWFs exist if McKTP is hard-on-average on
a polynomial fraction of its instances.

Finally, we prove a weak converse of Theorem 1, and a strong converse of Theorem 3.

▶ Theorem 4 (Informal). OWFs exist only if McKTP is hard-on-average on an exponential
fraction of its instances.

▶ Theorem 5 (Informal). Logspace-computable OWFs exist only if McKTP is hard-on-average
on an polynomial fraction of its instances.

By Theorem 3 and Theorem 5, we get the following corollary.

▶ Corollary 6. McKTP is hard-on-average if and only if logspace-computable OWFs exist.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:5

1.2.1 How significant are our results?
The reader may wonder whether the hypothesis of Theorem 1 is overly strong. Is there
perhaps some trivial heuristic that succeeds well on average for this NP-complete decision
problem?

The input to the problem consists of a triple (x, y, θ), where the question is whether
KT(x | y) ≤ θ, where θ is a number bounded by |x| + O(log |x|). A simple heuristic is to
accept if θ is at the high end of this range, and reject otherwise; one can augment this to
accept for slightly lower values of θ if x has certain hallmarks of low complexity (such as
starting or ending with a logarithmic number of zeros, or agreeing with y on those substrings).
However, when inputs are chosen at random, this heuristic still seems likely to fail with
constant probability if θ is close to the boundary between where the heuristic accepts and
rejects. In particular, it is far from clear how to design a heuristic that would have failure
probability less than, say 1/s2, where θ ranges over a domain of size s. In particular, it
seems quite plausible that there is a constant k for which no heuristic can achieve failure
probability less than 1/sk, which is precisely the hypothesis of Theorem 1, and is sufficient
for the existence of OWFs.

Moreover, by Theorem 5, this hypothesis is in fact equivalent to the existence of logspace-
computable OWFs, which is widely believed to hold.

By the same token, the conclusion of Theorem 4 gives a much weaker, but still non-trivial,
average-case hardness condition for McKTP.

1.3 Our techniques
Our main results are Theorem 1, Theorem 2, and Theorem 4. Below we provide some
intuition regarding their proofs.
1. Theorem 1 is proved by

a. giving an average-case decision-to-search reduction for McKTP (see Lemma 20) and
b. observing that a recent result by Liu and Pass [20], whereby they prove that the

average-case hardness of a search variant of time-bounded Kolmogorov complexity Kt

yields OWFs, can be adjusted to the case of McKTP as well (see Lemma 21).
The three properties of time-bounded Kolmogorov complexity Kt, for some t : N → N
where t(n) ≥ n for all n ∈ N, that are used by Liu and Pass, are as follows.
i. One can create a string of low time-bounded Kolmogorov complexity in polynomial

time. This can be done by running a universal Turing machine U on some string,
for polynomially-many steps, and subsequently recording the output of U .

ii. For any string x, the possible values of its Kt complexity are polynomially-many
in |x|. In fact, there is a c > 0 such that, for any function t : N → N such that
t(n) ≥ n for all n ∈ N, and any string x, the possible values of Kt(x) are at most
|x| + c.

iii. The following domination property holds. Let x∗ ∈ {0, 1}n be a string, and c > 0
be as in Item 1(b)ii. Then,

Pr
Π∼{0,1}n+c

[
U
(

Π, 1t(n)
)

= x∗
]

≥ 1
2n+c

= 2−n

2c
≥

Prx∼{0,1}n [x = x∗]
poly(n) .

As it turns out, all of these properties are satisfied even when one considers McKTP.
2. Theorem 3 is proved by use of the techniques of [28]. In particular, the proof of Theorem 1

shows that the following function is one-way, if McKTP is hard-on-average:

FSTTCS 2021

7:6 One-Way Functions and a Conditional Variant of MKTP

Given (s, t, y, Π), output the string obtained by running U on y and the length-s
prefix of Π for t steps.

Ren and Santhanam observe that this function is logspace-computable if we restrict t to
be O(log n). Then, crucially, they show that for most strings in the range of this function,
s + t is minimized when t = O(log n). These insights, combined with the the proof of the
preceding theorem, suffice.

3. Theorem 2 is proved by
a. noting that McKTP is in NP (see Lemma 11) and
b. showing the NP-hardness of McKTP (see Corollary 34). This is done by giving a

polynomial-time randomized reduction from Set Cover, which is NP-hard to approxim-
ate (see Corollary 33), to an appropriate gap version of McKTP (see Corollary 32).
Note that this step closely mimics the proof of Ilango [15] for the NP-hardness of
Minimum Oracle Circuit Size Problem (MOCSP).

4. Theorem 4 is proved by giving a proof of its contrapositive statement, as explained by
the items below.
a. Assume that McKTP is easy on average under the uniform distribution.
b. By a corollary of Ilango, Loff, and Oliveira, for all a ≥ 1, there exists a learning

algorithm for SIZE[na] that works for infinitely many n ∈ N.
c. By a learner-to-distinguisher reduction, for every polynomial-time computable Boolean

function family {fy}y∈{0,1}∗ , there is a distinguisher for {fy}y∈{0,1}∗ .
d. By the correctness of the works by Håstad, Implagliazzo, Levin, and Luby [12], and

Goldreich, Goldwasser, and Micali [11], there are no OWFs.
5. Theorem 5 is proved by giving a slight modification to the proof of [28, Lemma 4.7].

1.4 Paper organization
In Section 2 we give some background knowledge and useful facts. We prove Theorem 1 in
Section 3, Theorem 3 in Section 4, and Theorem 5 in Section 5. Finally, we prove Theorem 2
in Appendix B. Theorem 4 is proved in the full version of the paper [5].

2 Preliminaries

2.1 Notation
We denote the natural numbers by N and the positive reals by R>0. For any n ∈ N, we
denote the set {1, . . . , n} by [n]. Let x = (x1, . . . , xn) ∈ {0, 1}n be a string of length n; we
write |x| := n. The empty string is denoted by λ.

We denote by Fn the class of all Boolean functions on n variables. We identify infinite
Boolean functions f : {0, 1}∗ → {0, 1} with collections {fn}n∈N, whereby fn : {0, 1}n →
{0, 1} for all n ∈ N.

We consider Boolean circuits over the bounded fan-in {∧2, ∨2, ¬} basis. Given a circuit,
its size is the number of its gates. Let s : N → N be a function. If we use s to upper bound
the size of some circuit, then we shall call s a size function.

Given a Boolean function f : {0, 1}n → {0, 1}, the circuit complexity of f , denoted CC(f),
is the size of a minimum size circuit that computes f . For a size function s : N → N, we denote
by SIZE[s(n)] the class of Boolean functions f = {fn}n∈N, whereby fn : {0, 1}n → {0, 1} for
all n ∈ N, such that CC(fn) ≤ s(n) for all n ∈ N.

In this work, we do not distinguish between Turing machines and algorithms. We say
that an algorithm A is a PPT algorithm if A is a probabilistic polynomial-time algorithm. If
A is a PPT algorithm that runs in time p(n) for a polynomial p, then we denote by A(x; r)

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:7

the output of A on input x ∈ {0, 1}∗ using random bits r ∈ {0, 1}p(|x|). We say that an
algorithm A is a PPT oracle algorithm if A is a PPT algorithm that has access to some
oracle. If A is a PPT oracle algorithm that runs in time p(n) for a polynomial p and has
access to an oracle for a language L ⊆ {0, 1}∗, then we denote by AL(x; r) the output of AL

on input x ∈ {0, 1}∗ using random bits r ∈ {0, 1}p(|x|).

2.2 Probability theory

We will use the following useful fact from probability theory.

▶ Lemma 7 (Markov’s inequality). If X is a non-negative random variable with µ := E[X],
then for all k > 0 it is the case that Pr[X ≥ kµ] ≤ 1/k.

2.3 KT complexity

2.3.1 A universal Turing machine

In what follows, we fix some efficient universal (oracle) Turing machine (UTM) U . Let
y, Π, z ∈ {0, 1}∗ and t ∈ N. The notation UΠ,y(z, 1t) denotes the output of U when U runs
the program Π on input z for at most t steps, given that U has extended oracle access to
program Π and standard oracle access to auxiliary string y. These notions are defined as
follows.
1. Standard oracle access to auxiliary string y means that U has a standard oracle tape Ty

of log |y| cells, and that in order to read a bit yi of y, whereby 1 ≤ i ≤ |y|, the machine
U has to write i ∈ {0, 1}log|y| on Ty and then enter a question state. In the next step,
the contents of Ty are erased and replaced by a bit b such that b = yi.
One important aspect of our choice of U is that, for every auxiliary string y ∈ {0, 1}∗

and 1 ≤ i ≤ log |y|, the oracle query yi
?= 1 is such that it requires time log |y|, and can

be implemented in time O(log |y|).
2. Extended oracle access to program Π means that U has a tape TΠ of |Π| cells that contains

Π, and the head of TΠ has both the ability to jump to an indexed location 1 ≤ i ≤ |Π| of
TΠ, namely TΠ[i] = Πi, and to move left and right on TΠ. Note that in the former case
the index i is written in a separate tape of log |Π| cells, specifically allocated for that
purpose. (So extended oracle access implies the existence of two tapes that help facilitate
the oracle query.)

The notation UΠ,y(z) denotes the output of U when U runs the program Π on input z, until
Π halts (if this is the case, otherwise Π runs forever), whereby U has extended oracle access
to Π and standard oracle access to y.

In this work, we will assume that whenever U is given oracle access to a program Π,
this access will be extended, and whenever U is given oracle access to an auxiliary string y,
this access will be standard. This is mainly to avoid unnecessary complications in the proof
of Theorem 2 (where it is convenient to have sequential access to Π, while requiring that
each query to y uses logarithmic time) while maintaining the trivial upper bound on KT
complexity (see Lemma 8) which requires oracle access to Π.

We will also assume that the output of U will either be 1 or 0, on any input.

FSTTCS 2021

7:8 One-Way Functions and a Conditional Variant of MKTP

2.3.2 Definition of KT complexity, and some properties
Given strings x, y ∈ {0, 1}∗, we define the KT complexity of x given y, denoted KT(x | y),
to be the minimum value of |Π| + t over programs Π ∈ {0, 1}∗ and run-time bounds t ∈ N
whereby for all 1 ≤ i ≤ |x| it is the case that UΠ,y(i, 1t) = xi.2 For all strings x ∈ {0, 1}∗,
we define KT(x) to be equal to KT(x | λ).

▶ Lemma 8 ([4]). There is a c > 0 such that for all x ∈ {0, 1}∗ it is the case that KT(x) is
at most |x| + c log |x|.

▶ Corollary 9. There is a c > 0 such that for all x, y ∈ {0, 1}∗ it is the case that KT(x | y)
is at most |x| + c log |x|.

2.4 Minimum Conditional KT-complexity Problem, and variants
We give here formal definitions of the computational problems that we will consider in this
work. These are the decision and search variants of McKTP.

▶ Definition 10 (Decision variant). Let c > 0 be as in Corollary 9. Let n ∈ N and m : N → N.
The Minimum m-Conditional KT-complexity Problem of dimension n (McKTmP of dimension
n) is defined as follows.

Input: Strings x ∈ {0, 1}n, y ∈ {0, 1}m(n), and a parameter 0 ≤ θ ≤ n + c log n in binary.
Question: Is there a program Π ∈ {0, 1}∗ and a run-time bound t ∈ N such that
UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n, and |Π| + t ≤ θ?

The following result is a standard observation.

▶ Lemma 11. For all polynomial-time computable functions m : N → N, it is the case that
McKTmP of dimension n is in NP.

▶ Definition 12 (Search variant). Let n ∈ N and m : N → N. The search variant of Minimum
m-Conditional KT-complexity Problem of dimension n (Search McKTmP of dimension n) is
defined as follows.

Input: Strings x ∈ {0, 1}n and y ∈ {0, 1}m(n).
Output: A program Π ∈ {0, 1}∗ and a run-time bound t ∈ N in binary such that
UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n, and the sum |Π| + t is minimized over the choices of Π
and t.

2.5 One-way functions
In the following, a function µ is said to be negligible if for every polynomial p there exists a
n0 ∈ N such that for all naturals n > n0 it is the case that µ(n) ≤ 1/p(n).

▶ Definition 13. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We say
that f is a one-way function (OWF) if for every PPT algorithm A there exists a negligible
function µ such that for all n ∈ N it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< µ(n)

where the size of r is equal to the running time of A.

2 Originally [4], KT(x | y) was defined with the additional requirement that, for i = |x|+1, UΠ,y
(
i, 1t
)

= ∗.
We do not need that additional complication here, although our theorems would also hold using that
definition.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:9

We will also employ the following weaker notion of OWFs.

▶ Definition 14. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function. We
say that f is an α-weak one-way function (α-weak OWF) if for every PPT algorithm A and
all sufficiently large n ∈ N it is the case that

Pr
x∼{0,1}n,r

[
A(1n, f(x) ; r) ∈ f−1(f(x))

]
< 1 − α(n)

where the size of r is equal to the running time of A. We say that f is a weak one-way
function (weak OWF) if there exists some polynomial q > 0 such that f is a (1/q)-weak
OWF.

Yao [30] proved that the existence of weak OWFs implies the existence of OWFs.

▶ Theorem 15 ([30]). Assume that there exists a weak one-way function. Then there exists
a one-way function. (Also, if there exists a weak-one-way function computable in logspace,
then there is a one-way function computable in logspace.)

2.6 Average-case hardness/easiness
A heuristic H is a PPT algorithm that, on input any x ∈ {0, 1}n, outputs a value in {0, 1}
along each computation path.

▶ Definition 16 (Average-case hardness). Let α : N → [0, 1] be a failure parameter function.
We say that a function f : {0, 1}n → {0, 1} is α-hard-on-average (α-HoA) if for all heuristics
H and all sufficiently large n ∈ N it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = f(x)] ≤ 1 − α(n)

where the size of r is equal to the running time of H.

▶ Definition 17 (Average-case easiness). Let α : N → [0, 1] be a success parameter function.
We say that a function f : {0, 1}n → {0, 1} is α-easy-on-average (α-EoA) if f is not (1 − α)-
hard-on-average; that is, if there exists some heuristic H such that for infinitely many n ∈ N
it is the case that

Pr
x∼{0,1}n,r

[H(x; r) = f(x)] > 1 − (1 − α(n)) = α(n)

where the size of r is equal to the running time of H.

Let R ⊆ {0, 1}n × {0, 1}∗ be a search problem. A heuristic H is a PPT algorithm that,
on input any x ∈ {0, 1}n, outputs a value in {0, 1}∗ along each computation path.

The notions of average-case hardness and easiness for search problems are defined in a
fashion similar to that of decision problems; see Definition 16 and Definition 17.

3 OWFs from average-case hardness of McKTP

In this section, we prove the following result.

▶ Theorem 18. Assume that, for some m : N → N, McKTmP of dimension n is (1/p)-HoA
for some polynomial p. Then, there exists some weak OWF.

By Theorem 18 and Theorem 15, we get the following corollary.

▶ Corollary 19 (Theorem 1, restated). Assume that, for some m : N → N, McKTmP of
dimension n is (1/p)-HoA for some polynomial p. Then, there exists some OWF.

FSTTCS 2021

7:10 One-Way Functions and a Conditional Variant of MKTP

3.1 Proof of Theorem 18
We will first require the following two lemmas.

▶ Lemma 20. For all functions m : N → N, if McKTmP is (1/p)-HoA for some polynomial
p, then Search McKTmP is

(
1/p2)-HoA.

Proof. We will prove the contrapositive. That is, we will prove that if Search McKTmP
is
(
1 − 1/p2)-EoA, then McKTmP is (1 − 1/p)-EoA. In what follows, let c > 0 be as in

Corollary 9.
Let N ′ := n + m(n) be the size of the instances of Search McKTmP of dimension n.

Assume that Search McKTmP is
(
1 − 1/p2)-EoA. That is, assume that there exists some

heuristic H ′ that on input a random instance (x, y) ∈ {0, 1}n × {0, 1}m(n) outputs with
probability greater than 1 − 1/p(N ′)2 a program Π ∈ {0, 1}∗ and a run-time bound t ∈ N (in
binary) such that UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n, and the sum |Π| + t is minimized over
the choices of Π and t.

Given H ′, a heuristic H for McKTmP of dimension n and input size N := n + m(n) +
log(n + c log n), works as follows:

On input strings x ∈ {0, 1}n and y ∈ {0, 1}m(n), and a size parameter 0 ≤ θ ≤
n + c log n in binary, run H ′ on (x, y) to get a program Π ∈ {0, 1}∗ and a run-time
bound t ∈ N (in binary). If Π and t are such that UΠ,y(i, 1t) = xi for all 1 ≤ i ≤ n

and |Π| + t ≤ θ, then return YES. Else, return NO.

Note that the running time of H is polynomial in N . The success probability of H over a
random instance (x, y, θ) and random bits r is

Pr
x,y,θ,r

[H(x, y, θ; r) succeeds]

≥ Pr
x,y,θ,r

[H(x, y, θ; r) succeeds | H ′(x, y; r) succeeds] · Pr
x,y,r

[H ′(x, y; r) succeeds]

> 1 ·

(
1 − 1

p(N ′)2

)
= 1 − 1

p(N ′)2 ≥ 1 − 1
p(N) ,

since 1/p(N ′)2 ≤ 1/p(N) for all sufficiently large n ∈ N, as desired.
Therefore, McKTmP is (1 − 1/p)-EoA as witnessed by H. ◀

The following is an elaboration on the seminal work by Liu and Pass [20].

▶ Lemma 21 (Following Liu and Pass [20]). Assume that, for some function m : N → N,
Search McKTmP is (1/p)-HoA for some polynomial p. Then, there exists some weak OWF.

Proof. Fix some UTM U , and let c > 0 be as in Corollary 9. Let n ∈ N be sufficiently
large and such that Search McKTmP of dimension n is (1/p)-HoA. Consider the function
f : {0, 1}∗ → {0, 1}∗ defined by the mapping rule

(s, t, y, Π′) 7→
(
s + t, UΠ,y

(
1, 1t

)
, . . . , UΠ,y

(
n, 1t

)
, y
)

,

where m := m(n), y ∈ {0, 1}m, Π′ ∈ {0, 1}n+c log n is a program, and Π := Π′|[s] is the s-bit
prefix of Π′. Note that without loss of generality, s+ t ≤ n+ c log n, by Corollary 9. This also
implies that s ≤ n + c log n and t ≤ n + c log n. For that matter, f is a function from {0, 1}M

to {0, 1}N , where M := 2 log(n + c log n)+m+n+ c log n and N := log (n + c log n)+n+m,
and is computable in polynomial time.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:11

Observe also that f is only defined over infinitely many input lengths. However, by a
padding trick, f can be transformed into another function f ′ that is defined over all input
lengths, and such that f ′ is a weak one-way function, given that f is [20].

We now claim that if Search McKTmP is (1/p)-HoA, then f is a (1/q)-weak OWF, where
q is a polynomial such that q(n) := 2 (n + c log n)2

ncp(n + m(n))3 for all n ∈ N. Towards a
contradiction, assume that there exists a PPT algorithm A that inverts f with probability
at least 1 − 1/q(M) ≥ 1 − 1/q(n).

First, note that except for a fraction 1/ (2p(n + m)) of sequences of random bits r for A,
the deterministic machine Ar, given by Ar(f(z)) := A(f(z) ; r) for all z ∈ {0, 1}M , fails to
invert f with probability at most 2p(n + m) /q(n) over a uniformly random input z. This is
so, as

Pr
r

[
Pr

z
[Ar(f(z)) fails] >

2p(n + m)
q(n)

]
≤ Pr

r

[
Pr

z
[Ar(f(z)) fails] ≥ 2p(n + m) · Pr

z,r
[Ar(f(z)) fails]

]
= Pr

r

[
Pr

z
[A(f(z) ; r) fails] ≥ 2p(n + m) · E

r

[
Pr

z
[A(f(z) ; r) fails]

]]
≤ 1

2p(n + m) ,

by Lemma 7. Henceforth, we will call such a sequence of random bits good; otherwise, we
will call a sequence of random bits bad. Therefore, we have

Pr
z,r

[A(f(z) ; r) fails | r is good] = Pr
z,r

[Ar(f(z)) fails | r is good] ≤ 2p(n + m)
q(n) .

We propose the following heuristic H for Search McKTmP:

On input strings x ∈ {0, 1}n and y ∈ {0, 1}m, and using random bits r, the al-
gorithm H runs A(j, x, y; r) for all j ∈ [n + c log n]. For each j ∈ [n + c log n],
A(j, x, y; r) returns a tuple

(
sj , tj , y, Π′

j

)
. Then, H(x, y; r) returns a program Π′

k|[sk]

from
{

Π′
j

∣∣
[sj]

}
j∈[n+c log n]

such that U
Π′

k|[sk],y(i, 1tk) = xi for all 1 ≤ i ≤ n, and∣∣∣Π′
k|[sk]

∣∣∣+ tk = sk + tk is minimized.

We will now analyze the average-case performance of H . Fix a good sequence of random bits
r, as defined above, and recall that, in this case, Prz[Ar(f(z)) fails] ≤ 2p(n + m) /q(n). Let
Sr be the set of inputs (x, y) for which H(x, y; r) fails, when given random bits r. Observe
that, for any good r,

Pr
x,y

[H(x, y; r) fails] = |Sr|
2n+m

.

Consider (x, y) ∈ Sr and let wx,y := KT(x | y) be the conditional KT-complexity of x given
y. By Corollary 9, we have wx,y ≤ n + c log n. If H(x, y; r) fails, then it means that A fails
to invert (wx,y, x, y) when given the good sequence of random bits r.

Recall that Prz[Ar(f(z)) fails] ≤ 2p(m (n + 1)) /q(n). Recall also, from the definition of
f , and from the fact that wx,y ≤ n + c log n, that

Pr
z

[f(z) = (wx,y, x, y)] ≥ 1
(n + c log n)2 · 2m · 2n+c log n

.

Thus, for any good sequence r, we have

2p(n + m)
q(n) ≥ Pr

z
[Ar (f(z)) fails]

FSTTCS 2021

7:12 One-Way Functions and a Conditional Variant of MKTP

=
∑

(w,x,y):Ar(w, x, y) fails

Pr
z

[f(z) =(w, x, y)]

≥
∑

(x,y):Ar(wx,y, x, y) fails

Pr
z

[f(z) =(wx,y, x, y)]

≥
∑

(x,y)∈Sr

1
(n + c log n)2 · 2m · 2n+c log n

= |Sr|
2n+m

· 1
(n + c log n)2 2c log n

= Prx,y[H(x, y; r) fails]
(n + c log n)2

nc
.

Since this holds for any good sequence r, we have that

Pr
x,y,r

[H(x, y; r) fails | r is good] ≤ (n + c log n)2
nc2p(n + m)

q(n)

= (n + c log n)2
nc2p(n + m)

2 (n + c log n)2
ncp(n + m)3

= 1
p(n + m)2 <

1
2p(n + m) ,

since p(n + m) > 2 for all sufficiently large n ∈ N. Therefore, H fails with probability at
most

Pr
x,y,r

[H(x, y; r) fails | r is good] + Pr
r

[r is bad] <
1

2p(n + m) + 1
2p(n + m) = 1

p(n + m) .

This yields a contradiction. ◀

We now turn to the proof of Theorem 18.

Proof of Theorem 18. Immediate; by Lemma 20 and Lemma 21, since if p is a polynomial,
then p2 is a polynomial too. ◀

4 Logspace-computable OWFs from average-case hardness of McKTP

Now we show that, applying the insights of Ren and Santhanam [28], we can strengthen the
theorems of the preceding section. We show the following.

▶ Theorem 22. Assume that, for some m : N → N, McKTmP of dimension n is (1/p)-HoA
for some polynomial p. Then, there exists some weak OWF computable in logspace.

Proof sketch. Modify the definition of f from the proof of Lemma 21, so that now f is

(s, t, y, Π′) 7→
(
s + t, UΠ,y

(
1, 1t

)
, . . . , UΠ,y

(
n, 1t

)
, y
)

,

where m := m(n), y ∈ {0, 1}m, Π′ ∈ {0, 1}n+c log n is a program, Π := Π′|[s] is the s-bit
prefix of Π′, and t ≤ d log n for some d. This function f is clearly computable in logspace.

Significantly, Ren and Santhanam [28, Theorem 4.1] show that, if the search version of KT
is hard-on-average, then a function very similar to f is a weak one-way function. Essentially
identical considerations allow us to conclude that, if Search McKTmP is (1/p)-HoA for some
polynomial p, then f is a weak one-way function. The main point is that, for every y, most
strings x have the property that, when |Π| + t is minimized (where U uses description Π and
run-time t to compute the bits of x), t = O(log n). The rest of the analysis is very similar to
that of Lemma 21. ◀

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:13

By Theorem 22 and Theorem 15, we get the following corollary.

▶ Corollary 23 (Theorem 3, restated). Assume that, for some m : N → N, McKTmP of
dimension n is (1/p)-HoA for some polynomial p. Then, there exists some logspace-computable
OWF.

5 Average-case hardness of McKTP from logspace-computable OWFs:
Proof of Theorem 5

Again, we appeal to the techniques of Ren and Santhanam. Ren and Santhanam [28,
Theorem 4.4] show that, if there is a one-way function computable in logspace, then the
problem of computing an approximation to KT complexity is hard-on-average. A nearly-
identical proof shows that computing KT(x | y) is HoA. Essentially the only modification
that needs to be made to the proof of [28, Theorem 4.4] arises in the proof of their Lemma
4.7, which establishes that computing KT is HoA under a condition that holds if there is a
logspace-computable OWF. The proof of [28, Lemma 4.7] relies on the fact that the output
of a certain pseudorandom generator has small KT complexity, whereas a random string has
high KT complexity. But the output z of this generator also has small KT(z | y) for every
y, whereas a random string z has KT(z | y) large for almost every y. Thus a very similar
analysis shows that computing KT(x | y) is HoA, which in turn (via Lemma 20) implies that
McKTmP is HoA.

References
1 Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In Proceedings

of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC), pages
99–108. ACM, 1996. doi:10.1145/237814.237838.

2 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. On basing one-way
functions on NP-hardness. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 701–710. ACM, 2006. See also [3].

3 Adi Akavia, Oded Goldreich, Shafi Goldwasser, and Dana Moshkovitz. Erratum for: On
basing one-way functions on NP-hardness. In Proceedings of the 42nd ACM Symposium on
Theory of Computing (STOC), pages 795–796. ACM, 2010.

4 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.

5 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and a conditional variant of MKTP. Electron. Colloquium Comput.
Complex., 28:9, 2021.

6 Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya Volkovich.
One-way functions and Partial MCSP. Electron. Colloquium Comput. Complex., 28:9, 2021.

7 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006.

8 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP problems.
SIAM J. Comput., 36(4):1119–1159, 2006.

9 Chris Brzuska and Geoffroy Couteau. Towards fine-grained one-way functions from strong
average-case hardness. IACR Cryptol. ePrint Arch., 2020:1326, 2020.

10 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B. Shmoys,
editor, Symposium on Theory of Computing (STOC), pages 624–633. ACM, 2014.

11 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

12 Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

FSTTCS 2021

https://doi.org/10.1145/237814.237838

7:14 One-Way Functions and a Conditional Variant of MKTP

13 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 247–258. IEEE
Computer Society, 2018.

14 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and
its variants. In Ryan O’Donnell, editor, 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

15 Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant
and AC0[p]. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

16 Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribution
suffices: New characterizations of one-way functions by meta-complexity. Electron. Colloquium
Comput. Complex., 28:82, 2021.

17 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June
19-22, 1995, pages 134–147. IEEE Computer Society, 1995.

18 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances than
picking uniformly at random. In 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812–821. IEEE Computer
Society, 1990.

19 Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as secure as
subset sum. J. Cryptol., 9(4):199–216, 1996.

20 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 1243–1254. IEEE, 2020.

21 Yanyi Liu and Rafael Pass. Cryptography from sublinear-time average-case hardness of
time-bounded Kolmogorov complexity. In Proceedings of the 53rd ACM Symposium on Theory
of Computing (STOC). ACM, 2021.

22 Yanyi Liu and Rafael Pass. A note on one-way functions and sparse languages. IACR Cryptol.
ePrint Arch., 2021:890, 2021.

23 Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. Electron.
Colloquium Comput. Complex., 28:59, 2021.

24 Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP ̸= BPP. Electron.
Colloquium Comput. Complex., 28:56, 2021.

25 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput., 37(1):267–302, 2007. doi:10.1137/S0097539705447360.

26 Mikito Nanashima. On basing auxiliary-input cryptography on NP-hardness via nonadaptive
black-box reductions. In 12th Innovations in Theoretical Computer Science Conference (ITCS),
volume 185 of LIPIcs, pages 29:1–29:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

27 Ján Pich. Learning algorithms from circuit lower bounds. CoRR, abs/2012.14095, 2020.
arXiv:2012.14095.

28 Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography.
Electron. Colloquium Comput. Complex., 28:57, 2021.

29 Rahul Santhanam. Pseudorandomness and the Minimum Circuit Size Problem. In 11th
Innovations in Theoretical Computer Science Conference (ITCS), volume 151 of LIPIcs, pages
68:1–68:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

30 Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5
November 1982, pages 80–91. IEEE Computer Society, 1982.

https://doi.org/10.1137/S0097539705447360
http://arxiv.org/abs/2012.14095

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:15

A Hard-on-average problems in NP

We first introduce some useful notation. For a language L ⊆ {0, 1}∗ we define its characteristic
function, namely fL : {0, 1}∗ → {0, 1}, to be a function given by

fL(x) :=
{

1, if x ∈ L,

0, otherwise

for all x ∈ {0, 1}∗.
For sets K, L ⊆ {0, 1}∗, the disjoint union of K and L, denoted K ⊎ L, is the set

{0x | x ∈ K} ∪ {1x | x ∈ L}.
For a failure parameter function α : N → [0, 1], we say that a language L is α-hard-on-

average (α-HoA) if its characteristic function fL is α-HoA. Similarly we define average-case
easiness for languages.

We prove the following.

▶ Proposition 24. Let L be a language in NP that is α-HoA for some failure parameter
function α : N → [0, 1]. Then, the language L∗ := L ⊎ SAT is NP-complete and α∗-HoA,
where α∗ : N → [0, 1] is a failure parameter function such that α∗(n) := α(n − 1) − 1/2 for
all naturals n ≥ 2.

Before we prove Proposition 24, we recount the following basic observation.

▶ Lemma 25. NP is closed under disjoint union.

We now turn to the proof of Proposition 24.

Proof of Proposition 24. By Lemma 25, the language L∗ is in NP since L∗ is the disjoint
union of L ∈ NP and SAT ∈ NP.

We will now show that L∗ is NP-hard, by giving a polynomial-time reduction R from
SAT to L∗. For all x ∈ {0, 1}∗, let R(x) := 1x ∈ {0, 1}∗. We see that R is polynomial-time
computable. Moreover, if x ∈ SAT, then R(x) = 1x ∈ L∗, and if R(x) ∈ L∗, then 1x ∈ L∗

and so x ∈ SAT.
What is left is to prove that L∗ is α∗-HoA, where α∗ : N → [0, 1] is such that α∗(n) :=

α(n − 1) − 1/2 for all naturals n ≥ 2. Towards a contradiction, assume that L∗ is (1 − α∗)-
EoA and let H∗ be a heuristic that witnesses this phenomenon. We will give a heuristic H

that witnesses the fact that L is (1 − α)-EoA, whereby establishing the desired contradiction.
To this end, let

H(x) := H∗(0x)

for all x ∈ {0, 1}∗. We will show that H has the desired average-case performance. Indeed,

Pr
x∼{0,1}n

[H(x) = fL(x)] = Pr
x∼{0,1}n

[H∗(0x) = fL∗(0x)]

= Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y) | y1 = 0]

≥ Pr
y∼{0,1}n+1

[H∗(y) = fL∗(y)] − Pr
y∼{0,1}n+1

[y1 = 1]

≥ 1 − α∗(n + 1) − 1
2

= 1 −
(

α((n + 1) − 1) − 1
2

)
− 1

2
= 1 − α(n) . ◀

FSTTCS 2021

7:16 One-Way Functions and a Conditional Variant of MKTP

B McKTP is NP-complete under randomized reductions

In this section, we prove Theorem 2 by adapting Ilango’s work [15].

B.1 Set Cover
We first fix some notation about Set Cover.

▶ Definition 26. The Set Cover problem is defined as follows.
Input: A tuple (n, S1, . . . , St) in binary, where n ∈ N and S1, . . . , St ⊆ [n] are sets such
that [n] ⊆

⋃t
i=1 Si.

Output: The value of

min
I⊆[t]

{
|I| | [n] ⊆

⋃
i∈I

Si

}
.

Dinur and Steurer [10] show that it is NP-hard to approximate Set Cover.

▶ Theorem 27 ([10]). It is NP-hard to approximate Set Cover by a factor of at most
(1 − o(1)) ln n.

B.2 Approximation algorithms
In the following, we will adopt the following notion of an approximation algorithm.

▶ Definition 28. Let Π be an optimization problem. For all instances I ∈ {0, 1}∗ of Π, let
the optimal solution of I be denoted by OPT(I) ∈ R. Let α > 0. We say that a probabilistic
algorithm A approximates Π by a factor of α if, for all instances I of Π, it is the case that

OPT(I) < A(I) ≤ α · OPT(I)

with probability at least 1 − o(1) over the internal randomness of A.

B.3 Proof of Theorem 2
For a string b of length m and a set R ⊆ [m], let b⟨R⟩ be the string of length m where

b⟨R⟩(j) :=
{

b(j) , if j ∈ R,

0, otherwise

for all 1 ≤ j ≤ m. Equivalently,

b⟨R⟩(j) := b(j) ∧ 1j∈R

for all j ∈ [m].
Next, we define a uniformly random partition P = (P1, . . . , Pn) of [m] into n parts to be

such that each element i ∈ [m] is put into Pj where j ∈ [n] is chosen uniformly at random.
It will be also useful to think of P as a uniformly random function P : [m] → [n].

For a partition P = (P1, . . . , Pn) of [m] and any set S ⊆ [n], we define the P-lift of S,
denoted SP , to be the set

SP :=
⋃
i∈S

Pi.

Following Ilango [15], we show that McKTP can be used to approximate Set Cover.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:17

▶ Lemma 29 (Following Ilango [15]). Let S1, . . . , St ⊆ [n] be sets that cover [n]. Let b be a
string of length m ≥ (nt)5 and let P = (P1, . . . , Pn) be a uniformly random partition of [m]
into n parts. Define the oracle O : {0, 1}log t × {0, 1}log m → {0, 1} to be such that

O(i, z) :=
{

b⟨SP
i ⟩(z) , if i ∈ [t],

0, otherwise,

for all i ∈ [t] and z ∈ [m]. Let y be the truth table of O, and note that |y| = mt. Let ℓ be the
size of an optimal cover of [n] by S1, . . . , St. Then, we have that
1. KT(b | y) ≤ 200ℓ (log t + log m) and
2. KT(b | y) > ℓ (log t + log m) /2 with high probability over the choice of b.

Proof. We prove each item of Lemma 29 separately.

▷ Claim 30. It is the case that KT(b | y) ≤ 200ℓ (log t + log m).

Proof. Assume that an optimal set cover of size ℓ is realized by the sets Si1 , . . . , Siℓ
. Fix

some UTM U that has oracle access to y. Let Π ∈ {0, 1}∗ be a program that contains in its
description encodings of i1, . . . , iℓ ∈ {0, 1}t and operates as follows:

On input x ∈ {0, 1}log m, compute and output y(i1,x) ∨ · · · ∨ y(iℓ,x).

Note that |Π| ≤ (ℓ + 2) log t + O(1) ≤ 100ℓ log t. In what follows, let T ∈ N be a sufficiently
large run-time bound such that

UΠ,y
(
x, 1T

)
:= y(i1,x) ∨ · · · ∨ y(iℓ,x)

= O(i1, x) ∨ · · · ∨ O(iℓ, x) =
∨

i∈[ℓ]

∨
j∈Si

b⟨Pj⟩(x) =
∨

j∈[n]

bPj
(x) = b(x) ,

for all x ∈ {0, 1}log m. Note that T ≤ 100ℓ (log t + log m). Therefore, we have that
KT(b | y) ≤ 200ℓ (log t + log m). ◁

We now turn to the lower bound. We do this by a union bound argument. Fix some
oracle program My(·) := UΠ,y

(
·, 1T

)
of program Π that uses oracle y and runs in time T such

that |Π| + T ≤ ℓ (log t + log m) /2. Then, as each oracle query requires time log t + log m, we
can deduce that M makes at most ℓ/2 ≤ n/2 ≤ n oracle queries to y.

We will show that

Pr
b,P

[My computes b in time T , and |Π| + T ≤ ℓ (log t + log m) /2]

is exponentially small. We do this by finding a long sequence of inputs x1, . . . , xd on which
M has not too large a chance of computing b.

We construct this list recursively, as follows. Let x1 := 0log m, and let

Q1 :=
{

x ∈ {0, 1}log m | My(x1) makes a query (i, x) to y, for some i ∈ [t]
}

.

Now, for j ≥ 1, if {0, 1}log m \Qj is non-empty, then let xj+1 be an element of {0, 1}log m \Qj ,
and let

Qj+1 := Qj ∪
{

x ∈ {0, 1}log m | My(xj+1) makes a query (i, x) to y, for some i ∈ [t]
}

.

FSTTCS 2021

7:18 One-Way Functions and a Conditional Variant of MKTP

If {0, 1}log m = Qj , then terminate the sequence. Since M makes at most n queries to y, we
know that |Qj | ≤ jn. Thus, since |Qd| =

∣∣∣{0, 1}log m
∣∣∣ = m the length of this sequence is at

least m/n. That is, d ≥ m/n.
It remains to bound the probability

Pr[for all j ∈ [d], My(xj) = b(xj)] =
d∏

j=1
Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 .

Fix some j ∈ [d]. We will bound

Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 .

Let E :=
∧

k∈[j−1] My(xk) = b(xk) be the event that we are conditioning on.

▷ Claim 31. It is the case that

Pr[My(xj) = b(xj) | E] ≤ 1 − 1
2n

.

Proof. By construction of the sequence x1, . . . , xd, we know that on all the inputs x1, . . . , xj−1,
the program My does not make an oracle call of the form (i, xj) for any i. Thus, the only
time the value of O depends on b(xj) and P (xj) is on inputs of the form (i, xj) for some
i, and since b(xj) and P (xj) are chosen independently at random, we know that b(xj) and
P (xj) are still uniform random variables conditioned on E. That is,

Pr[b(xj) = 1 | E] = 1
2

and

Pr[P (xj) = r | E] = 1
n

for all r ∈ [n].
Now, define O′ as

O′(i, x) :=
{

0, if x = xj ,

O(i, x) , otherwise,

and let y′ be the truth table of O′. Let also i1, . . . , iv with v ≤ ℓ/2 be such that, using the
modified oracle O′, they are the only oracle queries My′(xj) makes that have xj as the 2nd
component of the query, so the queries are (i1, xj) , . . . , (iv, xj). Since v < ℓ there exists an
element r∗ that is not in Si1 ∪ · · · ∪ Siv .

Moreover, observe that if P (xj) = r∗, then My(xj) will actually make the same oracle
queries (and get the same zero responses) as the modified oracle program My′ . In this case,
since P (xj) = r∗ is not in Si1 ∪ · · · ∪ Siv

, it follows that

O(i1, xj) = · · · = O(iv, xj) = 0

regardless of the value of b(xj). Thus, the output of My on input x does not depend at all
on the value of b(x) if P (xj) = r∗. Hence, the probability it correctly guesses My(x) = b(x)
is at most half when P (xj) = r∗.

E. Allender, M. Cheraghchi, D. Myrisiotis, H. Tirumala, and I. Volkovich 7:19

Since P (xj) is chosen uniformly at random, we have that P (xj) = r∗ with probability
1/n. Therefore,

Pr[My(xj) = b(xj) | E] ≤ 1 − 1
2n

and the proof os complete. ◁

Using Claim 31, we have

d∏
j=1

Pr

My(xj) = b(xj) |
∧

k∈[j−1]

My(xk) = b(xk)

 ≤
(

1 − 1
2n

)d

≤ e−d/(2n) ≤ e−m/(2n2) ≤ e−n3t5/2.

On the other hand the number of oracle programs of size at most ℓ (log t + log m) /2 ≤
O(nt log n) is at most 2O(n2t). Thus, by a union bound, the probability that there exists an
oracle program Π that computes any bit of b in time T , whereby |Π|+T ≤ ℓ (log t + log m) /2,
is o(1) as desired. ◀

Lemma 29 implies the following corollary.

▶ Corollary 32. There is a polynomial-time computable function M : N → N such that
the following hold. Given a Set Cover instance I := (n, S1, . . . , St), a random b of length
N ≥ (nt)5 and a random partition P of [N] into n parts, if one constructs a string y as
in Lemma 29, whereby |y| ≤ M(N), then KT(b | y) approximates Set Cover by a factor of
400 according to Definition 28. That is, if ℓ is the size of an optimal set cover of I and
c := log N + log t, then it is the case that with probability 1

2
c

· KT(b | y) ≤ 400ℓ,

and with probability 1 − o(1)

2
c

· KT(b | y) > ℓ.

Proof. Let y ∈ {0, 1}∗, n ∈ N, and t ∈ N be as in Lemma 29. Let γ := 1/2. Then, McKTM P
of dimension N := |b| ≥ (nt)5 and M := N1+γ = N1+1/2 = N · N1/2 ≥ Nt = |y| is such that
Lemma 29 immediately implies that

ℓ <
2
c

· KT(b | y) ≤ 400ℓ,

where the first inequality holds with probability 1 − o(1) and the second one holds with
probability 1. ◀

Theorem 27 and Corollary 32 yield the following corollary.

▶ Corollary 33. There exists a polynomial-time computable function m : N → N such that
McKTmP is NP-hard under polynomial-time randomized reductions.

Finally, by combining Lemma 11 and Corollary 33 we get a proof of Theorem 2.

▶ Corollary 34 (Theorem 2, restated). There exists a polynomial-time computable function
m : N → N such that McKTmP is NP-complete under polynomial-time randomized reductions.

FSTTCS 2021

Generalizations of Length Limited Huffman Coding
for Hierarchical Memory Settings
Shashwat Banchhor #

Department of Computer Science, Indian Institute of Technology, New Delhi, India

Rishikesh Gajjala #

Indian Institute of Science, Bangalore, India
Department of Computer Science, Indian Institute of Technology, New Delhi, India

Yogish Sabharwal #

IBM Research, New Delhi, India

Sandeep Sen1 #

Department of Computer Science, Shiv Nadar University, Uttar Pradesh, India

Abstract
In this paper, we study the problem of designing prefix-free encoding schemes having minimum
average code length that can be decoded efficiently under a decode cost model that captures memory
hierarchy induced cost functions. We also study a special case of this problem that is closely related
to the length limited Huffman coding (LLHC) problem; we call this the soft-length limited Huffman
coding problem. In this version, there is a penalty associated with each of the n characters of the
alphabet whose encodings exceed a specified bound D(≤ n) where the penalty increases linearly with
the length of the encoding beyond D. The goal of the problem is to find a prefix-free encoding having
minimum average code length and total penalty within a pre-specified bound P. This generalizes
the LLHC problem. We present an algorithm to solve this problem that runs in time O(nD). We
study a further generalization in which the penalty function and the objective function can both
be arbitrary monotonically non-decreasing functions of the codeword length. We provide dynamic
programming based exact and PTAS algorithms for this setting.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases Approximation algorithms, Hierarchical memory, Prefix free codes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.8

Related Version Preliminary versions of this work appeared as posters in Data compression conference
2020 [5] and Data compression conference 2021 [6].
Previous Version: https://ieeexplore.ieee.org/document/9105878
Previous Version: https://ieeexplore.ieee.org/document/9418722

Acknowledgements We are grateful to an anonymous reviewer for suggesting the use of Monge
property and simplifying the proofs of Theorem 1 and Theorem 2 in a previous version of this
manuscript.

1 Introduction

Data compression algorithms aim to reduce the number of bits required to represent data in
order to save storage capacity, speed up file transfer, and decrease costs for storage hardware
and network bandwidth. Compression techniques are primarily divided into two categories:
lossless and lossy. Lossless compression enables data to be restored to its original state,
without the loss of a single bit of data, when it is uncompressed (decoded). Huffman encoding
is a basic and popular approach for lossless data compression based on variable length
prefix-free encoding [20], where the characters of the alphabet are encoded with variable

1 Currently on leave from Dept. of Comp. Science, Indian Institute of Technology, New Delhi, India

© Shashwat Banchhor, Rishikesh Gajjala, Yogish Sabharwal, and Sandeep Sen;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shashwatbanchhor12@gmail.com
mailto:rishikeshg@iisc.ac.in
mailto:ysabharwal@in.ibm.com
mailto:ssen@snu.edu.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.8
https://ieeexplore.ieee.org/document/9105878
https://ieeexplore.ieee.org/document/9418722
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

Character Frequency Huffman
Encoding

A 25 0
B 9 11
C 6 101
D 4 1001
E 1 10000
F 1 10001

Lookup Table I (2 bits)

2 Bits lookup Code

00 A,1
01 A,1
10 Table II
11 B,2

Lookup Table II (3 bits)

3 Bits lookup Code

000 E,3
001 F,3
010 D,2
011 D,2
100 C,1
101 C,1
110 C,1
111 C,1

(a) (b) (c)

Figure 1 Consider an alphabet with frequencies and
Huffman encoding as shown in Table (a). Tables (b) and (c)
illustrate the 1st and 2nd level lookup tables of width 2 and
3 bits respectively.

(a) (b)

6 12
3

3

3

1 1

2

1 1

6 12
3 3 !!

Figure 2 Illustration of blocking
scheme: <(3, 1), (2, 1)>.

length codewords and no character encoding is a prefix of another. Huffman encoding is
widely used in many applications including file compression (e.g. GZIP [12], PKZIP [12],
BZIP2 [10], etc.) and image and video storage formats (JPEG [28], PNG [7], MP3 [8], etc.).

Traversal of a Huffman tree to decode compressed data has an inherent cost proportional
to the path length that can be prohibitively slow for many real time applications. One
such application is inference task in deep learning. As the sizes of deep learning models are
quite large, smaller models are obtained by using Huffman coding in conjunction with other
techniques to reduce the memory consumption [18]. The model is decoded in real-time when
inference has to be performed. In such settings, it is acceptable to trade-off the compression
ratio for improved decode time as this is a critical aspect for a good user experience. Since
the data is encoded only once, it may be beneficial to spend the extra time in suitably
encoding data to expedite decoding.

To avoid repeated sequential path traversals of the Huffman tree, we can exploit the
indirect addressing capabilities of the RAM model by using lookup tables; code trees are
employed where small tables are used to represent subtrees [26]. If w bits are used (called the
width of the table), then the size of the table is 2w. So we partition the code into prefixes of
smaller lengths when the tree is not balanced, to economize space. If a prefix of the lookup
bits forms a valid code word, then the table entry points to the corresponding code word
and the input slides ahead by the number of bits used in the encoding of the code word.
Otherwise, the table entry points to another table where a lookup is performed with the next
fixed number of bits (possibly different than w) of the input; this is repeated until a valid
word is decoded. This is illustrated in Figure 1.

This scheme is further complicated by the memory hierarchy that limits the storage at
the faster levels of memory and has increasing latencies as we access deeper tables. The
prefix tree can be viewed as multiple levels of blocks where each block corresponds to a
lookup table used during decoding. Figure 2 demonstrates the concept of blocking where we
assume that the blocks that require the same number of indirections have similar latencies.
This problem can be formulated as follows:

Consider an alphabet C such that the size of alphabet, |C| = n. For each character c

in C, let the attribute freq(c) denote the frequency of c in the input data to be encoded.
Given a prefix tree T corresponding to a prefix-free code for C, let dT (c) denote the depth of
the leaf corresponding to the encoding of c in the tree. Note that dT (c) is also the length of
the codeword for character c. The average code length of the encoding represented by the
tree T is given by

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:3

len(T) =
∑
c∈C

freq(c) · dT (c) (1)

Define a blocking scheme of m block levels as a sequence of m block parameters, <(w1, q1),
(w2, q2), . . . ,(wm, qm)>, where wj and qj specify the width and the access cost of a block,
respectively, at block level j in the tree. For a blocking scheme, the number of memory
hierarchies is the number of times the access cost changes when traversing the blocks in order.
For a character c having depth dT (c) in a prefix tree T , the cost of looking up (decoding) the
character under the scheme BS, δT (c), is given by the total sum of the cost of accessing the
blocks starting from the first block level up to the block level to which the character belongs,
i.e., δT (c) =

∑
i≤W (c) qi where W (c) = arg minh

{∑h
j=1 wj ≥ dT (c)

}
. The total decode

time of the encoding for a prefix tree T is given by: δ(T) =
∑

c∈C freq(c) · δT (c).

Problem Definition (COPT): Given a blocking scheme BS and parameter ∆,
called the permitted cost, the goal of our problem is to determine a prefix tree, T , that
minimizes the average code length, len(T), subject to δ(T) ≤ ∆. We call this the code
optimal prefix tree problem and denote it by COPT(∆). With slight abuse of notation,
we shall also refer to the decode time of the associated solution as COPT(∆).

We present an exact and a PTAS algorithm for the COPT (∆) problem:

▶ Theorem 1.
(a) There exists a dynamic programming based algorithm to solve the COPT (∆) problem

that runs in time O(n2+m) for m block levels.
(b) For the case where the number of block levels, m, is a constant, there exists an algorithm

that returns a prefix tree having code-length ≤ (1 + ϵ)COPT (∆). The running time of

the algorithm is O

(
n2

ϵ
max

(
1
ϵ2 , log2(n)

))
.

Another technique for optimizing the decode time that is popular in practice was proposed
by Moffat and Turpin [26]. Their algorithm looks up one entry of an offset array (sequentially)
for every bit of the compressed data read from the input. To speed up their algorithm, they
use a lookup table using a fixed number of bits from the input. This is then followed by
looking up an entry of the offset array for every subsequent bit of the input. The lookup
table is often kept in fast memory as compared to the offset array. The overall decode time
can be optimized by accommodating more words in the lookup table. This can be modeled
as a special case of the COPT problem where the memory hierarchy comprises of only two
levels. The first level corresponds to a cache or scratchpad having constant memory access
cost. The second level corresponds to the main memory for which every access incurs a cost
of q. This corresponds to a blocking scheme of <(w1, z),(w2, q),(w2, q),. . . >. Any entry of
the prefix tree residing in the cache can be accessed with constant cost z and thereafter
every entry in the main memory is accessed with cost q. Intuitively, if the codes cannot
fit into the topmost block, we need a design that will minimize the number of higher level
(deep) blocks. Having a hard-bound on the code word length has been previously dealt under
Length Limited Huffman Code (LLHC) problem[21]; we define a variation to deal with the
current problem using a notion of penalties.

LLHC is a well studied variant of Huffman coding motivated by the construction of optimal
prefix-free codes under certain practical conditions [14] such as computer file searching and
text retrieval systems [30]. The LLHC(C, D) problem outputs a prefix-free encoding over
alphabet C, whose lengths are bounded by D such that the average code length is minimized.
The encoding length bound, D, is a hard bound in the LLHC problem and is naturally

FSTTCS 2021

8:4 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

bounded by the size of the alphabet n. Consider a soft version of the LLHC problem, where
there is a penalty associated with the character encodings exceeding bound D that increases
linearly with the length of the encoding. Given a bound on the admissible penalty, the goal
of the problem is to find a prefix-free encoding having minimum average code length and
penalty within the specified admissible bound. We note that this problem also allows us to
consider settings where the desired encoding length D is smaller than log n; this is impossible
in the LLHC setting because of the information theoretic bottleneck.

We next define this generalized version of the LLHC problem more formally. For a
character having depth λ in a prefix tree T , we associate a penalty, p(.) as follows:

p(λ) =
{

z if λ ≤ D

z + q · (λ−D) if λ > D

for some constants z and q. Here, z is a constant cost for encodings having length no more
than D and q is the penalty for every extra encoding bit used beyond D. The reader may
note that this is a simplification from the natural blocking model where the number of bits
may be more than 1. However, this assumption allows us to exploit certain properties leading
to very fast solutions that are likely to work well in practice. The penalty of the prefix tree
is the sum of the penalties of all the characters weighted by their frequencies, i.e.,

P (T) =
∑
c∈C

freq(c) · p(dT (c)). (2)

Problem Definition (Soft-LLHC): Given parameters z, q & D, which define
the penalty function p(.) and a penalty bound P, the goal of the Soft length limited
Huffman coding problem, denoted Soft-LLHC(P, z, q, D), is to determine a prefix
tree, T , that minimizes the average code length len(T) subject to P (T) ≤ P .

Figure 3 illustrates the Huffman coding for an alphabet C, the corresponding LLHC and
Soft-LLHC when D = 3. We note that LLHC is a special case of this problem wherein
z = 0, q = 1 and P = 0. This setting does not allow for any penalty, and constrains
codewords to have length ≤ D. Thus Soft-LLHC is a generalization of the LLHC problem.
We present a fast algorithm for the Soft-LLHC problem:

▶ Theorem 2. There exists an algorithm to solve the Soft-LLHC(P, z, q, D) problem with
running time O(nD) when the characters of C are given in sorted order of frequencies. For
the case when D = o(log n), the running time of the algorithm can be bounded by O(n+D2D).

Note that a special case of our COPT problem with two levels of memory hierarchy for
BS =< (w1, z), (1, q), (1, q) · · · > can be mapped to the Soft-LLHC problem by taking
D = w1 and P = ∆.

Lastly, we study a more generalized version of the Soft-LLHC problem that also
generalizes the COPT problem. In this problem, the penalty and cost functions can be any
monotonically non-decreasing function of the code length.

We next define this problem formally.

Problem Definition (Gen-LLHC): Given parameters P , called the penalty bound,
a penalty function p(·) and an objective function f(·) that are both monotonically
non-decreasing functions, the goal of the Generalized length limited Huffman coding
problem, denoted Gen-LLHC(P, p(·), f(·)), is to determine a prefix tree, T , that
minimizes

F (T) =
∑
c∈C

freq(c) · f(dT (c))

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:5

67

34 33

17 16

11 5

3 2

1 1

(a)

67

51

34 17

16

14

11 3

2

1 1

(b)

67

34 33

28

17 11

5

3 2

1 1

(c)

Figure 3 Consider an alphabet with 6 characters with frequencies 1, 1, 3, 11, 17, 34 and D = 3.
Any character with depth w ≤ 3 bits has a penalty of z unit whereas characters with depth w > 3
bits have penalty z + q · (w − D). (a) illustrates the corresponding Huffman tree that has code length
of 5 · 1 + 5 · 1 + 4 · 3 + 3 · 11 + 2 · 17 + 1 · 34 = 123 and penalty of (z + 2q) · 1 + (z + 2q) · 1 + (z + q) ·
3 + z · 11 + z · 17 + z · 34 = 67z + 7q. (b) Illustrates the LLHC prefix tree with higher code length of
3 ·1+3 ·1+3 ·3+3 ·11+2 ·34+2 ·17 = 150 but a penalty of z ·1+z ·1+z ·3+z ·11+z ·17+z ·34 = 67z.
(c) Illustrates the soft-LLHC prefix tree with code length of 4 ·1+4 ·1+3 ·3+3 ·11+2 ·17+1 ·34 = 128
and penalty of (z + q) · 1 + (z + q) · 1 + z · 3 + z · 11 + z · 17 + z · 34 = 67z + 2q.

subject to the penalty being bounded by the specified penalty bound, i.e.,

P (T) =
∑
c∈C

freq(c) · p(dT (c)) ≤ P .

Note that in Gen-LLHC the penalty function is not necessarily linear, as it was in Soft-
LLHC.

Also note that the COPT problem can be modeled as the Gen-LLHC problem by taking
the penalty function as p(dT (c)) = δT (c), P as ∆ and the function f mapping to the code
length, i.e., f(dT (c)) = dT (c). Note that the effect of BS is handled in the way p(dT (c)) is
defined. We present the following results for the Gen-LLHC problem:

▶ Theorem 3.
(a) There exists a dynamic programming algorithm to solve the Gen-LLHC(P, p(·), f(·))

problem that runs in O(n3 · P) time.
(b) There exists a dynamic programming algorithm that returns a prefix-tree having objective

value at most (1 + ϵ) times that of the optimal solution to Gen-LLHC(P, p(·), f(·)) and
penalty no more than P. The running time of this algorithm is O(n4/ϵ).

▶ Remark 4. Note that while the running time in Theorem 2 has no dependence on P,
Theorem 3(a) is not a strictly polynomial time algorithm for super polynomial values of P.

▶ Remark 5. Theorem 3(a),(b) assume the functions p(·), f(·) can be computed in O(1) time.

Hardness. Note that it follows from Theorem 2 that the Soft-LLHC problem is in P as
D can be at most n. We do not have a hardness result for the Gen-LLHC problem though
we present a PTAS for the problem in Theorem 3. The COPT problem is a special case
of the Gen-LLHC problem for which we give an algorithm which runs in polynomial time
when the number of block levels is constant.

FSTTCS 2021

8:6 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

1.1 Related Work

The first algorithm for LLHC was due to Karp[21] and was based on an integer linear
programming formulation. Gilbert[15] then gave an enumeration based algorithm for LLHC.
Both these algorithms had exponential running time. Later Hu and Tan[19] gave an O(nD2D)
time Dynamic Programming algorithm. Note that D is bounded by n in the worst case.
In 1974, Garey[14] presented the first polynomial time algorithm, running in time O(n2D)
for the case of binary encoded alphabets. Larmore[23] combined techniques of [19] and [14]
to give an algorithm with running time O(n3/2D log1/2 n) for the binary case. Larmore
and Hirschberg [24] then designed a completely new algorithm with running time O(nD);
this algorithm was based on a reduction to the coin collector’s problem, which was then
solved using a technique they called the Package-Merge algorithm. There have been several
subsequent works that have improved the running time further for the special case when
D = ω(log n) to O(n

√
D log n + n log n) by Aggarwal, Schieber and Tokuyama [2] and to

n2O(
√

log D log log n) by Schieber [27]. Baer [3] studied a variant of the Huffman coding problem
wherein there is a continuous (strictly) monotonic increasing cost (penalty) function, called
Campbell penalties [11], associated with the length of a character encoding; the goal of the
problem is to minimize the “mean” length of the cost function over all the characters of
the alphabet. We note that this problem seeks to minimize an objective different from the
average code length, thereby addressing a different setting compared to Huffman coding,
LLHC and our Soft-LLHC problems. In particular, the Soft-LLHC problem seeks to
minimize the average code length constrained by a budget on the admissible penalty.

Generalized cost functions for building Huffman trees have been studied before. Fujiwara
and Jacobs [13] studied the Generalized Huffman Tree (GHT) problem in which the cost of
each encoded character depends on its depth in the tree by an arbitrary function. Here the
goal is to determine a prefix tree, T , that minimizes

∑|C|
i=1 fi(dT (ci)) for the GHT problem

and minimizes max|C|
i=1 fi(dT (ci)) for the Max-GHT problem. This is a further generalization

of our cost function, where a separate function is associated with each character.
On the other hand, the Soft-LLHC problem corresponds to optimizing the objective

function allowing deviations from the individual code lengths for which we provide bi-criterion
results that are novel to the best of our knowledge. We do note however that the LLHC
problem is a special case of both the Soft-LLHC problem (as specified earlier) as well as
the GHT problem (by taking the cost function to be ∞ when depth exceeds D and equal to
frequency times depth otherwise).

Fujiwara and Jacobs [13] further prove that the Max-GHT problem is NP-hard when
the cost functions are allowed to be arbitrary and provide a polynomial time algorithm
when the cost functions are non-decreasing. We observe that the hardness result crucially
depends on the the prefix tree being a complete binary tree. However, we show that for
certain functions, the optimal prefix tree for Max-GHT need not necessarily be a complete
binary tree (see Appendix A). As a matter of fact, we present a simple polynomial time
construction for the relaxed version of Max-GHT by reducing the Max-GHT problem with
arbitrary functions into Max-GHT problem with non-decreasing functions in O(n2) time.
Using the polynomial time algorithm of Fujiwara and Jacobs [13] for the case when the cost
functions are non-decreasing, this actually yields a polynomial time algorithm for the case of
arbitrary functions as well. This result is captured in the following theorem and it’s proof is
presented in Appendix A.

▶ Theorem 6. There is an O(n2 log n) algorithm for Max-GHT with arbitrary functions.

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:7

P7

P6

P5P3 P4

P1 P2

2

1
0

4
3

5

il

4

6
5

3

0
1

2.i l - i l+1

6

5

7

5
2

l

Figure 4 Illustration of the calculation of the number of
characters below level ℓ (2iℓ − iℓ+1). This figure is taken
from [16].

34 17 511

3 2

1 1

Figure 5 The 3-level forest
to the tree T , shown in Fig-
ure 3(a).

Organization of the paper. Our algorithms build on the dynamic program for Huffman
codes proposed by Larmore and Przytycka[22] and extended in Golin[16]. This algorithm is
discussed in Section 2. In Section 3, we first present our algorithm for the simplest of the
problems, Soft-LLHC; this provides the proof for Theorem 2. In Section 4, we discuss the
algorithmic approach for the generalized version of the Gen-LLHC problem; this corresponds
to Theorem 3. In Section 5, we present the algorithms for the COPT problem. This is
presented last as the proofs reuse results from the algorithm for Gen-LLHC. We present the
proof for the PTAS corresponding to Theorem 1(b) and defer the proof of Theorem 1(a) to
the Appendix. We end with concluding remarks in Section 6.

2 Preliminaries: a DP for Huffman codes

Consider a prefix tree, T . The nodes of T can be classified as either leaf nodes (i.e., nodes
with no child nodes), or internal nodes (i.e., nodes with exactly 2 child nodes). Leaf nodes
represent characters of the alphabet. Let dT (u) denote the depth of any node in the tree,
T (with the root being at depth 0). The depth (or height) of the tree, denoted h(T) is the
maximum depth of any node in the tree, i.e., h(T) = maxu∈T {dT (u)}. We use the variable
ℓ to refer to the level starting from the top of the tree (ℓ = 0 for the root). Further, let iℓ

denote the number of internal nodes at or deeper than level ℓ.
This is illustrated in Figure 4. The following proposition relates the number of characters

below some level with the number of internal nodes at different levels.

▶ Proposition 7. The number of characters below (deeper than) level ℓ is 2iℓ − iℓ+1.

The formal proof of the proposition can be found in [16]. The intuitive idea is as follows: to
form each internal node we need two child nodes (can be either internal or leaf). Hence, for
iℓ internal nodes we would require 2iℓ nodes at or deeper than level (ℓ + 1). Since of these
2iℓ nodes iℓ+1 are internal nodes at or deeper than level (ℓ + 1), the number of characters or
leaf nodes below level ℓ must be 2iℓ − iℓ+1.

The following Theorem is an adaptation of a result from Golin and Zhang[16] that specifies
a condition for us to be able to construct a valid prefix tree. Note that Golin and Zhang [16]
did not require the condition that ∀ℓ ≤ h− 2, n ≥ (2iℓ− iℓ+1) ≥ (2iℓ+1− iℓ+2). They instead
proved that any sequence that is an optimal solution to the LLHC problem corresponds to
a valid prefix tree (Lemma 2 and 8 in [16]). We instead show that this extra condition is
necessary and sufficient, for any I to correspond to a valid full binary prefix tree.

▶ Theorem 8. Given a decreasing sequence of integers, I = ⟨ik, ik+1, . . . , ih = 0⟩ , such
that ∀ℓ ≤ h− 2, n ≥ (2iℓ − iℓ+1) ≥ (2iℓ+1 − iℓ+2) and ik ≤ n− 1 we can construct a forest,
rooted at level k, such that the number of internal nodes at or below level ℓ is iℓ.

FSTTCS 2021

8:8 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

We defer the proof of Theorem 8 to Appendix B. Corollary 9 follows from Theorem 8 when
k = 0 and i0 = n− 1.

▶ Corollary 9. Given a decreasing sequence of integers, I = ⟨i0 = n− 1, i1, . . . , ih = 0⟩, such
that ∀ℓ ≤ h− 2 : n ≥ (2iℓ − iℓ+1) ≥ (2iℓ+1 − iℓ+2), we can construct a prefix tree of height
h such that the number of internal nodes at or below level ℓ is iℓ.

Observe that in any optimal prefix-tree, a character with higher frequency cannot appear
lower than a character having lower frequency (otherwise we could swap them leading to
an improved codelength). Using this fact, the following result from Golin and Zhang[16]
helps us to rewrite the code length of the code represented by a prefix tree as the sum of
contributions of prefix sums at each level.

▶ Theorem 10. Let S = [S1, S2 · · ·Sn] be prefix sum array of frequencies, where Si =∑i
j=1 freq(j) and frequencies are sorted in increasing order of the depths of the characters

in the tree T . Then the code length of the tree, T , can be written as a sum of h prefix
sums, where each sum represents the code length contribution by each level of the tree, i.e.,
len(T) =

∑h−1
ℓ=0 S2iℓ−iℓ+1 .

The formal proof can be found in [16]. The intuitive idea is as follows:
by the definitions of len(T) and dT (c) (Eqn 1 and depth of character c in tree T), we

have

len(T) =
∑
c∈C

freq(c) · dT (c) =
∑
c∈C

dT (c)∑
ℓ=1

freq(c)

By rearranging the summation over each level and using Proposition 7, we get len(T) =∑h−1
ℓ=0

∑2iℓ−iℓ+1
j=1 freq(j) and viewing the inner sum as prefix sum, we get len(T) =∑h−1

ℓ=0 S2iℓ−iℓ+1 .
The goal of Golin and Zhang[16] is to determine a prefix tree, T , for which the code

length, i.e., len(T) is minimum. The idea of their dynamic program is as follows. Let H(i)
denote the minimum code length amongst all forests having exactly i internal nodes. Then
H(n− 1) yields the optimal code length. As mentioned in Theorem 9, it suffices to obtain
a sequence of iℓ’s to determine the prefix tree. Suppose that iℓ = i and iℓ+1 = j, then due
to Larmore and Przytycka [22] we have, H(i) = H(j) + S2i−j . This allows us to determine
the optimal values of iℓ’s as follows. We initialize H to ∞ for all entries and then use the
following recurrence:

H(i) = min
j∈[max(0,2i−n),i−1]

& 2i−j ≥ 2j−k

H(j) + S2i−j

where k is the recursive index used in populating H(j), i.e., H(j) was minimized for
H(k) + S2j−k (this can be recorded in a separate table); the condition (2i− j ≥ 2j − k)
ensures that the number of leaves below the root level in the structure with i internal nodes
is greater than or equal to that in the structure with j internal nodes. Here, H(0) and S0
are initialized to 0.

Time complexity. As there are n entries of H and each entry requires O(n) computations
to compare the recurrences, the algorithm takes O(n2) time. Using the concavity of Si, this
was improved to O(n) time in [25] by filling the cells using Concave Least weight Subsequence
(CLWS), which can be solved using SMAWK algorithm as a subroutine in O(n) time [29].

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:9

▶ Remark. We use a slightly different notion of level than [16]. While [16] considers levels
starting with the bottom most level as 0 and increasing up to the root, we consider levels to
start with 0 from the root and increasing down the tree. The above theorems and lemmas
have been rephrased accordingly.

3 Algorithm for the Soft-LLHC (Soft-LLHC) Problem

Note that Soft-LLHC(P, z, q, D) can be reformulated as Soft-LLHC(P ′, 0, 1, D) by taking
P ′ = 1

q · (P − z
∑

c∈C freq(c)). Here on we work with this reformulation of the problem.
Consider the structure of the prefix tree, T , in a solution to the Soft-LLHC problem.

Recall that a character with higher frequency cannot appear below a character with lower
frequency. We can view the tree as comprising of levels starting with level 0 at the root. We
define the d-level forest of T, denoted Fd(T), to be the forest induced on T , obtained by
removing all the internal nodes having depth less than d (along with their incident edges).
Note that the leaf nodes having depth less than or equal to d become singleton trees in
Fd(T). See Figure 5 for an illustration. Let dFd(T)(c) denote depth of character c in this
forest. Note that in the reformulated version of our problem, the penalty of the entire tree T

is equal to the codelength of the forest rooted at level D for any tree. Hence for d ≤ D, the
penalty of the tree T can be written as∑

c∈C:dFd(T)(c)>D−d

(
dFd(T)(c)− (D − d)

)
· freq(c)).

We maintain a table H of size C ×D. Intuitively, for 0 ≤ i < |C| and 1 ≤ d ≤ D, an entry
H(i, d) of this table tries to capture the structure of the d-level forest, Fd(T ′), corresponding
to the best prefix tree, T ′, for which Fd(T ′) comprises i internal nodes. More precisely, an
entry H(i, d) of this table represents the minimum amongst the code lengths of all forests
(over the alphabet C) comprising of exactly i internal nodes and additionally satisfying the
condition that the penalty condition is not violated, i.e.,∑

c∈C:dFd(T)(c)>D−d

(
dFd(T)(c)− (D − d)

)
· freq(c)) ≤ P ′.

Note that for d < D, the d level forest Fd(T ∗) in the optimal tree T ∗ is formed by
introducing new internal nodes that combine some of the trees of the forest Fd+1(T ∗) (by
merging their roots pairwise to form new internal nodes). From the previous section, the
code length of a prefix-tree of height h can be represented as sum of h prefix-sums. This
is applicable for the Soft-LLHC problem as well. Thus, the values of the table H can be
computed as follows. Initialize all entries of H to ∞ and then use the following recurrence
for d < D:

H(i, d) = min
j∈[max(0,2i−n),i−1]

& 2i−j ≥ 2j−k

H(j, d + 1) + S2i−j .

Here k corresponds to the recursive index used in populating H(j, d + 1), i.e., H(j, d + 1)
was minimized for H(k, d + 2) + S2j−k (this can be recorded in a separate table).

Note that at level D, an entry H(i, D) corresponds to the minimum code length amongst
all forests having exactly i internal nodes and penalty no more than P ′. Since the penalty
of this tree corresponds exactly to its codelength (as z = 0 and q = 1 for the reformulated
Soft-LLHC), this actually corresponds exactly to the entry H(i), provided H(i) ≤ P ′ and
we can thus initialize H(i, D) = H(i). Note that if H(i) > P, then there does not exist a

FSTTCS 2021

8:10 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

tree with penalty less than P and having i internal nodes with depth at least D; thus we can
set H(i, D) =∞ in this case. The final solution is then obtained from the entry H(n− 1, 0).
The prefix tree can be constructed by alluding to Theorem 9.

Time complexity. The entries of H can be computed in time O(n) as discussed previously.
For computing H , there are nd cells and each cell takes O(n) time to fill using the recurrence
above. Hence the running time is O(n2D). This time can be improved by employing
properties of Monge matrices. This is discussed next.

Improving the running time using Monge property. Monge property is a discrete extension
of concavity which allows for the speeding up of several algorithms[9]. SMAWK is one
such classical algorithm, using which row-minima can be found. It was used by Golin and
Zhang[16] to solve the LLHC problem. We follow a similar approach. Consider the recurrence

Ĥ(i, d) = min
j∈[max(0,2i−n),i−1]

Ĥ(j, d + 1) + S2i−j .

Note that we drop the condition 2i− j ≥ 2j − k from the recurrence for H. This is because
we can argue that the optimal sequence will correspond to a valid prefix-tree. As all the
solutions of Ĥ satisfy the penalty constraint, we only minimize the code length. If the optimal
sequence doesn’t correspond to a valid prefix-tree, it is possible to construct a sequence using
Lemma 8 in [16], with a smaller value of

∑D−1
ℓ=0 S2iℓ−iℓ+1 , leading to a contradiction.

Now consider a new implicit matrix M (d) such that for all 0 ≤ i, j ≤ n: M
(d)
i,j =

Ĥ(j, d + 1) + S2i−j when 0 ≤ 2i − j ≤ n and ∞ when 2i − j > n or 2i − j < 0. We show
that M (d) is a Monge matrix. This follows from the following Lemma.

▶ Lemma 11. M
(d)
i,j + M

(d)
i+1,j+1 ≤M

(d)
i+1,j + M

(d)
i,j+1.

(Note that SMAWK allows for this condition to be satisfied when both sides evaluate to ∞).

Proof. We consider the following three (exhaustive) cases:
(I) When 2i− j < 1: M

(d)
i,j+1 is ∞ and thus the result holds by definition (as 2i− (j + 1) < 0).

(II) When 2i−j > n−2: M
(d)
i+1,j is∞ and thus the result holds by definition (as 2(i+1)−j > n).

(III) When 1 ≤ 2i − j ≤ n − 2: entries M
(d)
i,j , M

(d)
i+1,j+1, M

(d)
i+1,j , M

(d)
i,j+1 are defined and we

have:

(M (d)
i,j + M

(d)
i+1,j+1) − (M (d)

i+1,j + M
(d)
i,j+1)

≤ (Ĥ(j, d + 1) + S2i−j + Ĥ(j + 1, d + 1) + S2i−j+1)

− (Ĥ(j, d + 1) + S2i−j+2 + Ĥ(j + 1, d + 1) + S2i−j−1)
= S2i−j + S2i−j+1 − S2i−j+2 − S2i−j−1

= freq(c2i−j)− freq(c2i−j+2) ≤ 0

where ci is the ith least frequent character and thus the result holds. ◀

Observe that, by definition, Ĥ(i, d) = min
0≤j≤i

M
(d)
i,j = min

0≤j≤n
M

(d)
i,j . The Monge property on

M (d) implies that the SMAWK algorithm[1] can solve for the row minima of each M (d)

matrix in O(n) time. Thus our algorithm repeats the process of finding row minima of each
M (d) matrix for d = D− 1 to 0 to obtain the minima corresponding to Ĥ(., d). Thus solving
for D such matrices takes O(nD) time(See Algorithm 1). The number of internal nodes with
depth at most D is bounded by 2D+1 and hence the computation of H(i) takes O(n) time.
Thus, the run time can be bounded by O(n + D2D) when D = o(log n).

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:11

Algorithm 1 (for Theorem 2).

Input: Weighted Alphabet C = {c1, c2, . . . , cn}; Penalty bound P;
Output: Minimum code length prefix tree having penalty less than P

1 S ← Prefix sum array of sorted frequencies
2 H(i) ← From CLWS for all i ∈ [0, n− 1]
3 for i← 0 to n− 1 do
4 if H(i) ≤ P then
5 Ĥ(i, D) = H(i)
6 if H(i) > P then
7 Ĥ(i, D) =∞
8 for d← D − 1 to 0 do
9 SMAWK(M (d)) uses Ĥ(i, d + 1) and computes Ĥ(i, d)

10 C∗ ← Ĥ(n− 1, 0)
11 T ∗ ← Obtain the prefix tree by following the parent pointers of C∗

12 return T ∗;

4 Algorithms for the Generalized LLHC (Gen-LLHC) Problem

We build on the ideas of Golin and Zhang[16] (see Section 2 for details). By extending
their construction, we show that for Gen-LLHC(P, p(·), f(·)), the objective value F (T),
for any tree T , can also be written as a sum of h terms. The ith term representing the
product of the sum of the frequencies of all the leaf nodes with depth less than or equal
to i and the difference in the objective values at depth i and i − 1, that is f(i) − f(i − 1)
(f(0) = 0). However our goal is to minimize the objective value, F (T), of the tree. We handle
the penalty bound involved by maintaining an extra parameter in our proposed dynamic
program. We store structures with the minimum objective value having penalty less than
the new parameter (corresponding to the admissible values of penalty bound) introduced.
Using this formulation we obtain an exact algorithm referred to in Theorem 3(a).

The running time of the exact algorithm is O(n3 · P) which may be super polynomial in
n for large values of P. Subsequently, we are able to bound the number of feasible penalty
values using standard rounding techniques and get an approximate algorithm which runs
in O(n4/ϵ) and has code length no more than (1 + ϵ) time the optimal value. We prove a
slightly generalized variant of the problem, denoted Gen-LLHC∗(P, p(·), f(·), h) that takes
an additional parameter h representing a height bound and determines a prefix tree T of
height at most h that minimizes F (T) subject to the penalty bound as before. We show that

▶ Theorem 12. There exists a dynamic programming algorithm that returns a prefix-tree
having height at most h and objective value at most (1 + ϵ) times that of the optimal solution
to Gen-LLHC∗(P, p(·), f(·), h) and penalty ≤ P with running time of O(n2h2/ϵ).

Theorem 3(b) follows by taking the parameter h as n as that is the maximum height possible.
The details of the algorithms and proofs are presented in following subsections.
Note that unlike the Gen-LLHC problem, the Soft-LLHC has strictly polynomial

running time as we use P only to filter and remove the infeasible solutions.
As mentioned before, we do not have a hardness result for the Gen-LLHC problem. We

note that proving hardness is challenging for several problems related to Huffman coding.
For instance, hardness results are not known for Huffman coding with unequal letter costs[17]

FSTTCS 2021

8:12 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

that admit a PTAS. As another instance, we have shown that the hardness result for a closely
related problem, MAX-GHT, due to Fujiwara and Jacobs[13] in prior literature is not correct
(See Theorem 6 and the associated discussion in Section 1.1).

4.1 Exact DP for Gen-LLHC: Proof of Theorem 3(a)
We start with a simple proposition.

▶ Proposition 13. A character having higher frequency will appear at the same or lower
level (that is closer to the root) than a character having lower frequency.

The proposition is easy to verify - if this was not true, one could simply swap the two
characters thereby improving the objective value as well as the penalty.

Note that for the Gen-LLHC problem also, the code length can be represented as sum
of h prefix-sums. We will now show that for Gen-LLHC(P, p(·), f(·)), the objective value
F (T), for any tree T , can also be written as a sum of h terms, where each term corresponds
to the contribution by the corresponding level, to the objective value, of the tree. Recall
that f(·) was a monotonically non-decreasing function. This result is captured in Lemma 14.
We define two new function f̂(.), p̂(.):

f̂(i) =
{

f(1) if i = 1
f(i)− f(i− 1) if i > 1

p̂(i) =
{

p(1) if i = 1
p(i)− p(i− 1) if i > 1

Now if h represents the total height of a tree, T , then we have the following lemma.

▶ Lemma 14.

F (T) =
h−1∑
ℓ=0

f̂(ℓ + 1) · (S2iℓ−iℓ+1)

The proof of Lemma 14 is deferred to Appendix C. Using Lemma 14, it remains to find a
sequence of il’s as before except that now the goal is to minimize the objective value, F (T),
of the tree. The prefix tree can be constructed by alluding to Theorem 9. We describe a
recurrence to obtain such a sequence. Let D(i, ℓ, P) denote the minimum objective value
amongst all forests rooted at level ℓ, having i internal nodes with penalty at most P (here,
the objective value of the forest is the sum of the objective values of the trees in the forest).

A dynamic program using the above recurrence can be designed as follows. Let h be
some upper bound on the height of the optimal prefix tree.

Base Case. For all forests with no internal nodes, we initialize the objective value to 0, i.e.,

∀ ℓ ∈ [0, h] and P ∈ [0,P] : D(0, ℓ, P) = 0

Inductive Case. To compute D(i, ℓ, P), we iterate over the number of internal nodes at
depths greater than ℓ. If j internal nodes are at depths strictly greater than ℓ, then there are
(2i− j) characters at depths strictly greater than ℓ and f̂(ℓ + 1) · S2i−j is the contribution,
to the objective value F (T), of all the characters having level(depth) > ℓ, due to the access
at level (ℓ + 1). Furthermore, D(j, ℓ + 1, P ′) denotes the objective value contributed by all
accesses made at levels(depths) greater than ℓ + 1. This yields the following recurrence:

D(i, ℓ, P) = min
j∈[max(0,2i−n),i−1]

& 2i−j ≥ 2j−k

{
D(j, ℓ + 1, P ′) + f̂(ℓ + 1) · S2i−j

}
(3)

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:13

where P ′ = P − p̂(ℓ + 1) · S2i−j and k is the recursive index using which D(j, ℓ + 1, P ′) was
populated. We only need to recurse if P ′ > 0. The tree with the optimal objective value can
be obtained by maintaining the parent pointers of each update and backtracking (similar to
as shown in pseudo-code of Theorem 3(b) in Appendix D).

Time complexity. There are O(n) characters, h levels and O(P) values for penalty; hence
there are O(nhP) cells in the table. As each cell can be filled in O(n) time, the time
complexity is O(n2hP). As height, h is at most n, we get the time complexity to be O(n3P).
As P may not be polynomial in n, this is a pseudo-polynomial time algorithm.

As the above algorithm is symmetric in terms of penalty and objective value, we can find
the tree having the minimum penalty and objective value at most C in O(n3C) time using
the recurrence

D(i, ℓ, C) = min
j∈[max(0,2i−n),i−1]

& 2i−j ≥ 2j−k

{D(j, ℓ + 1, C − S2i−j) + p̂(ℓ + 1) · S2i−j} (4)

Let the penalty of the solution to the above DP be Pdual, we will use it to give a PTAS

algorithm for Gen− LLHC in the next section.

4.2 PTAS for Gen-LLHC: Proof of Theorem 3(b) and Theorem 12
We first prove Theorem 12. Theorem 3(b) follows as h takes value at most n.

The algorithm presented in the previous section has linear running time dependency on
the parameter P. In this section, we propose a polynomial time approximation algorithm
that runs in time O(n4/ϵ) and returns a prefix tree having penalty at most P and objective
value with in (1 + ϵ) times the optimal value. We first give an algorithm which returns a tree
with penalty at most the value of the minimum penalty possible for tree with objective value
at most C, and objective value at most (1 + ϵ)C.

For this we restrict the parameter C to only take on values that are multiples of λ =
⌊(ϵ · C)/2h⌋ ranging from 0 · λ upto ((2h/ϵ) + h) · λ where h is some upper bound on the
height of the optimal prefix tree. We denote the dynamic program table maintained by this
algorithm with D. Let D(i, ℓ, C) denote the minimum penalty amongst all forests rooted
at level ℓ, having i internal nodes with objective value at most C (here, the penalty of the
forest is the sum of the penalties of the trees in the forest). Note, here each DP cell stores
a structure having minimum penalty as compared to the exact algorithm of Gen-LLHC,
where each DP cell stores a structure having minimum objective value.

We define a rounding function r as follows:

r(x) =
⌈x

λ

⌉
· λ.

We change the recurrence from the previous section as follows: The base case becomes: for
all forests with no internal nodes, we initialize the objective value to 0, i.e., ∀ ℓ ∈ [0, h] and
C a multiple of λ and C ∈ [0, r(C) + hλ]: D(0, ℓ, C) = 0.. The inductive step is modified to:

D(i, ℓ, C) = min
j∈[max(0,2i−n),i−1]

& 2i−j ≥ 2j−k

{
D(j, ℓ + 1, C ′) + p̂ℓ+1 · S2i−j

}
(5)

where C ′ = C − r(f̂ℓ+1 · S2i−j) and k is the recursive index using which D(j, ℓ + 1, C ′) was
populated. Note that we only update entries of D for which the C parameter is itself a
multiple of λ. It is easy to see that the C parameter will take on only O(h/ϵ) values. The
table can be compressed accordingly and maintained only for these entries, however we omit
these implementation details in the interest of better readability.

FSTTCS 2021

8:14 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

The following Lemma shows we can get a prefix-tree with penalty ≤ Pdual by sacrificing
an additive λ factor for every level in the objective value.

▶ Lemma 15. For any valid values of i, ℓ and P : D(i, ℓ, C) ≥ D(i, ℓ, r(C) + (h− ℓ) · λ).

From the previous section, we know that the optimal solution is captured by D(h− 1, 0, C).
Hence the above Lemma (proof in Appendix D) implies that the optimal solution is also
captured by D(h− 1, 0, r(C) + h ·λ). We now look at all the entries D(h− 1, 0, r(C) + h ·λ) ≤
Pdual and pick the entry with the minimum value of r(C) + h · λ.

Hence using D, given a objective function threshold C, we can find a prefix tree with
penalty ≤ Pdual ≤ P and objective value ≤ (1 + ϵ) · C. Now, if substitute C = C∗, where C∗

is the objective value of the solution to the Gen-LLHC problem, we will have the solution
to the PTAS of Gen-LLHC problem. Now, instead of calculating C∗ directly we use binary
search in the range [0,F · f(n)], where F is the cumulative frequency of all the characters in
the prefix tree and f(n) is the value of objective function at level n. As the depth is at most
n for all characters and f(.) is an increasing function, the objective value is at most F · f(n).
Thus, we have a PTAS algorithm for Gen-LLHC.

Time complexity. There are at most O(h) levels and O(n) characters. C can have at most
O(h/ϵ) possible values. Hence, there are O(nh2/ϵ) cells in the table. Each cell can be filled
in at most O(n) time. So the time complexity is O(n2h2/ϵ). Since there are a total of h

recursive calls, the error in objective function value is bounded by hλ ≤ ϵ · C. Thus, we can
find a prefix tree having objective value less than (1 + ϵ) · C∗ and penalty at most P in
O(n2h2/ϵ) time. This proves Theorem 12. Taking the upper bound for the height, h, as n,
we get the time complexity to be O(n4/ϵ), which proves Theorem 3(b).

5 Algorithms for the Code Optimal Prefix Tree (COPT) problem

For a fixed number of block levels, m, the possible number of values corresponding to the
decode time for the forests in the dynamic program is nm−1 . We use this to give an O(nm+2)
algorithm for Theorem 1(a) in Appendix F. We now present the proof of Theorem 1(b).

5.1 Proof of Theorem 1(b)
Consider the blocking scheme in the definition of the COPT problem. As mentioned in the
introduction, the number of block levels, m, is typically a small constant in practice. We
now present a more efficient dynamic program based pseudo-approximation algorithm for
the case when the number of block levels is constant.

We first prove some results (c.f. Propositions 16, 17 and Lemma 18) required in the
formulation of our new dynamic program. The following proposition shows that given a set
of characters, we can construct a (nearly complete) prefix tree of depth ⌈log n⌉.

▶ Proposition 16. There exists a prefix tree for a set of characters, C, having depth ⌈log |C|⌉.

Proof. It is easy to verify that we can place 2⌈log |C|⌉ − |C| characters at depth ⌈log |C|⌉ − 1
in the subtree and the remaining characters at depth ⌈log |C|⌉ to form a valid prefix tree
(additional nodes are added to serve as internal nodes). ◀

Consider a set of characters, C. The following proposition shows that given an arbitrary tree,
T , with characters of C appearing as leaf nodes in T , we can always construct a valid prefix
tree over C that has height no more than that of T and in which each character appears at a
depth no more than its depth in T .

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:15

▶ Proposition 17. Let C denote a set of characters. Given a tree, T , in which the characters
of C appear as leaf nodes, there exists a valid prefix tree, T ′, over C that has no greater
height than T and in which dT ′(c) ≤ dT (c) ∀c ∈ C.

Proof. We start with the tree T and iteratively modify it until we obtain a valid prefix tree.
We find a node(say u) that violates any of these conditions and modify the tree as follows:
Is a leaf node but does not correspond to a character: We simply delete u.
Has only one child(say node v): We remove u and directly attach v to the parent of u.

It is easy to see that when no more violating nodes are left, we get a valid prefix tree. It is also
straightforward to observe that we never increase the depth of any node in this process. ◀

The following Lemma shows that there cannot be too many levels in the optimal prefix tree
between two consecutive characters of the alphabet when sorted in order of frequencies.

▶ Lemma 18. In a complete binary tree, if ci is a character at level ℓ and ci+1 is at level ℓ′

then ℓ′ − ℓ < ⌈log(n)⌉.

Proof. We prove this by contradiction. Let us assume that ℓ′ − ℓ ≥ ⌈log(n)⌉. Since there
is a leaf ci+1 at depth greater than ℓ, there must be at least one internal node at the level
ℓ. By our assumption there are no leaves in the tree rooted at this internal node, till the
next ⌈log(n)⌉ levels. Hence there are at least n internal nodes above level ℓ′. But the tree
we started with has exactly n− 1 internal nodes as it has n leaves. Contradiction. ◀

The following lemma shows that there exists a tree having bounded height that has
almost the same code length and decode time as the optimal prefix tree of COPT (P).

▶ Lemma 19. Given δ > 0, there exists a prefix tree, T ′, for which the code length is
at most (1 + δ) times the code length of COPT (P) and the height of T ′ is no more than
2m(⌈1/δ⌉+ ⌈log n⌉) , where m is the number of block levels.

Proof. Let h∗ denote the height (total number of tree levels) of the optimal prefix tree
(solution to COPT (P)). If h∗ ≤ 2m(⌈1/δ⌉ + ⌈log n⌉), then the claim is trivially satisfied.
We therefore focus on the case when h∗ > 2m(⌈1/δ⌉+ ⌈log n⌉). As there are at most m block
levels, at least one of these has more than 2(⌈1/δ⌉+ ⌈log n⌉) tree levels.

Let us focus on one such block level, and let the starting tree level for the block level
be ℓ′. There must be at least one node ci between the tree levels ℓ′ + ⌈1/δ⌉+ ⌈log n⌉) and
ℓ′ + ⌈1/δ⌉+ 2⌈log n⌉) due to Lemma 18.

▶ Proposition 20. In the optimal prefix tree, the kth highest frequency is at a level at most
k + ⌈log(n)⌉.

The proof of Proposition 20 is deferred to Appendix G. From the proposition, there are at
least ⌈1/δ⌉ nodes with frequency higher than ci.

Let T ∗ be the prefix tree corresponding to the optimal solution COPT (P) and ℓ =
ℓ′ + ⌈1/δ⌉+ ⌈log n⌉. We modify T ∗ to construct another prefix tree, T ′ as follows:

all characters up to ℓ + ⌈log n⌉ retain the same level as in T ∗, except for ci

ci is replaced with a new internal node, say u, and made a child of u (ci is at level ℓ + 1).
We call a character of T ∗ deep if it has depth more than 2m(⌈1/δ⌉ + ⌈log(n)⌉). Let γ

be the number of deep characters in T ∗. Using Proposition 16, there exists a subtree
comprising of all the deep characters of T ∗, having depth at most ⌈log γ⌉ ≤ ⌈log n⌉. We
attach this subtree as the second child of u. The level of any of the characters in this
subtree is no more than ℓ + ⌈log n⌉+ 1.
We finally invoke Proposition 17, to get a valid prefix tree.

FSTTCS 2021

8:16 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

We now show that the codelength and decode time of T ′ are no more than (1 + δ) times
the corresponding parameters of T ∗. Note that both the code length and decode time of the
deep characters of T ∗ only reduces as their depth reduces in T ′. Therefore the code length
and decode time can only increase due to the character ci moving one level (tree level) down.

We first analyze the increase in code length due to ci moving one (tree) level down. Recall
that the block level to which ci belonged was divided into 2⌈1/δ⌉ partitions and ci belongs to
the ⌈1/δ⌉th partition. Moreover each partition contains a character. Also, there are at least
⌈1/δ⌉ nodes with frequency higher than ci and hence have tree level same or above that of
ci. Thus len(T ∗) ≥ ⌈1/δ⌉ · fi. The increase in code length incurred by moving ci down one
tree level is fi. Thus fi ≤ δ · (⌈1/δ⌉ · fi) ≤ δ · len(T ∗). Therefore len(T ′) ≤ (1 + δ) · len(T ∗).

As ci lies between the tree levels ℓ′ + (⌈1/δ⌉+ ⌈log n⌉) and ℓ′ + (⌈1/δ⌉+ 2⌈log n⌉), the
next tree level to ci must also be in the same block level. Therefore ∆(T ′) ≤ ∆(T ∗) ≤ P . ◀

Given the above Lemma, the algorithm is quite straightforward - we simply invoke
Theorem 12 by bounding the h parameter by 2m(⌈log(n)⌉+ ⌈1/δ⌉).

Time Complexity. The analysis is same as that of the algorithm for Theorem 12; we know
that the time taken is O(h2n2/ϵ).Taking the bound on the height h to be 2m(⌈log(n)⌉+⌈1/δ⌉)

and setting δ to be ϵ, the running time becomes O

(
n2 ·m2

ϵ

(
log2(n) + 1

ϵ2

))
. For constant

m, this yields a complexity of O

(
n2

ϵ
max

(
1
ϵ2 , log2(n)

))
.

6 Conclusion and open problems

Motivated by many practical challenges in implementing compression, we introduce and
study a novel variation of finding optimal prefix trees where one is allowed to deviate from
the optimal code length within a specified bound. This allows us to capture more generalized
decoding costs for which we develop a bi-criterion framework and present efficient algorithms.
An important application of this framework is to a natural class of memory access cost
functions that use blocking and to the best of our knowledge, this is the first work that lays
the theoretical foundations and present a family of algorithms with provable guarantees. An
open problem is to proving NP-hardness for the Gen-LLHC problem that could be quite
challenging as exemplified by Theorem 6. Another interesting future direction is to study
the empirical performance of our algorithms with real world data sets on practical systems
with hierarchical memory; we anticipate promising results, similar to those obtained for a
closely related variant in the hierarchical memory setting where the goal is to minimize the
decode time and the average code length is bound by a threshold parameter[4].

References
1 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.

Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987.
doi:10.1007/BF01840359.

2 Alok Aggarwal, Baruch Schieber, and Takeshi Tokuyama. Finding a minimum-weightk-link
path in graphs with the concave monge property and applications. Discrete & Computational
Geometry, 12(3):263–280, 1994.

3 M.B. Baer. Source coding for quasiarithmetic penalties. IEEE Transactions on Information
Theory, 52(10):4380–4393, 2006. doi:10.1109/TIT.2006.881728.

https://doi.org/10.1007/BF01840359
https://doi.org/10.1109/TIT.2006.881728

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:17

4 Shashwat Banchhor, Rishikesh R. Gajjala, Yogish Sabharwal, and Sandeep Sen. Decode
efficient prefix codes. CoRR, abs/2010.05005v2, 2020. arXiv:2010.05005v2.

5 Shashwat Banchhor, Rishikesh R. Gajjala, Yogish Sabharwal, and Sandeep Sen. Decode-
efficient prefix codes for hierarchical memory models. In Data Compression Conference, DCC
2020, page 360. IEEE, 2020. doi:10.1109/DCC47342.2020.00077.

6 Shashwat Banchhor, Rishikesh R. Gajjala, Yogish Sabharwal, and Sandeep Sen. Efficient
algorithms for decode efficient prefix codes. In Ali Bilgin, Michael W. Marcellin, Joan
Serra-Sagristà, and James A. Storer, editors, 31st Data Compression Conference, DCC 2021,
Snowbird, UT, USA, March 23-26, 2021, page 338. IEEE, 2021. doi:10.1109/DCC50243.2021.
00080.

7 Thomas Boutell. PNG (portable network graphics) specification ver 1.0. RFC, 2083:1–102,
1997. doi:10.17487/RFC2083.

8 Vladimir Britanak. A survey of efficient MDCT implementations in MP3 audio coding
standard: Retrospective and state-of-the-art. Signal Process., 91(4):624–672, 2011. doi:
10.1016/j.sigpro.2010.09.009.

9 Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of monge properties in
optimization. Discrete Applied Mathematics, 70(2):95–161, 1996. doi:10.1016/0166-218X(95)
00103-X.

10 M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, Digital Systems Research Centre, 1994.

11 LL Campbell. Definition of entropy by means of a coding problem. Zeitschrift für Wahrschein-
lichkeitstheorie und verwandte Gebiete, 6(2):113–118, 1966.

12 Peter Deutsch. DEFLATE compressed data format specification ver 1.3. RFC, 1951:1–17,
1996. doi:10.17487/RFC1951.

13 Hiroshi Fujiwara and Tobias Jacobs. On the huffman and alphabetic tree problem with general
cost functions. Algorithmica, 69(3):582–604, 2014. doi:10.1007/s00453-013-9755-6.

14 M. R. Garey. Optimal binary search trees with restricted maximal depth. SIAM J. Comput.,
3(2):101–110, 1974. doi:10.1137/0203008.

15 Edgar N. Gilbert. Codes based on inaccurate source probabilities. IEEE Trans. Inf. Theory,
17(3):304–314, 1971. doi:10.1109/TIT.1971.1054638.

16 M. Golin and Y. Zhang. A dynamic programming approach to length-limited huffman
coding: Space reduction with the monge property. IEEE Trans. on Information Theory,
56(8):3918–3929, 2010. doi:10.1109/TIT.2010.2050947.

17 Mordecai J. Golin, Claire Kenyon, and Neal E. Young. Huffman coding with unequal letter
costs. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory
of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 785–791. ACM, 2002.
doi:10.1145/509907.510020.

18 Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. ICLR 2016, 2015. arXiv:
1510.00149.

19 TC Hu and KC Tan. Path length of binary search trees. SIAM Journal on Applied Mathematics,
22(2):225–234, 1972.

20 D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 1952. doi:10.1109/JRPROC.1952.273898.

21 Richard M. Karp. Minimum-redundancy coding for the discrete noiseless channel. IRE Trans.
Inf. Theory, 7(1):27–38, 1961. doi:10.1109/TIT.1961.1057615.

22 Lawrence Larmore and Teresa Przytycka. Constructing huffman trees in parallel. SIAM
Journal on Computing, 24, July 1998. doi:10.1137/S0097539792233245.

23 Lawrence L. Larmore. Height restricted optimal binary trees. SIAM J. Comput., 16(6):1115–
1123, 1987. doi:10.1137/0216070.

24 Lawrence L. Larmore and Daniel S. Hirschberg. A fast algorithm for optimal length-limited
huffman codes. J. ACM, 37(3):464–473, 1990. doi:10.1145/79147.79150.

FSTTCS 2021

http://arxiv.org/abs/2010.05005v2
https://doi.org/10.1109/DCC47342.2020.00077
https://doi.org/10.1109/DCC50243.2021.00080
https://doi.org/10.1109/DCC50243.2021.00080
https://doi.org/10.17487/RFC2083
https://doi.org/10.1016/j.sigpro.2010.09.009
https://doi.org/10.1016/j.sigpro.2010.09.009
https://doi.org/10.1016/0166-218X(95)00103-X
https://doi.org/10.1016/0166-218X(95)00103-X
https://doi.org/10.17487/RFC1951
https://doi.org/10.1007/s00453-013-9755-6
https://doi.org/10.1137/0203008
https://doi.org/10.1109/TIT.1971.1054638
https://doi.org/10.1109/TIT.2010.2050947
https://doi.org/10.1145/509907.510020
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/TIT.1961.1057615
https://doi.org/10.1137/S0097539792233245
https://doi.org/10.1137/0216070
https://doi.org/10.1145/79147.79150

8:18 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

25 Lawrence L. Larmore and Teresa M. Przytycka. A parallel algorithm for optimum height-
limited alphabetic binary trees. J. Parallel Distributed Comput., 35(1):49–56, 1996. doi:
10.1006/jpdc.1996.0067.

26 A. Moffat and A. Turpin. On the implementation of minimum redundancy prefix codes. IEEE
Transactions on Communications, 45(10):1200–1207, 1997.

27 Baruch Schieber. Computing a minimum weightk-link path in graphs with the concave monge
property. J. Algorithms, 29(2):204–222, 1998. doi:10.1006/jagm.1998.0955.

28 G. K. Wallace. The jpeg still picture compression standard. IEEE Transactions on Consumer
Electronics, 38(1):xviii–xxxiv, 1992.

29 Robert Wilber. The concave least-weight subsequence problem revisited. J. Algorithms,
9(3):418–425, September 1988. doi:10.1016/0196-6774(88)90032-6.

30 Justin Zobel and Alistair Moffat. Adding compression to a full-text retrieval system. Softw.
Pract. Exp., 25(8):891–903, 1995. doi:10.1002/spe.4380250804.

A Algorithm for Max-GHT: Proof of Theorem 6

A.1 Introduction
The problems GHT(Generalized Huffman Tree) and Max-GHT(Max Generalized Huffman
tree) were formulated by Fujiwara and Jacobs[13]. We first state their problem definitions.

▶ Definition 21 (GHT). Given n arbitrary functions f1, f2 · · · fn corresponding to n leaves,
the objective of GHT is to determine a binary tree T with these n leaves, such that

∑i=n
i=1 fi(di)

is minimized, where the ith leaf is at depth di in T .

▶ Definition 22 (Max-GHT). Given n arbitrary functions f1, f2 · · · fn corresponding to n

leaves, the objective of Max-GHT is to determine a binary tree T with these n leaves, such
that maxi=n

i=1 fi(di) is minimized, where the ith leaf is at depth di in T .

Fujiwara et al. proved that Max-GHT and GHT are NP-hard for general functions
f1, f2 · · · fn. However, they also proved that if each fi is non-decreasing, then Max-GHT can
be solved in O(n2 log n) time. The complexity of GHT was unresolved, if fi is non-decreasing.

However, there is an implicit assumption in their hardness proof. They assume that there
exists a solution which is a full binary tree(all internal nodes have exactly two children) for
both GHT and Max-GHT. While this has to be true when the functions are non-decreasing,
it need not be true when the functions are arbitrary. Consider the following simple counter
example - when there are two leaves and for i = 1, 2 we have function values fi(1) = 1 and
fi(2) = 0. The optimal solution(with zero cost for both GHT and Max-GHT) will have
both leaves at level 2 and hence such tree cannot be full binary. This re-opens the problems
they posed and we present a simple O(n2) algorithm to convert Max-GHT and GHT with
general functions to problems where Max-GHT and GHT have non-decreasing functions.
As a direct consequence of this, we have an O(n2 log n) algorithm to solve Max-GHT with
general functions. Due to this reduction, we conclude that if GHT with non-decreasing
functions can be solved in polynomial time, then GHT with general functions can also be
solved in polynomial time. We also note that there is a solution with full binary tree for
both GHT and Max-GHT with non-decreasing functions.

A.2 Reduction
▶ Lemma 23. The GHT and Max-GHT problem with n arbitrary functions f1, f2 · · · fn, can
be reduced to a problem with n non-decreasing functions g1, g2 · · · gn in O(n2) time, where
gi(j) = minn

l=j fi(l)

https://doi.org/10.1006/jpdc.1996.0067
https://doi.org/10.1006/jpdc.1996.0067
https://doi.org/10.1006/jagm.1998.0955
https://doi.org/10.1016/0196-6774(88)90032-6
https://doi.org/10.1002/spe.4380250804

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:19

Proof. We update g′
is in a bottom to top manner with lth entry as min (fi(l), gi(l + 1)) for

l < n and gi(n) = fi(n). Hence the total time taken is O(n) per function and O(n2) in total.
It’s easy to see that these functions evaluate to gi(j) = minn

l=j fi(l) using induction.
For correctness, the key property we use is that there is an optimal tree which is a solution

to GHT/Max-GHT, such that for any pair of depths (d1, d2), if d1 < d2 and fi(d1) ≥ fi(d2),
then the ith leaf can not be at d1 for any i. This is due to a simple exchange argument as
we switch a node from d1 to d2, the Kraft sum decreases (hence the tree is feasible) and cost
will not increase.(Note that if the Kraft sum for a given set of depths is less than 1, we can
always construct a binary tree with those function values) Therefore the ith leaf can not be
at level l if gi(l) ̸= fi(l). Hence, the structure of the optimal solution remains unchanged by
changing the values for such l. ◀

We note that as the tree need not be full binary, the maximum height need not be n like
in [13]. The above algorithm’s correctness remains valid even when maximum height exceeds
n and the run time would be O(m), where m is the input size(previously n2).

B Proof of Theorem 8

We prove this constructively by induction. For the sequence I ′ = ⟨ih−1, ih = 0⟩, we can
construct a forest with ih−1 trees, each containing one internal node and two leaves. Since
this forest has no internal nodes at or below level h, we have ih = 0 . Also, since the only
internal nodes are the roots of the trees at level h−1, we have ih−1 internal nodes at or below
level h− 1. Further, as 2ih−1 ≤ n we have sufficient characters to construct this forest).
Now, let us assume there is a valid forest corresponding to the sequence I ′ = ⟨ik+1, · · · ih = 0⟩.
Note that this forest has ik+1−ik+2 > 0 trees. We now add another (2ik−ik+1)−(2ik+1−ik+2)
leaves (characters) at level k + 1 and construct a forest with ik − ik−1 trees, having a total of
ik internal nodes. Note that (2ik − ik+1)− (2ik+1 − ik+2) ≥ 0 and (2ik − ik+1) ≤ n, hence,
we have sufficient characters to create such a forest. This proves the theorem.

C Proof of Lemma 14 pertaining to Exact DP for Gen-LLHC

Proof.

F (T) =
h−1∑
ℓ=0

f̂(ℓ + 1) · (S2iℓ−iℓ+1)

By definition of F (T) we have

F (T) =
∑
c∈C

(freq(c) · f(dT (c)))

By using the definition of f̂(i) we get

F (T) =
∑
c∈C

freq(c) ·

 ∑
i≤dT (c)

f̂(i)

By rearranging the summation over each level and using proposition 7 we get

F (T) =
h−1∑
ℓ=0

f̂(ℓ + 1) ·
2iℓ−iℓ+1∑

j=1
freq(j)

FSTTCS 2021

8:20 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

and using Theorem 10 we get

F (T) =
h−1∑
ℓ=0

f̂(ℓ + 1) · S2iℓ−iℓ+1

This completes the proof of the Lemma. ◀

D Pseudo-code for PTAS for Gen-LLHC: Theorem 3(b)

We present the Pseudo-code for PTAS for Gen-LLHC in Algorithm 2.

Algorithm 2 (for Theorem 3(b)).

Input: Weighted Alphabet C = {c1, c2, . . . , cn}; Penalty bound P; penalty function
p(.); objective function f(.); function f̂(.) defined over f(.); Approximation
constant ϵ

Output: Prefix tree having penalty ≤ P and objective value less than ≤ (1 + ϵ) · C∗

1 CP T AS ← ∞
2 for val← 0 to log2 (F · f(n)) do
3 C ← 2val

4 λ = ⌊(ϵ · C)/2h⌋
5 for ℓ← 0 to n do
6 for b← 0 to ((2h/ϵ) + h) do
7 C = b · λ
8 D(0, ℓ, C) := 0

9 for i← 1 to (n− 1) do
10 for ℓ← (h− 1) downto 0 do
11 for b← 0 to ((2h/ϵ) + h) do
12 C = b · λ
13 bestPenalty :=∞
14 for j ← max(0, 2i− n) to i− 1 do
15 Penalty :=∞
16 C ′ = C − r(p(ℓ + 1) · S2i−j)
17 k := recursive index where D(j, ℓ + 1, C ′) was minimized
18 if 2i− j < 2j − k then
19 continue;
20 if 0 ≤ C ′ then
21 Penalty := D(j, ℓ + 1, C ′) + f̂(l+1) · S2i−j

22 if Penalty < bestPenalty and Penalty < P then
23 bestPenalty := Penalty

24 D(i, ℓ, C) := bestPenalty

25 CP T AS := minC(D(n− 1, 0, C) corresponds to a valid prefix tree)
26 if CP T AS ≤ C then
27 break
28 return CP T AS ;

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:21

E Proof of Lemma 15 pertaining to PTAS for Gen-LLHC

Proof. For any valid values of i, ℓ and P :

D(i, ℓ, C) ≥ D(i, ℓ, r(C) + (h− ℓ) · λ)

In our proof we will be using the following fact:

▶ Proposition 24. Let C ′ and C ′′ be multiples of λ. Then, D(z, ℓ + 1, C ′) ≥ D(z, ℓ + 1, C ′′)
whenever C ′ ≤ C ′′.

This proposition holds because the best solution having objective value at most C ′ is also a
candidate solution having objective value at most C ′′ (other parameters remaining same).

We now prove the lemma by induction on the value of ℓ decreasing from h to 0.
For ℓ = h: From our initialization, the entries of D and D are all initialized to 0 for ℓ = h

and hence the claim trivially holds.
For ℓ < h: Consider D(i, ℓ, C). From recurrence (4), there must be some choice of j for
which D(i, ℓ, C) is minimized. Let z be that choice of j, i.e.,

D(i, ℓ, C) = D(z, ℓ + 1, C − f̂ℓ+1 · S2i−z) + p̂ℓ+1 · S2i−z

Now we obtain the following relations:

D(i, ℓ, C)

= D(z, ℓ + 1, C − f̂ℓ+1 · S2i−z) + p̂ℓ+1 · S2i−z

≥ D(z, ℓ + 1, r(C − f̂ℓ+1 · S2i−z) + (h− (ℓ + 1))λ) + p̂ℓ+1 · S2i−z

≥ D(z, ℓ + 1, r(C)− (r(f̂ℓ+1 · S2i−z)− λ) + (h− (ℓ + 1))λ) + p̂ℓ+1 · S2i−z

= D(z, ℓ + 1, r(C)− r(f̂ℓ+1 · S2i−z) + (h− ℓ)λ) + p̂ℓ+1 · S2i−z

≥ D(i, ℓ, r(C) + (h− ℓ)λ)

where the first inequality follows by induction, the second inequality follows from Pro-
position 24 and the last inequality follows from the fact that D(z, ℓ + 1, r(C) − r(f̂ℓ+1 ·
S2i−z) + (h− ℓ)λ) + p̂ℓ+1 · S2i−z is also a candidate for consideration in recurrence (5) for
D(i, ℓ, r(C) + (h− ℓ)λ).

This completes the proof of the Lemma. ◀

F Exact DP for COPT: Proof of Theorem 1(a)

There exists a dynamic program algorithm to solve the COPT(P) problem that runs in time
O(n2+m) for m block levels.

The dynamic programming algorithm is similar to that for the exact algorithm with the
main difference being that instead of iterating over lengths we iterate over the decode times
of the tree.

Let D̃(i, ℓ, T) denote the minimum codelength amongst all forests rooted at level ℓ, having
i internal nodes with decode time at most T . Also, define T =

n∑
c=1
·

m∑
i=1

qi (here, the decode

time of the forest is the sum of the decode times of the trees in the forest)
For a fixed number of block levels, m, the following lemma holds:

▶ Lemma 25. The number of possible values of decode time for the forests rooted at some
level is nm−1.

FSTTCS 2021

8:22 Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

Proof. Let there be xi characters in the ith block level ∀i ∈ [1, m] and x0 be the number of
characters which are not present in the forest corresponding to D̃(i, ℓ, T). These characters
corresponding to x0 will not have any decode time contribution for T . We have

∑m
i=0 xi = n.

For l > w1, the width of first block, we know that x1 is zero. When l ≤ w1, we know that
x0 is zero. That is not both of x0, x1 can be non-zero. Hence, there are O(nm−1) possible
sequences of xi’s satisfying this. For each sequence of xi’s, we can uniquely determine the
decode time value. Hence there are O(nm−1) possible decode time values. ◀

A dynamic program using the above recurrence can be designed as follows:

Base Case. For all forests with no merges, i.e. no internal nodes, we initialize the decode
time to 0, i.e.,

∀ ℓ ∈ [0, n] and T ∈ [0, T] : D̃(0, ℓ, T) = 0

Inductive Case. To compute D̃(i, ℓ, T), we iterate over the number of internal nodes that
are at depth strictly greater than ℓ. If j internal nodes are at depth strictly greater than ℓ,
then there are (2i− j) characters at depth strictly greater than ℓ, then qℓ+1 · P2i−j is the
decode-time contribution of all the characters having level > ℓ, due to the access at level
(ℓ + 1). Furthermore, D̃(j, ℓ + 1, T ′) denotes the decode time contributed by all accesses
made at depths greater than ℓ + 1. This yields the following recurrence:

D̃(i, ℓ, T) = min
j∈[max(0,2i−n),i−1]

& 2i−j ≥ 2j−k

{
D̃(j, ℓ + 1, T ′) + P2·i−j

}
(6)

where T ′ = T − q̂lvl+1 · P2·i−j and k is the recursive index using which D̃(j, ℓ + 1, T ′) was
populated. We only need to recursively check if T ′ > 0. The tree with the optimal decode time
can be obtained by maintaining the parent pointers of each update and then backtracking.

Note that we only update entries of D̃ for which the T parameter corresponds to a sequence
of ⟨ x0, x1, x2, . . . , xm ⟩, from lemma 25. The decode time for a sequence ⟨x0, x1, x2, . . . , xm⟩
is Dec(⟨xi⟩) =

∑m
i=1 xi · q̂i

From Lemma 25, we know that the T parameter will take on only O(nm−1) values. The
table can accordingly be compressed and maintained only for these entries, however we omit
these implementation details in the interest of better exposition.

After the DP is filled, we check all the entries of the form D̃(n− 1, 0, t) which have code
length parameter t ≤ P and find the the optimal code length corresponding to it.

Time complexity. We note that i and ℓ can take n possible values each and T takes nm−1

possible values. So, there are nm+1 cells in the DP. Each cell can be filled in at most O(n)
time. So, the time complexity of the DP is O(nm+2). Checking the DP table to find the
optimal decode time will take O(nm+1) time. Hence, we can solve the COPT problem in
O(nm+2) time when the number of block levels is a constant m.

G Proof of Proposition 20 pertaining to Theorem 1(b)

Proof. We prove this using induction. The base case holds from Lemma 18. Consider the
two nodes at level one.

We first consider the case where not all k highest frequencies are in the same sub-tree
rooted at one of the nodes. By induction assumption, in the sub-tree in which kth highest
frequency is present, the kth highest frequency is at level at most k− 1 + ⌈log(n)⌉. Therefore
given holds.

S. Banchhor, R. Gajjala, Y. Sabharwal, and S. Sen 8:23

We now consider the case where all k highest frequencies are in the same sub-tree rooted
at one of the nodes. Let the highest frequency in the other sub tree be k + r′th frequency for
some r′ > 0. If k + r′th frequency is at level at most k + ⌈log(n)⌉, since higher frequencies
are at a lower level, kth highest frequency is at level at most k + ⌈log(n)⌉. If not, the subtree
has more than 2k+⌈log(n)⌉−1 > n− 1 nodes. Contradiction. ◀

FSTTCS 2021

Approximation Algorithms for Flexible Graph
Connectivity
Sylvia Boyd # Ñ

School of Electrical Engineering and Computer Science, University of Ottawa, Canada

Joseph Cheriyan # Ñ

Department of Combinatorics and Optimization, University of Waterloo, Canada

Arash Haddadan #

Warner Music Group, New York, NY, USA

Sharat Ibrahimpur # Ñ

Department of Combinatorics and Optimization, University of Waterloo, Canada

Abstract
We present approximation algorithms for several network design problems in the model of Flexible

Graph Connectivity (Adjiashvili, Hommelsheim and Mühlenthaler, “Flexible Graph Connectivity”,
Math. Program. pp. 1–33 (2021), IPCO 2020: pp. 13–26). In an instance of the Flexible Graph
Connectivity (FGC) problem, we have an undirected connected graph G = (V, E), a partition of E

into a set of safe edges S and a set of unsafe edges U, and nonnegative costs {ce}e∈E on the edges. A
subset F ⊆ E of edges is feasible for FGC if for any unsafe edge e ∈ F ∩U, the subgraph (V, F \ {e})
is connected. The algorithmic goal is to find a (feasible) solution F that minimizes c(F) =

∑
e∈F

ce.
We present a simple 2-approximation algorithm for FGC via a reduction to the minimum-cost r-out
2-arborescence problem. This improves upon the 2.527-approximation algorithm of Adjiashvili et al.

For integers p ≥ 1 and q ≥ 0, the (p, q)-FGC problem is a generalization of FGC where we seek
a minimum-cost subgraph H = (V, F) that remains p-edge connected against the failure of any set
of at most q unsafe edges; that is, for any set F ′ ⊆ U with |F ′| ≤ q, H − F ′ = (V, F \ F ′) should be
p-edge connected. Note that FGC corresponds to the (1, 1)-FGC problem. We give approximation
algorithms for two important special cases of (p, q)-FGC: (a) Our 2-approximation algorithm for
FGC extends to a (k + 1)-approximation algorithm for the (1, k)-FGC problem. (b) We present a
4-approximation algorithm for the (k, 1)-FGC problem.

For the unweighted FGC problem, where each edge has unit cost, we give a 16/11-approximation
algorithm. This improves on the result of Adjiashvili et al. for this problem.

The (p, q)-FGC model with p = 1 or q ≤ 1 can be cast as the Capacitated k-Connected Subgraph
problem which is a special case of the well-known Capacitated Network Design problem. We denote
the former problem by Cap-k-ECSS. An instance of this problem consists of an undirected graph
G = (V, E), nonnegative integer edge-capacities {ue}e∈E , nonnegative edge-costs {ce}e∈E , and a
positive integer k. The goal is to find a minimum-cost edge-set F ⊆ E such that every (non-trivial)
cut of the capacitated subgraph H(V, F, u) has capacity at least k. We give a min(k, 2 maxe∈E ue)-
approximation algorithm for this problem.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation Algorithms, Combinatorial Optimization, Network Design,
Edge-Connectivity of Graphs, Reliability of Networks

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.9

Funding Joseph Cheriyan: Supported in part by NSERC, RGPIN-2019-04197.
Arash Haddadan: This work was mostly done when this author was a postdoctoral researcher at the
Biocomplexity Institute and Initiative at the University of Virginia, Charlottesville, and supported
by NSF Expeditions in Computing Grant with award number CCF-1918656.
Sharat Ibrahimpur : Supported in part by NSERC grant 327620-09.

Acknowledgements We thank the anonymous reviewers and PC members for their comments.

© Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sboyd@uottawa.ca
https://www.site.uottawa.ca/~sylvia
mailto:jcheriyan@uwaterloo.ca
http://www.math.uwaterloo.ca/~jcheriyan
mailto:arash.haddadan@gmail.com
mailto:sharat.ibrahimpur@uwaterloo.ca
http://www.math.uwaterloo.ca/~s26ibrah
https://orcid.org/0000-0002-1575-9648
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Approximation Algorithms for Flexible Graph Connectivity

1 Introduction

Network design and graph connectivity are core topics in Theoretical Computer Science and
Operations Research. A basic problem in network design is to find a minimum-cost sub-
network H of a given network G such that H satisfies some specified connectivity requirements.
Most of these problems are NP-hard. Several important algorithmic paradigms were developed
in the context of these topics, ranging from exact algorithms for the shortest (s, t)-path
problem and the minimum spanning tree (MST) problem to linear programming-based
approximation algorithms for the survivable network design problem and the generalized
Steiner network problem. Network design problems are often motivated from practical
considerations such as the design of fault-tolerant supply chains, congestion control for urban
road traffic, and the modeling of epidemics (see [11, 12, 15]).

Recently, Adjiashvili, Hommelsheim and Mühlenthaler [1, 2] introduced a new model called
Flexible Graph Connectivity (FGC), that is motivated by research in robust optimization.
In an instance of FGC, we have an undirected connected graph G = (V, E) on n vertices, a
partition of E into safe edges S and unsafe edges U, and nonnegative costs {ce}e∈E on the
edges. The graph G may have multiedges, but no self-loops. A subset F ⊆ E of edges is
feasible for FGC if for any unsafe edge e ∈ F ∩ U, the subgraph (V, F \ {e}) is connected.
The problem is to find a (feasible) solution F minimizing c(F) =

∑
e∈F ce. The motivation

for studying FGC is two-fold. First, FGC generalizes many well-studied survivable network
design problems. Notably, the problem of finding a minimum-cost 2-edge connected spanning
subgraph (abbreviated as 2ECSS) corresponds to an instance of FGC where all edges are
unsafe, and the MST problem corresponds to an instance of FGC where all edges are safe.
Second, FGC captures a non-uniform model of survivable network design problems where a
subset of edges never fail, i.e., they are always safe.

The notion of (p, q)-FGC is an extension of the basic FGC model where we have two
additional integer parameters p and q satisfying p ≥ 1 and q ≥ 0. A subset F ⊆ E of edges
is feasible for (p, q)-FGC if the spanning subgraph H = (V, F) is p-edge connected, and
moreover, the deletion of any set of at most q unsafe edges of F preserves p-edge connectivity.
In other words, each nontrivial cut (S, V \S) of H either contains p safe edges or contains p+q

(safe or unsafe) edges. Note that the FGC problem is the same as the (1, 1)-FGC problem.
The algorithmic goal is to find a feasible edge-set F of minimum cost. The (p, q)-FGC
problem is a natural and fundamental question in robust network design. It can be seen as a
way of interpolating between p-edge connectivity (when all edges are safe) and (p + q)-edge
connectivity (when all edges are unsafe). We remark that for all problems considered in this
work, we are only allowed to use at most one copy of an edge; multiedges may arise in F due
to multiedges in G.

One of our goals is to give approximation algorithms for important special cases of
(p, q)-FGC. Since FGC generalizes the 2ECSS problem, it is already APX-hard (see [5]),
so a polynomial-time approximation scheme is ruled out unless P=NP. In the following we
sketch a simple randomized O(q log n)-approximation algorithm for (p, q)-FGC under some
assumptions. For simplicity, assume that p and q are such that q/p ≤ α for an absolute
constant α ≥ 0. Let F ∗ denote an optimal solution to the given (p, q)-FGC instance. To
start with, let H = (V, F) denote a 2-approximate p-edge connected spanning subgraph
(abbreviated p-ECSS) of the graph G with edge-costs {ce}e∈E , where we make no distinction
between safe and unsafe edges; such an H can be found in polynomial-time by using (say)
Jain’s iterative rounding algorithm [8]. Note that c(F) ≤ 2c(F ∗), since (V, F ∗) is a p-edge
connected spanning subgraph of G.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:3

We say that a nonempty set R ⊊ V is “deficient” if |δ(R)∩F | < p+q and |δ(R)∩F ∩S| < p;
thus, R ⊊ V is deficient if the cut δ(R) has less than (p + q) F -edges and has less than p

safe F -edges. Let C denote the family of all deficient sets. Note that deficient sets are the
only obstructions to the (p, q)-FGC-feasibility of F . We fix deficient sets by performing a
sequence of at most q augmentation iterations, where in each iteration we augment F with
an edge-set F ′ ⊆ E \ F such that δ(R) ∩ F ′ ̸= ∅ for each R ∈ C. We compute the desired
F ′ via a reduction to the weighted set cover problem. First, let us state an upper bound
on |C|. For every R ∈ C, observe that δ(R) is a (1 + α)-approximate min-cut in H, because
H is p-edge connected (i.e., the size of a min-cut of H is ≥ p). By Karger’s bound [9], we
have |C| ≤ n2α+2. In fact, with probability at least 1 − 1/n, we can explicitly compute C in
time polynomial in nα. For simplicity, assume that we have explicit access to C. Consider an
instance of the weighted set cover problem where we want to cover elements of C by using
sets of the form {Re}e∈E\F , where Re := {R ∈ C : e ∈ δ(R)}, and the weight of Re is ce.(
Informally speaking, we have a ground-set of “points” that correspond to elements of C, i.e.,

the deficient sets, we have a weighted set Re corresponding to each edge e ∈ E \ F , and the
goal is to pick a min-weight family of sets Re whose union contains all the “points”.

)
Since

F ∪ F ∗ is feasible for the given (p, q)-FGC-instance, {Re}e∈F ∗\F is a feasible solution to the
set-cover instance with cost at most c(F ∗). The well-known greedy algorithm for weighted
set cover (see Theorem 13.3 in [16]) finds an F ′ ⊆ E \F satisfying δ(R)∩F ′ ̸= ∅ for all R ∈ C
and c(F ′) ≤ O(α log n)c(F ∗). We augment F to F ∪ F ′ and discard the sets R ∈ C that are
no longer deficient w.r.t. the augmented F . We repeatedly apply such augmenting iterations
until C is empty. There are at most q such iterations, because each iteration increases the
cardinality of δ(R) ∩ F by one or more for each R ∈ C. We summarize this discussion by the
next claim.

▷ Claim. There is a randomized polynomial-time O(q log n)-approximation algorithm for
the special case of (p, q)-FGC where q/p ≤ O(1).

The (p, q)-FGC model is related to the model of Capacitated Network Design. There are
several results pertaining to approximation algorithms for various problems in Capacitated
Network Design, for example, see Goemans et al. [6] and Chakrabarty et al. [3]. A well-
studied problem in this area that is relevant to us is the Capacitated k-Connected Subgraph
problem, see [3]. We denote this problem by Cap-k-ECSS. Formally, in an instance of this
problem, we have an undirected multigraph G = (V, E), nonnegative integer edge-capacities
{ue}e∈E , nonnegative edge-costs {ce}e∈E , and a positive integer k. The goal is to find an
edge-set F ⊆ E such that for any nonempty R ⊊ V we have

∑
e∈δ(R)∩F ue ≥ k, and c(F) is

minimized. Let n and m denote the number of vertices and edges of G, respectively. For this
problem, Goemans et al. [6] give a min(2k, m)-approximation algorithm, and Chakrabarty
et al. [3] give a randomized O(log n)-approximation algorithm.

In general, (p, q)-FGC and Cap-k-ECSS models are incomparable (see below for more
details), however, when p = 1 or q ≤ 1 holds, then (p, q)-FGC can be cast as an instance
of the Cap-k-ECSS problem. The usual k-ECSS problem corresponds to the Cap-k-ECSS
problem with unit edge capacities. The FGC problem corresponds to the Cap-2-ECSS
problem, where safe edges have capacity 2 and unsafe edges have capacity 1. More generally,
(1, k)-FGC corresponds to the Cap-(k+1)-ECSS problem, where safe edges have capacity k+1
and unsafe edges have capacity 1, and (k, 1)-FGC corresponds to the Cap-(k(k + 1))-ECSS
problem where safe edges have capacity k + 1 and unsafe edges have capacity k. We remark
that the most general models of (p, q)-FGC and Cap-k-ECSS are incomparable. In particular,
it is easy to see that the (p, q)-FGC problem is not the same as the Cap-(p(p + q))-ECSS
problem where safe edges have a capacity of p + q and unsafe edges have a capacity of p. For

FSTTCS 2021

9:4 Approximation Algorithms for Flexible Graph Connectivity

instance, take p = 2 and q = 3: a cut with one safe edge (of capacity 5) and three unsafe
edges (each with capacity 2) has total capacity 11 ≥ p(p + q), but such a cut is deficient in
the (2, 3)-FGC model.

Our Contributions. We mention the main contributions of this work along with a brief
overview of our results and techniques.

Our first result is a simple reduction from FGC to the well-known minimum-cost 2-
arborescence problem that achieves an approximation guarantee of two. This result matches
the current best approximation guarantee known for the 2ECSS problem, and improves
on the 2.527-approximation algorithm of [2]. At a high level, our result is based on a
straightforward extension of the 2-approximation algorithm of Khuller and Vishkin [10] for
the 2ECSS problem. (In fact, Khuller and Vishkin [10] give a simple reduction from the
k-ECSS problem to the problem of computing a minimum-cost k-arborescence in a digraph
that achieves an approximation guarantee of two.)

▶ Theorem 1. There is a 2-approximation algorithm for FGC.

The following result generalizes Theorem 1 to the (1, k)-FGC problem, where we want to
find a min-cost spanning subgraph that remains connected against the failure of any set of
at most k unsafe edges.

▶ Theorem 2. There is a (k + 1)-approximation algorithm for (1, k)-FGC.

Our proof of Theorem 2 is based on a reduction from (1, k)-FGC to the minimum-cost
(k + 1)-arborescence problem (see [13], Chapters 52 and 53). We lose a factor of k + 1 in this
reduction.

In Section 3, we consider the unweighted version of FGC, where each edge has unit cost.
We design improved approximation algorithms for this special case.

▶ Theorem 3. There is a 16
11 -approximation algorithm for unweighted FGC.

In Section 4, we consider the (k, 1)-FGC problem, where we seek a min-cost spanning
subgraph that is k-edge connected against failure of at most one unsafe edge. Our main
contribution here is the following.

▶ Theorem 4. There is a 4-approximation algorithm for (k, 1)-FGC.

Our algorithm in Theorem 4 runs in two stages. In the first stage we pretend that
all edges are safe. Under this assumption, (k, 1)-FGC simplifies to the k-ECSS problem,
for which several 2-approximation algorithms are known. Let H = (V, F) be the k-edge
connected spanning subgraph found in Stage 1. In the second stage, our goal is to preserve
k-edge connectivity against the failure of any one unsafe edge. In the graph H, consider a
cut that has (exactly) k edges and that contains at least one unsafe edge. Such a cut, that
we call deficient, certifies that F is not feasible for (k, 1)-FGC, so it needs to be augmented.
The residual problem is that of finding a cheapest augmentation of F on all deficient cuts.
It turns out that this cut-augmentation problem can be formulated as the f -connectivity
problem for an uncrossable function f (to be defined in Section 4). Williamson, Goemans,
Mihail and Vazirani [17] present a 2-approximation algorithm for the latter problem.

Lastly, in Section 5, we consider the Capacitated k-Connected Subgraph problem that
we denote by Cap-k-ECSS. For notational convenience, let umax := max{ue : e ∈ E}
denote the maximum capacity of an edge in the given instance of Cap-k-ECSS; similarly, let
umin := min{ue : e ∈ E}. Our main result in Section 5 is the following.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:5

▶ Theorem 5. There is a min(k, 2umax)-approximation algorithm for the Cap-k-ECSS
problem.

Similar to Theorems 1 and 2, our proof of Theorem 5 is based on a reduction from
the Cap-k-ECSS problem to the minimum-cost k-arborescence problem. The factor m in
the min(2k, m) approximation guarantee of Goemans et al. comes from the fact that a
simple greedy strategy yields an m-approximation for the Cap-k-ECSS problem. Assuming
min(k, 2umax) ≤ m, our result has a better dependence on k, and, in fact, for the standard
case of umin = 1, umax = k ≪ m, no previous result achieves an approximation guarantee of
k (to the best of our knowledge). Our result above is incomparable to the result in [3]: our
approximation guarantee is independent of the graph size, whereas their result is independent
of k. The algorithm in [3] is probabilistic and its analysis is based on Chernoff tail bounds.

Theorem 5 provides the following approximation guarantees for special cases of (p, q)-FGC:
(i) for (1, 1)-FGC, k = umax = 2, so Theorem 5 gives a 2-approximation (same as

Theorem 1);
(ii) for (1, q)-FGC, k = umax = q + 1, so Theorem 5 gives a (q + 1)-approximation (same

as Theorem 2); and
(iii) for (p, 1)-FGC with p > 1, k = p(p + 1) and umax = p + 1, so Theorem 5 gives a

2(p + 1)-approximation (this is weaker than the 4-approximation given by Theorem 4).

2 A (k + 1)-Approximation Algorithm for (1, k)-FGC

We give a (k + 1)-approximation for (1, k)-FGC, where k is a positive integer. The 2-
approximation for FGC (Theorem 1) follows as a special case. Recall that in an instance of
(1, k)-FGC we have an undirected multigraph G = (V, E) (with no self loops), a partition of
E = S ⊔ U into safe and unsafe edges, and nonnegative edge-costs {ce}e∈E . Our objective is
to find a minimum-cost edge-set F ⊆ E such that the subgraph (V, F) remains connected
against failure of any k unsafe edges.

For a subgraph H of G and a nonempty vertex-set S ⊊ V , we use δH(S) to denote the set of
edges in H with exactly one endpoint in S, i.e., δH(S) := {e = uv ∈ E(H) : |{u, v} ∩ S| = 1}.
We drop the subscript H when the underlying graph is clear from the context. The following
characterization of (1, k)-FGC solutions is straightforward.

▶ Proposition 6. F is feasible for (1, k)-FGC if and only if for all nonempty S ⊊ V , the
edge-set F ∩ δ(S) contains a safe edge or k + 1 unsafe edges.

For the rest of the paper, we assume that the given instance of (1, k)-FGC is feasible: this
can be checked by computing a (global) minimum cut in G where we assign a capacity of k +1
to safe edges and a capacity of 1 to unsafe edges. As mentioned before, our algorithm for
(1, k)-FGC is based on a reduction to the minimum-cost r-out (k + 1)-arborescence problem.
We state a few standard results on arborescences. Let D = (W, A) be a digraph and {c′

a}a∈A

be nonnegative costs on the arcs. We remark that D may have parallel arcs but it has no
self-loops. Let r ∈ W be a designated root vertex. For a subgraph H of D and a nonempty
vertex-set S ⊊ W , we use δin

H(S) to denote the set of arcs in H such that the head of the arc
is in S and the tail of the arc is in W \ S, i.e., δin

H(S) := {a = (u, v) ∈ A(H) : u /∈ S, v ∈ S}.

▶ Definition 7 (r-out arborescence). An r-out arborescence (W, T) is a subgraph of D

satisfying: (i) the undirected version of T is acyclic; and (ii) for every v ∈ W \ {r}, there is
a directed path from r to v in the subgraph (W, T).

FSTTCS 2021

9:6 Approximation Algorithms for Flexible Graph Connectivity

In other words, an r-out arborescence is a directed spanning tree rooted out of r. More
generally, an r-out k-arborescence is a union of k arc-disjoint r-out arborescences.

▶ Definition 8 (r-out k-arborescence). For a positive integer k, a subgraph (W, T) is an r-out
k-arborescence if T can be partitioned into k arc-disjoint r-out arborescences.

The following results on existence of arborescences and the corresponding optimization
problem will be useful to us.

▶ Theorem 9 ([13], Chapter 53.8). Let D = (W, A) be a digraph, r ∈ W be a root vertex, and
k be a positive integer. Then, D contains an r-out k-arborescence if and only if |δin

D(S)| ≥ k

for any nonempty vertex-set S ⊆ V \ {r}.

▶ Theorem 10 ([13], Theorem 53.10). In strongly polynomial time, we can obtain an optimal
solution to the minimum c′-cost r-out k-arborescence problem on D, or conclude that there is
no r-out k-arborescence in D.

The following claim is useful in our analysis.

▷ Claim 11. Let (W, T) be an r-out k-arborescence for an integer k ≥ 1. Let u, v ∈ W be
two distinct vertices. Then, the number of arcs in T that have one endpoint at u and the
other endpoint at v (counting multiplicities) is at most k.

Proof. Since an r-out k-arborescence is a union of k arc-disjoint r-out 1-arborescences, it
suffices to prove the result for k = 1. The claim holds for k = 1 because the undirected
version of T is acyclic, by definition. ◁

In our proofs we move from undirected graphs to their directed counterparts by bidirecting
edges. We formalize this notion.

▶ Definition 12 (Bidirected pair). For an undirected edge e = uv, we call the arc-set
{(u, v), (v, u)} a bidirected pair arising from e.

The following lemma shows how a (1, k)-FGC solution F can be used to obtain an r-out
(k + 1)-arborescence (in an appropriate digraph) of cost at most (k + 1)c(F).

▶ Lemma 13. Let F be a (1, k)-FGC solution. Consider the digraph D = (V, A) where the
arc-set A is defined as follows: for each unsafe edge e ∈ F ∩ U, we include a bidirected pair
of arcs arising from e, and for each safe edge e ∈ F ∩ S, we include k + 1 bidirected pairs
arising from e. Consider the natural extension of the cost vector c to D where the cost of an
arc (u, v) ∈ A is equal to the cost of the edge in G that gives rise to it. Then, there is an
r-out (k + 1)-arborescence in D with cost at most (k + 1)c(F).

Proof. Let (V, T) be a minimum-cost r-out (k + 1)-arborescence in D. First, we argue that
T is well-defined. By Theorem 9, it suffices to show that for any nonempty S ⊆ V \ {r},
we have |δin

D(S)| ≥ k + 1. Fix some nonempty S ⊆ V \ {r}. By feasibility of F , F ∩ δ(S)
contains a safe edge or k + 1 unsafe edges (see Proposition 6). If F ∩ δ(S) contains a safe
edge e = uv with v ∈ S, then by our choice of A, δin

D(S) contains k + 1 (u, v)-arcs. Otherwise,
F ∩ δ(S) contains k + 1 unsafe edges, and for each such unsafe edge uv with v ∈ S, δin

D(S)
contains the arc (u, v). In both cases we have |δin

D(S)| ≥ k + 1, so T is well-defined.
We use Claim 11 to show that T satisfies the required bound on the cost. For each unsafe

edge e ∈ F , T contains at most 2 arcs from the bidirected pair arising from e, and for each
safe edge e ∈ F , T contains at most k + 1 arcs from the (disjoint) union of k + 1 bidirected
pairs arising from e. Thus, c(T) ≤ 2 c(F ∩ U) + (k + 1) c(F ∩ S) ≤ (k + 1) c(F). ◀

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:7

Lemma 13 naturally suggests a reduction from (1, k)-FGC to the minimum-cost r-out
(k + 1)-arborescence problem. We prove the main theorem of this section.

Proof of Theorem 2. Fix some vertex r ∈ V as the root vertex. Consider the digraph
D = (V, A) obtained from G as follows: for each unsafe edge e ∈ U, we include a bidirected
pair arising from e, and for each safe edge e ∈ S, we include k + 1 bidirected pairs arising
from e. For each edge e ∈ E, let R(e) denote the multi-set of all arcs in D that arise from
e ∈ E. For any edge e ∈ E (that could be one of the copies of a multiedge) and each of the
corresponding arcs e⃗ ∈ R(e), we define ce⃗ := ce. Let (V, T) denote a minimum c-cost r-out
(k + 1)-arborescence in D. By Lemma 13, c(T) ≤ (k + 1)c(F ∗), where F ∗ denotes an optimal
(1, k)-FGC solution to the given instance.

We finish the proof by arguing that T induces a (1, k)-FGC solution F with cost at most
c(T). Let F := {e ∈ E : R(e) ∩ T ̸= ∅}. By definition of F and our choice of arc-costs in
D, we have c(F) ≤ c(T). It remains to show that F is feasible for (1, k)-FGC. Consider a
nonempty set S ⊆ V \ {r}. Since T is an r-out (k + 1)-arborescence, by Theorem 9 we have
|δin

T (S)| ≥ k + 1. If δin
T (S) contains a safe arc (i.e., an arc that arises from a safe edge), then

that safe edge belongs to F ∩ δ(S). Otherwise, δin
T (S) contains some k + 1 unsafe arcs (that

arise from unsafe edges). Since both orientations of an edge cannot appear in δin
D(S), we get

that |F ∩ U ∩ δ(S)| ≥ k + 1. By Proposition 6, F is a feasible solution for the given instance
of (1, k)-FGC with c(F) ≤ (k + 1)OPT. ◀

3 Unweighted FGC

Consider the unweighted version of FGC where each edge has unit cost, i.e., ce = 1 for all e ∈
E. We present a 16

11 -approximation algorithm (see Theorem 3); to the best of our knowledge,
this is the first result that provides a better than 3

2 approximation for unweighted FGC.
Adjiashvili et al. [2] gave an

(
α
2 + 1

)
-approximation algorithm for unweighted FGC, assuming

the existence of an α-approximation algorithm for the unweighted 2ECSS problem: this
implies a 5

3 -approximation algorithm for unweighted FGC by using the result of Sebö and
Vygen [14]. The algorithm in [2] starts with a maximal forest of safe edges in the graph. At
the end of this section, we give an example showing that no such algorithm can obtain an
approximation factor better than 3

2 . Our main result in this section is the following.

▶ Theorem 14. Suppose that there is an α-approximation algorithm for the unweighted
2ECSS problem. Then, there is a 4α

2α+1 -approximation algorithm for unweighted FGC.

Theorem 3 follows from the above theorem by using the 4
3 -approximation algorithm of

Sebö and Vygen [14] for the unweighted 2ECSS problem. Before delving into the proof
of Theorem 14, we introduce some basic results on W -joins, which will be useful in our
algorithm and its analysis. Let G′ = (V ′, E′) be an undirected multigraph with no self-loops
and let {c′

e}e∈E′ be nonnegative costs on the edges.

▶ Definition 15 (W -join). Let W ⊆ V ′ be a subset of vertices with |W | even. A subset
J ⊆ E′ of edges is called a W -join if W is equal to the set of vertices of odd degree in the
subgraph (V ′, J).

The following classical result on finding a minimum-cost W -join is due to Edmonds.

▶ Theorem 16 ([13], Theorem 29.1). In strongly polynomial time, we can obtain a minimum
c′-cost W -join, or conclude that there is no W -join in G′.

FSTTCS 2021

9:8 Approximation Algorithms for Flexible Graph Connectivity

The W -join polytope is the convex hull of the incidence vectors of W -joins. Its dominant
has a simple linear description.

▶ Theorem 17 ([13], Corollary 29.2b). The dominant of the W -join polytope is given by
{x ∈ RE′

≥0 : x(δG′(S)) ≥ 1 ∀ S ⊊ V ′ s.t. |S ∩ W | odd}.

Consider an instance of unweighted FGC consisting of a multigraph G = (V, E = S ∪ U)
with a specified partition of E into safe and unsafe edges. We will assume that G is connected
and has no unsafe bridges, since otherwise the instance is infeasible. Let F ∗ denote an
optimal solution. Suppose that we have access to an α-approximation algorithm for the
2ECSS problem. We give two algorithms for obtaining two candidate solutions to the given
instance. We then argue that the cheaper of these two solutions is a 4α

2α+1 -approximate
solution.

Join-based Algorithm for Unweighted FGC. Let T be a spanning tree in G that maximizes
the number of safe edges. If |T ∩ S| = |V | − 1, then T is an optimal FGC solution for the
given instance, and we are done. Otherwise, let T ′ := T ∩ U be the (nonempty) collection of
unsafe edges in T . Let G′ = (V ′, E′) denote the graph obtained from G by contracting (safe)
edges in T \ T ′. We remove all self-loops from G′, but retain parallel edges that arise due to
edge contractions. Note that all edges in E′ are unsafe and T ′ is a spanning tree of G′. Let
W ′ denote the (nonempty) set of odd degree vertices in the subgraph (V ′, T ′). Let J ′ ⊆ E′

be a minimum-cardinality W ′-join in G′, which we can compute in polynomial time by using
Theorem 16. By our choice, the subgraph (V ′, T ′ ⊔ J ′) is connected and Eulerian, so it is
2-edge connected in G′. Consider the multiset F1 = T ⊔ J ′ consisting of edges in E; if an
edge e appears in both T ′ and J ′, then we include two copies of e in F1.
If F1 contains at most one copy of each edge in E, then F1 is FGC-feasible. Otherwise,
we modify F1 to get rid of all duplicates without increasing |F1|. Consider an unsafe edge
e ∈ E′ that appears twice in F1, i.e., e belongs to both T ′ and J ′. We remove a copy of e

from F1. If this does not violate FGC-feasibility, then we take no further action. Otherwise,
the second copy of e in F1 is an unsafe bridge in (V, F1) that induces a cut S in G. By our
assumption that G has no unsafe bridges, there is another edge e′ ∈ E that is in δ(S) but
not in F1. We include e′ in F1. This finishes the description of our first algorithm.

At the end of the de-duplication step, F1 is FGC-feasible and it contains at most one
copy of any edge e ∈ E. It is also clear that |F1| ≤ |T | + |J ′|. The following claim gives a
bound on the quality of our first solution.

▷ Claim 18. We have |J ′| ≤ 1
2 |F ∗ ∩ U|. Hence, |F1| ≤ |F ∗ ∩ S| + 3

2 |F ∗ ∩ U|.

Proof. We prove the claim by constructing a fractional W ′-join of small size. Recall that
we chose T so that T \ T ′ is a maximal safe forest in G, and we obtained G′ by contracting
connected components in (V, T \ T ′). By our assumption that G has no unsafe bridges, we
have that G′ is 2-edge connected and consists of only unsafe edges. Let B := F ∗ ∩ E′ denote
the set of unsafe edges in the optimal solution F ∗ that also belong to G′. Consider the vector
z := 1

2 χB where χB ∈ [0, 1]E′ is the incidence vector of B in G′. Let S′ be an arbitrary cut
in G′ and let S be the unique cut in G that gives rise to S′ when we contract (safe) edges
in T \ T ′. Since F ∗ is FGC-feasible and there are no safe edges in δG(S), we must have
|B ∩ δG′(S′)| ≥ 2. Consequently, z(δG′(S′)) = 1

2 |B ∩ δG′(S′)| ≥ 1. By Theorem 17, z lies in
the dominant of the W ′-join polytope, i.e., z dominates a fractional W ′-join. Since J ′ is
a min-cardinality W ′-join, |J ′| ≤ 1T z ≤ 1

2 |F ∗ ∩ U|. We bound the size of F1 by using the
trivial bound |T | ≤ |F ∗|:

|F1| ≤ |F ∗| + |J ′| ≤ |F ∗ ∩ S| + 3
2 |F ∗ ∩ U|. ◁

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:9

The above claim shows that the size of F1 can be charged to a certain combination of
the number of safe and unsafe edges in F ∗. Our second algorithm uses the α-approximation
for the 2ECSS problem as a subroutine. The solution returned by this algorithm has the
property that its size complements that of F1.

2ECSS-based Algorithm for Unweighted FGC. Consider the multigraph G′′ obtained
from G by duplicating every safe edge in E. Similarly, let F ′′ be the multiedge-set obtained
from F ∗ by duplicating every safe edge in F ∗. Clearly, (V, F ′′) is a 2-edge connected
subgraph of G′′ consisting of 2|F ∗ ∩ S| + |F ∗ ∩U| edges. Let F2 be the output of running the
α-approximation algorithm for the unweighted 2ECSS problem on G′′. Since F2 is 2-edge
connected and only safe edges can appear more than once in F2 (because G′′ only has
duplicates of safe edges), we can drop the extra copy of all safe edges while maintaining
FGC-feasibility in G. This finishes the description of our second algorithm.

The following claim is immediate.

▷ Claim 19. We have |F2| ≤ 2α|F ∗ ∩ S| + α|F ∗ ∩ U|.

We end this section with the proof of our main result on unweighted FGC.

Proof of Theorem 14. Given an instance of unweighted FGC, we compute two candidate
solutions F1 and F2 as given by the two algorithms described above. The solution F1 can be
computed using algorithms for the MST problem and the minimum-weight W ′-join problem,
followed by basic graph operations. The solution F2 can be computed using the given
α-approximation algorithm for the 2ECSS problem. We show that the smaller of F1 and F2 is
a 4α

2α+1 -approximate solution for the given unweighted FGC-instance. By Claims 18 and 19:

min(|F1|, |F2|) ≤ 2α

2α + 1 |F1| + 1
2α + 1 |F2| = 4α

2α + 1 |F ∗| ◀

As mentioned earlier, we have an example (see Figure 1 below) such that any algorithm for
unweighted FGC that starts with a maximal forest on safe edges achieves an approximation
guarantee of 3

2 or more.

. . .
v1 v2 v3 v4 v5 v2n−1

v2n

Figure 1 In this instance we have a graph on 2n vertices. The set of unsafe edges, shown using
solid lines, forms a Hamiltonian cycle. For each i = 1, . . . , n − 1, there is a safe edge, shown using
a thick dashed line, between v2i and v2n. The solution consisting of all unsafe edges is feasible,
and any feasible solution must contain all unsafe edges, so OPT = 2n. Any feasible solution that
contains a maximal forest on safe edges has size at least 3n − 1.

FSTTCS 2021

9:10 Approximation Algorithms for Flexible Graph Connectivity

4 A 4-Approximation Algorithm for (k, 1)-FGC

Our main result in this section is a 4-approximation algorithm for (k, 1)-FGC (Theorem 4).
Recall that in an instance of (k, 1)-FGC, we have a multigraph G = (V, E = S ∪ U) with a
partition of the edge-set into safe and unsafe edges, nonnegative edge-costs {ce}e∈E , and a
positive integer k. The objective is to find a minimum-cost subgraph that remains k-edge
connected against the failure of any one unsafe edge. We remark that for the k = 1 case,
Theorem 1 yields a better approximation guarantee than Theorem 4. Let F ∗ denote an
optimal solution to the given instance. The following characterization of (k, 1)-FGC solutions
is straightforward.

▶ Proposition 20. F is feasible for (k, 1)-FGC if and only if for all nonempty S ⊊ V , the
edge-set F ∩ δ(S) contains k safe edges or k + 1 edges.

The above proposition suggests a two-stage strategy for (k, 1)-FGC. Suppose that in
the first stage we compute a cheap k-edge connected spanning subgraph H1 = (V, F1) of
G without making any distinction between safe and unsafe edges. For any nonempty cut
S ⊊ V , we have δH1(S) ≥ k, so by Proposition 20, the only hindrance to the (k, 1)-FGC
feasibility of F1 are k-cuts in H1 that contain at least one unsafe edge. We call such cuts
deficient. The subproblem remaining for the second stage is an augmentation problem for
these deficient cuts, which is special case of the (minimum-cost) f -connectivity problem.

In the f-connectivity problem we have an undirected multigraph G′ = (V ′, E′), non-
negative edge-costs {c′

e}e∈E′ , and a cut-requirement function f : 2V ′ → {0, 1} satisfying
f(∅) = f(V) = 0. We assume access to f via a value oracle that takes as input a vertex-set
S ⊆ V and outputs f(S). An edge-set F ⊆ E′ is feasible for the f -connectivity problem if
|F ∩ δG′(S)| ≥ f(S) for every S ⊆ V ′. In other words, F is feasible if and only if for every
cut S with f(S) = 1 there is at least one F -edge in this cut. The objective is to find a
feasible F ⊆ E′ that minimizes c(F). The f -connectivity problem can be modeled as an
integer program whose linear relaxation (P) is stated below. For each edge e ∈ E′ the LP
has a nonnegative variable xe that models the extent to which the edge e is picked by the
solution.

min
∑
e∈E′

c′
exe (P)

subject to x(δG′(S)) ≥ 1 ∀ S ⊆ V ′ s.t. f(S) = 1
xe ≥ 0 ∀ e ∈ E′.

The f -connectivity problem has received a lot of attention in Combinatorial Optimization
since it captures many well-known network design problems. In particular, it captures the
generalized Steiner network problem. Williamson et al. [17] gave a primal-dual framework
to obtain approximation algorithms for the f -connectivity problems when f is a proper
function, and more generally, when f is an uncrossable function (also see the book chapter by
Geomans and Williamson [7] for an excellent survey on primal-dual algorithms for network
design problems).

▶ Definition 21 (Uncrossable function). A function f : 2V ′ → {0, 1} is called uncrossable if
f(V ′) = 0 and f satisfies the following two conditions:

(i) f is symmetric, i.e., f(S) = f(V ′ \ S) for all S ⊆ V ′;
(ii) for any two sets A, B ⊆ V ′ with f(A) = f(B) = 1, either f(A ∩ B) = f(A ∪ B) = 1 or

f(A \ B) = f(B \ A) = 1 holds.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:11

Under the assumption that minimal violated sets can be computed efficiently throughout
the algorithm, the primal-dual algorithm of [17] gives a 2-approximation for the f -connectivity
problem with an uncrossable function f . There is no explicit result in [17] that can be quoted
verbatim and applied for our purposes, so we reference the most relevant lemma from their
work.

▶ Definition 22 (Minimal violated sets). Let f : 2V ′ → {0, 1} be a cut-requirement function
and F ⊆ E′ be an edge-set. A vertex-set S ⊆ V ′ is said to be violated, w.r.t. f and F , if
f(S) = 1 and F ∩ δG′(S) = ∅. We say that S is a minimal violated set if S is inclusion-wise
minimal among all violated sets.

▶ Theorem 23 ([17], Lemma 2.1). Let f : 2V ′ → {0, 1} be an uncrossable function that is
given via a value oracle. Suppose that for any F ⊆ E′ we can compute all minimal violated
sets (w.r.t. f and F) in polynomial time. We can compute a 2-approximate solution to the
f -connectivity problem in polynomial time.

We now describe a two-stage algorithm that produces a 4-approximate (k, 1)-FGC solution
in polynomial time, thereby proving Theorem 4.

Description of Our 4-Approximation Algorithm for (k, 1)-FGC. Our algorithm runs in two
stages. In the first stage, we compute a 2-approximate k-edge connected spanning subgraph
H1 = (V, F1) of G without making any distinction between safe and unsafe edges; since F ∗

is k-edge connected, the k-ECSS instance is feasible. This can be done using Jain’s iterative
rounding algorithm [8]. Next, we compute the collection C = {S ⊊ V : |δ(S) ∩ F1| = k}
of all (minimum) k-cuts in H1. Consider the cut-requirement function f : 2V → {0, 1}
where f(S) is 1 if and only if S ∈ C and F1 ∩ δ(S) ∩ U ̸= ∅. Consider an instance of the
f -connectivity problem for the graph G′ := G − F1 with edge-costs {ce}e∈E\F1 ; note that
F ∗ \ F1 is feasible to this f -connectivity instance. In the second stage, we use Theorem 23 to
compute a 2-approximate solution F2 ⊆ E \ F1 for this f -connectivity instance. We return
the solution F = F1 ⊔ F2.

To prove Theorem 4, we need to argue the following: (i) f is uncrossable; (ii) we can
compute minimal violated sets (w.r.t f and any F ′ ⊆ E \ F1) in polynomial time; (iii) F is a
feasible (k, 1)-FGC solution; (iv) c(F) ≤ 4c(F ∗); (v) the whole algorithm runs in polynomial
time. We defer the proofs of (i) and (ii) to the end of this section. Assuming that they are
true, (v) follows from Theorem 23. The following lemma covers (iii) and (iv).

▶ Lemma 24. The edge-set F is feasible for (k, 1)-FGC and satisfies c(F) ≤ 4c(F ∗).

Proof. We first argue that F is feasible. Since F1 and F2 are edge-disjoint, F is a subgraph
of G. We use the characterization of feasible solutions given by Proposition 20. Let S ⊊ V be
an arbitrary nonempty cut. Since H1 = (V, F1) is a k-edge connected subgraph of G, we have
|F1 ∩ δ(S)| ≥ k. If |F1 ∩ δ(S)| ≥ k + 1, then |F ∩ δ(S)| ≥ k + 1, and we are done. Otherwise,
S is a k-cut in H1, i.e., S ∈ C. If F1 ∩ δ(S) contains only safe edges, then F ∩ δ(S) contains
k safe edges, and we are done. Otherwise, by definition, f(S) = 1. Next, by feasibility of F2
for f -connectivity, we have F2 ∩ δ(S) ̸= ∅. So, |F ∩ δ(S)| = |F1 ∩ δ(S)| + |F2 ∩ δ(S)| ≥ k + 1,
and we are done.

We show that F is 4-approximate by arguing that c(F1) and c(F2) are bounded by 2c(F ∗).
The bound on c(F1) is immediate from the fact that F ∗ is feasible for the k-ECSS instance
considered in Stage 1. Next, by feasibility of F ∗ \ F1 for the f -connectivity instance, we have
c(F2) ≤ 2c(F ∗ \ F1) ≤ 2c(F ∗), so we are done. ◀

FSTTCS 2021

9:12 Approximation Algorithms for Flexible Graph Connectivity

▷ Claim 25. For any F ′ ⊆ E \ F1, we can compute all minimal violated sets w.r.t. f and F ′.

Proof. Since a graph on n vertices has at most O(n2) min-cuts [9], we have |C| = O(|V |2).
Using standard network flow algorithms, we can compute C in polynomial time (for instance,
see [4]). Since we have explicit access to C, we have a value oracle for f . Fix some F ⊆ E \F1.
Any violated set must have f(S) = 1, so there are at most |C| many violated sets. We can
exhaustively go through all violated sets and find the minimal elements. ◁

Lastly, we show that f is uncrossable.

▶ Lemma 26. f is uncrossable.

Proof. We check if the two properties of an uncrossable function hold for f (recall Defin-
ition 21); f(V) = 0 is trivial. Symmetry of f follows from symmetry of cuts in undir-
ected graphs. To check the second property, consider nonempty A, B ⊊ V satisfying
f(A) = f(B) = 1. By definition of f , in the subgraph H1 = (V, F1), both A and B are
(minimum) k-cuts with at least one unsafe edge on their respective boundaries. Let e1
be an unsafe edge in δH1(A) and let e2 be an unsafe edge in δH1(B). Let r ∈ V be an
arbitrary vertex. By symmetry of the cut function, we may assume without loss of gen-
erality that r /∈ A ∪ B. If A ∩ B = ∅, then f(A \ B) = f(B \ A) = 1, so we are done. If
A ⊆ B or A ⊇ B, then f(A ∩ B) = f(A ∪ B) = 1, so we are done. Thus, we may assume
that A ∩ B, V \ (A ∪ B), A \ B, B \ A are all nonempty. By submodularity of the function
d(S) := |δH1(S)|, we get:

|δH1(A ∩ B)| = |δH1(A ∪ B)| = |δH1(A \ B)| = |δH1(B \ A)| = k. (1)

Furthermore, we also have:

F1 ∩ E(A \ B, B \ A) = ∅ and F1 ∩ E(A ∩ B, V \ (A ∪ B)) = ∅, (2)

where E(S, T) denotes the set of edges in G with one endpoint in S and the other endpoint
in T . We finish the proof by doing a case analysis on e1 and e2. By (2), exactly one of
the following happens: (i) e1 ∈ E(A \ B, V \ (A ∪ B)); or (ii) e1 ∈ E(A ∩ B, B \ A). If (i)
happens, then f(A \ B) = f(A ∪ B) = 1. Otherwise, f(A ∩ B) = f(B \ A) = 1. We do a
similar analysis on e2. Exactly one of the following happens: (a) e2 ∈ E(B \ A, V \ (A ∪ B));
or (b) e2 ∈ E(A ∩ B, A \ B). If (a) happens, then f(B \ A) = f(A ∪ B) = 1. Otherwise,
f(A ∩ B) = f(A \ B) = 1. It is easy to verify that for each of the four combinations, we
either have f(A ∩ B) = f(A ∪ B) = 1 or we have f(A \ B) = f(B \ A) = 1. ◀

5 The Capacitated k-Connected Subgraph Problem

In this section we consider the Cap-k-ECSS problem. We are given a multigraph G = (V, E),
nonnegative integer edge-capacities {ue}e, nonnegative edge-costs {ce}e, and a positive
integer k. Our goal is to find a spanning subgraph H = (V, F) such that for all nonempty
sets R ⊊ V we have

∑
e∈δ(R)∩F ue ≥ k, and the cost c(F) is minimized.

Given an instance of the Cap-k-ECSS problem, we may assume without loss of generality
that ue ∈ {1, . . . , k} for all e ∈ E (we can drop edges with zero capacity and replace
edge-capacities ≥ k + 1 by k). We also assume that the instance is feasible. This can
be verified in polynomial time by checking if G has any cut with capacity less than k.
Let umax = maxe∈E ue denote the maximum capacity of an edge in G. Our main result
in this section is a min(k, 2umax)-approximation algorithm for the Cap-k-ECSS problem
(Theorem 5); our algorithm is based on a reduction to the min-cost k arborescence problem.

S. Boyd, J. Cheriyan, A. Haddadan, and S. Ibrahimpur 9:13

Description of Our Algorithm for the Cap-k-ECSS Problem

Let D = (V, A) be the directed graph obtained from G by replacing every edge xy ∈ E by uxy

pairs of bidirected arcs (x, y), (y, x), each with the same cost as the edge xy (thus, each edge
e in G has 2ue corresponding arcs in D, each of cost ce). Designate an arbitrary vertex r ∈ V

as the root. By feasibility of the Cap-k-ECSS instance, we know that D contains an r-out
k-arborescence (see Theorem 9). We use Theorem 10 on (D, c) to obtain a minimum-cost
r-out k-arborescence T ′ in polynomial time. Let F ′ be the set of all edges e ∈ E for which at
least one of the corresponding 2ue arcs in D appears in the optimal r-out k-arborescence T ′.

▶ Lemma 27. The edge-set F ′ obtained by the above algorithm is feasible for the given
Cap-k-ECSS instance and it has cost at most c(T ′).

Proof. Let R ⊊ V \ {r} be an arbitrary nonempty vertex-set that excludes the root vertex r.
Since T ′ contains k arc-disjoint r-out arborescences, |δin

T ′(R)| ≥ k. For each edge e ∈ E, at
most ue of the corresponding arcs in D can appear in the set of T ′-arcs entering R. Thus,∑

e∈δ(R)∩F ′ ue ≥ |δin
T ′(R)| ≥ k, and F ′ is a feasible solution for the Cap-k-ECSS instance, as

required. For any edge e ∈ E, we only include a single copy of e in F ′ whenever any of the
corresponding 2ue arcs appear in T ′, so we have c(F ′) ≤ c(T ′). ◀

We now prove Theorem 5 by showing that F ′ is the desired min(k, 2umax)-approximate
solution.

Proof of Theorem 5. Let (G(V, E), u, c, k) be a feasible instance of the Cap-k-ECSS problem.
Let D = (V, A) be the digraph and T ′ be the r-out k-arborescence as constructed by our
algorithm. Let F ∗ be an optimal solution to the Cap-k-ECSS instance, and let D∗ = (V, A∗)
be the digraph obtained from (V, F ∗) by replacing every edge xy ∈ F ∗ by uxy pairs of
bidirected arcs (x, y), (y, x) each with the same cost as edge xy. Let r ∈ V be the root vertex
fixed by the algorithm. By feasibility of F ∗ (for the Cap-k-ECSS instance), we know that
D∗ contains an r-out k-arborescence. Let T ∗ denote an optimal r-out k-arborescence in
D∗. Since D∗ is a subgraph of D and T ′ is an optimal r-out k-arborescence in D, we have
c(T ′) ≤ c(T ∗). By Lemma 27, c(F ′) ≤ c(T ′), so to prove the theorem it suffices to argue
that c(T ∗) ≤ min(t, 2umax)c(F ∗). To this end, observe that for any edge e ∈ F ∗ there can
be at most 2ue arcs in A∗ by construction of D∗. Hence, c(T ∗) ≤ c(A∗) ≤ 2umaxc(F ∗) holds.
Next, by definition, T ∗ can be partitioned into k (arc-disjoint) r-out arborescences, each of
which can use at most one of the 2ue arcs corresponding to an edge e of G. It follows that
for each edge e ∈ F ∗ at most k of the corresponding 2ue arcs can appear in T ∗. Therefore,
c(T ∗) ≤ kc(F ∗). This completes the proof. ◀

References
1 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible Graph Connectivity.

In Proceedings of the 21st Integer Programming and Combinatorial Optimization Conference,
volume 12125 of Lecture Notes in Computer Science, pages 13–26, 2020. doi:10.1007/
978-3-030-45771-6_2.

2 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible Graph Connectivity.
Mathematical Programming, pages 1–33, 2021. doi:10.1007/s10107-021-01664-9.

3 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Ap-
proximability of Capacitated Network Design. Algorithmica, 72(2):493–514, 2015. doi:
10.1007/s00453-013-9862-4.

FSTTCS 2021

https://doi.org/10.1007/978-3-030-45771-6_2
https://doi.org/10.1007/978-3-030-45771-6_2
https://doi.org/10.1007/s10107-021-01664-9
https://doi.org/10.1007/s00453-013-9862-4
https://doi.org/10.1007/s00453-013-9862-4

9:14 Approximation Algorithms for Flexible Graph Connectivity

4 Lisa Fleischer. Building Chain and Cactus Representations of All Minimum Cuts from
Hao-Orlin in the Same Asymptotic Run Time. Journal of Algorithms, 33(1):51–72, 1999.
doi:10.1006/jagm.1999.1039.

5 Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the Smallest k-Edge Connected Spanning Subgraph by LP-rounding. Networks, 53(4):345–357,
2009. doi:10.1002/net.20289.

6 Michel X. Goemans, Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, Éva Tardos,
and David P. Williamson. Improved Approximation Algorithms for Network Design Problems.
In Proceedings of the 5th Symposium on Discrete Algorithms, pages 223–232, 1994. doi:
10.5555/314464.314497.

7 Michel X. Goemans and David P. Williamson. The Primal-Dual Method for Approximation
Algorithms and its Application to Network Design Problems, chapter 4, pages 144–191. PWS
Publishing Company, Boston, MA, 1997. URL: https://math.mit.edu/~goemans/PAPERS/
book-ch4.pdf.

8 Kamal Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

9 David R. Karger. Global Min-Cuts in RN C, and Other Ramifications of a Simple Min-Cut
Algorithm. In Proceedings of the 4th Symposium on Discrete Algorithms, pages 21–30, 1993.
doi:10.5555/313559.313605.

10 Samir Khuller and Uzi Vishkin. Biconnectivity Approximations and Graph Carvings. Journal
of the ACM, 41(2):214–235, 1994. doi:10.1145/174652.174654.

11 Thomas L. Magnanti and Richard T. Wong. Network Design and Transportation Planning:
Models and Algorithms. Transportation Science, 18(1):1–55, 1984. doi:10.1287/trsc.18.1.1.

12 Polina Rozenshtein, Aristides Gionis, B. Aditya Prakash, and Jilles Vreeken. Reconstructing
an Epidemic Over Time. In Proceedings of the 22nd International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 1835–1844, 2016. doi:10.1145/2939672.2939865.

13 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer-Verlag Berlin Heidelberg, 2003.

14 András Sebö and Jens Vygen. Shorter Tours by Nicer Ears: 7/5-Approximation for the Graph-
TSP, 3/2 for the Path Version, and 4/3 for Two-Edge-Connected Subgraphs. Combinatorica,
34(5):597–629, 2014. doi:10.1007/s00493-014-2960-3.

15 Lawrence V. Snyder, Maria P. Scaparra, Mark S. Daskin, and Richard L. Church. Planning
for Disruptions in Supply Chain Networks, pages 234–257. Institute for Operations Research
and the Management Sciences (INFORMS), 2014. doi:10.1287/educ.1063.0025.

16 Vijay V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, 2003. doi:
10.1007/978-3-662-04565-7.

17 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A Primal-
Dual Approximation Algorithm for Generalized Steiner Network Problems. Combinatorica,
15(3):435–454, 1995. doi:10.1007/BF01299747.

https://doi.org/10.1006/jagm.1999.1039
https://doi.org/10.1002/net.20289
https://doi.org/10.5555/314464.314497
https://doi.org/10.5555/314464.314497
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf
https://doi.org/10.1007/s004930170004
https://doi.org/10.5555/313559.313605
https://doi.org/10.1145/174652.174654
https://doi.org/10.1287/trsc.18.1.1
https://doi.org/10.1145/2939672.2939865
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1287/educ.1063.0025
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/BF01299747

Tight Chang’s-Lemma-Type Bounds for Boolean
Functions
Sourav Chakraborty #

Indian Statistical Institute, Kolkata, India

Nikhil S. Mande 1 #

CWI, Amsterdam, The Netherlands

Rajat Mittal #

Indian Institute of Technology, Kanpur, India

Tulasimohan Molli #

Tata Institute of Fundamental Research, Mumbai, India

Manaswi Paraashar #

Indian Statistical Institute, Kolkata, India

Swagato Sanyal #

Indian Institute of Technology, Kharagpur, India

Abstract
Chang’s lemma (Duke Mathematical Journal, 2002) is a classical result in mathematics, with
applications spanning across additive combinatorics, combinatorial number theory, analysis of
Boolean functions, communication complexity and algorithm design. For a Boolean function f

that takes values in {−1, 1} let r(f) denote its Fourier rank (i.e., the dimension of the span of
its Fourier support). For each positive threshold t, Chang’s lemma provides a lower bound on
δ(f) := Pr[f(x) = −1] in terms of the dimension of the span of its characters with Fourier coefficients
of magnitude at least 1/t. In this work we examine the tightness of Chang’s lemma with respect to
the following three natural settings of the threshold:

the Fourier sparsity of f , denoted k(f),
the Fourier max-supp-entropy of f , denoted k′(f), defined to be the maximum value of the
reciprocal of the absolute value of a non-zero Fourier coefficient,
the Fourier max-rank-entropy of f , denoted k′′(f), defined to be the minimum t such that
characters whose coefficients are at least 1/t in magnitude span a r(f)-dimensional space.

In this work we prove new lower bounds on δ(f) in terms of the above measures. One of our
lower bounds, δ(f) = Ω

(
r(f)2/(k(f) log2 k(f))

)
, subsumes and refines the previously best known

upper bound r(f) = O(
√

k(f) log k(f)) on r(f) in terms of k(f) by Sanyal (Theory of Computing,
2019). We improve upon this bound and show r(f) = O(

√
k(f)δ(f) log k(f)). Another lower

bound, δ(f) = Ω (r(f)/(k′′(f) log k(f))), is based on our improvement of a bound by Chattopadhyay,
Hatami, Lovett and Tal (ITCS, 2019) on the sum of absolute values of level-1 Fourier coefficients
in terms of F2-degree. We further show that Chang’s lemma for the above-mentioned choices of
the threshold is asymptotically outperformed by our bounds for most settings of the parameters
involved.

Next, we show that our bounds are tight for a wide range of the parameters involved, by
constructing functions witnessing their tightness. All the functions we construct are modifications
of the Addressing function, where we replace certain input variables by suitable functions. Our
final contribution is to construct Boolean functions f for which our lower bounds asymptotically
match δ(f), and for any choice of the threshold t, the lower bound obtained from Chang’s lemma is
asymptotically smaller than δ(f).

Our results imply more refined deterministic one-way communication complexity upper bounds
for XOR functions. Given the wide-ranging application of Chang’s lemma to areas like additive
combinatorics, learning theory and communication complexity, we strongly feel that our refinements
of Chang’s lemma will find many more applications.

1 Work mostly done while the author was a postdoc at Georgetown University.
© Sourav Chakraborty, Nikhil S. Mande , Rajat Mittal, Tulasimohan Molli, Manaswi Paraashar, and
Swagato Sanyal;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sourav@isical.ac.in
mailto:nikhil.s.mande@gmail.com
mailto:rmittal@iitk.ac.in
mailto:tulasimohanm@gmail.com
mailto:manaswi.isi@gmail.com
mailto:sanyalswagato@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Communication complexity

Keywords and phrases Analysis of Boolean functions, Chang’s lemma, Parity decision trees, Fourier
dimension

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.10

Related Version Full Version: https://arxiv.org/abs/2012.02335 [6]

Funding R.M. thanks DST (India) for grant DST/INSPIRE/04/2014/001799. S.S. is supported by
an ISIRD Grant from SRIC, IIT Kharagpur. N.S.M. is supported by the NWO through QuantERA
project QuantAlgo 680-91-034.

Acknowledgements T.M. would like to thank Prahladh Harsha and Ramprasad Saptharishi for
helpful discussions.

1 Introduction

Chang’s lemma [8, 14] is a classical result in additive combinatorics. Informally, the lemma
states that all the large Fourier coefficients of the indicator function of a large subset of
an Abelian group reside in a low dimensional subspace. The discovery of this lemma was
motivated by an application to improve Frieman’s theorem on set additions [8]. The lemma
has subsequently found many applications in additive combinatorics and combinatorial
number theory. Chang’s lemma and the ideas developed in Chang’s paper [8] have been used
to prove theorems about arithmetic progressions in sumsets [12, 23], structure of Boolean
functions with small spectral norm [16], and improved bounds for Roth’s theorem on three-
term arithmetic progressions in the integers [24, 4, 5]. Green and Ruzsa [15] used the ideas of
Chang’s lemma to prove a generalization of Frieman’s theorem for arbitrary Abelian groups.
The lemma is known to be sharp for various settings of parameters for the group ZN [13].

In this paper, our focus is a specialization of Chang’s lemma for the Boolean hypercube.
Let f : {−1, 1}n → {−1, 1} be a Boolean function. For any positive real number t (which
we refer to as the threshold) define St := {S ⊆ [n] : |f̂(S)| ≥ 1

t }.
2,3 Viewing elements of

St as vectors in Fn
2 , Chang’s lemma gives a lower bound on δ(f) := Pr[f(x) = −1] (called

the weight of f), in terms of t and the dimension of the span of St (denoted by dim(St)).
Formally, we have the following lemma, referred to as Chang’s lemma in this paper. In the
literature Chang’s lemma is more commonly stated as an upper bound on d in terms of δ(f)
and t. We refer the reader to the full version of our paper for a proof of the equivalence of
the two forms, and also for other missing proofs from this paper.

▶ Lemma 1.1 (Chang’s lemma [8]). There exists a universal constant c > 0 such that the
following is true for every integer n > 0. Let f : {−1, 1}n → {−1, 1} be any function and t

be any positive real number. Let δ(f) := Prx[f(x) = −1] and d = dim(St) > 1. If δ(f) < c,

then δ(f) = Ω
(√

d

t
√

log(t2/d)

)
.

This lemma has found numerous applications in complexity theory and algorithms [2, 7],
analysis of Boolean functions [16, 26], communication complexity [26, 19] and extremal
combinatorics [10]. See [20] for a proof of Lemma 1.1.

2 The function f is implicit in the definition of St and will be clear from context.
3 We refer the reader to Section A for preliminaries on Fourier analysis.

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.10
https://arxiv.org/abs/2012.02335

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:3

In this paper, we investigate the tightness of Lemma 1.1 for three natural choices of
the threshold t based on the Fourier spectrum of the function (see Section 1.1 for details
about these thresholds). We prove additional lower bounds on δ(f), and compare relative
performances of all the bounds under consideration. Our results imply that the bounds
given by Chang’s lemma for the choices of the threshold that we consider are asymptotically
outperformed by one of the bounds we prove for a broad range of the parameters involved.
For most regimes of the parameters we are able to construct classes of functions that witness
the tightness of our bounds.

Interestingly, for each choice of threshold that we consider, dim(St) equals the Fourier
rank of f (denoted by r(f), see Definition A.12). In particular, setting t to be the Fourier
sparsity of f (denoted by k(f)) leads to a very natural question about the relationship among
r(f), k(f) and δ(f) for a Boolean function f . The best known upper bound on r(f) in terms
of k(f) is r(f) = O(

√
k(f) log k(f)) [25]. We improve upon this bound by incorporating δ(f)

into it, and show r(f) = O(
√

k(f)δ(f) log k(f)). Moreover, we also show that this bound is
tight; see Section 1.2 for a detailed discussion.

Throughout this paper, we assume that f is not a constant function or a parity or a
negative parity (unless mentioned otherwise). In other words, k(f), r(f) ≥ 2.

1.1 Thresholds considered for Chang’s lemma
For a Boolean function f , let supp(f) denote the Fourier support of f . In this section, we
discuss and motivate the choices of the threshold t considered in this work.

a) The Fourier sparsity of f . It was shown in [11, Theorem 3.3] that for all S ∈ supp(f),
|f̂(S)| ≥ 1

k(f) . It follows that Sk(f) = supp(f) and hence dim(Sk(f)) = r(f). Moreover, there
exist functions (e.g. f = ANDn) for which dim(St) = 0 for t = o(k(f)), justifying the choice
of threshold k(f).

This choice also leads us to a fundamental structural problem of bounding the weight
of a Boolean function f from below, in terms of its Fourier sparsity and Fourier rank. The
uncertainty principle (see, for example, [17] for a statement and a proof) asserts that δ(f) =
Ω
(

1
k(f)

)
. Chang’s lemma with t = k(f) and the fact that log

(
k(f)2/r(f)

)
= Θ(log k(f))

(Lemma A.16 (part 1)) implies that

δ(f) = Ω
(

1
k(f)

√
r(f)

log k(f)

)
, (1)

thereby subsuming the uncertainty principle (note that r(f)/ log k(f) ≥ 1) and refining it by
incorporating r(f) into the bound.

b) The Fourier max-supp-entropy of f . The next choice of the threshold that we consider
is the Fourier max-supp-entropy of f , denoted by k′(f), which we define to be maxS∈supp(f)

1
|f̂(S)|

(Definition A.15). By its definition k′(f) is the smallest value of t such that St =
supp(f). Since k′(f) ≤ k(f) (see the discussion in the last item), the knowledge of k′(f) can
potentially offer us a more fine-grained lower bound on δ(f) than as in the last item; Chang’s
lemma with t = k′(f) and log

(
k′(f)2/r(f)

)
= Θ(log k′(f)) (Lemma A.16 (part 2)) implies

δ(f) = Ω
(

1
k′(f)

√
r(f)

log k′(f)

)
. (2)

Notice that Equation (2) subsumes the bound in Equation (1).

FSTTCS 2021

10:4 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

In [18] an equivalent statement of the well-known sensitivity conjecture was presented
in terms of k′(f).4 Granularity is another widely-studied measure that is closely associated
with Fourier max-supp-entropy.

c) The Fourier max-rank-entropy of f . Our final choice of the threshold is the Fourier
max-rank-entropy of f , denoted by k′′(f), which we define to be the smallest positive real
number t such that dim(St) = r(f) (Definition A.15). We have that k′′(f) ≤ k′(f) ≤ k(f) by
their definitions. Amongst all settings of the threshold t for which dim(St) = r(f), the value
t = k′′(f) yields the best lower bound from Chang’s lemma. Chang’s lemma with t = k′′(f)
implies

δ(f) = Ω
(

1
k′′(f)

√
r(f)

log (k′′(f)2/r(f))

)
, (3)

which subsumes the bounds in Equations (2) and (1).

1.2 Our contributions
We prove the following results regarding the three natural instantiations of the threshold t

(mentioned in the preceding section) for Chang’s lemma.

a) The Fourier sparsity of f . Recall that Chang’s lemma with threshold t = k(f)
(Equation (1)) implies that δ(f) = Ω

(
1

k(f)

√
r(f)

log k(f)

)
. It was shown in [1] that δ(f) =

Ω
(

1
k(f)

(
r(f)

log k(f)

))
, improving upon this bound asymptotically (note that r(f)/ log k(f) ≥ 1).

In this work we improve their bound further.

▶ Theorem 1.2. Let f : {−1, 1}n → {−1, 1} be any function such that k(f) > 1. Then

δ(f) = Ω
(

1
k(f)

(
r(f)

log k(f)

)2
)

.

Observe that the statement of Theorem 1.2 is equivalent to r(f) = O(
√

k(f)δ(f) log k(f)).
This bound subsumes the bound r(f) = O(

√
k(f) log k(f)) shown by Sanyal [25]. We prove

Theorem 1.2 by incorporating δ(f) in Sanyal’s arguments and thereby refining his proof. See
Section 2.1 for the proof of Theorem 1.2.

We also show that Theorem 1.2 is tight. For nearly all admissible values of ρ and κ

we construct many Boolean functions f such that k(f) = O(κ), r(f) = O(ρ) and δ(f) =

O

(
1
κ

(
ρ

log κ

)2
)

(Theorem 1.4 and Claim B.2). For a comparison with Sanyal’s bound see

Section 1.3.

b) The Fourier max-supp-entropy of f . Recall from Section 1.1 that the Fourier max-
supp-entropy of f , denoted k′(f), is defined as k′(f) = maxS∈supp(f)

1
|f̂(S)|

. It can be shown

that
√

k(f) ≤ k′(f) ≤ k(f)/2 (Lemma A.16 (part 2)). We prove the following lower bound.

▶ Theorem 1.3. Let f : {−1, 1}n → {−1, 1} be any function such that k(f) > 1. Then,

δ(f) = Ω
(

max
{

1
k(f)

(
r(f)

log k(f)

)2
, k(f)

k′(f)2

})
.

4 In [18] log(k′(f)2) is called the Fourier max-entropy while we refer to k′(f) as the Fourier max-supp-
entropy.

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:5

As is evident from the statement, Theorem 1.3 presents two lower bounds, one of which is
Theorem 1.2. The other lower bound δ(f) ≥ k(f)

k′(f)2 is Claim A.17.
Chang’s lemma with the threshold t set to k′(f) (Equation (2)), together with the

observation that log k(f) = Θ(log k′(f)), implies δ(f) = Ω
(

1
k′(f)

√
r(f)

log k(f)

)
. Theorem 1.3

subsumes this bound since

δ(f) = Ω
(

1
k(f)

(
r(f)

log k(f)

)2
· k(f)

k′(f)2

)1/2

= Ω
(

1
k′(f)

√
r(f)

log k(f)

)
,

where the equality follows from r(f)/ log k(f) ≥ 1.
In addition, observe from the last equality above that the bound of Theorem 1.3 is asymp-

totically larger than the bound obtained from Chang’s lemma for t = k′(f) (Equation (2))
except when r(f)/ log k(f) = Θ(1). Theorem 1.4 complements Theorem 1.3 by showing that
for nearly all admissible values of r(f), k(f) and k′(f), there exists a function for which the
larger of the two bounds presented in Theorem 1.3 is tight.

▶ Theorem 1.4. For all ρ, κ, κ′ ∈ N such that κ is sufficiently large, for all constants ϵ > 0
such that log κ ≤ ρ ≤ κ

1
2 −ϵ and κ

1
2 ≤ κ′ ≤ κ, there exists a Boolean function fρ,κ,κ′ such

that r(fρ,κ,κ′) = Θ(ρ), k(fρ,κ,κ′) = Θ(κ), k′(fρ,κ,κ′) = Θ(κ′) and

δ(fρ,κ,κ′) = Θ
(

max
{

1
κ

(
ρ

log κ

)2
,

κ

κ′2

})
.

The range of parameters considered in Theorem 1.4 is justified by Lemma A.16. We prove
Theorem 1.4 in two parts. Fix any ρ, κ such that log κ ≤ ρ ≤ κ

1
2 −ϵ for some constant ϵ > 0.

First, for each value of κ′ ∈ [κ log κ
ρ , κ] we construct a function f for which the first lower

bound on δ(f) from Theorem 1.3 is tight (Claim B.2). Next, for each value of κ′ ∈ [κ 1
2 , κ log κ

ρ]
we construct a function f for which the second lower bound on δ(f) from Theorem 1.3 is
tight (Claim B.3). See Figure 1 for a graphical visualization of the bounds in Theorem 1.3
for any fixed values of ρ and κ.

κ
ρ log κ κ

1

k-line: δ = ρ2/(κ log2 κ)

k′-curve: δ = κ/(κ′)2

CL-k′-curve : δ = √
ρ/(κ′ log κ′)

Chang’s lemma Bound

Our Bounds

Fourier max-Entropy (κ′) −→

w
ei

gh
t(

δ)
−→

Figure 1 This plot is constructed for any fixed values of ρ, κ for which log κ ≤ ρ ≤
√

κ, and
depicts the relationship between δ(f) and k′(f) for functions f with r(f) = Θ(ρ) and k(f) = Θ(κ).
For any fixed values of ρ, κ, we will refer to this plot as the (ρ, κ)-k′-plot. Chang’s lemma implies
that Boolean functions lie above the CL-k′-curve. Theorem 1.3 improves upon Chang’s lemma and
shows that Boolean functions lie above both the k-line and the k′-curve, highlighted by the dark
grey region in the figure. Roughly speaking, Theorem 1.4 exhibits functions that lie on the boundary
of the dark grey region described by the k-line and the k′-curve.

FSTTCS 2021

10:6 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

c) The Fourier max-rank-entropy of f . Recall from Section 1.1 that the Fourier max-rank-
entropy of f , denoted k′′(f), is the smallest positive real number t such that dim(St) = r(f)
. It can be shown that max

{√
r(f), r(f)

log k(f)

}
≤ k′′(f) ≤ k(f) (Lemma A.16 (part 2)). We

prove the following lower bound.

▶ Theorem 1.5. Let f : {−1, 1}n → {−1, 1} be any function such that k(f) > 1. Then,

δ(f) = Ω
(

max
{

1
k(f)

(
r(f)

log k(f)

)2
,

r(f)
k′′(f) log k(f)

})
.

Theorem 1.5 yields a better lower bound than Chang’s lemma with the threshold t = k′′(f)
(Equation (3)), except when r(f) < (log k(f))2 (see the caption of Figure 2). Theorem 1.5
presents two lower bounds: the first one is Theorem 1.2, and the second one is Lemma 2.5.
Lemma 2.5 is proven by strengthening a bound due to [9] on the sum of absolute values
of level-1 Fourier coefficients of a Boolean function in terms of its F2-degree. A proof of
Theorem 1.5 can be found in Section 2.2.

We also show that for nearly all admissible values of r(f), k(f) and k′′(f), there exist
functions for which the larger of the two bounds presented in Theorem 1.5 is nearly tight.

▶ Theorem 1.6. For all ρ, κ, κ′′ ∈ N such that κ is sufficiently large, for all ϵ > 0 such
that log κ ≤ ρ ≤ κ

1
2 −ϵ and ρ ≤ κ′′ ≤ κ there exists a Boolean function fρ,κ,κ′′ such that

r(fρ,κ,κ′′) = Θ(ρ), k(fρ,κ,κ′′) = Θ(κ), k′′(fρ,κ,κ′′) = Θ(κ′′) and

δ(fρ,κ,κ′′) = Θ
(

max
{

1
κ

(
ρ

log κ

)2
,

ρ

κ′′ log(κ′′/ρ)

})
.

The range of parameters considered in Theorem 1.6 is justified by Lemma A.16. The-
orem 1.6 is proved in two parts. Fix any ρ, κ such that log κ ≤ ρ ≤ κ

1
2 −ϵ for some constant

ϵ > 0. First, for each value of κ′′ ∈ [κ log κ
ρ , κ] we construct a function f for which the first

lower bound on δ(f) from Theorem 1.5 is tight (Claim B.5). In fact these are the same
functions that are used to prove the first bound in Theorem 1.4. Next, for each value of
κ′′ ∈ [eρ, κ log κ

ρ] we construct a function f for which δ(f) = Θ(ρ
κ′′ log(κ′′/ρ)) (Claim B.4).

From the above discussion one may verify that for every ρ, κ that we consider and for every
κ′′ ≥ ρ · κΩ(1), the function that we construct witnesses tightness of the lower bound in
Theorem 1.5.

In general, for all settings of ρ, κ and κ′′ that we consider, the upper bound on δ(f)
from Theorem 1.6 is off by a factor of at most O(log κ) from the lower bound in Theorem 1.5.
See Figure 2 for a graphical visualization of the bounds in Theorem 1.5 for any fixed values
of ρ and κ.

Dominating Chang’s lemma for all thresholds. Our final contribution is to show that
there exists a function for which: our lower bounds (Theorem 1.3 and 1.5) asymptotically
match the weight, but for any choice of the threshold the lower bound obtained from Chang’s
lemma (Lemma 1.1) is asymptotically smaller than the weight. See [6, Section 7] in the full
version of our paper for a proof of the below claim.

▷ Claim 1.7 (Beating Chang’s lemma for all thresholds). For any integer t > 4 there exists a
function f : {−1, 1}log t × {−1, 1}t log t → {−1, 1} such that

δ(f) = 1
t .

For all real x > 0 for which dim(Sx) > 1, we have
√

dim(Sx)
x
√

log(x2/ dim(Sx))
= O

(1
t3/2

)
.

1
k(f)

(
r(f)

log k(f)

)2
= Ω

(
1
t

)
,

k(f)
k′(f)2 = Ω

(
1
t

)
and r(f)

k′′(f) log k(f) = Ω
(

1
t

)
.

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:7

√
ρκ

1√
ρ

κ
ρ log κ κ

1

k-line: δ = ρ2/(κ log2 κ)

k′′-curve: δ = ρ/(κ′′ log κ)

CL-k′′-curve: δ = √
ρ/
(
κ′′ log

(
κ′′2/ρ

))

Chang’s lemma Bound

Our Bounds

max-Entropy (κ′′) −→

w
ei

gh
t

(δ
)

−→

Figure 2 This plot is constructed for any fixed values of ρ, κ for which log κ ≤ ρ ≤
√

κ, and depicts
the relationship between δ(f) and k′′(f) for functions f with r(f) = Θ(ρ) and k(f) = Θ(κ). For any fixed
values of ρ, κ, we will refer to this plot as (ρ, κ)-k′′-plot. Chang’s lemma implies that Boolean functions lie
above the CL-k′′-curve. Theorem 1.5 improves upon Chang’s lemma and shows that Boolean functions lie
above both the k-line and the k′′-curve, highlighted by the dark grey region in the figure. Although the
picture indicates that the CL-k′′-curve is better than the k′′-curve for certain ranges of κ′′, this is actually
only possible for certain values of ρ and κ. This is because the CL-k′′-curve and the k′′-curve intersect at√

ρκ1/
√

ρ, which is less than √
ρ if ρ ≥ (log κ)2. By Lemma A.16 we know that for any function f on this

plot, the range of k′′(f) is between max{√
ρ, ρ/ log κ} and κ. Thus our bounds in Theorem 1.5 dominate

those given by the CL-k′′-curve in all (ρ, κ)-k′′ plots where ρ ≥ log2 κ.

In particular, Claim 1.7 shows that our bounds can be strictly stronger than those given
by Chang’s lemma, in the following sense.

All the lower bounds on δ(f) from Theorems 1.3 and 1.5 are tight, as witnessed by f

from Claim 1.7.
For the function f from Claim 1.7, no matter what threshold x is chosen in Lemma 1.1,
the best possible lower bound on δ(f) that we get can get from Lemma 1.1 is Ω

(1
t3/2

)
.

This is polynomially smaller than 1/t, the actual weight of f .

1.3 Applications of our results
An application of our result is an enhanced understanding of the bound r(f) =
O(
√

k(f) log k(f)) proven by Sanyal [25]. This bound is a special case of Theorem 1.2
for δ(f) = Θ(1). It is not known whether the log k(f) term is required in Sanyal’s upper
bound on r(f) (when f equals the Addressing function, r(f) = Ω(

√
k(f)), see Definition A.10

and Observation A.19). For all the functions we construct witnessing the tightness of the
bound in Theorem 1.2, δ(f) = o(1). We prove Theorem 1.2 by generalizing Sanyal’s proof.
As stated before, our bound is tight in this generality, i.e. the logarithmic factor is required
in the upper bound on r(f). This sheds light on the presence of the logarithmic term in the
bound r(f) = O(

√
k(f) log k(f)).

Also, Fourier sparsity and Fourier rank of f have intimate connections with the commu-
nication complexity of functions of the form F := f ◦ XOR. The Fourier sparsity of f equals
the real rank (rank(MF)) of the communication matrix MF of F , and the Fourier rank of f

equals the deterministic (and even exact quantum) one-way communication complexity of
F [22]. Theorem 1.2 thus implies an improved upper bound of O(

√
k(f)δ(f) log k(f)) on

the one-way communication complexity of F in these models, which asymptotically beats
the best known upper bound of O(

√
rank(MF)) even for two-way protocols [26, 21], for the

special case of functions of this form (when δ(f) = o(1/ log k)).

FSTTCS 2021

10:8 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

Given the wide-ranging application of Chang’s lemma to areas like additive combinatorics,
learning theory and communication complexity, we strongly feel that our refinements of
Chang’s lemma will find many more applications.

2 Lower bound proofs

For lower bounds on δ(f) of a Boolean function f , we need to prove two theorems: The-
orems 1.3 and 1.5. The proof of Theorem 1.3 is given in Section 2.1 and the proof of
Theorem 1.5 is given in Section 2.2.

2.1 Proof of Theorem 1.3 (and Theorem 1.2)

Remember that we defined the Fourier max-supp-entropy of a Boolean function f , denoted
by k′(f), to be maxS∈supp(f)

1
|f̂(S)|

.

The main aim of this section is to give a lower bound on δ(f) with respect to k′(f) for a
Boolean function f (Theorem 1.3).

We first prove Theorem 1.2 which implies Theorem 1.3 (together with Claim A.17).
Theorem 1.2 can be viewed as an upper bound of O(

√
k(f)δ(f) log k(f)) on the Fourier

rank of f . In order to prove Theorem 1.2, we give an algorithm (Algorithm 1) which takes a
Boolean function f as input and outputs a set of O(

√
δ(f)k(f) log k(f)) parities such that

any assignment of these parities makes the function constant. From Observation A.14, this
implies an upper bound of O(

√
δ(f)k(f) log k(f)) on Fourier rank of the function. We start

by formally describing this algorithm. The central ingredient in the algorithm is a lemma
in [26, Lemma 28].

▶ Lemma 2.1 ([26]). Let f : {−1, 1}n → {−1, 1} a function. There is an affine subspace
V ⊆ {−1, 1}n of co-dimension at most 3

√
δ(f)k(f) such that f is constant on V .

Recall that for a function f : {−1, 1}n → {−1, 1}, a set of parities Γ and an assignment
b ∈ {−1, 1}Γ, we define the restriction f |(Γ,b) := f |{x∈{−1,1}n:χγ (x)=bγ for all γ∈Γ}. Also let
BΓ := {b ∈ {−1, 1}Γ : f |(Γ,b) is not constant}.

Algorithm 1

Input: A function f : {−1, 1}n → {−1, 1}.
Output: A set Γ of parities whose evaluation determines f .
Initialization: fmin ← f , Γ← ∅.
while BΓ is non-empty do

(a) Update Γ: Let Γ′ be the smallest set of parities, such that, there exists
b ∈ {−1, 1}Γ′ for which fmin|(Γ′,b) is constant,

Γ← Γ ∪ Γ′.

(b) Update fmin: Define b∗ := argminb∈BΓ

{
δ(f |(Γ,b))
k(f |(Γ,b))

}
, and update

fmin ← f |(Γ,b∗).

end
Return Γ.

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:9

Since number of parities are finite and we fix at least one parity at each iteration of Step a
of the while loop, the algorithm terminates. The termination condition implies that the
algorithm outputs a set of parities Γ such that for any assignment b ∈ {−1, 1}Γ of Γ, the
restricted function f(Γ,b) becomes constant.

The only remaining step is to show is that the number of parities fixed in Algorithm 1
is O(

√
δ(f)k(f) log k(f)). For this we define an equivalence relation and observe a few

properties of restricted functions (restricted according to an assignmen t of a set of parities).

Equivalence relation for a set of parities

Let f be the input to Algorithm 1, first we define an equivalence relation given a set of
parities over the variables of f . Given a set of parities Γ, define the following equivalence
relation among parities in supp(f).

∀γ1, γ2 ∈ supp(f), γ1 ≡ γ2 iff γ1 + γ2 ∈ span(Γ). (4)

Let ℓ be the number of equivalence classes according to the equivalence relation for Γ.
For j ∈ [ℓ], let kj be the size of the j-th equivalence class. Since the equivalence classes form
a partition of supp(f), we have

▶ Observation 2.2. Following the notation of the paragraph above,
∑ℓ

j=1 kj = k(f).

Let β1, . . . , βℓ ∈ supp(f) be some representatives of the equivalence classes. For j ∈ [ℓ],
let βj + αj,1, . . . , βj + αj,kj

be the elements of the j-th equivalence class. This notation gives
a compact representation of f in terms of these equivalence classes. For all x ∈ {−1, 1}n,

f(x) =
ℓ∑

j=1
Pj(x)χβj

(x), (5)

where

Pj(x) =
kj∑

r=1
f̂(βj + αj,r) · χαj,r

(x). (6)

Note that Pj are non-zero multilinear polynomials and depend only on the parities in Γ. So,
fixing parities in Γ collapses all the parities in an equivalence class to their representative,
thereby making Pj ’s constant.

We will denote Γ after the i-th iteration of the while loop by Γ(i) (so Γ(0) = ∅). Let f
(i)
min

be the selected function fmin after the i-th iteration (thus f
(0)
min = f).

With the above properties of restricted functions we are ready to prove the main technical
lemma needed to show Theorem 1.2.

▶ Lemma 2.3. Let f : {−1, 1}n → {−1, 1} a function. Suppose Γ be a set of parities and
ℓ be the number of equivalence classes of supp(f) under the equivalence relation defined by
in Equation (4), Then, there exists a b ∈ {−1, 1}Γ such that f |(Γ,b) is non-constant and
δ(f |(Γ,b))
k(f |(Γ,b)) ≤

4k(f)δ(f)
ℓ2 .

Proof. For the sake of succinctness, when Γ is clear from the context, let Vb = {x ∈ {−1, 1}n :
∀γ ∈ Γ, xγ = bγ}, for all b ∈ {−1, 1}Γ, and f |b = f |{x:x∈Vb}.

Since we are interested in a non-constant f |b, define k{∅}c(f) to be the number of non-zero
non-empty monomials in Fourier representation of f . We first need to prove the following
two bounds on the expected values of δ(f |b) and k{∅}c(f |b).

Eb [δ(f |b)] = δ(f),
Eb

[
k{∅}c(f |b)

]
≥ ℓ2

4k(f) .

FSTTCS 2021

10:10 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

Expected value of δ(f |b). Since
{

Vb : b ∈ {−1, 1}Γ(i)}
form a partition on {−1, 1}n and

all partitions are of the same size, we get the expected value of δ(f |b).

Eb [δ(f |b)] = δ(f). (7)

Expected value of k{∅}c(f |b). From Equation (5), for all b ∈ {−1, 1}Γ and for all x ∈
{−1, 1}n,

f |b(x) =
ℓ∑

j=1
Pj(b)χβj

(x). (8)

For each j ∈ [ℓ] and b ∈ {−1, 1}Γ, let Ij(b) be the indicator function for Pj(b) ̸= 0,

Ij(b) =
{

1 if Pj(b) ̸= 0
0 otherwise.

From Equation (6), each Pj is a polynomial having monomials {χαj,r
: r ∈ [kj]} with Fourier

sparsity of Pj being equal to kj . Since each Pj is a non-zero polynomial, by Lemma A.2

Eb [Ij(b)] = Prb∼{−1,1}Γ [Pj(b) ̸= 0] ≥ 1
kj

. (9)

We calculate the expectation of k{∅}c(f |b).

Eb

[
k{∅}c(f |b)

]
= Eb

ℓ−1∑
j=1

Ij(b)

 by Equation (8)

=
ℓ−1∑
j=1

Eb [Ij(b)] by linearity of expectation

≥
ℓ−1∑
j=1

1
kj

by Equation (9)

≥ (ℓ− 1)2∑ℓ−1
j=1 kj

by Cauchy-Schwarz inequality

≥ ℓ2

4k(f) . by Observation 2.2

To finish the proof of the theorem, we use bounds on the two expected values,5

Eb [δ(f |b)]
Eb

[
k{∅}c(f |b)

] ≤ 4k(f)δ(f)
ℓ2

⇐⇒ Eb

[
δ(f |Vb

)− 4k(f)δ(f)
ℓ2 k{∅}c(f |Vb

)
]
≤ 0. by linearity of expectation

5 this part of our proof is inspired by a proof of the Cheeger’s inequality in spectral graph theory.
See, for example, the proof of Fact 2 in https://people.eecs.berkeley.edu/~luca/expanders2016/
lecture04.pdf.

https://people.eecs.berkeley.edu/~luca/expanders2016/lecture04.pdf
https://people.eecs.berkeley.edu/~luca/expanders2016/lecture04.pdf

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:11

If δ(f |Vb
) − 4k(f)δ(f)

ℓ2 k{∅}c(f |Vb
) = 0 for all b, then pick any non-constant f |b. Otherwise,

there exists a b0 such that δ(f |Vb0
)− 4k(f)δ(f)

ℓ2 k{∅}c(f |Vb0
) < 0. Since this equation can only

be satisfied when k{∅}c(f |Vb0
) > 0, f |Vb0

is not constant. Dividing by k{∅}c(f |Vb0
),

δ(f |b0)
k(f |b0) ≤

δ(f |b0)
k{∅}c(f |b0) ≤

4k(f)δ(f)
ℓ2 ,

and f |b0 is non-constant. ◀

Lemma 2.3 allows us to bound the number of parities fixed in the i-th iteration (in terms
of the decrease in number of equivalence classes).

▶ Lemma 2.4. Suppose f is given as input to Algorithm 1. Consider the i-th iteration of
Algorithm 1. Let qi be the be number of parities fixed in Step a of the i-th iteration of the
while loop, and ℓi be the number of equivalence classes after Step a of the i-th iteration.
Then

qi

(ℓi−1 − ℓi)
≤

6
√

δ(f)k(f)
ℓi−1

.

Proof. Recall that Γ = Γ(i) after the i-th of Step a of Algorithm 1. Again, for the sake
of succinctness, let Vb = {x ∈ {−1, 1}n : ∀γ ∈ Γ(i), xγ = bγ}, for all b ∈ {−1, 1}Γ(i)

, and
f |b = f |{x:x∈Vb}. Let fmin be the function chosen after the i-th iteration of Step b of
Algorithm 1. Since Step b of Algorithm 1 chooses fmin to be a non-constant function such
that weight-to-sparsity ratio is minimized, from Lemma 2.3 we have,

δ(fmin)
k(fmin) ≤

4k(f)δ(f)
ℓ2

i−1
. (10)

Write every f |b as in Equation (5), and define S(i) :=
⋃

b∈{−1,1}Γ(i) supp(f |b). We now
prove that |S(i)| = ℓi.
|S(i)| ≤ ℓi: Follows from the representation in Equation (5), since each supp(f |b) is a
subset of {χ

β
(i)
j

| j ∈ [ℓi]}.

|S(i)| ≥ ℓi: Since P
(i)
j is a non-zero polynomial, there exists an assignment to parities in

Γ(i), such that, P
(i)
j is non-zero. Thus, for all j ∈ [ℓi], we have χ

β
(i)
j

∈ S(i).

Since |S(i)| = ℓi, Lemma 2.1 guarantees that qi ≤ 3
√

k(fmin)δ(fmin). Since fmin becomes
constant after fixing these qi parities, every parity in supp(fmin) is paired with at least one
other parity in supp(fmin) for the equivalence class with respect to Γ(i).6 This implies that
ℓi−1 − ℓi ≥ k(fmin)

2 Combining the two inequalities in the last paragraph we have,

qi

(ℓi−1 − ℓi)
≤ 6

√
δ(fmin)
k(fmin) .

From Equation (10),

qi

(ℓi−1 − ℓi)
≤

6
√

δ(f)k(f)
ℓi−1

. (11)

◀

6 There is a boundary case (k(f) = 1) which can be dealt with separately, as in [25, Lemma 3.4]. For
readability, we assume k(f) ≥ 2.

FSTTCS 2021

10:12 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We only need to show that the number of parities fixed in Algorithm 1
is O(

√
δ(f)k(f) log k(f)) (Observation A.14). Suppose the while loop runs for t iterations.

Let qi be the number of queries made in Step a of Algorithm 1 in the i-th iteration. From
Lemma 2.3, we have

qi ≤
6
√

δ(f)k(f)
ℓi−1

(ℓi−1 − ℓi)

Thus when Algorithm 1 is run of f , the total number of queries made by the algorithm is

t∑
i=1

qi ≤ 6
√

δ(f)k(f)
t∑

i=1

(ℓi−1 − ℓi)
ℓi−1

≤ 6
√

δ(f)k(f)
t∑

i=1

(
1

ℓi−1
+ 1

ℓi−1 − 1 . . . + 1
ℓi + 1

)

≤ 6
√

δ(f)k(f)
ℓ0∑

i=1

1
i

≤ 6
√

δ(f)k(f) log ℓ0 = 6
√

δ(f)k(f) log k(f).

Observation A.14 implies r(f) = O(
√

δ(f)k(f) log k(f)). ◀

Along with Theorem 1.2, this proves Theorem 1.3.

Proof of Theorem 1.3. The bound δ(f) = Ω
(

1
k(f)

(
r(f)

log k(f)

)2
)

follows from Theorem 1.2

and the bound δ(f) = Ω
(

k(f)
(k′(f))2

)
from Claim A.17. ◀

2.2 Proof of Theorem 1.5
Recall that we defined max-rank-entropy of a Boolean function f , denoted by k′′(f), to be
argmint{dim(St)} = r(f). The main aim of this section is to give a lower bound on δ(f) with
respect to k′′(f) for a Boolean function f (Theorem 1.5). The second bound of Theorem 1.5
is given by the following lemma.

▶ Lemma 2.5. Let f : {−1, 1}n → {−1, 1} be any function such that k(f) > 1. Then,
δ(f) = Ω

(
r(f)

k′′(f) log k(f)

)
.

Together with Theorem 1.2 proved in Section 2.1, Lemma 2.5 implies Theorem 1.5. We
now give the proof of Lemma 2.5.

Lemma 2.5 gives a lower bound of Ω
(

r(f)
k′′(f) log k(f)

)
on δ(f). The crucial ingredient for

this lower bound is Lemma 2.7, which is a refinement of the following theorem.

▶ Theorem 2.6 ([9, Theorem 13]). Let f : {−1, 1}n → {−1, 1} be any function such that
degF2

(f) = d. Then,
∑

i∈[n] |f̂({i})| ≤ 4d.

▶ Lemma 2.7. For any Boolean function f ,
∑n

i=1 |f̂(i)| = O(δ(f)degF2
(f)).

The proof of Lemma 2.7 for a Boolean function f essentially applies Theorem 2.6 on
the xor of disjoint copies of f . The only difference in the statement of Lemma 2.7 and
Theorem 2.6 is that the right hand side becomes O(δ(f) · degF2

(f)) instead of 4degF2
(f).

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:13

Proof of Lemma 2.7. Assume δ(f) ≤ 1/4 (otherwise Theorem 2.6 implies
∑n

i=1 |f̂(i)| =
O(δ(f)d)). Define F : {−1, 1}nt → {−1, 1} to be F (x(1), . . . , x(t)) := f(x(1))× . . .× f(x(t)),
where t is a parameter to be fixed later, and x(i) ∈ {−1, 1}n for all i ∈ [t]. Since degF2

(F) =
degF2(f), Theorem 2.6 implies∑

S⊆[nt]
|S|=1

|F̂ (S)| = O(d). (12)

Since (1− x)1/x is a decreasing function in x for x ∈ (0, 1/2], we have

(1− x)1/x ≥ 1/4 for all x ∈ (0, 1/2]. (13)

Expressing the Fourier coefficients of F in terms of the Fourier coefficients of f ,

∑
S⊆[nt]
|S|=1

|F̂ (S)| = t · f̂(∅)t−1
n∑

i=1
|f̂(i)|

=
(

1 + 1
2δ(f)

)
· (1− 2δ(f))

1
2δ(f)

n∑
i=1
|f̂(i)|

Choosing t = 1 + 1
2δ(f) , and since f̂(∅) = 1− 2δ(f)

≥
(

1 + 1
2δ(f)

)
·
(

1
4

) n∑
i=1
|f̂(i)| by Equation (13)

≥ 1
8δ(f) ·

n∑
i=1
|f̂(i)|.

Now, Equation (12) implies the desired bound,
∑n

i=1 |f̂(i)| = O(δ(f)d). ◀

We would like to extend the upper bound of Lemma 2.7 to any basis of span(supp(f))
instead of just the standard basis of the set of parities.

▶ Corollary 2.8. Let f : {−1, 1}n → {−1, 1} be any function with degF2
(f) = d. Suppose

S ⊆ supp(f) is a basis of span(supp(f)), then∑
S∈S
|f̂(S)| = O(δ(f)d) = O(δ(f) log k(f)).

Proof. The main idea of the proof is to do a basis change on parities and construct another
function h, the corollary will follow by applying Lemma 2.7 on h.

Recall that we denote both a subset of [n] and the corresponding indicator vector in Fn
2 ,

by the same notation.
Let S = {S1, . . . , Sr(f)}, extend S to S ′ = {S1, . . . , Sr(f), Sr(f)+1, . . . , Sn}, a complete

basis of Fn
2 . Observe that f̂(Si) = 0, for i ∈ {r(f) + 1, . . . , n} (since S spans supp(f)). Fix

the change of basis matrix B ∈ Fn×n
2 with i-th column as Si, i ∈ [n].

Consider the function h : {−1, 1}n → R satisfying ĥ(α) = f̂(Bα), for all α ∈ Fn
2 . By

Claim A.4, h is Boolean and degF2
(h) = degF2

(f). Using Lemma 2.7,
∑

i∈[n] |ĥ({i})| =
O(δ(f)d). From the definition of h, ĥ(ei) = f̂(Si) for i ∈ [r(f)] and ĥ(ei) = 0 for i ∈
{r(f) + 1, . . . , n}, we have

∑
S∈S |f̂(S)| = O(δ(f)d). The second equality in the statement

of the lemma follows from Lemma A.3. ◀

FSTTCS 2021

10:14 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

Proof of Lemma 2.5. Observe that every term on the left hand side of Corollary 2.8 is
bigger than 1/k′′(f), giving the required lower bound on δ(f) and finishing the proof of
Lemma 2.5. ◀

Proof of Theorem 1.5. From Lemma 2.5 we have δ(f) = Ω
(

r(f)
k′′(f) log k(f)

)
, and from The-

orem 1.2 we have δ(f) = Ω
(

r(f)2

k(f) log2 k(f)

)
. ◀

The following corollary combines the lower bounds on δ(f) from Theorem 1.5 and
Lemma 1.1 by setting k′′(f) as the threshold.

▶ Corollary 2.9. Let f : {−1, 1}n → {−1, 1} be any function such that k(f) > 1. Then,

δ(f) = Ω
(

max
{

r(f)2

k(f) log2 k(f)
,

r(f)
k′′(f) log k(f) ,

√
r(f)

k′′(f) log(k′′(f)2/r(f)

})
.

3 Proof techniques for upper bound results

In this section we give the overview of our two upper bound results, Theorems 1.4 and
1.6. For presenting the overview of the proofs of these theorems we will use (ρ, κ)-k′-plots
(Figure 1) and (ρ, κ)-k′′-plots (Figure 2), respectively. In an (ρ, κ)-k′-plot ((ρ, κ)-k′′-plot,
respectively) we will refer to the “intersection point” as the point of intersection between the
k-line and k′-curve (the point of intersection between the k-line and k′′-curve, respectively).
Which intersection point we are referring to should be clear from the context.

3.1 Proof techniques for Theorem 1.4
To prove Theorem 1.4, we split our goal into two natural parts: constructing functions on
the k-line and constructing functions on the k′-curve. Both the classes of functions are
modifications of the Addressing function (Definition A.10). In these modifications, all or
some of the target variables of the Addressing function are replaced with an AND function or
a Bent function or a combination of them. We first provide a description of some functions
that lie on the intersection point. While we do not require this, we choose to describe these
functions in order to provide more intuition.

Construction of functions at the intersection point in any (ρ, κ)-k′-plot. Note that a
function lies at the intersection point when

k′(f) = k(f) log(k(f))
r(f) . (14)

Thus, we want to construct a function f with k(f) = Θ(κ), r(f) = Θ(ρ), k′(f) = Θ
(

κ log κ
ρ

)
and δ(f) = ρ2/κ(log2 κ). In particular, we want to construct functions for all ρ, κ satisfying
log κ ≤ ρ ≤ κ

1
2 . Note that, the Addressing function ADt : {−1, 1}log t+t → {−1, 1} has

sparsity t2, rank (t + log t), max-supp-entropy t and weight 1/2 (Observation A.19) and
thus, ADt satisfies Equation (14). This only gives functions on the intersection point on all
(ρ, κ)-k′-plots where ρ = Θ(

√
κ), while we have to exhibit such functions for all (ρ, κ)-k′-plots

where log κ ≤ ρ = O (
√

κ).
Our next step is to tweak ADt in such a way that the rank of the new function f does

not change significantly while the sparsity and max-supp-entropy both increase by the same
multiplicative factor. This would ensure that the resulting function satisfies Equation (14).
If the resulting function’s weight decreases to the required value, we would have a function
at the intersection point.

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:15

In order to tweak ADt, we consider a special kind of composed function f := ADt ◦target g

(see Definition A.11 for a precise definition) obtained by replacing each target variable in the
addressing function with a function g where each copy of g acts on a set of new variables. We
prove a composition lemma (Lemma B.1) that gives the properties of such composed functions.
Due to the structure of the Fourier spectrum of the Addressing function, Lemma B.1 gives
us r(f) ≈ t · r(g), k(f) ≈ t2 · k(g), k′(f) = t · k′(g) and δ(f) = δ(g).

So, if g is a function on a small number of variables (say log t′) with near-maximal sparsity
and max-supp-entropy (Θ(t′)), then the resulting function satisfies Equation (14). The AND
function is a natural choice for g. We denote the resulting function by ADt,t′ , and this is a
function at the intersection point for all plots by suitably varying t and t′.

Constructing functions on the k-line. We start with ADt,t′ , the function at the intersection
point in (ρ, κ)-k′-plots. We modify ADt,t′ in such a way that its sparsity, rank and weight do
not change much, while the max-supp-entropy increases. We replace a single ANDlog t′ in
ADt,t′ by ANDlog a for some suitable a > t, denote the new function by ADt,t′,a. A suitable
setting of the parameters t, t′ and a yields functions on the k-line for all plots (Claim B.2).

Constructing functions on the k′-curve of the (ρ, κ)-k′-plot. We start with ADt,t′ at
the intersection point on (ρ, κ/ℓ)-k′-plot (for some parameter ℓ > 0). We modify ADt,t′ in
such a way that its rank and weight do not change, the sparsity increases by a multiplicative
factor of ℓ and the max-supp-entropy increases by a factor of

√
ℓ. The new function f will

be on the k′-curve in the (ρ, κ)-k′-plot because k(f)
k′(f)2 = k(ADt,t′)

k′(ADt,t′)2 = δ(ADt,t′) = δ(f). Note

that k′(f) ≈ κ log(κ)
ρ

√
ℓ

, thus making ℓ suitably large yields functions on the k′-curve for all

ρ ≤ κ′ ≤ κ log(κ)
ρ for all plots.

We now change ADt,t′ to have the properties mentioned above. We modify each ANDlog t′

in ADt,t′ as follows: replace a single variable x by x · B, where B is a bent function on
log ℓ new variables. We denote this new inner function by ABt′,ℓ, and ADt ◦target ABt′,ℓ by
AABt,t′,ℓ. The effect of changing ANDlog t′ to ABt′,ℓ keeps its rank and weight roughly the
same, while increasing its sparsity by a factor of ℓ and increasing its max-supp-entropy by
a factor of

√
ℓ. We show, using our composition lemma (Lemma B.1), that the properties

of ADt ◦target ANDlog t′ and ADt ◦target ABt′,ℓ change in a similar fashion. Thus, a suitable
setting of the parameters t, t′, ℓ yields functions on the k′-curve for all plots (Claim B.3).

3.2 Proof techniques for Theorem 1.6
We split our goal into two parts: constructing functions on the k-line when κ

ρ log κ ≤ κ′′ ≤ κ,
and constructing functions on the k′′-curve when κ ≤ κ

ρ log κ. To construct functions on
the k-line, we use the functions ADt,t′,a constructed for the proof of Theorem 1.4, since
k′(ADt,t′,a) = k′′(ADt,t′,a).

For constructing functions on the k′′-curve, we need to construct functions f such that

δ(f) = Θ
(

r(f)
k′′(f) log (k′′(f)/r(f))

)
. (15)

We will use a similar technique as in our construction of functions on the k′-curve in
Theorem 1.4. We start from the function ADt,t′ at the intersection point. Note that ADt,t′

satisfies Equation (15). We modify ADt,t′ such that the rank, weight and max-rank-entropy
changes very little but the sparsity increases by a multiplicative parameter 2p. We achieve
this by replacing a variable (say x) in ADt,t′ with x ·AND(y1, . . . , yp), where x and yis are all

FSTTCS 2021

10:16 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

variables in ADt,t′ , but for any i, x and yi do not appear in the same monomial (Claim B.4).
The new function f still satisfies Equation (15). This places f on the k′′-curve in a plot
corresponding to the same rank as that of ADt,t′ , but where the sparsity increases by a factor
of 2p. By suitably setting p, t and t′, we obtain functions on the k′′-curve for all plots. This
proves the second bound in Theorem 1.6.

4 Conclusions

In this paper, for Boolean functions f , we study the relationship between weight and other
Fourier-analytic measures namely rank, sparsity, max-supp-entropy and max-rank-entropy.
For a threshold t > 0, Chang’s lemma gives a lower bound on the weight of a Boolean
function f in terms of dim

({
S ⊆ [n] : |f̂(S)| ≥ 1

t

})
. We consider three natural thresholds t

in Chang’s lemma, namely k(f), k′(f) and k′′(f), yielding three lower bounds on weight in
terms of these measures. We prove new lower bounds on weight in Theorems 1.3 and 1.5,
and our bounds dominate all the above-mentioned bounds from Chang’s lemma for a wide
range of parameters.

When log k(f) = Θ(r(f)), the function f = AND already shows that all the above lower
bounds are tight. To consider all other feasible relationships between k(f) and r(f), we
divide our investigation of these lower bounds into two different parts. In the first part,
we vary over all feasible settings of r(f), k(f) and k′(f), and construct functions that
witness tightness of our lower bounds in Theorem 1.3 for nearly all such feasible settings
(Theorem 1.4). In the second part, we vary over all feasible settings of r(f), k(f) and k′′(f),
and construct functions that witness near-tightness of our lower bounds in Theorem 1.5 for
nearly all such feasible settings (Theorem 1.6). These functions are constructed by carefully
composing the Addressing function with suitable inner functions. We show a composition
lemma (Lemma B.1), which relates the properties of the composed function with those of
the inner functions; this allows us to come up with functions that match our lower bounds.

We also construct functions for which our lower bounds are asymptotically stronger than
the lower bounds obtained from Chang’s lemma for all choices of threshold (see Claim 1.7).
All functions that we construct in this work might be of independent interest.

Open Problems. Since our proof of Theorem 1.2 is a generalization of the proof of the
upper bound r(f) = O(

√
k(f) log k(f)) due to Sanyal [25], it sheds light on the presence of

the log k factor in Sanyal’s upper bound. This still leaves the following question open: do
there exist Boolean functions f for which r(f) = ω(

√
k(f))?

There are some ranges of parameters where we were not able to construct functions with
upper bounds matching our lower bounds from Theorem 1.5. It will be interesting to see if
our techniques can be extended to cover these ranges as well.

All thresholds t considered for Chang’s lemma in this work satisfy dim({S ⊆ [n] : |f̂(S)| ≥
1
t }) = r(f). It is an interesting problem to obtain Chang’s-lemma-type bounds for thresholds
for which this dimension is strictly less than r(f).

References
1 Srinivasan Arunachalam, Sourav Chakraborty, Troy Lee, Manaswi Paraashar, and Ronald

de Wolf. Two new results about quantum exact learning. In 46th International Colloquium on
Automata, Languages, and Programming, ICALP 2019, volume 132 of LIPIcs, pages 16:1–16:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:17

2 Eli Ben-Sasson, Noga Ron-Zewi, Madhur Tulsiani, and Julia Wolf. Sampling-based proofs
of almost-periodicity results and algorithmic applications. In 41st International Colloquium
on Automata, Languages, and Programming ICALP 2014, volume 8572 of Lecture Notes in
Computer Science, pages 955–966. Springer, 2014.

3 Anna Bernasconi and Bruno Codenotti. Spectral analysis of Boolean functions as a graph
eigenvalue problem. IEEE Trans. Computers, 48(3):345–351, 1999. doi:10.1109/12.755000.

4 Thomas F Bloom. A quantitative improvement for Roth’s theorem on arithmetic progressions.
Journal of the London Mathematical Society, 93(3):643–663, 2016.

5 Thomas F Bloom and Olof Sisask. Breaking the logarithmic barrier in Roth’s theorem on
arithmetic progressions. arXiv preprint, 2020. arXiv:2007.03528.

6 Sourav Chakraborty, Nikhil S. Mande, Rajat Mittal, Tulasimohan Molli, Manaswi Paraashar,
and Swagato Sanyal. Tight chang’s-lemma-type bounds for boolean functions. CoRR,
abs/2012.02335, 2020. arXiv:2012.02335.

7 Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint
satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.

8 Mei-Chu Chang. A polynomial bound in Freiman’s theorem. Duke mathematical journal,
113(3):399–419, 2002.

9 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
generators from the second Fourier level and applications to AC0 with parity gates. In
10th Innovations in Theoretical Computer Science Conference, ITCS, pages 22:1–22:15, 2019.
doi:10.4230/LIPIcs.ITCS.2019.22.

10 Ehud Friedgut, Jeff Kahn, Gil Kalai, and Nathan Keller. Chvátal’s conjecture and correlation
inequalities. J. Comb. Theory, Ser. A, 156:22–43, 2018.

11 Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wimmer.
Testing Fourier dimensionality and sparsity. SIAM J. Comput., 40(4):1075–1100, 2011.
doi:10.1137/100785429.

12 Ben Green. Arithmetic progressions in sumsets. Geometric and Functional Analysis GAFA,
12(3):584–597, 2002.

13 Ben Green. Some constructions in the inverse spectral theory of cyclic groups. Combinatorics,
Probability and Computing, 12(2):127–138, 2003.

14 Ben Green. Spectral structure of sets of integers. In Fourier analysis and convexity, pages
83–96. Springer, 2004.

15 Ben Green and Imre Z. Ruzsa. Freiman’s theorem in an arbitrary abelian group. Journal of
the London Mathematical Society, 75(1):163–175, 2007.

16 Ben Green and Tom Sanders. Boolean functions with small spectral norm. Geometric and
Functional Analysis GAFA, 18:144–162, 2008.

17 Tom Gur and Omer Tamuz. Testing Booleanity and the uncertainty principle. Chic. J. Theor.
Comput. Sci., 2013, 2013.

18 Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the sensitivity conjecture.
Theory of Computing, 4:1–27, 2011. doi:10.4086/toc.gs.2011.004.

19 Kaave Hosseini, Shachar Lovett, and Grigory Yaroslavtsev. Optimality of linear sketching
under modular updates. In 34th Computational Complexity Conference, CCC 2019, volume
137 of LIPIcs, pages 13:1–13:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

20 Russell Impagliazzo, Cristopher Moore, and Alexander Russell. An entropic proof of Chang’s
inequality. SIAM J. Discret. Math., 28(1):173–176, 2014.

21 Shachar Lovett. Communication is bounded by root of rank. Journal of the ACM (JACM),
63(1):1–9, 2016.

22 Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR functions.
CoRR, abs/0909.3392, 2009. arXiv:0909.3392.

23 Tom Sanders. Additive structures in sumsets. Mathematical Proceedings of the Cambridge
Philosophical Society, 144(2):289–316, 2008.

24 Tom Sanders. On Roth’s theorem on progressions. Annals of Mathematics, 174:619–636, 2011.

FSTTCS 2021

https://doi.org/10.1109/12.755000
http://arxiv.org/abs/2007.03528
http://arxiv.org/abs/2012.02335
https://doi.org/10.4230/LIPIcs.ITCS.2019.22
https://doi.org/10.1137/100785429
https://doi.org/10.4086/toc.gs.2011.004
http://arxiv.org/abs/0909.3392

10:18 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

25 Swagato Sanyal. Fourier sparsity and dimension. Theory of Computing, 15(11):1–13, 2019.
doi:10.4086/toc.2019.v015a011.

26 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier sparsity, spectral
norm, and the log-rank conjecture. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 658–667, 2013. doi:10.1109/FOCS.2013.76.

A Preliminaries

All logarithms in this paper are taken to be base 2. We use the notation [n] to denote the
set {1, 2, . . . , n}. When necessary, we assume t is a power of 2. We use the notation 1n

(respectively, (−1)n) to denote the n-bit string (1, 1, . . . , 1) (respectively, (−1,−1, . . . ,−1)).
For a function f : {−1, 1}n → {−1, 1}, its F2-degree, denoted by degF2

(f), is the degree
of its unique F2-polynomial representation. Throughout this paper, we often identify subsets
of [n] with their corresponding characteristic vectors in Fn

2 . Thus when we refer to linear
algebraic measures of a collection of subsets of [n], we mean the measure on the corresponding
subset of Fn

2 (where Fn
2 is viewed as an F2-vector space).

Throughout this paper, we assume that f is not a constant function or a parity or a
negative parity, unless mentioned otherwise.

A.1 Fourier analysis of Boolean functions
Consider the vector space of functions from {−1, 1}n to R equipped with the following inner
product.

⟨f, g⟩ := 1
2n

∑
x∈{−1,1}n

f(x)g(x).

For a set S ⊆ [n], define a parity function (which we also refer to as characters) χS :
{−1, 1}n → {−1, 1} by χS(x) =

∏
i∈S xi. The set of parity functions {χS : S ⊆ [n]} forms

an orthonormal basis for this vector space. Hence, every function f : {−1, 1}n → R has a
unique representation as

f =
∑

S⊆[n]

f̂(S)χS ,

where f̂(S) = ⟨f, χS⟩ for all S ⊆ [n]. The coefficients
{

f̂(S) : S ⊆ [n]
}

are called the
Fourier coefficients of f . Define the Fourier ℓ1-norm of a function f : {−1, 1}n → R by
∥f̂∥1 :=

∑
S⊆[n] |f̂(S)|. The Fourier support of f , denoted by supp(f), is defined as

supp(f) =
{

S ⊆ [n] : f̂(S) ̸= 0
}

.

▶ Remark A.1. In the literature, Fourier support is generally denoted by supp(f̂). For ease
of notation we drop the hat symbol above f . A similar convention has been adopted in the
remaining parts of the paper.
Let f : {−1, 1}n → R be any function. The Fourier sparsity of f , denoted by k(f), is defined
as k(f) = |supp(f)|. For simplicity we assume that k(f) ≥ 2 for all Boolean functions f

considered in this paper (unless explicitly mentioned otherwise). We often simply refer to
the Fourier sparsity as sparsity. For ease of notation, we sometimes abuse notation and say
that the elements of the Fourier support of f are the characters

{
χS : S ⊆ [n], f̂(S) ̸= 0

}
,

rather than the corresponding sets.
We require the following lemma (see, for example, [17]).

https://doi.org/10.4086/toc.2019.v015a011
https://doi.org/10.1109/FOCS.2013.76

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:19

▶ Lemma A.2 (Uncertainty Principle). Let f : {−1, 1}n → R be a polynomial and let Un

denote the uniform distribution on {−1, 1}n. Then,

Pr
x∼Un

[f(x) ̸= 0] ≥ 1
k(f) .

We also require the following lemma relating the F2-degree of a Boolean function and its
Fourier sparsity (see, for example, [3]).

▶ Lemma A.3. Let f : {−1, 1}n → {−1, 1} be any function with k(f) > 1. Then,

degF2
(f) ≤ log k(f).

The next claim shows that degF2(f) does not change under a change of basis over the
Fourier domain.

▷ Claim A.4. Let f : {−1, 1}n → {−1, 1} be any function and let B ∈ Fn×n
2 be an invertible

matrix. Define the function fB : {−1, 1}n → R as

f̂B(α) = f̂(Bα) for all α ∈ Fn
2 ,

Then fB is Boolean valued and degF2(fB) = degF2(f).

The following corollary follows from [9, Theorem 13] and Lemma A.3.

▶ Corollary A.5. Let f : {−1, 1}n → {−1, 1} be any function, and let S ⊆ supp(f) be a basis
of span(supp(f)). Then,∑

S∈S
|f̂(S)| ≤ 4 log k(f).

We now define notions of restriction of a function f : {−1, 1}n → {−1, 1} to a subset
A ⊆ {−1, 1}n.

▶ Definition A.6 (Restriction). Let f : {−1, 1}n → {−1, 1} and A ⊆ {−1, 1}n. The restriction
of f to A is the function f |A : A→ {−1, 1} defined as f |A(x) = f(x) for all x ∈ A.

▶ Definition A.7 (Affine Restriction). Let f : {−1, 1}n → {−1, 1}, let Γ be a set of parities
and b ∈ {−1, 1}Γ be an assignment to these parities. Define the function f |(Γ,b) to be the
restriction of f to the affine subspace obtained by fixing parities in Γ according to b. That is,

f |(Γ,b) := f |{x∈{−1,1}n:χγ (x)=bγ for all γ∈Γ}.

A.2 Fourier expansions and properties of some standard functions
For any integer n > 0, define the function ANDn : {−1, 1}n → {−1, 1} by ANDn(x) = −1 if
x = (−1)n, and 1 otherwise. We drop the subscript n when it is clear from the context.

▶ Definition A.8 (Bent functions). A function f : {−1, 1}n → {−1, 1} is said to be a bent
function if |f̂(S)| = |f̂(T)| for all S, T ⊆ [n].

▶ Definition A.9 (Indicator function). For any integer n ≥ 1 and b ∈ {−1, 1}n, define the
function Ib : {−1, 1}n → {0, 1} by

Ib(x) =
{

1 x = b,

0 otherwise.

FSTTCS 2021

10:20 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

▶ Definition A.10 (Addressing function). For any integer t ≥ 2, define the Addressing function
ADt : {−1, 1}log t × {−1, 1}t → {−1, 1} by

ADt(x, y) = ybin(x),

where x ∈ {−1, 1}log t and y ∈ {−1, 1}t, and bin(x) denotes the integer in [t] whose binary
representation is given by x (where −1’s are viewed as 1 in the string x, and 1’s are viewed
as 0). We refer to the x-variables as addressing variables, and the y-variables as target
variables.

We next define a way of modifying the Addressing function that is of use to us. In this
modification, we replace target variables by functions, each acting on disjoint variables.

▶ Definition A.11 (Composed addressing functions). Let t ≥ 2, ℓ1, . . . , ℓt ≥ 1 be any integers.
Let gi : {−1, 1}ℓi → {−1, 1} be any functions for i ∈ [t]. Define the function ADt ◦target
(g1, . . . , gt) : {−1, 1}log t × {−1, 1}ℓ1+···+ℓt → {−1, 1} by

ADt ◦target (g1, . . . , gt)(x, y1, . . . , yt) = ADt(x, g1(y1), . . . , gt(yt)),

where x ∈ {−1, 1}log t and yi ∈ {−1, 1}ℓi for all i ∈ [t].

For any function g : {−1, 1}s → {−1, 1}, we use the notation ADt ◦target g to denote the
function ADt ◦target (g, g, . . . , g) : {−1, 1}log t × {−1, 1}ts → {−1, 1}.

A.3 Fourier-analytic measures of Boolean functions

We now introduce a few Fourier-analytic measures on Boolean functions that we use through-
out the rest of the paper, and state some important relationships between them. Recall that
we use the notation dim(S) to denote the dimension of the span of the set S.

▶ Definition A.12 (Fourier rank). Let f : {−1, 1}n → {−1, 1} be any function. Define the
Fourier rank of f , denoted r(f), by

r(f) = dim(supp(f)).

We often refer to Fourier rank as simply rank. Sanyal [25] showed the following upper bound
on the rank of Boolean functions in terms of their sparsity.

▶ Theorem A.13 ([25, Theorem 1.2]). Let f : {−1, 1}n → {−1, 1} be any function. Then

r(f) = O(
√

k(f) log k(f)).

We require the following observation which gives a simple upper bound on the rank of a
Boolean function.

▶ Observation A.14. Let f : {−1, 1}n → {−1, 1} be any function and Γ be a set of parities.
If for all b ∈ {−1, 1}Γ the restricted function f |(Γ,b) is constant then r(f) ≤ |Γ|.

Recall that for any function f : {−1, 1}n → {−1, 1} and any real t > 0, we define St := {S ⊆
[n] : |f̂(S)| ≥ 1/t} (we suppress the dependence of St on f as the underlying function will be
clear from context).

S. Chakraborty, N. S. Mande, R. Mittal, T. Molli, M. Paraashar, and S. Sanyal 10:21

▶ Definition A.15. Let f : {−1, 1}n → {−1, 1} be any function. Define the Fourier max-
supp-entropy of f , denoted k′(f), by

k′(f) := argmin
t
{St = supp(f)} .

Equivalently,

k′(f) := max
S∈supp(f)

{
1

|f̂(S)|

}
.

Define the Fourier max-rank-entropy of f , denoted k′′(f), by

k′′(f) := argmin
t
{dim(St) = r(f)} .

We often refer to the Fourier max-supp-entropy and Fourier max-rank-entropy as simply
max-supp-entropy and max-rank-entropy, respectively.

▶ Lemma A.16 (Relationships between parameters). Let f : {−1, 1}n → {−1, 1} be any
function. Then the following inequalities hold.
1. log k(f) ≤ r(f) = O(

√
k(f) log k(f)).

2.
√

k(f) ≤ k′(f) ≤ k(f)/2.
3. max

{√
r(f), r(f)/(4 log k(f))

}
≤ k′′(f) ≤ k′(f).

▷ Claim A.17. Let f : {−1, 1}n → {−1, 1} a function with k(f) ≥ 2. Then

δ(f) = Ω
(

k(f)
k′(f)2

)
.

▷ Claim A.18. Let f : {−1, 1}n → {−1, 1} be any function. Then

∥f̂∥1 ≤ 3
√

k(f)δ(f).

We require the following observation about the rank, sparsity, max-supp-entropy, max-
rank-entropy and weight of the addressing function, ADt, which follows immediately from
definitions and first principles. We omit its proof.

▶ Observation A.19. Let t ≥ 2 be any positive integer. Then the rank, sparsity, max-supp-
entropy, max-rank-entropy and weight of ADt are (t + log t), t2, t, t and 1/2, respectively.

B Upper bound proofs

The following lemma is a useful tool for our upper bounds. We refer the reader to [6, Section
6.2.1] in the full version of our paper for a proof.

▶ Lemma B.1 (Composition lemma). Let t ≥ 2, m ≥ 1 be any positive integers, and let
g : {−1, 1}m → {−1, 1} be a non-constant function such that there exists a non-empty set
S ⊆ [m] with 0 ̸= |ĝ(S)| ≤ |ĝ(∅)|. Let f : {−1, 1}log t+mt → {−1, 1} be defined as

f = ADt ◦target g.

Then

r(f) = t · r(g) + log t, (16)
k(f) = 1 + t2(k(g)− 1), (17)

k′(f) = t · k′(g), (18)
k′′(f) = t · k′′(g), (19)

δ(f) = δ(g). (20)

FSTTCS 2021

10:22 Tight Chang’s-Lemma-Type Bounds for Boolean Functions

B.1 Setting parameters in our constructed functions
In this section we state the main claims that go into proving Theorems 1.4 and 1.6. Recall
that these theorems require us to exhibit functions which achieve certain bounds. Claims B.2
and B.3 correspond to the bounds in Theorem 1.4. Claims B.4 and B.5 correspond to the
bounds in Theorem 1.6. All functions referred to below are informally defined in Section 3.
See the full version of our paper [6, Section 6.1] for formal definitions and [6, Sections 6.2,
6.3] for proofs of these claims.

▷ Claim B.2. For all ρ, κ, κ′ ∈ N such that κ is sufficiently large, for all ϵ > 0 such that
log κ ≤ ρ ≤ κ

1
2 −ϵ and κ log κ

ρ ≤ κ′ ≤ κ, for t = 2ρ
log κ , t′ = κ log2 κ

ρ2 and a = 2κ′ log κ
ρ ,

Ω(ϵρ) = r(ADt,t′,a) = O(ρ).
k(ADt,t′,a) = Θ(κ).
k′(ADt,t′,a) = Θ(κ′).

δ(ADt,t′,a) = Θ
(

1
κ

(
ρ

log κ

)2
)

.

▷ Claim B.3. For all ρ, κ, κ′ ∈ N such that κ is sufficiently large, for all constants ϵ > 0, such
that κ1/2 ≤ κ′ ≤ (κ log κ)/ρ and log κ ≤ ρ ≤ κ

1
2 −ϵ for t = 2ρ

log κ , t′ = 4κ′2

κ and ℓ = 2
(

κ log κ
κ′ρ

)2
,

Ω(ϵρ) = r(AABt,t′,ℓ) = O(ρ).
k(AABt,t′,ℓ) = Θ(κ).
k′(AABt,t′,ℓ) = Θ(κ′).
δ(f) = O

(
κ

κ′2

)
.

▷ Claim B.4. For all ρ, κ, κ′′ ∈ N such that κ is sufficiently large, for all constants ϵ > 0 such
that log κ ≤ ρ ≤ κ1/2−ϵ, eρ ≤ κ′′ ≤ κ log κ

ρ , for t = 2ρ
log(κ′′/ρ) , t′ = κ′′

ρ log (κ′′/ρ), p = log
(4κ

κ′′

)
,

r(mADt,t′,p) = Θ(ρ).
Ω(κ) = k(mADt,t′,p) = O(κ/ϵ).
k′′(mADt,t′,p) = Θ(κ′′).
δ(mADt,t′,p) = ρ

κ′′ log(κ′′/ρ) .

▷ Claim B.5. For all ρ, κ, κ′ ∈ N such that κ is sufficiently large, for all ϵ > 0 such that
log κ ≤ ρ ≤ κ

1
2 −ϵ and κ log κ

ρ ≤ κ′′ ≤ κ, there exists a constant c ≥ 1 such that the following
holds for t = 2ρ

log κ , t′ = cκ log2 κ
ρ2 and a = 2cκ′′ log κ

ρ .
Ω(ϵρ) = r(ADt,t′,a) = O(ρ).
k(ADt,t′,a) = Θ(κ).
k′′(ADt,t′,a) = Θ(κ′′).

δ(ADt,t′,a) = Θ
(

1
κ

(
ρ

log κ

)2
)

.

Approximate Trace Reconstruction via Median
String (In Average-Case)
Diptarka Chakraborty #

National University of Singapore, Singapore

Debarati Das #

Basic Algorithm Research Copenhagen (BARC), University of Copenhagen, Denmark

Robert Krauthgamer #

Weizmann Institute of Science, Rehovot, Israel

Abstract
We consider an approximate version of the trace reconstruction problem, where the goal is to recover
an unknown string s ∈ {0, 1}n from m traces (each trace is generated independently by passing s

through a probabilistic insertion-deletion channel with rate p). We present a deterministic near-linear
time algorithm for the average-case model, where s is random, that uses only three traces. It runs in
near-linear time Õ(n) and with high probability reports a string within edit distance Õ(p2n) from s,
which significantly improves over the straightforward bound of O(pn).

Technically, our algorithm computes a (1 + ϵ)-approximate median of the three input traces. To
prove its correctness, our probabilistic analysis shows that an approximate median is indeed close to
the unknown s. To achieve a near-linear time bound, we have to bypass the well-known dynamic
programming algorithm that computes an optimal median in time O(n3).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Trace Reconstruction, Approximation Algorithms, Edit Distance, String
Median

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.11

Related Version Full Version: https://arxiv.org/abs/2107.09497

Funding Diptarka Chakraborty: Work partially supported by NUS ODPRT Grant, WBS No. R-252-
000-A94-133.
Robert Krauthgamer : Work partially supported by ONR Award N00014-18-1-2364, the Israel Science
Foundation grant #1086/18, and a Minerva Foundation grant, and by the Israeli Council for Higher
Education (CHE) via the Weizmann Data Science Research Center.

1 Introduction

Trace Reconstruction. One of the most common problems in statistics is to estimate an
unknown parameter from a set of noisy observations (or samples). The main objectives
are (1) to use as few samples as possible, (2) to minimize the estimation error, and (3) to
design an efficient estimation algorithm. One such parameter-estimation problem is trace
reconstruction, where the unknown quantity is a string s ∈ Σn, and the observations are
independent traces, where a trace is a string that results from s passing through some noise
channel. The goal is to reconstruct s using a few traces. (Unless otherwise specified, in this
paper we consider Σ = {0, 1}.) Various noise channels have been considered so far. The most
basic one only performs substitutions. A more challenging channel performs deletions. Even
more challenging is the insertion-deletion channel, which scans the string s and keeps the
next character with probability 1− p, deletes it with probability p/2, or inserts a uniformly

© Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:debaratix710@gmail.com
mailto:robert.krauthgamer@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.11
https://arxiv.org/abs/2107.09497
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Approximate Trace Reconstruction via Median String (In Average-Case)

randomly chosen symbol (without processing the next character) with probability p/2, for
some noise-rate parameter p ∈ [0, 1). We denote this insertion-deletion channel by Rp(s), see
Section 2 for a formal definition.1

The literature studies mostly two variants of trace reconstruction. In the worst-case
variant, the unknown string s is an arbitrary string from Σn, while in the average-case
variant, s is assumed to be drawn uniformly at random from Σn. The trace reconstruction
problem finds numerous applications in computational biology, DNA storage systems, coding
theory, etc. Starting from early 1970s [30], various other versions of this problem have been
studied, including combinatorial channels [37, 38], smoothed complexity [12], coded trace
reconstruction [13], and population recovery [3, 44].

We focus on the average-case variant, where it is known that exp(O(log1/3 n)) samples
suffice to reconstruct a (random) unknown string s over the insertion-deletion channel [28]. On
the other hand, a recent result [9] showed that Ω̃(log5/2 n) samples are necessary, improving
upon the previous best lower bound of Ω̃(log9/4 n) [27]. We emphasize that all these upper
and lower bounds are for exact trace reconstruction, i.e., for recovering the unknown string x

perfectly (with no errors). A natural question proposed by Mitzenmacher [43] is whether such
a lower bound on the sample complexity can be bypassed by allowing approximation, i.e.,
by finding a string z that is “close” to the unknown string s. One of the most fundamental
measures of closeness between a pair of strings z and z′, is their edit distance, denoted
by ED(z, z′) and defined as the minimum number of insertion, deletion, and substitution
operations needed to transform z into z′. Observe that a trace generated from s via an
insertion-deletion channel Gp has expected edit distance about pn from the unknown string s

(see Section 3). We ask how many traces (or samples) are required to construct a string z at
a much smaller edit distance from the unknown s. (Since the insertion-deletion channel has
no substitutions, we also do not consider substitutions in our analysis of the edit distance.)

A practical application of average-case trace reconstruction is in the portable DNA-based
data storage system. In the DNA storage system [23, 51], a file is preprocessed by encoding it
into a DNA sequence. This encoded sequence is randomized using a pseudo-random sequence,
and thus the final encoding sequence could be treated as a (pseudo-)random string. The
stored (encoded) data is retrieved using next-generation sequencing (like single-molecule
real-time sequencing (SMRT) [52] that involves 12 − 18%, which generates several noisy
copies (traces) of the stored data via some insertion-deletion channel. The final step is
to decode back the stored data with as few traces as possible. Currently, researchers use
multiple sequence alignment algorithms to reconstruct the trace [55, 47]. Unfortunately,
such heuristic algorithms are notoriously difficult to analyze rigorously to show a theoretical
guarantee. However, the preprocessing step also involves error-correcting code to encode the
strings. Thus it suffices to reconstruct the original string up to some small error (depending
on the error-correcting codes used). This specific application gives one motivation to study
approximate trace reconstruction.

Our main contribution is to show that it is sufficient to use only three traces to reconstruct
the unknown string up to a small edit error.

1 In the literature, an insertion-deletion channel with different probabilities for insertion and for deletion
has been studied. For simplicity in exposition, we consider a single error probability throughout this
paper, however our results can easily be generalized to different insertion and deletion probabilities.
Another possible generalization is to allow substitutions along with insertions and deletions. Again, for
simplicity, we do not consider substitutions, but with slightly more careful analysis our results could be
extended.

D. Chakraborty, D. Das, and R. Krauthgamer 11:3

▶ Theorem 1. There is a constant c0 > 0 and a deterministic algorithm that, given as input
a noise parameter p ∈ (0, c0], and three traces from the insertion-deletion channel Rp(s) for
a uniformly random (but unknown) string s ∈ {0, 1}n, outputs in time Õ(n) a string z that
satisfies Pr[ED(s, z) ≤ O(p2 log(1/p)n)] ≥ 1− n−1.

The probability in this theorem is over the random choice of s and the randomness of
the insertion-deletion channel Rp. We note that the term log(1/p) in the estimation error
ED(s, z) can be shaved by increasing the alphabet size to poly(1/ϵ). An edit error of O(p2n)
is optimal for three traces, because in expectation O(p2n) characters of s are deleted in two
of the three traces, and look as if they are inserted to s in one of the three traces (which
occurs in expectation for even more characters).

Our theorem demonstrates that the number of required traces exhibits a sharp contrast
between exact and approximate trace reconstruction. In fact, approximate reconstruction
not only beats the Ω(log5/2 n) lower bound for exact reconstruction, but surprisingly uses
only three traces! We conjecture that the estimation error ED(s, z) can be reduced further
using more than three traces. We believe that our technique can be useful here, but this is
left open for future work.

▶ Conjecture 2. The estimation error ED(s, z) in Theorem 1 can be reduced to O(ϵpn) for
arbitrarily small ϵ > 0, using poly(1/ϵ) traces.

This conjecture holds for ϵ < 1/n, as follows from known bounds for exact reconstruction [28],
and perhaps suggests that a number of traces that is sub-polynomial in 1/ϵ it suffices for all
ϵ > 0.

Median String. As mentioned earlier, a common heuristic to solve the trace reconstruction
problem is multiple sequence alignment, which can be formulated equivalently (see [25] and
the references therein) as the problem of finding a median under edit distance. For general
context, the median problem is a classical aggregation task in data analysis; its input is a set
S of points in a metric space relevant to the intended application, and the goal is to find a
point (not necessarily from S) with the minimum sum of distances to points in S, i.e.,

min
y

∑
x∈S

d(y, x). (1)

Such a point is called a median (or geometric median in a Euclidean space). For many
applications, it suffices to find an approximate median, i.e., a point in the metric with
approximately minimal objective value (1) . The problem of finding an (approximate) median
has been studied extensively both in theory and in applied domains, over various metric
spaces, including Euclidean [15] (see references therein for an overview), Hamming (folklore),
the edit metric [53, 34, 46], rankings [19, 2, 32], Jaccard distance [14], Ulam [8], and many
more [21, 41, 6].

The median problem over the edit-distance metric is known as the median string prob-
lem [33], and finds numerous applications in computational biology [25, 50], DNA storage
system [23, 51], speech recognition [33], and classification [39]. This problem is known to be
NP-hard [18, 46] (even W[1]-hard [46]), and can be solved by standard dynamic program-
ming [53, 34] in time O(2mnm) when the input has m = |S| strings of length n each. From
the perspective of approximation algorithms, a multiplicative 2-approximation to the median
is straightforward (this works in every metric space by simply reporting the best among
the input strings, i.e., y∗ ∈ S that minimizes the objective). However, no polynomial-time

FSTTCS 2021

11:4 Approximate Trace Reconstruction via Median String (In Average-Case)

algorithm is known to break below 2-approximation (i.e., achieve factor 2− δ for fixed δ > 0)
for the median string problem, despite several heuristic algorithms and results for special
cases [7, 35, 20, 48, 1, 26, 42, 8].

Although the median string (or equivalently multiple sequence alignment) is a common
heuristic for trace reconstruction [55, 47], to the best of our knowledge there is no definite
connection known between these two problems. We show that both the problems are roughly
the same in the average-case model. It is not difficult to show that any string close to the
unknown string is an approximate median. To see this, we can show that for a set S of m

traces of an (unknown) random string s, their optimal median objective value is at least
(1−O(ϵ))pnm, for any ϵ ∈ [110p log(1/p), 1/6], with high probability (see the full version). On
the other hand, the median objective value with respect to s itself is at most (1 + ϵ)pnm, for
any ϵ > 0, with high probability. Hence, the unknown string s is an (1 + O(ϵ))-approximate
median of S, for any ϵ ∈ [110p log(1/p), 1/6], and by the triangle inequality, every string close
(in edit distance) to s is also an approximate median of S. One of the major contributions of
this paper is the converse direction, showing that given a set of traces of an unknown string,
any approximate median of the traces is close (in edit distance) to the unknown string. This
is true even for three traces.

▶ Theorem 3. For a large enough n ∈ N and a noise parameter p ∈ (0, 0.001), let the string
s ∈ {0, 1}n be chosen uniformly at random, and let s1, s2, s3 be three traces generated by the
insertion-deletion channel Rp(s). If xmed is a (1 + ϵ)-approximate median of {s1, s2, s3} for
ϵ ∈ [110p log(1/p), 1/6], then Pr[ED(s, xmed) ≤ O(ϵ) · OPT] ≥ 1− n−3, where OPT denotes the
optimal median objective value of {s1, s2, s3}.

An immediate consequence (see Corollary 14) is that for every 3 ≤ m < nO(1) traces, every
(1 + ϵ)-approximate median xmed satisfies ED(s, xmed) ≤ O(ϵ) OPT

m .
Thus if we could solve any of the two problems (even approximately), we get an approx-

imate solution to the other problem. E.g., the current best (exact) trace reconstruction
algorithm for the average-case [28] immediately gives us an n1+o(1) time algorithm to find
an (1 + O(ϵ))-approximate median of a set of (at least exp(O(log1/3 n))) traces. (Note,
to apply the result of [28], we need at least exp(O(log1/3 n)) traces.) We leverage this
interplay between the two problems to design an efficient algorithm for approximate trace
reconstruction. Since one can compute the (exact) median of three strings s1, s2, s3 in time
O(|s1| · |s2| · |s3|) [53, 34], the above theorem immediately provides us the unknown string up
to some small edit error in time O(n3). We further reduce the running time to near-linear
by cleverly partitioning each of the traces into polylog n-size blocks and then applying the
median algorithm on these blocks. Finally, we concatenate all the block-medians to get an
“approximate” unknown string, leading to Theorem 1. One may further note that Theorem 1
also provides a (1 + O(ϵ))-approximate median for any set of traces in the average-case (again
due to Theorem 3).

Taking the smallest possible ϵ in Theorem 3, we get that for three traces generated from
s, with high probability ED(s, xmed) ≤ Õ(p2n). In comparison, it is not hard to see that
with high probability OPT is bounded by roughly 3pn. We conjecture that as the number
of traces increases, the median string converges to the unknown string s. In particular,
ED(s, xmed) ≤ ϵn when using poly(1/ϵ) traces (instead of just three), with high probability.
We hope that our technique can be extended to prove the above conjecture, but we leave it
open for future work.

The main implication of this conjecture is an Õ(n) time approximate trace reconstruction
algorithm, for any fixed ϵ > 0, as follows. It is straightforward to extend our approximate
median finding algorithm (in Section 5) to more input strings. (For brevity, we present only

D. Chakraborty, D. Das, and R. Krauthgamer 11:5

for three input strings.) For m strings, the running time would be n(log n)O(m), and thus
even for m = poly(1/ϵ) strings this running time is n polylog n. As a consequence, we will
be able to reconstruct in Õ(n) time a string z such that ED(s, z) ≤ ϵn, which in particular
implies Conjecture 2.

1.1 Related Work
A systematic study on the trace reconstruction problem has been started since [37, 38, 5].
However, some of its variants appeared even in the early ’70s [30]. One of the main objectives
here is to reduce the number of traces required, aka the sample complexity. Both the
deletion only and the insertion-deletion channels have been considered so far. In the general
worst-case version, the problem considers the unknown string s to be any arbitrary string
from {0, 1}n. The very first result by Batu et al. [5] asserts that for small deletion probability
(noise parameter) p ≤ 1

n1/2+ϵ , to reconstruct s considering O(n log n) samples suffice. A
very recent work [11] improved the sample complexity to poly(n) while allowing a deletion
probability p ≤ 1

n1/3+ϵ . For any constant deletion probability bounded away from 1, the first
subexponential (more specifically, 2Õ(

√
n)) sample complexity was shown by [29], which was

later improved to 2O(n1/3) [45, 17], and then finally to 2O(n1/5) [10].
Another natural variant that has also been widely studied is the average-case, where

the unknown string s is randomly chosen from {0, 1}n. It turns out that this version is
significantly simpler than the worst-case in terms of the sample complexity. For sufficiently
small noise parameter (p = o(1) as a function of n), efficient trace reconstruction algorithms
are known [5, 31, 54]. For any constant noise parameter bounded away from 1 in case
of insertion-deletion channel, the current best sample complexity is exp(O(log1/3 n)) [28]
improving up on exp(O(log1/2 n)) [49]. Both of these results are built on the worst-case trace
reconstruction by [45, 17]. Furthermore, the trace reconstruction algorithm of [28] runs in
n1+o(1) time.

In the case of the lower bound, information-theoretically, it is easy to see that Ω(log n)
samples must be needed when the deletion probability is at least some constant. In the
worst-case model, the best known lower bound on the sample complexity is Ω̃(n3/2) [9]. For
the average-case, McGregor, Price, and Vorotnikova [40] showed that Ω(log2 n) samples are
necessary to reconstruct the unknown (random) string s. This bound was further improved
to Ω̃(log9/4 n) by Holden and Lyons [27], and very recently to Ω̃(log5/2 n) by Chase [9].

The results described above show an exponential gap between the upper bound and
lower bound of the sample complexity. The natural question is, instead of reconstructing
the unknown string exactly, if we allow some error in the reconstructed string, then can
we reduce the sample complexity? Recently, Davies et al. [16] presented an algorithm that
for a specific class of strings (considering various run-lengths or density assumptions), can
compute an approximate trace with ϵn additive error under the edit distance while using
only polylog(n) samples. The authors also established that to approximate within the edit
distance n1/3−δ, the number of required samples is n1+3δ/2/polylog(n), for 0 < δ < 1/3, in
the worst case. Independently, Grigorescu et al. [24] showed assuming deletion probability
p = 1/2, there exist two strings within edit distance 4 such that any mean-based algorithm
requires exp(Ω(log2 n)) samples to distinguish them.

1.2 Technical Overview
The key contribution of this paper is a linear-time approximate trace reconstruction algorithm
that uses only three traces to reconstruct an unknown (random) string up to some small
edit error (Theorem 1). To get our result, we establish a relation between the (approximate)

FSTTCS 2021

11:6 Approximate Trace Reconstruction via Median String (In Average-Case)

trace reconstruction problem and the (approximate) median string problem. Consider
a uniformly random (unknown) string s ∈ Σn. We show that for any three traces of s

generated by the probabilistic insertion-deletion channel Rp, an arbitrary (1 + ϵ)-approximate
median of the three trace must be, with high probability, O(ϵ)OPT-close in edit distance to
s (Theorem 3). Once we establish this connection, it suffices to solve the median problem
(even approximately). The median of three traces can be solved optimally in O(n3) time
using a standard dynamic programming algorithm [53, 34]. It is not difficult to show that
the optimal median objective value OPT is at least 3(1−O(ϵ))pn (see the full version), and
thus the computed median is at edit distance at most O(ϵpn) from the unknown string s.
This result already beats the known lower bound for exact trace reconstruction in terms
of sample complexity. However, the running time is cubic in n, whereas the current best
average-case trace reconstruction algorithm runs in time n1+o(1) [28].

Next we briefly describe the algorithm that improves the running time to Õ(n). Instead
of finding a median of the entire traces, we compute the median block-by-block and then
concatenate the resulting blocks. A natural idea is that each such block is just the median of
three substrings taken from the three traces, but the challenge is to identify which substring
to take from each trace, particularly because s is not known. To mitigate this issue, we take
the first trace s1 and partition it into disjoint blocks of length Θ(log2 n) each. For each such
block, we consider its middle log2 n-size sub-block as an anchor. We then locate for each
anchor its corresponding substrings in the other two traces s2 and s3, using any approximate
pattern matching algorithm under the edit metric (e.g. [36, 22]) to find the best match of the
anchor inside s2, s3. Each anchor has a true match in s2 and in s3, i.e., the portion that the
anchor generated under the noise channel. Since the anchors in s1 are “well-separated” (by
at least ω(log n)), their true matches are also far apart both in s2, s3. Further, exploiting the
fact that s is a random string, we can argue that each anchor’s best match and true match
overlap almost completely, i.e., except for a small portion (see Section 5). We thus treat
these best match blocks as anchors in s2 and s3 and partition them into blocks. From this
point, the algorithm is straightforward. Just consider the first block of each of s1, s2, s3 and
compute their median. Then consider the second block from each trace and compute their
median, and so on. Finally, concatenate all these block medians, and output the resulting
string.

The claim that the best match and true match of an anchor in s1 are the same except for
a small portion, is crucial from two aspects. First, it ensures that any r-th block of s2, s3
contains the true match of the r-th anchor of s1. Consequently, computing a median of these
blocks reconstructs the corresponding portion of the unknown string s up to edit distance
O(ϵ)p log2 n with high probability. Thus for “most of the blocks”, we can reconstruct up to
such edit distance bound. We can make the length of the non-anchor portions negligible
compared to the anchors (simply because a relatively small “buffer” around each anchor
suffices), and thus, we may ignore them and still ensure that the output string is O(ϵpn)-close
(in edit distance) to the unknown string s. (See the proof of Lemma 24 for the details.) The
second use of that crucial claim is that it helps in searching for the best match of each anchor
“locally” (within a O(log2 n)-size window) in each sj , j ∈ {2, 3}. As a result, we bound the
running time of the pattern matching step by Õ(n). The median computations are also on
Θ(log2 n)-size blocks, and thus takes total Õ(n) time.

It remains to explain the key contribution, which is the connection between the (approxi-
mate) trace reconstruction and the (approximate) median string problem. Its first ingredient
is that there is an “almost unique” alignment between the unknown string s and a trace
of it generated by the insertion-deletion channel Rp. Next, we use this to argue about the

D. Chakraborty, D. Das, and R. Krauthgamer 11:7

similarity between an approximate median and the unknown string s. Let us now briefly
describe how the uniqueness (or robustness) of the alignment between a random string s

and Rp(s) helps us in showing the similarity between s and any approximate median of
the traces. Let s1, s2, s3 be three independent traces of s, generated by Rp. We can view
s1 as a uniformly random string, and s2, s3 are generated from s1 by a insertion-deletion
channel Rq with a higher noise rate q ≈ 2p. (See Section 2 for the details.) Hence, any
near-optimal alignment between s1, s2 and s1, s3 “agree” with the planted alignment Aq

induced by Rq (denoted by Aq
1,2 and Aq

1,3 respectively). Next, we consider the alignment A1,2
from s1 to s2 via s, that we get by composing the planted alignment from s1 to s induced by
Rp (actually the inverse of the alignment from s to s1) with the planted alignment from s to
s2 induced by Rp. Similarly, consider the alignment A1,3 from s1 to s3 via s. Then we take
any (1 + ϵ)-approximate median xmed of {s1, s2, s3}. Consider an optimal alignment between
s1, xmed, and xmed, s2, and xmed, s3. Use these three alignments to define an alignment M1,2
from s1 to s2 via xmed, and an alignment M1,3 from s1 to s3 via xmed. It is not hard to
argue that both A1,2 and M1,2 are near-optimal alignments between s1, s2. Thus, both of
them agree with the planted alignment Aq

1,2. Similarly, both A1,3 and M1,3 agree with the
planted alignment Aq

1,3. Observe, s2, s3 are not independently generated from s1 by Rq. The
overlap between Aq

1,2 and Aq
1,3 essentially provides an alignment from s1 to s. Again, using

the robustness property of the planted alignment, this overlap between Aq
1,2 and Aq

1,3 agrees
with the planted alignment from s1 to s by Rp (actually the inverse of the alignment from s

to s1). On the other hand, since M1,2 agrees with Aq
1,2 and M1,3 agrees with Aq

1,3, there is
also a huge agreement between the overlap of M1,2, M1,3 and the overlap of Aq

1,2, Aq
1,3. The

overlap between M1,2, M1,3 is essentially the optimal alignment from s1 to xmed (that we
have considered before). This in turn implies that there is a huge agreement between the
optimal alignment from s1 to xmed and the planted alignment from s1 to s by Rp. Hence,
we can deduce that xmed and s are the same in most of the portions, and thus have small
edit distance. We provide the detailed analysis in Section 4.

We have just seen that it suffices to show that a near-optimal alignment between a
random string s and Rp(s) is almost unique (or robust). We provide below an overview of
this analysis (see Section 3 for details). We start by considering the random string s and
a string y generated by passing s through the noise channel Rp. For sake of analysis, we
can replace Rp with an equivalent probabilistic model Gp, that first computes a random
alignment Ap between s and y, and only then fills in random characters in s and in the
insertion-positions in y. This model is more convenient because it separates the two sources
of randomness, for example we can condition on one (Ap) when analyzing typical behavior
of the other (characters of s).

In expectation, the channel Gp generates a trace y by performing about pn random edit
operations in s (planting insertions/deletions), hence the planted alignment Ap has expected
cost about pn. But can these edit operations cancel each other? Can they otherwise interact,
leading to the optimal edit distance being smaller? For example, suppose s[i] = 0. If Gp

first inserts a 0 before s[i] and then deletes s[i], then clearly these two operations cancel
each other. We show that such events are unlikely. Following this intuition, we establish
our first claim, that with high probability the edit distance between s, y is large, specifically
ED(s, y) ≥ (1− 6ϵ)pn for ϵ ≥ 15p log(1/p), see Lemma 7; thus, the planted alignment Ap is
near-optimal. Towards proving this, we first show that a vast majority of the planted edit
operations are well-separated, i.e., have Θ(1/p) positions between them. In this case, for one
operation to cancel another one, the characters appearing between them in s must all be
equal, which happens with a small probability because s is random.

FSTTCS 2021

11:8 Approximate Trace Reconstruction via Median String (In Average-Case)

Figure 1 (a) An example of well separated edit operation: Ap deletes s[i] and aligns rest of the
characters in block B with block B′. (b) M aligns s[i] and y[̄i]. For each index j appearing left of i

in B, Ap[j] ̸= M(j).

Formally, for almost all indices i where Gp performs some edit operation, the block
around it B = {i− c

r , i− c
r + 1, . . . , i + c

r} in s (for a small constant c > 0), satisfies that i

is the only index in B that Gp edits (see Lemma 6). Next we show that in every optimal
alignment between s and y, almost all these blocks contribute a cost of 1. As otherwise,
there is locally an alignment M that aligns each index in B to some character in y, while Gp

makes exactly one edit operation, say deletes s[i]. See for example Figure 1, where M aligns
s[i] and y[̄i] whereas Ap deletes s[i]. In this case, M and Ap must disagree on at least c/r

indices (all indices either to the right or to the left of i in B). In Figure 1, all j ∈ [i− c
r , i]

satisfy M [j] ̸= Ap[j]. The crux is that any pair of symbols in s, y are chosen independently at
random unless Ap aligns their positions. Thus probability that in each of the c

r pairs aligned
by M , the two matched symbols will be equal is (1/|Σ|) c

r . In the formal proof, we address
several technical issues, like having not just one but many blocks, and possible correlations
due to overlaps between different pairs, which are overcome by a carefully crafted union
bound.

We further need to prove that the planted alignment is robust, in the sense that, with high
probability, every near-optimal alignment between s and y must “agree” with the planted
alignment Ap on all but a small fraction of the edit operations. Formally, we again consider
a partition of s into blocks containing exactly one planted edit operation, and show that for
almost all such blocks B, if Ap maps B to a substring B′ in y, that near-optimal alignment
also maps B to B′ (see Lemma 10). To see this, suppose there is a near-optimal alignment
that maps B to B̄ ≠ B′. Then following an argument similar to the above, we can show
there are many indices in the block B such that Ap and M disagree on them. Thus, in
each such block, M tries to match many pairs of symbols that are chosen independently at
random, and therefore the probability that M matches B and B̄ with a cost at most 1 is
small. Compared to Lemma 6, an extra complication here is that now we allow M to match
B and B̄ with cost at most 1 (and not only 0), and in particular B̄ can have three different
lengths: |B|, |B| − 1, |B|+ 1. Hence the analysis must argue separately for all these cases,
requiring a few additional ideas/observations.

1.3 Preliminaries

Alignments. For two strings x, y of length n, an alignment is a function A : [n]→ [n]∪ {⊥}
that is monotonically increasing on the support of A, defined as supp(A) := A−1([n]), and also
satisfies x[i] = y[A(i)] for all i ∈ supp(A). An alignment is essentially a common subsequence
of x, y, but provides the relevant location information. Define the length (or support size) of
the alignment as len(A) := | supp(A)|, i.e., the number of positions in x (equivalently in y)

D. Chakraborty, D. Das, and R. Krauthgamer 11:9

that are matched by A. Define the cost of A to be the number of positions in x and in y that
are not matched by A, i.e., cost(A) := 2(n− len(A)). Let ED(x, y) denotes the minimum
cost of an alignment between x, y.

Given a substring x′ = x[i1, i2] of x, let ℓ1 := min {k ∈ [i1, i2] | A(k) ̸= ⊥} and ℓ2 :=
max {k ∈ [i1, i2] | A(k) ̸= ⊥}, be the first and last positions in the substring x′ that are
matched by alignment A. If the above is not well-defined, i.e., A(k) = ⊥ for all k ∈ [i1, i2],
then by convention ℓ1 = ℓ2 = 0. Let A(x′) := y[A(ℓ1), A(ℓ2)] be the mapping of x′ under A. If
ℓ1 = ℓ2 = 0, then by convention y′ is an empty string. Let Ux′ := {i1 ≤ k ≤ i2; k /∈ supp(A)}
be the positions in x′ that are not aligned by A, and similarly let Uy′ be the positions in y′

not aligned by A. These quantities are related because the number of matched positions in
x′ is the same as in y′, giving us |x′| − |Ux′ | = |y′| − |Uy′ |. Define the cost of alignment A on
substring x′ to be

costA(x′) := |Ux′ |+ |Uy′ |.

By abusing the notation, sometimes we will also use costA([i1, i2]) in place of costA(x′).
These definitions easily extend to strings of non-equal length, and even of infinite length.

▶ Lemma 4. Given two strings x, y and an alignment A, let x1, . . . , xp be disjoint substrings
of x. Then
1. A(x1), . . . , A(xp) are disjoint substrings of y; and
2. costA(x) ≥

∑
i∈[p] costA(xi)

Proof. The first claim directly follows from the fact that x1, . . . , xp are disjoint and A is
monotonically increasing. Since x1, . . . , xp are disjoint, also UA(x1), . . . ,UA(xp) are disjoint.
Similarly, since A(x1), . . . , A(xp) are disjoint, also Ux1 , . . . ,Uxp

are disjoint. Therefore,
costA(x) ≥

∑
i∈[p](|Ux1 |+ |UA(x1)|). Hence we can claim costA(x) ≥

∑
i∈[p] costA(xi). ◀

For an alignment A : [n]→ [n]∪{⊥}, we define the inverse alignment A−1 : [n]→ [n]∪{⊥}
as follows: For each j ∈ [n], if A(i) = j for some i ∈ [n], set A−1(j) = i; otherwise, set
A−1(j) = ⊥.

We use the notation ◦ for composition of two functions. Composition of two alignments
(or inverse of alignments) is defined in a natural way.

Approximate Median. Given a set S ⊆ Σ∗ and a string y ∈ Σ∗, we refer the quantity∑
x∈S ED(y, x) by the median objective value of S with respect to y, denoted by Obj(S, y).
Given a set S ⊆ Σ∗, a median of S is a string y∗ ∈ Σ∗ (not necessarily from S)

such that Obj(S, y∗) is minimized, i.e., y∗ = arg miny∈Σ∗ Obj(S, y). We refer Obj(S, y∗) by
OPT(S). Whenever it will be clear from the context, for brevity we will drop S from both
Obj(S, y) and OPT(S). We call a string ỹ a c-approximate median, for some c > 0, of S iff
Obj(S, ỹ) ≤ c · OPT(S).

2 Probabilistic Generative Model

Let us first introduce a probabilistic generative model. For simplicity, our model is defined
using infinite-length strings, but our algorithmic analysis will consider only a finite prefix of
each string. Fixing a finite alphabet Σ, we denote by ΣN the set of all infinite-length strings
over Σ. We write x⊙ y to denote the concatenation of two finite-length strings x and y.

We actually describe two probabilistic models that are equivalent. The first model Rp

is just the insertion-deletion channel mentioned in Section 1. These models are given an
arbitrary string x (base string) to generate a random string y (a trace), but in our intended

FSTTCS 2021

11:10 Approximate Trace Reconstruction via Median String (In Average-Case)

application x is usually a random string. The second model Gp consists of two stages,
first “planting” an alignment between two strings, and only then placing random symbols
(accordingly). This is more convenient in the analysis, because we often want to condition
on the planted alignment and rely on the randomness in choosing symbols. We provide
the formal description of the model Rp and Gp along with a few key properties of them in
Appendix A.

3 Robustness of the Insertion-Deletion Channel

In this section we analyze the finite-length version of our probabilistic model Gp (from
Section 2), which gets a random string x ∈ Σn and generates from it a trace y. We provide
a high-probability estimates for the cost of the planted alignment Ap between x and y

(Lemma 5), and for the optimal alignment (i.e., edit distance) between the two strings
(Lemmas 7 and 8). It follows that with high probability the planted alignment Ap is near-
optimal. We then further prove that the planted alignment is robust, in the sense that, with
high probability, every near-optimal alignment between the two strings must “agree” with the
planted alignment Ap on all but a small fraction of the edit operations (Lemmas 10 and 11).

Assume henceforth that x ∈ Σn is a random string x, and given a parameter p > 0,
generate from it a string y by the random process Gp described in Section 2, denoting by
Ap

x,y the random mapping used in this process. A small difference here is that now x has
finite length, but it can also be viewed as an n-length prefix of an infinite string. Similarly,
now y has finite length and is obtained by applying Gp on x[1, n], and it can be viewed also
as a finite prefix of an infinite string.

Let IAp
x,y be the set of indices i ∈ [n], for which process Gp performs at least one

insert/delete operation after (not including) x[i− 1] and up to (including) x[i] (i.e., inserting
at least one character between x[i− 1], x[i], or deleting x[i], or both). This information can
clearly be described using Ap

x,y alone (independently of x and of the symbols chosen for
insertions to y in the second stage of process Gp); we omit the formal definition. When clear
from the context, we shorten IAp

x,y to I.

▶ Lemma 5. For every i ∈ [n], the probability that i ∈ I is

r = r(p) :=
∞∑

k=1
(2− p)(p/2)k = p. (2)

For all ϵ ∈ [r, 1], we have Pr[|I| /∈ (1± ϵ)rn] ≤ 2e−ϵ2rn/3.

Proof. For every i ∈ [n], the probability that Gp performs k ≥ 1 edit operations after x[i−1]
and up to x[i] is (p/2)k + (p/2)k(1− p) = (p/2)k(2− p), where the first summand represents
k − 1 insertions and one deletion, and the second summand represents k insertions and no
deletion. Thus r = Pr[i ∈ I] =

∑∞
k=1(2− p)(p/2)k = p.

For every i ∈ [n], the probability it appears in I is r. Then E[|I|] = r · n. These events
are independent, hence by Chernoff’s bound, the probability that |I| /∈ (1± ϵ)rn is at most
2e−ϵ2rn/3. ◀

As shown in (2), r :=
∑∞

k=1(2 − p)(p/2)k = p. Hence from now on we replace r by p.
Given ϵ ∈ [p, 1] and i ∈ [n], we consider the event Sϵ(i), which informally means that process
Gp makes a single “well-spaced” edit operation at position i, i.e., there is an edit operation
at position i and no other edit operations within (2ϵ

p positions away from i. To define it
formally, we separate it into two cases, an insertion and a deletion. Observe that these events
depend on Ap alone. Let Sdel

ϵ (i) be the event that

D. Chakraborty, D. Das, and R. Krauthgamer 11:11

1. Ap(i + 1) = Ap(i− 1) + 1 (thus Ap(i) = ⊥); and
2. for all j ∈ [2, 2ϵ

p], we have Ap(i + j) = Ap(i + j − 1) + 1 and Ap(i− j) = Ap(i− j + 1)− 1
(in particular, they are not ⊥).

Similarly, let Sins
ϵ (i) be the event that

1. Ap(i) = Ap(i− 1) + 2 (thus no index is mapped to Ap(i− 1) + 1);
2. for all j ∈ [1, 2ϵ

p], we have Ap(i + j) = Ap(i + j − 1) + 1; and
3. for all j ∈ [2, 2ϵ

p], and Ap(i− j) = Ap(i− j + 1)− 1.
Now define the set of indices for which any of these two events happens

ĨAp
x,y

ϵ := {i ∈ [n] | event Sϵ(i) := Sdel
ϵ (i) ∪ Sins

ϵ (i) occurs}.

When clear from the context, we shorten ĨAp
x,y

ϵ to Ĩ.

▶ Lemma 6. For every ϵ ≥ p, we have Pr[|Ĩ| ≤ (1− 5ϵ)pn] ≤ e−ϵ2p2n/2.

Proof. For an index i ∈ [n], define the random variable Xi ∈ {0, 1} to be an indicator
for the union event Sdel

ϵ (i) ∪ Sins
ϵ (i). Observe that each of the two events, Sdel

ϵ (i) and
Sins

ϵ (i), occurs with probability p
2 (1− p)4ϵ/p/(1− p/2), and these events are disjoint. Hence,

Pr[Xi = 1] = p(1− p)4ϵ/p/(1− p/2) ≥ p(1− p)4ϵ/p ≥ p(1− 4ϵ)
Next we prove a deviation bound for the random variable X :=

∑
i∈[n] Xi = |Ĩ|, which has

expectation is E[X] ≥ (1−4ϵ)pn. Observe that {X|X1, . . . , Xi}n
i=1 is a Doob Martingale, and

let us apply the method of bounded differences. Revealing Xi (after X1, . . . , Xi−1 are already
known) might affect the value of Xj ’s for j < i + 4ϵ

p , but by definition their sum is bounded∑
i≤j<i+ 4ϵ

p
Xj ≤ 2, while the other Xj ’s are independent of Xi hence the expectation of∑

j≥i+ 2ϵ
p

Xj by revealing it. Together, we see that |E[X|X1, . . . , Xi]−E[X|X1, . . . , Xi−1]| ≤
2, and therefore by Azuma’s inequality, Pr[X ≤ (1 − 5ϵ)pn] ≤ Pr[X ≤ E[X] − ϵpn] <

e−2ϵ2p2n2/(4n) = e−ϵ2p2n/2. ◀

Edit Distance (Optimal Alignment) between x, y. For each i ∈ Ĩ, define a window
W i

ϵ = [i− ϵ
p , i + ϵ

p].

▶ Lemma 7. For every ϵ ∈ [15p log 1
p , 1

6], we have Pr[ED(x, y) < (1− 6ϵ)pn] ≤ 2e−ϵ2p2n/2.

At a high level, our proof avoids a direct union bound over all low-cost potential alignments,
because there are too many of them. Instead, we introduce a smaller set of basic events that
“covers” all these potential alignments, which is equivalent to carefully grouping the potential
alignments to get a more “efficient” union bound.

Proof of Lemma 7. We assume henceforth that Ap (the alignment from process Gp) is
known and satisfies |Ĩ| > (1− 5ϵ)pn, which occurs with high probability by Lemma 6. In
other words, we condition on Ap and proceed with a probabilistic analysis based only on the
randomness of x and of the characters inserted into y.

Our plan is to define basic events ES,S̄ for every two subsets S, S̄ ⊂ [n] of the same size
ℓ = |S| = |S̄|, representing positions in x and in y, respectively. We will then show that our
event of interest is bounded by these events{

ED(x, y) < (1− 6ϵ)pn
}
⊆

⋃
S,S̄|ℓ=ϵpn

ES,S̄ , (3)

and bound the probability of each basic event by

Pr[ES,S̄] ≤ |Σ|−ϵℓ/(3p). (4)

The proof will then follow easily using a union bound and a simple calculation.

FSTTCS 2021

11:12 Approximate Trace Reconstruction via Median String (In Average-Case)

To define the basic event ES,S̄ , we need some notation. Write S = {i1, i2, . . . , iℓ} in
increasing order, and similarly S̄ = {̄i1, ī2, . . . , īℓ}, and use these to define ℓ blocks in x and
in y, namely, Bij

= x[ij − ϵ
p , ij + ϵ

p] and B̄ij
= y[̄ij − ϵ

p , īj + ϵ
p]. Notice that all the blocks are

of the same length 1 + 2 ϵ
p . Now define ES,S̄ to be the event that (i) S ⊆ Ĩ;2 (ii) the blocks

B̄̄i1 , . . . , B̄īℓ
in y are disjoint; and (iii) each block Bij

in x is equal to its corresponding block
B̄īj

in y. Notice that conditions (i) and (ii) actually depend only on Ap, and thus can be
viewed as restrictions on the choice of S, S̄ in (3); with this viewpoint in mind, we can simply
write

ES,S̄ := {Bi1 = B̄ī1
, . . . , Biℓ

= B̄īℓ
}.

We proceed to prove (3). Suppose there is an alignment M from x to y with cost(M) <

(1 − 6ϵ)pn, and consider its cost around each position i ∈ Ĩ, namely, costM [i − ϵ
p , i + ϵ

p].
These intervals in x are disjoint (by definition of Ĩ), and thus by Lemma 4,∑

i∈Ĩ

costM (x[i− ϵ
p , i + ϵ

p]) ≤ cost(M) < (1− 6ϵ)pn.

Let S ⊂ Ĩ include (the indices of) the summands equal to 0. Each other summand contributes
at least 1, thus |Ĩ|−|S| = |Ĩ\S|·1 < (1−6ϵ)pn and by rearranging |S| > |Ĩ|−(1−6ϵ)pn > ϵpn.
To get the exact size |S| = ϵpn, we can replace S with an arbitrary subset of it of the exact
size. Now define S̄ = {M(i) | i ∈ S}. It is easy to verify that the event ES,S̄ holds. Indeed,
each i ∈ S satisfies costM [i − ϵ

p , i + ϵ
p] = 0, which implies M(i) ̸= ⊥, and thus |S̄| = |S|.

Moreover, the block x[i − ϵ
p , i + ϵ

p] in x is equal to the corresponds block in y, and these
blocks in y are disjoint. This completes the proof of (3).

Next, we prove (4). Fix S, S̄ ⊂ [n] of the same size ℓ, and assume requirements (i)
and (ii) hold (otherwise, the probability is 0). Let Bij and B̄īj

be the corresponding
blocks in x and in y. Consider for now a given j ∈ [ℓ]. The requirement Bij

= B̄īj

means that for all t ∈ {− ϵ
p , . . . , 0, . . . , + ϵ

p} we require x[ij + t] = y[̄ij + t]. The issue is
that x and y are random but correlated through Ap; in particular, the symbols x[ij + t]
and y[̄ij + t] are chosen independently at random unless Ap aligns their positions, i.e.,
Ap(ij + t) = īj + t. The key observation is that this last event cannot happen for both t = −1
and t = 1, because in that case, Ap(ij + 1) − Ap(ij − 1) = īj + 1 − (̄ij − 1) = 2; however,
ij ∈ Ĩ implies that Ap has exactly one edit operation (insertion or deletion) in the interval
[ij − 1, ij + 1] (and not at its endpoints), thus Ap(ij + 1)−Ap(ij − 1) ∈ {1, 3}. Assume first
that Ap(ij + t) ̸= īj + t for t = 1. Then the same must hold also for all t = 2, . . . , ϵ

p ; indeed,
we again use that ij ∈ Ĩ, which implies that Ap has no edit operations near position ij , thus
Ap(ij + t) = Ap(ij + 1) + (t − 1) ̸= īj + 1 + (t − 1). The argument for t = −1 is similar,
and we conclude that the requirement Bij

= B̄īj
encompasses at least ϵ

p requirements of the
form x[ij + t] = y[̄ij + t] where these two positions are not aligned by Ap, and thus these
two symbols are chosen independently at random.

The above argument applies to every j ∈ [ℓ], yielding overall at least ℓ · ϵ
p requirements of

the form x[ij + t] = y[̄ij + t], where these two symbols are chosen independently at random.
Observe that each y[̄ij + t] is either a character x[t′] (for t′ arising from Ap) or completely
independent. Since each character of x appears in at most 2 requirements (once on each

2 This implies that the blocks Bi1 , . . . , Biℓ in x are disjoint.

D. Chakraborty, D. Das, and R. Krauthgamer 11:13

side), we can extract a subset of at one-third of the requirements such that the positions in
x appearing there are all distinct, and thus the events are independent.3 We overall obtain
at least 1

3 ℓ · ϵ
p requirements, each occurring independently with probability 1/|Σ|, and thus

Pr[ES,S̄] ≤ |Σ|−ϵℓ/(3p).

Finally, we are in position to prove the lemma. Combining (3) and (4) and a union bound

Pr[ED(x, y) < (1− 6ϵ)pn] ≤
(

n

ℓ

)2
· |Σ|−

ϵℓ
3p ≤

(ne

ℓ

)2ℓ

· 2− ϵℓ
3p =

(e

ϵp

)2ϵpn

· 2−ϵ2n/3

≤ (p2)−2ϵpn · 2−ϵ(15p log(1/p))n/3 ≤ p−4ϵpn+5ϵpn ≤ pϵpn.

Recall that this was all conditioned on Ap, which had error probability at most e−ϵ2p2n/2

(by Lemma 6), and now Lemma 7 follows by a union bound. ◀

A similar bound holds for even smaller values of ϵ, provided that the alphabet size is
large. The proof is the same, except for the final calculation.

▶ Lemma 8. Suppose |Σ| ≥ (1
p)15. Then for every ϵ ∈ [p. 1

6], we have Pr[ED(x, y) <

(1− 6ϵ)pn] ≤ 2e−ϵ2p2n/2.

Following an argument similar to the proof of Lemma 7 we can make the following claim.

▶ Lemma 9. Let ϵ ∈ [15p log 1
p , 1

6]. Then with probability at least 1 − 2e−ϵ2p2n/2, every
alignment M between x, y satisfies |{i ∈ Ĩ | costM (x[i− ϵ

r , i + ϵ
r]) = 0}| ≤ 6ϵpn.

Near-Optimal Alignments between x, y. Given ϵ > 0, a potential alignment M between
x, y, and an index i ∈ [n], define the event

EM
ϵ (i) :=

{
Ap(i− ϵ

p) = min{M(k) ̸= ⊥ | k ∈ [i− ϵ
p , i + ϵ

p]}; and
Ap(i + ϵ

p) = max{M(k) ̸= ⊥ | k ∈ [i− ϵ
p , i + ϵ

p]}.
(5)

By convention, EM
ϵ (i) is not satisfied if the minimization/maximization is over the empty

set (because M(k) = ⊥ for all relevant k). We will only use it for i ∈ Ĩ, in which case both
Ap(i− ϵ

p), Ap(i + ϵ
p) ̸= ⊥. Intuitively, this event means that Ap and M agree on the block

boundaries; for example, in the simpler case where all relevant M(k) ̸= ⊥, this event simply
means that Ap(i− ϵ

p) = M(i− ϵ
p) and Ap(i + ϵ

p) = M(i + ϵ
p).

Denote the set of indices where the event EM
ϵ (i) occurs and the cost of M over substring

x[i− ϵ
p , i + ϵ

p] is 1, by

ĨAp
x,y

ϵ,M := {i ∈ Ĩ | event EM
ϵ (i) occurs and costM ([i− ϵ

p , i + ϵ
p]) = 1 }.

When clear from the context, we shorten ĨAp
x,y

ϵ,M to ĨM .

▶ Lemma 10. Let ϵ ∈ [42p log 1
p , 1

6] and p ≤ δ ≤ ϵ. Then with probability at least 1−4e− ϵ2p2n
2 ,

every alignment M between x, y with cost(M) ≤ (1 + δ)pn satisfies |ĨM | ≥ (1− 23ϵ− δ)pn.

3 To see this, consider an auxiliary graph whose a vertex for each character x[t], and connect two by an
edge if they appear in the same constraint. Since every vertex has degree at most 2, a greedy matching
contains at least one third of the edges.

FSTTCS 2021

11:14 Approximate Trace Reconstruction via Median String (In Average-Case)

At a high level, the proof follows the outline of Lemma 7, and avoids a direct union bound
over all (relevant) potential alignments, because there are too many of them. Instead, we
introduce a smaller set of basic events that “covers” all these potential alignments. However
the analysis is more elaborate with additional cases that require new technical ideas. The
proof appears in the full version.

A similar bound holds for even smaller values of ϵ, provided that the alphabet size is
large.

▶ Lemma 11. Suppose |Σ| ≥ (1
p)42. Then for every ϵ ∈ [p, 1

6] and every p ≤ δ ≤ ϵ, with

probability at least 1− 4e− ϵ2p2n
2 , every alignment M between x, y with cost(M) ≤ (1 + δ)pn

satisfies |ĨM | ≥ (1− 23ϵ− δ)pn.

4 Robustness of Approximate Median

In this section, we consider the (approximate) median string problem on a set of strings
generated by our probabilistic model Gp (from Section 2). For a random (unknown) string
s ∈ Σn, Gp generates a set S = {s1, s2, · · · , sm} of independent traces of s. We show that
with high probability, any (1 + ϵ)-approximate median of S must be close (in edit distance)
to the unknown string s. In other words, any (1 + ϵ)-approximate median must “agree” with
the unknown string s in most of the portions. It is true even when m = 3. In this section, we
state the results and the proofs by considering m = 3. In particular, we prove Theorem 3. At
the end of the section, we remark on why such result with three traces also directly provides
a similar result for any m > 3 traces. Another way to interpret this result is the following.
Suppose we take a set of three traces and find its (1 + ϵ)-approximate median. Then if we
add more traces in the set, its (1 + ϵ)-approximate median does not change by much. So in
some sense, (1 + ϵ)-approximate median is robust in the case of average-case traces.

For the purpose of the analysis, we start by considering infinite length strings (as in
Section 2), and then later we will move to the finite-length versions. Recall, U denotes
the uniform distribution over strings x ∈ ΣN, i.e., each character x[i], for i ∈ N, is chosen
uniformly at random and independently from Σ. Consider a parameter p ∈ (0, 0.001) and
define q := p(4−3p)

2−p2 . (Note, q = 2p−Θ(p2).) Then consider the following two processes:
Process 1: Draw a string s from U . Then draw three strings s1, s2, s3 independently
from Gp(s). Output the tuple (s, s1, s2, s3).
Process 2: Draw a string x1 from U . Then draw x̄ from Gp(x1) (and denote the
corresponding alignment function by Ap

1,x̄). Finally, draw x2, x3 independently from
Gp(x̄) (and denote the corresponding alignment functions by Ap

x̄,2, Ap
x̄,3 respectively).

Output the tuple (x̄, x1, x2, x3).

As an immediate corollary of Proposition 18 (see Appendix A), we know that the
distributions on (s, s1) and (x̄, x1) are the same. So we conclude the following about the
above two processes.

▷ Claim 12. The probability distributions on (s, s1, s2, s3) and (x̄, x1, x2, x3), the tuples
generated by Process 1 and Process 2 respectively, are identical.

Note, we want to investigate the property of an approximate median of the strings
generated through Process 1. Due to the above claim, instead of considering the strings
s1, s2, s3 from now on we focus on x1, x2, x3 generated through Process 2. By Proposition 16
(see Appendix A), both x2 and x3 can be viewed as strings drawn from Gq(x1). Let us

D. Chakraborty, D. Das, and R. Krauthgamer 11:15

use the notations Aq
1,2 and Aq

1,3 to denote the alignment functions produced by the random
process Gq while generating x2 and x3 respectively, from x1. We want to emphasize that the
process Gq is considered solely for the purpose of the analysis.

Next, we use the alignments Ap
1,x̄, Ap

x̄,2 (and Ap
x̄,3) to define an alignment between x1, x2

(and x1, x3) via x̄. Let Ap
1,x̄,2 and Ap

1,x̄,3 denote Ap
x̄,2 ◦Ap

1,x̄ and Ap
x̄,3 ◦Ap

1,x̄ respectively. (See
Section 1.3 for the definition of the notation ◦.)

Median of n-length prefixes of x1, x2, x3. So far in this section we have talked about
infinite length strings. From now on we restrict ourselves to the the n-length prefixes of
x1, x2 and x3 denoted by x1[1, n], x2[1, n] and x3[1, n] respectively. By abusing the notations,
we simply use x1, x2 and x3 to also denote x1[1, n], x2[1, n] and x3[1, n] respectively. Also, we
consider the (n-length) restriction of all the alignment functions (defined so far) accordingly.
Again, for simplicity, we use the same notations to refer to these restricted alignment
functions.

Now, we consider the (approximate) median string problem on the set S = {x1, x2, x3}.
Recall, for any string y, Obj(S, y) :=

∑3
k=1 ED(xk, y), and OPT(S) = miny∈Σ∗ Obj(S, y).

Since throughout this section, S = {x1, x2, x3}, to simplify the notations, we drop S from
both Obj and OPT. The main result of this section is the following.

▶ Theorem 13. For a large enough n ∈ N and a noise parameter p ∈ (0, 0.001), let x̄, x1, x2
and x3 be the n-length prefixes of the strings generated by Process 2. If xmed is a (1 + ϵ)-
approximate median of S = {x1, x2, x3} for ϵ ∈ [110p log(1/p), 1/6], then Pr[ED(x̄, xmed) ≤
195ϵ · OPT(S)] ≥ 1− e− log2 n.

We would like to emphasize that (for the simplicity in the analysis) we have made no attempt
to optimize the constants. By a more careful analysis, both the range of p and the constant
involved in the bound of ED(x̄, xmed) could be improved significantly. The above theorem
together with Claim 12 immediately gives us Theorem 3. Note, in Theorem 3, we do not
have any length restrictions on the traces. On the other hand, the above theorem considers
x̄, x1, x2 and x3 to be of length n. However, by a standard application of Chernoff-Hoeffding
bound, it suffices to restrict ourselves to the (n−

√
n log n)-length prefixes of all the traces

(of Theorem 3). Then we can apply the above theorem over them, to get Theorem 3. The
proof of Theorem 13 appears in the full version.

For more than three traces. So far, we have shown that for any set {s1, s2, s3} of three
traces of s, its any (1 + ϵ)-approximate median is close to s. Below we argue that a similar
result for any arbitrary number (less than some poly(n)) of traces directly follows.

▶ Corollary 14. For a large enough n ∈ N and a noise parameter p ∈ (0, 0.001), let the
string s ∈ {0, 1}n be chosen uniformly at random, and let s1, · · · , sm be m = nO(1) traces
generated by Gp(s). If xmed is a (1 + ϵ)-approximate median of S = {s1, · · · , sm} for any
ϵ ∈ [110p log(1/p), 1/6], then Pr[ED(s, xmed) ≤ O(ϵ) · OPT(S)

m] ≥ 1− n−1.

We defer the proof to the full version.

5 Near-Linear time Approximate Trace Reconstruction

In this section, we describe a linear-time algorithm that reconstructs the unknown string
using only three traces, up to some small edit error. In particular, we prove Theorem 1.
Before describing our linear-time algorithm, first note, we can compute an (exact) median

FSTTCS 2021

11:16 Approximate Trace Reconstruction via Median String (In Average-Case)

of three traces using a standard dynamic programming algorithm [53, 34] in cubic time.
Then by Theorem 13, that median string will be close (in edit distance) to the unknown
string. More specifically, the edit distance between the computed median string and the
unknown string will be at most O(ϵpn) with high probability. In this section, we design a
more sophisticated method to compute an approximation of the unknown string. For that
purpose, we first divide each trace into “well-separated” blocks of size log2 n each. Then we
run the dynamic programming-based median algorithm [53, 34] on these small blocks. Thus
we spend only poly log n time per block, and hence in total Õ(n) time. Since we consider
“well-separated” blocks, they are independent. Thus we apply Theorem 13 for each of these
blocks (instead of the whole string). Using standard Chernoff-Hoeffding bound, we get that
most of these block medians are close to their corresponding block of the unknown string.
Hence, by concatenating these block medians, we get back the whole unknown string up to
some small edit error. We defer the detailed description of our algorithm to Appendix B.

6 Conclusion

Trace reconstruction in the average case is a well-studied problem. The problem is to
reconstruct an unknown (random) string by reading a few traces of it generated via some
noise (insertion-deletion) channel. The main objective here is to minimize the sample
complexity and also the efficiency of the reconstruction algorithm. There is an exponential
gap between the current best upper and lower bound in the sample complexity despite
several attempts. The best lower bound is Ω̃(log5/2 n) [9]. A natural question is whether it
is possible to beat this lower bound by allowing some error in the reconstructed string. This
version is also referred to as the approximate trace reconstruction problem; however, nothing
is known except for a few special cases.

Our result not only beats the lower bound of the exact trace reconstruction but uses only
three traces. The reconstructed string is O(ϵpn) close (in edit distance) to the unknown
string with high probability. We establish a connection between the approximate trace
reconstruction and the approximate median string problem, another utterly significant
problem. We show that both the problems are essentially the same. We leverage this
connection to design a near-linear time approximate reconstruction algorithm using three
traces.

An exciting future direction is to get a similar result for the worst-case, where the
unknown string is arbitrary. It will also be fascinating if we could show some non-trivial
sample complexity lower bound for that version.

References
1 J. Abreu and Juan Ramón Rico-Juan. A new iterative algorithm for computing a quality

approximate median of strings based on edit operations. Pattern Recognition Letters, 36:74–80,
2014.

2 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. doi:10.1145/1411509.1411513.

3 Frank Ban, Xi Chen, Adam Freilich, Rocco A Servedio, and Sandip Sinha. Beyond trace
reconstruction: Population recovery from the deletion channel. In 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 745–768. IEEE, 2019.

4 Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing, STOC ’03, pages 316–324.
ACM, 2003.

https://doi.org/10.1145/1411509.1411513

D. Chakraborty, D. Das, and R. Krauthgamer 11:17

5 Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing
strings from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, pages 910–918. SIAM, 2004.

6 Hervé Cardot, Peggy Cénac, and Antoine Godichon-Baggioni. Online estimation of the
geometric median in Hilbert spaces: Nonasymptotic confidence balls. Annals of Statistics,
45(2):591–614, 2017. doi:10.1214/16-AOS1460.

7 Francisco Casacuberta and M. D. Antonio. A greedy algorithm for computing approximate
median strings. In Proc. of National Symposium on Pattern Recognition and Image Analysis,
pages 193–198, 1997.

8 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Approximating the median
under the ulam metric. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 761–775. SIAM, 2021. doi:10.1137/1.9781611976465.48.

9 Zachary Chase. New lower bounds for trace reconstruction. Annales de l’Institut Henri
Poincaré, Probabilités et Statistiques, 57(2):627–643, 2021.

10 Zachary Chase. Separating words and trace reconstruction. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 21–31, 2021.

11 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-
time trace reconstruction in the low deletion rate regime. In James R. Lee, editor, 12th
Innovations in Theoretical Computer Science Conference, ITCS 2021, volume 185 of LIPIcs,
pages 20:1–20:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

12 Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha. Polynomial-time
trace reconstruction in the smoothed complexity model. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, pages 54–73. SIAM, 2021.

13 Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and Joao Ribeiro. Coded trace recon-
struction. IEEE Transactions on Information Theory, 66(10):6084–6103, 2020.

14 Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvitskii. Finding the
Jaccard median. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 293–311. SIAM, 2010. doi:10.1137/1.9781611973075.25.

15 Michael B. Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the forty-eighth annual ACM Symposium on
Theory of Computing, pages 9–21, 2016.

16 Sami Davies, Miklós Z. Rácz, Cyrus Rashtchian, and Benjamin G. Schiffer. Approximate trace
reconstruction. CoRR, abs/2012.06713, 2020. arXiv:2012.06713.

17 Anindya De, Ryan O’Donnell, and Rocco A Servedio. Optimal mean-based algorithms for
trace reconstruction. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1047–1056, 2017.

18 Colin de la Higuera and Francisco Casacuberta. Topology of strings: Median string is NP-
complete. Theor. Comput. Sci., 230(1-2):39–48, 2000. doi:10.1016/S0304-3975(97)00240-5.

19 Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proceedings of the Tenth International World Wide Web Conference, WWW 10,
pages 613–622, 2001. doi:10.1145/371920.372165.

20 Igor Fischer and Andreas Zell. String averages and self-organizing maps for strings. Proceedings
of the neural computation, pages 208–215, 2000.

21 P. Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. Robust statistics on
riemannian manifolds via the geometric median. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

22 Zvi Galil and Kunsoo Park. An improved algorithm for approximate string matching. SIAM
Journal on Computing, 19(6):989–999, 1990.

23 Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M. LeProust, Botond
Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance information
storage in synthesized DNA. Nature, 494(7435):77–80, 2013.

24 Elena Grigorescu, Madhu Sudan, and Minshen Zhu. Limitations of mean-based algorithms for
trace reconstruction at small distance. CoRR, abs/2011.13737, 2020. arXiv:2011.13737.

FSTTCS 2021

https://doi.org/10.1214/16-AOS1460
https://doi.org/10.1137/1.9781611976465.48
https://doi.org/10.1137/1.9781611973075.25
http://arxiv.org/abs/2012.06713
https://doi.org/10.1016/S0304-3975(97)00240-5
https://doi.org/10.1145/371920.372165
http://arxiv.org/abs/2011.13737

11:18 Approximate Trace Reconstruction via Median String (In Average-Case)

25 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

26 Morihiro Hayashida and Hitoshi Koyano. Integer linear programming approach to median and
center strings for a probability distribution on a set of strings. In BIOINFORMATICS, pages
35–41, 2016.

27 Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. The Annals of Applied
Probability, 30(2):503–525, 2020.

28 Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace reconstruction
for random strings and arbitrary deletion probability. Mathematical Statistics and Learning,
2(3):275–309, 2020.

29 Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace reconstruc-
tion with constant deletion probability and related results. In Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pages 389–398. SIAM,
2008.

30 V. V. Kalashnik. Reconstruction of a word from its fragments. Computational Mathematics
and Computer Science (Vychislitel’naya matematika i vychislitel’naya tekhnika), Kharkov,
4:56–57, 1973.

31 Sampath Kannan and Andrew McGregor. More on reconstructing strings from random traces:
insertions and deletions. In Proceedings. International Symposium on Information Theory,
2005. ISIT 2005., pages 297–301. IEEE, 2005.

32 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of
the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pages 95–103.
ACM, 2007. doi:10.1145/1250790.1250806.

33 Teuvo Kohonen. Median strings. Pattern Recognition Letters, 3(5):309–313, 1985. doi:
10.1016/0167-8655(85)90061-3.

34 Joseph B Kruskal. An overview of sequence comparison: Time warps, string edits, and
macromolecules. SIAM review, 25(2):201–237, 1983. doi:10.1137/1025045.

35 Ferenc Kruzslicz. Improved greedy algorithm for computing approximate median strings. Acta
Cybernetica, 14(2):331–339, 1999.

36 Gad M. Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. Journal
of Algorithms, 10(2):157–169, 1989.

37 Vladimir I. Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on Infor-
mation Theory, 47(1):2–22, 2001. doi:10.1109/18.904499.

38 Vladimir I. Levenshtein. Efficient reconstruction of sequences from their subsequences or
supersequences. Journal of Combinatorial Theory, Series A, 93(2):310–332, 2001. doi:
10.1006/jcta.2000.3081.

39 Carlos D. Martínez-Hinarejos, Alfons Juan, and Francisco Casacuberta. Use of median
string for classification. In Proceedings 15th International Conference on Pattern Recognition.
ICPR-2000, volume 2, pages 903–906. IEEE, 2000. doi:10.1109/ICPR.2000.906220.

40 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In
Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September
8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages 689–700.
Springer, 2014.

41 Stanislav Minsker. Geometric median and robust estimation in Banach spaces. Bernoulli,
21(4):2308–2335, 2015.

42 P. Mirabal, J. Abreu, and D. Seco. Assessing the best edit in perturbation-based iterative
refinement algorithms to compute the median string. Pattern Recognition Letters, 120:104–111,
April 2019.

43 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

44 Shyam Narayanan. Population recovery from the deletion channel: Nearly matching trace
reconstruction bounds. arXiv preprint, 2020. arXiv:2004.06828.

https://doi.org/10.1145/1250790.1250806
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1137/1025045
https://doi.org/10.1109/18.904499
https://doi.org/10.1006/jcta.2000.3081
https://doi.org/10.1006/jcta.2000.3081
https://doi.org/10.1109/ICPR.2000.906220
http://arxiv.org/abs/2004.06828

D. Chakraborty, D. Das, and R. Krauthgamer 11:19

45 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(o(n1/3)) samples. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages
1042–1046. ACM, 2017.

46 François Nicolas and Eric Rivals. Complexities of the centre and median string problems. In
14th Annual Symposium on Combinatorial Pattern Matching, CPM 2003, pages 315–327, 2003.

47 Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin,
Konstantin Makarychev, Miklos Z. Racz, Govinda Kamath, Parikshit Gopalan, Bichlien
Nguyen, et al. Random access in large-scale dna data storage. Nature biotechnology, 36(3):242,
2018.

48 Oscar Pedreira and Nieves R. Brisaboa. Spatial selection of sparse pivots for similarity search
in metric spaces. In International Conference on Current Trends in Theory and Practice of
Computer Science, pages 434–445. Springer, 2007.

49 Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: Subpolyno-
mially many traces suffice. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, pages 228–239. IEEE Computer Society, 2017.

50 Pavel Pevzner. Computational molecular biology: an algorithmic approach. MIT press, 2000.
51 Cyrus Rashtchian, Konstantin Makarychev, Miklós Z. Rácz, Siena Ang, Djordje Jevdjic, Sergey

Yekhanin, Luis Ceze, and Karin Strauss. Clustering billions of reads for DNA data storage. In
Advances in Neural Information Processing Systems 30, pages 3360–3371. Curran Associates,
Inc., 2017.

52 Richard J Roberts, Mauricio O Carneiro, and Michael C Schatz. The advantages of smrt
sequencing. Genome Biology, 14(7):405, 2013.

53 David Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics,
28(1):35–42, 1975. doi:10.1137/0128004.

54 Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over
insertion-deletion channels. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 399–408, 2008.

55 SM Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and error-free
dna-based data storage. Scientific reports, 7(1):1–6, 2017.

A Description of Probabilistic Channel

Model Rp(x). Given an infinite-length string x ∈ ΣN and a parameter p ∈ [0, 1]. Consider
the following random procedure:
1. Initialize i = 1. (We use i to point to the current index positions of the input string.)

Also, initialize an empty string Out.
2. Do the following independently at random:

a. With probability 1− p, set Out← Out⊙ x[i] and increment i. (Match x[i].)
b. With probability p/2, increment i. (Delete x[i].)
c. With probability p/2, choose independently uniformly at random a character a ∈ Σ

and set Out← Out⊙ a. (Insert a random character.)
We call this procedure Rp, and denote the randomized output string Out by Rp(x).

Model Gp(x). This model first provides a randomized mapping (alignment) Ap : N →
N ∪ {⊥}, and then uses this alignment (and x) to generate the output string. First, given a
parameter p ∈ [0, 1], consider the following random procedure to get a mapping Ap:
1. Initialize i = 1 and j = 1. (Indices of current positions in the input and output strings,

respectively.)
2. Do the following independently at random:

a. With probability 1− p, set Ap(i)← j and increment both i and j. (Match x[i].)
b. With probability p/2, set Ap(i)← ⊥ and increment i. (Delete x[i].)
c. With probability p/2, increment j. (Insertion.)

FSTTCS 2021

https://doi.org/10.1137/0128004

11:20 Approximate Trace Reconstruction via Median String (In Average-Case)

Next, use this Ap and a given string x ∈ ΣN to generate a string y ∈ ΣN as follows. For each
j ∈ N,

If there is i ∈ N with Ap(i) = j then set y[j]← x[i]. (Match x[i].)
Otherwise, choose independently uniformly at random a character a ∈ Σ and set y[j]← a.
(Insert a random character.)

We denote by Gp(x) the randomized string y generated as above. By construction, Ap is an
alignment between x and Gp(x).

Basic Properties. We claim next that Rp and Gp are equivalent, which is useful because we
find it more convenient to analyze Gp. We use X1

dist= X2 to denote that two random variable
Xi ∼ Di, i ∈ {1, 2} have equal distribution, i.e., D1 = D2. The next two propositions are
immediate.

▶ Proposition 15. For every string x ∈ ΣN and p ∈ [0, 1], we have Rp(x) dist= Gp(x).

▶ Proposition 16 (Transitivity). For every x ∈ ΣN and p ∈ [0, 1], let

q(p) := p(4− 3p)
2− p2 . (6)

Then Gp(Gp(x)) dist= Gq(p)(x).

Additional Properties (Random Base String). Let U be the uniform distribution over
strings x ∈ ΣN, i.e., each character x[i] is chosen uniformly at random and independently
from Σ. We now state two important observations regarding the process Gp. The first one is
a direct corollary of Proposition 16. The second observation follows because the probability
of insertion is the same as that of deletion at any index in the random process Gp.

▶ Corollary 17 (Transitivity). Let p ∈ [0, 1] and let q(p) be as in (6). Draw a random string
X ∼ U , and use it to draw Y ∼ Gp(Gp(X)) and Z ∼ Gq(p)(X). Then (X, Y) dist= (X, Z).

▶ Proposition 18 (Symmetry). Let p ∈ [0, 1]. Draw a random string X ∼ U and use it to
draw another string Y ∼ Gp(X). Then (X, Y) dist= (Y, X).

B Near-Linear-Time Median Algorithm

Formally, our result is the following.

▶ Theorem 19. There is a small non-negative constant c0 < 1 and a deterministic algorithm
that, for every sufficiently large n ∈ N and noise parameter p ∈ (0, c0], given as input three
traces s1, s2, s3 ∼ Gp(s), for a uniformly random (but unknown) string s ∈ {0, 1}n, and an
accuracy parameter ϵ ∈ [110p log(1/p), 1/6], outputs in time Õ(n) a string z that satisfies
Pr[ED(s, z) ≤ 5270ϵpn] ≥ 1− n−1.

Before describing the algorithm we would like to introduce a few notations, which we use
in this section. For a string x ∈ Σn, let y = x[i, i + 1, · · · , j] be a substring of it. Then we
use the notation start(y) to denote the index i and end(y) to denote the index j.

D. Chakraborty, D. Das, and R. Krauthgamer 11:21

Description of the algorithm. Let us now describe the algorithm. First, partition s1 into
r = |s1|

ℓ disjoint blocks s1
1, s2

1, · · · , sr
1 each of length ℓ = log2 n + 240

p log3/2 n. For each si
1, let

us call the middle log2 n-size sub-block, denoted by yi
1, an anchor. Next, for each i ∈ [r]

and j ∈ {2, 3}, find the best match of the anchor yi
1 in the string sj i.e., for each yi

1 find a
substring (breaking ties arbitrarily) in sj that has the minimum edit distance with yi

1. Let
us denote the matched substrings in s2 and s3 by yi

2 and yi
3 respectively. Then for each

j ∈ {2, 3}, we divide sj into blocks s1
j , · · · , sr

j (some of the si
j ’s could be empty) by treating

y1
j , · · · , yr

j as anchors. More specifically,
Set the start index of s1

j to be 1. For any other non-empty block si
j , set its start index to

be ⌊(end(yi−1
j) + start(yi

j))/2⌋.
For the last non-empty block in sj , set its end index to be |sj |. For any other non-empty
block si

j , set its end index to be ⌊(end(yi
j) + start(yi+1

j))/2⌋ − 1.
Next, for each i ∈ [r], compute a median of {si

1, si
2, si

3}, and let it be denoted by zi. Finally,
output z = z1 ⊙ · · · ⊙ zr (i.e., the concatenation of all the zi’s).

Correctness proof. Before proceeding with the correctness proof, let us state a known fact
about the edit distance between two random strings from [4].

▶ Proposition 20 ([4]). For any two strings x ∈ Σm and y ∈ Σn drawn uniformly at random,
Pr[ED(x, y) ≥ max{m,n}

10] ≥ 1− 2− max{m,n}/10.

▷ Claim 21. For every two substrings x, y of length at least 60 log n, of si, sj respectively,
where i, j ∈ [3], such that (Ap

s,si
)−1(x) and (Ap

s,sj
)−1(y) are two disjoint substrings of s,

Pr[ED(x, y) ≥ max{|x|,|y|}
10] ≥ 1− n−4.

Proof. By Proposition 18, x and y are two strings chosen uniformly at random by picking
each of its symbols independently uniformly at random from Σ. Then the claim directly
follows from Proposition 20 together with a standard application of union bound. ◁

Let us now define true match for each block yi
1 in strings s2 and s3. For each j ∈ {2, 3},

we call the block Ap
s,sj

((Ap
s,s1

)−1(yi
1)) in sj the true match of yi

1, denoted by ti
j . Next, we

want to claim that for each block yi
1, its best match yi

j in a string sj , for j ∈ {2, 3}, is close
to its true match ti

j . The following lemma is crucial to show the correctness of the algorithm
and also to establish a linear-time bound for the algorithm.

▷ Claim 22. For each i ∈ [r] and j ∈ {2, 3}, with probability 1− 5n−2,
1. |start(ti

j)− start(yi
j)| ≤ 200

p log n, and
2. |end(ti

j)− end(yi
j)| ≤ 200

p log n.

Proof. Let us partition yi
1 into p log n

10 sub-blocks yi,1
1 , · · · , y

i,(p log n)/10
1 , each of size 10 log n

p .
Next, for each of these sub-blocks yi,k

1 consider its true match in the string sj (for any
j ∈ {2, 3}) defined as ti,k

j := Ap
s,sj

((Ap
s,s1

)−1(yi,k
1)).

Now, consider an (arbitrary) optimal alignment B between yi
1 and yi

j . Observe, if for all
1 ≤ k ≤ (p log n)/10, B(yi,k

1) has a non-empty overlap with the corresponding true match
ti,k
j , then the claim is true. So from now on, let us assume that at least for some block yi,k

1 ,
B(yi,k

1) does not overlap with ti,k
j . Let yi,k′

1 be the right-most sub-block such that there is a
non-empty overlapping between B(yi,k′

1) and ti,k′

j . Then for each k′ + 1 ≤ k ≤ (p log n)/10,
by Claim 21, costB(yi,k

1) ≥ log n
p with probability at least 1− n−4.

FSTTCS 2021

11:22 Approximate Trace Reconstruction via Median String (In Average-Case)

We want to claim that k′ ≥ p log n
10 − 10

1−24p . If not, then we deduce that yi
j is not the

best match of yi
1 in the string sj . To argue this, suppose k′ < p log n

10 − 10
1−24p . Then we

modify the mapping B to derive another mapping B′ as follows: B′ respects B till the block
yi,k′−1

1 . Next, B′ deletes the block yi,k′

1 , and then use the mapping Ap
s,sj
◦ (Ap

s,s1
)−1 to map

the remaining blocks yi,k′+1
1 , · · · , y

i,(p log n)/10
1 . By Lemma 5 (applied on strings of size at

least 10 log n
p) together with an union bound, we get that for all the blocks of s1 of size at

least 10 log n
p , the cost of the alignment Ap

s,sj
◦ (Ap

s,s1
)−1 is at most 24 log n with probability

at least 1− 2n−2.
Clearly, the cost of this new alignment B′ is at least (10

1−24p +1) log n
p −(10 log n

p + 240 log n
1−24p) > 0

less than that of B. Hence, yi
j cannot be the best match of yi

1 in sj . So we deduce
that k′ ≥ p log n

10 − 10
1−24p . Note, if an alignment function just deletes all the blocks

yi,k′+1
1 , · · · , y

i,(p log n)/10
1 , it would cost at most 100 log n

p(1−24p) . Thus, since ti
j is the best match of

yi
1, the cost of B for these blocks yi,k′+1

1 , · · · , y
i,(p log n)/10
1 must be at most 100 log n

p(1−24p) . From
this we conclude that |end(ti

j)− end(yi
j)| ≤ 100

p(1−24p) log n ≤ 200
p log n (for the choice of p we

have).
Similarly, we can argue that |start(ti

j) − start(yi
j)| ≤ 200

p log n. This concludes the
proof. ◁

The following is an immediate corollary of the above claim.

▶ Corollary 23. With probability at least 1− 10n−2, for each i ∈ [r] and j ∈ {2, 3}, yi
j and

yi+1
j do not overlap.

Proof. Consider the substring between the blocks yi
1 and yi+1

1 , which is of length 480
p log3/2 n.

By Lemma 5, Ap
s,sj
◦ (Ap

s,s1
)−1 maps that substring into a substring of length at least

240 log3/2 n > 400
p log n in sj with probability at least 1− n−3. Now, it directly follows from

Claim 22 that yi
j and yi+1

j do not overlap. ◀

Next, we use the above to establish an upper bound on the edit distance between the
unknown string s and the recovered string z.

▶ Lemma 24. With probability at least 1− n−1, ED(s, z) ≤ 1550ϵpn.

Proof. For any i ∈ [r], consider the set Si := {si
1, si

2, si
3}. Consider the substring yi of the

string s such that Ap
s,s1

(yi) = yi
1 (i.e., yi maps to yi

1 by the alignment Ap
s,s1

). Next, for the
analysis purpose, consider the set T i = {yi

1, ti
2, ti

3}. Recall, by the definition of ti
j = Ap

s,sj
(yi),

for j ∈ {2, 3} are the traces generated by Gp from the block yi.
Thus by Lemma 5, with probability at least 1 − 3n−4, for each t ∈ T i, ED(yi, t) ≤

(1 + ϵ)p|yi|. Since yi
1 is a substring of si

1 (where |si
1| = |yi

1| + 240
p log3/2 n), by triangular

inequality, ED(yi, si
1) ≤ (1 + ϵ)p|yi| + 240

p log3/2 n. Next observe, for each j ∈ {2, 3}, by
Corollary 23, ti

j is a substring of si
j . Furthermore, by definition, |si

j | ≤ |yi
j | + 240

p log3/2 n.
Thus, again by triangular inequality, ED(yi, si

j) ≤ (1 + ϵ)p|yi|+ 240
p log3/2 n. So we get

Obj(Si, yi) ≤ 3(1 + ϵ)p|yi|+ 750
p

log3/2 n. (7)

Since zi is an (exact) median of Si, Obj(Si, zi) ≤ Obj(Si, yi). Next, it follows from Claim 22
and the construction of the blocks si

j , for j ∈ {2, 3}, that ti
j is a substring of si

j where
|ti

j | ≥ |si
j | − 500

p log3/2 n. Hence, we can deduce that

D. Chakraborty, D. Das, and R. Krauthgamer 11:23

Obj(T i, zi) ≤ Obj(Si, zi) + 1500
p

log3/2 n

≤ Obj(Si, yi) + 1500
p

log3/2 n

≤ 3(1 + ϵ)p|yi|+ 2500
p

log3/2 n by (7). (8)

Further observe, it follows from Proposition 16 and Lemma 7, for each j ∈ {2, 3},

ED(yi
1, ti

j) ≥ (1− 6ϵ)q|yi
1| = (1− 6ϵ)q log2 n.

Recall, q = 2p−Θ(p2). Then

OPT(T i) ≥ 3(1− 7ϵ)p log2 n. (9)

From (8) and (9), we conclude that zi is an (1 + 9ϵ)-approximate median of T i. So by
Theorem 13, ED(yi, zi) ≤ 1755ϵ · OPT(T i) with probability at least 1− e−2 log2(log n).

Now, since all the yi’s are generated by picking each symbol uniformly at random and by
our construction for each j ∈ {2, 3} ti

j ’s are disjoint, the sets T i’s are independent. Hence, by
applying standard Chernoff-Hoeffding bound, we get that with probability at least 1− n−1,
all but at most e−2 log2(log n)r +

√
r log r many blocks satisfy, ED(yi, zi) ≤ 1755ϵ · OPT(T i).

Let s′ denote the string y1 ⊙ · · · ⊙ yr. Note as s′ is a subsequence of s,

ED(s, s′) = |s| − |s′| ≤ 500n

p
log1/2 n

Then,

ED(s, z) ≤ ED(s′, z) + 500n

p log1/2 n

≤
r∑

i=1
ED(yi, zi) + 500n

p log1/2 n

≤ 1755ϵ
r∑

i=1
OPT(T i) + (e−2 log2(log n)r +

√
r log r)2 log2 n + 500n

p log1/2 n

≤ 5270ϵpn.

The first inequality follows by triangular inequality and the last inequality follows by (8)
and r = Θ(n/ log2 n). ◀

Running time analysis. Partitioning the string s1 into r blocks clearly takes linear time.
The main challenge here is to find the best match yi

j (for j ∈ {2, 3}) for each block yi
1. To

do this, for each j ∈ {2, 3}, we start with the first 10 log2 n-sized substring of sj and run
the approximate pattern matching algorithm under the edit metric by [36, 22] to find the
best match y1

j for y1
1 (which takes O(log4 n) time). Next, we consider the 10 log2 n-sized

substring of sj starting from the end index of y1
j , and in a similar way find the best match

y2
j for y2

1 . We continue until we find the best matches for all the blocks y1
1 , · · · , yr

1. Lemma 5
ensures that y1

j indeed lies on the first 10 log2 n-sized substring of sj with probability at
least 1− n−4. Then Corollary 23 together with Lemma 5 guarantees that to find the best
match for a block yi

1, it suffices to look into the 10 log2 n-sized substring of sj after the best
match of the previous block yi−1

1 . Hence, we can identify the best matches for all the blocks
y1

1 , · · · , yr
1 in time Õ(n) (since r = Θ(n

log2 n
)). Once we get si

1, si
2, si

3 for each i ∈ [r], we can
compute their median using the dynamic programming algorithm [53, 34] in time O(log6 n)
time. So, the total running time is Õ(n).

FSTTCS 2021

Approximating the Center Ranking Under Ulam
Diptarka Chakraborty #

National University of Singapore, Singapore

Kshitij Gajjar #

National University of Singapore, Singapore

Agastya Vibhuti Jha1 #

EPFL, Lausanne, Switzerland

Abstract
We study the problem of approximating a center under the Ulam metric. The Ulam metric, defined
over a set of permutations over [n], is the minimum number of move operations (deletion plus insertion)
to transform one permutation into another. The Ulam metric is a simpler variant of the general edit
distance metric. It provides a measure of dissimilarity over a set of rankings/permutations. In the
center problem, given a set of permutations, we are asked to find a permutation (not necessarily
from the input set) that minimizes the maximum distance to the input permutations. This problem
is also referred to as maximum rank aggregation under Ulam. So far, we only know of a folklore
2-approximation algorithm for this NP-hard problem. Even for constantly many permutations, we
do not know anything better than an exhaustive search over all n! permutations.

In this paper, we achieve a
(

3
2 − 1

3m

)
-approximation of the Ulam center in time nO(m2 ln m), for

m input permutations over [n]. We therefore get a polynomial time bound while achieving better
than a 3/2-approximation for constantly many permutations. This problem is of special interest
even for constantly many permutations because under certain dissimilarity measures over rankings,
even for four permutations, the problem is NP-hard.

In proving our result, we establish a surprising connection between the approximate Ulam center
problem and the closest string with wildcards problem (the center problem over the Hamming metric,
allowing wildcards). We further study the closest string with wildcards problem and show that
there cannot exist any (2 − ϵ)-approximation algorithm (for any ϵ > 0) for it unless P = NP. This
inapproximability result is in sharp contrast with the same problem without wildcards, where we
know of a PTAS.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Center Problem, Ulam Metric, Edit Distance, Closest String, Approximation
Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.12

Funding This work was supported by NUS ODPRT Grant, WBS No. R-252-000-A94-133.

1 Introduction

Finding a representative of a data set is a classical aggregation task heavily used in data
analysis. Given a set S of points in a metric space, one of the more popular versions asks to
find a point (not necessarily from S) that minimizes the maximum distance to the points in
S, i.e.,

min
y

max
x∈S

d(y, x). (1)

Such a point is called a center. The question of finding a center in a metric space dates back
to the nineteenth century [42]. In several applications, it suffices to compute an approximate
center, i.e., a point in the metric space that approximates the objective value (1). The problem

1 This work was done while the author was a student at IIIT-Delhi

© Diptarka Chakraborty, Kshitij Gajjar, and Agastya Vibhuti Jha;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 12; pp. 12:1–12:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:kshitijgajjar@gmail.com
mailto:agastya.jha@epfl.ch
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Approximating the Center Ranking Under Ulam

of finding an (approximate) center has been studied widely both in theory and practice.
Various metric spaces have been considered for the center problem, including Euclidean
(both constant [33] and high dimension [7, 43]), Hamming [19, 29, 32, 30], Hamming with
wildcard [22], the edit metric [36], Jaccard distance [10], rankings [6, 8, 38], etc. A similar
task is to find a median point, which asks to minimize the sum of the distances to the
data points (instead of the maximum distance). The median problem has also been studied
extensively in various metric spaces [15, 40, 18, 1, 24, 41, 13, 34]. Despite being similar,
finding a center is a much harder task than finding a median. For instance, in the Hamming
metric, finding a median is folklore (just take a coordinate-wise majority), whereas finding a
center is NP-hard [19].

In this paper, we primarily focus on approximating the center over the Ulam metric,
which is a close variant of the edit metric. The Ulam metric of dimension n is the metric
space (Sn, d), where Sn is the set of all permutations over [n] and d(x, y) is the minimum
number of character moves needed to transform x into y [2].2 The importance of studying the
Ulam metric is twofold. First, it is an interesting measure of dissimilarity between rankings.
The problem of finding a consensus ranking on a set of alternatives based on the preferences
of voters arise in many application domains like sports, databases, elections, search engines,
and statistics. A common ranking that best captures the preferences among the alternatives
is often characterized by the center objective function (1) (a.k.a. maximum rank aggregation).
The second aspect of the Ulam metric is that it captures some of the inherent difficulties of
the edit metric. Thus, any progress in the Ulam metric may provide insights to tackle the
more general edit metric which finds numerous applications in computational biology [21, 37],
DNA storage system [20, 39], speech recognition [26], and classification [31]. The Ulam
metric has also been studied from different algorithmic perspectives [17, 12, 3, 4, 35, 9].

There is a folklore algorithm that finds a 2-approximate center by simply reporting the
best input permutation that minimizes the objective (1). This 2-approximation, in fact,
holds for every metric space. Unfortunately, so far, we do not know any polynomial-time
algorithm that attains better than the folklore 2-approximation, even when the number of
input permutations is constant. For the exact computation (or even to beat the 2-factor),
nothing better than the exhaustive search (over n! permutations) is known, even for constantly
many input permutations. On the hardness side, we only know that it is NP-complete [6].
On the contrary, for the Ulam median problem, very recently, [11] broke below the 2-factor
in polynomial time. [11] also provided a polynomial-time 3/2-approximation algorithm for
constantly many input permutations. It is not difficult to show that the Ulam center is at
least as hard as the Ulam median, even for constantly many inputs (see Appendix A).

Our main result is a deterministic polynomial-time algorithm that breaks below the
3/2-approximation for the Ulam center problem for constantly many inputs.
▶ Theorem 1. There is a deterministic algorithm that, given as input a set of m permutations
S ⊆ Sn, computes a

(3
2 −

1
3m

)
-approximate center of S in time nO(m2 ln m).

The above running time could be improved by increasing the approximation factor slightly.
More specifically, for every ϵ > 0, we can compute a

(3
2 + ϵ− 1

m

)
-approximate center in

time n3m + nO(ln m
ϵ2) (see Remark 10). It is straightforward to see that when m is constant,

the algorithm in the above theorem runs in polynomial time and computes a better than
3/2-approximate center. The question of approximating a center for constantly many
ranks/permutations is particularly interesting because even for four inputs, it is known to be
NP-complete with respect to Kendall’s tau distance [18, 8], another often used dissimilarity
measure for rankings [23, 44, 45].

2 One may also consider one deletion and one insertion operation instead of a character move, and define
the distance accordingly [17].

D. Chakraborty, K. Gajjar, and A. V. Jha 12:3

Nevertheless, we provide a polynomial-time algorithm to solve the (exact) Ulam center
problem for three permutations (Theorem 12). It is worth noting that for Kendall’s tau
distance, it is unknown whether the center problem is in P or NP-complete for three
permutations.

We show our result (Theorem 1) by establishing a surprising connection between the
Ulam center and (a generalization of) the closest string with wildcards problem. We will
explain this connection in the technical overview. In this paper, we further study the closest
string with wildcards problem. In the closest string problem, given a set of n-length strings
over some fixed alphabet Σ, the objective is to find a center (a string from Σn) under the
Hamming distance. This problem is NP-complete [19], but a PTAS is known [29].

A variant of the closest string problem is the closest string with wildcards. In this variant,
each input string may include any number of a wildcard character ∗. The wildcard character ∗
can be matched with all the characters of Σ. For two strings s, s′ ∈ (Σ∪{∗})n, the Hamming
distance between them is defined as dH(s, s′) := |{i ∈ [n] | s[i] ̸= s′[i] and s[i] ̸= ∗, s′[i] ̸= ∗}|.
Given a set of strings with wildcards, we are asked to find a center string (with no wildcard
character) of length n with respect to the Hamming distance. (Note, if wildcards are allowed
in the center string, the all-wildcard string will trivially become a center.) This problem
is also NP-complete [22]. However, no better than a 2-factor (polynomial-time) algorithm
is known. The parameterized complexity of this problem has also been considered [22, 25].
The Hamming distance with wildcard has been studied widely (e.g. [16, 28, 14]) due to its
numerous applications in computational biology, large scale web searching, database systems.

As we mentioned earlier, for the simpler variant without any wildcard, there is a PTAS.
Can we get a similar PTAS when wildcards are allowed? In this paper, we refute such a
possibility. We show that attaining much better than a 2-approximation factor for the closest
string with wildcards problem (even for a binary alphabet) is not possible unless P = NP.

▶ Theorem 2. There is no deterministic polynomial-time (2− ϵ)-approximation algorithm
(for any ϵ > 0) for the closest string with wildcards problem, unless P = NP.

The above hardness result holds even for a binary alphabet. The above theorem is in sharp
contrast with the (typical) closest string problem for which a PTAS is known [29]. To the
best of our knowledge, this is the first (2− ϵ)-factor inapproximability result for any center
problem defined over a set of strings.

1.1 Technical overview

Approximating the Ulam center. One of our main contributions is a polynomial-time
(better than) 3/2-factor approximation algorithm for the Ulam center problem for constantly
many permutations. Our algorithm runs in nO(m2 ln m) time for m permutations, and achieves(3

2 −
1

3m

)
approximation. For simplicity in exposition, we briefly describe our algorithm

that achieves 3/2-approximation by assuming m is a constant. At the very high level,
we first compute an exact n-length center (not necessarily a permutation) using dynamic
programming and then convert that into a permutation that incurs approximation. The idea
is similar to what was used for the Ulam median problem in [11]. However, the similarity ends
here. The transformation algorithm that converts an n-length center into a permutation is
more intricate, and the analysis is more involved. Another interesting aspect of our algorithm
is that we establish a surprising connection between the approximate Ulam center and a
generalization of the closest string problem. Let us now briefly explain our algorithm.

FSTTCS 2021

12:4 Approximating the Center Ranking Under Ulam

If the optimal center objective OPT is small (bounded by a constant), we can find a
center permutation by performing an exhaustive search up to a small distance from any input.
Thus as long as OPT is at most some constant, in polynomial time, we find an exact center
permutation. So, from now, assume that OPT is at least some constant. Our main algorithm
has two main steps. The first step constitutes a dynamic programming algorithm that returns
an n-length string which maximizes the minimum LCS (Longest Common Substring) with
the input permutations (see Subsection 4.1). This algorithm is essentially a generalization
of [40, 27]. Let x∗

n be the string we get from this step. Note, the metric defined by n− |LCS|
is essentially the Ulam distance over permutations. So our dynamic programming provides
us a center string that minimizes the maximum n − |LCS|. Let us denote this optimum
value as OPTn. Clearly, n-length center string is a relaxation of center permutation. Thus,
OPTn ≤ OPT.

If x∗
n is a permutation, we are done, as we have found an optimal center permutation.

Otherwise, we modify x∗
n to get a permutation. Let there be ℓ symbols a1, a2, . . . , aℓ that

appear more than once in x∗
n. For any aj , each occurrence might be part of a LCS with a subset

of input permutations. Now, suppose we delete any one of the occurrences arbitrarily. In
that case, we will increase the distances to the corresponding subset of inputs. Consequently,
we may end up with a string far from a particular input permutation, causing a much worse
objective value than OPT. Thus, we need to delete them in a “balanced” way such that
distances to all the inputs increase in “a uniform manner”. For that purpose, we introduce a
generalization of the closest string problem, which we call matrix bi-coloring. We create a
matrix having ℓ columns, each corresponding to a repeated symbol. Each row of the matrix
corresponds to an input permutation. Thus the number of rows is equal to the number
of inputs. Then for a column (corresponding to aj), we color the entries as follows: If aj

of an input permutation si is aligned (with respect to some fixed optimal alignment) with
the c-th occurrence of aj in x∗

n, we color the corresponding entry ((i, j)-th entry) of the
matrix by c. Essentially, for each symbol aj , we have a set of color classes. Each color class
c denotes the subset of inputs whose aj aligns with c-th occurrence of x∗

n. There could be
some uncolored entries as well. (See Figure 2 for an example.) Then, we select exactly one
color per symbol/column (denoting which occurrence to keep in x∗

n) and cover (alternatively,
mark as red) all the “un-matched” colored entries of that column. Next, we come up with a
“coloring scheme” (i.e., a choice of colors per column) such that after covering (marking as
red) the un-matched colored entries, the maximum covered (red) entries per row is minimized.
In general (for an arbitrary colored matrix), there may not exist a coloring scheme leading to
a bounded number of covered (red) entries per row. (This could happen for “tall” matrices,
with significantly more rows than columns.) Fortunately, that is not the case for us. Since
we have constantly many input permutations and the number of repeated symbols is large
(follows from our large OPT assumption), there will always exist a “good” coloring scheme. If
we keep the occurrences of repeated symbols in x∗

n according to an optimal coloring scheme,
we end up not increasing the center objective value (maximum distances) by much. It is
possible to find an optimal coloring scheme using another dynamic programming algorithm
(Appendix B). Once we delete all the repeated occurrences, we insert the missing symbols
into x∗

n, again in a balanced manner. In the end, we are left with a permutation z over Sn.

The main point of removing repeated entries and the insertion of missing symbols in a
balanced manner is to keep the distances to each input within a 3/2-factor of the initial
distance. We argue that, in the end, the distance between an input permutation and the
final permutation z will be at most 3/2 times the initial (maximum) distance to x∗

n. Hence,
the center objective value of the output z is at most 3

2 OPTn ≤ 3
2 OPT. We refer the reader

to Section 4 for the detailed analysis.

D. Chakraborty, K. Gajjar, and A. V. Jha 12:5

Figure 1 Let n = 16 and m = 6. Each of s1, s2, . . . , s6 is a permutation in S16. x is a string (not
a permutation) of length 16 over the alphabet [16]. Different occurrences of the same symbol are
colored differently in x. The colored entries of si also denote an alignment with x (in this example,
LCS(x, si)). Note that mini∈[6] |LCS(x, si)| = 6. Figure 2 shows the colored matrix for this example.

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 2 3 4 5 6 7

s1

s2

s3

s4

s5

s6

1 3 3 2 2 2fj 3

1

3

3 3

3 3 3

2

22

2 2

2

2 2

2

2 2

2 2

1

1

1

1

1

1

1

1

1

1

1

1

1 2 3 4 5 6 7

s1

s2

s3

s4

s5

s6

1 3 3 2 2 2fj 3

3

3

3

2

2

2

2

2

2

2

red

red

red

red

red

red

red

red

red

red

red

red

red

red

red

red

red

red

Figure 2 (Left) A colored matrix M , corresponding to the example in Figure 1 (here, the number
in each cell simply denotes the color of the cell). (Right) A matrix bi-coloring scheme A of M , where
A = (1, 3, 1, 2, 2, 1, 2). As the maximum number of red entries in a row is 4, we have MRI(A(M)) = 4.

Inapproximability of the closest string with wildcards. The matrix bi-coloring problem
mentioned earlier is a generalization of the closest string with wildcards problem for a fixed
alphabet Σ. To see this, restrict the number of colors per column for the matrix bi-coloring
to the alphabet size. (In the matrix bi-coloring, the number of colors per column could be as
large as the number of rows, and also, the number of colors in two different columns could
be different.) In a simpler version where wildcards are not allowed, we know of a PTAS [29].
So it is quite natural to ask whether we can get a better than 2-factor approximation
(ideally, a PTAS) for the closest string with wildcards problem in polynomial time. In this
paper, we refute the possibility of having one, assuming P ̸= NP. We show that there is no
polynomial-time (2− ϵ)-approximation algorithm for this problem.

To show our result, we provide a reduction from a variant of the satisfiability (SAT)
problem, namely (1, k, 2k + 1)-SAT introduced by Austrin, Guruswami and Håstad [5]. In
this problem, for any fixed integer k ≥ 1, given a (2k + 1)-CNF formula F , the objective is
to distinguish whether there is a satisfying assignment that satisfies at least k literals per
clause or F is unsatisfiable. For every fixed integer k ≥ 1, this problem was shown to be
NP-hard [5].

FSTTCS 2021

12:6 Approximating the Center Ranking Under Ulam

We provide a simple polynomial-time reduction from (1, k, 2k + 1)-SAT to the problem
of approximating closest string with wildcards. For an 0 < ϵ < 1, fix k = ⌈1/ϵ⌉. Given an
instance ((2k + 1)-CNF formula) F of (1, k, 2k + 1)-SAT with n variables and m clauses,
for each clause we create an n-length binary string with wildcards ({0, 1} ∪ {∗}). Each bit
position of these strings corresponds to a variable. In a clause, if a variable appears as a
positive literal, we set the corresponding bit position of the corresponding string to be 1; and
if it appears as a negative literal, we set the corresponding bit position of the corresponding
string to be 0. If a variable does not appear in a particular clause, we set the corresponding
bit position to be a wildcard (∗).

Thus in the reduced instance, each string contains at most 2k + 1 non-wildcard entries. It
is quite straightforward to see that for a YES instance of the (1, k, 2k + 1)-SAT formula, there
is a satisfying assignment that leads to a center string with objective value at most k + 1.
On the other hand, any center string with an objective value < 2k + 1 gives a satisfying
assignment. (See Section 5 for the details.)

2 Preliminaries

Notations. Let [n] denote the set {1, 2, . . . , n}. We refer to the set of all permutations over
[n] by Sn. Throughout this paper we consider any permutation x as a sequence of numbers
(a1, a2, . . . , an) such that x(i) = ai.

The Ulam metric and the problem of finding a center. Given two permutations x, y ∈ Sn,
the Ulam distance between them, denoted by d(x, y), is the minimum number of character
move operations3 that is needed to transform x into y. Alternatively, it can be defined as
n− |LCS(x, y)|, where LCS(x, y) denotes a longest common subsequence between x and y.

Given two strings (permutations) x and y of lengths nx and ny respectively, an alignment
g is a function from [nx] to [ny] ∪ {⊥} which satisfies:
∀i ∈ [nx], if g(i) ̸= ⊥, then x(i) = y(g(i));
Let i ∈ [nx], j ∈ [nx] such that i ̸= j, g(i) ̸= ⊥ and g(j) ̸= ⊥. Then i < j ⇔ g(i) < g(j).

For an alignment g between two strings (permutations) x and y, we say g aligns a
character x(i) with some character y(j) if and only if j = g(i). Thus the alignment g is
essentially a common subsequence between x and y (see Figure 1 for an example).

Given a set S ⊆ Sn and another permutation y ∈ Sn, we refer to the quantity
maxx∈S d(y, x) by the center objective value of S with respect to y, denoted by Obj(S, y).

Given a set S ⊆ Sn, a center of S is a permutation xcen ∈ Sn (not necessarily from S) such
that Obj(S, xcen) is minimized, i.e., xcen = arg miny∈Sn

Obj(S, y). We denote Obj(S, xcen) by
OPT(S). We call a permutation x̃ a c-approximate center (for some c > 0) of S if and only
if Obj(S, x̃) ≤ OPT(S) ≤ c · Obj(S, x̃).

3 Matrix Bi-coloring

In this section, we introduce a problem called the matrix bi-coloring problem. Let us start
by defining a colored matrix. We use positive integers to identify a color (except a special
color red). An m× ℓ dimensional matrix M is said to be colored if each entry of each column

3 A single move operation in a permutation can be thought of as “picking up” a character from its position
and then “inserting” that character in a different position.

D. Chakraborty, K. Gajjar, and A. V. Jha 12:7

j ∈ [ℓ] is either assigned a color from the set [fj] (for some positive integer fj), or no-color
(which is to say it is uncolored). (Multiple entries in the same column may have the same
color.) In other words, the number of distinct colors (other than no-color) that can be seen
in column j is fj . See Figure 2 for a visual depiction of matrix bi-coloring.

Given a colored matrix, our goal is to pick exactly one color cj for each column j ∈ [ℓ]
and recolor the matrix. All entries in column j which are colored cj retain their color. We
recolor the remaining entries (except the no-color entries) of column j to red. This is called
a matrix bi-coloring scheme. We now define this formally.

▶ Definition 3 (Matrix Bi-coloring Scheme). Given an m × ℓ colored matrix M , a matrix
bi-coloring scheme A for M is an ℓ-tuple (c1, c2, . . . , cℓ) ∈ [f1]× [f2]× · · · × [fℓ].

The ℓ-tuple (c1, c2, . . . , cℓ) produced by the matrix bi-coloring scheme A is used to recolor
the matrix M to produce a final m× ℓ colored matrix A(M), computed as follows. For every
(i, j) ∈ [m]× [ℓ],

if M [i][j] = no-color, then A(M)[i][j] = no-color;
else, if M [i][j] = cj , then A(M)[i][j] = cj ;
else, A(M)[i][j] = red.

For each row i ∈ [m] of A(M), the red index of the row, denoted as RIA,M (i), is the
number of red entries in the i-th row of A(M). (We will drop the subscript A, M when they
are clear from the context.) The maximum red index of A(M) is defined as

MRI(A(M)) := max
i∈[m]

RI(i).

Next, consider the following optimization problem.

▶ Definition 4 (Matrix Bi-coloring Problem). Given an m × ℓ colored matrix M , find a
matrix bi-coloring scheme A of M with the minimum MRI. This minimum MRI is called the
bi-coloring number of the matrix, denoted by BCN. Formally,

BCN(M) = min
A: A is a matrix bi-

coloring scheme for M

MRI(A(M)).

Thus, designing a matrix bi-coloring scheme essentially means coming up with a color for
each column. We would like to emphasize that the above problem is a generalization of a
certain variant of the center problem under the Hamming metric known as closest string
with wildcards [22] (see Section 5).

We first show an upper bound on BCN(M). Then we provide a dynamic programming
algorithm that, given a colored matrix M , finds BCN(M) exactly.

3.1 An upper bound on the bi-coloring number
We show that for every colored matrix M , there always exists a bi-coloring scheme A such
that MRI(A(M)) is not “too large”.

▶ Theorem 5. Let M be an m× ℓ colored matrix such that m4 ≤ eµ, where

µ =
∑
j∈[ℓ]

(
1− 1

fj

)
.

Recall that fj is the number of distinct colors in column j ∈ [ℓ] (not counting no-color). Then

BCN(M) ≤ µ + 2
√

µ ln m.

FSTTCS 2021

12:8 Approximating the Center Ranking Under Ulam

An interesting fact about the above theorem is that µ depends only on the number of different
colors in each column, regardless of how those colors are placed in M . We prove this theorem
using the probabilistic method.

Proof of Theorem 5. Given a colored matrix M , we randomly pick an ℓ-tuple (c1, c2, . . . , cℓ),
by selecting each cj independently uniformly at random from [fj]. This leads to a random
bi-coloring scheme A. We then show that the expected MRI of A(M) is at most µ. Then by
a simple Chernoff bound, we conclude that there exists a choice of the ℓ-tuple for which the
MRI is at most µ + 2

√
µ ln m, proving Theorem 5.

More precisely, for each column j ∈ [ℓ], we pick a color cj independently uniformly at
random from [fj]. So,

Pr
cj∼[fj]

[cj = c] = 1
fj

∀ j ∈ [ℓ], c ∈ [fj]. (2)

Recall, in each column j ∈ [ℓ] of A(M), each entry A(M)[i][j] is either no-color, cj or red.
For all i ∈ [m] and j ∈ [ℓ], let Xi,j be an indicator random variable denoting whether
A(M)[i][j] = red or not, i.e.,

Xi,j =
{

1 if A(M)[i][j] = red;
0 otherwise.

Note, Xi,j = 1 if and only if M [i][j] ∈ [fj] and cj ̸= M [i][j]. For all i ∈ [m], let

Xi =
∑
j∈[ℓ]

Xi,j .

Thus, the random variable Xi denotes the number of red-entries in row i ∈ [m]. The expected
number of red-entries in row i ∈ [m] is given by

E[Xi] = E

∑
j∈[ℓ]

Xi,j

 =
∑
j∈[ℓ]

E[Xi,j] (Linearity of expectation)

=
∑
j∈[ℓ]

Pr[Xi,j = 1]

=
∑

j∈[ℓ]:
M [i][j]∈[fj]

Pr[Xi,j = 1] +
∑

j∈[ℓ]:
M [i][j]=no-color

Pr[Xi,j = 1]

=
∑

j∈[ℓ]:
M [i][j]∈[fj]

Pr[Xi,j = 1] + 0 (A(M)[i][j]=no-color
⇐⇒M [i][j]=no-color)

=
∑

j∈[ℓ]:
M [i][j]∈[fj]

Pr [cj ̸= M [i][j]] (By definition)

=
∑

j∈[ℓ]:
M [i][j]∈[fj]

(
1− 1

fj

)
(By Equation 2)

≤
∑
j∈[ℓ]

(
1− 1

fj

)
= µ.

D. Chakraborty, K. Gajjar, and A. V. Jha 12:9

Thus for every row i ∈ [m], the expected number of red-entries in row i is at most µ. We
will now show that the event that all of the rows simultaneously have at most µ + 2

√
µ ln m

many red-entries occurs with non-zero probability.
Note that for each fixed row i ∈ [m], the indicator random variables Xi,1, Xi,2, . . . , Xi,ℓ

are independent. We set

δ = 2
√

(ln m)/µ.

Since we are given that m4 ≤ eµ, taking ln on both sides and square rooting, we get
2
√

(ln m)/µ ≤ 1. Thus 0 < δ ≤ 1. Then it follows from a standard application Chernoff
bound that

Pr[Xi ≥ (1 + δ) · µ] ≤ exp
(
−δ2 · µ

3

)
.

By a union bound,

Pr[∃ i ∈ [m] : Xi ≥ (1 + δ) · µ] ≤ m · exp
(
−δ2 · µ

3

)
.

Thus we get,

Pr[∀ i ∈ [m] : Xi < (1+δ) · µ] ≥ 1−
(

m · exp
(
−δ2 · µ

3

))

= 1−

m · exp

−
(

2
√

(ln m)/µ
)2
· µ

3

 (Substituting δ)

= 1−
(

m · exp
(
−4 ln m

3

))
= 1−m−1/3 > 0.

Thus, Pr[∀ i ∈ [m] : Xi < (1 + δ) · µ] > 0. In other words, there is a non-zero probability
that the number of red-entries in every row i ∈ [m] is at most (1 + δ) · µ. Therefore, there
exists a bi-coloring scheme A∗ such that the red index RI(i) of every row i ∈ [m] satisfies
RI(i) ≤ (1 + δ) · µ. Hence,

MRI(A∗(M)) = max
i∈[m]

RI(i) ≤ (1 + δ) · µ = µ + δµ = µ + 2
√

µ ln m.

Since BCN(M) ≤ MRI(A∗(M)), this completes the proof. ◀

We can also compute an optimal bi-coloring using a dynamic programming algorithm.
We defer the algorithm to Appendix B.

▶ Theorem 6. There is a deterministic algorithm FindBiColoring that, given an m× ℓ

colored matrix M , finds a matrix bi-coloring scheme A of M with the minimum MRI, in
O(mℓm+1) time.

4 Approximation Algorithm for the Ulam Center

In this section, we provide a 3/2-approximation algorithm for the Ulam center problem. In
particular, we prove Theorem 1.

FSTTCS 2021

12:10 Approximating the Center Ranking Under Ulam

We are given a set of permutations S = {s1, s2, · · · , sm} ⊆ Sn as input. Our algorithm
runs two procedures, each producing a permutation (candidate center), and returns the
better of the two (that has smaller value). For any positive integer k and a permutation
s ∈ Sn, let us use the notation Bk(s) to denote the set of all the permutations at distance at
most k from s, i.e.,

Bk(s) := {x ∈ Sn | d(s, x) ≤ k}.

The first procedure BoundedSearch performs an exhaustive search up to distance
k, for k = 8m2 ln m. More specifically, it considers an input permutation, say s1, and
enumerates over all x ∈ Bk(s1), and finally returns a permutation x ∈ Bk(s1) that minimizes
maxsi∈S d(x, si). Note, |Bk(s1)| = O(n2k). Thus the running time of this procedure is
O(mn2k+1 ln n). (Computing the Ulam distance between two permutations in Sn takes
O(n ln n) time.) Clearly, if the optimum center objective OPT(S) ≤ k, the procedure
BoundedSearch outputs an optimum center. So from now, we assume

OPT(S) ≥ 8m2 ln m. (3)

The second procedure, referred to as ApproxCenter, has two main steps. Firstly, it
computes the best center string (not necessarily a permutation) x∗

n of length at most n using
a procedure FindStringCenter. And secondly, it converts x∗

n to a permutation s∗ ∈ Sn

using a procedure StringToPermutation.
We will show that assuming (3), s∗ output by ApproxCenter is a 3/2-approximate

center of S. Below we first describe each of the two main steps of ApproxCenter in detail.

4.1 Finding a length-restricted center string
This subsection provides a dynamic programming algorithm that given any set of n length
strings computes a center string of length n. More specifically, we design an algorithm that
computes a string (over the alphabet [n]) of length n, which maximizes the minimum longest
common subsequence (LCS) with the input strings. We defer the algorithm to Appendix C.

▶ Theorem 7. There is a deterministic algorithm FindStringCenter that, given m strings
s1, s2, . . . , sm, each of length n, computes a string x∗

n = arg maxx∈[n]n(mini |LCS(x, si)|), also
of length n, in O(n2m+12m) time.

Now let us apply this algorithm to our problem. Recall that we are given a set of
permutations S = {s1, s2, . . . , sm} ⊆ Sn. We apply the procedure FindStringCenter on
the input set S to get an n-length string x∗

n. Note that x∗
n need not be a permutation. In

the next subsection, we describe how to transform x∗
n into a permutation.

4.2 Converting a length-restricted center string to a permutation
Let x∗

n be the n-length string obtained in the previous subsection. If x∗
n is a permutation,

then we are done, as we have an exact solution to the Ulam center problem. Otherwise,
let R = {a1, a2, . . . , aℓ} be the set of “repeated symbols”, i.e., the symbols that appear at
least twice in x∗

n. For each aj ∈ R, let freqj denote the number of occurrences of aj in x∗
n.

Also, let M be the set of “missing symbols”, i.e., the symbols that do not appear in x∗
n. To

transform x∗
n into a permutation, we need to remove duplicate occurrences of the repeated

symbols (R), and insert all the missing symbols (M).
Our transformation procedure StringToPermutation consists of following two steps

(the pseudocodes for these can be found in Appendix D):

D. Chakraborty, K. Gajjar, and A. V. Jha 12:11

1. Use a procedure RemoveDuplicate (Algorithm 1) to remove all the duplicate occurrences
of the symbols in R. RemoveDuplicate first computes an (arbitrary) optimal alignment
αi between x∗

n and si, for each i ∈ [m]. Next, construct a colored matrix M of dimension
m× ℓ as follows: For each i ∈ [m] and j ∈ [ℓ], if αi aligns the r-th occurrence (for some
r ∈ [freqj]) of the symbol aj in x∗

n, set M [i][j] = r; else set M [i][j] = no-color. (As si is a
permutation, at most one occurrence of aj in x∗

n can be aligned with the aj in si.)
Then we use this colored matrix M as an instance of the matrix bi-coloring problem
(defined in Section 3) and find an optimum bi-coloring scheme A for M (using Theorem 6).
(For an illustration, see Figure 1 and Figure 2.) Let the scheme A be the tuple (c1, . . . , cℓ).
Then, for each symbol aj ∈ R, we keep the cj-th occurrence of it in x∗

n and delete all
the remaining occurrences of it. Let x̄ denote the output string. (Note, no symbol in x̄

appears more than once, and therefore the length of x̄ might be less than n.)
2. Use a procedure InsertMissing (Algorithm 2) to insert all the symbols in M in x̄ in a

”balanced” manner. Compute an (arbitrary) optimal alignment βi between x̄ and si, for
each i ∈ [m]. (Note, βi’s can easily be obtained by updating the αi’s computed before.)
Consider s1 and a symbol b ∈ M. Suppose s1[p] = b, for p ∈ [n]. Let q ∈ [n] be the
largest index < p such that s1[q] = a is aligned by β1.
Then place b just after a in x̄, and also update β1 (by aligning the symbol b). Then
remove b from the setM. Next, consider s2 and another symbol fromM, and insert that
symbol in x̄ in a similar way. Loop through the input permutations one by one in a cyclic
manner (after sm, again take s1) and perform the above process of inserting symbols in
M, until there is no symbol left in M. Let us denote the final transformed string x̄ by z.

It is straightforward to see that the final output string z is a permutation in Sn. We claim
that z is a 3/2-approximate center. Recall, we only need to argue for OPT(S) ≥ 8m2 ln m

(by Assumption 3).

▶ Lemma 8. Assuming 3, the final string z output by the procedure StringToPermutation
is a

(3
2 −

1
3m

)
-approximate center of S.

Before commencing the proof of Lemma 8, we need a simple observation on the size of
M, the set of missing symbols. Since x∗

n is of length n, the number of missing symbols is
equal to the number of repeated occurrences of the symbols in R. More specifically,

|M| =
∑

aj∈R
(freqj − 1). (4)

Let µ :=
∑ℓ

j=1(1− 1/freqj). Note that

µ =
ℓ∑

j=1

(
(freqj − 1)/freqj)

)
≤ 1

2
∑

j

(freqj − 1) (Since min
j

freqj ≥ 2)

≤ |M|/2. (By Equation 4) (5)

▷ Claim 9. If µ ≥ 4 ln m, then for all i ∈ [m],

|LCS(x̄, si)| ≥ |LCS(x∗
n, si)| −

|M|
2 −

√
2|M| ln m.

Proof. Recall, A is an optimum matrix bi-coloring scheme for M (constructed by the
procedure RemoveDuplicate). x̄ is obtained from x∗

n by removing all repeated occurrences
of the symbols in R according to the tuple (c1, . . . , cℓ), corresponding to A. Note, µ ≥ 4 ln m

implies m4 ≤ eµ. By Theorem 5, MRI(A(M)) ≤ µ + 2
√

µ ln m, where µ =
∑ℓ

j=1(1− 1/freqj).

FSTTCS 2021

12:12 Approximating the Center Ranking Under Ulam

Consider any si ∈ S. Note, M was constructed using the alignment αi between si and
x∗

n. Observe, the number of symbols (initially) aligned by αi that are deleted from x∗
n to

obtain x̄ is at most RI(i) (see Section 3 for the definition of RI). Thus, we get

|LCS(x̄, si)| ≥ |LCS(x∗
n, si)| − (µ + 2

√
µ ln m)

≥ |LCS(x∗
n, si)| −

|M|
2 −

√
2|M| ln m. (By Equation 5)

This completes the proof of Claim 9. ◁

Proof of Lemma 8. We will argue that for all si ∈ S, d(z, si) ≤
(3

2 −
1

3m

)
OPT(S). Let s∗

be an optimum center of S under the Ulam metric. So, for all si ∈ S, d(s∗, si) ≤ OPT(S).
Recall, by definition, d(s∗, si) = n− |LCS(s∗, si)|. Thus,

∀si ∈ S, |LCS(s∗, si)| ≥ n− OPT(S). (6)

Since x∗
n maximizes the minimum LCS between an n-length string and si ∈ S, by (6),

∀si ∈ S, |LCS(x∗
n, si)| ≥ n− OPT(S). (7)

Also, observe that

|M| ≤ n− min
si∈S

(|LCS(x∗
n, si)|)

≤ OPT(S). (min
si∈S

(|LCS(x∗
n, si)|) ≥ n− OPT(S) by Equation 7) (8)

Consider an si ∈ S. By the procedure InsertMissing, among the inserted symbols at
least ⌊|M|/m⌋ symbols will be aligned between the final string z and si by the alignment
function βi. In particular,

|LCS(z, si)| ≥ |LCS(x̄, si)|+
⌊ |M|

m

⌋
. (9)

Next, we proceed by considering the two cases depending on the value of µ separately.
Let us first argue for µ < 4 ln m. In fact, in this case, we get a solution that is much closer
to the optimum. More specifically, we claim that d(z, si) ≤ (1 + 1/m2)OPT(S). As x̄ is
obtained from x∗

n by deleting repeated occurrences of the symbols in R and si ∈ Sn,

|LCS(x̄, si)| ≥ |LCS(x∗
n, si)| − ℓ. (Recall, ℓ = |R|) (10)

Note, the above inequality holds irrespective of the value of µ.
Since freqj ≥ 2 for all j ∈ [ℓ], we have µ =

∑ℓ
j=1(1− 1/freqj) ≥ ℓ/2. This implies that

ℓ ≤ 2µ < 8 ln m ≤ OPT(S)
m2 (11)

where the last inequality follows from Assumption (3). Thus,

d(z, si) = n− |LCS(z, si)| (By definition)
≤ n− |LCS(x̄, si)| (By Equation 9)
≤ n− |LCS(x∗

n, si)|+ ℓ (By Equation 10)

≤ OPT(S) + OPT(S)
m2 (By Equation 7, 11)

≤
(

1 + 1
m2

)
OPT(S).

D. Chakraborty, K. Gajjar, and A. V. Jha 12:13

So, for µ < 4 ln m, we have d(z, si) ≤
(
1 + 1

m2

)
OPT(S), which is at most

(3
2 −

1
3m

)
OPT(S)

for m ≥ 2.
Now, the only remaining case is µ ≥ 4 ln m. We will use an argument similar to

the previous case. The only difference is that now to lower bound |LCS(x̄, si)|, we will
apply Claim 9 (instead of Equation 10).

|LCS(z, si)| ≥ |LCS(x̄, si)|+
⌊ |M|

m

⌋
(By Equation 9)

≥ |LCS(x∗
n, si)| −

|M|
2 −

√
2|M| ln m +

⌊ |M|
m

⌋
(By Claim 9)

≥ |LCS(x∗
n, si)| − |M|

(
1
2 −

1
m

)
−
√

2|M| ln m− 1. (12)

Hence,

d(z, si) = n− |LCS(z, si)| (By definition)

≤ n− |LCS(x∗
n, si)|+ |M|

(
1
2 −

1
m

)
+
√

2|M| ln m + 1 (By Equation 12)

≤ OPT(S) +
(

1
2 −

1
m

+

√
2 ln m

OPT(S)

)
OPT(S) + 1 (By Equation 7, 8)

≤

(
3
2 −

1
m

+
√

2 ln m

8m2 ln m
+ 1

OPT(S)

)
OPT(S) (By Assumption (3))

≤
(

3
2 −

1
3m

)
OPT(S). (By Assumption (3))

This completes the proof of Lemma 8. ◀

Running time analysis. We now analyze the running time of the overall algorithm. The
procedure BoundedSearch takes O(mn2k+1 ln n) time (to perform an exhaustive search
up to distance k from an input permutation). Next, we analyze the running time of Ap-
proxCenter. The first step of it uses Theorem 7 taking O(2mn2m+1) time. The second
step consists of two procedures: RemoveDuplicate and InsertMissing. Constructing the
colored matrix M in the procedure RemoveDuplicate takes O(mn ln n) time. (Note, it
only involves m LCS computations. In each of them, one of the strings is a permutation and
thus takes O(n ln n) time per string by using a standard LCS algorithm.) Next, RemoveDu-
plicate invokes the algorithm from Theorem 6 to find an optimal bi-coloring scheme, which
requires O(mnm+1) time (the number of missing symbols is at most n). Once we get the
bi-coloring scheme, generating x̄ takes only O(n) time. The next procedure, InsertMissing,
again involves m LCS computations and then updating those alignments according to the
insertion of missing symbols. This takes O(mn ln n) time. So the overall running time is
O(mn2k+1 ln n + 2mn2m+1 + mnm+1) = nO(m2 ln m) (by replacing k = 8m2 ln m).

▶ Remark 10. Let us now comment on how to reduce the running time by increasing the ap-
proximation factor slightly. Recall, after performing the exhaustive search BoundedSearch
up to distance k, we remain with the case when OPT(S) ≥ k. When we analyze the approx-
imation factor of our algorithm (in particular, Lemma 8), to attain

(3
2 −

1
3m

)
we need to

assume that OPT(S) is at least Ω(m2 ln m). That is why we set k = 8m2 ln m. Our analysis
essentially shows that the approximation factor is max

{
1+ 8 ln m

k , 3
2 −

1
m +

√
2 ln m

k + 1
k

}
with

FSTTCS 2021

12:14 Approximating the Center Ranking Under Ulam

the running time O(mn2k+1 ln n + 2mn2m+1). So we get a trade-off between the approxima-
tion factor and the running time. For instance, if we set k = 8m, we get an approximation

factor
(

3
2 +

√
ln m
4m −

7
8m

)
and running time nO(m). In fact, for any 0 < ϵ < 1, by setting

k = 8 ln m
ϵ2 , we get a

(3
2 + ϵ− 1

m

)
-approximate center in O(2mn2m+1) + nO(ln m

ϵ2) time.

▶ Theorem 11. There is a deterministic algorithm that, given an 0 < ϵ < 1 and a set
of m permutations S ⊆ Sn, computes a

(3
2 + ϵ− 1

m

)
-approximate center of S in time

n3m + nO(ln m
ϵ2).

4.3 An exact algorithm for three permutations
When the number of input permutations is only three (i.e., m = 3), we can get an exact
polynomial-time algorithm for the Ulam center problem.

▶ Theorem 12. There is a deterministic polynomial-time algorithm that takes 3 permutations
as input, and outputs their Ulam center.

We will show that given three permutations s1, s2, s3 from Sn, it is possible to remove
duplicate symbols and insert missing symbols in a simple and efficient way that converts an
n-length center string for s1, s2, s3 to an optimal center permutation for them.

If the x∗
n computed by our dynamic program is already a permutation, then we are

done. Otherwise, first fix some optimal alignment between x∗
n and si for all i ∈ [3]. We

incrementally update the sting x∗
n by processing the repeated symbols one by one. Take an

arbitrary repeated symbol a in x∗
n and a missing symbol b. Note, a appears more than once.

Consider the first occurrence of a in x∗
n, and do the following:

If (that particular occurrence of) a does not align with any of s1, s2, s3, then we delete it
from x∗

n, and insert b at an arbitrary location in x∗
n. Remove b from M. Clearly, this

does not decrease LCS(x∗
n, si) for any of the three si’s.

If (that particular occurrence of) a aligns with the symbol a of only one input permutation
(say s1), then delete it from x∗

n, and insert b in x∗
n so that it aligns with the b in s3.

Remove b fromM. The length of LCS(x∗
n, s1) is decreased by one for by the deletion of a,

but it is then increased by one by the insertion of b. So |LCS(x∗
n, s1)| remains the same.

If (that particular occurrence of) a aligns with the symbol a in two of the permutations
(say s1, s2), we do nothing.

Only except the last case, each time we process a repeated symbol a, we remove an occurrence
of it from x∗

n. (Note that the number of times we need to process a symbol a is equal to its
number of occurrences in x∗

n, minus one.) Since the number of input permutations is exactly
three, at most one occurrence of a can be aligned with that of two input permutations. So
for any repeated symbol in x∗

n, at most once we will be in the last case.
Once we are left with no repeated symbols, we stop. (Since x∗

n is always of length n,
there will not be any missing symbols left after we are done with processing all the repeated
symbols.) So, x∗

n will eventually become a permutation, and |LCS(x∗
n, si)| for none of the

three si’s will decrease. Let us denote the final string by z. By Equation 7, for each i ∈ [3],

n− OPT(S) ≤ |LCS(x∗
n, si)| = |LCS(z, si)|.

Thus, d(z, si) ≤ OPT(S). Hence, we conclude that z is an (exact) Ulam center for s1, s2, s3.
The running time of the algorithm is clearly polynomial in n, concluding Theorem 12.

D. Chakraborty, K. Gajjar, and A. V. Jha 12:15

5 Closest String with Wildcards

The matrix bi-coloring problem defined in Section 3 is a generalization of the well-known
closest string with wildcards problem. In this problem, any given string may include wildcard
characters which can be matched with any character of the other strings. Consider any
alphabet Σ. For any two strings s, s′ ∈ (Σ ∪ {∗})n, the Hamming distance between them is
defined as

dH(s, s′) := |{i ∈ [n] | s[i] ̸= s′[i] and s[i] ̸= ∗ and s′[i] ̸= ∗}|.

In the closest string with wildcards problem, given a set of m strings s1, s2 . . . , sm ∈
(Σ ∪ {∗})n, the objective is to find a string s ∈ Σn such that maxi∈[m] dH(s, si) is minimized.

The above problem is a special case of the matrix bi-coloring problem, where the strings
are the rows of the matrix and the wildcards (∗) are the no-color entries in the matrix. If we
restrict fj = |Σ| (for all j ∈ [n]) in the matrix bi-coloring problem, we get the closest string
with wildcards problem.

So far we do not know of any polynomial-time algorithm for the closest string with
wildcards problem that achieves a (2− ϵ)-factor approximation (for some 0 < ϵ < 1). In this
section, we refute the possibility of getting such an algorithm unless P = NP, even when the
alphabet Σ is binary. In particular, we prove Theorem 2.

To show the inapproximability result, we start with defining a variant of the satisfiability
(SAT) problem, namely (1, k, 2k + 1)-SAT introduced by Austrin, Guruswami & Håstad [5].

▶ Definition 13 ((1, k, 2k + 1)-SAT). Let k ≥ 1 be a fixed integer constant. Given a (2k + 1)-
CNF formula F (i.e., each clause of F has exactly 2k+1 literals), decide between the following
two cases:

YES: There is an assignment for the variables in F that satisfies at least k literals in
each clause of F .
NO: F is unsatisfiable.

▶ Theorem 14 ([5]). For every fixed integer k ≥ 1, (1, k, 2k + 1)-SAT is NP-hard.

For k = 1, (1, k, 2k+1)-SAT is simply 3-SAT. We now provide a polynomial-time reduction
from (1, k, 2k + 1)-SAT to (a gap version of) the closest string with wildcards problem.

▶ Definition 15 (Approximate closest string with wildcards). Consider any alphabet Σ and an
ϵ > 0. Given a set of m strings s1, s2, . . . , sm ∈ (Σ ∪ {∗})n (where ∗ is a wildcard) and a
positive integer r, decide between the following two cases.

YES: There is a string s ∈ Σn such that for all i ∈ [m], dH(s, si) ≤ r.
NO: For all strings s ∈ Σn, there exists an i ∈ [m] such that dH(s, si) > (2− ϵ)r.

Proof of Theorem 2. Let k = ⌈1/ϵ⌉. Consider an instance ((2k + 1)-CNF formula) F of
the (1, k, 2k + 1)-SAT problem with n variables x1, x2, . . . , xn and m clauses. We create m

strings each of length n over the alphabet {0, 1} ∪ {∗}. For each clause Ci, we create a string
si as follows: If the literal xj appears in Ci, set si[j] = 1; else if the literal x̄j (negation of
xj) appears in Ci, set si[j] = 0; else set si[j] = ∗. Set r = k + 1.

Suppose F is a YES instance of (1, k, 2k + 1)-SAT. Take the corresponding satisfying
assignment σ (that satisfies at least k literals per clause). Create a string s ∈ {0, 1}n by
setting s[j] = 1 if xj is set to TRUE by σ, and s[j] = 0 if xj is set to FALSE by σ, for all
j ∈ [n]. Note that dH(s, si) ≤ (2k + 1)− k = k + 1 for all i ∈ [m].

FSTTCS 2021

12:16 Approximating the Center Ranking Under Ulam

Now, suppose F is a NO instance of (1, k, 2k + 1)-SAT. Assume to contrary that there
exists a string s ∈ {0, 1}n such that for all i ∈ [m], dH(s, si) ≤ (2− ϵ)(k + 1) < 2k + 1 (since
k ≥ 1/ϵ). Then create an assignment σ′ by setting xj to TRUE if s[j] = 1, and FALSE if
s[j] = 0, for all j ∈ [n]. Note that σ′ satisfies F , contradicting the fact that F is unsatisfiable.

The proof follows from Theorem 14. ◀

6 Conclusion

In this paper, we study the problem of computing a center rank/permutation under the Ulam
metric, which is known to be NP-complete. There is a folklore 2-approximation algorithm
that works for every metric space. No better (polynomial-time) algorithm is known for the
Ulam metric, even when the number of input permutations is constant. Our main result
breaks below the 3/2-approximation for constantly many inputs. An exciting open direction
is to beat the 2-approximation for arbitrarily many inputs (i.e., an algorithm whose running
time is polynomial in both n and m).

In proving our result, we establish a connection between the Ulam center problem and
the closest string with wildcards problem (the center problem under the Hamming metric in
the presence of wildcards). We further show that the latter problem is (2− ϵ)-inapproximable
unless P = NP. This result is in sharp contrast with the PTAS known for the closest string
problem without wildcards.

References

1 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. doi:10.1145/1411509.1411513.

2 David Aldous and Persi Diaconis. Longest increasing subsequences: from patience sorting to the
Baik-Deift-Johansson theorem. Bulletin of the American Mathematical Society, 36(4):413–432,
1999. doi:10.1090/S0273-0979-99-00796-X.

3 Alexandr Andoni and Robert Krauthgamer. The computational hardness of estimating edit
distance. SIAM J. Comput., 39(6):2398–2429, 2010.

4 Alexandr Andoni and Huy L. Nguyen. Near-optimal sublinear time algorithms for Ulam
distance. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 76–86, 2010. doi:10.1137/1.9781611973075.8.

5 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ϵ)-sat is NP-hard. SIAM J.
Comput., 46(5):1554–1573, 2017.

6 Christian Bachmaier, Franz J. Brandenburg, Andreas Gleißner, and Andreas Hofmeier. On
the hardness of maximum rank aggregation problems. Journal of Discrete Algorithms, 31:2–13,
2015. 24th International Workshop on Combinatorial Algorithms (IWOCA 2013).

7 Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing, pages
250–257, 2002.

8 Therese Biedl, Franz J Brandenburg, and Xiaotie Deng. On the complexity of crossings in
permutations. Discrete Mathematics, 309(7):1813–1823, 2009.

9 Mahdi Boroujeni and Saeed Seddighin. Improved MPC algorithms for edit distance and Ulam
distance. In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019., pages 31–40, 2019.

10 Marc Bury and Chris Schwiegelshohn. On finding the jaccard center. In 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1090/S0273-0979-99-00796-X
https://doi.org/10.1137/1.9781611973075.8

D. Chakraborty, K. Gajjar, and A. V. Jha 12:17

11 Diptarka Chakraborty, Debarati Das, and Robert Krauthgamer. Approximating the median
under the ulam metric. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 761–775. SIAM, 2021.

12 Moses Charikar and Robert Krauthgamer. Embedding the Ulam metric into l1. Theory of
Computing, 2(11):207–224, 2006. doi:10.4086/toc.2006.v002a011.

13 Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvitskii. Finding the
Jaccard median. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 293–311. SIAM, 2010. doi:10.1137/1.9781611973075.25.

14 Raphaël Clifford, Klim Efremenko, Benny Porat, and Ely Porat. A black box for online
approximate pattern matching. In Annual Symposium on Combinatorial Pattern Matching,
pages 143–151. Springer, 2008.

15 Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford. Geometric
median in nearly linear time. In Proceedings of the forty-eighth annual ACM Symposium on
Theory of Computing, pages 9–21, 2016.

16 Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proceedings of the thiry-fourth annual ACM Symposium on Theory of Computing,
pages 592–601, 2002.

17 Graham Cormode, Shan Muthukrishnan, and Süleyman Cenk Sahinalp. Permutation editing
and matching via embeddings. In International Colloquium on Automata, Languages, and
Programming, pages 481–492. Springer, 2001. doi:10.1007/3-540-48224-5_40.

18 Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proceedings of the Tenth International World Wide Web Conference, WWW 10,
pages 613–622, 2001. doi:10.1145/371920.372165.

19 Moti Frances and Ami Litman. On covering problems of codes. Theory of Computing Systems,
30(2):113–119, 1997.

20 Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M. LeProust, Botond
Sipos, and Ewan Birney. Towards practical, high-capacity, low-maintenance information
storage in synthesized DNA. Nature, 494(7435):77–80, 2013.

21 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

22 Danny Hermelin and Liat Rozenberg. Parameterized complexity analysis for the closest string
with wildcards problem. In Combinatorial Pattern Matching, pages 140–149, Cham, 2014.
Springer International Publishing.

23 John G Kemeny. Mathematics without numbers. Daedalus, 88(4):577–591, 1959.
24 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of

the thirty-ninth annual ACM Symposium on Theory of Computing, pages 95–103, 2007.
25 Tomohiro Koana, Vincent Froese, and Rolf Niedermeier. Parameterized algorithms for matrix

completion with radius constraints. In 31st Annual Symposium on Combinatorial Pattern
Matching (CPM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

26 Teuvo Kohonen. Median strings. Pattern Recognition Letters, 3(5):309–313, 1985. doi:
10.1016/0167-8655(85)90061-3.

27 Joseph B Kruskal. An overview of sequence comparison: Time warps, string edits, and
macromolecules. SIAM review, 25(2):201–237, 1983. doi:10.1137/1025045.

28 Christina Leslie, Rui Kuang, and Kristin Bennett. Fast string kernels using inexact matching
for protein sequences. Journal of Machine Learning Research, 5(9), 2004.

29 Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems. Journal
of the ACM (JACM), 49(2):157–171, March 2002.

30 Bin Ma and Xiaoming Sun. More efficient algorithms for closest string and substring problems.
SIAM Journal on Computing, 39(4):1432–1443, 2010.

31 Carlos D. Martínez-Hinarejos, Alfons Juan, and Francisco Casacuberta. Use of median
string for classification. In Proceedings 15th International Conference on Pattern Recognition.
ICPR-2000, volume 2, pages 903–906. IEEE, 2000. doi:10.1109/ICPR.2000.906220.

FSTTCS 2021

https://doi.org/10.4086/toc.2006.v002a011
https://doi.org/10.1137/1.9781611973075.25
https://doi.org/10.1007/3-540-48224-5_40
https://doi.org/10.1145/371920.372165
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1137/1025045
https://doi.org/10.1109/ICPR.2000.906220

12:18 Approximating the Center Ranking Under Ulam

32 Daniel Marx. Closest substring problems with small distances. SIAM J. Comput., 38:1382–1410,
2008.

33 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal of
the ACM (JACM), 31(1):114–127, 1984.

34 Stanislav Minsker. Geometric median and robust estimation in banach spaces. Bernoulli,
21(4):2308–2335, 2015.

35 Timothy Naumovitz, Michael Saks, and C. Seshadhri. Accurate and nearly optimal sub-
linear approximations to Ulam distance. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2012–2031, 2017. doi:
10.1137/1.9781611974782.131.

36 François Nicolas and Eric Rivals. Complexities of the centre and median string problems. In
Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán,
Mexico, June 25-27, 2003, Proceedings, pages 315–327, 2003.

37 Pavel Pevzner. Computational molecular biology: an algorithmic approach. MIT press, 2000.
38 V Yu Popov. Multiple genome rearrangement by swaps and by element duplications. Theoretical

computer science, 385(1-3):115–126, 2007.
39 Cyrus Rashtchian, Konstantin Makarychev, Miklós Z. Rácz, Siena Ang, Djordje Jevdjic, Sergey

Yekhanin, Luis Ceze, and Karin Strauss. Clustering billions of reads for DNA data storage. In
Advances in Neural Information Processing Systems 30, pages 3360–3371. Curran Associates,
Inc., 2017.

40 David Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics,
28(1):35–42, 1975. doi:10.1137/0128004.

41 Warren Schudy. Approximation schemes for inferring rankings and clusterings from pairwise
data. Ph.D. Thesis, 2012.

42 James Joseph Sylvester. A question in the geometry of situation. Quarterly Journal of Pure
and Applied Mathematics, 1(1):79–80, 1857.

43 E Alper Yildirim. Two algorithms for the minimum enclosing ball problem. SIAM Journal on
Optimization, 19(3):1368–1391, 2008.

44 H Peyton Young. Condorcet’s theory of voting. American Political science review, 82(4):1231–
1244, 1988.

45 H Peyton Young and Arthur Levenglick. A consistent extension of condorcet’s election principle.
SIAM Journal on Applied Mathematics, 35(2):285–300, 1978.

A Ulam Median reduces to Ulam Center

The idea of the reduction is the same as [8, Theorem 6]. Here we discuss the idea for
four permutations, which can be generalised to m permutations easily. Given a set P =
{s1, s2, s3, s4} of 4 permutations on [n], we construct a new set Q = (z1, z2, z3, z4) of 4
permutations on [4n] by applying s1, s2, s3, s4 to four partitions of [4n] as follows, such that
the Ulam median for P can be obtained from the Ulam center for Q.

z1 = (s1([1, . . . , n]), s2([n + 1, . . . , 2n]), s3([2n + 1, 3n]), s4([3n + 1, 4n]))
z2 = (s2([1, . . . , n]), s3([n + 1, . . . , 2n]), s4([2n + 1, 3n]), s1([3n + 1, 4n]))
z3 = (s3([1, . . . , n]), s4([n + 1, . . . , 2n]), s1([2n + 1, 3n]), s2([3n + 1, 4n]))
z4 = (s4([1, . . . , n]), s1([n + 1, . . . , 2n]), s2([2n + 1, 3n]), s3([3n + 1, 4n]))

Let cQ ∈ S4n be an Ulam center of Q. The following are easy to see.
cQ[1, . . . , n] does not contain any symbols from [n + 1, . . . , 4n];
cQ[n + 1, . . . , 2n] does not contain any symbols from [1, . . . , n] ∪ [2n + 1, . . . , 4n];
cQ[2n + 1, . . . , 3n] does not contain any symbols from [1, . . . , 2n] ∪ [3n + 1, . . . , 4n];
cQ[3n + 1, . . . , 4n] does not contain any symbols from [1, . . . , 3n].

https://doi.org/10.1137/1.9781611974782.131
https://doi.org/10.1137/1.9781611974782.131
https://doi.org/10.1137/0128004

D. Chakraborty, K. Gajjar, and A. V. Jha 12:19

It is also easy to see that the four permutations are equidistant from cQ. That is,

d(cQ, z1) = d(cQ, z2) = d(cQ, z3) = d(cQ, z4).

Finally, these facts are sufficient to claim that cQ[1, . . . , n] (or rather any one of the four
partitions of [4n]) is an Ulam median for P . See [8, Theorem 6] for a comprehensive proof.
(Although [8, Theorem 6] talks about the Kendall’s tau distance, the argument could easily
be extended for the Ulam metric.)

B Computing the Bi-coloring Number of a Colored Matrix

Here, we provide a dynamic programming algorithm that given any colored matrix M of
dimension m× ℓ, computes BCN(M) in O(mℓm+1) time. More specifically, we prove Theo-
rem 6.

For a clean description, we provide the dynamic program for m = 4, although it works
for every positive integer m. We use C to denote our dynamic programming table. The cells
of C store a Boolean value if the value is 1. C has 5 dimensions.

1. Subproblem: Let C[i1, i2, i3, i4, k] denotes whether it is possible to leave at most i1, i2, i3
and i4 unpicked in rows 1 to 4 respectively by picking colors till column k. If it’s not
possible, the cell will contain a 0(False value). Otherwise it’ll contain a 1(True value)
along with the picked color. We denote the number of colors we can leave unpicked per
row as the picking requirements for the cell in the dynamic program.

2. Computing C: Consider any column k ≥ 2 and values i1 ≥ 1, i2 ≥ 1, i3 ≥ 1 and i4 ≥ 1.
Picking any color in a row indicates, that the number of unpicked colors in all other rows
increase by 1. Thus, (without loss of generality) M1j could only be a feasibly choice if
C[i1 − 1, i2, i3, i4, k − 1] is true. If no choice of color in column k satisfies this property,
then clearly we can’t satisfy the picking requirements of the cell.

3. Recurrence:

C[i1, i2, i3, i4, k] = C[i1 − 1, i2, i3, i4, k − 1] ∨D[i1, i2 − 1, i3, i4, k − 1]
∨ C[i1, i2, i3 − 1, i4, k − 1] ∨ C[i1, i2, i3, i4 − 1, k − 1]

C[1, 0, 0, 0, 1] = 1
C[0, 1, 0, 0, 1] = 1
C[0, 0, 1, 0, 1] = 1
C[0, 0, 0, 1, 1] = 1

4. Order of evaluation: We iterate over k one by one, and then evaluate over the first 4
indices lexicographically. Each cell queries lexicographically smaller cells.

5. Final Answer: Look at all the cells C[i1, i2, i3, i4, ℓ] for all 0 ≤ i1 ≤ ℓ, 0 ≤ i2 ≤ ℓ, 0 ≤
i3 ≤ ℓ, 0 ≤ i4 ≤ ℓ for which the cell contains a 1(True value). For each of these cells,
let’s denote the maximum of the quantity i1, i2, i3 and i4 as the imax value for this cell.
Output the cell with the minimum imax value.

There are (ℓ + 1)4 × ℓ sub-problems and for each cell, we look at 4 different sub-problems.
Generalising to m strings: our dynamic program table has (ℓ + 1)m × ℓ cells, and we look at
m different cells to compute the answer for each cell. Thus our dynamic program runs in
m× (ℓ + 1)m × ℓ time.

FSTTCS 2021

12:20 Approximating the Center Ranking Under Ulam

C Computing a Length-restricted Center String

For simplicity of exposition, we describe the dynamic programming algorithm FindString-
Center only for three strings s1, s2, s3. However, it can easily be extended to any number
of strings in a natural way. We use D to denote our dynamic programming table. D stores a
string and has 7 dimensions.
1. Subproblem: D[i1, i2, i3, k1, k2, k3, ℓ] = xℓ, where xℓ is an ℓ-length string with the following

properties.
a. LCS(s1[1, 2, . . . , i1], xℓ) ≥ k1
b. LCS(s2[1, 2, . . . , i2], xℓ) ≥ k2
c. LCS(s3[1, 2, . . . , i3], xℓ) ≥ k3
If such a string does not exist, then D[i1, i2, i3, k1, k2, k3, ℓ] = ∅.

2. Computing D: Consider the substrings s1[1, 2, . . . , i1], s2[1, 2, . . . , i2], s3[1, 2, . . . , i3]. The
cases when there exists a string of length at most ℓ satisfying the above three conditions
are listed below.
a. At least one of the following is true.

(i) D[i1, i2, i3, k1, k2, k3, ℓ− 1] ̸= ∅.
(ii) D[i1 − 1, i2, i3, k1 − 1, k2, k3, ℓ] ̸= ∅.
(iii) D[i1, i2 − 1, i3, k1, k2 − 1, k3, ℓ] ̸= ∅.
(iv) D[i1, i2, i3 − 1, k1, k2, k3 − 1, ℓ] ̸= ∅.

If the first of these four cases is true, then we can extend xℓ−1 by putting an arbitrary
symbol at the ℓ-th position in xℓ. In the other three cases, xℓ remains the same.

b. At least one of the following is true.
(v) If D[i1 − 1, i2, i3, k1 − 1, k2, k3, ℓ− 1] ̸= ∅, then xℓ ← xℓ−1 ◦ s1[i1].
(vi) If D[i1, i2 − 1, i3, k1, k2 − 1, k3, ℓ− 1] ̸= ∅, then xℓ ← xℓ−1 ◦ s2[i2].
(vii) If D[i1, i2, i3 − 1, k1, k2, k3 − 1, ℓ− 1] ̸= ∅, then xℓ ← xℓ−1 ◦ s3[i3].
(viii) If D[i1 − 1, i2 − 1, i3, k1 − 1, k2 − 1, k3, ℓ − 1] ̸= ∅ and s1[i1] = s2[i2], then xℓ ←

xℓ−1 ◦ s1[i1].
(ix) If D[i1, i2 − 1, i3 − 1, k1, k2 − 1, k3 − 1, ℓ − 1] ̸= ∅ and s2[i2] = s3[i3], then xℓ ←

xℓ−1 ◦ s2[i2].
(x) If D[i1 − 1, i2, i3 − 1, k1 − 1, k2, k3 − 1, ℓ − 1] ̸= ∅ and s1[i1] = s3[i3], then xℓ ←

xℓ−1 ◦ s1[i1].
(xi) If D[i1 − 1, i2 − 1, i3 − 1, k1 − 1, k2 − 1, k3 − 1, ℓ− 1] ̸= ∅ and s1[i1] = s2[i2] = s3[i3],

then xℓ ← xℓ−1 ◦ s1[i1].
c. None of the above are true.
(xii) D[i1, i2, i3, k1, k2, k3, ℓ] = ∅.

3. Recurrence: The cell D[i1, i2, i3, k1, k2, ℓ] looks at all the possible 12 cases described above
and does as mentioned in the points. The base case is D[0, 0, 0, 0, 0, 0, 0] = ε where ε

denotes the empty string.
4. Order of evaluation: We initialize by setting the cell D[0, 0, 0, 0, 0, 0, 0] = ∅ and proceed

in lexicographic order. Note that each cell only queries lexicographically smaller cells.
5. Final Answer: Consider only those cells for which D ̸= ∅. Let the string stored in

each such cell σ be denoted by x∗
σ. Let LCSmin

σ be one of the three strings {LCS(x∗
σ, s1),

LCS(x∗
σ, s2), LCS(x∗

σ, s3)}, whichever has the minimum length. Compute LCSmin
σ for

the cell D[n, n, n, k1, k2, k3, n] for all 0 ≤ k1 ≤ n, 0 ≤ k2 ≤ n, 0 ≤ k3 ≤ n (whenever
D[n, n, n, k1, k2, k3, n] ̸= ∅). Among all these LCSmin

σ strings, output the longest string as
the final answer, denoted by x∗. (Note that x∗ might not be of length n.)

If the final string x∗ is of length less than n, then we fill in missing symbols from [n]
arbitrarily and make x∗ an n-length string (denoted by x∗

n). Clearly adding more symbols to
x∗ cannot decrease LCS(si, x∗) for any of the si’s.

D. Chakraborty, K. Gajjar, and A. V. Jha 12:21

D Pseudocodes from Section 4.2

Algorithm 1 RemoveDuplicate.

Result: Removes duplicate characters from x∗
n

1 Initialise αi as an arbitrary occurrence of LCS(x∗
n, si) in si ∀i ∈ [m];

2 Initialise M as an empty m× ℓ matrix;
3 For j ∈ [ℓ], ak

j denotes the kth occurrence of aj in x∗
n ∀k ∈ {1, 2, . . . , freqj};

4 for (i, j) ∈ [m]× [ℓ] do
5 if aj ∈ si then
6 M [i][j]← k, where k is the unique index such that ak

j ∈ αi

7 end
8 else
9 M [i][j]← no-color

10 end
11 end
12 A ← FindBiColoring(M)
13 x̄← ε

14 for i ∈ [n] do
15 if ∃j ∈ [ℓ], k ∈ [freqj] such that x∗

n[i] = ak
j then

16 if k = A[j] then
17 x̄← x̄ ◦ x∗

n[i]
18 end
19 end
20 else
21 x̄← x̄ ◦ x∗

n[i]
22 end
23 end

Algorithm 2 InsertMissing.

Result: Inserts missing characters into x̄ so that x̄ ∈ Sn

1 Initialise βi as an arbitrary occurrence of LCS(x̄n, si) in si ∀i ∈ [m];
2 i← 1
3 while M ̸= ∅ do
4 Pick any b ∈M
5 p← s−1

i (b)
6 if ∃r ∈ [n] such that r < p, s1[r] ∈ βi then
7 q ← max{r ∈ [n] | r < p, s1[r] ∈ βi}
8 j ← x̄−1(a)
9 x̄← x̄[1...j] ◦ p ◦ x̄[j + 1...len(x̄)]

10 end
11 else
12 x̄← b ◦ x̄

13 end
14 M←M\ {b}
15 i← i mod m + 1
16 end

FSTTCS 2021

Towards Stronger Counterexamples to the
Log-Approximate-Rank Conjecture
Arkadev Chattopadhyay #

Tata Institute of Fundamental Research, Mumbai, India

Ankit Garg #

Microsoft Research India, Bengaluru, India

Suhail Sherif #

Vector Institute, Toronto, Canada

Abstract
We give improved separations for the query complexity analogue of the log-approximate-rank
conjecture i.e. we show that there are a plethora of total Boolean functions on n input bits, each of
which has approximate Fourier sparsity at most O(n3) and randomized parity decision tree complexity
Θ(n). This improves upon the recent work of Chattopadhyay, Mande and Sherif [6] both qualitatively
(in terms of designing a large number of examples) and quantitatively (shrinking the gap from quartic
to cubic). We leave open the problem of proving a randomized communication complexity lower
bound for XOR compositions of our examples. A linear lower bound would lead to new and improved
refutations of the log-approximate-rank conjecture. Moreover, if any of these compositions had even
a sub-linear cost randomized communication protocol, it would demonstrate that randomized parity
decision tree complexity does not lift to randomized communication complexity in general (with the
XOR gadget).

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Communication complexity

Keywords and phrases Approximate Rank, Randomized Parity Decision Trees, Randomized Com-
munication Complexity, XOR functions, Subspace Designs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.13

Funding Suhail Sherif : This work was mainly done while the author was at Microsoft Research
India, Bengaluru.

1 Introduction

The Log-Rank Conjecture (LRC) of Lovasz and Saks asserts that two very seemingly different
quantities, one the deterministic communication complexity of a total function f (denoted
by D(f)) and the other the log of the rank of its communication matrix (denoted by (Mf))
over the field of reals, are essentially the same, i.e. within a fixed polynomial of each other.
While this thirty year old conjecture remains wide open, it’s natural to try upper-bounding
the communication complexity of f by some function of the rank of Mf . The best such
known bound was obtained by Lovett [21], rather recently, which showed that D(f) is at
most the square-root of the rank of Mf , ignoring log factors.

A tempting analog of the LRC for randomized communication complexity appears in
a book by Lee and Shraibman [20] where it was named as the Log-Approximate-Rank
Conjecture (LARC). Informally, this is LRC with deterministic communication complexity
replaced by bounded-error randomized complexity of f , and rank replaced by the approximate
rank of Mf , where the approximation is uniform point-wise. The LARC is important for
several reasons. First, it implies the LRC itself [10]. Second, it implies several other
central conjectures, like the polynomial equivalence of quantum and classical communication
complexity of total functions [3]. Third, every known lower bound, until very recently,

© Arkadev Chattopadhyay, Ankit Garg, and Suhail Sherif;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arkadev.c@tifr.res.in
mailto:garga@microsoft.com
mailto:suhail.sherif@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

was no larger than a small polynomial of the log of the approximate rank. Very recently,
Chattopadhyay, Mande and Sherif [6] provided a surprisingly simple counterexample to the
LARC, that exponentially separated randomized communication complexity from the log of
the approximate rank. In particular, their function f has Alice and Bob holding n bits each,
the approximate rank of its 2n × 2n communication matrix Mf is merely O(n2) and yet the
randomized communication complexity is Θ(

√
n).

Some questions immediately arise from the above refutation of the LARC. First, is the
refutation optimal? There are two ways to measure optimality. The approximate rank and
communication complexity are separated by a 4th power. Is this separation true for all
functions i.e. is randomized communication complexity always upper bounded by fourth-root
of the approximate rank? Interestingly, Gál and Syed [9] recently showed that quantum
communication complexity is upper bounded by at most square-root of the approximate rank
but for randomized communication, the best upper bound is still linear in the approximate
rank. The second way to view optimality is the extent of the gap achieved between log of the
approximate rank and communication complexity. This is O(log n) vs.

√
n for the current

refutation. Can this gap be widened via other functions? This leads us to, of course, the
related problem of finding other counter-examples to LARC. Finding a richer set of counter-
examples, besides being interesting in their own right, could prove useful for understanding
other central conjectures. A concrete example is the question of relative power of quantum
and classical protocols to solve total functions, a major open problem. If we have to find a
total function with an exponential gap between the quantum communication and randomized
communication complexities (if one exists at all), then the function should also have an
exponential separation between log of approximate rank and randomized communication
complexity.1 However, it was shown by Anshu et al. [1] and Sinha and de Wolf [25] that the
function of [6] has large quantum communication complexity (hence refuting the quantum
version of LARC as well). This already motivates the search for other examples refuting the
LARC.

Very recently, it has been realized that counter-examples to LARC may find use in an
apparently different model of computation to make progress on long-standing problems. In
general, the class of log-rank conjectures imply that negation does not offer much advantage:
The log of (approximate) non-negative rank of Boolean matrices would have to be polyno-
mially bounded by the log of (approximate) ordinary rank. Separations of (approximate)
non-negative rank from (approximate) rank provide evidences of the significant power of
negation or cancellation. Using this intuition and the LARC counter-example provided in [6],
Chattopadhyay, Datta and Mukhopadhyay [4] constructed a monotone polynomial over the
reals that can be computed very efficiently by constant-depth general arithmetic formulas but
need exponential size to be computed by monotone arithmetic circuits of unrestricted depth.
This provides the first improvement to a classical result of Valiant [26]. No analogue of this
improvement is known in the world of Boolean circuits. More generally, in several natural
models of computation the precise power of negation or cancellation remains undetermined.
We believe that the study of more potential counter-examples to LARC holds the promise of
enabling progress on this general problem as well.

In this work, we come up with a rich set of functions that leaves us with the following
win-win situation: either every one of these functions gives a stronger refutation of the LARC
than what is known or there is no lifting theorem for randomized communication complexity
of XOR functions. Lifting theorems, in the setting of communication complexity, lift the

1 Since log of the approximate rank lower bounds quantum communication as well.

A. Chattopadhyay, A. Garg, and S. Sherif 13:3

complexity of a function f in an appropriate query model to the communication complexity
of a problem crafted out of f naturally by block composition with a gadget g, denoted by
f ◦ g. Starting with the celebrated work of Raz and McKenzie [24], they have enabled major
progress recently in communication complexity and adjoining areas [12, 8, 11, 5]. In all
these theorems, the size of the gadget g is at least logarithmic in the input length of the
query function f . A challenging open problem is to prove lifting theorems for a constant
size gadget2. A natural one is the one-bit3 XOR gadget. It is not hard to verify that a
(randomized) parity decision tree (R)PDT algorithm for f of cost c readily translates into a
communication protocol of cost 2c for f ◦ XOR. A lifting theorem for XOR functions would
assert the converse. In other words, a communication protocol cannot be more efficient than
naively simulating the optimal RPDT. The strongest evidence for such an assertion is the
result of Hatami, Hosseini and Lovett [17] who show that if f has deterministic PDT cost c,
then f ◦ XOR has deterministic communication complexity cΩ(1). While no general result
exists for the randomized model, the community believes it to be plausible. We state our
main result informally.

▶ Theorem 1 (Informal). Assuming XOR lifting theorems for randomized communication
complexity, there exists a rich class of functions f : {0, 1}n → {0, 1}, such that Mf◦XOR has
approximate rank O(n3) and R(f ◦ XOR) = Θ(n).

Thus, conditionally, we get the following improvements over the results in [6]: (1) We
narrow the gap between approximate rank and randomized communication complexity from
quartic to cubic. (2) We expand the gap between log-approximate-rank and randomized
complexity from O(log n) vs.

√
n to O(log n) vs. n, thus yielding essentially the strongest

possible refutation of the LARC, under plausible assumptions. While this is a nice conceptual
way to view our results, it seems proving communication lower bounds for these functions
will require new tools and techniques. On the other hand, coming up with non-trivial
communication protocol for any of these functions will rule out a PDT to communication
lifting theorem for XOR functions in the randomized model.

1.1 Main Ideas
The starting point of our work is to pursue the idea in [6] of looking for functions with
small (approximate) spectral norm, i.e. functions whose sum of the magnitude of Fourier
coefficients is a small polynomial in n. The previous counterexample to the LARC used the
concept of disjoint subcubes to achieve this as every subcube has spectral norm one. This
implied that a function f whose set of ones form a union of polynomially many disjoint
subcubes will have polynomial spectral norm. The fact that polynomial spectral norm implies
polynomial approximate Fourier sparsity, yields that the approximate rank of every such
f lifted by XOR is guaranteed to be small. The randomized communication complexity of
one such function, SINK ◦ XOR, was shown to be large via a Corruption Bound, the proof of
which utilized Shearer’s Lemma. The randomized parity decision tree lower bound used a
robust subspace-hitting property of the subcubes instead.

In this work, we study a broader class of functions based on disjoint subspaces. The
approximate rank of their lifts by XOR is again guaranteed to be small. The main conceptual
contribution of our work is to identify a property that is sufficient for every such union

2 Interesting recent progress on this front, using the AND gadget, was made in the work of Knop, Lovett,
McGuire and Yuan [18]

3 the gadget size here means the number of bits held by each of the two players.

FSTTCS 2021

13:4 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

of subspaces to have large RPDT complexity. Remarkably, this property is quite well
encapsulated in the concept of Subspace Designs, a notion introduced by Guruswami and
Xing [15] and for which explicit constructions were given in [14, 16]. We show that Subspace
Designs are hard for RPDTs. The general philosophy of LARC-like conjectures is that
randomized complexity of total functions is well captured/characterized by algebraic or
analytical measures of the function like (approximate) rank. For instance, a classical result of
Nisan and Szegedy [22] confirms this idea in the world of randomized (and quantum) query
complexity where the relevant algebraic measure is approximate degree. In the world of
PDTs, the natural algebraic notion is approximate Fourier sparsity. The work of [6] refuted
this philosophy for parity decision trees via the SINK function, whose approximate Fourier
sparsity is O(n2) and RPDT complexity is Θ(

√
n). Our lower bounds for functions based on

subspace designs yields unconditionally a stronger refutation of this philosophy for the model
of parity decision trees. We state here our result in terms of random subspaces because this
yields the cleanest formulation.

▶ Theorem 2 (Main Result). Let m = 100n. Let V = {V1, V2, . . . , Vm} be a set of subspaces of
{0, 1}n chosen independently and uniformly at random from the set of subspaces of dimension
2n/5. Let f be the function that outputs 1 on the set

⋃
V ∈V V . With probability 1 − o(1) the

following two statements are true.
Randomized parity decision tree complexity of f is at least Ω(n).
The spectral norm of f (sum of absolute values of its Fourier coefficients) is upper bounded
by O(n) and its approximate Fourier sparsity is upper bounded by O(n3).

Hence there exist functions which have a merely cubic gap between approximate Fourier
sparsity and RPDT complexity.

The two properties of random subspaces appearing in such a collection that we use are the
following: each pair of them have no non-trivial intersection. They also form a (dual) subspace
design. We are not able to prove non-trivial lower bounds for the communication problems
arising out of Subspace Designs composed with the XOR gadget. However, in Section 3.2, we
state concrete conjectures, that seem to be interesting from a Fourier analytic and additive
combinatorics point of view, which imply linear lower bounds for such communication
problems.

1.2 Organization and plan of the paper

Section 2 contains some basic preliminaries. In Section 3, we prove our main result, a lower
bound on the RPDT complexity of a natural class of functions arising out of subspace designs.
In Section 3.2, we state a few plausible conjectures and show that they imply a lower bound
on the communication complexity of functions arising out of subspace designs composed with
the XOR gadget. Finally, we end up with some open problems in Section 4.

2 Preliminaries

In this section, we provide some basic preliminaries needed for the paper. Section 2.1 starts
off with some notation. Then in Section 2.2, we present some basic facts about subspaces.
Then we introduce the basics of our models of computations, parity decision trees and
communication protocols in Section 2.3. Finally, in Section 2.4, we present some basic
concepts from Fourier analysis.

A. Chattopadhyay, A. Garg, and S. Sherif 13:5

2.1 Notation
Given a subspace S ⊆ Fn

2 , we use dim(S) to denote its dimension and codim(S) to denote its
codimension i.e. n − dim(S). Given the standard bilinear form ⟨·, ·⟩ on Fn

2 , we can define
the dual space of S as the set {ℓ ∈ Fn

2 | ∀x ∈ S ⟨ℓ, x⟩ = 0}. It is a subspace of dimension
n − dim(S) and its dual space is S.

Given a subspace S of dimension k, fix a basis L = {ℓ1, . . . , ℓn−k} of its dual space. For
every point a ∈ Fn−k

2 , we can define the set SL
a = {x ∈ Fn

2 | ∀i ∈ [n − k] ⟨ℓi, x⟩ = ai}. These
are called affine shifts, or cosets, of S. Sets of the kind SL

a are also called affine subspaces.
Each coset of S also has size 2k. We can also define a coset map of S with respect to a basis
of its dual space as

cosetL
S(x) = (⟨ℓ1, x⟩, . . . , ⟨ℓn−k, x⟩).

It is easy to see that the choice of basis for the dual space does not affect the set of cosets of
S. It merely affects the string a ∈ Fn−k

2 that is used to refer to a specific coset. Hence we
will refer to the coset map as cosetS , and we may choose an arbitrary basis of the dual space
of S in order to interpret the coset map.

From here on, we will use {0, 1} to refer to F2. The values 0 and 1 represent the additive
and multiplicative identity of F2.

2.2 Basic facts about subspaces
Here we mention two facts about subspaces that will be useful.

▶ Lemma 3 (Disjoint Subspaces). Let S be a subspace of {0, 1}n of dimension d1. Let T be a
subspace of {0, 1}n of dimension d2 chosen uniformly at random. Then PrT [S ∩ T = {0}] ≥
1 − n2d1+d2−n.

Proof. Let us generate T by choosing d2 vectors {v1, . . . , vd2}, each vector independent of the
previous ones, in order to form a basis for T . The subspace S intersects T trivially if and only if
for all i ∈ [d2], vi ̸∈ span({vj}j<i ∪S). We call these events E1, . . . , Ed2 . When choosing vi to
add to the basis for T , there are 2n − 2i−1 choices, since |span({vj}j<i)| = 2i−1. Conditioned
on E1, . . . , Ei−1, we also know that |span({vj}j<i ∪ S)| = 2i−1+d1 . The probability of Ei

occurring is

| ({0, 1}n \ span({vj}j<i)) \ span({vj}j<i ∪ S)|
|{0, 1}n \ span({vj}j<i)|

= |{0, 1}n \ span({vj}j<i ∪ S)|
|{0, 1}n \ span({vj}j<i)|

.

We can then calculate the probability of S ∩ T = ∅ as

Pr

 ⋂
i∈[d2]

Ei

 =
d2∏

i=1
Pr [Ei | E1, · · · , Ei−1] =

d2∏
i=1

2n − 2d1+i−1

2n − 2i−1

≥
(

1 − 2d1+d2

2n

)d2

≥ 1 − d2

2n−d1−d2
. ◀

▶ Lemma 4. Let V and W be affine subspaces of {0, 1}n satisfying

|V ∩ W |
|W |

<
|V |
2n

.

Then V ∩ W = ∅.

FSTTCS 2021

13:6 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

Proof. Let {⟨vi, x⟩ = ai}i∈[k] be the constraints defining the affine subspace W . Let
W0, W1, · · · , Wk be the affine spaces defined as follows. The constraints for Wj are {⟨vi, x⟩ =
ai}i∈[j]. Clearly W0 = {0, 1}n and Wk = W .

Now let us assume that |V ∩ Wi| ̸= 0 and is hence an affine subspace. The set V ∩ Wi+1
is the same affine subspace with the added constraint ⟨vi+1, x⟩ = ai+1.

If this constraint was already implied by the constraints in V ∩ Wi, then |V ∩ Wi+1| =
|V ∩ Wi|.
If this constraint is incompatible with the constraints in V ∩ Wi, then |V ∩ Wi+1| = 0.
If this constraint was independent of the constraints in V ∩ Wi, then |V ∩ Wi+1| =
|V ∩ Wi|/2.

Hence |V ∩ Wk| is either 0 or is at least |V ∩ W0|/2k. On the other hand, |W |/2n = 1/2k.
Since V ∩ Wk = V ∩ W and V ∩ W0 = V , we can rewrite this as

V ∩ W ̸= ∅ =⇒ |V ∩ W |
|V |

≥ |W |
2n

. ◀

2.3 Parity decision trees, communication complexity and the corruption
bound

We now define parity decision trees, aimed at computing functions of the form f : {0, 1}n →
{0, 1}.

▶ Definition 5 (Parity Decision Tree). A parity decision tree T is a binary tree rooted at a
node r satisfying the following properties.

Each internal node is labelled with a set S ⊆ [n].
Each internal node has two children, with one of the edges labelled with a 0 and the other
labelled with a 1.
Each leaf has a label from {0, 1}.

A parity decision tree outputs a value a ∈ {0, 1} on given an input x ∈ {0, 1}n as follows.
The “current node” below is initialized to the root node r.

The tree computes b = ⊕i∈Sxi, where S is the label on the current node.
The tree moves to the child that is reached by taking the edge labelled b. If the child is
a leaf, output the label of the leaf. Else, repeat the previous step with the child as the
current node.

The cost of the parity decision tree is defined as the height of the tree.

▶ Definition 6 (Randomized Parity Decision Tree). A randomized parity decision tree (RPDT)
of cost c is a distribution over deterministic parity decision trees of cost c. The output of the
RPDT on an input x is the random variable defined as the output of T on x, where T is a
parity decision tree sampled as per the distribution specified by the RPDT.

The ϵ-error RPDT complexity of a function f , denoted R⊕
ϵ (f), is the minimum cost of an

RPDT T such that ∀x, Pr[f(x) = T (x)] ≥ 1 − ϵ.

▶ Lemma 7 (Corruption, RPDT version). Let f : {0, 1}n → {0, 1}. Let µ be a distribution on
{0, 1}n such that µ(f−1(0)) = 1/2. Let ϵ ≤ 1/8. Then an ϵ-error cost-c RPDT computing f

implies the existence of an affine subspace W such that
µ(W ∩ f−1(1)) ≤ 4ϵµ(W) and
codim(W) ≤ c.

A. Chattopadhyay, A. Garg, and S. Sherif 13:7

Proof. Note that an ϵ-error cost-c RPDT T computing f implies that for any distribution µ

over the inputs of f , there is an RPDT whose expected error, ET,x∼µ[|T (x)−f(x)|], is at most
ϵ. Since T is a distribution over deterministic parity decision trees, there is a deterministic
parity decision tree whose expected error is also at most ϵ.

Suppose that a subspace such as the one posited in the lemma statement did not exist.
Then for any cost-c parity decision tree T , we may compute the error made as follows. Note
that the set of inputs that reach any specific leaf forms an affine subspace of codimension at
most c, with each pair of such affine subspaces being disjoint. Let L be the set of these affine
subspaces corresponding to the leaves of T that are labelled 0. Then

∑
V ∈L µ(V) ≥ 1/2 − ϵ,

since otherwise T would be outputting 1 on more than an ϵ mass of 0-inputs. But then∑
V ∈L µ(V ∩ f−1(1)) ≥

∑
V ∈L 4ϵµ(V) ≥ 4ϵ(1/2 − ϵ) ≥ 2ϵ − 4ϵ2 > ϵ. So on more than an ϵ

mass of 1-inputs, T outputs 0. Hence the tree T is erring on a larger than ϵ mass of inputs
and we have a contradiction. ◀

We now move to communication complexity. We are concerned with the number of
bits that two parties Alice and Bob need to communicate in order to compute a function
F : X × Y → {0, 1}. See [19] for a thorough introduction to the topic. We will use that a
deterministic communication protocol of cost c partitions the input space of F into at most
2c rectangles (sets of the form A × B for A ⊆ X , B ⊆ Y), and it outputs the same value on
all inputs in a rectangle. Randomized communication is defined akin to randomized parity
decision trees.

▶ Definition 8 (Randomized Communication Protocol). A randomized communication protocol
of cost c is a distribution over deterministic communication protocols of cost c. The output of
the randomized communication protocol on an input x is the random variable defined as the
output of T on (x, y), where T is a communication protocol sampled as per the distribution
specified by the randomized communication protocol.

The ϵ-error randomized communication complexity of a function F is the minimum cost
of an randomized communication protocol T such that ∀x, y, Pr[F (x, y) = T (x, y)] ≥ 1 − ϵ.

The following is a lower-bound technique for randomized communication complexity akin
to the lower bound for RPDTs given previously. This technique is well-known with roots
in [27].

▶ Lemma 9 (Corruption). Let F : {0, 1}n → {0, 1}. Let ν be a distribution on {0, 1}n

such that ν(F −1(0)) = 1/2. Let ϵ < 1/8. Then an ϵ-error cost-c randomized communication
protocol computing F implies the existence of a rectangle R such that

ν(R ∩ F −1(1)) ≤ 4ϵν(R) and
ν(R) ≥ 2−c−3.

2.4 Basic notions from Fourier analysis
We now move to Fourier analysis, a particularly useful tool in analyzing Boolean functions.
We define the parity functions as follows. For each S ⊆ [n], we define a parity function
χS : {0, 1}n → {−1, 1} as χS(x) = (−1)

∑
i∈S

xi . These form an orthonormal basis for the
class of functions from {0, 1}n to R under the inner product ⟨f, g⟩ = 1

2n

∑
x∈{0,1}n f(x)g(x).

Hence every such function f can be written as
∑

S f̂(S)χS . The values f̂(S) are referred to
as Fourier coefficients and can be computed as ⟨f, χS⟩. Let f̂ denote the vector (f̂(S))S⊆[n] ∈
R2n , known as the Fourier spectrum. We define the following measures of f .

FSTTCS 2021

13:8 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

The sparsity of f is ∥f̂∥0.
The spectral norm of f is

∥∥∥f̂
∥∥∥

1
.

The ϵ-approximate sparsity of f , ∥f̂∥0,ϵ, is ming:∀x |g(x)−f(x)|≤ϵ ∥ĝ∥0.
The ϵ-approximate spectral norm of f ,

∥∥∥f̂
∥∥∥

1,ϵ
, is ming:∀x |g(x)−f(x)|≤ϵ ∥ĝ∥1.

The Fourier spectrum of a subspace is easy to compute. (See, for instance, [23].) It follows
from the spectrum that any subspace V ⊆ {0, 1}n, the function 1V satisfies

∥∥∥1̂V

∥∥∥
1

= 1.
For a function f : {0, 1}n → R its composition with XOR, denoted f ◦ XOR, is a function

F : {0, 1}n × {0, 1}n → R defined as F (x, y) = f(x ⊕ y) where x ⊕ y is the bitwise XOR of x

and y.
It is a well known fact that for a function F := f ◦ XOR, the rank of the communication

matrix of F , denoted rank(F), is equal to ∥f̂∥0. The ϵ-approximate rank of F is at most the
ϵ-approximate sparsity of f .

We note a theorem useful in showing that a function has small approximate sparsity.

▶ Theorem 10 (Grolmusz’s Theorem [2, 13, 28, 6]). For any f : {0, 1}n → {0, 1} and
δ > ϵ ≥ 0,

∥f̂∥0,δ ≤ O

(∥∥∥f̂
∥∥∥2

1,ϵ
n/(δ − ϵ)2

)
.

We conclude the preliminaries with the useful notion of entropy.

▶ Definition 11 (Entropy). Let X be a discrete random variable. The entropy H(X) is
defined as

H(X) :=
∑

s∈supp(X)

Pr[X = s] log
(

1
Pr[X = s]

)
.

▶ Fact 12 (Folklore). |supp(X)| = k =⇒ H(X) ≤ log k, with equality if and only if X is
uniform.

3 The RPDT Complexity of Dual Subspace Designs

In this section, we prove a lower bound on the RPDT complexity of a natural class of
functions arising from subspace designs. A subspace design is a set of subspaces such that
any small dimensional subspace non-trivially intersects only a few members of the set. (These
are referred to as weak subspace designs in [14].)

▶ Definition 13 (Subspace Design). An n-dimensional (s, h)-subspace design is a set of
subspaces {S1, S2, · · · , Sm} of {0, 1}n such that for all subspaces T of dimension at most s,
at most h of the m subspaces intersect T non-trivially.

We call a set of subspaces {V1, V2, · · · , Vm} of {0, 1}n an n-dimensional (s, h)-dual sub-
space design if their duals form an (s, h)-subspace design. Dual subspace designs have an
alternate characterization based on the notion of independent subspaces.

▶ Definition 14 (Independent Subspaces). Subspaces S, T ⊆ {0, 1}n are independent if their
coset maps are independent. That is, let LS and LT be arbitrary bases for the dual spaces of
S and T . For a variable x chosen uniformly at random from {0, 1}n, consider the random
variables cosetS(x) and cosetT (x). For every a ∈ Fcodim(S)

2 , b ∈ Fcodim(T)
2 , we want that

Pr[cosetS(x) = a|cosetT (x) = b] = Pr[cosetS(x) = a] = 2−codim(S).
In particular this implies that every coset of S intersects with every coset of T .

A. Chattopadhyay, A. Garg, and S. Sherif 13:9

We now state the alternate characterization of dual subspace designs.

▷ Claim 15. The set {V1, V2, · · · , Vm} of {0, 1}n is an n-dimensional (s, h)-dual subspace
design if and only if for all subspaces W of codimension at most s, at least m − h of the m

subspaces are independent from W .

This claim follows from the following lemma relating trivial subspace intersections and
independent subspaces.

▶ Lemma 16 (Independent Subspaces). Subspaces S and T of Fn
2 are independent if and

only if the dual space of S and the dual space of T intersect trivially (i.e. only at the point
0 ∈ Fn

2).

Proof. Let V and W be the dual spaces of S and T respectively. If V and W intersected at
a non-zero point ℓ ∈ Fn

2 , then consider bases LS and LT for V and W respectively, wherein
ℓ is the first element of LS and also the first element of LT . The coset maps of S and T

with this choice of LS and LT cannot be independent since for all x ∈ Fn
2 , the first entries of

cosetLS

S (x) and cosetLT

T (x) will always agree.
For the other direction, let LS and LT be arbitrary bases for V and W respectively. We

will show that if V and W intersect trivially, then the coset maps are independent. Assuming
V and W intersect trivially, this means that span(LS)∩span(LT) = {0}. Hence L = LS ∪LT

is an independent set of size dim(V) + dim(W). Consider the subspace X with basis L,
and let R be its dual subspace. The cosets of R each have size 2n−dim(V)−dim(W). For any
a ∈ Fcodim(S)

2 , b ∈ Fcodim(T)
2 , the set {x | cosetLS

S (x) = a ∧ cosetLT

T (x) = b} is a coset of R.
Hence Pr[cosetLS

S (x) = a|cosetLT

T (x) = b] = 2−dim(V)−dim(W)/2−dim(W) = 2−dim(V) ◀

A useful corollary of Claim 15 is that an (s, h)-dual subspace design also forms a hitting
set for the set of all affine subspaces of codimension at most s. We will use this fact to lower
bound the randomized parity decision tree complexity of unions of subspaces.

▶ Corollary 17. Let {V1, V2, · · · , Vm} be an n-dimensional (s, h)-dual subspace design. For
all affine subspaces W of codimension at most s, at least m − h of the m subspaces intersect
with W .

Proof. This follows from Claim 15 and the fact that if two subspaces S and T are independent,
then S will intersect any affine shift of T non-trivially. ◀

We are now ready to prove the main theorem of the section.

▶ Theorem 18. Let V be an n-dimensional (s, h)-dual subspace design of size m.
Let f be the function defined as f−1(1) =

⋃
V ∈V V . We now show that R⊕

ϵ (f) ≥ s as long
as ϵ < m−h

8m
|f−1(0)|

2n .

Proof. Consider the distribution µ defined over the inputs of f as follows.
Sample z ∼unif {0, 1}.
If z = 0, output a uniformly random input from f−1(0).
Otherwise, sample V ∼unif V.
Output a uniformly random input from V .

Assuming that f is computed by an ϵ-error cost c RPDT, Lemma 7 implies the existence
of a subspace W such that

µ(W ∩ f−1(1)) ≤ 4ϵµ(W) and
codim(W) ≤ c.

FSTTCS 2021

13:10 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

Assume we have a W such that µ(W ∩ f−1(1)) ≤ 4ϵµ(W). This means that µ(W ∩
f−1(1)) ≤ 4ϵ

1−4ϵ µ(W ∩ f−1(0)). We also know the following from the definition of µ.

µ(W ∩ f−1(1)) = 1/2 · 1
|V|

∑
V ∈V

|W ∩ V |
|V |

µ(W ∩ f−1(0)) = 1/2 · |W ∩ f−1(0)|
|f−1(0)| ≤ 1/2 · |W |

|f−1(0)|

Putting these together, we get that

1
|V|

∑
V ∈V

|W ∩ V |
|V |

≤ 4ϵ

1 − 4ϵ

|W |
|f−1(0)| .

Now if ϵ < m−h
8m

|f−1(0)|
2n ≤ 1

8 , then 4ϵ
1−4ϵ < m−h

m
|f−1(0)|

2n . This implies that less than
m − h subspaces of V can satisfy |W ∩V |

|V | ≥ |W |
2n , and hence more than h of them must satisfy

|W ∩V |
|V | < |W |

2n . This means that W ∩ V = ∅ (Lemma 4). In other words, W is an affine
subspace that managed to evade more than h subspaces of V. But by Corollary 17, if W is
of codimension at most s, then it is disjoint from at most h subspaces of V. So W must be
of codimension more than s.

Hence the cost of the RPDT must also be more than s. ◀

▶ Remark 19. The above proof would more generally work for the union of any set of affine
subspaces that forms a hitting set for the set of all large affine subspaces.

3.1 Narrowing the gap between RPDT complexity and approximate
sparsity to cubic

In this section, we instantiate Theorem 18 with random subspaces to get a mere cubic gap
between RPDT complexity and approximate sparsity. It is known that there are efficient
probabilistic constructions of subspace designs. We go through such a construction here, and
use it to show our main theorem.

▶ Theorem 20. Let m = 100n. Let V1, V2, . . . , Vm be subspaces of {0, 1}n chosen independ-
ently and uniformly at random from the set of subspaces of dimension 2n/5. With probability
1 − o(1) the following two statements are true.

V = {V1, . . . , Vm} forms an (n/5, m/10)-dual subspace design.
Every pair of subspaces in V intersects trivially.

Proof. Let W be a fixed affine subspace of {0, 1}n of dimension 4n/5. Let V =
{V1, V2, · · · , Vm} be subspaces of {0, 1}n chosen independently and uniformly at random
from the set of subspaces of dimension 2n/5.

Since the duals of W and V1 have dimension 3n/5 and n/5 respectively, the probability
that W and V1 are independent is at least 1 − n2−n/5 (Lemma 3). This is independently
true of W and each V ∈ V . The probability that W is not independent with at least m/10
of the m subspaces is at most

(
m

m/10
)
(n2−n/5)m/10.

Since the number of subspaces of dimension 4n/5 is at most (2n)4n/5 = 24n2/5, the
probability that there exists such a subspace W that is not independent with at least m/10
of the subspaces in V is at most 24n2/5(

m
m/10

)
(n2−n/5)m/10.

Setting m = 100n, this upper bound is at most 2.8n2+100n+10n log n−2n2 = o(1).
Hence with high probability, V is an (n/5, m/10)-dual subspace design.

A. Chattopadhyay, A. Garg, and S. Sherif 13:11

Let f be defined as in the theorem statement. Note that since V1 and V2 are random
subspaces of dimension 2n/5, the probability that they intersect only at 0 is at least
1 − n2−n/5. The probability that any two subspaces in V intersect at more than just 0 is at
most

(
m
2
)
n2−n/5 = o(1). ◀

▶ Theorem 2 (Main Result). Let m = 100n. Let V = {V1, V2, . . . , Vm} be a set of subspaces of
{0, 1}n chosen independently and uniformly at random from the set of subspaces of dimension
2n/5. Let f be the function that outputs 1 on the set

⋃
V ∈V V . With probability 1 − o(1) the

following two statements are true.
Randomized parity decision tree complexity of f is at least Ω(n).
The spectral norm of f (sum of absolute values of its Fourier coefficients) is upper bounded
by O(n) and its approximate Fourier sparsity is upper bounded by O(n3).

Hence there exist functions which have a merely cubic gap between approximate Fourier
sparsity and RPDT complexity.

Proof. We know from Theorem 20 that with probability 1 − o(1) the set V forms an
(n/5, m/10)-dual subspace design. We also can trivially lower bound |f−1(0)|/2n by 1 −
m2−3n/5. Since V is an (n/5, m/10)-dual subspace design, we can conclude from Theorem 18
that for ϵ ≤ 1/10, R⊕

ϵ (f) ≥ n/5.
We also know from Theorem 20 that with probability 1−o(1), every pair of subspaces from

V intersects trivially. When this event holds, f can be represented as
∑

V ∈V 1V − (m − 1)1V0

where V0 = {0} is the trivial subspace of dimension 0. Since the spectral norm of a subspace
is equal to 1, the spectral norm of f is upper bounded by m+m−1 < 2m. Using Theorem 10,
this also implies that ∥f̂∥0,ϵ ≤ O(m2n/ϵ2) = O(n3) for any constant ϵ.

This concludes the proof of the merely cubic gap. ◀

3.2 On Extending this to Communication
In this section, we state a plausible conjecture that would imply a lower bound on the
randomized communication complexity of XOR compositions of our functions.

In the RPDT lower bound, we showed that in order for an affine subspace to avoid most
of the subspaces of a dual subspace design, the codimension of the affine subspace needs to
be large. We could hope for a similar statement in the communication world: For a rectangle
to put very little mass on most of the subspaces making up a dual subspace design (i.e.,
puts very little mass on inputs (x, y) such that x ⊕ y lies in the subspaces), the mass of the
rectangle must be 2−Ω(n). One particularly neat conjecture that would imply that statement
is the following, in which Uk denotes the uniform distribution over k elements. (See the proof
of Theorem 23 for an implicit proof of the implication.)

▶ Conjecture 21. There exist constants 0 < α < 1, β > 0 and k ≥ 1 such that the following
holds. Let V = {V1, . . . , Vm} be an n-dimensional (s, h)-dual subspace design. Let Bi be the
coset map of Vi. Let X be a random variable over {0, 1}n such that ∥Bi(X)−U2codim(Vi)∥1 ≥ α

for more than kh values of i ∈ [m]. Then H(X) ≤ n − βs.

The merely cubic gap in the RPDT world used random subspaces. So for extending it
to communication, it would be okay for us to bypass dual subspace designs and prove the
theorem for random subspaces instead.

▶ Conjecture 22. There exists a constant 0 < α < 1, β > 0 such that the following holds.
Let m = 100n. Let V1, V2, . . . , Vm be random subspaces of {0, 1}n of dimension 2n/5, and
let B1, B2, · · · , Bm be their coset maps. Let X be a random variable over {0, 1}n such that
∥Bi(X) − U23n/5∥1 ≥ α for at least m/3 values of i ∈ [m]. Then with high probability,
H(X) ≤ n − βn.

FSTTCS 2021

13:12 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

First of all note that the conjectures are true when X is the uniform distribution over an
affine subspace. To see this, suppose X is the uniform distribution over an affine subspace
W . H(X) ≥ n − s is the same as saying that codim(W) ≤ s. Then by Claim 15, for at
least m − h of the subspaces V1, . . . , Vm, Vi and the dual space of W are independent, which
implies that Bi(X) will be exactly uniform (U2codim(Vi)).

We discuss now why the Conjectures 21 and 22 appear to be a bit tricky to prove. While
the conjectures are true for affine subspaces, the number of distributions (or even the number
of subsets of {0, 1}n) are much larger (doubly exponential in n), so the conjectures are a
leap of faith in this sense. But we haven’t been able to come up with counterexamples
and it would be very interesting to do so. The conceptual way to view the conjectures,
e.g. Conjecture 22 to be concrete, is that if a random variable X has the property that
when projected down to 2n/5 bits in various ways it loses Ω(1) bits of entropy, then X

overall loses Ω(n) bits of entropy. Shearer’s lemma talks about these kind of statements.
While in Shearer’s lemma, the projections are onto subcubes, there are generalizations called
Brascamp-Lieb inequalities which talk about more general projections (e.g. see [7]). However,
the Brascamp-Lieb inequalities can at best guarantee an Ω(n/k)-bit entropy loss in X if
there is an Ω(1)-bit entropy loss while projecting X to k bits in various ways. What we want
is much stronger. This is one difficulty.

The other difficulty is that a Fourier type approach doesn’t seem to work either. One
can control ∥Bi(X) − U2codim(Vi)∥1 by bounding the ℓ2 distance and then trying to bound the
Fourier coefficients of the distribution of X on the dual space of Vi. But this doesn’t give
any meaningful bound (if done in a naive way at least).

We now state the lower bound on the randomized communication complexity of a dual
subspace design composed with XOR that we get assuming Conjecture 21. For a set of
subspaces in n dimensions V = {V1, V2, . . . , Vm}, let fV be the function on n bits that outputs
1 on inputs in ∪V ∈VV .

▶ Theorem 23. Let us assume Conjecture 21 holds with constants α, β and k. Let V =
{V1, V2, . . . , Vm} be an n-dimensional (s, h)-dual subspace design and define γ so that | ∪V ∈V

V | = γ2n. Let F = fV ◦ XOR. For ϵ < (1−α)2

4
m−2kh

8m (1 − γ), the ϵ-error randomized
communication complexity of F is at least βs + log(1 − γ).

We will prove this with α = 1/2 to reduce symbol clutter. After the proof we discuss how
the proof would change with a different value of α. Note that the bound on ϵ in the above
theorem statement simplifies to m−2kh

128m (1 − γ) when α = 1/2.

Proof when α = 1/2. For any V ∈ V, let SV = {(x, y) ∈ {0, 1}n × {0, 1}n | x ⊕ y ∈ V }.
Note that |SV | = 2n|V | and F −1(1) = ∪V ∈VSV . Consider the distribution ν defined over
the inputs of F as follows.

Sample z ∼unif {0, 1}.
If z = 0, output a uniformly random input from F −1(0).
Otherwise, sample V ∼unif V.
Output a uniformly random input from SV .

Assuming F is computed by an ϵ-error cost c communication protocol, Lemma 9 implies
the existence of a “large biased rectangle” R satisfying

ν(R ∩ F −1(1)) ≤ 4ϵν(R) and
ν(R) ≥ 2−c−3.

A. Chattopadhyay, A. Garg, and S. Sherif 13:13

Fix such an R. The condition ν(R ∩ F −1(1)) ≤ 4ϵν(R) is the same as ν(R ∩ F −1(1)) ≤
4ϵ

1−4ϵ ν(R ∩ F −1(0)). We also know the following from the definition of ν.

ν(R ∩ F −1(1)) = 1/2 · 1
|V|

∑
V ∈V

|R ∩ SV |
|SV |

ν(R ∩ F −1(0)) = 1/2 · |R ∩ F −1(0)|
|F −1(0)| ≤ 1/2 · |R|

|F −1(0)|

Putting these together, we get that

1
|V|

∑
V ∈V

|R ∩ SV |
|SV |

≤ 4ϵ

1 − 4ϵ

|R|
|F −1(0)| .

Now if ϵ < m−2kh
128m

|F −1(0)|
22n < 1/8, then 4ϵ

1−4ϵ < m−2kh
16m

|F −1(0)|
22n . This implies that less than

m − 2kh subspaces of V can satisfy |R∩SV |
|SV | ≥ |R|

16·22n , and hence more than 2kh of them must
satisfy |R∩SV |

|SV | < |R|
16·22n . Let us fix such a V .

Let cosetV denote the function cosetLV

V for some fixed basis LV of the dual space of V .
Let R = A × B. Then |R∩SV |

|R| is the probability that, when x and y are sampled uniformly
at random from A and B, cosetV (x) = cosetV (y). Let AV be the distribution of cosetV (x)
and BV be the distribution of cosetV (y). The condition |R∩SV |

|R| < |SV |
16·22n can be rewritten as

Pr
x′∼AV ,y′∼BV

[x′ = y′] <
|SV |

16 · 22n
= 1

16 · 2codim(V) .

It follows that AV (S) < 1/4 where S = {y′ | BV (y′) ≥ 1
4·2codimV }. However, BV (S) must be

at least 3/4, since BV (S) ≤ 1/4.
Hence AV and BV have total variational distance at least 1/2, and ∥AV − BV ∥1 ≥ 1. By

the triangle inequality, max{∥AV − U2codim(V)∥1, ∥BV − U2codim(V)∥1} ≥ 1/2.
Hence, either there are more than kh subspaces that satisfy ∥AV − U2codim(V)∥ ≥ 1/2 or

there are more than kh subspaces that satisfy ∥BV − U∥ ≥ 1/2. Without loss of generality we
assume the former. Now we use our conjecture. The conjecture implies that H(A) ≤ n − βs.
Hence |R|

22n ≤ 2−βs.
We now want to move from |R| being small under the uniform distribution to R being

small under ν. We know that ν(R∩F −1(1)) ≤ 4ϵν(R) < ν(R)/2, so ν(R∩F −1(0)) ≥ ν(R)/2.
We also know from the definition of ν that

ν(R ∩ F −1(0)) = |R ∩ F −1(0)|
2|F −1(0)| ≤ |R|

2 · 22n
· 22n

|F −1(0)| ≤ 2−βs−1 · 1
1 − γ

.

So ν(R) ≤ 2ν(R ∩ F −1(0)) ≤ 2−βs−1−log(1−γ). Hence the cost of the protocol is at least
βs + log(1 − γ) − 3. ◀

We now explain how to modify the proof assuming the conjecture were true for other
values of α. The reasoning involved in the proof does not change, we just need to track
the modified values. The following modified values appear when analyzing a large biased
rectangle R = A × B.

We would find more than 2kh subspaces V such that Pr[AV = BV] < (1−α)2

4
|SV |
22n .

We would then set S = {y′ | BV (y′) ≥ 1−α
2·2codim(V) }. This would mean that AV (S) ≤ 1−α

2
and BV (S) ≥ 1 − 1−α

2 . Hence ∥AV − BV ∥1 ≥ 2α, and one of A or B (wlog, A) satisfies
∥AV − U2codim(V)∥1 ≥ α for at least kh subspaces from the dual subspace design.

FSTTCS 2021

13:14 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

The conjecture would then tell us that |R|
22n ≤ 2−βs and we would use that to conclude

that the cost of the protocol would be at least βs + log(1 − γ) − 3, which is Ω(s) for
constant γ.

Given this lower bound, we would want to apply it to get a merely cubic gap between
randomized communication complexity and approximate rank along the lines of Theorem 20.

▶ Corollary 24. Let V = {V1, V2, . . . , Vm} be an (n/5, m/20k)-dual subspace design with
(1) m = 200kn, (2) each subspace having dimension 2n/5 and (3) every pair of subspaces
intersecting trivially. Let F = fV ◦ XOR. Then assuming Conjecture 21,

The 1/10-error randomized communication complexity of F is Ω(n).
rank1/10(F) = O(n3).

Proof. The size of F −1(1) would be at most 2n
∑

V ∈V |V | ≤ 2n+2n/5m = o(22n). We can
then use Theorem 23 to get a lower bound of βn/5 when ϵ < (1−α)2

4
m−2kh

8m
|F −1(0)|

22n , which is a
constant. Since we can use error reduction to go from error 1/10 to any small constant error
with only a constant blow-up in cost, the 1/10-error randomized communication complexity
is also Ω(n).

The ϵ-approximate rank of f ◦ XOR is known to be at most the ϵ-approximate sparsity of
f . As analyzed in Theorem 20,

∥∥∥f̂V

∥∥∥
1

≤ 2m and ∥f̂V∥0,1/10 ≤ O(m2n) = O(n3) and hence
rank1/10(F) ≤ O(n3). ◀

The existence of a dual subspace design as required in the previous corollary follows by
changing Theorem 20 to set m = 200kn. The proof of the modified statement is syntactically
identical to the proof of the original statement.

4 Conclusion and open problems

We come up with new and improved refutations of the query complexity analogue of the
log-approximate-rank conjecture, following the work of Chattopadhyay, Mande and Sherif [6].
Our examples are derived from subspace designs, a concept which has previously found
applications in coding theory and pseudorandomness [15, 14, 16]. A lot of interesting open
problems arise from our work, some of which we mention below.

1. (Communication complexity of XOR composed subspace designs). What is the
randomized communication complexity of dual subspace designs composed with XOR (as
studied in Section 3.2)? A lower bound would follow from Conjecture 21. If Conjecture
21 is false, is there an alternate way to prove the communication lower bound? Since we
already have an RPDT lower bound for dual subspace designs, these functions provide a
interesting class of functions to study randomized XOR lifting. Currently we cannot even
prove that this class of functions do not have large monochromatic rectangles.

2. (Communication complexity of XOR composed random subspaces). What is
the randomized communication complexity of random subspaces composed with XOR? A
lower bound would follow from Conjecture 22 which follows from Conjecture 21. Even if
Conjecture 21 is false, Conjecture 22 could still be true or perhaps easier to prove. If
even Conjecture 22 is false, is there an alternate way to prove the communication lower
bound, perhaps adapting the technique of [17] to the randomized communication setting?
Here also we cannot prove that there are no large monochromatic rectangles.

A. Chattopadhyay, A. Garg, and S. Sherif 13:15

3. (Quantum communication complexity of XOR composed subspace designs).
What is the quantum communication complexity of dual subspace designs composed with
XOR? Is there a function in this class which has polylogarithmic quantum communication
complexity?

4. (RPDT and approximate sparsity). What is the optimal gap between RPDT
complexity and approximate sparsity? We give examples where the RPDT complexity is
at least cube root of the approximate sparsity and also RPDT complexity is easily seen
to be at most the approximate sparsity.

References
1 Anurag Anshu, Naresh Goud Boddu, and Dave Touchette. Quantum log-approximate-rank

conjecture is also false. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 982–994. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00063.

2 Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, AC0 functions and
spectral norms (extended abstract). In 31st Annual Symposium on Foundations of Computer
Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 632–641, 1990.

3 Harry Buhrman and Ronald de Wolf. Communication complexity lower bounds by polynomials.
In Proceedings of the 16th Annual Conference on Computational Complexity, CCC ’01, page
120, USA, 2001. IEEE Computer Society.

4 Arkadev Chattopadhyay, Rajit Datta, and Partha Mukhopadhyay. Lower bounds for monotone
arithmetic circuits via communication complexity. In Samir Khuller and Virginia Vassilevska
Williams, editors, 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, pages 786–799. ACM, 2021.

5 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
beats richness: new data-structure lower bounds. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 1013–1020.
ACM, 2018.

6 Arkadev Chattopadhyay, Nikhil S. Mande, and Suhail Sherif. The log-approximate-rank
conjecture is false. J. ACM, 67(4), June 2020. doi:10.1145/3396695.

7 Michael Christ. The optimal constants in Holder-Brascamp-Lieb inequalities for discrete
Abelian groups. arXiv preprint, 2013. arXiv:1307.8442.

8 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity.
Electronic Colloquium on Computational Complexity (ECCC), 26:186, 2019.

9 Anna Gál and Ridwan Syed. Upper bounds on communication in terms of approximate rank.
Electronic Colloquium on Computational Complexity (ECCC), 26:6, 2019.

10 Dmitry Gavinsky and Shachar Lovett. En route to the log-rank conjecture: New reductions
and equivalent formulations. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
514–524, 2014.

11 Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM J. Comput., 47(1):241–269, 2018. doi:10.1137/16M109884X.

12 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM J. Comput., 47(6):2435–2450, 2018. doi:10.1137/16M1059369.

13 Vince Grolmusz. On the power of circuits with gates of low ℓ1 norms. Theor. Comput. Sci.,
188(1-2):117–128, 1997.

14 Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combinatorica,
36(2):161–185, 2016.

FSTTCS 2021

https://doi.org/10.1109/FOCS.2019.00063
https://doi.org/10.1145/3396695
http://arxiv.org/abs/1307.8442
https://doi.org/10.1137/16M109884X
https://doi.org/10.1137/16M1059369

13:16 Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture

15 Venkatesan Guruswami and Chaoping Xing. List decoding reed-solomon, algebraic-geometric,
and gabidulin subcodes up to the singleton bound. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 843–852. ACM, 2013.

16 Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. Subspace designs based on algebraic
function fields. In 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 86:1–86:10.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

17 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR functions.
SIAM J. Comput., 47(1):208–217, 2018.

18 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for
and-functions. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 197–208. ACM, 2021.

19 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

20 Troy Lee and Adi Shraibman. Lower bounds in communication complexity. Foundations and
Trends in Theoretical Computer Science, 3(4):263–398, 2009.

21 Shachar Lovett. Communication is bounded by root of rank. J. ACM, 63(1):1:1–1:9, 2016.
22 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.

In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing,
STOC ’92, pages 462–467, New York, NY, USA, 1992. Association for Computing Machinery.
doi:10.1145/129712.129757.

23 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
24 R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. In Proceedings of the

38th Annual Symposium on Foundations of Computer Science, FOCS ’97, page 234, USA,
1997. IEEE Computer Society.

25 Makrand Sinha and Ronald de Wolf. Exponential separation between quantum communication
and logarithm of approximate rank. In David Zuckerman, editor, 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November
9-12, 2019, pages 966–981. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00062.

26 Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314,
1980.

27 Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (extended abstract). In
24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9
November 1983, pages 420–428. IEEE Computer Society, 1983. doi:10.1109/SFCS.1983.30.

28 Shengyu Zhang. Efficient quantum protocols for XOR functions. In Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 1878–1885, 2014.

https://doi.org/10.1145/129712.129757
https://doi.org/10.1109/FOCS.2019.00062
https://doi.org/10.1109/SFCS.1983.30

Functional Lower Bounds for Restricted Arithmetic
Circuits of Depth Four
Suryajith Chillara # Ñ

CSTAR, International Institute of Information Technology, Hyderabad, India

Abstract

Recently, Forbes, Kumar and Saptharishi [CCC, 2016] proved that there exists an explicit dO(1)-
variate and degree d polynomial Pd ∈ VNP such that if any depth four circuit C of bounded formal
degree d which computes a polynomial of bounded individual degree O(1), that is functionally
equivalent to Pd, then C must have size 2Ω(

√
d log d).

The motivation for their work comes from Boolean Circuit Complexity. Based on a characteriza-
tion for ACC0 circuits by Yao [FOCS, 1985] and Beigel and Tarui [CC, 1994], Forbes, Kumar and
Saptharishi [CCC, 2016] observed that functions in ACC0 can also be computed by algebraic Σ∧ΣΠ
circuits (i.e., circuits of the form – sums of powers of polynomials) of 2logO(1) n size. Thus they argued
that a 2ω(poly log n) “functional” lower bound for an explicit polynomial Q against Σ∧ΣΠ circuits
would imply a lower bound for the “corresponding Boolean function” of Q against non-uniform
ACC0. In their work, they ask if their lower bound be extended to Σ∧ΣΠ circuits.

In this paper, for large integers n and d such that ω(log2 n) ≤ d ≤ n0.01, we show that any
Σ∧ΣΠ circuit of bounded individual degree at most O

(
d

k2

)
that functionally computes Iterated

Matrix Multiplication polynomial IMMn,d (∈ VP) over {0, 1}n2d must have size nΩ(k). Since Iterated
Matrix Multiplication IMMn,d over {0, 1}n2d is functionally in GapL, improvement of the afore
mentioned lower bound to hold for quasipolynomially large values of individual degree would imply
a fine-grained separation of ACC0 from GapL.

For the sake of completeness, we also show a syntactic size lower bound against any Σ∧ΣΠ
circuit computing IMMn,d (for the same regime of d) which is tight over large fields. Like Forbes,
Kumar and Saptharishi [CCC, 2016], we too prove lower bounds against circuits of bounded formal
degree which functionally compute IMMn,d, for a slightly larger range of individual degree.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Algebraic complexity theory

Keywords and phrases Functional Lower Bounds, Boolean Circuit Lower Bounds, Depth Four,
Connections to Boolean Complexity, Iterated Matrix Multiplication

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.14

Related Version Full Version: https://eccc.weizmann.ac.il/report/2021/105/

Funding Research done while at University of Haifa and was supported in parts by (1) PBC
fellowship from Israeli Council of Higher Education, (2) funding from University of Haifa, and (3)
funding from Prof. Noga Ron-Zewi.

Acknowledgements The author is grateful to Nikhil Balaji, Mrinal Kumar, Noga Ron-Zewi, Nitin
Saurabh, and Nithin Varma for helpful discussions. The author thanks Nikhil Balaji for telling
him more about the Boolean complexity of Iterated Matrix Multiplication. The author thanks
Ramprasad Saptharishi for patiently presenting the results in [14] while the author visited Tel Aviv
University in 2016, hosted by Amir Shpilka.

© Suryajith Chillara;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:suryajith.chillara@iiit.ac.in
https://suryajith.github.io
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.14
https://eccc.weizmann.ac.il/report/2021/105/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Functional Lower Bounds for Some Depth Four Circuits

1 Introduction

Owing to the difficulty in proving Boolean circuit size lower bounds, Valiant proposed that
we prove lower bounds in an “algebraic setting” as the underlying algebraic structure could
help us understand the computations better. Valiant further conjectured that any circuit
theoretic proof for P ̸= NP would have to be preceded by an analogous result in this more
constrained arithmetic model [42].

Arithmetic circuits (also called as algebraic circuits) are directed acyclic graphs such that
the leaf nodes are labeled by variables or constants from the underlying field, and every
non-leaf node is labeled either by a + or ×. Every node computes a polynomial by operating
on its inputs with the operation given by its label. The computation flows from the leaves to
the output node. Complexity of computation here is quantified by the size of the circuit,
which is the number of nodes in it.

It is conjectured that Permanent polynomial does not have polynomial size arithmetic
circuits [41]. Bürgisser [6] showed that if Permanent polynomial were to have a polynomial
sized arithmetic circuit then this would imply #P ⊆ FNC3/ poly which would further imply
that NP ⊆ P/ poly which leads to (1) PH ⊆ Σ2

p [20] and (2) AM = MA [3], both of which
go against widely believed conjectures. Thus, a central question in the field of algebraic
complexity theory is to show that Permanent polynomial (or any closely related polynomial
of interest) needs superpolynomial sized arithmetic circuits to compute it.

Four decades after the problem was formulated, the best known size lower bound is still
super linear [4]. Over the span of last three decades, researchers have considered restricted
arithmetic circuits and here we have seen a great progress towards proving lower bounds
under these restrictions (see [40, 38] for a detailed survey). In a surprising result, Agrawal
and Vinay [1] showed that it is sufficient to prove subexponential size lower bounds against
depth four circuits, to prove super polynomial size lower bounds against general arithmetic
circuits.

A depth four circuit1 (denoted by ΣΠΣΠ) computes polynomials that can also be expressed
as a sum of products of polynomials.

P (X) =
∑

i

∏
j

Qi,j .

Syntactic lower bounds

We say that a polynomial P has a syntactic circuit size lower bound of s against class C of
circuits if no circuit in C of size strictly smaller than s syntactically computes P .

Strong syntactic size lower bounds for depth four circuits were proven in restricted settings:
Bounded fan-in [17, 24, 15, 12, 27], Homogeneous [21, 26, 22, 28], Multilinear [36, 11], and
Multi-r-ic [25, 8, 7]. In a breakthrough, Limaye, Srinivasan and Tavenas recently proved
superpolynomial size lower bounds against all constant depth circuits [29]. Prior to that the
best known lower bound for depth four circuits was super-quadratic [19] (which improves
upon super-linear lower bounds due to Shoup and Smolensky [39] and Raz [34]).

1 Generally speaking, a depth four circuit can also be of the form ΠΣΠΣ but we follow the convention
that the root node is a + node. Under such a convention ΠΣΠΣ circuit is a depth five circuit.

S. Chillara 14:3

Functional lower bounds

For a set B ⊆ F, we say that two polynomials P (x1, . . . , xN) and Q(x1, . . . , xN) are func-
tionally equivalent over BN if P (a) = Q(a) for all a ∈ BN . We say that a circuit C

functionally computes a polynomial P ∈ F[x1, . . . , xN] over BN if the output polynomial
f ∈ F [x1, . . . , xN] of C is functionally equivalent to P over BN .

We say that a polynomial P has a functional size lower bound of s against a class C
of circuits if no polynomial that is computed by circuits in C of size strictly less than s, is
functionally equivalent to P over Bn for some B ⊆ F.

Forbes, Kumar and Saptharishi [14] proved exponential functional lower bounds for
a polynomial in VNP against depth four circuits of bounded formal degree and bounded
individual degree O(1). Formally, they showed that there is an explicit polynomial Pd of
degree d over ≈ d3 variables such that no depth four circuit of bounded formal degree d and
size smaller than 2c(

√
d log d) (for a small constant c) that computes a polynomial of bounded

individual degree at most O(1) can be functionally equivalent to Pd. Apart from this work,
strong functional lower bounds are known against depth three circuits over finite fields [16],
multilinear formulas [33, 32, 35, 36, 10, 11], and set-multilinear formulas [31, 29].

The motivation for the work of [14] comes from Boolean circuit complexity. ACC0 circuits
are constant depth Boolean circuits that have AND, OR, NOT and MOD gates. Allender
and Gore [2] showed that uniform ACC0 circuits of subexponential size cannot compute
Permanent. In a major breakthrough, Williams [44] showed that there exists a function
in NEXP such that it cannot be computed by polynomial sized nonuniform ACC0 circuits.
Recently Murray and Williams [30] further improved the situation to show that there exists
a function in NQP such that it needs superpolynomial size ACC0 circuits to compute it.

Beigel and Tarui [5] showed that every language L in the class ACC0 can be recognized by
a family of depth two2 deterministic circuits with a symmetric function gate at the root and
2logO(1) n many AND gates of fan-in logO(1) n in the second layer. Over large fields, Forbes,
Kumar and Saptharishi [14] observed that given this Boolean circuit, there is an algebraic
circuit of depth four which computes polynomials of the form – sum of 2logO(1) n many powers
of polynomials each of whose monomials are supported on at most logO(1) n many variables
such that outputs of both of these circuits are functionally equivalent.

Σ∧ΣΠ circuits are depth four circuits that compute polynomials which can be expressed
as sums of powers of polynomials. Σ∧ΣΠ[t] circuits are depth four circuits that compute
polynomials which can be expressed as sums of powers of polynomials each of whose monomials
are supported on at most t many variables.

We can summarize the afore mentioned discussion formally as follows.

▶ Lemma 1 (Lemma 3.2, [14]). Let F be any field of characteristic zero or at least
exp(ω(poly(log n))). If a function f : {0, 1}n 7→ {0, 1} is in ACC0 then there exists a
polynomial Pf ∈ F[x1, . . . , xn] such that

Pf and f are functionally equivalent over {0, 1}n, and
Pf can be computed by a Σ∧ΣΠ circuit of top fan-in at most 2logO(1) n and bottom support
at most logO(1) n.

2 Here the variables can appear negated at the leaves that feed into the AND gates. Even though
it is stated as depth two in the paper, the longest leaf to root path in this circuit is of length 3.
Leaf node → AND → root.

FSTTCS 2021

14:4 Functional Lower Bounds for Some Depth Four Circuits

Thus, to show a lower bound against ACC0 circuits in the Boolean setting, it is sufficient
to show a functional lower bound of exp(ω(poly(log n))) for a polynomial P would imply
that the Boolean part3 of P is not in ACC0.

▶ Lemma 2 (Lemma 3.3, [14]). Let F be any field of characteristic zero or at least
exp(ω(poly(log n))). Then a exp(ω(poly(log n))) functional size lower bound for a nO(1)-
variate and nO(1) degree polynomial P ∈ F[X] against Σ∧ΣΠ[poly(log(n))] circuits over F
would imply that Boolean part of P is not in ACC0.

Forbes, Kumar and Saptharishi [14] through an open question in their paper ask if such
functional lower bounds can also be proved for Σ∧ΣΠ circuits. We in this paper show strong
functional lower bounds against all Σ∧ΣΠ circuits which output polynomials of bounded
individual degree.

A circuit C is said to have a bounded individual degree4 r if the polynomial output by
the circuit C has degree at most r with respect to each of its variables.

▶ Theorem 3 (Functional Lower Bounds for Σ∧ΣΠ circuits of Bounded Individual Degree). Let
n be a large integer. Let d, k and r be such that ω(log2 n) ≤ d ≤ n0.01 and r ≤ d

1201k2 . Any
depth four Σ∧ΣΠ circuit of bounded individual degree r computing a function equivalent to
IMMn,d on {0, 1}n2d, must have size at least nΩ(k).

Note that there is a trade-off between the lower bound on the circuit size and the upper
bound on the range of r this lower bound can be achieved for.

Since Iterated Matrix Multiplication IMMn,d over {0, 1}n2d is functionally5 in GapL [43,
Section 6], improvement of the afore mentioned lower bound to hold for quasipolynomially
large values of individual degree would imply a fine-grained separation of ACC0 from GapL.

By a divide and conquer construction, we get a depth four ΣΠΣΠ circuit of size nO(
√

d)

that computes IMMn,d such that the fan-in of both the product gates is equal to
√

d. Using
the identity

m! · x1x2 . . . xm =
∑

S⊆[m]

(∑
i∈S

xi

)m

· (−1)m−|S|

(attributed to Fischer [13] and Ryser [37] in [18]), over large fields this circuit can be converted
into a Σ∧ΣΠ circuit of size nO(

√
d). We will now show a lower bound of nΩ(

√
d) for IMMn,d

against any Σ∧ΣΠ circuits. From the afore mentioned discussion, this lower bound is optimal
up to a constant in the exponent over large fields.

▶ Theorem 4 (Syntactic Lower Bounds for Σ∧ΣΠ circuits). Let n and d be a large integers
such that ω(log2 n) ≤ d ≤ n0.01. Any depth four Σ∧ΣΠ circuit computing IMMn,d must have
size at least nΩ(√

d).

3 Bürgisser [6] defined the boolean part of a polynomial P (x1, . . . , xn) (denoted by BP(P)) to be a
function that agrees with P over all evaluations over {0, 1}n.

4 Not to be confused with the multi-r-ic circuits dealt with in [23, 25, 8, 7].
5 Bürgisser [6] showed that boolean part of any polynomial in VP lies in FNC3/ poly, and in particular

IMMn,d ∈ VP. On the other hand, Vinay [43] identified that this problem of computing Iterated Matrix
Product of integer matrices (denoted by ITMATPROD) is in fact in the class GapL which consists of
all problems that are logspace reducible to determinant computation of an integer matrix. This is a
better characterization as GapL ⊆ NC2 ⊆ FNC3/ poly.

S. Chillara 14:5

Proof of this lemma can be found in [9, Section 5]. Recall that Forbes, Kumar and
Saptharishi [14] proved functional lower bounds for a polynomial in VNP against depth four
circuits of bounded formal degree whose output polynomials are of bounded individual degree
O(1). Here shall prove functional lower bounds for a polynomial in VP against depth four
circuits of bounded formal degree whose output polynomials are of bounded individual degree
O(log n).

Formal degree of a circuit is the maximum degree of any polynomial that could be
computed by this circuit structure sans the constants nor cancellations. Formal degree of a
circuit is inductively defined as follows: for a leaf node w, the formal degree 1 if it is labeled
by a variable and 0 otherwise. Formal degree of a sum node is the maximum over all the
formal degrees of its children, and formal degree of a product node is equal to the sum over
all the formal degrees of its children.

▶ Theorem 5 (Functional Lower Bounds for ΣΠΣΠ Circuits of Bounded Formal Degree). Let
n, d and r be integers such that ω(log2 n) ≤ d ≤ n0.01 and r ≤ log n

12 . Any depth four ΣΠΣΠ
circuit of formal degree d and bounded individual degree r that computes a function equivalent
to IMMn,d on {0, 1}n2d, must have size at least n

Ω
(√

d
r

)
.

Proof of this lemma can be found in [9, Section 6]. We would to remark that the afore
mentioned bound and the bound for similar circuits in [14] can be made to work for formal
degree that is slightly larger than d.

Related Work
For the sake of brevity, we shall denote the Σ∧ΣΠ circuits of bounded individual degree r by
(ΣΠΣΠ)≤r. We in this table summarize our results in comparison to the work of [14].

Circuit model Work Hard multilinear
polynomial family Lower Bound Range of parameters

(ΣΠΣΠ)≤r &
formal degree d

[14]

Nisan-Wigderson
polynomial
NWm,d ∈ VNP
with md many
variables and degree
d

2Ω(√
d log (md)) m = Θ(d2), and r ≤

O(1).

(ΣΠΣΠ)≤r &
formal degree d

This work

Iterated Mat-
rix Multiplica-
tion polynomial
IMMn,d ∈ VP with
n2d many variables
and degree d

n
Ω
(√

d
r

)
ω(log2 n) ≤ d ≤ n0.01,
and r ≤ log n

12 .

(Σ∧ΣΠ)≤r This work IMMn,d nΩ(k) ω(log2 n) ≤ d ≤ n0.01,
and r ≤ d

1201k2 .

Our work is inspired by [14]’s line of research and depends on the techniques introduced
by them. We take their research a bit further.

Complexity measure and proof overview
Let the variable set X be partitioned into two fixed, disjoint sets Y and Z. Let σY :
F[Y ⊔ Z] 7→ F[Z] be a linear map such that for any polynomial P (Y, Z), σY (P) ∈ F[Z] is
obtained by setting every variable from Y to zero and leaving the variables from Z untouched.

FSTTCS 2021

14:6 Functional Lower Bounds for Some Depth Four Circuits

For a polynomial P (x1, . . . , xN), let mult(P) be defined to be equal to P

mod
{

(x2
i − xi) | i ∈ [N]

}
. Similarly, let mult(V) for a subspace V of polynomials in

⊆ F[x1, . . . , xN], be defined as follows.

mult(V) = {mult(P) | P ∈ V } .

For a polynomial P (Y, Z) and a set S ⊆ F, let Eval[Y ∪Z]
S (P) denote the vector of

evaluations of polynomial P over S|Y ∪Z| as follows.

Eval[Y ∪Z]
S (P (Y, Z)) = (P (a))a∈S|Y ∪Z| .

This definition can be extended to a set V of polynomials over F[Y ∪ Z] as follows.

Eval[Y ∪Z]
S (V) =

{
Eval[Y ∪Z]

S (P (Y, Z)) | P (Y, Z) ∈ V
}

.

We use ∂≤k
Y P to denote the set of all partial derivatives of P of order at most k with

respect to monomials over variables just from Y , and Z=ℓ · σY (∂=k
Y P) to refer to the set

of polynomials obtained by multiplying each polynomial in σY (∂≤k
Y P) with monomials of

degree equal to ℓ in Z variables.

Main measure – Multilinear Shifted Evaluation Dimension (mSED[Y,Z]
k,ℓ)

Forbes, Kumar and Saptharishi [14] defined Shifted Evaluation Dimension which counts the
dimension of space of vectors each of which is a list of evaluations of polynomials {0, 1}|X|

where these polynomials are Z-shifts of partial evaluations.

SED[Y,Z]
k,ℓ (P (Y, Z)) = dim

(
Eval{0,1}|Z|

{
Z=ℓ · F-span

{
P (a, Z) | a ∈ {0, 1}|Y |

≤k

}})
We just make a minor modification to this measure to better relate our measure with

the measure of Projected Shifted Skew Partial derivatives ([8, 7]) and this helps us obtain
bounds that we could not get before.

mSED[Y,Z]
k,ℓ (P (Y, Z)) = dim

(
Eval{0,1}|Z|

{
mult

(
Z=ℓ · F-span

{
P (a, Z) | a ∈ {0, 1}|Y |

≤k

})})
In spirit, it is still the measure of [14] and thus we do not consider this to be a new measure.

We just make a minor modification to relate this measure with their measure of Projected
Shifted Skew Partial derivatives ([8, 7]) and this helps us obtain bounds that we could not
get before.

By unfurling the above definition, we can see that if two N -variate polynomials P1(Y, Z)
and P2(Y, Z) (defined on the same variable sets) are functionally equivalent over {0, 1}N

then mSED[Y,Z]
k,ℓ (P1(Y, Z)) = mSED[Y,Z]

k,ℓ (P2(Y, Z)). Note that two polynomials which are
not functionally equivalent over FN can end up being functionally equivalent over {0, 1}N

but to show that two polynomials are not functionally equivalent, it is sufficient to show that
they are not functionally equivalent over {0, 1}N .

The crux of our work henceforth is to show that the polynomial of interest, IMMn,d is not
functionally equivalent over {0, 1}n2d to the polynomials that are output by the Σ∧ΣΠ circuits
of bounded individual degree. That is, we need to show that mSED[Y,Z]

k,ℓ (IMMn,d(Y, Z)) is
much larger than mSED[Y,Z]

k,ℓ (C(Y, Z)) where C is a Σ∧ΣΠ circuit of small size and bounded
individual degree.

Though two N -variate polynomials P1 and P2 that are functionally equivalent over {0, 1}N

have the same (multilinear) shifted evaluation dimension, the dimension of their partial
derivative spaces can be very different (see [14, Section 1.2.1] for an example). However in

S. Chillara 14:7

certain special cases Forbes, Kumar and Saptharishi [14] do manage to relate the shifted
evaluation dimension, and a partial derivate based measure well enough for their proof to
work. We shall do something very similar.

Let C be a Σ∧ΣΠ circuit of bounded individual degree at most r that computes a
polynomial that is functionally equivalent to a homogeneous and degree d set-multilinear
polynomial P (X) defined over the sets X = X1 ⊔ . . .⊔Xd such that Y = Xi1 ⊔ . . . Xik

(for a
fixed subset {i1, . . . , ik} ⊆ [d]) and Z = X \ Y . Similar to [14], we show that we can bound
the multilinear shifted evaluation dimension on the above and below by an auxiliary measure
that counts the dimension of a space of a specially chosen syntactic polynomials. For every
value of k, ℓ and r, we can show that

PSSPD[Y,Z]
k,ℓ (P (Y, Z)) ≤ mSED[Y,Z]

k,ℓ (P (Y, Z)) = mSED[Y,Z]
k,ℓ (C(Y, Z)) ≤ PSSPD[Y,Z]

rk,ℓ (C(Y, Z)) .

Upon instantiating the above expression with explicit homogeneous and set-multilinear
polynomial IMMn,d(Y, Z), and if for a suitable setting of values of k, ℓ and r, we get that
PSSPD[Y,Z]

k,ℓ (IMMn,d(Y, Z)) is much larger than PSSPD[Y,Z]
rk,ℓ (C(Y, Z)) where C is a Σ∧ΣΠ

circuit that computes polynomials of bounded individual degree r of size s, then we can infer
that IMMn,d(Y, Z) cannot be functionally computed by this class of circuits, thus giving us a
functional size lower bound of s for this explicit polynomial.

Auxiliary measure – Projected Skew Shifted Partial Derivatives (PSSPD[Y,Z]
k,ℓ)

The following is a measure6 borrowed from [7] which was used to prove syntactic lower
bounds for multi-r-ic depth four circuits.

PSSPD[Y,Z]
k,ℓ (P (Y, Z)) = dim

(
F-span

{
mult

(
Z=ℓ · σY

(
∂≤k

Y P
))})

.

We currently do not know how to directly obtain a bound on PSSPD[Y,Z]
rk,ℓ (C(Y, Z))

to a value that is much smaller than PSSPD[Y,Z]
k,ℓ (IMMn,d(Y, Z)). To resolve this issue,

we use random restrictions V ← D to convert our Σ∧ΣΠ circuit C of size s ≤ n
t
2 that

computes a polynomial P of bounded individual degree to a Σ∧ΣΠ circuit C ′ of size s

and of bottom fan-in at most t that still computes the restricted polynomial P ′, with
a high probability. We can now bound PSSPD[Y,Z]

rk,ℓ (C(Y, Z)) to a value that is much
smaller than PSSPD[Y,Z]

k,ℓ ((IMMn,d(Y, Z))|V). This trick is omnipresent in this line of work
[21, 26, 22, 28, 25, 14, 8, 7].

We then borrow the lower bound on PSSPD[Y,Z]
k,ℓ (P ′(Y, Z)) (where P ′ is the polynomial

obtained from IMMn,d after restrictions) from [7].
We would like to remark that mult(P) for a polynomial P (x1, . . . , xN) was defined to

be P mod
{

x2
i : i ∈ [N]

}
in [8, 7] instead of P mod

{
x2

i − xi : i ∈ [N]
}

as defined here.
We use this new definition of mult because mSED[Y,Z]

k,ℓ (P1(Y, Z)) may not be equal to
mSED[Y,Z]

k,ℓ (P2(Y, Z)) under the older definition of mult(P) = P mod
{

x2
i : i ∈ [N]

}
even

though P1(Y, Z) and P2(Y, Z) are functionally equivalent.
The lower bound on PSSPD[Y,Z]

k,ℓ (P ′(Y, Z)) in [7] continues to hold despite this change of
definition.

6 This measure is an amalgamation of measures – dimension of Projected Shifted Partial derivatives
of [21] and dimension of Skew Shifted Partial derivatives of [25].

FSTTCS 2021

14:8 Functional Lower Bounds for Some Depth Four Circuits

2 Preliminaries

Notation

We use [n] to refer to the set {1, 2, . . . , n}.
For a polynomial f and a monomial m of degree k, we use ∂k

mf to refer to the kth partial
derivate of the polynomial f with respect to the monomial m.
For a polynomial f , we use ∂≤k

Y (f) to refer to the space of partial derivatives of order at
most k of f with respect to monomials of degree at most k in variables from Y .
We use Z=ℓ and Z≤ℓ to refer to the set of all the monomials of degree equal to ℓ and at
most ℓ, respectively, in variables Z.
We use Z≤t

ML to refer to the set of all the multilinear monomials of degree at most t in Z

variables.
For sets A and B of polynomials, we define the product A · B to be the set
{f · g | f ∈ A and g ∈ B}.
For a monomial m we use Supp(m) to refer to the set of variables that appear in it.
We use Z{≤t} to refer to the set of all monomials m in Z variables such that |Supp(m)| ≤ t.

▷ Claim 6. Let W ⊆ F[X] be a subspace of multilinear polynomials. Then dim(W) =
dim(Eval[X]

{0,1}(W)).

Proof. Proof of this claim follows from the facts that every multilinear polynomial in W has
a unique evaluation vector, and access to evaluations of a multilinear polynomial over all of
{0, 1}|X| uniquely determines it. ◁

▶ Proposition 7. For two sets A and B of polynomials,
1. mult(A ·B) = mult(mult(A) ·mult(B)), and
2. dim(mult(mult(A) ·mult(B))) ≤ dim(mult(A) ·mult(B)).
The proof of this proposition easily follows from the fact that mult is a many to one map
and not one to many.

▶ Definition 8 (Homogeneous polynomials). A polynomial P of degree d is said to be homo-
geneous if it can be expressed as a linear combination of just the monomials of degree equal
to d.

▶ Definition 9 (Set-multilinear polynomials). A polynomial P is said to be set-multilinear with
respect to a set of variables X, under the partition X = X1 ⊔X2 ⊔ . . . Xd if every monomial
m in the monomial support of P is such that |MonSupp(m) ∩Xi| ≤ 1 for all i ∈ [d].

▶ Definition 10 (Multi-r-ic polynomials). A polynomial P is said to be multi-r-ic polynomial
if the degree of the polynomial with respect to each of its variables is at most r.

The following lemma (from [17]) is key to the asymptotic estimates required for the lower
bound analyses.

▶ Lemma 11 (Lemma 6, [17]). Let a(n), f(n), g(n) : Z≥0 → Z≥0 be integer valued functions
such that (f + g) = o(a). Then,

ln (a + f)!
(a− g)! = (f + g) ln a±O

(
(f + g)2

a

)
We shall now state a few lemmas that help us relate both the complexity measures

introduced above.

S. Chillara 14:9

▶ Lemma 12 (Observation 4.5 in [14]). Let X = X1 ⊔ . . . ⊔ Xd and |X| = N . Let Y =
X1 ⊔ . . . ⊔Xk for some k ≪ d. Let P be a homogeneous set multilinear polynomial of degree
d with respect to the partition X1 ⊔ . . . ⊔Xd. Let m = Y e be a set multilinear monomial7 of
degree k over Y . Then,

∂kP

∂Y e = P (e, Z).

The following corollary can be obtained from Lemma 12 and proof of this corollary can
be found in [9].

▶ Corollary 13 (Similar to Corollary 4.6 in [14]). For a homogeneous and set multilinear
polynomial P (Y, Z) which is as defined as in Lemma 12, and for all values of parameters k

and ℓ,

PSSPD[Y,Z]
k,ℓ (P (Y, Z)) ≤ mSED[Y,Z]

k,ℓ (P (Y, Z)) .

▶ Lemma 14 (Lemma 4.7 in [14]). Let P (Y, Z) be a multi-r-ic polynomial. Then for every
choice of parameters k and ℓ, we have{

P (e, Z) | e ∈ {0, 1}|Y |
≤k

}
⊆ F-span

{
σY (∂≤rk

Y P)
}

.

The following corollary can be obtained from Lemma 14. and proof of this corollary can
be found in [9].

▶ Corollary 15 (Similar to Lemma 4.8 in [14]). For a multi-r-ic polynomial P (Y, Z),

mSED[Y,Z]
k,ℓ (P (Y, Z)) ≤ PSSPD[Y,Z]

rk,ℓ (P (Y, Z)).

Complexity measure for the Σ∧ΣΠ circuits of low bottom support
The arguments from [8] can be adapted to get the following lemma. and its proof can be
found in [9].

▶ Lemma 16. Let m, k, ℓ and t be positive integers such that ℓ + kt < m
2 . Let Y and Z be

disjoint sets of variables such that |Z| = m. Let C(Y, Z) be a depth four Σ∧ΣΠ circuit of
bottom support at most t with respect to variables from Z, and size s. Then, PSSPD[Y,Z]

k,ℓ (C)
is at most s · (k + 1) ·

(
m

ℓ+kt

)
· (ℓ + kt).

3 Hard Polynomial and Restrictions

In this section we recall the definition of the polynomial family and the set of deterministic
and random restrictions imposed on the polynomial family, from [7].

3.1 Polynomial Family: Iterated Matrix Multiplication polynomial
Let X(1), X(2), . . . , X(d) be d generic n × n matrices defined over disjoint set of variables.
For any k ∈ [d], let x

(k)
i,j be the variable in the matrix X(k) indexed by (i, j) ∈ [n]× [n]. The

Iterated Matrix Multiplication polynomial, denoted by the family {IMMn,d}, is defined as
follows.

IMMn,d(X) =
∑

i1,i2,...,id−1∈[n]

x
(1)
1,i1

x
(2)
i1,i2

. . . x
(d−1)
i(d−2),i(d−1)

x
(d)
i(d−1),1.

7 Here e is a |Y |-long vector that indicates the support of multilinear monomials. Y e is a shorthand
representation of ye1

1 ye2
2 . . . y

e|Y |
|Y | .

FSTTCS 2021

14:10 Functional Lower Bounds for Some Depth Four Circuits

3.2 Deterministic and Random Restrictions

Let k and α be a parameters such that d = (2α + 3) · k. Let the d matrices be divided
into k contiguous blocks of matrices B1, B2, . . . , Bk such that each block Bi contains 2α + 3
matrices. By suitable renaming, let us assume that each block Bi contains the following
matrices.

X(i,L,α+1), · · · , X(i,L,2), X(i,L,1), X(i), X(i,R,1), X(i,R,2), · · · , X(i,R,α+1).

Let us first consider the following set of restrictions, first deterministic and then random-
ized.

Deterministic Restrictions

Let V0 : X 7→ Y0 ⊔ Z0 ⊔ {0, 1} be a deterministic restriction of the variables X in to disjoint
variable sets Y0, Z0, and {0, 1} as follows. For all i ∈ [k],

The variables in matrix in X(i) are each set to a distinct Y0 variable. Henceforth, we
shall refer to this as Y (i) matrix.
The entries of the first row of matrix X(i,L,α+1) are all set to 1 and the rest of the matrix
to 0.
The entries of the first column of matrix X(i,R,α+1) are all set to 1 and the rest of the
matrix to 0.
The rest of the variables are all set to distinct Z0 variables. Henceforth, for all b ∈ {L, R}
and j ∈ [α], we shall refer to the matrix X(i,b,j) as Z(i,b,j) matrix.

Random Restrictions

Let η and ε′ be two fixed constants in (0, 1). Let V1 : Y0 ⊔ Z0 7→ Y ⊔ Z ⊔ {0, 1} be a random
restriction of the variables Y0 ⊔ Z0 as follows.

Matrix Z(i,L,1): For every column, pick nη distinct elements uniformly at random and
keep these elements alive. Set the other entries in this matrix to zero.
Matrix Z(i,R,1): For every row, pick nη distinct elements uniformly at random and keep
these elements alive. Set the other entries in this matrix to zero.
Matrices Z(i,L,j) for all j ∈ [2, α− ε′ log n]: For every column, pick 2 distinct elements
uniformly at random and set all the other entries to zero.
Matrices Z(i,R,j) for all j ∈ [2, α − ε′ log n]: For every row, pick 2 distinct elements
uniformly at random and set all the other entries to zero.
Matrices Z(i,L,j) for all j > α− ε′ log n: For every column, pick 1 element uniformly at
random and set the other elements in that row to zero.
Matrices Z(i,R,j) for all j > α − ε′ log n: For every row, pick 1 element uniformly at
random and set the other elements in that row to zero.

Let D be the distribution of all the restrictions V : X 7→ Y ⊔ Z ⊔ {0, 1} such that
V = V1 ◦ V0 where V0 and V1 are deterministic and random restrictions respectively, as
described above. Let m be used to denote the number of Z variables left after the restriction
and m = 2kn(nη + 2(α− ε′ log n− 1) + ε′ log n) = O(n1+ηk) when α ≤ O(nη).

S. Chillara 14:11

Effect of Restrictions on IMMn,d

Let g
(i,L)
1,a (Z) be the (1, a)th entry in product of matrices

∏α
j=0 X(i,L,α+1−j)|V . Let g

(i,R)
b,1 (Z)

be the (b, 1)th entry in product of matrices
∏α+1

j=1 X(i,R,j)|V . Let g(i) the (1, 1)th entry in
the product of all the matrices in the block Bi. Then we can express g(i) as follows.

g(i)(Y, Z) =
∑

a,b∈[n]

g
(i,L)
1,a (Z) · y(i)

a,b · g
(i,R)
b,1 (Z).

Let P |V (Y, Z) obtained by restricting IMMn,d(X) with the restriction V ← D. Thus,

P |V (Y, Z) =
k∏

i=1
g(i)(Y, Z) .

To summarize, for some parameters α, k, η and m, P |V is polynomial in F[Y ⊔Z] such that
its degree is d = (2α + 3) · k, and has m = O(n1+ηk) many Z variables. Here the definition
of the polynomial P |V is heavily dependent on V ← D and the choice of parameters α, k, ε′

and η.

Effect on random restrictions

▶ Lemma 17 (Lemma 8, [7]). Let t be a parameter. Let C be any depth four circuit of size
at most s ≤ n

t
2 that computes IMMn,d. Then with a probability of at least 1 − o(1), over

V ← D (where V : X 7→ Y ⊔ Z ⊔ {0, 1}), C|V is a depth four circuit of bottom support at
most t in Z variables that computes the polynomial P |V (Y, Z).

3.3 Complexity of P |V

Choice of parameters
We borrow the setting of the parameters involved directly from [7]8.

ε′ = 0.34,
η = 0.05,
ε = ε′ − η = 0.29,
τ = 0.08,
ω(log n) ≤ d ≤ n0.01,

d = (2α + 3)k,

m = Θ(n1+ηk) = Θ(n1.05k),

ℓ = m
2 (1− Γ),

(1 + Γ)α = 2nε such that Γ = Oε

(ln n
α

)
,

We shall now recall the following from [7].

▶ Theorem 18 (Discussion above Theorem 17, [7]). Let n be a large enough integer. Let
m, d, ℓ, α, k, ε and τ be as described above.

PSSPD[Y,Z]
k,ℓ (P |V) ≥

(
m

m−ℓ

)2αk

·
(

m−2αk
ℓ

)
2O(k) ·

(
ℓ

m−ℓ

)2αk(1−τ) .

8 In an attempt to have a clean up the notation in comparison to [7], we make the following notational
changes – the parameter α here corresponds to k′ in [7], the parameter k here corresponds to r′ in [7].
Further the parameter k = d − 3r′ = 2k′r′ in [7] translates to 2αk here. The rest of the parameters
ε, ε′, η and τ are the same in both the papers.

FSTTCS 2021

14:12 Functional Lower Bounds for Some Depth Four Circuits

Note that for a N -variate polynomial P (X, Y), the measure in [7] was defined to be
equal to dim

(
F-span

{
mult0

(
Z=ℓ · σY

(
∂=k

Y P
))})

where mult0(P) = P mod
{

x2
i | i ∈ [N]

}
compared to the measure here which is equal to dim

(
F-span

{
mult

(
Z=ℓ · σY

(
∂≤k

Y P
))})

where mult(P) = P mod
{

x2
i − xi | i ∈ [N]

}
. This change of definition would not affect the

bound as the lower bound in [7] counts the leading monomials of support size and degree
both equal to d− k + ℓ, and σY (∂<kP |V) = ∅ for the polynomial P |V described above.

4 Functional Lower Bounds against restricted Σ∧ΣΠ Circuits

As mentioned in the proof overview, we first prove a lower bound against bounded bottom
support depth four circuits and then escalate this lower bound to circuits without the
restriction on bottom support.

▶ Lemma 19. Let n and d be large integers such that ω(log2 n) ≤ d ≤ n0.01. Let α, k, r

and t be parameters such that d = (2α + 3)k and r ≤ α
200t . Any depth four Σ∧ΣΠ circuit

of bounded individual degree r and bounded bottom fan-in at most t, computing a function
equivalent to P |V (XV) (for V ← D) on {0, 1}|XV |, must have size at least nΩ(k).

Proof of this lemma can be found in [9]. Using this lemma, we shall prove Theorem 3.

Proof of Theorem 3

For a large integer n, let d be such that ω(log2 n) ≤ d ≤ n0.01. Let t be a parameter that we
shall soon fix. Let C be a Σ∧ΣΠ circuit of bounded individual degree at most r, and size
s ≤ n

t
2 that computes a polynomial Q(X) that is functionally equivalent to IMMn,d(X) (over

{0, 1}n2d). Let α and k be parameters such that d = (2α + 3)k. Recall that a restriction
V ← D fixes a subset of variables to values in {0, 1} and maps the rest to distinct Y and Z

variables. For any such restriction V ← D, let XV = Y ⊔ Z be the set of variables in X that
are not set to values in {0, 1} by V . From Lemma 17 we know that with a probability of at
least 1− o(1), the circuit CV obtained by applying the restriction V to C is a Σ∧ΣΠ circuit
of bounded individual degree at most r, size s and bottom support at most t. Let QV be the
polynomial computed by CV , over XV variables. We shall now show that QV is functionally
equivalent to P |V over {0, 1}|XV |.

Let the set SV ⊂ {0, 1}n2d be the subset of points such that for all a ∈ SV , if xi ∈ X \XV

and V sets xi to b ∈ {0, 1}, then the value at the i’th location of a, ai = b. Since Q(X) and
IMMn,d(X) are functionally equivalent over all of {0, 1}n2d, they are functionally equivalent
over SV as well. Thus, QV (a|XV

) = Q(a) = IMM(a) = P |V (a|XV
) for all a ∈ SV . Here

a|XV
∈ {0, 1}|XV | corresponds to projection of a ∈ {0, 1}n2d to locations corresponding to

the variables in XV .
This implies that QV (XV) and P |V (XV) are functionally equivalent over {0, 1}|XV | and

thus, there is a Σ∧ΣΠ circuit of bounded individual degree at most r, size s ≤ n
t
2 and

bottom support at most t that functionally computes P |V (Y, Z). On the other hand if r is
at most α

200t then from Lemma 19 we know that any Σ∧ΣΠ circuit of bounded individual
degree at most r and bottom support at most t that functionally computes P |V must have
size nΩ(k). Putting these together by fixing the value of t to 3k we get that s must at
least be nΩ(k). Since r is at most α

200t , under this substitution of t, this value computes to
1

200·3k ·
(

d
2k −

3
2
)

= d
1200k2 − 1

400k . ◀

S. Chillara 14:13

References
1 Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In 49th Annual

IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.
32.

2 Eric Allender and Vivek Gore. A uniform circuit lower bound for the permanent. SIAM J.
Comput., 23(5):1026–1049, 1994. doi:10.1137/S0097539792233907.

3 Vikraman Arvind, Johannes Köbler, Uwe Schöning, and Rainer Schuler. If NP has polynomial-
size circuits, then MA=AM. Theor. Comput. Sci., 137(2):279–282, 1995. doi:10.1016/
0304-3975(95)91133-B.

4 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput. Sci.,
22:317–330, 1983. doi:10.1016/0304-3975(83)90110-X.

5 Richard Beigel and Jun Tarui. On ACC. Comput. Complex., 4:350–366, 1994. doi:10.1007/
BF01263423.

6 Peter Bürgisser. Cook’s versus valiant’s hypothesis. Theoretical Computer Science, 235(1):71 –
88, 2000. URL: http://www.sciencedirect.com/science/article/pii/S0304397599001838,
doi:https://doi.org/10.1016/S0304-3975(99)00183-8.

7 Suryajith Chillara. New exponential size lower bounds against depth four circuits of bounded
individual degree. Electronic Colloquium on Computational Complexity (ECCC), 27:33, 2020.
URL: https://eccc.weizmann.ac.il/report/2020/033.

8 Suryajith Chillara. On Computing Multilinear Polynomials Using Multi-r-ic Depth Four
Circuits. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on
Theoretical Aspects of Computer Science (STACS 2020), volume 154 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 47:1–47:16, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2020.47.

9 Suryajith Chillara. Functional lower bounds for restricted arithmetic circuits of depth four.
Electron. Colloquium Comput. Complex., page 105, 2021. URL: https://eccc.weizmann.ac.
il/report/2021/105.

10 Suryajith Chillara, Christian Engels, Nutan Limaye, and Srikanth Srinivasan. A near-optimal
depth-hierarchy theorem for small-depth multilinear circuits. In Mikkel Thorup, editor, 59th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 934–945. IEEE Computer Society, 2018. doi:10.1109/FOCS.2018.
00092.

11 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear formula
lower bounds for iterated matrix multiplication with applications. SIAM J. Comput., 48(1):70–
92, 2019. doi:10.1137/18M1191567.

12 Suryajith Chillara and Partha Mukhopadhyay. Depth-4 lower bounds, determinantal
complexity: A unified approach. computational complexity, May 2019. doi:10.1007/
s00037-019-00185-4.

13 Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics Magazine,
67(1):59–61, 1994. doi:10.1080/0025570X.1994.11996185.

14 Michael A. Forbes, Mrinal Kumar, and Ramprasad Saptharishi. Functional lower bounds for
arithmetic circuits and connections to boolean circuit complexity. In Ran Raz, editor, 31st
Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan,
volume 50 of LIPIcs, pages 33:1–33:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.CCC.2016.33.

15 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for
depth-4 formulas computing iterated matrix multiplication. SIAM J. Comput., 44(5):1173–1201,
2015. doi:10.1137/140990280.

16 Dima Grigoriev and Alexander A. Razborov. Exponential lower bounds for depth 3 arithmetic
circuits in algebras of functions over finite fields. Appl. Algebra Eng. Commun. Comput.,
10(6):465–487, 2000. doi:10.1007/s002009900021.

FSTTCS 2021

https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/BF01263423
http://www.sciencedirect.com/science/article/pii/S0304397599001838
https://doi.org/https://doi.org/10.1016/S0304-3975(99)00183-8
https://eccc.weizmann.ac.il/report/2020/033
https://doi.org/10.4230/LIPIcs.STACS.2020.47
https://eccc.weizmann.ac.il/report/2021/105
https://eccc.weizmann.ac.il/report/2021/105
https://doi.org/10.1109/FOCS.2018.00092
https://doi.org/10.1109/FOCS.2018.00092
https://doi.org/10.1137/18M1191567
https://doi.org/10.1007/s00037-019-00185-4
https://doi.org/10.1007/s00037-019-00185-4
https://doi.org/10.1080/0025570X.1994.11996185
https://doi.org/10.4230/LIPIcs.CCC.2016.33
https://doi.org/10.1137/140990280
https://doi.org/10.1007/s002009900021

14:14 Functional Lower Bounds for Some Depth Four Circuits

17 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the
chasm at depth four. Journal of the ACM (JACM), 61(6):33, 2014. doi:10.1145/2629541.

18 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth 3. SIAM Journal of Computing, 45(3):1064–1079, 2016. doi:10.1137/
140957123.

19 Nikhil Gupta, Chandan Saha, and Bhargav Thankey. A super-quadratic lower bound for
depth four arithmetic circuits. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 23:1–23:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CCC.2020.23.

20 Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, STOC ’80, pages 302–309, New York, NY, USA, 1980. Association for Computing
Machinery. doi:10.1145/800141.804678.

21 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. Super-polynomial lower
bounds for depth-4 homogeneous arithmetic formulas. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
119–127. ACM, 2014. doi:10.1145/2591796.2591823.

22 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower
bound for homogeneous depth four arithmetic formulas. SIAM J. Comput., 46(1):307–335,
2017. doi:10.1137/151002423.

23 Neeraj Kayal and Chandan Saha. Multi-k-ic depth three circuit lower bound. Theory Comput.
Syst., 61(4):1237–1251, 2017. doi:10.1007/s00224-016-9742-9.

24 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for
regular arithmetic formulas. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 146–153. ACM, 2014.
doi:10.1145/2591796.2591847.

25 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and of
depth-four formulas with low individual degree. Theory of Computing, 14(16):1–46, 2018.
doi:10.4086/toc.2018.v014a016.

26 Mrinal Kumar and Shubhangi Saraf. Superpolynomial lower bounds for general homogeneous
depth 4 arithmetic circuits. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and
Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
volume 8572 of Lecture Notes in Computer Science, pages 751–762. Springer, 2014. doi:
10.1007/978-3-662-43948-7_62.

27 Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic formulas: It’s
all about the top fan-in. SIAM J. Comput., 44(6):1601–1625, 2015. doi:10.1137/140999220.

28 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits.
SIAM J. Comput., 46(1):336–387, 2017. doi:10.1137/140999335.

29 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. Electron. Colloquium Comput. Complex., 28:81, 2021.
URL: https://eccc.weizmann.ac.il/report/2021/081.

30 Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020. doi:10.1137/
18M1195887.

31 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Computational Complexity, 6(3):217–234, 1997. doi:10.1007/BF01294256.

32 Ran Raz. Multilinear-NC2 ̸= multilinear-NC1. In proceedings of Foundations of Computer
Science (FOCS), pages 344–351, 2004. doi:10.1109/FOCS.2004.42.

33 Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing, 2(1):121–135,
2006. doi:10.4086/toc.2006.v002a006.

https://doi.org/10.1145/2629541
https://doi.org/10.1137/140957123
https://doi.org/10.1137/140957123
https://doi.org/10.4230/LIPIcs.CCC.2020.23
https://doi.org/10.1145/800141.804678
https://doi.org/10.1145/2591796.2591823
https://doi.org/10.1137/151002423
https://doi.org/10.1007/s00224-016-9742-9
https://doi.org/10.1145/2591796.2591847
https://doi.org/10.4086/toc.2018.v014a016
https://doi.org/10.1007/978-3-662-43948-7_62
https://doi.org/10.1007/978-3-662-43948-7_62
https://doi.org/10.1137/140999220
https://doi.org/10.1137/140999335
https://eccc.weizmann.ac.il/report/2021/081
https://doi.org/10.1137/18M1195887
https://doi.org/10.1137/18M1195887
https://doi.org/10.1007/BF01294256
https://doi.org/10.1109/FOCS.2004.42
https://doi.org/10.4086/toc.2006.v002a006

S. Chillara 14:15

34 Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory Comput.,
6(1):135–177, 2010. doi:10.4086/toc.2010.v006a007.

35 Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Com-
putational Complexity, 17(4):515–535, 2008. doi:10.1007/s00037-008-0254-0.

36 Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Computational Complexity, 18(2):171–207, 2009. doi:10.1007/s00037-009-0270-8.

37 Herbert John Ryser. Combinatorial mathematics, volume 14. American Mathematical Soc.,
1963. URL: https://www.jstor.org/stable/10.4169/j.ctt5hh8v6.

38 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity version
8.0.4. Github survey, 2019. URL: https://github.com/dasarpmar/lowerbounds-survey/
releases/.

39 Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and interpolation
problems. Computational Complexity, 6(4):301–311, 1997. doi:10.1007/BF01270384.

40 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010. doi:10.1561/
0400000039.

41 Leslie G. Valiant. Completeness classes in algebra. In Michael J. Fischer, Richard A. DeMillo,
Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho, editors, Proceedings of the 11h
Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia,
USA, pages 249–261. ACM, 1979. doi:10.1145/800135.804419.

42 Leslie G. Valiant. Why is Boolean Complexity Theory so Difficult?, pages 84–94. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1992. doi:10.1017/
CBO9780511526633.008.

43 V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits.
In Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago,
Illinois, USA, June 30 - July 3, 1991, pages 270–284. IEEE Computer Society, 1991. doi:
10.1109/SCT.1991.160269.

44 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903.

FSTTCS 2021

https://doi.org/10.4086/toc.2010.v006a007
https://doi.org/10.1007/s00037-008-0254-0
https://doi.org/10.1007/s00037-009-0270-8
https://www.jstor.org/stable/10.4169/j.ctt5hh8v6
https://github.com/dasarpmar/lowerbounds-survey/releases/
https://github.com/dasarpmar/lowerbounds-survey/releases/
https://doi.org/10.1007/BF01270384
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://doi.org/10.1145/800135.804419
https://doi.org/10.1017/CBO9780511526633.008
https://doi.org/10.1017/CBO9780511526633.008
https://doi.org/10.1109/SCT.1991.160269
https://doi.org/10.1109/SCT.1991.160269
https://doi.org/10.1145/2559903

On (Simple) Decision Tree Rank
Yogesh Dahiya #

The Institute of Mathematical Sciences (HBNI), Chennai, India

Meena Mahajan #

The Institute of Mathematical Sciences (HBNI), Chennai, India

Abstract
In the decision tree computation model for Boolean functions, the depth corresponds to query
complexity, and size corresponds to storage space. The depth measure is the most well-studied
one, and is known to be polynomially related to several non-computational complexity measures
of functions such as certificate complexity. The size measure is also studied, but to a lesser extent.
Another decision tree measure that has received very little attention is the minimal rank of the
decision tree, first introduced by Ehrenfeucht and Haussler in 1989. This measure is not polynomially
related to depth, and hence it can reveal additional information about the complexity of a function.
It is characterised by the value of a Prover-Delayer game first proposed by Pudlák and Impagliazzo
in the context of tree-like resolution proofs. In this paper we study this measure further. We obtain
upper and lower bounds on rank in terms of (variants of) certificate complexity. We also obtain upper
and lower bounds on the rank for composed functions in terms of the depth of the outer function
and the rank of the inner function. We compute the rank exactly for several natural functions and
use them to show that all the bounds we have obtained are tight. We also observe that the size-rank
relationship for decision trees, obtained by Ehrenfeucht and Haussler, is tight upto constant factors.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases Boolean functions, Decision trees, certificate complexity, rank

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.15

1 Introduction

The central problem in Boolean function complexity is to understand exactly how hard it is
to compute explicit functions. The hardness naturally depends on the computation model to
be used, and depending on the model, several complexity measures for functions have been
studied extensively in the literature. To name a few – size and depth for circuits and formulas,
size and width for branching programs, query complexity, communication complexity, length
for span programs, and so on. All of these are measures of the computational hardness of
a function. There are also several ways to understand hardness of a function intrinsically,
independent of a computational model. For instance, the sensitivity of a function, its
certificate complexity, the sparsity of its Fourier spectrum, its degree and approximate degree,
stability, and so on. Many bounds on computational measures are obtained by directly
relating them to appropriate intrinsic complexity measures. See [10] for a wonderful overview
of this area. Formal definitions of relevant measures appear in Section 2.

Every Boolean function f can be computed by a simple decision tree (simple in the sense
that each node queries a single variable), which is one of the simplest computation models
for Boolean functions. The most interesting and well-studied complexity measure in the
decision tree model is the minimal depth Depth(f), measuring the query complexity of the
function. This measure is known to be polynomially related to several intrinsic measures:
sensitivity, block sensitivity, certificate complexity. But there are also other measures which
reveal information about the function. The minimal size of a decision tree, DTSize(f), is
one such measure, which measures the storage space required to store the function as a tree,
and has received some attention in the past.

© Yogesh Dahiya and Meena Mahajan;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yogeshdahiya@imsc.res.in
mailto:meena@imsc.res.in
https://orcid.org/0000-0002-9116-4398
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 On (Simple) Decision Tree Rank

A measure which has received relatively less attention is the minimal rank of a decision
tree computing the function, first defined and studied in [6]; see also [1]. In general, the
rank of a rooted tree (also known as its Strahler number, or Horton-Strahler number, or tree
dimension) measures its branching complexity, and is a tree measure that arises naturally in
a wide array of applications; see for instance [7]. The rank of a Boolean function f , denoted
Rank(f), is the minimal rank of a decision tree computing it. The original motivation for
considering rank of decision trees was from learning theory – an algorithm, proposed in [6],
and later simplified in [4], shows that constant-rank decision trees are efficiently learnable
in Valiant’s PAC learning framework [18]. Subsequently, the rank measure has played an
important role in understanding the decision tree complexity of search problems over relations
[14, 8, 11] – see more in the Related Work part below. The special case when the relation
corresponds to a Boolean function is exactly the rank of the function. However, there is very
little work focussing on the context of, and exploiting the additional information from, this
special case. This is precisely the topic of this paper.

In this paper, we study how the rank of boolean functions relates to other measures. In
contrast with Depth(f), Rank(f) is not polynomially related with sensitivity or to certificate
complexity C(f), although it is bounded above by Depth(f). Hence it can reveal additional
information about the complexity of a function over and above that provided by Depth.
For instance, from several viewpoints, the Parityn function is significantly harder than the
Andn function. But both of them have the same Depth, n. However, Rank does reflect this
difference in hardness, with Rank(Andn) = 1 and Rank(Parityn) = n. On the other hand,
rank is also already known to characterise the logarithm of decision tree size (DTSize), upto
a log n multiplicative factor. Thus lower bounds on rank give lower bounds on the space
required to store a decision tree explicitly. (However, the log n factor is crucial; there is no
dimension-free characterisation. Consider e.g. log DTSize(Andn) = Θ(log n).)

Our main findings can be summarised as follows:
1. Rank(f) is equal to the value of the Prover-Delayer game of Pudlák and Impagliazzo [14]

played on the corresponding relation Rf . (This is implicit in earlier literature [11, 8].)
2. Rank(f) is bounded between the minimum certificate complexity of f at any point, and

(C(f) − 1)2 + 1; Theorem 5.6. The upper bound (Lemma 5.2) is an improvement on the
bound inherited from Depth(f), and is obtained by adapting that construction.

3. For a composed function f ◦ g, Rank(f ◦ g) is bounded above and below by functions of
Depth(f) and Rank(g); Theorem 6.6. The main technique in both bounds (Theorems 6.3
and 6.5) is to use weighted decision trees, as was used in the context of depth [13].

4. The relation between Rank(f) and DTSize(f) from [6] is tight, Section 7. In particular,
for the Tribes function, the log n multiplicative factor is necessary.

By calculating the exact rank for specific functions, we show that all the bounds we obtain
on rank are tight.

Related work

In [1], a model called k+-decision trees is considered, and the complexity is related to both
simple decision tree rank and to communication complexity. In particular, Theorems 7 and 8
from [1] imply that communication complexity lower bounds with respect to any variable
partition (see [12]) translate to decision tree rank lower bounds, and hence by [6] to decision
tree size lower bounds.

In [16], the model of linear decision trees is considered (here each node queries not a single
variable but a linear threshold function of the variables), and for such trees of bounded rank
computing the inner product function, a lower bound on depth is obtained. Thus for this
function, in this model, there is a trade-off between rank and depth. In [17], rank of linear
decision trees is used in obtaining non-trivial upper bounds on depth-2 threshold circuit size.

Y. Dahiya and M. Mahajan 15:3

In [14], a 2-player game is described, on an unsatisfiable formula F in conjunctive normal
form, that constructs a partial assignment falsifying some clause. The players are referred to
in subsequent literature as the Prover and the Delayer. The value of the game, Value(F), is
the maximum r such that the Delayer can score at least r points no matter how the Prover
plays. It was shown in [14] that the size of any tree-like resolution refutation of F is at least
2Value(F). Subsequently, the results of [11, 8] yield the equivalence Value(F) = Rank(F),
where Rank(F) is defined to be the minimal rank of the tree underlying a tree-like resolution
refutation of F . (Establishing this equivalence uses refutation-space and tree pebbling
as intermediaries.) The relevance here is because there is an immediate, and well-known,
connection to decision trees for search problems over relations: tree-like resolution refutations
are decision trees for the corresponding search CNF problem. (See Lemma 7 in [2]). Note
that the size lower bound from [14], and the rank-value equivalence from [11, 8], hold for the
search problem over arbitrary relations, not just searchCNF. (See e.g. Exercise 14.16 in Jukna
for the size bound.) In particular, for Boolean function f , it holds for the corresponding
canonical relation Rf defined in Section 2. Similarly, the value of an asymmetric variant of
this game is known to characterise the size of a decision tree for the search CNF problem [3],
and this too holds for general relations and Boolean functions.

Organisation of the paper

After presenting basic definitions and known results in Section 2, we describe the Prover-
Delayer game from [14] in Section 3, and observe that its value equals the rank of the function.
We also describe the asymmetric game from [3]. We compute the rank of some simple functions
in Section 4. In Section 5, we describe the relation between rank and certificate complexity.
In Section 6, we present results concerning composed functions. Section 7 examines the
size-rank relationship for the Tribes function. The bounds in Sections 4–7 are all obtained
by direct inductive arguments/decision tree constructions. They can also be stated using the
equivalence of the game value and rank – while this does not particularly simplify the proofs,
it changes the language of the proofs and may be more accessible to the reader already
familiar with that setting. Hence we illustrate such game-based arguments for some of our
results in Section 8.

2 Preliminaries

Decision trees

For a Boolean function f : {0, 1}n −→ {0, 1}, a decision tree computing f is a binary tree
with internal nodes labeled by the variables and the leaves labelled by {0, 1}. To evaluate a
function on an unknown input, the process starts at the root of the decision tree and works
down the tree, querying the variables at the internal nodes. If the value of the query is 0,
the process continues in the the left subtree, otherwise it proceeds in the right subtree. The
label of the leaf so reached is the value of the function on that particular input. A decision
tree is said to be reduced if no variable is queried more than once on any root-to-leaf path.
Without loss of generality, any decision tree can be reduced, so in our discussion, we will only
consider reduced decision trees. The depth Depth(T) of a decision tree T is the length of the
longest root-to-leaf path, and its size DTSize(T) is the number of leaves. The decision tree
complexity or the depth of f , denoted by Depth(f), is defined to be the minimum depth of a
decision tree computing f . Equivalently, Depth(f) can also be seen as the minimum number
of worst-case queries required to evaluate f . The size of a function f , denoted by DTSize(f),

FSTTCS 2021

15:4 On (Simple) Decision Tree Rank

is defined similarly i.e. the minimum size of a decision tree computing f . Since decision
trees can be reduced, Depth(f) ≤ n and DTSize(f) ≤ 2n for every n-variate function f . A
function is said to be evasive if its depth is maximal, Depth(f) = n.

Weighted decision trees

Weighted decision trees describe query complexity in settings where querying different input
bits can have differing cost, and arises naturally in the recursive construction. Formally,
these are defined as follows: Let wi be the cost of querying variable xi. For a decision
tree T , its weighted depth with respect to the weight vector [w1, . . . , wn], denoted by
Depthw(T, [w1, w2, ..., wn]), is the maximal sum of weights of the variables specified by the
labels of nodes of T on any root-to-leaf path. The weighted decision tree complexity of f ,
denoted by Depthw(f, [w1, w2, ..., wn]), is the minimum weighted depth of a decision tree
computing f . Note that Depth(f) is exactly Depthw(f, [1, 1, . . . , 1]). The following fact is
immediate from the definitions.

▶ Fact 2.1. For any reduced decision tree T computing an n-variate function, weights
w1, . . . , wn, and i ∈ [n],

Depthw(T, [w1, . . . , wi−1, wi + 1, wi+1, . . . , wn]) ≤ Depthw(T, [w1, w2, ..., wn]) + 1.

Certificate Complexity

The certificate complexity of a function f , denoted C(f), measures the number of variables
that need to be assigned in the worst case to fix the value of f . More precisely, for a Boolean
function f : {0, 1}n −→ {0, 1} and an input a ∈ {0, 1}n, an f -certificate of a is a subset
S ⊆ {1, ..., n} such that the value of f(a) can be determined by just looking at the bits of a

in set S. Such a certificate need not be unique. Let C(f, a) denote the minimum size of an
f -certificate for the input a. That is,

C(f, a) = min
{

|S| | S ⊆ [n]; ∀a′ ∈ {0, 1}n,
[(

a′
j = aj∀j ∈ S

)
=⇒ f(a′) = f(a)

]}
.

Using this definition, we can define several measures.

For b ∈ {0, 1}, Cb(f) = max{C(f, a) | a ∈ f−1(b)}
C(f) = max{C(f, a) | a ∈ {0, 1}n} = max{C0(f), C1(f)}

Cavg(f) = 2−n
∑

a∈{0,1}n

C(f, a)

Cmin(f) = min{C(f, a) | a ∈ {0, 1}n}

Composed functions

For boolean functions f, g1, g2, . . . , gn of arity n, m1, m2, . . . , mn respectively, the composed
function f ◦ (g1, g2, ..., gn) is a function of arity

∑
i mi, and is defined as follows: for ai ∈

{0, 1}mi for each i ∈ n, f ◦ (g1, g2, ..., gn)(a1, a2, ..., an) = f(g1(a1), g2(a2), . . . , gn(an)). We
call f the outer function and g1, . . . , gn the inner functions. For functions f : {0, 1}n −→ {0, 1}
and g : {0, 1}m −→ {0, 1}, the composed function f ◦ g is the function f ◦ (g, g, . . . , g) :
{0, 1}mn −→ {0, 1}. The composed function Orn ◦ Andm has a special name, Tribesn,m,
and when n = m, we simply write Tribesn. Its dual is the function Andn ◦ Orm that we
denote Tribesd

n,m. (The dual of f(x1, . . . , xn) is the function ¬f(¬x1, . . . , ¬xn).)

Y. Dahiya and M. Mahajan 15:5

Symmetric functions

A Boolean function is symmetric if its value depends only on the number of ones in the input,
and not on the positions of the ones.

▶ Proposition 2.2. For every non-constant symmetric boolean function f : {0, 1}n −→ {0, 1},
1. f is evasive (has Depth(f) = n). (See eg. Lemma 14.19 [10].)
2. Hence, for any weights wi, Depthw(f, [w1, w2, ..., wn])) =

∑
i wi.

For a symmetric Boolean function f : {0, 1}n −→ {0, 1}, let f0, f1, ..., fn ∈ {0, 1} denote
the values of the function f on inputs of Hamming weight 0, 1, ..., n respectively. The Gap of
f is defined as the length of the longest interval (minus one) where fi is constant. That is,

Gap(f) = max
0≤a≤b≤n

{b − a : fa = fa+1 = ... = fb}.

Analogously, Gapmin(f) is the length of the shortest constant interval (minus one); that is,
setting f−1 ̸= f0 and fn+1 ̸= fn for boundary conditions,

Gapmin(f) = min
0≤a≤b≤n

{b − a : fa−1 ̸= fa = fa+1 = ... = fb ̸= fb+1}.

Decision Tree Rank

For a rooted binary tree T , the rank of the tree is the rank of the root node, where the rank
of each node of the tree is defined recursively as follows: For a leaf node u, Rank(u) = 0.
For an internal node u with children v, w,

Rank(u) =
{

Rank(v) + 1 if Rank(v) = Rank(w)
max{Rank(v), Rank(w)} if Rank(v) ̸= Rank(w)

The following proposition lists some known properties of the rank function for binary trees.

▶ Proposition 2.3. For any binary tree T ,
1. (Rank and Size relationship): Rank(T) ≤ log(DTSize(T)) ≤ Depth(T).
2. (Monotonicity of the Rank): Let T ′ be any subtree of T , and let T ′′ be an arbitrary binary

tree of higher rank than T ′. If T ′ is replaced by T ′′ in T , then the rank of the resulting
tree is not less than the rank of T .

3. (Leaf Depth and Rank): If all leaves in T have depth at least r, then Rank(T) ≥ r.

For a Boolean function f , the rank of f , denoted Rank(f), is the minimum rank of a
decision tree computing f .

From Proposition 2.3(2), we see that the rank of a subfunction of f (a function obtained
by assigning values to some variables of f) cannot exceed the rank of the function itself.

▶ Proposition 2.4. (Rank of a subfunction): Let fS be a subfunction obtained by fixing the
values of variables in some set S ⊆ [n] of f . Then Rank(fS) ≤ Rank(f).

The following rank and size relationship is known for boolean functions.

▶ Proposition 2.5 (Lemma 1 [6]). For a non-constant Boolean function f : {0, 1}n −→ {0, 1},

Rank(f) ≤ log DTSize(f) ≤ Rank(f) log
(

en

Rank(f)

)
.

For symmetric functions, Rank is completely characterized in terms of Gap.

FSTTCS 2021

15:6 On (Simple) Decision Tree Rank

▶ Proposition 2.6 (Lemma C.6 [1]). For symmetric Boolean function f : {0, 1}n −→ {0, 1},
Rank(f) = n − Gap(f).
▶ Remark 2.7. For (simple) deterministic possibly weighted decision trees, each of the
measures DTSize, Depth, and Rank, is the same for a Boolean function f , its complement
¬f , and its dual fd.

Relations and Search problems

A relation R ⊆ X × W is said to be X-complete, or just complete, if its projection ot X

equals X. That is, for every x ∈ X, there is a w ∈ W with (x, w) ∈ R. For an X-complete
relation R, where X is of the form {0, 1}n for some n, the search problem SearchR is as
follows: given an x ∈ X, find a w ∈ W with (x, w) ∈ R. A decision tree for SearchR is
defined exactly as for Boolean functions; the only diference is that leaves are labeled with
elements of W , and we require that for each input x, if the unique leaf reached on x is labeled
w, then (x, w) ∈ R. The rank of the relation, Rank(R), is the minimum rank of a decision
tree solving the SearchR problem.

A Boolean function f : {0, 1}n −→ {0, 1} naturally defines a complete relation Rf over
X = {0, 1}n and W = {0, 1}, with Rf = {(x, f(x)) | x ∈ X}, and Rank(f) = Rank(Rf).

3 Game Characterisation for Rank

In this section we observe that the rank of a Boolean function is characterised by the value
of a Prover-Delayer game introduced by Pudlák and Impagliazzo in [14]. As mentioned
in Section 1, the game was originally described for searchCNF problems on unsatsifiable
clause sets. The appropriate analog for a Boolean function f , or its relation Rf , and even
for arbitrary X-complete relations R ⊆ X × W , is as follows:

The game is played by two players, the Prover and the Delayer, who construct a (partial)
assignment ρ in rounds. Initially, ρ is empty. In each round, the Prover queries a variable
xi not set by ρ. The Delayer responds with a bit value 0 or 1 for xi, or defers the choice
to the Prover. In the later case, Prover can choose the value for the queried variable, and
the Delayer scores one point. The game ends when there is a w ∈ W such that for all x

consistent with ρ, (x, w) ∈ R. (Thus, for a Boolean function f , the game ends when f |ρ is
a constant function.) The value of the game, Value(R), is the maximum k such that the
Delayer can always score at least k points, no matter how the Prover plays.
▶ Theorem 3.1 (implied from [14, 11, 8]). For any X-complete relation R ⊆ X × W , where
X = {0, 1}n, Rank(R) = Value(R). In particular, for a boolean function f : {0, 1}n −→
{0, 1}, Rank(f) = Value(Rf).

In [3], an aysmmmetric version of this game is defined. In each round, the Prover queries a
variable x, the Delayer specifies values p0, p1 ∈ [0, 1] adding up to 1, the Prover picks a value b,
the Delayer adds log 1

pb
to his score. Let ASym-Value denote the maximum score the Delayer

can always achieve, independent of the Prover moves. Note that ASym-Value(R) ≥ Value(R);
an asymmetric-game Delayer can mimic a symmetric-game Delayer by using pb = 1 for choice
b and p0 = p1 = 1/2 for deferring. As shown in [3], for the search CNF problem, the value of
this asymmetric game is exactly the optimal leaf-size of a decision tree. We note below that
this holds for the SearchR problem more generally.
▶ Proposition 3.2 (implicit in [3]). For any X-complete relation R ⊆ X × W , where
X = {0, 1}n, log DTSize(R) = ASym-Value(R). In particular, for a boolean function f :
{0, 1}n −→ {0, 1}, log DTSize(f) = ASym-Value(Rf).

Y. Dahiya and M. Mahajan 15:7

(In [3], the bounds have log⌈S/2⌉; this is because S there counts all nodes in the decision
tree, while here we count only leaves.)

Thus we have the relationship

Rank(f) = Value(Rf) ≤ ASym-Value(Rf) = log DTSize(f).

4 The Rank of some natural functions

For symmetric functions, rank can be easily calculated using Proposition 2.6. In Table 1
we tabulate various measures for some standard symmetric functions. As can be seen from
the Orn and Andn functions, the Rank(f) measure is not polynomially related with the
measures Depth(f) or certificate complexity C(f).

Table 1 Some simple symmetric functions and their associated complexity measures.

f Depth C0 C1 C Gap Rank
0 or 1 0 0 0 0 n 0
Andn n 1 n n n − 1 1
Orn n n 1 n n − 1 1

Parityn n n n n 0 n

Maj2k 2k k k + 1 k + 1 k k

Maj2k+1 2k + 1 k + 1 k + 1 k + 1 k k + 1
Thrk

n

(k ≥ 1) n n − k + 1 k max
{

n − k + 1,

k

}
max

{
k − 1,

n − k

}
n − Gap

For two composed functions that will be crucial in our later discussions, we can directly
calculate the rank as described below.

▶ Theorem 4.1. For every n ≥ 1,
1. Rank(Tribesn,m) = Rank(Tribesd

n,m) = n for m ≥ 2.
2. Rank(Andn ◦ Paritym) = n(m − 1) + 1 for m ≥ 1.

We prove each of the lower and upper bounds separately in a series of lemmas below. The
lemmas use the following properties about the rank function which can be easily verified.

▶ Proposition 4.2 (Composition of Rank). Let T be a rooted binary tree with depth ≥ 1,
rank r, and with leaves labelled by 0 and 1. Let T0, T1 be arbitrary rooted binary trees of
ranks r0, r1 respectively. For b ∈ {0, 1}, attach Tb to each leaf of T labeled b, to obtain rooted
binary tree T ′ of rank r′.
1. r′ ≤ r + max{r0, r1}. Furthermore, if T is a complete binary tree, and if r0 = r1, then

this is an equality; r′ = r + r0.
2. If every non-trivial subtree (more than one leaf) of T has both a 0 leaf and a 1 leaf, then

r′ ≥ r + max{r0, r1} − 1. If, furthermore, T is a complete binary tree, then this is an
equality when r0 ̸= r1,
We first establish the bounds for Tribesd

n,m =
∧

i∈[n]
∨

j∈[m] xi,j .

▶ Lemma 4.3. For every n, m ≥ 1, Rank(Tribesd
n,m) ≤ n.

FSTTCS 2021

15:8 On (Simple) Decision Tree Rank

Proof. We show the bound by giving a recursive construction and bounding the rank by
induction on n. In the base case, n = 1. Tribesd

1,m = Orm, which has rank 1. For the
inductive step, n ≥ 1. For j < n, let Tj,m denote the recursively constructed trees for
Tribesd

j,m. Take the tree T which is T1,m on variables xn,j , j ∈ [m]. Attach the tree
Tn−1,m on variables xi,j for i ∈ [n − 1], j ∈ [m], to all the 1-leaves of T , to obtain Tn,m.
It is straightforward to see that this tree computes Tribesd

n,m. Using Proposition 4.2 and
induction, we obtain Rank(Tn,m) ≤ Rank(T1,m) + Rank(Tn−1,m) ≤ 1 + (n − 1) = n. ◀

▶ Remark 4.4. More generally, this construction shows that Rank(Andn ◦ f) ≤ nRank(f).

▶ Lemma 4.5. For every n ≥ 1 and m ≥ 2, Rank(Tribesd
n,m) ≥ n.

Proof. We prove this by induction on n. The base case, n = 1, is straightforward: Tribesd
1,m

is the function Orm, whose rank is 1.
For the inductive step, let n > 1, and consider any decision tree Q for Tribesd

n,m. Without
loss of generality (by renaming variables if necessary), let x1,1 be the variable queried at the
root node. Let Q0 and Q1 be the left and the right subtrees of Q. Then Q0 computes the
function Andn ◦ (Orm−1, Orm, ..., Orm), and Q1 computes Tribesd

n−1,m, on appropriate
variables. For m ≥ 2, Tribesd

n−1,m is a sub-function of Andn ◦ (Orm−1, Orm, ..., Orm),
and so Proposition 2.4 implies that Rank(Q0) ≥ Rank(Andn ◦ (Orm−1, Orm, ..., Orm)) ≥
Rank(Tribesd

n−1,m). By induction, Rank(Q1) ≥ Rank(Tribesd
n−1.m) ≥ n − 1. Hence, by

definition of rank, Rank(Q) ≥ 1 + min{Rank(Q0), Rank(Q1} ≥ n. Since this holds for every
decision tree Q for Tribesd

n,m, we conclude that Rank(Tribesd
n,m) ≥ n, as claimed. ◀

Next, we establish the bounds for Andn ◦ Paritym =
∧

i∈[n]
⊕

j∈[m] xi,j . The upper
bound below is slightly better than what is implied by Remark 4.4.

▶ Lemma 4.6. For every n, m ≥ 1, Rank(Andn ◦ Paritym) ≤ n(m − 1) + 1.

Proof. Recursing on n, we construct decision trees Tn,m for Andn ◦ Paritym, as in
Lemma 4.3. By induction on n, we bound the rank, also additionally using the fact that the
rank-optimal decision tree for Paritym is a complete binary tree.

Base Case: n = 1. And1 ◦ Paritym = Paritym. From Table 1, Rank(Paritym) = m;
let T1,m be the optimal decision tree computing Paritym.

Inductive Step: n ≥ 1. For j < n, let Tj,m denote the recursively constructed trees for
Andj ◦ Paritym. Take the tree T which is T1,m on variables xn,j , j ∈ [m]. Attach the tree
Tn−1,m on variables xi,j for i ∈ [n − 1], j ∈ [m], to all the 1-leaves of T , to obtain Tn,m. It is
straightforward to see that this tree computes Andn ◦ Paritym.

By induction, Rank(Tn−1,m) ≤ (n − 1)(m − 1) + 1 ≥ 1. Since we do not attach anything
to the 0-leaves of T1,m (or equivalently, we attach a rank-0 tree to these leaves), and since
T1,m is a complete binary tree, the second statement in Proposition 4.2 yields Rank(Tn,m) =
Rank(T1,m) + Rank(Tn−1,m) − 1. Hence Rank(Tn,m) ≤ n(m − 1) + 1, as claimed. ◀

▶ Lemma 4.7. For every n, m1, m2, . . . , mn ≥ 1, and functions g1, g2, . . . , gn each in
{Paritym, ¬Paritym}, Rank(Andn ◦ (g1, g2, ..., gn)) ≥ (

∑n
i=1(mi − 1)) + 1.

In particular, Rank(Andn ◦ Paritym) ≥ n(m − 1) + 1.

Proofs of this lemma and Lemma 4.6, based on the Prover-Delayer game characterisation
Theorem 3.1, appear in Section 8. This lemma is also an immediate consequence of the more
general Theorem 6.6 that we prove later.

Y. Dahiya and M. Mahajan 15:9

5 Relation between Rank and Certificate Complexity

The certificate complexity and decision tree complexity are known to be related as follows.

▶ Proposition 5.1 ([5, 9, 15], see also Theorem 14.3 in [10]). For every boolean function
f : {0, 1}n −→ {0, 1},

C(f) ≤ Depth(f) ≤ C0(f)C1(f)

Both these inequalities are tight; the first for the Or and And functions, and the second
for the Tribesn,m and Tribesd

n,m functions. (For Tribesd
n,m, C0(Tribesd

n,m) = m,
C1(Tribesd

n,m) = n and Depth(Tribesd
n,m) = nm, see e.g. Exercise 14.1 in [10].)

Since Rank ≤ Depth, the same upper bound also holds for Rank as well. But it is far
from tight for the Tribesn,m function. In fact, the upper bound can be improved in general.
Adapting the construction given in the proof of Proposition 5.1 slightly, we show the following.

▶ Lemma 5.2. For every Boolean function f : {0, 1}n −→ {0, 1},

Rank(f) ≤ (C0(f) − 1)(C1(f) − 1) + 1

Moreover, the inequality is tight as witnessed by And and Or functions.

Proof (Sketch). The proof of Proposition 5.1 proceeds by constructing a decision tree in
stages. In each stage, all variables from some 0-certificate are queried. Each stage contributes
at most C0 to depth, and reduces C1 by at least one, giving the bound. We note that since
at least one leaf in each stage is a leaf of the final tree, each stage contributes at most C0 − 1
to rank. Further, in the last stage, the contribution to rank can be reduced to just 1. ◀

From Theorem 4.1, we see that the lower bound on Depth in Proposition 5.1 does
not hold for Rank; for m > n, Rank(Tribesd

n,m) = n < m = C(Tribesd
n,m). However,

min{C0(Tribesd
n,m), C1(Tribesd

n,m)} = n = Rank(Tribesd
n,m). Further, for all the func-

tions listed in Table 1, Rank(f) is at least as large as min{C0(f), C1(f)}. However, even
this is not a lower bound in general.

▶ Lemma 5.3. min{C0(f), C1(f)} is not a lower bound on Rank(f); for the symmetric
function f = Majn ∨ Parityn, when n > 4, Rank(f) < min{C0(f), C1(f)}.

Proof. Let f be the function Majn ∨Parityn, for n > 4. Then f(0n) = 0 and C0(f, 0n) = n,
and f(10n−1) = 1 and C1(f, 10n−1) = n. Also, f is symmetric, with Gap(f) = n/2, so by
Proposition 2.6, Rank(f) = n/2. ◀

The average certificate complexity is also not directly related to rank.

▶ Lemma 5.4. Average certificate complexity is neither a upper bound nor a lower bound on
the rank of a function; for functions f = Andn and g = Tribesd

n,2, Rank(f) < Cavg(f) and
Cavg(g) < Rank(g).

What can be shown in terms of certificate complexity and rank is the following:

▶ Lemma 5.5. For every Boolean function f , Cmin(f) ≤ Rank(f). This is tight for Orn.

Lemma 5.2 and Lemma 5.5 give these bounds sandwiching Rank(f):

▶ Theorem 5.6. Cmin(f) ≤ Rank(f) ≤ (C0(f) − 1)(C1(f) − 1) + 1 ≤ (C(f) − 1)2 + 1.

FSTTCS 2021

15:10 On (Simple) Decision Tree Rank

As mentioned in Proposition 2.6, for symmetric functions the rank is completely character-
ised in terms of Gap of f . How does Gap relate to certificate complexity for such functions?
It turns out that certificate complexity is characterized not by Gap but by Gapmin. Using
this relation, the upper bound on Rank(f) from Lemma 5.2 can be improved for symmetric
functions to C(f).

▶ Lemma 5.7. For every symmetric Boolean function f on n variables, C(f) = n−Gapmin(f)
and n − C(f) + 1 ≤ Rank(f) ≤ C(f). Both the inequalities on rank are tight for Maj2k+1.

Proof. We first show C(f) = n − Gapmin(f). Consider any interval [a, b] such that fa−1 ̸=
fa = fa+1 = ... = fb ̸= fb+1. Let x be any input with Hamming weight in the interval [a, b].
We show that C(f, x) = n − (b − a).
1. Pick any S ⊆ [n] containing exactly a bit positions where x is 1, and exactly n − b bit

positions where x is 0. Any y agreeing with x on S has Hamming weight in [a, b], and
hence f(y) = f(x). Thus S is a certificate for x. Hence C(f, x) ≤ n − (b − a).

2. Let S ⊆ [n] be any certificate for x. Suppose S contains fewer than a bit positions where
x is 1. Then there is an input y that agrees with x on S and has Hamming weight
exactly a − 1. (Flip some of the 1s from x that are not indexed in S.) So f(y) ̸= f(x),
contradicting the fact that S is a certificate for x. Similarly, if S contains fewer that
n − b bit positions where x is 0, then there is an input z that agrees with x on S and
has Hamming weight exactly b + 1. So f(z) ̸= f(x), contradicting the fact that S is a
certificate for x.
Thus any certificate for x must have at least a+(n−b) positions; hence C(f, x) ≥ n−(b−a).

Since the argument above works for any interval [a, b] where f is constant, we conclude that
C(f) = n − Gapmin(f).

Next, observe that Gap(f) + Gapmin(f) ≤ n − 1. Hence,

n − C(f) + 1 = Gapmin(f) + 1 ≤ n − Gap(f) = Rank(f) ≤ n − Gapmin(f) = C(f).

As seen from Table 1, these bounds on Rank are tight for Maj2k+1. ◀

Even for the (non-symmetric) functions in Theorem 4.1, Rank(f) ≤ C(f). However, this
is not true in general.

▶ Lemma 5.8. Certificate Complexity does not always bound Rank from above; for the
function f = Maj2k+1 ◦ Maj2k+1, C(f) < Rank(f).

The proof is deferred to Section 6, where we develop techniques to bound the rank of
composed functions. We also give, in Section 8, a proof based on the Prover-Delayer game
characterisation Theorem 3.1.

6 Rank of Composed functions

In this section we study the rank for composed functions. For composed functions, f ◦ g,
decision tree complexity Depth is known to behave very nicely.

▶ Proposition 6.1 ([13]). For Boolean functions f, g, Depth(f ◦ g) = Depth(f)Depth(g).

We want to explore how far something similar can be deduced about Rank(f ◦ g). The first
thing to note is that a direct analogue in terms of Rank alone is ruled out.

▶ Lemma 6.2. For general Boolean functions f and g, Rank(f ◦ g) cannot be bounded by
any function of Rank(f) and Rank(g) alone.

Y. Dahiya and M. Mahajan 15:11

Proof. Let f = Andn and g = Orn. Then Rank(f) = Rank(g) = 1. But Rank(f ◦ g) =
Rank(Tribesd

n) = n, as seen in Theorem 4.1. ◀

For f ◦g, let Tf , Tg be decision trees for f , g respectively. One way to construct a decision
tree for f ◦ g is to start with Tf , inflate each internal node u of Tf into a copy of Tg on
the appropriate inputs, and attach the left and the right subtree of u as appropriate at the
leaves of this copy of Tg. By Proposition 6.1, the decision tree thus obtained for f ◦ g is
optimal for Depth if one start with depth-optimal trees Tf and Tg for f and g respectively. In
terms of rank, we can also show that the rank of the decision tree so constructed is bounded
above by Depth(Tf)Rank(Tg) = Depthw(f, [r, r, . . . , r]), where r = Rank(Tg). (This is
the construction used in the proofs of Lemmas 4.3 and 4.6, where further properties of
the Parity function are used to show that the resulting tree’s rank is even smaller than
Depth(f)Rank(g).) In fact, we show below (Theorem 6.3) that this holds more generally,
when different functions are used in the composition. While this is a relatively straightforward
generalisation here, it is necessary to consider such compositions for the lower bound we
establish further on in this section.

▶ Theorem 6.3. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for
n-variate non-constant booolean function f ,

Rank(f ◦ (g1, g2, ..., gn)) ≤ Depthw(f, [r1, r2, ..., rn]).

The really interesting question, however, is whether we can show a good lower bound for
the rank of a composed function. This will help us understand how good is the upper bound
in Theorem 6.3. To begin with, note that for non-constant Boolean functions f, g, both f

and g are sub-functions of f ◦ g. Hence Proposition 2.4 implies the following.

▶ Proposition 6.4. For non-constant boolean functions f, g,

Rank(f ◦ g) ≥ max{Rank(f), Rank(g)}.

A better lower bound in terms of weighted depth complexity of f is given below. This
generalises the lower bounds from Lemmas 4.5 and 4.7. The proofs of those lemmas crucially
used nice symmetry properties of the inner function, whereas the bound below applies for
any non-constant inner function. It is significantly weaker than the bound from Lemma 4.5
but matches that from Lemma 4.7.

▶ Theorem 6.5. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for
n-variate non-constant boolean function f ,

Rank(f ◦ (g1, g2, ..., gn)) ≥ Depthw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1
≥ Depthw(f, [r1, r2, ..., rn]) − (n − 1).

Proof. The second inequality above is straightforward: let T be a decision tree for f

that is optimal with respect to weights r1 − 1, . . . , rn − 1. Since T can be assumed to be
reduced, repeated application of Fact 2.1 shows that the depth of T with respect to weights
r1, . . . , rn increases by at most n. Thus Depthw(f, [r1, . . . , rn]) ≤ Depthw(T, [r1, . . . , rn]) ≤
Depthw(T, [r1 − 1, . . . , rn − 1]) + n = Depthw(f, [r1 − 1, . . . , rn − 1]) + n, giving the claimed
inequality.

The first inequality is not so straightforward. We prove it by induction on n. Let h denote
the function f ◦(g1, g2, ..., gn). For i ∈ [n], let mi be the arity of gi. We call xi,1, xi,2, . . . , xi,mi

the ith block of variables of h; gi is evaluated on this block.

FSTTCS 2021

15:12 On (Simple) Decision Tree Rank

In the base case, n = 1. Since f is non-constant, f ∈ {x, ¬x}; accordingly, h is either g1
or ¬g1. So Dw(f, [r1 − 1]) = r1 − 1 and Rank(h) = Rank(g1) = r1, and the inequality holds.

For the inductive step, when n > 1, we proceed by induction on M =
∑n

i=1 mi.
In the base case, M = n, and each mi is equal to 1. Since all gi’s are non-constant, ri = 1

for all i. So Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 = Dw(f, [0, 0, ..., 0]) + 1 = 1. Since all ri’s
are 1, each gi’s is either xi,1 or ¬xi,1, Thus h is the same as f upto renaming of the literals.
Hence Rank(h) = Rank(f) ≥ 1.

For the inductive step, M > n > 1. Take a rank-optimal decision tree Th for h. We want
to show that Depthw(f, [r1 − 1, . . . , rn − 1]) ≤ Rank(Th) − 1. Without loss of generality, let
x1,1 be the variable queried at the root. Let T0 and T1 be the left and the right subtree of Th.
For b ∈ {0, 1}, let gb

1 be the subfunction of g1 when x1,1 is set to b. Note that Tb computes
hb ≜ f ◦ (gb

1, g2, ..., gn), a function on M − 1 variables. We would like to use induction to
deduce information about Rank(Tb). However, gb

1 may be a constant function, and then
induction does not apply. So we do a case analysis on whether or not g0

1 and g1
1 are constant

functions; this case analysis is lengthy and tedious but most cases are straightforward.
Case 1: Both g0

1 and g1
1 are constant functions. Since g1 is non-constant, g0

1 ̸= g1
1 , and

r1 = Rank(g1) = 1. Assume that g0
1 = 0 and g1

1 = 1; the argument for the other case is
identical. For b ∈ {0, 1}, let fb be the function f(b, x2, . . . , xn); then hb = fb ◦ (g2, . . . , gn).
View fb as functions on n − 1 variables.

Case 1a: Both f0 and f1 are constant functions. Then f is either x1 or ¬x1, so
Depthw(f, [r1 − 1, r2 − 1, ..., rn − 1]) = Depthw(f, [0, r2 − 1, ..., rn − 1]) = 0. Also, in
this case, h is either x1,1 or ¬x1,1, so Rank(h) = 1. Hence the inequality holds.
Case 1b: Exactly one of f0 and f1 is a constant function; without loss of general-
ity, let f0 be a constant function. First, observe that for any weights w2, . . . , wn,
Dw(f, [0, w2, ..., wn]) ≤ Dw(f1, [w2, ..., wn]): we can obtain a decision tree for f wit-
nessing this by first querying x1, making the x1 = 0 child a leaf labeled f0, and
attaching the optimal tree for f1 on the x1 = 1 branch. Second, note that since f1 and
all gi are non-constant, so is h1. Now

Rank(h) = Rank(h1) since Rank(h0) = 0
≥ Dw(f1, [r2 − 1, ..., rn − 1]) + 1 by induction hypothesis on n

≥ Dw(f, [0, r2 − 1, ..., rn − 1]) + 1 by first observation above
= Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since r1 = 1

Case 1c: Both f0 and f1 are non-constant functions.

Rank(h) ≥ max(Rank(h0), Rank(h1))
≥ max

b∈{0,1}
{Dw(fb, [r2 − 1, ..., rn − 1])} + 1 by induction hypothesis on n

≥ Dw(f, [0, r2 − 1, ..., rn − 1]) + 1 by def. of weighted depth
of a tree querying x1 first

= Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since r1 = 1

Case 2: One of g0
1 and g1

1 is a constant function; assume without loss of generality that g0
1 be

constant. In this case, we can conclude that Rank(g1) = Rank(g1
1): Rank(g1

1) ≤ Rank(g1)
by Proposition 2.4, and Rank(g1) ≤ Rank(g1

1) as witnessed by a decision tree for g1 that
queries x1,1 first, sets the x1,1 = 0 branch to a leaf labeled g0

1 , and attaches an optimal

Y. Dahiya and M. Mahajan 15:13

tree for g1
1 on the other branch. Now

Rank(h) ≥ Rank(h1)
≥ Dw(f, [Rank(g1

1) − 1, r2 − 1, ..., rn − 1]) + 1 by induction on M

= Dw(f, [r1 − 1, r2 − 1, ..., rn − 1]) + 1 since Rank(g1
1) = Rank(g1)

Case 3: Both g0
1 and g1

1 are non-constant functions. Let rb
1 = Rank(gb

1) ≥ 1. A decision
tree for g1 that queries x1,1 first and then uses optimal trees for g0

1 and g1
1 has rank

R ≥ r1 and witnesses that 1 + max{r0
1, r1

1} ≥ R ≥ r1. (Note that R may be more than
r1, since a rank-optimal tree for g1 may not query x1,1 first.)

Case 3a: maxb{rb
1} = r1 − 1. Then R = 1 + max{r0

1, r1
1}, which can only happen if

r0
1 = r1

1, and hence r0
1 = r1

1 = r1 − 1. We can further conclude that r1 ≥ 2. Indeed, if
r1 = 1, then r1 − 1 = r0

1 = r1
1 = 0, contradicting the fact that we are in Case 3.

For b ∈ {0, 1},

Rank(hb) = Rank(f ◦ (gb
1, g2, . . . , gn))

≥ Depthw(f, [rb
1 − 1, r2 − 1, . . . , rn − 1]) + 1 by induction on M

= Depthw(f, [r1 − 2, r2 − 1, . . . , rn − 1]) + 1 since r1 − 1 = rb
1.

Hence Rank(h) ≥ 1 + min
b

Rank(hb)

≥ Depthw(f, [r1 − 2, r2 − 1, . . . , rn − 1]) + 2 derivation above
≥ Depthw(f, [r1 − 1, r2 − 1, . . . , rn − 1]) + 1 by Fact 2.1

Case 3b: maxb{rb
1} > r1 − 1. So maxb{rb

1} ≥ r1.

Rank(h) ≥ max
b

Rank(hb)

≥ max
b

Depthw(f, [rb
1 − 1, r2 − 1, . . . , rn − 1]) + 1 by induction on M

≥ Depthw(f, [r1 − 1, r2 − 1, . . . , rn − 1]) + 1 since max
b

{rb
1} ≥ r1

This completes the inductive step for M > n > 1 and completes the entire proof. ◀

From Theorems 4.1, 6.3, and 6.5, we obtain the following:
▶ Theorem 6.6. For non-constant boolean functions f, g,

Depth(f)(Rank(g) − 1) + 1 ≤ Rank(f ◦ g) ≤ Depth(f)Rank(g).

Both inequalities are tight; the first for Andn ◦ Paritym and the second for Tribesn and
Tribesd

n.
Since any non-constant symmetric function is evasive (Proposition 2.2), from Theorems 6.3

and 6.5, we obtain the following:
▶ Corollary 6.7. For non-constant boolean functions g1, . . . , gn with Rank(gi) = ri, and for
n-variate symmetric non-constant booolean function f ,∑

i

ri − (n − 1) ≤ Rank(f ◦ (g1, g2, ..., gn)) ≤
∑

i

ri.

Using Theorem 6.6, we can now complete the proof of Lemma 5.8.

Proof. (of Lemma 5.8) Consider the composed function f = Maj2k+1 ◦ Maj2k+1. Note that
from the lower bound in Theorem 6.6, and the entries in Table 1, Rank(Maj2k+1◦Maj2k+1) ≥
(2k + 1)k + 1. On the other hand, it is straightforward to verify that C(f) = (k + 1)2. Thus
for k > 1, Rank(f) > C(f). ◀

FSTTCS 2021

15:14 On (Simple) Decision Tree Rank

7 Tightness of Rank and Size relation

In Proposition 2.5, we saw a relation between rank and size. The relationship is essentially
tight. The function f = Parityn witnesses the tightness of both the inequalities. Since
Rank(Parity) = n, Proposition 2.5 tells us that log DTSize(Parity) lies in the range
[n, n log e], and we know that log DTSize(Parity) = n.

For the Tribesn function, which has N = n2 variables, we know from Theorem 4.1
that Rank(Tribesn) = n. Thus Proposition 2.5 tells us that log DTSize(Tribesn) lies
in the range [n, n log(en)]. (See also Exercise 14.9 [10] for a direct argument showing
n ≤ log DTSize(Tribesn)). But that still leaves a (log(en))-factor gap between the two
quantities. We show that the true value is closer to the upper end. To do this, we establish
a stronger size lower bound for decision trees computing Tribesd

n.

▶ Lemma 7.1. For every n, m ≥ 1, every decision tree for Tribesd
n,m has at least mn

1-leaves and n 0-leaves.

Proof. Recall that Tribesd
n,m =

∧
i∈[n]

∨
j∈[m] xi,j . We call xi,1, xi,2, . . . , xi,m the ith block

of variables. We consider two special kinds of input assignments: 1-inputs of minimum
Hamming weight, call this set S1, and 0-inputs of maximum Hamming weight, call this set
S0. Each a ∈ S1 has exactly one 1 in each block; hence |S1| = mn. Each b ∈ S0 has exactly
m zeroes, all in a single block; hence |S0| = n. We show that in any decision tree T for
Tribesd

n,m, all the inputs in S = S1 ∪ S0 go to pairwise distinct leaves. Since all inputs in S1
must go to 1-leaves of T , and all inputs of S0 must go to 0-leaves, this will prove the claimed
statement.

Let a, b be distinct inputs in S1. Then there is some block i ∈ [n], where they differ.
In particular there is a unique j ∈ [m] where ai,j = 1, and at this position, bi,j = 0. The
decision tree T must query variable xi,j on the path followed by a, since otherwise it will
reach the same 1-leaf on input a′ that differs from a at only this position, contradicting the
fact that Tribesd

n,m(a′) = 0. Since bi,j = 0, the path followed in T along b will diverge from
a at this query, if it has not already diverged before that. So a, b reach different 1-leaves.

Let a, b be distinct inputs in S0. Let i be the unique block where a has all zeroes; b has all
1s in this block. On the path followed by a, T must query all variables from this block, since
otherwise it will reach the same 0-leaf on input a′′ that differs from a only at an unqueried
position in block i, contradicting Tribesd

n,m(a′′) = 1. Since a and b differ everywhere on
this block, b does not follow the same path as a, so they go to different leaves of T . ◀

We thus conclude that the second inequality in Proposition 2.5 is also essentially tight
for the Tribesd

n function.
The size lower bound from Lemma 7.1 can also be obtained by specifying a good Delayer

strategy in the asymmetric Prover-Delayer game and invoking Proposition 3.2.

8 Proofs using Prover-Delayer Games

In this section we illustrate proving rank upper and lower bounds by giving Prover-Delayer
Game based proofs for Lemma 4.6, Lemma 4.7 and Lemma 5.8. Theorem 3.1 gives us a way
to prove rank upper and lower bounds for boolean functions. In a Prover-Delayer game for
Rf , exhibiting a Prover strategy which restricts the Delayer to at most r points gives an
upper bound of r on Rank(f). Similarly, exhibiting a Delayer strategy which scores at least
r points irrespective of the Prover strategy shows a lower bound of r on Rank(f).

Y. Dahiya and M. Mahajan 15:15

Prover strategy for Andn ◦ Paritym, proving Lemma 4.6

We give a Prover strategy which restricts Delayer to n(m − 1) + 1 points. The Prover queries
variables in row-major order. If on query xi,j the Delayer defers a decision to the Prover, the
Prover chooses arbitrarily unless j = m. If j = m, then the Prover chooses a value which
makes the parity of the variables in row i evaluate to 0.

Let j be the first row such that the Delayer defers the decision on xj,m to the Prover. (If
there is no such row, set j = n.) With the strategy above, the Prover will set xj,m in such a
way that the parity of the variables in j-th row evaluates to 0, making f evaluate to 0 and
ending the game. The Delayer scores at most m − 1 points per row for rows before this row
j, and at most m points in row j. Hence the Delayer’s score is at most (j − 1)(m − 1) + m

points. Since j ≤ n, the Delayer is restricted to n(m − 1) + 1 points at the end of the game.

Delayer strategy for Andn ◦ Paritym, proving Lemma 4.7

We give a Delayer strategy which always scores at least n(m − 1) + 1 points.
On query xi,j , if this is the last un-queried variable, or if there is some un-queried variable

in the same i-th row, the Delayer defers the decision to the Prover. Otherwise the Delayer
responds with a value that makes the parity of the variables in row i evaluate to 1.

This strategy forces the Prover to query all variables to decide the function. The Delayer
picks up m − 1 points per row, and an additional point on the last query, giving a total score
of n(m − 1) + 1 points.

Delayer strategy for f = Maj2k+1 ◦ Maj2k+1, proving Lemma 5.8

The following Delayer strategy always scores (k+1)2 +k2 points, greater than C(f) = (k+1)2.
At an intermediate stage of the game, say that a row is b-determined if the variables

that are already set in this row already fix the value of Maj2k+1 on this row to be b, and is
determined if it is b-determined for some b. Let Mb be the number of b-determined rows. If
the game has not yet ended, then M0 ≤ k and M1 ≤ k.

On query xi,j , let n0, n1 be the number of variables in row i already set to 0 and to 1
respectively. The Delayer defers the decision if

row i is already determined, or
n0 = n1 < k, or
n0 = n1 = k and M0 = M1.

Otherwise, if n0 ̸= n1, then the Delayer chooses the value b where nb < n1−b. If n0 = n1 = k,
then the Delayer chooses the value b where Mb < M1−b.

This strategy ensures that at all stages until the game ends, |M0 − M1| ≤ 1, and
furthermore, in all rows that are not yet determined, |n0 − n1| ≤ 1. Thus a row becomes
determined only after all variables in it are queried, and the Delayer gets a point for every
other query, making a total of k points per determined row. Further, for k + 1 rows, the
Delayer also gets an additional point on the last queried variable. The game cannot conclude
before all 2k + 1 rows are determined, so the Delayer scores at least (k + 1)2 + k2 points.

9 Conclusion

The main thesis of this paper is that the minimal rank of a decision tree computing a Boolean
function is an interesting measure for the complexity of the function, since it is not related
to other well-studied measures in a dimensionless way. Whether bounds on this measure can
be further exploited in algorithmic settings like learning or sampling remains to be seen.

FSTTCS 2021

15:16 On (Simple) Decision Tree Rank

References
1 James Aspnes, Eric Blais, Murat Demirbas, Ryan O’Donnell, Atri Rudra, and Steve Uurtamo.

k + decision trees - (extended abstract). In 6th International Workshop on Algorithms
for Sensor Systems, Wireless Ad Hoc Networks, and Autonomous Mobile Entities, ALGO-
SENSORS, volume 6451 of Lecture Notes in Computer Science, pages 74–88. Springer, 2010.
full version on author’s webpage, http://www.cs.cmu.edu/ odonnell/papers/k-plus-dts.pdf.
doi:10.1007/978-3-642-16988-5_7.

2 Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of
tree-like and general resolution. Combinatorica, 24(4):585–603, 2004. doi:10.1007/
s00493-004-0036-5.

3 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of tree-like resolution
size. Information Processing Letters, 113(18):666–671, 2013. doi:10.1016/j.ipl.2013.06.
002.

4 Avrim Blum. Rank-r decision trees are a subclass of r-decision lists. Information Processing
Letters, 42(4):183–185, 1992. doi:10.1016/0020-0190(92)90237-P.

5 Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes. In 28th Annual
Symposium on Foundations of Computer Science (FOCS), pages 118–126. IEEE, 1987.

6 Andrzej Ehrenfeucht and David Haussler. Learning decision trees from random examples.
Information and Computation, 82(3):231–246, 1989. doi:10.1016/0890-5401(89)90001-1.

7 Javier Esparza, Michael Luttenberger, and Maximilian Schlund. A brief history of Strahler
numbers. In Language and Automata Theory and Applications - 8th International Conference
LATA, volume 8370 of Lecture Notes in Computer Science, pages 1–13. Springer, 2014.
doi:10.1007/978-3-319-04921-2_1.

8 Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike resolution
space. Information Processing Letters, 87(6):295–300, 2003.

9 Juris Hartmanis and Lane A Hemachandra. One-way functions and the nonisomorphism of
NP-complete sets. Theoretical Computer Science, 81(1):155–163, 1991.

10 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and Combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

11 Oliver Kullmann. Investigating a general hierarchy of polynomially decidable classes of CNF’s
based on short tree-like resolution proofs. Electron. Colloquium Comput. Complex., 41, 1999.
URL: http://eccc.hpi-web.de/eccc-reports/1999/TR99-041/index.html.

12 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

13 Ashley Montanaro. A composition theorem for decision tree complexity. Chicago Journal of
Theoretical Computer Science, 2014(6), July 2014.

14 Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-SAT (pre-
liminary version). In Proceedings of the eleventh annual ACM-SIAM Symposium on Discrete
Algorithms SODA, pages 128–136, 2000.

15 Gábor Tardos. Query complexity, or why is it difficult to separate NPA ∩ coNPA from PA by
random oracles A? Combinatorica, 9(4):385–392, 1989.

16 György Turán and Farrokh Vatan. Linear decision lists and partitioning algorithms for the
construction of neural networks. In Foundations of Computational Mathematics, pages 414–423,
Berlin, Heidelberg, 1997. Springer.

17 Kei Uchizawa and Eiji Takimoto. Lower bounds for linear decision trees with bounded weights.
In 41st International Conference on Current Trends in Theory and Practice of Computer
Science SOFSEM, volume 8939 of Lecture Notes in Computer Science, pages 412–422. Springer,
2015. doi:10.1007/978-3-662-46078-8_34.

18 Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984. doi:10.1145/1968.1972.

https://doi.org/10.1007/978-3-642-16988-5_7
https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1016/j.ipl.2013.06.002
https://doi.org/10.1016/j.ipl.2013.06.002
https://doi.org/10.1016/0020-0190(92)90237-P
https://doi.org/10.1016/0890-5401(89)90001-1
https://doi.org/10.1007/978-3-319-04921-2_1
https://doi.org/10.1007/978-3-642-24508-4
http://eccc.hpi-web.de/eccc-reports/1999/TR99-041/index.html
https://doi.org/10.1007/978-3-662-46078-8_34
https://doi.org/10.1145/1968.1972

Reachability and Matching in Single Crossing
Minor Free Graphs
Samir Datta #

Chennai Mathematical Institute, Chennai, India

Chetan Gupta #

Aalto University, Finland

Rahul Jain #

Fernuniversität in Hagen, Germany

Anish Mukherjee #

Institute of Informatics, University of Warsaw, Poland

Vimal Raj Sharma #

Indian Institute of Technology, Kanpur, India

Raghunath Tewari #

Indian Institute of Technology, Kanpur, India

Abstract
We show that for each single crossing graph H, a polynomially bounded weight function for all
H-minor free graphs G can be constructed in logspace such that it gives nonzero weights to all the
cycles in G. This class of graphs subsumes almost all classes of graphs for which such a weight
function is known to be constructed in logspace. As a consequence, we obtain that for the class
of H-minor free graphs where H is a single crossing graph, reachability can be solved in UL, and
bipartite maximum matching can be solved in SPL, which are small subclasses of the parallel
complexity class NC. In the restrictive case of bipartite graphs, our maximum matching result
improves upon the recent result of Eppstein and Vazirani [16], where they show an NC bound for
constructing perfect matching in general single crossing minor free graphs.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases Reachability, Matching, Logspace, Single-crossing minor free graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.16

Funding Samir Datta: Partially funded by a grant from Infosys foundation and SERB-MATRICS
grant MTR/2017/000480.
Chetan Gupta: Supported by Academy of Finland, Grant 321901.
Anish Mukherjee: Supported by the ERC CoG grant TUgbOAT no 772346.
Vimal Raj Sharma: Ministry of Electronics and IT, India, VVS PhD program.
Raghunath Tewari: Young Faculty Research Fellowship, Ministry of Electronics and IT, India.

1 Introduction

Directed graph reachability and perfect matching are two fundamental problems in computer
science. The history of the two problems has been inextricably linked together from the
inception of computer science (and before!) [18]. The problems and their variants, such as
shortest path [13] and maximum matching [14] have classically been studied in the sequential
model of computation. Since the 1980s, considerable efforts have been spent trying to find
parallel algorithms for matching problems spurred on by the connection to reachability which
is, of course, parallelizable. The effort succeeded only in part with the discovery of randomized
parallel algorithms [22, 27]. While we know that the reachability problem is complete for the
complexity class NL, precise characterization has proved to be elusive for matching problems.

© Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath
Tewari;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sdatta@cmi.ac.in
mailto:chgpt.09@gmail.com
mailto:rahul.jain@fernuni-hagen.de
https://orcid.org/0000-0002-8567-9475
mailto:anish@mimuw.edu.pl
https://orcid.org/0000-0002-5857-9778
mailto:vimalraj@cse.iitk.ac.in
mailto:rtewari@cse.iitk.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Reachability and Matching in Single Crossing Minor Free Graphs

The 1990s saw attempts in this direction when surprisingly “small” upper bounds were
proved [2] for the perfect matching problem, although in the non-uniform setting. At roughly
the same time, parallel algorithms for various versions of the matching problem for restricted
graph classes like planar [26] and bounded genus [25] graphs were discovered. The last two
decades have seen efforts towards pinning down the exact parallel complexity of reachability
and matching related problems in restricted graph classes [6, 24, 9, 10, 5, 21, 19, 20]. Most
of these papers are based on the method of constructing nonzero circulations.

The circulation of a simple cycle is the sum of its edge-weights in a fixed orientation (see
Section 2 for the definition) and we wish to assign polynomially bounded weights to the
edges of a graph, such that every simple cycle has a nonzero circulation. Assigning such
weights isolates a reachability witness or a matching witness in the graph [33]. Constructing
polynomially bounded isolating weight function in parallel for general graphs has been elusive
so far. The last five years have seen rapid progress in the realm of matching problems,
starting with [17] which showed that the method of nonzero circulations could be extended
from topologically restricted (bipartite) graphs to general (bipartite) graphs. A subsequent
result extended this to all graphs [32]. More recently, the endeavour to parallelize planar
perfect matching has borne fruit [30, 4] and has been followed up by further exciting work [3].

We know that polynomially bounded weight functions that give nonzero circulation to
every cycle can be constructed in logspace for planar graphs, bounded genus graphs and
bounded treewidth graphs [6, 10, 11] . Planar graphs are both K3,3-free and K5-free graphs.
Such a weight function is also known to be constructable in logspace for K3,3-free graphs
and K5-free graphs, individually [5]. A natural question arises if we can construct such
a weight function for H-minor-free graphs for any arbitrary graph H. A major hurdle in
this direction is the absence of a space-efficient (Logspace) or parallel algorithm (NC) for
finding a structural decomposition of H-minor free graphs. However, such a decomposition
is known when H is a single crossing graph. This induces us to solve the problem for single
crossing minor-free (SCM-free) graphs. An SCM-free graph can be decomposed into planar
and bounded treewidth graphs. Moreover, K3,3 and K5 are single crossing graphs. Hence
our result can also be seen as a generalization of the previous results on these classes. There
have also been important follow-up works on parallel algorithms for SCM-free graphs [16].
SCM-free graphs have been studied in several algorithmic works (for example [31, 7, 12]).

1.1 Our Result
In this paper, we show that results for previously studied graph classes (planar, constant
tree-width and H-minor free for H ∈ {K3,3, K5}) can be extended and unified to yield similar
results for SCM-free graphs.

▶ Theorem 1. There is a logspace algorithm for computing polynomially-bounded, skew-
symmetric nonzero circulation weight function in SCM-free graphs.

An efficient solution to the circulation problem for a class of graphs yields better complexity
bounds for determining reachability in the directed version of that class and constructing
minimum weight maximum-matching in the bipartite version of that class. Theorem 1 with
the results of [8, 28], yields the following:

▶ Corollary 2. For SCM-free graphs, reachability is in UL ∩ coUL and minimum weight
bipartite maximum matching is in SPL.

Also using the result of [35], we obtain that the Shortest path problem in SCM-free graphs
can be solved in UL ∩ coUL.

S. Datta, C. Gupta, R. Jain, A. Mukherjee, V. R. Sharma, and R. Tewari 16:3

Overview of Our Techniques and Comparison With Previous Results. We know that for
planar graphs and constant treewidth graphs nonzero circulation weights can be constructed
in logspace [6, 11]. We combine these weight functions using the techniques from Arora et al.
[5], Datta et al. [8] and, Datta et al. [11] together with some modifications to obtain the
desired weight function. In [5], the authors decompose the given input graph G (K3,3-free or
K5-free) and obtain a component tree that contains planar and constant size components.
They modify the components of the component tree so that they satisfy few properties
which they use for constructing nonzero circulation weights (these properties are mentioned
at the beginning of Section 3). The new graph represented by these modified components
preserves the perfect matchings of G. Then, they construct a working-tree of height O(log n)
corresponding to this component tree and use it to assign nonzero circulation weights to the
edges of this new graph. The value of the weights assigned to the edges of the new graph is
exponential in the height of the working tree.

While K3,3-free and K5-free graphs can be decomposed into planar and constant size
components, an SCM-free graph can be decomposed into planar and constant treewidth
components. Thus the component tree of the SCM-free graph would have several non-
planar constant treewidth components. While we can construct a working tree of height
O(log n), this tree would contain constant-treewidth components and hence make it difficult
to find nonzero circulation weights. A naïve idea would be to replace each constant treewidth
component with its tree decomposition in the working tree. However, the resultant tree would
have the height O(log2 n). Thus the weight function obtained in this way is of O(log2 n)-bit.
We circumvent this problem as follows: we obtain a component tree T of the given SCM-free
graph G and modify its components to satisfy the same property as [5] (however, we use
different gadgets for modification). Now we replace each bounded treewidth component with
its tree decomposition in T . Using this new component tree, say T ′, we define another graph
G′. We use the technique from [8] to show that if we can construct the nonzero circulation
for G′, then we can pull back nonzero circulation for G. Few points to note here: (i) pull
back technique works because of the new gadget that we use to modify the components in
T , (ii) since ultimately we can obtain nonzero circulation for G, it allows us to compute
maximum matching in G in SPL, which is not the case in [5].

1.2 Organization of the Paper
After introducing the definitions and preliminaries in Section 2, in Section 3 we discuss the
weight function that achieves non-zero circulation in single-crossing minor free graphs and
its application to maximum matching in Section 4. Finally, we conclude with Section 5.

2 Preliminaries and Notations

Tree decomposition. Tree decomposition is a well-studied concept in graph theory. Tree
decomposition of a graph, in some sense, reveals the information of how much tree-like the
graph is. We use the following definition of tree decomposition.

▶ Definition 3. Let G(V, E) be a graph and T̃ be a tree, where nodes of the T̃ are {B1, . . . , Bk |
Bi ⊆ V } (called bags). T is called a tree decomposition of G if the following three properties
are satisfied:

B1 ∪ . . . ∪ Bk = V ,
for every edge (u, v) ∈ E, there exists a bag Bi which contains both the vertices u and v,
for a vertex v ∈ V , the bags which contain the vertex v form a connected component in T̃ .

FSTTCS 2021

16:4 Reachability and Matching in Single Crossing Minor Free Graphs

The width of a tree decomposition is defined as one less than the size of the largest bag.
The treewidth of a graph G is the minimum width among all possible tree decompositions of
G. Given a constant treewidth graph G, we can find its tree decomposition T̃ in logspace
such that T̃ has a constant width [15].

▶ Lemma 4 ([15]). For every constant c, there is a logspace algorithm that takes a graph
as input and outputs its tree decomposition of treewidth at most c, if such a decomposition
exists.

▶ Definition 5. Let G1 and G2 be two graphs containing cliques of equal size. Then the
clique-sum of G1 and G2 is formed from their disjoint union by identifying pairs of vertices
in these two cliques to form a single shared clique, and then possibly deleting some of the
clique edges.

For a constant k, a k-clique-sum is a clique-sum in which both cliques have at most k vertices.
One may also form clique-sums of more than two graphs by repeated application of the
two-graph clique-sum operation. For a constant W , we use the notation ⟨GP,W ⟩k to denote
the class of graphs that can be obtained by taking repetitive k-clique-sum of planar graphs
and graphs of treewidth at most W . In this paper, we construct a polynomially bounded
skew-symmetric weight function that gives nonzero circulation to all the cycles in a graph
G ∈ ⟨GP,W ⟩3. Note that if a weight function gives nonzero circulations to all the cycles
in the biconnected components of G, it will give nonzero circulation to all the cycles in G

because no simple cycle can be a part of two different biconnected components of G. We can
find all the biconnected components of G in logspace by finding all the articulation points.
Therefore, without loss of generality, assume that G is biconnected.

The crossing number of a graph G is the lowest number of edge crossings of a plane
drawing of G. A single-crossing graph is a graph whose crossing number is at most 1. SCM-
free graphs are graphs that do not contain H as a minor, where H is a fixed single crossing
graph. Robertson and Seymour have given the following characterization of SCM-free graphs.

▶ Theorem 6 ([29]). For any single-crossing graph H, there is an integer cH ≥ 4 (depending
only on H) such that every graph with no minor isomorphic to H can be obtained as
3-clique-sum of planar graphs and graphs of treewidth at most cH .

Component Tree. In order to construct the desired weight function for a graph G ∈ ⟨GP,W ⟩3,
we decompose G into smaller graphs and obtain a component tree of G defined as follows: we
first find 3-connected and 4-connected components of G such that each of these components
is either planar or of constant treewidth. We know that these components can be obtained in
logspace [34]. Since G can be formed by taking repetitive 3-clique-sum of these components,
the set of vertices involved in a clique-sum is called a separating set. Using these components
and separating sets, we define a component tree of G. A component tree T of G is a tree
such that each node of T contains a 3-connected or 4-connected component of G, i.e., each
node contains either a planar or constant treewidth subgraph of G. There is an edge between
two nodes of T if the corresponding components are involved in a clique-sum operation. If
two nodes are involved in a clique-sum operation, then copies of all the vertices of the clique
are present in both components. It is easy to see that T will always be a tree. Within a
component, there are two types of edges present, real and virtual edges. Real edges are those
edges that are present in G. Let {a, b, c}(or {a, b}) be a separating triplet(or pair) shared
by two nodes of T , then there is a clique {a, b, c} (or {a, b}) of virtual edges present in both
the components. Suppose there is an edge present in G between any pair of vertices of a
separating set. In that case, there is a real edge present between that pair of vertices parallel
to the virtual edge, in exactly one of the components which share that separating set.

S. Datta, C. Gupta, R. Jain, A. Mukherjee, V. R. Sharma, and R. Tewari 16:5

Weight function and circulation. Let G(V, E) be an undirected graph with vertex set V

and edge set E. By E⃗

⃗

, we denote the set of bidirected edges corresponding to E. Similarly,
by G(V, E⃗

⃗

), we denote the graph corresponding to G(V, E) where each of its edges is replaced
by a corresponding bidirected edge. A weight function w : E⃗

⃗

→ Z is called skew-symmetric
if for all e ∈ E⃗

⃗

, w(e) = −w(er) (where er represent the edge with its direction reversed). We
know that if w gives nonzero circulation to every cycle that consists of edges of E⃗

⃗

then it
isolates a directed path between each pair of vertices in G(V, E⃗

⃗

). Also, if G is a bipartite
graph, then the weight function w can be used to construct a weight function wund : E → Z
that isolates a perfect matching in G [33].

A convention is to represent by ⟨w1, . . . , wk⟩ the weight function that on edge e takes
the weight

∑k
i=1 wi(e)Bk−i where w1, . . . , wk are weight functions such that maxk

i=1 (nwi(e))
≤ B.

Complexity Classes. The complexity classes L and NL are the classes of languages accepted
by deterministic and non-deterministic logspace Turing machines, respectively. UL is a class
of languages that can be accepted by an NL machine that has at most one accepting path on
each input, and hence UL ⊆ NL. SPL is the class of languages whose characteristic function
can be written as a logspace computable integer determinant.

3 Weight function

In order to construct the desired weight function for a given graph G0 ∈ ⟨GP,W ⟩3, we modify
the component tree T0 of G0 such that it has the following properties.

No two separating sets share a common vertex.
A separating set is shared by at most two components.
any virtual triangle, i.e., the triangle consists of virtual edge, in a planar component is
always a face.

Let T be this modified component tree, and G be the graph represented by T . We show
that if we have a weight function that gives nonzero circulation to every cycle in G, then
we can obtain a weight function that will give nonzero circulation to all the cycles in G0.
Arora et al. [5] showed how a component tree satisfying these properties can be obtained
for K3,3-free and K5-free graphs. We give a similar construction below and show that we
can modify the components of T0 such that T satisfies the above properties (see Section
3.1). Note that if the graphs inside two nodes of T0 share a separating set τ and they both
are constant tree-width graphs, then we can take the clique-sum of these two graphs on the
vertices of τ , and the resulting graph will also be a constant tree-width graph. Therefore,
we can assume that if two components share a separating set, then either both of them are
planar, or one of them is planar and the other is of constant tree-width.

3.1 Modifying the Component Tree
In this section, we show that how we obtain the component tree T from T0 so that it satisfies
the above three properties.

(i) No two separating sets share a common vertex. For a node D in T0, let GD be the
graph inside node D. Assume that GD contains a vertex v which is shared by separating sets
τ1, τ2, . . . , τk, where k > 1, present in GD. We replace the vertex v with a gadget γ defined
as follows: γ is a star graph such that v is the center node and v1, , v2, . . . , vk are the leaf

FSTTCS 2021

16:6 Reachability and Matching in Single Crossing Minor Free Graphs

D1

D2 D3

x1 x2x1 x2

x1 x2

x1 x2

x1
1 x1

2 x2
1 x2

2 x3
1 x3

2

x1
1 x1

2

x2
1 x2

2

x3
1 x3

2

D1

D2

D3

β

Figure 1 (Left)A separating set {x1, x2} is shared by components D1, D2 and D3. (Right)
Replace them by adding the gadget β and connect D1, D2 and D3 to β.

nodes of γ. The edges which were incident on v and had their other endpoints in τi, will now
incident on vi for all i ∈ [k]. All the other edges which were incident on v will continue to be
incident on v. We do this for each vertex which is shared by more than one separating set in
GD. Let GD′ be the graph obtained after replacing each such vertex with gadget γ. It is
easy to see that if GD was a planar component, then GD′ will also be a planar component.
We show that the same holds for constant tree-width components as well.

▷ Claim 7. If GD is a constant treewidth graph, then GD′ will also be of constant treewidth.

Proof. Let TD be a tree decomposition of GD such that each bag of TD is of constant size,
i.e., contains some constant number of vertices. Let v be a vertex shared by k separating sets
{xi, yi, v}, for all i ∈ [k] in GD. Let B1, B2, . . . Bk be the bags in TD that contain separating
sets {x1, y1, v}, {x2, y2, v}, . . . , {xk, yk, v} respectively (note that one bag may contain many
separating sets). Now we obtain a tree decomposition TD′ of the graph GD′ using TD as
follows: add the vertices vi in the bag Bi, for all i ∈ [k]. Repeat this for each vertex v in
GD, which is shared by more than one separating set to obtain TD′ . Note that in each bag
of TD we add at most one new vertex with respect to each separating set contained in the
bag in order to obtain TD′ . Since each bag in TD can contain vertices of only constant many
separating sets, size of each bag remain constant in TD′ . Also, TD′ is a tree decomposition
of GD′ . ◁

(ii) A separating set is shared by at most two components. Assume that a separating
set of size t, τ = {xi}i≤t is shared by k components D1, D2, . . . Dk, for k > 2, in T0. Let β

be a gadget defined as follows: the gadget consists of t star graphs {γi}i≤t such that xi is
the center node of γi and each γi has k leaf nodes {x1

i , x2
i , . . . xk

i }. There are virtual cliques
present among the vertices {xj

i }i≤t for all j ∈ [k] and among {xi}i≤t (see Figure 1). If there
is an edge present between any pair of vertices in the set {xi}i≤t in the original graph, then
we add a real edge between respective vertices in β. β shares the separating set {xj

i }i≤t with
the component Dj for all j ∈ [k].

S. Datta, C. Gupta, R. Jain, A. Mukherjee, V. R. Sharma, and R. Tewari 16:7

Note that in this construction, we create new components (β) while all the other compon-
ents in the component tree remain unchanged. Notice that the tree-width of β is constant
(at most 5 to be precise). We can define a tree decomposition of β of tree-width 5 as fol-
lows: B0, B′

1, B′
2, . . . , B′

k be the bags in the tree decomposition such that B0 = {x1, x2, x3},
B′

i = {x1, x2, x3, xi
1, xi

2, xi
3} and there is an edge from B0 to B′

i for all i ∈ [k].

(iii) Any virtual triangle, i.e., the triangle consists of virtual edges, in a planar component
is always a face. 3-cliques in a 3-clique sum of a planar and a bounded tree-width component
is always a face in the planar component. This is because suppose there is a planar component
Gi in which the 3-clique on u, v, w occurs but does not form a face. Then the triangle u, v, w

is a separating set in Gi, which separates the vertices in its interior V1 from the vertices in
its exterior V2. Notice that neither of V1, V2 is empty by assumption since u, v, w is not a
face. However, then we can decompose Gi further.

3.2 Preserving nonzero circulation
We can show that if we replace a vertex with the gadget γ, then the nonzero-circulation
in the graph remains preserved: let G1(V1, E1) be a graph such that a vertex v in G1 is
replaced with the gadget γ (star graph). Let this new graph be G2(V2, E2). We show that if
we have a skew-symmetric weight function w2 that gives nonzero circulation to every cycle
in G2(V2, E⃗

⃗

2), then we can obtain a skew-symmetric weight function w1 that gives nonzero
circulation to every cycle in G1(V1, E⃗

⃗

2) as follow. Let u1, u2, . . . , uk be the neighbors of v in
G1. For the sake of simplicity, assume that v is replaced with γ such that γ has only two
leaves v1 and v2 and v is the center of γ. Now assume that u1, u2, . . . , uj become neighbors
of v1 and, uj+1, uj+2, . . . , uk become neighbors of v2 in G2, for some j < k. We define a
function P that maps each edge of G1 to at most two edges of G2 as follows. For edge (ui, v)
in G1,

P (ui, v) =
{

{(ui, v1), (v1, v)}, if ui is a neighbor of v1 in G2,
{(ui, v2), (v2, v)}, if ui is a neighbor of v2 in G2.

For all the other edges e of G1, P (e) = {e ∈ G2}. Now given weight function w2 for G2, we
define weight function w1 for G1 as follows:

w1(e) =
∑

e′∈P (e)

w2(e′)

For any F ⊆ E1⃗

⃗

, we define P (F) = (P (e) | e ∈ F). Let C be a simple cycle in G1. Notice
that the set of edges in P (C) form a walk in G2. Also, note that for some edges e of G2 both
e and er may appear in P (C). Let Ê2(C) be the set of edges in P (C) such that for each
e ∈ Ê2(C), both e and er appear in P (C). Since our weight function is skew-symmetric, we
know that

∑
e∈Ê2(C) w2(e) = 0. Also, notice that set of edges in the set P (C) − Ê2(C) form

a simple cycle in G2 (proof of this is same as the proof of Claim 9, that we prove later in
this paper). Let C ′ be the simple cycle in G2 formed by the edges in the set P (C) − Ê2(C).
We know that,

∑
e∈C w1(e) =

∑
e∈P (C) w2(e) =

∑
e∈C′ w2(e) +

∑
e∈Ê2(C) w2(e) and since∑

e∈Ê2(C) w2(e) = 0 we have,
∑

e∈C w1(e) =
∑

e∈C′ w2(e).
Therefore, we can say that if w2 gives nonzero circulation to C ′, then w1 gives nonzero

circulation to C. To satisfy property 1 on the component tree, we replace vertices of the
graph with γ. Furthermore, to satisfy property 2, we replace vertices with the gadget β,

FSTTCS 2021

16:8 Reachability and Matching in Single Crossing Minor Free Graphs

which contains nothing but multiple copies of γ. Thus from above, we can conclude that
these constructions preserve the nonzero circulation. Now we will work with the graph G

and the component tree T .

3.3 Tree decomposition
Note that the component tree T of G is also a tree decomposition of G in the sense that we
can consider the nodes of the component tree as bags of vertices. We know that T contains
two types of nodes: (i) nodes that contain planar graphs, (ii) nodes that contain constant
tree-width graphs. We call them p-type and c-type nodes, respectively.

Now we will construct another tree decomposition T ′ of G using the component tree T .
T ′ have two types of bags: (i) A bag with respect to each p-type node of T , which contains
the same set of vertices as the p-type node, and (ii) bags obtained from tree decomposition of
the component inside each c-type node. For a node N of T , let GN denote the graph inside
node N . Let V (GN) denote the vertices in the graph GN and TN be a tree decomposition of
GN obtained using Lemma 4.

Bags of T ′ are defined as follows: {V (GN) | N ∈ T, where N is a p-type node
in T}

⋃
{B | B ∈ TN , where N is a c-type node in T}. We know that in a tree decom-

position of a graph H, for each clique in H, there exists a bag in the tree decomposition
of H that contains all the vertices of the clique. Let τ be a separating set present in
the graph contained in a c-type node N of T . While constructing a tree decomposition
TN , we consider the virtual clique present among the vertices of τ as a part of GN . This
ensures that there exists a bag in TN that contains all the vertices of τ .
Edges in T ′ are defined as follows: (i) for a c-type node N , let B and B′ be two bags
in TN . If an edge in TN connects B and B′, then add an edge between them in T ′ as
well,(ii) let N ′ and N ′′ be two adjacent nodes in T such that they share a separating set
τ . As mentioned above, we know that either both N ′ and N ′′ are p-type or one of them
is p-type and the other one is a c-type node. If both of them are p-type : we add an edge
between the bags in T ′ that contain the vertices V (GN ′) and V (GN ′′). If N ′ is a p-type
and N ′′ is a c-type node: remember that we replaced node N ′′ by its tree decomposition.
let B be any bag in TN ′′ which contains all the vertices of τ . We add an edge between
the bag containing vertices V (GN) and B.

It is easy to see that T ′ is also a tree decomposition of G. From Lemma 4, we can say
that the overall construction of T ′ remains in logspace. For simplicity, we rename the bags of
T ′ to B1, B2, . . . , Bk. Let Bi be a bag in T ′ corresponding to a node N in T . If N contains
a separating set τ , then the set of vertices of τ is also called a separating set in Bi. We will
need this notion later on while constructing the weight function.

Note that Arora et al. [5] obtained a component tree T̂ of an input graph Ĝ such that
each node of T̂ contains either a planar graph or a constant size graph. Then they show
that for a cycle C in Ĝ, the nodes which contain edges of C form a connected component of
T̂ . They use this property to construct the desired weight function. Here we can say that
T ′ is also a component tree of G such that each node of T ′ contains a planar graph or a
constant size graph, in a sense that we assign each edge e of G to one of the bags of T ′, which
contains both the endpoints of e. However, we cannot claim that for a cycle C, the bags
containing edges of C form a connected component in T ′ (for example, see Figure 2). Thus
in this paper, we use the tree decomposition T ′ to construct another graph G′ and associate
edges of G′ to the bags to T ′ such that for each cycle C ′ in G′, the bags which have edges
of C ′ associated with them, form a connected component in T ′. We show that if we can

S. Datta, C. Gupta, R. Jain, A. Mukherjee, V. R. Sharma, and R. Tewari 16:9

Bounded treewidth component C Tree decomposition of C

a

b

c

c

d e

b

c

e

b

g

e

e h

g

b f

g

d

c

e
h

g

a
b

f

B1

B2

B3 B4

B5

B6

Figure 2 Assume C (left) is a constant treewidth component of G. We replace C with its tree
decomposition (right) in the component tree T ′ and associated each edge of C with one of the bags in
the tree decomposition, as shown in the figure. Notice that for cycle abfghedca the bags (B1, B2, B5

and B6), which have edges of the cycle associated with them, do not form a connected component.

construct a skew-symmetric weight function for G′ such that it gives nonzero circulation to
every cycle in G′, then we can obtain a skew-symmetric weight function for G, which gives
nonzero circulations to all the cycles in G.

3.4 Construction of G’
We construct G′(V ′, E′) from the tree decomposition T ′ of G(V, E) as follows. We borrow
notation from Datta et al. [11]. Without loss of generality, assume that T ′ is a rooted tree
and the parent-child relationship is well defined.

Vertex set V ′ = {vBi | Bi ∈ T ′, v ∈ Bi}, i.e., for each vertex v of the G, we have copies
of v in G′ for each bag Bi of T ′ in which v appears. Copies of vertices of a separating set
are also called a separating set in G′.
Edge set E′ = {(uBi

, vBi
) | (u, v) ∈ E, u /∈ parent(Bi) or v /∈

parent(Bi)}
⋃

{(vBi
, vBj

) | Bi and Bj are adjacent in T ′}. In other words, we add
an edge between the two vertices u and v of same bag Bi if there is an edge between
those vertices in G and no ancestor of Bi in T ′ contains both the vertices u and v. We
add an edge between two copies of a vertex if the bags they belong to, are adjacent in T ′.

▶ Lemma 8. Given a polynomially bounded, skew-symmetric weight function w′ that gives a
nonzero circulation to every cycle in G′, we can find a polynomially bounded, skew-symmetric
weight function w for G that gives a nonzero circulation to every cycle in G.

Proof. To construct the weight function w, we associate a sequence P (u, v) of edges of G′

with each edge (u, v) of G. Assume that T ′ is a rooted tree, and root is the highest node in
the tree. The heights of all the other nodes are one less than that of their parent. As we
mentioned that T ′ is a tree decomposition of G. For an edge (u, v), we know that there are
unique highest bags B1 and B2 that contain vertices u and v, respectively.

If B1 = B2 then P (u, v) = (uB1 , vB2).
If B1 is an ancestor of B2 then
P (u, v) = (uB1 , uparent(···(parent(B2)))), . . . , (uparent(B2), uB2), (uB2 , vB2).

FSTTCS 2021

16:10 Reachability and Matching in Single Crossing Minor Free Graphs

If B1 is a descendant of B2 then
P (u, v) = (uB1 , vB1), (vB1 , vparent(B1)), . . . , (vparent(···(parent(B1))), vB2).

The weight function w for the graph G is defined as follows:

w(u, v) =
∑

e∈P (u,v)

w′(e)

For a simple cycle C = e1, e2, . . . , ej in G, we define P (C) = P (e1), P (e2), . . . , P (ej).
Note that P (C) is a closed walk in G′. Let E′

d(C) be the subset of edges of G′ such for
all edges e ∈ E′

d(C) both e and er appear in P (C), where er denotes the edge obtained by
reversing the direction of e. We prove that if we remove the edges of E′

d(C) from P (C) then
the remaining edges P (C) − E′

d(C) form a simple cycle in G′.

▷ Claim 9. Edges in the set P (C) − E′
d(C) form a simple cycle in G′.

Proof. Note that the lemma follows trivially if P (C) is a simple cycle. Therefore, assume that
P (C) is not a simple cycle. We start traversing the walk P (C) starting from the edges of the
sequence P (e1). Let P (ek) be the first place where a vertex in the walk P (e1)P (e2).....P (ek)
repeats, i.e., edges in the sequence P (e1)P (e2).....P (ek−1) form a simple path, but after adding
the edges of P (ek) some vertices are visited twice in the walk P (e1)P (e2).....P (ek−1)P (ek) for
some k ≤ j. This implies that some vertices are visited twice in the sequence P (ek−1)P (ek).
Let ek−1 = (u, v) and ek = (v, x). This implies that some copies of the vertex v appear
twice in the sequence P (u, v)P (v, x). Let B1 and B2 be the highest bags such that B1
contains the copies of vertices u and v, and B2 contains the copies of v and x. Let bag B

be the lowest common ancestor of B1 and B2. We know that B must contain a copy of
the vertex v, i.e., vB. Let B′ be the highest bag containing a copy of vertex v, i.e., vB′ .
First, consider the case when neither B1 is an ancestor of B2 and vice-versa, other cases can
be handled similarly. In that case sequence P (u, v) = uB1vB1vparent(B1) . . . vB . . . vB′ and
P (v, w) = vB′ . . . vB . . . vparent(B2)vB2wB2 . Note that in P (u, v) a path goes from vB to vB′

and the same path appear in reverse order from vB′ to vB in the sequence P (v, x). Therefore
if we remove these two paths from P (u, v) and P (v, w) the remaining subsequence of the
sequence P (u, v)P (v, w) will be a simple path, i.e., no vertex will appear twice since B is the
lowest common ancestor of B1 and B2. Now repeat this procedure for Pk+1, Pk2 . . . and so
on till Pk. In the end, we will obtain a simple cycle. ◁

Since we assumed that the weight function w′ is skew-symmetric, we know that w′(e) =
−w(er), for all e ∈ G′. This implies that w′(E′

d(C)) = 0. Therefore w(C) = w′(P (C)) =
w′(P (C) − E′

d(C)). From Claim 9 we know that edges in the set P (C) − E′
d(C) form a

simple cycle and we assumed that w′ gives nonzero circulation to every simple cycle therefore,
w′(P (C) − E′

d(C)) ̸= 0. This implies that w(C) ̸= 0. This finishes the proof of Lemma 8. ◀

Now the only thing remaining is the logspace construction of the polynomially bounded
skew-symmetric weight function w′.

Constructing Weight Function for G’
To construct the weight function w′ for G′, we associate each edge of G′ with some bag of T ′.
Let (uBi

, vBj
) be an edge in G′: (i) if i = j, i.e., if Bi and Bj are the same bags. In this case

associated (uBi
, vBj

) with that bag, (ii) if i ̸= j: by our construction of G′ we know that
either Bi is the parent of Bj or Bj is the parent of Bi (i.e. uBi

and vBj
are the copies of a

same vertex of G). In both the cases, associate (uBi , vBj) with the parent bag. We will use
the following claim later in the paper.

S. Datta, C. Gupta, R. Jain, A. Mukherjee, V. R. Sharma, and R. Tewari 16:11

▷ Claim 10. For any cycle, C in G′, the bags of T ′ which have some edge of C associated
with them, form a connected component in T ′.

Proof. Note that if we treat each vertex in the bags of T ′ distinctly, then there is a one-to-one
correspondence between vertices of G′ and vertices in the bags of T ′. Therefore, in T ′ a
vertex of G′ is identified by its corresponding vertex. Note that all the bags which contain
vertices of the cycle C form a connected component in T ′. We will now prove that if a bag
B contains some vertices of C, then either B has some edges of C associate with it or no
bag in the subtree rooted at B has any edge of C associated with it. From this, we can
conclude that the bags which have some edges of C associated with them form a connected
component in T ′.

Assume that B is a bag which contains a vertex of C but no edge of C is associated with
it. This implies that C never enters in any of the children of B. Because, let us assume it
enters to some child B′ of B through some vertex vB′ of B′. In that case, there will be an
edge (vB , vB′) of C associated with the bag B, which is a contradiction. Therefore subtree
rooted at B will not have any edge of the cycle C associated with it. This finishes the proof.

◁

The weight function w′ is similar to the one constructed for K3,3-free and K5 free
graphs [5]. We assign weights to the edges of the graph G′ depending upon the height of the
bag they are associated with. The weights assigned to them are exponential in the height of
the bags. Therefore, we need the height of a bag to be O(log n) to obtain a polynomially
bounded weight function. Hence similar to [5], we define an auxiliary tree A(T ′) of the tree
T ′. In some sense, A(T ′) is a balanced representation of T ′, therefore the height of A(T ′)
is O(log n). Nodes in A(T ′) are the same as T ′, i.e. the bags of T ′, but the edges between
the bags are inserted differently. The weight of an edge of G′ associated with a bag B of T ′

depends upon the height of the bag B in A(T ′).

Auxiliary Tree. In order to construct the auxiliary tree from T ′, first, we find a node called
center node c(T ′). Make this node the root of the A(T ′). Let T1, T2, . . . , Tl be the subtrees
obtained by deleting c(T ′) from T ′. Recursively apply the same procedure on these subtrees
and make c(T1), c(T2), . . . , c(Tl) children of c(T). If c(T) shares a separating set τ with Ti

then c(Ti) is said to be attached at τ with c(T). Center nodes are chosen in such a way that
the resultant tree A(T ′) has height O(log n). Readers are referred to Section 3.3 of Arora et
al. [5] to see the logspace construction of A(T ′). We use the same construction here. The
height of the root of A(T ′) is defined as the number of nodes in the longest path from the
root c(T) to a leaf node. The heights of other nodes are one less than that of their parent.
From now on, we work with A(T ′). We use the following two properties of the auxiliary tree.

(i) Height of a node in A(T ′) is O(log n).
(ii) If T̃ is a subtree of T ′, then there exists a bag B in T̃ such that all the other bags of T̃

are descendants of B in A(T ′).
Now we define the weight function w′ for the graph G′. Note that the graph induced by
the set of edges associated with a bag Bi is either planar or constant size; we call these
the components of G′. w′ is a linear combination of two weight functions w1 and w2. w1
gives nonzero circulation to those cycles which are completely contained within a component,
and w2 gives nonzero circulation to those cycles which span over at least two components.
We define w1 and w2 separately for planar and constant size components. Let G′

Bi
be the

graph induced by the set of edges associated with the bag Bi. Let K be a constant such that
K > max(2m+2, 7), where m is the maximum number of edges associated with any constant
size component.

FSTTCS 2021

16:12 Reachability and Matching in Single Crossing Minor Free Graphs

If G′
Bi

is a planar component. w1 for such components is same as the weight function
defined in [6] for planar graphs. We know that given a planar graph G, its planar embedding
can be computed in logspace [1].

▶ Theorem 11 ([6]). Given a planar embedding of a graph H, there exists a logspace
computable function w such that for every cycle C of H, circulation of the cycle w(C) ̸= 0.

The above weight function gives nonzero circulation to every cycle that is completely contained
in a planar component.

The weight function w2 for planar components is defined as follows. w2 assigns weights to
only those faces of the component, which are adjacent to some separating set. For a subtree
of Ts of A(T ′), let l(Ts) and r(Ts) denote the number of leaf nodes in Ts and root node of Ts,
respectively. For a bag Bi, h(Bi) denotes the height of the bag in A(T ′). If Bi is the only
bag in the subtree rooted at Bi, then each face in G′

Bi
is assigned weight zero. Otherwise,

let τ be a separating set where some subtree Ti is attached to Bi. The faces adjacent to
τ in G′

Bi
are assigned weight 2 × Kh(r(Ti)) × l(Ti). If a face is adjacent to more than one

separating set, then the weight assigned to the face is the sum of the weights due to each
separating set. The weight of a face is defined as the sum of the weights of the edges of the
face in clockwise order. If we have a skew-symmetric weight function, then the weight of
the clockwise cycle will be the sum of the weights of the faces inside the cycle [6]. Therefore
assigning positive weights to every face inside a cycle will ensure that the circulation of the
cycle is nonzero. Given weights on the faces of a graph, we can obtain weights for the edges
so that the sum of the weights of the edges of a face remains the same as the weight of the
face assigned earlier [23].

If G′
Bi

is a constant size component. For this type of component, we need only one weight
function. Thus we set w2 to be zero for all the edges in G′

Bi
and w1 is defined as follows. Let

e1, e2, . . . , ek be the edges in the component Qi, for some k ≤ m. Edge ej is assigned weight
2i × Kh(r(Ti))−1 × l(Ti) (for some arbitrarily fixed orientation), Where Ti is the subtree of
A(T ′) rooted at Bi. Note that for any subset of edges of G′

Bi
, the sum of the weight of the

edges in that subset is nonzero with respect to w1.
The final weight function is w′ = ⟨w1 + w2⟩. Since the maximum height of a bag in A(T ′)

is O(log n), the weight of an edge is at most O(nc), for some constant c > 0.

▶ Lemma 12. For a cycle C in G′ sum of the weights of the edges of C associated with the
bags in a subtree Ti of A(T ′) is < Kh(r(Ti)) × l(Ti).

Proof. Let w(CTi) denotes the sum of the weight of the edges of a cycle C associated with
the bags in Ti. We prove the Lemma by induction on the height of the root of the subtrees
of A(T ′). Note that the Lemma holds trivially for the base case when the height of the root
of a subtree is 1.

Induction hypothesis: Assume that it holds for all the subtrees such that the height of
their root is < h(r(Ti)).

Now we will prove it for Ti. Let T 1
i , T 2

i , . . . , T k
i be the subtrees attached to r(Ti).

First, consider the case when G′
r(Ti) is a constant size graph: In this case, we know that the

sum of the weights of the edges of C associated with r(Ti) is ≤
∑m

j=1 2j ×Kh(r(Ti))−1×l(Ti)
and by the induction hypothesis, we know that w(CT j

i
) < Kh(r(T j

i
)) × l(T j

i), for all j ∈ [k].

S. Datta, C. Gupta, R. Jain, A. Mukherjee, V. R. Sharma, and R. Tewari 16:13

Therefore,

w(CTi) ≤
m∑

j=1
2j × Kh(r(Ti))−1 × l(Ti) +

k∑
j=1

Kh(r(T j
i

)) × l(T j
i)

w(CTi
) ≤ (2m+1 − 1) × Kh(r(Ti))−1 × l(Ti) + Kh(r(Ti))−1 × l(Ti)

w(CTi) ≤ (2m+1) × (Kh(r(Ti))−1 × l(Ti)) [K > 2m+2]
w(CTi) < Kh(r(Ti)) × l(Ti)

When G′
r(Ti) is a planar graph: let τ1, τ2, . . . , τk be the separating sets present in G′

r(Ti)

such that the subtree T j
i is attached to r(Ti) at τj , for all j ∈ [k]. A separating set can

be present in at most 3 faces. Thus it can contribute 2 × 3 × Kh(r(T j
i

)) × l(T j
i) to the

circulation of the cycle C. Therefore,

w(CTi
) ≤

k∑
j=1

6 × Kh(r(T j
i

)) × l(T j
i) +

k∑
j=1

Kh(r(T j
i

)) × l(T j
i)

w(CTi) ≤ 7 × Kh(r(Ti))−1 × l(Ti) [K > 7]
w(CTi

) < Kh(r(Ti)) × l(Ti)
◀

▶ Lemma 13. For a cycle, C in G let Bi be the unique highest bag in A(T ′) that have some
edges of C associated with it. Then the sum of the weights of the edges of C associated with
Bi will be more than that of the rest of the edges of C associated with the other bags.

Proof. Let Ti be the subtree of A(T ′) rooted at Bi. We know that sum of the weights of the
edges of C associated Bi is ≥ 2 × Kh(r(Ti))−1 × l(Ti). Let T 1

i , T 2
i , . . . , T k

i be the subtree of Ti

rooted at children of Bi. By Lemma 12, we know that the sum of the weight of the edges of C

associated with the bags in these subtrees is <
∑k

j=1 Kh(r(T j
i

)) × l(T j
i) = Kh(r(Ti))−1 × l(Ti).

Therefore, the lemma follows. ◀

▶ Lemma 14. Circulation of a simple cycle C in the graph G′ is nonzero with respect to w′.

Proof. If C is contained within a component, i.e., its edges are associated with a single bag
Bi, then we know that w1 assigns nonzero circulation to C. Suppose the edges of C are
associated with more than one bag in T ′. By Claim 10, we know that these bags form a
connected component. By the (ii) property of A(T ′), we know that there is a unique highest
bag Bi in A(T ′) which have edges of C associated with it. Therefore from Lemma 13 we
know that the circulation of C will be nonzero. ◀

Proof of Theorem 1. Proof of Theorem 1 follows from Lemma 8 and 14. ◀

4 Maximum Matching

In this section, we consider the complexity of the maximum matching problem in single
crossing minor free graphs. Recently Datta et al. [8] have shown that the bipartite maximum
matching can be solved in SPL in the planar, bounded genus, K3,3-free and K5-free graphs.

Their techniques can be extended to any graph class where nonzero circulation weights
can be assigned in logspace. For constructing a maximum matching in K3,3-free and K5-free
bipartite graphs, they use the logspace algorithm of [5] as a black box. Since from Theorem 1
nonzero circulation weights can be computed for the more general class of any single crossing
minor free graphs, we get the bipartite maximum matching result of Corollary 2.

FSTTCS 2021

16:14 Reachability and Matching in Single Crossing Minor Free Graphs

In a related work recently, Eppstein and Vazirani [16] have shown an NC algorithm for
the case when the graph is not necessarily bipartite. However, the result holds only for
constructing perfect matchings. In non-bipartite graphs, there is no known parallel (e.g.,
NC) or space-efficient algorithm for deterministically constructing a maximum matching
even in the case of planar graphs [30, 8]. Datta et al. [8] givelo an approach to design a
pseudo-deterministic NC algorithm for this problem. Pseudo-deterministic algorithms are
probabilistic algorithms for search problems that produce a unique output for each given
input with high probability. That is, they return the same output for all but a few of the
possible random choices. We call an algorithm pseudo-deterministic NC if it runs in RNC
and is pseudo-deterministic.

Using the Gallai-Edmonds decomposition theorem, [8] shows that the search version of
the maximum matching problem reduces to determining the size of the maximum matching
in the presence of algorithms to (a) find a perfect matching and to (b) solve the bipartite
version of the maximum matching, all in the same class of graphs. This reduction implies a
pseudo-deterministic NC algorithm as we only need to use randomization for determining the
size of the matching, which always returns the same result. For single crossing minor free
graphs, using the NC algorithm of [16] for finding a perfect matching and our SPL algorithm
for finding a maximum matching in bipartite graphs, we have the following result:

▶ Theorem 15. Maximum matching in single-crossing minor free graphs (not necessarily
bipartite) is in pseudo-deterministic NC.

5 Conclusion

We have given a construction of a nonzero circulation weight function for the class of graphs
that can be expressed as 3-clique-sums of planar and constant treewidth graphs. However, it
seems that our technique can be extended to the class of graphs that can be expressed as
3-clique-sums of constant genus and constant treewidth graphs. Further extending our results
to larger graph classes would require fundamentally new techniques. This is so because
the most significant bottleneck in parallelizing matching algorithms for larger graph classes
such as apex minor free graphs or H-minor free graphs for a finite H is the absence of a
parallel algorithm for the structural decomposition of such families. Thus we would need to
revisit the Robertson-Seymour graph minor theory to parallelize it. This paper thus serves
the dual purpose of delineating the boundaries of the known regions of parallel (bipartite)
matching and reachability and as an invitation to the vast unknown of parallelizing the
Robertson-Seymour structure theorems.

References
1 Eric Allender and Meena Mahajan. The complexity of planarity testing. Information and

Computation, 189:117–134, 2004.
2 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting: Uniform

and nonuniform upper bounds. Journal of Computer and System Sciences, 59:164–181, 1999.
3 Nima Anari and Vijay V. Vazirani. Matching is as easy as the decision problem, in the

NC model. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs,
pages 54:1–54:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

4 Nima Anari and Vijay V. Vazirani. Planar graph perfect matching is in nc. J. ACM, 67(4),
May 2020. doi:10.1145/3397504.

https://doi.org/10.1145/3397504

S. Datta, C. Gupta, R. Jain, A. Mukherjee, V. R. Sharma, and R. Tewari 16:15

5 Rahul Arora, Ashu Gupta, Rohit Gurjar, and Raghunath Tewari. Derandomizing isolation
lemma for k3,3-free and k5-free bipartite graphs. In 33rd Symposium on Theoretical Aspects of
Computer Science, STACS 2016, February 17-20, 2016, France, pages 10:1–10:15, 2016.

6 Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Transactions on Computation Theory, 1(1):1–17, 2009.
doi:10.1145/1490270.1490274.

7 Erin W. Chambers and David Eppstein. Flows in one-crossing-minor-free graphs. J. Graph
Algorithms Appl., 17(3):201–220, 2013.

8 Samir Datta, Raghav Kulkarni, Ashish Kumar, and Anish Mukherjee. Planar maximum
matching: Towards a parallel algorithm. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou
Liao, editors, 29th International Symposium on Algorithms and Computation, ISAAC 2018,
December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123 of LIPIcs, pages 21:1–21:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ISAAC.2018.21.

9 Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect
matching in bipartite planar graphs. Theory Comput. Syst., 47(3):737–757, 2010.

10 Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N.V. Vinodchandran. Space complexity
of perfect matching in bounded genus bipartite graphs. Journal of Computer and System
Sciences, 78(3):765–779, 2012. In Commemoration of Amir Pnueli. doi:10.1016/j.jcss.
2011.11.002.

11 Samir Datta, Pankaj Kumar, Anish Mukherjee, Anuj Tawari, Nils Vortmeier, and Thomas
Zeume. Dynamic complexity of reachability: How many changes can we handle? In 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, July
8-11, 2020, Saarbrücken, Germany (Virtual Conference), pages 122:1–122:19, 2020.

12 Erik D. Demaine, Mohammad Taghi Hajiaghayi, Naomi Nishimura, Prabhakar Ragde, and
Dimitrios M. Thilikos. Approximation algorithms for classes of graphs excluding single-crossing
graphs as minors. J. Comput. Syst. Sci., 69(2):166–195, 2004.

13 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

14 Jack Edmonds. Paths, trees and flowers. Canadian Journal Of Mathematics, pages 449–467,
1965.

15 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
bodlaender and courcelle. In FOCS ’10: Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science, 2010. URL: http://www.eccc.uni-trier.de/report/
2010/062/.

16 David Eppstein and Vijay V. Vazirani. NC algorithms for computing a perfect matching and
a maximum flow in one-crossing-minor-free graphs. SIAM J. Comput., 50(3):1014–1033, 2021.

17 Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is
in Quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 754–763, 2016.

18 L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

19 Chetan Gupta, Vimal Raj Sharma, and Raghunath Tewari. Reachability in O(log n) Genus
Graphs is in Unambiguous Logspace. In 36th International Symposium on Theoretical Aspects
of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, pages 34:1–34:13,
2019.

20 Chetan Gupta, Vimal Raj Sharma, and Raghunath Tewari. Efficient Isolation of Perfect
Matching in O(log n) Genus Bipartite Graphs. In Javier Esparza and Daniel Krá?, editors, 45th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2020),
volume 170 of Leibniz International Proceedings in Informatics (LIPIcs), pages 43:1–43:13,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

FSTTCS 2021

https://doi.org/10.1145/1490270.1490274
https://doi.org/10.4230/LIPIcs.ISAAC.2018.21
https://doi.org/10.1016/j.jcss.2011.11.002
https://doi.org/10.1016/j.jcss.2011.11.002
http://www.eccc.uni-trier.de/report/2010/062/
http://www.eccc.uni-trier.de/report/2010/062/
https://doi.org/10.4153/CJM-1956-045-5

16:16 Reachability and Matching in Single Crossing Minor Free Graphs

21 Vivek Anand T. Kallampally and Raghunath Tewari. Trading determinism for time in space
bounded computations. In 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 10:1–10:13, 2016.

22 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random
NC. In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages 22–32. ACM, 1985.

23 Arpita Korwar. Matching in planar graphs. Master’s thesis, IITK, 2009.
24 Jan Kynčl and Tomáš Vyskočil. Logspace reduction of directed reachability for bounded

genus graphs to the planar case. ACM Transactions on Computation Theory, 1(3):1–11, 2010.
doi:10.1145/1714450.1714451.

25 Meena Mahajan and Kasturi R. Varadarajan. A new nc-algorithm for finding a perfect
matching in bipartite planar and small genus graphs (extended abstract). In Proceedings of the
Thirty-second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 351–357,
New York, NY, USA, 2000. ACM. doi:10.1145/335305.335346.

26 Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and sinks. SIAM
Journal on Computing, 24:1002–1017, 1995.

27 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987,
New York, New York, USA, pages 345–354, 1987.

28 Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J. Comput.,
29(4):1118–1131, 2000.

29 Neil Robertson and Paul D. Seymour. Excluding a graph with one crossing. In Graph Structure
Theory, Proceedings of a AMS-IMS-SIAM Joint Summer Research Conference on Graph
Minors, June 22 to July 5, 1991, Seattle, USA, pages 669–675, 1991.

30 Piotr Sankowski. NC algorithms for weighted planar perfect matching and related problems.
In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 97:1–97:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

31 Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the number of perfect
matchings in K5-free graphs. Theory Comput. Syst., 59(3):416–439, 2016.

32 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in Quasi-NC.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, pages 696–707. IEEE Computer Society, 2017.

33 Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in planar graphs.
Inf. Comput., 215:1–7, 2012.

34 Thomas Thierauf and Fabian Wagner. Reachability in K3,3-free Graphs and K5-free Graphs is
in Unambiguous Log-Space. In 17th International Conference on Foundations of Computation
Theory (FCT), Lecture Notes in Computer Science 5699, pages 323–334. Springer-Verlag, 2009.

35 Thomas Thierauf and Fabian Wagner. The isomorphism problem for planar 3-connected
graphs is in unambiguous logspace. Theory Comput. Syst., 47(3):655–673, 2010.

https://doi.org/10.1145/1714450.1714451
https://doi.org/10.1145/335305.335346

Approximating the Number of Prime Factors Given
an Oracle to Euler’s Totient Function
Yang Du #

Departments of EECS, CSE Division, University of Michigan, Ann Arbor, MI, USA

Ilya Volkovich # Ñ

Computer Science Department, Boston College, Chestnut Hill, MA, USA

Abstract
In this work we devise the first efficient deterministic algorithm for approximating ω(N) – the
number of prime factors of an integer N ∈ N, given in addition oracle access to Euler’s Totient
function Φ(·). We also show that the algorithm can be extended to handle a more general class of
additive functions that “depend solely on the exponents in the prime factorization of an integer”1. In
particular, our result gives the first algorithm that approximates ω(N) without necessarily factoring
N . Indeed, all the previously known algorithms for computing or even approximating ω(N) entail
factorization of N , and therefore are either randomized [12, 9] or require the Generalized Riemann
Hypothesis (GRH) [10].

Our approach combines an application of Coppersmith’s method for finding non-trivial factors
of integers whose prime factors satisfy certain “relative size” conditions of [11], together with a new
upper bound on Φ(N) in terms of ω(N) which could be of independent interest.

2012 ACM Subject Classification Mathematics of computing → Number-theoretic computations;
Theory of computation → Problems, reductions and completeness; Theory of computation →
Computational complexity and cryptography

Keywords and phrases Euler’s Totient Function, Integer Factorization, Number of Prime Factors,
Derandomization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.17

Acknowledgements The authors would like to thank the anonymous referees for their detailed
comments and suggestions on the previous version of the paper.

1 Introduction

The Fundamental Theorem of Arithmetic states that each N ∈ N admits a unique factorization
into a product of powers of prime numbers N = pα1

1 · . . . · pαk

k . The integer factorization
problem asks to compute those prime factors given N as an input. In addition to being a
central problem in algorithmic number theory, integer factorization has a direct application
to cryptography as all known approaches to break the RSA cryptosystem involve integer
factorization. Indeed, there is no known efficient algorithm for the problem and it is believed to
be computationally hard. In light of this hardness, a large body of work [10, 4, 14, 8, 11, 6, 7]
has been dedicated to the study of the computational complexity of integer factorization when
in addition the algorithm is given oracle access to some function f : N → N that provides
“useful information” about N . On the practical side, oracles can model extra information on
N obtained by means of side-channel attacks.

One such line of work considers integer factorization algorithms that are given oracle
access to Euler’s Totient function Φ(·) (see Definition 12 for a formal definition). In a seminal
work [10], Miller has shown that one can efficiently factor integers with an oracle to Φ. More

1 This class and terminology were introduced and studied by Shallit & Shamir in [13].

© Yang Du and Ilya Volkovich;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 17; pp. 17:1–17:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duyung@umich.edu
mailto:ilya.volkovich@bc.edu
https://sites.google.com/site/ilyavv/
https://orcid.org/0000-0002-7616-0751
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Approximating the Number of Prime Factors

precisely, the result is an efficient deterministic factorization algorithm, however its correctness
relies on the Generalized Riemann Hypothesis (GRH). Subsequently, Long [9] and Rabin [12]
replaced the GRH assumption with randomness, thus obtaining (unconditional) efficient
randomized factorization algorithms. It has since been an open question to derandomize
these algorithms unconditionally. In this paper we make another step towards the resolution
of this problem.

1.1 Previous Results
Landau [8] and Woll [14] have shown that one can efficiently compute the square-free part of
an integer2 given an oracle access to Φ(·). Building on this result, Z̀ralek [15] and later on
Hittmeir & Pomykała [6] achieved another milestone by exhibiting a reduction of integer
factorization to the computation of Φ in deterministic subexponential-time. Morain et al. [11]
applied Coppersmith’s method (see e.g. [5]) to find non-trivial factors of integers whose
prime factors satisfy certain “relative size” conditions.

1.2 Our Results
We take a slightly different approach: can we learn some “useful information” about N ,
given oracle access to Φ(·)? Formally, given an integer N ∈ N as an input, we would like to
compute f(N) for some “interesting” function f : N → N that can be efficiently computed
given the complete factorization of N . A particular example of such a function is ω(N),
which is defined as the number of prime factors of N . Our main result is an approximation
algorithm for ω(N).

▶ Theorem 1. There exist an efficient deterministic algorithm that given N ∈ N as an input,
outputs an integer L satisfying: ω(N) ≤ L ≤ 3ω(N), given in addition oracle access to Φ(·).

▶ Remark 2. Although, ω(N) ≤ log N , computing the actual value of ω(N) is believed to be
as hard as factoring N (see e.g. [3, 1]).
▶ Remark 3. Our result is non-trivial when ω(N) = O(1) or more generally, when ω(N) =
o(log log N).
To put our result in context, consider a decision version of the problem: given N ∈ N and
oracle access to Φ(·) (as before), decide if ω(N) = k for a fixed k ∈ N. For k = 1 the
problem corresponds to primality testing, which can trivially be solved given Φ(N) since
Φ(N) = N − 1 if and only if N is prime3. The case k = 2 is handled by a falklore result (See
Lemma 13 for more details). For k ≥ 3 the problem is still open.
It is also important to point out that one of the results of [6] provides an efficient deterministic
factorization algorithm for N with ω(N) = O(1), if in addition the algorithm given the
prime factorization of Φ(N). To the best of our knowledge, there is no known efficient
deterministic algorithm to compute the prime factorization of Φ(N), even given oracle access
to Φ(·).

In [13], Shallit & Shamir introduced and studied the class of functions that “depend solely
on the exponents in the prime factorization of an integer” (exponent-dependent functions,
for short). They also showed that d(N) - the number of positive divisors of N , is complete
for this class under deterministic Turing reductions. More formally,

2 See definition 10 for a formal definition.
3 The breakthrough result of [2] gives an efficient deterministic primality test without Φ(N).

Y. Du and I. Volkovich 17:3

▶ Lemma 4 ([13]). Let f : N → N be an exponent-dependent function that can be efficiently
(and deterministically) computed given the factorization of N . Then there exists an efficient
deterministic algorithm that given N ∈ N as an input, outputs f(N), given in addition oracle
access to d(·).

We observe that Φ(N) together with ω(N) are hard for the class of exponent-dependent
functions.

▶ Observation 5. For f : N → N as above, there exists a deterministic algorithm that given
N ∈ N as an input, outputs f(N), given in addition oracle access to Φ(·) and ω(·).

As an important corollary, we obtain that if one can compute ω(N) exactly, given oracle
access to Φ(·) then Φ(·) is (by itself) hard for the class of exponent-dependent functions.
Such a result would constitute another important milestone on route to derandomization of
the results of [10, 12, 9]. We show that a similar statement holds w.r.t approximations for
additive functions: i.e. f(N · M) = f(N) + f(M) for coprime M and N (see Definition 14
for more details).

▶ Theorem 6. Let f : N → N be an additive exponent-dependent function that can be
efficiently (and deterministically) computed given the factorization of N . Then there exist
an efficient deterministic algorithm that given N ∈ N as an input, outputs an integer L

satisfying: f(N) ≤ L ≤ 3f(N), given in addition oracle access to Φ(·).

As an instantiation, we obtain an approximation algorithm for Ω(N) - the number of
prime factors of N with multiplicity (see Example 15 for more details).

▶ Corollary 7. There exist an efficient deterministic algorithm that given N ∈ N as an input,
outputs an integer L satisfying: Ω(N) ≤ L ≤ 3Ω(N), given in addition oracle access to Φ(·).

Finally, we note that our main result is obtained using the following new upper bound on
Φ(N) in terms of ω(N) which could be of independent interest.

▶ Theorem 8. Let N ∈ N and let k = ω(N). Then Φ(N) ≤
(

k
√

N − 1
)k

.

1.3 Techniques
In this section we give the outline of the proof of our main result.

First, we give a new upper bound on Φ(N) in terms of k = ω(N). Next, we show that
there exists an efficient procedure that finds a non-trivial factor of N , if N has a “small” factor.
Alternatively, if the procedure fails, then N cannot have a small factor. We complement this
result by showing that if N still satisfies the upper bound for a “much” larger value of k then
N must have a small factor.

Based on the above, our main algorithm operates as follows: given N ∈ N it first attempts
to find a non-trivial factor D of N . If it succeeds, then the algorithm proceeds recursively on
N/D and D. Otherwise (i.e. if the procedure fails), as discussed above, N cannot have a
small factor. This, in turn, implies that the largest value of k satisfying the upper bound
cannot be “much larger” than ω(N) as otherwise N must have had a small factor.

1.4 Organization
The paper is organized as follows: we start by some basic definitions and notations in Section
2. In that section we also prove Observation 5 and Theorem 6 as these follow immediately
from the definitions. In Section 3 we give our main algorithm and a new upper bound on
Φ(N) in terms of ω(N), thus proving Theorems 1 and 8. We show some numerical examples
in Section 4. Finally, we conclude with discussion and open questions in Section 5.

FSTTCS 2021

17:4 Approximating the Number of Prime Factors

2 Preliminaries

Let P denote the set of all primes. The Fundamental Theorem of Arithmetic states that
each integer N ∈ N has a unique prime factorization. That is, N can be uniquely written as

N =
k∏

i=1
pαi

i such that for all i: pi ∈ P and αi ∈ N.

▶ Definition 9 (Roughness). Let r ∈ N. A number N ∈ N is called r-rough if all its prime
factors are greater then or equal to r. That is, ∀i : pi ≥ r.

▶ Definition 10 (Radicals). We define the square-free part or radical of N as rad(N) ∆=
k∏

i=1
pi.

N is called square-free or radical iff ∀i : αi = 1. In other words, N is radical iff N = rad(N).
We define the set SQF ⊆ N as the set of all square-free integers.

▶ Definition 11 (Square-free decomposition). A square-free decomposition of N ∈ N is a
factorization of N as N = N1

1 N2
2 N3

3 . . . N ℓ
ℓ such that gcd(Ni, Nj) = 1 and Ni ∈ SQF.

By The Fundamental Theorem of Arithmetic, each integer admits a unique square-free
decomposition. Furthermore, observe that ℓ ≤ log N . In addition, rad(N) = N1N2N3 · · · Nℓ.

▶ Definition 12 (Euler’s Totient Function). Φ(N) : N → N is defined as Φ(N) ∆=
k∏

i=1
pαi−1

i ·

(pi − 1).

▶ Lemma 13. Below are some useful properties and facts.

1. Φ(N) ≤ N − 1. Equality holds if and only if N is prime.

2. Φ(N)
N

= Φ(rad(N))
rad(N) .

3. Folklore: Let N be a product of two distinct primes N = pq. There exists an algorithm
that given N and Φ(N), outputs p and q, in time polylog(N).
A sketch of the proof appears in Section A.

4. [14, 8]: There exists an algorithm that given N and oracle access to Φ(·), outputs the
square-free decomposition of N , in time polylog(N).

▶ Definition 14 ([13]). We call a function f : N → C exponent-dependent if it depends
solely on the exponents in the prime factorization N .
In addition, we say that f is additive, if f(N · M) = f(N) + f(M) for all coprime N, M ∈ N.

▶ Example 15. Prominent examples include the following functions.

1. Ω(N) ∆=
k∑

i=1
αi - the number of prime factors of N with multiplicity.

2. ω(N) ∆= k - the number of prime factors of N without multiplicity.
3. µ : N → {−1, 0, 1} - Möbius Function:

µ(N) =
{

0 if N is not square-free
(−1)k if N is a product of k (distinct) primes

4. d(N) ∆=
k∏

i=1
(αi + 1) - the number of positive divisors of N .

Here, Ω(N) and ω(N) are additive.

Y. Du and I. Volkovich 17:5

We remark that there is no known polynomial-time algorithm for computing any of the
above functions. Indeed, they are believed to be as hard as (complete) integer factorization
[3, 1]. Several relations between these (and other) functions have been established in
[10, 13, 4, 14, 8, 11]. In particular, in [13] it was shown that d(N) is complete for the class
of exponent-dependent functions under Turing reductions, by showing that an oracle to
d(·) can be used to compute e(N) ∆= {α1, . . . , αk} - the multiset of exponents in the prime
factorization of N . We observe that e(N) can be easily constructed from a square-free
decomposition of an integer N , given oracle access to ω(·).

▶ Observation 16. Let N = N1
1 N2

2 N3
3 · · · N ℓ

ℓ be the square-free decomposition of N . Then
e(N) = {(i, ω(Ni)) | ω(Ni) > 0}. That is, e(N) contains all the values w(Ni) greater than
0, where each w(Ni) appears i times.

Observation 5 follows by combining the above observation with Part 4 of Lemma 13. The
following is another observation immediate from the definition.

▶ Observation 17. Let N = N1
1 N2

2 N3
3 · · · N ℓ

ℓ be the square-free decomposition of N and let

f : N → N be an exponent-dependent additive function. Then f(N) =
ℓ∑

i=1
ω(Ni) · f(2i).

Theorem 6 follows by combining the above with Part 4 of Lemma 13 and Theorem 24.

▶ Lemma 18. We have three inequalities that will be used in the later sections.

1. AM-GM Inequality. Let x1, . . . , xm ≥ 0: Then the arithmetic mean is greater then or
equal to the geometric mean of these numbers:

x1 + · · · + xm

m
≥ m

√
x1 · · · xm.

2. Multivariate Bernoulli Inequality. Let 0 ≤ ε1, . . . , εm ≤ 1, then it follows that
m∏

i=1
(1 − εi) ≥ 1 −

m∑
i=1

εi

3. For any positive integer k, and 0 ≤ x ≤ 1
2k

and ℓ ≥ 2k, we have

(1 − x)ℓ ≤ 1 − kx.

Proof. We will show the proof of Part 3 of Lemma 18. Since 1 − x is less then 1 and ℓ ≥ 2k,
then (1 − x)ℓ ≤ (1 − x)2k, we now only need to show that (1 − x)2k ≤ 1 − kx. We know that
(1−x)2k is a convex function on [0, 1] because the second derivative 2k(2k −1)(1−x)2k−2 > 0.
In addition, it is clear that both side of the inequality is evaluated to be 1 at x = 0, and the
first derivative of (1 − x)2k is less then the first derivative of 1 − kx at x = 0. Therefore, we
only need to show (1 − x)2k ≤ 1 − kx is established at x = 1

2k
, which is

(
1 − 1

2k

)2k

≤ e−1 ≤ 1
2 = 1 − k · 1

2k
.

We can see that when k goes from 1 to infinity, the left hand side approached to 1/e from
the bottom, so it is always less then 1/2. ◀

FSTTCS 2021

17:6 Approximating the Number of Prime Factors

3 Algorithm and Technical Results

In this section we prove our main result (Theorem 1) and give a new upper bound on Φ(N)
in terms of ω(N), thus proving Theorem 8. We first give the upper bound for the case of
square-free integers.

▶ Lemma 19. Let N ∈ SQF and let k = ω(N). Then Φ(N)
N

≤
(

1 − 1
k
√

N

)k

Proof. Let N = p1 · · · pk. Then by applying AM-GM inequality (Lemma 18) we get:

(
Φ(N)

N

)1/k

= k

√√√√ k∏
i=1

(
1 − 1

pi

)
≤

k∑
i=1

(
1 − 1

pi

)
k

= 1− 1
k

k∑
i=1

1
pi

≤ 1− k

√√√√ k∏
i=1

1
pi

= 1− 1
k
√

N
.

◀

Next, we extend the upper bound to arbitrary N . Theorem 8 follows from the next
corollary.

▶ Corollary 20. Let N ∈ N and let k = ω(N). Then Φ(N)
N

≤

(
1 − 1

k
√

rad(N)

)k

≤(
1 − 1

k
√

N

)k

Proof. Apply Lemma 19 on rad(N) together with Lemma 13, Part 2. ◀

Next, we show that there exists an efficient procedure that finds a non-trivial factor of N ,
if N has a small factor. Alternatively, if the procedure fails, then N cannot have a small
factor. Our result relies on the following result of [11] that uses Coppersmith’s method to
find non-trivial factors of integers whose prime factors satisfy certain relative size conditions.

▶ Lemma 21 ([11]). Suppose ω(N) ≥ 3 and there exists 1 ≤ r < ω(N) such that

αr ≥ 2
ω(N)∑

i=r+1
αi,

where αi
∆= logN (pi). Then there exists an algorithm that given N and Φ(N) recovers the

factor D =
r∏

i=1
pi, in time polylog(N).

▶ Theorem 22. Let N ∈ SQF and suppose N has a factor smaller then N
1

3ω(N)−1 . Then
there exists an algorithm that given N and Φ(N) as input, finds a non-trivial factor of N , in
time polylog(N).

Proof. Let N = p1 · · · pk with p1 > p2 > . . . > pk, and ω(N) is hence equal to k. Observe
that the premises of the claim are equivalent to pk ≤ N

1
3k−1 , namely αk ≤ 1

3k−1 . It is
sufficient to show that N satisfies that premises of Lemma 21. We suppose for contradiction
that for all 1 ≤ r ≤ k − 1,

αr < 2
k∑

i=r+1
αi. (1)

Y. Du and I. Volkovich 17:7

We claim that it implies that for all 1 ≤ i ≤ k − 2, we have αk−i < 2 · 3i−1 · αk. We prove
this by induction. The base case αk−1 < 2αk follows directly from Equation 1 when we set
r = k − 1. Now, assume that for all 1 ≤ i ≤ m, αk−i < 2 · 3i−1 · αk is established, then for
i = m + 1 we have:

αk−m−1 < 2
k∑

i=k−m

αi < 2
[

m∑
i=1

(
2 · 3i−1 · αk

)
+ αk

]
= 2

[
2 · 3m − 1

3 − 1 + 1
]

αk = 2 · 3m · αk.

Therefore,

1 = α1 + · · · + αk < 2
(
3k−2 + 3k−1 + . . . + 1

)
αk + αk =

(
2 · 3k−1 − 1

3 − 1 + 1
)

αk = 3k−1 · αk ≤ 1

leading to a contradiction. ◀

We complement the above result by showing that (under certain technical conditions) if N

satisfies the bound of Lemma 19 with a value of k “much” larger then ω(N) then N must
have a small factor.

▶ Lemma 23. Let N ∈ SQF and suppose that N is (2ω(N))-rough. Furthermore, suppose
that Φ(N)1/ℓ ≤ N1/ℓ − 1 for some ℓ ≥ 2ω(N). Then N has a factor smaller then N1/ℓ.

Proof. As before, let N = p1 · · · pk with p1 > · · · > pk so ω(N) = k. By the premises,
pk ≥ 2k. Next, since Φ(N)1/ℓ ≤ N1/ℓ − 1 we have

Φ(N)
N

≤
(

1 − 1
N1/ℓ

)ℓ

.

By the Multivariate Bernoulli Inequality in Lemma 18 part 2, we have

Φ(N)
N

≥ 1 −
k∑

i=i

1
pi

≥ 1 − k

pk
.

Therefore, by combining the above we obtain:(
1 − k

pk

)1/ℓ

≤ 1 − 1
N1/ℓ

.

By Lemma 18 part 3, since 1
pk

≤ 1
2k and ℓ ≥ 2k we have that:

1 − 1
pk

≤
(

1 − k

pk

)1/ℓ

.

Therefore,

1 − 1
pk

≤ 1 − 1
N1/ℓ

=⇒ pk ≤ N1/ℓ. ◀

Given N ∈ N, our main algorithm operates as follows: first, it invokes the procedure in
Theorem 22 attempting to find a non-trivial factor D of N . If it succeeds, then the algorithm
proceeds recursively on N/D and D. Otherwise (i.e. if the procedure fails), as discussed
above, N cannot have a small factor. This, in turn, implies that the largest value of k

satisfying the bound in Lemma 19 has to be at most 3ω(N) as otherwise, by Lemma 23 N

must have had a small factor.

FSTTCS 2021

17:8 Approximating the Number of Prime Factors

▶ Theorem 24. There exist an algorithm that given N ∈ SQF as an input, outputs an integer
L satisfying: ω(N) ≤ L ≤ 3ω(N), given in addition oracle access to Φ(·), in time polylog(N).
The description of the algorithm is given below in Algorithm 1.

Algorithm 1 Approximation of number of factors (ANF).

1 Function: ANF(N)
Input: N ∈ SQF and oracle access to Φ(·).
Output: An integer L satisfying: ω(N) ≤ L ≤ 3ω(N).
// N is prime

2 if Φ(N) = N − 1 then return 1;
3 if N has 2 prime factors then return 2; / Invoking the algorithm from Lemma 13

Part 3.
4 for M = 1 to 2 log N do
5 if M | N then return ANF(M) + ANF(N/M);
6 Invoke the algorithm from Theorem 22 on N and Φ(N). Let D be the output;
7 if D | N then return ANF(D) + ANF(N/D);

// Otherwise:

8 L = max
ℓ

Φ(N) ≤
(
N1/ℓ − 1

)ℓ;

9 return L;

Proof. The proof is by induction on ω(N). The base cases, i.e. ω(N) = 1, 2, follow from
Lemma 13, Parts 1 and 3. Now suppose ω(N) ≥ 3. We consider a few cases.

1. N has a factor M ≤ 2 log N .
Observe that M, N/M ∈ SQF. In addition, as ω(N) = ω(M) + ω(N/M) we have that
ω(M), ω(N/M) < ω(N). Therefore, by the induction hypothesis:

ω(M) ≤ ANF(M) ≤ 3ω(M) and ω(N/M) ≤ ANF(N/M) ≤ 3ω(N/M).

Consequently:

ANF(N) = ANF(M) + ANF(N/M) ≤ 3ω(M) + 3ω(N/M) ≤ 3ω(M) · 3ω(N/M) = 3ω(N).

and

ANF(N) = ANF(M) + ANF(N/M) ≥ ω(M) + ω(N/M) = ω(N).

2. The algorithm from Theorem 22 produces a factor D such that D | N .
The claim follows by repeating the argument from the previous case.

3. L < 2ω(N). Then clearly, L ≤ 3ω(N).
4. W.l.o.g none of the above conditions hold.

As ω(N) ≤ log N and N has no factors less then 2 log N , it follows that N is (2ω(N))-
rough. By Lemma 23, N has a factor smaller then N1/L. On the other hand, by
Theorem 22, N has no factors smaller then N

1
3ω(N)−1 . Consequently, L ≤ 3ω(N)−1 ≤

3ω(N).
Finally, by Lemma 19: ω(N) ≤ L. ◀

Theorem 1 follows by combining the above Theorem with Part 4 of Lemma 13.

Y. Du and I. Volkovich 17:9

4 Examples

We use Algorithm 1 (ANF) to find an upper bound for the number of prime factors of a
square-free integer N , given in addition Φ(N).

4.1 Example 1
Let us find the number of prime factors of

N = 50000000479987 = 3005349551 × 127 × 131,

where α1 = 0.691869, α2 = 0.154557, α3 = 0.153574. The algorithm will first find that it
does not satisfy the base case, then iterate from M = 1 to 2 log N(= 91). After that, it will
invoke the algorithm from Theorem 22, since α1 ≥ 2(α2 + α3). That algorithm will return
p1 = 3005349551. Then it will return ANF(16637) + ANF(3005349551) = 3, since both will
satisfy the base cases.

4.2 Example 2
We will find the number of prime factors of

N = 504203634089 = 389 × 331 × 283 × 137 × 101,

where α1 = 0.221314, α2 = 0.215322, α3 = 0.209508, α4 = 0.182585, α5 = 0.171271. The
algorithm will first find that it does not satisfy the base case, then iterate from M = 1 to
2 log N(= 54). Since none of M -s divides N , it will then invoke the algorithm from Theorem
22. As no 1 ≤ r < 5 satisfies

αr ≥ 2
5∑

i=r+1
αi,

the algorithm will compute the approximation: i.e. return the largest ℓ satisfying Φ(N)1/ℓ ≤
N1/ℓ − 1. As Φ(N) = 491059008000, the algorithm outputs L = 6 < 35.

5 Discussion & Open Questions

In this paper we give the first efficient deterministic algorithm that approximates ω(N),
given oracle access to Φ(·). In addition, in our approach we attempt to compute/approximate
ω(N) “directly” rather than factoring N first (although we may eventually end up succeeding
to factor N). Below are some open questions.

The immediate open question is, of course, to compute ω(N) exactly or at least improve
the approximation ratio. As was noted, we believe that the exact computation of ω(N),
given oracle access to Φ(·), would constitute an important milestone. See discussion after
Observation 5 for more details.
Can we extend this result to other “interesting” functions that can be efficiently computed
given the complete factorization of N?
In particular, can we devise an efficient algorithm for computing the Möbius function
µ(N)? Given the results of [8, 14], this would be equivalent to determining the parity of
ω(N).

FSTTCS 2021

17:10 Approximating the Number of Prime Factors

References
1 L. M. Adleman and K. S. McCurley. Open problems in number theoretic complexity, II. In

Algorithmic Number Theory, First International Symposium, ANTS-I, Ithaca, NY, USA, May
6-9, 1994, Proceedings, pages 291–322, 1994. doi:10.1007/3-540-58691-1.

2 M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160(2):781–793,
2004.

3 E. Bach. Intractable problems in number theory. In Advances in Cryptology - CRYPTO ’88,
8th Annual International Cryptology Conference, Santa Barbara, California, USA, August
21-25, 1988, Proceedings, pages 77–93, 1988. doi:10.1007/0-387-34799-2.

4 E. Bach, G. L. Miller, and J. Shallit. Sums of divisors, perfect numbers and factoring. SIAM
J. Comput., 15(4):1143–1154, 1986. doi:10.1137/0215083.

5 D. Coppersmith. Finding a small root of a univariate modular equation. In Advances in
Cryptology - EUROCRYPT, volume 1070 of Lecture Notes in Computer Science, pages 155–165.
Springer, 1996. doi:10.1007/3-540-68339-9.

6 M. Hittmeir and J. Pomykala. Deterministic integer factorization with oracles for euler’s
totient function. Fundam. Inform., 172(1):39–51, 2020. doi:10.3233/FI-2020-1891.

7 J. Kim, I. Volkovich, and N. X. Zhang. The power of leibniz-like functions as oracles. In The
15th International Computer Science Symposium in Russia, CSR, volume 12159 of Lecture
Notes in Computer Science, pages 263–275. Springer, 2020. doi:10.1007/978-3-030-50026-9.

8 S. Landau. Some remarks on computing the square parts of integers. Inf. Comput., 78(3):246–
253, 1988. doi:10.1016/0890-5401(88)90028-4.

9 D. L. Long. Random equivalence of factorization and computation of orders. Technical Report
284, Princeton University, 1981.

10 G. L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci., 13(3):300–317,
1976. doi:10.1016/S0022-0000(76)80043-8.

11 F. Morain, G. Renault, and B. Smith. Deterministic factoring with oracles. CoRR,
abs/1802.08444, 2018. arXiv:1802.08444.

12 M. O. Rabin. Probabilistic algorithm for testing primality. Journal of number theory, 12(1):128–
138, 1980.

13 J. Shallit and A. Shamir. Number-theoretic functions which are equivalent to number of
divisors. Inf. Process. Lett., 20(3):151–153, 1985. doi:10.1016/0020-0190(85)90084-5.

14 H. Woll. Reductions among number theoretic problems. Inf. Comput., 72(3):167–179, 1987.
doi:10.1016/0890-5401(87)90030-7.

15 B. Zralek. A deterministic version of pollard’s p-1 algorithm. Math. Comput., 79(269):513–533,
2010. doi:10.1090/S0025-5718-09-02262-5.

A Missing Proofs

Sketch of the proof of Part 4 of Lemma 13. Consider the following quadratic equation

f(x) ∆= x2 − (N − Φ(N) + 1)x + N = 0.

Observe that f(x) = (x − p)(x − q). Hence, the solutions of the equation are exactly p

and q. ◀

https://doi.org/10.1007/3-540-58691-1
https://doi.org/10.1007/0-387-34799-2
https://doi.org/10.1137/0215083
https://doi.org/10.1007/3-540-68339-9
https://doi.org/10.3233/FI-2020-1891
https://doi.org/10.1007/978-3-030-50026-9
https://doi.org/10.1016/0890-5401(88)90028-4
https://doi.org/10.1016/S0022-0000(76)80043-8
http://arxiv.org/abs/1802.08444
https://doi.org/10.1016/0020-0190(85)90084-5
https://doi.org/10.1016/0890-5401(87)90030-7
https://doi.org/10.1090/S0025-5718-09-02262-5

Fully Dynamic Algorithms for Knapsack Problems
with Polylogarithmic Update Time
Franziska Eberle #

Faculty of Mathematics and Computer Science, University of Bremen, Germany

Nicole Megow #

Faculty of Mathematics and Computer Science, University of Bremen, Germany

Lukas Nölke #

Faculty of Mathematics and Computer Science, University of Bremen, Germany

Bertrand Simon #

IN2P3 Computing Center, CNRS, Villeurbanne, France

Andreas Wiese #

Department of Industrial Engineering, University of Chile, Santiago, Chile

Abstract
Knapsack problems are among the most fundamental problems in optimization. In the Multiple
Knapsack problem, we are given multiple knapsacks with different capacities and items with values
and sizes. The task is to find a subset of items of maximum total value that can be packed into
the knapsacks without exceeding the capacities. We investigate this problem and special cases
thereof in the context of dynamic algorithms and design data structures that efficiently maintain
near-optimal knapsack solutions for dynamically changing input. More precisely, we handle the
arrival and departure of individual items or knapsacks during the execution of the algorithm with
worst-case update time polylogarithmic in the number of items. As the optimal and any approximate
solution may change drastically, we maintain implicit solutions and support polylogarithmic time
query operations that can return the computed solution value and the packing of any given item.

While dynamic algorithms are well-studied in the context of graph problems, there is hardly
any work on packing problems (and generally much less on non-graph problems). Motivated by the
theoretical interest in knapsack problems and their practical relevance, our work bridges this gap.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Fully dynamic algorithms, knapsack problem, approximation schemes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.18

Related Version Full Version: https://arxiv.org/abs/2007.08415

Funding This work is partly funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project Number 146371743 – TRR 89 Invasive Computing.

Acknowledgements We thank Martin Böhm, Peter Kling, and Jens Schlöter for the fruitful discus-
sions.

1 Introduction

Knapsack problems are among the most fundamental optimization problems. In their most
basic form, we are given a knapsack capacity S ∈ N and a set of n items, where each item
j ∈ [n] := {1, 2, . . . , n} has a size sj ∈ N and a value vj ∈ N. The Knapsack problem asks
for a subset of items, P ⊆ [n], with maximal total value v(P) :=

∑
j∈P vj and with a total

size s(P) :=
∑

j∈P sj that does not exceed the knapsack capacity S. In the more general
Multiple Knapsack problem, we are given m knapsacks with capacities Si for i ∈ [m].

© Franziska Eberle, Nicole Megow, Lukas Nölke, Bertrand Simon, and Andreas Wiese;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:feberle@uni-bremen.de
https://orcid.org/0000-0001-8636-9711
mailto:nmegow@uni-bremen.de
https://orcid.org/0000-0002-3531-7644
mailto:noelke@uni-bremen.de
https://orcid.org/0000-0003-0523-0668
mailto:bertrand.simon@cc.in2p3.fr
https://orcid.org/0000-0002-2565-1163
mailto:awiese@dii.uchile.cl
https://orcid.org/0000-0003-3705-016X
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.18
https://arxiv.org/abs/2007.08415
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

Here, the task is to select m disjoint subsets P1, P2, . . . , Pm ⊆ [n] such that subset Pi

satisfies the capacity constraint s(Pi) ≤ Si and the total value of all subsets
∑

i∈[m] v(Pi) is
maximized.

Multiple Knapsack is strongly NP-hard, even for identical knapsack capacities, as
it is a special case of bin packing. Knapsack, on the other hand, is only weakly NP-hard
and admits pseudo-polynomial time algorithms, the first one being already published in the
1950s [5].

As a consequence of these hardness results, each of the knapsack variants has been
studied extensively through the lens of approximation algorithms. Of particular interest are
approximation schemes, families of polynomial-time algorithms that compute for each ε > 0
a (1 − ε)-approximate solution, i.e., a feasible solution with value within a factor of (1 − ε)
of the optimal solution value. Based on the dependency on ε of the respective running
time, we distinguish Polynomial Time Approximation Schemes (PTAS) with arbitrary
dependency on ε, Efficient PTAS (EPTAS) where arbitrary functions f(ε) may only appear
as a multiplicative factor, and Fully Polynomial Time Approximation Schemes (FPTAS)
with polynomial dependency on 1

ε .
The first approximation scheme for Knapsack was an FPTAS by Ibarra and Kim [43]

and initiated a long sequence of follow-up work, which is still active [17, 52]. Multiple
Knapsack is substantially harder and does not admit an FPTAS, unless P = NP, even
with two identical knapsacks [19]. However, approximation schemes with running times
of the form nf(ε) (PTASs) are known [19, 54] as well as improvements to only f(ε)nO(1)

(EPTASs) [48, 50]. All these algorithms are static in the sense that the full instance is given
to an algorithm and is then solved.

Given the ubiquitous dynamics of real-world instances, it is natural to ask for dynamic
algorithms that adapt to small changes in the packing instance while spending only little
computation time. More precisely, during the execution of the algorithm, items and knapsacks
arrive and depart and the algorithm needs to maintain an approximate knapsack solution with
an update time polylogarithmic in the number of items in each step. A dynamic algorithm is
then a data structure that implements these updates efficiently and supports relevant query
operations.

A practical application is the dynamic estimation of the profit for scheduling jobs in
computing clusters in which virtual machines can be moved among physical machines [6].
This allows the service provider to adapt the provided capacity, i.e., the currently running
servers, to the current demand, see, e.g., [13,23,59]. An efficient framework for Multiple
Knapsack can be viewed as a first-stage decision tool: In real-time, it determines whether
the customer in question should be allowed into the system based on the cost of possibly
powering and using additional servers. As the service provider has to decide immediately
which request she wants to accept, she needs to obtain the information fast, i.e., sublinear in
the number of requests already in the system.

Generally, dynamic algorithms constitute a vibrant research field in the context of graph
problems. We refer to surveys [15, 26, 38] for an overview on dynamic graph algorithms.
Interestingly, only for a small number of graph problems there are dynamic algorithms
known with polylogarithmic update time, among them connectivity problems [40, 42], the
minimum spanning tree [42], and vertex cover [9, 11]. Recently, this was complemented by
conditional lower bounds that are typically linear in the number of nodes or edges; see,
e.g., [2]. Over the last few years, the generalization of dynamic vertex cover to dynamic set
cover gained interest leading to near-optimal approximation algorithms with polylogarithmic
update times [1, 8, 10, 34]. Also, recently, algorithms have been developed for maintaining
maximal independent sets, e.g., [4, 18,64], and approximate maximum independent sets in
special graph classes [12,20,39].

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:3

For packing problems, there are hardly any dynamic algorithms with small update time
known. A notable exception is a result for bin packing that maintains a 5

4 -approximative
solution with O(log n) update time [45]. This lack of efficient dynamic algorithms is in stark
contrast to the aforementioned intensive research on computationally efficient algorithms for
packing problems. Our work bridges this gap initiating the design of data structures and
algorithms that efficiently maintain near-optimal solutions.

Our Contribution. In this paper, we present dynamic algorithms for maintaining approxim-
ate solutions for three problems of increasing complexity: Knapsack, Multiple Knapsack
with identical knapsack sizes, and general Multiple Knapsack. Our algorithms are fully
dynamic which means that in an update operation they can handle the arrival or departure
of an item and of a knapsack. Further, we consider the implicit solution or query model,
in which an algorithm is not required to store the solution explicitly in memory such that
the solution can be read in linear time at any given point of the execution. Instead, the
algorithm may maintain the solution implicitly with the guarantee that a query about the
packing can be answered in polylogarithmic time.

We give worst-case guarantees for update and query times that are polylogarithmic in n,
the number of items currently in the input, and bounded by a function of ε > 0, the desired
approximation accuracy. For some special cases, we can even ensure a polynomial dependency
on 1

ε . In others, we justify the exponential dependency with corresponding lower bounds.
Denote by vmax the currently largest item value and by v an upper bound on vmax that is
known in advance.

1. For Multiple Knapsack, we design a dynamic algorithm maintaining a (1 − ε)-
approximate solution with update time 2f(1/ε)(1

ε log n log v
)O(1/ε)(log Smax)O(1), where f

is quasi-linear, and query time
(1

ε log n
)O(1).

2. The exponential dependency on 1
ε in the update time for Multiple Knapsack is indeed

necessary, even for two identical knapsacks. We show that there is no (1 − ε)-approximate
dynamic algorithm with update time

(1
ε log n

)O(1), unless P = NP.
3. For Knapsack, we give a dynamic (1 − ε)-approximation algorithm with update time(1

ε log(nvmax)
)O(1) + O

(1
ε log n log v

)
and constant query times.

4. For Multiple Knapsack with identical knapsacks with capacity S each, we im-
prove the update time to

(1
ε log n log vmax log S

)O(1) if m ≥ 16
ε7 log2 n with query

time
(1

ε log n
)O(1).

In each update step, we compute only implicit solutions and provide query operations for
the solution value, the knapsack of a queried item, and the complete solution. These queries
are consistent between two update steps and run efficiently, i.e., run in time polynomial
in log n and log v and linear in the output size. We remark that it is not possible to maintain
a solution with a non-trivial approximation guarantee explicitly with only polylogarithmic
update time (even amortized) since it might be necessary to change Ω(n) items per iteration,
e.g., if a very large and very profitable item is inserted and removed in each iteration.

We remark that our result yields a static algorithm with a near-linear running time in n.

Our Techniques. Maybe surprisingly, we recompute a (1 − ε)-approximate solution from
scratch in polylogarithmic time after each update. More precisely, we compute a (1 − ε)-
estimate of the value of Opt and additionally store all information that is needed in
order to answer any query in polylogarithmic time. Interestingly, this shows that for such
computations, we do not need exact knowledge about the whole input, but only a small

FSTTCS 2021

18:4 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

amount of information of polylogarithmic size. We show that this information can be
extracted efficiently from suitable data structures in which we store the input items and
knapsacks. Even more, we show that we can maintain these data structures in polylogarithmic
time per update.

On a high level, we reduce the overall problem to two subproblems solved independently.
In the first one, we are given only few knapsacks, m =

(1
ε log n

)O(1) many, which are the
largest knapsacks in the original input. Here, we observe that if we select the m

ε most
valuable items in the optimal solution correctly, we can afford to fill the remaining space
in the knapsacks greedily, i.e., highest density (value divided by size) first, and charge the
resulting loss to the valuable items. We cannot guess these most valuable items explicitly,
but we show that we can select a small set of candidates for these items and guess a few
placeholder items for the remaining ones. This yields an instance with only

(1
ε log n

)O(1)

items on which we run a known EPTAS for Multiple Knapsack [50] yielding a running
time of

(1
ε log n

)O(1). For the special case of a single knapsack, we show that we can invoke
an FPTAS instead, which improves the running time.

In the second subproblem, we are given a potentially large set of knapsacks, and we are
allowed to use an additional set of

(1
ε log n

)Θ(1) knapsacks that the optimal solution does not
use (resource augmentation). We introduce a technique that we call oblivious linear grouping.
Linear grouping is a standard technique used in order to round a set of one-dimensional
items that need to be packed into a given set of containers (e.g., in bin packing), such that
they have at most 1

ε different sizes after the rounding (at the expense of leaving an ε-fraction
of the items out). However, in our setting we do not know a priori which input items need to
be packed, and therefore we cannot apply this technique directly. Instead, we show that we
can round the input items to (1

ε log n)O(1) different sizes such that we lose at most a factor of
(1 − ε) independently of what the optimal solution looks like. In fact, our rounding method
is even oblivious to the input knapsacks. Therefore, we believe that it might be useful also
for other dynamic packing problems or for speeding up static algorithms. After rounding the
items to

(1
ε log n

)O(1) different sizes, we set up a configuration-LP that has a configuration
for each possible set of relatively large items that together fit inside a knapsack. Thanks to
our rounding, there are only polylogarithmically many configurations and we can solve this
LP in time

(1
ε log n

)O(1/ε). We use the additional knapsacks in order to compensate errors
when rounding the LP, i.e., due to rounding up the fractional variables and adding small
items greedily into the remaining space of the knapsacks. Special care is necessary since
the sizes of the knapsacks can differ and hence some item might be relatively large in some
knapsack, but relatively small in another knapsack.

Further Related Work. Since the first approximation scheme for Knapsack [43] running
times have been improved steadily [17,30,31,52,55,58,67] with O(n log 1

ε +(1
ε)9/4) by Jin [52]

being the currently fastest. Recent work on conditional lower bounds [22,57] implies that
Knapsack does not admit an FPTAS with running time of O((n + 1

ε)2−δ), for any δ > 0,
unless (min, +)-convolution has a subquadratic algorithm [17,65].

A PTAS for Multiple Knapsack was first presented by Chekuri and Khanna [19]
and EPTASs due to Jansen [48, 50] are also known. The fastest of these algorithms [50]
has a running time of 2O(log4(1/ε)/ε) + nO(1). The mentioned algorithms are all static and
assume full knowledge about the instance for which a complete solution has to be found.
In particular, their solutions might change completely when a single item is added to the
input which makes a full recomputation necessary. The algorithm in [19] invokes a guessing
step with nf(1/ε) many options which are too many for a polylogarithmic update time. The
EPTASs in [48,50] use a configuration linear program of size Ω(n) which is also prohibitively
large for such an update time.

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:5

The dynamic arrival and removal of items exhibits some similarity to knapsack models
with incomplete information. For example, in the online knapsack problem [61] items arrive
online one by one. When an item arrives, an algorithm must irrevocably accept or reject
it before the next item arrives. Various problem variants have been studied, e.g., with
resource augmentation [47], the removable online knapsack problem [21,35–37,46], and with
advice [14]. Other models with uncertainty in the item set or the knapsack capacity include
the stochastic knapsack problem [7, 25, 60] and robust knapsack problems [16, 27, 62, 70].
Related to our setting are also online models with a softened irrevocability requirement,
e.g., online optimization with recourse [29, 33, 44, 63] or migration [51, 68, 69] allows to adapt
previously taken decisions in a limited way. We are not aware of work on knapsack problems
in these settings and, again, the goal is to bound the amount of change needed to maintain
good online solutions regardless of the computational effort.

2 Roadmap and Preliminaries

First, in this section, we formalize the operations that our data structures support, describe
auxiliary data structures that we need, and define how we round the item values. Then,
in Section 3, we describe algorithms for one knapsack and for a polylogarithmic number
of knapsacks. In Section 4, we present an algorithm for (many) identical knapsacks and
an algorithm under resource augmentation (in the form of a polylogarithmic number of
additional knapsacks) in the setting of (many) knapsacks with possibly different capacities.
Finally, we present in Section 5 an algorithm for the general case that uses the previously
mentioned algorithms as subroutines. Additionally, in the full version of this paper [28], we
show that our update time cannot be improved to (log n/ε)O(1), unless P=NP.

From the perspective of a data structure that implicitly maintains near-optimal solutions
for Multiple Knapsack, our algorithms support several update and query operations
which are listed below. They allow for the output of (parts of) the current solution, or for
specific changes to the input of Multiple Knapsack, causing the computation of a new
solution.

Insert (Remove) Item: Inserts (removes) an item into (from) the input.
Insert (Remove) Knapsack: Inserts (removes) a knapsack into (from) the input.

A new solution can be output, entirely or in parts, using the following query operations.
Query Item j: Returns whether item j is packed in the current solution and if this is
the case, additionally returns the knapsack containing it.
Query Solution Value: Returns the value of the current solution.
Query Entire Solution: Returns all items in the current solution, together with the
information in which knapsack each such item is packed.

Importantly, queries are consistent in-between two update operations. However, their answers
are not independent of each other but depend on the queries as well as their order.

For simplicity, we assume that elementary operations (e.g., additions) can be handled
in constant time. Additionally, we assume without loss of generality that 1

ε ∈ N. We also
assume that at the very beginning we start with no items and no knapsacks, and initialize all
needed auxiliary data structures accordingly. If one wants to start with a specific set of items
and/or knapsacks, one can insert them with our insertion routines, using polylogarithmic
time per insertion.

Auxiliary Data Structures. We employ auxiliary data structures in which we store (subsets
of) input items and input knapsacks, sorted according to some specific values, e.g., size
or capacity. We need to be able to quickly access elements, compute the largest prefix of

FSTTCS 2021

18:6 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

elements such that the sum according to some property, e.g., the total size, is below a given
threshold, and compute in such a prefix the sum according to some element property, e.g.,
the total value. Note that these prefixes are w.r.t. the fixed ordering of the elements, while
the element property for the threshold or computing the sum might be different. To this
end, we employ as an auxiliary data structure a variation of balanced search trees that store
elements according to some given ordering. For computing the mentioned prefix sums, we
store in each internal node v the sums of the elements in the subtree rooted at v according
to each property, e.g., size, value, or capacity. When we need to compute some largest prefix,
we simply output the index of its last element.

▶ Lemma 1. There is a data structure maintaining a sorting of n′ elements w.r.t. some key
value such that (i) insertion, deletion, or search by key value of an element takes O(log n′)
time, and (ii) prefixes and prefix sums w.r.t. any element property can be computed in time
O(log n′).

Rounding Values. A crucial ingredient of our algorithms is the partitioning of items into
only few value classes Vℓ, where for each ℓ the class Vℓ consists of each input item j with
(1 + ε)ℓ ≤ vj < (1 + ε)ℓ+1. Upon arrival of some item j, we calculate the index ℓj such that
j ∈ Vℓj and store the tuple (j, vj , sj , ℓj) representing j in the auxiliary data structures of
the respective algorithm. In the following, we pretend for each ℓ that each item in Vℓ has
value (1 + ε)ℓ, which loses only a factor of 1

1+ε in the total profit of any solution.

▶ Lemma 2. (i) There are at most O
(log vmax

ε

)
many value classes. (ii) For optimal

solutions Opt and Opt′ for the original and rounded instance, v(Opt′) ≥ (1 − ε) · v(Opt).

3 A Single Knapsack

In this section, we first present a dynamic algorithm for the case of one single knapsack,
summarized in the following theorem. Afterwards, we will argue how to extend our techniques
to the setting of a polylogarithmic number of knapsacks.

▶ Theorem 3. For ε > 0, there is a fully dynamic algorithm for Knapsack that maintains
(1−ε)-approximate solutions with update time O

(log4(nvmax)
ε9

)
+O

(1
ε log n log v

)
. Furthermore,

queries of single items and the solution value can be answered in time O(1).

We partition the items in the optimal solution Opt into high- and low-value items,
respectively. The high-value items are the 1

ε most valuable items of Opt, and the low-value
items are the remaining items of Opt. We compute a small set of candidate items H 1

ε
that

intuitively contains all relevant high-value items in Opt. Also, we guess a placeholder item
for the low-value items, that is large enough to accomodate low-value items of enough profit
fractionally. We can assume that in an optimal fractional solution (of low-value items) at
most one item is selected non-integrally. Hence, we can drop this item and charge it to the 1

ε

high-value items. This results in a knapsack instance with only O
(1

ε3

)
items which we solve

with an FPTAS.
Formally, denote by Opt 1

ε
a set of 1

ε most valuable items of Opt. We break ties by
picking smaller items. Denote by Vℓmax and Vℓmin the highest resp. lowest value class of an
element in Opt 1

ε
and let nmin := |Opt 1

ε
∩ Vℓmin | ≤ 1

ε . Furthermore, denote by VL the value
of the items in Opt \ Opt 1

ε
, rounded down to the next power of (1 + ε). To efficiently

implement our algorithm, we maintain several data structures, using Lemma 1. We store
items of each non-empty value class Vℓ (at most log1+ε vmax) in a data structure ordered

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:7

non-decreasingly by size. Second, for each possible value class Vℓ (at most log1+ε v), we
maintain a data structure that contains each input item j with j ∈ Vℓ′ for some ℓ′ ≤ ℓ,
ordered non-increasingly by density vj

sj
. In particular, we maintain such a data structure

even if Vℓ itself is empty (since the data structure might still contain items from classes Vℓ′

with ℓ′ < ℓ). This leads to the additive term in the update time of O(log n log1+ε v). We use
additional auxiliary data structures to store our solution and support queries.

Algorithm. The algorithm computes an implicit solution as follows.
1) Compute a set H 1

ε
of high-value candidates: Guess the values ℓmax, ℓmin, and nmin.

If (1 + ε)ℓmin ≥ ε2 · (1 + ε)ℓmax , define H 1
ε

to be the set containing the 1
ε smallest items

of each of the value classes Vℓmin+1, . . . , Vℓmax , plus the nmin smallest items from Vℓmin .
Otherwise, set H 1

ε
to be the union of the 1

ε smallest items of each of the value classes
with values in [ε2 · (1 + ε)ℓmax , (1 + ε)ℓmax].

2) Create a placeholder item B: Guess VL and consider items with value at
most (1 + ε)ℓmin sorted by density. Remove the nmin smallest items of Vℓmin until the next
iteration. For the remaining items, compute the minimal size of fractional items necessary
to reach a value VL. We do this via prefix sum computations on the data structure that
contains all items in Vℓ′ for each ℓ′ ≤ ℓmin, ordered non-increasingly by density. Then B

is given by vB = VL and with sB equal to the size of those low-value items.
3) Use an FPTAS: On the instance I, consisting of H 1

ε
and the placeholder item B, run

an FPTAS parameterized by ε (we use the one by Jin [52]) to obtain a packing P .
4) Implicit solution: Among all guesses, keep the solution P with the highest value. Pack

items from H 1
ε

as in P and, if B ∈ P , also pack the low-value items completely contained
in B (note that at most one item is packed fractionally in B). While used candidate items
from H 1

ε
can be stored explicitly, low-value items are given only implicitly by saving the

correct guesses and computing membership in B on a query.

Analysis. We show that the above algorithm attains an approximation ratio of (1 − ε). A
factor of (1 − ε) is lost due to the approximation ratio of the FPTAS. An additional factor
of (1 − ε) is lost in each of the following steps. To obtain a candidate set H 1

ε
of constant

cardinality, we restrict the item values to [ε2 · (1 + ε)ℓmax , (1 + ε)ℓmax]. Since |Opt 1
ε
| = 1

ε , this
excludes items from Opt with a total value of at most 1

ε ·ε2 (1 + ε)ℓmax ≤ ε·Opt. Furthermore,
due to guessing VL up to a power of (1 + ε), we get vB = VL ≥ 1

1+ε · v(Opt \ Opt 1
ε
). Finally,

in Step 2, at most one item was cut fractionally. It is charged to the 1
ε items of Opt 1

ε
, using

that each of them has a larger value.
The running time can be verified easily by multiplying the numbers of guesses for each

value as well as the running time of the FTPAS. The latter is O
(1

ε4

)
, since we designed H 1

ε

to contain only a constant number of items, namely O
(1

ε3

)
many.

Queries. We show how to efficiently handle the different types of queries.
Single Item Query: If the queried item is contained in H 1

ε
, its packing was saved

explicitly. Otherwise, if B is packed, we save the last, i.e., least dense, item contained
entirely in B. By comparing with this item, membership in B can be decided in constant
time on a query.
Solution Value Query: While the algorithm works with rounded values, we use the
data structures of Lemma 1 to retrieve the actual item values. We store the actual
solution value in the update step by adding the actual values of the packed items from
H 1

ε
and determining the actual value of items in B with a prefix computation. On query,

we return the stored value.

FSTTCS 2021

18:8 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

Query Entire Solution: Output the stored packing of candidates. If B was packed,
iterate over items in B in the respective density-sorted data structure and output them.

Polylogarithmically many knapsacks. One can show that the queries can be performed
in the claimed running times which completes the proof of Theorem 3, see the full version
of this paper [28]. We can extend the above technique to the setting of m knapsacks, at
the expense of increasing the update time and query time by a factor mO(1), and using an
EPTAS for Multiple Knapsack [50] instead of an FPTAS (see [28]).

▶ Theorem 4. For ε > 0, there is a dynamic algorithm for Multiple Knapsack that
achieves an approximation factor of (1 − ε) with update time 2f(1/ε)(m

ε log(nvmax)
)O(1) +

O
(1

ε log v log n
)
, with f quasi-linear. Item queries are answered in time O

(
log m2

ε6

)
, solution

value queries in time O(1), and queries of one knapsack or the entire solution in time linear
in the output.

4 Identical Knapsacks

In this section, we present our algorithm for an arbitrary (large) number of identical knapsacks.
Also, we describe an extension to the case where the knapsacks have different sizes and we
can use some additional knapsacks as resource augmentation.

4.1 Oblivious Linear Grouping
We start with our oblivious linear grouping routine that we use in order to round the item
sizes, aiming at only few different types of items. We say that two items j, j′ are of the
same type if {j, j′} ⊆ Vℓ for some ℓ and if sj = sj′ . We round the items implicitly, i.e., we
compute thresholds {s̄1, ..., s̄k} and we round up the size sj of each item j to the next larger
value in this set.

▶ Lemma 5. Given a set J ′ with |Opt ∩ J ′| ≤ n′ for all optimal solutions Opt, there
is an algorithm with running time O

(log5 n′

ε5

)
that rounds the items in J ′ to item types T

with |T | ≤ O
(log2 n′

ε4

)
and ensures v(OptT) ≥ (1−ε)(1−2ε)

(1+ε)2 v(Opt). Here, OptT is the optimal
solution attainable by packing item types T instead of the items in J ′ and using J \ J ′ as is.

Algorithm. In the following, we use the notation X ′ for a set X to refer to X ∩ J ′ while X ′′

refers to X \ J ′. Recall that item values of items in J are rounded to powers of 1 + ε to create
the value classes Vℓ where each item j ∈ Vℓ has value (1 +ε)ℓ. We guess ℓmax which is defined
to be the guess for the highest value ℓ with V ′

ℓ ∩ Opt ̸= ∅ and let ℓ̄ := ℓmax −
⌈
log1+ε(n′/ε)

⌉
.

1) For each ℓ with ℓ̄ ≤ ℓ ≤ ℓmax and each nℓ = (1 + ε)k with 0 ≤ k ≤ log1+ε n′ do: Consider
the nℓ smallest elements of V ′

ℓ (sorted by increasing size) and determine the 1
ε many

(almost) equal-sized groups G1(nℓ), . . . , G1/ε(nℓ) of ⌈εnℓ⌉ or ⌊εnℓ⌋ elements. If εnℓ /∈ N,
ensure that |Gk(nℓ)| ≤ |Gk′(nℓ)| ≤ |Gk(nℓ)| + 1 for k ≤ k′. If 1

ε is not a natural
power of (1 + ε), create G1(1

ε), . . . , G1/ε(1
ε) where Gk(1

ε) is the kth smallest item in V ′
ℓ .

Let G1(nℓ), . . . , G1/ε(nℓ) be the corresponding groups sorted increasingly by the size
of the items. Let jk(nℓ) = max{j : j ∈ Gk(nℓ)} be the last index belonging to
group Gk(nℓ). After having determined jk(nℓ) for each possible value nℓ (including 1

ε)
and for each 1 ≤ k ≤ 1

ε , the size of each item j is rounded up to the size of the next larger
item j′ such that there exists k and ℓ satisfying j′ = jk(nℓ).

2) Discard each item j with j ∈ V ′
ℓ for ℓ < ℓ̄.

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:9

Analysis. Despite the new approach to apply linear grouping simultaneously to many
possible values of nℓ, the analysis builds on standard techniques. The loss in the objective
function due to rounding item values is bounded by a factor of 1

1+ε by Lemma 2. As ℓ̄ is
chosen such that n′ items of value at most (1 + ε)ℓ̄ contribute less than an ε-fraction of Opt′,
the loss in the objective function by discarding items in value classes V ′

ℓ with ℓ < ℓ̄ is bounded
by a factor (1 − ε). By taking only (1 + ε)⌊log1+ε nℓ⌋ items of V ′

ℓ instead of nℓ, we lose at
most a factor 1

1+ε . The groups created by oblivious linear grouping are an actual refinement
of the groups created by classical linear grouping. Thus, we pack our items similarly: not
packing the group with the largest items (at the loss of a factor of (1 − 2ε)) allows us to
“move” all rounded items of group Gk(nℓ) to the positions of the (not rounded) items in
group Gk+1(nℓ). Combining, we obtain v(OptT) ≥ (1−ε)(1−2ε)

(1+ε)2 v(Opt).
Since T contains at most 1

ε

(⌈ log n′/ε
log(1+ε)

⌉
+ 1

)
different value classes, and as it suffices to

use
⌈ log n′

log(1+ε)
⌉

+ 1 many different values for nℓ = |Opt ∩ V ′
ℓ |, we have |T | ≤ O(log2 n′

ε4). Using
the access times given in Lemma 1 bounds the running time. For details, see the full version
of this paper [28].

4.2 A Dynamic Algorithm for Many Identical Knapsacks
We give a dynamic algorithm with approximation ratio (1 − ε) for Multiple Knapsack,
assuming that all knapsacks have the same size S. We assume m ≤ n as otherwise, the problem
is trivial. We focus on instances where m is large, i.e., m ≥ 16

ε7 log2 n. If m ≤ 16
ε7 log2 n, we

use the algorithm due to Theorem 4. In the following, we prove Theorem 6.

▶ Theorem 6. If m ≥ 16
ε7 log2 n, there is a dynamic algorithm for Multiple Knapsack

with identical knapsacks with approximation factor (1 − ε) and update time
(log U

ε

)O(1), where
U = max{Sm, nvmax}. Queries for single items and the solution value can be answered in time
O

(log n
ε

)O(1) and O(1), respectively. The solution P can be returned in time |P |
(log n

ε

)O(1).

Our strategy is the following: we partition the input items into large and small items,
which are defined w.r.t. the size S of each knapsack. To the large items, we apply oblivious
linear grouping, obtaining a polylogarithmic number of item types. We guess the total size of
the small items in the optimal solution. Then, we formulate the problem as a configuration
linear program (LP) which has a variable for each feasible configuration for a knapsack. A
configuration describes how many large items of each type are packed in a knapsack. Also,
we ensure that there will be enough space for the small items left. This is similar in spirit to
the LPs used in [48,50]; however, we use variables only for the configurations of the big items
and we have only a polylogarithmic number of item types, which yields a smaller LP which
we can solve faster. We round the obtained fractional solution, using that m > 16

ε7 log2 n and
that basic feasible solutions to the LP are sparse.

Definitions and Data Structures. We partition the items into two sets, JB , the big items,
and JS , the small items, with sizes sj ≥ εS and sj < εS, respectively. For an optimal
solution Opt, define OptB := Opt ∩ JB and OptS := Opt ∩ JS .

We maintain three types of auxiliary data structures from Lemma 1: we maintain one
such data structure in which we store all items in the order of their arrivals and store the
size sj , the value vj , and the value class ℓj of each item j. For each value class Vℓ, we
maintain a data structure which contains all big items of Vℓ, ordered non-decreasingly by
size. Finally, for the small items (of all value classes together), we maintain a data structure
in which they are sorted non-increasingly by density. Upon arrival of a new item j, we insert
j into each corresponding data structure.

FSTTCS 2021

18:10 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

Algorithm.
1) Linear grouping of big items: Guess ℓmax, which we define to be the largest index ℓ

with Vℓ ∩ OptB ̸= ∅. Via oblivious linear grouping with J ′ = JB and n′ = min{ m
ε , nB}

we obtain T ; for each item type t, denote by nt the number of items of this type (the
multiplicity of t).

2) Configurations: Let C denote the set of all configurations, i.e., of all multisets of item
types whose total size is at most S. For each c ∈ C, denote by vc and sc the total value
and size of the item types in c.

3) Small items: We guess vS which we define to be the largest power of 1 + ε that is at
most v(OptS). Let P be the maximal prefix of small items (sorted by non-increasing
density) with v(P) < vS . Set sS := s(P).

4) Configuration ILP: We compute an extreme point solution of the LP relaxation of
the following configuration ILP with variables yc for c ∈ C for the current guesses ℓmax
and vS (implying sS). Here, yc counts how often a certain configuration c is used and ntc

denotes the number of items of type t in configuration c.

max
∑
c∈C

ycvc

subject to
∑
c∈C

ycsc ≤ ⌊(1 − 3ε)m⌋S − sS∑
c∈C

yc ≤ ⌊(1 − 3ε)m⌋∑
c∈C

ycntc ≤ nt for all t ∈ T

yc ∈ Z≥0 for all c ∈ C

(P)

By the first inequality, the configurations fit into ⌊(1 − 3ε)m⌋ knapsacks while reserving
sufficient space for the small items. The second constraint limits the total number of
configurations that are packed. The third inequality ensures that only available items are
used.

5) Obtaining an integral solution: We round up each variable of the obtained fractional
solution, yielding an integral solution ȳ. As m ≥ 16

ε7 log2 n and extreme point solutions
have only |T | + 2 non-zero variables, one can show that ȳ still satisfies the relaxed
constraints

∑
c∈C ȳcsc ≤ ⌊(1 − 2ε)m⌋S − sS and

∑
c∈C ȳc ≤ ⌊(1 − 2ε)m⌋. In case that

a constraint
∑

c∈C ȳcntc ≤ nt is violated for some type t, we intuitively drop items of
type t from some knapsacks until the constraint is satisfied. Let PB denote the resulting
packing.

6) Packing small items: Consider the maximal prefix P of small items with v(P) < vS

and let j⋆ be the densest small item not in P . Pack j⋆ into one of the knapsacks kept
empty by PB . Then, fractionally fill up the ⌊(1 − 2ε)m⌋ knapsacks used by PB and place
any “cut” item into the ⌈εm⌉ additional knapsacks that are still empty.

Analysis. The loss in the objective function value due to linear grouping of big items is
bounded by (1−ε)(1−2ε)

(1+ε)2 by Lemma 5. Restricting a solution to its ⌊(1 − 3ε)m⌋ most valuable
knapsacks and guessing the value of small items in these knapsacks only up to a factor
of (1 + ε) as done by (P) costs at most a factor of 1−4ε

1+ε in the objective function value.
For solving the LP-relaxation of the configuration ILP (P), we apply the Ellipsoid

method [32] on its dual, using an FPTAS for Knapsack as a separation oracle. For this, we
need to handle some technical complications due to the first two constraints of (P), which
yield additional variables in the dual, and due to the fact that we can solve the separation

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:11

problem only up to a factor of (1 + ε) (see [28] for details). Via Gaussian elimination,
we transform the obtained fractional solution into a basic feasible solution with the same
objective function value. As argued above, since any basic feasible solution has at most
|T | + 2 non-zero variables, our integral solution ȳ uses at most ⌊(1 − 2ε)m⌋ knapsacks and it
has at least the profit of the fractional solution. Given the packing of big items, we pack the
small items in a First Fit manner as described in the algorithm.

To bound the running time of our algorithm, we use Lemma 5, show that the relaxation
of the configuration ILP can be solved in time

(log U
ε

)O(1) with the Ellipsoid method, and
use the fact that the algorithm needs at most O

(log(nvmax) log vmax
ε2

)
many guesses, see [28] for

details.

Queries. In contrast to the previous section, for transforming an implicit solution into an
explicit packing, the query operation has to compute the knapsack where a queried item j

is packed. We do not explicitly store the packing of any item, but instead we define and
update pointers for small items and for each item type, that indicate the knapsacks where the
corresponding items are packed. To stay consistent with the precise packing of a particular
item between two update operations, we additionally cache query answers.

Single Item Query: For small items, only the prefix of densest items is part of our
solution. For big items of a certain type, only the smallest items are packed by the implicit
solution. In both cases, we use the corresponding pointer to determine the knapsack.
Solution Value Query: As the algorithm works with rounded values, we use prefix
computations on the small items and on any value class of big items to calculate and
store the current solution value. Given a query, we return the stored solution value.
Query Entire Solution: We use prefix computations on the small items as well as on
the value classes of the big items to determine the packed items. Then, we use the Single
Item Query to determine their respective knapsacks.

▶ Lemma 7. The solution determined by the query algorithms is feasible and achieves the
claimed total value. The query times of our algorithm are as follows: Single item queries can
be answered in time O

(
log n + max

{
log log n

ε , 1
ε

})
, solution value queries can be answered in

time O(1), and queries of the entire solution P can be answered in time O
(
|P | log4 n

ε4 log log n
ε

)
.

We extend our techniques above to an algorithm for knapsacks of arbitrary sizes, assuming
that we have

(log n
ε

)Θ(1/ε) additional knapsacks (of capacity at least as large as the largest
original knapsack) as resource augmentation available. The intuition is that these additional
knapsacks are sufficient to compensate errors when rounding the LP-relaxation of (P).
However, additional care is needed since whether an item is big or small now depends on the
knapsack.

▶ Theorem 8. For ε > 0, there is a dynamic algorithm for Multiple Knapsack that,
given

(log n
ε

)Θ(1/ε) additional knapsacks as resource augmentation, achieves an approximation
factor of (1+ε) with update time

(1
ε log n

)O(1/ε)(log m log Smax log vmax)O(1). Item queries are
answered in time O

(
log m + log n

ε2

)
, and the solution P is output in time O

(
|P | log3 n

ε4

(
log m +

log n
ε2

))
.

5 Solving Multiple Knapsack

Having laid the groundwork with the previous two sections, we finally show how to maintain
solutions for arbitrary instances of the Multiple Knapsack problem, and give the main
result of this paper, summarized in the following theorem. Note that we assume n ≥ m as
otherwise only the n largest knapsacks are used.

FSTTCS 2021

18:12 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

virtual ordinary knapsack of size SO

special knapsacks extra knapsacks ordinary knapsacks

special items
bundles of ordinary items

ordinary items

input to the special subproblem input to the ordinary subproblem

Figure 1 Input of the special and the ordinary subproblems: Based on the current guess for
the extra knapsacks, the knapsacks are partitioned into three groups (special, extra, and ordinary).
When an item fits into at least one ordinary knapsack, it is ordinary and special otherwise. The
total size of ordinary items placed by Opt in special knapsacks gives the size of the virtual ordinary
knapsack. The ordinary items packed into this virtual knapsack are further assigned to bundles of
equal size, which are then part of the input to the special subproblem.

▶ Theorem 9. For ε > 0, there is a dynamic, (1 − ε)-approximate algorithm for Multiple
Knapsack with update time 2f(1/ε)(1

ε log n log vmax
)O(1/ε)(log Smax)O(1) + O

(1
ε log v log n

)
,

where f is quasi-linear. Item queries are served in time O
(log n

ε2

)
and the solution P can be

output in time O
(log4 n

ε6 |P |
)
.

We obtain this result by partitioning the knapsacks into three sets, special, extra and ordinary
knapsacks, and solving the respective subproblems. This has similarities to the approach
in [48]; however, there it was sufficient to have only two groups of knapsacks. On a high level,
the special knapsacks are the (log n)O(1/ε) largest input knapsacks and, intuitively, we apply
the algorithm due to Theorem 4 to them (for a suitably defined set of input items). The extra
knapsacks are (log n)O(1/ε) knapsacks that are smaller than the special knapsacks, but larger
than the ordinary knapsacks. We ensure that there is a (global) (1 − ε)-approximate solution
in which they are all empty; see Figure 1. We apply the algorithm due to Theorem 8 to
the ordinary and extra knapsacks, where the extra knapsacks form the additional knapsacks
used as resource augmentation.

Definitions and Data Structures. Let L =
(log n

ε

)Θ(1/ε). We assume that m >
(1

ε

)4/ε · L,
since otherwise we simply apply Theorem 8. Consider 1

ε groups of knapsacks with sizes L
ε3i ,

for i = 0, 1, . . . , 1
ε − 1, such that the first group, i.e., i = 0, consists of the L largest knapsacks,

the second, i.e., i = 1, of the L
ε3 next largest, and so on. In Opt, one of these contains items

with total value at most ε · Opt. Let k ∈ {0, 1, . . . , 1
ε − 1} be the index of such a group and

let LS :=
∑k−1

i=0
L

ε3i . We define the LS largest input knapsacks to be the special knapsacks.
The extra knapsacks are the L

ε3k > LS

ε2 + L next largest, and the ordinary knapsacks the
remaining ones.

Call an item ordinary if it fits into the largest ordinary knapsack and special otherwise.
Denote by JO and JS the set of ordinary and special items, respectively, and by SO the total
size of ordinary items that Opt places in special knapsacks, rounded down to the next power
of (1 + ε). Since we use the algorithms from Theorems 4 and 8 as subroutines, we require
the maintenance of the corresponding data structures.

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:13

Algorithm.
1) Oblivious linear grouping: Compute O

(log2 n
ε4

)
item types as described in Section 4.1.

Guess k and determine whether items of a certain type are ordinary or special.
2) High-value ordinary items: Place each of the LS

ε2 most valuable ordinary items in an
empty extra knapsack. On a tie choose the larger item. Denote this set of items by JE .

3) Virtual ordinary knapsack: Guess SO and add a virtual knapsack with capacity SO to
the ordinary subproblem. In the LP used in the proof of Theorem 8, treat every ordinary
item as small item in this knapsack and do not use configurations.

4) Solve ordinary instance: Remove temporarily the set JE from the data structures of
the ordinary subproblem. Solve the subproblem with the virtual knapsack as in Theorem 8
and use extra knapsacks for resource augmentation. When rounding up variables, fill
the O

(log2 n
ε4

)
rounded items from the virtual knapsack into extra knapsacks.

5) Create bundles Consider the items that remain in the virtual ordinary knapsack after
rounding. Sort them by type (first value, then size) and cut them to form LS

ε bundles BO

of equal size. For each bundle, remember how many items of each type are placed entirely
inside it. Place cut items into extra knapsacks. Consider each B ∈ BO as an item of size
and value equal to the fractional size respectively value of items placed entirely in B.

6) Solve special instance: Temporarily insert the bundles in BO into the data structures
used in the special subproblem. Solve this subproblem with the algorithm due to
Theorem 4.

7) Implicit solution: Among all guesses, keep the solution PF with the highest value. Store
items in JE and their placement explicitly. Revert the removal of JE from the ordinary
data structures after the next update. For the remaining items, the solutions are given as
in the respective subproblem, with the exception of items packed in the virtual ordinary
knapsack. The solution of these items is stored implicitly by deciding membership in a
bundle on a query.

Queries. We essentially use the same approach as in Theorems 4 and 8 for the ordinary
and special subproblem, respectively. However, special care has to be taken with items in the
virtual knapsack. In the ordinary subproblem, we assume that items of a certain type which
are packed in the virtual knapsack are the first, i.e., smallest, of that type. We can therefore
decide in constant time whether or not an item is contained in the virtual knapsack and,
if this is the case, fill it into the free space in special knapsacks reserved by bundles. We
do this efficiently by using a first fit algorithm on the knapsacks with reserved space. Since
items in extra knapsacks are stored explicitly, they can be accessed in constant time. See [28]
for details.

Hardness of approximation. It is a natural question whether the update time of our
algorithms for Multiple Knapsack can be improved to

(1
ε log n

)O(1). We show that this is
impossible, unless P=NP.

▶ Theorem 10. Unless P = NP, there is no fully dynamic algorithm for Multiple Knap-
sack that maintains a (1 − ε)-approximate solution in update time polynomial in log n and
1
ε , for m < 1

3ε .

We give a proof in the full version [28]. We remark that this result can be extended to a
larger number of knapsacks by adding an appropriate number of sufficiently small knapsacks,
i.e., polynomially many in n.

FSTTCS 2021

18:14 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

6 Conclusion

Any dynamic algorithm can be turned into a non-dynamic one by having n items arrive one
by one, incurring an additional linear factor in the running time. Hence, lower bounds for
the running times of static approximation schemes yield lower bounds for update times of
dynamic algorithms. Our running times for the problems with identical capacities are tight
in the sense that the algorithms yield a static FPTAS (resp. EPTAS) matching known lower
bounds.

Clearly, it would be interesting to generalize our results beyond Multiple Knapsack.
A natural generalization is d-dimensional Knapsack, where the items and knapsacks have a
size in each of the d dimensions, and a feasible packing of a subset of items must meet the
capacity constraint in each dimension. A reduction to one dimension by [24] immediately
yields a dynamic 1−ε

d -approximation, but designing a dynamic framework with a better
guarantee than this remains open. Note that unless W[1] = FPT, 2-dimensional knapsack
does not admit a dynamic algorithm maintaining a (1 − ε)-approximation in worst-case
update time f(ε)nO(1) [56].

A recent line of research exploits fast techniques for solving convolution problems to
speed up knapsack algorithms (exact and approximate); see, e.g., [3, 17, 52, 55, 66]. In fact, it
has been shown that Knapsack is computationally equivalent to the (min, +)-convolution
problem [22]. It seems worth exploring whether such techniques are useful in the dynamic
setting. Here, it is unclear whether the re-computation of a solution in a new iteration can
be done in polylogarithmic time. It is also open whether such techniques can be applied for
solving Multiple Knapsack, even in the static setting.

We hope to foster further research for other packing, scheduling and, generally, non-
graph problems. For bin packing and for makespan minimization on uniformly related
machines, we notice that existing PTAS techniques from [53] and [41, 49] combined with
rather straightforward data structures can be lifted to a fully dynamic algorithm framework
for the respective problems.

References
1 Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna

Saha. Dynamic set cover: improved algorithms and lower bounds. In STOC, pages 114–125.
ACM, 2019.

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In FOCS, pages 434–443. IEEE Computer Society, 2014.

3 Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster knapsack
and graph algorithms. In ICALP, volume 132 of LIPIcs, pages 19:1–19:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

4 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In 2019
IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 382–405.
IEEE, 2019.

5 Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1957.

6 Anton Beloglazov and Rajkumar Buyya. Energy efficient allocation of virtual machines in
cloud data centers. In CCGRID, pages 577–578. IEEE Computer Society, 2010.

7 Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. Improved approximation results for
stochastic knapsack problems. In SODA, pages 1647–1665. SIAM, 2011.

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:15

8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Design of dynamic
algorithms via primal-dual method. In ICALP (1), volume 9134 of Lecture Notes in Computer
Science, pages 206–218. Springer, 2015.

9 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate
maximum matching and minimum vertex cover in O(log3 n) worst case update time. In
SODA, pages 470–489. SIAM, 2017.

10 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. A new deterministic
algorithm for dynamic set cover. In FOCS, pages 406–423. IEEE Computer Society, 2019.

11 Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2 + ε)-
approximate minimum vertex cover in o(1/ε2) amortized update time. In SODA, pages
1872–1885. SIAM, 2019.

12 Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Dynamic geometric
independent set. arXiv preprint, 2020. arXiv:2007.08643.

13 Norman Bobroff, Andrzej Kochut, and Kirk A. Beaty. Dynamic placement of virtual machines
for managing SLA violations. In Integrated Network Management, pages 119–128. IEEE, 2007.

14 Hans-Joachim Böckenhauer, Dennis Komm, Richard Královic, and Peter Rossmanith. The
online knapsack problem: Advice and randomization. Theor. Comput. Sci., 527:61–72, 2014.

15 Nicolas Boria and Vangelis Th. Paschos. A survey on combinatorial optimization in dynamic
environments. RAIRO - Operations Research, 45(3):241–294, 2011.

16 Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka. Recoverable robust knapsacks:
the discrete scenario case. Optim. Lett., 5(3):379–392, 2011.

17 Timothy M. Chan. Approximation schemes for 0-1 knapsack. In SOSA@SODA, volume 61 of
OASICS, pages 5:1–5:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

18 Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log
update time. In FOCS, pages 370–381. IEEE, 2019.

19 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM J. Comput., 35(3):713–728, 2005.

20 Spencer Compton, Slobodan Mitrović, and Ronitt Rubinfeld. New partitioning techniques and
faster algorithms for approximate interval scheduling. arXiv preprint, 2020. arXiv:2012.15002.

21 Marek Cygan, Łukasz Jeż, and Jiří Sgall. Online knapsack revisited. Theory Comput. Syst.,
58(1):153–190, 2016.

22 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019.

23 Khuzaima Daudjee, Shahin Kamali, and Alejandro López-Ortiz. On the online fault-tolerant
server consolidation problem. In SPAA, pages 12–21. ACM, 2014.

24 Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within
1+epsilon in linear time. Combinatorica, 1(4):349–355, 1981.

25 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic knapsack
problem: The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008.

26 Camil Demetrescu, David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic Graph
Algorithms, page 9. Chapman & Hall/CRC, 2 edition, 2010.

27 Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a knapsack of unknown
capacity. SIAM J. Discret. Math., 31(3):1477–1497, 2017.

28 Franziska Eberle, Nicole Megow, Lukas Nölke, Bertrand Simon, and Andreas Wiese. Fully
dynamic algorithms for knapsack problems with polylogarithmic update time. CoRR,
abs/2007.08415, 2020. arXiv:2007.08415.

FSTTCS 2021

http://arxiv.org/abs/2007.08643
http://arxiv.org/abs/2012.15002
http://arxiv.org/abs/2007.08415

18:16 Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

29 Björn Feldkord, Matthias Feldotto, Anupam Gupta, Guru Guruganesh, Amit Kumar, Sören
Riechers, and David Wajc. Fully-dynamic bin packing with little repacking. In ICALP, volume
107 of LIPIcs, pages 51:1–51:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

30 George Gens and Eugene Levner. Computational complexity of approximation algorithms for
combinatorial problems. In MFCS, volume 74 of Lecture Notes in Computer Science, pages
292–300. Springer, 1979.

31 George Gens and Eugene Levner. Fast approximation algorithms for knapsack type problems.
In Optimization Techniques, pages 185–194. Springer, 1980.

32 Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

33 Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput., 45(1):1–28, 2016.

34 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In STOC, pages 537–550. ACM, 2017.

35 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Randomized algorithms for removable online
knapsack problems. In FAW-AAIM, volume 7924 of Lecture Notes in Computer Science, pages
60–71. Springer, 2013.

36 Xin Han, Yasushi Kawase, Kazuhisa Makino, and He Guo. Online removable knapsack problem
under convex function. Theor. Comput. Sci., 540:62–69, 2014.

37 Xin Han and Kazuhisa Makino. Online removable knapsack with limited cuts. Theor. Comput.
Sci., 411(44-46):3956–3964, 2010.

38 Monika Henzinger. The state of the art in dynamic graph algorithms. In SOFSEM, volume
10706 of Lecture Notes in Computer Science, pages 40–44. Springer, 2018.

39 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic Approximate Maximum
Independent Set of Intervals, Hypercubes and Hyperrectangles. In SoCG, volume 164 of
LIPIcs, pages 51:1–51:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.SoCG.2020.51.

40 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999.

41 Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144–162, 1987.

42 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001.

43 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM, 22(4):463–468, 1975.

44 Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM J. Discret.
Math., 4(3):369–384, 1991.

45 Zoran Ivkovic and Errol L. Lloyd. Fully dynamic algorithms for bin packing: Being (mostly)
myopic helps. SIAM J. Comput., 28(2):574–611, 1998.

46 Kazuo Iwama and Shiro Taketomi. Removable online knapsack problems. In ICALP, volume
2380 of Lecture Notes in Computer Science, pages 293–305. Springer, 2002.

47 Kazuo Iwama and Guochuan Zhang. Online knapsack with resource augmentation. Inf.
Process. Lett., 110(22):1016–1020, 2010.

48 Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
J. Comput., 39(4):1392–1412, 2009.

49 Klaus Jansen. An EPTAS for scheduling jobs on uniform processors: Using an MILP relaxation
with a constant number of integral variables. SIAM J. Discrete Math., 24(2):457–485, 2010.

https://doi.org/10.4230/LIPIcs.SoCG.2020.51
https://doi.org/10.4230/LIPIcs.SoCG.2020.51

F. Eberle, N. Megow, L. Nölke, B. Simon, and A. Wiese 18:17

50 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In SOFSEM,
volume 7147 of Lecture Notes in Computer Science, pages 313–324. Springer, 2012.

51 Klaus Jansen and Kim-Manuel Klein. A robust AFPTAS for online bin packing with polynomial
migration. SIAM J. Discret. Math., 33(4):2062–2091, 2019.

52 Ce Jin. An improved FPTAS for 0-1 knapsack. In ICALP, volume 132 of LIPIcs, pages
76:1–76:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

53 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In FOCS, pages 312–320. IEEE Computer Society,
1982.

54 Hans Kellerer. A polynomial time approximation scheme for the multiple knapsack problem.
In RANDOM-APPROX, volume 1671 of Lecture Notes in Computer Science, pages 51–62.
Springer, 1999.

55 Hans Kellerer and Ulrich Pferschy. Improved dynamic programming in connection with an
FPTAS for the knapsack problem. J. Comb. Optim., 8(1):5–11, 2004.

56 Ariel Kulik and Hadas Shachnai. There is no EPTAS for two-dimensional knapsack. Inf.
Process. Lett., 110(16):707–710, 2010.

57 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. In ICALP, volume 80 of LIPIcs, pages 21:1–21:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

58 Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper. Res.,
4(4):339–356, 1979.

59 Yusen Li, Xueyan Tang, and Wentong Cai. On dynamic bin packing for resource allocation in
the cloud. In SPAA, pages 2–11. ACM, 2014.

60 Will Ma. Improvements and generalizations of stochastic knapsack and markovian bandits
approximation algorithms. Math. Oper. Res., 43(3):789–812, 2018.

61 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.
Math. Program., 68:73–104, 1995.

62 Nicole Megow and Julián Mestre. Instance-sensitive robustness guarantees for sequencing with
unknown packing and covering constraints. In ITCS, pages 495–504. ACM, 2013.

63 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse for
online MST and TSP. SIAM J. Comput., 45(3):859–880, 2016.

64 Morteza Monemizadeh. Dynamic maximal independent set. arXiv preprint, 2019. arXiv:
1906.09595.

65 Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. A subquadratic approximation
scheme for partition. In SODA, pages 70–88. SIAM, 2019.

66 Adam Polak, Lars Rohwedder, and Karol Wegrzycki. Knapsack and subset sum with small
items. In ICALP, volume 198 of LIPIcs, pages 106:1–106:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

67 Donguk Rhee. Faster fully polynomial approximation schemes for knapsack problems. Master’s
thesis, Massachusetts Institute of Technology, 2015.

68 Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Math. Oper. Res., 34(2):481–498, 2009.

69 Martin Skutella and José Verschae. Robust polynomial-time approximation schemes for parallel
machine scheduling with job arrivals and departures. Math. Oper. Res., 41(3):991–1021, 2016.

70 Gang Yu. On the max-min 0-1 knapsack problem with robust optimization applications. Oper.
Res., 44(2):407–415, 1996.

FSTTCS 2021

http://arxiv.org/abs/1906.09595
http://arxiv.org/abs/1906.09595

Largest Similar Copies of Convex Polygons in
Polygonal Domains
Taekang Eom #

Department of Computer Science and Engineering,
Pohang University of Science and Technology, South Korea

Seungjun Lee #

Department of Computer Science and Engineering,
Pohang University of Science and Technology, South Korea

Hee-Kap Ahn #

Department of Computer Science and Engineering, Graduate School of Artificial Intelligence,
Pohang University of Science and Technology, South Korea

Abstract
Given a convex polygon with k vertices and a polygonal domain consisting of polygonal obstacles
with n vertices in total in the plane, we study the optimization problem of finding a largest similar
copy of the polygon that can be placed in the polygonal domain without intersecting the obstacles.
We present an upper bound O(k2n2λ4(k)) on the number of combinatorial changes occurred to the
underlying structure during the rotation of the polygon, together with an O(k2n2λ4(k) log n)-time
deterministic algorithm for the problem. This improves upon the previously best known results by
Chew and Kedem [SoCG89, CGTA93] and Sharir and Toledo [SoCG91, CGTA94] on the problem
in more than 27 years. Our result also improves the time complexity of the high-clearance motion
planning algorithm by Chew and Kedem.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Polygon placement, Largest similar copy, Polygonal domain

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.19

Related Version Full Version: https://arxiv.org/abs/2012.06978

Funding This research was partly supported by the Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.
2017-0-00905, Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dy-
namic Geometric Environment)) and (No. 2019-0-01906, Artificial Intelligence Graduate School
Program(POSTECH)).

1 Introduction

Finding a largest object of a certain shape that can be placed in a polygonal environment
has been considered as a fundamental problem in computational geometry. This kind of
optimization problems arise in various applications, including the metal industry where we
want to find a largest similar pattern containing no faults in a piece of material. There is
also a correspondence to motion planning problems [12, 13, 17] and shape matching [10].

In the polygon placement problem, we are given a container and a fixed shape, and want
to find a largest object of the shape that can be inscribed in the container. There are
various assumptions on the object to be placed, the motions allowed, and the environment
the object is placed within. In many cases, the container is a convex or simple polygon,
possibly with holes. Typical shapes are squares, triangles with/without fixed interior angles,
and rectangles with/without fixed aspect ratios. For the motions, we may allow translation
or both translation and rotation, together with scaling. When scaling is not allowed, the

© Taekang Eom, Seungjun Lee, and Hee-Kap Ahn;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 19; pp. 19:1–19:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tkeom0114@postech.ac.kr
mailto:juny2400@postech.ac.kr
mailto:heekap@postech.ac.kr
https://orcid.org/0000-0001-7177-1679
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.19
https://arxiv.org/abs/2012.06978
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Largest Similar Copies of Convex Polygons in Polygonal Domains

problem is to find a copy of a given object under translation or rigid motion that can be
inscribed in a container [7, 5]. When both translation and scaling are allowed, the objective
becomes to find a largest homothetic copy of a given object that can be inscribed in a
container [11, 15]. When rotation is allowed, together with translation and scaling, the
problem is to find a largest similar copy of a given object that can be inscribed in a container
and it becomes more involved; it may require to capture every change occurring to the
underlying structure during the rotation of the polygon, and therefore the complexity of the
algorithms may depend on the total number of the changes.

In this paper, we consider the polygon placement problem under translation, rotation,
and scaling. We aim to find a largest similar copy of a given convex polygon P with k

vertices that can be inscribed in a polygonal domain Q consisting of polygonal obstacles
with n vertices in total. This problem has been considered fairly well for many years. See
Chapter 50 of the Handbook of Discrete and Computational Geometry [12].

The earliest result was perhaps the SoCG’89 paper by Chew and Kedem [8]. They
considered the problem and gave an incremental technique for handling all combinatorial
changes to the Delaunay triangulation of the polygonal domain Q under the distance
function induced by the input polygon P during the rotation of P . They gave an upper
bound O(k4nλ4(kn)) on the number of combinatorial changes, together with a deterministic
O(k4nλ4(kn) log n)-time algorithm, where λs(n) is the length of the longest Davenport–
Schinzel sequence of order s including n distinct symbols. A few years later, the bound was
improved to O(k4nλ3(n)) by the same authors, and thus the running time of the algorithm
became O(k4nλ3(n) log n) [9].

Toledo [21], and Sharir and Toledo [19] studied this problem (they called this problem
the extremal polygon containment problem) and applied the motion-planning algorithm [13]
to solve this problem. They gave an algorithm with running time O(k2nλ4(kn) log3(kn)
log log(kn)) that uses the parametric search technique of Megiddo [16].

For these two running times, O(k4nλ3(n) log n) and O(k2nλ4(kn) log3(kn) log log(kn)),
the latter one is asymptotically smaller for large k (k > n) while the former one is asymptot-
ically smaller for small k.

There is a randomized algorithm by Agarwal et al. [2] that finds a largest similar
copy in O(knλ6(kn) log3(kn) log2 n) expected time using the parametric search technique
of Megiddo [16]. Agarwal et al. [1] also considered a special case of the problem for finding
a largest similar copy of a given convex k-gon contained in a convex n-gon and gave an
O(kn2 log n)-time algorithm. Very recently, there were results on two variants. Given a set
of n points in the plane, Bae and Yoon [6] gave an O(n2 log n)-time algorithm for finding a
largest square that contains no input point in its interior, but contains input points on every
side or on three sides. Lee et al. [14] gave an algorithm for finding a largest triangle with
fixed interior angles in a simple polygon with n vertices in O(n2 log n) time.

However, no improvement to the worst-case time bounds by Chew and Kedem, and Sharir
and Toledo has been known for the polygon placement problem.

New result. We present an upper bound O(k2n2λ4(k)) on the combinatorial changes, which
directly improves the worst-case time bound for the algorithm to O(k2n2λ4(k) log n). This
improves upon the previously best known results by Chew and Kedem [9] and Sharir and
Toledo [19] in more than 27 years.

Compared to the combinatorial bound O(k4nλ3(n)) by Chew and Kedem, our bound
is o(k3n2 log∗ k) while their bound is O(k4n2α(n)), because λ4(k) = o(k log∗ k) [20] and
λ3(n) = Θ(nα(n)). Therefore, our algorithm outperforms theirs for both k and n. Compared

T. Eom, S. Lee, and H.-K. Ahn 19:3

to the time bound O(k2nλ4(kn) log3(kn) log log(kn)) by Sharir and Toledo [19], our running
time outperforms theirs for both k and n without resorting to parametric search, because
nλ4(k) log n = o(λ4(kn) log3(kn) log log(kn)). Thus our result improves upon the best
deterministic result for the problem introduced in Chapter 50 of the Handbook of Discrete
and Computational Geometry [12].

Compared to the randomized algorithm using parametric search by Agarwal et al. [2],
the worst-case running time of our algorithm, without resorting to parametric search, is
asymptotically smaller than their expected running time when k = O(log4 n) while it is
unclear how to compare the two worst-case running time and the expected running time for
larger k.

There is some correspondence between the combinatorial complexity and motion planning
problems [9, 12]. In the high-clearance motion planning, the goal is to find the path of a
convex polygonal robot P contained in a polygonal domain Q from an initial position to
a final position while remaining “as far as possible” from the boundaries of Q throughout
translations and rotations of P . Chew and Kedem [9] gave an O(k4nλ3(n) log n)-time
algorithm for high-clearance motion planning, where k and n are the numbers of vertices of
P and Q, respectively. Since the running time is dominated by the number of combinatorial
changes, our result improves the running time to O(k2n2λ4(k) log n).

Our result provides some insight for improving the time bounds for some other com-
binatorial problems with moving objects, for instance the Voronoi diagrams and Delaunay
triangulations for moving points under various convex distances [3, 18].

Our improvement may seem marginal compared to previously best ones. However, this
is the first and only result that pushes the (worst-case) complexity barrier for the last 27
years. We conjecture that the tight bound is Θ(k2n2), though we do not have a proof yet.
Our result has factor O(λ4(k)) to the conjecture, and it could be a stepping stone to closing
the gap.

Overview of techniques. We achieve the improved upper bound by carefully analyzing the
combinatorial changes in the edge Delaunay triangulation of Q (to be defined later, shortly
eDT) while rotating P , and by reducing the candidate size to consider for the changes. Our
strategy follows the approach of Chew and Kedem [9], which consists of two parts: Counting
the combinatorial changes in eDT for a constant k, and then counting the combinatorial
changes with respect to k.

1. In the first part, we analyze the combinatorial changes for a fixed k. We consider a family
of functions defined for each vertex and edge of P , and compute their lower envelope.
Since there are O(k) vertices and edges of P , we compute O(k) lower envelopes. We show
that the complexity of each lower envelope is O(n). Then we compute the breakpoints
on the lower envelope of the lower envelopes. To bound the number of combinatorial
changes in eDT, we consider a placement of a scaled copy of P such that a vertex of Q

and a vertex of P are in contact, which we call a hinge. We show that the number of
breakpoints on the lower envelope defined for each hinge is O(n). Since there are O(n)
hinges for a constant k, the number of combinatorial changes in eDT for θ increasing
from 0 to 2π is O(n2).

2. In the second part, we analyze the combinatorial changes to eDT with respect to k. A
combinatorial change to eDT corresponds to a quadruplet of pairs, each pair consisting of
an element of Q and an element of P touching each other in some placement of a scaled
copy of P simultaneously. To count the quadruplets inducing combinatorial changes to
eDT, we consider the triplets of such pairs and define a function for each triplet implying

FSTTCS 2021

19:4 Largest Similar Copies of Convex Polygons in Polygonal Domains

the size of the scaled copy of P defined by the triplet, satisfying the followings: For the
lower envelope L of the functions, a combinatorial change corresponds to an intersection
of two such functions appearing in L. That is, every combinatorial change to eDT occurs
at a breakpoint on the lower envelope of the functions. So, the complexity of the lower
envelope bounds the number of combinatorial changes that occur during the rotation of
P . We reduce the complexity bound on the lower envelope by classifying the combination
of pairs for the quadruplets.

While this high-level strategy may appear similar to the previous one [9], there are a few
major differences and difficulties in improving the bound. In the first part, we improve upon
the previous bound O(nλ3(n)) by Chew and Kedem as follows. We partition the family of
functions to subfamilies such that the functions in the same subfamily have the same domain
length, and therefore the complexity of their lower envelope becomes linear to the number of
functions [6, 14]. Thus, the total upper bound is improved to O(n2).

In the second part, instead of the quadruplets considered by Chew and Kedem, we
consider the triplets of pairs only and show that the functions for the triplets, in their lower
envelope, give us an upper bound on the number of the combinatorial changes to eDT. These
functions must reflect the placement of a scaled copy of P in Q as well as the scaling factor.
We define functions satisfying this requirement and show that every combinatorial change to
eDT occurs at a breakpoint on the lower envelope of the functions. There are O(k3n2) such
functions and two functions intersect each other at most four times. Thus, the complexity
of the lower envelope of the functions is O(λ6(k3n2)) as the lower envelope corresponds to
a Davenport-Schinzel sequence of order 6. To reduce the bound, we classify the functions
into types based on the combinations of pairs defining the functions, and show that any two
functions belonging to the same type intersect each other less than four times. By applying
the partition method in the first part and the classification on the functions above, we show
that the complexity of the lower envelope becomes O(k2n2λ4(k)).

Due to the limit of space, the proofs of some lemmas and corollaries are given in the full
version of the paper.

2 Preliminary

A Davenport–Schinzel sequence is a sequence of symbols in which the frequency of any two
symbols appearing in alternation is limited. A sequence of symbols is a Davenport–Schinzel
sequence of order s if it has no alternating subsequences of length s + 2. We use λs(n) to
denote the length of the longest Davenport–Schinzel sequence of order s that includes n

distinct symbols.
We use some properties related to Davenport–Schinzel sequences in analyzing algorithms.

Let F = {f1, . . . , fn} be a collection of n partially-defined, continuous, one-variable real-
valued functions. The points at which two functions intersect each other in their graphs
and the endpoints of function graphs are called the breakpoints. If any two functions of F
intersect each other in their graphs at most s times, the lower envelope of F has at most
λs+2(n) breakpoints [4]. We introduce some technical lemmas that are used in Section 3.

▶ Lemma 1 (Lemma 14 of [14]). Assume any two functions fi and fj of F intersect each
other in their graphs at most once and each function fi has domain Di of length d. If there
is a constant c such that |

⋃
Di| = cd, then the lower envelope of F has O(n) breakpoints.

▶ Lemma 2. Let G = {g1, . . . , gm} be a collection of m partially-defined, piecewise continuous,
one-variable real-valued functions. Let n be the total number of continuous pieces in the
function graphs of G. If any two continuous pieces intersect each other in at most s points,
the lower envelope of G has O(n

m λs+2(m)) breakpoints.

T. Eom, S. Lee, and H.-K. Ahn 19:5

We introduce the edge Voronoi diagram and its dual, the edge Delaunay triangulation
(eDT). The set S of sites consists of the edges (open line segments) and their endpoints in the
polygonal domain Q. For a convex polygon P in R2 containing the origin in its interior, the
P -distance from a point p to a point q is dP (p, q) = inf{µ | q ∈ p + µP}. The edge Voronoi
diagram is a subdivision of the plane into regions such that the points in the same region
have the same nearest site under P -distance. See Figure 1(a).

bisector
Voronoi vertex

(a) (b)

wedges

ledge

Figure 1 (a) The edge Voronoi diagram of sites, two open line segments (thick) and seven points,
under P -distance when P is an axis-aligned square. (b) The edge Delaunay triangulation dual to
the edge Voronoi diagram in (a).

The edge Voronoi diagram consists of Voronoi vertices and Voronoi edges (bisectors). A
point in the plane is a Voronoi vertex if and only if there is an empty circle defined by the
P -distance centered at the point and touching three or more sites. The number of Voronoi
vertices is linear to the complexity of the sites [15]. A Voronoi edge is a polygonal line that
connects two Voronoi vertices. Each point on a Voronoi edge is equidistant from the two
sites defining the edge under P -distance. The edge Voronoi diagram can be constructed in
O(kn log kn) time and O(kn) space [15], where k and n are the numbers of vertices in P and
Q, respectively.

Just as the standard Delaunay triangulation is the dual of the standard Voronoi diagram,
the edge Delaunay triangulation (eDT) is the dual of the edge Voronoi diagram. It has three
types of generalized edges: edges, wedges, and ledges. An edge connects two point sites, a
wedge connects a point site and a segment site, and a ledge connects two segment sites. See
Figure 1(b). The edge Delaunay triangulation is a planar graph consisting of point sites,
segment sites, generalized edges, and empty triangles. Since a ledge is a trapezoid or a
degenerate trapezoid, eDT may not be a triangulation.

The edge Delaunay triangulation can be constructed by first building the edge Voronoi
diagram and then tracing the diagram to determine the sites that define each portion of
the Voronoi edges and vertices. The type of a generalized edge is determined by the sites
defining the corresponding Voronoi edge.

2.1 The Algorithm of Chew and Kedem
We present a sketch of the algorithm by Chew and Kedem. Imagine we rotate P by angle θ

in counterclockwise direction, and let Pθ be the rotated copy of P . A homothetic copy Pθ

of Pθ is said to be feasible if Pθ is inscribed in Q. For the set S of the sites consisting of
the edges and their endpoints in Q, let eDTθ denote the edge Delaunay triangulation of the
sites in S under Pθ-distance. For a face T of eDTθ, we say Pθ is associated to T if it touches
every site defining T . For Pθ associated to T , the set of the elements (vertices or edges) of

FSTTCS 2021

19:6 Largest Similar Copies of Convex Polygons in Polygonal Domains

Pθ touching the sites defining T becomes the label of T . See Figure 2(a). For a site s of S,
the label of s is the set of elements of Pθ touching s, for Pθ associated to the faces incident
to s. See Figure 2(b).

T

Pθ

(b)(a)

s

Pθ

Pθ

Figure 2 Labels of faces of eDTθ and edge sites of S for an axis-aligned square Pθ. (a) The label
of face T is the set of the edges (red segments) of Pθ, each containing a site defining T . (b) The
label of edge site s is the set of the corners (red points) of Pθ’s lying on s.

Their algorithm classifies two possible types of changes, an edge change and a label
change in eDTθ while θ increases. In an edge change, a new generalized edge appears or an
existing edge disappears. This change occurs when Pθ touches four elements of Q, resulting
in a flip of the diagonals in the quadrilateral formed by the four edges of eDTθ. In a label
change, the label of a face in eDTθ changes. This occurs when two or more elements of Pθ

touch the same site, but the structure of eDTθ may remain unchanged. Any edge or label
change is called a combinatorial change to eDTθ.

Their algorithm maintains a representation for eDTθ while θ increases. It starts by
constructing eDTθ at θ = 0. An edge change is detected by checking the edges of eDTθ and
a label change is detected by checking the faces of eDTθ. For each generalized edge in eDTθ,
it determines at which orientation this edge ceases to be valid due to an interaction with its
neighbors. For each face in eDTθ, the algorithm determines at which orientation the label of
this face changes. The algorithm maintains the edges and faces of eDTθ in a priority queue,
ordered by the orientations at which they change. At each succeeding stage of the algorithm,
it determines which generalized edge is the next one to disappear or which face is the next
one to have its label changed as θ increases.

For an edge change, a new edge appears in eDTθ. Then the algorithm updates eDTθ

and the priority queue information on the new edge and its neighboring edges and faces (an
edge change) and for the face and the edges incident to it (a label change). A priority queue
can be implemented such that each operation can be done in O(log m) time, where m is the
maximum number of items in the queue. Since there are O(n) edges and faces in the queue
at any time, each priority queue operation takes time O(log n).

For each event of a face T disappearing at θe, the algorithm finds the maximal interval
I = [θs, θe] of θ such that T appears in eDTθ. To find I in O(1) time, it stores at T the
orientation at which it starts to appear in eDTθ. Then it computes the orientation θ∗ ∈ I
that maximizes the area of each Pθ that touches every site defining T simultaneously. Since
I is maximal, Pθ is feasible for every θ ∈ I but not for any θ /∈ I sufficiently close to I. Thus,
the algorithm considers all orientations θ such that Pθ is feasible and computes the placement
and orientation of the largest similar copy of P . The area function of Pθ can be computed
in O(1) time and there are O(1) Pθ that touch every site defining T simultaneously. Chew
and Kedem gave an upper bound O(k4nλ3(n)) on the number of combinatorial changes, and
their algorithm takes O(k4nλ3(n) log n) time [9].

T. Eom, S. Lee, and H.-K. Ahn 19:7

3 The number of changes in eDTθ

We show that the number of combinatorial changes in eDTθ during the rotation is
O(k2n2λ4(k)). This directly improves the time bound of the algorithm by Chew and
Kedem to O(k2n2λ4(k) log n). We analyze the number of combinatorial changes in eDTθ

for a constant k in Section 3.1, and then analyze the number of combinatorial changes with
respect to k in Section 3.2 using the result in Section 3.1.

An ordered pair (A, B) is a side contact pair if A is a side of Q and B is a corner of P ,
and a corner contact pair if A is a corner of Q and B is a side of P . A homothetic copy P
of P satisfies a contact pair (A, B) if B in P touches A. See Figure 3 (a). Recall that a
homothetic copy P is said to be feasible if P is inscribed in Q. Note that a homothetic copy
P is not necessarily feasible even if P satisfies a contact pair.

3.1 The number of changes for fixed k

(b) (c)

Pθ

A2

A1

A2

Pθ

A3

A1

P

C1 C2

(a)

Figure 3 (a) P satisfies a side contact pair C1 and a corner contact pair C2. (b) The segment
A1A2 is a reported edge with QH = A2. (c) The segment A1A3 is an unreported edge because no
hinge is involved in the segment for a feasible Pθ.

For a constant k, we improve upon the previously best upper bound O(nλ3(n)) by Chew
and Kedem [9] to O(n2). A key idea is to consider the lower envelope of some functions
related to the expansion factor, one for each edge and vertex of P , and then to analyze the
lower envelope of those lower envelopes. By careful analysis on the complexities of the lower
envelopes, we show that the number of combinatorial changes to eDTθ for θ increasing from
0 to 2π is O(n2).

To bound the number of changes tight, we classify the generalized edges into two types
and count them separately. Chew and Kedem also used this approach. An ordered pair
(QH , PH) is a hinge if QH is a corner of Q and PH is a corner of P . For a hinge H = (QH , PH)
and a contact pair C = (A, B), the generalized edge connecting QH and A is a reported edge
if there is a feasible Pθ for some θ satisfying both H and C. An edge of eDTθ is an unreported
edge if it is not a reported edge. See Figure 3(b,c). We use the numbers of changes to the
reported edges and to the labels in counting the changes to the unreported edges.

Changes to the reported edges and the label changes to point sites. We count the
changes to the reported edges and the changes to the labels of point sites in eDTθ for θ

increasing from 0 to 2π. We define the expansion function EHC(θ) for a hinge H and
a contact C to be the minimal expansion factor of Pθ satisfying H and C. For a hinge
H = (QH , PH), let FH be the set of all expansion functions satisfying H and another contact
pair. An expansion function EHC(θ) of FH for a contact C = (A, B) appears in the lower
envelope of FH at θ if the generalized edge connecting QH and A is a reported edge in eDTθ.

FSTTCS 2021

19:8 Largest Similar Copies of Convex Polygons in Polygonal Domains

For a set X of functions, let B(X) denote the number of breakpoints on the lower envelope
of the functions in X. Then the number of changes to the reported edges in eDTθ which
involve H is bounded by B(FH).

Every label change to a point site involves a hinge. See Figure 4(a). An intersection of
EHC1 and EHC2 of FH for contact pairs C1 and C2 appears in the lower envelope of FH if a
label change to a point site is induced by C1, C2 and H. Then the number of label changes
to the point sites in eDTθ which involve H is bounded by B(FH).

▶ Proposition 3 (Proposition 3 of [9]). Two expansion functions EHC1 and EHC2 intersect
each other in at most one point in their graphs if both C1 and C2 are corner contact pairs,
or both are side contact pairs. If one is a corner contact pair and the other is a side contact
pair, EHC1 and EHC2 intersect each other in at most two points in their graphs.

Let vi and ei denote the vertices and edges of P for i = 1, . . . , k. For each i = 1, . . . , k,
let C1i = {(e, vi) | e is an edge of Q} be the set of side contact pairs and let C2i = {(v, ei) |
v is a vertex of Q} be the set of corner contact pairs. Let Fji = {EHC | C ∈ Cji} for j = 1, 2.

▶ Lemma 4. B(Fji) = O(n) for each j = 1, 2 and i = 1, . . . , k.

Proof. B(F1i) = O(n) for each i since EHC1 and EHC2 intersect each other only at the
boundaries of their intervals for C1, C2 ∈ C1i.

Consider now B(F2i). Two expansion functions EHC1 and EHC2 intersect each other in
at most one point for C1, C2 ∈ C2i. Also, EHC has the same length of domain for all C ∈ C2i.
Thus, B(F2i) = O(n) by Lemma 1. ◀

From Lemma 2, Proposition 3, and Lemma 4, we achieve an upper bound on B(FH).

▶ Lemma 5. B(FH) = O(λ3(k)n).

Proof. Let Fj = {fj1, . . . , fjk} for j = 1, 2, where fji is the lower envelope of Fji for each
i = 1, . . . , k and j = 1, 2. Let Lj denote the lower envelope of Fj . Then, the lower envelope
of FH is the lower envelope of L1 and L2. The number of breakpoints on Lj is O(λ3(k)n)
for j = 1, 2 by Lemma 2, Proposition 3, and Lemma 4. Then B(FH) = O(λ3(k)n), because
two continuous pieces, one from L1 and one from L2, intersect each other in at most two
points by Proposition 3. ◀

By Lemma 5, the number of changes to the reported edges and the number of label
changes to the point sites are O(kλ3(k)n2).

(a)

Pθ

(b)

Pθ

Figure 4 (a) Label change to a point site (hinge). (b) Label change to an edge site.

Label changes to edge sites. We count the changes to the labels of edge sites in eDTθ for θ

increasing from 0 to 2π. Imagine we fix an edge e of Q and an edge g of P . See Figure 4(b).
Then, the number of label changes to edge site e with g is O(n) because there are O(n)
different Pθ’s, each associated to a face of eDTθ while e and g are aligned and touching each
other. Thus, the total number of label changes to all edge sites is O(kn2).

T. Eom, S. Lee, and H.-K. Ahn 19:9

Changes to unreported edges. We count the changes to the unreported edges using the
number of changes to the reported edges and to the labels, and Lemma 6.

▶ Lemma 6 (Lemma 2 of [9]). Every edge of eDTθ is either a reported edge or a diagonal in
a convex l-gon, l ≤ 3k, whose sides are either reported edges or portions of edge sites.

Let Gθ be the graph whose edges are the reported edges in eDTθ and portions of edge
sites in Lemma 6. We count the changes to the unreported edges which are diagonals in a
face of Gθ for an interval of θ with no label change to eDTθ. Observe that no combinatorial
change occurs to Gθ for the interval. Any change to an unreported edge involves four sites
lying on a face boundary of Gθ. There are at most four changes for a group of four sites. We
describe the details on this bound in Section 4 in the full version. Since each face has at most
3k edges by Lemma 6, there are at most

(3k
4

)
such groups. Thus, O(k4) changes occur to the

unreported edges for the boundary of a face g of Gθ for an interval of θ with no label change
to the faces of eDTθ intersecting g. Since the number of changes to the reported edges and
to the labels is O(kλ3(k)n2), there are O(k5n2λ3(k)) combinatorial changes to eDTθ.

▶ Theorem 7. For a polygonal domain Q of size n and a convex k-gon P , the number of
combinatorial changes to eDTθ for θ increasing from 0 to 2π is O(n2) for a constant k.

3.2 The number of changes with respect to k

We now consider k as a variable and bound the number of changes to eDTθ. Since each
triangular face in eDTθ is defined by three elements (edges or vertices) of P , we choose three
elements of P and use their convex hull in the counting. Then by Theorem 7, the total
number of faces in eDTθ for all these convex hulls is O(k3n2) for θ increasing from 0 to 2π.

Let T be the set of all faces of eDTθ for the convex hull of three elements B1, B2, B3
of P such that the contact pairs inducing the face have B1, B2, and B3 as their elements.
Consider two faces T and T ′ of eDTθ for two distinct orientations θ1 and θ2 with θ1 < θ2
that are defined by the same sites. We consider T and T ′ as distinct faces if there is any
change to T or T ′ in eDTθ for θ increasing from θ1 to θ2. For a face T ∈ T , let C(T) be the
set of contact pairs which defines T , and let I(T) be the interval of θ at which T appears in
eDTθ.

C1

PR,θ

C

hR(θ)

C2

C1

PR,θ

hR(θ)

C2

(a) (b)

C

Figure 5 PR,θ and hR(θ) for a restricted contact pair R = (C, I) and θ. Let hR(θ) be the distance
from the clockwise endpoint (with respect to the dashed ray) of the side element of C2 to point
element of C2. (a) hR(θ) when C2 is a corner contact. (b) hR(θ) when C2 is a side contact.

For any two fixed contact pairs (C1, C2) with Ci = (Ai, Bi) for i = 1, 2 such that A1 ̸= A2
and B1 ̸= B2, we count the combinatorial changes involving (C1, C2) and other two contact
pairs C, C ′ given in counterclockwise order C1, C2, C, and C ′ along the boundary of P . The
combinatorial changes for the cases that A1 = A2 or B1 = B2 will be counted for other
choices of fixed contact pairs.

FSTTCS 2021

19:10 Largest Similar Copies of Convex Polygons in Polygonal Domains

We use (C, I) to denote a contact pair C restricted to an interval I of θ. For (C1, C2), let
R be the set of restricted contact pairs (C, I) such that C(T) = {C1, C2, C} and I = I(T)
for a face T ∈ T , and C1, C2, C appear in counterclockwise order along the boundary of P .
For a fixed restricted contact pair R = (C, I) ∈ R and θ ∈ I, let PR,θ denote the homothet
of Pθ which satisfies C1, C2, and C. Let hR(θ) be the function that denotes the distance
from the clockwise endpoint of the side element of C2 (with respect to the ray from the point
element of C1 to the point element of C2) to the point element of C2 with respect to PR,θ.
Observe that hR is a partially defined continuous function on R ∈ R. See Figure 5.

θ

h
class R′

hR

hR′

Figure 6 Partitioning R into classes using the graphs of functions in F = {hR | R ∈ R}. For two
pairs R, R′ in class R′, hR and hR′ are connected in the union of the function graphs of F .

Let F = {hR | R ∈ R}. We partition R into classes such that two restricted contact
pairs R, R′ belong to the same class if and only if hR and hR′ are connected in the union of
the function graphs of F . Figure 6 illustrates the classes of R.

If a combinatorial change occurs by C1, C2, C, and C ′ at θ, we have hR(θ) = hR′(θ) for
two distinct restricted contact pairs R = (C, I) and R′ = (C ′, I ′). Let R′ be a class of R
and let F ′ = {hR | R ∈ R′}. We verify that if PR,θ is feasible, then hR(θ) appears in the
lower envelope or upper envelope of F ′.

▶ Lemma 8. Let R, R′, R′′ ∈ R be the restricted contact pairs in the same class. If
hR′(θ) < hR(θ) < hR′′(θ), then PR,θ is not feasible.

For a vertex vi of P , let R′
1i be the set consisting of restricted contact pairs (C, I) ∈ R′

such that C = (e, vi) is a side contact pair for some edge e ∈ Q. For an edge ei of P , let R′
2i

be the set consisting of restricted contact pairs (C, I) ∈ R′ such that C = (v, ei) is a corner
contact pair for some vertex v ∈ Q. Let |R′| = m, and let |R′

1i| = m1i and |R′
2i| = m2i for

i = 1, . . . , k. Let F ′
ji = {hR | R ∈ R′

ji} for j = 1, 2. Recall that for a set X of functions,
B(X) denotes the number of breakpoints on the lower envelope of the functions in X. We
have B(F ′

1i) = O(m1i) since hR and hR′ intersect each other only at the boundaries of their
intervals for R, R′ ∈ R′

1i. Let di be the number of intersections of the function graphs of
F ′

2i, and let d =
∑k

i=1 di. Then B(F ′
2i) = O(m2i + di).

▶ Lemma 9. B(F ′
1i) = O(m1i) and B(F ′

2i) = O(m2i + di) for each i = 1, . . . , k.

Observe that each intersection of the function graphs of F ′
2i corresponds to a combinatorial

change to eDT for the convex hull of B1, B2, and ei. See Figure 7(a). By Lemma 8, every
combinatorial change appears in the lower envelope or upper envelope of F ′. Here, we
describe the case for the lower envelope of F ′. We count the breakpoints of certain types on
the lower envelope of F ′. We use (a, b)-change to denote a combinatorial change induced by
a side contact pairs and b corner contact pairs.

Two side contact pairs. We count only (4, 0)-changes in this case. We count (3, 1) and
(2, 2)-changes appearing in the lower envelope in other choices of two pairs, one side contact
pair and one corner contact pair. See Figure 7(b). For F ′

1 = {fi | i = 1, . . . , k} such that fi

T. Eom, S. Lee, and H.-K. Ahn 19:11

C1

C2

C
C ′

C1

C2

ei
C ′ C

(a) (b)

Figure 7 (a) For R = (C, I) and R′ = (C′, I ′) in R′
2i, and orientation θ with hR(θ) = hR′ (θ),

there exists a rotated and scaled copy of the convex hull of B1, B2, ei that is feasible and satisfies
C1, C2, C, and C′. The intersection hR(θ) = hR′ (θ) corresponds to a combinatorial change to eDTθ

for the convex hull of B1, B2, and ei. (b) The (2, 2)-change induced by C1, C2, C and C′ is counted
when C2 and C are chosen as the fixed pair.

is the lower envelope of F ′
1i, B(F ′

1) =
∑k

i=1 O(m1iλ4(k)/k) = O(mλ4(k)/k) by Lemmas 2
and 9. We show that any two continuous pieces in F ′

1 intersect each other in at most two
points in Section 4 of the full version. Since each (4, 0)-change corresponds to a breakpoint
on the lower envelope of F ′

1, the number of (4, 0)-changes is O(mλ4(k)/k).

Two corner contact pairs. We count only (0, 4)-combinatorial changes in this case. Other
changes are counted for other choices of the fixed pairs. For F ′

2 = {fi | i = 1, . . . , k} such that
fi is the lower envelope of F ′

2i, B(F ′
2) =

∑k
i=1 O((m2i + di)λ4(k)/k) = O((m + d)λ4(k)/k)

by Lemmas 2 and 9. We show that any two continuous pieces in F ′
2 intersect each other in

at most two points in Section 4 of the full version. Since each (0, 4)-change corresponds to a
breakpoint of the lower envelope of F ′

2, the number of (0, 4)-changes is O((m + d)λ4(k)/k).

One side contact pair and one corner contact pair. We count all combinatorial changes
other than (4, 0)-changes and (0, 4)-changes. First, we count the breakpoints on the lower
envelope of F ′

1 = {hR | R ∈
⋃k

i=1 R′
1i} and on the lower envelope of F ′

2 = {hR | R ∈⋃k
i=1 R′

2i}, and then count the breakpoints on the lower envelope of F ′
1 ∪ F ′

2. We show
that any two continuous pieces, both from either F ′

1 or F ′
2, intersect each other in at most

two points in Section 4 of the full version. We can compute B(F ′
1) = O(mλ4(k)/k) and

B(F ′
2) = O((m+d)λ4(k)/k) in the same way as for counting (4, 0)-changes and (0, 4)-changes,

respectively. B(F ′) = O((m+d)λ4(k)/k) since both B(F ′
1) and B(F ′

2) are O((m+d)λ4(k)/k),
and any two continuous pieces, one from F ′

1 and one from F ′
2, intersect each other in at most

four points. Details are in Section 4 in the full version. Thus, the number the combinatorial
changes for the fixed contact pair is O((m + d)λ4(k)/k).

Consider the sum σ of the complexities |F ′| of F ′ = {hR | R ∈ R′} over all classes R′

for a fixed pair. The total sum of σ’s for all enumerations of fixed pairs is O(k3n2) since
|T | = O(k3n2). Similarly, consider the sum ξ of the numbers of intersections (d in the
complexities in the previous paragraphs) over all classes for a fixed pair. The total sum
of ξ’s for all enumerations of fixed pairs is O(k3n2) since ξ is bounded by the number of
combinatorial changes to eDTθ for the convex hulls of three elements of P .

▶ Theorem 10. For a polygonal domain Q with n vertices and a convex k-gon P , the number
of combinatorial changes to the edge Delaunay triangulation of Q under Pθ-distance for θ

increasing from 0 to 2π is O(k2n2λ4(k)).

Theorem 10 directly improves upon the algorithm by Chew and Kedem.

FSTTCS 2021

19:12 Largest Similar Copies of Convex Polygons in Polygonal Domains

▶ Corollary 11. Given a polygonal domain Q with n vertices and a convex k-gon P , we can
find a largest similar copy of P inscribed in Q in O(k2n2λ4(k) log n) time using O(kn) space.

High-clearance motion planning. For a convex polygonal robot P with k vertices and
a polygonal domain Q with n vertices in the plane, we want to find a path of P from an
initial position to a final position such that the clearance of the path exceeds a given value
∆. The clearance of a path of P is the minimum of P -distance from the boundaries of Q

throughout translations and rotations of P moving along the path. Chew and Kedem [9] gave
an O(k4nλ3(n) log n)-time algorithm for the high-clearance motion planning. The running
time is dominated by the number of combinatorial changes, and our result directly improves
the running time.

▶ Corollary 12. Given a convex polygonal robot P with k vertices, a polygonal domain Q

with n vertices, initial and final positions of P in the plane, and a clearance ∆, we can find
a path of clearance exceeding ∆ for P in Q in O(k2n2λ4(k) log n) time using O(k2n2λ4(k))
space.

4 The number of critical orientations for four contact pairs

An orientation θ is a critical orientation if a combinatorial change to eDTθ occurs at θ. We
consider the critical orientations θ at which Pθ has contact with four contact pairs. Recall
that an (a, b)-change is a combinatorial change induced by a side contact pairs and b corner
contact pairs. We count the number of critical orientations for each (a, b)-change type. The
number of critical orientations of (0, 4)-change is 2, which is shown in Appendix B of [9]. So
we count the critical orientations for the other types of combinatorial changes. The following
table summarizes the results. Details can be found in the full version.

Types of (a, b)-change (4, 0) (3, 1) (2, 2) (1, 3) (0, 4)
Number of critical orientations 1 2 4 2 2

References
1 Pankaj K. Agarwal, Nina Amenta, and Micha Sharir. Largest placement of one convex polygon

inside another. Discrete & Computational Geometry, 19(1):95–104, 1998.
2 Pankaj K. Agarwal, Boris Aronov, and Micha Sharir. Motion planning for a convex polygon

in a polygonal environment. Discrete & Computational Geometry, 22(2):201–221, 1999.
3 Pankaj K. Agarwal, Haim Kaplan, and Natan Rubin. Kinetic Voronoi diagrams and Delaunay

triangulations under polygonal distance functions. Discrete & Computational Geometry,
54:871–904, 2015.

4 Mikhail J. Atallah. Dynamic computational geometry. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science (FOCS 1983), pages 92–99. IEEE, 1983.

5 Francis Avnaim and Jean Daniel Boissonnat. Polygon placement under translation and rotation.
In Robert Cori and Martin Wirsing, editors, STACS 88, pages 322–333, 1988.

6 Sang Won Bae and Sang Duk Yoon. Empty squares in arbitrary orientation among points. In
Proceedings of the 36th International Symposium on Computational Geometry (SoCG 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

7 Bernard Chazelle. The polygon containment problem. In F.P. Preparata, editor, Advances in
Computing Research, Vol I: Computational Geometry, pages 1–33. JAI Press Inc., 1983.

8 L Paul Chew and Klara Kedem. Placing the largest similar copy of a convex polygon among
polygonal obstacles. In Proceedings of the 5th Annual Symposium on Computational Geometry
(SoCG 1989), pages 167–173, 1989.

T. Eom, S. Lee, and H.-K. Ahn 19:13

9 L Paul Chew and Klara Kedem. A convex polygon among polygonal obstacles: Placement
and high-clearance motion. Computational Geometry, 3(2):59–89, 1993.

10 Rudolf Fleischer, Kurt Mehlhorn, Günter Rote, Emo Welzl, and Chee Yap. Simultaneous
inner and outer approximation of shapes. Algorithmica, 8(1):365, 1992.

11 Steven Fortune. A fast algorithm for polygon containment by translation. In Proceedings of
the 12th International Colloquium on Automata, Languages, and Programming (ICALP 1985),
pages 189–198, 1985.

12 Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors. Handbook of Discrete and
Computational Geometry. CRC Press LLC, 3rd edition, 2017.

13 Klara Kedem and Micha Sharir. An efficient motion-planning algorithm for a convex polygonal
object in two-dimensional polygonal space. Discrete & Computational Geometry, 5:43–75,
1990.

14 Seungjun Lee, Taekang Eom, and Hee-Kap Ahn. Largest triangles in a polygon. Computational
Geometry, 98:101792, 2021.

15 Daniel Leven and Micha Sharir. Planning a purely translational motion for a convex object
in two-dimensional space using generalized Voronoi diagrams. Discrete & Computational
Geometry, 2:9–31, 1987.

16 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983.

17 Colm Ó’Dúnlaing and Chee K Yap. A retraction method for planning the motion of a disc.
Journal of Algorithms, 6(1):104–111, 1985.

18 Natan Rubin. On kinetic Delaunay triangulations: A near quadratic bound for unit speed
motions. Journal of the ACM, 62(3):25:1–25:85, 2015.

19 Micha Sharir and Sivan Toledo. Extremal polygon containment problems. Computational
Geometry, 4(2):99–118, 1994.

20 Endre Szemerédi. On a problem by Davenport and Schinzel. Acta Arithmetica, 25:213–224,
1974.

21 Sivan Toledo. Extremal polygon containment problems. In Proceedings of the 7th Annual
Symposium on Computational Geometry (SoCG 1991), pages 176–185, 1991.

FSTTCS 2021

A Faster Algorithm for Finding Closest Pairs in
Hamming Metric
Andre Esser #

Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE

Robert Kübler #

Metro AG, Düsseldorf, Germany

Floyd Zweydinger #

Ruhr Universität Bochum, Germany

Abstract
We study the Closest Pair Problem in Hamming metric, which asks to find the pair with the smallest
Hamming distance in a collection of binary vectors. We give a new randomized algorithm for the
problem on uniformly random input outperforming previous approaches whenever the dimension
of input points is small compared to the dataset size. For moderate to large dimensions, our
algorithm matches the time complexity of the previously best-known locality sensitive hashing based
algorithms. Technically our algorithm follows similar design principles as Dubiner (IEEE Trans.
Inf. Theory 2010) and May-Ozerov (Eurocrypt 2015). Besides improving the time complexity
in the aforementioned areas, we significantly simplify the analysis of these previous works. We
give a modular analysis, which allows us to investigate the performance of the algorithm also on
non-uniform input distributions. Furthermore, we give a proof of concept implementation of our
algorithm which performs well in comparison to a quadratic search baseline. This is the first step
towards answering an open question raised by May and Ozerov regarding the practicability of
algorithms following these design principles.

2012 ACM Subject Classification Theory of computation → Nearest neighbor algorithms

Keywords and phrases closest pair problem, LSH, nearest neighbor

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.20

Related Version Full Version: https://arxiv.org/abs/2102.02597

1 Introduction

Finding closest pairs in a given dataset of binary points is a fundamental problem in theoretical
computer sciences with numerous applications in data science, machine learning, computer
vision, cryptography, and many others.

Image data for example is often represented via compact binary codes to allow for
efficient closest pair search in applications like similarity search in images or facial recognition
systems [8,15,20]. The usage of binary codes also allows decoding the represented data to
common codewords. Here, the most efficient algorithms known for decoding such random
binary linear codes also heavily benefit from improved algorithms for the Closest Pair
Problem [6, 17]. Another common application lies in the field of bioinformatics, where
the analysis of genomes involves closest pair search on large datasets to identify the most
correlated genetic markers [16,19].

To be more precise, the Closest Pair Problem asks to find the pair of vectors with the
minimal Hamming distance among n given binary vectors. While the general version of this
problem does not make any restrictions on the distribution of input points, several settings
imply a uniform distribution of dataset elements [6,16,17,19]. Usually, in such settings, there
is a planted pair, which attains relative distance γ ∈ [0, 1

2], which has to be found. This
uniform version is also known as the light bulb problem [22]. The problem can be solved in

© Andre Esser, Robert Kübler, and Floyd Zweydinger;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 20; pp. 20:1–20:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.esser@tii.ae
mailto:robert.kuebler@rub.de
mailto:floyd.zweydinger@rub.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.20
https://arxiv.org/abs/2102.02597
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Faster Closest Pair Algorithm

time linearly in the dataset size1 as long as the dimension of vectors is constant [5,14]. As
soon as the dimension is non-constant an effect occurs known as curse of dimensionality,
which lets the problem become much harder.

The most common framework to assess the problem is based on locality-sensitive hashing
(LSH), whose research was initiated in the pioneering work of Indyk and Motwani [12].
Roughly speaking, a locality-sensitive hash function is more likely to hash points that are
close to each other to the same value, rather than points that are far apart. To solve the
Closest Pair Problem leveraging an LSH family one chooses a random hash function of the
family and computes the hash value of all points in the dataset. In a next step, one computes
the pairwise distance only for those pairs, hashing to the same value. This process is then
repeated for different hash functions until the closest pair is found. The initial algorithm
by Indyk-Motwani achieves a time complexity of nlog2(2

1−γ). In general, a time lower bound
of n

1
1−γ is known for LSH based algorithms [9, 18]. In [9] Dubiner also gives an abstract

idea of an algorithm achieving this lower bound.2 Later May and Ozerov [17] gave the
first concrete algorithmic description following similar design principles, also achieving the
mentioned lower bound. Additionally, current data-dependent hashing schemes [2], where
the hash function depends also on the actual points in the dataset, improve on the initial
idea by Indyk-Motwani and also match the time lower bound of [9, 18].

In the uniform setting Valiant [21] was able to circumvent the lower bound by leveraging
fast matrix multiplication and hence breaking out of the LSH framework to give an algorithm
that runs in time n1.63poly(d). Remarkably, the complexity exponent of Valiant’s algorithm
does not depend on the relative distance γ at all. Later this bound was improved to
n1.58poly(d) by Karpa et al. [13] and simplified in an elegant algorithm by Alman [1]
achieving the same complexity.

All mentioned algorithms have in common, that they assume a dimension of d =
c(n) log(n), where c(n) is at least a big constant. The explicit size of those constants
is usually not stated, instead an asymptotic argument yields their existence. Moreover, the
results by [2, 9, 21] for instance assume even larger dimensions where 1

c(n) = o(1) . Here, the
algorithm by May-Ozerov forms an exception by being applicable for any c(n) ≥ 1

1−H(γ
2) ,

where H(·) denotes the binary entropy function. Nevertheless, the mentioned lower bound
is only achieved for c(n) approaching infinity. Recently, Xie, Xu and Xu [23] proposed a
new algorithm based on decoding the points of the data set according to some random
code, exploiting that close vectors are more likely to be decoded to the same word. Their
algorithm is also applicable for any c(n) that allows to bound the number of pairs attaining
relative distance γ to a constant number with high probability. The authors are able to
derandomize their approach and, thus, obtain the fastest known deterministic algorithm for
small constants c(n). However, if one also considers probabilistic procedures, their method is
inferior to the one by May-Ozerov.

1.1 Our Contribution
We design a randomized algorithm, which achieves the best-known running time for solving
the Closest Pair Problem on uniformly random input, when the dimension d is small, which
means c(n) being a small constant. Additionally, our algorithm matches the running time of

1 here we ignore polylogarithmic factors in the dataset size
2 A precise algorithmic description and a proof of the running time in the case where the vector length is

restricted (referred to as limited amount of data case in his work) is missing.

A. Esser, R. Kübler, and F. Zweydinger 20:3

0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

distance γ

tim
e

ex
po

ne
nt

ϑ

(a) Dimension d = 4 log2(n).

0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

distance γ

(b) Dimension d = 2 log2(n).

0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

distance γ

(c) Dimension d = 1.2 log2(n).

Figure 1 Time complexity exponent ϑ as a function of the relative distance γ of the closest
pair for different dimensions. The running time is of the form nϑ · poly(d), where the dashed line
represents May-Ozerov’s algorithm and the solid line depicts the exponent of our new algorithm.
The dotted line gives the maximal γ for which the algorithm by May-Ozerov is still applicable.

the best known LSH algorithms for larger values of c(n) and still matches the time lower
bound for LSH based schemes if 1

c(n) = o(1). To quantify we give in Figure 1 the achieved
runtime exponent for c(n) ∈ {1.2, 2, 4} of our algorithm in comparison to May-Ozerov. As
indicated by the graphics, our algorithm can be seen as a natural extension of the May-Ozerov
algorithm to higher distances. Moreover, we show that for large distances our algorithm
is indeed optimal. Note that apart from the May-Ozerov algorithm none of the previously
mentioned algorithms is applicable for those choices of c(n). A detailed comparison to the
result of May and Ozerov is given right after Theorem 3.

Our improvements over previous work lie in the high density regime, which implies
multiple solutions to the Closest Vector Problem. Since the distance alone does not allow
to distinguish the planted pair in such cases at least a non-negligible fraction of those pairs
needs to be reported, to find the planted pair. The relevance of this setting is mostly given
by cryptographic [4,17] and coding-theoretic [7,10,11] applications, precisely the decoding of
linear codes. Here, the searched error-vector has known weight and is usually constructed
in a tree-wise meet-in-the-middle fashion. Even though the error-vector is usually unique
the tree-wise decomposition of the problem introduces multiple solution candidates, such
that the lists in the tree can even hold exponentially many pairs with relative distance
smaller than γ. However, in such settings, only the elements attaining relative distance γ

can possibly sum to the searched error-vector. In the algorithm of Both and May [7], which
is the fastest known for decoding random binary linear codes, the authors had to define
naive fallback routines for the high density case, for which the May-Ozerov algorithm is not
applicable. Here our result allows at least for a unified analysis of the algorithm without
the need of fallback routines and in the best case leads to runtime improvements. Also, the
generalization of the May-Ozerov nearest neighbor algorithm to Fq by Hirose [11] suffers
similar limitations regarding the high density regime, while also forming the basis for the
fastest known decoding algorithm for random linear codes over Fq [10].

Technically our algorithm follows similar design principles as [9, 17]. At its core, these
algorithms group the elements of the given datasets recursively into buckets according to
some criterion, which fulfills properties that are similar to those of locality-sensitive hash
functions. As the buckets in the recursion are decreasing in size, at the end of the recursion
they become small enough to compute the pairwise distance of all contained elements naively.

In contrast to previous works, we exchange the used bucket criteria, which allows us to
significantly simplify the algorithms’ analysis as well as improve for the mentioned parameter
regimes. Also, our approach is applicable for any c(n), thus we are able to remove the
restriction c(n) ≥ 1

1−H(γ
2) .

FSTTCS 2021

20:4 Faster Closest Pair Algorithm

Following May-Ozerov and Dubiner, we study the bichromatic version of the Closest Pair
Problem, which takes as input two datasets rather than one and the goal is to find the closest
pair between those given datasets. Obviously, there exists a randomized reduction between
the Closest Pair Problem and its bichromatic version, but our algorithm can also be easily
adapted to the single dataset case. However, May and Ozerov require the elements within
each dataset to be pairwise independent of each other, as a minor contribution we get rid of
this restriction, too.

Also, we investigate the algorithms’ performance on different input distributions. There-
fore we give a modular analysis, which allows for an easy exchange of dataset distribution
as well as the choice of bucketing criterion. We also give numerical upper bounds for the
algorithm’s complexity exponent on some exemplary input distributions. These examples
suggest that the chosen criterion is well suited as long as the distance between input elements
concentrates around d

2 (as in the case of random input lists), while being non-optimal as
soon as the expected distance decreases.

We also address an open research question regarding the practical applicability of al-
gorithms following the design of [9,17] raised by May and Ozerov. As their algorithm inherits
a huge polynomial overhead in time and space, they left it as an open problem to give a
more practical algorithm following a similar design. While our analysis first suggests an
equally high overhead, we are able to give an efficient implementation of our algorithm, which
requires in addition to the input dataset only constant space. Also, our practical experiments
show that most of the overhead of our algorithm is an artifact of the analysis and can be
circumvented in practice so that our algorithm performs well compared to a quadratic search
baseline.

2 Preliminaries

2.1 Notation

For a, b ∈ N, a ≤ b we denote [a, b] := {a, a + 1, . . . , b − 1, b}. In particular, let [b] := [1, b].
For a vector v ∈ Fd

2 and I ∈ [d] let vI be the projection of v onto the coordinates indexed
by I, i.e. for v = (v1, v2, . . . , vd) and I = {i1, i2, . . . , ik} we have vI = (vi1 , . . . , vik

) ∈ Fk
2 .

We denote the uniform distribution on Fd
2 as U

(
Fd

2
)
. We define f(n) = Õ (g(n)) :⇔ ∃i ∈

N : f(n) = O
(
g(n) · logi(g(n))

)
, i.e. the tilde additionally suppresses polylogarithmic factors

in comparison to the standard Landau notation O.
Furthermore, we consider all logarithms having base 2. Define the binary entropy function

as H(x) = −x log(x)− (1− x) log(1− x) for x ∈ (0, 1), and additionally H(0) = H(1) := 0.
Using this together with Stirling’s formula n! = Θ

(√
2πn

(
n
e

)n) we obtain
(

n
γn

)
= Θ̃

(
2H(γ)n

)
.

We additionally define H−1 : [0, 1]→ [0, 1
2] to be the inverse of the left branch of H.

2.2 Closest Pair Definition

In this work, we consider the Bichromatic Closest Pair Problem in Hamming metric. Here,
the inputs are two lists of equal size containing elements drawn uniformly at random from
Fd

2 plus a planted pair, whose Hamming distance is γd for some known γ. More formally, we
state the problem in the following definition. To allow for easy comparison to the result of
May-Ozerov, we follow their notation using the dimension as the primary difficulty parameter.
Thus we let the list sizes be n := 2λd, which means λ = 1

c(n) , where d = c(n) log n.

A. Esser, R. Kübler, and F. Zweydinger 20:5

▶ Definition 1 (Bichromatic Closest Pair Problem). Let d ∈ N, γ ∈
[
0, 1

2
]

and λ ∈ (0, 1]. Let
L1 = (vi)i∈[2λd], L2 = (wi)i∈[2λd] ∈

(
Fd

2
)2λd

be two lists containing elements uniformly drawn
at random, together with a distinguished pair (x, y) ∈ L1 × L2 with wt(x + y) = γd. We
further assume that for each i, j the vectors vi and wj are pairwise stochastically independent.
The Closest Pair Problem CPd,λ,γ asks to find this closest pair (x, y) given L1, L2 and the
weight parameter γ. We call (x, y) the solution of the CPd,λ,γ problem.

First, note that λ ≤ 1 is not a real restriction since for λ > 1 the lists must contain
duplicates, which can be safely removed, giving us a problem instance with λ ≤ 1. We also
consider the Closest Pair Problem on input lists whose elements are distributed according to
some distribution D different from the uniform one used in Definition 1. To indicate this, we
refer to the CPd,λ,γ over distribution D. Note that in this case, the meaningful upper bound
for λ is the entropy of D.

Technically speaking, it is also not necessary to know the value of γ, as the time complexity
of appropriate algorithms to solve the CPd,λ,γ problem is solely increasing in γ. Thus if γ is
unknown, one would apply the algorithm for each γd = 0, 1, 2, . . . until the solution is found,
which results at most in an overhead polynomial in d.

It is well known, that any LSH based algorithm solving the problem of Definition 1 with
non-negligible probability needs at least time complexity |L1|

1
1−γ = 2

λd
1−γ [9, 18]. However,

this lower bound assumes the promised pair to be uniquely distinguishable from all other
pairs in L1 ×L2. Obviously, if the relation of γ and λ lets us expect more than the promised
pair of distance γd in the input lists, an algorithm solving the Closest Pair Problem needs to
find all (or at least a non-negligible fraction) of these closest pairs.3 Hence, if the input lists
contain E closest pairs the time complexity of any algorithm solving the problem is lower
bounded by

Ω̃
(

max(2
λd

1−γ , E)
)

Let (v, w) ∈ L1 × L2 \ {(x, y)} be arbitrary list elements. If the elements are chosen
independently and uniformly at random, as stated in Definition 1 we expect E to be of size

E[E] = (|L1 × L2| − 1) · Pr [wt(v + w) = γd] + 1︸︷︷︸
from (x,y)

=
(
22λd − 1

)
·
(

d
γd

)
2d

+ 1

= Θ̃
(

2(2λ+H(γ)−1)d
)

,

and, thus, the time complexity to solve the CPd,λ,γ is lower bounded by

Topt = Ω̃
(

max
(

2
λd

1−γ , 2(2λ+H(γ)−1)d
))

. (1)

3 Our new Algorithm

Our algorithm groups the input elements according to some criterion into several buckets,
each one representing a new closest pair instance with smaller list size. We then apply this
bucketing procedure recursively until the buckets contain few enough elements to eventually
solve the Closest Pair Problem represented by them via a naive quadratic search algorithm,
the exhaustive search.

3 Note that in such a scenario the searched (x, y) is probably not the pair with the smallest Hamming
distance, however, we still refer to elements attaining Hamming distance γd as closest pairs.

FSTTCS 2021

20:6 Faster Closest Pair Algorithm

corresponds to

relative weight δ

x

k = d
r

2λd

d

.

y

.

+
z

(1
)

1

+z
(1)

2

+
z (1)N ...

x

y

.

.

+
z

(2
)

1

+z
(2)

2

+z (2)N

...
x

y

. . .

. . .

Figure 2 We start off on the left side of the illustration with the two input lists L1, L2 containing
the closest pair (x, y). Going right, in each iteration of the algorithm, N different z(j)

i are randomly
chosen and all of the list elements are tested if they fulfill the bucketing criterion. The crosshatched
pattern indicates the parts where the bucket criterion is fulfilled, i.e. the list vectors differ from z(j)

i

in δk positions.

As a bucketing criterion, we choose the weight of the vectors after adding a randomly
drawn vector z from Fd

2. Thus, each bucket is represented by a vector z and only those
elements v are added to the bucket, which satisfy wt(v + z) = δd, where δ is determined
later.

More precisely in each recursive iteration, our algorithm works only on equally large
blocks of the input vectors and not on the full d coordinates, i.e. the weight condition is only
checked on the current block. This is a technical necessity to obtain independence of vectors
in the same bucket on fresh blocks. Let us formally define the notion of blocks.

▶ Definition 2 (Block). Let d, r ∈ N with r | d and i ∈ [r]. Then we denote the i-th block of
[d] as

Bd
i,r :=

[
(i− 1)d

r
+ 1, i

d

r

]
.

Note that [d] =
⋃

i∈[r] Bd
i,r and

∣∣Bd
i,r

∣∣ = d
r for each i ∈ [r]. Furthermore, the blocks are

disjoint. For a leaner notation and since the role of d does not change in the course of this
paper, we omit the index d in the following, thus we write Bi,r := Bd

i,r.

Note that May and Ozerov choose the weight of the vectors on random projections as
a criterion. In comparison to our variant, their approach involves more parameters and
requires extensive re-randomizations of the instance to achieve good success probabilities
which together complicates analysis considerably. We cannot rule out the possibility that a
different analysis of the May-Ozerov algorithm would allow for an application in the high
density regime. However, the complexities of this hypothetical variant are unclear, while our
version allows for easy analysis and yields provably optimal complexities in this regime.

A. Esser, R. Kübler, and F. Zweydinger 20:7

In each iteration, we choose the number N of buckets in such a way that with overwhelming
probability the closest pair lands in at least one of the buckets. Hence, our algorithm creates
a tree with branching factor N with the distinguished pair being contained in one of the
leaves. The deeper we get into the tree, the smaller and, hence, the easier the closest pair
instances get. An algorithmic description of the whole procedure is given in pseudocode in
Algorithm 1. For convenience, a summary of all parameter choices made in line 1 of the
algorithm can be found in Equation (8) at the end of Section 3.

Algorithm 1 Closest-Pair(L1, L2, γ).

Input: lists L1, L2 ∈
(
Fd

2
)2λd

, weight parameter γ ∈
[
0, 1

2
]

Output: list L containing the solution (x, y) ∈ L1 × L2 to the CPd,λ,γ

1: Set r, P, N ∈ N, δ ∈
[
0, 1

2
]

properly and define k := d
r

2: for P permutations π do ▷ permutation on the bit positions
3: Stack S := [(π(L1), π(L2), 0)]
4: L← ∅
5: while S is not empty do
6: (A, B, i)← S.pop()
7: if i < r then
8: for N randomly chosen z ∈ Fk

2 do
9: A′ ← (v ∈ A | wt

(
(v + z)Bi+1,r

)
= δk)

10: B′ ← (w ∈ B | wt
(
(w + z)Bi+1,r

)
= δk)

11: S.push((A′, B′, i + 1))
12: else
13: for v ∈ A, w ∈ B do ▷ Naive search
14: if wt(v + w) = γd then
15: L← L ∪ {(v, w)}
16: return L

The following theorem gives the time complexity of our algorithm to solve the CPd,λ,γ .

▶ Theorem 3. Let γ ∈
[
0, 1

2
]

and λ ∈ [0, 1]. Then Algorithm 1 solves the CPd,λ,γ problem
with overwhelming success probability in expected time 2ϑd(1+o(1)), where

ϑ =

(1− γ)
(

1−H

(
δ⋆− γ

2
1−γ

))
for γ ≤ γ⋆

2λ + H(γ)− 1 for γ > γ⋆ ,

with δ⋆ := H−1(1− λ) and γ⋆ := 2δ⋆(1− δ⋆).

Note that the case distinction marks the transition to the high density regime. Precisely,
the transition happens when the amount of closest pairs becomes larger than the running
time in the first case. In this first case, where γ ≤ γ⋆ our algorithm exactly matches the
running time of the May-Ozerov algorithm, which itself is shown to match the lower bound
for LSH based approaches whenever λ approaches zero [17] (see also Lemma 8). In the
second case, where γ > γ⋆ the running time of our algorithm becomes linear in the number
of closest pairs, hence it matches the lower bound from Equation (1), while the running
time of May-Ozerov stays as in the first case. Our algorithm hence optimally extends the
May-Ozerov algorithm to the high density regime.

We establish the proof of Theorem 3 in a series of lemmata and theorems. Note that any
bucketing algorithm heavily depends on two probabilities specific to the chosen bucketing
criterion. First, the probability that any element falls into a bucket, which we call p in the

FSTTCS 2021

20:8 Faster Closest Pair Algorithm

remainder of this work. This probability is mainly responsible for the lists’ sizes throughout
the algorithm. The second relevant probability, which we call q describes the event of both,
x and y, falling into the same bucket, where (x, y) is the solution to the CPd,λ,γ problem.
This is the probability of (x, y) surviving one iteration meaning that q determines the success
probability of the algorithm. In summary, for our choice of bucketing criteria, we get

p := Pr
z

[
wt((v + z)Bi,r

) = δk
]

for any v ∈ Fk
2 and

q := Pr
z

[
wt((x + z)Bi,r

) = wt((y + z)Bi,r
) = δk

]
, (2)

where k = d
r is the block width. If we assume that the γd differing coordinates of x and y

distribute evenly into the r blocks, i.e. wt((x + y)Bi,r) = γk for each i, these probabilities are
independent of i for δk fixed. This property is ensured for at least one of the P permutations
in Algorithm 1 with overwhelming probability, as we will see in the proof of Theorem 4.

We determine the exact form of p and q later. First, we are going to prove the fol-
lowing statement about the expected running time of Algorithm 1 in dependence on both
probabilities.

▶ Theorem 4. Let p and q be as defined in Equation (2), γ ∈
[
0, 1

2
]
, λ ∈ [0, 1] and r = λd

log2 d
.

Then Algorithm 1 solves the CPd,λ,γ problem in expected time

max
(

q−r,
2λd · pr−1

qr
,

(
2λd · pr

)2

qr

)1+o(1)

with a success probability overwhelming in d.

Proof. First, we are going to prove the statement about the time complexity.
The algorithm maintains a stack, containing list pairs together with an associated counter.

In every iteration of the loop in line 5, one element is removed from the stack and if the
counter i associated with this element is smaller than r, N additional elements (A′, B′, i + 1)
are pushed to the stack in line 11. Let us consider the elements on the stack as nodes in a
tree of depth r, where all elements with associated counter i are siblings on level i of the
tree. Also, depict the elements pushed to the stack in line 11 as child nodes of the currently
processed node (A, B, i). Then the total number of elements with associated counter i pushed
to the stack is bounded by the number of nodes on level i in a tree with branching factor N ,
which is N i.

Next, let us determine the lists’ sizes on level i of that tree. Therefore, let the expected
size of lists on level i be Li. As these lists are constructed from the lists of the previous level
by testing the weight condition in line 9 and 10, it holds that

Li = Li−1 · Pr
[
wt((v + z)Bi,r

)) = δk
]

:= Li−1 · p ,

where i > 0 and by construction L0 = |L1|. By substitution we get

Li = |L1| · pi , for i = 0, . . . , r.

Now, we are able to compute the time needed to create the nodes on level i of the tree.
Observe that for the creation of a level-i node we need to linearly scan through the larger
lists of a node on level i− 1 to check the weight conditions. Thus, to construct all N i nodes
of level i we need a total time of

Ti = Õ
(
Li−1 ·N i

)
= Õ

(
|L1| · pi−1 ·N i

)
,

A. Esser, R. Kübler, and F. Zweydinger 20:9

for each 0 < i ≤ r. Eventually, the list pairs on level r are matched by a naive search with
quadratic runtime resulting in

Tr+1 = Õ (Nr · E[|Ar| · |Br|]) ,

where Ar, Br describe the lists of a level-r node.
The expected value of the product, now, depends on the chosen input distribution. We

next argue that for the given input distribution we have

E[|Ar| · |Br|] = O
(
E[|Ar|] · E[|Br|]

)
= O(L2

r) .

To see this, first note that for v, w, z independent and uniform, v + z and w + z are also
independent and uniform. This in turn implies

Pr
[
wt((v + z)Bi,r

)) = δk, wt((w + z)Bi,r
)) = δk

]
= Pr

[
wt((v + z)Bi,r

)) = δk
]
· Pr

[
wt((w + z)Bi,r

)) = δk
]

=p2

since deterministic functions of independent random variables are still independent. This
also works for either v = x or w = y, but not for (v, w) = (x, y). In this case, however, we
have Pr

[
wt((x + z)Bi,r)) = δk, wt((y + z)Bi,r)) = δk

]
= q by definition. With this insight,

we can express E[|Ai| · |Bi|] in terms of E[|Ai−1| · |Bi−1|] for each i via

E[|Ai| · |Bi| | Ai−1, Bi−1] =
∑

v∈Ai−1, w∈Bi−1
(v,w)̸=(x,y)

Pr
[
wt((v + z)Bi,r) = δk, wt((w + z)Bi,r) = δk

]
+ Pr

[
wt((x + z)Bi,r)) = δk, wt((y + z)Bi,r)) = δk

]
= (|Ai−1| · |Bi−1| − 1)p2 + q

≤ |Ai−1| · |Bi−1| · p2 + 1 ,

Applying the Law of total Expectation we obtain

E[|Ai| · |Bi|] = E[E[|Ai| · |Bi| | Ai−1, Bi−1]] ≤ E[|Ai−1| · |Bi−1|] · p2 + 1 (3)

Successive application of Equation (3) yields

E[|Ar| · |Br|] ≤ E[|L1| · |L2|] · p2r + r = 22λdp2r + r = O(L2
r) (4)

Finally, the algorithm is repeated for P different permutations on the bit positions of
elements in L1, L2. In summary, the expected time complexity to build all list becomes the
sum of the Ti multiplied by P , thus, by choosing N := d

q and P = (d + 1)r+1 we get

T ′ = P ·
r+1∑
i=1

Ti ≤ (d + 1)r+1 ·

(
r∑

i=1
N i · |L1| · pi−1 + (|L1| · pr)2 ·Nr

)

= (d + 1)r+1 ·

(
r∑

i=1

|L1| · di

q
·
(

p

q

)i−1
+ (|L1| · pr)2 · dr

qr

)

≤ (d + 1)2r+1 ·
(

r · |L1| · pr−1

qr
+ (|L1| · pr)2

qr

)
= max

(
2λd · pr−1

qr
,

(
2λd · pr

)2

qr

)1+o(1)
,

FSTTCS 2021

20:10 Faster Closest Pair Algorithm

where the inequality follows from the fact that p
q ≥ 1 since

q = Pr
[
wt((x + z)Bi,r) = wt((y + z)Bi,r) = δk

]
≤ Pr

[
wt((x + z)Bi,r) = δk

]
= p ,

and the final equality stems from the fact that |L1| = 2λd and r = o(λd
log d) as given in the

theorem.
Note that T ′ disregards the fact that no matter how small the lists in the tree become,

the algorithm needs to traverse all

T ′′ = Õ (Nr) = Õ
((

d

q

)r)
nodes of the tree. Hence, the expected time complexity of the whole algorithm is

T = max(T ′, T ′′) ,

which proves the claim.

Let us now consider the success probability of the algorithm. Therefore, we assume that
the chosen permutation distributes the weight on x + y such that in every block of length r

the weight is equal to γd
r , which we describe as a good permutation. The probability of a

random permutation π distributing the weight in such a way is

Pr [good π] = Pr
[
wt
(
π(x + y)Bi,r

)
= γd

r
, for i = 1, . . . , r

]
=

(d
r

γd
r

)r

(
d
γ

) ≥ (d

r
+ 1
)−r

.

Thus, the probability of at least one out of (d + 1)r+1 chosen permutations being good is

p1 := Pr [at least one good π]

= 1− (1− Pr [good π])(d+1)r+1
= 1−

(
1−

(
d

r
+ 1
)−r

)(d+1)r+1

≥ 1− e−d .

The algorithm succeeds, whenever there exists a leaf node in the tree, containing the
distinguished pair (x, y). As every node in the tree is constructed based on its parent, it
follows that all nodes on the path from the root to that leaf need to contain (x, y). By
definition the probability of x and y satisfying the bucket criterion at the same time (thus for
the same z) is q and since we condition on a good permutation, q is equal for every considered
block. Let us define indicator variables Xj for the first level, where Xj = 1 iff the j-th node
contains (x, y). Observe that the Xj for independent choices of z are independent. Thus,
clearly the number of trials until (x, y) is contained in any node on level one is distributed
geometrically with parameter q. Hence, the probability of the solution being contained in at
least one node on the first level is

p2 := Pr [∃(A, B, 1) ∈ S : (x, y) ∈ A×B]

= 1− (1− q)N = 1− (1− q)
d
q ≥ 1− e−d .

A. Esser, R. Kübler, and F. Zweydinger 20:11

Now, imagine the pair being contained in some level-i node. Considering that node, we have
with the same probability p2 again that at least one child contains the solution, and the
same argument holds until we reach the leaves. Also, by the independent choices of z the
events remain independent which implies that the probability of (x, y) being contained in a
level-r list is pr

2. In summary, the success probability is

Pr [success] = p1 · pr
2 ≥ (1− e−d)r+1 ≥ 1− r + 1

ed
≥ 1− d

ed
. ◀

The proof of Theorem 4 already shows, how different distributions may affect the
complexity of the algorithm by changing the expected value E[|Ar| · |Br|]. This influence on
the algorithms complexity by different input distributions is further investigated in Section 4.

In the next two lemmata, we will determine the exact forms of p and q to conduct the
run time analysis.

▶ Lemma 5. Let k ∈ N, δ ∈ [0, 1]. If x ∈ Fk
2 and z ∼ U(Fk

2) then

Pr
z

[wt(x + z) = δk] =
(

k

δk

)(
1
2

)k

.

Proof. Since z ∼ U(Fk
2), the probability is∣∣{z ∈ Fk

2 | wt(x + z) = δk}
∣∣∣∣Fk

2
∣∣ .

To compute the numerator, note that wt(x + z) = δk means that x and z differ in δk out of
k coordinates, for which there are

(
k
δk

)
possibilities. Using

∣∣Fk
2
∣∣ = 2k, the lemma follows. ◀

Before we continue, let us make a small definition.

▶ Definition 6. Let k ∈ N and x, y ∈ Fk
2 . Then we define D(x, y) ⊆ [k] to be the set of

coordinates where x and y differ, i.e.

D(x, y) := {i ∈ [k] | xi ̸= yi}.

Furthermore, let S(x, y) := [k] \D(x, y) be the set of coordinates where they are the same.

Now we derive the exact form of the probability q of a pair with difference γk falling into
the same bucket.

▶ Lemma 7. Let k ∈ N, δ ∈ [0, 1]. If x, y ∈ Fk
2 with wt(x + y) = γk and z ∼ U(Fk

2). Then

Pr
z

[wt(x + z) = wt(y + z) = δk] =
(

γk
1
2 γk

)(
(1− γ)k(
δ − γ

2
)

k

)(
1
2

)k

.

Proof. Let

A := {z ∈ Fk
2 | wt(x + z) = wt(y + z) = δk}.

In analogy to Lemma 5, the probability we search for is |A|
|Fk

2 |
= |A| ·

(1
2
)k

.

In the following, let γx := wt(x + z) and analogously γy := wt(y + z). Now observe
that every coordinate zi of z with i ∈ S(x, y), so belonging to the set of equal coordinates
between x and y, either contributes to both γx and γy with one or does not affect either one
of them. Let us define the amount of the zi’s with i ∈ S(x, y) that contribute to the weight
as a := |S(x, y) ∩D(x, z)|.

FSTTCS 2021

20:12 Faster Closest Pair Algorithm

Now consider the zi’s with i ∈ D(x, y). Clearly, any such zi contributes either to γx or to
γy. Thus, let us define the number of those zi with i ∈ D(x, y) that contribute to γx as bx :=
|D(x, y)∩D(x, z)| and analogously those which contribute to γy as by := |D(x, y)∩D(y, z)|.
Obviously we have

bx + by = |D(x, y)| = γk (5)

On the other hand we are only interested in those z for which γx = γy = δk, which yields
the two equations

γx = a + bx = δk (6)
γy = a + by = δk (7)

All three equations together yield the unique solution

bx = by = γk

2 and a =
(

δ − γ

2

)
k .

This shows the following: If z ∈ A, it is necessary that z differs from x (analogously y) in
exactly
– γ

2 k out of γk coordinates of D(x, y) and
–
(
δ − γ

2
)

k out of (1− γ)k coordinates of S(x, y).

Thus, because we can freely combine both conditions, in total there are

|A| =
(

γk
γ
2 k

)(
(1− γ)k(
δ − γ

2
)

k

)
different values for z, finishing the proof. ◀

Now we are ready to prove Theorem 3 about the time complexity of Algorithm 1 for
solving the CPd,λ,γ problem. For convenience, we restate the theorem here.

▶ Theorem 3. Let γ ∈
[
0, 1

2
]

and λ ∈ [0, 1]. Then Algorithm 1 solves the CPd,λ,γ problem
with overwhelming success probability in expected time 2ϑd(1+o(1)), where

ϑ =

(1− γ)
(

1−H

(
δ⋆− γ

2
1−γ

))
for γ ≤ γ⋆

2λ + H(γ)− 1 for γ > γ⋆ ,

with δ⋆ := H−1(1− λ) and γ⋆ := 2δ⋆(1− δ⋆).

Proof. First let us give the exact form of log p and log q using Stirling’s formula to approx-
imate the binomial coefficients in Lemma 5 and 7. By setting the block width k = d

r we
get

log q = (1− γ)
(

H
(δ − γ

2
1− γ

)
− 1
)

d

r

(
1 + o(1)

)
, log p =

(
H(δ)− 1

)d

r

(
1 + o(1)

)
.

Now, let us reconsider the running time given in Theorem 4 as

T = max
(

1
qr︸︷︷︸
(a)

,
2λd · pr−1

qr︸ ︷︷ ︸
(b)

,

(
2λd · pr

)2

qr︸ ︷︷ ︸
(c)

)1+o(1)
,

where r = λd
log2 d

.

A. Esser, R. Kübler, and F. Zweydinger 20:13

We now show that the running time for all values of δ ≥ δ⋆ := H−1(1 − λ) is solely
dominated by (c). Observe that we have (c) ≥ (b), whenever

2λd · p2r ≥ pr−1

⇔ H(δ) ≥ 1− λr

r + 1

⇔ δ ≥ H−1
(

1− λ

1 + 1
r

)
→ H−1(1− λ) = δ⋆ ,

since 1
r = o(1). Also we have (c) ≥ (a) for the same choice of delta, as

22λd · p2r ≥ 1
⇔ δ ≥ H−1(1− λ) = δ⋆ .

Thus, for all choices of δ ≥ δ⋆ the running time is (Tδ)(1+o(1)) with

ϑ⋆(δ) := log Tδ

d
= 2(λ + H(δ)− 1) + (1− γ)

(
1−H

(δ − γ
2

1− γ

))
.

Now, minimizing ϑ⋆ yields a global minimum at δmin = 1
2 (1 −

√
1− 2γ) attaining a

value of

ϑ⋆(δmin) = 2λ + H(γ)− 1 .

As we are restricted to values for δ which are larger than δ⋆ solving δmin ≥ δ⋆ for γ yields

δmin ≥ δ⋆

⇔ γ ≥ 2δ⋆(1− δ⋆) = γ⋆ .

This proves the claim of the theorem whenever γ > γ⋆. For all other values of γ we
simply choose δ = δ⋆, which yields

ϑ = ϑ⋆(δ⋆) = (1− γ)
(

1−H
(δ⋆ − γ

2
1− γ

))
for γ ≤ γ⋆

as claimed.
Now to boost the expected running time 2ϑd(1+o(1)) of the algorithm to actually being

obtained with overwhelming probability we use a standard Markov argument. Let X denote
the random variable describing the running time of the algorithm. Then the probability that
the algorithm needs more time than 2

√
dE[X] to finish is

Pr
[
X ≥ 2

√
d · E[X]

]
≤ E[X]

2
√

d · E[X]
= 2−

√
d ,

or equivalently the algorithm finishes in less time than 2
√

dE[X] = 2ϑd(1+o(1)) with over-
whelming probability. Also, a standard application of the union bound yields that the
intersection of the algorithm finishing within the claimed time and the algorithm having
success in finding the solution is still overwhelming. ◀

The theorem shows that whenever γ > γ∗ our algorithm obtains the optimal time
complexity for uniformly random lists as given in Equation (1). Additionally, our algorithm
reaches the time lower bound for locality-sensitive hashing based algorithms for all values of
γ, whenever the input list sizes are subexponential in the dimension d, which is shown in the
following lemma.

FSTTCS 2021

20:14 Faster Closest Pair Algorithm

▶ Lemma 8. Let γ ∈
[
0, 1

2
]
, and ϑ as defined in Theorem 3. Then we have

lim
λ→0

ϑ

λ
= 1

1− γ
.

Proof. Note that for λ converging zero, δ⋆ = H−1(1 − λ) approaches 1
2 . This implies

γ⋆ := 2δ⋆(1− δ⋆) = 1
2 and hence for all choices of γ we have

ϑ = (1− γ)
(

1−H

(
δ − γ

2
1− γ

))
.

Now, for this choice of ϑ, May and Ozerov [17, Corollary 1] already showed the statement of
this lemma, by applying L’Hopital’s rule twice. ◀

For convenience, we restate all parameter choices of Algorithm 1 for solving the CPd,λ,γ

in the following overview:

r = d

log2 d
, P = (d + 1)r+1, k = d

r

N = d

q
, where q =

(
γk

1
2 γk

)(
(1− γ)k(
δ − γ

2
)

k

)(
1
2

)k

δ =
{

δ⋆ for γ ≤ 2δ⋆(1− δ⋆)
1
2 (1−

√
1− 2γ) else

, with δ⋆ := H−1(1− λ) (8)

4 Different Input Distributions

In this section, we show how to adapt the analysis of Algorithm 1 to variable input distribu-
tions. Therefore, we first reformulate Theorem 4 in Corollary 9 for the case of considering
the CPd,λ,γ over an arbitrary distribution D. As already indicated in the proof of Theorem 4,
this reformulation depends on the expected value E of the cost of the naive search at the
bottom of the computation tree, which is highly influenced by the distribution D. Then, we
show how to compute E and how to upper bound it effectively. Finally, we give upper bounds
for the time complexity of the algorithm to solve the CPd,λ,γ over some generic distributions.
These examples suggest that the algorithm is best suited for distributions D, where the
weight of the sum v + w of elements v, w ∼ D concentrates at d

2 .4
Let us start with the reformulation of the theorem.

▶ Corollary 9. Let D be some distribution over Fd
2, q and p be as defined in Equation (2),

γ ∈
[
0, 1

2
]
, λ ∈ [0, 1] and r = λd

log2 d
. Also let E = E[|A| · |B|] for A and B in line 13 of

Algorithm 1 (where the expectation is taken over the distribution of input lists and the random
choices of the algorithm). Then Algorithm 1 solves the CPd,λ,γ problem over D in time

max
(

q−r,
2λd · pr−1

qr
,
E
qr

)1+o(1)

with success probability overwhelming in d.

4 This behavior seems quite natural as in this case, the solution is most distinguishable from random
input pairs.

A. Esser, R. Kübler, and F. Zweydinger 20:15

Proof. The proof follows along the lines of the proof of Theorem 4, by observing that
Tr+1 = Nr · E and the expected time complexity is again amplified to being obtained with
overwhelming probability by using a Markov argument similar to the proof of Theorem 3. ◀

In the next lemma, we show how to upper bound the value of E .

▶ Lemma 10 (Expectation of Naive Search). Let D be some distribution over Fd
2, γ ∈

[
0, 1

2
]
,

λ ∈ [0, 1] and r = λd
log2 d

. Also let E = E[|A| · |B|] for A and B in line 13 of Algorithm 1
when solving some instance of the CPd,λ,γ over D (where the expectation is taken over the
distribution of input lists and the random choices of the algorithm). Then we have

E ≤ 22λd
r∏

i=1
αi + 4r · 2λd · pr

where αi := Pr
v,w∼D

[
wt((v + z)Bi,r

) = δk, wt((w + z)Bi,r
) = δk

]
.

Proof. See Appendix A.1. ◀

While Lemma 10 gives an upper bound on the required expectation, it is not very handy.
In the next lemma, we show how to further bound this expectation and how it affects the
running time of the algorithm.

▶ Lemma 11 (Complexity for Arbitrary Distributions). Let D be some distribution over Fd
2,

r := λd
log2 d

, γ ∈
[
0, 1

2
]

and λ ∈ [0, 1]. Also let E = E[|A| · |B|] for A and B in line 13 of
Algorithm 1 when solving some instance of the CPd,λ,γ over D (where the expectation is
taken over the distribution of input lists and the random choices of the algorithm). Then
Algorithm 1 solves the CPd,λ,γ over D in time

max
(

q−r,
2λd · pr−1

qr
,

2εd

qr

)1+o(1)
,

where

ε = 2λ− min
i∈[r]

η∈[0,1]

(1− η)
(

1−H

(
δ − η

2
1− η

))
− r · log pi,ηk

d

with pi,ηk := Pr
[
wt((v + w)Bi,r) = ηk

]
.

Proof. See Appendix A.2. ◀

Note that if it further holds that for v ∼ D each of the r blocks of v is identically
distributed we can further simplify the term of ε from Lemma 11. In this case, we have
pr

i,ηk ≤ Pr [wt(v + w) = ηd] := pηd, thus we get

ε = 2λ− min
η∈[0,1]

(1− η)
(

1−H

(
δ − η

2
1− η

))
− log pηd

d
.

Now if we are given an arbitrary distribution D we can maximize ε according to η. Then
we can similar to the proof of Theorem 3 derive a value for δ minimizing the overall time
complexity.

FSTTCS 2021

20:16 Faster Closest Pair Algorithm

0 0.1 0.2 0.3 0.4 0.5

0.1

0.12

0.14

0.16

0.18

0.2

weight γ

tim
e

ex
po

ne
nt

ϑ
γ

(a) List sizes |L1| = |L2| = 20.1d.

0 0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

weight γ

(b) List sizes |L1| = |L2| = 20.4d.

Figure 3 Time complexity exponents as a function of the weight of the closest pair for different
input list distributions, where the expected weight of input elements is equal to 0.1d, 0.2d, 0.3d,
0.4d, 0.5d from left to right.

We performed this maximization and optimization numerically for some generic input
distributions. We considered distributions, where the weight of input vectors is distributed
binomially, chosen according to a Poisson distribution or fixed to a specific value. This
means, first a weight is sampled according to the chosen distribution and then a vector of
that weight is selected uniformly among all vectors of that weight.

The running time of Algorithm 1 for solving the CPd,λ,γ over the considered distributions
seems to be only dependent on the expected weight of vectors contained in the input lists.
That means the time complexity for input lists containing random vectors whose weight is
either fixed to ηd or binomially or Poisson distributed with expectation ηd is equal. This
can possibly be explained by the low variance of all these distributions, which implies a high
concentration around this expected weight.

We see in Figure 3, that the value for γ, from where on the complexity becomes quadratic
in the lists sizes shifts to the left. This behavior stems from the fact, that the expected
weight of a sum of elements is no longer d

2 , but roughly 2η(1− η)d. What also stands out
is, that the complexity for γ = 0 is no longer linear in the lists sizes. The reason for this is
that the probability of random pairs falling into the same bucket and the probability of the
closest pair falling into the same bucket converge for decreasing weight of input list elements.
This indicates that for input distributions with smaller expected weight a different bucketing
criterion might be beneficial. We pose this as an open question for further research.

References
1 Josh Alman. An illuminating algorithm for the light bulb problem. In Jeremy T. Fineman and

Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA@SODA
2019, January 8-9, 2019 - San Diego, CA, USA, volume 69 of OASICS, pages 2:1–2:11. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/OASIcs.SOSA.2019.2.

2 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 793–801, 2015.

3 Yoshinori Aono, Phong Q Nguyen, Takenobu Seito, and Junji Shikata. Lower bounds on
lattice enumeration with extreme pruning. In Annual International Cryptology Conference,
pages 608–637. Springer, 2018.

4 Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 10–24, Arlington, VA, USA,
January 10–12 2016. ACM-SIAM. doi:10.1137/1.9781611974331.ch2.

https://doi.org/10.4230/OASIcs.SOSA.2019.2
https://doi.org/10.1137/1.9781611974331.ch2

A. Esser, R. Kübler, and F. Zweydinger 20:17

5 Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23(4):214–229, 1980.

6 Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for
LPN security. In Tanja Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography -
9th International Conference, PQCrypto 2018, pages 25–46, Fort Lauderdale, Florida, United
States, April 9–11 2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-319-79063-3_2.

7 Leif Both and Alexander May. Decoding linear codes with high error rate and its impact
for lpn security. In International Conference on Post-Quantum Cryptography, pages 25–46.
Springer, 2018.

8 Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust
independent elementary features. In European conference on computer vision, pages 778–792.
Springer, 2010.

9 Moshe Dubiner. Bucketing coding and information theory for the statistical high-dimensional
nearest-neighbor problem. IEEE Transactions on Information Theory, 56(8):4166–4179, 2010.

10 Cheikh Thiécoumba Gueye, Jean Belo Klamti, and Shoichi Hirose. Generalization of bjmm-isd
using may-ozerov nearest neighbor algorithm over an arbitrary finite field Fq. In International
Conference on Codes, Cryptology, and Information Security, pages 96–109. Springer, 2017.

11 Shoichi Hirose. May-ozerov algorithm for nearest-neighbor problem over Fq and its application
to information set decoding. In International Conference for Information Technology and
Communications, pages 115–126. Springer, 2016.

12 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In 30th Annual ACM Symposium on Theory of Computing, pages
604–613, Dallas, TX, USA, May 23–26, 1998. ACM Press. doi:10.1145/276698.276876.

13 Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for finding
outlier correlations. In Robert Krauthgamer, editor, 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1288–1305, Arlington, VA, USA, January 10–12, 2016. ACM-SIAM.
doi:10.1137/1.9781611974331.ch90.

14 Samir Khuller and Yossi Matias. A simple randomized sieve algorithm for the closest-pair
problem. Information and Computation, 118(1):34–37, 1995.

15 Jiwen Lu, Venice Erin Liong, Xiuzhuang Zhou, and Jie Zhou. Learning compact binary face
descriptor for face recognition. IEEE transactions on pattern analysis and machine intelligence,
37(10):2041–2056, 2015.

16 Jonathan Marchini, Peter Donnelly, and Lon R Cardon. Genome-wide strategies for detecting
multiple loci that influence complex diseases. Nature genetics, 37(4):413–417, 2005.

17 Alexander May and Ilya Ozerov. On computing nearest neighbors with applications to
decoding of binary linear codes. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 203–228, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.
doi:10.1007/978-3-662-46800-5_9.

18 Rajeev Motwani, Assaf Naor, and Rina Panigrahi. Lower bounds on locality sensitive hashing.
In Proceedings of the twenty-second annual symposium on Computational geometry, pages
154–157, 2006.

19 Solomon K Musani, Daniel Shriner, Nianjun Liu, Rui Feng, Christopher S Coffey, Nengjun Yi,
Hemant K Tiwari, and David B Allison. Detection of gene× gene interactions in genome-wide
association studies of human population data. Human heredity, 63(2):67–84, 2007.

20 Christoph Strecha, Alex Bronstein, Michael Bronstein, and Pascal Fua. Ldahash: Improved
matching with smaller descriptors. IEEE transactions on pattern analysis and machine
intelligence, 34(1):66–78, 2011.

21 Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 11–20. IEEE, 2012.

22 Leslie G Valiant. Functionality in neural nets. In COLT, volume 88, pages 28–39, 1988.
23 Ning Xie, Shuai Xu, and Yekun Xu. A new coding-based algorithm for finding closest pair of

vectors. Theoretical Computer Science, 782:129–144, 2019.

FSTTCS 2021

https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1145/276698.276876
https://doi.org/10.1137/1.9781611974331.ch90
https://doi.org/10.1007/978-3-662-46800-5_9

20:18 Faster Closest Pair Algorithm

A Proofs Regarding Different Input Distributions

In this section, we give the proofs for the lemmata regarding the performance and correctness
of our algorithm applied to different input distributions that were omitted in the main body.

A.1 Proof of Lemma 10

Similar to the proof of Theorem 4, let us bound E[|Ai| · |Bi|] in terms of E[|Ai−1| · |Bi−1|],
E[|Ai−1|] and E[|Bi−1|] for each i.

E[|Ai| · |Bi| | Ai−1, Bi−1] =
∑

v∈Ai−1\{x}
w∈Bi−1\{y}

Pr
[
wt((v + z)Bi,r) = δk, wt((w + z)Bi,r) = δk

]︸ ︷︷ ︸
=:αi

+
∑

v∈Ai−1

Pr
[
wt((v + z)Bi,r

) = δk, wt((y + z)Bi,r
) = δk

]︸ ︷︷ ︸
≤p

+
∑

w∈Bi−1

Pr
[
wt((x + z)Bi,r

) = δk, wt((w + z)Bi,r
) = δk

]︸ ︷︷ ︸
≤p

+ Pr
[
wt((x + z)Bi,r

)) = δk, wt((y + z)Bi,r
)) = δk

]
≤ αi · |Ai−1| · |Bi−1|+ p · (|Ai−1|+ |Bi−1|+ 1)

and hence E[|Ai| · |Bi|] ≤ αi ·E[|Ai−1| · |Bi−1|]+p ·(E[|Ai−1|]+E[|Bi−1|]+1). Again, applying
this equation successively, we obtain

E = E[|Ar|·|Br|] ≤ 22λd
r∏

i=1
αi+4·2λd ·

r∑
i=1

i−2∏
j=0

αr−j

 pr−i+1 ≤ 22λd
r∏

i=1
αi+4r·2λd ·pr . ◀

A.2 Proof of Lemma 11

Taking the result for E from Lemma 10 and plugging into the run time formula from Corollary 9
we get that the CPd,λ,γ problem over D can be solved with probability overwhelming in d in
time

max
(

q−r,
2λd · pr−1

qr
,
E
qr

)1+o(1)
≤ max

(
q−r,

2λd · pr−1

qr
,

22λd
∏r

i=1 αi

qr

)1+o(1)

since the right summand 4r·2λd·pr

qr of E
qr is asymptotically smaller than the second entry in

the max, i.e. 2λd·pr−1

qr . Thus, is suffices to find an easier upper bound for the first summand
S := 22λd

∏r
i=1 αi. Remembering αi = Pr

[
wt((v + z)Bi,r) = δk, wt((w + z)Bi,r) = δk

]
we

receive

A. Esser, R. Kübler, and F. Zweydinger 20:19

S ≤ 22λd ·
(

max
i∈[r]

αi

)r

= 22λd ·

max
i∈[r]

k∑
j=0

qi,j · Pr
[
wt((v + w)Bi,r

) = j
]r

≤ 22λd+o(d) ·
(

max
i∈[r], j∈[k]∪{0}

qi,j · Pr
[
wt((v + w)Bi,r

) = j
])r

= 22λd+o(d) ·
(

max
i∈[r], η∈[0,1]

qi,ηk · Pr
[
wt((v + w)Bi,r

) = ηk
])r

,

where qi,ηk = Pr
[
wt((v + z)Bi,r) = δk, wt((w + z)Bi,r) = δk | wt((v + w)Bi,r) = ηk

]
. Lemma 7

lets us rewrite this probability as

qi,ηk =
(

ηk
1
2 ηk

)(
(1− η)k(
δ − η

2
)

k

)(
1
2

)k

≤ 2
−
(

1−H

(
δ− η

2
1−η

))
(1−η)k

.

We end up with

S ≤ 2
2λd+r· max

i∈[r], η∈[0,1]
−
(

1−H

(
δ− η

2
1−η

))
(1−η)k+log pi,ηk+o(d)

= 2

(
2λ+ max

i∈[r], η∈[0,1]
−
(

1−H

(
δ− η

2
1−η

))
(1−η)+ r

d ·log pi,ηk

)
d+o(d)

= 2

(
2λ− min

i∈[r], η∈[0,1]

(
1−H

(
δ− η

2
1−η

))
(1−η)− r

d ·log pi,ηk

)
d+o(d)

with pi,ηk := Pr
[
wt((v + w)Bi,r) = ηk

]
, which proves the claim. ◀

B Practical Experiments

In this section, we give experimental results of the performance of a proof of concept
implementation of our new algorithm. These experiments verify the performance gain of our
algorithm over a naive quadratic search approach. We also verify the numerical estimates of
the algorithm’s performance on different input distributions from the previous section and
give some practical related improvements to our algorithm. Our implementation is publicly
available at https://github.com/FloydZ/NNAlgorithm.

Before discussing the benchmark results let us first briefly describe some of the practical
improvements we introduced in our implementation, which differ from the description in
Section 3. We implemented a true depth-first search rather than the iterative description
given previously. The iterative description just allowed for a more convenient analysis. Thus,
our algorithm needs to store only the lists of a single path from the root to a leaf node
at any time. Also, as all lists of subsequent levels are subsets of previous ones, we do not
create r different lists. We rather rearrange the elements of the input list such that elements
belonging to the list of the subsequent level are consecutive, making it sufficient to just
memorize the range of elements that belong to the next level list. This way, we only need to
store the input list plus two integer markers for each level. Also, it turns out that in practice
often a small depth of the tree (not exceeding 8 in our experiments) is already sufficient
to achieve good runtime results. Regarding the branching factor N of the tree, we achieve

FSTTCS 2021

https://github.com/FloydZ/NNAlgorithm

20:20 Faster Closest Pair Algorithm

0 0.1 0.2 0.3 0.4 0.510−4

10−3

weight ω

ru
nt

im
e

in
s

d = 32

0 0.1 0.2 0.3 0.4 0.5
weight ω

d = 64

0 0.1 0.2 0.3 0.4 0.510−4

10−3

weight ω

ru
nt

im
e

in
s

d = 128

0 0.1 0.2 0.3 0.4 0.5
weight ω

d = 256

ε = 0 ε = 1 ≤ δk

Figure 4 Runtime in seconds in logarithmic scale (y-axis) as a function of distance ω of the closest
pair (x-axis) on random lists of size 210. Dotted, dashed and dash-dotted lines indicate results for
different bucketing, straight horizontal line is the time used by a naive quadratic search.

optimal results either for values close to its expectation 1
q as given by the analysis or values

being significantly smaller. The case of using a very small branching factor can be seen as a
pruning strategy, similar to the one used in lattice enumeration algorithms for shortest vector
search [3]. Additionally, we benchmarked three different strategies for the weight criteria:
1. Strictly enforcing a weight of δk in each block, as described in our algorithm.
2. Allowing for a small deviation ±ε around δk.
3. Allowing for weights of at most δk.
Further, we introduced a threshold for the size of the lists in the tree, below which the
computation of further leaves is aborted and naive search is used instead.

Figure 4 shows the runtime results for the different bucket criteria on small input
lists of size 210 containing random elements. Here, each data point was averaged over 50
measurements. The experimental results clearly indicate a significant gain over the quadratic
search approach. The less significant gain for small dimension d is due to the reduced amount
of possible blocks or equivalently the low depth of the computation tree, which lets the
algorithm not reach its full potential. In the case of small input lists, we observe that a
bucketing strategy that allows a deviation of ε = 1 from δk is beneficial for most values of d.

Figure 5 shows the same experiments performed on larger input lists of size 215. Besides
a more significant improvement over the naive search, we can observe that the bucketing
criterion that uses δk as an upper bound becomes more beneficial for nearly all values of γ

and d.
Eventually, Figure 6 shows the experimental runtime results on input lists, whose elements

are drawn from a different input distribution, analyzed in Section 4. Here the distribution
is the uniformly random distribution over vectors of weight ηd. One can observe that for
growing d the shape of the graph resembles the theoretical results from Figure 3.

A. Esser, R. Kübler, and F. Zweydinger 20:21

0 0.1 0.2 0.3 0.4 0.5
10−2

10−1

100

weight ω

ru
nt

im
e

in
s

d = 32

0 0.1 0.2 0.3 0.4 0.5
weight ω

d = 64

0 0.1 0.2 0.3 0.4 0.5
10−2

10−1

100

weight ω

ru
nt

im
e

in
s

d = 128

0 0.1 0.2 0.3 0.4 0.5
weight ω

d = 256

ε = 0 ε = 1 ≤ δk

Figure 5 Runtime in seconds in logarithmic scale (y-axis) as a function of distance ω of the closest
pair (x-axis) on random lists of size 215. Dotted, dashed and dash-dotted lines indicate results for
different bucketing strategies, straight horizontal line is time used by a naive quadratic search.

0 0.1 0.2 0.3 0.4 0.510−4

10−3

weight ω

ru
nt

im
e

in
s

d = 32

0 0.1 0.2 0.3 0.4 0.5
weight ω

d = 64

0 0.1 0.2 0.3 0.4 0.510−4

10−3

weight ω

ru
nt

im
e

in
s

d = 128

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 U

Figure 6 Runtime in seconds in logarithmic scale (y-axis) as a function of distance ω of the
closest pair (x-axis) on lists of size 210 containing random elements of weight γd. The densely dashed
line (U) indicates the runtime on uniformly random lists.

FSTTCS 2021

ETH Tight Algorithms for Geometric Intersection
Graphs: Now in Polynomial Space
Fedor V. Fomin #

University of Bergen, Norway

Petr A. Golovach #

University of Bergen, Norway

Tanmay Inamdar #

University of Bergen, Norway

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Abstract
De Berg et al. in [SICOMP 2020] gave an algorithmic framework for subexponential algorithms
on geometric graphs with tight (up to ETH) running times. This framework is based on dynamic
programming on graphs of weighted treewidth resulting in algorithms that use super-polynomial
space. We introduce the notion of weighted treedepth and use it to refine the framework of de Berg
et al. for obtaining polynomial space (with tight running times) on geometric graphs. As a result,
we prove that for any fixed dimension d ≥ 2 on intersection graphs of similarly-sized fat objects
many well-known graph problems including Independent Set, r-Dominating Set for constant r,
Cycle Cover, Hamiltonian Cycle, Hamiltonian Path, Steiner Tree, Connected Vertex
Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal are solvable in
time 2O(n1−1/d) and within polynomial space.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Subexponential Algorithms, Geometric Intersection Graphs, Treedepth,
Treewidth

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.21

Related Version Full Version: https://arxiv.org/abs/2107.06715

Funding The research leading to these results has received funding from the Research Council of
Norway via the project “‘MULTIVAL” (grant no. 263317) and the European Research Council
(ERC) via grant LOPPRE, reference 819416.

1 Introduction

Most of the fundamental NP-complete problems on graphs like Independent Set, Feedback
Vertex Set, or Hamiltonian Cycle do not admit algorithms of running times 2o(n)

on general graphs unless the Exponential Time Hypothesis (ETH) fails. However, on
planar graphs, H-minor-free graphs, and several classes of geometric graphs, such problems
admit subexponential time algorithms. There are several general frameworks for obtaining
subexponential algorithms [4, 6, 8]. The majority of these frameworks utilize dynamic
programming algorithms over graphs of bounded treewidth. Consequently, the subexponential
algorithms derived within these frameworks use prohibitively large (exponential) space.

We consider another related graph parameter, namely, treedepth. Given a graph G =
(V, E), a pair (F, φ) is a treedepth decomposition of G, if F is a rooted forest, and φ :
V (F) → V (G) is a mapping such that the neighbors in G are mapped to vertices in F that

© Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
mailto:Petr.Golovach@uib.no
mailto:Tanmay.Inamdar@uib.no
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.21
https://arxiv.org/abs/2107.06715
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

have an ancestor-descendant relationship. Then, the treedepth of G is the minimum height
of the forest over all treedepth decompositions. Alternatively, the treedepth of G can be
thought of as the elimination distance to the family of edgeless graphs (see the book of
Nesetril and de Mendez [17] for more details). Recently, algorithms on graphs of bounded
treedepth attracted significant attention [9, 10, 15]. The advantage of these algorithms over
dynamic programming used for treewidth is that they use polynomial space. Our work is
motivated by the following natural question

Could the treedepth find applications in the design of (polynomial space) subexpo-
nential algorithms?

The problem is that the treedepth of a graph could be significantly larger than its
treewidth. For example, the treewidth of an n-vertex path is one, while the treedepth is
of order log n. It creates problems in using treedepth in frameworks like bidimensionality
that strongly exploit the existence of large grid minors in graphs of large treewidth. Despite
that, we show the usefulness of treedepth for obtaining polynomial space subexponential
algorithms on intersection graphs of some geometrical objects.

In [4], de Berg et al. developed a generic framework facilitating the construction of
subexponential algorithms on large classes of geometric graphs. By applying their framework
on intersection graphs of similarly-sized fat objects in dimension d ≥ 2, de Berg et al. obtained
algorithms with running time 2O(n1−1/d) for many well-known graph problems, including
Independent Set, r-Dominating Set for constant r, Hamiltonian Cycle, Hamiltonian
Path, Feedback Vertex Set, Connected Dominating Set, and Steiner Tree.

The primary tool introduced by de Berg et al. is the weighted treewidth. They show that
solving many optimization problems on intersection graph of n similarly-sized fat objects can
be reduced to solving these problems on graphs of weighted treewidth of order O(n1−1/d).
Combined with single-exponential algorithms on graphs of bounded weighted treewidth, this
yields subexponential algorithms for several problems.

The running times 2O(n1−1/d) are tight – de Berg et al. accompanied their algorithmic
upper bounds with matching conditional complexity (under ETH) bounds. However, as most
of the treewidth-based algorithms, the algorithms of Berg et al. are dynamic programming
over tree decompositions. As a result, they require super-polynomial space. Thus a concrete
question here is whether running times 2O(n1−1/d) could be achieved using polynomial space.

We answer this question affirmatively by developing polynomial space algorithms that in
time 2O(n1−1/d) solve all problems on intersection graphs of similarly-sized fat objects from
the paper of de Berg et al. except for Connected Dominating Set. The primary tool in
our work is the weighted treedepth. To the best of our knowledge, this notion is new.

The Cut&Count technique was introduced by Cygan et al. [3], who gave the first single-
exponential (randomized) algorithms parameterized by the treewidth for many problems using
this technique. We note that at the heart of these algorithms is a dynamic programming
over the tree decomposition, and thus require exponential space. However, unweighted
treedepth was recently used by several authors in the design of parameterized algorithms
using polynomial space [9, 10, 15]. Some of these works adapt the Cut&Count technique for
the treedepth decomposition.

Our main insight is that in the framework of de Berg et al. [4] for most of the problems the
weighted treedepth can replace the weighted treewidth. Pipelined with branching algorithms
over graphs of small weighted treedepth, this new insight brings us to many tight (up to
ETH) polynomial space algorithms on geometric graphs.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:3

Our results. To explain our strategy of “replacing” the weighted treewidth with the weighted
treedepth, we need to provide an overview of the framework of de Berg et al. [4]. It has
two main ingredients. First, for an intersection graph of n similarly-sized fat objects (we
postpone technical definitions to the next section), we construct an auxiliary weighted graph
GP . (Roughly speaking, to create GP , we contract some cliques of G and assign weights to
the new vertices.) Then the combinatorial theorem of de Berg et al. states that the weighted
treewidth of GP is O(n1−1/d). Second, to solve problems on G in time 2O(n1−1/d), one uses
a tree decomposition of GP . This part is problem-dependent and, for some problems, could
be pretty non-trivial.

To plug in the treedepth into this framework, we first prove that the weighted treedepth
of GP is O(n1−1/d). Moreover, we give an algorithm computing a treedepth decomposition in
time 2O(n1−1/d) and polynomial space. For Independent Set, a simple branching algorithm
over the treedepth decomposition can solve the problem in time 2O(n1−1/d) and polynomial
space. We also get a similar time and space bounds for Dominating Set, and more generally,
r-Dominating Set for constant r; however, we need to use a slightly different kind of
recursive algorithm.

Next, we consider connectivity problems like Steiner Tree, Connected Vertex
Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal. For
these problems, we are able to adapt the single exponential FPT algorithms parameterized by
(unweighted) treedepth given by Hegerfeld and Kratsch [10], into the framework of weighted
treedepth decomposition. Thus, we get 2O(n1−1/d) time, polynomial space algorithms for
these problems.

Finally, we consider Cycle Cover, which is a generalization of Hamiltonian Cycle.
Here, we are able to “compress” the given graph into a new graph, such that the (unweighted)
treedepth of the new graph is O(n1−1/d). We can also compute the corresponding treedepth
decomposition in 2O(n1−1/d) time, and polynomial space. Then, we can use a result by
Nederlof et al. [15] as a black box, which is a Cut&Count based a single exponential FPT
algorithms parameterized by treedepth, that uses polynomial space. Thus, we get 2O(n1−1/d)

time, polynomial space algorithms for Cycle Cover, Hamiltonian Cycle, and also for
Hamiltonian Path.

We note that the results in the previous two paragraphs are based on the Cut&Count
technique, and are randomized. We also note that all of our algorithms, except for Cycle
Cover and related problems can work even without the geometric representation of the
similarly-sized fat objects. For Cycle Cover and related problems, however, we require
the geometric representation. This is in line with similar requirements for these problems
from [4].

Organization. In Section 2, we define some of the basic concepts including the weighted
treedepth, and then prove our main result about the same. At the end of the section, we
give a warm-up example of an algorithm for Independent Set using this framework. Then,
in Section 3 we describe the Cut&Count algorithm, and its application for Steiner Tree
using the notion of weighted treedepth. Finally, we give a rough sketch of our approach for
Cycle Cover in Section 4. The algorithms for the remaining problems are omitted from
the main version due to page limit, but they can be found in the full version of the paper.

FSTTCS 2021

21:4 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

2 Geometric Graphs and Weighted Treedepth

In this section we define the weighted treedepth, prove a combinatorial bound on the treedepth
of certain geometric graphs and provide a generic algorithm and provide an abstract theorem
modeling at a high level our subexponential time and polynomial space algorithms. But first,
we need some definitions.

Graphs. We consider only undirected simple graphs and use the standard graph theoretic
terminology; we refer to the book of Diestel [7] for basic notions. We write |G| to denote
|V (G)|, and throughout the paper we use n for the number of vertices if it does not create
confusion. For a set of vertices S ⊆ V (G), we denote by G[S] the subgraph of G induced by
the vertices from S and write G−S to denote the graph obtained by deleting the vertices of S.
For a vertex v, NG(v) denotes the open neighborhood of v, that is, the set of vertices adjacent
to v, and NG[v] = {v} ∪ NG(v) is the closed neighborhood. For a vertex v, dG(v) = |NG(v)|
denotes the degree of v. We may omit subscripts if it does not create confusion. For two
distinct vertices u and v of a graph G, a set S ⊆ V (G) is a (u, v)-separator if G − S has no
(u, v)-path and S is a separator if S is a (u, v)-separator for some vertices u and v. A pair of
vertex subsets (A, B) is called a separation if A ∪ B = V (G), and there are no edges between
A \ B and B \ A, that is, S = A ∩ B is a (u, v)-separator for u ∈ A \ B and v ∈ B \ A. We
say that a subset S ⊆ V (G) is an α-balanced separator for a constant α ∈ (0, 1) if there
exists a separation (A, B) such that A ∩ B = S, and max {|A|, |B|} ≤ αn.

κ-partition Let P = {V1, V2, . . . , Vt} be a partition of V (G) for some t ≥ 1, such that any
Vi ∈ P satisfies the following properties: (1) G[Vi] is connected, and (2) Vi is a union of
at most κ cliques in G (not necessarily disjoint). Then, we say that P is a κ-partition of
G. Furthermore, given a κ-partition P = {V1, V2, . . . , Vt} of G, we define the graph GP , the
graph induced by P, as the undirected graph obtained by contracting each Vi to a vertex,
and removing self-loops and multiple edges.

Treedepth and Weighted Treedepth. We introduce weighted treedepth of a graph as a
generalization of the well-known notion of treedepth (see e.g. the book of Nesetril and de
Mendez [17]). There are different ways to define treedepth but it is convenient for us to deal
with the definition via treedepth decompositions or elimination forests. We say that a forest
F supplied with one selected node (it is convenient for us to use the term “node” instead of
“vertex” in such a forest) in each connected component, called a root, a rooted forest. The
choice of roots defines the natural parent–child relation on the nodes of a rooted forest. Let
G be a graph and let ω : V (G) → R be a weight function. A treedepth decomposition of G is
a pair (F, φ), where F is a rooted forest and φ : V (F) → V (G) is a bijective mapping such
that for every edge uv ∈ E(G), either φ−1(u) is an ancestor of φ−1(v) in F or φ−1(v) is
an ancestor of φ−1(u). Then the depth of the decomposition is the depth of F , that is, the
maximum number of nodes in a path from a root to a leaf. The treedepth of G, denoted
td(G), is the minimum depth of a treedepth decomposition of G. We define the weighted
depth of a treedepth decomposition as the maximum

∑
v∈V (P) ω(φ(v)) taken over all paths

P between roots and leaves. Respectively, the weighted treedepth wtd(G) is the minimum
weighted depth of a treedepth decomposition. For our applications, we assume without loss
of generality that G is connected, which implies that the forest F in a (weighted) treedepth
decomposition is actually a tree.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:5

Weighted Treewidth. We assume basic familiarity with the notion of treewidth and tree
decomposition of a graph – see a textbook such as [2], for example. Similar to the previous
paragraph, de Berg et al. [4] define the weighted treewidth of a graph. Given an undirected
graph G = (V, E) with weights ω : V (G) → R, the weighted width of a tree decomposition
(T, β), is defined to be the maximum over bags, the sum of the weights of vertices in the
bag. The weighted treewidth of a graph is the minimum weighted width over all tree
decompositions of the graph.

It is useful to observe that we consider treedepth and tree decompositions of the graphs
GP constructed for graphs G with given κ-partition P = {V1, V2, . . . , Vt}. Then the treedeph
decomposition of GP can be seen as a pair (F, φ), where F is a rooted forest and φ is a bijective
mapping of V (F) to P. Similarly, in a tree decomposition (T, β) of GP , corresponding to
every node t ∈ V (T), the bag β(t) is a subset of P . Finally, we observe that the results of [4]
regarding weighted treewidth – thus our results for weighted treedepth – hold for any weight
functions ω : P → R+, provided that ω(ℓ) = O(ℓ1−1/d−ϵ), for any ϵ > 0. However, as in [4],
we will fix the weight function to be ω(ℓ) := log(1 + ℓ) throughout the rest of the paper. For
the simplicity of notation, we use the shorthand ω(ui) := ω(|Vi|), where φ(ui) = Vi, and for
any ui ∈ V (F), and ω(S) :=

∑
ui∈S ω(ui) for any subset S ⊆ V (F).

Geometric Definitions. Given a set F of objects in Rd, we define the corresponding
intersection graph G[F] = (V, E), where there is a bijection between an object in F and
V (G), and uv ∈ E(G) iff the corresponding objects in F have a non-empty intersection. It is
sometimes convenient to erase the distinction between F with V (G), and to say that each
vertex is a geometric object from F .

We consider the geometric intersection graphs of fat objects. A geometric object g ⊂ Rd

is said to be α-fat for some α ≥ 1, if there exist balls Bin, Bout such that Bin ⊆ g ⊆ Bout,
such that the ratio of the radius of Bout to that of Bin is at most α. We say that a set F

of objects is fat if there exists a constant α ≥ 1 such that every geometric object in F is
α-fat. Furthermore, we say that F is a set of similarly-sized fat objects, if the ratio of the
largest diameter of an object in F , to the smallest diameter of an object in F is at most a
fixed constant. Finally, observe that if F is a set of similarly-sized fat objects, then the ratio
of the largest out-radius to the smallest in-radius of an object is also upper bounded by a
constant. de Berg et al. [4] prove the following two results regarding the intersection graphs
of similarly sized fat objects.

▶ Lemma 1 ([4]). Fix dimension d ≥ 2. There exist constants κ and ∆, such that for any
intersection graph G = (V, E) of an (unknown) set of n similarly-sized fat objects in Rd, a
κ-partition P for which GP has maximum degree ∆ can be computed in time polynomial
in n.

In the following, we will use the tuple (G, d, P, GP) to indicate that G = (V, E) is the
intersection graph of n similarly-sized fat objects in Rd, P is a κ-partition of G such that
GP has maximum degree ∆, where κ, ∆ are constants, as guaranteed by Lemma 1.

▶ Lemma 2 ([4]). For any (G, d, P, GP), the weighted treewidth of GP is O(n1−1/d).

Now we are ready to prove the following result about the intersection graphs of similarly
sized fat objects. This result is at the heart of the subexponential algorithms designed in the
following sections.

▶ Theorem 3. There is a polynomial space algorithm that for a given (G, d, P, GP), computes
in time 2O(n1−1/d) a weighted treedepth decomposition (F, φ) of GP of weighted treedepth
O(n1−1/d).

FSTTCS 2021

21:6 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

Proof. We use the approximation algorithm from [18] to compute a weighted tree decom-
position (T, β) of GP (see the later part of the proof for a detailed explanation). Using the
standard properties of the tree decomposition (e.g., see [2]), there exists a node t ∈ V (T), such
that VB :=

⋃
Vi∈β(t) Vi is an α-balanced separator for G, for some α ≤ 2/3. Let B := β(t).

Note that B ⊆ P .
Now we construct a part of the forest F , and the associated bijection φ in the weighted

treedepth decomposition (F, φ) of GP . We create a path π = (u1, u2, . . . , u|B|), and arbitrarily
assign φ(ui) to some Vi ∈ B such that it is a bijection. We set u1, the first vertex on π, to
be the root of a tree in F . We also set the weight ω(ui) = log(1 + |Vi|), where φ(ui) = Vi.
Note that the ω(π) = ω(B) = O(n1−1/d).

Let (Y1, Y2) be the separation of G, corresponding to the separator
⋃

Vi∈β(t) Vi. Analog-
ously, let (P ′

1, P ′
2) denote the separation of GP , corresponding to the separator B. Further-

more, let Xi := Yi \ VB, and Pi := P ′
i \ B for i = 1, 2. Note that X1 \ VB , X2 ⊆ V (G) are

disjoint, max{|X1|, |X2|} ≤ αn, and there is no edge from a vertex in X1, to a vertex in X2.
Furthermore, P1 is a κ-partition of G[X1], and P2 is a κ-partition of G[X2].

Now, we recursively construct weighted treedepth decomposition (F1, φ1) of GP [P1]. Note
that φ1 is a bijection between V (F1) and P1 ⊆ P . Let R1 denote the set of roots of the trees
in forest F1. We add an edge from the last vertex u|B| on the path π, to each root in R1. In
other words, we attach every tree in F1 as a subtree below u|B|. The bijection φ is extended
to P1 using φ1. Now we consider a weighted treedepth decomposition (F2, φ2) of GP [P2],
and use it to extend (F, φ) in a similar manner. This completes the construction of (F, φ).

Let us first analyze the weighted treedepth of (F, φ). Let us use q := 1 − 1/d for simplicity.
For a path π in F , let ω(π) denote the sum of weights of vertices along the path π. Recall
that the weight of any root-leaf path π in F is at most O(nq). More generally, let c′ ≥ 0
be a universal constant (independent of the path π, or its level in F) such that the weight
of a path corresponding to a separator computed at level j, is at most c′ · (αj−1n)q. Since
max{|X1|, |X2|} ≤ αn, we inductively assume that the weighted treedepth of (F1, φ1), and
that of (F2, φ2) is at most O(αq · nq). More specifically, we assume that there exists a
universal constant c ≥ c′, such that the sum of the weights along any root-leaf path in F1 is
upper bounded by c · (αn)q

1−αq . The same inductive assumption holds for any root-leaf path in
F2. Therefore, the weight of any root-leaf path in F is upper bounded by

ω(π) + c · αqnq

1 − αq
≤ cnq

(
1 + αq

1 − αq

)
= cnq

1 − αq
.

Therefore, we have the desired bound on the weighted treedepth by induction.
Now we look the treewidth construction part of the algorithm in order to sketch the

claims about bounds on time and space. Given the graph GP , we construct a graph H by
replacing every vertex Vi with a (new) clique Ci of size log(1+ |Vi|). If ViVj ∈ E(GP), we also
add edges from every vertex in Ci to every vertex in Cj . As shown in [4], the weighted width
of GP is equal to the treewidth of H, plus 1. Note that |V (H)| =

∑
Vi∈P log(1 + |Vi|) ≤ n,

since P is a partition of V (G).
The algorithm from [18] (see also Section 7.6.2 in the Parameterized Algorithms book [2])

for approximating treewidth of a graph H works as follows. Suppose the treewidth of a graph
is k, which is known. At the heart of this algorithm is a procedure decompose(W, S), where
S ⊊ W ⊆ V (H), and |S| ≤ 3k + 4. This procedure tries to decompose the subgraph H [W] in
such a way that S is completely contained in one bag of the tree decomposition. The first step
is to compute a partition (SA, SB) of S, such that the size of the separator separating SA and
SB in H[W] is at most k +1. This is done by exhaustively guessing all partitions, which takes
2O(k) time. For each such guess of (SA, SB), we run a polynomial time algorithm to check

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:7

whether the bound on the separator size holds. Once such a partition is found, a set Ŝ ⊋ S

is found by augmenting S in a particular way. Finally, we recursively run the procedure
decompose(NH [D], NH(D)), for each connected component D in H [W \ Ŝ]. Finally, the tree
decomposition of H[W] is computed by augmenting the tree decompositions computed by
the recursive procedure for its children, with the root bag containing Ŝ. It is shown that this
algorithm computes a tree decomposition of width O(tw) in time 2O(tw) · nO(1). Furthermore,
it can also be observed that it only uses polynomial space.

Therefore, computing a tree decomposition of GP of weighted treewidth O(n1−1/d) takes
2O(n1−1/d) time and polynomial space, corresponding to the original graph G with n vertices.
The treewidth computation algorithm is called at most n times, and there is additional
polynomial processing at every step. This implies the time and space bounds as claimed. ◀

We note that de Berg et al. [4] show the existence of a balanced separator of weight
O(n1−1/d), which is then used to show the same bound on weighted treewidth (Theorem
2). This separator can be computed in O(nd+2) time if we are also given the geometric
representation of the underlying objects in Rd. However, without geometric representation it
is not clear whether this separator can be directly computed. Therefore, we first compute an
approximate weighted treewidth decomposition, and then retrieve the separator bag in the
proof of Theorem 3. We state the following abstract theorem that models at a high level
our subexponential algorithms that use polynomial space. The proof of this theorem follows
from Theorem 3, and can be found the full version.

▶ Theorem 4. Let A be an algorithm for solving a problem on graph G, that takes in-
put (G, d, P, GP), and a weighted treedepth decomposition (F, φ) of GP of weighted depth
O(n1−1/d) (and optionally additional inputs of polynomial size). Suppose A is a recursive
algorithm, that at every node u ∈ V (F), spends time proportional to 2O(ω(u)) · nO(1), uses
polynomial space, and makes at most 2O(ω(u)) recursive calls on the children of u. Then, the
algorithm A runs in time 2O(n1−1/d), and uses polynomial space.

Independent Set. As a warm-up example for using the weighted treedepth decomposition,
we describe an application for Independent Set. Given (G, d, P, GP), we first observe
that every Vi ∈ P is a union of at most κ cliques, which implies that the intersection of an
independent set with any Vi is bounded by κ. A recursive algorithm for Independent Set
works with the weighted treedepth decomposition (F, φ) computed via Theorem 3. When the
algorithm is at a node ui ∈ V (F), we make a recursive call to the children of ui, corresponding
to each independent subset Ui ⊆ φ(ui) = Vi of size at most κ, that is independent. We
recursively compute a Maximum Independent Set in the subgraph of G, corresponding to
the subtree rooted at each children of ui, with the vertices in N(Ui) removed. We return the
maximum independent set found over all choices of the subset Ui. Finally, we observe that the
number of subsets of Vi of size at most κ is at most (1 + |Vi|)κ = 2O(log(1+|Vi|)) = 2O(ω(ui)),
where we use the fact that κ = O(1). A more formal description of the algorithm can be
found in the full version.

▶ Theorem 5. There exists a 2O(n1−1/d) time, polynomial space algorithm to compute a
maximum (weight) independent set in the intersection graphs of similarly sized fat objects
in Rd.

r-Dominating Set. For a fixed r ≥ 1, r-Dominating Set asks for a minimum-size vertex
subset D ⊆ V (G), such that for every v ∈ V (G), there exists some u ∈ D such that
distG(u, v) ≤ r, where distG(u, v) is the number of edges on the shortest path in G between

FSTTCS 2021

21:8 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

Algorithm Space Similarly-sized Convex Robust
Corollary 2.4 in [4] Poly Yes Yes No
Theorem 2.13 in [4] 2O(n1−1/d) Yes No Yes

Theorem 5 (this paper) Poly Yes No Yes

Figure 1 Comparison of three 2O(n1−1/d)-time algorithms for Independent Set on the intersec-
tion graphs of fat objects. “Robust” in the last column means that the algorithm does not require
the geometric representation of the objects. In terms of technique, our algorithm (third row) is
closely related to the one in the first row, albeit we use the framework of weighted treedepth.

u and v. Following [4], there are the two important ingredients in our algorithm for r-
Dominating Set. First, de Berg et al. [4] show that it can be assumed that |Vi ∩ D| ≤
κ2(1 + ∆) for any Vi ∈ P . However, this property alone is not sufficient to obtain a recursive
algorithm that runs in subexponential time and polynomial space.

Consider a similar recursive algorithm that is processing a vertex Vi ∈ P using a weighted
treedepth decomposition (F, φ) of GP . There are three possibilities for a vertex u ∈ Vi – (i)
it is in the dominating set, (ii) it is already being dominated by a vertex that was added to
the dominating set at an earlier stage of recursion, or (iii) it will be dominated by a vertex
v ∈ Vj with distG(u, v) ≤ r, where Vj belongs to the subtree of F rooted at Vi. To handle
case (iii), we need to enumerate partial solutions from all Vj ’s such that distGP (Vi, Vj) ≤ r.
However, the weighted treedepth bound given in Theorem 3 is not sufficient, and we need a
strengthened version of the theorem. Such a result appears in [4], and we reprove it in the
full version for completeness. Loosely speaking, this result bounds the total weight of all the
bags that appear within the r-neighborhood of the α-balanced separator obtained via the
weighted treewidth decomposition. Armed with this result, the recursive algorithm “guesses”
the set of vertices from the balanced separator bag, and for each vertex u type (iii), it also
guesses a vertex v from the subtree that dominates u. The stronger theorem implies that
the number of recursive calls made from the i-th level of recursion can still be bounded by
2O((αi−1n)1−1/d). A formal description and analysis of this algorithm can be found in the full
version of the paper. We summarize our result in the following theorem.

▶ Theorem 6. For any fixed r ≥ 1, there exists a 2O(n1−1/d) time, polynomial space algorithm
to compute a minimum r-dominating set in the intersection graphs of similarly sized fat
objects in Rd.

3 Cut&Count Algorithms

Hegerfeld and Kratsch [10] adapt the Cut&Count technique to give FPT algorithms for
various connectivity based subset problems, parameterized by (unweighted) treedepth. In
particular, these algorithms are randomized, have running times of the form 2O(td) ·nO(1), and
use polynomial space. In their work, they consider Connected Vertex Cover, Feedback
Vertex Set, Connected Dominating Set, Steiner Tree, and Connected Odd
Cycle Transversal problems. We are able to adapt their technique for all of these
problems, except for Connected Dominating Set. For the rest of the problems, we will
extend their ideas to the more general case of weighted treedepth, and use it to give 2O(n1−1/d)

time, polynomial space, randomized algorithms. In the following, we select Steiner Tree
as a representative problem, which is explained in detail. For the remaining problems, we
give only a brief sketch highlighting the differences from the Steiner Tree algorithm, and
defer the formal details to the full version.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:9

3.1 Setup
We adopt the following notation from Hegerfeld and Kratsch [10]. Let cc(G) denote the
number of connected components in G. A cut of X ⊆ V (G) is a pair (XL, XR), where
XL ∩ XR = ∅, XL ∪ XR = X. We refer to XL, XR as the left and the right side of the
cut (XL, XR) respectively. A cut (XL, XR) of G[X] is consistent, if for any u ∈ XL and
v ∈ XR, uv ̸∈ E(G[X]). A consistently cut subgraph of G is a pair (X, (XL, XR)), such that
X ⊆ V (G), and (XL, XR) is a consistent cut of G[X]. Finally, for X ⊆ V (G), we denote the
set of consistently cut subgraphs of G[X] by C(X).

For n ∈ N, let [n] denote the set of integers from 1 to n. For integers a, b, we write a ≡ b

to indicate equality modulo 2. We use Iverson’s bracket notation: for a boolean predicate p,
[p] is equal to 1 if p is true, otherwise [p] is equal to 0.

Consider a function f : A → S. For every s ∈ S and a set X, we define the set
X(f, s) := X ∩ f−1(s) – note that X(f, s) may be empty for some or all s ∈ S. Furthermore,
observe that the sets {A(f, s)}s∈S define a partition of A. For two functions g : A → S,
f : B → S, we define the new function g ⊕ f : (A ∪ B) → S as follows. (g ⊕ f)(e) = f(e) for
e ∈ B, and (g ⊕ f)(e) = g(e) for e ∈ (A \ B). That is, (g ⊕ f) behaves like g and f on the
exclusive domains, but in case of a conflict, the function f takes the priority.

Recall that we work with (G, d, P, GP), and the corresponding weighted treedepth
decomposition (F, φ) of G. Here, φ is a bijection between V (F) and P. For a node ui, we
will use Vi := φ(ui), i.e., we use the same indices in the subscript to identify a node of F and
the corresponding part in P . We denote the set of children of ui by child(ui). Additionally,

tail[ui] =
⋃

uj is an ancestsor of ui

Vj ; tail(ui) = tail[ui] \ Vi

tree[ui] =
⋃

uj is a descendant of ui

Vj ; tree(ui) = tree[ui] \ Vi

broom[ui] = tail[ui] ∪ tree(ui)

Isolation Lemma

▶ Definition 7. Let U be a finite set, and F ⊆ 2U be a family of subsets of U . We say that
a weight function w : U → Z isolates the family F if there exists a unique set S′ ∈ F such
that w(S′) = minS∈F w(S), where w(X) :=

∑
x∈X w(x) for any subset X ⊆ U .

The following isolation lemma due to Mulmuley et al. [14] is at the heart of all Cut&Count
algorithms.

▶ Lemma 8 ([14]). Let F ⊆ 2U be a non-empty family of subsets of a finite ground set U .
Let N ∈ N, and suppose w(u) is chosen uniformly and independently at random from [N]
for every u ∈ U . Then, Pr(w isolates F) ≥ 1 − |U |/N .

General Idea

Fix a problem involving connectivity constraints. Let U be the ground set that is related to
the graph G, such that S ⊆ 2U , where S denotes the set of solutions to the problem. At a
high level, a Cut&Count based algorithm contains the following two parts.

The Cut part: We obtain a set R by relaxing the connectivity requirements on the
solutions, such that S ⊆ R ⊆ 2U . The set Q will contain pairs (X, C), where X ∈ R is a
candidate solution, and C is a consistent cut of X. Note that since X ∈ R, X may be
possibly disconnected.

FSTTCS 2021

21:10 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

The Count part: We compute |Q| mod 2 using an algorithm. The consistent cuts
are defined carefully, in order that the non-connected solutions from R \ S cancel while
counting modulo 2, since they are consistent with an even number of cuts.

Note that if |S| is even, then the procedure counting |Q| mod 2 will return 0, which will be
inconclusive. Therefore, we initially sample a random weight function w : U → [N] for some
large integer N ≥ 2|U |, and count |Qw| mod 2 (where Qw is the subset of Q such that the
corresponding X has weight exactly w), for all values of w ∈ [2|U |2]. Using Lemma 8, it can
be argued that with at least probability 1/2, if S ̸= ∅, then for some weight w ∈ [2|U |2], the
procedure counting |Qw| mod 2 outputs 1. Finally, we guess an arbitrary vertex v1 ∈ V (G)
in the solution, and force it to be on the left side of the consistent cuts. That is, we count
the number of consistent cuts in which v1 is forced to belong to the left side. This breaks
the left-right symmetry. We first have the following two results from [10, 3].

▶ Lemma 9 ([10, 3]). Let X ⊆ V (G) such that v1 ∈ X. The number of consistently cut
subgraphs (X, (XL, XR)) such that v1 ∈ XL is equal to 2cc(G[X])−1.

▶ Corollary 10 ([10, 3]). Let S ⊆ 2U , and Q ⊆ 2U×(V ×V), such that for every w : U → [2|U |],
and a target weight w ∈ [2|U |2], the following two properties hold.
1. | {(X, C) ∈ Q : w(X) = w} | = | {X ∈ S : w(X) = w} |, and
2. There is an algorithm CountC(w, w, (G, d, P, GP), (F, φ)), where (F, φ) is a weighted

treedepth decomposition of (G, d, P, GP), such that: CountC(w, w, (G, d, P, GP), (F, φ)) ≡
|{(X, C ∈ Q : w(X) = w)}|.

Then, Algorithm 1 returns false if S = ∅, and returns true with probability at least 1
2

otherwise.

Proof. Plugging in F = S and N = 2|U | in Lemma 8, we know that if S ̸= ∅, then with
probability at least 1/2, there exists a weight w ∈ [2|U |2] such that | {X ∈ S : w(X) = w} | =
1. Then, Algorithm 1 returns true with probability at least 1/2.

On the other hand, if S = ∅, then by the first property, and the definition of CountC, for
any choice of w and w, the procedure CountC returns false. Therefore, Algorithm 1 returns
false. ◀

Algorithm 1 Cut&Count(U, (G, d, P, GP), (F, φ), CountC).

Input: A set U , (G, d, P, GP), associated weighted treedepth decomposition (F, φ), a
procedure CountC that takes w : U → [N], w ∈ N

1: Choose w(u) independently and uniformly at random from [2|U |] for each u ∈ U

2: for w = 1, 2, . . . , 2|U |2 do
3: if CountC((G, d, P, GP), (F, φ), w, w) ≡ 1 return true
4: end for
5: return false

3.2 Steiner Tree
▶ Definition 11 (Steiner Tree).
Input: An undirected graph G = (V, E), a set of terminals K ⊆ V (G), and an integer k.
Question: Is there a subset X ⊆ V (G), with |X| ≤ k, such that G[X] is connected, and
K ⊆ X?

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:11

Fix (G, d, P, GP) via Lemma 1. Recall that P is a κ-partition of G, such that the
corresponding graph GP has maximum degree ∆ = O(1). We first have the following lemma.

▶ Lemma 12 ([4]). Suppose X is a minimal solution for Steiner Tree (i.e., no proper
subset of X is also a solution) for a given (G, d, P, GP), and a set of terminals K. Then
|X ∩ (Vi \ K)| ≤ κ2(∆ + 1) for any Vi ∈ P.

Let k′ = |K| + κ2(∆ + 1) · |P|. Note that using Lemma 12, we may assume that k ≤ k′ –
if k ≥ k′, then (G, k) is a “yes-instance” iff (G, k′) is a “yes-instance”. For any X ⊆ V (G),
we say that X is P-restricted if for any Vi ∈ P, |X ∩ (Vi \ K)| ≤ κ2(∆ + 1). Note that this
definition of a P-restricted set (and later, that of a P-restricted function) is specific to the
Steiner Tree problem. For different problems, we need to define this notion differently,
albeit the main idea is to use a problem-specific version of Lemma 12.

We will run the following algorithm for all values of k ≤ k′. Let t1 ∈ K be an arbitrary
terminal that we will fix to be on the left side of consistent cuts, as discussed previously.
Now we give the formal definitions of the sets R, S, Q that were abstractly defined in the
setup. We also define weight-restricted versions Rw, Sw, Qw of these sets, where w ∈ N.

R = {X ⊆ V (G) : X is P-restricted, K ⊆ X, |X| = k} ; Rw = {X ∈ R : w(X) = w}
S = {X ∈ R : G[X] is connected} ; Sw = {X ∈ S : w(X) = w}
Q = {(X, (XL, XR)) ∈ C(V) : X ∈ R and t1 ∈ XL} ; Qw = {(X, (XL, XR)) ∈ Q : w(X) = w}

▶ Lemma 13. Let w : V (G) → [N] be a weight function. Then, for every w ∈ N, |Sw| ≡ |Qw|.

Proof. From Lemma 9, |Qw| =
∑

X∈Rw
2cc(G[X])−1.

Thus, |Qw| ≡ | {X ∈ Rw : cc(G[X]) = 1} | = |Sw|. Recall that ≡ is equality modulo 2. ◀

The goal of the rest of this subsection is to explain how the procedure CountC works.
First, we drop the cardinality constraints and define the following candidates and candidate

cut-pairs for induced subgraphs G[V ′], where V ′ ⊆ V (G).

R̂(V ′) = {X ⊆ V ′ : X is P-restricted, and K ∩ V ′ ⊆ X}

Q̂(V ′) = {(X, (XL, XR)) ∈ C(V ′) : X ∈ R(V ′) and t1 ∈ V ′=⇒ t1 ∈ XL}

Recall that each node ui ∈ V (F) is bijectively mapped to a Vi ∈ P. The algorithm will
assign a value to every vertex v ∈ Vi from the set states := {1L, 1R, 0}, with the condition
that if v ∈ K ∩ Vi, then it cannot be assigned 0. The interpretation of the states 1L and 1R

for a vertex v ∈ Vi is that v is part of a candidate Steiner Tree solution, and is part of the
left and the right side of the consistent cut, respectively. On the other hand, the vertices
that are not part of a candidate Steiner Tree solution have the state 0. Next, we define an
important notion of P-restricted functions, which will be crucial for pruning the number of
recursive calls.

▶ Definition 14. Let f : X → states be a function, where X ⊆ V (G). We say that f is
P-restricted, if the following properties hold:

f−1({1L, 1R}) is P-restricted, and
(X ∩ K) ⊆ f−1({1L, 1R}), and if t1 ∈ X, then f(t1) = 1L.

The algorithm will be recursive, and it will compute a multivariate polynomial in the
variables ZW and ZX , where the coefficient of the term Zw

W Zi
X is equal to the cardinality of

Q̂i
w(V ′) :=

{
(X, C) ∈ Q̂(V ′) : w(X) = w, |X| = i

}
, modulo 2. That is, the formal variables

FSTTCS 2021

21:12 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

will keep track of the weight and the size of the solutions. The polynomial is computed
by using a recursive algorithm that uses the weighted treedepth decomposition to guide
recursion. The algorithm starts at the root r and proceeds towards the leaves.

Consider a node ui ∈ V (F), and a P-restricted function f : tail[ui] → states, we define
the set of partial solutions at ui, but excluding any subset of Vi, that respect f by

C(ui)(f) :=
{

(X, (XL, XR)) ∈ Q̂(tree(ui)) :X ′ = X ∪ f−1({1L, 1R}),

C ′ = (XL ∪ f−1(1L), XR ∪ f−1(1R)),

(X ′, C ′) ∈ Q̂(broom[ui])
}

(1)

That is, the partial solutions in C(ui)(f) are given by consistently cut subgraphs of
G[tree(ui)], that are extended to the candidate-cut-pairs for G[broom[ui]] by f , i.e., consist-
ently cut subgraphs of G[broom[ui]] that contain all terminals in broom[ui].

Similarly, for a node ui ∈ V (F), and a P-restricted function g : tail(ui) → states, we
define the set of partial solutions at ui, but possibly including a subset of Vi, that respect g

by C[ui](g), whose definition is identical to (1) (after replacing f by g everywhere), except
that the candidate consistently cut subgraph (X, (XL, XR)) is from the set Q̂[ui].

With these definitions, the coefficients of the terms Zw
W Zk

X , for 0 ≤ w ≤ 2n2 in the
polynomial P[r](∅) at the root node r ∈ V (F) will give the desired quantities.

Recursively Computing Polynomials. Let ui ∈ V (F), and let f : tail[u] → states be a
P-restricted function. If ui is a leaf in F , then

P(ui)(f) =
[
(f−1(1L), f−1(1R)) is a consistent cut of G[f−1({1L, 1R})]

]
·

[
K ∩ tail[ui] ⊆ f−1({1L, 1R})

]
· [t1 ∈ tail[ui]=⇒f(t1) = 1L] (2)

If ui ∈ V (F) is not a leaf, then P(ui)(f) =
∏

uj∈child(ui)

P[uj](f) (3)

To define the computation of P[ui](g) for a P-restricted function g : tail(ui) → states, we
need the following notation. Let F(Vi) be a set of P-restricted functions (see Definition
14) from Vi → states with the following additional property: for all h ∈ F(Vi), if u, v ∈
h−1({1L, 1R}) with uv ∈ E(G), then h(u) = h(v). We refer to this additional property as
the function being cut-respecting.

Note that g and any h ∈ F(Vi) have disjoint domains, and both are P-restricted.
Therefore, g ⊕ h is also P-restricted for any h ∈ F(Vi). We have the following recurrence:

P[ui](g) =
∑

h∈F(Vi)

P(ui)(g ⊕ h) · Z
w(Vi(h,1))
W Z

|Vi(h,1)|
X (4)

Where, we use the shorthand Vi(h, 1) for the set Vi(h, 1L) ∪ Vi(h, 1R).
At a high level, the correctness of the equations (2)-(4) essentially follows from the same

arguments as in [10]. However, the details are rather technical because a recursive call made
at a vertex ui ∈ V (F) corresponds to a function from F(Vi) that simultaneously assigns
states to all the vertices in Vi. We defer the formal proof of correctness to the appendix.

Given recurrences (2-4), it is straightforward to compute polynomials P(ui)(f) and P[ui](g)
using a recursive algorithm. Finally, we return the coefficient of the term Zw

W Zk
X in the

polynomial P[ui](∅) thus computed. The actual description of the algorithm can be found in
the appendix.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:13

▶ Lemma 15. For any Vi ∈ P, |F(Vi)| ≤ (1 + |Vi|)O(1) = 2O(ω(Vi)). Furthermore, the set
F(Vi) can be computed in poly(|F(Vi)|, n) time.

Proof. Let Ki = Vi ∩ K. Because of the first property from the definition of P-restricted
functions, there are at most (1 + |Vi|)κ2(1+∆) choices for selecting a subset Ui ⊆ Vi \ K of
size at most κ2(1 + ∆), to be mapped to {1L, 1R}. Let us fix such a choice Ui. Note that
every terminal in Ki := K ∩ Vi must be assigned to {1L, 1R}.

Due to the cut-respecting property, if there are two vertices u, v ∈ Ui ∪ Ki that belong to
the same clique, then they must belong to the same side of the consistent cut. Since each Vi

is a union of at most κ cliques, there are at most 2κ choices for assigning vertices in Ui ∪ Ki

to either side of a consistent cut. Therefore, since κ, ∆ = O(1), and ω(Vi) = log(1 + |Vi|), we
have the following:

|F(Vi)| ≤ (1 + |Vi|)κ2(1+∆) · 2κ = 2O(ω(Vi)).

Here we would like to highlight the distinction between the weights ω : P → R+ from the
weighted treedepth decomposition, the weights w : V (G) → N from the Isolation Lemma,
and the target weight w for w.

It is relatively straightforward to convert this proof into an algorithm for computing
F(Vi). First, we can use a standard algorithm (e.g., [13]) to generate subsets Ui of size at
most κ2(1 + ∆). It is known that this can be done in |Vi|O(κ2(1+∆)) time.

Now, fix a particular choice of Ui, and consider the set Ui ∪ Ki as defined above. Now
we compute an inclusion-wise maximal independent set Si of Ui ∪ Ki, e.g., by a greedy
algorithm. Since Vi is a union of at most κ cliques, |Si| ≤ κ. Now we consider at most 2κ

choices for assigning {1L, 1R} to each vertex in Si. For any vertex v ∈ (Vi ∪ Ki) \ Si, there is
a vertex v′ ∈ Si such that vv′ is an edge. Therefore, we set f(v) = f(v′). Note that if v has
more than one neighbor in Si, and if a particular choice assigns them different values, then
this corresponds to a function that is not cut-respecting. In this case, we may move to the
next assignment to Si. Finally, since Si is a maximal independent set, each cut-respecting
function for the fixed choice of Vi will be considered in this manner. Finally, iterating over
all choices of Vi, we can compute the set F(Vi) as claimed. ◀

▶ Theorem 16. There exists a 2O(n1−1/d) time, polynomial space, randomized algorithm to
solve Steiner Tree in the intersection graphs of similarly sized fat objects in Rd.

Proof. From Lemma 15, it follows that at every ui ∈ F , the procedure CountC spends
2O(ω(ui)) · nO(1) time, and makes 2O(ω(ui)) recursive calls to its children, corresponding
to each function in F(Vi). Furthermore, since the weights defined by w : V (G) → [2n]
are polynomially bounded, at every node in F the algorithm uses space polynomial in n.
We finally observe that the Cut&Count algorithm is a randomized procedure that makes
polynomially many calls to CountC. The correctness of CountC follows from the correctness
of recurrence relations, and the bounds on probability follow from Corollary 10. ◀

3.3 Other Problems
We design algorithms for Connected Vertex Cover, Feedback Vertex Set, and
(Connected) Odd Cycle Transversal using Cut&Count technique. At a high level, the
ideas that are similar to that for Steiner Tree from the previous section. However, there
are a few crucial differences that are specific to the problem at hand. Here, we give a very
brief sketch of how these differences are handled. A more formal description and analysis
can be found in the full version.

FSTTCS 2021

21:14 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

Connected Vertex Cover. Recall that the goal is to find a vertex cover C of the smallest
size for the given geometric intersection graph G that induces a connected subgraph of
G. Since C is a vertex cover, it may leave out at most one vertex from any clique. Thus,
|Vi \C| ≤ κ. This is the crucial observation (analogous to 12) that helps us prune the number
of recursive calls, via bounding the number of P-restricted functions as in Lemma 15. The
details of the Cut&Count computation are very similar to that for Steiner Tree, with
appropriate modifications. Indeed, there is a reduction from Connected Vertex Cover
to Steiner Tree that increases the treedepth of the graph by at most 1, as observed in
[3, 10]. This readily implies a 2O(td) · nO(1) for Connected Vertex Cover. However, in
the resulting instance of Steiner Tree, the resulting graph may not necessarily belong to
the class of geometric intersection graphs, and thus may not have weighted treedepth of at
most O(n1−1/d). Nevertheless, we are able to adapt the approach of [10] and get a 2O(n1−1/d)

time randomized algorithm that uses polynomial space.

Feedback Vertex Set. Again, we observe that any feedback vertex set S may leave out at
most two vertices from any clique of G, thus, |Vi \ C| ≤ 2κ – otherwise G \ S will not be
acyclic. Although the high level idea is similar to Steiner Tree and Connected Vertex
Cover, the technical details need to be adapted to the peculiarities of the FVS problem.

(Connected) Odd Cycle Transversal. Let us first focus on the connected version. As for
FVS, any Connected Odd Cycle transversal C may leave out at most two vertices from a
clique – otherwise there will be a triangle in the G \ C. This implies that |Vi \ C| ≤ 2κ

for any Vi ∈ P as earlier. This observation, combined with the ideas from [10] gives the
desired subexponential time algorithm with polynomial space. Finally, we observe that an
instance of OCT can be reduced to Connected OCT by adding a new universal vertex that is
adjacent to all the original vertices. Note that the new graph may not necessarily belong to
the class of geometric intersection graphs. Nevertheless, we can use the previous algorithm
for Connected OCT as follows. The first observation is that the universal vertex can be
assumed to be the root of the weighted treedepth decomposition, and there are at most 4
recursive calls made by the algorithm from the root. The rest of the algorithm works with
the original graph, which is indeed a geometric intersection graph. Thus, the algorithm for
Connected OCT also solves OCT, up to a constant factor increase in the running time.

4 Cycle Cover

▶ Definition 17 (Cycle Cover).
Input: An undirected graph G = (V, E), and an integer k.
Question: Do there exist at most k vertex-disjoint cycles that span V (G)?

Note that the case of k = 1 corresponds to determining whether G has a Hamiltonian cycle,
that is, to the Hamiltonian Cycle problem.

We briefly sketch our approach for Cycle Cover. In this section, we assume that we
are also given the geometric representation of the similarly-sized fat objects involved in the
input graph G. With the geometric representation, we can use a stronger result from [4] that
computes (G, d, P, GP) with an additional property that P is a clique cover of G, i.e., P is a
partition of V (G) into cliques. Furthermore, the maximum degree ∆ of GP is a constant.

In the second step, we compute a graph H in polynomial time, such that G has a cycle
cover of size k iff H has a cycle cover of size k. For this, we use ideas similar to [1, 11]
to argue that the cycles can be rereouted to ensure that the size of the set of “boundary

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:15

vertices”, (i.e., vertices from which a cycle enters or leaves the clique) from each clique Vi ∈ P ,
is upper bounded by O(∆). Then, since the degree of each Vi is at most ∆, it can be shown
that all but O(∆3) = O(1) vertices of Vi can be discarded without changing the answer for
Cycle Cover.

In our algorithm, we first construct the weighted treedepth decomposition of G, of
weighted depth at most O(n1−1/d). Then, we discard all but O(∆3) vertices from the graph
H. By also deleting the corresponding vertices from the treedepth decomposition of G,
it can be observed that the resulting structure can be modified to obtain an unweighted
treedepth decomposition of H, of depth O(n1−1/d). Then, we can appeal to a 2O(td) · nO(1)

time, polynomial space randomized algorithm by [15] for Cycle Cover that is based on
Cut&Count. Thus, we get the following result. We give the formal details in the full version.

▶ Theorem 18. There exists a 2O(n1−1/d) time, polynomial space, randomized algorithm,
to solve Cycle Cover in the intersection graphs of similarly sized fat objects in Rd. In
particular, this implies analogous results for Hamiltonian Cycle and Hamiltonian Path
in the intersection graphs of similarly sized fat objects in Rd.

5 Conclusion and Open Questions

In this paper, following de Berg et al. [4], we consider various graph problems in the
intersection graphs of similarly sized fat objects. Our running times for Independent Set,
r-Dominating Set, Steiner Tree, Connected Vertex Cover, Feedback Vertex
Cover, (Connected) Odd Cycle Transversal, Hamiltonian Cycle are of the form
2O(n1−1/d) – matching that in [4] – but we improve the space requirement to be polynomial.
Due to some technical reasons, we are not able to achieve a similar result for Connected
Dominating Set which is also considered by [4]. We leave this as an open problem.

Kisfaludi-Bak [12] used some of the ideas from [4] in the context of (noisy) unit ball
graphs in d-dimensional hyperbolic space. In particular, he gave subexponential and quasi-
polynomial time (and space) algorithms for problems such as Independent Set, Steiner
Tree, Hamiltonian Cycle using a notion similar to the weighted treedepth. Using our
techniques, it should be possible to improve the space requirement of these algorithms to
polynomial, while keeping the running time same (up to possibly a multiplicative O(log n)
factor in the exponent in some cases). Very recently, [5] designed clique-based separators
for various geometric intersection graphs that are of sublinear weight. Again, it should be
possible to obtain subexponential time, polynomial space for these graph classes. We leave
the details of these extensions for a future version.

Finally, our algorithms for the connectivity problems such as Steiner Tree, Connected
Vertex Cover, (Connected) Odd Cycle Transversal, and that for Cycle Cover
use an adapted version of the Cut&Count technique ([15, 10, 3]). Cut&Count technique
crucially uses the Isolation Lemma (cf. Lemma 8), and hence these algorithms are inherently
randomized. We note that recently there has been some progress toward derandomizing
Cut&Count [16] for problems such as Hamiltonian Cycle on graphs of bounded treedepth.
This may also have some consequences for our algorithms.

References
1 Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dusan Knop, and Peter Zeman. Ker-

nelization of graph hamiltonicity: Proper h-graphs. In Algorithms and Data Structures -
16th International Symposium, WADS 2019, Proceedings, volume 11646 of Lecture Notes in
Computer Science, pages 296–310. Springer, 2019. doi:10.1007/978-3-030-24766-9_22.

FSTTCS 2021

https://doi.org/10.1007/978-3-030-24766-9_22

21:16 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

2 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

3 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Joham MM van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 150–159. IEEE, 2011.

4 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds
in geometric intersection graphs. SIAM J. Comput., 49(6):1291–1331, 2020. doi:10.1137/
20M1320870.

5 Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous.
Clique-based separators for geometric intersection graphs. CoRR, abs/2109.09874, 2021.
arXiv:2109.09874.

6 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discret.
Comput. Geom., 62(4):879–911, 2019. doi:10.1007/s00454-018-00054-x.

9 Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization based on tree-depth.
Theory Comput. Syst., 61(2):283–304, 2017. doi:10.1007/s00224-017-9751-3.

10 Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by treedepth
in single-exponential time and polynomial space. In 37th International Symposium on Theor-
etical Aspects of Computer Science (STACS), volume 154 of LIPIcs, pages 29:1–29:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.29.

11 Hiro Ito and Masakazu Kadoshita. Tractability and intractability of problems on unit disk
graphs parameterized by domain area. In Proceedings of the 9th International Symposium on
Operations Research and Its Applications (ISORA), volume 2010. Citeseer, 2010.

12 Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1621–1638. SIAM, 2020.

13 Donald Ervin Knuth. The art of computer programming: Generating all combinations and
partitions. Addison-Wesley, 2005.

14 Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 345–354, 1987.

15 Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamilto-
nian cycle parameterized by treedepth in single exponential time and polynomial space.
In 46th International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
volume 12301 of Lecture Notes in Computer Science, pages 27–39. Springer, 2020. doi:
10.1007/978-3-030-60440-0_3.

16 Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Isolation
schemes for problems on decomposable graphs. CoRR, abs/2105.01465, 2021. arXiv:2105.
01465.

17 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

18 Bruce A Reed. Algorithmic aspects of tree width. In Recent advances in algorithms and
combinatorics, pages 85–107. Springer, 2003.

https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
http://arxiv.org/abs/2109.09874
https://doi.org/10.1007/s00454-018-00054-x
https://doi.org/10.1007/s00224-017-9751-3
https://doi.org/10.4230/LIPIcs.STACS.2020.29
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.1007/978-3-030-60440-0_3
http://arxiv.org/abs/2105.01465
http://arxiv.org/abs/2105.01465
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

On Fair and Efficient Allocations of Indivisible
Public Goods
Jugal Garg #

University of Illinois, Urbana-Champaign, IL, USA

Pooja Kulkarni #

University of Illinois, Urbana-Champaign, IL, USA

Aniket Murhekar #

University of Illinois, Urbana-Champaign, IL, USA

Abstract
We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In
this model, we have n agents and m available public goods, and we want to select k ≤ m goods
in a fair and efficient manner. We first establish fundamental connections between the models of
private goods, public goods, and public decision making by presenting polynomial-time reductions
for the popular solution concepts of maximum Nash welfare (MNW) and leximin. These mechanisms
are known to provide remarkable fairness and efficiency guarantees in private goods and public
decision making settings. We show that they retain these desirable properties even in the public
goods case. We prove that MNW allocations provide fairness guarantees of Proportionality up to
one good (Prop1), 1/n approximation to Round Robin Share (RRS), and the efficiency guarantee of
Pareto Optimality (PO). Further, we show that the problems of finding MNW or leximin-optimal
allocations are NP-hard, even in the case of constantly many agents, or binary valuations. This is in
sharp contrast to the private goods setting that admits polynomial-time algorithms under binary
valuations. We also design pseudo-polynomial time algorithms for computing an exact MNW or
leximin-optimal allocation for the cases of (i) constantly many agents, and (ii) constantly many
goods with additive valuations. We also present an O(n)-factor approximation algorithm for MNW
which also satisfies RRS, Prop1, and 1/2-Prop.

2012 ACM Subject Classification Theory of computation → Mathematical optimization

Keywords and phrases Public goods, Nash welfare, Leximin, Proportionality

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.22

Related Version Full Version: https://arxiv.org/abs/2107.09871 [23]

Funding Supported by NSF Grant CCF-1942321 (CAREER).

1 Introduction

The problem of fair division was formally introduced by Steinhaus [32], and has since been
extensively studied in economics and computer science [10, 28]. Recent work has focused on
the problem of fair and efficient allocation of indivisible private goods. We label this setting
as the PrivateGoods model. Here, goods have to be partitioned among agents, and a good
provides utility only to the agent who owns it. However, goods are not always private, and
may provide utility to multiple agents simultaneously, e.g., books in a public library. The
fair and efficient allocation of such indivisible public goods is an important problem.

In this paper we study the setting of PublicGoods, where a set of n agents have to select
a set of at most k goods from a set of m given goods. This simple cardinality constraint
models several real world scenarios. While previous work has largely focused on the k < n

case, e.g., for voting and committee selection [2, 13], there is much less work available for
the case of k ≥ n. This setting is important in its own right. We present a few compelling
examples.

© Jugal Garg, Pooja Kulkarni, and Aniket Murhekar;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 22; pp. 22:1–22:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jugal@illinois.edu
mailto:poojark2@illinois.edu
mailto:aniket2@illinois.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.22
https://arxiv.org/abs/2107.09871
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 On Fair and Efficient Allocations of Indivisible Public Goods

▶ Example 1. A public library wants to buy k books that adhere to preferences of n people
who might use the library. Clearly, the number of books has to be much greater than the
number of people using the library, hence k ≫ n.

▶ Example 2. A family (or a group of friends) of size n wants to decide on a list of k movies
to watch together for a few months. Here too, k > n. Another example of the same flavor is
a committee tasked with inviting speakers at a year-long weekly seminar.

▶ Example 3. Another important example is that of diverse search results for a query.
Given a query (say of “computer scientist images”) on a database, we would like to output k

search results which reflect diversity in terms of n specified features (like “gender, race and
nationality”). Once again, k ≥ n.

A related setting PublicDecisions of public decision making [15] models the scenario in
which n agents are faced with m issues with multiple alternatives per issue, and they must
arrive at a decision on each issue. Conitzer et al. [15] showed that this model subsumes the
PrivateGoods setting.

Connections between the models. A central question motivating this work is:

▶ Question 1. Can we establish fundamental connections between the three models
PrivateGoods, PublicGoods, and PublicDecisions?

To answer this question, we first describe two well-studied solution concepts for allocating
goods in the PrivateGoods and PublicDecisions models, namely the maximum Nash welfare
(MNW) and leximin mechanisms. These mechanisms have been shown to produce allocations
that are fair and efficient in the models of PrivateGoods and PublicDecisions. The MNW
mechanism returns an allocation that maximizes the geometric mean of agents’ utilities,
and the leximin mechanism returns an allocation that maximizes the minimum utility, and
subject to this, maximizes the second minimum utility, and so on. We label the problems of
computing the Nash welfare maximizing (resp. leximin optimal) allocation in the three models
as PrivateMNW, PublicMNW, DecisionMNW (resp. PrivateLex, PublicLex, DecisionLex).

We answer Question 1 positively by presenting novel polynomial-time reductions from
the model of PrivateGoods to PublicGoods, and from PublicGoods to PublicDecisions for the
problem of computing a Nash welfare maximizing allocation.

PrivateMNW ≤ PublicMNW ≤ DecisionMNW (1)

More notably, these reductions also work for the MNW problem when restricted to binary
valuations. Apart from establishing fundamental connections between these models, our
reductions also determine the complexity of the MNW problem, as we detail below. We also
develop similar reductions between the models for the leximin mechanism, showing:

PrivateLex ≤ PublicLex ≤ DecisionLex (2)

Fairness and efficiency considerations. We next describe the fairness and efficiency proper-
ties that the MNW and leximin mechanisms have been shown to satisfy in the PrivateGoods
and PublicDecisions models.

The standard notion of economic efficiency is Pareto-optimality (PO). An allocation
is said to be PO if no other allocation makes an agent better off without making anyone
worse off. The classical fairness notion of proportionality requires that every agent gets her

J. Garg, P. Kulkarni, and A. Murhekar 22:3

proportional value, i.e., 1/n-fraction of the maximum value she can obtain in any allocation.
However, proportional allocations are not guaranteed to exist.1 Hence, we study the notion
of Proportionality up to one good (Prop1) for PublicGoods. We say an allocation is Prop1 if
for every agent i who does not get her proportional value, i gets her proportional value after
swapping some unselected good with a selected one. For PrivateGoods and PublicDecisions,
Prop1 is defined similarly – in the former, an agent is given an additional good [6, 27]; and
in the latter, an agent is allowed to change the decision on a single issue [15]. While Prop1 is
an individual fairness notion, it is still important for allocating public goods. For instance, in
Example 1, we want allocations in which every agent has some books that cater to her taste,
even if her taste differs from the rest of the agents. Likewise, in Example 2, a fair selection
of movies must ensure that there are some movies every member can enjoy.

We also consider the fairness notion of Round-Robin Share (RRS) [15], which demands
that each agent i receives at least the utility which she would get if agents were allowed to
pick goods in a round-robin fashion, with i picking last.

In the PrivateGoods and PublicDecisions models, an MNW allocation satisfies Prop1 in
conjunction with PO [11, 15]. Similarly in both these models, the leximin-optimal allocation
satisfies RRS and PO [15]. It is therefore natural to ask:

▶ Question 2. What guarantee of fairness and efficiency do the MNW and leximin mechan-
isms provide in the PublicGoods model?

Answering this question, we show that an MNW allocation satisfies Prop1, 1/n-
approximation to RRS, and is PO. Further, for all agents, a leximin-optimal allocation
satisfies RRS2, Prop1 and PO.

Complexity of computing MNW and leximin-optimal allocations. Given the desirable
fairness and efficiency properties of these mechanisms, we investigate the complexity of
computing MNW and leximin-optimal allocations in the PublicGoods model. It is known that
PrivateMNW is APX-hard [26, 21] (hard to approximate) and DecisionMNW [15] is NP-hard.
Likewise, PrivateLex too is NP-hard [9]. Therefore, we ask:

▶ Question 3. What is the complexity of PublicMNW and PublicLex?

Since PrivateMNW and PrivateLex are known to be NP-hard, our reductions (1) and
(2) immediately show that PublicMNW and PublicLex are NP-hard. However, we show
stronger results that PublicMNW and PublicLex remain NP-hard even when the valuations
are binary. These results are in stark contrast to the PrivateGoods case, which admits
polynomial-time algorithms for binary valuations [16, 20]. Further, our reductions between
PublicGoods and PublicDecisions also directly enable us to show NP-hardness of DecisionMNW
and DecisionLex. Note that the hardness of these problems is known through the connection
between PrivateMNW (PrivateLex) and DecisionMNW (DecisionLex) [15]. However, a feature
of our reductions (Observation 8) enables us to shows that DecisionMNW is NP-hard even for
binary valuations, highlighting the utility of our reductions. We also show that PublicMNW
and PublicLex remain NP-hard even when there are only two agents. We note that for the case

1 Consider for example, two agents A and B and six public goods {g1, g2, g3, g4, g5, g6}. Agent A has
value 1 for g1, g2, g3 and B has value 1 for g4, g5, g6. All other valuations are 0. Suppose we want to
select three of these goods. The proportional share of both agents is 1.5. However, in any allocation,
the value of at least one agent is at most 1, implying that proportional allocations need not exist.

2 Note that here we assume we scale the valuations so that RRS = 1 for every agent.

FSTTCS 2021

22:4 On Fair and Efficient Allocations of Indivisible Public Goods

Table 1 Complexity of computing MNW and leximin-optimal allocations.

Problem PrivateGoods PublicGoods PublicDecisions

MNW {0, 1} valuations P [8, 16] NP-hard (Theorem 16) NP-hard (Corollary 23)
Leximin {0, 1} valuations P [8, 16] NP-hard (Theorem 21) ?

MNW two agents NP-hard NP-hard (Theorem 20) ?
Leximin two agents NP-hard NP-hard (Theorem 22) ?

of two agents, the NP-hardness of PrivateMNW and PrivateLex does not imply NP-hardness
of PublicMNW and PublicLex because our reductions between the models do not preserve the
number of agents.

We summarize our results in Table 1.
In light of the above computational hardness, we turn to approximation algorithms and

exact algorithms for special cases. We design a polynomial-time algorithm that returns an
allocation which approximates the MNW to a O(n)-factor when k ≥ n, and is also Prop1
and satisfies RRS.

Finally, we obtain pseudo-polynomial time algorithms for computing MNW and leximin-
optimal allocations for constant n. These are essentially tight in light of the NP-hardness for
constant n. In interest of space, we skip some proofs from this version. All these proofs can
be found in full version of the paper [23].

1.1 Other related work
Maximum Nash welfare. The problem of approximating maximum Nash welfare for private
goods is well-studied, see e.g., [14, 7, 12, 22]. [18] showed that the MNW problem is NP-hard
for allocating public goods subject to matroid or packing constraints. It has also been studied
in the context of voting, or multi-winner elections [1]. Fluschnik et al. [19] studied the fair
multi-agent knapsack problem, wherein each good has an associated budget, and a set of
goods is to be selected subject to a budget constraint. In this context, they studied the
objective of maximizing the geometric mean of (1 + ui) where ui is the utility of the ith

agent. They showed that maximizing this objective is NP-hard, even for binary valuations
or constantly many agents with equal budgets and presented a pseudo-polynomial time
algorithm for constant n.

Leximin. Leximin was developed as a fairness notion in itself [30]. Plaut and
Roughgarden [29] showed that for private goods, leximin can be used to construct allocations
that are envy-free up to any good. Freeman et al. [20] showed that in the PrivateGoods model
the MNW and leximin-optimal allocations coincide when valuations are binary.

Core. Core is a strong property that enforces both PO and proportionality-like fairness
guarantees for all subsets of agents. It is well-studied in many settings, including game theory
and computer science [31, 25]. The core of indivisible public goods might be empty. Fain et
al. [18] proved that under matroid constraints, a 2-additive approximation to core exists. On
an individual fairness level, 1-additive core is weaker than Prop1 [18].

Participatory Budgeting. The participatory budgeting problem [3, 4] consists of a set of n

agents (or voters), and a set of k projects that require funds, a total available budget, and
the preferences of the voters over the projects. The problem is to allocate the budget in a fair

J. Garg, P. Kulkarni, and A. Murhekar 22:5

and efficient manner. Here typically k ≪ n. Fain et al. [17] showed that the fractional core
outcome is polynomial-time computable. This could be modeled as a public goods problem
with goods as the projects.

Voting and Committee Selection. These settings involve selecting a set of k members from
a set of m candidates based on the preferences of n agents. Usually, here k ≪ n and the
fairness notions studied are group fairness like Justified Representation [2], and a core-like
notion called stability [13].

2 Notation and Preliminaries

Problem setting. For t ∈ N, let [t] denote {1, . . . , t}. An instance of the PublicGoods
allocation problem is given by a tuple I = (A,G, k, {vi}i∈A) of a set A = [n] of n ∈ N agents,
a set G = [m] of m ∈ N public goods, an integer 0 ≤ k ≤ m, and a set of valuation functions
{vi}i∈A, one per agent, where each vi : 2G → Z≥0. Unless specified, we assume that k ≥ n.
For a subset of goods S ⊆ G, vi(S) denotes the utility agent i derives from the goods in S.
Unless specified, we assume the valuations are additive. In this case, each vi is specified by
m non-negative integers {vij}j∈G , where vij denotes the value of agent i for good j. Then
for S ⊆ G, vi(S) =

∑
j∈S vij . We assume without loss of generality that for every agent i,

there is at least one good j with vij > 0. For brevity, we write vi(g1, . . . , gr) in place of
vi({g1, . . . , gr}) for a set {g1, . . . , gr} ⊆ G. An allocation is a subset x ⊆ G of goods which
satisfies the cardinality constraint |x| ≤ k.

Nash welfare. The Nash welfare (NW) of an allocation x is given by NW(x) =
(
∏

i∈A vi(x))1/n. An allocation with the maximum NW is called an MNW allocation or
a Nash optimal allocation.3 We also refer to the product of the agents’ utilities as the Nash
product. An allocation x approximates MNW to a factor of α if NW(x) ≥ α ·NW(x∗), where
x∗ is an MNW allocation.

Leximin. Given an allocation x, let x̂ denote the vector of agent’s utilities under x, sorted
in non-decreasing order. For two allocations x, y, we say x leximin-dominates y if there
exists i ∈ [n] such that x̂i > ŷi and ∀j < i, x̂j = ŷj . An allocation is leximin-optimal if no
other allocation leximin-dominates it.

Fairness notions. We now discuss fairness notions for the PublicGoods setting. The propor-
tional share of an agent i, denoted by Propi is a 1/n-share of the maximum value she can
obtain from any allocation. Formally:

Propi = 1
n
· max

x⊆G,|x|≤k
vi(x).

The round-robin share of agent i, denoted by RRSi, is the minimum value an agent can be
guaranteed if the agents pick k goods in a round-robin fashion, with i picking last. Therefore,
this value equals the maximum value of any ⌊k/n⌋ sized subset. Formally:

RRSi = max
x⊆G,|x|≤⌊k/n⌋

vi(x).

3 If the NW is 0 for all allocations, MNW allocations are defined as those which give non-zero utility to
maximum number of agents, and then maximize the product of utilities for those agents. Note if k ≥ n,
every agent positively values at least one good and thus MNW > 0.

FSTTCS 2021

22:6 On Fair and Efficient Allocations of Indivisible Public Goods

For α ∈ (0, 1], an allocation x is said to satisfy:
1. α-Proportionality (α-Prop) if ∀i ∈ A, vi(x) ≥ αPropi;
2. α-Proportionality up to one good (α-Prop1) if ∀i ∈ A, ∃g ∈ x, g′ ∈ G, such that

vi((x \ g) ∪ g′) ≥ αPropi,

3. α-RRS if for all agents i ∈ A, vi(x) ≥ αRRSi.
Due to the cardinality constraints in the PublicGoods model, the notion of Prop1 requires
that for every agent, there is a way to swap one preferred unpicked good with one picked
good, after which the agent gets her proportional share. Since Prop1 in PrivateGoods requires
only giving an extra good, this makes the definition of Prop1 in PublicGoods slightly more
demanding than that in PrivateGoods.

Pareto-optimality. An allocation y is said to Pareto-dominate an allocation x if for all
agents i ∈ A, vi(y) ≥ vi(x), with at least one of the inequalities being strict. We say x is
Pareto-optimal (PO) if there is no allocation that Pareto-dominates x.

Related models.
1. PrivateGoods. The classic problem of private goods allocation concerns partitioning a set

of goods G among the set A of agents. Thus, a feasible allocation x is an n-partition
(x1, . . . , xn) of G, where agent i is allotted xi ⊆ G, and derives utility vi(xi) only from xi.

2. PublicDecisions. In this model, a set A of agents are required to make decisions on
a set G of issues. Each issue j ∈ G has a set Gj of kj alternatives, given by Gj :=
{(j, 1), (j, 2), . . . , (j, kj)}. A feasible allocation or outcome x = (x1, . . . , xm) comprises of
m decisions, where xj ∈ [kj] is the decision made on issue j. Assuming the valuations are
additive, each agent has a value vi(j, ℓ) for the ℓth alternative of issue j. The valuation
of the agent for the outcome x is then vi(x) =

∑
j∈G vi(j, xj).

3 Relating the models

We first show rigorous mathematical connections between the PrivateGoods, PublicGoods and
PublicDecisions models w.r.t. computing optimal MNW and leximin allocations.

▶ Theorem 4. PublicMNW polynomial-time reduces to DecisionMNW.

Proof. Let I = (A,G, k, {vi}i∈A) be an instance of the PublicGoods model. For k = m,
the MNW problem is trivial, since we can select all the m goods. For n ≤ k < m, we can
construct an instance I ′ = (A′,G′, {Gj}j∈G′{v′

i}i∈A′) of PublicDecisions from I in polynomial
time, such that given an MNW allocation of I ′, we can compute an MNW allocation of I
in polynomial time. Let V = maxi,j vij . We create m public issues: corresponding to each
good j ∈ G, we create an issue j with two alternatives (j, 1) and (j, 2). That is, G′ = [m],
and Gj = {(j, 1), (j, 2)} for j ∈ G′. We create A′ = [n + mT], where T = ⌈2mn log mV ⌉. The
first n agents here correspond to the n agents in I. The last mT agents are of two types:
kT agents {n + 1, . . . , n + kT} of type A, and (m− k)T agents {n + kT + 1, . . . , n + mT}
of type B. The valuations are as follows: each agent i ∈ [n] values alternative “1” of the
issue j ∈ G′ at vij , the agents of type A value only alternative “1”, agents of type B value
only alternative “2”. Formally, for i ∈ A′, and an alternative (j, c) of the issue j ∈ G′, where
c ∈ {1, 2}:

J. Garg, P. Kulkarni, and A. Murhekar 22:7

v′
i(j, c) =

vij , if c = 1 and i ∈ [n];
1, if n < i ≤ n + kT and c = 1;
1, if n + kT < i ≤ n + mT and c = 2;
0, otherwise.

Let x′ be an allocation for the instance I ′. For c ∈ {1, 2}, let Sc be the set of issues j

with decision c in x′. That is, Sc = {j ∈ [m] : x′
j = c}. Let k′ = |S1|. Then we have:

NW(x′) =
(∏

i∈[n]

v′
i(x′) · (k′)kT · (m− k′)(m−k)T

) 1
n+mT

.

We now relate x′ to the PublicGoods instance I. The decision (j, 1) corresponds to
selecting the public good j. Let x = S1 ⊆ G be the corresponding set of public goods. Then
for any i ∈ [n] we have that vi(x) = v′

i(x′), since v′
i(j, 2) = 0 for every j ∈ [m]. Thus:

NW(x′) =
(
NW(x)n · (k′)kT · (m− k′)(m−k)T

) 1
n+mT . (3)

We now have to prove that x satisfies |x| ≤ k. Let Wℓ be the Nash product of any
MNW allocation for the PublicGoods instance Iℓ = (A,G, ℓ, {vi}i∈A), 0 ≤ ℓ ≤ m. Clearly,
0 = W0 ≤ W1 ≤ . . . Wm ≤ (mV)n. As k ≥ n, Wk ≥ 1, since we assume every agent has at
least one good that she values positively. Define g : [m]→ Z, as g(a) = ak(m− a)m−k. Then
if x′ is an MNW allocation for I ′, (3) becomes:

NW(x′) = (Wk′ · g(k′)T)1/(n+mT). (4)

Let G1 and G2 denote the largest and second-largest values that g attains over its domain.
We observe that g increases in [0, k], and decreases in [k, m]. Hence, G1 = g(k) implying:

G1 = kk(m− k)m−k; G2 = max(g(k − 1), g(k + 1)).

We now claim the following and prove it in Appendix A:

▷ Claim 5. GT
1 > Wm ·GT

2 .

Using Claim 5, we have for all k′ ∈ [m] \ {k}:

Wk · g(k)T ≥ GT
1 > Wm ·GT

2 ≥Wk′ · g(k′)T ,

Hence, the quantity Wk′ · g(k′)T is maximized when k′ = k. Recalling (4), we conclude
that for the MNW allocation x′ of I ′, the corresponding set x has cardinality exactly k.
Further x also maximizes the NW among all allocations of the instance I satisfying this
cardinality constraint. Thus, x in fact is an MNW allocation for I. Finally, it is clear that
this is a polynomial time reduction. ◀

We next relate the MNW problem in the PrivateGoods model with the PublicGoods model.

▶ Theorem 6. PrivateMNW polynomial-time reduces to PublicMNW.

FSTTCS 2021

22:8 On Fair and Efficient Allocations of Indivisible Public Goods

Proof. Let I = (A = [n],G = [m], V) be a PrivateGoods instance, using which we create
a PublicGoods instance I ′ as follows. We create n + 2m agents, i.e. A′ = [n + 2m]. The
first n agents correspond to the n agents in I. The last 2m are dummy agents. We create
n ·m public goods: for each good j ∈ [m], we create a set of n copies Sj = {j1, j2, . . . , jn},
G′ =

⋃
j∈G Sj . We set k = m. The valuations for i ∈ A′, jℓ ∈ G′ are:

v′
i(jℓ) =

vij , if i = ℓ and i ∈ [n];
1, if i ∈ {n + 2j − 1, n + 2j};
0, otherwise,

i.e. each agent i ∈ [n] values exactly one copy, ji for each j ∈ G at vij , and for each good
j ∈ G, there are exactly two dummy agents who value all copies of j.

We use the following claim in our proof. We prove it in Appendix A.

▷ Claim 7. Any MNW allocation x′ of I ′ does not select two goods from same Sj , j ∈ [m].

Consider any MNW allocation x′ of I ′. We construct a partition, x of goods for I from
this in the following way. For i ∈ [n], j ∈ [m], define xij = 1 if ji ∈ x′, and 0 otherwise. Let
xi = {j ∈ G : xij = 1}. Thus, the value that agent i gets in x is

vi(xi) =
∑
j∈G

vijxij =
∑
j∈G

vij1(ji ∈ x′),

=
∑
j∈G

v′
i(ji)1(ji ∈ x′),

= v′
i(x′).

Thus, if m ≥ n, NW(x) = NW(x′)(n+2m)/n and the partition corresponding to x′ as defined
above gives an MNW solution for I. On the other hand, if m < n, then x′ already gives
non-zero value to all dummy agents by Claim 7. Thus, to maximize the total number of
agents who get non-zero value, it maximizes the number of agents in [n] who get non-zero
value. Call this set S∗. Thus partition x has maximum number of agents getting a non-zero
value. Finally, it maximizes the Nash product over S∗ ∪ {n + 1, . . . , n + 2m}. Claim 7 also
implies that all dummy agents get value 1. Thus,

∏
i∈S∗ vi(xi) =

∏
i∈S∗ vi(x′). Thus even in

this case the allocation x corresponds to an MNW allocation in I. ◀

▶ Observation 8. A desirable feature of the above reductions for the MNW problem from
instance I = (A,G, V) to I ′ = (A′,G′, V ′) is that V ′ = V ∪ {0, 1}, i.e., the reduction only
creates instances I ′ which have 0 and 1 as the only potentially additional values as compared
to I. We use this feature in establishing the computational complexity of computing an MNW
allocation in the PublicDecisions model with binary values, see Corollary 23.

Similar polynomial-time reductions hold between the three models for the problem of
computing a leximin-optimal allocation. We give the theorem statements here and the proofs
can be found in full version of the paper.

▶ Theorem 9. PublicLex polynomial-time reduces to DecisionLex.

▶ Theorem 10. PrivateLex polynomial-time reduces to PublicLex.

J. Garg, P. Kulkarni, and A. Murhekar 22:9

4 Properties of MNW and Leximin

We prove that MNW and leximin-optimal allocations satisfy desirable fairness and efficiency
properties in the PublicGoods model as well. First, we show some interesting relations
between our three fairness notions – Prop, Prop1, and RRS in the PublicGoods model where
k ≥ n.4 Our results are presented in Table 2.

Table 2 Relations between the fairness notions for k ≥ n. Each cell (R, C) contains a factor α

s.t. any allocation satisfying the row property R implies an α-approximation to the column property
C. Cells with α = 1 are marked with ✓, and with α = 0 are marked with ✗.

RRS Prop Prop1
RRS ✓ n

2n−1 (Lem. 12) ✓(Lem. 11)
Prop 1/n (Lem. 13) ✓ ✓

Prop1 ✗(Ex. 14) ✗(Ex. 14) ✓

▶ Lemma 11. Any allocation that satisfies RRS also satisfies Prop1.

Proof. Fix any agent i. Let x = {h1, h2, . . . , hk} be any allocation that satisfies RRS. Let
x∗

k = {g1, g2, . . . , gk} denote the top k goods for agent i. We assume that the goods both in
x and x∗

k are ordered in decreasing order of valuations according to agent i. Now, suppose
that top ℓ goods of x match with top ℓ goods of x∗

k, i.e. vi(hj) = vi(gj), ∀j ≤ ℓ and
vi(hℓ+1 < vi(gℓ+1)). Note that since x∗

k is the top k goods of agent i, we cannot have that
vi(hj) > v(gj) for any j ≤ ℓ. We want to prove that RRS implies Prop1. If x was already
satisfying proportionality, it is obvious that x is Prop1. If ℓ ≥ d, it is again easy to see that
x is Prop1. This is because, if k = d then we already have top k goods, giving a proportional
allocation. If k > d, then we can remove any good from hd+1, . . . , hk and exchange it with
gd+1 to ensure proportionality, making the original allocation Prop1. Finally, if n divides k

then we have proportionality implied by RRS from Lemma 12.
Thus, we now assume that ℓ < d, k = nd + r with r ≤ n− 1 and that x is not already

a proportional allocation. We know that v(h1, . . . , hℓ) = v(g1, . . . , gℓ) and v(h1, . . . , hk) <
1
n v(g1, g2, . . . , gk). Thus,

v(hℓ+1, . . . , hk) <
1
n

v(gℓ+1, . . . , gk) (5)

Now, v(hk) ≤ 1
k−ℓ v(hℓ+1, . . . , hk). Thus,

v(hk) ≤ 1
n · (k − ℓ)v(gℓ+1, . . . , gk) (6)

Now, consider the good gℓ+1. It is the good with highest value that is not in x. We prove
that removing hk and adding gℓ+1 gives us an allocation that is proportional. Since ℓ < d,
vi(gℓ+1) ≥ vi(gnd+j), ∀j ≤ r. Combining with the fact that r < n,

(n− 1) · vi(gℓ+1) ≥ vi(gnd+1, . . . , gnd+r). (7)

4 Note that when k < n, RRS is 0. Any agent who gets 0 value satisfies Prop1 when k < n trivially. Thus,
RRS and Prop1 coincide when k < n. On the other hand, the proportional value will be non-zero even
when k = 1 if the agent likes at least one good. Thus, there can be no multiplicative relation between
RRS and Prop when k < n.

FSTTCS 2021

22:10 On Fair and Efficient Allocations of Indivisible Public Goods

Again since the goods are arranged in decreasing order of valuations, vi(g1, . . . , gd) ≥
vi(gjd+1, . . . , g(j+1)d), ∀1 ≤ j ≤ (n− 1). Thus,

(n− 1) · vi(g1, . . . , gd) ≥ vi(gd+1, . . . , gnd). (8)

Define, LHS = (n− 1)vi(gℓ+1) + (n− 1)vi(g1, . . . , gd). Combining (7) and (8),

LHS ≥ vi(gnd+1, . . . , gnd+r) + vi(gd+1, . . . , gnd)
= vi(gd+1, . . . , gk)
= vi(gℓ+1, . . . , gk)− vi(gℓ+1, . . . , gd)

Thus we get,

(n− 1)vi(gℓ+1) + (n− 1)vi(g1, . . . , gℓ) ≥ vi(gℓ+1, . . . , gk)− nvi(gℓ+1, . . . , gd)

Now, vi(gℓ+1) ≥ 1
k−ℓ vi(gℓ+1, . . . , gk). Hence,

nvi(gℓ+1) + (n − 1)vi(g1, . . . , gℓ) ≥ vi(gℓ+1, . . . , gk) − nvi(gℓ+1, . . . , gd) + 1
k − ℓ

vi(gℓ+1, . . . , gk)

≥ vi(gℓ+1, . . . , gk) − nvi(hℓ+1, . . . , hk) + nvi(hk),

where the second inequality follows because x is RRS and from (6). Rearranging the above
terms and using the fact that vi(g1, . . . , gℓ) = vi(h1, . . . , hℓ), we get

nvi(gℓ+1) + nvi(h1, . . . , hk)− nvi(hk) ≥ vi(g1, . . . , gk)

which implies that x is Prop1. ◀

▶ Lemma 12. Any allocation that is α-RRS is also α · n
2n−1 -Prop. Further, when n divides

k, α-RRS implies α-Prop.

Proof. We will prove a stronger result assuming the valuations are monotone and subadditive.
Let x denote any subset of k items that satisfies α · RRS. Fix any agent i. We have,

vi(x) ≥ α · max
|y|≤⌊k/n⌋

vi(y).

Let x∗ denote the set of top k goods of agent i. Let k = n ∗ d + r where r < n. We can
partition x∗ by dividing it into n bundles, each of size ⌊k/n⌋ and r more bundles, each of size
1. Note that when k ≥ n, ⌊k/n⌋ ≥ 1 and r < n. Thus, we get at most 2n− 1 bundles each
of size at most ⌊k/n⌋. We denote these bundles by S1, S2, . . . , Sl, with l ≤ 2n− 1. Thus, we
have,

vi(x∗) = vi(∪i∈[l]Si),

≤
∑
i∈[l]

vi(Si),

≤
∑
i∈[l]

1
α
· vi(x), (9)

≤ vi(x) · 2n− 1
α

.

Here the second inequality follows from subadditivity and third follows because x is RRS.
Thus, we have

vi(x) ≥ α

2n− 1vi(x∗) = α · n

2n− 1Propi.

J. Garg, P. Kulkarni, and A. Murhekar 22:11

Further, when n divides k, r = 0 and we get l = n bundles each of size k/n. Thus, we have
from (9)

vi(x∗) ≤ n

α
· vi(x).

Thus,

vi(x) ≥ α

n
vi(x∗) = αPropi. ◀

▶ Lemma 13. Any allocation that satisfies α-Prop gives an α/n multiplicative approximation
to RRS, and this is tight.

Proof. Suppose a given allocation, x satisfies α-Prop. Fix any agent i.

vi(x) ≥ α · 1
n
· max

|y|≤k
vi(y),

≥ α · 1
n
· max

|y|≤⌊k/n⌋
vi(y),

= α

n
· RRS.

For the tightness of lemma, consider the following example: We have n = 2 agents and
m = 5 goods. Agent 1 values goods 1 and 2 at 1 each, does not value goods 3, 4, 5. Agent 2
values all goods at 1. If k = 4, the RRS value of agent 1 is 2. Her proportional value is 1.
Thus, picking goods 1, 3, 4, 5 gives agent 1 her Prop share but only ensures 1/n of her RRS
share. ◀

Finally, we note in the following example that Prop1 will not give any approximation to
either Prop or RRS.

▶ Example 14 (Prop1 does not approximate Prop or RRS). Finally, we note that a Prop1
allocation might not give an α approximation to RRS for any α > 0. Consider an instance of
public goods allocation with n = 2. We have 3 goods. Agent 1 values goods 1, 2 at value of
1 and values good 3 at 0. Agent 2 values goods 1, 2 at 0 and values good 3 at 1. If we want
to select k = 2 goods, then, selecting goods 1 and 2 gives agent 2 value 0. This allocation is
Prop1, but provides no multiplicative approximation to either RRS or Prop for agent 2.

Next, we show that MNW allocations are fair:

▶ Lemma 15. All MNW allocations satisfy Prop1.

Proof. Suppose there exists an MNW allocation x that is not Prop1. This implies for some
agent i ∈ A, for all pairs of goods j ∈ x and j′ /∈ x, vi((x \ j) ∪ j′) < Propi. If k < n,
Propi ≤ maxj∈G vij , and swapping any good in x with this good will give her her proportional
share.

Consider now k ≥ n. Since we assume each agent positively values at least one good,
the MNW value is non-zero. Since MNW is scale-invariant, we scale the valuations of
agents so that vh(x) = 1 ∀h ≠ i. Let g′ be the highest-valued good of i not in x, i.e.,
g′ = argmaxj∈G\xvij . Let x0 = {j ∈ x : vij < vig′} be the set of goods in x that give i strictly
lesser value than g′. Since i does not satisfy Prop1, x0 ̸= ∅. Suppose we order the goods in
G according to the valuation of i as {g1, . . . , gm}, where vi(gr) ≥ vi(gs) for 1 ≤ r ≤ s ≤ m.
Then n · Propi = vi(g1, . . . , gk) by definition. Since g′ is the highest-valued good for i not

FSTTCS 2021

22:12 On Fair and Efficient Allocations of Indivisible Public Goods

in x, and further since every good in x0 is valued at less than vig′ by i, we can bound the
total value to i of the top k goods g1, . . . , gk as follows: vi(g1, . . . , gk) ≤ vi(x \ x0) + |x0|vig′

which, using additivity of vi, can alternatively be written as:

vi(x) +
∑
j∈x0

(vig′ − vij) ≥ nPropi. (10)

Consider a good g given by5:

g ∈ argminj∈x0

∑
h∈A\{i} vhj

vig′ − vij
.

Then by definition of g, we have:∑
h∈A\{i} vhg

vig′ − vig
≤

∑
j∈x0

∑
h∈A\{i} vhj∑

j∈x0
vig′ − vij

≤
∑

h∈A\{i}
∑

j∈x0
vhj

nPropi − vi(x)

≤ n− 1
nPropi − vi(x) ,

(11)

where the first transition follows by rearranging terms in the numerator, and using (10) in
the denominator, and the final transition follows by recalling that vh(x) = 1 for all h ̸= i.

Let δ = vig′ − vig. We know vi(x) + δ < Propi. Substituting this in (11), and noting
δ > 0 gives:∑

h∈A\{i} vhg

δ
<

1
vi(x) + δ

. (12)

Let us now consider the allocation x′ = (x \ g) ∪ g′. We show NW(x′) > NW(x), thus
contradicting the Nash optimality of x. Since for any h ̸= i, vh(x′) ≥ vh(x)− vhg = 1− vhg,
we have:

∏
h∈A

vh(x′) ≥ vi(x′)
∏

h∈A\{i}

(1− vhg) ≥ (vi(x) + δ)
(

1−
∑

h∈A\{i}

vhg

)

> (vi(x) + δ)
(

1− δ

vi(x) + δ

)
= vi(x),

where the first transition uses Weierstrass’ inequality [24], and the second transition uses
(12). This leads to NW(x′) > NW(x), giving the desired contradiction. Hence any MNW
allocation satisfies Prop1. ◀

Besides Prop1, the MNW allocation satisfies several other desirable properties, as our next
result shows.

▶ Theorem 16. All MNW allocations satisfy PO, Prop1, and 1/n-RRS. Further when k ≥ n,
MNW allocation implies 1

2n−1 -Prop.

Proof. If any MNW allocation did not satisfy Pareto optimality, then at least one of the
agents gets a strictly higher value with values of all other agents not decreasing. Thus, if the
MNW value is non-zero, we get an allocation with strictly higher Nash Product, contradicting

5 [15] considered an issue similarly.

J. Garg, P. Kulkarni, and A. Murhekar 22:13

the optimality of value of MNW. On the other hand, if MNW value is zero and the strict
increase of value holds for one of the agents with non-zero value, then the Nash Product over
these agents increases contradicting maximality of Nash Product of these agents. On the
other hand, if the strict inequality holds for an agent who receives zero value, the number of
agents with non-zero value increases, contradicting the maximality of number of agents who
get non-zero value. In both cases, the optimality of MNW is contradicted. Thus any MNW
allocation satisfies Pareto Optimality.

Next we prove that all MNW allocations satisfy 1/n-RRS. Suppose there exists an MNW
allocation x that is not 1/n-RRS. This implies that for some agent i ∈ A, vi(x) < 1

n RRSi.
Let us order the goods according to i’s valuation: let G = {g1, g2, . . . , gm}, such that
vi(gr) ≥ vi(gs), for all 1 ≤ r ≤ s ≤ m. Let p = ⌊ k

n⌋. When k < n, p = 0, in that
case RRSi = 0. Therefore, k ≥ n. Observe that the round-robin share of i is given by
RRSi = vi({g1, . . . , gp}). We scale the valuations of the agents so that for every agent i,
vi(x) = 1. In particular, this implies RRSi > n.

Let us order the goods in x according to i’s valuation: let x = {j1, j2, . . . , jk}, such that
vi(jr) ≥ vi(js), for all 1 ≤ r ≤ s ≤ k. Define for r ∈ [p], Sr = {jrn−n+1, . . . , jrn}, and
g′

r = argminj∈Sr

∑
h∈A\{i} vhj .

We now construct another allocation x′ as follows. We first check if g1 ∈ x. If not, we
begin constructing x′ by removing g′

1 from x and adding g1. If g1 ∈ x, then we proceed
to check whether g2 ∈ x or not. For every r ∈ [p], we remove g′

r and add gr if gr is not in
x. If gr is already in x then for such an r no operation is done. Since we are removing g′

r

and vi(g′
r) < vi(gr) ≤ vi(gs) for all s < r, this ensures that {g1, . . . , gp} ⊆ x′, which shows

vi(x′) ≥ RRSi > n. Observe that:

p∑
r=1

∑
h∈A\{i}

vh(g′
r) ≤

p∑
r=1

1
n

∑
h∈A\{i}

∑
j∈Sr

vhj (def. of gr)

≤ 1
n

p∑
r=1

∑
j∈Sr

∑
h∈A\{i}

vhj (rearranging)

≤ 1
n

∑
j∈x

∑
h∈A\{i}

vhj (def. of Sr)

≤ 1
n

∑
h∈A\{i}

vh(x∗) (rearranging)

= n− 1
n

.

Then we have:

NW(x′)n =
∏
h∈A

vh(x′) ≥ vi(x′)
∏

h∈A\{i}

vh(x′),

≥ vi(x′)
∏

h∈A\{i}

(
1−

p∑
r=1

vh(g′
r)

)
,

≥ vi(x′)
(

1−
p∑

r=1

∑
h∈A\{i}

vh(gr)
)

> n

(
1− n− 1

n

)
= NW(x)n,

which contradicts the fact that x is Nash optimal.
Combining this with Lemma (12) and Lemma (15), we get the proof of the theorem. ◀

FSTTCS 2021

22:14 On Fair and Efficient Allocations of Indivisible Public Goods

Similar fairness and efficiency properties for the leximin-optimal allocation. In particular,
one can prove the following theorem (proof is in full version of the paper).

▶ Theorem 17. All leximin-optimal allocations are PO, satisfy RRS and Prop1. Further,
when k ≥ n, a leximin-optimal allocation is also (n/(2n− 1))-Prop.

5 Complexity of MNW and Leximin

In this section, we show that PublicMNW and PublicLex are NP-hard. Our hardness results
also hold for instances with binary values, which is in stark contrast to the private goods
setting, where MNW and leximin-optimal allocations can be computed in polynomial-time.
All proofs for this section can be found in the full version of paper. Since the cases of k ≥ n

and k < n are interesting in their own right, we consider them separately.

▶ Theorem 18. Given a PublicGoods allocation instance where k < n, computing an α-
approximation to MNW is NP-hard for any α > 0, even when all valuations are binary.

▶ Theorem 19. PublicMNW is NP-hard, even when all valuations are binary.

Proof. (Sketch) We reduce from the exact regular set packing (ERSP) problem. In the input
to ERSP, there are n elements X = {x1, . . . , xn}, a family of subsets F = {F1, . . . , Fm} where
each Fj ⊆ X and |Fj | = d. The problem is to compute a subfamily F ′ ⊆ F , |F ′| = r, s.t.
for all Fi ̸= Fj ∈ F ′, Fi ∩ Fj = ∅. Let I = (X,F , d, r) be an instance of ERSP. We construct
a PublicGoods instance I ′ = {A,G, k, {vi}i∈A, T} as follows. We create a set A = [n] of n

agents, a set G = {g1, . . . , gm}∪{d1, . . . , dn} of m + n public goods. For any agent i ∈ A and
good gj ∈ G, vi(gj) = 1 if xi ∈ Fj else 0. For any agent i ∈ A and good dj ∈ G, vi(dj) = 1.
We set k = r + n and T = ((n + 1)drnn−dr)1/n. We show that I is a yes-instance for ERSP
iff the MNW for I ′ is at least T . ◀

▶ Theorem 20. PublicMNW is NP-hard, even for two agents.

We next show a similar hardness results for computing leximin-optimal allocations, which
as we show, apply even for instances with binary values.

▶ Theorem 21. PublicLex is NP-hard, even when the valuations are binary.

▶ Theorem 22. PublicLex is NP-hard, even for two agents.

Proof. (Sketch) We prove this by reducing from the NP-complete problem Monotone c-
SAT. In an instance of Monotone c-SAT we have X = {x1, . . . , xn} variables, formula,
F = C1 ∧ C2 ∧ · · · ∧ Cm in CNF form with additional constraint that all literals in it are
positive. We want to determine if we can satisfy F by setting at most c variables to true.
To create I = (A,G, k, {vi}i∈A), corresponding to each clause Ci, we create an agent, i

and corresponding to each variable, xj we create a good, j. Each agent likes the goods
corresponding to the variables that show up in her corresponding clause. To ensure that
k ≥ |A| in the public goods instance, we create one dummy agent and m−c+1 dummy goods.
Finally, set k = m + 1. We show that F has a satisfying assignment with c true variables iff
in the Leximin-optimal the minimum utility is m− c + 1, and the second minimum utility is
at least m− c + 2. ◀

J. Garg, P. Kulkarni, and A. Murhekar 22:15

Using the reductions of Theorems 4 and 9 and the NP-hardness results of this section, we
obtain NP-hardness results for computing MNW and leximin allocations in the public decision
making model. In fact, Observation 8 implies that this NP-hardness remains for the MNW
problem even with the valuations are binary.

▶ Corollary 23. DecisionMNW is NP-hard, even when all values are binary.

Using our reductions (Theorems 4 and 9) together with the NP-hardness of PublicMNW
and PublicLex (Theorems 19 and 21) implies that:

▶ Corollary 24. The problems DecisionMNW and DecisionLex are NP-hard.

6 Algorithms for MNW and Leximin

In light of the above computational hardness, we turn to approximation algorithms and
exact algorithms for special cases. The proofs of results in this section and the algorithms
for special cases can be found in the full version of paper. We first present an algorithm
that provides an O(n) factor approximation to MNW and satisfies fairness properties of
RRS, Prop1 when valuations {vi}i∈A are monotone (vi(S) ≤ vi(S ∪ g) for all S ⊆ G and
g ∈ G \ S) and subadditive (for all S1 ⊆ G, S2 ⊆ G, vi(S1) + vi(S2) ≥ vi(S1 ∪ S2)). The class
of subadditive valuations captures complement-free goods, and subsumes additive valuations.
Our algorithm assumes access to demand oracles6 for the subadditive valuations. We use the
following subroutine, Maximize, from [5] which takes:

Input: Set of goods, G, the valuation function vi of the agent i, and an integer r; and
returns:
Output: x ⊆ G, s.t. vi(x) ≥ 1

2 maxS⊆G,|S|≤r vi(S)
Our algorithm, AlgGreedy, has two steps:

For all i ∈ A, xi ← Maximize(G, vi, ⌊ k
n⌋)

Return x← ∪i∈Axi

For additive valuations, we assume that Maximize returns a set of ⌊k/n⌋ most-preferred
goods for each agent. This algorithm enables us to show that:

▶ Theorem 25. There exists a polynomial-time algorithm for the problem of PublicGoods
allocation (where k ≥ n and agents have monotone, subadditive valuations) that returns an
allocation which satisfies RRS, 1

2 -Prop, and approximates the MNW to a factor of O(n).
Further, when the valuations are additive, the allocation satisfies Prop1.

We now present pseudo-polynomial time algorithms for two special cases, namely con-
stantly many types of agents, and constantly many types of goods. Our results apply to
the more general model of budget constraints. We denote an instance of this model by
I = (A,G, B, {cj}j∈G , {vi}i∈A). Each good j ∈ G has an associated integral cost cj , and in a
feasible allocation the sum of costs of the picked goods must not exceed the budget B. The
MNW and leximin-objectives are defined as before, but over feasible allocations that satisfy
the budget constraints. Since cardinality constraints are a special case of budget constraints
with uniform cost, our hardness results apply for the budget model also.

6 Subadditive valuations are set functions and cannot in general represented efficiently. We thus assume
access to the functions through some oracles. Given a set of prices pj for each good j ∈ G, a demand
oracle returns any set S that maximizes vi(S) −

∑
j∈S

pj .

FSTTCS 2021

22:16 On Fair and Efficient Allocations of Indivisible Public Goods

Constantly many types of agents

We consider instances where the number of agent types is constant. We say agents i and h

have the same type if ∀j ∈ G, vij = vhj .

▶ Theorem 26. For a PublicGoods allocation instance, I = (A,G, B, {cj}j∈G , {vi}i∈A) with
t distinct types of agents, (i) an MNW allocation can be computed in time O(m · (mV)t),
(ii) a leximin-optimal allocation can be computed in time O(m · n log n · (mV)t), where
V = maxi∈A,j∈G vij.

We prove this by presenting a dynamic-programming based algorithm which computes such
allocations. We also get:

▶ Corollary 27. For binary valuations, with constantly many types of agents PublicMNW
and PublicLex are polynomial-time solvable.

Constantly many types of goods

We now consider instances where the number of types of goods is constant. We say two goods
j1, j2 ∈ G have same type if for all agents i ∈ A, vij1 = vij2 and cj1 = cj2 . In this case, we
can enumerate all feasible allocations efficiently, implying that an MNW or leximin-optimal
allocation can be computed in polynomial-time.

▶ Theorem 28. For a PublicGoods allocation instance I = (A,G, B, {cj}j∈G , {vi}i∈[n]) with
t different types of goods, (i) an MNW, can be computed in time O(mt) (ii) a leximin-optimal
allocation can be computed in time O(n log n ·mt).

7 Discussion

In this paper, we considered the problem of allocating indivisible public goods to agents subject
to a cardinality constraint. We showed fundamental connections between the models of private
goods, public goods, and public decision making, by presenting polynomial-time reductions
for the popular solution concepts of maximum Nash welfare (MNW) and leximin. We also
showed that MNW and leximin-optimal allocations satisfy desirable fairness properties like
Prop1 and RRS, and the efficiency property of PO. Further we showed that these objectives
are computationally NP-hard, including for several special cases like constantly many agents
and binary valuations. Lastly, we designed an approximation algorithm for MNW and
pseudo-polynomial time algorithms for the case of constantly many agents.

Our work opens up several interesting research directions. Firstly, extending our reductions
to the budget model presents a challenging problem. A second question is devising an
algorithm to compute a Prop1+PO or RRS+PO allocations in polynomial time, bypassing
the hardness of computing MNW or leximin-optimal allocations. Appropriately defining
properties like Prop1 in the budget model and investigating whether MNW and leximin
satisfy them would be a third interesting research direction. Finally, designing constant-factor
approximation algorithms, even for restricted cases like binary valuations, which captures a
large class of voting-like scenarios, is another important open problem.

References
1 S Airiau, H Aziz, I Caragiannis, J Kruger, and J Lang. Positional social decision schemes: Fair

and efficient portioning. In Proceedings of the 7th International Workshop on Computational
Social Choice (COMSOC), 2018.

2 Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Freeman, and Toby Walsh.
Justified representation in approval-based committee voting. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, pages 784–790, 2015.

J. Garg, P. Kulkarni, and A. Murhekar 22:17

3 Haris Aziz, Barton E. Lee, and Nimrod Talmon. Proportionally representative participatory
budgeting: Axioms and algorithms. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), pages 23–31, 2018.

4 Haris Aziz and Nisarg Shah. Participatory budgeting: Models and approaches. arXiv preprint
arXiv:2003.00606, 2020.

5 Ashwinkumar Badanidiyuru, Shahar Dobzinski, and Sigal Oren. Optimization with demand
oracles. Algorithmica, 81(6):2244–2269, 2019.

6 Siddharth Barman and Sanath Krishnamurthy. On the proximity of markets with integral
equilibria. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, pages
1748–1755, 2019.

7 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation
(EC), pages 557–574, 2018.

8 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Greedy algorithms
for maximizing Nash social welfare. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), pages 7–13, 2018.

9 Ivona Bezáková and Varsha Dani. Allocating indivisible goods. SIGecom Exch., 5(3):11–18,
April 2005.

10 S.J. Brams and A.D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge University Press, 1996.

11 Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum Nash welfare. In Proceedings of the
2016 ACM Conference on Economics and Computation (EC), pages 305–322, 2016.

12 Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and
Kurt Mehlhorn. On fair division for indivisible items. In 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
25:1–25:17, 2018.

13 Yu Cheng, Zhihao Jiang, Kamesh Munagala, and Kangning Wang. Group fairness in committee
selection. In Proceedings of the 2019 ACM Conference on Economics and Computation, pages
263–279, 2019.

14 Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indivisible
items. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing
(STOC), pages 371–380, 2015.

15 Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making. In
Proceedings of the 2017 ACM Conference on Economics and Computation (EC), pages 629–
646, 2017.

16 Andreas Darmann and Joachim Schauer. Maximizing Nash product social welfare in allocating
indivisible goods. SSRN Electronic Journal, 247, January 2014.

17 Brandon Fain, Ashish Goel, and Kamesh Munagala. The core of the participatory budgeting
problem. In Web and Internet Economics (WINE), pages 384–399, 2016.

18 Brandon Fain, Kamesh Munagala, and Nisarg Shah. Fair allocation of indivisible public goods.
In Proceedings of the 2018 ACM Conference on Economics and Computation (EC), pages
575–592, 2018.

19 Till Fluschnik, Piotr Skowron, Mervin Triphaus, and Kai Wilker. Fair knapsack. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pages 1941–1948, 2019.

20 Rupert Freeman, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. Equitable allocations of indivisible
goods. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence (IJCAI), pages 280–286, 2019.

21 Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Satiation in Fisher markets and approximation
of Nash social welfare. CoRR, abs/1707.04428, 2017.

FSTTCS 2021

22:18 On Fair and Efficient Allocations of Indivisible Public Goods

22 Jugal Garg, Edin Husic, and László A. Végh. Approximating Nash social welfare under Rado
valuations. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 1412–1425, 2021.

23 Jugal Garg, Pooja Kulkarni, and Aniket Murhekar. On fair and efficient allocations of
indivisible public goods. CoRR, abs/2107.09871, 2021. arXiv:2107.09871.

24 M. S. Klamkin and D. J. Newman. Extensions of the Weierstrass product inequalities.
Mathematics Magazine, 43(3):137–141, 1970. URL: http://www.jstor.org/stable/2688388.

25 Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. ROBUS: Fair
cache allocation for data-parallel workloads. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 219–234, 2017.

26 Euiwoong Lee. APX-hardness of maximizing Nash social welfare with indivisible items.
Information Processing Letters, 122:17–20, 2017.

27 Peter McGlaughlin and Jugal Garg. Improving Nash social welfare approximations. J. Artif.
Intell. Res., 68:225–245, 2020.

28 H. Moulin. Fair Division and Collective Welfare. Mit Press. MIT Press, 2004.
29 Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. SIAM

Journal on Discrete Mathematics, 34(2):1039–1068, 2020.
30 John Rawls. A theory of justice. Harvard university press, 2009.
31 Herbert E Scarf. The core of an N person game. Econometrica: Journal of the Econometric

Society, pages 50–69, 1967.
32 Hugo Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

A Missing Proofs from Section 3

▷ Claim 5. GT
1 > Wm ·GT

2 .

Proof. Recall that Wℓ denotes the Nash product of any MNW allocation for the PublicGoods
instance Iℓ = (A,G, ℓ, {vi}i∈A), for 0 ≤ ℓ ≤ m. We have 0 = W0 ≤W1 ≤ . . . Wm ≤ (mV)n,
and we assume Wk ≥ 1. Recall that function g : [m]→ Z, was defined as g(a) = ak(m−a)m−k.
Let G1 and G2 denote the largest and second-largest values that g attains over its domain.
We observe that g increases in [0, k], and decreases in [k, m]. Hence:

G1 = g(k) = kk(m− k)m−k.

G2 = max(g(k − 1), g(k + 1)).

Now observe that for k ∈ [m] \ {0, 1, m}:

log g(k)− log g(k − 1) = k(log k − log(k − 1)) + (m− k)(log(m− k)− log(m− k + 1)),

> k · 1
k − 1

2
+ (m− k) · −1

m− k
≥ 1

2k − 1 ≥
1

2m
,

and for k ∈ [m] \ {0, m− 1, m}:

log g(k)− log g(k + 1) = k(log k − log(k + 1)) + (m− k)(log(m− k)− log(m− k − 1)),

> k · −1
k

+ (m− k) · 1
m− k − 1

2
,

≥ 1
2(m− k)− 1 ≥

1
2m

,

using standard properties of logarithms. Thus:

log G1 − log G2 >
1

2m
.

http://arxiv.org/abs/2107.09871
http://www.jstor.org/stable/2688388

J. Garg, P. Kulkarni, and A. Murhekar 22:19

Then we have by recalling that T = 2mn log mV ,

T (log G1 − log G2) > 2mn log mV · 1
2m
≥ log Wm,

which gives:

GT
1 > Wm ·GT

2 ,

as required. Lastly, we consider the cases of k = 1 and k = m − 1. In both cases,
T (log G1− log G2) = T [(m− 1) log(m− 1)− log 2− (m− 1) log(m− 2)] > 2mn log mV 1

2m ≥
log Wm, which gives GT

1 > WmGT
2 , as claimed. ◁

Proof of Claim 7. Consider first m ≥ n. Suppose ∃j ∈ [m] for which two goods ji, ji′ ∈
x′, i ̸= i′. Since exactly m goods are picked in x′, there is some j′ ∈ [m], for which no good
j′

i is picked in x′ for any i ∈ [n]. This implies that the agents 2j′ + n− 1, 2j′ + n get zero
value in x′, making NW(x′) = 0. However, choosing a good from each j ∈ [m] gives non-zero
value to all dummy agents. At the same time, since m ≥ n, these goods can be chosen so
that they give non-zero value to distinct agents in [n]. This makes NW(x′) ̸= 0 contradicting
Nash optimality of x′.

Now, if m < n Nash welfare of all allocations in I is 0. Thus, the MNW allocation is the
one that maximizes the number of agents who get non zero value and then maximizes the
product of values for these agents. Consider any allocation x̄, suppose ∃j ∈ [m] for which
two goods ji, ji′ ∈ x̄, i ̸= i′. then again for some j′, agents n + 2j′ − 1 and n + 2j′ get value 0
making NW(x̄) = 0. At the same time, even if x̄ has goods from all different Sj , since m < n,
and each one item from Sj gives value only to one agent i ∈ [n], the NW(x̄) = 0 even in
this case. Thus, if m < n, all allocations have Nash welfare 0 in I ′ also. Suppose the MNW
allocation, x′ had two goods from same Sj for some j ∈ [m]. Then, there exists a j′ ∈ [m]
such that no good is selected from Sj′ . The two goods from Sj give value to exactly four
agents - the two dummy agents 2j + n− 1, 2j + n and two agents who receive their copy of
good j. Instead, if we exchange one of these goods to a good from Sj′ , we give non-zero value
to at least five agents - dummy agents 2j + n− 1, 2j + n, 2j′ + n− 1, 2j′ + n and at least one
of the agents in [n]. We did not change the value of any other agents in this process. Thus,
we increase the number of agents who get non-zero value, contradicting the maximality of x′.
Thus, in both cases, all m goods are picked from different Sj , j ∈ [m]. ◁

FSTTCS 2021

Time Space Optimal Algorithm for Computing
Separators in Bounded Genus Graphs
Chetan Gupta #

Aalto University, Finland

Rahul Jain #

Fernuniversität in Hagen, Germany

Raghunath Tewari #

Indian Institute of Technology Kanpur, India

Abstract
A graph separator is a subset of vertices of a graph whose removal divides the graph into small
components. Computing small graph separators for various classes of graphs is an important computa-
tional task. In this paper, we present a polynomial-time algorithm that uses O(g1/2n1/2 log n)-space
to find an O(g1/2n1/2)-sized separator of a graph having n vertices and embedded on an orientable
surface of genus g.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms

Keywords and phrases Graph algorithms, space-bounded algorithms, surface embedded graphs,
reachability, Euler genus, algorithmic graph theory, computational complexity theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.23

Related Version Extended Version: https://arxiv.org/abs/2005.06419

Funding Chetan Gupta: Academy of Finland Grant 321901 and Visvesvaraya PhD Grant.
Raghunath Tewari: DST Inspire Faculty Grant and Visvesvaraya Young Faculty Fellowship.

1 Introduction

Graph separator is a valuable tool in designing divide and conquer based algorithms for
various graph problems. In a graph, a separator is a small set of vertices of the graph whose
removal divides the graph into pieces such that the size of each piece is at most a fraction of
the original graph. Lipton and Tarjan’s pioneering result showed that there exists a separator
of size O(n1/2) in planar graphs [12]. Subsequently, this separator was used to design many
algorithms to solve various problems in planar graphs.

Recently, researchers have been interested in designing memory-constrained algorithms
for various graph problems. They aim to optimize the space required by the algorithm while
maintaining the polynomial time-bound. Graph separators have been used in designing
memory-constrained algorithms for the reachability problem. Imai et al. and Ashida et al.
presented polynomial-time algorithms that use O(n1/2 log n) space to find a separator of size
O(n1/2) in a planar graph [9, 3]. Imai et al. also gave a memory-constrained algorithm to
solve the reachability problem using this separator [9]. A natural extension of planar graphs
is the set of graphs that we can embed on a surface of constant genus. For such graphs, we
know that a separator of size O(n1/2) exists. Chakraborty et al. gave a polynomial-time
algorithm which uses O(n2/3 log n) space to construct a separator of size O(n2/3) in constant
genus graphs [4].

© Chetan Gupta, Rahul Jain, and Raghunath Tewari;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chetan.gupta@aalto.fi
mailto:rahul.jain@fernuni-hagen.de
https://orcid.org/0000-0002-8567-9475
mailto:rtewari@cse.iitk.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.23
https://arxiv.org/abs/2005.06419
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

Jain and Tewari formalized the connection between separators in a class of undirected
graphs and the reachability problem in the class of directed versions of those graphs [10].
They mainly show that if there exists a polynomial-time algorithm that uses O(w log n)-space
to find a separator of size O(w), then there exists a polynomial-time algorithm that uses
O(w log n) space to solve reachability as well.

In this paper, we continue along the above line of work and present a polynomial-time
algorithm that uses O(g1/2n1/2 log n) space to construct a separator of size O(g1/2n1/2) in a
g-genus graph. Therefore, combining this construction with [10], we get a polynomial-time
algorithm that uses O(g1/2n1/2 log n) space to solve the reachability problem in g-genus
graphs. Thus, for constant genus graphs, our approach gives a polynomial-time algorithm
that uses O(n1/2 log n) space.

Our separator construction follows the standard paradigm used in previous constructions
of separators for planar graphs and surface-embedded graphs. Hence some familiarity with
earlier results such as those shown by Gazit and Miller [7], Koutis and Miller [11], Imai
et al. [9], Ashida et al. [3], and Chakraborty et al. [4] is beneficial in understanding our
construction. In particular, since our result is a generalization of Ashida et al. [3], we heavily
borrow their framework.

Our Result

In this paper, we prove the following theorem.

▶ Theorem 1. There exists a polynomial-time algorithm that takes as an input a graph G

on n vertices along with its combinatorial embedding of genus g and outputs its separator of
size O(g1/2n1/2). This algorithm uses O(g1/2n1/2 log n) space.

The running time of our algorithm is a polynomial in both the number of vertices n and
the value of the genus g. To achieve the desired space-time bounds, given a graph G, we
first find a maximal set of vertices in G whose k-neighbourhoods do not intersect each other.
We call the vertices in this set Boss vertices. We associate each vertex of the graph to one
of the Boss vertices. We call the set of vertices associated with the same Boss vertex a
Voronoi region. If a non-contractible cycle of length O(k) in the graph spans at most two of
these Voronoi regions, we find that cycle and remove it from the graph. Removal of such a
non-contractible cycle from the graph reduces its genus by at least one. Otherwise, if there
exists no such cycle, we proceed by dividing the original graph further into a total of at most
O(n/k + g) regions so that each of them is bounded by a simple cycle of length O(

√
k) and

the number of vertices present inside each region is at most n/3. We then use these regions
to construct a Frame Graph, which is the graph induced by the vertices on these cycles. We
assign weights to each face of the frame graph such that the weight of a face is equal to the
number of vertices of the original graph inside the corresponding cycle. While constructing
the frame graph, we might encounter some properties of the original graph, which allows us
to output either a separator or a non-contractible cycle of size O(k). Thus, in the end, we
either have a non-contractible cycle of size O(k), a small separator or the frame graph. If
the result is a separator, then we output that separator. If the result is a non-contractible
cycle C, we store it and restart the algorithm with the graph G \ C as the input. The final
output will be the union of C with the separator of G \ C. If the result is the frame graph,
we use the algorithm of Gilbert et al. [8] to find a separator. For an appropriate value of k,
our algorithm achieves the desired time and space bound.

C. Gupta, R. Jain, and R. Tewari 23:3

Comparison with the previous result
The construction of separator by Chakraborty et al. [4] proceeds (roughly) as follows: Given
a graph G they first find a subgraph H of the graph G, such that removal of vertices of
H from G makes the resulting graph G \ H planar. Subsequently, they obtain a separator
of G \ H using the algorithm of Imai et al. [9] and add it to the vertices of H to get a
separator of the graph G. The subgraph H obtained in Chakraborty et al. [4] might not be a
connected subgraph of G. We find a smaller separator by first finding a 2-connected weighted
subgraph of G such that a weight-separator of this weighted subgraph acts as a separator
of the original graph. We find this 2-connected subgraph by using Ridge edges which was
previously used by Gazit and Miller [7], and Ashida et al. [3] for the case of planar graphs.
We show that by first efficiently removing non-contractible cycles from Voronoi regions, ridge
edges can be used in graphs of a higher genus. We call this 2-connected subgraph a Frame
graph. We then show that a weight-separator for this Frame graph can be found efficiently
and hence get our result.

Organization of the Paper
The rest of the paper is organized as follows. In section 2, we give some preliminary notations
and definitions. We first divide the graph into Voronoi regions. We explain this procedure
in section 3. We further divide Voronoi regions by using pre-frame-loops in section 3.1. In
section 4, we show how to process the pre-frame-loops and construct a frame graph and then
make floor modifications and ceiling modifications in this frame graph. We thus get the
required subgraph. Finally, in section 5, we put it all together to construct the separator.

2 Preliminaries

A graph is an ordered triple G = (V (G), E(G), ∂) where V (G) is the set of vertices, E(G) is
the set of edges and ∂ is a function that assigns to each edge a pair of vertices. Let p be a
path. We use first(p) to denote the first edge of p and last(p) to denote the last edge of p. In
an undirected graph G, it is helpful to regard each edge in E as a pair of directed edges, or
darts. Each dart goes from one vertex, called its tail, to another vertex, called its head. For
a dart e, we use tail(e) to denote the tail of the dart, and similarly, we use head(e) to denote
the head of the dart. The two darts that results from a single undirected edge are said to
be reverse of each other. If two darts e1 and e2 are reverse of each other, we denote e2 by
rev(e1) and e1 by rev(e2).

The genus of a surface Σ is the maximum number of non-intersecting simple closed curves
in Σ such that the surface remains connected after cutting along these curves. The genus of
a graph G is the smallest g such that G can be embedded on a surface of genus g. A surface
is called orientable if it has two distinct sides; else, it is called non-orientable. In this paper,
we only consider graphs that can be embedded on an orientable surface. Let G be a graph
embedded on a surface S of genus g. The faces of the embedding of G are the connected
components of S \ G. If a face is homeomorphic to an open disk, it is called a 2-cell. If
every face is homeomorphic to an open disk, the embedding is called a 2-cell embedding. A
combinatorial embedding of G is defined as π = {πv | v ∈ V (G)} where for each vertex v, πv

is a cyclic permutation of darts whose tail is v. This permutation of darts goes clockwise as
per the embedding on the surface. For a dart e, we use left(e) to denote the face which is on
the left of e and right(e) to denote the face on the right of e. A triangulated graph is a graph
that is embedded on a surface such that every face is a 2-cell and has three boundary edges.

FSTTCS 2021

23:4 Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

We define a dual graph G̃ of G for an embedding in the following way: G̃ contains a
vertex ṽ corresponding to every face of G and two vertices of G̃ have an edge between them
if their corresponding faces share an edge in G. We say that an edge ẽ of G̃ crosses an edge
e of G if the faces at the endpoints of ẽ shares the edge e of G.

Let G be a graph embedded on a surface of genus g. Let U be a subset of vertices of
G, F be a subset of edges of G, and R be a subset of faces of G. Then G[U] denotes the
subgraph of G, induced by the vertices in the set U . Similarly, G[F] denotes the subgraph
of G, containing all the edges of F together with their endpoints. By G[R], we denote the
graph containing all the vertices and edges in the boundary of a face in R.

Let G be a graph of genus g. A set R of its faces is a region if G̃[R] is connected. The
set of edges of G whose only one side has a face in R is called the boundary of R.

If G is a graph embedded on a surface and c is a cycle in G, then we define the left graph
and right graph of c as follows: If e is a dart of c followed by e′ = πk

head(e)(rev(e)), then all
edges πhead(e)(rev(e)), π2

head(e)(rev(e)), . . . , πk−1
head(e)(rev(e)) are said to be on the left side of c.

An edge e′′ which is not incident with c and which is connected by a path in G \ c to an end
of an edge of the left side of c is also said to be on the left side. Now the left graph of c is
defined as the edges on the left side of c together with all their ends. The right graph G is
defined analogously. We will often use the term inside of c to denote the left graph of c and
outside of c to denote the right graph of c. We do not include the cycle c itself in either of
these sides.

▶ Definition 2. A cycle c of a surface embedded graph G is called a contractible cycle
if and only if one of the sides of c is planar. A cycle that is not contractible is called a
non-contractible cycle.

We say that a set C of cycles satisfies the 3-path-condition if the following property holds:
If u and v are vertices of G and P1, P2 and P3 are internally vertex disjoint paths from u

to v. If two of the cycles Ci,j = Pi ∪ Pj(1 ≤ i < j ≤ 3) are not in C then the third one is
also not in C. It is a well known fact that the set of non-contractible cycles satisfies the
3-path-condition [15].

We define dist(u, v) to be the length of the shortest path between two vertices u and v.
We introduce a total order (denoted by <v) in the vertex set V of the graph based on the
distance from v. For any vertices u and w, we say that u is nearer to v than w (written as
u <v w) if we have either

dist(u, v) < dist(w, v) or
dist(u, v) = dist(w, v) and u has a smaller index than w

For any set W of vertices of G, nrstv(W) denotes a vertex u in W such that u <v w of all
w ∈ W \{u}. For any sets W and W ′ of vertices, we write W <v W ′ if nrstv(W) <v nrstv(W ′).

Let G be a graph of genus g. A closed loop c is a sequence of distinct darts e1, e2, . . . , em

of G such that head(ei) = tail(e(i+1) mod m).

▶ Definition 3. Let G be a weighted-graph with positive integral weights on each vertex that
sums to n and α ∈ (0, 1). An α-separator of G is a set S of vertices of G such that the
removal of S creates disconnected subgraphs, each of which has at most αn weight, where the
weight of a subgraph is the sum of the weights of the vertices in it.

We use a multitape Turing machine model to discuss the space-bounded polynomial-time
algorithms. A multi-tape Turing machine consists of a read-only input tape, a write-only
output tape, and a constant number of work tapes. We measure the space complexity of a
multitape Turing machine by the total number of bits used in the work tapes.

C. Gupta, R. Jain, and R. Tewari 23:5

We note that Allender and Mahajan [2] showed that the problem of testing whether a
graph is planar or not is in SL. They also gave the SL algorithm to construct the planar
embedding. Subsequently, Reingold [14] showed that SL = L hence there exists a logspace
algorithm to test if a graph is planar and also produce its embedding. We summarize this
fact in the following Lemma.

▶ Lemma 4. There exists a logspace algorithm that tests whether the input graph is planar
and if so, it outputs an embedding of the input graph.

Gilbert, Hutchinson and Tarjan proved the existence of an O(n1/2g1/2) size separator
for the graphs of genus g [8]. They also presented an O(n + g) time algorithm to find the
separator. Therefore we can conclude that their algorithm runs in O((n + g) log n) space.
We can thus use the following Lemma for our result.

▶ Lemma 5. There exists a polynomial-time algorithm that takes, as an input, an n-vertex
graph of genus g along with its combinatorial embedding and finds its separator of size
O(n1/2g1/2) using O((n + g) log n) space.

We will need the notion of fundamental cycles in our separator construction; therefore,
we define it formally.

▶ Definition 6. Let G be a graph and T be a spanning tree of G. Let e be an edge that does
not belong to T . A simple cycle c, which consists of e and the path in T joining the endpoints
of e, is called a fundamental cycle.

3 Voronoi Region

As we discussed in section 1, we start by dividing the input graph into something that
we call Voronoi regions. In this section, we define the notion of Voronoi Regions and explain
how they could be constructed in a space-efficient manner. This notion has been previously
used in designing a separator for planar graphs by Imai et al., Ashida et al., Gazit and Miller,
and Koutis and Miller [9, 3, 7, 11].

We first define the k-neighbourhood of a vertex. This is a key tool that will help us define
and construct a Voronoi region.

▶ Definition 7. Let G be a graph and v be a vertex of G. Let L(v, i) be the set of vertices at
distance i from v. The k-neighbourhood Nk(v) of a vertex v is defined as:

Nk(v) =
⋃

1≤i≤d

L(v, i)

where d is the smallest integer such that |
⋃

1≤i≤d L(v, i)| ≥ k.

Note that we have defined k-neighbourhood in a slightly different way when compared to
the definition of Imai et al. [9] and Chakraborty et al. [5]. In their work, Nk(v) is chosen
to contain at most k vertices, while here, it contains at least k vertices. We believe this
definition makes our proof simpler to follow.

▶ Definition 8. Let G be a graph. A set I of vertices of G is called a k-maximal independent
set if the following holds:

For every b1, b2 ∈ I, Nk(b1) ∩ Nk(b2) = ∅.
For every v that is not in I, we have a vertex b ∈ I such that Nk(v) ∩ Nk(b) ̸= ∅.

FSTTCS 2021

23:6 Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

▶ Lemma 9. There exists an O((k + n/k) log n)-space and polynomial-time algorithm that
takes a graph G as input and outputs a k-maximal independent set I.

The proof of the above Lemma is quite straightforward. We refer readers to [9, 4].
For a graph G, we will use the notation ind(G) to denote the set returned by the algorithm
of Lemma 9.

▶ Definition 10. Let G be a graph. For any vertex v, the boss-vertex of v is a vertex b of
ind(G) such that Nk(b) <v Nk(b′), for all b′ ∈ ind(G) \ {b}. We define vor(b) to be the set of
all vertices whose boss-vertex is b. We use boss(v) to denote the boss-vertex of v.

Note that the graph induced by the vertices in the set vor(b) form a connected component
in G. Therefore, the faces corresponding to these vertices form a region in G̃. We will
henceforth call vor(b) the Voronoi region of b.

We note that while the Voronoi region of a vertex b can be large, its diameter is O(k).
We will now show that the BFS-tree of this Voronoi region can still be constructed in
O((n/k + k) log n) space and polynomial time. To construct a rooted tree using small space,
it suffices to show an algorithm to determine the parent of a given vertex v ∈ vor(b) in the
BFS tree. The algorithm is the following: To determine the parent of a vertex v in vor(b),
we first construct the BFS-tree T of k-neighbourhood of b. If v ∈ Nk(b) then the parent of v

is the same as its parent in T . Otherwise, construct the BFS-tree of Nk(v). Let v′ be the
vertex in Nk(v) ∩ Nk(b) such that dist(b, v′) is minimum. Break ties by picking the one with
a smaller index. Consider the path from v to v′ in the BFS tree of Nk(v). The parent of v is
the vertex adjacent to v in this path. We summarize in the following Lemma.

▶ Lemma 11. Let G be a graph and b be a vertex of ind(G). There exists a polynomial time
algorithm that constructs the BFS-tree of vor(b) in O((k + n/k) log n) space.

A similar lemma was observed for planar graphs by Imai et al. [9]
The input graph might contain small non-contractible cycles. We require that the union

of any two Voronoi regions do not have a non-contractible cycle, similarly as Chakraborty et
al. [4]. Thus, we remove such non-contractible cycles from the graph using the following
Lemma in our main algorithm.

▶ Lemma 12 ([4]). There is an O((k + n/k) log n)-space and polynomial time algorithm that
takes a graph G, and two boss-vertices b1 and b2 as input and checks for a non-contractible
cycle of size O(k) in vor(b1) ∪ vor(b2). The algorithm outputs one such cycle if it exists.

Proof. First, consider the case when vor(b1) ∪ vor(b2) forms a connected subgraph of G. We
know that vor(b1) and vor(b2) can be computed in O((k + n/k) log n) space and polynomial
time by Lemma 11. We combine the BFS-trees of vor(b1) and vor(b2) using an arbitrary edge
to get a spanning tree of vor(b1) ∪ vor(b2) with diameter O(k). We denote this spanning tree
as T . Note that T can be computed in polynomial-time and O((n/k + k) log n) space. We
know that the set of all non-contractible cycles of any graph G satisfy 3-path condition [15].
Since the diameter of T is O(k), any fundamental cycle of this tree of size O(k). The 3-path
condition implies that if a non-contractible cycle exists, then one of the fundamental cycles
is non-contractible (see Allender et al. 2005, Lemma 5.1 [1]). We can check whether a cycle
is contractible by checking the planarity of the left and the right sides of the cycle. The left
and the right side of a given cycle can be computed in logspace by using reachability queries
[14]. Therefore, by Lemma 4, we can check if a cycle is contractable in O(log n) space. Thus,
the lemma follows. In the other case where vor(b1) and vor(b1) are not connected, we can
apply the same procedure on spanning trees of vor(b1) and vor(b2) separately. ◀

C. Gupta, R. Jain, and R. Tewari 23:7

b

Figure 1 A diagram showing vor(b) for a boss vertex b. The part of the surface where the vertices
of vor(b) are present is shown in grey colour. The boundary of the Voronoi region is shown using
thick solid lines. The ridge edges are shown using normal solid lines. Dashed lines show some of the
edges of the spanning tree of vor(b). Dotted lines show faces in G that corresponds to a vertex v,
which is an endpoint of a ridge edge in G̃.

As mentioned in the introduction, we will use the Voronoi regions to construct our Frame
graph. For this construction, we first divide the Voronoi Regions.

3.1 Dividing Voronoi Regions using Pre-Frame-Loops
In this subsection, we find a set of loops in the input graph G. Each of these loops contains

vertices of at most two Voronoi regions inside them. We then further process these loops so
that the number of vertices inside them is small.

Let G be a triangulated graph of genus g. Note that any connected component of G

forms a region in G̃. Also, note that since the size of each face of G is three, all the vertices
of the graph G̃ will have degree three. Thus, a region of faces in G̃ will have a boundary
that is a set of vertex-disjoint simple cycles.

We require two kinds of edges in the dual graph to construct the desired loops. One is
the set of the boundary edges of all the Voronoi regions, and the other is the set of Ridge
edges. Ridge edges have been used previously by Gazit and Miller [7] and Ashida et al. [3].
We define them as follows.

▶ Definition 13. Let G be a graph and b be a boss-vertex. Let T be the BFS tree of vor(b).
For an edge e of G[vor(b)] that does not belong to T , let ce be the fundamental cycle induced
by e on T . If each of the two sides of the cycle ce contains at least one boundary cycle of
vor(b), then the edge ẽ of G̃ crossing e is called a ridge edge.

Figure 1 shows ridge edges in the Voronoi region of a boss vertex b.

▶ Definition 14. Let G be a graph of genus g. Let B̃ be the set of boundary edges of vor(b) for
all boss vertices b. Similarly, let R̃ be the set of ridge-edges. A branch vertex is a degree three
vertex in the graph G̃[B̃ ∪ R̃]. For each branch vertex ṽ, the boundary of the face consisting
of three vertices incident to ṽ is a branch-triangle. Two branch vertices are called adjacent
to each other if a path connects them consists of darts corresponding to the edges in the set
B̃ ∪ R̃ such that no other branch vertex exists on this path. The path connecting adjacent
branch vertices is called a connector. We denote the set of connectors in G̃ by con(G).

FSTTCS 2021

23:8 Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

Let p̃ be a connector. Note that the end points of p̃ are an adjacent pair of branch vertices.
Also note that, boss(left(first(p))) is same as boss(left(last(p))) and boss(right(first(p))) is
same as boss(right(last(p))). We define a pre-frame-loop with respect to p̃ as follow.

▶ Definition 15. Let G be a graph embedded on a surface of genus g. For any connector p̃,
a pre-frame-loop (denoted by pfloop(p̃)) is a closed loop that consists of
1. A path from right(first(p)) to boss(right(first(p))) in the BFS-tree of vor(boss(right(first(p))))
2. A path from boss(right(first(p))) to right(last(p)) in the BFS-tree of vor(boss(right(first(p))))
3. A branch-triangle dart elast from right(last(p)) to left(last(p))
4. A path from left(last(p)) to boss(left(last(p))) in the BFS-tree of vor(boss(left(last(p)))).
5. A path from boss(left(last(p))) to left(first(p)) in the BFS-tree of vor(boss(left(last(p)))).
6. A branch-triangle dart efst from left(first(p)) to right(first(p)).

We denote the set of all the pre-frame-loop in G as pfloop(G)

The proof of the following lemma is straightforward.

▶ Lemma 16. There exists an O((k + n/k) log n)-space and polynomial-time algorithm that
takes G as an input and outputs the list pfloop(G) of all pre-frame-loops in G.

In the next section, we will use these pre-frame loops to create faces of our subgraph.
Following Ashida et al. [3], we call this new graph Frame Graph.

4 Frame Graph

We wish to use pre-frame-loops to create faces of the frame graph. In order to do this, we
first preprocess these loops so that the inside of each loop is small, i.e., has at most n/3
vertices in it. This preprocessing would ensure that the weight on any face of the frame
graph is bounded. In the second step, we remove those edges of the loop for which both of
its darts are traversed and thus break the loop into simple cycles. These cycles will act as
boundaries of the faces in the frame graph.

Consider a connector p̃ of the input graph G and the pre-frame-loop c induced by p̃. Note
that c is in the union of two Voronoi regions. Since we have eliminated all non-contractible
cycles from the union of any two Voronoi regions, c cannot contain a non-contractible cycle.
Thus, c divides the surface. A pre-frame loop is of type A if it consists of two boss vertices,
and it is of type B if it consists of only one boss vertex (see Figure 2).

Let the part of a connector p̃ excluding its first and last vertex be called the body of p̃.
Let P0 denote the surface of G \ c that has the body of the connector p̃. Call this inside of c.
Let n0 be the number of vertices in P0 not including the vertices of c. We say that the inside
of c is large if n0 is greater than 2n/3. Note that the inside of c is included in the union of
atmost two Voronoi regions. Let b1 and b2 be the boss vertices of these two regions. We
use the BFS-Trees of vor(b1) and vor(b2) to find a spanning tree of vor(b1) ∪ vor(b2). Since
vor(b1) ∪ vor(b2) does not have a non-contractible cycle, it has a planar embedding. Consider
a spanning tree T of vor(b1) ∪ vor(b2). There exists a fundamental cycle of this tree in the
triangulated version of the graph G[vor(b1) ∪ vor(b2)] which acts as its separator [12]. Since
by removing the boundary of the pre-frame loop from the graph, we can get components, the
largest of which is formed by the vertices vor(b1) ∪ vor(b2), we can combine the separator of
G[vor(b1) ∪ vor(b2)] with the boundary of the pre-frame-loop to get a separator of the whole
graph G. Since the length of the boundary of pre-frame-loop is O(k) and the diameter of
Voronoi region of any boss vertex is O(k), we get the following lemma:

C. Gupta, R. Jain, and R. Tewari 23:9

p̃ p̃

b1

b2

b1

P0

P1

P1,1 P1,2

P0

Type BType A

Figure 2 On the left, a pre-frame-loop of type A. The two boss vertices corresponding to the
loop are b1 and b2. On the right, a pre-frame-loop of type B. The only boss vertex corresponding to
this loop is b1.

▶ Lemma 17. Let G be a graph of genus g which contains a pre-frame loop whose inside
is large. There exists a polynomial-time algorithm that takes as an input G and outputs a
separator of G of size O(k) in O((k + n/k) log n) space.

Thus, if any of the pre-frame-loop acts as a separator or has a large inside, we can get a
separator of the graph G. Otherwise, we construct a set C in the following way: We first
add all the pre-frame-loop of type A into C. Note that if a pre-frame-loop c is of type B, it
divides the surface into three parts. Call the two parts of the surface, which does not contain
the body of the connector, P1,1 and P1,2 respectively. Let the number of vertices in P0, P1,1
and P1,2 be n0, n1,1 and n1,2 respectively. We see that either n1,1 > 2n/3 or n1,2 > 2n/3, for
otherwise, our pre-frame-loop acts as a separator. Let us assume, without loss of generality,
that n1,2 > 2n/3. We merge P0 and P1,1 into a single surface, and add the loop c0 bounding
this surface to the set C. The inside of c0 is the side containing the surfaces P0 and P1,1.

Now, consider a loop c of C, that is not contained in the inside of any other loop c of C.
Let Ec be the set of darts whose reverse does not appear in c. Let E be the union of Ec

over all such c. We observe that E is a set of simple cycles, which we call frame-cycles and
denote by fcycle(G).

4.1 Definition and construction of Frame Graph
▶ Definition 18. Let G be a graph of genus g. Let E1 be the set of all frame-cycles edges, and
let E2 be the set of all branch-triangle edges. A frame-graph of G is a subgraph H = G[E1∪E2].
For each face of a frame-graph H, its weight is the number of vertices of G located inside
that face. We denote the frame graph of G by frame(G).

▶ Definition 19. Let G be a triangulated graph. Let L(v, i) be the set of vertices at distance
i from v. Let dnb(v) be the largest d such that |∪0≤i≤dL(v, i)| < k. For any boss-vertex
b ∈ ind(G), let dcore(b) denote the largest d ≤ dnb(b) such that |L(b, d)| ≤ k1/2. The core of
b (denoted by core(b)) is defined by

core(b) =
⋃

0≤i≤dcore(b)

L(b, i)

FSTTCS 2021

23:10 Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

Note that core(b) forms a region in G̃. The boundary of this region might not be a single
cycle. In the next definition, we pick one of these cycles to be the core boundary-cycle and
use it to construct the core cycle in the graph G.

▶ Definition 20. Let G be a triangulated graph of genus g and b be a boss-vertex. The
core-boundary-cycle of b is the boundary cycle of the region core(b) in G̃ that has the largest
number of dual-vertices on its outside.

The core-cycle of core(b) is a directed cycle induced by the set of vertices in core(b)
sharing an edge with the core boundary cycle. The inside of the core-cycle is the side with
the boss-vertex b.

For any l ≥ 1, let Lnb(l) denote a set of vertices v of G whose distance from its nearest
k-neighborhood in {Nk(b)}b∈ind(G) is l. More formally,

Lnb(l) = {v | dist(v, vnrst) = l, where vnrst = nrstv(Nk(boss(v)))}.

Let L̃nb(l) denotes the set of faces in G̃ corresponding to the vertices in the set Lnb(l).
Let C be a region of L̃nb(l). Each boundary edge of C is an edge between a pair of vertices
of level either l − 1 and l or l and l + 1. Let us call the former one an interior edge and the
latter one an exterior edge. We call a boundary cycle an interior boundary cycle if it consists
of interior edges. Similarly, we call a boundary cycle an exterior boundary cycle if it consists
of exterior edges.

▶ Definition 21. Let c̃ be any interior boundary cycle corresponding to Lnb(l). Let c be the
loop in C formed by the set of vertices sharing a boundary edge with c̃, and let Dc be the set
of cycles obtained from c by removing all the darts in the loop whose reverse also appears in
the loop. An interior-cycle is a cycle in Dc.

We define an exterior-cycle in a similar way. A cycle is said to be a small cycle if it
consists of at most k1/2 vertices. We denote the set of small interior cycles by smint(G) and
the set of small exterior cycles by smext(G). A contractible cycle is said to be light if it has
less than n/3 vertices in its inside.

▶ Definition 22. A floor cycle is a light and small interior cycle if it is not inside any other
light and small interior cycle. For any boss-vertex b which is not contained in any floor-cycle,
we regard the core-cycle of core(b) also as a floor-cycle. A ceiling-cycle is a light and small
exterior cycle that is not inside any other light and small exterior-cycle, and that has at least
one dual-vertex of some branch-triangle on its inside.

▶ Definition 23. Let G be a graph of genus g. Let F and C be respectively a set of floor-cycles
and ceiling-cycles having at least one vertex of frame(G) in their insides. Let E′

1 be the set of
edges of G that appear in some cycle in F ∪ C and E′

2 be the set of edges of frame(G) that are
not in the inside of any cycle of F ∪ C. A graph with vertices U ′ and edges D′ is a modified
frame-graph denoted as mframe(G), where D′ = E′

1 ∪ E′
2 and U ′ is the set of all vertices that

are endpoints of edges of D′. For each face of a modified frame-graph mframe(G), its weight
is the number of vertices of G located in the face.

The following Lemma is a generalization of a result that was presented by Ashida et
al. [3]. They presented a similar lemma for planar graphs. The proof of the following Lemma
has been moved to Appendix.

▶ Lemma 24. Let G be a graph of genus g such that voronoi region vor(b1) ∪ vor(b2) does
not contain a non-contractible cycle for any two vertices b1, b2 ∈ ind(G), pfloop(p̃) is not a
separator of G for any connector p̃, the inside of any loop in pfloop(p̃) is not large, core(b)
is not a separator of G for any boss-vertex b, and no cycle in smext(G) or smint(G) is a
non-contractible cycle. Following statements hold:

C. Gupta, R. Jain, and R. Tewari 23:11

1. The weight of each face of mframe(G) is less than n/3.
2. mframe(G) is 2-connected.
3. Size of each face of mframe(G) is O(k1/2).
4. The number of faces in mframe(G) is O(n/k + g)

5 Construction of separator

Using the tools developed so far, we can obtain a space-efficient algorithm which, given a
graph G as input, outputs either a separator, a non-contractible cycle or the modified frame
graph mframe(G). We summarize this in the following Lemma.

▶ Lemma 25. Let G be a g-genus triangulated graph of n vertices. For any positive integer
k, there is a polynomial time, O((n/k + k) log n)-space algorithm that takes G along with its
combinatorial embedding as input and outputs one of the following:
1. A non-contractible cycle of size O(k) of G.
2. A separator of size O(k) of G.
3. A a weighted subgraph H ′ of G that satisfies the following conditions:

a. The weight of each face f of H ′ is proportional to the number nf of vertices of G

located inside the face, and is less than n/3
b. H ′ is 2-connected.
c. H ′ contains O(n/k + g) faces.
d. The size of each face of H ′ is O(k1/2).

Proof. We first find a k-maximal independent set ind(G) of G in O((n/k+k) log n)-space and
polynomial time using lemma 9. We then check for a non-contractible cycle in vor(bi)∪vor(bj)
for all pairs of boss-vertices bi and bj using lemma 12. If we manage to find such a cycle,
we output it. Otherwise, we pick each pre-frame loops using lemma 16 see if it acts as a
separator of the graph. If so, we output it.

If the algorithm has not produced an output so far, we see if the inside of any pre-frame-
loop is large. If so, we use lemma 17 to find a separator of the graph. For every boss vertex
b, we check if core(b) is a separator. If so, we output it. Next, we check if any cycle in
smext(G) or smint(G) is a non-contractible cycle. If so, we output it. Otherwise, we output
the modified frame graph mframe(G). ◀

With these ingredients, we are now ready to prove our main theorem.

Proof of Theorem 1. Elberfeld and Kawarabayashi presented an algorithm to construct a
combinatorial embedding of a graph of the constant genus in logspace [6]. Hence, we do not
require a combinatorial embedding as part of the input when dealing with a constant-genus
graph. Otherwise, we require the combinatorial embedding of the graph as an input. We
assume that the genus of the input graph g is at most O(n). Let π be the combinatorial
embedding of G. We first triangulate the input graph in logspace. To do this, for each face
f of the input graph, we connect each vertex of f with the lowest index vertex in it. This
triangulation is done implicitly, whenever required, as storing the triangulated graph will
require a large amount of space. We call the resultant triangulated graph G. Note that
triangulating the graph only introduces more edges; therefore, a separator for G will also be
a separator for the input graph. Our objective now is to construct a separator of G. We
do this by iteratively applying Lemma 25. We will describe the algorithm by describing an
iteration of it. Before the ith iteration, we will have a set S of vertices which is empty before
the first iteration. Let G1, G2, . . . , Gm be the set of connected components in G \ S. We will

FSTTCS 2021

23:12 Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

describe the ith iteration as follows. The algorithm takes the component Gj whose size nj is
greater than 2n/3. If no such component exists, then the set S would be a separator of G,
and the algorithm outputs S and halts. Otherwise, consider the embedding induced by π

on Gj as its embedding. If the genus gj of this component is zero, the algorithm uses Imai
et al. planar separator algorithm to get its separator S1 and outputs S ∪ S1. If its genus
is non-zero we apply the algorithm from Lemma 25 on Gj with k set as n

1/2
j /g

1/2
j . If the

result of the application of the algorithm from Lemma 25 on Gj is a non-contractible cycle,
say S2, then we add the vertices of S2 to the set S and continue with the next iteration. If
the result is a separator, say S3, we output the set S ∪ S3 as the separator for the entire
graph. Otherwise, if the result is a subgraph H ′ of Gj , we take its dual H̃ ′ and find its
separator S̃′ using Lemma 5. S̃′ is a set of faces of H ′. Consider the set S4 of vertices on the
boundary of these faces. We return the set S ∪ S4. To see that the size of separator returned
by the above algorithm is O(g1/2n1/2), note that Lemma 25 returns a non-contractible cycle,
the genus of the graph is reduced by at least one. It is sufficient for us to use the induced
embeddings (see Mohar and Thomassen [13], Proposition 4.2.1 and Lemma 4.2.4). Hence,
our algorithm can return at most g such cycles; each has length O(k). For our value of k, the
total number of vertices in all such cycles can be at most O(g1/2n1/2). If it does not returns
a non-contractible cycle, then it returns either a separator of size O(k) ≤ O(g1/2n1/2) or
it returns the subgraph H ′. The number of faces in H ′ is O(n/k + g). Hence the size of
the separator returned by using the algorithm of Gilbert et al. [8] on the dual of H ′ will
be O(g1/2(n/k + g)1/2). Size of each face of H ′ is at most k1/2, hence, size of the set S4 is
O(k1/2g1/2(n/k + g)1/2). For our value of k, this is at most O(g1/2n1/2). ◀

We can use the following Lemma, which was formalized by Jain and Tewari [10] to
get a space-efficient polynomial-time algorithm for reachability in constant-genus graphs.
Reachability is determining if there is a directed path from one vertex to another in a directed
graph.

▶ Lemma 26. Let G be a class of graphs and w : N 7→ N be a function. If there exist a
polynomial-time algorithm that uses O(w(n) log n) space to find a separator of size w(n) then
there exists a polynomial time algorithm to decide reachability in G that uses O(w(n) log n)
space.

▶ Corollary 27. There exists a polynomial-time algorithm that uses O(n1/2 log n) space to
solve reachability in a constant-genus graph.

Previously, a polynomial-time algorithm that uses O(n1/2 log n) space for reachability was
known for planar graphs [9]. While for constant-genus graphs, a polynomial-time algorithm
that uses O(n2/3 log n) space was known [4]. Corollary 27 improves the space-bound to
O(n1/2 log n). Our result can thus be seen as both a generalization of Imai et al. [9] and as
an improvement to a previous result by Chakraborty et al. [5].

References
1 Eric Allender, Samir Datta, and Sambuddha Roy. The directed planar reachability problem.

In FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science,
25th International Conference, Hyderabad, India, December 15-18, 2005, Proceedings, pages
238–249, 2005. doi:10.1007/11590156_19.

2 Eric Allender and Meena Mahajan. The complexity of planarity testing. Information and
Computation, 189(1):117–134, 2004. doi:10.1016/j.ic.2003.09.002.

https://doi.org/10.1007/11590156_19
https://doi.org/10.1016/j.ic.2003.09.002

C. Gupta, R. Jain, and R. Tewari 23:13

3 Ryo Ashida, Tomoaki Imai, Kotaro Nakagawa, A. Pavan, N. V. Vinodchandran, and Osamu
Watanabe. A sublinear-space and polynomial-time separator algorithm for planar graphs.
Electronic Colloquium on Computational Complexity (ECCC), 26:91, 2019.

4 Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and Lin F.
Yang. New time-space upperbounds for directed reachability in high-genus and h-minor-free
graphs. In Proceedings of the 34th Annual Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS 2014), pages 585–595, 2014.

5 Diptarka Chakraborty and Raghunath Tewari. An O(nϵ) space and polynomial time algorithm
for reachability in directed layered planar graphs. ACM Transactions on Computation Theory
(TOCT), 9(4):19:1–19:11, 2017.

6 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded
genus in logspace. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing
(STOC 2014), pages 383–392. ACM, 2014. doi:10.1145/2591796.2591865.

7 H. Gazit and G. L. Miller. A parallel algorithm for finding a separator in planar graphs. In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science (FOCS 1987),
pages 238–248, October 1987. doi:10.1109/SFCS.1987.3.

8 John R Gilbert, Joan P Hutchinson, and Robert Endre Tarjan. A separator theorem for graphs
of bounded genus. Journal of Algorithms, 5(3):391–407, 1984. doi:10.1016/0196-6774(84)
90019-1.

9 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. V. Vinodchandran, and Osamu Watanabe.
An O(n 1

2 +ϵ)-space and polynomial-time algorithm for directed planar reachability. In Pro-
ceedings of the 28th Conference on Computational Complexity (CCC 2013), pages 277–286,
2013.

10 Rahul Jain and Raghunath Tewari. Reachability in High Treewidth Graphs. In Proceedings of
the 30th International Symposium on Algorithms and Computation (ISAAC 2019), 2019.

11 Ioannis Koutis and Gary L. Miller. A linear work, O(n1/6) time, parallel algorithm for solving
planar laplacians. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pages 1002–1011, 2007.

12 Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979. doi:10.1137/0136016.

13 B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 2001. URL: https://books.google.com.sg/books?
id=_VFKscYKSicC.

14 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):17,
2008.

15 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. Journal of
Combinatorial Theory, Series B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.

A Appendix

A.1 Proof of Lemma 24
Proof. We will prove each of the four statements of the proof in order.
1. Consider a face of the frame-graph frame(G). The boundary of this face is either a

frame-cycle or a branch triangle. The weight of a branch-triangle is zero, while the
number of vertices inside a frame-cycle is less than n/3 by construction. Hence the weight
of any face of frame(G) is less than n/3. The number of vertices inside a floor or a ceiling
cycle is less than n/3 by definition. Hence the weight of any face of mframe(G) is also
less than n/3.

2. We first prove that frame(G) is 2-connected. Let u and v be two distinct vertices of
frame(G). We have the following cases:

FSTTCS 2021

https://doi.org/10.1145/2591796.2591865
https://doi.org/10.1109/SFCS.1987.3
https://doi.org/10.1016/0196-6774(84)90019-1
https://doi.org/10.1016/0196-6774(84)90019-1
https://doi.org/10.1137/0136016
https://books.google.com.sg/books?id=_VFKscYKSicC
https://books.google.com.sg/books?id=_VFKscYKSicC
https://doi.org/10.1016/0095-8956(90)90115-G

23:14 Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

Case 1 (Both u and v are on same frame cycle in pfloop(G)) : Since u and v are on
a cycle, there exist two vertex-disjoint paths from u to v.

Case 2 (u and v are on two different cycles in pfloop(G)) : Let cu and cv be the
cycles of pfloop(G) which contain vertices u and v respectively. Let p̃u and p̃v be the
connectors whose bodies are contained in cu and cv respectively. We first note that
there is a sequence of connecters p̃u = p̃1, p̃2, . . . , p̃k = p̃v such that p̃i and p̃i+1 has a
common end point for each i ∈ [1, k − 1]. Also note that the body of p̃i is contained in
a cycle ci of pfloop(G). Orient the darts of p̃i to form a path from first(p1) to last(p)k.
Let cleft

i be the path from left(first(p̃i)) to left(last(p̃i)). Similarly, let cright
i be the

path from right(first(p̃i)) to right(last(p̃i)). We see that cleft
i and cright

i do not share
any vertex. Thus, we can see that there exist two vertex-disjoint paths qleft and qright

from u to v such that qleft contains vertices of cleft
i and qright contains vertices of

cright
i for all i ∈ [2, k − 1].

The analysis of other cases is similar.

We will show that there are two vertex-disjoint paths between any two vertices u and v

of the graph mframe(G).
Case 1 (u and v are both in frame(G)): Since we have proved that frame(G) is two

connected, we know that there exist two vertex disjoint paths qleft and qright between
u and v in frame(G). Note that several floor-cycles and ceiling-cycles were added to
frame(G) and the vertices inside them were removed in order to construct mframe(G).
Let c be one such cycle.

If c intersects both qleft and qright. Let uleft and vleft denote the first and the last
vertices of qleft which intersects c. Similarly, let uright and vright denote the first
and the last vertices of qright which intersects c. These four vertices divide c into
four paths c1, c2, c3 and c4. Let the set of these four paths be C. Then one of the
following statements is true:

There exist paths from uleft to vleft and from uright to vright in C.
There exist paths from uleft to vright and from uright to vleft in C.

For both the above cases, we see that there exist two disjoint paths from u to v.
If c intersects only one of the path qleft and qright then we can modify that path to
contain part of the cycle.

Case 2 (u and v are on different floor-cycles or ceiling-cycles cu and cv): Let wu

and wv be vertices of frame(G) inside cu and cv respectively. We know such vertices
exits because of the way these cycles are defined. Since the graph frame(G) is
2-connected, there exist two disjoint paths qleft and qright between wu and wv in
it. Let uleft be the last intersection of qleft and cu. Similarly let uright be the last
intersection of qright and cu. Note that, since the paths qleft and qright are disjoint,
uleft ̸= uright. We similarly define vleft and vright.
Since the three vertices u, uleft and uright lie on the cycle cu, there exists two disjoint
paths: first from u to uleft and second from u to uright. Similarly, there exists two
disjoint paths from vright to v and from vleft to v. We can thus get two vertex-disjoint
paths from u to v, using these. Note that there may be other floor and ceiling cycles
intersecting these disjoint paths. In that case, we can use an argument similar to above
to show the existence of two disjoint paths from u to v.

3. We now prove that the size of each face of mframe(G) is O(k1/2). Note that the boundary
of a face of the graph mframe(G) is one of the following:
a. A floor-cycle of G.

C. Gupta, R. Jain, and R. Tewari 23:15

b. A ceiling-cycle of G.
c. A branch-triangle of G.
d. A frame-cycle of frame(G) modified by floor-cycles and ceiling-cycles.
In the first three cases, the size bound of the face follows by definition. We thus consider
the fourth case.
Consider any face defined by a modified frame-cycle, and let c denote the pre-frame-loop
from which we have defined it. Consider any path p of c connecting a boss-vertex of c

and a vertex of a branch-triangle used in c such that the path does not contain any other
vertex of a branch-triangle. By our modification, we can use a part p′ of p that is in the
outside of the corresponding floor-cycle and ceiling-cycle (if it exists) as a component of
the modified frame-cycle, and its length is bounded by 4k1/2. Note that the floor-cycle
may not be used in mframe(G) if it only intersects with the darts that we have removed
for defining the face. In this case, however, only a part of p′ is used for the modified
frame-cycle, which is even shorter. Thus, the modified frame-cycle consists of at most
four such reduced paths, a part of two floor-cycles, a part of four ceiling-cycles, and two
edges from two branch-triangles, and their total length is O(k1/2).

4. We first prove that the number of connectors is O(n/k + g), and the number of branch
vertices is O(n/k + g). Since there is a one-to-one correspondence respectively between
branch-triangles and branch vertices, and between frame-cycles and connectors, it will
follow that the number of faces in frame(G) is O(n/k + g).
We first define a new graph G′. The vertex set of G′ is the set of branch vertices in G. We
add an edge between two vertices of G′ if they are adjacent pair of branch vertices. Since
every edge of G′ corresponds to a connector of G, the graph G′ can also be embedded
on the surface of genus g where the embedding corresponds to the embedding of G. Let
n′, e′, f ′ be the number of vertices, edges and faces in G′ respectively. Thus, we have
n′ − e′ + f ′ = 2 − 2g by Euler’s formula. Note that every branch vertex have a degree
3, therefore we have 2e′ = 3n′. This implies e′ = 6g + 3f ′ − 6 = O(f ′ + g). Since,
there is one-to-one correspondence between voronoi regions and the faces of G′, we have
f ′ = O(n/k). Hence, we can conclude that e′ = O(n/k + g) and n′ = O(n/k + g).
Now, to prove that the number of faces in mframe(G) is O(n/k + g), we see that the new
faces introduced by our modification are those defined by floor cycles or ceiling cycles.
By definition, the number of these cycles is at most the number of boss-vertices or that
of branch-triangles, which is bounded by O(n/k + g). Note that we can divide a face
defined by a frame-cycle of frame(G) by ceiling-cycles, but it is easy to see that each face
is divided into at most some constant number of faces because the number of floor-cycles
and ceiling-cycles overlapping each frame-cycle is constant, say, at most six. From these
observations, we can bound the number of faces of mframe(G) by O(n/k + g). ◀

FSTTCS 2021

Near-Optimal Cayley Expanders for Abelian Groups
Akhil Jalan1 #

Department of Computer Science, University of Texas at Austin, TX, USA

Dana Moshkovitz #

Department of Computer Science, University of Texas at Austin, TX, USA

Abstract
We give an efficient deterministic algorithm that outputs an expanding generating set for any finite
abelian group. The size of the generating set is close to the randomized construction of Alon and
Roichman [9], improving upon various deterministic constructions in both the dependence on the
dimension and the spectral gap. By obtaining optimal dependence on the dimension we resolve a
conjecture of Azar, Motwani, and Naor [14] in the affirmative. Our technique is an extension of
the bias amplification technique of Ta-Shma [40], who used random walks on expanders to obtain
expanding generating sets over the additive group of Fn

2 . As a consequence, we obtain (i) randomness-
efficient constructions of almost k-wise independent variables, (ii) a faster deterministic algorithm for
the Remote Point Problem, (iii) randomness-efficient low-degree tests, and (iv) randomness-efficient
verification of matrix multiplication.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Error-correcting codes

Keywords and phrases Cayley graphs, Expander walks, Epsilon-biased sets, Derandomization

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.24

Related Version Full Version: https://arxiv.org/abs/2105.01149 [29]

Funding This material is based upon work supported by the National Science Foundation under
grants number 1218547 and 1678712.

1 Our Contributions

1.1 Main Result
A graph is an expander if there exists a constant α > 0 such that the spectral gap of its
adjacency matrix (namely, the difference between its top eigenvalue and its second eigenvalue)
is at least α. Such graphs are very well-connected in the sense that they lack sparse cuts.
Expanders that are additionally sparse are immensely important in computer science and
mathematics (see, e.g. the survey [28]).

Cayley graphs are an important class of graphs built from groups. Given a group G and
a generating set S ⊂ G, the graph Cay(G,S) has vertex set G and edges (g, g · s) for all
g ∈ G, s ∈ S. In addition to describing various well-known graphs such as the hypercube
and the torus, Cayley graphs of (non-abelian) groups gave the first explicit constructions
of near-optimal expander graphs [34]. Moreover, their algebraic structure makes Cayley
graphs easier to analyze. In particular, the eigenvectors and eigenvalues of a Cayley graph
are well-understood through the Fourier transform on the group.

When is a Cayley graph an expander? Alon and Roichman showed that given a group
G, integer n ≥ 1, and ϵ > 0, taking a uniformly random subset S ⊂ Gn of size O(n log(|G|)

ϵ2)
gives an expander with spectral gap 1 − ϵ, with high probability [9]. They also proved a

1 Corresponding author.

© Akhil Jalan and Dana Moshkovitz;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 24; pp. 24:1–24:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akhil@cs.utexas.edu
mailto:danama@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.24
https://arxiv.org/abs/2105.01149
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Near-Optimal Cayley Expanders for Abelian Groups

nearly matching lower bound of |S| = Ω((n log(|G|)
ϵ2)1−o(1)) when G is abelian. When G = F2

the lower bound is Ω(n
ϵ2 log(1/ϵ)) [6] 2.

An explicit construction with parameters matching the Alon-Roichman bound has re-
mained elusive, despite being widely studied in the pseudorandomness literature [32, 35, 6,
36, 1, 7, 26, 14, 23, 12, 17, 11].

The best known results achieve O((log(|G|) + n2

ϵ2)5) for arbitrary abelian G [12], O(n2

ϵ2)
for abelian G where |G| ≤ log(n2

ϵ2)O(1), and O(n log(|G|)O(1)

ϵ11) for general G [23]. For solvable
subgroups of permutation groups one can improve this to O(n2

ϵ8) [11].
In this paper we give an explicit construction of expanding generating sets for abelian

groups whose size is near the Alon-Roichman bound.

▶ Theorem 1. There is a deterministic, polynomial-time algorithm which, given a generating
set of an abelian group G, integer n ≥ 1, and ϵ > 0, outputs a generating set S ⊂ Gn of size
O(n log(|G|)O(1)

ϵ2+o(1)) such that Cay(Gn, S) has spectral gap 1 − ϵ.

Our construction immediately improves parameters in several applications – see Section 1.3
for details. We remark that in most settings, one fixes a group G while n → ∞ and ϵ → 0.
In this regime, since |G| is a constant, the size of the generating set in Theorem 1 is optimal
up to an ϵ−o(1) factor. The o(1) term in the exponent approaches 0 as ϵ → 0.

Expanding Cayley graphs are equivalent to pseudorandom objects called ϵ-biased sets.
These were originally defined over Fn

2 by Naor and Naor [35]. A set S ⊆ Fn
2 is said to be

ϵ-biased if for every non-empty T ⊆ [n], we have E
x∈S

[
⊕
i∈T

xi] = 1/2 ± ϵ.

Naor and Naor initiated a long line of work culminating in a recent breakthrough result
by Ta-Shma, that achieves |S| = O(n

ϵ2+o(1)) [40]. This construction approaches the Alon-
Roichman bound as ϵ → 0.

Ta-Shma’s construction follows previous work in using a 2-step “bias amplification”
approach. First, identify an explicit set S0 ⊂ Fn

2 with constant bias, usually through
algebraic methods. Second, amplify the bias of S0 to any ϵ > 0 by performing a random walk
on an expander graph. While this general method was already known, it could only achieve
|S| = O(n

ϵ4+o(1)). To break this barrier, Ta-Shma identified a graph structure obtained from
a “wide replacement product”, which was more effective for the bias amplification step and
resulted in |S| = O(n

ϵ2+o(1)).
Our main contribution is to show that the wide replacement walk is a near-optimal

“character sampler,” and therefore also amplifies bias well for abelian Cayley graphs.

1.2 Wide Replacement Walks are Near-Optimal Character Samplers
Random walks on expander graphs are useful for a variety of algorithmic purposes. A classical
fact is that expander walks are good approximate samplers, in the sense that a sufficiently
long random walk on an expander will visit sets of density δ for approximately a δ fraction
of the steps. This is called the “expander Chernoff bound” and one can characterize this as
the property that expander walks fool a suitable test function.

Ta-Shma observed that expander walks fool the much more sensitive class of parity
functions on {0, 1}n as well. Parity functions are sensitive to input perturbations – flipping
a single bit in the input can change the output. The classical expander Chernoff bound is

2 It is possible that this lower bound is tight. A candidate construction based on algebraic-geometric
codes could achieve this lower bound [17].

A. Jalan and D. Moshkovitz 24:3

not fine-grained enough to prove that t-step expander walks fool parity functions. The fact
that they nevertheless do fool parity functions is therefore surprising, and Ta-Shma referred
to this fact as “expanders are good parity samplers” [40].

Since parity functions are just the characters of Fn
2 , we can ask: do expander walks also

fool the characters of more general classes of groups? We show that this is indeed true, and
therefore “expander walks are good character samplers.” Moreover, just as in the F2 case, a
random walk on a wide replacement product of expander graphs is a near-optimal type of
character sampler.

Character sampling explained. Let us precisely explain what we mean by “character
sampling.” A character of an abelian group is a homomorphism χ : G → C∗, where C∗ is
the multiplicative group of complex numbers. The eigenvalues of an abelian Cayley graph
Cay(G,S) are given by |Ex∼S χ(x)| for all characters χ. Note that the constant function
that maps all values to 1 is a character, and the eigenvalue associated with it is the top
eigenvalue. Therefore, we are interested in generating sets S such that |Ex∼S χ(x)| ≤ ϵ for
all non-constant χ.

For simplicity, consider the case G = Zd for some d ≥ 2. Let ωd := exp(2πi
d). In this case

the characters are just the maps x 7→ ωx·j
d for j = 0, 1, . . . , d− 1.

Now, suppose we have some ϵ0-biased set G0 ⊂ G, where ϵ0 < 1 is a constant. First,
observe that taking t independent samples from G0 and outputting their sum obtains a
distribution with bias (ϵ0)t. However, since independent sampling also results in a distribution
with support size |G0|t, there is no improvement in size as a function of bias.

The idea of the random walk approach is to derandomize independent sampling by taking
correlated samples. Specifically, identify G0 with the vertices of some degree-regular expander
graph Γ. We need to show that taking a random walk of length t on Γ and then summing
the elements in the path gives a distribution with lower bias than G0.

A t-step walk on Γ gives a sequence of group elements (x0, . . . , xt) ∈ Gt+1
0 . We are

interested in the bias of the random group element
∑

i xi. In general, we cannot hope that
(
∑

i xi) is close to the uniform distribution in statistical distance. However, if Γ is an expander
with second eigenvalue λ, then for every non-constant character χ the quantity |E[χ(

∑
i xi)]|

is at most (ϵ0 + λ)⌊t/2⌋, where the expectation is over paths (x0, . . . , xt) in the graph. Notice
that Ex∈G[χ(x)] = 0, so the random element (

∑
i xi) is close to uniform in the weaker sense

of fooling characters. Therefore, the expander walk is a good “character sampler.”

Why expanders are character samplers. We express the bias of the random walk distribution
algebraically in terms of matrix norms corresponding to the random walk.

Abusing notation, let Γ denote the random walk matrix of the graph Γ. Let the character
χ∗ : Zd → C be the worst-case character for the random-walk distribution. Partition G0 into
S0, . . . , Sd−1 depending on their values with respect to χ∗, so that x ∈ Sk ⇐⇒ χ∗(x) = ωk

d .
We need to track how often the walk enters S0, S1, . . . , Sd−1 ⊂ V (Γ). Identify each Si

with an |Si|-dimensional subspace of CV (Γ). For i ∈ Zd let Πi : CV (Γ) → CV (Γ) be the
projection onto this subspace. Finally, let Π =

∑
y∈Zd

ωy
dΠy be the weighted projection

matrix.
Given some initial distribution u⃗ on the vertices, the vector Γtu⃗ tracks the distribution

after taking a t-step walk on the graph. The matrix Π tracks how often the walk enters the
sets S0, . . . , Sd−1, and so the bias of the random walk distribution can be bounded by the
norm of (ΠΓ)t.

FSTTCS 2021

24:4 Near-Optimal Cayley Expanders for Abelian Groups

Let V ∥ denote the subspace spanned by the all-ones vector 1⃗, and V ⊥ = (V ∥)⊥. For a
vector v ∈ V ∥ ⊕ V ⊥, let v∥ and v⊥ denote the projections onto V ∥, V ⊥ respectively.

While ∥ΠΓ∥ = 1 since ∥ΠΓ1⃗∥ = ∥Π1⃗∥ = 1, it turns out that ∥(ΠΓ)2∥ ≤ bias(G0) + 2λ(Γ),
where λ(Γ) is the second eigenvalue of Γ in absolute value.

To see this, notice that if v⃗ ∈ V ⊥ is a unit vector, then ∥ΠΓΠΓv⃗∥ ≤ ∥ΠΓΠ∥λ(Γ)∥v⃗∥ ≤ λ(Γ).
Therefore, the “bad” case is when v⃗ ∈ V ∥. Let u = 1√

|V (Γ)|
1⃗. Using the fact that ∥Π∥ = 1,

∥ΠΓΠΓu∥ = ∥ΠΓΠu∥

≤ ∥ΠΓ(Πu)∥∥ + ∥ΠΓ(Πu)⊥∥

≤ ∥Π(Πu)∥∥ + λ(Γ)∥Π(Πu)⊥∥

≤ ∥Π(Πu)∥∥ + λ(Γ)

It remains to show that ∥Π(Πu)∥∥ ≤ bias(G0). To see this, notice that Π is a diagonal
matrix and u is just 1⃗ scaled by a constant. Further, Π is a block-diagonal matrix of the form

Π =

I|S0|

ωdI|S1|
. . .

ωd−1
d I|Sd−1|

Note that we have reordered the vertices of the graph in order of S0, S1 and so on.
If the blocks are exactly the same size, then Πu ∈ V ⊥, because

∑
y∈Zd

ωy
d = 0. In

general the blocks have different dimensions, but they are the same size up to the bias of G0.
Therefore ∥(Πu)∥∥ ≤ bias(G0).

It follows that a random walk on Γ is a good character sampler. However, this approach
can never amplify bias fast enough to achieve a generating set smaller than O(|G0|

ϵ4+o(1)). The
reason is because while we can bound ∥(ΠΓ)2∥, we cannot bound ∥ΠΓ∥ below 1. Therefore,
we effectively only gain from one in every two steps.

Wide Replacement Walks are Near-Optimal Character Samplers. To circumvent the
“2-step barrier” of expander walks outlined above, Ta-Shma used the wide replacement walk
on a product of two expander graphs [40]. The idea of the wide replacement walk is to take
the product of a D1-regular graph Γ as before with an “inner graph” H on Ds

1 vertices, for
some s ≥ 2. The product graph replaces every vertex of Γ with a copy of H (called a “cloud”)
and then connects clouds to other clouds according to the edge structure of Γ.

Analyzing the bias of the walk involves bounding the matrix norm of Π̇Γ̇Ḣ , where Γ̇ and
Ḣ are random walk matrices on the product corresponding to Γ, H.

Let V ∥ denote the subspace of vectors which are constant on the H-component of the
product, and let V ⊥ = (V ∥)⊥.

Similar to the above case, one can show that Π̇Γ̇Ḣ shrinks the norm of any v ∈ V ⊥ by
a factor of λ(H). The difficult case is when v ∈ V ∥. Here we arrive at the core idea of the
replacement product: if the inner graph H is pseudorandom with respect to Γ, then when
the walk is in V ∥, the next s steps approximate the ordinary random walk on Γ.

This is enough to circumvent the “2-step barrier” since in even the “bad case” where the
walk is stuck in V ∥, we can shrink the bias as though it were taking an ordinary walk on Γ.
As we showed above, this shrinks the bias from some ϵ0 to (ϵ0 + 2λ(Γ))⌊s/2⌋ every s steps. If
we select Γ, H such that ϵ0 + 2λ(Γ) ≤ λ(H)2, then we conclude that we shrink the bias by a
factor of λ(H)s−Os(1) every s steps. So we gain from s−O(1) out of every s steps.

A. Jalan and D. Moshkovitz 24:5

Going from the F2-case to the case of general abelian groups simply requires a more
careful analysis of characters. We defer the full proof to Appendix 2.2.

Morally speaking, the only difference in the analysis is that the projection matrix Π
which tracks how often the walk enters each Si is different. This does not change the overall
argument much; in particular, we can use almost identical graphs Γ, H as in [40].

We conclude that a wide replacement walk allows us to amplify bias of a constant-biased
subset G0 ⊂ Gn of size O(n log(|G|)O(1)) (e.g. the construction of [11]) to an ϵ-biased set of
size O(n log(|G|)O(1)

ϵ2+o(1)), nearly matching the Alon-Roichman bound. For explicit parameters of
the construction, see Appendix C.

1.3 Applications
Explicit constructions of expander graphs are an essential component of algorithms, especially
for derandomization. Here we are interested in the setting of constructing an expanding
Cayley graph from a given abelian group G. Our construction achieves a near-optimal degree,
which improves parameters in various applications. We defer precise statements of these
results and the full proofs to the full version.

Almost k-wise independence. A distribution D ∼ Gn is (ϵ, k)-wise independent if for every
index set I ⊂ [n] of size k, the restriction of D to I is ϵ-close to uniform in statistical distance.
Almost k-wise independent distributions are a fundamental object in and of themselves.
They also have a variety of applications in derandomization, including load balancing [24],
derandomization of Monte-Carlo simulations [24], derandomization of CSP approximation
algorithms [21], and pseudorandom generators [22]. We note that certain applications (e.g.
quantum t-designs [10]) really require almost k-wise independent distributions over arbitrary
alphabet size rather than just the binary alphabet, which motivates our study of ϵ-biased
sets over arbitrary abelian groups.

Vazirani’s XOR Lemma asserts that an ϵ-biased distribution D is also (ϵ
√

|G|k, k)-wise
indepdent for all k ≤ n. Therefore, by constructing an ϵ′-biased distribution where ϵ′ = ϵ√

|G|k
,

we also obtain explicit constructions of (ϵ, k)-wise independent random variables on Gn.

▶ Proposition 2 (Almost k-wise independent sets over abelian groups). Let G be a finite abelian
group given by some generating set. For any ϵ > 0 and n ≥ k ≥ 1 there exists a deterministic,
polynomial-time algorithm whose output is an (ϵ, k)-wise independent distribution over Gn.
The support size is O(n·|G|k+o(1)

ϵ2+o(1)).

Remote Point Problem. A matrix A ∈ Fm×n
2 is (k, d)-rigid iff for all rank-k matrices

R ∈ Fm×n
2 , the matrix A − R has a row with at least d nonzero entries. Valiant initiated

the study of rigid matrices in circuit complexity, proving that an explicit construction of an
(Ω(n), nΩ(1))-rigid matrix for m = O(n) would imply superlinear circuit lower bounds [43].
After more than four decades of research, state of the art constructions have yet to meet this
goal [19].

The Remote Point Problem was introduced by Alon, Panigrahy, and Yekhanin as an
intermediate problem in the overall program of rigid matrix constructions [8]. Arvind and
Srinivasan generalized the problem to any group [12].

Let G be a group, n ≥ 1, and H ≤ Gn a subgroup given by some generating set. For a
given G,H and integer r > 0, the Remote Point Problem is to find a point x ∈ Gn such
that x has Hamming distance greater than r from all h ∈ H, or else reject. In the case of

FSTTCS 2021

24:6 Near-Optimal Cayley Expanders for Abelian Groups

Gn = Fn
2 , this is a relaxation of the matrix rigidity problem, since rather than finding m

vectors x1, . . . , xm ∈ Fn
2 whose linear span is far from all low-dimensional subspaces, we are

given a single subspace and must find just a single point far from it.
To find a remote point, existing algorithms first construct a collection of subgroups

H1, . . . ,Hm ≤ Gm whose union covers all points of distance at most r from H. In the F2
case, [8] find a point x ̸∈

⋃
i

Hi by the method of pessimistic estimators. In the general case,

[12] instead prove that any generating set S ⊂ Gn such that Cay(Gn, S) has sufficiently
good expansion must contain a point outside of

⋃
i

Hi. They find this remote point by

first constructing an expanding generating set S, and then exhaustively searching it. Their
argument implicitly uses the fact that small-bias sets correspond to rigid matrices, albeit
with weak parameters - this connection was developed further in [5].

The construction of [12] for small-bias sets over abelian groups has size O((log(|G|)+ n2

ϵ2)5)
in general, and for log(|G|) ≤ log(n2

ϵ2)O(1) this is improved to O(n2

ϵ2). Our algorithm improves
the dependence on n from n2 to n.

Randomness-Efficient Low-Degree Testing. Let Fq be the finite field on q elements. Low-
degree testing is a property testing problem in which, when given query access to a function
f : Fn

q → Fq and d ≥ 1, one must decide whether f is a degree d polynomial or far (in
Hamming distance) from all degree d polynomials. These tests are a key ingredient in
constructions of Locally Testable Codes (LTCs) and Probabilistically Checkable Proofs
(PCPs) [18].

To test whether f is a degree-d polynomial, a natural test is to sample x, y ∼ Fn and
check whether f(x) agrees with the unique (degree-d, univariate) polynomial obtained by
Lagrange interpolation along d+ 1 points on the line {x+ ty : t ∈ Fq}.

Rubinfeld and Sudan introduced a low-degree test using this idea [38]. It is given
query access to the function f , along with a line oracle function g. Let L denote all lines
{a⃗+ t⃗b : t ∈ Fq} ⊂ Fn

q , where a⃗, b⃗ ∈ Fn. Given a description of a line, the line oracle g returns
a univariate polynomial of degree d defined on that line. Hence we write g : L → Fq[t], where
the image of g is understood to only contain degree-d polynomials.

If f is indeed a degree-d polynomial, then one can set g(ℓ) = f |ℓ for all ℓ ∈ L, and the
following two-query test clearly accepts.

(i) Select x, y ∈ Fn independently, uniformly at random.
(ii) Let ℓ be the line determined by {x+ ty : t ∈ F}. Accept iff f(x) agrees with g(ℓ)(x).

They also showed this test is sound: when f is far from degree-d polynomials, the test
rejects with high probability.

Ben-Sasson et al derandomized this test by replacing the second uniform sample y with a
sample from an ϵ-biased set [18]. This modification improves the randomness efficiency of
the tests, and therefore the length of the resulting LTC and PCP constructions. Moreover,
they showed that the soundness guarantees of low-degree tests are almost unchanged due to
the expansion properties of the Cayley graph on Fn

q .
Our constructions of small-bias sets immediately imply improved randomness-efficiency

of this low-degree test.

▶ Proposition 3 (Improved [18] Theorem 4.1). Let Fq be the finite field of q elements, n ≥ 1,
f : Fn

q → Fq a function, and g : L → Fq[t] a line oracle. There exists a degree-d test which
has sample space size O(qn · n log(q)O(1)

ϵ2+o(1)). For d ≤ q/3 and sufficiently small δ > 0, if the test
accepts with probability ≥ 1 − δ then f has Hamming distance at most 4δ from a degree d
polynomial.

A. Jalan and D. Moshkovitz 24:7

Randomness-Efficient Verification of Matrix Multiplication. Let R denote some finite
field Fq or cyclic group Zq for q ≥ 2. Given A,B,C ∈ Rn×n, the matrix multiplication
verification problem asks whether AB = C.

Naively, one could multiply A,B and then check whether AB = C entry-wise in O(nω)
time, where ω ≈ 2.373 [2]. A classical result of Freivalds suggests the following much simpler
quadratic-time randomized algorithm: Sample x ∈ Rn and check whether ABx = Cx [27].

Observe that the entries of ABx and Cx are linear functions of x. Therefore, sampling x
from a small-bias set gives a randomness-efficient version of Freivalds’ algorithm, at the cost
of slightly higher error. Our construction therefore gives the following randomness efficient
algorithm for verification of matrix multiplication.

▶ Proposition 4. Let R denote a finite field Fq or cyclic group Z/qZ. Given matrices
A,B,C ∈ Rn×n and ϵ-biased set S ⊂ Rn, there exists randomized algorithm to decide whether
AB = C with one-sided error (1

q +ϵ). Its runtime is O(n2) and it uses log(n log(q)O(1)

ϵ2+o(1)) random
bits.

We note that if R = Z, there exists a deterministic O(n2) time algorithm to verify matrix
multiplication [33]. However, this result relies on the fact that Z has characteristic zero. For
the analysis to hold in the case of Zq, we would need a very strong bound on the entries of
A,B,C – namely, that max

i,j
{|Ai,j |, |Bi,j |, |Ci,j |} ≤ q

1
n−1 .

1.4 Related Work
Explicit Constructions. Explicit constructions of expanding generating sets for Cayley
graphs have been mostly studied in the pseudorandomness literature in the context of
small-bias sets for derandomization. Naor and Naor gave a combinatorial construction over
Fn

2 of size O(n
ϵ3) [35]. Alon, Goldreich, Hastad, and Peralta used algebraic arguments to

give constructions over finite fields Fn of size O(n2

ϵ2), assuming the field size is bounded as
log(|F|) < n

log(n)+log(1/ϵ) [6].
Resarchers in various communities have obtained constructions that achieve size

O(poly(n log(|G|)
ϵ)), but suboptimal exponents. In number theory and additive combinatorics

researchers studying the case of n = 1 gave constructions over Zd of size O((log(d)
ϵ)O(1)) [36],

O(log(d)O(1)

ϵ2) [32], and O(d
ϵO(log∗(d))) [1].

Other constructions equivalent to small-bias sets include O((n−1)2

ϵ2)-sized ϵ-discrepancy
sets over finite fields of prime order p when n ≤ p [7], and ϵ-balanced codes over finite fields,
corresponding to small-bias sets over Fn

q of size O(n · q) with constant bias [31].
Ta-Shma’s tour de force gave the first explicit construction of expanding generating sets

of size O(n log(|G|)
ϵ2+o(1)), nearly attaining the Alon-Roichman bound, but only for the special case

of G = F2 [40]. Our work is an extension of Ta-Shma’s bias amplification technique to the
more general setting of arbitrary abelian groups.

Azar, Motwani, and Naor generalized the study of small-bias sets to finite abelian
groups [14]. Over Zn

d they used character sum estimates to give a construction of size O((d+
n2

ϵ2)C), where C ≤ 5 is Linnik’s constant [45]. Assuming the Extended Riemann Hypothesis,
C ≤ 2 + o(1) [15]. When log(d) ≤ log(n2

ϵ2)O(C) they improve the size to O((1 + o(1)) n2

ϵ2).
Arvind and Srinivasan proved that one can project small-bias sets over Zn

d to any abelian
group Gn when d is the largest invariant factor of G. Therefore, using the construction
from [14] they obtain small-bias sets over Gn with the same bias and size as [14], with
d = O(log(|G|)) [12].

FSTTCS 2021

24:8 Near-Optimal Cayley Expanders for Abelian Groups

The most general setting is to consider Cayley graphs over non-abelian groups. Wigderson
and Xiao derandomized the Alon-Roichman construction using the method of pessimistic
estimators [44]. Arvind, Mukhopadhyay, and Nimbhorkhar later gave a derandomization
for both directed and undirected Cayley graphs using Erdos-Renyi sequences [13]. However,
both algorithms require the entire group table of Gn as input, rather than just a generating
set. Since generating sets are of size O(n log(|G|)), these algorithms are exponentially slower,
running in time O(poly(|G|n)) rather than O(poly(n log(|G|)). Nevertheless, they have
applications to settings such as homomorphism testing [39], which Wigderson and Xiao
derandomized using their construction of expanding generating sets [44].

Chen, Moore, and Russell obtained generating sets of size O(n log(|G|)O(1)

ϵ11) over arbitrary
groups Gn when |G| is a constant [23] . Like Ta-Shma, their technique is to use bias
amplification via expander graphs; specifically, they amplify bias via an iterated application
of a 1-step random walk on an expander graph. Alon in 1993, and later Rozenman and
Wigderson in 2004, had already noted that this technique amplifies bias for G = F2 [25].
Chen, Moore, and Russell generalized this analysis to all groups, using techniques from
harmonic analysis and random matrix theory [23].

Existing work seems far from obtanining constructions for non-abelian groups near the
Alon-Roichman bound. Known work tends to concentrate on special classes of non-abelian
groups with some useful algebraic structure. Chen, Moore, and Russell constructed generating
sets of size O((n log(|G|))1+o(1)

ϵO(1)) for smoothly solvable groups with constant-exponent abelian
quotients [23]. Their analysis exploits the structure of solvable groups via Clifford theory. It
also hinges on the assumption that the quotients in the derived series have constant exponent.

Arvind et al later gave a construction of size Õ(log(|G|)2−o(1)

ϵ8) for solvable subgroups G of
permutation groups [11]. Their construction recursively generates expanding generating sets
for quotients in the derived series of the group, and uses the thin sets construction of [1] as
a base set. Unlike [23] they do not require successive quotients of the derived series to be
small; however, their argument does rely on an O(log(n)) upper bound on the length of the
derived series for any solvable G ≤ Sn, which is not true for solvable groups in general.

Lower Bounds. Alon and Roichman gave a randomized upper bound of O(n log(|G|)
ϵ2) on the

size of a generating set for any finite Gn with spectral gap (1 − ϵ) [9]. In the same paper,
they gave a nearly matching lower bound when G is abelian, of Ω((n log(|G|)

ϵ2)1−o(1)). This
is a sharper version of the folklore result that an abelian group Gn requires O(n log(|G|))
generators for its Cayley graph to be connected.

For non-abelian groups, the existence of sparse expanders means the best lower bound
in general is the Alon-Boppana bound. This removes the dependence on |G| and n, only
requiring a generating set of size Ω(1

ϵ2) [3] to achieve spectral gap of 1 − ϵ. Indeed, explicit
constructions of Ramanujan graphs can be built from Cayley graphs of non-abelian groups [34],
and therefore attain this bound.

Expander Walks. Random walks on expander graphs are an essential tool in computer
science. Rather than surveying the vast literature, we refer the reader to the surveys [28, 42].
Two remarks are in order.

First, our use of wide replacement walks is essentially a way of building expander graphs
from other expander graphs. This is thematic of several previous works, such as the zig-zag
product [37]. Note that the zig-zag product is just a modification of the replacement product;
indeed, the (wide) replacement product itself can be used to give explicit, combinatorial
constructions of Ramanujan graphs [16]. Ta-Shma used wide replacement walks to amplify

A. Jalan and D. Moshkovitz 24:9

spectral gaps of Cayley graphs on Fn
2 [40]; this construction relied on previous constructions

of expander graphs, although the expander graphs were not required to be Cayley graphs
themselves.

Second, the fact that “expanders are good character samplers” is surprising given that
characters are sensitive to input perturbations. A recent work of Cohen, Peri, and Ta-Shma
uses Fourier-analytic techniques to classify a large class of Boolean functions which can be
fooled by expander walks, including all symmetric Boolean functions [25].

1.5 Open Problems
In this work, we gave an efficient deterministic algorithm to compute an expanding generating
set of an abelian group. Our construction achieves optimal dependence on dimension and
near-optimal dependence on error, resulting in improvements in various applications. Here,
we discuss some natural open questions raised by our work.

Expanding generating sets of optimal size. The Alon-Roichman theorem proves that
every group Gn has an expanding generating set S ⊂ Gn of size |S| = O(log(|G|)

ϵ2) [9]. This
construction has not been fully derandomized for any group; even in the case of Gn = Fn

2 ,
Ta-Shma’s construction only asympotically approaches a size of O(n

ϵ2) as ϵ → 0. The actual
size of the generating set is O(n

ϵ2+o(1)), and this o(1) term is seemingly unavoidable when
using expander walks [40].

Similarly, our algorithm gives an expanding generating S ⊂ Gn of size O(n log(|G|)O(1)

ϵ2+o(1)), for
finite abelian G. The additional poly log(|G|) factor comes from the bounds on constant-bias
subsets of abelian groups; any construction of a constant-bias set S ⊂ Gn of size O(n log(|G|))
would immediately give expanding generating sets of size O(n log(|G|)

ϵ2+o(1)). To our knowledge,
not even a candidate construction exists which would give constant-bias subsets of size
O(n log(|G|)) for abelian groups; this is an interesting and potentially easier open problem,
since it requires none of the expander walks machinery that we need to get arbitrarily small ϵ.

There is a candidate construction that could beat the Alon-Roichman bound for G = F2,
based on algebraic-geometric codes [17]. The code construction would give an ϵ-biased set
S ⊂ Fn

2 of size |S| = O(n
ϵ2 log(1/ϵ)), assuming a conjecture in algebraic geometry. The authors

themselves note that they have “no idea” whether this conjecture is valid [17].

Expanding generating sets of non-abelian groups. While wide replacement walks amplify
bias quite naturally for abelian groups, it is unclear whether they can do so for general
groups. Dealing with matrix-valued irreducible representations, rather than scalar-valued
characters, makes the analysis of bias amplification considerably more involved; hence even
the analysis of the 1-step walk is nontrivial [23]. It would be very interesting to see whether
one can place algebraic conditions on a group that are weaker than commutativity, but still
ensure that the wide replacement walk amplifies bias.

Existing works on expanding generating sets for non-abelian groups have studied solvable
groups, which generalize abelian groups [23, 11]. However, if we restrict the algorithm to
input instances which are all non-abelian groups, then existence results suggest that one
should be able to beat the Alon-Roichman bound.

For example, it is known that for every finite simple non-abelian group Gn, there exists a
generating set S ⊂ Gn such that Cay(Gn, S) has spectral gap 1 − ϵ, and |S| is independent
of n [20]. Therefore, restricting input instances to simple groups seems too easy, while an
algorithm for all groups seems too hard. Is there some natural natural class of non-abelian,
non-simple groups for which algorithms can efficiently find expanding generating sets near
(or even below) the Alon-Roichman bound?

FSTTCS 2021

24:10 Near-Optimal Cayley Expanders for Abelian Groups

Decoding over any finite field. A recent work of Jeronimo et al gives a decoding algorithm
for a modified version of Ta-Shma’s codes [30]. Since our work gives ϵ-balanced codes over
any finite field, it would be interesting to extend both the modification of the codes and the
decoding algorithm of [30] to this general setting.

Classifying the power of expander walks on groups. So far we have discussed how random
walks on expanders are good samplers in various ways, such as the expander Chernoff bound,
parity sampling, and character sampling. Cohen, Peri, and Ta-Shma study the class of all
Boolean functions that expander walks fool [25]. It would be very interesting to extend
their results to functions on groups, perhaps using similar tools from harmonic analysis and
representation theory. For example, for which groups G besides F2 do expander walks fool
all symmetric functions on Gn?

1.6 Organization
The rest of this paper is organized as follows. In Section 2 we prove that our wide replacement
walk construction gives an expanding generating set over any finite abelian group with near-
optimal degree. Due to space constraints we defer some proofs to the full version of the
paper.

Appendix C contains the precise parameters of the construction. Appendices A and B
contain technical preliminaries on Cayley graphs and wide replacement walks, respectively.

2 Expanding Generating Sets for Abelian Groups

Throughout this section, let G be a finite abelian group and n ≥ 1. In this section, we
will describe an efficient deterministic algorithm to construct a generating set S ⊂ Gn

such that the Cayley graph Cay(Gn, S) has second eigenvalue at most ϵ. The degree is
|S| = O(n log(|G|)O(1)

ϵ2+o(1)).
The inputs to our algorithm are a generating set G′ ⊂ G, integer n ≥ 1, and desired

expansion ϵ > 0. The algorithm proceeds as follows:
(i) Construct an ϵ0-biased set S0 ⊂ Gn with support size O(n log(|G|)O(1)) for a constant

ϵ0 < 1.
(ii) Perform a wide replacement walk to amplify the bias of S0 to ϵ. Specifically, we identify

S0 with the vertices of an outer graph Γ, and then choose an inner graph H in a manner
described later. We emphasize that while Γ is an expander graph whose vertex set is
S0, it is not required to be a Cayley graph on S0. For the purposes of this step, the
group structure of G is irrelevant.

Let t ≥ 1 be the walk length, to be chosen later. The output ϵ-biased set S ⊂ Gn

corresponds to length-t walks on the wide replacement product of Γ and H . Given a sequence
of vertices (x0, ..., xt) ∈ V (Γ) × V (H), we add up the components corresponding to V (Γ),
which are just elements of S0, to obtain some element of Gn. This gives the elements of S.

Next, let us informally describe parameter choices (precise choices are in section C). Let
D2 be the degree of H. At every step in the wide replacement walk we need to specify some
i ∈ [D2] to take a step. It follows that S ⊂ Gn has a size of O(n log(|G|)O(1) ·Dt

2). We must
choose t large enough to shrink the bias to ϵ. The choice t (walk length) and D2 (degree of
the inner graph) will determine the overall size of the output generating set.

A. Jalan and D. Moshkovitz 24:11

These choices hinge on the bias amplification bound of the wide replacement walk. We
show that the s-wide replacement walk shrinks the bias by a factor of O(s2 · λ(H)s−3) every
s steps. However, the size of the walk distribution grows by a factor of O(Ds

2) every s steps.
This imperfect bias amplification is why we cannot get optimal dependence on ϵ, as that
would require that the bias shrinks by exactly O(λ(H)s) every s steps.

Therefore we cannot choose H to be an optimal spectral expander with λ(H) = Θ(1√
D2

).

Instead, optimizing for the size of the output distribution, we set s = Θ(log(1/ϵ)1/3

log log(1/ϵ)1/3),
second eigenvalue λ(H) = Θ(s·log(D2)√

D2
), and the walk length t = Θ(log(1/ϵ)

log(1/λ(H)) · s2

s2−5s+1) =
Θ((log(1/ϵ)

log(1/λ(H)))1+o(1)). This is exactly the reason our output set has a dependence of O(1
ϵ2+o(1))

rather than exactly O(1
ϵ2), and the same is true for [41].

This section is organized as follows. In section 2.1, we describe how one can identify the
elements S0 with the vertices of an expander graph, and then perform the ordinary random
walk on the graph to amplify the bias of S0, albeit suboptimally. In section 2.2 we show how
to express the bias of a wide replacement walk algebraically. In section 2.3 we prove an upper
bound on this algebraic expression, therefore proving the bias amplification bound of the
wide replacement walk. Finally, in section C we describe the details and exact parameters
for the wide replacement walk, as well as the ϵ0-biased subset of Gn.

2.1 The ordinary expander walk
Let G be a finite abelian group. For ease of notation, we will refer to G rather than Gn until
section C, when we need to discuss parameters. Since Hn is a finite abelian group for all
abelian H, there is no loss of generality.

In this section we will show how to amplify the bias of a small-bias set in G by performing a
random walk on an expander. This will be a lemma in the analysis of our actual construction,
which involves a wide replacement walk.

To state the bias amplification theorem, we need some notation.
Let G = Zd1 ⊕ · · · ⊕Zdk

be the invariant factor decomposition of G. Notice that di|dj for
any i < j. In particular, all di divide dk. For x ∈ G write x = (x1, ..., xk), so that xi ∈ Zdi

for each i.
Fix a nontrivial character χ : G → C∗ corresponding to a group element a ∈ G. Let

a = (a1, ..., ak). Then for a given x ∈ G, χ(g) = ωa1·x
d1

· · ·ωak·x
dk

. Since all di divide dk, we
can write this as

χ(g) = ω

∑k

i=1
(dk

di
ai·xi) mod dk

dk

Now, let Sinit ⊂ G have bias ϵ0. Identify Sinit with the vertices of some degree-regular
expander graph Γ. We write V := V (Γ) = Sinit. In order to understand the bias of a random
walk on Γ with respect to χ, we have to track how often the walk enters vertices which map
to ωdk

, ω2
dk

, and so on.
We will partition Sinit as follows. For y ∈ Zdk

, let Sy be the elements of Sinit which are
mapped to ωy

dk
by χ. Formally, Sy = {x ∈ Sinit : y = (

∑k
i=1

dk

di
xi · ai) mod dk}. Observe

that {Sy : y ∈ Zdk
} is a partition of Sinit.

Next, let t > 0 be the walk length. We will partition all length-(t+ 1) sequences in Sinit

according to their sum. For y ∈ Zdk
, let Ty = {b ∈ Zt+1

dk
: (

∑
i bi) mod dk = y}. Again,

notice that {Ty : y ∈ Zdk
} is a partition of Zt+1

dk
.

Finally, fix y ∈ Zdk
. The set Sy corresponds to some subset of the vertices of Γ. Therefore

we can identify Sy with an |Sy|-dimensional subspace of CV . Let Πy : CV → CV be the
projection matrix onto this subspace. Let Π =

∑
y∈Zdk

ωy
dk

Πy. We write Π = Π(χ) to
indicate the dependence on choice of χ.

FSTTCS 2021

24:12 Near-Optimal Cayley Expanders for Abelian Groups

We can now state the bias amplification theorem for ordinary expander walks.

▶ Theorem 5 (Ordinary t-step expander walk). Let Sinit ⊂ G have bias ϵ0 and let Γ = (Sinit, E)
be a d-regular expander graph with λ(Γ) = λ < 1. Suppose D ∼ G is the distribution induced
by beginning at a uniform vertex and taking a t-step random walk (x(0), ..., x(t)) and then
adding the results of the walk to get an element (

∑
i x

(i)) ∈ G.
Let χ∗ : G → C∗ be the nontrivial character which maximizes the bias of D. Let

Π = Π(χ∗), and ∥ · ∥ be the matrix operator norm. Finally, abusing notation, let Γ be the
random walk matrix of Γ. Then,

bias(D) = bias(χ∗) ≤ ∥(ΠΓ)tΠ∥

Proof. Let u = 1√
|V (Γ)|

1⃗ be the normalized all-ones vector. Let a∗ ∈ G be the element
corresponding to χ∗. Let (a∗

1, ..., a
∗
k) ∈ Zd1 ⊕ · · · ⊕ Zdk

denote a∗ written in the invariant
factor decomposition.

Let W ∼ V t+1 denote the distribution of all t-step walks on Γ. Let (x(0), ..., x(t)) ∼ W be
some sequence of random walk steps. So x(0) ∼ Sinit (since the walk begins at a uniformly
random vertex) x(i+1) is a uniformly random neighbor of x(i). If v⃗(i) ∈ CV is the distribution
at step i, then v⃗(i+1) = Γv⃗(i).

Recall that we use subscripts to denote invariant factors, so x = (x1, ..., xk) ∈
k⊕

i=1
Zdi .

Bias(D) = BiasD(χ∗)

=

∣∣∣∣∣ E
(x(0),...,x(t))∼W

k∏
i=1

ω
xi·a∗

i

di

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ E
(x(0),...,x(t))∼W

ω

k∑
i=1

dk
di

xi·a∗
i

dk

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈Zdk

ωy
dk

P
(x(0),...,x(t))∼W

[y = (
t∑

j=0

k∑
i=1

dk

di
x

(j)
i · a∗

i) mod dk]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈Zdk

∑
b∈Ty

ωy
dk

P
(x(0),...,x(t))∼W

[
t∧

j=0
(x(j) ∈ Sbj)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

y∈Zdk

ωy
dk

(uT
∑
b∈Ty

Πbt
Γ · · · Πb1ΓΠb0u)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣uT (
∑

b∈Zt+1
dk

ω

∑
j

bj

dk
Πbt

Γ · · · Πb1ΓΠb0)u

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣uT (
∑

bt∈Zdk

ωbt

dk
Πbt

)Γ · · · (
∑

b1∈Zdk

ωb1
dk

Πb1)Γ(
∑

b0∈Zdk

ωb0
dk

Πb0)u

∣∣∣∣∣∣
=

∣∣uT (ΠΓ)tΠu
∣∣

≤ ∥(ΠΓ)tΠ∥ ◀

We have thus obtained an algebraic expression for the bias of the walk distribution, which
we will now upper-bound. We defer the proof to the full version.

A. Jalan and D. Moshkovitz 24:13

▶ Theorem 6 (Matrix norm bounds). Let Π,Γ be as before.
(i) ∥Π∥ = 1.
(ii) ∥(ΠΓ)2∥ ≤ ϵ0 + 2λ

It follows that ∥(ΠΓ)tΠ∥ ≤ (ϵ0 + 2λ)⌊t/2⌋.

Combining the two results in this section, it follows that a t-step walk amplifies the bias
to (ϵ0 + 2λ)⌊t/2⌋.

2.2 The wide replacement walk
In this section and the subsequent one, we will show how the wide replacement walk amplifies
bias more efficiently than an ordinary expander walk. We will proceed in a similar manner
to the last section, by first obtaining an algebraic expression for the bias of the random walk
distribution, and then upper-bounding the algebraic expression in section 2.3.

2.2.1 Setup
Let Γ = (Sinit, E) be a graph whose vertices are some constant-bias set Sinit ⊂ G as before.
Suppose Γ is D1-regular. Let ϕΓ : [D1] → [D1] be the local inversion function of Γ.

Let s > 0 be an integer, and let H be a D2-regular expander graph on [D1]s vertices. We
will abuse notation and use Γ, H to denote the random walk matrices of Γ, H respectively.

Let V 1 = CSinit = CV (Γ) and V 2 = CDs
1 = CV (H). We define three operators on V 1 ⊗V 2

that we need to describe the bias of the wide replacement walk. Let v1 ⊗ v2 ∈ V 1 ⊗ V 2.
For i ∈ [s] define the projection matrix Pi : V 2 → CD1 as follows. Notice V 2 = CV (H) ∼=

CDs
1 . Identifying V (H) with Zs

D1
, let Zi ⊂ V (H) correspond to {(0, ..., 0, ai, 0, ..., 0) ∈ Zs

D1
:

ai ∈ ZD1}. So we can identify Zi ⊂ V (H) with a D1-dimensional subspace of CV (H). Then
let Pi : V 2 → CD1 be the projection onto this subspace.

Given some v1 ∈ V 1 and j ∈ [D1], the vector v1[j] ∈ V 1 is a permutation of the
coordinates of v1 based on the mapping of each vertex to its jth neighbor in Γ 3. This
corresponds to taking a step in Γ, by moving along the edge numbered j incident to the
current vertex. For w ∈ CD1 , let v1[w] =

∑D1
j=1 wj · v1[j].

Finally, given the local inversion function ϕΓ : [D1] → [D1] of Γ and i ∈ [s], define
ψ

(i)
Γ : [D1]s → [D1]s as the function which applies ϕΓ to the ith coordinate and leaves other

coordinates unchanged. Since ϕΓ is a permutation on [D1], ψ(i)
Γ is a permutation on [D1]s.

Abusing notation, let ψ(i)
Γ : CDs

1 → CDs
1 denote the permutation matrix which permutes

coordinates according to ψ(i)
Γ .

We are ready to define the three operators which describe the bias of the wide replacement
walk.

Ḣ(v1 ⊗ v2) = v1 ⊗H(v2)

∀χ ∈ Ĝ, y ∈ Zd : Π̇y(χ)(v1 ⊗ v2) = Πy(χ)(v1) ⊗ v2

∀ℓ ∈ {0, 1, ..., s− 1} : Γ̇ℓ(v1 ⊗ v2) = v1[Pℓ(v2)] ⊗ ψ
(ℓ)
Γ (v2)

Note that each of these operators is a tensor product of operators on V 1, V 2, and hence
preserves tensor products.

3 This is well-defined as long as the graph Γ is d-regular, since its adjacency matrix is then just a sum of
d permutation matrices.

FSTTCS 2021

24:14 Near-Optimal Cayley Expanders for Abelian Groups

Moreover, notice Ḣ, Γ̇t mod s are precisely the transition matrices of the H-step and
Γ-step in the wide replacement walk at time t.

For a character χ : G → C∗ let Π̇(χ) =
∑

y∈Zdk
ωy

dk
Π̇y(χ). Π̇ plays the role of Π from the

analysis of the ordinary expander walk.
For notational convenience,

L̇j(χ) := Π̇(χ)Γ̇jḢ

2.2.2 Algebraic Expression for the Bias
In this section we will express the bias of the wide replacement walk distribution in terms of
the matrix norms of L̇0, ..., L̇s−1.

▶ Proposition 7 (t-step s-wide replacement product walk). Let G be a finite abelian group.
Let Sinit ⊂ G have bias ϵ0 and let Γ = (Sinit, E) be a D1-regular expander graph. Let H be a
D2 regular expander on [D1]s vertices for some integer s ≥ 1.

Let Dwalk ∼ G be the t-step s-wide replacement product walk distribution. It is defined by
beginning at a uniform vertex and performing an t-step wide replacement wide on V (Γ)×V (H).
Given a sequence of vertices ((a0, b0), ..., (at, bt)) ∈ V (Γ) × V (H) obtained from a walk, we
output (

∑
i ai) ∈ G. Then Dwalk ∼ G is the distribution induced by taking all such t-step

walks.
We claim that if χ∗ : G → C∗ is the nontrivial character which maximizes the bias of

Dwalk, and Π̇ = Π̇(χ∗), then using the notation from above,

bias(Dwalk) = bias(Dwalk, χ
∗) ≤ ∥L̇s−1(χ∗) · · · L̇0(χ∗)∥⌊t/s⌋

The proof is similar to that of Theorem 5. See the full version.
It remains to be shown that this matrix norm is indeed bounded. To show that the

wide replacement walk gains from s − O(1) out of every s steps, we need to show that
∥L̇s−1 · · · L̇0∥ ≤ λ(H)s−O(1).

2.3 Bounding the matrix norm
In the previous section we showed that the bound the bias of the wide-replacement walk
distribution, it suffices to bound the operator norm of the following matrix, defined with
respect to the worst-case character χ∗ of the walk distribution:

L̇s−1 · · · L̇0

This is almost exactly the same matrix as the one analyzed in [41]. The difference is
that the operator Π̇, instead of tracking how often the walk enters the sets in a bipartition
of Sinit, now tracks how often the walk enters the sets in a dk-way partition of Sinit. Here
dk = Ω(log(|G|)) is the largest invariant factor of G.

As a consequence, the diagonal entries of Π̇ now come from the dk
th roots of unity, rather

than {±1}. The analysis of the matrix bound from [41] mostly carries through, although
working over CV1 ⊗ CV 2 rather than the reals will require some care.

As in [41], our argument will proceed by considering arbitrary vectors v, w and analyazing
⟨v, L̇s1 · · · L̇0w⟩. We will repeatedly decompose the vectors into their parallel and perpendic-
ular components. Let V ∥ = V 1 ⊗ 1⃗ denote vectors whose H-component is a scalar multiple
of 1⃗ (“parallel vectors”), and V ⊥ = (V ∥)⊥ (“perpendicular vectors”).

A. Jalan and D. Moshkovitz 24:15

Because of the spectral expansion of H, every time a vector is in V ⊥ we can show it
shrinks by a factor of λ(H). The hard case is when vectors are in V ∥. Here, we will prove a
technical lemma which is a straightforward generalization of the core lemma in [41]. The
lemma shows if the walk distribution is in V ∥, then any sequence of s steps imitates a random
walk of s steps on the outer graph Γ. This allows us to argue that the bias is amplified as
though taking the ordinary random walk on Γ. If the bias so far is α, then this scales the
bias by α 7→ (α+ 2λ(Γ))s/2 after s steps.

This turns out to be enough. Let ϵ0 = bias(Sinit) be the bias of the initial set Sinit ⊂ G.
Since ϵ0 is a constant, we can select graphs Γ, H such that ϵ0 + 2λ(Γ) ≤ λ(H)2. Therefore,
while we do not gain a factor of (λ(Γ))s every s steps, we will gain according to a factor of
(λ(H))s−O(1).

Therefore, whether in the V ⊥ or V ∥ case, we shrink the bias by a factor of λ(H)s−O(1)

for every s steps.
We begin by proving the technical lemma about parallel vectors. We will frequently use

the following fact.

▶ Proposition 8 (Operator-Averaging, [41] Claim 14). Let Ω be a finite set and P,Q probability
distributions on Ω. Let ∥P −Q∥1 denote the difference of the distributions in the 1-norm.
Further, let {Tx}x∈Ω be a family of linear operators on Cn indexed by Ω, such that for all
x ∈ Ω, ∥Tx∥ ≤ 1. Let A = Ex∼P [Tx] and B = Ex∼Q[Tx]. We claim that for all v, w ∈ Cn

that

|⟨Av,w⟩ − ⟨Bv,w⟩| ≤ ∥P −Q∥1∥v∥∥w∥

Next, we need to formalize the notion of the wide replacement walk “imitating” the
ordinary random walk on the outer graph, which we do via the notion of a pseudorandom
inner graph.

▶ Definition 9 (Pseudorandom inner graph). Let Γ be a D1-regular graph with local inversion
function ϕΓ : [D1] → [D1]. Let H be a D2-regular graph on Ds

1 vertices. Let ζ ≥ 0. We say
H is ζ-pseudorandom with respect to Γ if for all s-step sequences in the s-wide replacement
walk, the corresponding V 1-instructions are ζ-close to Unif([D1]s) in ℓ1-norm.

Formally, let the adjacency matrix of H be H = 1
D2

∑D2
i=1 Ξi, where each Ξi is a per-

mutation matrix 4. Let ξi : V (H) → V (H) be the permutation map corresponding to Ξi. For
0 ≤ k < s, let ψk : [D1]s → [D1]s be ψk(a0, ..., as−1) = (a0, ..., ak−1, ϕΓ(ak), ak+1, ..., as−1).

Fix (j0, ..., js−1) ∈ [D2]s. For some (u1, u2) ∈ V (Γ) × V (H) let σj0(u2) = γj0(u2). For
ℓ > 0, let

σjℓ,...,j0(u2) = γjℓ
(ψℓ−1(σjℓ−1,...,j0(u2)))

We say (j0, ..., js−1) ∈ [D2]s is ζ-pseudorandom with respect to Γ if

∥(π0(σj0(Unif([D1]))), ..., πs−1(σjs−1,...,j0(Unif([D1])))) − Unif([D1]s)∥1 ≤ ζ

We say the inner graph H is ζ-pseudorandom with respect to the outer graph Γ if for all
(j0, ..., js−1) ∈ [D2]s, (j0, ..., js−1) is ζ-pseudorandom with respect to Γ.

4 By the Birkhoff-von Neumann Theorem, the adjacency matrix of a d-regular graph is a sum of d
permutation matrices.

FSTTCS 2021

24:16 Near-Optimal Cayley Expanders for Abelian Groups

If we unravel the definition, this is simply requiring that H is compatible with the edge
labeling of Γ in precisely the way that we want. Pseudorandomness is a strong condition on
H which, by definition, guarantees the wide-replacement walk imitates the ordinary walk on
Γ in a suitable sense.

With this definition we can return to proving the lemma. We will begin by proving the
pseudorandomness claim for the case where D2 = 1; the general case where D2 ̸= 1 follows
from another application of operator averaging, viewing the matrix H as an average of D2
permutation matrices. We defer the proofs to the full version.

▶ Proposition 10 (Action on parallel vectors). Let ℓ ≤ s. Suppose that the sequence
(j0, ..., jℓ−1) ∈ [D2]s is ζ-pseudoranom with respect to the local inversion function ϕ : [D1] →
[D1]. Let Ξ̃j0 , ..., Ξ̃jℓ−1 denote the operators on V 1 ⊗ V 2 corresponding to the permutations
ξj0 , ..., ξjℓ−1 on V (H). Let 1V (H) denote the normalized all-ones vector of length |V (H)|.

For any τ = τ1 ⊗ 1V (H) and υ = υ1 ⊗ 1V (H),∣∣∣⟨Π̇Γ̇ℓ−1Ξ̃jℓ−1 · · · Π̇Γ̇0Ξ̃j0τ, υ⟩ − ⟨(πΓ)ℓτ1, υ1⟩
∣∣∣ ≤ ζ∥τ∥∥υ∥

▶ Corollary 11 (Generalized action on parallel vectors ([41] Theorem 27)). Suppose that
H is ζ-pseudorandom with respect to the local inversion function ϕΓ of Γ. For every
i1, i2 ∈ {0, 1, ..., s− 1}, and every τ, υ ∈ V ∥,∣∣∣⟨L̇i2 · · · L̇i1τ, υ⟩ − ⟨(ΠΓ)i2−i1+1τ1, υ1⟩

∣∣∣ ≤ ζ∥τ∥∥υ∥

Now we are ready to prove bound the matrix norm of L̇s1 · · · L̇0, which expresses the bias
of the wide replacement walk. Our argument will proceed by considering the quadratic form
⟨v, L̇s1 · · · L̇0w⟩ for arbitrary v, w and then repeatedly decomposing v, w into their V ∥ and
V ⊥ components. Because of the spectral expansion of H, every time a vector is in V ⊥ we
can show it shrinks by a factor of λ2 = λ(H).

The hard case is when vectors are in V ∥. Here, we will use Corollary 11 to argue that
any sequence of s steps imitates a random walk on the outer graph Γ. This allows us to
argue that the bias is amplified as though taking the ordinary random walk on Γ. This scales
the bias by (ϵ0 + 2λ1)s/2 at every s steps.

This is enough, as we can assume that ϵ0 + 2λ1 ≤ λ2
2. Therefore, while we do not gain a

factor of (λ1)s every s steps, we will gain according to a factor of (λ2)s. Since λ2 < 1, the
difference between gaining according to λ2 or λ1 does not matter asymptotically.

▶ Theorem 12 (Bounding algebraic expression for bias). Suppose that:
(i) H is ζ-pseudorandom with respect to ϕΓ
(ii) ϵ0 + 2λ(Γ) ≤ λ(H)2

Then we obtain the following bound for the bias of the walk after s steps.

∥L̇s−1 · · · L̇0∥ ≤ λ(H)s + sλ(H)s−1 + s2(λ(H)s−2 + ζ)

We defer the proof to the full version.

References
1 Miklós Ajtai, Henryk Iwaniec, János Komlós, János Pintz, and Endre Szemerédi. Construction

of a thin set with small Fourier coefficients. Bull. London Math. Soc., 22(6):583–590, 1990.
doi:10.1112/blms/22.6.583.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539. SIAM, 2021.

https://doi.org/10.1112/blms/22.6.583

A. Jalan and D. Moshkovitz 24:17

3 Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.
4 Noga Alon. Explicit expanders of every degree and size. Combinatorica, pages 1–17, 2021.
5 Noga Alon and Gil Cohen. On rigid matrices and u-polynomials. In 2013 IEEE Conference

on Computational Complexity, pages 197–206. IEEE, 2013.
6 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost

k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
7 Noga Alon and Yishay Mansour. ϵ-discrepancy sets and their application for interpolation of

sparse polynomials. Inform. Process. Lett., 54(6):337–342, 1995. doi:10.1016/0020-0190(95)
00032-8.

8 Noga Alon, Rina Panigrahy, and Sergey Yekhanin. Deterministic approximation algorithms
for the nearest codeword problem. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 339–351. Springer, 2009.

9 Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random Structures
Algorithms, 5(2):271–284, 1994. doi:10.1002/rsa.3240050203.

10 Andris Ambainis and Joseph Emerson. Quantum t-designs: t-wise independence in the
quantum world. In Twenty-Second Annual IEEE Conference on Computational Complexity
(CCC’07), pages 129–140. IEEE, 2007.

11 V. Arvind, Partha Mukhopadhyay, Prajakta Nimbhorkar, and Yadu Vasudev. Expanding
generating sets for solvable permutation groups. SIAM J. Discrete Math., 32(3):1721–1740,
2018. doi:10.1137/17M1148979.

12 V. Arvind and Srikanth Srinivasan. The remote point problem, small bias spaces, and
expanding generator sets. In STACS 2010: 27th International Symposium on Theoretical
Aspects of Computer Science, volume 5 of LIPIcs. Leibniz Int. Proc. Inform., pages 59–70.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2010.

13 Vikraman Arvind, Partha Mukhopadhyay, and Prajakta Nimbhorkar. Erdős-rényi sequences
and deterministic construction of expanding cayley graphs. In Latin American Symposium on
Theoretical Informatics, pages 37–48. Springer, 2012.

14 Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability distributions using
small sample spaces. Combinatorica, 18(2):151–171, 1998. doi:10.1007/PL00009813.

15 Eric Bach and Jonathan Sorenson. Explicit bounds for primes in residue classes. Mathematics
of Computation, 65(216):1717–1735, 1996.

16 Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of almost-ramanujan
graphs using the zig-zag product. SIAM Journal on Computing, 40(2):267–290, 2011.

17 Avraham Ben-Aroya and Amnon Ta-Shma. Constructing small-bias sets from algebraic-
geometric codes. Theory Comput., 9:253–272, 2013. doi:10.4086/toc.2013.v009a005.

18 Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient
low degree tests and short PCPs via epsilon-biased sets. In Proceedings of the Thirty-Fifth
Annual ACM Symposium on Theory of Computing, pages 612–621. ACM, New York, 2003.
doi:10.1145/780542.780631.

19 Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices from
rectangular pcps or: Hard claims have complex proofs. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 858–869. IEEE, 2020.

20 Emmanuel Breuillard and Alexander Lubotzky. Expansion in simple groups. arXiv preprint,
2018. arXiv:1807.03879.

21 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for
maximum constraint satisfaction problems. ACM Trans. Algorithms, 5(3):Art. 32, 14, 2009.
doi:10.1145/1541885.1541893.

22 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
generators from polarizing random walks. Theory Comput., 15:Paper No. 10, 26, 2019.
doi:10.4086/toc.2019.v015a010.

23 Sixia Chen, Cristopher Moore, and Alexander Russell. Small-bias sets for nonabelian groups:
derandomizations of the Alon-Roichman theorem. In Approximation, randomization, and
combinatorial optimization, volume 8096 of Lecture Notes in Comput. Sci., pages 436–451.
Springer, Heidelberg, 2013. doi:10.1007/978-3-642-40328-6_31.

FSTTCS 2021

https://doi.org/10.1016/0020-0190(95)00032-8
https://doi.org/10.1016/0020-0190(95)00032-8
https://doi.org/10.1002/rsa.3240050203
https://doi.org/10.1137/17M1148979
https://doi.org/10.1007/PL00009813
https://doi.org/10.4086/toc.2013.v009a005
https://doi.org/10.1145/780542.780631
http://arxiv.org/abs/1807.03879
https://doi.org/10.1145/1541885.1541893
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.1007/978-3-642-40328-6_31

24:18 Near-Optimal Cayley Expanders for Abelian Groups

24 Tobias Christiani and Rasmus Pagh. Generating k-independent variables in constant time.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 196–205.
IEEE, 2014.

25 Gil Cohen, Noam Peri, and Amnon Ta-Shma. Expander random walks: A fourier-analytic
approach. In Electron. Colloquium Comput. Complex, volume 27, page 6, 2020.

26 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković. Efficient
approximation of product distributions. Random Structures Algorithms, 13(1):1–16, 1998.
doi:10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W.

27 Rusins Freivalds. Probabilistic machines can use less running time. In IFIP congress, volume
839, page 842, 1977.

28 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

29 Akhil Jalan and Dana Moshkovitz. Near-optimal cayley expanders for abelian groups. arXiv
preprint, 2021. arXiv:2105.01149.

30 Fernando Granha Jeronimo, Dylan Quintana, Shashank Srivastava, and Madhur Tulsiani.
Unique decoding of explicit epsilon-balanced codes near the gilbert-varshamov bound. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 434–445.
IEEE, 2020.

31 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions
on Information Theory, 18(5):652–656, 1972.

32 Nicholas M. Katz. An estimate for character sums. J. Amer. Math. Soc., 2(2):197–200, 1989.
doi:10.2307/1990974.

33 Ivan Korec and Jiří Wiedermann. Deterministic verification of integer matrix multiplication
in quadratic time. In International Conference on Current Trends in Theory and Practice of
Informatics, pages 375–382. Springer, 2014.

34 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

35 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.

36 A. Razborov, E. Szemerédi, and A. Wigderson. Constructing small sets that are uniform
in arithmetic progressions. Combin. Probab. Comput., 2(4):513–518, 1993. doi:10.1017/
S0963548300000870.

37 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In Proceedings 41st Annual Symposium on
Foundations of Computer Science, pages 3–13. IEEE, 2000.

38 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

39 Amir Shpilka and Avi Wigderson. Derandomizing homomorphism testing in general groups.
SIAM Journal on Computing, 36(4):1215–1230, 2006.

40 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In STOC’17—Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 238–251. ACM,
New York, 2017. doi:10.1145/3055399.3055408.

41 Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In TR 17-041. Electronic
Colloqium on Computational Complexity, 2017.

42 Salil Vadhan. Pseudorandomness, volume 7. Now Delft, 2012.
43 Leslie G Valiant. Graph-theoretic arguments in low-level complexity. In International Sym-

posium on Mathematical Foundations of Computer Science, pages 162–176. Springer, 1977.
44 Avi Wigderson and David Xiao. Derandomizing the ahlswede-winter matrix-valued chernoff

bound using pessimistic estimators, and applications. Theory of Computing, 4(1):53–76, 2008.
45 Triantafyllos Xylouris. Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste

Primzahl in einer arithmetischen Progression, volume 404 of Bonner Mathematische Schriften
[Bonn Mathematical Publications]. Universität Bonn, Mathematisches Institut, Bonn, 2011.
Dissertation for the degree of Doctor of Mathematics and Natural Sciences at the University
of Bonn, Bonn, 2011.

https://doi.org/10.1002/(SICI)1098-2418(199808)13:1<1::AID-RSA1>3.0.CO;2-W
http://arxiv.org/abs/2105.01149
https://doi.org/10.2307/1990974
https://doi.org/10.1137/0222053
https://doi.org/10.1017/S0963548300000870
https://doi.org/10.1017/S0963548300000870
https://doi.org/10.1145/3055399.3055408

A. Jalan and D. Moshkovitz 24:19

A Cayley Graphs and Expanders

We begin with some preliminaries on graphs and group theory.

▶ Definition 13 (Spectral expander graph). Let G = ([n], E, w) be a weighted, d-regular
undirected graph. By d-regular we mean that for all u ∈ V ,

∑
v∈V w({u, v}) = d.

Let A ∈ Cn×n be the (weighted) adjacency operator of G, and let M = 1
dA be the

normalized adjacency operator, also known as the random walk matrix. Let the eigenvalues of
M be denoted λn ≤ ... ≤ λ2 ≤ λ1 = 1, counting multiplicity. Then G is a one-sided spectral
expander if λ2 < 1−Ω(1), and G is a two-sided spectral expander if max{|λn| , |λ2|} < 1−Ω(1).

Let λ(G) := max{|λn| , |λ2|}. The two-sided spectral gap of G is 1 − λ(G).

Next, we define Cayley graphs.

▶ Definition 14 (Symmetric generating set). Let G be a group and S ⊂ G. We say that S
is symmetric if for all s ∈ S, s−1 ∈ S. Further, S is a generating set if for all g ∈ G there
exist s1, ..., sk ∈ S (possibly repeated) such that sk · · · s1 = g.

We write ⟨S⟩ = G.

▶ Definition 15 (Cayley Graph). Let G be a group and S ⊂ G be a symmetric generatring
set, and w : S → R≥0 a weight function. The Cayley graph Cay(G,S,w) is the graph with
vertex set G and edge set {{g, g · s} : g ∈ G, s ∈ S}. The weight of an edge {g, g · s} is w(s).

We will require the total weight of S to be normalized to |S| by convention. Notice that
since S is symmetric, we can consider the graph Cay(G,S) to be an undirected and weighted
|S|-regular multigraph.

The eigenvectors of abelian Cayley graphs are described by their group characters.

▶ Definition 16 (Characters of abelian group). Let C∗ be the multiplicative group of nonzero
complex numbers. For any finite abelian group G, the characters of G, denoted Ĝ, are the
set of all homomorphisms χ : G → C∗.

▶ Proposition 17. Let G be a finite abelian group and S ⊂ G a symmetric generating set.
Then the eigenvalues of Cay(G,S) are given by

{| E
x∼S

[χ(x)]| : χ ∈ Ĝ}

Notice that any group has a trivial character χ : G → C∗ such that χ(g) = 1 for all g.
The eigenvalue corresponding to the trivial character is always 1. Therefore, for a Cayley
graph to be an expander we need bounds on all of its nontrivial characters.

▶ Definition 18 (Small-bias distributions for abelian groups). Let G be a finite abelian group
and D ∼ G a random variable. For any character χ of G, the bias of D with respect to χ is

Biasχ(D) := | E
x∼D

[χ(x)]|

Let χ0 denote the trivial character. The bias of D is its maximum bias with respect to
nontrivial characters.

Bias(D) := max
χ ̸=χ0

Biasχ(D)

If S ⊂ G, then bias(S) is the bias of the uniform distribution on S. If S is a symmetric
generating set, λ(Cay(G,S)) = Bias(S).

FSTTCS 2021

24:20 Near-Optimal Cayley Expanders for Abelian Groups

Notice that if S is non-negatively weighted, we can normalize weights to sum to 1 and
obtain a (not necessarily uniform) distribution on S. Then the bias of S is just the bias of
this distribution.

Finally, we will need a few more facts about characters of abelian groups.

▶ Proposition 19 (Characters of cyclic groups). Let Zd be the cyclic group on d ≥ 2 elements.
Let ωd := exp(2πi

d). The characters of Zd are the maps χj(x) = ωj·x
d for j = 0, 1, ..., d− 1.

▶ Definition 20 (Direct sum of groups). Let A,B be abelian groups. The direct sum A⊕B is
the abelian group whose elements belong to the Cartesian product A×B. For (a1, b1), (a2, b2) ∈
A×B, the group operation is (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2).

Notice that the direct sum is associative.

▶ Proposition 21 (Fundamental theorem of finite abelian groups). Let G be a finite abelian
group. Then G is isomorphic to a direct sum of cyclic groups. That is, there exist d1, ..., dk ≥ 2
such that

G ∼= Zd1 ⊕ · · · ⊕ Zdk

Moreover, di|dj for all i < j.
We refer to Zd1 ⊕ · · · ⊕ Zdk

as the invariant factor decomposition of G. The integers
d1, ..., dk are the invariant factors.

From the above propositions one can show that the characters of a finite abelian group
are products of maps of the form x 7→ ωj·x

di
. This structure is crucial to our overall argument.

B Wide Replacement Walks

In this section we define what it means to take a wide replacement walk.
Let G be a D1-regular graph on N1 vertices and H be a D2-regular graph on D1 vertices.

The replacement product G r⃝H is a (D2 + 1)-regular graph on N1 ·D1 vertices. Each vertex
of G (the “outer graph”) is replaced by a copy of H (the “inner graph”). We call these copies
clouds.

The intra-cloud edges in each cloud of G r⃝H are just the edges from H . However, G r⃝H

also has inter-cloud edges which arise by identifying the D1 vertices of H with the D1
incident edges of a vertex v ∈ V (G). This identification requires that we number the edges
of every vertex in G. We formalize this with the concept of a rotation map.

▶ Definition 22 (Rotation map). Let G be a D-reguluar graph such that the edges incident to
every v ∈ V (G) are numbered 1, ..., D. Formally there is a function N : V × [D] → V such
that N(v, i) = w iff w is the ith neighbor of v.

Then a rotation map is a function Rot : V × [D] → V × [D] such that for all v, w ∈ V

and i, j ∈ [D], Rot(v, i) = (w, j) iff the ith neighbor of v is w and the jth neighbor of w is v.

For technical reasons, we need a special kind of rotation map called a local inversion
function. This is a rotation map where if (v, i) maps to (w, j) then j only depends on i.

▶ Definition 23 (Local inversion function). Let G be a D-regular graph with a rotation map
Rot : V × [D] → V × [D]. A local inversion function ϕG : [D] → [D] is a permutation on [D]
such that for all v ∈ V, i ∈ [D],

Rot(v, i) = (N(v, i), ϕG(i))

A. Jalan and D. Moshkovitz 24:21

We are ready to define the wide replacement product walk. Instead of the usual inner
graph H we use a “wide” inner graph on Ds

1 vertices for some integer s ≥ 1. The vertices of
H correspond to s-tuples that define s local inversion functions. The walk cycles through
them.

To take a step in the usual replacement product walk, we start at some vertex v ∈ G r⃝H

then compose two steps: an intra-cloud step which changes the H-component, and an
inter-cloud step which changes the G-component. Every vertex in G r⃝H is incident to a
unique inter-cloud edge; therefore, there is only one choice of neighboring cloud, and so the
position after the intra-cloud step determines the entire step.

The s-wide replacement walk modifies the inter-cloud step so that there are s choices
during inter-cloud step. If G is D1-regular, then a vertex of H corresponds to some vector
(a0, ..., as−1) ∈ [D1]s. The wide replacement walk maintains a clock which tracks how many
steps have been taken. At time step t, the clock is set to ℓ = t mod s, and the inter-cloud
step moves to a neighboring cloud according to the value of aℓ ∈ [D1].

After deciding which neighboring cloud to move to, the choice of which vertex in the cloud
to land in is also determined by aℓ. The walk updates the H-component by feeding the ℓth

coordinate to the local inversion function ϕG : [D1] → [D1] of G, and leaving all other coordin-
ates unchanged. So (a0, ..., as−1) ∈ [D1]s is mapped to (a0, ..., aℓ−1, ϕG(aℓ), aℓ+1, ..., as−1).
This completes the inter-cloud step.

The utility of the wide replacement walk is that the H-component of a vertex now stores
O(s log(D1)) bits of information, rather than just O(log(D1)) bits. As we discussed in the
introduction, the barrier to bias amplification is when the walk distribution is uniform within
clouds.

Now, the values of the H-component are precisely the instructions for the inter-cloud
steps of the walk; therefore, the fact that the H-component is uniform is no longer bad news,
since it means that the inter-cloud steps of the replacement walk imitate the truly random
walk on the outer graph for the next s steps.

▶ Definition 24. Let G be a D1-regular graph with local inversion function ϕG : [D1] → [D1].
Let H be a D2-regular graph on Ds

1 vertices, for integer s ≥ 1. A random step in the wide
replacement product is determined as follows.

Let (v(1), v(2)) ∈ V (G) × V (H) be the current state of the walk at time t ∈ N. Sample
random i ∈ [D2]. Then the time-t step according to i, denoted Stepi,t(v(1), v(2)) is given by
the composition of two steps:

(i) Intra-cloud step: Leave the G-component v(1) unchaged. Move the v(2) component to
its ith neighbor in H. Formally, set

w(1) = v(1)

w(2) = v(2)[i].

(ii) Inter-cloud step: Identifying V (H) with [D1]s, let πj : [D1]s → [D1] be projection onto
the jth coordinate. Write w(2) ∈ V (H) as w(2) = (π0(w(2)), ..., πs−1(w(2))) ∈ [D1]s.
Let ℓ = t mod s. Move to the neighbor of w(1) in G that is numbered by πℓ(w(2)) ∈ D1.
Then, update the ℓth coordinate of H-component w(2) by the local inversion function
ϕG : [D1] → [D1] and leave other coordinates unchaged. Formally, let ψℓ : [D1]s →
[D1]s be

ψℓ(a0, ..., as−1) = (a0, ..., aℓ−1, ϕG(aℓ), aℓ+1, ..., as−1)

Set

Stepi,t(v(1), v(2)) = (w(1)[πℓ(w(2))], ψℓ(w(2))).

FSTTCS 2021

24:22 Near-Optimal Cayley Expanders for Abelian Groups

A few remarks are in order. First, notice that the number of random bits needed to
specify a random step is only O(log(D2)), despite the fact that we are moving on a graph
with V (G) × V (H) vertices. This will be crucial in the analysis of the tradeoff between bias
amplification and size increase of the small-bias set.

Second, once a value of t is fixed, so the clock is set to ℓ = t mod s, the wide replacement
walk can be regarded as taking a usual step in the usual replacement walk. The intra-
cloud step is unchaged, and the inter-cloud step depends only on the ℓth coordinate of the
H-component.

Since we have specified what it means to take a random step, this is sufficient to describe
the walk. We simply initialize at a uniform vertex of V (G) × V (H) and then take some
number of steps, to be chosen later.

C Parameters of the Construction

In this section we describe how to optimize parameters such that the wide replacement walk
construction achieves our desired support size. Our construction and hence the parameters
we choose are almost identical to those discussed in Section 5 of [41].

The algorithm is given integer n ≥ 1, desired second eigenvalue ϵ > 0, and an arbitrary
generating set for a group G.

It first generates an ϵ0-biased set Sinit ⊂ Gn of size O(n log(|G|)O(1)

poly(ϵ0)) for a constant ϵ0. For
concreteness we set ϵ0 = 0.1.

▶ Proposition 25. There exists a deterministic, polynomial time algorithm which, given a
generating set for an abelian group G and integer n ≥ 1, outputs a generating set Sinit ⊂ Gn

of size O(n(log(|G|))O(1)) such that the Cayley graph has second eigenvalue at most 0.1.

Proof. First, by Theorem 4 of [23], we can construct a generating set S ⊂ G with second
eigenvalue (1 − C

log log(|G|) + β) for a parameter β and universal constant C. Its size will be
|S| = O(n log(|G|)

βO(1)) = O(n log(|G|)2). Setting β = C
2 log log(|G|) , we obtain second eigenvalue

(1 − C
2 log log(|G|)).

Next, we can amplify the bias of S to 0.1 by taking a t-step ordinary expander walk. By the
results of section 3.1, if we take a walk on a D-regular expander graph with second eigenvalue
λ and D = O(1), then the t-step walk will amplify the bias to ((1 − C

2 log log(|G|)) + 2λ)⌊t/2⌋.
For this quantity to be at most 0.1, it suffices to set t > log log(|G|)

C (1 + 2λ) = Θ(log log(|G|)).
Therefore, after t steps we obtain a generating set S0 ⊂ Gn with bias 0.1, whose size is

|S0| ·Dt = O(n log(|G|)2

(0.1)O(1) · 2Θ(log log(|G|))) = O(n(log(|G|))O(1)). ◀

Next, the algorithm performs a wide replacement walk. We must specify the inner and
outer graphs as well as the number of steps. Our parameters are almost identical to [41].

Let α = Θ((log log(1
ϵ)

log(1
ϵ))1/3). We will show that the wide replacement walk amplifies bias to

ϵ and produces a generating set of size O(n log(|G|)O(1)

ϵ2+O(α)) = O(n log(|G|)O(1)

ϵ2+o(1)).
Let the “width” s = 1

α .

Inner Graph: Let D2 be the least power of two such that D2 ≥ s4s. Let b2 = 4s
√

2 log(D2).
Let D1 = D4

2. Let m = log(D1).
Let H = Cay(Zms

2 , A) for a generating set of size |A| = D2 (found, e.g via [41]) such that
the second eigenvalue is λ(H) = b2√

D2
.

A. Jalan and D. Moshkovitz 24:23

Outer graph: Let D1 = D4
2. Find a D1-regular expander graph Γ with λ(Γ) = Θ(1√

D1
)

(using, e.g. [4]). Identify its vertices with the ϵ0-biased set Sinit.

Walk length: Finally, set t to be the least integer such that λ(H)(1−4α)(1−α)t ≤ ϵ and
t ≥ s

α .

▶ Proposition 26. The t-step wide replacement walk distribution is ϵ-biased.

Proof. The bias after t steps is given by (λ(H)s + sλ(H)s−1 + s2λ(H)s−2)⌊t/s⌋. Therefore,

(λ(H)s + sλ(H)s−1 + s2λ(H)s−2)⌊t/s⌋ ≤ (2s2λ(H)s−3)⌊t/s⌋

≤ (2s2λ(H)s−3)t/s−1

≤ (λ(H)s−4)t/s−1

= λ(H)
s−4

s (t−s)

= λ(H)(1− 4
s)(1− s

t)t

≤ λ(H)(1−4α)(1−α)t

≤ ϵ

The last step follows by assumption on t. ◀

▶ Proposition 27. The support size of the wide replacement walk distribution is O(|Sinit| ·
1

ϵ2+O(α)), where Sinit is the initial constant-bias set.

Proof. Recall that we identify our initial 0.1-biased distribution with the vertices of the
outer graph Γ. Therefore N1 = |V (Γ)| = O(n log(|G|)O(1)

ϵc
0

) for constant ϵ0, c > 0. Since ϵ0 is
constant we can assume D2 ≥ ϵ−1

0 . The walk begins at a uniform vertex of the replacement
product, so the initial support size is N1N2. After t steps it increases by a factor of Dt

2.
Therefore

N1N2D
t
2 = O(n log(|G|)O(1)

ϵc0
N2D

t
2)

= O(n log(|G|)O(1)

ϵc0
D4s

2 D
t
2)

= O(n log(|G|)O(1) ·D4s+t+c
2)

≤ O(n log(|G|)O(1) ·D4αt+t+c
2)

≤ O(n log(|G|)O(1) ·Dt(1+5α)
2)

Next, notice b2 = 4
√

2s log(D2) = 4
√

2·4s2 log(s) ≤ s4 for sufficiently large s (equivalently,
small enough ϵ). Therefore, D2 ≥ (s4)s ≥ bs

2 = b
1/α
2 . Therefore D1/2−α

2 ≤ λ(H)−1 =
√

D2
b2

.
It follows that for small enough α (equivalently, small enough ϵ), that

Dt
2 ≤ (λ(H)−1)

t
1/2−α = (λ(H)−1)

2t
1−2α = (ϵ−1)

1
(1−4α)(1−α)t

2t
1−2α ≤ (ϵ−1)2(1+8α)

Finally, Dt(1+5α)
2 ≤ (ϵ−1)2(1+8α)(1+5α) ≤ (ϵ−1)2(1+14α).

Therefore, the overall size of the generating set is O(n log(|G|)O(1)

ϵ2+O(α)). In particular, since
α → 0 as ϵ → 0, the size is O(n log(|G|)O(1)

ϵ2+o(1)). ◀

FSTTCS 2021

Matchings, Critical Nodes, and Popular Solutions
Telikepalli Kavitha # Ñ

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We consider a matching problem in a marriage instance G. Every node has a strict preference order
ranking its neighbors. There is a set C of prioritized or critical nodes and we are interested in
only those matchings that match as many critical nodes as possible. Such matchings are useful in
several applications and we call them critical matchings. A stable matching need not be critical. We
consider a well-studied relaxation of stability called popularity. Our goal is to find a popular critical
matching, i.e., a weak Condorcet winner within the set of critical matchings where nodes are voters.
We show that popular critical matchings always exist in G and min-size/max-size such matchings
can be efficiently computed.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Bipartite graphs, Stable matchings, LP-duality

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.25

Funding Telikepalli Kavitha: Supported by the Department of Atomic Energy, Government of India,
under project no. RTI4001.

1 Introduction

We consider a matching problem in a bipartite graph G = (A ∪ B, E) on n nodes and m

edges where every node ranks its neighbors in a strict order of preference. Such a graph is
also called a marriage instance. We seek an optimal matching in G and the classical notion of
optimality for matchings in such an instance is stability introduced by Gale and Shapley [9]
in 1962. A matching M is stable if there is no edge that blocks M where an edge (a, b) is
said to block M if a and b prefer each other to their respective assignments in M .

Stable matchings always exist in a marriage instance and the Gale-Shapley algorithm
finds one in linear time. The Gale-Shapley algorithm and its many-to-one generalization
have been used to match students to schools and colleges [1, 2, 17] and graduating medical
students to hospitals [4, 21]. All stable matchings in G match the same set of nodes [10]. As
discussed in [3], in the medical matching scheme in Scotland, a stable matching left several
students unmatched. There was a matching that matched all the students, however this
matching admitted some blocking edges. Thus there are real-world applications where the
size of the matching is more important than the absence of blocking edges.

More generally, there are applications where certain nodes are prioritized or critical and
the number of critical nodes that get matched is of primary importance. One such application
is the assignment of sailors to billets in the US Navy [22, 26]. Here every sailor has to be
matched to a billet and some critical billets cannot be left vacant. So such billets and all
the sailors are the critical nodes here. Allocation problems in humanitarian organizations
constitute more such applications, see e.g., [24, 25].

Motivated by such applications, we consider the following model where we are given
a marriage instance G = (A ∪ B, E) along with a set C ⊆ A ∪ B of critical nodes. The
number of critical nodes that get matched is the most important attribute of a matching.
An admissible or critical matching is one that matches as many critical nodes as possible.

▶ Definition 1. A matching M in G is critical if there is no matching in G that matches
more critical nodes than M .

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kavitha.telikepalli@gmail.com
http://www.tcs.tifr.res.in/~kavitha/
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Matchings, Critical Nodes, and Popular Solutions

A stable matching need not be critical. When stable matchings are not critical, a natural
alternative is to seek a critical matching that admits the least number of blocking edges.
However this is an NP-hard problem [3]. It was shown there that finding a maximum
matching (so every node is critical here) that admits the minimum number of blocking
edges is NP-hard; moreover, this is NP-hard to approximate within n1−ε, for any ε > 0.
This motivates relaxing the problem of finding a critical matching with the least number of
blocking edges to finding one that satisfies a more relaxed variant of stability. Popularity is a
natural relaxation of stability that captures welfare in a collective sense.

We say node v prefers matching M to matching N if v prefers its partner in M to its
partner in N and being left unmatched is the worst choice for any node. We can compare
any pair of matchings M and N by holding an election between them where every node
casts a vote for the matching in {M, N} that it prefers and it abstains from voting if it is
indifferent between M and N . Let ϕ(M, N) (resp., ϕ(N, M)) be the number of votes for M

(resp., N) in the M versus N election. Matching N is more popular than matching M if
ϕ(N, M) > ϕ(M, N).

▶ Definition 2. A matching M is popular if ∆(N, M) ≤ 0 for all matchings N in G, where
∆(N, M) = ϕ(N, M) − ϕ(M, N).

Thus a matching M is popular if there is no matching that is more popular than M .
The notion of popularity was introduced in 1975 by Gärdenfors [11] where he observed that
every stable matching is popular. It is easy to decide if there is a popular matching that
is also critical – it is known that any node that is matched in some popular matching has
to be matched in any max-size popular matching [12]. A max-size popular matching can
be computed in linear time [14]. However as was the case with stable matchings, it can
be the case that no popular matching is critical. Consider the following example where
A = {a0, a1, a2} and B = {b0, b1, b2}. Node preferences are described below.

a0 : b1 a1 : b1 ≻ b2 ≻ b0 a2 : b1 ≻ b2

b0 : a1 b1 : a1 ≻ a2 ≻ a0 b2 : a1 ≻ a2

The node a0 has only one neighbor b1. The node a1 regards b1 as its top choice, b2 as its
second choice, and b0 as its third choice. The node a2 regards b1 as its top choice and b2 as
its second choice. The preferences of nodes in B are symmetric to those in A.

The above instance has only one stable matching S = {(a1, b1), (a2, b2)}. This instance
has one more popular matching P = {(a1, b2), (a2, b1)}. Suppose C = {a0, a1} is the set
of critical nodes. Then neither S nor P is critical. Here M0 = {(a0, b1), (a1, b2)}, M1 =
{(a0, b1), (a1, b0)}, and M2 = {(a0, b1), (a1, b0), (a2, b2)} are the critical matchings. Thus
there need not exist any popular matching that is critical.

A natural alternative is to ask for a critical matching M such that there is no critical
matching more popular than M . Given that the number of critical nodes that get matched
is more important than node preferences, elections that involve non-critical matchings are
not relevant since by the definition of our setting, any critical matching is better than any
non-critical matching. So the desired matchings are the critical ones and any pair of critical
matchings can be compared by holding an election between them. Thus we are only interested
in elections between pairs of critical matchings.

▶ Definition 3. A critical matching M is a popular critical matching in G if ∆(N, M) ≤ 0
for any critical matching N .

T. Kavitha 25:3

A popular critical matching is a weak Condorcet winner [5, 18] in the voting instance
where every critical matching is a candidate and nodes are voters. The relation “more
popular than” is not transitive, i.e., there may be cycles with respect to this relation, so
weak Condorcet winners need not exist in every voting instance. It might be the case that
for any critical matching, there is a “more popular” critical matching. Interestingly, it was
shown in [14] that popular maximum matchings (i.e., C = A ∪ B) always exist in G. Does
this positive result hold for every C ⊂ A ∪ B? So the following questions are relevant:

For any C ⊂ A ∪ B, does a popular critical matching always exist in G?
Is it easy to find one?
Is it easy to find a max-size popular critical matching?

In this paper we show positive answers to all the above questions. Recall that |E| = m.

▶ Theorem 4. For any C ⊂ A∪B, popular critical matchings always exist in G = (A∪B, E)
and a max-size such matching can be computed in O(|C|m + m) time.

We first show the following result. Then we extend this algorithm to show Theorem 4.

▶ Theorem 5. Given a marriage instance G = (A ∪ B, E) along with a subset C of critical
nodes, a min-size popular critical matching in G can be computed in O(|C|m + m) time.

1.1 Background and related results
Algorithmic questions in popular matchings have been well-studied during the last decade
and we refer to [6] for a survey. Popular matchings always exist in a marriage instance and
efficient algorithms are known to find min-size/max-size popular matchings in a marriage
instance [9, 13, 14]. A size-popularity trade-off was shown in [14] to efficiently find matchings
whose unpopularity is bounded from above and size is bounded from below. As shown there,
this implies that a maximum matching that is popular within the set of maximum matchings
always exists and can be efficiently computed. So C = A ∪ B in [14] while C = ∅ in the
Gale-Shapley algorithm. Thus for the two extreme cases of C, it was known that popular
critical matchings always exist and can be efficiently computed.

A related problem is the hospital-residents problem with lower quotas. This is a many-to-
one matching problem where every node has a strict preference order over its neighbors and
every hospital has a capacity; moreover certain hospitals have lower quotas which denotes
the minimum number of residents that have to be matched to this hospital in any feasible
matching. It was shown in [19] that whenever feasible matchings exist, a matching that
is popular among feasible matchings always exists and a max-size such matching can be
computed in polynomial time. Very recently and independent of our work, the above result
was generalized in [20] to the setting where certain residents are marked and every marked
resident has to be matched in any feasible matching.

Hardness results for “almost stable” critical matchings. Several hardness results for
finding almost stable maximum matchings (so every vertex is critical) in a marriage instance
were shown in [3]. It was shown there that even if all preference lists were restricted to be of
length at most 3, finding a maximum matching that admits the minimum number of blocking
edges is NP-hard. An alternative approach is to count the number of nodes that are involved
in blocking edges [8, 23]. The problem of finding a maximum matching that minimizes this
number is also NP-hard to compute/approximate, as shown in [3].

FSTTCS 2021

25:4 Matchings, Critical Nodes, and Popular Solutions

1.2 Techniques
We use the machinery of stable matchings and LP-duality to show our results. We construct
a new marriage instance G′ = (A′ ∪ B′, E′) on O(|C|n + n) nodes and O(|C|m + m) edges
such that any stable matching in G′ corresponds to a popular critical matching in G. The
instance G′ resembles instances used in [7, 14, 16] to compute max-size popular matchings
and popular maximum matchings.

We now give a quick overview of the popular maximum matching algorithm from [14].
This algorithm partitions the node set A ∪ B into levels so that any stable matching in this
“graph with levels” corresponds to a popular maximum matching in G. To begin with, all
nodes are in some level ℓ and the Gale-Shapley algorithm is run on this instance. If the stable
matching leaves some nodes in A unmatched then all unmatched nodes in A are promoted to
level ℓ + 1. Once promoted to level ℓ + 1, each such node starts proposing all over again – it
will be the case that every node in B prefers higher level neighbors to lower level neighbors.
So some of these promoted nodes may find partners.

This may “un-match” some nodes in A initially matched in level ℓ. These nodes continue
proposing as per the Gale-Shapley algorithm and any node in A that is unsuccessful in
finding a partner in level ℓ gets promoted to level ℓ + 1. Any node in A that does not find
a partner even as a level ℓ + 1 node gets promoted to level ℓ + 2 and so on. It was shown
in [14] that |A| levels suffice to construct a maximum matching that is popular within the
set of maximum matchings.

Our algorithms. If all the critical nodes are in A then the above algorithm easily generalizes
to solving the popular critical matching problem by promoting only critical nodes in A to
higher levels and non-critical nodes in A will always remain in level ℓ. However we need to
deal with critical nodes in the set B as well. For this, our new idea is the following: critical
nodes in B that are left unmatched in the Gale-Shapley algorithm in level ℓ get demoted to
level ℓ − 1. It will be the case that every node in A prefers lower level neighbors to higher
level neighbors. So in fact, the Gale-Shapley algorithm should begin by nodes in A proposing
to lower level neighbors first (before the ones in level ℓ).

Thus the main difference between our instance G′ and the earlier instance from [14]
(explicitly described in [16]) is that there is non-uniformity among the nodes now. All the
nodes in A∪B are permitted in only one intermediate level, i.e., level ℓ. Non-critical nodes in
A are excluded from levels higher than ℓ and non-critical nodes in B are excluded from levels
lower than ℓ. We show that any stable matching in G′ corresponds to a min-size popular
critical matching in G. We construct another instance G′′ such that the entire node set
A ∪ B is permitted in two levels: level ℓ and level ℓ + 1. We show that any stable matching in
G′′ corresponds to a max-size popular critical matching in G. When C = ∅, the instance G′′

is the same as the instance from [7] whose stable matchings correspond to max-size popular
matchings in G.

Our proofs of correctness. We prove the correctness of our algorithms via the LP method
by constructing witnesses that certify “popularity within the set of critical matchings” for
our matchings. These witnesses are solutions to certain linear programs. Such witnesses are
known for popular matchings [15] and popular maximum matchings [16]. Our witnesses are
a little more complicated since our primal LP involves more constraints (due to criticality)
and so the dual LP has more variables.

The dual LP solutions that we show (see Lemma 11 and Lemma 16) allow us to give
simple proofs of correctness and enable us to show (using complementary slackness) that our
two algorithms respectively compute min-size and max-size popular critical matchings in G.

T. Kavitha 25:5

By contrast, the proof of correctness of the popular maximum matching algorithm in [14]
was combinatorial; popular maximum matchings were characterized in terms of forbidden
alternating paths and cycles and it was shown that there was no forbidden alternating path
or cycle with respect to the matching returned.

Organization of the paper. Section 2 describes our witness for a popular critical matching.
The min-size and max-size popular critical matching algorithms are given in Section 3 and
Section 4, respectively.

2 A witness for a popular critical matching

Our input consists of a marriage instance G = (A ∪ B, E) with strict preferences and a set
C ⊆ A ∪ B of critical nodes. We first characterize critical matchings.

▶ Lemma 6. A matching M in G is critical if and only if there is no alternating path p with
respect to M that satisfies either of the conditions given below:
1. p is an augmenting path with respect to M and at least one endpoint of p is in C.
2. p has even length with exactly one endpoint in C and this node is left unmatched in M .

Proof. Let M be a matching with an alternating path p such that either (i) p is an augmenting
path wrt M and at least one endpoint of p is in C or (ii) p has even length with exactly one
endpoint in C and this node is left unmatched in M . Then M ⊕ p matches at least one more
critical node than M . Thus M cannot be a critical matching.

Conversely, suppose M is not a critical matching. Let N be a critical matching. Consider
M ⊕ N . Since N matches more critical nodes than M , there has to be an alternating path p

in M ⊕ N where N matches more critical nodes than M . So p has an endpoint in C that
is matched in N and not in M . If the other endpoint of p is unmatched in M then p is an
augmenting path wrt M ; else the other endpoint is matched in M and this endpoint is not
in C since N matches more critical nodes than M in the alternating path p.

So either (i) p is an augmenting path wrt M and at least one endpoint of p is in C or
(ii) p has even length with exactly one endpoint in C, which is left unmatched in M . ◀

Let M be any critical matching in G. Let kA (resp., kB) denote the number of nodes in
CA = C ∩ A (resp., CB = C ∩ B) that are matched in M . The following lemma will be very
useful to us.

▶ Lemma 7. Every matching in G matches at most kA nodes in CA and at most kB nodes
in CB.

Proof. Suppose not. Let N be a matching in G that matches more than kA nodes in CA.
Then there is an alternating path p in M ⊕ N where N matches more nodes of CA than the
critical matching M . If the length of p is odd then p is an augmenting path wrt M whose at
least one endpoint is in C. But this is a forbidden structure for any critical matching (by
Lemma 6).

So the length of p is even. Then the other endpoint of p (the one matched in M and
unmatched in N) is in A, call this node v. Since N matches more nodes of CA than M in
the path p, the node v cannot be in CA. Hence p is an even length alternating path with
exactly one endpoint in C and this node is left unmatched in M . This is again a forbidden
structure for any critical matching (by Lemma 6). Thus we get a contradiction. The proof
when N matches more than kB nodes in CB is analogous. ◀

FSTTCS 2021

25:6 Matchings, Critical Nodes, and Popular Solutions

A linear program for popular critical matchings. It will be convenient to assume that
each node considers itself as its last choice neighbor. Let G̃ denote the graph G augmented
with self-loops. Any matching M in G can be regarded as a perfect matching M̃ in G̃ by
augmenting M with appropriate self-loops. Corresponding to M , an edge weight function
wtM in the graph G̃ can be defined. Let wtM (u, u) = 0 if u is left unmatched in M , i.e., if
(u, u) is in M̃ ; else wtM (u, u) = −1. For any edge (a, b) ∈ E:

let wtM (a, b) =

2 if (a, b) blocks M ;
−2 if both a and b prefer their respective partners in M to each other;
0 otherwise.

For any e ∈ E, note that wtM (e) is the sum of votes of the endpoints of e for each other
versus their respective partners in M̃ ; each vote is in {±1, 0} where 1 is “more preferred to”
and so on. For any node u, let δ(u) be the set of edges incident to u in G.

Consider the following linear program (LP1). Note that Lemma 7 implies that all critical
matchings in G match kA nodes in CA and kB nodes in CB . This is used in constraint (2).

maximize
∑
e∈Ẽ

wtM (e) · xe (LP1)

subject to∑
e∈δ(u)∪{u,u}

xe = 1 ∀ u ∈ A ∪ B (1)

∑
a∈CA

∑
e∈δ(a)

xe = kA and
∑

b∈CB

∑
e∈δ(b)

xe = kB (2)

xe ≥ 0 ∀ e ∈ E ∪ {(u, u) : u ∈ A ∪ B}. (3)

We know from Lemma 7 that
∑

a∈CA

∑
e∈δ(a) xe ≤ kA and

∑
b∈CB

∑
e∈δ(b) xe ≤ kB are

valid inequalities for the matching polytope of G̃. So the feasible region of (LP1) defines a
face of the perfect matching polytope of G̃ and hence it is integral. Every integral point in
this face corresponds to a critical matching and every critical matching (augmented with
self-loops at unmatched nodes) belongs to this face. Thus (LP1) computes a max-weight
matching Ñ , where N is a critical matching in G.

Consider the dual LP. This is (LP2) given below. The dual variables are yu for u ∈ A ∪ B

along with zA and zB .

minimize
∑

u∈A∪B

yu + (kA · zA) + (kB · zB) (LP2)

subject to

ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E where a /∈ CA, b /∈ CB (4)
ya + yb + zA ≥ wtM (a, b) ∀ (a, b) ∈ E where a ∈ CA, b /∈ CB (5)
ya + yb + zB ≥ wtM (a, b) ∀ (a, b) ∈ E where a /∈ CA, b ∈ CB (6)

ya + yb + zA + zB ≥ wtM (a, b) ∀ (a, b) ∈ E where a ∈ CA, b ∈ CB (7)
yu ≥ wtM (u, u) ∀ u ∈ A ∪ B. (8)

▶ Proposition 8. Let M be a critical matching such that the optimal value of (LP2) is at
most 0. Then M is a popular critical matching.

T. Kavitha 25:7

Proof. The optimal value of (LP1) is maxN wtM (Ñ), where N is a critical matching in G.
It follows from the definition of the function wtM that wtM (Ñ) = ϕ(N, M) − ϕ(M, N) =
∆(N, M) for any matching N in G. Thus the optimal value of (LP1) is maxN ∆(N, M),
where N is a critical matching. If the optimal value of (LP2) is at most 0 then the optimal
value of (LP1) is also at most 0 (by weak duality). This means ∆(N, M) ≤ 0 for every
critical matching N . ◀

We will use Proposition 8 to prove the correctness of our algorithms in Section 3 and
Section 4. That is, we will construct matchings M such that there exist feasible solutions
(y⃗, z⃗) to (LP2) with

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0.

3 An algorithm for a popular critical matching

Let G = (A ∪ B, E) be the given marriage instance and let C ⊆ A ∪ B be the set of critical
nodes. Recall the overview of our algorithm given in Section 1.2. We want to partition the
node set A ∪ B into levels so that any stable matching in this new graph corresponds to a
popular critical matching in G.

Recall that we use CA = C ∩ A (resp., CB = C ∩ B) to denote the set of critical nodes in
A (resp., B). Let |CA| = α and |CB | = β. There will be α + β + 1 levels indexed 0, . . . , α + β.

A new instance G′ = (A′ ∪ B′, E′). We now describe a new instance G′ whose stable
matchings will map to popular critical matchings in G. The set A′ is described below.

For every a ∈ CA, the set A′ has α + β + 1 copies of a: call these nodes a0, a1, . . . , aα+β .
For every a ∈ A \ CA, the set A′ has β + 1 copies of a: call these nodes a0, a1, . . . , aβ .

Thus A′ = ∪a∈CA
{a0, a1, . . . , aα+β}∪a∈A\CA

{a0, a1, . . . , aβ}. Define the set B′ as follows.
B′ = {b′ : b ∈ B} ∪a∈CA

{d1(a), . . . , dα+β(a)} ∪a∈A\CA
{d1(a), . . . , dβ(a)}.

The set {b′ : b ∈ B} is a copy of the set B. Along with nodes in {b′ : b ∈ B}, the set B′

contains dummy nodes (the d-nodes). Such dummy nodes were first used in [7] and they
make it easy for us to describe “promotions” from one level to another.

When a ∈ CA, there are α + β + 1 copies of a in A′ and the set B′ has d1(a), . . . , dα+β(a).
We will set preferences such that in any stable matching in G′, α + β copies of a have to
be matched to these dummy nodes. Similarly, when a ∈ A \ CA, there are β + 1 copies of a

in A′ and the set B′ has d1(a), . . . , dβ(a). We will set preferences such that in any stable
matching in G′, β copies of a have to be matched to these dummy nodes. Thus in any stable
matching in G′, for each a ∈ A, at most one node among all ai’s is “free” to be matched to a
neighbor in {b′ : b ∈ B}.

The edge set. Corresponding to each (a, b) ∈ E, we will have the following edges in E′.
There are four cases here depending on whether a is in CA or not and b is in CB or not.
1. a /∈ CA and b /∈ CB : there is exactly one edge (aβ , b′) in E′ that corresponds to (a, b).
2. a /∈ CA and b ∈ CB : there are β + 1 edges (ai, b′) in E′ where 0 ≤ i ≤ β.
3. a ∈ CA and b /∈ CB : there are α + 1 edges (ai, b′) in E′ where β ≤ i ≤ α + β.
4. a ∈ CA and b ∈ CB : there are α + β + 1 edges (ai, b′) in E′ where 0 ≤ i ≤ α + β.

For each a ∈ A, the set E′ also has the following edges:
if a ∈ CA then (ai−1, di(a)) and (ai, di(a)) for 1 ≤ i ≤ α + β;
if a ∈ A \ CA then (ai−1, di(a)) and (ai, di(a)) for 1 ≤ i ≤ β.

For any i, the preference order of di(a) is ai−1 ≻ ai.

FSTTCS 2021

25:8 Matchings, Critical Nodes, and Popular Solutions

Preference orders. Consider a ∈ A. Let a’s preference order in G be b1 ≻ · · · ≻ bk.
Suppose {c1, . . . , cr} = {b1, . . . , bk} ∩ C. That is, c1, . . . , cr are a’s critical neighbors. Let a’s
preference order among these nodes be c1 ≻ · · · ≻ cr.

a0’s preference order in G′ is c′
1 ≻ · · · ≻ c′

r ≻ d1(a).
For 1 ≤ i ≤ β − 1, ai’s preference order is di(a) ≻ c′

1 ≻ · · · ≻ c′
r ≻ di+1(a).

For a /∈ CA: the preference order of aβ is dβ(a) ≻ b′
1 ≻ · · · ≻ b′

k.
For a ∈ CA:

for β ≤ i ≤ α + β − 1, the preference order of ai is di(a) ≻ b′
1 ≻ · · · ≻ b′

k ≻ di+1(a).
the preference order of aα+β is dα+β(a) ≻ b′

1 ≻ · · · ≻ b′
k.

For a ∈ A, other than the dummy nodes, observe that it is only copies of critical neighbors
that are present in the preference list of ai for 0 ≤ i ≤ β − 1.

For a /∈ CA, observe that copies of all neighbors of a, i.e., b′
1, . . . , b′

k, are present only
in the preference list of aβ . For a ∈ CA, copies of all neighbors of ai are present in the
preference list of ai for β ≤ i ≤ α + β.

Consider any b ∈ B. Let b’s preference order in G be a ≻ · · · ≻ z. Let {a′, . . . , z′} =
{a, . . . , z}∩C. Let b’s preference order among its critical neighbors be a′ ≻ · · · ≻ z′. Suppose
b /∈ CB . Then the preference order of b′ in G′ is:

a′
α+β ≻ · · · ≻ z′

α+β︸ ︷︷ ︸
level α + β neighbors

≻ · · · ≻ a′
β+1 ≻ · · · ≻ z′

β+1︸ ︷︷ ︸
level β + 1 neighbors

≻ aβ ≻ · · · ≻ zβ︸ ︷︷ ︸
level β neighbors

So b′ prefers any subscript or level i neighbor to any level j neighbor for i > j. Note that
copies of only critical neighbors are present in level i for β + 1 ≤ i ≤ α + β and copies of all
neighbors of b, i.e., a, . . . , z, are present only in level β.

Suppose b ∈ CB . Then the preference order of b′ in G′ is:

a′
α+β ≻ · · · ≻ z′

α+β︸ ︷︷ ︸
level α + β neighbors

≻ · · · ≻ a′
β+1 ≻ · · · ≻ z′

β+1︸ ︷︷ ︸
level β + 1 neighbors

≻ aβ ≻ · · · ≻ zβ︸ ︷︷ ︸
level β neighbors

≻ · · · ≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors

Note that copies of only critical neighbors are present in level i for β + 1 ≤ i ≤ α + β and
copies of all neighbors of b are present in level i for 0 ≤ i ≤ β.

The matching M . For any stable matching M ′ in G′, define M ⊆ E to be the set of edges
obtained by deleting edges in M ′ that are incident to dummy nodes and replacing any edge
(ai, b′) ∈ M ′ with the original edge (a, b) ∈ E.

For any a ∈ A and all i ≥ 1, the dummy node di(a) is the top choice neighbor for ai,
hence the stable matching M ′ has to match all dummy nodes. Thus at most one node among
all the ai’s can be matched in M ′ to a neighbor in {b′ : b ∈ B}. So M is a matching in G.
Theorem 9 (proved below) is our main theorem in this section.

▶ Theorem 9. For any stable matching M ′ in G′, the corresponding matching M is a
min-size popular critical matching in G.

Since a stable matching always exists in G′, popular critical matchings always exist in G.
Thus the first part of Theorem 4 follows. The time taken to construct G′ and to compute a
stable matching in G′ is O(|C|m + m). Thus Theorem 5 follows from Theorem 9.

We will prove Theorem 9 now. As done in [14], it will be useful to partition the set A ∪ B

into subsets as described below (see Fig. 1). We will partition the set of all nodes in A that
are matched in M into A0 ∪ · · · ∪ Aα+β where for 0 ≤ i ≤ α + β: Ai = {a ∈ A : (ai, b′) ∈ M ′

T. Kavitha 25:9

for some b ∈ B}, i.e., Ai is the collection of those a’s such that ai is matched in M ′ to a
neighbor in {b′ : b ∈ B}. Add unmatched nodes in CA to Aα+β and add unmatched nodes
in A \ CA to Aβ .

Similarly, partition the set of all nodes in B that are matched in M into B0 ∪ · · · ∪ Bα+β

where for 0 ≤ i ≤ α + β: Bi = {b : (ai, b′) ∈ M ′ for some a ∈ Ai}, i.e., Bi is the collection of
those b’s such that the partner of b′ in M ′ is a subscript i node. Add unmatched nodes in
CB to B0 and add unmatched nodes in B \ CB to Bβ .

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Aα+β Bα+β

Aβ+1 Bβ+1

Aβ

Aβ−1

A0 B0

Bβ−1

Bβ

Figure 1 A = A0 ∪ · · · ∪ Aα+β and B = B0 ∪ · · · ∪ Bα+β and M ⊆ ∪α+β
i=0 (Ai × Bi). Red nodes

are outside C and green nodes are in C. All red (i.e., non-critical) nodes are in ∪i≤βAi ∪i≥β Bi and
unmatched red nodes are in Aβ ∪ Bβ .

▶ Lemma 10. M is a critical matching in G.

The proof of Lemma 10 (given in the appendix) uses Lemma 6 and is similar to the
proof that the popular maximum matching algorithm in [14] finds a maximum matching.
Lemma 11 is the main technical result here.

▶ Lemma 11. M is a popular critical matching in G.

Proof. We will use Proposition 8. Let (y⃗, z⃗) be defined as follows.
1. Set zA = −2α and zB = −2β.
2. Set yu = 0 for all unmatched nodes u. For matched nodes u, we will set y-values as

follows. For 0 ≤ i ≤ α + β do:
for a ∈ Ai: if a ∈ CA then set ya = 2α + 2β − 2i; else set ya = 2β − 2i.
for b ∈ Bi: if b ∈ CB then set yb = 2i; else set yb = 2i − 2β.

▶ Lemma 12. ⟨y⃗, z⃗⟩ defined above is a feasible solution to (LP2).

FSTTCS 2021

25:10 Matchings, Critical Nodes, and Popular Solutions

The proof of Lemma 12 is given below (after the proof of Lemma 11). We will now show
that

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0. Consider any edge (a, b) ∈ M . So there is some

i ∈ {0, . . . , α + β} such that a ∈ Ai and b ∈ Bi.

1. If a /∈ CA and b /∈ CB then ya + yb = (2β − 2i) + (2i − 2β) = 0.
2. If a ∈ CA and b /∈ CB then ya + yb + zA = (2α + 2β − 2i) + (2i − 2β) − 2α = 0.
3. If a /∈ CA and b ∈ CB then ya + yb + zB = (2β − 2i) + 2i − 2β = 0.
4. If a ∈ CA and b ∈ CB then ya + yb + zA + zB = (2α + 2β − 2i) + 2i − 2α − 2β = 0.

Recall that kA (resp., kB) is the number of nodes from CA (resp., CB) that get matched
in any critical matching. Since M is a critical matching (by Lemma 10), it matches kA nodes
from CA and kB nodes from CB . So added up over all edges (a, b) in M , the left hand sides
of the four equations above sum to

∑
u∈V yu + (kA · zA) + (kB · zB), where V ⊆ A ∪ B is

the set of nodes matched in M . Since all the right hand sides are 0, this sum is 0. For any
unmatched node u, we set yu = 0. So

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0. Hence M is a

popular critical matching in G (by Proposition 8). ◀

Proof of Lemma 12. For any node u, we claim that yu ≥ 0. Recall that ya = 2α + 2β − 2i

for a matched critical node a ∈ Ai and yb = 2i for a matched critical node b ∈ Bi. Since
0 ≤ i ≤ α + β, we have 2α + 2β − 2i ≥ 0 and 2i ≥ 0. Thus for any matched node u ∈ C,
yu ≥ 0.

For any matched node a ∈ A \ CA, observe that a ∈ Ai for some i ≤ β, so 2β − 2i ≥ 0.
For any matched node b ∈ B \ CB , observe that b ∈ Bi for some i ≥ β, so 2i − 2β ≥ 0. We
set yu = 0 for any unmatched node u. Hence yu ≥ 0 ≥ wtM (u, u) for all u ∈ A ∪ B. Thus
constraint (8) holds.

We will now show that ⟨y⃗, z⃗⟩ satisfies constraints (4)-(7). For any a ∈ CA, let y′
a = ya +zA.

For any b ∈ CB , let y′
b = yb + zB . For any node u /∈ C, let y′

u = yu.

We have y′
a = 2β − 2i for any matched a ∈ Ai and y′

b = 2i − 2β for any matched b ∈ Bi.
For any unmatched a ∈ A: y′

a = −2α if a ∈ CA and y′
a = 0 otherwise.

For any unmatched b ∈ B: y′
b = −2β if b ∈ CB and y′

b = 0 otherwise.

We will now show that y′
a + y′

b ≥ wtM (a, b) for all (a, b) ∈ E. Let a ∈ Ai and b ∈ Bj .
This proof is split into 4 parts: (1) i ≤ j − 1, (2) i = j, (3) i = j + 1, and (4) i ≥ j + 2.

1. Consider any edge (a, b) where a ∈ Ai, b ∈ Bj and i ≤ j − 1.
If a and b are matched nodes then y′

a + y′
b = (2β − 2i) + (2j − 2β) = 2(j − i) ≥ 2 ≥

wtM (a, b) since wtM (e) ∈ {±2, 0} for all e ∈ E.
Suppose a is unmatched. Then a /∈ CA; otherwise i = α + β and so j ≥ α + β + 1
which is not possible. So a /∈ CA and we have y′

a = 0 and i = β. Since j ≥ β + 1, we
have y′

b = 2j − 2β ≥ 2. Thus y′
a + y′

b ≥ 2 ≥ wtM (a, b).
Suppose b is unmatched. Then b /∈ CB; otherwise j = 0 and so i ≤ −1 which is
not possible. So b /∈ CB and we have y′

b = 0 and j = β. Since i ≤ β − 1, we have
y′

a = 2β − 2i ≥ 2. Thus y′
a + y′

b ≥ 2 ≥ wtM (a, b).
2. Let a ∈ Ai, b ∈ Bj where i = j. For any b ∈ B, within subscript i neighbors, the

preference order of b′ in G′ is the same as b’s preference order among these neighbors in
G. Thus M restricted to Ai ∪ Bi is stable and so wtM (a, b) ∈ {−2, 0}.

If a and b are matched nodes then y′
a + y′

b = (2β − 2i) + (2i − 2β) = 0.
Suppose a is unmatched.

If a ∈ CA then y′
a = −2α and i = α + β. So y′

b = 2(α + β) − 2β = 2α. Thus
y′

a + y′
b = −2α + 2α = 0.

T. Kavitha 25:11

If a /∈ CA then y′
a = 0 and i = β. The node b has to be matched since M ′ is stable

(and thus maximal) in G′. So y′
b = 2i − 2β = 0. Thus y′

a + y′
b = 0.

Suppose b is unmatched.
If b ∈ CB then y′

b = −2β and i = 0. So y′
a = 2β − 2i = 2β. Thus y′

a + y′
b =

2β − 2β = 0.
If b /∈ CB then y′

b = 0 and i = β. The node a has to be matched since M ′ is stable
(and thus maximal) in G′. So y′

a = 2β − 2i = 0. Thus y′
a + y′

b = 0.
Thus we have y′

a + y′
b = 0 ≥ wtM (a, b) in all the cases.

3. Let a ∈ Ai, b ∈ Bj where i = j + 1. Observe that (aj , dj+1(a)) ∈ M ′, i.e., aj is matched
to its least preferred neighbor dj+1(a). The stability of M ′ implies that (uj , b′) ∈ M ′ for
some neighbor uj that b′ prefers to aj . Also b′ prefers aj+1 to uj , so aj+1 has to prefer
M ′(aj+1) to b′. Hence both a and b are matched in M to neighbors that they prefer to each
other. So wtM (a, b) = −2. Thus y′

a + y′
b = (2β − 2(j + 1)) + (2j − 2β) = −2 = wtM (a, b).

4. If a ∈ Ai, b ∈ Bj where i ≥ j + 2 then (aj+1, dj+2(a)) ∈ M ′, i.e., aj+1 is matched to
its least preferred neighbor dj+2(a). This means the edge (aj+1, b′) blocks M ′ – this is
because b′ prefers aj+1 to its assignment in M ′: this is either a subscript j neighbor or
b′ is left unmatched in M ′. Since the blocking edge (aj+1, b′) contradicts M ′’s stability,
there is no (a, b) ∈ E where a ∈ Ai, b ∈ Bj and i ≥ j + 2.

Thus we have y′
a+y′

b ≥ wtM (a, b) for all (a, b) ∈ E. This completes the proof of Lemma 12. ◀

Min-size popular critical matching. Lemma 12 showed that (y⃗, z⃗) is a feasible solution to
(LP2). In fact, (y⃗, z⃗) is an optimal solution to (LP2) since M̃ is a feasible solution to (LP1)
and wtM (M̃) = 0 =

∑
u∈A∪B yu + (kA · zA) + (kB · zB). This will be useful in Lemma 13.

▶ Lemma 13. M is a min-size popular critical matching in G.

Proof. Let N be a critical matching of size smaller than |M |. Then there is some node u that
is matched in M but unmatched in N . So the self-loop (u, u) is in the perfect matching Ñ .
For any node u matched in M , we have yu > wtM (u, u). This is because yu ≥ 0 while
wtM (u, u) = −1. So the self-loop (u, u) is slack with respect to the dual optimal solution
(y⃗, z⃗). Then complementary slackness implies that Ñ cannot be a primal optimal solution.
The optimal value of (LP1) is 0, so this means wtM (Ñ) < 0, i.e., ∆(N, M) < 0. Hence the
critical matching M is more popular than N . Thus N cannot be a popular critical matching.
So M is a min-size popular critical matching in G. ◀

4 Finding a max-size popular critical matching

In this section we consider the problem of finding a max-size popular critical matching in
G = (A ∪ B, E) where C ⊆ A ∪ B is the given critical set. We will construct a new instance
G′′ = (A′′ ∪ B′′, E′′) which will be a minor variant of the instance G′ seen in Section 3. The
instance G′ was motivated by considering that we ran the Gale-Shapley algorithm with all
nodes in level ℓ (note that ℓ = β) and promoted unmatched critical nodes in A to higher
levels and demoted unmatched critical nodes in B to lower levels.

The instance G′′ can be motivated by considering that we will run the max-size popular
matching algorithm [14] (also called the 2-level Gale-Shapley algorithm) with all the nodes
in level β. This promotes certain nodes to level β + 1; all unmatched nodes in A are in
level β + 1 and all unmatched nodes in B are in level β. Now let us promote unmatched
critical nodes in A to higher levels and demote unmatched critical nodes in B downwards.

FSTTCS 2021

25:12 Matchings, Critical Nodes, and Popular Solutions

The instance G′′. The instance G′′ = (A′′ ∪ B′′, E′′) has one extra level compared to G′.
For every a ∈ CA, the set A′′ has α + β + 2 copies of a: call them a0, a1, . . . , aα+β+1.
For every a ∈ A \ CA, the set A′′ has β + 2 copies of a: call them a0, a1, . . . , aβ+1.

So A′′ = ∪a∈CA
{a0, a1, . . . , aα+β+1} ∪a∈A\CA

{a0, a1, . . . , aβ+1}. The set B′′ is defined
as follows. B′′ = {b′ : b ∈ B} ∪a∈CA

{d1(a), . . . , dα+β+1(a)} ∪a∈A\CA
{d1(a), . . . , dβ+1(a)}.

As before, {b′ : b ∈ B} is a copy of the set B; along with nodes in {b′ : b ∈ B}, the set
B′′ contains α + β + 1 dummy nodes d1(a), . . . , dα+β+1(a) for a ∈ CA and β + 1 dummy
nodes d1(a), . . . , dβ+1(a) for a ∈ A \ CA.

The edge set. Corresponding to each (a, b) ∈ E, we have the following edges in E′′. As
before, there are four cases depending on whether a (similarly, b) is critical or not.
1. a /∈ CA and b /∈ CB : there are two edges (aβ , b′) and (aβ+1, b′) that correspond to (a, b).
2. a /∈ CA and b ∈ CB : there are β + 2 edges (ai, b′) where 0 ≤ i ≤ β + 1.
3. a ∈ CA and b /∈ CB : there are α + 2 edges (ai, b′) where β ≤ i ≤ α + β + 1.
4. a ∈ CA and b ∈ CB : there are α + β + 2 edges (ai, b′) where 0 ≤ i ≤ α + β + 1.

For a ∈ A \ CA, the set E′′ has the edges (ai−1, di(a)) and (ai, di(a)) where 1 ≤ i ≤ β + 1.
For a ∈ CA, the set E′′ has the edges (ai−1, di(a)) and (ai, di(a)) where 1 ≤ i ≤ α + β + 1.
For any i ≥ 1, the preference order of di(a) is ai−1 ≻ ai.

Preference orders. Let a’s preference order in G be b1 ≻ · · · ≻ bk. Let {c1, . . . , cr} =
{b1, . . . , bk} ∩ C. That is, c1, . . . , cr are a’s critical neighbors. It will be the case that only
these nodes can be neighbors of a0, . . . , aβ−1. Let a’s preference order among these nodes be
c1 ≻ · · · ≻ cr.

a0’s preference order is c′
1 ≻ · · · ≻ c′

r ≻ d1(a).
For 1 ≤ i ≤ β − 1, the preference order of ai is di(a) ≻ c′

1 ≻ · · · ≻ c′
r ≻ di+1(a).

For a /∈ CA:
the preference order of aβ is dβ(a) ≻ b′

1 ≻ · · · ≻ b′
k ≻ dβ+1(a);

the preference order of aβ+1 is dβ+1(a) ≻ b′
1 ≻ · · · ≻ b′

k.
For a ∈ CA:

for β ≤ i ≤ α + β, the preference order of ai is di(a) ≻ b′
1 ≻ · · · ≻ b′

k ≻ di+1(a);
the preference order of aα+β+1 is dα+β+1(a) ≻ b′

1 ≻ · · · ≻ b′
k.

Consider any b ∈ B. Let its preference order in G be a ≻ · · · ≻ z. Let b’s critical
neighbors be a′, . . . , z′ and let b’s preference order among them be a′ ≻ · · · ≻ z′.

Suppose b /∈ CB . Then the preference order of b′ is

a′
α+β+1 ≻ · · · ≻ z′

α+β+1︸ ︷︷ ︸
level α + β + 1 neighbors

≻ · · · ≻ a′
β+2 ≻ · · · ≻ z′

β+2︸ ︷︷ ︸
level β + 2 neighbors

≻ aβ+1 ≻ · · · ≻ zβ+1︸ ︷︷ ︸
level β + 1 neighbors

≻ aβ ≻ · · · ≻ zβ︸ ︷︷ ︸
level β neighbors

Note that copies of only critical neighbors are present in level i for β + 2 ≤ i ≤ α + β + 1
and copies of all neighbors of b, i.e., a, . . . , z, are present only in levels β and β + 1.

Suppose b ∈ CB . Then the preference order of b′ is

a′
α+β+1 ≻ · · · ≻ z′

α+β+1︸ ︷︷ ︸
level α + β + 1 neighbors

≻ · · · ≻ a′
β+2 ≻ · · · ≻ z′

β+2︸ ︷︷ ︸
level β + 2 neighbors

≻ aβ+1 ≻ · · · ≻ zβ+1︸ ︷︷ ︸
level β + 1 neighbors

≻ · · · ≻ a0 ≻ · · · ≻ z0︸ ︷︷ ︸
level 0 neighbors

Note that copies of only critical neighbors are present in level i for β + 2 ≤ i ≤ α + β + 1
and copies of all neighbors of b are present in level i for 0 ≤ i ≤ β + 1.

T. Kavitha 25:13

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Aα+β+1

Aβ+2

Aβ+1

Aβ

A0 B0

Bβ

Bβ+1

Bβ+2

Bα+β+1

Figure 2 A = A0∪· · ·∪Aα+β+1 and B = B0∪· · ·∪Bα+β+1 and M ⊆ ∪α+β+1
i=0 (Ai×Bi). Red nodes

are outside C and green nodes are in C. All red (i.e., non-critical) nodes are in ∪i≤β+1Ai ∪i≥β Bi;
unmatched red nodes are in Aβ+1 ∪ Bβ .

The matching M . For any stable matching M ′′ in G′′, define M ⊆ E to be the set of
edges obtained by deleting edges in M ′′ that are incident to dummy nodes and replacing any
edge (ai, b′) ∈ M ′′ with the original edge (a, b) ∈ E. For each a ∈ A, the stable matching
M ′′ matches at most one node among all ai’s to a neighbor in {b′ : b ∈ B} (the other ai’s
have to be matched to dummy nodes). So M is a matching in G.

▶ Theorem 14. For any stable matching M ′′ in G′′, the corresponding matching M is a
max-size popular critical matching in G.

We will prove Theorem 14 by first showing that M is a critical matching (see Lemma 15),
then that M is a popular critical matching (see Lemma 16), and finally that M is a max-size
popular critical matching (see Lemma 19). The proof of Lemma 15 is similar to the proof of
Lemma 10 and is given in the appendix.

▶ Lemma 15. M is a critical matching in G.

We will now prove that M is a popular critical matching. In order to show this, our
analysis is totally analogous to our analysis in Section 3. As done there, we partition the set
of all nodes in A that are matched in M into A0 ∪ · · · ∪ Aα+β+1 where for 0 ≤ i ≤ α + β + 1:
Ai = {a ∈ A : (ai, b′) ∈ M ′′ for some b ∈ B}, i.e., Ai is the set of all a’s in A such that ai

is matched in M ′′ to a neighbor in {b′ : b ∈ B}. Add unmatched nodes in CA to the set
Aα+β+1 and unmatched nodes in A \ CA to the set Aβ+1 (see Fig. 2).

FSTTCS 2021

25:14 Matchings, Critical Nodes, and Popular Solutions

Partition the set of all nodes in B that are matched in M into B0 ∪ · · · ∪ Bα+β+1 where
for 0 ≤ i ≤ α + β + 1: Bi = {b : (ai, b′) ∈ M ′′ for some a ∈ Ai}, i.e., b′’s partner in M ′′ is
a subscript i node. Add unmatched nodes in CB to the set B0 and unmatched nodes in
B \ CB to the set Bβ .

▶ Lemma 16. M is a popular critical matching in G.

Proof. We will use Proposition 8 here. Let (y⃗, z⃗) be defined as follows.
1. Set zA = −2α and zB = −2β. Set yu = 0 for all unmatched nodes u.
2. For matched nodes u, we will set y-values as follows.

For a ∈ Ai: if a ∈ CA then set ya = 2α + 2β − 2i + 1; else set ya = 2β − 2i + 1.
For b ∈ Bi: if b ∈ CB then set yb = 2i − 1; else set yb = 2i − 2β − 1.

▶ Lemma 17. ⟨y⃗, z⃗⟩ defined above is a feasible solution to (LP2).

The proof of Lemma 17 is given below. We will now show that
∑

u∈A∪B yu + (kA · zA) +
(kB · zB) = 0. Consider any edge (a, b) ∈ M . There is some i ∈ {0, . . . , α + β + 1} such that
a ∈ Ai and b ∈ Bi.

1. If a /∈ CA and b /∈ CB then ya + yb = (2β − 2i + 1) + (2i − 2β − 1) = 0.
2. If a ∈ CA and b /∈ CB then ya + yb + zA = (2α + 2β − 2i + 1) + (2i − 2β − 1) − 2α = 0.
3. If a /∈ CA and b ∈ CB then ya + yb + zB = (2β − 2i + 1) + (2i − 1) − 2β = 0.
4. If a ∈ CA and b ∈ CB then ya + yb + zA + zB = (2α + 2β − 2i + 1) + (2i − 1) − 2α − 2β = 0.

Recall that kA (resp., kB) is the number of nodes from CA (resp., CB) that get matched in
any critical matching. Since M is a critical matching (by Lemma 15), added up over all edges
(a, b) in M , the left hand sides of the four equations above sum to

∑
u∈V yu+(kA·zA)+(kB ·zB),

where V ⊆ A∪B is the set of nodes matched in M . Since all the right hand sides are 0, this sum
is 0. For any unmatched node u, we set yu = 0. Hence

∑
u∈A∪B yu + (kA · zA) + (kB · zB) = 0.

Thus M is a popular critical matching in G (by Proposition 8). ◀

Proof of Lemma 17. For any unmatched node u, we have wtM (u, u) = 0 and we set yu = 0.
For any matched node u, we have wtM (u, u) = −1 and we will now show that yu ≥ −1.
Since 0 ≤ i ≤ α + β + 1, we have 2α + 2β − 2i + 1 ≥ −1 and 2i − 1 ≥ −1. Thus for any
matched critical node u, we have yu ≥ −1.

For any matched a ∈ A \ CA, observe that a ∈ Ai for some 0 ≤ i ≤ β + 1, so ya =
2β − 2i + 1 ≥ −1. For any matched b ∈ B \ CB , observe that b ∈ Bi for some β ≤ i ≤ α + β,
so ya = 2i − 2β − 1 ≥ −1. Hence yu ≥ wtM (u, u) for all u ∈ A ∪ B. Thus constraint (8)
holds.

We will now show that ⟨y⃗, z⃗⟩ satisfies constraints (4)-(7). For any a ∈ CA, let y′
a = ya +zA

and for any b ∈ CB , let y′
b = yb + zB . For any node u /∈ C, let y′

u = yu.
We have y′

a = 2β − 2i + 1 for any matched a ∈ A and y′
b = 2i − 2β − 1 for any matched

b ∈ B.
For any unmatched a ∈ A: y′

a = −2α if a ∈ CA and y′
a = 0 otherwise.

For any unmatched b ∈ B: y′
b = −2β if b ∈ CB and y′

b = 0 otherwise.

We are now ready to show that y′
a + y′

b ≥ wtM (a, b) for all (a, b) ∈ E. Let a ∈ Ai and
b ∈ Bj . As done in the proof of Lemma 12, this proof is split into 4 parts: (1) i ≤ j − 1,
(2) i = j, (3) i = j + 1, and (4) i ≥ j + 2.

1. Consider any edge (a, b) where a ∈ Ai, b ∈ Bj , and i ≤ j − 1.
If a and b are matched nodes then y′

a + y′
b = (2β − 2i + 1) + (2j − 2β − 1) = 2(j − i) ≥

2 ≥ wtM (a, b).

T. Kavitha 25:15

Suppose a is unmatched. Observe that a ∈ A \ CA; otherwise i = α + β + 1 and so
j ≥ α + β + 2 which is not possible. Since a ∈ A \ CA, we have y′

a = 0 and i = β + 1.
Since j ≥ β + 2, we have y′

b = 2j − 2β − 1 ≥ 3. Thus y′
a + y′

b ≥ 3 > wtM (a, b).
Suppose b is unmatched. Observe that b ∈ B \ CB; otherwise j = 0 and so i ≤ −1
which is not possible. Since b ∈ B \ CB, we have y′

b = 0 and j = β. Since i ≤ β − 1,
we have y′

a = 2β − 2i + 1 ≥ 3. Thus y′
a + y′

b ≥ 3 > wtM (a, b).
2. Consider any (a, b) ∈ E where a ∈ Ai and b ∈ Bi. For any b ∈ B, within subscript i

neighbors, the preference order of b′ in G′′ is the same as b’s preference order among
these neighbors in G. Thus M restricted to Ai ∪ Bi is stable and so wtM (a, b) ≤ 0.

If a and b are matched nodes then y′
a + y′

b = (2β − 2i + 1) + (2i − 2β − 1) = 0.
Suppose a is unmatched.

If a ∈ CA then y′
a = −2α and i = α + β + 1. So y′

b = 2(α + β + 1) − 2β − 1 = 2α + 1.
Thus y′

a + y′
b = −2α + 2α + 1 = 1.

If a /∈ CA then y′
a = 0 and i = β + 1. So y′

b = 2(β + 1) − 2β − 1 = 1. Thus
y′

a + y′
b = 1.

Suppose b is unmatched.
If b ∈ CB then y′

b = −2β and i = 0. So y′
a = 2β + 1. Thus y′

a + y′
b = 2β + 1 − 2β = 1.

If b /∈ CB then y′
b = 0 and i = β. So y′

a = 2β − 2β + 1 = 1. Thus y′
a + y′

b = 1.
Thus we have y′

a + y′
b ≥ 0 ≥ wtM (a, b) in all the cases.

3. Let b ∈ Bj where i = j +1. As argued in the proof of Lemma 12, case 3, for any edge (a, b)
where a ∈ Aj+1 and b ∈ Bj , we have wtM (a, b) = −2. So both a and b are matched in M

to neighbors they prefer to each other. So y′
a + y′

b = (2β − 2i + 1) + (2(i − 1) − 2β − 1) =
−2 = wtM (a, b).

4. There is no edge (a, b) where b ∈ Bj and i ≥ j + 2; otherwise (aj+1, b′) would block M ′′

as shown in the proof of Lemma 12, case 4.

Thus we have shown that y′
a + y′

b ≥ wtM (a, b) for all (a, b) ∈ E. This completes the proof
of Lemma 17. ◀

Max-size popular critical matching. Observe that (y⃗, z⃗) is an optimal solution to (LP2)
since M̃ is a feasible solution to (LP1) and wtM (M̃) = 0 =

∑
u∈A∪B yu +(kA ·zA)+(kB ·zB).

We will use the notation y′
v for v ∈ A ∪ B used in the proof of Lemma 17. Recall that for

any a ∈ CA, y′
a = ya + zA and for any b ∈ CB, y′

b = yb + zB. For any node u /∈ C, y′
u = yu.

We will show the following claim below.

▷ Claim 18. For any edge (a, b) where a or b is unmatched, y′
a + y′

b > wtM (a, b).

Proof. Consider any unmatched a ∈ A and let (a, b) ∈ E. We already know from the proof
of Lemma 17 that y′

a + y′
b ≥ wtM (a, b). Our goal now is to show that y′

a + y′
b > wtM (a, b).

If a ∈ CA then a ∈ Aα+β+1. Observe that b ∈ Bα+β+1, otherwise the edge (aα+β+1, b′)
would block M ′. So y′

a + y′
b = −2α + 2α + 1 = 1. Since wtM (a, b) ∈ {0, ±2}, this means

y′
a + y′

b > wtM (a, b).
If a /∈ CA then a ∈ Aβ+1. Observe that b ∈ ∪i≥β+1Bi, otherwise the edge (aβ+1, b′) would

block M ′. If b ∈ Bβ+1 then y′
a + y′

b = 0 + 2(β + 1) − 2β − 1 = 1 and so y′
a + y′

b > wtM (a, b).
If b ∈ ∪i≥β+2Bi then y′

a + y′
b ≥ 0 + 2(β + 2) − 2β − 1 = 3 > wtM (a, b).

Consider any unmatched b ∈ B and let (a, b) ∈ E. If b ∈ CB then b ∈ B0. Observe that
a ∈ A0, otherwise the edge (a0, b′) would block M ′. So y′

a + y′
b = 2β + 1 − 2β = 1. Since

wtM (a, b) ∈ {0, ±2}, it follows that y′
a + y′

b > wtM (a, b).

FSTTCS 2021

25:16 Matchings, Critical Nodes, and Popular Solutions

If b /∈ CB then b ∈ Bβ . Observe that a ∈ ∪i≤βAi, otherwise the edge (aβ , b′) would block
M ′. If a ∈ Aβ then y′

a + y′
b = 2β − 2β + 1 = 1 and so y′

a + y′
b > wtM (a, b). If a ∈ ∪i≤β−1Ai

then y′
a + y′

b ≥ 2β − 2(β − 1) + 1 = 3 > wtM (a, b).
Thus every edge incident to a node left unmatched in M is slack. ◁

Lemma 19 follows easily from Claim 18.

▶ Lemma 19. M is a max-size popular critical matching in G.

Proof. Consider any critical matching N in G such that |N | > |M |. So N has to match a
node that is unmatched in M , i.e., N has to use a slack edge (by Claim 18). Since (y⃗, z⃗)
is an optimal solution to (LP2), it follows from complementary slackness that the perfect
matching Ñ , which is a feasible solution to (LP1), cannot be an optimal solution.

The optimal value of (LP1) is 0, so this means wtM (Ñ) < 0. In other words, ∆(N, M) < 0,
i.e., the critical matching M is more popular than N . Thus no critical matching larger than
M can be a popular critical matching. Hence M is a max-size popular critical matching. ◀

The time taken to compute M is O(|C|m + m), so the second part of Theorem 4 follows
from Theorem 14. Recall that the first part of Theorem 4 was already shown in Section 3.

References
1 A. Abdulkadiroğlu and T. Sönmez. School choice: a mechanism design approach. American

Economic Review, 93(3):729–747, 2003.
2 S. Baswana, P. P. Chakrabarti, S. Chandran, Y. Kanoria, and U. Patange. Centralized

admissions for engineering colleges in India. INFORMS Journal on Applied Analytics, 49(5):338–
354, 2019.

3 P. Biro, D. F. Manlove, and S. Mittal. Size versus stability in the marriage problem. Theoretical
Computer Science, 411:1828–1841, 2010.

4 Canadian Resident Matching Service. How the matching algorithm works. http://carms.ca/
algorithm.htm.

5 M.-J.-A.-N. de C. (Marquis de) Condorcet. Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix. L’Imprimerie Royale, 1785.

6 Á. Cseh. Popular matchings. Trends in Computational Social Choice, Ulle Endriss (ed.), 2017.
7 Á. Cseh and T. Kavitha. Popular edges and dominant matchings. Mathematical Programming,

172(1):209–229, 2018.
8 K. Eriksson and O. Häggström. Instability of matchings in decentralized markets with various

preference orders. Mathematical Programming, 36(3-4):409–420, 2008.
9 D. Gale and L.S. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69(1):9–15, 1962.
10 D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete Applied

Mathematics, 11(3):223–232, 1985.
11 P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science,

20:166–173, 1975.
12 M. Hirakawa, Y. Yamauchi, S. Kijima, and M. Yamashita. On the structure of popular

matchings in the stable marriage problem: Who can join a popular matching? In the 3rd
International Workshop on Matching Under Preferences (MATCH-UP), 2015.

13 C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information
and Computation, 222:180–194, 2013.

14 T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43(1):52–71, 2014.

15 T. Kavitha. Popular half-integral matchings. In Proceedings of the 43rd International Col-
loquium on Automata, Languages, and Programming (ICALP), pages 22:1–22:13, 2016.

http://carms.ca/algorithm.htm
http://carms.ca/algorithm.htm

T. Kavitha 25:17

16 T. Kavitha. Maximum matchings and popularity. In Proceedings of the 48th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 85:1–85:21, 2021.

17 C. Mathieu. Stable matching in practice. In the 26th Annual European Symposium on
Algorithms (ESA), Keynote talk, 2018.

18 S. Merrill and B. Grofman. A unified theory of voting: directional and proximity spatial models.
Cambridge University Press, 1999.

19 M. Nasre and P. Nimbhorkar. Popular matchings with lower quotas. In Proceedings of the
37th Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
44:1–44:15, 2017.

20 M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar. Popular matchings in the hospitals-
residents problem with two-sided lower quotas. In Proceedings of the 41st Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), 2021.

21 National Resident Matching Program. Why the Match? http://www.nrmp.org/whythematch.
pdf.

22 P. A. Robards. Applying the two-sided matching processes to the United States Navy enlisted
assignment process. Master’s Thesis, Naval Postgraduate School, Monterey, Canada, 2001.

23 A. E. Roth and X. Xing. Turnaround time and bottlenecks in market clearing: Decentralized
matching in the market for clinical psychologists. Journal of Political Economy, 105(2):284–329,
1997.

24 M. Soldner. Optimization and measurement in humanitarian operations: Addressing practical
needs. PhD thesis, Georgia Institute of Technology, 2014.

25 A.C. Trapp, A. Teytelboym, A. Martinello, T. Andersson, and N. Ahani. Placement optimiza-
tion in refugee resettlement. Working paper, 2018.

26 W. Yang, J. A. Giampapa, and K. Sycara. Two-sided matching for the US Navy detailing
process with market complication. Technical Report CMU-R1-TR-03-49, Robotics Institute,
Carnegie Mellon University, 2003.

A Appendix: Missing Proofs

Before we prove Lemma 10, it will be useful to prove the following simple observation.

▶ Observation 20. For any critical node left unmatched in M , all its neighbors are in
A0 ∪ Bα+β.

Proof. If a ∈ CA is unmatched in M then aα+β has to be unmatched in M ′. This is because
for 0 ≤ i ≤ α + β − 1, the node ai is di+1(a)’s top choice neighbor, hence the stable matching
M ′ has to match ai. If a has a neighbor b in Bi for i ≤ α + β − 1 then the edge (aα+β , b′)
blocks M ′, a contradiction to its stability in G′. Thus b ∈ Bα+β .

Suppose b ∈ CB is unmatched in M and b has a neighbor a in Ai for i ≥ 1. This means
(a0, d1(a)) is in M ′. Recall that d1(a) is a0’s least preferred neighbor. So the edge (a0, b′)
blocks M ′, a contradiction to its stability in G′. Thus a ∈ A0. ◁

Proof of Lemma 10. We will show there is no alternating path p with respect to M such
that (i) p is an augmenting path wrt M and at least one endpoint of p is in C or (ii) p has
even length with exactly one endpoint in C and this node is left unmatched in M . Then it
follows from Lemma 6 that M is a critical matching in G.

We will first show there is no augmenting path p wrt M with an endpoint in CB . It follows
from the definition of sets Ai and Bi that M ⊆ ∪α+β

i=0 (Ai × Bi). An important property here
is that there is no edge in Ai × Bj where i ≥ j + 2. See the proof of Lemma 12, case 4 which
shows that such an edge contradicts the stability of M ′ in G′.

FSTTCS 2021

http://www.nrmp.org/whythematch.pdf
http://www.nrmp.org/whythematch.pdf

25:18 Matchings, Critical Nodes, and Popular Solutions

The path p starts in B0 at an unmatched node b ∈ CB and all of b’s neighbors are in A0
(by Observation 20). The matched partners of b’s neighbors are in B0. The node after this
can be in A1 and its partner is in B1 and so on. So the shortest alternating path from an
unmatched b ∈ B0 to an unmatched a ∈ A (such a node is in Aβ ∪ Aα+β) moves across sets
as follows: [here (Ai − Bi) refers to a matching edge in Ai × Bi]

B0 − (A0 − B0) − (A1 − B1) − (A2 − B2) − · · · − (Aβ−1 − Bβ−1) − · · ·

Since all nodes in sets Bi for 0 ≤ i ≤ β − 1 are in CB, this implies there are at least β + 1
nodes of CB in p. However |CB | = β. So there is no such augmenting path p with respect
to M .

The same argument shows that the shortest even length alternating path p with an
unmatched node in CB as one endpoint and any node in B \ CB (such a node is in ∪i≥βBi)
as another endpoint needs to have at least β + 1 nodes of CB in it. However |CB | = β. So
there is no such alternating path p with respect to M .

We will now show there is no augmenting path p wrt M with an endpoint in CA. An
argument analogous to the one given above shows that the shortest alternating path from an
unmatched a ∈ Aα+β to an unmatched node b ∈ B (such a node is in Bβ ∪ B0) moves across
sets as follows: [here (Bi − Ai) refers to a matching edge in Bi × Ai]

Aα+β − (Bα+β − Aα+β) − (Bα+β−1 − Aα+β−1) − · · · − (Bβ+1 − Aβ+1) − · · ·

Since all nodes in levels Ai for β + 1 ≤ i ≤ α + β are in CA, this implies there are at least
α + 1 nodes of CA in p. However |CA| = α. So there is no such augmenting path p with
respect to M .

The same argument shows that the shortest even length alternating path p with an
unmatched node in CA as one endpoint and any node in A \ CA (such a node is in ∪i≤βAi)
as another endpoint needs to have at least α + 1 nodes of CA in it. However |CA| = α. So
there is no such alternating path p with respect to M .

Thus there is no forbidden alternating path p (as given in Lemma 6) with respect to M .
Hence M is a critical matching. ◀

Proof of Lemma 15. We will use Lemma 6 to show that M is a critical matching. We will
show there is no alternating path p with respect to M such that: (i) p is an augmenting
path wrt M and at least one endpoint of p is in C or (ii) p has even length with exactly one
endpoint in C and this node is left unmatched in M .

We will first show there is no augmenting path p wrt M with an endpoint in CB . Every
unmatched node in CB is in B0 and its neighbors are in A0 (analogous to Observation 20).

It follows from the definitions of Ai and Bi that M ⊆ ∪α+β+1
i=0 (Ai × Bi). Moreover there

is no edge in Ai × Bj where i ≥ j + 2; otherwise the edge (aj+1, b′) would block M ′′.
Thus the path p starts in B0 at an unmatched node b ∈ CB and the next node is in A0.

The matched partners of b’s neighbors are in B0. The node after this can be in A1 and its
partner is in B1 and so on. So the shortest alternating path between an unmatched node
b ∈ B0 and an unmatched node a ∈ A (such a node is in Aβ+1 ∪ Aα+β+1) moves across sets
as follows (see Fig. 2):

B0 − (A0 − B0) − (A1 − B1) − (A2 − B2) − · · · − (Aβ−1 − Bβ−1) − · · ·

Since all nodes in levels Bi for 0 ≤ i ≤ β − 1 are in CB , this implies there are at least β + 1
nodes of CB in p. However |CB | = β. So there is no such augmenting path p with respect
to M .

T. Kavitha 25:19

The same argument shows that the shortest even length alternating path p with an
unmatched node in CB (such a node is in B0) as one endpoint and any node in B \ CB (such
a node is in ∪i≥βBi) as another endpoint needs to have at least β + 1 nodes of CB in it.
However |CB | = β. So there is no such alternating path p with respect to M .

We will now show there is no augmenting path p wrt M with an endpoint in CA. An
argument analogous to the one given above shows that the shortest alternating path from an
unmatched a ∈ CA (note that a ∈ Aα+β+1) to an unmatched node in B (such a node is in
Bβ ∪ B0) moves across sets as follows (see Fig. 2):

Aα+β+1 − (Bα+β+1 −Aα+β+1)− (Bα+β −Aα+β)− (Bα+β−1 −Aα+β−1)−· · ·− (Bβ+2 −Aβ+2)−· · ·

Since all nodes in levels Ai for β + 2 ≤ i ≤ α + β + 1 are in CA, this implies there are at
least α + 1 nodes of CA in p. However |CA| = α. So there is no such augmenting path p with
respect to M .

The same argument shows that the shortest even length alternating path p with an
unmatched node in CA (such a node is in Aα+β+1) as one endpoint and any node in A \ CA

(such a node is in ∪i≤β+1Ai) as another endpoint needs to have at least α + 1 nodes of CA

in it. However |CA| = α. So there is no such alternating path p with respect to M .
Thus there is no forbidden alternating path p (as given in Lemma 6) with respect to M .

Hence M is a critical matching in G. ◀

FSTTCS 2021

Fast and Exact Convex Hull Simplification
Georgiy Klimenko #

Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA

Benjamin Raichel #

Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA

Abstract
Given a point set P in the plane, we seek a subset Q ⊆ P , whose convex hull gives a smaller and
thus simpler representation of the convex hull of P . Specifically, let cost(Q, P) denote the Hausdorff
distance between the convex hulls CH(Q) and CH(P). Then given a value ε > 0 we seek the smallest
subset Q ⊆ P such that cost(Q, P) ≤ ε. We also consider the dual version, where given an integer k,
we seek the subset Q ⊆ P which minimizes cost(Q, P), such that |Q| ≤ k. For these problems, when
P is in convex position, we respectively give an O(n log2 n) time algorithm and an O(n log3 n) time
algorithm, where the latter running time holds with high probability. When there is no restriction
on P , we show the problem can be reduced to APSP in an unweighted directed graph, yielding an
O(n2.5302) time algorithm when minimizing k and an O(min{n2.5302, kn2.376}) time algorithm when
minimizing ε, using prior results for APSP. Finally, we show our near linear algorithms for convex
position give 2-approximations for the general case.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Convex hull, coreset, exact algorithm

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.26

Related Version Full Version: https://arxiv.org/abs/2110.00671 [12]

Funding Partially supported by NSF CAREER Award 1750780.

Acknowledgements The authors thank Sariel Har-Peled for helpful discussions related to the paper.

1 Introduction

The convex hull of a set of points in the plane is one of the most well studied objects in
computational geometry. As the number points on the convex hull can be linear, for example
when the points are in convex position, it is natural to seek the best simplification using
only k input points. To measure the quality of the subset we use one of the most common
measures, namely the Hausdorff distance. Specifically, given a set P of n points in the plane,
here we seek the subset of Q ⊆ P of k points which minimizes the Hausdorff distance between
CH(Q) and CH(P), where CH(X) denotes the convex hull of X. This is equivalent to finding
the subset Q ⊆ P of k points which minimizes ε = maxp∈P ||p − CH(Q)||. We refer to this as
the min-ε problem. We also consider the dual min-k problem, where given a distance ε ≥ 0,
we seek the minimum cardinality subset Q ⊆ P such that maxp∈P ||p − CH(Q)|| ≤ ε. We
emphasize that our goal is to find the optimal subset Q exactly. As discussed below, this is a
far more demanding problem than allowing approximation in terms of k or ε.

A number of related problems have been considered before, though they all differ in key
ways. The three main differences concern the error measure of Q, whether Q is restricted to
be a subset from P , and whether a starting point is given. Varying any one of these aspects
can significantly change the hardness of the problem.

© Georgiy Klimenko and Benjamin Raichel;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gik140030@utdallas.edu
mailto:benjamin.raichel@utdallas.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.26
https://arxiv.org/abs/2110.00671
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Fast and Exact Convex Hull Simplification

Coresets. In this paper, we require our chosen points to be a subset of P , which from a
representation perspective is desirable as the chosen representatives are actual input data
points. Such subset problems have thus been extensively studied, and are referred to as
coresets (see [9]). Given a point set P , a coreset is subset of P which approximately preserves
some geometric property of the input. Thus here we seek a coreset for the Hausdorff distance.

Among coreset problems, ε-kernels for directional width are one of the most well studied.
Define the directional width for a direction u as w(u, P) = maxp∈P ⟨u, p⟩ − minp∈P ⟨u, p⟩.
Then Q ⊆ P is an ε-kernel if for all u, (1 − ε)w(u, P) ≤ w(u, Q). It is known that for any
point set P ⊂ Rd there is an ε-kernel of size O(1/ε(d−1)/2) [1]. For worst case point sets
Ω(1/ε(d−1)/2) size is necessary, however, for certain inputs, significantly smaller coresets may
be possible. (As an extreme example, if the points lie on a line, then the k = 2 extreme
points achieves ε = 0 error.) Thus [5] considered computing coresets whose size is measured
relative to the optimum for a given input point set. Specifically, if there exists an ε-coreset
for Hausdorff distance with k points, then in polynomial time they give an ε-coreset with
O(dk log k) size, or alternatively an (8ε1/3 + ε)-coreset with O(k/ε2/3) size. Note that the
standard strategy to compute ε-kernels applies a linear transformation to make the point
set fat, and then roughly speaking approximates the Hausdorff problem. Thus ε-coresets
for Hausdorff distance yield O(ε)-kernels (where the constant relates to the John ellipsoid
theorem). However, ε-kernels do not directly give such coresets for Hausdorff distance, as it
depends on the fatness of the point set, i.e. Hausdorff is arguably the harder problem.

Most prior work on coresets gave approximate solutions. However, our focus is on exact
solutions. Along these lines, a very recent PODS paper [18] considered what they called the
minimum ε-corset problem, where the goal is to exactly find the minimum sized ε-coreset
for a new error measure they introduced. Specifically, Q ⊆ P is an ε-coreset for maxima
representation if for all directions u, (1−ε)ω(u, P) ≤ ω(u, Q), where ω(u, X) = maxx∈X⟨u, x⟩.
While related to our Hausdorff measure, again like directional width, it differs in subtle ways.
For example, observe their measure is not translation invariant. Moreover, they assume the
input is α-fat for some constant α, while we do not. For their measure they give a cubic time
algorithm in the plane, whereas our focus is on significantly subcubic time algorithms.

In the current paper, we select Q so as to minimize the maximum distance of a point
in P to CH(Q). [13] instead considered the problem of selecting Q so as to minimize the
sum of the distances of points in P to CH(Q). They provided near cubic (or higher) running
time algorithms for certain generalized versions of this summed coreset variant.

Other related problems. If one relaxes the problem to no longer require Q to be a subset
of P , then related problems have been studied before. Given two convex polygons X and Y ,
where X lies inside Y , [3] provided a near linear time algorithm for the problem of finding the
convex polygon Z with the fewest number of vertices such that X ⊆ Z ⊆ Y . The problem of
finding the best approximation under Hausdorff distance has also been considered before.
Specifically, if Q can be any subset from CH(P) (i.e. it is not a coreset), then [14] gave a near
linear time algorithm for approximating the convex hull under Hausdorff distance, but under
the key assumption that they are given a starting vertex which must be in Q. We emphasize
that assuming a starting point is given makes a significant difference, and intuitively relates
to the difference in hardness between single source shortest paths and all pairs shortest paths.

A number of papers have considered simplifying polygonal chains. Computing the best
global Hausdorff simplification is NP-hard [17, 15]. Most prior work instead considered
local simplification, where points from the original chain are assigned to the edge of the
simplification whose end points they lie between. In general such algorithms take at least

G. Klimenko and B. Raichel 26:3

quadratic time, with subquadratic algorithms known for certain special or approximate cases.
For example, [2] gave an O(n4/3+δ) time algorithm, for any δ > 0, under the L1 metric.
Our problem relates to these works in that we must approximate the chain representing
the convex hull. On the one hand, convexity gives us additional structure. However, unlike
polygonal chain simplification, we do not have a well defined starting point (i.e. the convex
hull is a closed chain), which as remarked above makes a significant difference in hardness.

Our problem also relates to polygon approximation, for which prior work often instead
considered approximation in relation to area. For example, given a convex polygon P , [16]
gave a near linear time algorithm for finding the three vertices of P whose triangle has the
maximum area. To illustrate one the many ways that area approximations differ, observe
that the area of the triangle of the three given points of P can be determined in constant
time, whereas the computing the furthest point from P to the triangle takes linear time.

Our results. We give fast and exact algorithms for both the min-k and min-ε problems
for summarizing the convex hull in the plane. While a number of related problems have
been considered before as discussed above, to the best of our knowledge we are the first to
consider exact algorithms for this specific version of the problem.

Our main results show that when the input set P is in convex position then the min-k
problem can be solved exactly in O(n log2 n) deterministic time, and the min-ε problem can
be solved exactly in O(n log3 n) time with high probability. Note that this version of the
problem is equivalent to allowing the points in P to be in arbitrary position, but requiring
that the chosen subset Q consist of vertices of the convex hull. (Which follows as the furthest
point to CH(Q) is always a vertex of CH(P).) Thus this restriction is quite natural, as we
are then using vertices of the convex hull to approximate the convex hull, i.e. furthering the
coreset motivation.

For the general case when P is arbitrary and Q is any subset of P , we show that in
near quadratic time these problems can be reduced to computing all pairs shortest paths
in an unweighted directed graph. This yields an O(n2.5302) time algorithm for the min-k
problem and an O(min{n2.5302, kn2.376}) time algorithm for the min-ε problem, by utilizing
previous results for APSP in unweighted directed graphs. Moreover, while exact algorithms
are our focus, we show that our near linear time algorithms for points in convex position
immediately yield 2-approximations for the general case with the same near linear running
times. Also, appropriately using single source shortest paths rather than APSP in our graph
based algorithms, gives O(n2 log n) time solutions which use at most one additional point.

2 Preliminaries

Given a point set X in R2, let CH(X) denote its convex hull. For two points x, y ∈ R2,
let xy denote their line segment, that is xy = CH({x, y}). Throughout, given points
x, y ∈ R2, ||x − y|| denotes their Euclidean distance. Given two compact sets X, Y ⊂ R2,
||X − Y || = minx∈X,y∈Y ||x − y|| denotes their distance. For a single point x we write
||x − Y || = ||{x} − Y ||.

For any two finite point set Q, P ⊂ R2 we define

cost(Q, P) = max
p∈P

||p − CH(Q)||

Note that for Q ⊆ P , we have that CH(Q) ⊆ CH(P), and moreover the furthest point
in CH(P) from CH(Q) is always a point in P . Thus the cost(Q, P) is equivalent to the
Hausdorff distance between CH(Q) and CH(P).

FSTTCS 2021

26:4 Fast and Exact Convex Hull Simplification

a
b

Q

`a
`b

`

x

Figure 3.1 An example of the defined objects from Lemma 5.

In this paper we consider the following two related problems, where for simplicity, we
assume that P is in general position.

▶ Problem 1 (min-k). Given a set P ⊂ R2 of n points, and a value ε > 0, find the smallest
integer k such that there exists a subset Q ⊆ P where |Q| ≤ k and cost(Q, P) ≤ ε.

▶ Problem 2 (min-ε). Given a set P ⊂ R2 of n points, and an integer k, find the smallest
value ε such that there exists subset Q ⊆ P where |Q| ≤ k and cost(Q, P) ≤ ε.

For simplicity the above problems are phrased in terms of finding the value of either k or ε,
though we remark that our algorithms for these problems also immediately imply the set
Q realizing the value can be determined in the same time. Thus in the following when we
refer to a solution to these problems, we interchangeably mean either the value or the set
realizing the value.

In the following section we restrict the point set P to lie in convex position, thus for
simplicity we define the following convex versions of the above problems.

▶ Problem 3 (cx-min-k). Given a set P ⊂ R2 of n points in convex position, and a value
ε > 0, find the smallest integer k such that there exists a subset Q ⊆ P where |Q| ≤ k and
cost(Q, P) ≤ ε.

▶ Problem 4 (cx-min-ε). Given a set P ⊂ R2 of n points in convex position, and an
integer k, find the smallest value ε such that there exists subset Q ⊆ P where |Q| ≤ k and
cost(Q, P) ≤ ε.

3 Convex Position

In this section we give near linear time algorithms for the case when P is in convex position,
that is for Problem 3 and Problem 4. First, we need several structural lemmas and definitions.

3.1 Structural Properties and Definitions
▶ Lemma 5. Let P be a set of n points in convex position. Consider any subset Q ⊂ P , and
let a, b be consecutive in the clockwise ordering of Q. Then for any point x ∈ P which falls
between a and b in the clockwise ordering of P , we have ||x − CH(Q)|| = ||x − ab||.

G. Klimenko and B. Raichel 26:5

Proof. Let x be any point between a and b in the clockwise ordering of P , and let l denote
the line through a and b. Since a and b are consecutive in the clockwise order of Q, CH(Q)
lies entirely in the closed halfspace defined by ℓ and on the opposite side of ℓ as x. So if z

denotes the closest point to x in CH(Q), then the segment xz must intersect ℓ.
Consider the lines la and lb which are perpendicular to l and go through a and b

respectively. If x lies between la and lb, then its projection onto ℓ lies on the segment ab,
and hence this is in fact its projection onto CH(Q), and the claim holds. Otherwise, suppose
that x and a are in opposite halfplanes defined by the line lb, see Figure 3.1. (A similar
argument will hold when x and b are in opposite halfplanes defined by the line la.) Observe,
that the closest point in ℓb ∩ CH(Q) to x is the point b, since x is in the opposite halfspace
defined by ℓ as CH(Q), and ℓb is orthogonal to ℓ. Thus if the shortest path to z intersects
ℓb, then it would imply z = b, and so again the claim holds. So suppose z and x are on
the same side of ℓb. Since xz intersects ℓ, z must lie on the opposite side of ℓ as x. Since
z ∈ CH(Q), this implies there is a point y ∈ Q which like z is on the same side of ℓb as x

but on the opposite side of ℓ as x (since there is no point of Q on the same side of ℓ as x).
Thus similarly, the segment xy intersects ℓ, and let y′ denote this intersection point. Since x

and y are on the same side of ℓb, which is opposite the side of a, this implies b lies on the
segment ay′. As y′ lies on the segment xy, this in turn implies that b lies in the triangle
∆(ayx). This is a contradiction, since a, y, x, b ∈ P , and so b lying in ∆(azx) implies P is
not in convex position. ◀

Assume that the points in P = {p1, . . . , pn} are indexed in clockwise order. We now wish
to prove a lemma about the optimal cost solution when restricted to points between some
index pair i, j. As we wish our definition to work regardless of whether i ≤ j or j ≤ i, we
define the following notation. For a triple of indices i, x, j, we write i ⪯ x ⪯ j to denote that
px falls between pi and pj in the clockwise ordering. More precisely, if i ≤ j then this means
i ≤ x ≤ j, and if j ≤ i then this means that j ≤ x ≤ n or 1 ≤ x ≤ i.

▶ Definition 6. For any integer 0 ≤ k ≤ n − 2 we define

costk(i, j) = min
i⪯l1⪯...⪯lk⪯j

max
i⪯v⪯j

||pv − CH(pi, pl1 , . . . , plk
, pj)||.

That is, costk(i, j) is the minimum cost solution when restricted to including pi, pj , and k

other vertices in clockwise order between pi and pj , and where we only evaluate the cost
with respect to points in clockwise order between pi and pj .

According to the above definition, we have that cost0(i, j) = maxi⪯v⪯j ||pv−CH(pi, pj)|| =
maxi⪯v⪯j ||pv − pipj ||. Observe that the following is implied by Lemma 5.

▶ Corollary 7. Let Q = {pl1 , . . . , plk
} ⊆ P be indexed in clockwise order, and let lk+1 = l1.

Then,

cost(Q, P) = max
p∈P

||p − CH(Q)|| = max
1≤i≤k

max
li⪯j⪯li+1

||pj − pli
pli+1 || = max

1≤i≤k
cost0(li, li+1).

For more general values of k, the following lemma will be used to argue we can use a greedy
algorithm.

▶ Lemma 8. For any indices i′ ⪯ i ⪯ j ⪯ j′, it holds that costk(i, j) ≤ costk(i′, j′).

Proof. Let pi′ , pl1 , . . . plk
, pj′ be the clockwise chain of vertices that realizes costk(i′, j′).

That is, costk(i′, j′) = maxi′⪯v⪯j′ ||pv − CH(pi′ , pl1 , . . . plk
, pj′)||. Observe that if we add

points to this chain then we can only decrease the cost. Specifically, we consider adding the
points pi and pj . So let plx

, . . . , ply
be the subchain of pl1 , . . . plk

consisting of all i ⪯ li ⪯ j.
Then we have,

FSTTCS 2021

26:6 Fast and Exact Convex Hull Simplification

costk(i′, j′) = maxi′⪯v⪯j′ ||pv − CH(pi′ , pl1 , . . . , plk
, pj′)||

≥ maxi′⪯v⪯j′ ||pv − CH(pi′ , pl1 , . . . , pi, px, . . . , py, pj , . . . , plk
, pj′)||

≥ maxi⪯v⪯j ||pv − CH(pi′ , pl1 , . . . , pi, px, . . . , py, pj , . . . , plk
, pj′)||

≥ maxi⪯v⪯j ||pv − CH(pi, px, . . . , py, pj)|| ≥ costk(i, j).

The second to last inequality holds by Lemma 5. The last inequality holds as the chain
px, . . . , py has at most k points (since it was a subchain of pl1 , . . . , plk

) and costk(i, j) is
defined by the minimum cost such chain between i and j. ◀

We now define the notions of friends and greedy sequences, which we use in the next
section to design our greedy algorithm.

▶ Definition 9. For an index i and value ε ≥ 0, define the ε-friend of i, denoted fε(i), as the
index j of the vertex furthest from pi in the clockwise ordering of P , such that cost0(i, j) ≤ ε.

Note that fε(i) is always well defined. In particular, cost0(i, i + 1) = 0 for any i. Moreover,
if the ball of radius ε centered at pi contains P then fε(i) = i, and the point pi by itself is
an optimal solution to Problem 3. Note that we can easily determine if such a point exists
in O(n log n) time by computing the farthest Voronoi diagram of P ,1 and then querying all
points in P . For simplicity we will assume fε(i) ̸= i, which can thus be assured by such a
preprocessing step.

▶ Definition 10. Let Q = {pl1 , pl2 , . . . , plk
} be any subset of P , which we assume has been

indexed such that l1 < l2 < . . . < lk. We call Q a greedy sequence if for all 1 ≤ i < k, we
have fε(li) = li+1, and fε(lk) < lk. We call a greedy sequence valid if fε(lk) ≥ l1.

Note that in the above definition, the condition that fε(lk) < lk ensures that the ε-friend
of plk

goes past the vertex pn, i.e. this ensure that the sequence is a maximal sequence
without wrapping around. Note also there always exists a valid greedy sequence. Specifically,
we trivially have that for any greedy sequence fε(lk) ≥ 1. Thus the greedy sequence starting
at p1 is valid as in that case l1 = 1.

▶ Observation 11. Let Q = {pl1 , pl2 , . . . , plk
} be a valid greedy sequence. Then since Q

is a greedy sequence cost0(li, li+1) ≤ ε for all 1 ≤ i < k. Furthermore, cost0(lk, l1) ≤
cost0(lk, fε(lk)) ≤ ε by Lemma 8 and since Q is valid. Thus by Corollary 7, cost(Q, P) ≤ ε.

▶ Lemma 12. Let P, ε be an instance Problem 3. Any valid greedy sequence of minimum
possible cardinality is an optimal solution to the given instance.

Proof. Let Q = {pl1 , pl2 , . . . , plk
} be an optimal solution to Problem 3, indexed such that

1 ≤ l1 < l2 < . . . < lk. Thus cost(Q, P) ≤ ε and so by Corollary 7, max1≤i≤k cost0(li, li+1)
≤ ε, where lk+1 = l1. Thus if Q is a greedy sequence then it is a valid greedy sequence,
and the claim holds. So suppose Q is not a greedy sequence. Now we show that Q can be
converted to a valid greedy sequence with the same cardinality.

Let j > 1 be the first index such that lj ̸= fε(lj−1). Let wj = fε(lj−1) and let
{wj+1, wj+2, . . . , wk} be the indices which realize costk−j(wj , l1) according to Definition 6.
Then we modify Q by replacing the suffix {plj

, plj+1 , . . . , plk
} with {pwj

, pwj+1 , . . . , pwk
}.

1 The farthest Voronoi diagram of P partitions the plane into regions sharing the same farthest point in
P . It allows one to find the farthest point in P from a query in logarithmic time. See for example [10].

G. Klimenko and B. Raichel 26:7

Notice that the cost of Q after this modification is still ≤ ε because cost0(lj−1, wj) ≤ ε as
wj = fε(lj−1), and by Lemma 8 we have costk−j(wj , l1) ≤ costk−j(lj , l1). Now repeat this
procedure until h = fε(lj−1) goes beyond index n. Let the resulting new optimal solution be
denoted Q′. If h ≥ l1, then Q′ is a valid greedy sequence by our construction, and we are
done. So if the sequence failed to be a valid greedy sequence, then 1 ≤ h < l1. Thus we can
repeat the whole procedure, relabeling vertices of Q′ such that l1 = h. This means that each
time we repeat this procedure we either produce a valid greedy sequence or we decrease l1.
At some point l1 = 1, at which time the procedure must produce a valid greedy sequence as
in this case h ≥ 1 = l1.

The above argues that some valid greedy sequence of minimum cardinality is optimal.
Note this implies all valid greedy sequences of minimum cardinality are optimal, since they
all have the same size, and by Observation 11 their cost is ≤ ε. ◀

3.2 The min-k Algorithm
In this section we give an efficient algorithm for Problem 3. The idea is to use the fε(i)
values to define a graph. Specifically, the friend graph Gf is the directed graph with vertex
set P where there is an edge from pi to pj if and only if fε(i) = j and i < j. Thus every
vertex in Gf has outdegree at most 1. Moreover, Gf is acyclic since we only created edges
from lower index vertices to higher index ones. These two properties together imply that Gf

is a forest, where each sink vertex defines the root of a tree. Thus every vertex in Gf has a
well defined depth, where sink vertices have depth one.

Let Q = {pl1 , pl2 , . . . , plk
} be a greedy sequence, as defined in Definition 10. Then observe

that for all 1 ≤ i < k, pli
pli+1 is an edge of Gf , and hence Q corresponds to a path in Gf .

Moreover, the condition that fε(lk) < lk in Definition 10 implies that plk
is a sink vertex

in Gf , and hence Q corresponds to a path in Gf from the vertex pl1 to the root of its
corresponding tree. Conversely, for the same reasons if we are given a path pl1 , pl2 , . . . , plk

in
Gf where plk

is a sink, then this path is a greedy sequence. That is, the set of paths ending
in sinks in Gf and the set of greedy sequences are in one-to-one correspondence.

Thus given all the fε(i) values have been precomputed, this suggests a simple linear
time algorithm to compute a valid greedy sequence Q with the fewest number of points,
which by Lemma 12 is an optimal solution to the given instance of Problem 3. Specifically,
find all pairs (pi, pr) where pi ∈ P and pr is the root of the tree in Gf which contains pi.
By the above discussion, each such pair (pi, pr) corresponds to a greedy sequence, and all
greedy sequences are represented by some pair. We now restrict to pairs that are valid
according to Definition 10, that is pairs where fε(r) ≥ i. For each such pair, the length of
the corresponding sequence is simply the depth of pi in the tree rooted at pr. Thus we return
as our solution the depth of pi from the valid pair (pi, pr) where pi has minimum depth.

All the (pi, pr) pairs and the depths can be determined in O(n) time by topologically
sorting since Gf is a forest. Determining the valid pairs, and the minimum depth valid pair
can then be done with a simple linear scan. We thus have the following.

▶ Lemma 13. Assume that fε(i) for all 1 ≤ i ≤ n has been precomputed. Then Problem 3
can be solved in O(n) time.

The question now then is how quickly can we compute all of the fε(i) values. To that end,
we first argue that with some precomputation the cost0(i, j) values can be queried efficiently.
To do so, we make use a result from [7] which builds a datastructure for a geometric query
they call Farthest Vertex in a Halfplane, which we rephrase below using our notation.

FSTTCS 2021

26:8 Fast and Exact Convex Hull Simplification

▶ Lemma 14 ([7]). Let P ⊂ R2 be a point set in convex position. P can be preprocessed in
O(n log n) time such that given a query (q, lq), where q is a point and lq is a directed line
through q, in O(log2 n) time one can return the farthest point from q among the points in P

to the left of lq.

▶ Lemma 15. Let P = {p1, . . . , pn} ⊂ R2 be a point set in convex position, labeled in clockwise
order. With O(n log n) precomputation time, for any query index pair (i, j), cost0(i, j) can
be computed in O(log2 n) time.

Proof. Let ℓ = ℓ(pi, pj) be the line through pi and pj , which we view as being oriented in
the direction from pi towards pj . Also, let ri and rj denote the rays originating at pi and pj

respectively, pointing in the direction orthogonal to ℓ and on the left side side of ℓ. Finally,
let Pi,j = {pk ∈ P | i ≺ k ≺ j}, and thus cost0(i, j) = maxx∈Pi,j

||x − pi, pj ||.
Observe that the projection of any point x ∈ Pi,j onto ℓ either lies on the portion of ℓ

before pi, on the line segment pipj , or on the portion of ℓ after pj . Thus we have a natural
partition of Pi,j into three sets, the subset in the right angle cone Ci bounded by ℓ and ri,
those in the slab Slab(i, j) bounded by ℓ, ri, and rj , and those in the right angle cone Cj

bounded by ℓ and rj . Observe that for any point x in Ci or Cj , its closest point on pipj is pi

or pj , respectively, and moreover ||x − ℓ|| ≤ ||x − pipj ||. Thus we have that,

cost0(i, j) = max
x∈Pi,j

||x − pi, pj ||

= max{ max
x∈Ci∩Pi,j

||x − pi||, max
x∈Cj∩Pi,j

||x − pj ||, max
x∈Slab(i,j)∩Pi,j

||x − pipj ||}

= max{ max
x∈Ci∩Pi,j

||x − pi||, max
x∈Cj∩Pi,j

||x − pj ||, max
x∈Pi,j

||x − ℓ||}.

Therefore, it suffices to describe how to compute each of the three terms in the stated time.
Computing maxx∈Pi,j

||x − ℓ|| is straightforward as the points in Pi,j are in convex position
and in particular if we consider them in their clockwise order, then their distance to ℓ is a
concave function. So assume that P is given in an array sorted in clockwise order. (If not,
we can compute such an array with O(n log n) preprocessing time by computing the convex
hull.) Then given a query pair (i, j), in O(log n) time we can binary search over Pi,j to find
maxx∈Pi,j

||x − ℓ||, since Pi,j is a subarray of P . (Note if j < i then technically Pi,j is two
subarrays.)

Now consider the subset in the right angle cone Ci (a similar argument will hold for Cj).
Let C ′

i be the cone Ci but reflected over the line ℓ. Suppose that both Ci and C ′
i contained

points from P , call them p and p′, respectively. Then observe that the triangle ∆(p, p′, pj)
would contain the point pi, which is a contradiction as P was in convex position. Thus either
Ci ∩ P = ∅ or C ′

i ∩ P = ∅. So let L be the line orthogonal to ℓ, passing through pi, and
oriented so that Ci and C ′

i lie to the left (i.e. L is the line supporting the ray ri from above).
By Lemma 14, we can preprocess P in O(n log n) time, such that in O(log2 n) time we can
compute the point in P furthest from pi and to the left of L. If the returned point lies in C ′

i

then we know Ci ∩ P = ∅ and so maxx∈Ci∩Pi,j
||x − pi|| = 0. If the returned point lies in Ci

then it realizes maxx∈Ci∩Pi,j ||x − pi||. ◀

▶ Theorem 16. Problem 3 can be solved in O(n log2 n) time.

Proof. By Lemma 13, given the fε values have been computed, Problem 3 can be solved
in O(n) time. Thus to prove the theorem it suffices to compute fε(i) for all i in O(n log2 n)
time. Recall that fε(i) is the index z of the vertex furthest from pi in the clockwise ordering
of P , such that cost0(i, z) ≤ ε. First observe that as we increase i, fε(i) moves clockwise.

G. Klimenko and B. Raichel 26:9

More precisely, by Lemma 8, ε ≥ cost0(i, fε(i)) ≥ cost0(i + 1, fε(i)) ≥ cost0(i + 1, j), for any
i + 1 ≤ j ≤ fε(i), and thus i ⪯ fε(i) ⪯ fε(i + 1). Moreover, again by Lemma 8, the indices j

such that cost0(i, j) ≤ ε are consecutive in the clockwise ordering of P .
This suggests a simple strategy to compute the fε(i) values. Namely, to find fε(1), we

compute all values cost(1, j), starting with j = 3 and increasing j until we find a value j′

such that cost0(1, j′) > ε. This implies fε(1) = j′ − 1, since as mentioned above the values
such that cost0(1, j) ≤ ε are consecutive. More generally, to compute fε(i + 1), we compute
all values cost0(i + 1, j), starting with j = fε(i) + 1 and increasing j until we find a value j′

such that cost0(i + 1, j′) > ε, which again by the above implies fε(i + 1) = j′ − 1.
The total time is clearly bounded by the time it takes to compute all the queried cost0

values. Observe that when the algorithm queries a value cost0(i, j) then the previous cost0
query was either to cost0(i − 1, j) or cost0(i, j − 1), implying that in total we compute
O(n) cost0 values. By Lemma 15, with O(n log n) precomputation, any cost0 value can be
computed in O(log2 n) time. Thus the total time is O(n log2 n). ◀

3.3 The min-ε Algorithm
In this section we design an efficient algorithm for Problem 4, where k is given and our goal
is to minimize ε. To do so, we will use our algorithm from the previous section for Problem 3,
where ε was fixed and we were minimizing k. Specifically, throughout this section, given
an instance P, k of Problem 4, we use Decider(ε) to denote the procedure which runs the
algorithm of Theorem 16 on the instance P, ε of Problem 3 and returns True if the solution
found uses ≤ k points, and returns False otherwise.

Let E = {cost0(i, j) | 1 ≤ i, j ≤ n}. We call E the set of critical values, where observe
that by Corollary 7, the optimal solution to the given instance of Problem 4 is a critical
value in the set E . Thus a natural approach would be to explicitly compute, sort, and then
binary search over E using Decider(ε). However, such an approach would require at least
quadratic time as |E| = Θ(n2). We now argue that by using random sampling we can achieve
near linear running time with high probability. Similar sampling strategies have been used
before, and in particular we employ a strategy which was used in [11] for computing the
Frechet distance. We first observe that one can efficiently sample values from E .

▶ Lemma 17. With O(n log n) precomputation time, one can sample a value uniformly at
random from E in O(log2 n) time.

Proof. To sample a pair from 1 ≤ i, j ≤ n uniformly at random, we first sample an integer
uniformly at random from [1, n] for i, and then sample an integer uniformly at random from
[1, n − 1] for j (where j is indexed from the set with i removed). This takes O(1) time given
the standard assumption that sampling a random integer in a given range takes O(1) time.
(Even if it took O(log n) time it would not affect the overall time.) Now to sample a value
uniformly at random from E we just need to compute cost0(i, j). From Lemma 15 this can
be done in O(log2 n) time with O(n log n) precomputation time. ◀

Before presenting our algorithm, we require the following subroutine.

▶ Lemma 18. Given an interval [α, β], then the set X = [α, β] ∩ E can be computed in
O((n log n + |X|) log2 n) time. Let Extract(α, β) denote this procedure.

Proof. Fix an index i. By Lemma 8 we know that cost0(i, j) increases monotonically as we
move pj clockwise. Thus Si = {j | cost0(i, j) ∈ [α, β]} is a contiguous set of indices, and
moreover, we can binary search for the smallest index in this set (i.e. the first index j in

FSTTCS 2021

26:10 Fast and Exact Convex Hull Simplification

clockwise order from i such that cost0(i, j) ≥ α). After finding this smallest such index, to
output the rest of Si we just simply increment j until cost0(i, j) > β. Note that X = ∪iSi,
and thus to find X we then repeat this procedure for all i.

Note that in each step of the algorithm we compute a cost0 value, and thus the total time
is bounded by the time is takes to compute all the queried cost0 values. For all n values of i

we perform a binary search, thus requiring O(n log n) cost0 queries for all binary searches.
For a given i, after the binary searching, we then perform |Si| cost0 queries to determine
the rest of the set Si, and thus over all i we perform |X| =

∑
i |Si| queries. By Lemma 15

each cost0 query takes O(log2 n) time, with O(n log n) preprocessing, and so the total time
is thus O((n log n + |X|) log2 n). ◀

We remark that it should be possible to improve the running time of the above algorithm
to O((n + |X|) log2 n) using the same approach as in the proof of Theorem 16. However,
ultimately this will not change the asymptotic running time of our overall algorithm.

Algorithm 1 Algorithm for solving Problem 4.

Input : An instance P, k of Problem 4.
Output : The value ε of the optimal solution.

1 Perform the precomputation step from Lemma 15.
2 Sample a set S of 4n values from E .
3 Sort S and binary search using Decider. Let [α, β] be the resulting interval found

where Decider(α) = False and Decider(β) = True.
4 Let X = Extract(α, β).
5 Sort X and binary search using Decider.
6 Return the smallest value ε ∈ X such that Decider was True.

Our algorithm for solving Problem 4 is shown in Algorithm 1. The correctness of this
algorithm is straightforward. By the discussion above the optimal value ε is in E , and the
correctness of Decider follows from the previous section. Thus when we binary search over S

using Decider, we know that ε ∈ [α, β]. Thus, by Lemma 18, we know that X = Extract(α, β)
contains ε. Thus our final binary search over X using Decider is guaranteed to find ε.

The more challenging question is what is the running time of Algorithm 1, for which we
have the following helper lemma.

▶ Lemma 19. Let X = Extract(α, β) be the set computed on line 4 in Algorithm 1. Then
for any c ≥ 1, we have that Pr[|X| > cn ln n] < 1/nc.

Proof. Let ε be the optimal value to the given instance of Problem 4. We first argue that
with high probability there are at most (c/2)n ln n values from E that are contained in [α, β]
(i.e. in the set X) that are also larger than ε. Let Z be the (c/2)n ln n values in E closest to
ε but also greater than ε. (Note that if there are less than (c/2)n ln n values greater than
ε, then the claim trivially holds.) Observe that if our random sample S on line 2 contains
even a single value from Z then the claim holds as this value then upper bounds β, and so
there are at most |Z| = (c/2)n ln n values from E in (ε, β]. The probability that the 4n sized
random sample of values from E does not contain any element from Z is at most

(1−|Z|/|E|)4n ≤ (1−((c/2)n ln n)/n2)4n = (1−(c ln n)/2n)4n ≤ e−2c ln n = 1/n2c < 1/2nc,

where we used the standard inequality 1 + x ≤ ex for any value x. Note that a symmetric
argument yields the same probability bound for the event that there are more than (c/2)n log n

values from E contained in [α, β] that are smaller than ε. Thus by the union bound, the
probability that |X| has more than cn ln n values is less than 1/nc. ◀

G. Klimenko and B. Raichel 26:11

▶ Theorem 20. Algorithm 1 solves Problem 4 in O(cn log3 n) time with probability ≥ 1−1/nc,
for any c ≥ 1.

Proof. The straightforward correctness of the algorithm has already been discussed above.
As for the running time, the precomputation on line 1 takes O(n log n) time by Lemma 15. By
Lemma 17, it then takes O(n log2 n) time to sample the 4n values in the set S. Sorting S takes
O(n log n) time, and binary searching using Decider takes O((log n) · n log2 n) = O(n log3 n)
time by Theorem 16. By Lemma 18, running Extract(α, β) on line 4 to compute X takes
O((n log n + |X|) log2 n) time. Finally, sorting and binary searching over X using Decider
on line 5 takes O((n log2 n)(log |X|) + |X| log |X|) = O((n log n + |X|) log2 n), again by
Theorem 16.

Thus in total the time is O((n log n+|X|) log2 n+n log3 n). By Lemma 19, with probability
at least 1 − 1/nc we have |X| ≤ cn ln n, and thus with probability at least 1 − 1/nc the total
running time is O(cn log3 n). ◀

▶ Remark 21. Even in the extremely unlikely event that the algorithm exceeds the O(n log3 n)
time bound, the worst case running time is only O(n2 log2 n).

4 The General Case

In this section, we remove the restriction that P lies in convex position, showing that
Problem 1 and Problem 2 can be solved efficiently by converting them into a corresponding
graph problem.

For any pair of points a, b ∈ R2, define hl(a, b) to be the closed halfspace bounded by the
line going through points a and b, picking the halfspace that is to the left of the directed edge
(a, b). Throughout we use Pa,b = P ∩ hl(a, b) to denote the subset of P falling in hl(a, b).

We construct a weighted and fully connected directed graph GP = (V, E) where V = P .
For an ordered pair of points (a, b) in P , the weight of its corresponding directed edge is defined
as w(a, b) = cost({a, b}, Pa,b), i.e. the distance of the furthest point in Pa,b from the segment
ab. (Relating to the previous section, when P is in convex position w(a, b) = cost0(a, b).)
For a cycle of vertices C = {p1, . . . , pk}, let w(C) denote the maximum of the weights of the
directed edges around the cycle. Throughout, we only consider non-trivial cycles, that is
cycles must have at least two vertices.

The following lemma shows how to compute edge weights. We remark that the first half
of its proof is nearly identical to that for Lemma 15, however, the second half differs.

▶ Lemma 22. Let P be a set of n points in R2. Then one can compute w(a, b) for all pairs
a, b ∈ P simultaneously in O(n2 log n) time.

Proof. Let ℓ denote the line through a and b, which we view as being oriented in the direction
from a towards b. Also, let ra and rb denote the rays originating at a and b respectively,
pointing in the direction orthogonal to ℓ and on the side of ℓ containing Pa,b.

Observe that the projection of any point x ∈ Pa,b onto ℓ either lies on the portion of
ℓ before a, on the line segment ab, or on the portion of ℓ after b. Thus we have a natural
partition of Pa,b into three sets, the subset in the right angle cone Ca bounded by ℓ and ra,
those in the slab Slab(a, b) bounded by ℓ, ra, and rb, and those in the right angle cone Cb

bounded by ℓ and rb. Observe that for any point x in Ca or Cb, its closest point on ab is a

or b, respectively, and moreover ||x − ℓ|| ≤ ||x − ab||. Thus we have that,

FSTTCS 2021

26:12 Fast and Exact Convex Hull Simplification

w(a, b) = max{ max
x∈Ca∩Pa,b

||x − a||, max
x∈Cb∩Pa,b

||x − b||, max
x∈Slab(a,b)∩Pa,b

||x − ab||}

= max{ max
x∈Ca∩Pa,b

||x − a||, max
x∈Cb∩Pa,b

||x − b||, max
x∈Pa,b

||x − ℓ||}.

Therefore, it suffices to describe how to compute each of the three terms in the stated
time. To compute maxx∈Pa,b

||x − ℓ|| we use the standard fact that for any point set P and
line ℓ, the furthest point in P from ℓ, on either side of ℓ, is a vertex of CH(P). Thus the
furthest point in Pa,b from ℓ is a point of CH(P). So precompute CH(P), using any standard
O(n log n) time algorithm, after which we can assume the vertices of CH(P) are stored in an
array sorted in clockwise order. Observe that the subset of the vertices of CH(P) which are
in Pa,b is a subarray (or technically two subarrays if it wraps around). So we can determine
the ends of this subarray by binary searching. The distances of the points in this subarray
to ℓ is a concave function, and so we can binary search to find maxx∈Pa,b

||x − ℓ||. These two
binary searches take O(log n) time per pair a, b, and thus O(n2 log n) time in total.

To compute the maxx∈Ca∩Pa,b
||x − a|| values, we do the following (the b values are

computed identically). Consider a right angle cone whose origin is at a. We conceptually
rotate this cone around a while maintaining the furthest point of P from a in this cone.
The furthest point only changes when a point enters or leaves the cone, and these events
can thus easily be obtained by simply angularly sorting the points in P around a. (Note
each point corresponds to two events, an entering one, and a leaving one at the entering
angle minus π/2.) To efficiently update the furthest point, we maintain a binary max heap
on the distances of the points in the current cone to a. Building the initial max heap and
sorting takes O(n log n) time. Thus all possible right angle cone values at a can be computed
in O(n log n) time, as there are a linear number of events and each event takes O(log n)
time. Moreover, if we store these canonical right angle cone values in sorted angular order,
then given a query right angle cone determined by a pair a, b ∈ P (with cone origin a), the
nearest canonical cone can be determined by binary searching. Thus in total computing
all maxx∈Ca∩Pa,b

||x − a|| values for all pairs a and b takes O(n2 log n) time. Namely, the
precomputation of the canonical cones at each point takes O(n log n) time per point and
thus O(n2 log n) time for all points. Then for the O(n2) pairs a, b it takes O(log n) time to
search for its canonical cone. ◀

For a set of points Q, let CHL(Q) denote the clockwise list of vertices on the boundary of
CH(Q). Observe that any subset Q ⊆ P corresponds to the cycle CHL(Q) in GP . Moreover,
any cycle C corresponds to the convex hull CH(C). The following lemma is adapted from [13],
where Problem 1 was considered but where the cost function was determined by a sum of
the distances rather than the maximum distance.

▶ Lemma 23. Consider an instance P, ε of Problem 1. The following holds:
1) For any cycle C in GP , w(C) ≥ cost(C, P),
2) There exists some optimal solution Q such that w(CHL(Q)) = cost(Q, P).

Proof. Recall that cost(C, P) = maxp∈P ||p − CH(C)||. Similarly decomposing w(C) gives,

w(C) = max
(a,b)∈C

cost({a, b}, Pa,b) = max
p∈P

max
(a,b)∈C

s.t. p∈Pa,b

||p − ab||.

To prove the first part of the lemma, we argue that for any point p ∈ P , its contribution
to w(C) is at least as large as its contribution to cost(C, P). Assume p /∈ CH(C), since
otherwise it does not contribute to cost(C, P). It suffices to argue there exists an edge

G. Klimenko and B. Raichel 26:13

(a, b) ∈ C, such that p ∈ Pa,b, since ||p − ab|| ≥ ||p − CH(C)||. So assume otherwise that
there is some point p ∈ P such that p lies strictly to the right of all edges in C. Create a
line ℓ that passes through p and any interior point of any edge (a, b) ∈ C, but does not pass
through any other point in P . The line ℓ splits the plane into two halfspaces. Observe that
since C is a cycle, there must be some edge (c, d) of C which also crosses ℓ, where c is in the
same halfspace as b and d in the same halfspace as a (i.e. they have opposite orientations
with respect to ℓ). Thus if (c, d) crosses ℓ on the same side of p along ℓ as the edge (a, b)
then p would lie to the left of (c, d), as it lies to the right of (a, b). On the other hand, if the
intersection of (c, d) with ℓ lied on the opposite side of p along ℓ as the intersection point of
(a, b) with ℓ, then p ∈ CH({a, b, c, d}) ⊆ CH(C). Thus either way we have a contradiction.

To prove the second part of the lemma, let Q be some optimal solution. For any p ∈ P ,
if p ∈ CH(Q) then it lies to the right of all edges in CHL(Q), and so it does not affect
w(CHL(Q)) or cost(Q, P). So consider a point p /∈ CH(Q). Let ab be the closest edge of
CH(Q) (where b follows a in clockwise order). Note that ||p − CH(Q)|| = ||p − ab|| and
p ∈ Pa,b, so if p lies to right of all other edges in CHL(Q), then its contribution to w(CHL(Q))
is ||p − ab||. So suppose p lies to the left of some other edge cd (note it may be that b = c).
If this happens, then p is in the intersection of the halfspace to the left of the line from a

through b and to the left of the line from c through d. This implies that b, c ∈ CH({a, d, p}).
So let Q′ = Q ∪ {p} \ {b, c}. Observe that CH(Q) ⊂ CH(Q′) and |Q′| ≤ |Q|, and hence
Q′ is an optimal solution as Q was an optimal solution. Now we repeat this procedure
while there remains such a point p to the left of two edges. We repeat this procedure only
finitely many times as in each iteration the convex hull becomes larger (i.e. CH(Q) is a strict
subset of CH(Q′)). If Q denotes the hull after the final iteration, then by the above we have
w(CHL(Q)) = cost(Q, P). ◀

▶ Corollary 24. Let P, ε be an instance of Problem 1, and let C∗ be the cycle with minimum
cardinalty among cycles in GP with w(C) ≤ ε. Then C∗ is an optimal solution to the given
instance of Problem 1.

Proof. Using part 1) of Lemma 23 we know that cost(C∗, P) ≤ w(C∗) ≤ ε, so C∗ is a
solution. Suppose that C∗ is not an optimal solution (i.e. it is not of minimum cardinality).
Then by part 2) of Lemma 23, there exists some optimal solution Q with |Q| < |C∗| such
that w(CHL(Q)) = cost(Q, P) ≤ ε. So, there exists a cycle CHL(Q) with cost ≤ ε and size
less than |C∗|, which is a contradiction as C∗ had minimal cardinality among such cycles. ◀

In the following we will reduce our problem to the all pairs shortest path problem on
directed unweighted graphs, which we denote as APSP. Let A(n) be the time required
to solve APSP. In [19] it is shown that A(n) = Õ(n2+µ),2 where µ satisfies the equation
ω(1, µ, 1) = 1 + 2µ, and where ω(1, µ, 1) is the exponent of multiplication of a matrix of size
n × nµ by a matrix of size nµ × n. [8] shows that µ < 0.5302 and thus A(n) = O(n2.5302).

▶ Theorem 25. Any instance P, ε of Problem 1 can be solved in time

O(A(n) + n2 log n) = O(n2.5302).

Proof. By Corollary 24, in order to solve Problem 1, we just need to find a minimum length
cycle with weight at most ε in the graph GP defined above. By definition a cycle has weight
≤ ε if and only if all of its edge weights are ≤ ε. So let Gε

P be the unweighted and directed

2 We use the standard convention that Õ(f(n)) denotes O(f(n) logc n) for some c > 0.

FSTTCS 2021

26:14 Fast and Exact Convex Hull Simplification

graph obtained from GP by removing all edges with weight > ε. Thus the solution to our
problem corresponds to the minimum length cycle in this unweighted graph Gε

P . This can
be solved by computing APSP in Gε

P . Specifically, the solution is determined by the ordered
pair (a, b) with the shortest path subject to the directed edge (b, a) existing in Gε

P (i.e. it is
the shortest path that can be completed into a cycle).

Computing all of the edge weights in GP can be done in O(n2 log n) time by Lemma 22.
Converting GP into Gε

P then takes O(n2) time. Given the APSP distances, finding the
minimum length cycle takes O(n2) time by scanning all pairs to check for an edge. APSP on
directed unweighted graphs can be solved in A(n) = O(n2.5032) time as described above. So,
the total time is O(A(n) + n2 log n) = O(n2.5302). ◀

Let Ak(n) denote the time it takes to solve APSP on directed unweighted graphs where
path lengths are bounded by k (i.e. the path length is infinite if there is no k length
path). [4] showed that Ak(n) = O(nωk log2 k), where ω is the exponent of (square) matrix
multiplication. [6] showed that ω < 2.376.

▶ Theorem 26. Any instance P, k of Problem 2 can be solved in time

O(min{A(n), Ak(n)}(log n) + n2 log n) = O(min{n2.5302, kn2.376}).

Proof. The idea is to binary search using Theorem 25. Namely, the optimal solution to the
instance P, k of Problem 2 has cost ≤ ε if and only the optimal solution to the instance P, ε

of Problem 1 uses ≤ k points. Moreover, the weight of any cycle in GP is determined by
the weight of some edge, and thus by the above discussion the optimal solution to the given
instance of Problem 2 will be the weight of some edge. There are O(n2) edge weights, which
we can enumerate, sort, and binary search over using Theorem 25. Computing all of the edge
weights in GP and sorting them can be done in O(n2 log n) time by Lemma 22. Thus by
Theorem 25, the total time is O(A(n)(log n) + n2 log n) = O(n2.5302) (Note we only compute
all edge weights a single time, so each step of the binary search then costs O(A(n)) time.)

Alternatively, since we know the value of k, we can get a potentially faster time for
when k is small, by only considering length at most k paths. Specifically, in each call to
our decision procedure (i.e. Theorem 25) instead of computing APSP, compute the APSP
restricted to length k paths. Then, by the discussion before the theorem, the running time
becomes O(Ak(n)(log n) + n2 log n) = O((nωk log2 k)(log n) + n2 log n)) = O(kn2.376). ◀

4.1 Faster Approximations
While our focus in the paper is on exact algorithms, in this section we show how the results
above imply faster approximate solutions for the general case. First, we show that the
results from Section 3 for points in convex position immediately yield near linear time 2-
approximations for the general case. More precisely, we have the following, where V (CH(P))
denotes the vertices of the convex hull of P (and recall V (CH(P)) ⊆ P).

▶ Lemma 27. Let P be a point set in the plane. Suppose there exists some subset Q ⊆ P

such that cost(Q, P) ≤ ε and |Q| ≤ k. Then there exists a subset Q′ ⊆ V (CH(P)) such that
cost(Q′, P) ≤ ε and |Q′| ≤ 2k.

Proof. Let Q = {q1, . . . , qk}, where the points are labeled in clockwise order. First, we
convert Q into a subset of points on the boundary of CH(P). Specifically, consider the segment
qi−1qi. Consider the ray with base point qi−1, and passing through qi, and let z be the point of
intersection of this ray with the boundary of CH(P). Let Qz = {q1, . . . , qi−1, z, qi+1, . . . , qk},

G. Klimenko and B. Raichel 26:15

and observe that CH(Q) ⊆ CH(Qz) as qi lies on the segment qi−1z. Let xy be the edge
of CH(P) which contains z, and let Q′

z = {q1, . . . , qi−1, x, y, qi+1, . . . , qk}. (Note if z ∈
V (CH(P)) then we set Q′

z = Qz.) Since z ∈ xy, we have that CH(Q) ⊆ CH(Qz) ⊆ CH(Q′
z).

Thus cost(Q′
z, P) ≤ ε and |Q′

z| ≤ k + 1. So if we repeat this procedure for all i then we will
end up with a set Q′ such that cost(Q′, P) ≤ ε, |Q′| ≤ 2k, and Q′ ⊆ V (CH(P)). ◀

Given an instance P, ε of Problem 1, where the optimal solution Q has size k, the above
implies there is set Q′ ⊆ V (CH(P)) such that cost(Q′, P) ≤ ε and |Q′| ≤ 2k. Such a set can
be found using the algorithm of Theorem 16 for the instance V (CH(P)), ε of Problem 3, as
Q′ is a candidate solution for this instance. Also, recall for X ⊆ P , the furthest point in P

from CH(X) is always in V (CH(P)), and so if cost(X, V (CH(P))) ≤ ε then cost(X, P) ≤ ε.
Similarly, given an instance P, k of Problem 2, where the optimal solution Q has cost

ε, the above implies there is set Q′ ⊆ V (CH(P)) such that cost(Q′, P) ≤ ε and |Q′| ≤ 2k.
Such a set can be found using the algorithm of Theorem 20 for the instance V (CH(P)), 2k

of Problem 4, again as Q′ is a candidate solution. Thus we have the following.

▶ Theorem 28. Let P, ε be an instance of Problem 1, where the optimal solution Q has size k.
Then in O(n log2 n) time one can compute a set Q′ ⊆ V (CH(P)) such that cost(Q′, P) ≤ ε

and |Q′| ≤ 2k.
Similarly, let P, k be an instance of Problem 2, where the optimal solution Q has cost ε.

Then with probability ≥ 1 − 1/nc, for any constant c, in O(n log3 n) time one can compute a
set Q′ ⊆ V (CH(P)) such that cost(Q′, P) ≤ ε and |Q′| ≤ 2k.

Finally, we remark that if one allows approximating the best k point solution with
k + 1 points (i.e. a (1 + 1/k)-approximation), then our graph algorithms from the previous
subsection imply near quadratic time approximations (i.e. compared to the theorem above,
we are trading near linear running time for approximation quality). The idea is, rather than
solving APSP, if we chose an appropriate starting point, we can instead solve for single source
shortest paths. Similar observations have been made before for related problems [3, 14].

For a given instance P, ε of Problem 1, let Q be an optimal solution where |Q| = k.
Let p be an arbitrary point in V (CH(P)). Let Q′ = Q ∪ {p}. Observe that cost(Q′, P) ≤
cost(Q, P) ≤ ε and |Q′| ≤ k + 1. Thus the optimal solution to this instance of Problem 1,
but where we require it include p, is a valid solution to the instance without this requirement,
and uses at most one more point.

Now we sketch how the results from Section 4 directly extend to the case where we want
the optimal solution restricted to including p. Specifically, for the analogue of Corollary 24, let
C∗ be the minimum cardinality cycle in GP with weight at most ε such that the cycle includes
p. To argue that C∗ is an optimal solution to the given instance of Problem 1 among those
which must include the point p, we need to extend Lemma 23 to require including p. Part 1)
of the lemma immediately extends. The proof of Part 2) starts with some optimal solution
Q. It then performs a transformation of Q into a set Q′ so that points are not to the left of
two edges, which one can argue implies w(CHL(Q′)) = cost(Q′, P). This transformation has
the properties that |Q′| ≤ |Q| and CH(Q) ⊆ CH(Q′), and hence cost(Q′, P) ≤ cost(Q, P),
and so since Q was optimal so is Q′. If instead we perform this same transformation on an
optimal solution restricted to containing p, call it X, then the same argument implies we
produce a set X ′ such that w(CHL(X ′)) = cost(X ′, P), |X ′| ≤ |X|, and CH(X) ⊆ CH(X ′).
Moreover, because CH(X) ⊆ CH(X ′) and p ∈ V (CH(P)), crucially we have p ∈ CHL(X ′).
Thus the modified Lemma 23 and hence Corollary 24, where p is included, both hold.

To find the optimal solution to Problem 1 containing p, we now use the same approach as
in Theorem 25. The difference now however, is that we only need to compute single source
shortest paths in Gε

P rather than APSP, since we can use p as our starting point. Let S(n)

FSTTCS 2021

26:16 Fast and Exact Convex Hull Simplification

be the time to compute single source shortest paths. In an unweighted graph using BFS gives
S(n) = O(|E| + |V |) = O(n2). Thus replacing A(n) with S(n) in the running time statement
of Theorem 25 gives O(S(n) + n2 log n) = O(n2 log n). Similarly, replacing A(n) with S(n)
for Theorem 26 gives O(S(n) log n + n2 log n) = O(n2 log n). Thus we have the following.

▶ Theorem 29. Let P, ε be an instance of Problem 1, with optimal solution Q. Then in
O(n2 log n) time one can compute a set Q′ ⊆ P such that cost(Q′, P) ≤ ε and |Q′| ≤ |Q| + 1.

Similarly, let P, k be an instance of Problem 2, where the optimal solution Q has cost
ε. Then in O(n2 log n) time one can compute a set Q′ ⊆ P such that cost(Q′, P) ≤ ε and
|Q′| ≤ |Q| + 1.

References
1 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent

measures of points. J. ACM, 51(4):606–635, 2004. doi:10.1145/1008731.1008736.
2 Pankaj K. Agarwal and Kasturi R. Varadarajan. Efficient algorithms for approximating

polygonal chains. Discret. Comput. Geom., 23(2):273–291, 2000. doi:10.1007/PL00009500.
3 Alok Aggarwal, Heather Booth, Joseph O’Rourke, Subhash Suri, and Chee-Keng Yap. Find-

ing minimal convex nested polygons. Inf. Comput., 83(1):98–110, 1989. doi:10.1016/
0890-5401(89)90049-7.

4 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci., 54(2):255–262, 1997. doi:10.1006/jcss.1997.1388.

5 Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. Sparse approximation via generating
point sets. ACM Trans. Algorithms, 15(3):32:1–32:16, 2019. doi:10.1145/3302249.

6 Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
J. Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

7 Ovidiu Daescu, Ningfang Mi, Chan-Su Shin, and Alexander Wolff. Farthest-point queries
with geometric and combinatorial constraints. Comput. Geom., 33(3):174–185, 2006. doi:
10.1016/j.comgeo.2005.07.002.

8 François Le Gall. Faster algorithms for rectangular matrix multiplication. In 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 514–523, 2012. doi:
10.1109/FOCS.2012.80.

9 Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Toth. Handbook of Discrete and
Computational Geometry, Third Edition. CRC Press, 2017.

10 Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors. Handbook of Discrete and
Computational Geometry, Third Edition. Chapman and Hall/CRC, 2018.

11 Sariel Har-Peled and Benjamin Raichel. The fréchet distance revisited and extended. ACM
Trans. Algorithms, 10(1):3:1–3:22, 2014. doi:10.1145/2532646.

12 G. Klimenko and B. Raichel. Fast and exact convex hull simplification, October 2021.
arXiv:2110.00671.

13 Georgiy Klimenko, Benjamin Raichel, and Gregory Van Buskirk. Sparse convex hull coverage.
In Canadian Conference on Computational Geometry (CCCG), pages 15–25, 2020.

14 Mario Alberto López and Shlomo Reisner. Hausdorff approximation of convex polygons.
Comput. Geom., 32(2):139–158, 2005. doi:10.1016/j.comgeo.2005.02.002.

15 Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola
Wenk. Global curve simplification. In 27th Annual European Symposium on Algorithms (ESA),
volume 144 of LIPIcs, pages 67:1–67:14, 2019. doi:10.4230/LIPIcs.ESA.2019.67.

16 Ivor van der Hoog, Vahideh Keikha, Maarten Löffler, Ali Mohades, and Jérôme Urhausen.
Maximum-area triangle in a convex polygon, revisited. Inf. Process. Lett., 161:105943, 2020.
doi:10.1016/j.ipl.2020.105943.

https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1007/PL00009500
https://doi.org/10.1016/0890-5401(89)90049-7
https://doi.org/10.1016/0890-5401(89)90049-7
https://doi.org/10.1006/jcss.1997.1388
https://doi.org/10.1145/3302249
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/j.comgeo.2005.07.002
https://doi.org/10.1016/j.comgeo.2005.07.002
https://doi.org/10.1109/FOCS.2012.80
https://doi.org/10.1109/FOCS.2012.80
https://doi.org/10.1145/2532646
http://arxiv.org/abs/2110.00671
https://doi.org/10.1016/j.comgeo.2005.02.002
https://doi.org/10.4230/LIPIcs.ESA.2019.67
https://doi.org/10.1016/j.ipl.2020.105943

G. Klimenko and B. Raichel 26:17

17 Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline simplification
using the hausdorff and fréchet distance. J. Comput. Geom., 11(1):1–25, 2020. URL: https:
//journals.carleton.ca/jocg/index.php/jocg/article/view/415.

18 Yanhao Wang, Michael Mathioudakis, Yuchen Li, and Kian-Lee Tan. Minimum coresets for
maxima representation of multidimensional data. In Proceedings of the Symposium on Principles
of Database Systems (PODS), pages 138–152. ACM, 2021. doi:10.1145/3452021.3458322.

19 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

FSTTCS 2021

https://journals.carleton.ca/jocg/index.php/jocg/article/view/415
https://journals.carleton.ca/jocg/index.php/jocg/article/view/415
https://doi.org/10.1145/3452021.3458322
https://doi.org/10.1145/567112.567114

Lower Bounds and Improved Algorithms for
Asymmetric Streaming Edit Distance and Longest
Common Subsequence
Xin Li #

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Yu Zheng #

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Abstract
In this paper, we study edit distance (ED) and longest common subsequence (LCS) in the asymmetric
streaming model, introduced by Saks and Seshadhri [26]. As an intermediate model between the
random access model and the streaming model, this model allows one to have streaming access to
one string and random access to the other string. Meanwhile, ED and LCS are both fundamental
problems that are often studied on large strings, thus the (asymmetric) streaming model is ideal for
studying these problems.

Our first main contribution is a systematic study of space lower bounds for ED and LCS in
the asymmetric streaming model. Previously, there are no explicitly stated results in this context,
although some lower bounds about LCS can be inferred from the lower bounds for longest increasing
subsequence (LIS) in [28, 16, 14]. Yet these bounds only work for large alphabet size. In this paper,
we develop several new techniques to handle ED in general and LCS for small alphabet size, thus
establishing strong lower bounds for both problems. In particular, our lower bound for ED provides
an exponential separation between edit distance and Hamming distance in the asymmetric streaming
model. Our lower bounds also extend to LIS and longest non-decreasing subsequence (LNS) in the
standard streaming model. Together with previous results, our bounds provide an almost complete
picture for these two problems.

As our second main contribution, we give improved algorithms for ED and LCS in the asymmetric
streaming model. For ED, we improve the space complexity of the constant factor approximation
algorithms in [15, 13] from Õ(nδ

δ
) to O(dδ

δ
polylog(n)), where n is the length of each string and

d is the edit distance between the two strings. For LCS, we give the first 1/2 + ε approximation
algorithm with space nδ for any constant δ > 0, over a binary alphabet. Our work leaves a plethora
of intriguing open questions, including establishing lower bounds and designing algorithms for
a natural generalization of LIS and LNS, which we call longest non-decreasing subsequence with
threshold (LNST).

2012 ACM Subject Classification Theory of computation → Lower bounds and information
complexity

Keywords and phrases Asymmetric Streaming Model, Edit Distance, Longest Common Subsequence,
Space Lower Bound

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.27

Related Version Full Version: https://arxiv.org/abs/2103.00713

Funding Xin Li: Supported by NSF CAREER Award CCF-1845349.
Yu Zheng: Supported by NSF CAREER Award CCF-1845349

1 Introduction

Edit distance (ED) and longest common subsequence (LCS) are two classical problems studied
in the context of measuring similarities between two strings. Edit distance is defined as the
smallest number of edit operations (insertions, deletions, and substitutions) to transform one

© Xin Li and Yu Zheng;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 27; pp. 27:1–27:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lixints@cs.jhu.edu
mailto:yuzheng@cs.jhu.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.27
https://arxiv.org/abs/2103.00713
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

string to the other, while longest common subsequence is defined as the longest string that
appears as a subsequence in both strings. These two problems have found wide applications
in areas such as bioinformatics, text and speech processing, compiler design, data analysis,
image analysis and so on. In turn, these applications have led to an extensive study of both
problems.

With the era of information explosion, nowadays these two problems are often studied
on very large strings. For example, in bioinformatics a human genome can be represented
as a string with 3 billion letters (base pairs). Such data provides a huge challenge to the
algorithms for ED and LCS, as the standard algorithms for these two problems using dynamic
programming need Θ(n2) time and Θ(n) space where n is the length of each string. These
bounds quickly become infeasible or too costly as n becomes large, such as in the human
genome example. Especially, some less powerful computers may not even have enough
memory to store the data, let alone processing it.

One appealing approach to dealing with big data is designing streaming algorithms, which
are algorithms that process the input as a data stream. Typically, the goal is to compute or
approximate the solution by using sublinear space (e.g., nα for some constant 0 < α < 1 or
even polylog(n)) and a few (ideally one) passes of the data stream. These algorithms have
become increasingly popular, and attracted a lot of research activities recently.

Designing streaming algorithms for ED and LCS, however, is not an easy task. For ED,
only a couple of positive results are known. In particular, assuming that the edit distance
between the two strings is bounded by some parameter k, [10] gives a randomized one pass
algorithm achieving an O(k) approximation of ED, using linear time and O(log n) space, in
a variant of the streaming model where one can scan the two strings simultaneously in a
coordinated way. In the same model [10] also give randomized one pass algorithms computing
ED exactly, using space O(k6) and time O(n+k6). This was later improved to space O(k) and
time O(n + k2) in [11, 7]. Furthermore, [7] give a randomized one pass algorithm computing
ED exactly, using space Õ(k8) and time Õ(k2n), in the standard streaming model. We note
that all of these algorithms are only interesting if k is small, e.g., k ≤ nα where α is some
small constant, otherwise the space complexity can be as large as n. For LCS, strong lower
bounds are given in [22, 28], which show that for exact computation, even constant pass
randomized algorithms need space Ω(n); while any constant pass deterministic algorithm
achieving a 2√

n
approximation of LCS also needs space Ω(n), if the alphabet size is at least n.

Motivated by this situation and inspired by the work of [4], Saks and Seshadhri [26] studied
the asymmetric data streaming model. This model is a relaxation of the standard streaming
model, where one has streaming access to one string (say x), and random access to the other
string (say y). In this model, [26] gives a deterministic one pass algorithm achieving a 1 + ε

approximation of n − LCS using space O(
√

(n log n)/ε), as well as a randomized one pass
algorithm algorithm achieving an εn additive approximation of LCS using space O(k log2 n/ε)
where k is the maximum number of times any symbol appears in y. Another work by Saha
[25] also gives an algorithm in this model that achieves an εn additive approximation of ED
using space O(

√
n

ϵ).
The asymmetric streaming model is interesting for several reasons. First, it still inherits

the spirit of streaming algorithms, and is particularly suitable for a distributed setting. For
example, a local, less powerful computer can use the streaming access to process the string
x, while sending queries to a remote, more powerful server which has access to y. Second,
because it is a relaxation of the standard streaming model, one can hope to design better
algorithms for ED or to beat the strong lower bounds for LCS in this model. The latter point
is indeed verified by two recent works [15, 13] (recently accepted to ICALP as a combined

X. Li and Y. Zheng 27:3

paper [12]), which give a deterministic one pass algorithm achieving a O(21/δ) approximation
of ED, using space Õ(nδ/δ) and time Õδ(n4) for any constant δ > 0, as well as deterministic
one pass algorithms achieving 1 ± ε approximation of ED and LCS, using space Õ(

√
n

ε) and
time Õε(n2).

A natural question is how much we can improve these results. Towards answering this
question, we study both lower bounds and upper bounds for the space complexity of ED and
LCS in the asymmetric streaming model, and we obtain several new, non-trivial results.

Related work. On a different topic, there are many works that study the time complexity
of ED and LCS. In particular, while [6, 1] showed that ED and LCS cannot be computed
exactly in truly sub-quadratic time unless the strong Exponential time hypothesis [19] is
false, a successful line of work [9, 8, 20, 5, 18, 23, 24] has led to randomized algorithms that
achieve constant approximation of ED in near linear time, and randomized algorithms that
provide various non-trivial approximation of LCS in linear or sub-quadratic time. Another
related work is [4], where the authors proved a lower bound on the query complexity for
computing ED in the asymmetric query model, where one have random access to one string
but only limited number of queries to the other string.

1.1 Our Contribution

We initiate a systematic study on lower bounds for computing or approximating ED and LCS
in the asymmetric streaming model. To simplify notation we always use 1 + ε approximation
for some ε > 0, i.e., outputting an λ with OPT ≤ λ ≤ (1 + ε)OPT, where OPT is either
ED(x, y) or LCS(x, y). We note that for LCS, this is equivalent to a 1/(1 + ε) approximation
in the standard notation.

Previously, there are no explicitly stated space lower bounds in this model, although as
we will discuss later, some lower bounds about LCS can be inferred from the lower bounds
for longest increasing subsequence LIS in [28, 16, 14]. As our first contribution, we prove
strong lower bounds for ED in the asymmetric streaming model.

▶ Theorem 1. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck, given
an alphabet Σ, any R-pass randomized algorithm in the asymmetric streaming model that
decides if ED(x, y) ≥ k for two strings x, y ∈ Σn with success probability ≥ 2/3 must use
space Ω(min(k, |Σ|)/R).

This theorem implies the following corollary.

▶ Corollary 2. Given an alphabet Σ, the following space lower bounds hold for any constant
pass randomized algorithm with success probability ≥ 2/3 in the asymmetric streaming model.
1. Ω(n) for computing ED(x, y) of two strings x, y ∈ Σn if |Σ| ≥ n.
2. Ω(1

ε) for 1 + ε approximation of ED(x, y) for two strings x, y ∈ Σn if |Σ| ≥ 1/ε.

Our theorems thus provide a justification for the study of approximating ED in the
asymmetric streaming model. Furthermore, we note that previously, unconditional lower
bounds for ED in various computational models are either weak, or almost identical to the
bounds for Hamming distance. For example, a simple reduction from the equality function
implies the deterministic two party communication complexity (and hence also the space
lower bound in the standard streaming model) for computing or even approximating ED is

FSTTCS 2021

27:4 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

Ω(n).1 However the same bound holds for Hamming distance. Thus it has been an intriguing
question to prove a rigorous, unconditional separation of the complexity of ED and Hamming
distance. To the best of our knowledge the only previous example achieving this is the
work of [3] and [2], which showed that the randomized two party communication complexity
of achieving a 1 + ε approximation of ED is Ω(log n

(1+ε) log log n), while the same problem for
Hamming distance has an upper bound of O(1

ε2). Thus if ε is a constant, this provides a
separation of Ω(log n

log log n) vs. a constant. However, this result also has some disadvantages:
(1) It only works in the randomized setting; (2) The separation becomes obsolete when ε is
small, e.g., ε = 1/

√
log n; and (3) The lower bound for ED is still weak and thus it does not

apply to the streaming setting, as there even recoding the index needs space log n.
Our result from Corollary 2, on the other hand, complements the above result in the

aforementioned aspects by providing another strong separation of ED and Hamming distance.
Note that even exact computation of the Hamming distance between x and y is easy in the
asymmetric streaming model with one pass and space O(log n). Thus our result provides
an exponential gap between edit distance and Hamming distance, in terms of the space
complexity in the asymmetric streaming model (and also the communication model since
our proof uses communication complexity), even for deterministic exact computation.

Next we turn to LCS, which can be viewed as a generalization of LIS. For example, if
the alphabet Σ = [n], then we can fix the string y to be the concatenation from 1 to n,
and it’s easy to see that LCS(x, y) = LIS(x). Therefore, the lower bound of computing LIS
for randomized streaming in [28] with |Σ| ≥ n also implies a similar bound for LCS in the
asymmetric streaming model. However, the bound in [28] does not apply to the harder case
where x is a permutation of y, and their lower bound where |Σ| < n is actually for longest
non-decreasing subsequence, which does not give a similar bound for LCS in the asymmetric
streaming model. 2 Therefore, we first prove a strong lower bound for LCS in general.

▶ Theorem 3. There is a constant c > 1 such that for any k, n ∈ N with n ≥ ck, given
an alphabet Σ, any R-pass randomized algorithm in the asymmetric streaming model that
decides if LCS(x, y) ≥ k for two strings x, y ∈ Σn with success probability ≥ 2/3 must use
space Ω

(
min(k, |Σ|)/R

)
. Moreover, this holds even if x is a permutation of y when |Σ| ≥ n

or |Σ| ≤ k.

Similar to the case of ED, this theorem also implies the following corollary.

▶ Corollary 4. Given an alphabet Σ, the following space lower bounds hold for any constant
pass randomized algorithm with success probability ≥ 2/3 in the asymmetric streaming model.
1. Ω(n) for computing LCS(x, y) of two strings x, y ∈ Σn if |Σ| ≥ n.
2. Ω(1

ε) for 1 + ε approximation of LCS(x, y) for two strings x, y ∈ Σn if |Σ| ≥ 1/ε.

We then consider deterministic approximation of LCS. Here, the work of [16, 14] gives a
lower bound of Ω

(
1
R

√
n
ε log

(
|Σ|
εn

))
for any R pass streaming algorithm achieving a 1 + ε

approximation of LIS, which also implies a lower bound of Ω
(1

R

√
n
ε log

(1
ε

))
for asymmetric

streaming LCS when |Σ| ≥ n. These bounds match the upper bound in [17] for LIS and LNS,
and in [15, 13] for LCS. However, a major drawback of this bound is that it gives nothing
when |Σ| is small (e.g., |Σ| ≤ εn). For even smaller alphabet size, the bound does not even

1 We include this bound in the appendix for completeness, as we cannot find any explicit statement in
the literature.

2 One can get a similar reduction to LCS, but now y needs to be the sorted version of x, which gives
additional information about x in the asymmetric streaming model since we have random access to y.

X. Li and Y. Zheng 27:5

give anything for exact computation. For example, in the case of a binary alphabet, we know
that LIS(x) ≤ 2 and thus taking ε = 1/2 corresponds to exact computation. Yet the bound
gives a negative number.

This is somewhat disappointing as in most applications of ED and LCS, the alphabet size
is actually a fixed constant. These include for example the English language and the human
DNA sequence (where the alphabet size is 4 for the 4 bases). Therefore, in this paper we
focus on the case where the alphabet size is small, and we have the following theorem.

▶ Theorem 5. Given an alphabet Σ, for any ε > 0 where |Σ|2

ε = O(n), any R-pass
deterministic algorithm in the asymmetric streaming model that computes a 1+ε approximation
of LCS(x, y) for two strings x, y ∈ Σn must use space Ω

(
|Σ|
ε /R

)
.

Thus, even for a binary alphabet, achieving 1 + ε approximation for small ε (e.g., ε = 1/n

which corresponds to exact computation) can take space as large as Ω(n) for any constant
pass algorithm. Further note that by taking |Σ| =

√
εn, we recover the Ω

(√
n

ε /R
)

bound
with a much smaller alphabet.

Finally, we turn to LIS and longest non-decreasing subsequence (LNS), as well as a natural
generalization of LIS and LNS which we call longest non-decreasing subsequence with threshold
(LNST). Given a string x ∈ Σn and a threshold t ≤ n, LNST(x, t) denotes the length of the
longest non-decreasing subsequence in x such that each symbol appears at most t times. It
is easy to see that the case of t = 1 corresponds to LIS and the case of t = n corresponds to
LNS. Thus LNST is indeed a generalization of both LIS and LNS. It is also a special case
of LCS when |Σ|t ≤ n as we can take y to be the concatenation of t copies of each symbol,
in the ascending order (and possibly padding some symbols not in x). How hard is LNST?
We note that in the case of t = 1 (LIS) and t = n (LNS) a simple dynamic programming
can solve the problem in one pass with space O(|Σ| log n), and 1 + ε approximation can be
achieved in one pass with space Õ(

√
n
ε) by [17]. Thus one can ask what is the situation for

other t. Again we focus on the case of a small alphabet and have the following theorem.

▶ Theorem 6. Given an alphabet Σ, for deterministic (1 + ε) approximation of LNST(x, t)
for a string x ∈ Σn in the streaming model with R passes, we have the following space lower
bounds:
1. Ω(min(

√
n, |Σ|)/R) for any constant t (this includes LIS), when ε is any constant.

2. Ω(|Σ| log(1/ε)/R) for t ≥ n/|Σ| (this includes LNS), when |Σ|2/ε = O(n).

3. Ω
(√

|Σ|
ε /R

)
for t = Θ(1/ε), when |Σ|/ε = O(n).

Thus, case 1 and 2 show that even for any constant approximation, any constant pass
streaming algorithm for LIS and LNS needs space Ω(|Σ|) when |Σ| ≤

√
n, matching the

O(|Σ| log n) upper bound up to a logarithmic factor. Taking ε = 1/ 3
√

n and |Σ| ≤ 3
√

n for
example, we further get a lower bound of Ω(|Σ| log n) for approximating LNS using any
constant pass streaming algorithm. This matches the O(|Σ| log n) upper bound. These
results complement the bounds in [16, 14, 17] for the important case of small alphabet, and
together they provide an almost complete picture for LIS and LNS. Case 3 shows that for
certain choices of t and ε, the space we need for LNST can be significantly larger than those
for LIS and LNS. It is an intriguing question to completely characterize the behavior of LNST
for all regimes of parameters.

We also give improved algorithms for asymmetric streaming ED and LCS. For ED, [15, 13]
gives a O(21/δ)-approximation algorithm with Õ(nδ) space for any constant δ ∈ (0, 1). We
further reduced the space needed from Õ(nδ

δ) to O(dδ

δ polylog(n)) where d = ED(x, y).
Specifically, we have the following theorem.

FSTTCS 2021

27:6 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

▶ Theorem 7. Assume ED(x, y) = d, in the asymmetric streaming model, there are one-pass
deterministic algorithms in polynomial time with the following parameters:
1. A (3 + ε)-approximation of ED(x, y) using O(

√
d polylog(n)) space.

2. For any constant δ ∈ (0, 1/2), a 2O(1
δ)-approximation of ED(x, y) using O(dδ

δ polylog(n))
space.

For LCS over a large alphabet, the upper bounds in [15, 13] match the lower bounds
implied by [16, 14]. We thus again focus on small alphabet. Note that our Theorem 5 does
not give anything useful if |Σ| is small and ε is large (e.g., both are constants). Thus a
natural question is whether one can get better bounds. In particular, is the dependence on
1/ε linear as in our theorem, or is there a threshold beyond which the space jumps to say for
example Ω(n)? We note that there is a trivial one pass, O(log n) space algorithm even in the
standard streaming model that gives a |Σ| approximation of LCS (or 1/|Σ| approximation
in standard notation), and no better approximation using sublinear space is known even in
the asymmetric streaming model. Thus one may wonder whether this is the threshold. We
show that this is not the case, by giving a one pass algorithm in the asymmetric streaming
model over the binary alphabet that achieves a 2 − ε approximation of LCS (or 1/2 + ε

approximation in standard notation), using space nδ for any constant δ > 0.

▶ Theorem 8. For any constant δ ∈ (0, 1/2), there exists a constant ε > 0 and a one-pass
deterministic algorithm that outputs a 2 − ε approximation of LCS(x, y) for any two strings
x, y ∈ {0, 1}n, with Õ(nδ/δ) space and polynomial time in the asymmetric streaming model.

Finally, as mentioned before, we now have an almost complete picture for LIS and LNS,
but for the more general LNST the situation is still far from clear. Since LNST is a special
case of LCS, if |Σ|t = O(n) then the upper bound of Õ(

√
n

ε) in [15, 13] still applies and
this matches our lower bound in case 3, Theorem 6 by taking |Σ| = εn. One can then ask
the natural question of whether we can get a matching upper bound for the case of small
alphabet. We are not able to achieve this, but we provide a simple algorithm that can use
much smaller space for certain regimes of parameters in this case.

▶ Theorem 9. Given an alphabet Σ with |Σ| = r. For any ε > 0 and t ≥ 1, there is a
one-pass streaming algorithm that computes a (1 + ε) approximation of LNST(x, t) for any
x ∈ Σn with Õ

((
min(t, r/ε) + 1

)r
)

space.

1.2 Overview of our Techniques
Here we provide an informal overview of the techniques used in this paper.

1.2.1 Lower Bounds
Our lower bounds use the general framework of communication complexity. To limit the
power of random access to the string y, we always fix y to be a specific string, and consider
different strings x. In turn, we divide x into several blocks and consider the two party/multi
party communication complexity of ED(x, y) or LCS(x, y), where each party holds one block
of x. However, we need to develop several new techniques to handle edit distance and small
alphabets.

Edit distance. We start with edit distance. One difficulty here is to handle substitutions,
as with substitutions edit distance becomes similar to Hamming distance, and this is exactly
one of the reasons why strong complexity results separating edit distance and Hamming

X. Li and Y. Zheng 27:7

distance are rare. Indeed, if we define ED(x, y) to be the smallest number of insertions and
deletions (without substitutions) to transform x into y, then ED(x, y) = 2n − 2LCS(x, y)
and thus a lower bound for exactly computing LCS (e.g., those implied from [16, 14]) would
translate directly into the same bound for exactly computing ED. On the other hand, with
substitutions things become more complicated: if LCS(x, y) is small (e.g., LCS(x, y) ≤ n/2)
then in many cases (such as examples obtained by reducing from [16, 14]) the best option to
transform x into y is just replacing each symbol in x by the corresponding symbol in y if
they are different, which makes ED(x, y) exactly the same as their Hamming distance.

To get around this, we need to ensure that LCS(x, y) is large. We demonstrate our ideas
by first describing an Ω(n) lower bound for the deterministic two party communication
complexity of ED(x, y), using a reduction from the equality function which is well known
to have an Ω(n) communication complexity bound. Towards this, fix Σ = [3n] ∪ {a} where
a is a special symbol, and fix y = 1 ◦ 2 ◦ · · · ◦ 3n. We divide x into two parts x = (x1, x2)
such that x1 is obtained from the string (1, 2, 4, 5, · · · , 3i − 2, 3i − 1, · · · , 3n − 2, 3n − 1)
by replacing some symbols of the form 3j − 1 by a, while x2 is obtained from the string
(2, 3, 5, 6, · · · , 3i − 1, 3i, · · · , 3n − 1, 3n) by replacing some symbols of the form 3j − 1 by
a. Note that the way we choose (x1, x2) ensures that LCS(x, y) ≥ 2n before replacing any
symbol by a.

Intuitively, we want to argue that the best way to transform x into y, is to delete a
substring at the end of x1 and a substring at the beginning of x2, so that the resulted string
becomes an increasing subsequence as long as possible. Then, we insert symbols into this
string to make it match y except for those a symbols. Finally, we replace the a symbols by
substitutions. If this is true then we can finish the argument as follows. Let T1, T2 ⊂ [n] be
two subsets with size t = Ω(n), where for any i ∈ {1, 2}, all symbols of the form 3j − 1 in xi

with j ∈ Ti are replaced by a. Now if T1 = T2 then it doesn’t matter where we choose to
delete the substrings in x1 and x2, the number of edit operations is always 3n − 2 + t by a
direct calculation. On the other hand if T1 ̸= T2 and assume for simplicity that the smallest
element they differ is an element in T2, then there is a way to save one substitution, and the
the number of edit operations becomes 3n − 3 + t.

The key part is now proving our intuition. For this, we consider all possible r ∈ [3n]
such that x1 is transformed into y[1 : r] and x2 is transformed into y[r + 1 : 3n], and
compute the two edit distances respectively. To analyze the edit distance, we first show by
a greedy argument that without loss of generality, we can assume that we apply deletions
first, followed by insertions, and substitutions at last. This reduces the edit distance problem
to the following problem: for a fixed number of deletions and insertions, what is the best
way to minimize the Hamming distance (or maximize the number of agreements of symbols
at the same indices) in the end. Now we break the analysis of ED(x1, y[1 : r]) into two
cases. Case 1 is where the number of deletions (say dd) is large. In this case, the number
of insertions (say di) must also be large, and we argue that the number of agreements is at
most LCS(x1, y[1 : r]) + di. Case 2 is where dd is small. In this case, di must also be small.
Now we crucially use the structure of x1 and y, and argue that symbols in x1 larger than 3di

(or original index beyond 2di) are guaranteed to be out of agreement. Thus the number of
agreements is at most LCS(x1[1 : 2di], y[1 : r]) + di. In each case combining the bounds gives
us a lower bound on the total number of operations. The situation for x2 and y[r + 1 : 3n] is
completely symmetric and this proves our intuition.

In the above construction, x and y have different lengths (|x| = 4n while |y| = 3n). We
can fix this by adding a long enough string z with distinct symbols than those in {x, y} to
the end of both x and y, and then add n symbols of a at the end of z for y. We argue that

FSTTCS 2021

27:8 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

the best way to do the transformation is to transform x into y, and then insert n symbols of
a. To show this, we first argue that at least one symbol in z must be kept, for otherwise
the number of operations is already larger than the previous transformation. Then, using a
greedy argument we show that the entire z must be kept, and thus the natural transformation
is the optimal.

To extend the bound to randomized algorithms, we modify the above construction and
reduce from Set Disjointness (DIS), which is known to have randomized communication
complexity Ω(n). Given two strings α, β ∈ {0, 1}n representing the characteristic vectors of
two sets A, B ⊆ [n], DIS(α, β) = 0 if and only if A ∩ B ̸= ∅, or equivalently, ∃j ∈ [n], αj =
βj = 1. For the reduction, we first create two new strings α′, β′ ∈ {0, 1}2n which are
“balanced” versions of α, β. Formally, ∀j ∈ [n], α′

2j−1 = αj and α′
2j = 1 − αj . We create β′

slightly differently, i.e., ∀j ∈ [n], β′
2j−1 = 1 − βj and β′

2j = βj . Now both α′ and β′ have
n 1’s, we can use them as the characteristic vectors of the two sets T1, T2 in the previous
construction. A similar argument now leads to the bound for randomized algorithms.

Longest common subsequence. Our lower bounds for randomized algorithms computing
LCS exactly are obtained by a similar and simpler reduction from DIS: we still fix y to be an
increasing sequence of length 8n and divide y evenly into 4n blocks of constant size. Now
x1 consists of the blocks with an odd index, while x2 consists of the blocks with an even
index. Thus x is a permutation of y. Next, from α, β ∈ {0, 1}n we create α′, β′ ∈ {0, 1}2n

in a slightly different way and use α′, β′ to modify the 2n blocks in x1 and x2 respectively.
If a bit is 1 then we arrange the corresponding block in the increasing order, otherwise we
arrange the corresponding block in the decreasing order. A similar argument as before now
gives the desired Ω(n) bound. We note that [28] has similar results for LIS by reducing from
DIS. However, our reduction and analysis are different from theirs. Thus we can handle LCS,
and even the harder case where x is a permutation of y.

We now turn to LCS over a small alphabet. To illustrate our ideas, let’s first consider
Σ = {0, 1} and choose y = 0n/21n/2. It is easy to see that LCS(x, y) = LNST(x, n/2). We now
represent each string x ∈ {0, 1}n as follows: at any index i ∈ [n] ∪ {0}, we record a pair (p, q)
where p = min(the number of 0’s in x[1 : i], n/2) and q = min(the number of 1’s in x[i + 1 :
n], n/2). Thus, if we read x from left to right, then upon reading a 0, p may increase by 1
and q does not change; while upon reading a 1, p does not change and q may decrease by 1.
Hence if we use the horizontal axis to stand for p and the vertical axis to stand for q, then
these points (p, q) form a polygonal chain. We call p + q the value at point (p, q) and it is
easy to see that LCS(x, y) must be the value of an endpoint of some chain segment.

Using the above representation, we now fix Σ = {0, 1, 2} and choose y = 0n/31n/32n/3, so
LCS(x, y) = LNST(x, n/3). We let x = (x1, x2) such that x1 ∈ {0, 1}n/2 and x2 ∈ {1, 2}n/2.
Since any common subsequence between x and y must be of the form 0a1b2c it suffices to
consider common subsequence between x1 and 0n/31n/3, and that between x2 and 1n/32n/3,
and combine them together. Towards that, we impose the following properties on x1, x2:
(1) The number of 0’s, 1’s, and 2’s in each string is at most n/3; (2) In the polygonal chain
representation of each string, the values of the endpoints strictly increase when the number
of 1’s increases; and (3) For any endpoint in x1 where the number of 1’s is some r, there is a
corresponding endpoint in x2 where the number of 1’s is n/3 − r, and the values of these two
endpoints sum up to a fixed number t = Ω(n). Note that property (2) implies that LCS(x, y)
must be the sum of the values of an endpoint in x1 where the number of 1’s is some r, and
an endpoint in x2 where the number of 1’s is n/3 − r, while property (3) implies that for
any string x1, there is a unique corresponding string x2, and LCS(x, y) = t (regardless of the
choice of r).

X. Li and Y. Zheng 27:9

We show that under these properties, all possible strings x = (x1, x2) form a set S with
|S| = 2Ω(n), and this set gives a fooling set for the two party communication problem of
computing LCS(x, y). Indeed, for any x = (x1, x2) ∈ S, we have LCS(x, y) = t. On the other
hand, for any (x1, x2) ̸= (x′

1, x′
2) ∈ S, the values must differ at some point for x1 and x′

1.
Hence by switching, either (x1, x′

2) or (x′
1, x2) will have a LCS with y that has length at least

t + 1. Standard arguments now imply an Ω(n) communication complexity lower bound. A
more careful analysis shows that we can even replace the symbol 2 by 0, thus resulting in a
binary alphabet.

The above argument can be easily modified to give a Ω(1/ε) bound for 1+ε approximation
of LCS when ε < 1, by taking the string length to be some n′ = Θ(1/ε). To get a better
bound, we combine our technique with the technique in [14] and consider the following direct
sum problem: we create r copies of strings {xi, i ∈ [r]} and {yi, i ∈ [r]} where each copy uses
distinct alphabets with size 2. Assume for xi and yi the alphabet is {ai, bi}, now xi again
consists of r copies of (xi

j1, xi
j2), j ∈ [r], where each xi

jℓ ∈ {ai, bi}n′/2 for ℓ ∈ [2]; while yi

consists of r copies yi
j = a

n′/3
i b

n′/3
i a

n′/3
i , j ∈ [r]. The direct sum problem is to decide between

the following two cases for some t = Ω(n′): (1) ∃i such that there are Ω(r) copies (xi
j1, xi

j2)
in xi with LCS((xi

j1 ◦ xi
j2), yi

j) ≥ t + 1, and (2) ∀i and ∀j, LCS((xi
j1 ◦ xi

j2), yi
j) ≤ t. We do

this by arranging the xi’s row by row into an r × 2r matrix (each entry is a length n′/2
string) and letting x be the concatenation of the columns. We call these strings the contents
of the matrix, and let y be the concatenation of the yi’s. Now intuitively, case (1) and case
(2) correspond to deciding whether LCS(x, y) ≥ 2rt + Ω(r) or LCS(x, y) ≤ 2rt, which implies
a 1 + Ω(1/t) = 1 + ε approximation. The lower bound follows by analyzing the 2r-party
communication complexity of this problem, where each party holds a column of the matrix.

However, unlike the constructions in [16, 14] which are relatively easy to analyze because
all symbols in x (respectively y) are distinct, the repeated symbols in our construction make
the analysis of LCS much more complicated (we can also use distinct symbols but that
will only give us a bound of

√
|Σ|
ε instead of |Σ|

ε). To ensure that the LCS is to match each
(xi

j1, xi
j2) to the corresponding yi

j , we use another r symbols {ci, i ∈ [r]} and add buffers of
large size (e.g., size n′) between adjacent copies of (xi

j1, xi
j2). We do the same thing for yi

j

correspondingly. Moreover, it turns out we need to arrange the buffers carefully to avoid
unwanted issues: in each row xi, between each copy of (xi

j1, xi
j2) we use a buffer of new

symbol. Thus the buffers added to each row xi are cn′

1 , cn′

2 , · · · , cn′

r sequentially and this is
the same for every row. That is, in each row the contents use the same alphabet {ai, bi}
but the buffers use different alphabets {ci, i ∈ [r]}. Now we have a r × 3r matrix and we
again let x be the concatenation of the columns while let y be the concatenation of the yi’s.
Note that we are using an alphabet of size |Σ| = 3r. We use a careful analysis to argue that
case (1) and case (2) now correspond to deciding whether LCS(x, y) ≥ 2rn′ + rt + Ω(r) or
LCS(x, y) ≤ 2rn′ + rt, which implies a 1 + ε approximation. The lower bound follows by
analyzing the 3r-party communication complexity of this problem, and we show a lower
bound of Ω(r/ε) = Ω(|Σ|/ε) by generalizing our previous fooling set construction to the
multi-party case, where we use a good error correcting code to create the Ω(r) gap.

The above technique works for ε < 1. For the case of ε ≥ 1 our bound for LCS can be
derived directly from our bound for LIS, which we describe next.

Longest increasing/non-decreasing subsequence. Our Ω(|Σ|) lower bound over small
alphabet is achieved by modifying the construction in [14] and providing a better analysis.
Similar as before, we consider a matrix B ∈ {0, 1} r

c ×r where c is a large constant and r = |Σ|.
We now consider the r-party communication problem where each party holds one column of

FSTTCS 2021

27:10 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

B, and the problem is to decide between the following two cases for a large enough constant
l: (1) for each row in B, there are at least l 0’s between any two 1’s, and (2) there exists
a row in B which has more than αr 1’s, where α ∈ (1/2, 1) is a constant. We can use a
similar argument as in [14] to show that the total communication complexity of this problem
is Ω(r2) and hence at least one party needs Ω(r). The difference is that [14] sets l = 1 while
we need to pick l to be a larger constant to handle the case ε ≥ 1. For this we use the
Lovász Local Lemma with a probabilistic argument to show the existence of a large fooling
set. To reduce to LIS, we define another matrix B̃ such that B̃i,j = (i − 1) r

c + j if Bi,j = 1
and B̃i,j = 0 otherwise. Now let x be the concatenation of all columns of B̃. We show that
case (2) implies LIS(x) ≥ αr and case (1) implies LIS(x) ≤ (1/c + 1/l)r. This implies a 1 + ε

approximation for any constant ε > 0 by setting c and l appropriately.
The construction is slightly different for LNS. This is because if we keep the 0’s in B̃, they

will already form a very long non-decreasing subsequence and we will not get any gap. Thus,
we now let the matrix B have size r × cr where c can be any constant. We replace all 0’s in
column i with a symbol bi for i ∈ [cr], such that b1 > b2 > · · · > bcr. Similarly we replace all
1’s in row j with a symbol aj for j ∈ [r], such that a1 < a2 < · · · < ar. Also, we let a1 > b1.
We can show that the two cases now correspond to LNS(x) > αcr and LNS(x) ≤ (2 + c/l)r.

We further prove an Ω(|Σ| log(1/ε)) lower bound for 1 + ε approximation of LNS when
ε < 1. This is similar to our previous construction for LCS, except we don’t need buffers here,
and we only need to record the number of some symbols. More specifically, let l = Θ(1/ε)
and S be the set of all strings x = (x1, x2) over alphabet {a, b} with length 2l such that
x1 = a

3
4 l+tb

1
4 l−t and x2 = a

3
4 l−tb

1
4 l+t for any t ∈ [l

4]. Thus S has size l
4 = Ω(1/ε) and

∀x ∈ S, the number of a’s in x is exactly 3
2 l. Further, for any (x1, x2) ̸= (x′

1, x′
2) ∈ S, either

(x1, x′
2) or (x′

1, x2) has more than 3
2 l a’s. We now consider the r × 2r matrix where each row

i consists of {(xi
j1, xi

j2), j ∈ [r]} such that each xi
jℓ has length l for ℓ ∈ [2], and for the same

row i all {(xi
j1, xi

j2)} use the same alphabet {ai, bi} while for different rows the alphabets
are disjoint. To make sure the LNS of the concatenation of the columns is roughly the sum
of the number of ai’s, we require that br < br−1 < · · · < b1 < a1 < a2 < · · · < ar. Now
we analyze the 2r party communication problem of deciding whether the concatenation of
the columns has LNS ≥ crl + Ω(r) or LNS ≤ crl for some constant c, which implies a 1 + ε

approximation. The lower bound is again achieved by generalizing the set S to a fooling set
for the 2r party communication problem using an error correcting code based approach.

In Theorem 6, we give three lower bounds for LNST. The first two lower bounds are
adapted from our lower bounds for LIS and LNS, while the last lower bound is adapted from
our lower bound for LCS by ensuring all symbols in different rows or columns of the matrix
there are different.

Improved algorithms. We defer the technique overview of our improved algorithms to
Section B.

1.3 Open Problems

Our work leaves a plethora of intriguing open problems. The main one is to close the gap
between our lower bounds and the upper bounds of known algorithms, especially for the case
of small alphabets and large (say constant) approximation. We believe that in this case it
is possible to improve both the lower bounds and the upper bounds. Another interesting
problem is to completely characterize the space complexity of LNST.

X. Li and Y. Zheng 27:11

2 Organization of the paper

The rest of the paper is organized as follows. In Section 3, we give a formal description of
the problems we study. We then present our lower bounds for edit distance in Section 4
and lower bounds for LCS in Section 5. In the appendix, we give our lower bounds for LIS,
LNS, LNST, and an algorithm for LNST in Section A. In Section B, we present our improved
algorithms for asymmetric streaming edit distance and LCS. Finally in Section C, we present
a proof for the strong linear lower bound for approximating ED in the standard streaming
model. Due to the page limit, some of the proofs are deferred to the full version.

3 Preliminaries

We use the following conventional notations. Let x ∈ Σn be a string of length n over alphabet
Σ. By |x|, we mean the length of x. We denote the i-th character of x by xi and the substring
from the i-th character to the j-th character by x[i : j]. We denote the concatenation of two
strings x and y by x ◦ y. By [n], we mean the set of positive integers no larger than n.
Edit Distance. The edit distance (or Levenshtein distance) between two strings x, y ∈ Σ∗,

denoted by ED(x, y), is the smallest number of edit operations (insertion, deletion, and
substitution) needed to transform one into another.

Longest Common Subsequence. We say the string s ∈ Σt is a subsequence of x ∈ Σn if
there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n such that s = xi1xi2 · · · xit . A string s

is called a common subsequence of strings x and y if s is a subsequence of both x and
y. Given two strings x and y, we denote the length of the longest common subsequence
(LCS) of x and y by LCS(x, y).

Longest Increasing Subsequence. In the longest increasing subsequence problem, we assume
there is a given total order on the alphabet set Σ. We say the string s ∈ Σt is an
increasing subsequence of x ∈ Σn if there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n such
that s = xi1xi2 · · · xit and xi1 < xi2 < · · · < xit . We denote the length of the longest
increasing subsequence (LIS) of string x by LIS(x).

Longest Non-decreasing Subsequence. The longest non-decreasing subsequence is a variant
of the longest increasing problem. The difference is that in a non-decreasing subsequence
s = xi1xi2 · · · xit

, we only require xi1 ≤ xi2 ≤ · · · ≤ xit
.

4 Lower Bounds for Edit Distance

We show a reduction from the Set Disjointness problem (DIS) to computing ED between
two strings in the asymmetric streaming model. For this, we define the following two party
communication problem between Alice and Bob.

Given an alphabet Σ and three integers n1, n2, n3. Suppose Alice has a string x1 ∈ Σn1

and Bob has a string x2 ∈ Σn1 . There is another fixed reference string y ∈ Σn3 that is known
to both Alice and Bob. Alice and Bob now tries to compute ED((x1 ◦ x2), y).We call this
problem EDcc(y). We prove the following theorem.

▶ Theorem 10. Suppose each input string to DIS has length n and let Σ = [6n] ∪ {a}. Fix
y = (1, 2, · · · , 6n). Then R1/3(EDcc(y)) ≥ R1/3(DIS).

To prove this theorem, we first construct the strings x1, x2 based on the inputs α, β ∈
{0, 1}n to DIS. From α, Alice constructs the string α′ ∈ {0, 1}2n such that ∀j ∈ [n], α′

2j−1 =
αj and α′

2j = 1 − αj . Similarly, from β, Bob constructs the string β′ ∈ {0, 1}2n such that

FSTTCS 2021

27:12 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

∀j ∈ [n], β′
2j−1 = 1 − βj and β′

2j = βj . Now Alice lets x1 be a modification from the string
(1, 2, 4, 5, · · · , 3i − 2, 3i − 1, · · · , 6n − 2, 6n − 1) such that ∀j ∈ [2n], if α′

j = 0 then the symbol
3j − 1 (at index 2j) is replaced by a. Similarly, Bob lets x2 be a modification from the string
(2, 3, 5, 6, · · · , 3i − 1, 3i, · · · , 6n − 1, 6n) such that ∀j ∈ [2n], if β′

j = 0 then the symbol 3j − 1
(at index 2j − 1) is replaced by a.

Given the construction, we have the following lemma.

▶ Lemma 11. If DIS(α, β) = 1 then ED((x1 ◦ x2), y) ≥ 7n − 2.

To prove the lemma we observe that in a series of edit operations that transforms (x1, x2)
to y, there exists an index r ∈ [6n] s.t. x1 is transformed into [1 : r] and x2 is transformed
into [r + 1 : n]. We analyze the edit distance in each part. We first have the following claim:

▷ Claim 12. For any two strings u and v, there is a sequence of optimal edit operations
(insertion/deletion/substitution) that transforms u to v, where all deletions happen first,
followed by all insertions, and all substitutions happen at the end of the operations.

We defer the proof of this claim to the full version. For any i, let Γ1(i) denote the number
of a symbols up to index 2i in x1. Note that Γ1(i) is equal to the number of 0’s in α′[1 : i].
We have the following lemma.

▶ Lemma 13. For any p ∈ [n], let r = 3p − q where 0 ≤ q ≤ 2, then ED(x1, [1 : r]) =
4n − p − q + Γ1(p) if q = 0, 1 and ED(x1, [1 : r]) = 4n − p + Γ1(p − 1) if q = 2.

Proof. By Claim 12 we can first consider deletions and insertions, and then compute the
Hamming distance after these operations (for substitutions).

We consider the three different cases of q. Let the number of insertions be di and the
number of deletions be dd. Note that di − dd = r − 4n. We define the number of agreements
between two strings to be the number of positions where the two corresponding symbols are
equal.

The case of q = 0 and q = 1. Here again we have two cases.
Case (a): dd ≥ 4n − 2p. In this case, notice that the LCS after the operations between x1

and y is at most the original LCS(x1, y) = 2p − Γ1(p). With di insertions, the number of
agreements can be at most LCS(x1, y) + di = 2p − Γ1(p) + di, thus the Hamming distance
at the end is at least r − 2p + Γ1(p) − di. Therefore, in this case the number of edit
operations is at least di + dd + r − 2p + Γ1(p) − di ≥ 4n − p − q + Γ1(p), and the equality
is achieved when dd = 4n − 2p.

Case (b): dd < 4n−2p. In this case, notice that all original symbols in x1 larger than 3di (or
beyond index 2di before the insertions) are guaranteed to be out of agreement. Thus the
only possible original symbols in x1 that are in agreement with y after the operations are
the symbols with original index at most 2di. Note that the LCS between x1[1 : 2di] and y

is 2di − Γ1(di). Thus with di insertions the number of agreements is at most 3di − Γ1(di),
and the Hamming distance at the end is at least r − 3di + Γ1(di).
Therefore the number of edit operations is at least di + dd + r − 3di + Γ1(di) = r − di +
(dd − di) + Γ1(di) = 4n − di + Γ1(di). Now notice that di = dd + r − 4n < p and the
quantity di − Γ1(di) is non-decreasing as di increases. Thus the number of edit operations
is at least 4n − p + Γ1(p) ≥ 4n − p − q + Γ1(p).

The other case of q is similar, as follows.

X. Li and Y. Zheng 27:13

The case of q = 2. Here again we have two cases.
Case (a): dd ≥ 4n − 2p + 1. In this case, notice that the LCS after the operations between x1

and y is at most the original LCS(x1, y) = 2(p−1)−Γ1(p−1)+1 = 2p−1−Γ1(p−1). With di

insertions, the number of agreements can be at most LCS(x1, y)+di = 2p−1−Γ1(p−1)+di,
thus the Hamming distance at the end is at least r − 2p + 1 + Γ1(p − 1) − di. Therefore, in
this case the number of edit operations is at least di + dd + r − 2p + 1 + Γ1(p − 1) − di ≥
4n − p + Γ1(p − 1), and the equality is achieved when dd = 4n − 2p + 1.

Case (b): dd ≤ 4n−2p. In this case, notice that all original symbols in x1 larger than 3di (or
beyond index 2di before the insertions) are guaranteed to be out of agreement. Thus the
only possible original symbols in x1 that are in agreement with y after the operations are
the symbols with original index at most 2di. Note that the LCS between x[1 : 2di] and y

is 2di − Γ1(di). Thus with di insertions the number of agreements is at most 3di − Γ1(di),
and the Hamming distance at the end is at least r − 3di + Γ1(di).
Therefore the number of edit operations is at least di + dd + r − 3di + Γ1(di) = r − di +
(dd − di) + Γ1(di) = 4n − di + Γ1(di). Now notice that di = dd + r − 4n < p − 1 and the
quantity di − Γ1(di) is non-decreasing as di increases. Thus the number of edit operations
is at least 4n − (p − 1) + Γ1(p − 1) > 4n − p + Γ1(p − 1). ◀

We can now prove a similar lemma for x2. For any i, let Γ2(i) denote the number of
a symbols from index 2i + 1 to 4n in x2. Note that Γ2(i) is equal to the number of 0’s in
β′[i + 1 : 2n].

▶ Lemma 14. Let r = 3p + q where 0 ≤ q ≤ 2, then ED(x2, [r + 1 : 6n]) = 2n + p − q + Γ2(p)
if q = 0, 1 and ED(x2, [r + 1 : 6n]) = 2n + p + Γ2(p + 1) if q = 2.

Proof. We can reduce to Lemma 13. To do this, use 6n + 1 to minus every symbol in x2
and in [r + 1 : 6n], while keeping all the a symbols unchanged. Now, reading both strings
from right to left, x2 becomes the string x2 = 1, 2, · · · , 3i − 2, 3i − 1, · · · , 6n − 2, 6n − 1 with
some symbols of the form 3j − 1 replaced by a’s. Similarly [r + 1 : 6n] becomes [1 : 6n − r]
where 6n − r = 3(2n − p) − q.

If we regard x2 as x1 as in Lemma 13 and define Γ1(i) as in that lemma, we can see that
Γ1(i) = Γ2(2n − i).

Now the lemma basically follows from Lemma 13. In the case of q = 0, 1, we have

ED(x2, [r+1 : 6n]) = ED(x′, [1 : 6n−r]) = 4n−(2n−p)−q+Γ1(2n−p) = 2n+p−q+Γ2(p).

In the case of q = 2, we have

ED(x2, [r+1 : 6n]) = ED(x′, [1 : 6n−r]) = 4n−(2n−p)+Γ1(2n−p−1) = 2n+p+Γ2(p+1).◀

We can now prove Lemma 11.

Proof of Lemma 11. We show that for any r ∈ [6n], ED(x1, [1 : r]) + ED(x2, [r + 1 : 6n]) ≥
7n − 2. First we have the following claim.

▷ Claim 15. If DIS(α, β) = 1, then for any i ∈ [2n], we have Γ1(i) + Γ2(i) ≥ n.

To see this, note that when i is even, we have Γ1(i) = i/2 and Γ1(i) = n − i/2 so
Γ1(i) + Γ2(i) = n. Now consider the case of i being odd and let i = 2j − 1 for some j ∈ [2n].
We know Γ1(i − 1) = (i − 1)/2 = j − 1 and Γ2(i + 1) = n − (i + 1)/2 = n − j, so we only
need to look at x1[2i − 1, 2i] and x2[2i + 1, 2i + 2] and count the number of symbols a’s in
them. If the number of a’s is at least 1, then we are done.

FSTTCS 2021

27:14 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

The only possible situation where the number of a’s is 0 is that α′
i = β′

i+1 = 1 which
means αj = βj = 1 and this contradicts the fact that DIS(α, β) = 1.

We now have the following cases.
Case (a): r = 3p. In this case, by Lemma 13 and Lemma 14 we have ED(x1, [1 : r]) =

4n − p + Γ1(p) and ED(x2, [r + 1 : 6n]) = 2n + p + Γ2(p). Thus we have ED(x1, [1 :
r]) + ED(x2, [r + 1 : 6n]) = 6n + n = 7n.

Case (b): r = 3p − 1 = 3(p − 1) + 2. In this case, by Lemma 13 and Lemma 14 we have
ED(x1, [1 : r]) = 4n − p − 1 + Γ1(p) and ED(x2, [r + 1 : 6n]) = 2n + (p − 1) + Γ2(p), thus
we have ED(x1, [1 : r]) + ED(x2, [r + 1 : 6n]) = 6n − 2 + n = 7n − 2.

Case (c): r = 3p − 2 = 3(p − 1) + 1. In this case, by Lemma 13 and Lemma 14 we have
ED(x1, [1 : r]) = 4n − p + Γ1(p − 1) and ED(x2, [r + 1 : 6n]) = 2n + (p − 1) − 1 + Γ2(p − 1),
thus we have ED(x1, [1 : r]) + ED(x2, [r + 1 : 6n]) = 6n − 2 + n = 7n − 2. ◀

We now prove Theorem 10.

Proof of Theorem 10. We begin by upper bounding ED((x1 ◦ x2), y) when DIS(α, β) = 0.

▷ Claim 16. If DIS(α, β) = 0 then ED((x1 ◦ x2), y) ≤ 7n − 3.

To see this, note that if DIS(α, β) = 0 then there exists a j ∈ [n] such that αj = βj = 1.
Thus α′

2j−1 = 1, β′
2j−1 = 0 and α′

2j = 0, β′
2j = 1. Note that the number of 0’s in α′[1 : 2j −1]

is j − 1 and thus Γ1(2j − 1) = j − 1. Similarly the number of 0’s in β′[2j : 2n] is n − j and
thus Γ2(2j − 1) = n − j. To transform (x1, x2) to y, we choose r = 6j − 2, transform x1 to
y[1 : r], and transform x2 to y[r + 1 : 6n].

By Lemma 13 and Lemma 14 we have ED(x1, [1 : r]) = 4n − 2j + Γ1(2j − 1) and
ED(x2, [r + 1 : 6n]) = 2n + (2j − 1) − 1 + Γ2(2j − 1). .Thus we have ED(x1, [1 : r]) +
ED(x2, [r + 1 : 6n]) = 6n − 2 + Γ1(2j − 1) + Γ2(2j − 1) = 6n − 2 + n − 1 = 7n − 3. Therefore
ED((x1, x2), y) ≤ 7n − 3.

Therefore, in the case of DIS(α, β) = 1, we have ED((x1 ◦ x2), y) ≥ 7n − 2 while in the
case of DIS(α, β) = 0, we have ED((x1 ◦ x2), y) ≤ 7n − 3. Thus any protocol that solves
EDcc(y) can also solve DIS, hence the theorem follows. ◀

In the proof of Theorem 10, the two strings x = (x1 ◦ x2) and y have different lengths,
however we can extend it to the case where the two strings have the same length and prove
the following theorem.

▶ Theorem 17. Suppose each input string to DIS has length n and let Σ = [16n] ∪ {a}.
Fix ỹ = (1, 2, · · · , 16n, a2n), let x̃1 ∈ Σ4n and x̃2 ∈ Σ14n. Define EDcc(ỹ) as the two party
communication problem of computing ED((x̃1 ◦ x̃2), ỹ). Then R1/3(EDcc(ỹ)) ≥ R1/3(DIS).

We defer the proof of Theorem 17 to the full version. From Theorem 17 we immediately
have the following theorem.

▶ Theorem 18. Any R-pass randomized algorithm in the asymmetric streaming model that
computes ED(x, y) exactly between two strings x, y of length n with success probability at least
2/3 must use space at least Ω(n/R).

We can generalize the theorem to the case of deciding if ED(x, y) is at least a given
number k. We have the following theorem. The proof is deferred to the full version.

▶ Theorem 19 (Restatement of Theorem 1). There is a constant c > 1 such that for
any k, n ∈ N with n ≥ ck, given an alphabet Σ, any R-pass randomized algorithm in the
asymmetric streaming model that decides if ED(x, y) ≥ k between two strings x, y ∈ Σn with
success probability at least 2/3 must use space at least Ω(min(k, |Σ|)/R).

X. Li and Y. Zheng 27:15

For 0 < ε < 1, by taking k = 1/ε we also get the following corollary:

▶ Corollary 20. Given an alphabet Σ, for any 0 < ε < 1, any R-pass randomized
algorithm in the asymmetric streaming model that achieves a 1 + ε approximation of ED(x, y)
between two strings x, y ∈ Σn with success probability at least 2/3 must use space at least
Ω(min(1/ε, |Σ|)/R).

5 Lower Bounds for LCS

In this section, we study the space lower bounds for asymmetric streaming LCS.

5.1 Exact computation
5.1.1 Binary alphabet, deterministic algorithm
In this section, without loss of generality, we assume n can be diveded by 60 and let l = n

30 −1.
We assume the alphabet is Σ = {a, b}. Consider strings x of the form

x = b10as1b10as2b10 · · · b10aslb10. (1)

That is, x contains l blocks of consecutive a symbols. Between each block of a symbols,
we insert 10 b’s and we also add 10 b’s to the front, and the end of x. s1, . . . , sl are l integers
such that

l∑
i=1

si = n

6 + 5, (2)

1 ≤ si ≤ 9, ∀i ∈ [l]. (3)

Thus, the length of x is
∑l

i=1
n
6 + 5 + 10(l + 1) = n

2 + 5 and it contains exactly n
3 b’s.

Let S be the set of all x ∈ {a, b} n
2 +5 of form 1 that satisfying equations 2, 3. For

each string x ∈ S, we can define a string f(x) ∈ {a, b} n
2 −5 as following. Assume x =

b10as1b10as2b10 · · · b10aslb10, we set f(x) = as1b10as2b10 · · · b10aslb10. That is, f(x) simply
removed the first 10 b’s of x. We denote S̄ = {f(x)|x ∈ S} .

▷ Claim 21. |S| = |S̄| = 2Ω(n).

Proof. Notice that for x1, x2 ∈ S, if x1 ̸= x2, then f(x1) ̸= f(x2). We have |S| = |S̄|.
The size of S equals to the number of choices of l integers s1, s2, . . . , sl that satisfies

2 and 3. For an lower bound of |S|, we can pick n
60 of the integers to be 9, and set the

remaining to be 1 or 2. Thus the number of such choices is at least
(

l
n
60

)
=

(n
30 −1

n
60

)
= 2Ω(n).

◁

Given the construction of set S, we have the following lemma. We defer the proof to the
full version.

▶ Lemma 22. Let y = an/3bn/3an/3. For every x ∈ S,

LCS(x ◦ f(x), y) = n

2 + 5.

For any two distinct x1, x2 ∈ S,

max{LCS(x1 ◦ f(x2), y), LCS(x2 ◦ f(x1), y)} >
n

2 + 5.

FSTTCS 2021

27:16 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

The above lemma implies the following lower bound.

▶ Lemma 23. In the asymmetric streaming model, any deterministic protocol that computes
LCS(x, y) for any x, y ∈ {0, 1}n, in R passes of x needs Ω(n/R) space.

Proof. Consider a two party game where player 1 holds a string x1 ∈ S and player 2
holds a string x2 ∈ S. The goal is to verify whether x1 = x2. It is known that the total
communication complexity of testing the equality of two elements from set S is Ω(log |S|),
see [21] for example. We can reduce this to computing the length of LCS. To see this, we first
compute LCS(x1 ◦ f(x2), y) and LCS(x2 ◦ f(x1), y) with y = an/3bn/3an/3. By lemma 22, if
both LCS(x1 ◦ f(x2), y) = LCS(x2 ◦ f(x), y) = n

2 + 5, we know x1 = x2, otherwise, x1 ̸= x2.
Here, y is known to both parties.

The above reduction shows the total communication complexity of this game is Ω(n) since
|S| = 2Ω(n). If we only allow R rounds of communication, the size of the longest message
sent by the players is Ω(n/R). Thus, in the asymmetric model, any protocol that computes
LCS(x, y) in R passes of x needs Ω(n/R) space. ◀

5.1.2 Ω(n) size alphabet, randomized algorithm
If the alphabet set Σ has size Ω(n), then we show there is a space lower bound of Ω(n)
for asymmetric streaming algorithms that computes LCS(x, y) for x, y ∈ Σn. We have the
following theorem.

▶ Theorem 24 (Restatement of Theorem 3). There is a constant c > 1 such that for
any k, n ∈ N with n > ck, given an alphabet Σ, any R-pass randomized algorithm in the
asymmetric streaming model that decides if LCS(x, y) ≥ k between two strings x, y ∈ Σn with
success probability at least 2/3 must use at least Ω

(
min(k, |Σ|)/R

)
space.

The proof relies on a reduction from set-disjointness problem. We defer the proof of
Theorem 3 to the full version.

5.2 Approximation
For deterministic approximation of LCS in the asymmetric streaming model, we have the
following lower bound.

▶ Theorem 25 (Restatement of Theorem 5). Assume ε > 0, and |Σ|2

ε ≤ n . In the asymmetric
streaming model, any deterministic protocol that computes an 1+ε approximation of LCS(x, y)
for any x, y ∈ Σn, with constant number of passes of x needs Ω(|Σ|

ε) space.

This lower bound is achieved by combining our construction in Section 5.1.1 with the
techniques from [14]. We defer the proof to the full version.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for

lcs and other sequence similarity measures. In Foundations of Computer Science (FOCS),
2015 IEEE 56th Annual Symposium on. IEEE, 2015.

2 Alexandr Andoni, T.S. Jayram, and Mihai Patrascu. Lower bounds for edit distance and
product metrics via poincare type inequalities. In Proceedings of the twenty first annual
ACM-SIAM symposium on Discrete algorithms, pages 184–192, 2010.

3 Alexandr Andoni and Robert Krauthgamer. The computational hardness of estimating edit
distance. SIAM Journal on Discrete Mathematics, 39(6):2398–2429, 2010.

X. Li and Y. Zheng 27:17

4 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In Foundations of Computer Science
(FOCS), 2010 IEEE 51st Annual Symposium on. IEEE, 2010.

5 Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a constant
factor. In Proceedings of the 61st Annual Symposium on Foundations of Computer Science
(FOCS), 2020.

6 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing (STOC). IEEE, 2015.

7 Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Proceedings of the 57th IEEE Annual Symposium on Foundations of Computer
Science, pages 51–60. IEEE, 2016.

8 Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear edit
distance in near-linear time. In Proceedings of the 52nd annual ACM symposium on Theory of
computing (STOC), 2020.

9 Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. In Foundations
of Computer Science (FOCS), 2018 IEEE 59th Annual Symposium on. IEEE, 2019.

10 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Low distortion embedding
from edit to hamming distance using coupling. In Proceedings of the 48th IEEE Annual Annual
ACM SIGACT Symposium on Theory of Computing. ACM, 2016.

11 Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for
computing edit distance without exploiting suffix trees. arXiv preprint, 2016. arXiv:1607.
03718.

12 Kuan Cheng, Alireza Farhadi, MohammadTaghi Hajiaghayi, Zhengzhong Jin, Xin Li, Aviad
Rubinstein, Saeed Seddighin, and Yu Zheng. Streaming and small space approximation
algorithms for edit distance and longest common subsequence. In International Colloquium
on Automata, Languages, and Programming. Springer, 2021.

13 Kuan Cheng, Zhengzhong Jin, Xin Li, and Yu Zheng. Space efficient deterministic
approximation of string measures. arXiv preprint, 2020. arXiv:2002.08498.

14 Funda Ergun and Hossein Jowhari. On distance to monotonicity and longest increasing
subsequence of a data stream. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 730–736, 2008.

15 Alireza Farhadi, MohammadTaghi Hajiaghayi, Aviad Rubinstein, and Saeed Seddighin.
Streaming with oracle: New streaming algorithms for edit distance and lcs. arXiv preprint,
2020. arXiv:2002.11342.

16 Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for approximating the
length of the longest increasing subsequence. SIAM Journal on Computing, 39(8):3463–3479,
2010.

17 Parikshit Gopalan, TS Jayram, Robert Krauthgamer, and Ravi Kumar. Estimating the
sortedness of a data stream. In Proceedings of the eighteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 318–327. Society for Industrial and Applied Mathematics, 2007.

18 MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui Sun.
Approximating lcs in linear time: beating the

√
n barrier. In Proceedings of the Thirtieth

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1181–1200. Society for Industrial
and Applied Mathematics, 2019.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. Journal of Computer and System Sciences, 63(4):512–530, 2001.

20 Michal Kouckỳ and Michael E Saks. Constant factor approximations to edit distance on far
input pairs in nearly linear time. In Proceedings of the 52nd annual ACM symposium on
Theory of computing (STOC), 2020.

21 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Press, 1997.

FSTTCS 2021

http://arxiv.org/abs/1607.03718
http://arxiv.org/abs/1607.03718
http://arxiv.org/abs/2002.08498
http://arxiv.org/abs/2002.11342

27:18 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

22 David Liben-Nowell, Erik Vee, and An Zhu. Finding longest increasing and common
subsequences in streaming data. In COCOON, 2005.

23 Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approximation algorithms
for lcs and lis with truly improved running times. In Foundations of Computer Science (FOCS),
2019 IEEE 60th Annual Symposium on. IEEE, 2019.

24 Aviad Rubinstein and Zhao Song. Reducing approximate longest common subsequence to
approximate edit distance. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1591–1600. SIAM, 2020.

25 Barna Saha. Fast & space-efficient approximations of language edit distance and RNA folding:
An amnesic dynamic programming approach. In FOCS, 2017.

26 Michael Saks and C Seshadhri. Space efficient streaming algorithms for the distance to
monotonicity and asymmetric edit distance. In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms, pages 1698–1709. SIAM, 2013.

27 Leonard J Schulman and David Zuckerman. Asymptotically good codes correcting insertions,
deletions, and transpositions. IEEE transactions on information theory, 45(7):2552–2557,
1999.

28 Xiaoming Sun and David P Woodruff. The communication and streaming complexity of
computing the longest common and increasing subsequences. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 336–345, 2007.

A Lower Bounds for LIS and LNS

In this section, we introduce our space lower bound for LIS and LNS. We first introduce
some definition and related results regarding the multi-party communication model.

We will consider the one-way t-party communication model where t players P1, P2, . . . , Pt

each holds input x1, x2, . . . , xt respectively. The goal is to compute the function
f(x1, x2, . . . , xt). In the one-way communication model, each player speaks in turn and
player Pi can only send message to player Pi+1. We sometimes consider multiple round of
communication. In an R round protocol, during round r ≤ R, each player speaks in turn Pi

sends message to Pi+1. At the end of round r < R, player Pt sends a message to P1. At the
end of round R, player Pt must output the answer of the protocol.

We define the total communication complexity of f in the t-party one-way communication
model, denoted by CCtot

t (f), as the minimum number of bits required to be sent by the
players in every deterministic communication protocol that always outputs a correct answer.
We define CCmax

t (f), the maximum communication complexity of f , as the maximum
number of bits required to be sent by some player in protocol P , where P ranges over all
deterministic protocol that outputs a correct answer. We have CCmax

t (f) ≥ 1
tR CCtot

t (f)
where R is the number of rounds.

Let X be a subset of U t where U is some finite universe and t is an integer. Define the
span of X by Span(X) = {y ∈ U t|∀ i ∈ [t], ∃ x ∈ X s. t. yi = xi}. The notion k-fooling set
introduced in [14] is defined as following.

▶ Definition 26 (k-fooling set). Let f : U t → {0, 1} where U is some finite universe. Let
S ⊆ U t. For some integer k, we say S is a k-fooling set for f iff f(x) = 0 for each x ∈ S

and for each subset S′ of S with cardinality k, the span of S′ contains a member y such that
f(y) = 1.

We have the following.

▶ Lemma 27 (Fact 4.1 from [14]). Let S be a k-fooling set for f , we have CCtot
t (f) ≥ log(|S|

k−1).

X. Li and Y. Zheng 27:19

We now present our lower bounds. Consider the following problem. Let s ∈ {0, 1}t be a
binary string of length t. For each integer l ≥ 1, we can define a function h(l) whose domain
is a subset of {0, 1}t. Let α ∈ (1/2, 1) be some constant. We have following definition

h(l)(a) =
{

1, if there are at least l zeros between any two nonzero positions in s.
0, if s contains at least αt nonzeros.

(4)

We leave h(l) undefined otherwise. Let B ∈ {0, 1}s×t be a matrix and denote the i-th
row of B by Ri(B). We can define g(l) as the direct sum of s copies of h(l). Let

g(l)(B) = h(l)(R1(B)) ∨ h(l)(R2(B)) ∨ · · · ∨ h(l)(Rs(B)). (5)

That is, g(l)(B) = 1 if and only if there is some i ∈ [s] such that h(l)(Ri(B)) = 1 .
In the following, we consider computing h(l) and g(l) in the t-party one-way communication

model. When computing h(l)(a), player Pi holds the i-th element of a ∈ {0, 1}t for i ∈ [t].In
this setting, when computing g(l)(B), player Pi holds the i-th column of matrix B for i ∈ [t].
In the following, we use CCtot

t (h(l)) to denote the total communication complexity of h(l)

and respectively use CCtot
t (g(l)) to denote the total communication complexity of g(l). We

also consider multiple rounds of communication and we denote the number of rounds by R.
For a more detailed discussion of the multiparty communication model, we refer readers to
the full version of this paper.

We can show the following lemma using Lovás Local Lemma.

▶ Lemma 28. For any constant l ≥ 1, there exists a constant k (depending on l), such that
there is a k-fooling set for function h(l) of size ct for some constant c > 1.

We note that Lemma 4.2 of [14] proved a same result for the case l = 1. We defer the
proof to the full version.

The following lemma is essentially the same as Lemma 4.3 in [14].

▶ Lemma 29. Let F ⊆ {0, 1}t be a k-fooling set for h(l). Then the set of all matrix
B ∈ {0, 1}s×t such that Ri(B) ∈ F is a ks-fooling set for g(l).

Combining Lemma 28 and Lemma 29, we have the following.

▶ Lemma 30. CCmax
t (g(l)) = Ω(s/R).

Proof. By Lemma 28 and Lemma 29, there is a ks-fooling set for function g(l) of size
cts for some large enough constant k and some constant c > 1. By Lemma 27, in the
t-party one-way communication model, CCtot

t (g(l)) = Ω(log cts

ks−1) = Ω(ts). Thus, we have
CCmax

t (g(l)) ≥ 1
tR CCtot

t (g(l)) = Ω(s/R). ◀

A.1 Lower bound for streaming LIS over small alphabet
With Lemma 30, we can show the following lower bound.

▶ Lemma 31. For x ∈ Σn with |Σ| = O(
√

n) and any constant ε > 0, any deterministic
algorithm that makes R passes of x and outputs a (1 + ε)-approximation of LIS(x) requires
Ω(|Σ|/R) space.

Proof sketch of Lemma 31. We assume the alphabet set Σ = {0, 1, . . . , 2r} which has size
|Σ| = 2r + 1. Let c be a large constant and assume r can be divided by c for similicity. We
set s = r

c and t = r. Consider a matrix B of size s × t. We denote the element on i-th row

FSTTCS 2021

27:20 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

and j-th column by Bi,j . ALso, we require that Bi,j is either (i − 1) r
c + j or 0. For each row

of B, say Ri(B), either there are at least l 0’s between any two nonzeros or it has more than
αr nonzeros. We let B̃ ∈ {0, 1}s×r be a binary matrix such that B̃i,j = 1 if Bi,j ̸= 0 and
B̃i,j = 0 if Bi,j = 0 for (i, j) ∈ [s] × [r].

Without loss of generality, we can view any row or any column in B as a string. More
specifically, let Ri(B) = Bi,1Bi,2 . . . Bi,r for i ∈ [s], and Ci(B) = B1,iB2,i . . . Bs,i for i ∈ [r].
We let σ(B) = C1(B) ◦ C2(B) ◦ · · · ◦ Cr(B). Thus, σ(B) is a string of length sr. For
convenience, we denote σ = σ(B). Here, we required the length of σ = r2/c ≤ n. If |σ| < n,
we can pad σ with 0 symbols to make it has length n. This will not affect the length of the
longest increasing subsequence of σ.

We can show that if there is some row of B containing more than αt nonzeros, then
LIS(σ) ≥ αr. If not, then LIS(σ(B)) ≤ (1

r + 1
c)r.

Thus, if g(l)(B̃) = 0, we have LIS(σ(B)) ≥ αr. And if g(l)(B̃) = 1, LIS(σ(B)) ≤ (1
c + 1

l)r.
Here, c and l can be any large constant up to our choice and α ∈ (1/2, 1) is fixed. For any
ε > 0, we can choose c and l such that (1 + ε)(1

c + 1
l) ≤ α. This gives us a reduction from

computing g(l)(B̃) to compute a (1 + ε)-approximation of LIS(σ(B)).
In the t-party game for computing g(l)(B̃), each player holds one column of B̃. Thus,

player Pi also holds Ci(B) since Ci(B) is determined by Ci(B̃). If the t players can compute
a (1 + ε) approximation of σ(B) in the one-way communication model, we can distinguish the
case of g(l)(B̃) = 0 and g(l)(B̃) = 1. Thus, any R passes deterministic streaming algorihtm
that approximate LIS within a 1 + ε factor requires at least CCmax

t (g(l)). By Lemma 30,
CCmax

t (g(l)) = Ω(s/R) = Ω(|Σ|/R). ◀

A.2 Longest Non-decreasing Subsequence

We can proof a similar space lower bound for approximating the length of longest non-
decreasing subsequence in the streaming model. We have the following two lemmas. The
proof is deferred to the full version.

▶ Lemma 32. For x ∈ Σn with |Σ| = O(
√

n) and any constant ε > 0, any deterministic
algorithm that makes R passes of x and outputs a (1 + ε)-approximation of LNS(x) requires
Ω(|Σ|/R) space.

▶ Lemma 33. Let x ∈ Σn and ε > 0 such that |Σ|2/ε = O(n). Then any deterministic
algorithm that makes constant pass of x and outputs a (1 + ε) approximation of LNS(x) takes
Ω(r log 1

ε) space.

A.3 Longest Non-decreasing Subsequence with Threshold

We also consider a variant of LNS problem we call longest non-decreasing subsequence
with threshold (LNST). In this problem, we are given a sequence x ∈ Σn and a threshold
t ∈ [n], the longest non-decreasing subsequence with threshold t is the longest non-decreasing
subsequence of x such that each symbol appeared in it is repeated at most t times. We
denote the length of such a subsequence by LNST(x, t).

By combining the techniques from the previous sections, we can show Theorem 6. We
also presented upper bound for LNST in Theorem 9 by giving a simple algorithm. We omit
the algorithm and the formal proofs here.

X. Li and Y. Zheng 27:21

B Algorithms for Edit Distance and LCS

In this section, we give an informal description of our improved algorithms for edit distance
and LCS in the asymmetric streaming model. The formal proofs are deferred to the full
version.

Algorithm for edit distance. Our algorithm for edit distance builds on and improves the
algorithm in [15, 13]. The key idea of that algorithm is to use triangle inequality. Given a
constant δ, the algorithm first divides x evenly into b = nδ blocks. Then for each block xi

of x, the algorithm recursively finds an α-approximation of the closest substring to xi in y.
That is, the algorithm finds a substring y[li : ri] and a value di such that for any substring
y[l : r] of y, ED(xi, y[li : ri]) ≤ di ≤ αED(xi, y[l : r]). Let ỹ be the concatenation of y[li : ri]
from i = 1 to b. Then using triangle inequality, [15] showed that ED(y, ỹ) +

∑b
i=1 di is a

2α + 1 approximation of ED(x, y). The Õ(nδ) space is achieved by recursively applying this
idea, which results in a O(21/δ) approximation.

To further reduce the space complexity, our key observation is that, instead of dividing
x into blocks of equal length, we can divide it according to the positions of the edit
operations that transform x to y. More specifically, assume we are given a value k with
ED(x, y) ≤ k ≤ cED(x, y) for some constant c, we show how to design an approximation
algorithm using space Õ(

√
k). Towards this, we can divide x and y each into

√
k blocks

x = x1 ◦ · · · ◦ x
√

k and y = y1 ◦ · · · ◦ y
√

k such that ED(xi, yi) ≤ ED(x,y)√
k

≤
√

k for any i ∈ [
√

k].
However, such a partition of x and y is not known to us. Instead, we start from the first
position of x and find the largest index l1 such that ED(x[1 : l1], y[p1, q1]) ≤

√
k for some

substring y[p1 : q1] of y. To do this, we start with l =
√

k and try all substrings of y with
length in [l −

√
k, l +

√
k]. If there is some substring of y within edit distance

√
k to x[1 : l],

we set l1 = l and store all the edit operations that transform y[p1 : q1] to x[1 : l1] where
y[p1 : q1] is the substring closest to x[1 : l1] in edit distance. We continue doing this with
l = l + 1 until we can not find a substring of y within edit distance

√
k to x[1 : l].

One problem here is that l can be much larger than
√

k and we cannot store x[1 : l]
with Õ(

√
k) space. However, since we have stored some substring y[p1 : q1] (we only need to

store the two indices p1, q1) and the at most
√

k edit operations that transform y[p1 : q1] to
x[1 : l − 1], we can still query every bit of x[1 : l] using Õ(

√
k) space.

After we find the largest possible index l1, we store l1, (p1, q1) and d1 = ED(x[1 : l1], y[p1 :
q1]). We then start from the (l1 + 1)-th position of x and do the same thing again to find
the largest l2 such that there is a substring of y within edit distance

√
k to x[l1 + 1 : l1 + l2].

We continue doing this until we have processed the entire string x. Assume this gives us
T pairs of indices (pi, qi) and integers li, di from i = 1 to T , we can use O(T log n) space
to store them. We show by induction that x1 ◦ · · · ◦ xi is a substring of x[1 :

∑i
j=1 lj] for

i ∈ [T − 1]. Recall that x = x1 ◦ · · · ◦ x
√

k and each li > 0, i ∈ [T − 1]. Thus, the process must
end within

√
k steps and we have T ≤

√
k. Then, let ỹ be the concatenation of y[pi : qi]

from i = 1 to T . Using techniques developed in [15], we can show ED(y, ỹ) +
∑T

i=1 di is
a 3 approximation of ED(x, y). For any small constant ε > 0, we can compute a 1 + ε

approximation of ED(y, ỹ) with polylog(n) space using the algorithm in [13]. This gives us a
3 + ε approximation algorithm with O(

√
ED(x, y) polylog(n)) space.

Similar to [15], we can use recursion to further reduce the space. Let δ be a small constant
and a value k = Θ(ED(x, y)) be given as before. There is a way to partition x and y each into
kδ blocks such that ED(xi, yi) ≤ ED(x,y)

kδ ≤ k1−δ. Now similarly, we want to find the largest
index l0 such that there is a substring of y within edit distance k1−δ to x[1 : l0]. However
naively this would require Θ(k1−δ) space to compute the edit distance. Thus again we turn
to approximation.

FSTTCS 2021

27:22 Lower Bounds and Improved Algorithms for Asymmetric Streaming ED and LCS

We introduce a recursive algorithm called FindLongestSubstring. It takes two additional
parameters as inputs: an integer u and a parameter s for the amount of space we can use.
It outputs a three tuple: an index l, a pair of indices (p, q) and an integer d. Let l0 be the
largest index such that there is a substring of y within edit distance u to x[1 : l0].

We show the following two properties of FindLongestSubstring: (1) l ≥ l0, and (2) for any
substring y[p∗ : q∗], ED(x[1 : l], y[p : q]) ≤ d ≤ c(u, s)ED(x[1 : l], y[p∗ : q∗]). Here, c(u, s) is
a function of (u, s) that measures the approximation factor. If u ≤ s, FindLongestSubstring
outputs l = l0 and the substring of y that is closest to x[1 : l] using O(s log n) space by doing
exact computation. In this case we set c(u, s) = 1. Otherwise, it calls FindLongestSubstring
itself up to s times with parameters u/s and s. This gives us T ≤ s outputs {li, (pi, qi), di}
for i ∈ [T]. Let ỹ be the concatenation of y[pi : qi] for i = 1 to T . We find the pair of indices
(p, q) such that y[p : q] is the substring that minimizes ED(ỹ, y[p : q]). We output l =

∑T
j=1 lj ,

(p, q), and d = ED(ỹ, y[p : q]) +
∑T

i=1 di. We then use induction to show property (1) and
(2) hold for these outputs, where c(u, s) = 2(c(u/s, s) + 1) if u > s and c(u, s) = 1 if u ≤ s.
Thus we have c(u, s) = 2O(logs u).

This gives an O(kδ/δ polylog(n)) space algorithm as follows. We run algorithm
FindLongestSubstring with u = k1−δ and s = kδ to find T tuples: {li, (pi, qi), di}. Again,
let ỹ be the concatenation of y[pi : qi] from i = 1 to T . Similar to the O(

√
k polylog(n))

space algorithm, we can show T ≤ kδ and ED(y, ỹ) +
∑T

i=1 di is a 2c(k1−δ, kδ) + 1 = 2O(1/δ)

approximation of ED(x, y). Since the depth of recursion is at most 1/δ and each level of
recursion needs O(kδ polylog(n)) space, FindLongestSubstring uses O(kδ/δ polylog(n)) space.

The two algorithms above both require a given value k. To remove this constraint, our
observation is that the two previous algorithms actually only need the number k to satisfy
the following relaxed condition: there is a partition of x into kδ blocks such that for each
block xi, there is a substring of y within edit distance k1−δ to xi. Thus, when such a k

is not given, we can do the following. We first set k to be a large constant k0. While
the algorithm reads x from left to right, let T ′ be the number of {li, (pi, qi), di} we have
stored so far. Each time we run FindLongestSubstring at this level, we increase T ′ by 1.
If the current k satisfies the relaxed condition, then by a similar argument as before T ′

should never exceed kδ. Thus whenever T ′ = kδ, we increase k by a 21/δ factor. Assume
that k is updated m times in total and after the i-th update, k becomes ki. We show
that km = O(ED(x, y)) (but km may be much smaller than ED(x, y)). To see this, suppose
kj > 21/δED(x, y) for some j ≤ m. Let tj be the position of x where kj−1 is updated
to kj . We know it is possible to divide x[tj : n] into ED(x, y)δ blocks such that for each
part, there is a substring of y within edit distance ED(x, y)1−δ ≤ k1−δ

j to it. By property
(1) and a similar argument as before, we will run FindLongestSubstring at most ED(x, y)δ

times until we reach the end of x. Since kδ
j − kδ

j−1 > ED(x, y)δ, T ′ must be always smaller
than kδ

j and hence kj will not be updated. Therefore we must have j = m. This shows
km−1 ≤ 21/δED(x, y) and km ≤ 22/δED(x, y). Running FindLongestSubstring with k ≤ km

takes O(kδ
m/δ polylog(n)) = O(ED(x, y)δ/δ polylog(n)) space and the number of intermediate

results ((pi, qi) and di’s) is O(kδ
m) = O(ED(x, y)δ). This gives us a 2O(1/δ) approximation

algorithm with space complexity O(ED(x, y)δ/δ polylog(n)).

Algorithm for LCS. We show that the reduction from LCS to ED discovered in [24] can work
in the asymmetric streaming model with a slight modification. Combined with our algorithm
for ED, this gives a nδ space algorithm for LCS that achieves a 1/2 + ε approximation for
binary strings. We defer the detailed analysis and proof to the full version.

X. Li and Y. Zheng 27:23

C Lower Bound for ED in the Standard Streaming Model

▶ Theorem 34. There exists a constant ε > 0 such that for strings x, y ∈ {0, 1}n, any
deterministic R pass streaming algorithm achieving an εn additive approximation of ED(x, y)
needs Ω(n/R) space.

Proof. Consider an asymptotically good insertion-deletion code C ⊆ {0, 1}n over a binary
alphabet (See [27] for example). Assume C has rate α and distance β. Both α and β are
some constants larger than 0, and we have |C| = 2αn. Also, for any x, y ∈ C with x ̸= y, we
have ED(x, y) ≥ βn. Let ε = β/2 and consider the two party communication problem where
player 1 holds x ∈ C and player 2 holds y ∈ C. The goal is to decide whether x = y. Any
deterministic protocol has communication complexity at least log |C| = Ω(n). Note that any
algorithm that approximates ED(x, y) within an εn additive error can decide whether x = y.
Thus the theorem follows. ◀

We note that the same bound holds for Hamming distance by the same argument.

FSTTCS 2021

An ETH-Tight Algorithm for Multi-Team
Formation
Daniel Lokshtanov #

University of California, Santa Barbara, CA, USA

Saket Saurabh #

The Institute of Mathematical Sciences (HBNI), Chennai, India
University of Bergen, Norway

Subhash Suri #

University of California, Santa Barbara, CA, USA

Jie Xue #

New York University Shanghai, China

Abstract
In the Multi-Team Formation problem, we are given a ground set C of n candidates, each of
which is characterized by a d-dimensional attribute vector in Rd, and two positive integers α and β

satisfying αβ ≤ n. The goal is to form α disjoint teams T1, ..., Tα ⊆ C, each of which consists of β

candidates in C, such that the total score of the teams is maximized, where the score of a team T is
the sum of the hj maximum values of the j-th attributes of the candidates in T , for all j ∈ {1, ..., d}.
Our main result is an 22O(d)

nO(1)-time algorithm for Multi-Team Formation. This bound is
ETH-tight since a 22d/c

nO(1)-time algorithm for any constant c > 12 can be shown to violate the
Exponential Time Hypothesis (ETH). Our algorithm runs in polynomial time for all dimensions
up to d = c log log n for a sufficiently small constant c > 0. Prior to our work, the existence of a
polynomial time algorithm was an open problem even for d = 3.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Team formation, Parameterized algorithms, Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.28

Acknowledgements We would like to thank an anonymous reviewer for pointing us to the statement
of [10], allowing us to drastically simplify a previous version of the paper.

1 Introduction

The problem of team formation arises in many organizational settings – project management,
product development, team sports, academic committees, legal defence teams, to name a few
– and remains an important area of research in mathematical social sciences [12, 16, 22, 24].
Within computer science and operations research, several application domains – distributed
robotics, AI, multi-agent systems, online crowdsourcing, databases – also use team formation
models for execution of complex tasks that require cooperation or coalition of multiple agents
with different capabilities [5, 18, 21, 23]. The basic setting of a Team Formation problem
includes a ground set C of n candidates and a number β ≤ n. The goal is to form a team
T ⊆ C of a size β such that scr(T) is maximized, where scr(·) is a pre-defined scoring function.
A concrete example of a scoring function frequently used in the literature [11, 25] (often in
conjunction with other, more complex measures of team performance) is the skill coverage
function. There is a set U of useful skills, each candidate a ∈ C has a subset Sa of these skills,
and we evaluate the team by the number of different skills covered by the team members.
In other words, scr(T) = |

⋃
a∈T Sa|. It is easy to see that Team Formation with the skill

© Daniel Lokshtanov, Saket Saurabh, Subhash Suri, and Jie Xue;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 28; pp. 28:1–28:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
mailto:suri@cs.ucsb.edu
mailto:jiexue@nyu.edu
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Multi-Team Formation

coverage scoring function is equivalent to the-well studied Maximum Coverage problem,
which is NP -complete [7], admits a (1 − 1

e)-approximation algorithm [15], and is NP -hard
to approximate [4] within any factor smaller than 1 − 1

e .
A natural generalization of Team Formation is the Multi-team Formation problem,

where we want to form α disjoint teams T1, . . . , Tα ⊆ C each of size β that collectively
maximize the total score

∑α
i=1 scr(Ti). This generalization is well-motivated in practice:

in many applications, we want to form multiple teams from a common pool of candidates,
where candidate can belong to at most one team. Multi-team Formation has some
resemblance to the coalition structure generation problem in multi-agent systems and AI,
where the goal is to partition a set of candidates into groups, called coalitions [19]. However,
in these applications, the scoring function for evaluating a coalition is assumed to be an
arbitrary black box function. As a result, the size of each team (coalition) is not explicitly
specified but rather determined by the objective function of maximizing the total coalition
structure value – e.g. if putting all the candidates into a single coalition maximizes the
total value, then that is the optimal solution. In [14], a dynamic programming algorithm is
described for computing an optimal coalition structure in time O(3n). Unlike the (single)
Team Formation problem, Multi-team Formation has not yet received much attention,
and beyond the exponential bound of Michalak et al. [14], no algorithmic result appears to
be known for forming multiple teams except for the recent work of Schibler et al. [20].

In this paper, we follow Schibler et al. [20] and investigate Multi-team Formation
with a fundamental scoring function, called sum-of-maxima scoring, to be defined below.
A common model for characterizing a candidate is a multi-dimensional attribute vector in
which each entry measures a certain performance of the candidate. For instance, in college
admissions, such a vector may include scores of different standardized tests, grade point
averages, etc. In project management, the categories may include various technical skills
as well as non-technical attributes such as leadership qualities. Following Page’s influential
work on team performance [16], it is generally acknowledged that simply adding up all the
scores is a poor measure of team performance – instead, strength in multiple dimensions
(skill diversity) is essential. When the candidates are characterized by attribute vectors,
one natural scoring is to take the best attribute of the candidates in the team T in each
dimension and set the score of T to be the sum of these best attributes. Kleinberg and
Raghu [8], in their work on team performance metrics and testing, suggested extending this
further to sum-of-top-h scores in each dimension, for some h ≤ β, ensuring both coverage of
all the skills (dimensions) and robustness (no single point of failure). We allow a slightly
more general scoring rule, where for each dimension j, a possibly different number hj of top
attributes are considered. We call this the sum-of-maxima scoring. Formally, each candidate
a ∈ C is characterized by a d-dimensional attribute vector (κ1(a), . . . , κd(a)) ∈ Rd. For a
given vector h = (h1, . . . , hd) ∈ Zd

+, the sum-of-h-maxima scoring function is defined as

somh(T) =
d∑

j=1
maxhj {κj(a) : a ∈ T}, (1)

where the notation maxhj S denotes the sum of the largest hj numbers in the multiset S of
numbers (if |S| < hj , then maxhj S is the sum of all numbers in S). It is easy to see that
the sum-of-maxima scoring function generalizes skill coverage. In particular, the Maximum
Coverage problem is a special case of Multi-team Formation where h is the vector of
all 1’s, all the candidate attributes are binary, and α = 1.

In the rest of the paper, the Multi-team Formation problem we discuss is always with
respect to sum-of-maxima scoring. Since Multi-team Formation generalizes Maximum
Coverage, it is clearly NP -hard (when the dimension d is unbounded). Schibler et al. [20]

D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 28:3

proved that Multi-team Formation is NP -hard when d = Θ(log n), even with binary
attributes and team size β ≥ 4. These hardness claims, however, depend on the rather
unrealistic assumption that the dimension d of attribute vectors must be quite large – in
most applications, the number of attributes (e.g., standardized test scores) is much more
modest. Therefore, it is interesting to study the complexity of Multi-team Formation
when d is small. Indeed, Schibler et al. [20] gave a polynomial-time algorithm for the case of
d = 2 and leave as an open problem whether the problem is polynomial time solvable for any
constant d ≥ 3. Our main result is a new algorithm for Multi-team Formation, which
runs in polynomial time for any d ≤ c · log log n where c > 0 is a sufficiently small constant
(and hence for any constant d). Specifically, we prove the following theorem.

▶ Theorem 1. There exists a 22O(d)
nO(1)-time algorithm for Multi-team Formation.

In the view of Parameterized Complexity, this is the first Fixed-Parameter Tractable
(FPT) algorithm for Multi-team Formation parameterized by the dimension d. The
analysis of the algorithm of Theorem 1 involves a novel application of Graver Bases, a notion
that has successfully been applied to yield fixed parameter tractability results for a number
of problems in Mathematical Programming. To the best of our understanding, however,
none of the existing state-of-the art results [3, 6, 9] can be applied in a black box fashion to
yield an FPT algorithm for Multi-team Formation parameterized by d. It remains an
interesting research question to generalize Theorem 1 to an FPT algorithm for solving a class
of mathematical programs that is powerful enough to encompass Multi-team Formation.

The time complexity of our algorithm grows double exponentially with d and, under
plausible complexity theoretic assumptions, it cannot be substantially improved. In particular,
a fresh look at the NP -hardness reduction of Schibler et al. [20] reveals that any algorithm
that solves Multi-team Formation in 22d/c · nO(1) time for a sufficiently large constant c

will violate the Exponential Time Hypothesis (ETH).

▶ Theorem 2. The existence of a 22d/c

nO(1)-time algorithm for Multi-team Formation
with any constant c > 12 violates the Exponential Time Hypothesis (ETH).

Therefore, our algorithm is ETH-tight, and adds Multi-team Formation to the small
club of problems (together with Edge Clique Cover [2] and Distinct Vectors [17]) for
which both a double exponential time algorithm and a double exponential time lower bound
were known.

2 An ETH-tight algorithm

In this section, we present our algorithm for Multi-team Formation in Theorem 1, and
also prove Theorem 2 (which is easy). We begin by introducing some basic notations. Let
N, Z, Z+, R to denote the set of natural numbers (including 0), integers, positive integers,
and real numbers, respectively. For two vectors u, v of the same dimension, we use ⟨u, v⟩ to
denote the inner product of u, v. For a number k ∈ {0, . . . , 2d − 1}, let bin(k) be the d-bit
binary representation of k, which is a d-dimensional binary vector, and binj(k) be the j-th
entry of bin(k), i.e., the j-th (highest) digit of the d-bit binary representation of k.

Recall that in Multi-team Formation, the input includes a set C of n candidates where
each a ∈ C is characterized by a d-dimensional attribute vector κ(a) = (κ1(a), . . . , κd(a)) ∈
Rd, a vector h = (h1, . . . , hd) ∈ Zd

+ used for defining the scoring function somh, and two
integers α, β > 0 satisfying αβ ≤ n. The goal is to form α disjoint teams T1, . . . , Tα ⊆ C of
size β such that

∑α
i=1 somh(Ti) is maximized. Without loss of generality, we may assume

FSTTCS 2021

28:4 Multi-Team Formation

that hj ≤ β for all j ∈ {1, . . . , d}, because somh(T) remains unchanged for all T ⊆ C with
|T | = β if we replace all hj > β with β, as one can easily verified. Let opt denote the
optimum of the input instance.

Consider a solution T1, . . . , Tα ⊆ C of the problem. The total score of this solution,∑α
i=1 somh(Ti), is the sum of some attributes κj(a) for a ∈

⋃α
i=1 Ti. For each team Ti, each

candidate a ∈ Ti contributes to the score somh(Ti) in a certain way. Specifically, for each
dimension j ∈ {1, . . . , d}, the candidate a is either among the top hj candidates in Ti in
that dimension, in which case it contributes κj(a), or it is not, in which case it contributes
01. The information of how the d attributes of a ∈ Ti contribute to the score somh(Ti) can
be depicted by a number k ∈ {0, . . . , 2d − 1} (or equivalently, a d-bit binary string) where
binj(k) = 1 if κj(a) contributes to somh(Ti) and binj(k) = 0 if κj(a) does not contribute, for
j ∈ {1, . . . , d}. We call k the type of the candidate a in the solution T1, . . . , Tα. Now every
candidate in

⋃α
i=1 Ti has its type, which is a number in {0, . . . , 2d − 1}. For the unassigned

candidates, i.e., the candidates in C\
⋃α

i=1 Ti, we simply say their type is □ (in the solution
T1, . . . , Tα). In this way, we give every candidate in C a type in the solution, which is an
element in Γ = {0, . . . , 2d − 1} ∪ {□}. We then define the type assignment (or assignment
for short) of the solution T1, . . . , Tα as the function π : C → Γ that maps each candidate to
its type in the solution.

We consider the following question: for a solution T1, . . . , Tα ⊆ C, if we were only given
its type assignment π : C → Γ without the original teams T1, . . . , Tα, how much information
about T1, . . . , Tα can we recover from π? Observe first that we can easily recover the total
score

∑α
i=1 somh(Ti) of the solution, simply because the types of the candidates record how

their attributes contribute to the total score. Specifically, if we define

scr(π) =
∑

a∈C, π(a)̸=□

⟨bin(π(a)), κ(a)⟩ =
∑

a∈C, π(a)̸=□

 d∑
j=1

binj(π(a)) · κj(a)

 , (2)

which we call the score of π, then it is clear that
∑α

i=1 somh(Ti) = scr(π). At the same
time, however, we cannot recover the teams T1, . . . , Tα from π, because it can happen that
different solutions share the same type assignment (for example, there are situations where
two candidates with the same attributes, but in different teams, could be swapped without
changing their type, leading to a different solution with the same type assignment).

We say a solution T1, . . . , Tα ⊆ C realizes a type assignment function π : C → Γ if π is
the type assignment of T1, . . . , Tα. Thus, for a type assignment function π : C → Γ , there
could be zero, one, or more solutions that realize it, and all such solutions have the same
total score. We say π is realizable if there exists at least one solution that realizes π. What
we want is essentially a realizable π : C → Γ that maximizes scr(π).

Note that there are too many (type assignment) functions π : C → Γ to go over all of
them; indeed, the number of such functions is (2d + 1)n. Furthermore, it turns out to be
difficult to check whether a given π is realizable, and even if we know π is realizable, it is
not clear how to find a witness solution T1, . . . , Tα ⊆ C that realizes π. For this reason,
our algorithm does not work on type assignment functions directly. Instead, we only guess
some distinguishing features of the type assignment of an optimal solution. Perhaps the
most natural distinguishing feature is “how many candidates are there of each type”. We

1 Here we assume that the “sum-of-top-hj” function maxhj in Equation 1 breaks ties in a certain way
(e.g., take the attributes of the candidates with smaller indices first, etc.) so that the contributing
attributes of each candidate in the team is uniquely defined.

D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 28:5

formalize this as follows. The configuration of a function π : C → Γ is a 2d-dimensional
vector conf(π) = (c0, . . . , c2d−1) ∈ N2d where ck = |π−1({k})| for k ∈ {0, . . . , 2d − 1}. In
other words, the k-th entry ck of the vector conf(π) records the number of candidates assigned
to type k by π.

Clearly, not every vector in N2d can be the configuration of some realizable function.
Next, we establish a simple necessary (but not sufficient) condition for a vector to be the
configuration of some realizable function. Suppose c = (c0, . . . , c2d−1) is the configuration of
a realization function π : C → Γ and let T1, . . . , Tα ⊆ C be the solution that realizes π, i.e.,
π is the type assignment of T1, . . . , Tα. For i ∈ {1, . . . , α} and k ∈ {0, . . . , 2d − 1}, let vi,k

be the number of candidates in Ti which are mapped to k by π, i.e., vi,k = |π−1({k}) ∩ Ti|.
Since π maps all candidates in C\(

⋃α
i=1 Ti) to □, we have ck = |π−1({k})| =

∑α
i=1 vi,k for all

k ∈ {0, . . . , 2d − 1} and hence c =
∑α

i=1 vi where vi = (vi,0, . . . , vi,2d−1). Now what are the
conditions that each vi has to satisfy? First, since |Ti| = β and π maps all candidates in Ti

to {0, . . . , 2d − 1}, the sum of all entries of vi is equal to β, i.e.,
∑2d−1

k=0 vi,k = β. Second, for
each j ∈ {1, . . . , d}, the number of candidates in Ti which contribute in the j-th dimension is
precisely hj , and thus the sum of the entries of vi corresponding to types k which contribute
in the j-th dimension, i.e., binj(k) = 1, is equal to hj , i.e.,

∑2d−1
k=0 vi,k · binj(k) = hj . To

summarize, in order to be the configuration of some realizable function, a vector c must be
the sum of α vectors each of which satisfies the above two conditions. This is exactly the
necessary condition we want. Formally, we give the following definition.

▶ Definition 3 (legal vectors). A vector v = (v0, . . . , v2d−1) ∈ N2d is (β, h)-legal (or simply
legal when β and h are all clear from the context) if

∑2d−1
k=0 vk = β and

∑2d−1
k=0 vk ·binj(k) = hj

for all j ∈ {1, . . . , d}.

▶ Fact 4. If π : C → Γ is realizable, then conf(π) is the sum of α legal vectors.

Note that the converse of the above fact is not true, i.e., it is possible that conf(π) is the
sum of α legal vectors but π is not the type assignment of any solution. However, we have
the following nice property.

▶ Lemma 5. If π : C → Γ is a function such that conf(π) is the sum of α legal vectors,
then scr(π) ≤ opt. Furthermore, given π and a decomposition conf(π) =

∑α
i=1 vi into legal

vectors, one can compute in O(n + 2d) time a solution T1, . . . , Tα ⊆ C of the problem such
that scr(π) ≤

∑α
i=1 somh(Ti).

Proof. Suppose conf(π) = (c0, . . . , c2d−1) =
∑α

i=1 vi, where each vi = (vi,0, . . . , vi,2d−1)
is a legal vector. For k ∈ {0, . . . , 2d − 1}, we arbitrarily partition the ck candidates in
π−1({k}) into α groups G1,k, . . . , Gα,k such that |Gi,k| = vi,k; this is possible because
ck =

∑α
i=1 vi,k. We then define Ti =

⋃2d−1
k=0 Gi,k for i ∈ {1, . . . , α}. It is clear that T1, . . . , Tα

are disjoint subsets of C with size β. Therefore,
∑α

i=1 somh(Ti) ≤ opt. It suffices to
show scr(π) ≤

∑α
i=1 somh(Ti). Note that π(a) ∈ {0, . . . , 2d − 1} for all a ∈

⋃α
i=1 Ti and

π(a) = □ for all a ∈ C\(
⋃α

i=1 Ti). So we have scr(π) =
∑α

i=1
∑

a∈Ti

∑d
j=1 binj(π(a)) · κj(a).

Equivalently, scr(π) =
∑α

i=1
∑d

j=1
∑

a∈Ti,j
κj(a), where Ti,j = {a ∈ Ti : binj(π(a)) = 1}.

Since v1, . . . , vα are (β, h)-legal, we have |Ti,j | = hj for all i ∈ {1, . . . , α} and j ∈ {1, . . . , d}.
Thus,

∑
a∈Ti,j

κj(a) ≤ maxhj {κj(a) : a ∈ Ti} (recall that maxhj S denotes the sum of the
largest hj numbers in the multiset S). It follows that

scr(π) =
α∑

i=1

d∑
j=1

∑
a∈Ti,j

κj(a) ≤
α∑

i=1

d∑
j=1

maxhj {κj(a) : a ∈ Ti} =
α∑

i=1
somh(Ti).

Therefore, scr(π) ≤ opt. If we are given π and the legal vectors v1, . . . , vα, then the teams
T1, . . . , Tα can clearly be constructed in O(n + 2d) time. ◀

FSTTCS 2021

28:6 Multi-Team Formation

With the above lemma in hand, it now suffices to compute a function π∗ : C → Γ with
the maximum scr(π∗) such that conf(π∗) is the sum of α legal vectors and a decomposition
conf(π∗) =

∑α
i=1 vi into legal vectors. Indeed, once we have the function π∗ and the

decomposition conf(π∗) =
∑α

i=1 vi, we can apply the above lemma to obtain a solution
T ∗

1 , . . . , T ∗
α ⊆ C satisfying scr(π∗) ≤

∑α
i=1 somh(T ∗

i). Note that Fact 4 guarantees scr(π∗) ≥
opt, which implies

∑α
i=1 somh(T ∗

i) ≥ opt, i.e., T ∗
1 , . . . , T ∗

α is an optimal solution.
Next, we show how to compute the function π∗ and the decomposition efficiently. To this

end, we formulate the problem as an integer linear programming (ILP) instance. For each
candidate a ∈ C, we define 2d + 1 variables u0(a), . . . , u2d−1(a), u□(a). These variables are
used to encode the information of π∗. Specifically, the variable uk(a) will indicate whether
π∗(a) = k: uk(a) = 1 if π∗(a) = k and uk(a) = 0 if π∗(a) ̸= k. Therefore, the values of these
variables are in {0, 1} and must satisfy the constraints

∑
k∈Γ uk(a) = 1 for all a ∈ C. Our

objective function, which is scr(π∗), can be expressed as
∑

a∈C

∑2d−1
k=0 uk(a) · ⟨bin(k), κ(a)⟩,

according to the formula of Equation 2. In addition, we need variables and constraints to
guarantee that conf(π∗) is the sum of α legal vectors. Note that conf(π∗) can be expressed
as

∑
a∈C u(a), where u(a) = (u0(a), . . . , u2d−1(a)). We introduce variables vi,0, . . . , vi,2d−1

for all i ∈ {1, . . . , α}. Each vector vi = (vi,0, . . . , vi,2d−1) is supposed to be a legal vector. So
we include the constraints

∑2d−1
k=0 vi,k = β and

∑2d−1
k=0 vi,k · binj(k) = hj for all j ∈ {1, . . . , d}.

Finally, we need to constraint
∑

a∈C u(a) =
∑α

i=1 vi to ensure that conf(π∗) is the sum of
v1, . . . , vα. In sum, our ILP instance is

max
∑
a∈C

2d−1∑
k=0

uk(a) · ⟨bin(k), κ(a)⟩

s.t.
∑

k∈Γ uk(a) = 1 for all a ∈ C,∑2d−1
k=0 vi,k = β for all i ∈ {1, . . . , α},∑2d−1
k=0 vi,k · binj(k) = hj for all i ∈ {1, . . . , α} and j ∈ {1, . . . , d},∑
a∈C u(a) =

∑α
i=1 vi,

0 ≤ u(a) ≤ 1 for all a ∈ C and vi ≥ 0 for all i ∈ {1, . . . , α}.

(3)

The above ILP instance has (2d + 1)n + 2dα variables, thus we cannot apply any general
ILP solver to solve it in time polynomial in n. Fortunately, this ILP instance has some nice
structural property which we can exploit. In order to describe the property, we need to first
introduce the notion of N -fold ILP. In an N -fold ILP instance, the linear constraints on the
variable vector x can be represented as xlow ≤ x ≤ xhigh and Ax = b where

A =

M1 M2 · · · MN

M ′
1 0 · · · 0

0 M ′
2 · · · 0

...
...

. . .
...

0 0 · · · M ′
N

 . (4)

Let r be the maximum number of rows of the matrices M1, . . . , MN and M ′
1, . . . , M ′

N , and t

be the maximum number of columns of the matrices M ′
1, . . . , M ′

N . It was shown in [10] that
the N -fold ILP instance can be solved in ∆O(r3)(Nt)O(1) time, where ∆ = max{2, ∥A∥∞}.

We observe that our ILP instance in Equation 3 is in fact an N -fold ILP instance with
N = n + α, r = 2d, t = 2d + 1, and ∆ = 2. To this end, we classify our variables into n + α

groups. For each a ∈ C, we have a group Ga = {uk(a) : k ∈ Γ} of 2d + 1 variables. For

D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 28:7

each i ∈ {1, . . . , α}, we have a group G′
i = {vi,0, . . . , vi,2d−1} of 2d variables. We obtain our

variable vector x by permuting all (2d + 1)n + 2dα variables such that the variables in each
group are consecutive in the permutation. Now notice that the constraint

∑
k∈Γ uk(a) = 1 is

only for the variables in Ga, while the constraints
∑2d−1

k=0 vi,k = β and
∑2d−1

k=0 vi,k ·binj(k) = hj

for j ∈ {1, . . . , d} are only for the variables in G′
i. We call these constraints local constraints.

Local constraints can be realized using the M ′-matrices in Equation 4; the number of rows of
these matrices is at most d + 1 because we have one local constraint for each group Ga and
d + 1 local constraints for each group G′

i, and the number of columns of these matrices is at
most 2d + 1 because each group has at most 2d + 1 variables. Finally, we have the “global”
constraints

∑
a∈C u(a) =

∑α
i=1 vi. Since the dimension of the vectors u(a) and vi is 2d, the

global constraints can be expressed as Mx = 0 for some 2d-row matrix M , which can be
in turn realized using matrices M1, . . . , MN in Equation 4. To summarize, the constraints
of our ILP instance of Equation 3 can be written as Ax = b, where A is of the form of
Equation 4 in which N = n + α and the maximum number of rows (resp., columns) of the
matrices M1, . . . , MN , M ′

1, . . . , M ′
N is 2d (resp., 2d + 1). Also, as one can easily verified, the

entries of A are all in {−1, 0, 1}, which implies ∥A∥∞ ≤ 1 and ∆ = 2. Therefore, applying
the algorithm of [10] solves our ILP instance in 22O(d)

nO(1) time.
After solving the ILP instance of Equation 3, we obtain the desired function π∗ : C → Γ

by setting π∗(a) to be the (unique) element k ∈ Γ satisfying uk(a) = 1, and a decomposition
conf(π∗) =

∑α
i=1 vi into legal vectors. As argued before, we can then use Lemma 5 to

compute an optimal solution for the problem in O(n) time. The overall running time of our
algorithm is 22O(d)

nO(1). This proves Theorem 1, which we restate below.

▶ Theorem 1. There exists a 22O(d)
nO(1)-time algorithm for Multi-team Formation.

Although the running time of our algorithm depends double exponentially on d, it is
ETH-tight and hence unlikely to be substantially improved. The lower bound follows readily
from the reduction in [20] and the ETH lower bound in [1] for 3-dimensional Matching.

▶ Theorem 2. The existence of a 22d/c

nO(1)-time algorithm for Multi-team Formation
with any constant c > 12 violates the Exponential Time Hypothesis (ETH).

Proof. Let c > 12 be a constant. Schibler et al. [20] described a polynomial-time reduction
from 3-dimensional Matching to Multi-team Formation with n = O(m) and d =
12 log m + O(1), where m is the size of the 3-dimensional Matching instance. Therefore, a
22d/c

nO(1)-time algorithm for Multi-team Formation implies a 2m12/c

mO(1)-time algorithm
for 3-dimensional Matching. However, it was shown in [1] that any algorithm with running
time 2o(m) for 3-dimensional Matching violates the ETH. ◀

3 Conclusion and future work

In this paper, we considered Multi-team Formation under the natural sum-of-maxima
scoring rule, and presented an algorithm that runs in 22O(d) · nO(1) time, which is ETH-tight
since a 22d/c · nO(1)-time algorithm, for any constant c > 12, would violate the ETH.

A direction for future work is approximation algorithms for Multi-team Formation.
Exploiting the submodularity of the sum-of-maxima scoring function, one can easily formu-
late Multi-team Formation as a submodular maximization problem with two matroid
constraints, which leads to a polynomial-time (0.5 − ε)-approximation algorithm for any
constant ε > 0 using the algorithm of [13]. Whether one can achieve a better approximation
in polynomial time is an interesting open question to be studied.

FSTTCS 2021

28:8 Multi-Team Formation

References
1 Nikhil Bansal, Tim Oosterwijk, Tjark Vredeveld, and Ruben Van Der Zwaan. Approximating

vector scheduling: almost matching upper and lower bounds. Algorithmica, 76(4):1077–1096,
2016.

2 Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016.

3 Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Kouteckỳ, Asaf
Levin, and Shmuel Onn. An algorithmic theory of integer programming. arXiv preprint, 2019.
arXiv:1904.01361.

4 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
5 Erin L. Fitzpatrick and Ronald G. Askin. Forming effective worker teams with multi-functional

skill requirements. Computers & Industrial Engineering, 48(3):593–608, 2005.
6 Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. N-fold integer programming in

cubic time. Mathematical Programming, 137(1-2):325–341, 2013.
7 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and

James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972.

8 Jon Kleinberg and Maithra Raghu. Team performance with test scores. In Proceedings of the
Sixteenth ACM Conference on Economics and Computation, EC ’15, pages 511–528, 2015.

9 Dušan Knop and Martin Kouteckỳ. Scheduling meets n-fold integer programming. Journal of
Scheduling, 21(5):493–503, 2018.

10 Martin Kouteckỳ, Asaf Levin, and Shmuel Onn. A parameterized strongly polynomial algorithm
for block structured integer programs. In 45th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

11 Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in social networks.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’09, pages 467–476, 2009.

12 Patrick R. Laughlin and Andrea B. Hollingshead. A theory of collective induction. Organiza-
tional Behavior and Human Decision Processes, 61(1):94–107, 1995.

13 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Mathematics of Operations Research, 35(4):795–
806, 2010.

14 Tomasz P. Michalak, Talal Rahwan, Edith Elkind, Michael J. Wooldridge, and Nicholas R.
Jennings. A hybrid exact algorithm for complete set partitioning. Artif. Intell., 230:14–50,
2016.

15 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions - I. Math. Program., 14(1):265–294,
1978.

16 Scott Page. The Difference: How the Power of Diversity Creates Better Groups, Firms,
Schools, and Societies. Princeton University Press, 2007.

17 Marcin Pilipczuk and Manuel Sorge. A double exponential lower bound for the distinct vectors
problem. CoRR, abs/2002.01293, 2020. arXiv:2002.01293.

18 Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-Yahia, and
Gautam Das. Optimized group formation for solving collaborative tasks. The VLDB Journal,
28(1):1–23, February 2019.

19 Talal Rahwan, Tomasz P. Michalak, Michael J. Wooldridge, and Nicholas R. Jennings. Coalition
structure generation: A survey. Artif. Intell., 229:139–174, 2015.

20 Thomas Schibler, Ambuj Singh, and Subhash Suri. On multi-dimensional team formation. In
Proc. of the 31st Canadian Conference on Computational Geometry, pages 146–152, 2019.

http://arxiv.org/abs/1904.01361
http://arxiv.org/abs/2002.01293

D. Lokshtanov, S. Saurabh, S. Suri, and J. Xue 28:9

21 Travis C. Service and Julie A. Adams. Coalition formation for task allocation: theory and
algorithms. Autonomous Agents and Multi-Agent Systems, 22(2):225–248, March 2011.

22 Marjorie E. Shaw. A comparison of individuals and small groups in the rational solution of
complex problems. The American Journal of Psychology, 44(3):491–504, 1932.

23 Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition formation. Artif.
Intell., 101(1-2):165–200, 1998.

24 I. D. Steiner. Group process and productivity. New York: Academic Press, 1972.
25 Xinyu Wang, Zhou Zhao, and Wilfred Ng. A comparative study of team formation in social

networks. In Database Systems for Advanced Applications - 20th International Conference,
DASFAA 2015, pages 389–404. Springer, 2015.

FSTTCS 2021

Dominating Set in Weakly Closed Graphs is Fixed
Parameter Tractable
Daniel Lokshtanov #

University of California Santa Barbara, CA, USA

Vaishali Surianarayanan # Ñ

University of California Santa Barbara, CA, USA

Abstract
In the Dominating Set problem the input is a graph G and an integer k, the task is to determine
whether there exists a vertex set S of size at most k so that every vertex not in S has at least
one neighbor in S. We consider the parameterized complexity of the Dominating Set problem,
parameterized by the solution size k, and the weak closure of the input graph G. Weak closure
of graphs was recently introduced by Fox et al. [SIAM J. Comp. 2020] and captures sparseness
and triadic closure properties found in real world graphs. A graph G is weakly c-closed if for every
induced subgraph G′ of G, there exists a vertex v ∈ V (G′) such that every vertex u in V (G′) which
is non-adjacent to v has less than c common neighbors with v. The weak closure of G is the smallest
integer γ such that G is weakly γ-closed. We give an algorithm for Dominating Set with running
time kO(γ2k3)nO(1), resolving an open problem of Koana et al. [ISAAC 2020].

One of the ingredients of our algorithm is a proof that the VC-dimension of (the set system
defined by the closed neighborhoods of the vertices of) a weakly γ-closed graph is upper bounded by
6γ. This result may find further applications in the study of weakly closed graphs.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Dominating Set, Weakly Closed Graphs, FPT, Domination Cores, VC-
dimension

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.29

Funding The authors are supported by BSF award 2018302 and NSF award CCF-2008838.

Acknowledgements We thank Saket Saurabh for insightful feedback on the manuscript.

1 Introduction

A dominating set of a graph G = (V, E) is a set S ⊆ V of vertices of G such that every
vertex in V \S is adjacent to at least one vertex in S. In the Dominating Set problem, the
input is a graph G and a positive integer k and the task is to determine whether G has a
dominating set of size at most k. Dominating Set is NP-complete and has been extensively
studied within all established paradigms for coping with NP-hardness such as parameterized
complexity, approximation algorithms and exact exponential time algorithms [9, 13, 19, 31].
In fact, it is hard to overstate the pivotal role that Dominating Set has played in the
development of parameterized complexity; it was, together with Clique, one of the first
examples of natural parameterized problems that were proved intractable [13] as well as
FPT-inapproximable [6, 8, 18].

While, on the one hand, Dominating Set on general graphs has been a driver of paramet-
erized intractability, on the other hand, the study of Dominating Set on restricted graph
classes has been a treasure trove of algorithmic techniques. For instance, the subexponential
time algorithms for Dominating Set on planar graphs [1, 7], and the linear kernel [2]
on planar graphs led to the celebrated bidimensionality theory [11]. These algorithms and
kernels have been extended to much wider classes of graphs, such as, (topological) minor free
graphs [20], nowhere dense graphs [10, 14], d-degenerate graphs [3, 27], Ki,j-free graphs [27]

© Daniel Lokshtanov and Vaishali Surianarayanan;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 29; pp. 29:1–29:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniello@ucsb.edu
mailto:vaishali@ucsb.edu
https://vaishalisurianarayanan.weebly.com/
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.29
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Dominating Set in Weakly Closed Graphs

and induced ladder-free graphs [17]. In this article we study the Dominating Set problem
on c-closed graphs and weakly γ-closed graphs, which were recently introduced by Fox et
al. [21].

▶ Definition 1 ([21]). A graph G is said to be c-closed if for every pair of non-adjacent
vertices u and v in G, |NG(u) ∩ NG(v)| < c. A graph G is said to be weakly γ-closed if for
every induced subgraph G′ of G there exists a vertex v in G′ such that for every vertex u in
G′ not adjacent to v, |NG′(u) ∩ NG′(v)| < γ. The closure of a graph G is the smallest c

such that G is c-closed. The weak closure of a graph G is the smallest γ such that G is
weakly γ-closed.

The class of c-closed and weakly γ-closed graphs contains the class of graphs of maximum
degree at most c and graphs with degeneracy at most γ, respectively. Additionally they
capture the triadic closure principle, namely that two people who have many common friends
in a social network are likely to be friends themselves. From an application viewpoint, the
weak closure is typically found to be small for large real-world social network graphs [21, 23].
In addition, the parameters also have the appealing feature that they are computable in
polynomial time [21].

Motivated by the salient features of (weakly) closed graphs, Koana et al. [24] initiated a
systematic study of the parameterized complexity of computational problems on c-closed
graphs, closely followed by Husic and Roughgarden [22]. Koana et al. [24] show that a number
of problems, including Dominating Set, are FPT on closed graphs. In a follow up work
Koana et al. [23] show that a number of problems remain FPT even on weakly closed graphs.
Very recently, the same set of authors [25] provide polynomial kernels and kernel lower bounds
for various problems including Connected Vertex Cover and Capacitated Vertex
Cover on weakly closed graphs. They also obtain polynomial kernels for Dominating Set
on weakly closed split graphs and weakly closed bipartite graphs. However, they were not
able to obtain an FPT algorithm for Dominating Set on weakly closed graphs, leading
them to pose the existence of such an algorithm as an open problem. Specifically, Koana et
al. [23] asked whether the following parameterized problem is FPT or not.

Dominating Set in weakly γ-closed graph Parameter: γ, k

Input: Weakly γ-closed graph G and a non-negative integer k.
Question: Does there exist a set X ⊆ V (G) of size at most k such that NG[X] = V (G).

In this work, we give an algorithm with running time kO(γ2k3)nO(1), resolving the problem
in the affirmative. We now state our main result.

▶ Theorem 2. There exists a deterministic algorithm that given as input a weakly γ-closed
graph G and an integer k determines in time kO(γ2k3)nO(1) whether G has a dominating set
of size at most k and outputs one if it exists.

Methods. Our algorithm is based on domination cores, first defined by Dawar and
Kreutzer [10] and then later employed in multiple settings [14, 15, 17]. A k-domination core
of a graph is a set X of vertices of the graph such that every set of size at most k that
dominates X dominates the whole graph. Observe that the set of all vertices of a graph is a
domination core. It is well known (for example see [10] Lemma 4.1) that if one can efficiently
compute a domination core whose size is upper bounded by a function of k, then we can
obtain an FPT algorithm for Dominating Set. Thus our main technical contribution is an
algorithm that given a graph produces a k-domination core of the graph of size kO(γk2).

D. Lokshtanov and V. Surianarayanan 29:3

We now give a very rough sketch of the proof for our main technical claim – every
domination core W of size at least b, where b = kO(γk2) contains at least one vertex w such
that W\{w} is also a domination core, and that such a vertex w can be found efficiently. In
this exposition we focus only on the claim of existence of w. Suppose such a vertex w does
not exist. Then, for every vertex w ∈ W there must exist a set Xw of size at most k that
dominates all of W\{w}, but does not dominate w – otherwise W\{w} is still a domination
core. We call a set W that has this property a k-threshold set1 and prove that a weakly
γ-closed graph can not contain a k-threshold set of size at least b.

The advantage of shifting our attention from k-domination cores to k-threshold sets is
that k-threshold sets are closed under subsets – every subset of a k-threshold set is also a
k-threshold set. This allows us to “dig for structure”, that is, prove results of the form “if G

has a sufficiently large k-threshold set W then W contains a large (as a function of k and
|W |) k-threshold set W ′ with some additional property”.

By invoking a (multi-color version of the) Ramsey Theorem [4] on an appropriately
constructed auxiliary graph, we extract from W a sufficiently large and sufficiently symmetric
threshold set W ′ ⊆ W . The existence of a large and symmetric threshold set W ′ in turn
implies that G must contain as an induced subgraph one of three simple pattern graphs
(such as a complete bipartite graph with γ + 1 vertices on both sides). Each one of these
three pattern graphs can easily be shown not to be weakly γ-closed, contradicting that G

was weakly γ-closed in the first place.
We remark that the actual proof proceeds in a different order of the exposition above.

First, in Section 3 we define the pattern graphs that we will use and show that they are
not weakly γ-closed. In Section 5 we prove that a purely existential upper bound on the
size of k-threshold sets implies both an FPT algorithm to find a small k-domination core,
and an FPT algorithm for Dominating Set. In Section 6 we obtain the aforementioned
upper bound on the size of k-threshold sets in weakly γ-closed graphs by showing that a
k-threshold set of size at least b = kO(γk2) implies that G must contain one of the forbidden
pattern graphs from Section 3.

Efficiently computing a domination core W of size kO(γk2) immediately leads to a
2kO(γk2)

nO(1) time algorithm for Dominating Set on weakly γ-closed graphs. Indeed,
to find a dominating set for G of size k (if one exists), it is sufficient to find a set S of size at
most k that dominates all of W . This can be done by trying all possible partitions of W

into k parts P1, . . . , Pk, and then determining whether there exists for every part Pi a single
vertex si ∈ V (G) that dominates Pi. This algorithm already resolves the open problem of
Koana et al. [23] in the affirmative. At the same time the double exponential running time
dependence on k is unsatisfactory.

We are able to improve the running time of our algorithm for Dominating Set to
kO(γ2k3)nO(1) by proving an additional purely graph-theoretic result regarding the structure
of weakly γ-closed graphs. A set system (U, F) consists of a universe U along with a collection
F of subsets of U . A subset containing A ⊆ U is shattered by F if each subset of A can
be expressed as the intersection of A with a set in F . The Vapnik-Chervonenkis dimension
(VC-dimension) of a set system is the cardinality of the largest subset A of U that is shattered
by F . The VC-dimension of a graph is defined as the VC-dimension of the set system induced
by the closed neighbourhoods of its vertices. We prove in Section 4 that weakly γ-closed
graphs have VC-dimension at most 6γ.

1 Note that a k-threshold set is not necessarily a k-domination core, however every inclusion minimal
k-domination core is a k-threshold set.

FSTTCS 2021

29:4 Dominating Set in Weakly Closed Graphs

▶ Theorem 3. Every weakly γ-closed graph has VC-dimension at most 6γ.

Theorem 3 is tight up to the constant factor 6 (see Section 4 for a simple construction of a
weakly γ-closed graph with VC-dimension γ).

Theorem 3 (together with our bound on the size of k-threshold sets) quite directly leads
to a kO(γ2k3)nO(1) time algorithm for Dominating Set on weakly γ-closed graphs. Indeed,
the double exponential running time of the previous algorithm came from the algorithm to
determine whether there exists a set S of size at most k that dominates the entire domination
core W . The size of the k-domination core W is assumed to be upper bounded by kO(γk2).
Our improved algorithm to find S is remarkably simple: if two vertices u and v not in W

have exactly the same set of neighbors in W , we remove u from the graph (since we can
always pick v in its place). After this reduction, the Sauer-Shelah Lemma [28, 29] (See
Lemma 8) implies that there are at most kO(γ2k2) vertices left in G. Then a brute force
algorithm that tries all possibilities for S takes time kO(γ2k3)nO(1).

We believe that Theorem 3 will find further uses in the design of algorithms for problems
on weakly γ-closed graphs. For an example Theorem 3 also immediately implies that
the improved approximation algorithm for Dominating Set on graphs of bounded VC-
dimension [5, 16] applies to weakly γ-closed graphs (see Section 4 for details).

2 Notation and Preliminaries

In this section we give notations, and definitions that we use throughout the paper. Unless
specified we will be using all general graph terminologies from the book of Diestel [12].

Given a graph G, we use V (G) and E(G) to denote the set of vertices and edges,
respectively. We denote the open neighbourhood of a vertex v in G by NG(v) = {u : u ∈
V (G), (u, v) ∈ E(G)} and closed neighbourhood by NG[v] = {v} ∪ NG(v). Further, we
denote the non-neighbourhood of v by NG[v] = V (G)\N [v]. We extend this notation to a set
S ⊆ V (G) as well, that is NG(S) =

⋃
v∈S

NG(v), NG[S] =
⋃

v∈S

NG[v] and NG[S] = V (G)\NG[S].

Whenever the graph G is clear from the context, we will omit the subscript. A dominating
set of G is a set of vertices S ⊆ V (G) such that N [S] = V (G). For any X ⊆ V (G), we use
the notation G[X] to denote the subgraph induced by X in G.

We use the symbol ∪· to denote the disjoint union operation on sets. Let l be a positive
integer. We use the notation [l] to denote the set {1, . . . , l}. A graph G having vertex set
V (G) = A ∪· B is called a split graph if A is a clique and B is an independent set. A graph
G is d-degenerate if every subgraph G′ of G has a vertex having degree at most d. We will
need the notion of weak ordering of a weakly γ-closed graph. It is very similar to notion of
degeneracy ordering for degenerate graphs [12].

▶ Definition 4 ([21]). A weak ordering O of a weakly γ-closed graph G is an ordering
O = {v1, . . . , vn} of V (G) such that for each vi ∈ V (G) and for each u ∈ NGi

[vi], it holds
that |NGi(u) ∩ NGi(vi)| < γ, where Gi = G[{vi, . . . , vn}]. A forward neighbour of vi is a
vertex adjacent to vi in Gi.

3 Obstructions to Weak Closure

In this section, we define a few simple pattern graphs and proceed to show that they (except
split half-graphs, which are weakly 1-closed) are not weakly γ-closed. Many of our proofs are
of the form “every weakly γ-closed graph G either has some desirable property or contains
one of these patterns. The second case contradicts that G is weakly γ-closed, so we conclude
that G has the desirable property”.

D. Lokshtanov and V. Surianarayanan 29:5

▶ Definition 5. 2 Given a positive integer n, let A = {a1, . . . , an}, B = {b1, . . . , bn} and
C = {c1, . . . , cn} be disjoint vertex sets. We define the following graphs:
1. A bipartite graph G with vertex set V (G) = A ∪· B and bipartition A and B is called a

complete bipartite graph of order n if ∀i, j ∈ [n], (ai, bj) ∈ E(G).
2. A graph G with vertex set V (G) = A ∪· B is called a semi split co-matching of order

n if A is a clique and ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff i ̸= j. The edges between B can be
arbitrary.

3. A graph G with vertex set V (G) = A ∪· B is called a split half graph of order n if G is
a split graph with B being the independent set and ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff j > i.

4. A graph G with vertex set V (G) = A ∪· B ∪· C is called a double split half graph of
order n if G[A ∪ B] and G[B ∪ C] are split half graphs with B being the independent
set. That is ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff j > i and (bi, cj) ∈ E(G) iff j > i. The edges
between A and C can be arbitrary.

▶ Lemma 6. 3 If G is weakly γ-closed, then it does not contain any of the following graphs
as an induced subgraph.

(i) Complete bipartite graph of order n ≥ γ.
(ii) Semi split co-matching of order n > γ.
(iii) Double split half graphs of order n ≥ 3γ.

4 VC-dimension of Weakly Closed Graphs

In this section we prove Theorem 3, that is we show that the VC dimension of weakly
γ-closed graphs is at most 6γ. Recall that the VC-dimension of a graph is defined as the
VC-dimension of the set system induced by the closed neighbourhoods of its vertices.

Proof of Theorem 3. Suppose that the VC dimension of G is greater than 6γ. We will show
that G is not weakly closed, thus contradicting our assumption. Since we assumed that the
VC dimension is at least 6γ + 1, there is a set X ⊆ V (G) of size 6γ + 1 that is shattered in
G. Since X is shattered, for each x ∈ X, there exists a vertex y that dominates all vertices
in X except x. We note that for each x ∈ X, there can be more than one such vertex but we
need only one for our proof. We will call y the partner of x and x the partner of y. Observe
that no two vertices in X can have the same partner. Let Y be the set of partners of all
vertices in X. Also observe that every x ∈ X dominates all vertices in Y except its partner
and every y ∈ Y dominates all vertices in X except its partner. We start by extracting a
sufficiently large clique from X or Y .

▷ Claim 7. There exists a clique Z of size at least γ + 1 such that Z ⊆ X or Z ⊆ Y .

Proof. Let X1 be an arbitrary subset of X of size 3γ, and let Y1 be an arbitrarily chosen
set of 3γ vertices in Y that have no partner in X1. If |X1 ∩ Y1| > γ then Z = X1 ∩ Y1 is a
clique that satisfies the conclusion of the lemma since every vertex in Y1 dominates X1.

We proceed with the case that |X1 ∩ Y1| ≤ γ. Define X ′ = X1\Y1 and Y ′ = Y1\X1 (i.e.
remove common vertices from X1 and Y1). Note that |X ′| ≥ 2γ and |Y ′| ≥ 2γ, that X ′ and
Y ′ are disjoint, and that every vertex in X ′ is adjacent to every vertex in Y ′. Let OX′∪Y ′

be the order induced by a weak ordering O of G on X ′ ∪ Y ′. There must be γ + 1 vertices
all from either X ′ or Y ′ among the first 2γ + 1 vertices in OX′∪Y ′ . Let Z be the set of

2 Refer to Figure 1 in Appendix A.
3 Proof in Appendix A.

FSTTCS 2021

29:6 Dominating Set in Weakly Closed Graphs

these γ + 1 vertices all from X ′ or Y ′. Since all vertices in X ′ are adjacent to all vertices
in Y ′, every pair of vertices in Z must have at least γ common forward neighbours in the
ordering O. Thus, since G is weakly γ-closed, Z must be a clique. ◁

Let Z be a clique as provided by Claim 7. Let PZ be the set of partners of all vertices in
Z. Observe that Z and PZ are disjoint: for every z ∈ Z its partner z′ does not dominate z

(by definition of partners) and therefore cannot be in Z, since Z is a clique. Next, we observe
that every vertex z in Z is adjacent to every vertex in PZ except its partner by the definition
of X and Y and the fact that Z ⊆ X or Z ⊆ Y . The induced subgraph G[Z ∪ PZ] is a
semi split co-matching (Definition 5) because Z is a clique, Z and PZ are disjoint and every
vertex z in Z is adjacent to every vertex in PZ except its partner. This contradicts Lemma 6,
concluding the proof. ◀

Theorem 3 is tight up to the constant factor 6, since there exists a weakly γ-closed graph
having VC-dimension γ: Consider the bipartite graph G with V (G) = A ∪· B where A has γ

vertices and for each set S ⊆ A, B has one vertex whose neighbourhood is S. The graph
G is weakly γ-closed and has VC-dimension at least γ since A is shattered by the closed
neighborhood of vertices in B.

4.1 Set Cover and graphs of bounded VC-dimension
In the Set Cover problem, we are given a universe U , a family F of sets over U , and a
positive integer k and the task is to determine whether there exists a subfamily F ′ ⊆ F of
size at most k such that

⋃
X∈F ′

X = U . It is known [28, 29] that if the VC-dimension of a set

system (U, F) is bounded, then the size of the family F must be bounded.

▶ Lemma 8 (Sauer-Shelah lemma [28, 29]). If the VC-dimension of a set system (U, F) is
bounded by d, then F can consist of at most

∑d
i=0

(|U |
i

)
= O(|U |d) sets.

We will exploit the fact that weakly closed graphs have bounded VC-dimension in the
following way. Dominating Set on a graph of bounded VC-dimension corresponds to Set
Cover on the set system (U, F) where U = V (G) and F = {N [v] : v ∈ U}.

For a general set system (U, F), there is a naive algorithm that goes over all families F ′

of size at most k in F and checks whether F ′ is a set cover in time |F|k|U |O(1). However if
the VC-dimension of (U, F) is bounded by d, then by Lemma 8, |F| = O(|U |d) and therefore
this algorithm solves Set Cover in O(|U |kd) time.

▶ Theorem 9. There exists a deterministic algorithm that given a Set Cover instance
(U, F , k) such that the VC-dimension of (U, F) is bounded by d determines in time O(|U |kd)
whether the instance has a set cover of size at most k and outputs one if it exists.

We remark that this is not an FPT algorithm parameterized by k and d. However we will be
invoking Theorem 9 with |U | bounded by 2poly(k) and d bounded by 6γ in our algorithm for
Dominating Set.

An upper bound on the VC-dimension of G also leads to an improved approximation
algorithm for Dominating Set. Indeed Brönnimann and Goodrich [5] give an O(d log(dk))
approximation algorithm for set systems of VC-dimension d, where k is the size of the optimal
solution. This, together with Theorem 3 directly yields an O(γ log(γk))-approximation for
Dominating Set on weakly γ-closed graphs.

D. Lokshtanov and V. Surianarayanan 29:7

5 Dominating Set in Weakly Closed Graphs

Our algorithm is based on domination cores, which have been used for deriving several
algorithms for the Dominating Set problem [14, 15, 17].

▶ Definition 10. Given a graph G, an integer k, a set S ⊆ V (G) is called a k-domination
core of G if ∀X ⊆ V (G) such that |X| ≤ k and S ⊆ N [X], it holds that N [X] = V (G).

It is easy to see that the set of all vertices in a graph is a trivial domination core. We
wish to prove that weakly γ-closed graphs contain k-domination cores whose size is upper
bounded by a function of k and γ. This naturally leads our attention to inclusion minimal
k-domination cores.

▶ Definition 11. A k-domination core W is called a minimal k-domination core if
∀w ∈ W , W\{w} is not a k-domination core.

We note that whenever k is clear from the context, we will omit k while referring to
domination cores. In the following lemma, we provide a bound on the size of minimal
domination cores in weakly γ-closed graphs.

▶ Lemma 12. Every minimal k-domination core of a weakly γ-closed graph G has size at
most b, where b = kO(γk2).

Lemma 12 leads to the following intuitive algorithm - Start with the trivial domination
core D = V and as long as |D| > b keep discarding a vertex x from D such that D remains
a domination core (we will soon discuss how to algorithmically identify the vertex x, for now
ignore this issue).

Finally use D to construct a Set Cover instance having universe D and family F =
{N [v] ∩ D : v ∈ V (G)}. Since G is weakly γ-closed, by Theorem 3, G has VC-dimension at
most 6γ. Thus, the Set Cover instance also has VC-dimension at most 6γ and so we use
Theorem 9 to find a set cover of size at most k if it exists from which a dominating set for G

can be easily recovered.
We now turn to the issue of identifying a vertex x to remove from D when |D| > b. To

this end, we will use the following property of every minimal k-domination core W : for each
w ∈ W , there is a set Xw of size at most k that dominates all of W\{w} but not w. Indeed,
suppose there is a w ∈ W for which no such Xw exists, and consider a set X of size at most
k which dominates W\{w}. Then X also dominates w (by the non-existence of Xw) and by
extension all of G (since W is a k-domination core). But then W\{w} is also a domination
core, contradicting minimality. We capture this property in the following definition.

▶ Definition 13. A vertex set S is a k-threshold set if for every v ∈ S there exists a set
Xv of size at most k so that N [Xv] ∩ S = S\{v}.

Also note that every subset S′ of a k-threshold set S is also a k-threshold set because
for every v ∈ S′, a set Xv of size at most k such that N [Xv] ∩ S = S\{v} also satisfies
N [Xv] ∩ S′ = S′\{v} as S′ ⊆ S. We will use this property explicity in the next section. For
now, the discussion leading up to Definition 13 immediately leads to the following observation.

▶ Observation 14. Every minimal k-domination core of a graph G is also a k-threshold set
of G.

FSTTCS 2021

29:8 Dominating Set in Weakly Closed Graphs

Since every minimal k-domination core is a k-threshold set, we will bound the size of k-
threshold sets in weakly γ-closed graphs, proving Lemma 12 and leading to an algorithm.

▶ Lemma 15. Every k-threshold set of a weakly γ-closed graph G has size at most b, where
b = kO(γk2)

We now outline how Lemma 15 can be used to identify a vertex x to be removed from a
domination core D having size more than b such that D\{x} still remains a domination core.
No subset of D having size b + 1 can be a threshold set because of Lemma 15. Thus, we can
pick an arbitrary subset X of D having size b + 1 and for each x ∈ X, test whether X\{x}
has a dominating set of size at most k without dominating x. Since X is not a threshold set,
we will find a vertex x ∈ X for which such a dominating set does not exist. Thus, we can
remove x from D and D\{x} will still remain a domination core.

We are now ready to patch up our ideas and provide the full algorithm to prove Theorem 2
assuming Lemma 15 is true. We dedicate the next section solely for the proof of Lemma 15.

Proof of Theorem 2 (assuming the statement of Lemma 15). We first provide the
algorithm: Initialize D = V (G). As long as |D| > b, arbitrarily pick a subset X of D having
size b + 1. For each x ∈ X, construct a Set Cover instance Ix = (Ux, Fx, k) with universe
Ux = X\{x} and family Fx = {N [y] ∩ X\{x} : y ∈ N [x]}. Solve Ix using Theorem 9. If Ix

is a no instance, set D = D\{x} and proceed to start of the loop.
After the loop terminates, construct the Set Cover instance I = (U, F , k) where U = D

and F = {Xv = N [v] ∩ D : v ∈ V (G)}. Use Theorem 9 to find a set cover S ⊆ F having size
at most k if exists for I. Return no and terminate the algorithm if I is a no instance. If I is
a yes instance, return the set D′ = {v : Xv ∈ S}.

▷ Claim 16. During each iteration of the loop, the algorithm finds a vertex x to remove
from D.

Proof. Consider an arbitrary iteration of the loop. It is clear that |D| > b since the algorithm
enters the loop. Observe that no subset of D having size b + 1 can be a k-threshold set
by Lemma 15. Let X be the subset of D picked by the algorithm in that iteration, it is
clear that X is not a k-threshold set. Thus, by definition of a k-threshold set, there exists a
vertex x ∈ X for which X\{x} does not have a dominating set of size at most k that does
not dominate x. It is also easy to see that X\{x} has a dominating set of size at most k

not dominating x if and only if Ix has a set cover of size at most k. Thus, there is a vertex
x ∈ X for which Ix does not have a set cover of size at most k. Therefore, the algorithm
would have removed at least one element from D in that iteration. ◁

▷ Claim 17. In each iteration of the algorithm, D is a domination core.

Proof. Since the set of all vertices of G is itself a trivial domination core, the algorithm starts
with a domination core D = V (G). Let X be the subset of D of size b + 1 picked by the
algorithm in that iteration. Also let x ∈ X be the vertex removed from D in that iteration.
By the previous claim, such an x exists. Since the algorithm removed x from D, the set
cover instance Ix must have been a no instance. It is easy to see that Ix is a no instance
if and only if X\{x} does not have a dominating set of size at most k without dominating
x. Thus, since every set of size at most k dominating D\{x} will dominate X\{x} which in
turn will dominate x, D\{x} is a k-domination core.

Thus, in each iteration of the algorithm, D is a k-domination core. ◁

D. Lokshtanov and V. Surianarayanan 29:9

Now consider D in the last step of the algorithm. The algorithm reaches this step because of
the first claim. It is easy to see that I is an yes instance if and only if D has a dominating
set of size at most k. Since D is a domination core by the previous claim, this implies that
G has dominating set of size at most k if and only if I is a yes instance. Thus, the algorithm
returns a dominating set of G of size at most k if one exists, otherwise returns no. Namely,
the recovered set D′ is a dominating set of G.

For the runtime, the time taken to identify a vertex to remove from D when |D| > b

is bO(γk) using Theorem 9 as |Ux| = b and the VC-dimension of the set system (Ux, Fx) is
bounded by 6γ by Theorem 3. This step is repeated at most n − b times. The final step to
find the dominating set again takes bO(γk) time since in the last step D has size at most b.
Thus, in total the algorithm takes bO(γk)nO(1) time which is kO(γ2k3). ◀

6 Threshold Sets in Weakly Closed Graphs

In this section, we prove the crux of our algorithm, namely Lemma 15 which bounds the size
of threshold sets in weakly γ-closed graphs. We first begin by stating that the graph induced
by any k-threshold set of a weakly γ-closed graph is sparse.

▶ Lemma 18. 4 Given a weakly γ-closed graph G and k-threshold set S of G, G[S] is
(γ − 1)k-degenerate.

Since every d-degenerate graph on n vertices has an independent set of size at least n/(d +
1) [12], any large k-threshold set will also have a large independent set. This leads us to
define the following notion.

▶ Definition 19. A k-threshold set S of a graph G is called an independent k-threshold
set of G if S is an independent set.

Further, since every k-threshold set S of a weakly γ-closed graph has an independent set of
size at least |S|

(γ−1)k+1 and since every subset of a k-threshold set is also a k-threshold set, we
obtain the following result.

▶ Lemma 20. Every k-threshold set S of a weakly γ-closed graph has an independent
k-threshold set of size at least |S|

(γ−1)k+1 .

By the previous lemma, it is clear that to bound the size of threshold sets in weakly closed
graphs, it is enough to bound the size of independent threshold sets. This fact along with
Lemma 21 stated below combined prove Lemma 155.

▶ Lemma 21. Every independent k-threshold set of a weakly γ-closed graph G has size at
most kO(γk2).

We prove Lemma 21 by contradiction. Assuming that G has a large independent k-
threshold set, we first use results from Ramsey theory to extract a sufficiently large and highly
symmetric independent 2-threshold set (this is never proved explitly in the argument). The
highly structured independent 2-threshold set implies that G contains one of the obstructions
from Lemma 6, contradicting that G is weakly γ-closed.

4 Proof in Appendix B.
5 Proof in Appendix C.

FSTTCS 2021

29:10 Dominating Set in Weakly Closed Graphs

Proof of Lemma 21. Let W be an independent k-threshold set of a weakly γ-closed graph
G having size greater than (315k2)(316γk2). As a first step, we will use results from Ramsey
theory to obtain three subsets of vertices of G having useful properties. We will then use
these sets to show that G has one of the graphs listed in Lemma 6 as an induced subgraph.
By Lemma 6, this will imply that G is not a weakly γ-closed graph, contradicting our
assumption and thus completing the proof.

Since W is a k-threshold set of G, for every vertex w ∈ W there exists a set Xw ⊆ V (G)
of size at most k that dominates all vertices in W except w. For each w ∈ W , order the
vertices in Xw arbitrarily. Let Xw = {x1

w, . . . , xpw
w } be the ordering. Also order the vertices

in W arbitrarily. Let W = {w1, . . . , wq} be the ordering.
We now create an auxiliary edge-colored complete graph H with vertex set W . Each

color will be a tuple6 whose size and possible values will become clear in the next step where
we assign colors to the edges.

For every pair i, j ∈ [|W |] such that i < j, we color the edge (wi, wj) in H as follows:
1. One entry for the number r such that xr

wi
dominates wj (if more than one such r exists,

choose one arbitrarily)
2. One entry for the number s such that xs

wj
dominates wi (if more than one such s exists,

choose one arbitrarily)
3. For each pair7 of vertices in the multi-set {wi, wj , xr

wi
, xs

wj
, xr

wj
, xs

wi
} one entry from

{0, 1, 2} to denote whether those two vertices are (0) the same vertex (1) different and
adjacent vertices or (2) different and non-adjacent vertices.

From the definition of H, it follows that the number of possible distinct edge-colors of H

is at most 315k2. Let B ⊆ W be a monochromatic clique of maximum size in H and let τ be
the color of all the edges in the clique. We will now use the well known fact (from Ramsey
theory [4]) that every edge-colored complete graph on n vertices colored with t colors has
a monochromatic clique of size at least logt(n)/t to lower bound the size of B. Since the
number of possible distinct edge-colors of H is at most 315k2 and the size of W is greater
than (315k2)(316γk2), the size of B is at least 3γ.

Let B = {b1, . . . , bl} be the ordering of vertices of B in W . Let r and s be the two entries
in τ that denote the numbers such that for every pair i, j ∈ [l] having i < j, xr

bi
dominates bj

and xs
bj

dominates bi. Let A = {xr
b1

, . . . , xr
bl

} and C = {xs
b1

, . . . , xs
bl

} be ordered multi-sets.
For now, we will assume that A and C could be multi-sets but we will soon prove that it is
not the case. We now capture some desired properties of A, B and C.

▷ Claim 22. The multi-sets B = {b1, . . . , bl}, A = {xr
b1

, . . . , xr
bl

}, and C = {xs
b1

, . . . , xs
bl

}
satisfy the following properties:
1. B is an independent set in G.
2. A, B and C are sets.
3. A ∩ B = ∅, B ∩ C = ∅ and either A ∩ C = ∅ or A = C.
4. ∀i ∈ [l], (bi, xr

bi
) /∈ E(G) and (bi, xs

bi
) /∈ E(G).

5. ∀i, j ∈ [l] such that j > i, (xr
bi

, bj) ∈ E(G) and (bi, xs
bj

) ∈ E(G).
6. A and C are each either an independent set or a clique in G.
7. ∀i, j ∈ [l], such that j < i, (xr

bi
, bj) ∈ E(G) or ∀i, j ∈ [l], such that j < i (xr

bi
, bj) /∈ E(G).

8. ∀i, j ∈ [l], such that j < i, (bi, xs
bj

) ∈ E(G) or ∀i, j ∈ [l], such that j < i, (bi, xs
bj

) /∈ E(G).

6 When comparing equality of two edge colors, we compare corresponding entries of the two tuples in the
order they are defined. Thus the order of the entries in the tuples matter.

7 We will not need all 15 pairs in our arguments. The colors are defined in this way to keep the description
simple.

D. Lokshtanov and V. Surianarayanan 29:11

Proof. Since B ⊆ W and W is a independent threshold set, it follows that B is an independent
set (property 1). We now prove property 2. By definition, B is a subset of W which is a set.
Now we prove that for each pair i, j ∈ [l] such that i < j, xr

bi
̸= xr

bj
and xs

bi
̸= xs

bj
. Since r

and s are entries in the coloring τ , xr
bi

dominates bj and xs
bj

dominates bi. But by definition
xr

bj
does not dominate bj and xs

bi
does not dominate bi. Therefore xr

bi
̸= xr

bj
and xs

bi
̸= xs

bj
.

For property 3, we first show that A ∩ B = ∅. We prove that ∀i, j ∈ [l], bi ̸= xr
bj

. If i = j,
then bi ̸= xr

bj
because by definition xr

bi
belongs to Xi and thus does not dominate bi. Let

bi = xr
bj

for some i > j, then in the coloring τ the entry corresponding to the pair of vertices
bi and xr

bj
must be 0 since they are the same. Thus, since all edges in clique B in H have

color τ , it means that xr
b1

= b2 and xr
b1

= b3 but b2 ̸= b3. Thus, bi ≠ xr
bj

. Similarly, we can
prove that bi ̸= xr

bj
in the case when i < j. The proof that B ∩ C = ∅ is symmetric and

therefore omitted.
Now, we show that either A ∩ C = ∅ or A = C. If r = s, then A = C. If r ̸= s, we will

show that ∀i, j ∈ [l], xr
bi

≠ xs
bj

. If i = j, by the definition of Xbi , it follows that xr
bi

̸= xs
bi

. If
i ̸= j, without loss of generality let us consider the case when i < j and a similar argument
will hold for the case when i > j. If xr

bi
= xs

bj
, then by our coloring τ , xr

b1
= xs

b2
and

xr
b1

= xs
b3

. But xs
b2

̸= xs
b3

by property 2. Thus, xr
bi

̸= xs
bj

.
Property 4 is true because A ∩ B = ∅, B ∩ C = ∅ and for each bi in B, xr

bi
and xs

bi
are

in Xi and thus do not dominate bi. Property 5 follows because A ∩ B = ∅, B ∩ C = ∅ and
the fact that r and s are entries in the coloring τ such that ∀i, j ∈ [l], having j > i, xr

bi

dominates bj and xs
bj

dominates bi.
Since A ∩ B = ∅ and B ∩ C = ∅, ∀i, j ∈ [l] such that j < i the coloring τ has an entry

with value either 1 or 2 corresponding to each pair in {(xr
bi

, xr
bj

), (xs
bi

, xs
bj

), (xr
bi

, bj), (bi, xs
bj

)}.
Since (1) denotes that the pair of vertices are adjacent and (2) denotes that the pair of
vertices are non-adjacent, properties 6-8 are true. This completes the proof. ◁

We now use the sets (Claim 22 Property 2) A, B, and C to show that G has one of the graphs
listed in Lemma 6 as an induced subgraph. For this, we will use the properties listed in
Claim 22. We remark that we will directly refer to them as properties rather than referring
to the claim each time. Recall that l = |A| = |B| = |C|. Firstly, we consider two cases based
on whether A = C or not.
Case (i) A = C: By property 3, A and B are disjoint. We divide this case further into two

cases based on property 6 - A is either an independent set or a clique.
(a) A is a clique: Let G′ = G[A ∪ B]. Then, B is an independent set (by property 1) and

∀i, j ∈ [l] (xr
i , bi) /∈ E(G′) if i = j (by property 4) and (xr

i , bj) ∈ E(G′) otherwise (by
properties 5 and A = C). Thus G′ is a semi split co-matching of order l ≥ 3γ.

(b) A is an independent set: Let A′ = {xr
b1

, . . . , xr
bγ

}, B′ = {bγ+1, . . . , b2γ}, and G′ =
G[A′ ∪B′]. Observe that we can define sets A′ and B′ since l ≥ 3γ. Again, by property
5, ∀i ∈ {1, . . . , γ}, j ∈ {γ + 1, . . . , 2γ}, (xr

bi
, bj) ∈ E(G′). Thus G′ is a complete

bipartite graph of order γ.
Case (ii) A ̸= C: Since A ̸= C, by property 3 the sets A, B, and C are disjoint. We divide

this case further based on properties 6-8.
(a) A is an independent set: Let A′ = {xr

b1
, . . . , xr

bγ
}, B′ = {bγ+1, . . . , b2γ} and G′ =

G[A′ ∪ B′]. We can show that G′ is a complete bipartite graph by the same argument
as case (i.b).

(b) C is an independent set: Same argument as the previous case with sets B′ =
{b1, . . . , bγ}, C ′ = {xs

bγ+1
, . . . , xs

b2γ
} and graph G′ = G[B′ ∪ C ′].

(c) A is a clique and ∀i ∈ [l], ∀j < i, xr
bi

is adjacent to bj : Similar to case (i.a), G′ =
G[A ∪ B] is a semi split co-matching of order l ≥ 3γ.

FSTTCS 2021

29:12 Dominating Set in Weakly Closed Graphs

(d) C is a clique and ∀i ∈ [l], ∀j < i, bi is adjacent to xs
bj

: Same argument as previous
case with G′ = G[B ∪ C].

(e) A and C are cliques, ∀i ∈ [l], ∀j < i, xr
bi

is not adjacent to bj and ∀i ∈ [l], ∀j < i, bi is
not adjacent to xs

bj
: Let G′ = G[A ∪ B ∪ C]. By the case we are in and property 5, it

follows that G′ is a double split half graph with B being the independent set (property
1).

Thus, in all cases G[A ∪ B ∪ C] is not weakly γ-closed by Lemma 6, contradicting the
assumption that G is weakly γ-closed, and completing the proof of the lemma. ◀

7 Conclusion and Barriers to Further Improvements

In this work we gave an algorithm for Dominating Set with running time 2O(γ2k3)nO(1).
This resolves affirmatively an open problem of Koana et al. [23] who asked whether the
problem is fixed-parameter tractable when parameterized by k and the weak closure γ of the
input graph. Our running time hides a large constant in the exponent. We made no effort to
optimize this constant because, at this point, it is not even clear that the form O(γ2k3) of
the exponent in the running time is near-optimal.

On the way to obtaining our main result, we proved that every minimal k-domination
core of G has size at most kO(γk2). We also showed that the VC-dimension of a weakly
γ-closed graph G is at most 6γ and used this result in our FPT algorithm for Dominating
Set and to obtain an O(γ log(γk))-approximation for Dominating Set. The bound on
VC-dimension might be interesting for other problems on weakly-closed graphs.

Our work leaves the following natural open problem: does Dominating Set admit
a kernel of size kf(γ) for some function f? One natural approach would be to improve
the bound in Lemma 12 by obtaining a polynomial upper bound for the size of minimal
domination cores in weakly closed graphs. Unfortunately, this is not possible: for every
positive integer k, there exists a weakly 1-closed graph with a minimal k-domination core of
size 2k+1 (see Appendix D). Notice that the argument only shows an obstacle for using this
approach for getting polynomial kernels and does not rule out the existence of polynomial
kernels.

In light of the O(γ log(γk)) approximation algorithm from Section 4, it is natural to
ask whether Dominating Set could admit for every fixed constant γ a constant factor
approximation algorithm on weakly γ-closed graphs. It is known from [30] Theorem 2
that there exists a c such that a polynomial time c log n

log log n -approximation algorithm for
Dominating Set in K3,3-free graphs would imply that NP ⊆ DTIME(2n1−ε) for some
0 < ε < 1/2. The graphs constructed in the reduction8 are also weakly 3-closed and hence
we get the same result for weakly 3-closed graphs.

References
1 Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier.

Fixed parameter algorithms for DOMINATING SET and related problems on planar graphs.
Algorithmica, 33(4):461–493, 2002.

2 Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for
dominating set. J. ACM, 51(3):363–384, 2004.

8 The reduction is from Set Cover on a set system in which the maximum intersection between any two
sets in the family is 1 [30, 26].

D. Lokshtanov and V. Surianarayanan 29:13

3 Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of fixed size
in degenerated graphs. Algorithmica, 54(4):544–556, 2009.

4 Noga Alon and Vojtěch Rödl. Asymptotically tight bounds for some multicolored ramsey
numbers.

5 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite vc-dimension.
Discret. Comput. Geom., 14(4):463–479, 1995.

6 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-eth to fpt-inapproximability: Clique,
dominating set, and more. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 743–754. IEEE Computer Society, 2017.

7 Jianer Chen, Henning Fernau, Iyad A. Kanj, and Ge Xia. Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. SIAM J. Comput., 37(4):1077–1106, 2007.

8 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized dominating
set problem. SIAM J. Comput., 48(2):513–533, 2019.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

10 Anuj Dawar and Stephan Kreutzer. Domination problems in nowhere-dense classes. In Ravi
Kannan and K. Narayan Kumar, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009,
IIT Kanpur, India, volume 4 of LIPIcs, pages 157–168. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2009.

11 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H -minor-free graphs.
J. ACM, 52(6):866–893, 2005.

12 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

13 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science
and Business Media, 2012.

14 Pål Grønås Drange, Markus Sortland Dregi, Fedor V. Fomin, Stephan Kreutzer, Daniel
Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Felix Reidl, Fernando Sánchez Villaamil,
Saket Saurabh, Sebastian Siebertz, and Somnath Sikdar. Kernelization and sparseness: the
case of dominating set. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium on
Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans, France,
volume 47 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

15 Eduard Eiben, Mithilesh Kumar, Amer E. Mouawad, Fahad Panolan, and Sebastian Siebertz.
Lossy kernels for connected dominating set on sparse graphs. SIAM J. Discret. Math.,
33(3):1743–1771, 2019.

16 Guy Even, Dror Rawitz, and Shimon Shahar. Hitting sets when the vc-dimension is small.
Inf. Process. Lett., 95(2):358–362, 2005.

17 Grzegorz Fabianski, Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. Progressive
algorithms for domination and independence. In Rolf Niedermeier and Christophe Paul,
editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS
2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 27:1–27:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

18 Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020.

19 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer-Verlag, Berlin,
Heidelberg, 1st edition, 2010.

FSTTCS 2021

29:14 Dominating Set in Weakly Closed Graphs

20 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Kernels
for (connected) dominating set on graphs with excluded topological minors. ACM Trans.
Algorithms, 14(1):6:1–6:31, 2018.

21 Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques in
social networks: A new distribution-free model. SIAM J. Comput., 49(2):448–464, 2020.

22 Edin Husic and Tim Roughgarden. FPT algorithms for finding dense subgraphs in c-closed
graphs. CoRR, abs/2007.09768, 2020. arXiv:2007.09768.

23 Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Computing dense and sparse
subgraphs of weakly closed graphs. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors,
31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18,
2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 20:1–20:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

24 Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Exploiting c-closure in kernel-
ization algorithms for graph problems. In Fabrizio Grandoni, Grzegorz Herman, and Peter
Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020, September
7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 65:1–65:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

25 Tomohiro Koana, Christian Komusiewicz, and Frank Sommer. Essentially tight kernels for
(weakly) closed graphs. CoRR, abs/2103.03914, 2021. arXiv:2103.03914.

26 V. S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of set cover with intersection 1.
In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15,
2000, Proceedings, volume 1853 of Lecture Notes in Computer Science, pages 624–635. Springer,
2000.

27 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Solving dominating set in larger
classes of graphs: FPT algorithms and polynomial kernels. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
694–705. Springer, 2009.

28 Norbert Sauer. On the density of families of sets. J. Comb. Theory, Ser. A, 13(1):145–147,
1972.

29 Saharon Shelah. A combinatorial problem; stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

30 Sebastian Siebertz. Greedy domination on biclique-free graphs. Inf. Process. Lett., 145:64–67,
2019.

31 Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, Heidelberg, 2001.

A Proof of Lemma 6 (Obstructions to Weak Closure)

In order to prove Lemma 6, we will first prove that complete bipartite graphs, semi split
co-matchings and double split half graphs (see Figure 1) having order more than γ, γ, and
3γ respectively are not weakly γ-closed.

Let G be a graph, if for a vertex v in G, there exists a non-neighbour u in G such that
|N(u) ∩ N(v)| ≥ γ, we will refer to u as a weak-pair of v. Observe that if u is a weak-pair of
v, then v is also a weak-pair of u. To prove that G is not weakly γ-closed, it is enough to
show that every vertex in G has a weak-pair.

▶ Lemma 23. If G is a complete bipartite graph of order n ≥ γ, it is not weakly γ-closed.

Proof. Let V (G) = {a1, . . . , an} ∪· {b1, . . . , bn}. First, we show that ∀i, j ∈ [n], having i ≠ j,
ai is a weak-pair of aj . It holds that (ai, aj) /∈ E(G) and |N(ai) ∩ N(aj)| ≥ γ since it is a
complete bipartite graph and n ≥ γ. Similarly ∀i, j ∈ n, having i ̸= j, bi is a weak-pair of bj .
Thus G is not weakly γ-closed. ◀

http://arxiv.org/abs/2007.09768
http://arxiv.org/abs/2103.03914

D. Lokshtanov and V. Surianarayanan 29:15

c1 c2 cn−1 cn

b1 b2 bn−1 bn

a1 a2 an−1 an

b1 b2 bn−1 bn

a1 a2 an−1 an

b1 b2 bn−1 bn

a1 a2 an−1 an

IS

IS

IS

Kn

Kn

Kn

(a)

(b)

(c)

. . .

. . .

. . .

. . .

. . .

. . .

. . .A

A

A

B

B

B

C

Figure 1 Sufficiently large (a) complete bipartite graph, (b) semi split co-matching and (c) double
split half graph are not weakly γ-closed. Edges are colored black and non-edges are colored red. Note
that there may be arbitrary edges between the vertices in B in a semi split co-matching and between
the two cliques (A and C) in a double split half graph. On the other hand split half graphs are weakly
1-closed.

▶ Lemma 24. If G is a semi split co-matching of order n > γ, it is not weakly γ-closed.

Proof. Let V (G) = {a1, . . . , an} ∪· {b1, . . . , bn}. We show that ∀i ∈ [n], bi is a weak-pair of
ai and thus ai is a weak-pair of bi. Since G is a semi-split co-matching, ai is not adjacent
to bi and both ai and bi are adjacent to all aj , j ̸= i. Because n > γ, |N(ai) ∩ N(bi)| ≥ γ.
Since all vertices in G have a weak pair, it is not weakly γ-closed. ◀

▶ Lemma 25. If G is a double split half graph of order n ≥ 3γ, it is not weakly γ-closed.

Proof. Let V (G) = {a1, . . . , an} ∪· {b1, . . . , bn} ∪· {c1, . . . , cn}.
First, we will prove that ∀i ∈ [n], bi has a weak-pair. Since G is a double split half

graph, observe that ∀i ∈ [n], bi is adjacent to all cj , j > i and to all aj , j < i. Thus,
since both G[{a1, . . . , an}] and G[{c1, . . . , cn}] are cliques and n ≥ 3γ, it follows that either
|N [bi] ∩ N [ai]| ≥ γ or |N [bi] ∩ N [ci]| ≥ γ. Hence, since bi is not adjacent to both ai and ci,
either ai or ci is a weak pair of bi.

Second, we will prove that ∀i ∈ [n], ai has a weak-pair. We divide the proof into two
cases: (a) i > γ and (b) i ≤ γ.

For case (a), we will show that bi is a weak-pair of ai. Since G is a double split half
graph, ai is not adjacent to bi, bi is incident to all aj , j < i and G[{a1, . . . , an}] is a clique.
Thus, as we are in the case when i > γ, it follows that |N(ai) ∩ N(bi)| ≥ γ. This proves that
bi is a weak-pair of ai.

For case (b), we will show that either bi or some cj , j > n − γ is a weak-pair of ai. If ai

is not adjacent to some cj , j > n − γ, then since G is a double split half graph, both ai and
cj are adjacent to all bk, i < k < j. Since, n ≥ 3γ, i ≤ γ and j > n − γ, |N(ai) ∩ N(cj)| ≥ γ

and thus cj is a weak-pair of ai. If ai is adjacent to all cj , j > n − γ. Then again since G is a
double split half graph, ai is not adjacent to bi and bi is adjacent to all cj , j > n − γ. Thus,
it follows that |N(ai) ∩ N(bi)| ≥ γ since n ≥ 3γ. This proves that bi is a weak-pair of ai.

FSTTCS 2021

29:16 Dominating Set in Weakly Closed Graphs

Finally, we can use a very similar argument to that used for ais to prove that ∀i ∈ [n], ci

has weak-pair. But here the two cases will be (a) i ≤ n − γ and (b) i > n − γ.
Therefore, since all vertices have a weak-pair, G is not weakly γ-closed. ◀

We give a short proof for lemma 6 using the previous lemmas.

Proof of Lemma 6. By the definition of weakly γ-closed graphs any graph having an induced
subgraph that is not weakly γ-closed graph is also not weakly γ-closed. Thus, Lemma 6
follows from all the previous lemmas in this section. ◀

B Proof of Lemma 18

We now prove Lemma 18 which says that given a weakly γ-closed graph G and a k-threshold
set S of G, G[S] is (γ − 1)k-degenerate.

Proof of Lemma 18. Given a weak ordering O of a weakly γ-closed graph G, let the order
induced by O on a subset S of vertices of G be denoted by OS . To complete the proof, it is
enough to prove the following claim.

▷ Claim 26. Given a weakly γ-closed graph G, weak ordering O of G and k-threshold set S

of G, every vertex in S has forward degree at most (γ − 1)k in OS .

Proof. Suppose the claim was not true. Let u be the first vertex in OS having more than
(γ − 1)k forward neighbours in OS . Let F be the set of forward neighbours of u in OS . Also,
let X be a dominating set of S\{u} having size at most k and not dominating u. Since S is
a k-threshold set of G, such a set X exists.

Firstly we prove that every vertex v ∈ X that is not adjacent to u can dominate at most
γ − 1 vertices in F since G is weakly γ-closed. If v is ahead of u in the ordering O, then
since no non-neighbour of u can have more than γ − 1 forward common neighbours with
u, v is adjacent to at most γ − 1 vertices in F . Similarly, if u is ahead of v in O, the same
argument holds with respect to v.

Now, since |F | > (γ − 1)k and |X| ≤ k, by pigeon hole principle there is a vertex v ∈ X

that is adjacent to more than γ − 1 vertices in F . Therefore u must be equal to or adjacent
to v as G is weakly γ-closed. Thus, we have reached a contradiction to the fact that X did
not dominate u. This completes the proof. ◁

Let O be a weak ordering of G, then by the above claim, OS is a degeneracy ordering of
G[S] with degeneracy (γ − 1)k. Thus G[S] is a (γ − 1)k-degenerate graph. ◀

C Proof of Lemma 15

We now give a short proof for Lemma 15, that is we prove that the size of k-threshold sets in
weakly γ-closed graphs is at most kO(γk2).

Proof of Lemma 15. Lemma 20 shows that every k-threshold set S of a weakly γ-closed
graph must have an independent k-threshold set of size at least |S|

(γ−1)k+1 . Lemma 21 shows
that every independent k-threshold set of a weakly γ-closed graph has size at most kO(γk2).
Combining these two results, we can infer that every k-threshold set of a weakly γ-closed
graph must have size at most kO(γk2). ◀

D. Lokshtanov and V. Surianarayanan 29:17

D Minimal k-domination cores of size 2k in weakly 1-closed graphs

Consider the graph G obtained by taking a complete binary tree T of depth k +1 and making
every node adjacent to all its ancestors. The set S of all the nodes in level k + 1 is a minimal
k-domination core.

S is a k-domination core because any vertex adjacent to any vertex v in S is adjacent to
all vertices adjacent to v. Thus since N [S] = V (G), any set of size at most k dominating S

will dominate V (G) as well.
For every vertex v ∈ S, let Av be the set of ancestors of v in T and let Cv be the set of

all children of all the nodes in Av in T . Then for each v ∈ S, the set Cv\(Av ∪ {v}) is a
dominating set of S\{v} of size k that does not dominate v. Therefore S is minimal.

It is natural to ask whether the example can be strengthened to give a c-closed graph
with an exponential size minimal k-domination core. However, it is possible to upper bound
the size of minimal k-domination cores in c-closed graphs by ckc+1. We omit the proof of
this statement, as it is out of scope for this paper.

FSTTCS 2021

Popular Matchings in the Hospital-Residents
Problem with Two-Sided Lower Quotas
Meghana Nasre #

IIT Madras, Chennai, India

Prajakta Nimbhorkar #

Chennai Mathematical Institute, India
UMI ReLaX, Chennai, India

Keshav Ranjan #

IIT Madras, Chennai, India

Ankita Sarkar #

Dartmouth College, Hanover, NH, USA

Abstract
We consider the hospital-residents problem where both hospitals and residents can have lower quotas.
The input is a bipartite graph G = (R ∪ H, E), each vertex in R ∪ H has a strict preference ordering
over its neighbors. The sets R and H denote the sets of residents and hospitals respectively. Each
hospital has an upper and a lower quota denoting the maximum and minimum number of residents
that can be assigned to it. Residents have upper quota equal to one, however, there may be a
requirement that some residents must not be left unassigned in the output matching. We call this
as the residents’ lower quota.

We show that whenever the set of matchings satisfying all the lower and upper quotas is non-
empty, there always exists a matching that is popular among the matchings in this set. We give a
polynomial-time algorithm to compute such a matching.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Matching, Popularity, Lower quota, Preferences

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.30

Funding Meghana Nasre: Partially funded by SERB grant CRG/2019/004757.
Prajakta Nimbhorkar : Partially funded by Infosys Grant and SERB grant CRG/2019/004757.
Ankita Sarkar : Part of the work was done when the author was a Master’s student at Chennai
Mathematical Institute, India.

1 Introduction

The stable marriage problem and its many-to-one generalization, namely the hospital residents
(HR) problem, have been extensively investigated in the literature. In this work, we consider
a generalization of the HR problem where hospitals and residents both can specify demand
constraints. More formally, the input to our problem is a bipartite graph G = (R ∪ H, E)
where R denotes the set of residents, H denotes the set of hospitals, and an edge (r, h) ∈ E

denotes that r and h are mutually acceptable to each other. Every resident and hospital
specify a strict ranking of acceptable elements to them, and this ranking is called the
preference list of the agent. Every hospital h has two additional inputs associated with
it - q+(h), the capacity or upper quota of h, and q−(h), the demand or lower quota of h.
The upper quota denotes the maximum number of residents that can be matched to h, and
the lower quota denotes the minimum number of residents that must be assigned to h in
any feasible assignment. In practical scenarios, residents may also have demands. That is,
some residents must be matched in a round of assignments of residents (medical interns)

© Meghana Nasre, Prajakta Nimbhorkar, Keshav Ranjan, and Ankita Sarkar;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 30; pp. 30:1–30:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:meghana@cse.iitm.ac.in
mailto:prajakta@cmi.ac.in
mailto:keshavranjan@smail.iitm.ac.in
mailto:ankitasarkarcmi@gmail.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 HR with Two-Sided Lower Quotas

to hospitals. We model this by allowing residents to specify an integral lower quota as a
part of the input. Thus, associated with every resident r ∈ R we have q−(r) ∈ {0, 1} and
q+(r) = 1. We denote this as the HR2LQ problem. When all residents have lower quota zero,
it is denoted as the HRLQ problem, which is well investigated in the literature. A matching
M in G is a subset of the edge set E. Our goal for the HR2LQ problem is to compute a
feasible matching that is optimal with respect to the preferences specified by the agents.

▶ Definition 1 (Feasible matching). A feasible matching M in G = (R ∪ H, E) is a subset of
E such that q−(v) ≤ |M(v)| ≤ q+(v) for each v ∈ R∪H, where M(v) is the set of neighbours
of v assigned to v in M .

Before we discuss the notion of optimality, we outline the challenges that lower quotas pose
in the HRLQ problem, a special case of the HR2LQ problem. In the presence of two-sided
preferences but no lower quotas, stability is a well-accepted notion of optimality. Stable
matchings are characterized by the absence of a blocking pair.

▶ Definition 2 (Blocking pair). Given a matching M , a pair (r, h) ∈ E \ M is called a
blocking pair with respect to M if either r is unmatched or r prefers h over its matched
partner M(r) and either h is under-subscribed (|M(h)| < q+(h)) or h prefers r over at least
one of the residents matched to it, that is, some resident in M(h). A matching M is stable
if there is no blocking pair with respect to M .

A stable matching always exists; however, a stable and feasible matching need not exist
in the presence of lower quotas for even the hospitals alone (HRLQ problem). Nasre and
Nimbhorkar [20] used an alternate notion of optimality, namely popularity to circumvent the
problem. Informally, a matching is popular if no majority of agents wish to deviate from
the matching. In [20], the authors show that for every instance of the HRLQ problem, there
exists a feasible matching that is popular amongst the set of feasible matchings, and such
matching can be computed efficiently. In our work, we show that in the presence of lower
quotas on both sides of the bipartition, that is, in the HR2LQ setting, a matching that is
popular amongst the set of feasible matchings exists, and it can be efficiently computed.

The setting consisting of two-sided preferences and lower quotas has received a lot of
attention, e.g. Huang [9] investigate it for stable matchings where there are classifications
along with lower quotas. Fleiner and Kamiyama [6] consider stable matchings with matroid
constraints and lower quotas. Mnich and Schlotter [19] investigate lower quotas on both
sides in the restricted stable marriage setting (one-to-one). Popularity in the HR2LQ setting
has not been investigated so far. The HR2LQ problem is well motivated by several practical
applications. Hospital lower quotas are important for the smooth functioning of hospitals.
Similarly, some residents may have to be matched because of their economic backgrounds or
because they are unallocated from the previous year. Another setting where HR2LQ arise is
the allocation of mentors to students. The mentors need a group of students to carry out
discussion sessions, whereas it may be required that the students whose CGPA falls below a
certain threshold must get a mentor. Another application of HR2LQ is in elective allocation.
While allotting electives to students, it is natural to have a lower quota on electives denoting
the minimum number of students required for the elective to be offered, and the students
who are in their final semester must be assigned an elective.

Notion of popularity. The notion of popularity used here is the same as in [20]. It is based
on votes cast by each vertex to compare two given matchings M and N . A resident r votes
for M if r prefers M(r) over N(r), and vice versa. If M(r) = N(r) then r is indifferent

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:3

between the two matchings, and hence does not cast any vote. If r is unmatched in M ,
we define M(r) = ⊥, and r prefers any hospital in its preference list over ⊥. We denote
voter(M, N) to denote the vote of r between M and N . It takes values 1, −1 or 0 depending
on whether r prefers M(r) over N(r) or vice versa, or is indifferent between them.

For a hospital h, there can be up to q+(h) residents in M(h) and N(h). If h is under-
subscribed in M or N then we assume that the remaining positions of h are matched to ⊥.
In this way, we can always assume that |M(h)| = |N(h)| = q+(h). So the hospital can cast
up to q+(h) votes. The hospital is indifferent between M and N as far as the residents in
M(h) ∩ N(h) are concerned. For the remaining residents, h needs to decide a correspondence
corrh for comparing M(h) \ N(h) to N(h) \ M(h). Then

voteh(M, N, corrh) =
∑

r∈M(h)\N(h)

voteh(r, corrh(r, M, N))

Here corrh(r, M, N) denotes the resident r′ ∈ N(h) \ M(h) corresponding to r, and
voteh(r, corrh(r, M, N)) is 1 if h prefers r over r′, is −1 if h prefers r′ over r, and 0 if
r = r′.

Finally the number of votes that the matching M gets over N is given by

∆(M, N, corr) =
∑
r∈R

voter(M, N) +
∑
h∈H

voteh(M, N, corrh)

▶ Definition 3 (Popular Matching [20]). A matching M is more popular than N (denoted
as M ≻corr N) under corr if ∆(M, N, corr) > 0. A matching M is popular if there is no
matching N such that N ≻corr M for any choice of corr from N to M .

Related work and techniques. The notion of popularity was introduced by Gärdenfors [7]
in 1975 as a majority assignment in the context of a full stable marriage problem. In 2005,
Abraham et al. [1] discussed an efficient algorithm for computing popular matching in
a bipartite graph where only one set of the partition has preferences. Since then popular
matchings have been well-studied and a vast literature [2, 10, 12, 8, 4, 18, 13] on popular
matchings is available.

Huang and Kavitha [10] and subsequently Kavitha [12] studied the popular matchings as
an alternative to stability in the stable marriage setting (where there are no lower quotas).
Their motivation was to obtain matchings larger in size than the stable matching, which are
optimal with respect to the preferences. Subsequently, for matchings in bipartite graphs
with two-sided preferences, popularity has been investigated in the many-to-one setting (HR
problem) [21], many-to-many setting [3] and the many-to-one setting with hospital lower
quotas (HRLQ problem) [20, 18].

Independent of our work, very recently, Kavitha [15] investigates popularity of a matching
in a stable marriage instance when both sides have lower quotas – denoted as critical nodes
in her work. Her approach is similar to ours and finds a maximum size popular matching
amongst the set of critical matchings. A critical matching is one which matches as many
critical nodes as possible. Thus, in her work, it is not required to have the guarantee that the
input instance admits a feasible matching, which is required in our work. We remark that our
algorithm is for the HR2LQ setting which allows lower-quotas (or equivalently critical nodes)
on both sides and non-unit upper-quotas on one side of the bipartition. Our algorithm can
be easily extended to compute a maximum size feasible popular matching.

We comment on the two related but seemingly different ways of computing a popular
matching used in the literature. The first approach used in [12, 18, 3] is what we term as the
modified Gale and Shapley (GS) approach. This involves the first round of proposals using

FSTTCS 2021

30:4 HR with Two-Sided Lower Quotas

the standard GS algorithm, followed by the second round of proposals where unmatched
vertices are allowed to propose with increased priority. This simple and elegant idea has its
origins in Kirlay’s work [17] on computing constant factor approximation to maximum sized
stable matching in the presence of ties in preferences.

The second approach used in [21, 4] is to simulate the modified GS algorithm via reducing
the original instance to a stable matching instance G′. A stable matching in G′ is mapped
to a popular matching in G. We call this the reduction approach. For example, in [20], the
authors use the reduction approach and convert the input HRLQ instance into an HR instance
where the standard GS algorithm is used to compute a matching. The reduced instance
consists of multiple copies of all the hospitals with a positive lower quota. A modified GS
approach on an HRLQ instance would involve giving multiple higher priorities to deficient
hospitals, i.e. the hospitals whose lower quotas are not met. The two different approaches are
indeed equivalent in the HRLQ setting since the reduction essentially simulates the modified
GS algorithm.

Extension to HR2LQ. A natural extension of the modified GS approach for HR2LQ would
be to execute one round of GS algorithm with say hospitals proposing, then letting deficient
hospitals (if any) propose with multiple higher priorities, and then letting deficient residents
(if any) propose with multiple higher priorities. In other words, one side, let’s say H, start
proposing using the standard GS algorithm to compute round 1 matching M1, which is stable.
If a hospital h remains deficient in M1 (|M1(h)| < q−(h)), then h is allowed to propose
with an increased priority. A resident will always accept the proposal from a higher priority
hospital by rejecting a lower priority one. A hospital keeps proposing with increased priority
if it exhausts its preference list and is left deficient at the current priority. The priority of a
hospital is increased (by one at a time) until it becomes non-deficient. It can be shown that
no hospital is deficient in the matching M2 obtained at the end of round 2. But a resident
may still be deficient and hence, a deficient resident r is allowed to propose (possibly with
increased priority) until it becomes non-deficient. In this process, another resident r′ may get
rejected for the first time by a hospital h because h has got a proposal from a higher priority
resident and |M(h)| = q+(h). Now at this point, r′ has two choices either (a) start proposing
from the beginning of its list or (b) propose the hospital just after h in its preference list and
continue. If r′ is such that q−(r′) = 0, then it continues proposing hospitals until either it
gets matched to some hospital or has exhausted its preference list. But if q−(r′) = 1 and r′

has exhausted its preference list without getting any match, then it starts proposing from the
beginning of the list with increased priority. In the end, we get the round 3 matching M3.

Note that in the HRLQ setting, the modified GS approach comprises only round 1 and
round 2 and gives a popular matching. But the example in Figure 1 shows that this approach
in the case of HR2LQ does not yield a popular matching using any of the two choices
mentioned above in round 3.

The round 1 matching computed by H-proposing GS algorithm is M1 = {(h1, ⊥), (h2, ⊥),
(h3, r3), (h4, r1), (h5, r2), (h6, ⊥), (h7, r5), (h8, ⊥)}. Note that the matching M1 is not feas-
ible as the hospitals h1, h2 and h6 are deficient. In round 2, these hospitals increase
their priority to 1 (from 0) and start proposing from the start of the list. In or-
der to remove the deficiency, h1 increases its priority to 2 whereas h2 and h6 got
matched while being at priority level 1. The matching M2 at the end of round 2 is
M2 = {(h2

1, r1), (h1
2, r2), (h3, r3), (h4, ⊥), (h5, ⊥), (h1

6, r5), (h7, ⊥), (h8, ⊥)}. In M2, the res-
ident r2 is deficient and hence round 3 starts.

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:5

[0, 1] r1 : h4 h2 h1

[0, 1] r2 : h5 h2 h6 h1

[1, 1] r3 : h3 h2

[1, 1] r4 : h3

[0, 1] r5 : h7 h6 h8

(a) Preference List of Residents with
Quotas [q−(r), 1].

[1, 1] h1 : r1 r2

[1, 1] h2 : r1 r2 r3

[0, 1] h3 : r3 r4

[0, 1] h4 : r1

[0, 1] h5 : r2

[1, 1] h6 : r2 r5

[0, 1] h7 : r5

[0, 1] h8 : r5

(b) Preference List of Hospitals
with Quotas [q−(h), q+(h)].

Figure 1 Counter-example for the modified GS approach.

In round 3, r3 and r4 try to snatch h3 from each other and they raise their pri-
ority level to 1. The hospital h2 rejects r2 when it receives a proposal from r1

3
and this was the first rejection of r2 in this round. So, following the first choice of
round 3, r2 proposes h5 and got matched to it. This results in the matching M ′

3 =
{(h2

1, r1), (h1
2, r1

3), (h3, r2
4), (h4, ⊥), (h5, r2), (h1

6, r5), (h7, ⊥), (h8, ⊥)}. When we remove the
priority levels we get M ′ = {(h1, r1), (h2, r3), (h3, r4), (h5, r2), (h6, r5)}. If the procedure
follows the second choice of round 3, then r2 proposes to h6 which in turn reject r5 and
then r5 proposes to h8 and get matched to it. Round 3 ends here and it results in the
matching M ′′

3 = {(h2
1, r1), (h1

2, r1
3), (h3, r2

4), (h4, ⊥), (h5, ⊥), (h1
6, r2), (h7, ⊥), (h8, r5)} which

maps to M ′′ = {(h1, r1), (h2, r3), (h3, r4), (h6, r2), (h8, r5)}.
We remark that neither M ′ nor M ′′ is popular as there exists another matching M =

{(h1, r1), (h2, r6), (h3, r4), (h6, r2), (h7, r5)} which is more popular than both.
Although the modified GS approach does not work, a natural extension of the reduction

approach works. Thus we present a reduction from the HR2LQ problem to the HR problem
and show that a stable matching in the reduced HR instance can be translated to a popular
matching in the original instance. Thus the reduction approach works but seems to have no
straightforward analogous modified GS approach. Our correctness proof is inspired by the
one in [3], which uses LP duality to prove the popularity of their matching. They exhibit
a dual assignment as a certificate for the popularity of the matching. Dual certificate for
proving the popularity has been used earlier in the literature [13, 11, 5, 14, 16].

However, the algorithm in [3] uses a modified GS approach and has no lower quotas.
Also, in [3], only one side of the bipartition gets one higher priority. So the dual certificate
consists of a {±1, 0} assignment to all the dual variables. In contrast, our reduction makes
multiple copies of residents and hospitals. As a consequence, exhibiting the dual assignment
is more involved and needs weights linear in the size of the input instance.

Formally, our result is stated below:

▶ Theorem 4. In an HR2LQ instance that admits a feasible matching, there always exists
a matching that is popular amongst all the feasible matchings. Moreover, such a popular
matching can be computed in time polynomial in the size of the input instance.

Organization of the paper. We describe our reduction in Section 2. The feasibility and
popularity proofs appear in Section 3 and Section 4 respectively. Section 5 concludes the
paper.

FSTTCS 2021

30:6 HR with Two-Sided Lower Quotas

2 Reduction

Given an HR2LQ instance G = (H ∪ R, E) we construct an HR instance G′ = (H′ ∪ R′, E′)
as follows. Let µR and µH denote respectively the sum of lower quotas of residents and
hospitals in the instance G. That is, µR =

∑
r∈R q−(r) and µH =

∑
h∈H q−(h). Let Rlq

and Hlq denote the set of residents and set of hospitals with positive lower quota. That is,
Rlq = { r | r ∈ R and q−(r) = 1} and Hlq = { h | h ∈ H and q−(h) > 0}. A resident in Rlq

is called a lower-quota resident and a hospital in Hlq is called lower-quota hospital. Our
instance G′ has the following residents and hospitals:

1. Resident Copies: For every resident r ∈ Rlq, we have µR + 1 copies of r in G′. These
copies are r0, r1, . . . , rµR where rx is called the level-x copy of r. Note that all r ∈ Rlq

have both upper and lower quota equal to one in the HR2LQ instance G. The capacities
in G′ for these copies are: level-0 copy has capacity equal to the upper quota of r and all
other copies have capacity equal to the lower quota of r. That is,

q(rx) = 1 for 0 ≤ x ≤ µR

A resident r /∈ Rlq in G has exactly one copy r0 in G′ and we call it the level-0 copy of
the resident r. The capacity of the level-0 copy in G′ is q(r0) = 1. We denote this set of
copies of the residents as R′

c and call them true residents.
2. Hospital Copies: For every hospital h ∈ Hlq, we have µH + 1 copies of h in G′. These

copies are h0, h1, . . . , hµH where hy is called the level-y copy of h. The capacities in G′

for these copies are: level-0 copy has capacity equal to the upper quota of h and all other
copies have capacity equal to the lower quota of h. That is,

q(hy) = q+(h) if y = 0
= q−(h) if 1 ≤ y ≤ µH

A hospital h /∈ Hlq in G has exactly one copy h0 in G′ and we call it the level-0 copy of
the hospital. The capacity of the level-0 copy in G′ is q(h0) = q+(h). We denote this set
of copies of the hospitals as H′

c and call them true hospitals.
3. Dummy Hospitals: For every r ∈ Rlq we have µR many dummy hospitals. The role of

dummy hospitals is to ensure that in a stable matching in G′ at most, one true hospital
is matched across several copies of a lower-quota resident. We denote the set of dummy
hospitals corresponding to r ∈ Rlq as Dr which is defined as:

Dr = { dy
r | 0 ≤ y < µR }

4. Dummy Residents: For every h ∈ Hlq we have µH sets of dummy residents. As
with dummy hospitals, the role of the dummy residents is to ensure that in any stable
matching in G′, at most q+(h) many true residents are matched across several copies of
the lower-quota hospital. We denote the level-x set of dummy residents corresponding to
a lower-quota hospital h ∈ Hlq as Dx

h. The set is defined as follows:

Dx
h =

{
{dx

h,1, dx
h,2, . . . , dx

h,q+(h)} for x = 0
{dx

h,1, dx
h,2, . . . , dx

h,q−(h)} for 1 ≤ x < µH

We are now ready to define our resident set R′ and hospital set H′ in G′.

R′ = R′
c ∪

⋃
h∈Hlq

0≤x≤µH −1

Dx
h H′ = H′

c ∪
⋃

r∈Rlq

Dr

We now define our preference lists for the residents and the hospitals in G′. For any
vertex v ∈ R ∪ H, let ⟨listv⟩ denote the preference list of v in G. Let ⟨lqlistv⟩ denote the
preference list of v restricted to the lower-quota vertices in its preference list, where the

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:7

relative ordering of the lower-quota vertices is preserved. Finally, for a particular level t, we
denote by ⟨lqlistv⟩t as the list of level-t copies of the lower-quota vertices in the preference
list of v. For example in G if a resident r has its preference list as h1, h2, h3, h4 where h2 and
h4 belong to Hlq, then ⟨listr⟩ = h1, h2, h3, h4 and ⟨lqlistr⟩ = h2, h4. Furthermore say t = 3,
then ⟨lqlistr⟩3 = h3

2, h3
4. We let the symbol ◦ denotes the concatenation of two preference

lists.

1. Preferences of true residents: For a resident r /∈ Rlq, we have exactly one copy r0 in
G′ whose preference list is obtained by concatenating the r’s highest level lower-quota
hospitals, followed by the next highest level lower-quota hospitals and so on finally
followed by all level-0 hospitals in its preference list. Formally, the list for r0 is defined
below.

r0 : ⟨lqlistr⟩µH ◦ ⟨lqlistr⟩µH −1 ◦ . . . ◦ ⟨lqlistr⟩1 ◦ ⟨listr⟩0

Recall that, for a resident r ∈ Rlq we have µR + 1 many copies of r in G′. Broadly,
the preference list of these copies are obtained by prefixing and suffixing dummies to
the preference list of r0 shown above. Hence we find it convenient to use the notation
⟨clonedlistr⟩ to denote the following:

⟨clonedlistr⟩ = ⟨lqlistr⟩µH ◦ ⟨lqlistr⟩µH −1 ◦ . . . ◦ ⟨lqlistr⟩1 ◦ ⟨listr⟩0

The preference lists of the µR + 1 copies of r can be defined using the ⟨clonedlistr⟩ as
given below.

r0 : ⟨clonedlistr⟩ ◦ d0
r

r1 : d0
r ◦ ⟨clonedlistr⟩ ◦ d1

r

...
rµR−1 : dµR−2

r ◦ ⟨clonedlistr⟩ ◦ dµR−1
r

rµR : dµR−1
r ◦ ⟨clonedlistr⟩

2. Preferences of true hospitals: For a hospital h /∈ Hlq, we have exactly one copy
h0 in G′ whose preference list is obtained by concatenating the hospital’s highest level
lower-quota residents, followed by the next highest level lower-quota residents and so on
finally followed by all level-0 residents in its preference list. Formally, the list for h0 is
defined below.

h0 : ⟨lqlisth⟩µR ◦ ⟨lqlisth⟩µR−1 ◦ . . . ◦ ⟨lqlisth⟩1 ◦ ⟨listh⟩0

As with lower-quota residents, we have µH + 1 many copies of a lower-quota hospitals in
G′. We will use the notation ⟨clonedlisth⟩ to denote the following:

⟨clonedlisth⟩ = ⟨lqlisth⟩µR ◦ ⟨lqlisth⟩µR−1 ◦ . . . ◦ ⟨lqlisth⟩1 ◦ ⟨listh⟩0

The preference lists of the µH + 1 copies of h can be defined using the ⟨clonedlisth⟩ as
given below. Note that for a level-y copy hy of h we have q(hy) many leading dummies,
followed by the cloned list of h followed by q(hy) many trailing dummies. The leading
dummies for hy are the trailing dummies for hy−1 and the the trailing dummies for hy

are leading dummies for hy+1. Recall that q(h0) = q+(h) and q(h1) = q−(h) and hence
q−(h) trailing dummies of h0 are the leading dummies of h1. Thus, k in h1’s preference
list denote the value k = q+(h) − q−(h) + 1.

h0 : ⟨clonedlisth⟩ ◦ d0
h,1, . . . , d0

h,q+(h)

h1 : d0
h,k, . . . , d0

h,q+(h) ◦ ⟨clonedlisth⟩ ◦ d1
h,1, . . . , d1

h,q−(h)

h2 : d1
h,1, . . . , d1

h,q−(h) ◦ ⟨clonedlisth⟩ ◦ d2
h,1, . . . , d2

h,q−(h)
...

hµH −1 : dµH −2
h,1 , . . . , dµH −2

h,q−(h) ◦ ⟨clonedlisth⟩ ◦ dµH −1
h,1 , . . . , dµH −1

h,q−(h)

hµH : dµH −1
h,1 , . . . , dµH −1

h,q−(h) ◦ ⟨clonedlisth⟩

FSTTCS 2021

30:8 HR with Two-Sided Lower Quotas

3. Preferences of dummy hospitals: All dummy hospitals have a preference list of length
two. The preference list of a dummy hospital dy

r for a lower quota resident r is:
dy

r : ry, ry+1

4. Preferences of dummy residents: We have several sets of dummy residents corres-
ponding to a lower-quota hospital h ∈ Hlq. The dummy residents, except for the first
k − 1 many level-0 dummy residents (k = q+(h) − q−(h) + 1) have a preference list of
length two. The preference lists of the dummy residents is given below.

dx
h,i : h0 x = 0, i ∈ {1, 2, . . . , k − 1}

: h0, h1 x = 0, i ∈ {k, . . . , q+(h)}
: hx, hx+1 x ∈ {1, 2, . . . , µH − 1}

The preference lists of dummy residents and dummy hospitals ensures that a stable
matching in G′ naturally maps to a popular matching in the original instance G.

This completes the description of our reduced instance G′. We illustrate this reduction in
Appendix A.1 using an example, where we convert the HR2LQ instance of Figure 1 to an
HR instance. In the next section, we describe the outline of our algorithm and show that if
the given HR2LQ instance admits a feasible matching, then the output of our algorithm is a
feasible matching.

3 Our algorithm and its feasibility

Given our reduction from an HR2LQ instance G to an HR instance G′, our algorithm to
compute a popular matching M is straightforward. We simply run the standard Gale-Shapley
algorithm on G′ and compute a stable matching Ms. We will first prove some useful properties
of the stable matching Ms which allows a natural way to obtain a matching M in G.

We call a vertex under-subscribed in a matching M if |M(v)| < q+(v). Note that for
residents, under-subscribed is the same as unmatched.

▶ Definition 5 (Active vertex). A hospital hy is active in Ms if hy is matched to at least
one true resident in Ms. Otherwise, we call hy inactive in which case it is matched to all
dummy residents. A resident rx is active in Ms if rx is matched to a true hospital in Ms,
else rx is inactive.

▶ Definition 6 (True edges). An edge e ∈ E′ is called a true edge if both the end points are
true vertices that is e = (rx, hy) where rx ∈ R′

c and hy ∈ H′
c.

Next, we describe some crucial properties of a stable matching Ms in the HR instance G′.
Our reduction, more specifically the placement of the set of dummy residents in preference
lists, ensures that a hospital h is not matched to more than q+(h) many true residents across
all the level copies h0, . . . , hµH in Ms. As Ms is a stable matching, at most two consecutive
level copies hy and hy+1 of h can be matched to true residents in Ms, otherwise there exists
a blocking pair w.r.t. Ms. All lower-level copies (less than y) are completely matched to
the respective trailing dummy residents, and all higher-level copies (greater than y + 1) are
completely matched to the respective leading dummy residents. Moreover, only the highest
level copy of a hospital can remain under-subscribed, and if it happens then, none of its
lower-level copies is matched to a true resident. Similar properties hold for resident copies as
well. That is, at most, one level copy of a resident is matched to a true hospital, and all
other level copies are matched to dummy hospitals in any stable matching. Moreover, if a
level-x copy of a resident is matched to some true hospital, then all its lower-level copies are
matched to the respective trailing dummy hospital, and the higher level copies are matched
to the respective leading dummy hospital. We formally list these properties of a stable
matching of G′ in Lemma 7. The proof appears in Appendix A.2.

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:9

▶ Lemma 7. The stable matching Ms in G′ satisfies the following properties:
1. For any resident r ∈ R, Ms matches at most one true hospital across all the level copies

of r in G′. For any h ∈ H, Ms matches at most q+(h) true residents across all the level
copies of h in G′.

2. The matching Ms leaves only the highest level copy of the vertex (resident or hospital)
under-subscribed. In case of hospitals, for h ∈ Hlq, this implies that only hµH is possibly
under-subscribed in Ms. For a non lower-quota hospital h, the level-0 copy which is the
highest level copy may be under-subscribed in Ms. Similar claims hold true for residents.

3. If rx is active in Ms then,
a. Every resident ri where 0 ≤ i ≤ x − 1 is inactive in Ms and matched to its trailing

dummy hospital di
r.

b. Every resident ri where x + 1 ≤ i ≤ µR is inactive in Ms and matched to its leading
dummy hospital di−1

r .
4. If hy is active in Ms then

a. The hospital hy−1 must be matched to at least one dummy resident among its trailing
dummies, that is, in the set Dy−1

h .
b. Every hospital hj where 0 ≤ j ≤ y − 2 is inactive in Ms and fully-subscribed with its

trailing dummies, that is residents in Dj
h

c. Every hospital hj where y + 2 ≤ j ≤ µH is inactive in Ms and fully-subscribed with its
leading dummies, that is, residents in Dj−1

h .
5. For any resident at most one of its level copy is active in Ms. For any hospital h at most

two consecutive level copies are active in Ms.
6. If a level y, y > 0 copy of a hospital h is active in Ms, then h is matched to at most q−(h)

true residents in Ms. If the highest level copy hµH of a hospital h is under-subscribed in
Ms then none of its level-j copies for j < µH are active in Ms.

Lemma 8 below states that a stable matching in G′ cannot contain an edge whose both the
endpoints are active at higher levels. This allows us to define a simple map function that
maps the stable matching Ms in G′ to a feasible popular matching M in G.

▶ Lemma 8. For every true edge (rx, hy) in G′, if rx and hy are active in Ms, then at least
one of x and y must be 0.

Proof. For the sake of contradiction, let us assume that there is an edge (rx, hy) such
that x, y > 0 and both are active in Ms. Since, rx is matched to a true hospital, rx−1 must
get matched to its last dummy hospital dx−1

r by Part 3a in Lemma 7. So, rx−1 prefers hy−1

over Ms(rx−1) = dx−1
r . Similarly, since hy is active in Ms, hy−1 must be matched to at least

one of the trailing dummies in Ms say, d ∈ Dy−1
h . Thus, hy−1 prefers rx−1 over one of its

matched partner d. Hence, (rx−1, hy−1) is a blocking pair w.r.t. a stable matching Ms. ◀

From the above discussion, a mapping function that maps Ms of G′ to M in G is straight
forward. For each edge (rx, h0) or (r0, hy) in Ms, we include the edge (r, h) in M . We prove
that the mapping M is feasible for the original HR2LQ instance G by combining the two
claims given in Lemma 9. We give the proofs of these two feasibility claims in Appendix A.2.

▶ Lemma 9. Let M be the map of the stable matching Ms in G′, then following holds true:
1. If G admits a resident-feasible matching, then M is resident-feasible in G.
2. If G admits a hospital-feasible matching, then M is hospital-feasible for G.

FSTTCS 2021

30:10 HR with Two-Sided Lower Quotas

4 Popularity of our matching

Given a feasible matching N in the HR2LQ instance G = (R ∪ H, E) we construct a weighted
bipartite graph G̃N along with a matching N∗. The weight of an edge in G̃N is the sum of the
votes by the end vertices of that edge when compared to the matching N , and the matching
N∗ is a one-to-one matching corresponding to N . The construction of the matching N∗ is in
such a way that it matches all the clones of residents and hospitals in R ∪ H. We call N∗ an
(R ∪ H̃)- perfect matching (where H̃ is set of all the clones of hospitals). In other words, the
weight of an edge represents the sum of the votes by end vertices and the (R ∪ H̃)-perfect
matching N∗ has weight 0. Hence, to prove that N is popular, it suffices to show that the
maximum weight (R ∪ H̃)-perfect matching in G̃N has weight at most zero. For this, we
write a maximum weight matching LP for G̃N and exhibit a feasible dual assignment with
value zero. This is inspired from [3]; however, as mentioned earlier, our dual assignment is
considerably involved given that we have multiple levels for both residents and hospitals.

4.1 The graph G̃N corresponding to a feasible matching N

Now we describe the construction of the weighted graph G̃N corresponding to any feasible
matching N in G, and the one-to-one matching N∗ using the matching N .
1. Vertex set of G̃N : The graph G̃N has the vertex set as R ∪ H̃ ∪ L̃. The set R denotes

the same set of residents as in G. The set H̃ denotes clones of the original hospitals
where every hospital in H has upper quota many clones. That is,

H̃ = { hj | h ∈ H and 1 ≤ j ≤ q+(h)}
every h ∈ H has q+(h) many clones in H̃. Having these upper quota many clones
allows us to convert the many-to-one matching N to a one-to-one matching N∗. Finally,
the set L̃ = L̃r ∪ L̃h denotes the set of (dummy) last-resort vertices. For every non
lower-quota resident r we have a last resort hospital ℓr ∈ L̃r. For each vertex h ∈ H let
d(h) = q+(h) − q−(h) denote the difference between the upper quota and lower quota of
h. Corresponding to h we have d(h) many last-resort residents in L̃h. That is,

L̃r = { ℓr | r ∈ R and q−(r) = 0}
L̃h = { ℓhk

| h ∈ H and 1 ≤ k ≤ d(h)}
Thus a lower-quota resident and a hospital with a lower quota equal to its upper quota do
not have any last-resort vertices corresponding to it. These last-resort vertices are used
to convert N to an (R ∪ H̃)-perfect matching in G̃N . We call these vertices last-resorts
to avoid confusion with the dummies used in the reduction in Section 2.

2. The matching N∗: Given the feasible (many-to-one) matching N , we construct an
(R∪H̃)-perfect one-to-one matching N∗. For every edge (r, h) ∈ N we select an unselected
clone of h say hj and add the edge (r, hj) to N∗. For a resident r ∈ R which is unmatched
in N , we add the edge (r, ℓr) to N∗. For any h ∈ H which is under-subscribed in N ,
that is |N(h)| < q+(h), for every unmatched clone of h, say hj we match it to a unique
last-resort say ℓhj

and hence add the edge (hj , ℓhj
) to N∗. Thus our matching N∗ is a

one-to-one and (R ∪ H̃)-perfect matching.
3. The unmatched edges EU in G̃N : For every edge (r, h) ∈ E \ N , we add q+(h) many

edges to EU . That is, we add to the edge set the edges (r, hj) for every clone hj of h. We
also have unmatched edges from clones of hospitals to the last-resorts corresponding to the
hospitals. We have two cases depending on whether |N(h)| > q−(h) or |N(h)| = q−(h).
This construction is important for our dual feasible setting in the next section.

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:11

For a hospital h where |N(h)| > q−(h) we have a complete bipartite graph between
the q+(h) many clones of h and all the last-resort vertices corresponding to h. Recall
that we have d(h) = q+(h) − q−(h) many last resorts corresponding to h. Thus we
add to EU edges of the form (ℓhk

, hj) where 1 ≤ k ≤ d(h) and 1 ≤ j ≤ q+(h).
For a hospital h where |N(h)| = q−(h), we have a complete bipartite graph between
the set of clones of h matched to last-resort vertices and all the last resort vertices
corresponding to h. Thus we add to EU edges of the form (ℓhk

, hj) where 1 ≤ k ≤ d(h)
and hj is matched to a last-resort in the above construction.

4. The edge set Ẽ and their weights: The edge set Ẽ = N∗ ∪ EU . Every edge
of N∗ is assigned a weight 0 and every edge (r, hj) of EU is assigned a weight =
voter(h, N∗(r)) + voteh(r, N∗(hj)) where r ∈ R and hj ∈ H̃. Every edge of the form
(r, ℓr) of EU is assigned a weight = voter(ℓr, N∗(r)) where r ∈ R and ℓr ∈ L̃r. Similarly,
every edge of the form (hj , ℓhk

) of EU is assigned a weight = voteh(ℓhk
, N∗(hj)) where

h ∈ H̃ and ℓhk
∈ L̃h.

This completes the description of the weighted bipartite graph G̃N . Now we use The-
orem 10, which gives the sufficient condition for the matching N to be popular, to prove the
popularity of the matching M computed by our algorithm. We will construct the matching
M∗ and the graph G̃M corresponding to the matching M . Our goal is to show that every
(R ∪ H̃)-perfect matching in G̃M has weight at most 0.

▶ Theorem 10. Let N be a feasible matching in G such that every (R ∪ H̃)-perfect matching
in G̃N has weight at most 0 then N is popular.

Proof. For any feasible matching T in G, we show a corresponding matching T ∗ in G̃N

such that T ∗ is an (R ∪ H̃)-perfect matching and wt(T ∗) = ∆(T, N, corr), where wt(T ∗)
denotes the sum of the weights of the edges in T ∗. We construct T ∗ as described next.
We find appropriate index j ∈ {1, ..., q+(h)} corresponding to each edge (r, h) ∈ T , where
(r, hj) ∈ Ẽ ∩ T ∗. For an unmatched resident r and an under-subscribed hospital h in T , we
add (r, ℓr) and (hk, ℓhj) edges in T ∗ to make T ∗ an (R ∪ H̃)-perfect matching.

(i) For each edge e = (r, h) ∈ N ∩ T : if (r, hj) ∈ N∗ then we add the edge (r, hj) to T ∗.
(ii) For every edge (r, h) ∈ T \ N , we need to decide the index j such that (r, hj) ∈

T ∗. While evaluating the votes, h uses the correspondence function corrh. (a) If
corrh(r, T, N) = r′ then the matching N∗ must contain an edge (r′, hj) for some j. We
include the edge (r, hj) in T ∗. (b) If corrh(r, T, N) = ⊥ then we include (r, hj) in T ∗

for some j such that hj is unmatched so far in T ∗ and is not adjacent to any of the
corresponding last resorts. If there is no such hj then we arbitrarily choose a clone hi

such that (hi, ℓhi
) ∈ N∗ and include (hi, ℓhi

) in T ∗.
(iii) For any vertex vk ∈ R ∪ H̃ that is left unmatched in the above step, we select an

arbitrary but distinct j for 1 ≤ j ≤ q+(v) − q−(v) and include the edge (vk, ℓvk
) in T ∗.

Since T is a feasible matching in G, all the clones of every hospital h ∈ H which are not
adjacent to last resort vertices must get matched to a resident r ∈ R in T ∗. Other clones
of h get matched to either a resident or to the last resort. The graph G̃N contains exactly
q+(v) − q−(v) many last resorts for each vertex v and hence all the copies of v which are
not matched to a true vertex in step (i) or (ii) above must get matched to one of these last
resorts in step (iii). So, all the vertices in R ∪ H̃ are matched in T ∗. It is also easy to see
that T ∗ is a one-to-one matching in G̃N .

Next, we compute the weight of T ∗ and show that it is ∆(T, N, corr). Since every
(R ∪ H̃)-perfect matching in G̃N has weight at most 0, ∆(T, N, corr) = wt(T ∗) ≤ 0. This
says that there is no feasible matching T which is more popular than N . Hence N is popular
matching among all the feasible matchings.

FSTTCS 2021

30:12 HR with Two-Sided Lower Quotas

R0

level-0
residents

...

R000

R01+2

R02+4
...

R0µH+2µH

R1

higher level
residents

...

R11−2

R12−4

...

R1µR−2µR

H̃1

higher level
hospitals...

H̃11 −2

H̃12 −4
...

H̃1µH
−2µH

H̃0

level-0
hospitals

...

H̃00 0

H̃01 +2
H̃02 +4

H̃0µR

...

+2µR

Figure 2 The graph G̃M corresponding to our feasible matching M . The bold edges represent
the edges in M∗. The values outside the ellipse denote the dual setting and are useful in Section 4.4.

wt(T ∗) =
∑

e∈T ∗

wt(e) =
∑

(r,hj)∈T ∗

wt(r, hj) +
∑

(vk,ℓvk
)∈T ∗

wt(vk, ℓvk
)

=
∑

(r,hj)∈T ∗

(voter(T ∗(r), N∗(r)) + votehj
(T ∗(hj), N∗(hj)))

+
∑

(vk,ℓvk
)∈T ∗

votevk
(ℓvk

, N∗(vk))

=
∑
r∈R

voter(T ∗(r), N∗(r)) +
∑
h∈H

q+(h)∑
i=1

voteh(T ∗(hi), N∗(hi))

=
∑
r∈R

voter(T, N) +
∑
h∈H

voteh(T, N, corrh)

= ∆(T, N, corr)

Thus it follows that ∆(T, N, corr) = wt(T ∗) which is at most 0 and hence N is popular. ◀

4.2 The graph G̃M corresponding to M obtained from Ms

For the HR2LQ instance G, consider the feasible matching M obtained from the stable
matching Ms in the reduced HR instance G′. We now use the construction described in
Section 4.1 to obtain the graph G̃M and the one-to-one (R ∪ H̃)-perfect matching M∗. Since
M was obtained from the stable matching Ms in G′, an edge (r, h) ∈ M corresponds to an
edge (rx, hy) ∈ Ms where rx and hy are level-x and level-y copies of the respective vertices.
Further, by Lemma 8 we know that at least one of x or y is zero. We use this property
crucially to partition the vertex set of G̃M . We partition the vertices as described below.
Figure 2 shows the high level partition of the vertex set as R0 ∪R1 ∪H̃0 ∪H̃1. Each partition
is further refined, for instance R0 is partitioned as R00 ∪ R01 ∪ . . . ∪ R0µH

. Recall the vertex

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:13

set of G̃M which is given by R∪H̃∪L̃h ∪L̃r. We partition the residents (including last-resort
residents) R ∪ L̃h as R0 ∪ R1 and the hospitals (including last-resort hospitals) H̃ ∪ L̃r as
H̃0 ∪ H̃1. Note that the edges of M∗ are obtained from the edges of M and the matching M

is obtained from the stable matching Ms in G′. We use the edges of Ms, in particular, the
levels of the end points of the matched edges, to partition the vertices of G̃M . The vertices
of G̃M includes the upper quota many clones for every hospital and the last-resort vertices.

Partition of vertices of G̃M . Here, we define the sets R0x, R1x, H0y, H1y based on the
edges of Ms.

Let (rx, hy) be an edge in Ms. We consider three cases based on the values of x and y.
Note that the case x > 0, y > 0 does not arise due to Lemma 8.

1. If x = 0 and y > 0, then add r to R0y and add M∗(r) to H̃1y. We would like
to emphasize that we are using M∗(r) and not Ms(r). Since M∗ is a one-to-one
(R ∪ H̃)-perfect matching, M∗(v) is a uniquely defined vertex of G̃M for any vertex v

of G̃M .
2. If x > 0 and y = 0 then add r to R1x and add M∗(r) to H̃0x.
3. If x = 0 and y = 0 then add r to R00 and add M∗(r) to H̃00.
For any resident r ∈ R that is unmatched in Ms, we add r to R00 and M∗(r) to H00.
Note that M∗(r) is a last-resort hospital.
For any hospital h ∈ H that is under-subscribed in Ms, let hj be a clone of h which is
matched to a last-resort in M∗. We add hj to H00 and M∗(hj) to R00.
Finally, any last-resort resident not yet added to any partition is added to R00. Similarly
any last-resort hospital not yet added to any partition is added to H00.

We note that the set R0 =
⋃µH

x=1 R0x. The sets R1, H0, H1 are defined similarly. Figure 2
shows the graph G̃M . It is convenient to have the sets R0 and H1 drawn on the lower part
and the sets R1 and H0 drawn in the upper part. Furthermore, inside R0 we have the
sets R01, R02, . . . , R0µH

arranged from top to bottom. Similarly, we arrange the sets inside
R1, H0, H1 as shown in Figure 2. We now state the properties of the edges of the graph
viewed via the lens of the partition of the vertices in Lemma 11 and Lemma 12. For an edge
(u, v) where u ∈ Rax and v ∈ H̃by we say the edge is of the form Rax × H̃by.

▶ Lemma 11. The graph G̃M does not contain an edge of the form:
1. R1 × H̃1. That is, there is no edge in G̃M from the top right set of residents to the lower

left set of hospitals.
2. R1x × H̃0y where y < x − 1. That is, in the top set of residents and hospitals, there is no

steep downward edge in G̃M .
3. R0x × H̃1y for y > x + 1. That is, in the bottom set of residents and hospitals there is no

steep downward edge in G̃M .

Proof.
Proof of 1: Proof is immediate from Lemma 8. Because, if there exists an edge (r, h)

in G such that r ∈ R1 and hj ∈ H̃1 then in G′, there must exist an edge (rx, hy) with
x, y > 0. But then the edge (rx, hy) blocks Ms as they both prefer each other over some
of their matched partners.
Proof of 2: We prove this by contradiction. Suppose there exist an edge e = (r, hj) such

that r ∈ R1x and hj ∈ H̃0y for y ≤ x − 2. This means rx is matched to some h′0 and one
of the matched partner of h0 is some resident r′y. Now, consider the resident rx−1. This
resident must be matched to its trailing dummy hospital and hence prefers h0 over its

FSTTCS 2021

30:14 HR with Two-Sided Lower Quotas

matched partner. Any hospital prefers higher level resident over any lower level resident
and hence h0 prefers rx−1 over r′y. Thus, (rx−1, h0) blocks the stable matching Ms. This
is a contradiction.
Proof of 3: Proof is the same as the proof of 2 above. ◀

In Figure 2, the edges not present in G̃M are the dashed edges marked with a red cross
inside a circle. We now state the properties of the weights on the edges of G̃M . Note that
the weight of an edge of G̃M denotes the sum of the votes of the end-points when compared
to the matching M . Thus for e ∈ Ẽ, we have −2 ≤ wt(e) ≤ 2.

▶ Lemma 12. Let e = (r, hj) be any edge in G̃M such that r ∈ R and hj ∈ H̃. Then,
1. If e ∈ R1x × H̃0(x−1) then wt(e) = −2.
2. If e ∈ R1x × H̃0x then wt(e) ∈ {−2, 0}
3. If e ∈ R1x × H̃0y for y > x then wt(e) ≤ 2.
4. If e ∈ R0 × H̃0 then wt(e) ≤ 2. Moreover, if e ∈ R00 × H̃00 then wt(e) ≤ 0.
5. If e ∈ R0x × H̃1y for y < x then wt(e) ≤ 2.
6. If e ∈ R0x × H̃1x then wt(e) = 0 or −2.
7. If e ∈ R0x × H̃1(x+1) then wt(e) = −2.

Proof.
Proof of 1: The weight wt(e) for an edge e = (r, hj) is defined as wt(r, hj) =

voter(hj , M∗(r))+votehj
(r, M∗(hj)). So, our goal here is to show that voter(hj , M∗(r)) =

votehj
(r, M∗(hj)) = −1. Assume for the sake of contradiction that voter(hj , M∗(r)) ̸= −1

and votehj
(r, M∗(hj)) ̸= −1. Hence, we have three other possibilities [(+1,+1), (+1,-1)

and (-1,+1)] and all these three are covered in below two cases: (a) voter(hj , M∗(r)) = 1
and (b) voter(hj , M∗(r)) = −1. Suppose r ∈ R1x and hj ∈ H̃0(x−1). Consider the same
edge in the reduced graph G′. This is an edge between rx and h0, and h0 is matched
with some resident r′(x−1). First, we show that voter(hj , M∗(r)) ̸= 1 which implies
voter(hj , M∗(r)) = −1. If voter(hj , M∗(r)) = 1 then (rx, h0) is a blocking edge w.r.t.
the stable matching Ms in G′ because h0 always prefers higher level resident rx over the
lower level resident r′(x−1), one of its matched partner. Now, as voter(hj , M∗(r)) = −1,
the only other possibility left is voter(hj , M∗(r)) = −1 and votehj

(r, M∗(hj)) = +1 but
then consider the vertex rx−1 in G′, this vertex must be matched to its trailing dummy
and hence prefers h0 more. As h prefers r over its matched partner r′, h0 must prefer
rx−1 over r′(x−1). Again, we have a blocking edge (rx−1, h0) w.r.t. the stable matching
Ms in G′. Hence, wt(e) = −2.
Proof of 2: If e ∈ R1x × H̃0x then wt(e) cannot be +2, otherwise the same edge in G′

will be a blocking edge w.r.t. Ms. Hence, wt(e) can only be −2 or 0.
Proof of 3: The maximum possible weight for any e is 2.
Proof of 4: The largest possible weight wt(e) is +2. If e ∈ R00 × H̃00 and wt(e) = 2

then the same edge in G′ blocks Ms.
Proofs of 5, 6 and 7 follow from the earlier claims. ◀

4.3 Linear Program and its Dual
Given the weighted graph G̃M we use the standard linear program (LP) to compute a
maximum weight (R ∪ H̃)-perfect matching in G̃M . Recall that every edge e has a weight
associated with it which denotes the sum of the votes of the endpoints of the edge with
respect to the matching M . The LP and its dual (dual-LP) are given below. For the (primal)
LP we have a variable xe for every edge in Ẽ. We let δ(v) denote the set of edges incident
on the vertex v in the graph G̃M .

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:15

LP: max
∑

e∈Ẽ

wt(e) · xe

subject to:∑
e∈δ(v)

xe = 1 ∀v ∈ R ∪ H̃

∑
e∈δ(ℓhk

)

xe ≤ 1 ∀ℓhk
∈ L̃h

xe ≥ 0 ∀e ∈ Ẽ

We obtain the dual of the above LP by associating a variable αv for every v ∈ R ∪ H̃ ∪ L̃.

dual-LP: min
∑

r∈R
αr +

∑
hj∈H̃

αhj
+

∑
ℓhk

∈L̃h

αℓhk

subject to:
αr + αhj

≥ wt(r, hj) ∀(r, hj) ∈ Ẽ where r ∈ R, hj ∈ H̃ (1)
αℓhk

+ αhj
≥ wt(ℓhk

, hj) ∀(ℓhk
, hj) ∈ Ẽ where ℓhk

∈ L̃h, hj ∈ H̃ (2)
αr ≥ wt(r, ℓr) ∀r ∈ R and q−(r) = 0 (3)

αℓhk
≥ 0 ∀ℓhk

∈ L̃h (4)

4.4 Dual Assignment and its correctness
In this section we present an assignment of values to the dual variables of the dual-LP and
prove that it is feasible as well as the sum of the dual values is zero. The dual assignment is
shown in Figure 2 in blue.

Set αr = +2x for all r ∈ R0x where 0 ≤ x ≤ µH .
Set αhj

= −2y for all hj ∈ H̃1y where 1 ≤ y ≤ µH .
Set αr = −2x for all r ∈ R1x where 1 ≤ x ≤ µR.
Set αhj

= +2y for all hj ∈ H̃0q where 0 ≤ y ≤ µR.
Set αℓhk

= 0 for the last resorts corresponding to a hospital h ∈ H are 0.

▶ Lemma 13. The above dual assignment is feasible, and the sum of the dual values is zero.

Proof. We prove that the dual assignment satisfies all (1), (2), (3), (4) of the dual LP. Eq
(4) holds because the last resorts corresponding to a hospital are assigned α-values 0. It is
clear from the partition of the vertices of R ∪ H̃ that all the non-lower quota residents are
only in R0. The α-values for all such residents are non-negative. Moreover, the wt(r, ℓr) for
a non lower-quota resident is at most 0. This implies that all the non-lower-quota residents
satisfy the Eq (3). Recall that there is no last resort corresponding to a lower-quota resident.

Next, we show that our dual assignment satisfies Eq (2). Since, wt(ℓhk
, hj) is at most 0,

it is sufficient to show that the LHS of the second inequality αℓhk
+ αhj

is at least 0. From
the partition of the vertices into subsets, it is easy to see that no non lower-quota copy of a
hospital is in H̃1 and, hence no vertex in H̃1 is connected to the corresponding last resorts.
This implies that all the copies (of hospitals) which are connected to corresponding last
resorts are in H̃0 and they are assigned α-value at least 0. Since αℓhk

= 0, the LHS of the
second inequality is at least 0.

Now, to show that the first inequality of the dual LP holds true for the above assignments,
we use the Lemma 11 and Lemma 12.

FSTTCS 2021

30:16 HR with Two-Sided Lower Quotas

Lemma 11 excludes all the edges which can not be there in G̃M .
Lemma 12(1) states that for every edge e ∈ R1x × H̃0(x−1), we have wt(e) = −2. As per
our dual assignment αr + αhj

= −2x + 2(x − 1) = −2 ≥ wt(e).
Lemma 12(2) states that for every edge e ∈ R1x × H̃0x, we have wt(e) = −2 or 0. As per
our dual assignment αr + αhj = −2x + 2x = 0 ≥ wt(e).
Lemma 12(3) states that for every edge e ∈ R1x × H̃0y such that y > x, we have wt(e) is
at most 2. As per our dual assignment αr + αhj

= −2x + 2y ≥ 2 ≥ wt(e).
Lemma 12(4) states that (a) for every edge e ∈ R00 × H̃00, we have wt(e) ≤ 0. As per
our dual assignment αr + αhj

= 0 ≥ wt(e). (b) for all other edges e ∈ R0 × H̃0, we have
wt(e) ≤ 2. Our dual assignment ensures that αr + αhj

≥ 2 ≥ wt(e).
Lemma 12(5) states that for every edge e ∈ R0x × H̃1y for y < x, we have wt(e) ≤ 2.
Our dual assignment ensures that αr + αhj

= 2x − 2y ≥ 2 ≥ wt(e).
Lemma 12(6) states that for every edge e ∈ R0x × H̃1x, we have wt(e) ≤ 0. As per our
dual assignment αr + αhj

= 2x − 2x = 0 ≥ wt(e).
Lemma 12(7) states that for every edge e ∈ R0x × H̃1(x+1), we have wt(e) = −2. In this
case also, αr + αhj

= 2x − 2(x + 1) = −2 ≥ wt(e).
Hence, all the edges of Ẽ satisfy inequality (1). As per our assignment, all the matched
edges (r, hj) has αr + αhj

= 0, and αr = 0 for all the residents r matched to last resorts and
αhj = 0 for all the clones hj of hospital h such that hj are matched to last resorts. Hence it
follows that

∑
v∈R∪H̃ αv = 0. ◀

Lemma 13 and the weak duality theorem together implies that the optimal value of the
primal LP is at most 0. That is, every matching in G̃M that matches all vertices in R ∪ H̃
has weight at most 0. Thus, by using Theorem 10, we establish the main result of this paper
stated in Theorem 4.

5 Discussion

In this paper, we addressed the problem of computing a popular, feasible matching in the
many-to-one setting when both sides are having lower quotas. This approach can suitably
be modified to compute a maximum size popular feasible matching. We comment on the
natural generalizations of our problem as follows:

Many-to-many setting with one sided lower-quotas: We call this setting as the
student course allocation problem with lower quotas for courses (SCLQ problem). The
simple modification of our reduction presented in the paper works for the SCLQ setting.
Many-to-many setting with two-sided lower-quotas: We denote this as the SC2LQ
problem. For the SC2LQ setting, there are non-trivial challenges in extending our
reduction. These are posed by the presence of capacities as well as lower quotas on both
the sides of the bipartition. We remark that these difficulties do not arise in the SCLQ
setting where only one side has lower quotas as well as in [3] there are no lower quotas on
either side of the bipartition.

References
1 David J Abraham, Robert W Irving, Telikepalli Kavitha, and Kurt Mehlhorn. Popular

matchings. SIAM Journal on Computing, 37(4):1030–1045, 2007.
2 Péter Biró, Robert W Irving, and David F Manlove. Popular matchings in the marriage

and roommates problems. In International Conference on Algorithms and Complexity, pages
97–108. Springer, 2010.

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:17

3 Florian Brandl and Telikepalli Kavitha. Two problems in max-size popular matchings. Al-
gorithmica, 81(7):2738–2764, 2019.

4 Ágnes Cseh and Telikepalli Kavitha. Popular edges and dominant matchings. Mathematical
Programming, 172(1):209–229, 2018.

5 Yuri Faenza and Telikepalli Kavitha. Quasi-popular matchings, optimality, and extended
formulations. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 325–344. SIAM, 2020.

6 Tamás Fleiner and Naoyuki Kamiyama. A matroid approach to stable matchings with lower
quotas. Math. Oper. Res., 41(2):734–744, 2016. doi:10.1287/moor.2015.0751.

7 Peter Gärdenfors. Match making: assignments based on bilateral preferences. Behavioral
Science, 20(3):166–173, 1975.

8 Mizuki Hirakawa, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. On the structure
of popular matchings in the stable marriage problem-who can join a popular matching. In the
3rd International Workshop on Matching under Preferences (MATCH-UP), 2015.

9 Chien-Chung Huang. Classified stable matching. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pages 1235–1253, 2010. doi:
10.1137/1.9781611973075.99.

10 Chien-Chung Huang and Telikepalli Kavitha. Popular matchings in the stable marriage
problem. Information and Computation, 222:180–194, 2013.

11 Chien-Chung Huang and Telikepalli Kavitha. Popularity, mixed matchings, and self-duality.
Mathematics of Operations Research, 2021.

12 Telikepalli Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal
on Computing, 43(1):52–71, 2014.

13 Telikepalli Kavitha. Popular half-integral matchings. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

14 Telikepalli Kavitha. Popular matchings with one-sided bias. In 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020.

15 Telikepalli Kavitha. Matchings, critical nodes, and popular solutions. In 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2021 (To Appear), 2021.

16 Telikepalli Kavitha. Maximum Matchings and Popularity. In 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), volume 198, pages 85:1–85:21,
2021. doi:10.4230/LIPIcs.ICALP.2021.85.

17 Zoltán Király. Better and simpler approximation algorithms for the stable marriage problem.
Algorithmica, 60(1):3–20, 2011.

18 A. M. Krishnapriya, Meghana Nasre, Prajakta Nimbhorkar, and Amit Rawat. How good are
popular matchings? In 17th International Symposium on Experimental Algorithms, SEA 2018,
pages 9:1–9:14, 2018. doi:10.4230/LIPIcs.SEA.2018.9.

19 Matthias Mnich and Ildikó Schlotter. Stable matchings with covering constraints: A complete
computational trichotomy. Algorithmica, 82(5):1136–1188, 2020.

20 Meghana Nasre and Prajakta Nimbhorkar. Popular matchings with lower quotas. In 37th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2017, pages 44:1–44:15, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.44.

21 Meghana Nasre and Amit Rawat. Popularity in the generalized hospital residents setting. In
International Computer Science Symposium in Russia, pages 245–259. Springer, 2017.

FSTTCS 2021

https://doi.org/10.1287/moor.2015.0751
https://doi.org/10.1137/1.9781611973075.99
https://doi.org/10.1137/1.9781611973075.99
https://doi.org/10.4230/LIPIcs.ICALP.2021.85
https://doi.org/10.4230/LIPIcs.SEA.2018.9
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.44

30:18 HR with Two-Sided Lower Quotas

A Appendix

A.1 Illustration of Reduction Method

Following the reduction given in Section 2 we convert the HR2LQ instance of Fig-
ure 1 to an HR instance. The resulting reduced instance is shown in Figure 3.
The map of the hospital proposing stable matching in the reduced instance is M =
{(h1, r1), (h2, r3), (h3, r4), (h6, r2), (h7, r5)} which is popular. The level structure and dual
assignment is shown in Figure 4.

r0
1 : h3

2 h3
1 h2

2 h2
1 h1

2 h1
1 h0

4 h0
2 h0

1

r0
2 : h3

2 h3
6 h3

1 h2
2 h2

6 h2
1 h1

2 h1
6 h1

1 h0
5 h0

2 h0
6 h0

1

r0
3 : h3

2 h2
2 h1

2 h0
3 h1

2 d0
r3

r1
3 : d0

r3 h3
2 h2

2 h1
2 h0

3 h1
2 d1

r3

r2
3 : d1

r3 h3
2 h2

2 h1
2 h0

3 h1
2

r0
4 : h3

3 h2
3 h1

3 h0
3 d0

r4

r1
4 : d0

r4 h3
3 h2

3 h1
3 h0

3 d1
r4

r2
4 : d1

r4 h3
3 h2

3 h1
3 h0

3

r0
5 : h3

6 h2
6 h1

6 h0
7 h0

6 h0
8

d0
h1,1 : h0

1 h1
1

d1
h1,1 : h1

1 h2
1

d2
h1,1 : h2

1 h3
1

d0
h2,1 : h0

2 h1
2

d1
h2,1 : h1

2 h2
2

d2
h2,1 : h2

2 h3
2

d0
h6,1 : h0

6 h1
6

d1
h6,1 : h1

6 h2
6

d2
h6,1 : h2

6 h3
6

(a) Preference List of Residents with Quota=1.

h0
1 : r0

1 r0
2 d0

h1,1

h1
1 : d0

h1,1 r0
1 r0

2 d1
h1,1

h2
1 : d1

h1,1 r0
1 r0

2 d2
h1,1

h3
1 : d2

h1,1 r0
1 r0

2

h0
2 : r2

3 r1
3 r0

1 r0
2 r0

3 d0
h2,1

h1
2 : d0

h2,1 r2
3 r1

3 r0
1 r0

2 r0
3 d1

h2,1

h2
2 : d1

h2,1 r2
3 r1

3 r0
1 r0

2 r0
3 d2

h2,1

h3
2 : d2

h2,1 r2
3 r1

3 r0
1 r0

2 r0
3

h0
3 : r2

3 r2
4 r1

3 r1
4 r0

3 r0
4

h0
4 : r0

1

h0
5 : r0

2

h0
6 : r0

2 r0
5 d0

h6,1

h1
6 : d0

h6,1 r0
2 r0

5 d1
h6,1

h2
6 : d1

h6,1 r0
2 r0

5 d2
h6,1

h3
6 : d2

h6,1 r0
2 r0

5

h0
7 : r0

5

h0
8 : r0

5

d0
r3 : r0

3 r1
3

d1
r3 : r1

3 r2
3

d0
r4 : r0

4 r1
4

d1
r4 : r1

4 r2
4

(b) Preference List of Hospitals with
Quota=1.

Figure 3 Reduced HR instance corresponding to the counter example given in Figure 1.

A.2 Proofs from Section 3

Proof of Lemma 7.
Proof of 1: If r /∈ Rlq then r has only one copy in G′ with quota 1 and the result holds
trivially. So without loss of generality let us assume that r ∈ Rlq and hence G′ has µR + 1
copies of r. The total number of dummy hospitals corresponding to r is µR. Each dummy
hospital di

r contains only two true residents ri and ri+1. Also, each di
r is the top choice

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:19

R0

level-0
residents

r5

r3
0

r2+2

r1+4

R1

higher level
residents

r4−2

H̃0

higher level
hospitals

h6 −2

h1 −4

H̃1

level-0
hospitals

h3 +2

h4

h5

h8

h7

h2

0

Figure 4 The graph G̃M corresponding to the example.

of ri+1 for 0 ≤ i ≤ µR. So, none of the dummy hospital can remain unmatched. This
implies that at most 1 copy of r can get matched to a true hospital.
If h /∈ Hlq then h has only one copy h0 in G′ with quota q+(h) and the result holds trivially.
So without loss of generality, let us assume that h ∈ Hlq and hence G′ has µH + 1 copies
of h. The total number of dummy residents for h in G′ is α = q+(h)+q−(h) ·(µH −1), and
the total capacity of all the copies of h in G′ is β = q+(h) + q−(h) · µH . Consider the set
of dummy residents D0

h ∪ . . . ∪ DµH −1
h corresponding to a lower quota hospital h. For any

y < µH , except y = 1, Dy−1
h are the most preferred q(hy) dummy residents of hy. Thus,

these dummy residents can never remain unmatched in a stable matching. The dummy
residents that can possibly remain unmatched are the subset of {d0

h,1, . . . , d0
h,q+(h)−q−(h)}

as these are the only dummy residents that are not the top choice of any copy of the
hospital h. Hence the number of dummy residents that can remain unmatched in any
stable matching of G′ is at most γ = q+(h) − q−(h). This implies that the total number
of true residents matched to h in Ms is at most β − α + γ = q+(h).
Proof of 2: If h /∈ Hlq then it has only one copy h0 with quota q+(h). So let us assume
that h ∈ Hlq. For each copy hy, where y < µH , there are exactly q(hy) dummy residents
of level-y as their top choice. Thus, hy cannot remain under-subscribed in any stable
matching Ms of G′, otherwise these dummy resident(s) form blocking pair(s) with hy.
This implies that only hµH can possibly be left under-subscribed in Ms.
If r /∈ Rlq, then its highest level copy r0 remains unmatched. So let us assume that r ∈ Rlq.
We note that none of the µR many dummy hospitals d0

r, d1
r, . . . , dµR−1

r corresponding to
r can be left unmatched in any stable matching. Otherwise , the unmatched dummy
hospital di

r forms a blocking pair with ri+1. So, at most, one copy of r can potentially be
left unmatched. Now, if a copy ri for 0 ≤ i ≤ µR − 1 is left unmatched then ri with its
last dummy di

r forms a blocking pair w.r.t. Ms.
Proof of 3: There are µR + 1 copies of a resident r ∈ Rlq and µR dummy hospitals
corresponding to it. From the proof of 1 above, we know that none of the dummy hospitals
corresponding to r can remain unmatched. The preference list of a dummy hospital di

r

contains ri and ri+1, and rx is active in Ms. This implies that the only possible way to
match ri in a stable matching is to match it with di

r, the corresponding trailing dummy,
where 0 ≤ i ≤ x − 1. Similarly, the only possible way to match ri in a stable matching is
to match it with di+1

r , the corresponding leading dummy, where x + 1 ≤ i ≤ µR.

FSTTCS 2021

30:20 HR with Two-Sided Lower Quotas

Proof of 4a: For the sake of contradiction, assume that hy−1 is not matched to any
resident d ∈ Dy−1

h and still hy is active. Note that there are exactly q(hy) many dummy
residents in the preference list of hy from the set Dy−1

h . Also, hy prefers all such dummy
residents over any true resident. Each dummy resident from the (y − 1)-th set, Dy−1

h has
only hy−1 and hy in its preference list. It means there is a dummy resident dj

h ∈ Dy−1
h

which is unmatched in Ms. But then (hy, dj
h) forms a blocking pair w.r.t. Ms.

Proof of 4b: If hy is active and hj is matched to a true resident r for some 0 ≤ j ≤ y − 2,
then (r, hy−1) is a blocking pair w.r.t. Ms. This is because, as proved above, hy−1 must
be matched to at least one resident in Dy−1

h and hy−1 prefers any true resident over any
dummy resident in Dy−1

h .
Proof of 4c: If hy is active then hj cannot be active for y + 2 ≤ j ≤ µH , otherwise, hj−1

must be matched to a resident from Dj−1
h . In this case, each true resident which is

matched to hy in Ms forms a blocking pair with hj−1, contradicting the stability of Ms.
Now we claim that each such hj is fully-subscribed with its leading dummies. This is
because if hy is active and hj is matched to any trailing dummy d ∈ Dj

h then a resident
r′ ∈ Ms(hy) forms a blocking pair with hj .
Proof of 5: The claim for a resident immediately follows from Part 1 above. So, let us
prove it for a hospital.
For the sake of contradiction, let us assume that h ∈ Rlq is a lower quota hospital such
that hx1 and hx2 are active where x2 < x1 − 1. Also, assume that hx1 and hx2 are
matched to r1 and r2 respectively. Then, hx1−1 must be matched to at least one dummy
residents from Dx1−1

h . But, Then, (r2, hx1−1) forms a blocking pair w.r.t. Ms.
Proof of 6: This follows from the fact that for any h, all the dummy residents of all the
copies get matched in a stable matching in G′, except possibly the q+(h) − q−(h) trailing
dummies of h0. This is because all of them are the top choice of some hi. The other part
is true because otherwise a true resident matched to the level-j copy and hµH form a
blocking pair with respect to Ms. ◀

Proof of Lemma 9. In Lemma 7, we proved that each resident is matched to at most one
hospital and each hospital h is matched to at most q+(h) many residents in G. Here, first we
show that each r ∈ Rlq gets matched to at least one hospital and, then we show that each
h ∈ Hlq gets matched to at least q−(h) many residents.

Let us assume for the sake of contradiction that M is not resident-feasible, and hence
M(r) = ⊥ for an r ∈ Rlq, but there exists a feasible matching N in G where r is matched.
Consider the decomposition of M ⊕N into (possibly non-simple) alternating paths and cycles.
The decomposition we use is the same as the one used in [21, 20]. As r is unmatched in M

but matched in N there must exist an alternating path ρ in M ⊕ N ending at r. Moreover,
the highest level copy rµR must remain unmatched in Ms by Part 2 of Lemma 7.
Case 1: The other end-point of ρ is a resident rk: Let ρ = ⟨r, h1, r1, h2, r2, . . . , hk, rk⟩,

where (hi, ri) ∈ M and rest of the edges are in N . We show that such a path can-
not exist and hence M must be feasible. The length of this path is even and hence rk

remains unmatched in N . It implies that rk is a non-lower quota resident. Since we do not
have multiple copies of a non-lower quota resident r, r0

k is matched to a non-dummy copy
of a hospital hk in Ms. Since rµR is unmatched in Ms, all the residents r ∈ Ms(h1), and
hence r1, must also be the highest level copy. If not, then (rµR , h0

1 blocks Ms because rµR

is unmatched and any copy of h1 prefers rµR over lower level copy of any resident. The
copy of r2 which is matched to h2 must be either rµR

2 or rµR−1
2 , otherwise, (h0

2, rµR−1
1)

blocks Ms. Continuing in this way, we see that the matched copy of r3 must be in
{rµR

3 , rµR−1
3 , rµR−2

3 }, and matched copy of rk must be in {rµR

k , rµR−1
k , . . . , r

µR−(k−1)
k }.

M. Nasre, P. Nimbhorkar, K. Ranjan, and A. Sarkar 30:21

This implies that the path ρ goes downwards to level 0 but by at most one level for each
resident on ρ. Since rk is the 0th level copy, ρ must contain at least µR + 1 residents with
non-zero lower quota. But there are only µR residents with lower quota 0. So such a
path ρ cannot exist.

Case 2: The other end of ρ is a hospital h: Let ρ = ⟨r, h1, r1, h2, r2, . . . , hk, rk, h⟩, where
(hi, ri) ∈ M and rest of the edges are in N . It is clear that |M(h)| < |N(h)| ≤ q+(h),
that is, h is under-subscribed in M . Consider the first rp on ρ such that r0

p is active
in Ms. Such an rp must exist as proved in Claim 14 below. So, consider the sub-path
ρ′ = r, h1, r1, . . . , rp of ρ. Using the same argument as in the previous case, ρ′ must
contain at least µR + 1 lower-quota residents. Therefore ρ′, and consequently ρ cannot
exist.

▷ Claim 14. An alternating path ρ as considered in Case 2 above contains a resident rp

such that r0
p is active in Ms.

Proof of Claim 14. We consider the following two cases: (a) when h is only active at level 0
and, (b) when h is active at higher levels. In the first case, as h is under-subscribed in Ms,
r0

k must be active in Ms. This is because if ri
k is active for any i > 0 then (r0

k, h0) blocks Ms.
In the second case, from Lemma 8, rj

k cannot be active for any j > 0. So r0
k must be active.

◁

Now, we prove Part 2 of Lemma 9 by contradiction. Let us assume that M is not
hospital-feasible but there exists a matching N which is hospital-feasible. That is, there
exists h ∈ Hlq such that |M(h)| < q−(h) ≤ |N(h)|. Consider the decomposition of M ⊕ N

into (possibly non-simple) alternating paths and cycles.
As |M(h)| < |N(h)| there must exists a path ρ in M ⊕ N ending at h. Since h is deficient

in M , the highest level copy hµH must remain under-subscribed in Ms by Part 2 of Lemma 7.
Case 1: The other end of ρ is a hospital hk: Let ρ = ⟨h, r1, h1, . . . , rk−1, hk−1, rk, hk⟩,

where (ri, hi) ∈ M and rest of the edges are in N . We show that such a path can-
not exist and hence M must be feasible. The length of this path ρ is even and
|M(hk)| > |N(hk)| ≥ q−(hk). This implies that the higher level copies (level p for
p > 0) of hk are not active (Part 4 of Lemma 7). As hµH remains under-subscribed in
Ms, the copy of hospital h1 which is matched to r1 must be hµH

1 , otherwise, (r0
1, hµH)

forms a blocking pair w.r.t. Ms. From Part 4 of Lemma 7, hµH −p
1 for p > 1 cannot be

active in Ms. Similarly, the copies hµH −p
2 for p > 2 of h2 cannot be active in Ms. And,

the copies hµH −p
k for p > k cannot be active in Ms. In other words, the only active copy

of h is hµH , the active copies of h1 are in {hµH

1 , hµH −1
1 }, the active copies of h2 are in

{hµH

2 , hµH −1
2 , hµH −2

2 } and so on. This implies that we may go downwards in this way but
by at most one level for each hospital on ρ. As the only active copy of hk is h0

k and hence,
ρ must contain at least µH + 1 copies of lower quota hospitals but the sum of all the
lower quotas of hospitals is only µH . This is a contradiction.

Case 2: Other end of ρ is a resident r: Let ρ = ⟨h, r1, h1, r2, h2, . . . , rk, hk, r⟩, where
(ri, hi) ∈ M and rest of the edges are in N . We know that the only active copy of
h is hµH . Here, r is unmatched in M . If q−(r) = 0 then r0 remains unmatched in Ms

and hence, hk cannot be active at level above 0. In this case, the same argument as in
the previous case suffice to prove that such a path ρ cannot exist. The other case, when
q−(r) = 1, is not possible because of Part 1, which says that M is resident feasible but r

is unmatched. ◀

FSTTCS 2021

Property B: Two-Coloring Non-Uniform
Hypergraphs
Jaikumar Radhakrishnan #

School of Technology and Computer Science,
Tata Institute of Fundamental Research, Mumbai, India

Aravind Srinivasan # Ñ

Department of Computer Science and UMIACS,
University of Maryland at College Park, MD, USA

Abstract
The following is a classical question of Erdős (Nordisk Matematisk Tidskrift, 1963) and of Erdős
and Lovász (Colloquia Mathematica Societatis János Bolyai, vol. 10, 1975). Given a hypergraph F
with minimum edge-size k, what is the largest function g(k) such that if the expected number of
monochromatic edges in F is at most g(k) when the vertices of F are colored red and blue randomly
and independently, then we are guaranteed that F is two-colorable? Duraj, Gutowski and Kozik
(ICALP 2018) have shown that g(k) ≥ Ω(log k). On the other hand, if F is k-uniform, the lower
bound on g(k) is much higher: g(k) ≥ Ω(

√
k/ log k) (Radhakrishnan and Srinivasan, Rand. Struct.

Alg., 2000). In order to bridge this gap, we define a family of locally-almost-uniform hypergraphs, for
which we show, via the randomized algorithm of Cherkashin and Kozik (Rand. Struct. Alg., 2015),
that g(k) can be much higher than Ω(log k), e.g., 2Ω(

√
log k) under suitable conditions.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Hypergraph coloring, Propery B

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.31

Funding Jaikumar Radhakrishnan: Supported by the Department of Atomic Energy, Government
of India, under project no. RTI4001.
Aravind Srinivasan: Supported in part by NSF grants CCF-1422569 and CCF-1749864.

Acknowledgements We thank the reviewers of the current and previous versions of this paper for
their constructive suggestions that helped us correct some errors and improve the presentation.

1 Introduction

A classical question of Erdős and of Erdős and Lovász is as follows [7, 9]. Given a hypergraph
F , let us define its minimum edge-size k as the (asymptotic) parameter of interest. Note that
if the vertices of F are colored red and blue randomly and independently, then the expected
number of of monochromatic edges in F is

M(F) .=
∑
f∈F

21−|f |.

(We view F as a collection of hyper-edges, hence the notation “f ∈ F”. Also, the constant
multiplier “2” in the “21−|f |” is often not very important in our context, and we will typically
study the sum

∑
f∈F 2−|f |.) Then, what is the largest function g(k) such that if M(F) ≤ g(k),

then we are guaranteed that F is two-colorable? F was defined to have Property B by Erdős
when it is two-colorable – in honor of F. Bernstein, who had considered the problem earlier [3]
– and such questions on sufficient conditions for F to possess Property B have been studied
quite a bit since the 1970s. In this work, we show improved sufficient conditions when F is
locally-almost-uniform – specifically, λ-approximately-uniform as defined later – for a large
range of the local-uniformity λ.

© Jaikumar Radhakrishnan and Aravind Srinivasan;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 31; pp. 31:1–31:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaikumar@tifr.res.in
mailto:asriniv1@umd.edu
https://www.cs.umd.edu/~srin/
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Two-Coloring Non-Uniform Hypergraphs

We start by reviewing prior work. A simple union bound shows that any g(k) < 1 will
suffice, but the question is whether g(k) can tend to infinity as k grows, and how fast g can
grow. Beck [2] was the first to show that g can be allowed to grow with k, by proving that
g(k) ≥ Ω(log∗ k). The next improvement came recently, when Duraj, Gutowski and Kozik
showed that g(k) ≥ Ω(log k) [6]. (If F is simple, i.e., if any two distinct edges intersect in at
most one vertex, then g(k) ≥ Ω(

√
k) [11].) Much better lower bounds on g(k) are known if

F is k-uniform: g(k) ≥ Ω(
√

k/ log k) here [10] – see Cherkashin and Kozik [5] for a simpler
proof of this result. On the other hand, g(k) ≤ O(k2), even for k-uniform hypergraphs
(Erdős [8]). It has been conjectured for long that g(k) could be Θ(k), at least for uniform
hypergraphs [9]. This remains a tantalizing open problem. Hypergraph two-coloring has also
been studied for models of random hypergraphs, and from the viewpoint of inapproximability
(see, e.g., [1, 4]).

Note the large gap between the lower bound of Ω(log k) [6] and the lower bound of
Ω(
√

k/ log k) that holds for k-uniform hypergraphs [10, 5]. How can we bridge this gap?
One approach is to study “how much uniformity” we need in order to get good lower bounds
on g(k): to this end, we define a family of locally-almost-uniform hypergraphs, for which we
show that g(k) can be much higher than Ω(log k). Our randomized algorithm is the same as
that of Cherkashin and Kozik [5], but our analysis is different. For λ ≥ 1, we say that F is
λ-approximately-uniform if

max
f,f ′∈F : |f∩f ′|=1

|f ′|
|f |

≤ λ.

That is, we require the local-almost-uniformity property that any two edges that intersect in
exactly one vertex, have their size-ratio bounded by λ. (Note that this is asking less than
requiring that any two intersecting edges have their size-ratio bounded by λ.)

Let exp(x) denote ex. The following definition and lemma will be useful in the context of
Theorem 3.

▶ Definition 1. (Parameter γ) For λ, α, k ≥ 1 such that α, λ ≤ k, we define γ(k, α, λ) ≥ 0
by its square:

γ(k, λ, α)2 .= min
λ′∈[1,λ]

2((λ′ − 1)k + 1)
[(

1 + α

k

)(λ′−1)k+1
−
(

1 − α

λ′k

)(λ′−1)k+1)
]−1

.

Note that γ(k, 1, α) =
√

k/α; for larger values of λ, we will use the following lower bound on
γ(k, α, λ)2 when we apply our main theorem to specific cases.

▶ Lemma 2. γ(k, λ, α)2 ≥
(

k
α

)
exp(−αλ).

Proof. We provide a proof in the appendix. ◀

We next present our main theorem followed by some of its consequences, following which
we develop its proof.

▶ Theorem 3. Let k be a positive integer and let λ, α ≥ 1 such that 2α2λ ≤ k. Let γ(k, λ, α)
be as in Definition 1. Let F be any λ-approximately-uniform hypergraph with k = minf∈F |f |.
Then, F is two-colorable if∑

f∈F

2−|f | ≤ 1
4 min{exp(α), γ(k, λ, α)};

furthermore, such a coloring can be obtained in randomized polynomial time via the algorithm
of Cherkashin and Kozik [5].

J. Radhakrishnan and A. Srinivasan 31:3

Note that the above theorem yields the bound obtained by the authors [10] for uniform
hypergraphs. Indeed, if we set λ = 1 and α = 1

2 ln k
ln k (recall that γ(k, 1, α) =

√
k/α), the

above theorem implies that every k-uniform hypergraph with at most (1/4)
√

k/ ln k × 2k

edges is two-colorable – the constant 1/4 can be improved slightly. This is not surprising,
for the randomized algorithm we use to establish Theorem 3 reduces to the algorithm of
Cherkashin and Kozik [5], and therefore yields the same bound with the same constant for
k-uniform hypergraphs. (A minor subtlety is that λ = 1 does not imply k-uniformity: we can
have λ = 1 and still allow two edges that intersect at two vertices or more, to have different
sizes. However, such pairs of edges can often be ignored, as shown by the analyses of [10, 5]
for uniform hypergraphs.)

For larger λ, we may use Lemma 2 to conclude that the hypergraph is two-colorable
provided (for some choice of α ≥ 1)∑

f∈F

2−|f | ≤ 1
4 min{exp(α),

√
k/α exp(−αλ/2)}.

Some illustrative examples (assume k is large):
if λ = 10 and we set α = (ln(k/ ln k))/12, then we conclude that such a 10-approximately
uniform hypergraph is two-colorable whenever

∑
f∈F

2−|f | ≤
(

1
4

)(
k

ln k

)1/12
;

if λ =
√

ln k and we set α =
√

ln k/2, then we conclude that a λ-approximately-uniform
hypergraph is two-colorable whenever∑

f∈F

2−|f | ≤ 1
4 exp(

√
ln k/2);

in general, we get nontrivial results for all λ = o(ln k).

2 Proof of the main result

Fix a hypergraph F satisfying the assumptions of Theorem 3. Let us use the following
two-step randomized strategy due to Cherkashin and Kozik [5] that starts with all vertices
uncolored.
Step 1: To each vertex v of the hypergraph independently assign a uniformly-random delay

η(v) from [0, 1].
Step 2: One by one, color the vertices using colors {blue, red} in increasing order of their

delays. Color a vertex v, when its turn comes, red if there exists some edge e containing
v such that v is the last vertex to be colored in e, and such that all other vertices in e

have already been colored blue; else color v blue.
As in Cherkashin and Kozik [5], we have the following observation: if an edge is left
monochromatic at the end, then all its vertices must be colored red. In particular, suppose
the vertices in f were colored red in the order v1, v2, . . . , vr, then there must be an edge e

such that

|e ∩ f | = 1, and v1 is the last vertex to be colored in e.

In such a case, we say that f blames e.

FSTTCS 2021

31:4 Two-Coloring Non-Uniform Hypergraphs

Specifically, f blames e iff the following three conditions hold:
|e ∩ f | = 1 with e ∩ f = {v}, say;
η(v) > η(u) for all other vertices u in e;
η(v) < η(w) for all other vertices w in f .

Thus, the probability that the above algorithm fails to two-color the hypergraph is at most

Pr[∃e, f : e blames f]. (1)

It is tempting to note that

Pr[e blames f] = (|e| − 1)! · (|f | − 1)!
(|e| + |f | − 1)!

and apply the union bound

Pr[∃e, f : e blames f] ≤
∑
(e,f)

Pr[e blames f].

However, a sum such as in the RHS of this union bound can be too large. Cherkashin and
Kozik [5] suggest a nuanced approach in a similar situation; we adapt their approach to
obtain a better bound for (1). The following claim is the main technical contribution of this
work. Recall that |e|/|f |, |f |/|e| ≤ λ whenever e blames f .

▷ Claim 4.

Pr[∃e, f : e blames f] ≤ 2
∑

e

2−|e| exp(−α) + 4
∑

(e,f):|e∩f |=1

2−|e|−|f |γ(k, λ, α)−2.

Let us assume this claim and complete the proof of our theorem.

Proof of Theorem 3. By the assumption in our theorem, we have∑
f∈F

2−|f | ≤ 1
4 min{exp(α), γ(k, λ, α)}.

So,

2
∑

e

2−|e| exp(−α) ≤ 1
2 ,

and

4
∑

(e,f):|e∩f |=1

2−|e|−|f |γ(k, λ, α)−2 ≤ 4
(∑

e

2−|e|γ(k, λ, α)−1

)2

≤ 1
4 .

It follows from Claim 4 that the algorithm of Cherkashin and Kozik, outlined above, properly
two-colors the hypergraph with probability at least 1

4 . The theorem follows from this. ◀

We now establish Claim 4.

Proof of Claim 4: For each edge e, let

δ(e) .= α/(2|e|).

J. Radhakrishnan and A. Srinivasan 31:5

Fix e and f with e ∩ f = {v}, and define events

E1(e) ≡ ∀u ∈ e : η(u) <
1
2 − δ(e);

E2(f) ≡ ∀w ∈ f : η(w) >
1
2 + δ(f);

E3(e, f) ≡ (f blames e) and ¬E1(e) and ¬E2(f).

Then, we have

(f blames e) ⊆ E1(e) ∪ E2(f) ∪ E3(e, f). (2)

We bound the probability of each of these three events separately. For the first two events
we have

Pr[E1(e)] =
(

1
2 − δ(e)

)|e|

≤ 2−|e| exp(−2δ(e)|e|) ≤ 2−|e| exp(−α) ;

Pr[E2(f)] =
(

1
2 − δ(f)

)|f |

≤ 2−|f | exp(−2δ(f)|f |) ≤ 2−|f | exp(−α).

To bound the probability of the third event, namely E3(e, f), note that if both ¬E1(e) and
¬E2(f) hold, then η(v) ∈ [1

2 − δ(e), 1
2 + δ(f)]. We condition on η(v) = 1

2 + x and integrate to
obtain

Pr[E3(e, f)] ≤
∫ δ(f)

−δ(e)

(
1
2 + x

)|e|−1(1
2 − x

)|f |−1
dx

= 2−|e|−|f |+2
∫ δ(f)

−δ(e)
(1 + 2x)|e|−1 (1 − 2x)|f |−1 dx

≤ 2−|e|−|f |+2 · β(e, f),

where

β(e, f) =

∫ δ(e)

−δ(f) (1 + 2x)|f |−|e| dx if |e| ≤ |f |;∫ δ(f)
−δ(e) (1 + 2x)|e|−|f | dx if |e| > |f |.

(3)

(Both bounds for β(e, f) follow from the fact that (1 + 2x) · (1 − 2x) ≤ 1.)
We next show the following.

▷ Claim 5. For all large k, we have

β(e, f) ≤ max
λ′∈[0,λ]

1/2
(λ′ − 1)k + 1

[(
1 + α

k

)(λ′−1)k+1
−
(

1 − α

λ′k

)(λ′−1)k+1
]

(4)

Note that the right hand side of Equation (4) is precisely γ(k, λ, α)−2. Claim 4 then follows
from bound (2). ◁

Proof of Claim 5. Suppose |f | ≥ |e| (the case |f | < |e| is similar). Set |f | = λ′|e|; note that
1 ≤ λ′ ≤ λ. Then,

β(e, f) = 1/2
(λ′ − 1)|e| + 1

[(
1 + α

|e|

)(λ′−1)|e|+1
−
(

1 − α

λ′|e|

)(λ′−1)|e|+1
]

FSTTCS 2021

31:6 Two-Coloring Non-Uniform Hypergraphs

Let

hλ′(x) .= 1
(λ′ − 1)x + 1

[(
1 + α

x

)(λ′−1)x+1
−
(

1 − α

λ′x

)(λ′−1)x+1
]

To establish our claim, we will show that hλ′(x) is a decreasing function for x in the range
[k, ∞), so it is maximum for x = k. Indeed, the derivative h′

λ′(x) is the sum of three terms:

− (λ′ − 1)
((λ′ − 1)x + 1)2

[(
1 + α

x

)(λ′−1)x+1
−
(

1 − α

λ′x

)(λ′−1)x+1
]

, (5)

1
(λ′ − 1)x + 1

[(
1 + α

x

)(λ′−1)x+1
(

ln(1 + α

x
)(λ′ − 1) − ((λ′ − 1)x + 1) α

x(α + x)

)]
, (6)

and

−
(

1
(λ′ − 1)x + 1

)(
1 − α

λ′x

)(λ′−1)x+1
×(

ln(1 − α

λ′x
)(λ′ − 1) + ((λ′ − 1)x + 1) α

x(λ′x − α)

)
. (7)

We wish to show that this derivative is negative for x ∈ [k, ∞). First, we show that term
(7) is negative, but verifying that the three factors in parentheses are positive. The first two
factors are clearly positive. We rearrange the last factor as

(λ′ − 1)
(

ln(1 − α

λ′x
) + α

λ′x − α

)
+ α

x(λ′x − α) , (8)

and using ln(1 − α
λ′x) = − ln(1 + α

λ′x−α) ≥ −α
λ′x−α , verify that this factor is positive as well.

We now deal with the first two terms. The first term (5) is at most

− (λ′ − 1)
((λ′ − 1)x + 1)2

(
1 + α

x

)(λ′−1)x+1
[
1 −

(
1 − α

λ′x

)(λ′−1)x+1
]

, (9)

Using the inequality ln(1 + α
x) ≤ α

x , we see that the second term (6) is at most

1
(λ′ − 1)x + 1

(
1 + α

x

)(λ′−1)x+1
(

(λ′ − 1) α2

x(x + α) − α

x(x + α)

)
(10)

≤ λ′ − 1
(λ′ − 1)x + 1

(
1 + α

x

)(λ′−1)x+1
(

α2

x(x + α)

)
. (11)

Thus, since the third term (7) is negative, the bounds (9) and (11) on the first two terms, (5)
and (6), imply that the derivative h′

λ′(x) is at most λ′−1
(λ′−1)x+1

(
1 + α

x

)(λ′−1)x+1 times

− 1
(λ′ − 1)x + 1 + α2

x(x + α) + 1
(λ′ − 1)x + 1

(
1 − α

λ′x

)(λ′−1)x+1

= −
x(x + α)(1 −

(
1 − α

λ′x

)(λ′−1)x+1) − α2((λ′ − 1)x + 1)
((λ′ − 1)x + 1)x(x + α) . (12)

We will verify that the numerator of the fraction in Equation (12) is positive. First note that
by the weighted AM-GM inequality (1 − ϵ)z(1 + ϵz) ≤ 11+z = 1 (for 0 ≤ ϵ < 1 and z ≥ 0);
thus, 1 − (1 − ϵ)z ≥ ϵz/(1 + ϵz). In the following let z

.= (λ′ − 1)x + 1 and ϵ
.= α/(λ′x); then,

the numerator in Equation (12) is at least

J. Radhakrishnan and A. Srinivasan 31:7

x(x + α) αz/(λ′x)
1 + αz/(λ′x) − α2z = αz

λ′x + αz
[x(x + α) − α(λ′x + αz)]

= αz

λ′x + αz
[x(x − α(λ′ + αλ′ − α)) + α(x − α)]

= αz

λ′x + αz

[
x2 − x(αλ + α2λ − α2) + α(x − α)

]
≥ αz

λ′x + αz

[
x(x − 2α2λ) + xα2 + α(x − α)

]
.

Our assumption 2α2λ ≤ k ≤ x implies that the last quantity, and hence the numerator of
the fraction in Equation (12), is positive. Thus, hλ′(x) is decreasing over [k, ∞) and

β(e, f) ≤ 1
2 max

λ′∈[1,λ]
hλ′(k).

Claim 5 follows from this. ◁

References

1 Dimitris Achlioptas, Jeong Han Kim, Michael Krivelevich, and Prasad Tetali. Two-coloring
random hypergraphs. Random Struct. Algorithms, 20(2):249–259, 2002. doi:10.1002/rsa.997.

2 J. Beck. On 3-chromatic hypergraphs. Discrete Mathematics, 24:127–137, 1978.
3 F. Bernstein. Zur Theorie der trigonometrische Reihen. Leipz. Ber., 60:325–328, 1908.
4 Amey Bhangale. Np-hardness of coloring 2-colorable hypergraph with poly-logarithmically

many colors. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 15:1–15:11.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.
15.

5 Danila D. Cherkashin and Jakub Kozik. A note on random greedy coloring of uniform
hypergraphs. Random Struct. Algorithms, 47(3):407–413, 2015. doi:10.1002/rsa.20556.

6 Lech Duraj, Grzegorz Gutowski, and Jakub Kozik. A note on two-colorability of nonuniform
hypergraphs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 46:1–46:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.
46.

7 P. Erdős. On a combinatorial problem, I. Nordisk Matematisk Tidskrift, 11:5–10, 1963.
8 P. Erdős. On a combinatorial problem, II. Acta Mathematica of the Hungarian Academy of

Sciences, 15:445–447, 1964.
9 P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related

questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his
60th birthday), volume II, pages 609–627. North-Holland, Amsterdam, 1975. Volume 10 of
Colloquia Mathematica Societatis János Bolyai.

10 Jaikumar Radhakrishnan and Aravind Srinivasan. Improved bounds and algorithms for
hypergraph 2-coloring. Random Struct. Algorithms, 16(1):4–32, 2000. doi:10.1002/(SICI)
1098-2418(200001)16:1\%3C4::AID-RSA2\%3E3.0.CO;2-2.

11 Dmitry A. Shabanov. Around erdős-lovász problem on colorings of non-uniform hypergraphs.
Discret. Math., 338(11):1976–1981, 2015. doi:10.1016/j.disc.2015.04.017.

FSTTCS 2021

https://doi.org/10.1002/rsa.997
https://doi.org/10.4230/LIPIcs.ICALP.2018.15
https://doi.org/10.4230/LIPIcs.ICALP.2018.15
https://doi.org/10.1002/rsa.20556
https://doi.org/10.4230/LIPIcs.ICALP.2018.46
https://doi.org/10.4230/LIPIcs.ICALP.2018.46
https://doi.org/10.1002/(SICI)1098-2418(200001)16:1%3C4::AID-RSA2%3E3.0.CO;2-2
https://doi.org/10.1002/(SICI)1098-2418(200001)16:1%3C4::AID-RSA2%3E3.0.CO;2-2
https://doi.org/10.1016/j.disc.2015.04.017

31:8 Two-Coloring Non-Uniform Hypergraphs

A Proof of Lemma 2

Proof. Recall that

γ(k, λ, α)2 .= min
λ′∈[1,λ]

2((λ′ − 1)k + 1)
[(

1 + α

k

)(λ′−1)k+1
−
(

1 − α

λ′k

)(λ′−1)k+1)
]−1

.

We will show that reciprocal of the expression under the minimum is at most (α
k) exp(αλ).

It will follow that γ(k, λ, α)2 ≥ (k
α) exp(−αλ).

Let z
.= (λ′ − 1)k + 1. We will consider two cases, based on whether or not 2zα ≥ k.

First, suppose 2zα ≥ k, that is, z ≥ k/(2α). Then, we have the desired upper bound

1
2z

[(
1 + α

k

)z

−
(

1 − α

λ′k

)z]
≤ 1

2z

(
1 + α

k

)z

≤
(α

k

)
exp(αz/k) ≤

(α

k

)
exp(αλ).

Next assume 2zα < k. We will use the following inequalities for bounding expressions of the
form (1 + x)ℓ. For ℓ ≥ 1 and ℓ|x| < 1 (note x may be negative), we have 1 + ℓx ≤ (1 + x)ℓ ≤
1/(1 − ℓx). Then

1
2z

[(
1 + α

k

)z

−
(

1 − α

λ′k

)z]
≤ 1

2z

[
1

1 − zα/k
−
(

1 − zα

λ′k

)]
(note zα/k < 1

2)

= 1
2z

(
1 − (1 − zα/k)(1 − zα/(λ′k))

1 − zα/k

)
≤ α + α/λ′ − zα2/(λ′k)

2(k − zα)

≤ α + α/λ′ − zα2/(λ′k)
k

(since 2zα ≤ k), λ′ ≥ 1)

≤ 2α

k

≤
(α

k

)
exp(αλ). (since α, λ ≥ 1) ◀

Harmonic Algorithms for Packing d-Dimensional
Cuboids into Bins
Eklavya Sharma #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Abstract
We explore approximation algorithms for the d-dimensional geometric bin packing problem (dBP).
Caprara [8] gave a harmonic-based algorithm for dBP having an asymptotic approximation ratio
(AAR) of T d−1

∞ (where T∞ ≈ 1.691). However, their algorithm doesn’t allow items to be rotated.
This is in contrast to some common applications of dBP, like packing boxes into shipping containers.
We give approximation algorithms for dBP when items can be orthogonally rotated about all or a
subset of axes. We first give a fast and simple harmonic-based algorithm having AAR T d

∞. We next
give a more sophisticated harmonic-based algorithm, which we call HGaPk, having AAR T d−1

∞ (1 + ε).
This gives an AAR of roughly 2.860 + ε for 3BP with rotations, which improves upon the best-known
AAR of 4.5. In addition, we study the multiple-choice bin packing problem that generalizes the
rotational case. Here we are given n sets of d-dimensional cuboidal items and we have to choose
exactly one item from each set and then pack the chosen items. Our algorithms also work for the
multiple-choice bin packing problem. We also give fast and simple approximation algorithms for the
multiple-choice versions of dD strip packing and dD geometric knapsack.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Geometric bin packing

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.32

Related Version ArXiv: https://arxiv.org/abs/2011.10963

Acknowledgements I want to thank my advisor, Prof. Arindam Khan, for his valuable comments,
and Arka Ray for helpful suggestions.

1 Introduction

Packing of rectangular and cuboidal items is a fundamental problem in computer science,
mathematics, and operations research. Packing problems find numerous applications in
practice, e.g., packing of concrete 3D items during storage or transportation [7], cutting
prescribed 2D pieces from cloth or metal sheet while minimizing the waste [16], etc. In this
paper, we study packing of d-dimensional (dD) cuboidal items (for d ≥ 2).

Let I be a set of n dD cuboidal items, where each item has length at most one in each
dimension. A feasible packing of items into a dD cuboid is a packing where items are placed
inside the cuboid parallel to the axes without any overlapping. A dD unit cube is a dD cuboid
of length one in each dimension. In the dD bin packing problem (dBP), we have to compute
a feasible packing of I (without rotating the items) into the minimum number of bins that
are dD unit cubes. Let optdBP(I) be the minimum number of bins needed to pack I.

dBP is NP-hard, as it generalizes the classic bin packing problem [9]. Thus, we study
approximation algorithms. For dBP, the worst-case approximation ratio usually occurs only
for small pathological instances. Thus, the standard performance measure is the asymptotic
approximation ratio (AAR). For an algorithm A, AAR is defined as:

lim
m→∞

sup
I∈I: opt(I)=m

A(I)
opt(I) ,

where I is the set of all problem instances. A(I) and opt(I) are the number of bins used by
A and the optimal algorithm, respectively, on I.

© Eklavya Sharma;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 32; pp. 32:1–32:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eklavyas@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.32
https://arxiv.org/abs/2011.10963
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Harmonic Algorithms for Packing d-Dimensional Cuboids

Coffman et al. [10] initiated the study of approximation algorithms for rectangle packing.
They studied algorithms such as First-Fit Decreasing Height (FFDH) and Next-Fit Decreasing
Height (NFDH). In his seminal paper, Caprara [8] devised a polynomial-time algorithm
for dBP called HDHk (Harmonic Decreasing Height), where k ∈ Z is a parameter to the
algorithm. HDHk has AAR equal to T d−1

k , where Tk is a decreasing function of k and
T∞ := limk→∞ Tk ≈ 1.691. HDHk is based on the harmonic algorithm [24] for 1BP.

A limitation of HDHk is that it does not allow rotation of items. This is in contrast to
some real-world problems, like packing boxes into shipping containers (d = 3), where items
can often be rotated orthogonally, i.e., 90◦ rotation around all or a subset of axes [1, 31].
Orientation constraints may sometimes limit the vertical orientation of a box to one dimension
(“This side up”) or to two (of three) dimensions (e.g., long but low and narrow box should
not be placed on its smallest surface). These constraints are introduced to deter goods and
packaging from being damaged and to ensure the stability of the load. One of our primary
contributions is presenting variants of HDHk that work for generalizations of dBP that capture
the notion of orthogonal rotation of items.

1.1 Prior Work
For 2BP, Bansal et al. [3] obtained AAR of T∞ + ε even for the case with rotations, using a
more sophisticated algorithm that used properties of harmonic rounding. Then there has
been a series of improvements [3, 19] culminating with the present best AAR of 1.406 [5], for
both the cases with and without orthogonal rotations. Bansal et al. [6] showed that dBP is
APX-hard for d ≥ 2, and gave an asymptotic PTAS for dBP when all items are dD squares.

Closely related to dBP is the dD strip packing problem (dSP), where we have to pack I

(without rotating the items) into a dD cuboid (called a strip) that has length one in the first
d − 1 dimensions and the minimum possible length (called height) in the dth dimension.

For 2SP, an asymptotic PTAS was given by Kenyon and Rémila [22]. Jansen and van
Stee [21] extended this to the case with orthogonal rotations. For 3SP, when rotations are
not allowed, Bansal et al. [4] gave a harmonic-based algorithm achieving AAR of T∞ + ε.
Recently, this has been improved to 1.5 + ε [20]. Miyazawa and Wakabayashi [25] studied
3SP and 3BP when rotations are allowed, and gave algorithms with AAR 2.64 and 4.89,
respectively. Epstein and van Stee [13] gave an improved AAR of 2.25 and 4.5 for 3SP and
3BP with rotations, respectively. The HDHk algorithm also works for dSP and has an AAR of
T d−1

k . For online dBP, there are harmonic-based T d
∞-asymptotic-approximation algorithms

[12, 11], which are optimal for O(1) memory algorithms.

1.2 Multiple-Choice Packing
We will now define the dD multiple-choice bin packing problem (dMCBP). This generalizes
dBP and captures the notion of orthogonal rotation of items. This perspective will be helpful in
designing algorithms for the rotational case. In dMCBP, we’re given a set I = {I1, I2, . . . , In},
where for each j, Ij is a set of items, henceforth called an itemset. We have to pick exactly
one item from each itemset and pack those items into the minimum number of bins. See
Figure 1 for an example of 2MCBP.

We can model rotations using multiple-choice packing: Given a set I of items, for each
item i ∈ I, create an itemset Ii that contains all allowed orientations of i. Then the optimal
solution to I := {Ii : i ∈ I} will tell us how to rotate and pack items in I.

Some algorithms for 2D bin packing with rotations assume that the bin is square [3, 19, 5].
This assumption holds without loss of generality when rotations are forbidden, because we
can scale the items. But if rotations are allowed, this won’t work because items i1 and i2

E. Sharma 32:3

1
2

3

4

5
6

7

8

9

4 2

8

5

9

Figure 1 2MCBP example: packing the input I = {{1, 2, 3}, {4}, {5, 6}, {7, 8}, {9}} into two bins.
Here items of the same color belong to the same itemset.

that are rotations of each other may stop being rotations of each other after they are scaled.
Multiple-choice packing algorithms can be used in this case. For each item i ∈ I, we will
create an itemset Ii that contains scaled orientations of i.

Multiple-choice packing problems have been studied before. Lawler gave an FPTAS for
the multiple-choice knapsack problem [23]. Patt-Shamir and Rawitz gave an algorithm for
multiple-choice vector bin packing having AAR O(log d) and a PTAS for multiple-choice
vector knapsack [27]. Similar notions have been studied in the scheduling of malleable or
moldable jobs [32, 18].

1.3 Our Contributions
After the introduction of the harmonic algorithm for online 1BP by Lee and Lee [24],
many variants have found widespread use in multidimensional packing problems (both
offline and online) [8, 3, 4, 2, 12, 11, 17, 28, 29]. They are also simple, fast, and easy to
implement. For example, among algorithms for 3SP, 2BP and 3BP with practical running
time, harmonic-based algorithms provide the best AAR.

In our work, we extend harmonic-based algorithms to dMCBP. dMCBP subsumes the
rotational case for geometric bin packing, and we believe dMCBP is an important natural
generalization of geometric bin packing that may be of independent interest.

In Section 3, we describe ideas from HDHk [8] that help us devise harmonic-based algorithms
for dMCBP. In Section 4, we show an O(Nd + nd log n)-time algorithm for dMCBP, called
fullhk, having an AAR of T d

k , where n is the number of itemsets and N is the total number
of items across all the n itemsets. fullhk is a fast and simple algorithm that works in two
stages: In the first stage, we select the smallest item from each itemset (we will precisely
define smallest in Section 4). In the second stage, we pack the selected items into bins using
a variant of the HDHk algorithm.

In Section 5, we show an algorithm for dMCBP, called HGaPk, having an AAR of T d−1
k (1+ε)

and having a running time of NO(1/ε2)n(1/ε)O(1/ε) +O(Nd+nd log n). For d ≥ 3, this matches
the present best AAR for the case where rotations are forbidden. Also, for large k, this
gives an AAR of roughly T 2

∞ ≈ 2.860 for 3D bin packing when orthogonal rotations are
allowed, which is an improvement over the previous best AAR of 4.5 [13], an improvement
after fourteen years.

Our techniques can be extended to some other packing problems, like strip packing and
geometric knapsack. In Appendix C of the full version of our paper [30], we define the dD
multiple-choice strip packing problem (dMCSP) and extend Caprara’s HDHk algorithm [8] to

FSTTCS 2021

32:4 Harmonic Algorithms for Packing d-Dimensional Cuboids

dMCSP. The algorithm has AAR T d−1
k and runs in time O(Nd + nd log n), where n is the

number of itemsets and N is the total number of items across all itemsets. In Appendix D
of [30], we define the dD multiple-choice knapsack problem (dMCKS), and for any 0 < ε < 1,
we show an O(Nd+N log N +Nn/ε+nd log n)-time algorithm that is (1−ε)3−d-approximate.

2 Preliminaries

Let [n] := {1, 2, . . . , n}. For a set X, define sum(X) :=
∑

x∈X x. For an n-dimensional vector
v, define sum(v) :=

∑n
i=1 vi. For a set X ⊆ I of items and any function f : I 7→ R, f(X) is

defined to be
∑

i∈X f(i), unless stated otherwise.
The length of a dD item i in the jth dimension is denoted by ℓj(i). Define vol(i) :=∏d

j=1 ℓj(i). For a dD cuboid i, call the first d − 1 dimensions base dimensions and call the
dth dimension height. For a set I of items, |I| is the number of items in I. Let |P | denote
the number of bins used by a packing P of items into bins.

▶ Lemma 1. Consider the inequality x1 +x2 + . . .+xn ≤ s, where for each j ∈ [n], xj ∈ Z≥0.
Let N be the number of solutions to this inequality. Then N =

(
s+n

n

)
≤ (s + 1)n.

Proof. The proof of N =
(

s+n
n

)
is a standard result in combinatorics.

To prove N ≤ (s+1)n, note that we can choose each xj ∈ {0, 1, . . . , s} independently. ◀

2.1 Multiple-Choice Packing
Let I be a set of itemsets. Define flat(I) to be the union of all itemsets in I.

Let K be a set of items that contains exactly one item from each itemset in I. Formally,
for each itemset I ∈ I, |K ∩ I| = 1. Then K is called an assortment of I. Let Ψ(I) denote
the set of all assortments of I. In dMCBP, given an input instance I, we have to select an
assortment K ∈ Ψ(I) and output a bin packing of K, such that the number of bins used is
minimized. Therefore, optdMCBP(I) = minK∈Ψ(I) optdBP(K).

3 Important Ideas from the HDHk Algorithm

In this section, we will describe some important ideas behind the HDHk algorithm for dBP by
Caprara [8]. These ideas are the building blocks for our algorithms for dMCBP.

3.1 Weighting Functions
Fekete and Schepers [14] present a useful approach for obtaining lower bounds on the optimal
solution to bin packing problems. Their approach is based on weighting functions.

▶ Definition 2. g : [0, 1] 7→ [0, 1] is a weighting function iff for all m ∈ Z>0 and x ∈ [0, 1]m,
m∑

i=1
xi ≤ 1 =⇒

m∑
i=1

g(xi) ≤ 1

(Weighting functions are also called dual feasible functions (DFFs)).

▶ Theorem 3. Let I be a set of dD items that can be packed into a bin. Let g1, g2, . . . , gd

be weighting functions. For i ∈ I, define g(i) as the item whose length is gj(ℓj(i)) in the
jth dimension, for each j ∈ [d]. Then {g(i) : i ∈ I} can be packed into a dD bin (without
rotating the items).

Theorem 3 is proved in Appendix E of [30].

E. Sharma 32:5

3.2 The Harmonic Function
To obtain a lower-bound on optdBP(I) using Theorem 3, Caprara [8] defined a function fk.
For an integer constant k ≥ 3, fk : [0, 1] 7→ [0, 1] is defined as

fk(x) :=

 1
q x ∈

(
1

q+1 , 1
q

]
for q ∈ [k − 1]

k
k−2 x x ≤ 1

k

.

fk was originally defined and studied by Lee and Lee [24] for their online algorithm for 1BP,
except that they used k/(k − 1) instead of k/(k − 2). Define typek : [0, 1] 7→ [k] as

typek(x) :=

q x ∈
(

1
q+1 , 1

q

]
for q ∈ [k − 1]

k x ≤ 1
k

.

Define Tk to be the smallest positive constant such that Hk(x) := fk(x)/Tk is a weighting
function. We call Hk the harmonic weighting function. We can efficiently compute Tk as a
function of k using ideas from [24]. Table 1 lists the values of Tk for the first few k. It can
also be proven that Tk is a decreasing function of k and T∞ := limk→∞ Tk ≈ 1.6910302.

Table 1 Values of Tk.

k 3 4 5 6 7 ∞
Tk 3 2 11/6 = 1.83 7/4 = 1.75 26/15 = 1.73 ≈ 1.6910302

For a dD cuboid i, define fk(i) to be the cuboid whose length is fk(ℓj(i)) in the jth

dimension, for each j ∈ [d]. For a set I of dD cuboids, let fk(I) := {fk(i) : i ∈ I}. Similarly
define Hk(i) and Hk(I). Define type(i) to be a d-dimensional vector whose jth component is
typek(ℓj(i)). Note that there can be at most kd different values of type(i). Sometimes, for
the sake of convenience, we may express type(i) as an integer in [kd].

▶ Theorem 4. For a set of I of dD items, vol(fk(I)) ≤ T d
k optdBP(I).

Proof. Let m := optdBP(I). Let Jj be the items in the jth bin in the optimal bin packing of
I. By Theorem 3 and because Hk is a weighting function, Hk(Jj) fits in a bin. Therefore,

vol(fk(I)) =
m∑

j=1
T d

k vol(Hk(Jj)) ≤
m∑

j=1
T d

k = T d
k optdBP(I). ◀

3.3 The HDH-unit-packk Subroutine
From the HDHk algorithm by Caprara [8], we extracted out a useful subroutine, which we call
HDH-unit-packk, that satisfies the following useful property:

▶ Property 5. The algorithm HDH-unit-pack[t]
k (I) takes a sequence I of dD items such that

all items have type t and vol(fk(I − {last(I)})) < 1 (here last(I) is the last item in sequence
I). It returns a packing of I into a single dD bin in O(nd log n) time, where n := |I|.

We use HDH-unit-packk as a black-box subroutine in our algorithms, i.e., HDH-unit-packk

can be replaced by any algorithm that satisfies Property 5. See Appendix B of [30] for a
complete description of HDH-unit-packk and proof that it satisfies Property 5.

FSTTCS 2021

32:6 Harmonic Algorithms for Packing d-Dimensional Cuboids

4 Fast and Simple Algorithm for dMCBP (fullhk)

We will now describe an algorithm for dBP called the full-harmonic algorithm (fullhk). We
will then extend it to dMCBP. The fullhk algorithm works by first partitioning the items
based on their type vector (type vector is defined in Section 3.2). Then for each partition, it
repeatedly picks the smallest prefix J such that vol(fk(J)) ≥ 1 and packs J into a dD bin
using HDH-unit-packk. See Algorithm 1 for a more precise description of fullhk. Note that
fullhk(I) has a running time of O(|I|d log |I|).

Algorithm 1 fullhk(I): Returns a bin packing of dD items I.

1: Let P be an empty list.
2: for each type t do
3: I [t] = {i ∈ I : type(i) = t}.
4: while |I [t]| > 0 do
5: Find J , the smallest prefix of I [t] such that J = I [t] or vol(fk(J))) ≥ 1.
6: B = HDH-unit-pack[t]

k (J). // B is a packing of J into a dD bin.
7: Append B to the list P .
8: Remove J from I [t].
9: end while

10: end for
11: return the list P of bins.

▶ Theorem 6. The number of bins used by fullhk(I) is less than Q + vol(fk(I)), where Q

is the number of distinct types of items (so Q ≤ kd).

Proof. Let I [t] be the items in I of type t. Suppose fullhk(I) uses m[t] bins to pack I [t]. For
each type t, the first m[t] −1 bins have vol ·fk at least 1, so vol(fk(I [t])) > m[t] −1. Therefore,
total number of bins used is

∑Q
t=1 m[t] <

∑Q
t=1(1 + vol(fk(I [t]))) = Q + vol(fk(I)). ◀

By Theorems 4 and 6, fullhk(I) uses less than Q + T d
k optdBP(I) bins.

▶ Theorem 7. Let I be a dMCBP instance. Let K̂ := {argmini∈I vol(fk(i)) : I ∈ I}, i.e., K̂

is the assortment obtained by picking from each itemset the item i having the minimum value
of vol(fk(i)). Then the number of bins used by fullhk(K̂) is less than Q + T d

k optdMCBP(I),
where Q is the number of distinct types of items in flat(I) (so Q ≤ kd).

Proof. Let K∗ be the assortment in an optimal packing of I. So, vol(fk(K̂)) ≤ vol(fk(K∗)).
By Theorems 4 and 6, the number of bins used by fullhk(K̂) is less than

Q + vol(fk(K̂)) ≤ Q + vol(fk(K∗)) ≤ Q + T d
k optdBP(K∗) = Q + T d

k optdMCBP(I). ◀

We can compute K̂ in O(Nd) time and fullhk(K̂) in O(nd log n) time, where N :=
| flat(I)|, n := |I|. So, we get an O(Nd + nd log n)-time dMCBP algorithm having AAR T d

k .

4.1 dBP with Rotations
As mentioned before, we can solve the rotational version of dBP by reducing it to dMCBP.
Specifically, for each item i in the dBP instance, we create an itemset containing all orientations
of i, and we pack the resulting dMCBP instance using fullhk. Since an item can have up to
d! allowed orientations, this can take up to O(nd! + nd log n) time. Hence, the running time
is large when d is large. However, we can do better for some special cases.

E. Sharma 32:7

When the bin has the same length in each dimension, then for any item i, vol(fk(i)) is
independent of how we orient i. Hence, we can orient the items I arbitrarily and then pack
them using fullhk in O(nd log n) time.

Suppose there are no orientation constraints, i.e., all d! orientations of each item are
allowed. Let Lj be the length of the bin in the jth dimension, for each j ∈ [d]. To use
fullhk to pack I, we need to find the best orientation for each item i ∈ I, i.e., we need
to find a permutation π for each item i such that

∏d
j=1 fk

(
ℓπj

(i)/Lj

)
is minimized. This

can be formulated as a maximum-weight bipartite matching problem on a graph with d

vertices in each partition: for every u ∈ [d] and v ∈ [d], the edge (u, v) has a non-negative
weight of − log(fk(ℓu(i)/Lv)). So, using the Kuhn-Munkres algorithm [26], we can find
the best orientation for each item in O(d3) time. Hence, we can pack I using fullhk in
O(nd3 + nd log n) time.

5 Better Algorithm for dMCBP (HGaPk)

Here we describe a T d−1
k (1 + ε)-asymptotic-approximate algorithm for dMCBP based on

HDHk and Lueker and Fernandez de la Vega’s APTAS for 1BP [15]. We call our algorithm
Harmonic Guess-and-Pack (HGaPk). This improves upon fullhk that has AAR T d

k .

▶ Definition 8. For a dD item i, let h(i) := ℓd(i), w(i) :=
∏d−1

j=1 fk(ℓj(i)) and a(i) := w(i)h(i).
Let round(i) be a rectangle of height h(i) and width w(i). For a set X of dD items, define
w(X) :=

∑
i∈X w(i) and round(X) := {round(i) : i ∈ X}.

For any ε > 0, the algorithm HGaPk(I, ε) returns a bin packing of I, where I is a set
of dD itemsets. HGaPk first converts I to a set Î of 2D itemsets. It then computes Pbest,
which is a structured bin packing of Î (we formally define structured later). Finally, it uses
the algorithm inflate to convert Pbest into a bin packing of the dD itemsets I, where
| inflate(Pbest)| is very close to |Pbest|. See Algorithm 2 for a more precise description. We
show that |Pbest| ⪅ T d−1

k (1 + ε) opt(I), which proves that HGaPk has an AAR of T d−1
k (1 + ε).

This approach of converting items to 2D, packing them, and then converting back to dD is
very useful, because most of our analysis is about how to compute a structured 2D packing,
and a packing of 2D items is easier to visualize and reason about than a packing of dD items.

Algorithm 2 HGaPk(I, ε): Returns a bin packing of dD itemsets I, where ε ∈ (0, 1).

1: Let δ := ε/(2 + ε).
2: Î = {round(I) : I ∈ I}
3: Initialize Pbest to null.
4: for P ∈ guessShelves(Î, δ) do
5: P = chooseAndPack(Î, P, δ)
6: if P is not null and (Pbest is null or |P | ≤ |Pbest|) then
7: Pbest = P

8: end if
9: end for

10: return inflate(Pbest)

A 2D bin packing is called shelf-based if items are packed into shelves and the shelves are
packed into bins, where a shelf is a rectangle of width 1. See Figure 2 for an example. A
structured bin packing is a shelf-based bin packing where the heights of the shelves satisfy
some additional properties (we describe these properties later). The algorithm guessShelves

FSTTCS 2021

32:8 Harmonic Algorithms for Packing d-Dimensional Cuboids

repeatedly guesses the number and heights of shelves and computes a structured packing P of
those shelves into bins. Then for each packing P , the algorithm chooseAndPack(Î, P, δ) tries
to pack an assortment of Î into the shelves in P plus one additional shelf. If chooseAndPack
succeeds, call the resulting bin packing P ; else, chooseAndPack returns null. Pbest is the
value of P with the minimum number of bins across all guesses by guessShelves.

Figure 2 An example of shelf-based packing with 3 shelves.

To prove that HGaPk has AAR T d−1
k (1 + ε), we show that for some P ∗ ∈

guessShelves(Î, δ), we have |P ∗| ⪅ T d−1
k (1 + ε) opt(I) and chooseAndPack(Î, P ∗, δ) is

not null.
We will now precisely define structured packing and state the main theorems on HGaPk.

5.1 Structured Packing
▶ Definition 9 (Slicing). Slicing a 1D item i is the operation of replacing it by items i1 and i2
such that size(i1) + size(i2) = size(i). Slicing a rectangle i using a vertical cut is the operation
of replacing i by two rectangles i1 and i2 where h(i) = h(i1) = h(i2) and w(i) = w(i1)+w(i2).
Slicing i using a horizontal cut is the operation of replacing i by two rectangles i1 and i2
where w(i) = w(i1) = w(i2) and h(i) = h(i1) + h(i2).

▶ Definition 10 (Shelf-based δ-fractional packing). Let δ ∈ (0, 1) be a constant. Let K be a
set of rectangular items. Items in KL := {i ∈ K : h(i) > δ} are called “δ-large” and items
in KS := K − KL are called “δ-small”. A δ-fractional bin packing of K is defined to be a
packing of K into bins where items in KL can be sliced (recursively) using vertical cuts only,
and items in KS can be sliced (recursively) using both horizontal and vertical cuts.

A shelf is a rectangle of width 1 into which we can pack items such that the bottom edge
of each item in the shelf touches the bottom edge of the shelf. A shelf can itself be packed
into a bin. A δ-fractional bin packing of K is called shelf-based iff (all slices of) all items in
KL are packed into shelves, the shelves are packed into the bins, and items in KS are packed
outside the shelves (and inside the bins). Packing of items into a shelf S is called tight iff
the top edge of some item (or slice) in S touches the top edge of S.

▶ Definition 11 (Structured packing). Let K be a set of rectangles and let P be a packing of
empty shelves into bins. Let H be the set of heights of shelves in P (note that H is not a
multiset, i.e., we only consider distinct heights of shelves). Then P is called structured for
(K, δ) iff |H| ≤ ⌈1/δ2⌉ and each element in H is the height of some δ-large item in K.

A shelf-based δ-fractional packing of K is called structured iff the shelves in the packing
are structured for (K, δ). Define soptδ(K) to be the number of bins in the optimal structured
δ-fractional packing of K.

HGaPk relies on the following key structural theorem. We formally prove it in Section 5.5
and give an outline of the proof here.

E. Sharma 32:9

▶ Theorem 12 (Structural theorem). Let I be a set of dD items. Let δ ∈ (0, 1) be a constant.
Then soptδ(round(I)) < T d−1

k (1 + δ) optdBP(I) + ⌈1/δ2⌉ + 1 + δ.

Proof outline. Let Î := round(I). Let ÎL and ÎS be the δ-large and δ-small items in Î,
respectively. We give a simple greedy algorithm to pack ÎL into shelves. Let J be the shelves
output by this algorithm. We can treat J as a 1BP instance, and ÎS as a sliceable 1D item of
size a(ÎS). We prove that an optimal 1D bin packing of J ∪ ÎS gives us an optimal shelf-based
δ-fractional packing of Î.

We use linear grouping by Lueker and Fernandez de la Vega [15]. We partition J into
linear groups of size ⌊δ size(J)⌋ + 1 each. Let hj be the height of the first 1D item in the
jth group. Let J (hi) be the 1BP instance obtained by rounding up the height of each item
in the jth group to hj for all j. Then J (hi) contains at most ⌈1/δ2⌉ distinct sizes, so the
optimal packing of J (hi) ∪ ÎS gives us a structured δ-fractional packing of Î. Therefore,
soptδ(Î) ≤ opt(J (hi) ∪ ÎS). Let J (lo) be the 1BP instance obtained by rounding down the
height of each item in the jth group to hj+1 for all j. We prove that J (lo) contains at most
⌈1/δ2⌉ − 1 distinct sizes and that opt(J (hi) ∪ ÎS) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ).

We model packing J (lo) ∪ ÎS as a linear program, denoted by LP(Î), that has at most
⌈1/δ2⌉1/δ variables and ⌈1/δ2⌉ non-trivial constraints. The optimum extreme point solution to
LP(Î), therefore, has at most ⌈1/δ2⌉ positive entries, so opt(J (lo) ∪ ÎS) ≤ opt(LP(Î))+⌈1/δ2⌉.

We use techniques from Caprara [8] to obtain a monotonic weighting function η from
the optimal solution to the dual of LP(Î). For each item i ∈ I, we define p(i) := w(i)η(h(i))
and prove that p(I) ≥ opt(LP(Î)). By Theorem 3, we get that p(I) ≤ T d−1

k optdBP(I) and
a(ÎL) ≤ T d−1

k optdBP(I). Combining the above facts gives us an upper-bound on soptδ(Î) in
terms of optdBP(I). ◀

5.2 Subroutines
5.2.1 guessShelves

The algorithm guessShelves(Î, δ) takes a set Î of 2D itemsets and a constant δ ∈ (0, 1) as
input. We will design guessShelves so that it satisfies the following theorem.

▶ Theorem 13. guessShelves(Î, δ) returns all possible packings of empty shelves into
at most |Î| bins such that each packing is structured for (flat(Î), δ). guessShelves(Î, δ)
returns at most T := (N⌈1/δ2⌉ + 1)(n + 1)R packings, where N := | flat(Î)|, n := |Î|, and
R :=

(⌈1/δ2⌉+⌈1/δ⌉−1
⌈1/δ⌉−1

)
≤ (1 + ⌈1/δ2⌉)1/δ. Its running time is O(T).

guessShelves works by first guessing at most ⌈1/δ2⌉ distinct heights of shelves. It then
enumerates all configurations, i.e., different ways in which shelves can be packed into a bin.
It then guesses the configurations in a bin packing of the shelves. guessShelves can be
easily implemented using standard techniques. For the sake of completeness, we give a more
precise description of guessShelves and prove Theorem 13 in Appendix A.2.

5.2.2 chooseAndPack

chooseAndPack(Î, P, δ) takes as input a set Î of 2D itemsets, a constant δ ∈ (0, 1), and a bin
packing P of empty shelves that is structured for (flat(Î), δ). It tries to pack an assortment
of Î into the shelves in P .

chooseAndPack works by rounding up the width of all δ-large items in Î to a multiple
of 1/n. This would increase the number of shelves required by 1, so it adds another empty
shelf. It then uses dynamic programming to pack an assortment into the shelves, such that

FSTTCS 2021

32:10 Harmonic Algorithms for Packing d-Dimensional Cuboids

the area of the chosen δ-small items is minimum. This is done by maintaining a dynamic
programming table that keeps track of the number of itemsets considered so far and the
remaining space in shelves of each type. If it is not possible to pack the items into the shelves,
then chooseAndPack outputs null. In Appendix A.3, we give the details of this algorithm
and formally prove the following theorems:

▶ Theorem 14. If there exists an assortment K̂ of Î having a structured δ-fractional bin
packing P , then chooseAndPack(Î, P, δ) does not output null.

▶ Theorem 15. If the output of chooseAndPack(Î, P, δ) is not null, then the output P is
a shelf-based δ-fractional packing of some assortment of Î such that |P | ≤ |P | + 1 and the
distinct shelf heights in P are the same as that in P .

▶ Theorem 16. chooseAndPack(Î, P, δ) runs in O(Nn2⌈1/δ2⌉) time. Here N := | flat(Î)|,
n := |Î|.

5.2.3 inflate

For a set I of dD items, inflate is an algorithm that converts a shelf-based packing of
round(I) into a packing of I having roughly the same number of bins.

For a dD item i, btype(i) (called base type) is defined to be a (d − 1)-dimensional vector
whose jth component is typek(ℓj(i)). Roughly, inflate(P) works as follows: It first slightly
modifies the packing P so that items of different base types are in different shelves and
δ-small items are no longer sliced using horizontal cuts. Then it converts each 2D shelf to
a dD shelf of the same height using HDH-unit-packk (a dD shelf is a cuboid where the first
d − 1 dimensions are equal to 1).

In Appendix A.4, we formally describe inflate and prove the following theorem.

▶ Theorem 17. Let I be a set of dD items having Q distinct base types (there can be at
most kd−1 distinct base types, so Q ≤ kd−1). Let P be a shelf-based δ-fractional packing of
round(I) where shelves have t distinct heights. Then inflate(P) returns a packing of I into
less than |P |/(1 − δ) + t(Q − 1) + 1 + δQ/(1 − δ) bins in O(|I|d log |I|) time.

Now that we have mentioned the guarantees of all the subroutines used by HGaPk, we can
prove the correctness and running time of HGaPk.

5.3 Correctness and Running Time of HGaPk

▶ Theorem 18. The number of bins used by HGaPk(I, ε) to pack I is less than

T d−1
k (1 + ε) optdMCBP(I) +

⌈(
2
ε

+ 1
)2
⌉(

Q + ε

2

)
+ 3 + (Q + 3)ε

2 .

Here Q ≤ kd−1 is the number of distinct base types in flat(I).

Proof. Let K∗ be the assortment in an optimal bin packing of I. Let K̂∗ = round(K∗). Let
P ∗ be the optimal structured δ-fractional bin packing of K̂∗. Then |P ∗| = soptδ(K̂∗)
by the definition of sopt. By Theorem 13, P ∗ ∈ guessShelves(Î, δ). Let P

∗ =
chooseAndPack(Î, P ∗, δ). By Theorem 14, P

∗ is not null. By Theorem 15, Pbest is struc-
tured for (flat(Î), δ) and |Pbest| ≤ |P ∗| ≤ soptδ(K̂∗) + 1.

E. Sharma 32:11

By Theorem 17, we get that

| inflate(Pbest)| <
soptδ(K̂∗)

1 − δ
+
⌈

1
δ2

⌉
(Q − 1) + 1 + δQ + 1

1 − δ
.

By Theorem 12 (structural theorem) and using optdBP(K∗) = optdMCBP(I), we get

soptδ(K̂∗) < T d−1
k (1 + δ) optdMCBP(I) + ⌈1/δ2⌉ + 1 + δ.

Therefore, | inflate(Pbest)| is less than

T d−1
k

1 + δ

1 − δ
optdMCBP(I) +

⌈
1
δ2

⌉(
Q + δ

1 − δ

)
+ 3 + δ(3 + Q)

1 − δ

= T d−1
k (1 + ε) optdMCBP(I) +

⌈(
2
ε

+ 1
)2
⌉(

Q + ε

2

)
+ 3 + (Q + 3)ε

2 . ◀

▶ Theorem 19. HGaPk(I, ε) runs in time O(N1+⌈1/δ2⌉nR+2⌈1/δ2⌉ + Nd + nd log n), where
n := |Î|, N := | flat(Î)|, δ := ε/(2 + ε) and R :=

(⌈1/δ2⌉+⌈1/δ⌉−1
⌈1/δ⌉−1

)
≤ (1 + ⌈1/δ2⌉)1/δ.

Proof. Follows from Theorems 13, 16, and 17. ◀

Appendix A.5 gives hints on improving the running time of HGaPk.

5.4 dBP with Rotations
We can solve the rotational version of dBP by reducing it to dMCBP and using the HGaPk

algorithm. Since each item can have up to d! orientations, the running time is polynomial in
nd!, which is large when d is large. But we can do better for some special cases.

When the bin has the same length in each dimension, then for any item i, w(i) :=∏d−1
j=1 fk(ℓj(i)) is invariant to permuting the first d − 1 dimensions. In the first step of HGaPk,

we replace each dD item i by a rectangle of width w(i) and height ℓd(i). So, instead of
considering all d! orientations, we just need to consider at most d different orientations, where
each orientation has a different length in the dth dimension.

Suppose there are no orientation constraints, i.e., all d! orientations of each item are
allowed. Let Lj be the length of the bin in the jth dimension, for each j ∈ [d]. Analogous to
the trick in Section 4.1, we first fix the dth dimension of the item and then optimally permute
the first d − 1 dimensions using a max-weight bipartite matching algorithm. Hence, we need
to consider only d orientations instead of d!.

5.5 Proof of the Structural Theorem
In this section, we give a formal proof of the Structural Theorem (Theorem 12).

5.5.1 Predecessors and Canonical Shelving
▶ Definition 20. Let I1 and I2 be sets of 1D items. I1 is called a predecessor of I2 (I1 ⪯ I2)
iff there exists a one-to-one mapping π : I1 7→ I2 such that ∀i ∈ I1, size(i) ≤ size(π(i)).

▶ Observation 21. Let I1 ⪯ I2 and π be the corresponding mapping. We can get a packing of
I1 from a packing of I2, by packing each i ∈ I1 in the place of π(i). Hence, opt(I1) ≤ opt(I2).

FSTTCS 2021

32:12 Harmonic Algorithms for Packing d-Dimensional Cuboids

▶ Definition 22 (Canonical shelving). Let I be a set of rectangles. Order the items in I in
non-increasing order of height (break ties arbitrarily but deterministically) and greedily pack
them into tight shelves, slicing items using vertical cuts if necessary. The set of shelves thus
obtained is called the canonical shelving of I, and is denoted by canShelv(I). (The canonical
shelving is unique because ties are broken deterministically.)

See Figure 3 for an example of canonical shelving.

1

0.3

2

0.4

3

0.4

4

0.5

5

0.9
6

0.25

1 2 3

0.3

3 4 5

5 6

0.5

Figure 3 Six items and their canonical shelving into three tight shelves of width 1. The items are
numbered by decreasing order of height. Each item has its width mentioned below it. Item 3 was
sliced into two items of widths 0.3 and 0.1. Item 5 was sliced into two items of widths 0.4 and 0.5.

Suppose a set I of rectangular items is packed into a set J of shelves. Then we can
interpret J as a 1BP instance where the height of each shelf is the size of the corresponding
1D item. We will now prove that the canonical shelving is optimal, i.e., any shelf-based bin
packing of items can be obtained by first computing the canonical shelving and then packing
the shelves into bins like a 1BP instance.

▶ Lemma 23. If J∗ := canShelv(I) and I can be packed into shelves J , then J∗ ⪯ J .

Proof. We say that a shelf is full if the total width of items in a shelf is 1. Arrange the
shelves J in non-increasing order of height, and arrange the items I in non-increasing order
of height. Then try to pack I into J using the following greedy algorithm: For each item i,
pack the largest possible slice of i into the first non-full shelf and pack the remaining slice (if
any) in the next shelf. If this greedy algorithm succeeds, then within each shelf of J , there is
a shelf of J∗, so J∗ ⪯ J . We will now prove that this greedy algorithm always succeeds.

For the sake of proof by contradiction, assume that the greedy algorithm failed, i.e., for
an item (or slice) i there was a non-full shelf S but h(i) > h(S). Let I ′ be the items (and
slices) packed before i and J ′ be the shelves before S. Therefore, w(I ′) = |J ′|.

Items in I ′ have height at least h(i), so shelves in J ′ have height at least h(i). Shelves
after J ′ have height less than h(i). So, J ′ is exactly the set of shelves of height at least
h(i). In the packing P , I ′ ∪ {i} can only be packed into shelves of height at least h(i), so
w(I ′) + w(i) ≤ |J ′|. This contradicts w(I ′) = |J ′|. So, the greedy algorithm cannot fail. ◀

5.5.2 Linear Grouping
Let I be a set of dD items. Let Î := round(I). Let δ ∈ (0, 1) be a constant. Let
ÎL := {i ∈ Î : h(i) > δ} and ÎS := Î − ÎL. Let J := canShelv(ÎL). Let m := |J |, i.e., J

contains m shelves. We can interpret ÎS as a single sliceable 1D item of size a(ÎS).

E. Sharma 32:13

To prove Theorem 12, we will show the existence of a structured δ-fractional packing of Î

into at most T d−1
k (1 + δ) optdBP(I) + ⌈1/δ2⌉ + 1 + δ bins.

▶ Definition 24 (Linear grouping [15]). Arrange the 1D items J in non-increasing order of
size and number them from 1 to m. Let q := ⌊δ size(J)⌋ + 1. Let J1 be the first q items, J2 be
the next q items, and so on. Jj is called the jth linear group of J . This gives us t := ⌈m/q⌉
linear groups. Note that the last group, Jt, may have less than q items.

Let hj be the size of the first item in Jj. Let ht+1 := 0. For j ∈ [t − 1], let J
(lo)
j be the

items obtained by decreasing the height of items in Jj to hj+1. For j ∈ [t], let J
(hi)
j be the

items obtained by increasing the height of items in Jj to hj.
Let J (lo) :=

⋃t−1
j=1 J

(lo)
j and J (hi) :=

⋃t
j=1 J

(hi)
j . We call J (lo) a down-rounding of J and

J (hi) an up-rounding of J .

▶ Lemma 25. t ≤ ⌈1/δ2⌉.

Proof. Since each shelf in J has height more than δ, size(J) > |J |δ.

t :=
⌈

|J |
⌊δ size(J)⌋ + 1

⌉
≤
⌈

size(J)/δ

δ size(J)

⌉
=
⌈

1
δ2

⌉
. ◀

▶ Lemma 26. J (lo) ⪯ J ⪯ J (hi) ⪯ J (lo) ∪ J
(hi)
1 .

Proof. It is trivial to see that J (lo) ⪯ J ⪯ J (hi). For j ∈ [t − 1], all (1D) items in both J
(lo)
j

and J
(hi)
j+1 have height hj+1, and |Jj+1| ≤ q = |Jj |. Therefore, J

(hi)
j+1 ⪯ J

(lo)
j and hence

J (hi) = J
(hi)
1 ∪

t−1⋃
j=1

J
(hi)
j+1 ⪯ J

(hi)
1 ∪

t−1⋃
j=1

J
(lo)
j = J

(hi)
1 ∪ J (lo). ◀

▶ Lemma 27. size(J) < 1 + a(ÎL).

Proof. In the canonical shelving of ÎL, let Sj be the jth shelf. Let h(Sj) be the height of Sj .
Let a(Sj) be the total area of the items in Sj . Since the shelves are tight, items in Sj have
height at least h(Sj+1). So, a(Sj) ≥ h(Sj+1) and

size(J) =
|J|∑

j=1
h(Sj) ≤ 1 +

|J|−1∑
j=1

h(Sj+1) ≤ 1 +
|J|−1∑
j=1

a(Sj) < 1 + a(ÎL). ◀

▶ Lemma 28. soptδ(Î) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ).

Proof. By the definition of canShelv, ÎL can be packed into J . By Lemma 26, J ⪯ J (hi), so
ÎL can be packed into J (hi). By Lemma 25, the number of distinct sizes in J (hi) is at most
⌈1/δ2⌉. So, the optimal 1D bin packing of J (hi) ∪ ÎS will give us a structured δ-fractional bin
packing of Î. Hence, soptδ(Î) ≤ opt(J (hi) ∪ ÎS). By Lemma 26 and Observation 21 we get

opt(J (hi) ∪ ÎS) ≤ opt(J (lo) ∪ J
(hi)
1 ∪ ÎS) ≤ opt(J (lo) ∪ ÎS) + opt(J (hi)

1).

By Lemma 27,

opt(J (hi)
1) ≤ |J (hi)

1 | ≤ q ≤ 1 + δ size(J) < 1 + δ(1 + a(ÎL)). ◀

FSTTCS 2021

32:14 Harmonic Algorithms for Packing d-Dimensional Cuboids

5.5.3 LP for Packing J (lo) ∪ ÎS

We will formulate an integer linear program for bin packing J (lo) ∪ ÎS .
Let C ∈ Zt−1

≥0 such that hC :=
∑t−1

j=1 Cjhj+1 ≤ 1. Then C is called a configuration. C

represents a set of 1D items that can be packed into a bin and where Cj items are from J
(lo)
j .

Let C be the set of all configurations. We can pack at most ⌈1/δ⌉ − 1 1D items into a bin
because ht > δ. By Lemma 1, we get |C| ≤

(⌈1/δ⌉−1+t−1
t−1

)
≤ ⌈1/δ2⌉1/δ.

Let xC be the number of bins packed according to configuration C. Bin packing J (lo) ∪ ÎS

is equivalent to finding the optimal integer solution to the following linear program, which
we denote as LP(Î).

min
x∈R|C|

∑
C∈C

xC

where
∑
C∈C

CjxC ≥ q ∀j ∈ [t − 1]∑
C∈C

(1 − hC)xC ≥ a(ÎS)

xC ≥ 0 ∀C ∈ C

Here the first set of constraints say that for each j ∈ [t − 1], all of the q := ⌊δ size(J)⌋ + 1
shelves J

(lo)
j should be covered by the configurations in x. The second constraint says that

we should be able to pack a(ÎS) into the non-shelf space in the bins.

▶ Lemma 29. opt(J (lo) ∪ ÎS) ≤ opt(LP(Î)) + t.

Proof. Let x∗ be an optimal extreme-point solution to LP(Î). Then x∗ has at most t non-zero
entries. Let x̂ be a vector where x̂C := ⌈x∗

C⌉. Then x̂ is an integral solution to LP(Î) and∑
C x̂C < t +

∑
C x∗

C = opt(LP(Î)) + t. ◀

The dual of LP(Î), denoted by DLP(Î), is

max
y∈Rt−1,z∈R

a(ÎS)z + q

t−1∑
j=1

yj

where
t−1∑
j=1

Cjyj + (1 − hC)z ≤ 1 ∀C ∈ C

z ≥ 0 and yj ≥ 0 ∀j ∈ [t − 1]

We will now see how to obtain a monotonic weighting function η : [0, 1] 7→ [0, 1] from
a feasible solution to DLP(Î). To do this, we adapt techniques from Caprara’s analysis of
HDHk [8]: we first describe a transformation to convert any feasible solution of DLP(Î) to a
feasible solution that is monotonic, and then show how to obtain a weighting function from
this monotonic solution. Such a weighting function will help us upper-bound opt(LP(Î)) in
terms of optdBP(I).

▶ Definition 30. Let (y, z) be a feasible solution to DLP(Î). Let ht+1 := 0 and for j ∈ [t − 1]
let ŷj := max(yj , ŷj+1 + (hj+1 − hj+2)z). Then (ŷ, z) is called the monotonization of (y, z).

▶ Lemma 31. Let (y, z) be a feasible solution to DLP(Î). Let (ŷ, z) be the monotonization
of (y, z). Then (ŷ, z) is a feasible solution to DLP(Î).

E. Sharma 32:15

Proof. (See Appendix A.1.) ◀

Let (y∗, z∗) be an optimal solution to DLP(Î). Let (ŷ, z∗) be the monotonization of
(y∗, z∗). Then define the function η : [0, 1] 7→ [0, 1] as

η(x) :=

ŷ1 if x ∈ [h2, 1]
ŷj if x ∈ [hj+1, hj), for 2 ≤ j ≤ t − 1
xz∗ if x < ht

.

▶ Lemma 32. η is a monotonic weighting function.

Proof. (See Appendix A.1.) ◀

▶ Lemma 33. For i ∈ I, let p(i) := η(h(i))w(i). Then opt(LP(Î)) ≤ p(I) ≤ T d−1
k optdBP(I).

Proof. Let (y∗, z∗) be an optimal solution to DLP(Î). Let (ŷ, z∗) be its monotonization.
In the canonical shelving of I, suppose a rectangular item i (or a slice thereof) lies in

shelf S where S ∈ Jj . Then h(i) ∈ [hj+1, hj], where ht+1 := 0. This is because shelves
in J := canShelv(Î) are tight. If j = 1, then η(h(i)) = ŷ1 ≥ y∗

1 . If 2 ≤ j ≤ t − 1, then
η(h(i)) ∈ {ŷj−1, ŷj} ≥ ŷj ≥ y∗

j . We know that w(S) = 1 for each shelf S ∈ Jj for j ∈ [t − 1].

p(I) =
t∑

j=1

∑
S∈Jj

∑
i∈S

η(h(i))w(i) +
∑
i∈ÎS

η(h(i))w(i) (by definition of p)

≥
t−1∑
j=1

∑
S∈Jj

∑
i∈S

y∗
j w(i) +

∑
i∈ÎS

(h(i)z∗)w(i) (by definition of η)

=
t−1∑
j=1

y∗
j q + a(ÎS)z∗ (since w(Jj) = q for j ∈ [t − 1])

= opt(DLP(Î)). ((y∗, z∗) is optimal for DLP(Î))

By strong duality of linear programs, opt(LP(Î)) = opt(DLP(Î)) ≤ p(I). Since η and Hk are
weighting functions (by Lemma 32), we get that p(I) ≤ T d−1

k optdBP(I) by Theorem 3. ◀

▶ Theorem 12 (Structural theorem). Let I be a set of dD items. Let δ ∈ (0, 1) be a constant.
Then soptδ(round(I)) < T d−1

k (1 + δ) optdBP(I) + ⌈1/δ2⌉ + 1 + δ.

Proof.

a(ÎL) ≤ a(Î) =
∑
i∈I

ℓd(i)
d−1∏
j=1

fk(ℓj(i))

 ≤ T d−1
k optdBP(I). (by Theorem 3)

soptδ(Î) < opt(J (lo) ∪ ÎS) + δa(ÎL) + (1 + δ) (by Lemma 28)

≤ opt(LP(Î)) +
⌈

1
δ2

⌉
+ δT d−1

k optdBP(I) + (1 + δ) (by Lemmas 25 and 29)

≤ T d−1
k (1 + δ) optdBP(I) +

⌈
1
δ2

⌉
+ 1 + δ. (by Lemma 33)

◀

FSTTCS 2021

32:16 Harmonic Algorithms for Packing d-Dimensional Cuboids

References
1 Mauro Maria Baldi, Guido Perboli, and Roberto Tadei. The three-dimensional knapsack

problem with balancing constraints. Applied Mathematics and Computation, 218(19):9802–9818,
2012. doi:10.1016/j.amc.2012.03.052.

2 János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A new and improved
algorithm for online bin packing. In European Symposium on Algorithms (ESA), pages 5:1–5:14,
2018. doi:10.4230/LIPIcs.ESA.2018.5.

3 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2010. doi:10.1137/080736831.

4 Nikhil Bansal, Xin Han, Kazuo Iwama, Maxim Sviridenko, and Guochuan Zhang. A harmonic
algorithm for the 3d strip packing problem. SIAM Journal on Computing, 42(2):579–592,
2013. doi:10.1137/070691607.

5 Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional
bin packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 13–25, 2014.
doi:10.1137/1.9781611973402.2.

6 Nikhil Bansal and Maxim Sviridenko. New approximability and inapproximability results for
2-dimensional bin packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
196–203, 2004.

7 Andreas Bortfeldt and Gerhard Wäscher. Constraints in container loading–a state-of-the-art
review. European Journal of Operational Research, 229(1):1–20, 2013. doi:10.1016/j.ejor.
2012.12.006.

8 Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Research,
33:203–215, February 2008. doi:10.1287/moor.1070.0289.

9 Edward G. Coffman, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo. Bin
packing approximation algorithms: survey and classification. In Handbook of combinatorial
optimization, pages 455–531. Springer New York, 2013.

10 Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Performance
bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9:808–826, 1980. doi:10.1137/0209062.

11 János Csirik and André van Vliet. An on-line algorithm for multidimensional bin packing.
Operations Research Letters, 13(3):149–158, 1993. doi:10.1016/0167-6377(93)90004-Z.

12 Leah Epstein and Rob van Stee. Optimal online algorithms for multidimensional packing prob-
lems. SIAM Journal on Computing, 35(2):431–448, 2005. doi:10.1137/S0097539705446895.

13 Leah Epstein and Rob van Stee. This side up! ACM Transactions on Algorithms (TALG),
2(2):228–243, 2006. doi:10.1145/1150334.1150339.

14 Sándor P. Fekete and Jörg Schepers. A general framework for bounds for higher-dimensional
orthogonal packing problems. Mathematical Methods of Operations Research, 60(2):311–329,
2004. doi:10.1007/s001860400376.

15 Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within 1 + ε

in linear time. Combinatorica, 1(4):349–355, 1981. doi:10.1007/BF02579456.
16 Paul C. Gilmore and Ralph E. Gomory. A linear programming approach to the cutting-stock

problem. Operations Research, 9(6):849–859, 1961. doi:10.1287/opre.9.6.849.
17 Xin Han, Francis YL Chin, Hing-Fung Ting, Guochuan Zhang, and Yong Zhang. A new upper

bound 2.5545 on 2D online bin packing. ACM Transactions on Algorithms (TALG), 7(4):1–18,
2011. doi:10.1145/2000807.2000818.

18 Klaus Jansen. A (3/2 + ε) approximation algorithm for scheduling moldable and non-moldable
parallel tasks. In Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
224–235, 2012. doi:10.1145/2312005.2312048.

19 Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin packing.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 919–936, 2013. doi:
10.1007/s00453-014-9943-z.

https://doi.org/10.1016/j.amc.2012.03.052
https://doi.org/10.4230/LIPIcs.ESA.2018.5
https://doi.org/10.1137/080736831
https://doi.org/10.1137/070691607
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1287/moor.1070.0289
https://doi.org/10.1137/0209062
https://doi.org/10.1016/0167-6377(93)90004-Z
https://doi.org/10.1137/S0097539705446895
https://doi.org/10.1145/1150334.1150339
https://doi.org/10.1007/s001860400376
https://doi.org/10.1007/BF02579456
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1145/2000807.2000818
https://doi.org/10.1145/2312005.2312048
https://doi.org/10.1007/s00453-014-9943-z
https://doi.org/10.1007/s00453-014-9943-z

E. Sharma 32:17

20 Klaus Jansen and Lars Prädel. A new asymptotic approximation algorithm for 3-dimensional
strip packing. In SOFSEM, pages 327–338, 2014. doi:10.1007/978-3-319-04298-5_29.

21 Klaus Jansen and Rob van Stee. On strip packing with rotations. In Symposium on Theory of
Computing (STOC), pages 755–761. ACM, 2005. doi:10.1145/1060590.1060702.

22 Claire Kenyon and Eric Rémila. Approximate strip packing. In Foundations of Computer
Science (FOCS), pages 31–36, 1996. doi:10.1109/SFCS.1996.548461.

23 Eugene L Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4):339–356, 1979. doi:10.1287/moor.4.4.339.

24 C. C. Lee and D. T. Lee. A simple on-line bin-packing algorithm. Journal of the ACM,
32(3):562–572, July 1985. doi:10.1145/3828.3833.

25 Flavio Keidi Miyazawa and Yoshiko Wakabayashi. Three-dimensional packings with rotations.
Computers & Operations Research, 36(10):2801–2815, 2009. doi:10.1016/j.cor.2008.12.015.

26 James Munkres. Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

27 Boaz Patt-Shamir and Dror Rawitz. Vector bin packing with multiple-choice. Discrete Applied
Mathematics, 160(10-11):1591–1600, 2012. doi:10.1016/j.dam.2012.02.020.

28 Prakash Ramanan, Donna J Brown, Chung-Chieh Lee, and Der-Tsai Lee. On-line bin packing
in linear time. Journal of Algorithms, 10(3):305–326, 1989. doi:10.1016/0196-6774(89)
90031-X.

29 Steven S Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671,
2002. doi:10.1145/585265.585269.

30 Eklavya Sharma. Harmonic algorithms for packing d-dimensional cuboids into bins. ArXiv,
2011.10963, 2020. arXiv:2011.10963.

31 Y. G. Stoyan and Andrey M. Chugay. Packing different cuboids with rotations and spheres
into a cuboid. Advances in Decision Sciences, 2014, 2014. doi:10.1155/2014/571743.

32 Hu Zhang and Klaus Jansen. Scheduling malleable tasks. In Handbook of Approximation
Algorithms and Metaheuristics. Chapman & Hall/CRC, 2007.

A Details of the HGaPk Algorithm

A.1 Details of the Weighting Function from DLP(Î)
▶ Transformation 34. Let (y, z) be a feasible solution to DLP(Î) (see Section 5.5.3 for the
definition of DLP(Î)). Let s ∈ [t − 1]. Define yt := 0 and ht+1 := 0. Then change ys to
max(ys, ys+1 + (hs+1 − hs+2)z).

▶ Lemma 35. Let (y, z) be a feasible solution to DLP(Î) and (ŷ, z) be the result of applying
Transformation 34 to (y, z) with parameter s ∈ [t − 1]. Then (ŷ, z) is feasible for DLP(Î).

Proof. For a configuration C, let f(C, y, z) := CT y + (1 − hC)z, where CT y :=
∑t−1

j=1 Cjyj .
Since (y, z) is feasible for DLP(Î), f(C, y, z) ≤ 1. As per Transformation 34,

ŷj :=
{

max(ys, ys+1 + (hs+1 − hs+2)z) j = s

yj j ̸= s
.

If ys ≥ ys+1 + (hs+1 − hs+2)z, then ŷ = y, so (ŷ, z) would be feasible for DLP(Î). So now
assume that ys < ys+1 + (hs+1 − hs+2)z.

Let C be a configuration. Define Ct := 0. Let

Ĉj :=

0 j = s

Cs + Cs+1 j = s + 1
Cj otherwise

.

FSTTCS 2021

https://doi.org/10.1007/978-3-319-04298-5_29
https://doi.org/10.1145/1060590.1060702
https://doi.org/10.1109/SFCS.1996.548461
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1145/3828.3833
https://doi.org/10.1016/j.cor.2008.12.015
https://doi.org/10.1016/j.dam.2012.02.020
https://doi.org/10.1016/0196-6774(89)90031-X
https://doi.org/10.1016/0196-6774(89)90031-X
https://doi.org/10.1145/585265.585269
http://arxiv.org/abs/2011.10963
https://doi.org/10.1155/2014/571743

32:18 Harmonic Algorithms for Packing d-Dimensional Cuboids

Then, CT ŷ − ĈT y = Csŷs + Cs+1ŷs+1 − Ĉsys − Ĉs+1ys+1 = Cs(hs+1 − hs+2)z.
Also, h

Ĉ
− hC = Ĉshs+1 + Ĉs+1hs+2 − Cshs+1 − Cs+1hs+2 = −Cs(hs+1 − hs+2).

Since h
Ĉ

≤ hC ≤ 1, Ĉ is a configuration.

f(C, ŷ, z) = CT ŷ + (1 − hC)z

= (ĈT y + Cs(hs+1 − hs+2)z) + (1 − h
Ĉ

− Cs(hs+1 − hs+2))z

= f(Ĉ, y, z) ≤ 1.

Therefore, (ŷ, z) is feasible for DLP(Î). ◀

▶ Lemma 31. Let (y, z) be a feasible solution to DLP(Î). Let (ŷ, z) be the monotonization
of (y, z). Then (ŷ, z) is a feasible solution to DLP(Î).

Proof. (ŷ, z) can be obtained by multiple applications of Transformation 34: first with
s = t−1, then s = t−2, and so on till s = 1. By Lemma 35, (ŷ, z) is feasible for DLP(Î). ◀

▶ Lemma 32. η is a monotonic weighting function.

Proof. η is monotonic by the definition of monotonization.
Let X ⊆ (0, 1] be a finite set such that sum(X) ≤ 1. Let X0 := X ∩ [0, ht), let

X1 := X ∩ [h2, 1] and for 2 ≤ j ≤ t − 1, let Xj := X ∩ [hj+1, hj). Let C ∈ Zt−1
≥0 such that

Cj := |Xj |. Let hC :=
∑t−1

j=1 Cjhj+1.

1 ≥ sum(X) = sum(X0) +
t−1∑
j=1

sum(Xj)

≥ sum(X0) +
t−1∑
j=1

Cjhj+1 (for j ≥ 1, each element in Xj is at least hj+1)

= sum(X0) + hC .

Since hC ≤ 1 − sum(X0) ≤ 1, C is a configuration. Therefore,

∑
x∈X

η(x) =
t−1∑
j=0

∑
x∈Xj

η(x) = z∗ sum(X0) +
t−1∑
j=1

Cj ŷj (by definition of η)

≤ (1 − hC)z∗ + CT ŷ (hC ≤ 1 − sum(X0))

≤ 1. (C is a configuration and (ŷ, z∗) is feasible for DLP(Î) by Lemma 31)

◀

A.2 Guessing Shelves and Bins
We want guessShelves(Î, δ) to return all possible packings of empty shelves into at most
n := |Î| bins such that each packing is structured for (flat(Î), δ).

Let H := {h(i) : i ∈ flat(Î)}. Let N := | flat(Î)|. guessShelves(Î, δ) starts by picking
the distinct heights of shelves by iterating over all subsets of H of size at most ⌈1/δ2⌉. There
are at most N⌈1/δ2⌉ + 1 such subsets. Let H̃ := {h1, h2, . . . , ht} be one such guess, where
t ≤ ⌈1/δ2⌉. Without loss of generality, assume h1 > h2 > . . . > ht > δ.

Next, guessShelves needs to decide the number of shelves of each height and a packing
of those shelves into bins. Let C ∈ Zt

≥0 such that hC :=
∑t−1

j=1 Cjhj ≤ 1. Then C is called

E. Sharma 32:19

a configuration. C represents a set of shelves that can be packed into a bin and where Cj

shelves have height hj . Let C be the set of all configurations. We can pack at most ⌈1/δ⌉ − 1
items into a bin because ht > δ. By Lemma 1, we get

|C| ≤
(

⌈1/δ⌉ − 1 + t

t

)
≤
(

⌈1/δ⌉ − 1 + ⌈1/δ2⌉
⌈1/δ⌉ − 1

)
≤
(⌈

1
δ2

⌉
+ 1
)1/δ

.

There can be at most n bins, and guessShelves has to decide the configuration of each bin.
By Lemma 1, the number of ways of doing this is at most

(|C|+n
|C|
)

≤ (n + 1)|C|. Therefore,
guessShelves computes all configurations and then iterates over all

(|C|+n
|C|
)

combinations of
these configs. This completes the description of guessShelves and proves Theorem 13.

A.3 chooseAndPack

chooseAndPack(Î, P, δ) takes as input a set Î of 2D itemsets, a packing P of empty shelves
into bins and constant δ ∈ (0, 1). It tries to pack Î into P and one additional shelf. Before
we design chooseAndPack, let us see how to handle a special case. Î is called δ-simple iff
the width of each δ-large item in flat(Î) is a multiple of 1/|Î|.

Let P be a bin packing of empty shelves. Let h1 > h2 > . . . > ht be the distinct heights
of the shelves in P , where ht > δ. We will use dynamic programming to either pack a simple
instance Î into P or claim that no assortment of Î can be packed into P . Call this algorithm
simpleChooseAndPack(Î, P, δ).

Let Î := {I1, I2, . . . , In}. For j ∈ {0, 1, . . . , n}, define Îj := {I1, I2, . . . , Ij}, i.e., Îj

contains the first j itemsets from Î. Let u⃗ := [u1, u2, . . . , ut] ∈ {0, 1, . . . , n2}t be a vector.
Let Φ(j, u⃗) be the set of all assortments of Îj that can be packed into t shelves, where the
rth shelf has height hr and width ur/n. For a set K of items, define smallArea(K) as the
total area of δ-small items in K. Define g(j, u⃗) := minK∈Φ(j,u⃗) smallArea(K). If Φ(j, u⃗) = ∅,
then we let g(j, u⃗) = ∞.

We will show how to compute g(j, u⃗) for all j ∈ {0, 1, . . . , n} and all u⃗ ∈ {0, 1, . . . , n2}t

using dynamic programming. Let there be nr shelves in P having height hr. Then for j = n

and ur = nrn, Î can be packed into P iff g(j, u⃗) is at most the area of non-shelf space in P .
Note that in any solution K corresponding to g(j, u⃗), we can assume without loss of

generality that the item i from K ∩ Ij is placed in the smallest shelves possible. This is
because we can always swap i with the slices of items in those shelves. This observation
gives us the following recurrence relation for g(j, u⃗):

g(j, u⃗) =

∞ if uj < 0 for some j ∈ [t]
0 if n = 0 and uj ≥ 0 for all j ∈ [t]

mini∈Ij

(
smallArea({i})
+ g(j − 1, reduce(u⃗, i))

)
if n > 0 and uj ≥ 0 for all j ∈ [t]

(1)

Here reduce(u⃗, i) is a vector obtained as follows: If i is δ-small, then reduce(u⃗, i) := u⃗.
Otherwise, initialize x to w(i). Let pi be the largest integer r such that h(i) ≤ hr. For r

varying from pi to 2, subtract min(x, uj) from x and uj . Then subtract x from u1. The new
value of u⃗ is defined to be the output of reduce(u⃗, i).

The recurrence relation allows us to compute g(j, u⃗) for all j and u⃗ using dynamic program-
ming in time O(Nn2t) time, where N := | flat(Î)|. With a bit more work, we can also compute
the corresponding assortment K, if one exists. Therefore, simpleChooseAndPack(Î, P, δ)
computes a packing of Î into P if one exists, or returns null if no assortment of Î can be
packed into P .

FSTTCS 2021

32:20 Harmonic Algorithms for Packing d-Dimensional Cuboids

Now we will look at the case where Î is not δ-simple. Let Î ′ be the instance obtained
by rounding up the width of each δ-large item in Î to a multiple of 1/n, where n :=
|Î|. Let P be the bin packing obtained by adding another bin to P containing a single
shelf of height h1. chooseAndPack(Î, P, δ) computes Î ′ and P and returns the output of
simpleChooseAndPack(Î ′, P , δ).

▶ Theorem 15. If the output of chooseAndPack(Î, P, δ) is not null, then the output P is
a shelf-based δ-fractional packing of some assortment of Î such that |P | ≤ |P | + 1 and the
distinct shelf heights in P are the same as that in P .

Proof. Follows from the definition of simpleChooseAndPack. ◀

▶ Theorem 14. If there exists an assortment K̂ of Î having a structured δ-fractional bin
packing P , then chooseAndPack(Î, P, δ) does not output null.

Proof. Let K̂ ′ be the items obtained by rounding up the width of each item in K̂ to a
multiple of 1/n. Then K̂ ′ is an assortment of Î ′. We will show that K̂ ′ fits into P , so
simpleChooseAndPack(Î ′, P , δ) will not output null.

Slice each item i ∈ K̂ ′ into two pieces using a vertical cut such that one piece has width
equal to the original width of i in K̂, and the other piece has width less than 1/n. This splits
K̂ ′ into sets K̂ and T . T contains at most n items, each of width less than 1/n. Therefore,
we can pack K̂ into P and we can pack T into the newly-created shelf of height h1. Therefore,
K̂ ′ can be packed into P , so simpleChooseAndPack(Î ′, P , δ) won’t output null. ◀

▶ Theorem 16. chooseAndPack(Î, P, δ) runs in O(Nn2⌈1/δ2⌉) time. Here N := | flat(Î)|,
n := |Î|.

Proof. The running time of chooseAndPack(Î, P, δ) is dominated by computing g(j, u⃗) for
all j and u⃗, which takes O(Nn2t) time. Since P is structured for (Î, δ), the number of
distinct shelves in P , which is t, is at most ⌈1/δ2⌉. ◀

A.4 inflate

Let I be a set of dD items. Let P be a shelf-based δ-fractional bin packing of Î := round(I)
into m bins, where the shelves have t distinct heights: h1 > . . . > ht > δ. We will design an
algorithm inflate(P) that packs I into approximately |P | bins. Let ÎL := {i ∈ Î : h(i) > δ}
and ÎS := Î − ÎL. Let there be Q distinct base types in I (so Q ≤ kd−1).

A.4.1 Separating Base Types
We will now impose an additional constraint over P : items in each shelf must have the same
btype. This will be helpful later, when we will try to compute a packing of dD items I.

Separating base types of ÎS is easy, since we can slice them in both directions. An analogy
is to think of a mixture of multiple immiscible liquids settling into equilibrium.

Let there be nj shelves of height hj . Let Îj be the items packed into shelves of height hj .
Therefore, w(Îj) ≤ nj . Let Îj,q ⊆ Îj be the items of base type q ∈ [Q].

For each q, pack Îj,q into ⌈w(Îj,q)⌉ shelves of height hj (slicing items if needed). For
these newly-created shelves, define the btype of the shelf to be the btype of the items in it.
Let the number of newly-created shelves of height hj be n′

j . Then

n′
j =

Q∑
q=1

⌈w(Îj,q)⌉ <

Q∑
q=1

w(Îj,q) + Q ≤ nj + Q =⇒ n′
j ≤ nj + Q − 1.

nj of these shelves can be packed into existing bins in place of the old shelves. The remaining
n′

j − nj ≤ Q − 1 shelves can be packed on the base of new bins.

E. Sharma 32:21

Therefore, by using at most t(Q − 1) new bins, we can ensure that for every shelf, all
items in that shelf have the same btype. These new bins don’t contain any items from ÎS .
Call this new bin packing P ′. This transformation takes O(|I|d log |I|) time.

A.4.2 Forbidding Horizontal Slicing
We will now use P ′ to compute a shelf-based bin packing P ′′ of Î where items in Î can be
sliced using vertical cuts only.

Let Îq,S be the items in ÎS of base type q. Pack items Îq,S into shelves using canShelv.
Suppose canShelv used mq shelves to pack Îq,S . For j ∈ [mq], let hq,j be the height of the
jth shelf. Let Hq :=

∑mq

j=1 hq,j and H :=
∑Q

q=1 Hq. Since for j ∈ [mq − 1], all items in the
jth shelf have height at least hq,j+1,

a(Îq,S) >

mq−1∑
j=1

hq,j+1 ≥ Hq − hq,1 ≥ Hq − δ.

Therefore, H < a(ÎS) + Qδ. Let ĴS be the set of these newly-created shelves.
Use Next-Fit to pack ĴS into the space used by ÎS in P ′. ÎS uses at most m bins in P ′

(recall that m := |P |). A height of less than δ will remain unpacked in each of those bins.
The total height occupied by ÎS in P ′ is a(ÎS). Therefore, Next-Fit will pack a height of
more than a(ÎS) − δm.

Some shelves in ĴS may still be unpacked. Their total height will be less than H −
(a(ÎS) − δm) < δ(Q + m). We will pack these shelves into new bins using Next-Fit. The
number of new bins used is at most ⌈δ(Q + m)/(1 − δ)⌉. Call this bin packing P ′′. The
number of bins in P ′′ is at most m′ := m + t(Q − 1) + ⌈δ(Q + m)/(1 − δ)⌉.

A.4.3 Shelf-Based dD packing
We will now show how to convert the packing P ′′ of Î that uses m′ bins into a packing of I

that uses m′ dD bins.
First, we repack the items into the shelves. For each q ∈ [Q], let Ĵq be the set of shelves

in P ′′ of btype q. Let Î [q] be the items packed into Ĵq. Compute Ĵ∗
q := canShelv(Î [q]) and

pack the shelves Ĵ∗
q into Ĵq. This is possible by Lemma 23.

This repacking gives us an ordering of shelves in Ĵq. Number the shelves from 1 onwards.
All items have at most 2 slices. If an item has 2 slices, and one slice is packed into shelf
number p, then the other slice is packed into shelf number p + 1. The slice in shelf p is called
the leading slice. Every shelf has at most one leading slice.

Let Sj be the jth shelf of Ĵq. Let Rj be the set of unsliced items in Sj and the item whose
leading slice is in Sj . Order the items in Rj arbitrarily, except that the sliced item, if any,
should be last. Then w(Rj − last(Rj)) < 1. So, we can use HDH-unit-pack[q]

k (Rj) to pack Rj

into a (d − 1)D bin. This (d − 1)D bin gives us a dD shelf whose height is the same as that
of Sj . On repeating this process for all shelves in Ĵq and for all q ∈ [Q], we get a packing of
I into shelves. Since each dD shelf corresponds to a shelf in P ′′ of the same height, we can
pack these dD shelves into bins in the same way as P ′′. This gives us a bin packing of I into
m′ bins.

A.4.4 The Algorithm
Appendices A.4.1–A.4.3 describe how to convert a shelf-based δ-fractional packing P of Î

having t distinct shelf heights into a shelf-based dD bin packing of I. We call this conversion
algorithm inflate.

FSTTCS 2021

32:22 Harmonic Algorithms for Packing d-Dimensional Cuboids

It is easy to see that the time taken by inflate is O(|I|d log |I|).
If P has m bins, then the number of bins in inflate(P) is at most

m + t(Q − 1) +
⌈

δ(Q + m)
1 − δ

⌉
<

m

1 − δ
+ t(Q − 1) + 1 + δQ

1 − δ
.

This proves Theorem 17.

A.5 Improving Running Time
For simplicity of presentation, we left out some opportunities for improving the running time
of HGaPk. Here we briefly describe a way of speeding up HGaPk which reduces its running
time from O(N1+⌈1/δ2⌉nR+2⌈1/δ2⌉ + Nd + nd log n) to O(N1+⌈1/δ2⌉n2⌈1/δ2⌉ + Nd + nd log n).
Here N := | flat(Î)|, n := |Î|, δ := ε/(2 + ε) and R :=

(⌈1/δ2⌉+⌈1/δ⌉−1
⌈1/δ⌉−1

)
≤ (1 + ⌈1/δ2⌉)1/δ.

In guessShelves, we guess two things simultaneously: (i) the number and heights of
shelves (ii) the packing of the shelves into bins. This allows us to guess the optimal structured
δ-fractional packing. But we don’t need that; an approximate structured packing would do.

Therefore, we only guess the number and heights of shelves. We guess at most N⌈1/δ2⌉ + 1
distinct heights of shelves, and by Lemma 1, we guess at most (n + 1)⌈1/δ2⌉ vectors of
shelf-height frequencies. Then we can use Lueker and Fernandez de la Vega’s O(n log n)-time
APTAS for 1BP [15] to pack the shelves into bins.

Also, once we guess the distinct heights of shelves, we don’t need to run chooseAndPack
afresh for every packing of empty shelves. We can reuse the dynamic programming table.

The running time is, therefore,

O
(

N⌈1/δ2⌉
(

n⌈1/δ2⌉n log n + Nn2⌈1/δ2⌉
)

+ Nd + nd log n
)

= O(N1+⌈1/δ2⌉n2⌈1/δ2⌉ + Nd + nd log n).

Resilience of Timed Systems
S. Akshay #

IIT Bombay, Mumbai, India

Blaise Genest #

Univ. Rennes, CNRS, IRISA, Rennes, France

Loïc Hélouët #

Univ. Rennes, INRIA, IRISA, Rennes, France

S. Krishna #

IIT Bombay, Mumbai, India

Sparsa Roychowdhury #

IIT Bombay, Mumbai, India

Abstract
This paper addresses reliability of timed systems in the setting of resilience, that considers the
behaviors of a system when unspecified timing errors such as missed deadlines occur. Given a fault
model that allows transitions to fire later than allowed by their guard, a system is universally resilient
(or self-resilient) if after a fault, it always returns to a timed behavior of the non-faulty system.
It is existentially resilient if after a fault, there exists a way to return to a timed behavior of the
non-faulty system, that is, if there exists a controller which can guide the system back to a normal
behavior. We show that universal resilience of timed automata is undecidable, while existential
resilience is decidable, in EXPSPACE. To obtain better complexity bounds and decidability of
universal resilience, we consider untimed resilience, as well as subclasses of timed automata.

2012 ACM Subject Classification Theory of computation → Timed and hybrid models

Keywords and phrases Timed automata, Fault tolerance, Integer-resets, Resilience

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.33

Funding Work supported by the DST/CEFIPRA/INRIA associated team EQuaVE and the Maveriq
ANR project.

1 Introduction

Timed automata [2] are a natural model for cyber-physical systems with real-time constraints
that have led to an enormous body of theoretical and practical work. Formally, timed
automata are finite-state automata equipped with real valued variables called clocks, that
measure time and can be reset. Transitions are guarded by logical assertions on the values
of these clocks, which allows for the modeling of real-time constraints, such as the time
elapsed between the occurrence of two events. A natural question is whether a real-time
system can handle unexpected delays. This is a crucial need when modeling systems that
must follow a priori schedules such as trains, metros, buses, etc. Timed automata are not a
priori tailored to handle unspecified behaviors: guards are mandatory time constraints, i.e.,
transition firings must occur within the prescribed delays. Hence, transitions cannot occur
late, except if late transitions are explicitly specified in the model. This paper considers the
question of resilience for timed automata, i.e., study whether a system returns to its normal
specified timed behavior after an unexpected but unavoidable delay.

Several works have addressed timing errors as a question of robustness [10, 8, 7], to
guarantee that a property of a system is preserved for some small imprecision of up to ϵ

time units. Timed automata have an ideal representation of time: if a guard of a transition
contains a constraint of the form x = 12, it means that this transition occurs exactly when

© S. Akshay, Blaise Genest, Loïc Hélouët, S. Krishna, and Sparsa Roychowdhury;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 33; pp. 33:1–33:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshayss@cse.iitb.ac.in
https://orcid.org/0000-0002-2471-5997
mailto:blaise.genest@irisa.fr
https://orcid.org/0000-0002-5758-1876
mailto:loic.helouet@inria.fr
https://orcid.org/0000-0001-7056-2672
mailto:krishnas@cse.iitb.ac.in
https://orcid.org/0000-0003-0925-398X
mailto:sparsa@cse.iitb.ac.in
https://orcid.org/0000-0003-3583-7612
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Resilience of Timed Systems

Table 1 Summary of results for resilience.

Universal Resilience Existential Resilience

Timed Undecidable for TA (Prop. 18) EXPSPACE (Thm. 14)
EXPSPACE-C for IRTA (Thm. 20) PSPACE-Hard (Thm. 15, Thm. 32)

Untimed EXPSPACE-C (Thm. 21) PSPACE-C (Thm. 16, Rmk. 17)

the value of clock x is 12. Such an arbitrary precision is impossible in an implementation [10].
One way of addressing this is through guard enlargement, i.e., by checking that there exists
a small value ϵ > 0 such that after replacing guards of the form x ∈ [a, b] by x ∈ [a− ϵ, b+ ϵ],
the considered property is still valid, as shown in [7] for ω-regular properties. In [15], robust
automata are defined that accept timed words and their neighbors i.e., words whose timing
differences remain at a small distance, while in [16, 12, 19, 1], the authors consider robustness
via modeling clock drifts. Our goal is different: rather than being robust w.r.t. to slight
imprecisions, we wish to check the capacity to recover from a possibly large time deviation.
Thus, for a bounded number of steps, the system can deviate arbitrarily, after which, it must
return to its specified timed behavior.

The first contribution of this paper is a formalization of resilience in timed automata.
We capture delayed events with faulty transitions. These occur at dates deviating from the
original specification and may affect clock values for an arbitrarily long time, letting the
system diverge from its expected behavior. A system is resilient if it recovers in a finite
number of steps after the fault. More precisely, we define two variants. A timed automaton
is K-∀-resilient if for every faulty timed run, the behavior of the system K steps after the
fault cannot be distinguished from a non-faulty behavior. In other words, the system always
repairs itself in at most K steps after a fault, whenever a fault happens. This means that,
after a fault happens, all the subsequent behaviors (or extensions) of the system are restored
to normalcy within K steps. A timed automaton is K-∃-resilient if for every timed run
ending with a fault, there exists an extension in which, the behavior of the system K steps
after the fault cannot be distinguished from a non-faulty behavior. There can still be some
extensions which are beyond repair, or take more than K steps after fault to be repaired,
but there is a guarantee of at least one repaired extension within K steps after the fault.
In the first case, the timed automaton is fully self-resilient, while in the second case, there
exist controllers choosing dates and transitions so that the system gets back to a normal
behavior. We also differentiate between timed and untimed settings: in timed resilience
recovered behaviors must be indistinguishable w.r.t. actions and dates, while in untimed
resilience recovered behaviors only need to match actions.

Our results are summarized in Table 1: we show that the question of universal resilience
and inclusion of timed languages are inter-reducible. Thus timed universal resilience is
undecidable in general, and decidable for classes for which inclusion of timed languages
is decidable and which are stable under our reduction. This includes the class of Integer
Reset Timed Automata (IRTA) [18] for which we obtain EXPSPACE containment. Further,
untimed universal resilience is EXPSPACE-Complete in general.

Our main result concerns existential resilience, which requires new non-trivial core
contributions because of the ∀∃ quantifier alternation. The classical region construction
is not precise enough: we introduce strong regions and develop novel techniques based on
these, which ensure that all runs following a strong region have (i) matching integral time
elapses, and (ii) the fractional time can be re-timed to visit the same set of locations and
(usual) regions. Using this technique, we show that existential timed resilience is decidable,
in EXPSPACE. We also show that untimed existential resilience is PSPACE-Complete.

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:3

Related Work. Resilience has been considered with different meanings: In [13], faults are
modeled as conflicts, the system and controller as deterministic timed automata, and avoiding
faults reduces to checking reachability. This is easier than universal resilience which reduces
to timed language inclusion, and existential resilience which requires a new notion of regions.
In [14] a system, modeled as an untimed I/O automaton, is considered “sane” if its runs
contain at most k errors, and allow a sufficient number s of error-free steps between two
violations of an LTL property. It is shown how to synthesize a sane system, and compute
(Pareto-optimal) values for s and k. In [17], the objective is to synthesize a transducer E,
possibly with memory, that reads a timed word σ produced by a timed automaton A, and
outputs a timed word E(σ) obtained by deleting, delaying or forging new timed events, such
that E(σ) satisfies some timed property. A related problem, shield synthesis [5], asks given a
network of deterministic I/O timed automata N that communicate with their environment, to
synthesize two additional components, a pre-shield, that reads outputs from the environment
and produces inputs for N , and a post-shield, that reads outputs from N and produces
outputs to the environment to satisfy timed safety properties when faults (timing, location
errors,...) occur. Synthesis is achieved using timed games. Unlike these, our goal is not to
avoid violation of a property, but rather to verify that the system recovers within boundedly
many steps, from a possibly large time deviation w.r.t. its behavior. Finally, faults in timed
automata have also been studied in a diagnosis setting, e.g. in [6], where faults are detected
within a certain delay from partial observation of runs.

2 Preliminaries

Let Σ be a finite non-empty alphabet and Σ∞ = Σ∗ ∪ Σω a set of finite or infinite words over
Σ. R,R≥0,Q,N respectively denote the set of real numbers, non-negative reals, rationals,
and natural numbers. We write (Σ ×R≥0)∞ = (Σ ×R≥0)∗ ∪ (Σ ×R≥0)ω for finite or infinite
timed words over Σ. A finite (infinite) timed word has the form w = (a1, d1) . . . (an, dn) (resp.
w = (a1, d1) . . .) where for every i, di ≤ di+1. For i ≤ j, we denote by w[i,j], the sequence
(ai, di) . . . (aj , dj). The untiming of a timed word w ∈ (Σ × R≥0)∞ denoted Unt(w), is its
projection on the first component, and is a word in Σ∞. A clock is a real-valued variable x
and an atomic clock constraint is an inequality of the form a ▷◁l x ▷◁u b, with ▷◁l, ▷◁u∈ {≤, <},
a ∈ N, b ∈ N ∪ {∞}. An atomic diagonal constraint is of the form a ▷◁l x − y ▷◁u b, where
x and y are different clocks. Guards are conjunctions of atomic constraints on a set X of
clocks.

▶ Definition 1. A timed automaton [2] is a tuple A = (L, I,X,Σ, T, F) with finite set of
locations L, initial locations I ⊆ L, finitely many clocks X, finite action set Σ, final locations
F ⊆ L, and transition relation T ⊆ L× G × Σ × 2X × L where G are guards on X.

A valuation of a set of clocks X is a map ν : X → R≥0 that associates a non-negative real
value to each clock in X. For every clock x, ν(x) has an integral part ⌊ν(x)⌋ and a fractional
part frac(ν(x)) = ν(x) − ⌊ν(x)⌋. We will say that a valuation ν on a set of clocks X satisfies
a guard g, denoted ν |= g if and only if replacing every x ∈ X by ν(x) in g yields a tautology.
We will denote by [g] the set of valuations that satisfy g. Given δ ∈ R≥0, we denote by ν + δ

the valuation that associates value ν(x) + δ to every clock x ∈ X. A configuration is a pair
C = (l, ν) of a location of the automaton and valuation of its clocks. The semantics of a
timed automaton is defined in terms of discrete and timed moves from a configuration to the
next one. A timed move of duration δ lets δ ∈ R≥0 time units elapse from a configuration
C = (l, ν) which leads to configuration C ′ = (l, ν + δ). A discrete move from configuration

FSTTCS 2021

33:4 Resilience of Timed Systems

C = (l, ν) consists of taking one of the transitions leaving l, i.e., a transition of the form
t = (l, g, a,R, l′) where g is a guard, a ∈ Σ a particular action name, R is the set of clocks
reset by the transition, and l′ the next location reached. A discrete move with transition t is
allowed only if ν |= g. Taking transition t leads the automaton to configuration C ′ = (l′, ν′)
where ν′(x) = ν(x) if x /∈ R, and ν′(x) = 0 otherwise.

▶ Definition 2 (Runs, Maximal runs, Accepting runs). An (infinite) run of a timed automaton
A is a sequence ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · where every pair (li, νi) is a configuration,
and there exists an (infinite) sequence of timed and discrete moves δ1.t1.δ2.t2 . . . in A such
that δi = di+1 − di, and a timed move of duration δi from (li, νi) to (li, νi + δi) and a discrete
move from (li, νi + δi) to (li+1, νi+1) via transition ti. A run is maximal if it is infinite, or if
it ends at a location with no outgoing transitions. A finite run is accepting if its last location
is final, while an infinite run is accepting if it visits accepting locations infinitely often.

We assume that all runs start from a configuration (l0, ν0), where l0 ∈ I and ν0 is the
initial valuation, assigning value 0 to every clock of X. One can associate a finite/infinite
timed word wρ to every run ρ of A by letting wρ = (a1, d1) (a2, d2) . . . (an, dn) . . ., where ai is
the action in transition ti and di is the time stamp of ti in ρ. A (finite/infinite) timed word
w is accepted by A if there exists a (finite/infinite) accepting run ρ such that w = wρ. The
timed language of A is the set of all timed words accepted by A, and is denoted by L(A).
The untimed language of A is the language Unt(L(A)) = {Unt(w) | w ∈ L(A)}. As shown
in [2], the untimed language of a timed automaton can be captured by an abstraction called
the region automaton. Formally, given a clock x, let cx be the largest constant in an atomic
constraint of a guard of A involving x. Two valuations ν, ν′ of clocks in X are equivalent,
written ν ∼ ν′ if and only if:
i) ∀x ∈ X, either ⌊ν(x)⌋ = ⌊ν′(x)⌋ or both ν(x) ≥ cx and ν′(x) ≥ cx

ii) ∀x, y ∈X with ν(x)≤cx and ν(y)≤cy, frac(ν(x))≤ frac(v(y)) iff frac(ν′(x))≤ frac(ν′(y))
iii) For all x ∈ X with ν(x) ≤ cx, frac(ν(x)) = 0 iff frac(ν′(x)) = 0.

A region r of A is the equivalence class induced by ∼. For a valuation ν, we denote by [ν]
the region of ν, i.e., its equivalence class. We will also write ν ∈ r (ν is a valuation in region r
when r = [ν]. For a given automaton A, there exists only a finite number of regions, bounded
by 2K , where K is the size of the constraints set in A. It is well known for a clock constraint
ψ that, if ν ∼ ν′, then ν |= ψ if and only if ν′ |= ψ. A region r′ is a time successor of another
region r if for every ν ∈ r, there exists δ ∈ R>0 such that ν + δ ∈ r′. We denote by Reg(X)
the set of all possible regions of the set of clocks X. A region r satisfies a guard g if and only if
there exists a valuation ν ∈ r such that ν |= g. The region automaton of a timed automaton
A = (L, I,X,Σ, T, F) is the untimed automaton R(A) = (SR, IR,Σ, TR, FR) that recognizes
the untimed language Unt(L(A)). States of R(A) are of the form (l, r), where l is a location
of A and r a region, i.e., SR ⊆ L × Reg(X), IR ⊆ I × Reg(X), and FR ⊆ F × Reg(X).
The transition relation TR is such that

(
(l, r), a, (l′, r′)

)
∈ TR if there exists a transition

t = (l, g, a,R, l′) ∈ T such that there exists a time successor region r′′ of r such that r′′

satisfies the guard g, and r′ is obtained from r′′ by resetting values of clocks in R. The size of
the region automaton is the number of states in R(A) and is denoted |R(A)|. For a region r
defined on a set of clocks Y , we define a projection operator ΠX(r) to represent the region r

projected on the set of clocks X ⊆ Y . Let ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) · · · be a run of A, where
every ti is of the form ti = (li, gi, ai, Ri, l

′
i). The abstract run σρ = (l0, r0) a1−→ (l1, r1) · · · of ρ

is a path in the region automaton R(A) such that, ∀i ∈ N, ri = [νi]. We represent runs using
variables ρ, π and the corresponding abstract runs with σρ, σπ respectively. The automaton
R(A) can be used to prove non-emptiness of L(A), as L(A) ̸= ∅ iff R(A) accepts some word.

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:5

3 Resilience Problems

We define the semantics of timed automata when perturbations can delay the occurrence
of an action. Consider a transition t = (l, g, a,R, l′), with g ::= x ≤ 10, where action a can
occur as long as x has not exceeded 10. Timed automata have an idealized representation of
time, and do not consider perturbations that occur in real systems. Consider, for instance
that “a” is a physical event planned to occur at a maximal time stamp 10: a water tank
reaches its maximal level, a train arrives in a station etc. These events can be delayed, and
nevertheless occur. One can even consider that uncontrollable delays are part of the normal
behavior of the system, and that L(A) is the ideal behavior of the system, when all delays
are met. In the rest of the paper, we propose a fault model that assigns a maximal error to
each fireable action. This error model is used to encode the fact that an action might occur
at a greater date than allowed in the original model semantics.

▶ Definition 3 (Fault model). A fault model P is a map P : Σ → Q≥0 that associates to
every action in a ∈ Σ a possible maximal delay P(a) ∈ Q≥0.

For simplicity, we consider only executions in which a single timing error occurs. The
perturbed semantics defined below easily adapts to a setting with multiple timing errors.
With a fault model, we can define a new timed automaton, for which every run ρ =
(l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · contains at most one transition ti = (l, g, a, r, l′) occurring
later than allowed by guard g, and agrees with a run of A until this faulty transition is taken.

▶ Definition 4 (Enlargement of a guard). Let ϕ be an inequality of the form a ▷◁l x ▷◁u b,
where ▷◁l, ▷◁u∈ {≤, <}. The enlargement of ϕ by a time error δ is the inequality ϕ▷δ of the
form a ▷◁l x ≤ b+ δ. Let g be a guard of the form

g =
∧

i∈1..m

ϕi = ai ▷◁li
xi ▷◁ui

bi ∧
∧

j∈1..q

ϕj = aj ▷◁lj
xj − yj ▷◁uj

bj.

The enlargement of g by δ is the guard g▷δ =
∧

i∈1..m

ϕi▷δ
∧

∧
j∈1..q

ϕj

For every transition t = (l, g, a,R, l′) with enlarged guard
g▷P(a) =

∧
i∈1..m

ϕi = ai ▷◁li xi ≤ bi + P(a) ∧
∧

j∈1..q

ϕj = aj ▷◁lj xj − yj ▷◁uj bj ,

we can create a new transition tf,P = (l, gf,P , a, R,
•
l′) called a faulty transition such that,

gf,P =
∧

i∈1..m

ϕi = bi▷̄◁li
xi ≤ bi + P(a) ∧

∧
j∈1..q

ϕj = aj ▷◁lj
xj − yj ▷◁uj

bj with ▷̄◁li
∈ {<,≤

}\ ▷◁ui

Diagonal constraints remain unchanged under enlargement, as the difference between clocks
x and y is preserved by time elapsing, and operator ▷̄◁li

guarantee that normal and faulty
behaviors occur at different dates. From now, we fix a fault model P and write tf and gf

instead of tf,P and gf,P . Clearly, g and gf are disjoint, and g ∨ gf is equivalent to g▷δ.
We take this particular definition of enlargement to consider late events as faults. We can
easily adapt the definition to handle early events, or any variation where non-specified faulty
transitions can be identified through a guard gf disjoint from g, without harming the results
shown in the rest of the paper.

▶ Definition 5 (Enlargement of automata). Let A = (L, I,X,Σ, T, F) be a timed automaton.
The enlargement of A by a fault model P is the automaton AP = (LP , I,X,Σ, TP , FP), where

LP = L∪ {
•
l | l ∈ L} and FP = F ∪ {

•
l | l ∈ F}. A location

•
l indicates that an unexpected

delay has occurred.
TP = T ∪

•
T such that,

•
T = {(l, gf , a, R,

•
l′) | (l, g, a,R, l′) ∈ T} ∪ {(

•
l, g, a,R,

•
l′) |

(l, g, a,R, l′) ∈ T} i.e.,
•
T is the set of transitions occurring after a fault.

FSTTCS 2021

33:6 Resilience of Timed Systems

ℓ1 ℓ2ℓ3

ℓ5

ℓ4

skip

arr, x ≤ 4

y := 0

arr, 4 < x ≤ 6

y := 0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

Figure 1 Model of a train system with a mechanism to recover from delays.

A run of AP is faulty if it contains a transition of
•
T . It is just faulty if its last transition

belongs to
•
T and all other transitions belong to T . Note that while faulty runs can be finite

or infinite, just faulty runs are always finite prefix of a faulty run, and end in a location
•
l.

▶ Definition 6 (Back To Normal (BTN)). Let K ≥ 1, A be a timed automaton with fault
model P. Let ρ = (l0, ν0) (t1,d1)−→ (l1, ν1) (t2,d2)−→ · · · be a (finite or infinite) faulty accepting run
of AP , with associated timed word (a1, d1)(a2, d2) . . . and let i ∈ N be the position of the faulty
transition in ρ. Then ρ is back to normal (BTN) after K steps if there exists an accepting
run ρ′ = (l′0, ν′

0) (t′
1,d′

1)−→ (l′1, ν′
1) (t′

2,d′
2)−→ · · · of A with associated timed word (a′

1, d
′
1)(a′

2, d
′
2) . . .

and an index ℓ ∈ N such that (a′
ℓ, d

′
ℓ)(a′

ℓ+1, d
′
ℓ+1) · · · = (ai+K , di+K)(ai+K+1, di+K+1)

ρ is untimed back to normal (untimed BTN) after K steps if there exists an accepting run ρ′ =
(l′0, ν′

0) (t′
1,d′

1)−→ (l′1, ν′
1) (t′

2,d′
2)−→ · · · of A and an index ℓ ∈ N s.t. a′

ℓa
′
ℓ+1 · · · = ai+Kai+K+1 · · ·

In other words, if w is a timed word having a faulty accepting run (i.e., w ∈ L(AP)), the
suffix of w, K steps after the fault, matches with the suffix of some word w′ ∈ L(A). Note
that the accepting run of w′ in A is not faulty, by definition. The conditions in untimed
BTN are simpler, and ask the same sequence of actions, but not equality on dates. Words w
and w′ need not have an identical prefix: this means that a BTN run has returned to some
normal behavior, but not necessarily the behavior originally planned before the fault.

Our current definition of back-to-normal in K steps means that a system recovered from
a fault (a primary delay) in ≤ K steps and remained error-free. We can generalize our
definition, to model real life situations where more than one fault happens due to time delays,
but the system recovers from each one in a small number of steps and eventually achieves its
fixed goal (a reachability objective, some ω-regular property...). A classical example of this is
a metro network, where trains are often delayed, but nevertheless recover from these delays
to reach their destination on time. This motivates the following definition of resilience.

▶ Definition 7 (Resilience). A timed automaton A is
(untimed) K-∀-resilient if every finite faulty accepting run is (untimed) BTN in K steps.
(untimed) K-∃-resilient if every just faulty run ρjf can be extended into a maximal
accepting run ρf which is (untimed) BTN in K steps.

Intuitively, a faulty run of A is BTN if the system has definitively recovered from a fault,
i.e., it has recovered and will follow the behavior of the original system after its recovery.
The definition of existential resilience considers maximal (infinite, or finite but ending at a
location with no outgoing transitions) runs to avoid situations where an accepting faulty run
ρf is BTN, but all its extensions i.e., suffixes ρ′ are such that ρf .ρ

′ is not BTN.

▶ Example 8. We model train services to a specific destination such as an airport. On an
average, the distance between two consecutive stations is covered in ≤ 4 time units. At
each stop in a station, the dwell time is in between 1 and 2 time units. To recover from a

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:7

ℓ1 ℓ2ℓ3

ℓ5

ℓ4

•
ℓ1

•
ℓ2

•
ℓ3

•
ℓ5

•
ℓ4

skip

arr, x ≤ 4

y := 0

arr, 4 <
x ≤ 6

y :=
0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

skip

arr, x ≤ 4

y := 0

x := 0

dep, 1 ≤ y ≤ 2

late, y = 0 ∧ x > 4

dep, 1 ≤ y ≤ 2

x := 0

arr, 6 ≤ x ≤ 8y := 0

Figure 2 Enlarged automaton for the train system (with recovery) model of Figure 1.

delay, the train is allowed to skip an intermediate station (as long as the next stop is not the
destination). Skipping a station is a choice, and can only be activated if there is a delay. We
model this system with the timed automaton of Figure 1. There are 5 locations: ℓ1, and ℓ2
represent the normal behavior of the train and ℓ3, ℓ4, ℓ5 represent the skipping mechanism.
These locations can only be accessed if the faulty transition (represented as a red dotted
arrow in Figure 1) is fired. A transition tij goes from ℓi to ℓj , and

•
t21 denotes the faulty

transition from ℓ2 to
•
ℓ1. The green locations represent the behavior of the train without

any delay, and the red locations represent behaviors when the train chooses to skip the next
station to recover from a delay. This mechanism is invoked once the train leaves the station
where it arrived late (location ℓ3). When it departs, x is reset as usual; the next arrival to a
station (from location ℓ4) happens after skipping stop at the next station. The delay can
be recovered since the running time since the last stop (covering 2 stations) is between 6
and 8 units of time. Formally, verifying that this system can recover from a delay within K

steps can be done by setting as fault model P(arr) = 2, and then checking a K-∃-resilience
problem. It then amounts to asking if the enlarged automaton of Figure 2 can recognize a
suffix of a word recognized by the automaton of Figure 1, K steps after visiting location

•
ℓ1.

Consider the faulty run ρf = (ℓ1, 0|0) (t12,2)−→ (ℓ2, 0|2) (
•

t21,8)−→ (ℓ1, 6|0) (t13,8)−→ (
•
ℓ3, 6|0) (t34,10)−→

(
•
ℓ4, 0|2) (t45,10)−→ (

•
ℓ5, 0|2) (t51,18)−→ (

•
ℓ1, 8|0) (t12,19)−→ (

•
ℓ2, 0|1) reading (dep, 2)(arr, 8)(late, 8)(dep, 10)

(skip, 10)(arr, 18)(dep, 19). Run ρf is BTN in 4 steps. It matches the non-faulty run ρ =
(ℓ1, 0|0) (t12,2)−→ (ℓ2, 0|2) (t21,6)−→ (ℓ1, 4|0) (t12,8)−→ (ℓ2, 0|2) (t21,12)−→ (ℓ1, 4|0) (t12,14)−→ (ℓ2, 0|2) (t21,18)−→
(ℓ1, 4|0) (t12,19)−→ (ℓ2, 0|1) reading (dep, 2)(arr, 6)(dep, 8)(arr, 12)(dep, 14)(arr, 18)(dep, 19).
This automaton is K-∃-resilient for K = 4 and fault model P, as skipping a station
after a delay of ≤2 time units allows to recover the time lost. It is not K-∀-resilient, for any
K, as skipping is not mandatory, and a train can be late for an arbitrary number of steps.
In Appendix A we give another example that is 1-∀-resilient.

K-∀-resilience always implies K-∃-resilience. In case of K-∀-resilience, every faulty run
ρw has to be BTN in ≤ K steps after the occurrence of a fault. This implies K-∃-resilience
since, any just faulty run ρw that is the prefix of an accepting run ρ of AP is BTN in less
than K steps. The converse does not hold: AP can have a pair of runs ρ1, ρ2, sharing a
common just faulty run ρf as prefix such that ρ1 is BTN in K steps, witnessing existential
resilience, while ρ2 is not. Finally, an accepting run ρ = ρfρs in AP s.t., ρf is just faulty
and |ρs| < K, is BTN in K steps since ε is a suffix of a run accepted by A.

FSTTCS 2021

33:8 Resilience of Timed Systems

4 Existential Resilience

In this section, we consider existential resilience both in the timed and untimed settings.

Existential Timed Resilience. As the first step, we define a product automaton B ⊗K A
that recognizes BTN runs. Intuitively, the product synchronizes runs of B and A as soon as
B has performed K steps after a fault, and guarantees that actions performed by A and B are
performed at the same date in the respective runs of A and B. Before this synchronization,
A and B take transitions or stay in the same location, but let the same amount of time
elapse, guaranteeing that synchronization occurs after runs of A and B of identical durations.
The only way to ensure this with a timed automaton is to track the global timing from the
initial state of both automata A and B till K steps after the fault, even though we do not
need the timing for individual actions till K steps after the fault.

▶ Definition 9 (Product). Let A = (LA, IA, XA,Σ, TA, FA) and B = (LB , IB , XB ,Σ, TB , FB)
be two timed automata, where B contains faulty transitions. Let K ∈ N be an integer. Then,
the product B⊗K A is a tuple (L, I,XA∪XB , (Σ∪{∗})2, T, F) where L ⊆ {LB ×LA×[−1,K]},
F = LB × FA × [−1,K], and initial set of locations I = IB × IA × {−1}. Intuitively,
−1 means no fault has occurred yet. Then we assign K and decrement to 0 to denote
that K steps after fault have passed. The set of transitions T is as follows: We have(
(lB , lA, n), g, < x, y >,R, (l′B , l′A, n′)

)
∈ T if and only if either:

n ̸= 0 (no fault has occurred, or less than K steps of B have occurred), the action is
< x, y >=< a, ∗ >, we have transition tB = (lB , g, a, R, l′B) ∈ TB, lA = l′A (the location
of A is unchanged) and either: n = −1, the transition tB is faulty and n′ = K, or n = −1,
the transition tB is non faulty and n′ = −1, or n > 0 and n′ = n− 1.
n = n′ ̸= 0 (no fault has occurred, or less than K steps of B have occurred), the action
is < x, y >=< ∗, a >, we have the transition tA = (lA, g, a, R, l′A) ∈ TA, lB = l′B (the
location of B is unchanged).
n = n′ = 0 (at least K steps after a fault have occured), the action is < x, y >=< a, a >

and there exists two transitions tB = (lB , g, a, RB , l
′
B) ∈ TB and tA = (lA, gA, a, RA, l

′
A) ∈

TA with g = gA ∧ gB, and R = RB ∪RA (tA and tB occur synchronously).

Runs of B ⊗K A are sequences of the form ρ⊗ = (l0, lA0 , n0) (t1,tA
1),d1−→ · · ·

(tk,tA
k),dk−→ (lk, lAk , nk)

where each (ti, tAi) ∈ (TB ∪ {t∗}) × (TA ∪ {tA∗ }) defines uniquely the transition of B ⊗K A,
where t∗ corresponds to the transitions with action ∗. Transitions are of types (ti, tA∗) or
(t∗, tAi) up to a fault and K steps of TB , and (ti, tAi) ∈ TB × TA from there on.

For any timed run ρ⊗ of AP ⊗K A, the projection of ρ⊗ on its first component is a timed
run ρ of AP , that is projecting ρ⊗ on transitions of AP and remembering only location and
clocks of AP in states. In the same way, the projection of ρ⊗ on its second component is a
timed run ρ′ of A. Given timed runs ρ of AP and ρ′ of A, we denote by ρ⊗ ρ′ the timed
run (if it exists) of AP ⊗K A such that the projection on the first component is ρ and the
projection on the second component is ρ′. For ρ⊗ ρ′ to exist, we need ρ, ρ′ to have the same
duration, and for ρs the suffix of ρ starting K steps after a fault (if there is a fault and K

steps, ρs = ε the empty run otherwise), ρs needs to be suffix of ρ′ as well.
A run ρ⊗ of AP ⊗K A is accepting if its projection on the second component (A) is

accepting (i.e., ends in an accepting state if it is finite and goes through an infinite number
of accepting state if it is infinite). We can now relate the product AP ⊗K A to BTN runs.

▶ Proposition 10. Let ρf be a faulty accepting run of AP . The following are equivalent:
i ρf is BTN in K-steps
ii there is an accepting run ρ⊗ of AP ⊗K A s.t., the projection on its first component is ρf

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:9

Let ρ be a finite run of AP . We denote by T⊗K
ρ the set of configurations of AP ⊗K A

such that there exists a run ρ⊗ of AP ⊗K A ending in this configuration, whose projection
on the first component is ρ. We then define S⊗K

ρ as the set of states of R(AP ⊗K A)
corresponding to T⊗K

ρ , i.e., S⊗K
ρ = {(s, [ν]) ∈ R(AP ⊗K A) | (s, ν) ∈ T⊗K

ρ }. If we can
compute the set S = {S⊗k

ρ | ρ is a finite run of AP}, we would be able to solve timed universal
resilience, because from this set, one can check existence of a run accepted by AP and not
by A. Proposition 18 shows that universal resilience is undecidable. Hence, computing S is
impossible. Roughly speaking, it is because this set depends on the exact timing in a run ρ,
and in general one cannot use the region construction.

We can however show that in some restricted cases, we can use a modified region
construction to build S⊗K

ρ , which will enable decidability of timed existential resilience.
First, we restrict to just faulty runs, i.e., consider runs of AP and A of equal durations,
but that did not yet synchronize on actions in the product AP ⊗K A. For a timed run ρ,
by its duration, we mean the time-stamp or date of occurrence of its last event. Second,
we consider abstract runs σ̃ through a so-called strong region automaton, as defined below.
Intuitively, σ̃ keeps more information than in the usual region automaton to ensure that for
two timed runs ρ1 = (t1, d1)(t2, d2) . . . , and ρ2 = (t1, e1)(t2, e2) . . . associated with the same
run of the strong region automaton, we have ⌊ei⌋ = ⌊di⌋ for all i. Formally, we build the
strong region automaton Rstrong(B) of a timed automaton B as follows. We add a virtual
clock xι to B which is reset at each integral time point, add constraint xι < 1 to each
transition guard, and add a virtual self loop transition with guard xι = 1 resetting xι on
each state. Standard regions are equivalence classes for clock values, but not for elapsed
time. Adding a virtual clock resetting at every integral time point allows to consider the
fractional part of elapsed global time in regions. Lemma 12 below shows that if two abstract
runs σ1, σ2 visit the same sequence of strong regions, then there are two runs of identical
duration that have σ1, σ2 as abstractions. We then make the usual region construction on
this extended timed automaton to obtain Rstrong(B). The strong region construction thus
has the same complexity as the standard region construction. Let L(Rstrong(B)) be the
language of this strong region automaton, where these self loops on the virtual clock are
projected away. These additional transitions capture ticks at integral times, but do not
change the behavior of B, i.e., we have Unt(L(B)) ⊆ L(Rstrong(B)) ⊆ L(R(B)) = Unt(L(B))
so Unt(L(B)) = L(Rstrong(B)).

For a finite abstract run σ̃ of the strong region automaton Rstrong(AP), we define the set
S⊗K

σ̃
of states of Rstrong(AP ⊗K A) (the virtual clock is projected away, and our region is

w.r.t original clocks) such that there exists a run σ̃⊗ through Rstrong(AP ⊗K A) ending in
this state and whose projection on the first component is σ̃. Let σ̃ρ be the run of Rstrong(AP)
associated with a run ρ of AP . It is easy to see that S⊗K

σ̃
=

⋃
ρ|σ̃ρ=σ̃

S⊗K
ρ . For a just faulty

timed run ρ of AP , we have a stronger relation between S⊗K
ρ and S⊗K

σ̃ρ

:

▶ Proposition 11. Let ρ be a just faulty run of AP . Then S⊗K
ρ = S⊗K

σ̃ρ

.

Proof. First, notice that given a just faulty timed run ρ of AP and a timed run ρ′ of A of
same duration, the timed run ρ⊗ ρ′ (the run of AP ⊗K A such that ρ is the projection on
the first component and ρ′ on the second component) exists.

To show that S⊗K
ρ = S⊗K

σ̃ρ

, we show that for any pair of just faulty runs ρ1, ρ2 of AP with
σ̃ρ1 = σ̃ρ2 , we have S⊗K

ρ1
= S⊗K

ρ2
, which yields the result as S⊗K

σ̃ρ

=
⋃

ρ′|σ̃ρ′ =σ̃ρ
S⊗K

ρ′ . Consider
ρ1, ρ2, two just faulty timed runs of AP with σ̃ρ1 = σ̃ρ2 and let (lAP , lA,K, r) ∈ S⊗K

ρ1
. Then,

this implies that there exists ν1 |= r and a timed run ρ′
1 of A with the same duration as ρ1,

such that ρ1 ⊗ ρ′
1 ends in state (lAP , lA,K, ν1). The following lemma completes the proof:

FSTTCS 2021

33:10 Resilience of Timed Systems

▶ Lemma 12. There exists ν2 |= r and a timed run ρ′
2 of A with the same duration as ρ2,

such that ρ2 ⊗ ρ′
2 ends in state (lAP , lA,K, ν2).

The main idea of the proof is to show that we can construct ρ′
2 which will have the

same transitions as ρ′
1, with same integral parts in timings (thanks to the information from

the strong region automaton), but possibly different timings in the fractional parts, called
a re-timing of ρ′

1. Notice that ρ2 is a re-timing of ρ1, as σ̃ρ1 = σ̃ρ2 . We translate the
requirement on ρ′

2 into a set of constraints (which is actually a partial ordering) on the
fractional parts of the dates of its transitions, and show that we can indeed set the dates
accordingly. This translation follows the following idea: the value of a clock x just before
firing transition t is obtained by considering the date d of t minus the date dx of the latest
transition tx at which x has been last reset before t. In particular, the difference x − y

between clocks x, y just before firing transition t is (d−dx) − (d−dy) = dy −dx. That is, the
value of a clock or its difference can be obtained by considering the difference between two
dates of transitions. A constraint given by x− y ∈ (n, n+ 1) is equivalent with the constraint
given by dy − dx ∈ (n, n+ 1), and similar constraints on the fractional parts can be given.

Proof. Let t1, . . . , tn be the sequence of transitions of ρ1, ρ2 taken respectively, at dates
d1, . . . , dn and e1, . . . , en. Similarly, we will denote by t′1, . . . , t′k the sequence of transitions
of ρ′

1, taken at dates d′
1, . . . , d

′
k. Run ρ′

2 will pass by the same transitions t′1, . . . , t′k, but with
possibly different dates e′

1, . . . , e
′
k such that:

the duration of ρ′
2 is the same as the duration of ρ2,

σ̃ρ′
2

follows the same sequence of states of Rstrong(A) as σ̃ρ′
1

(in particular, ρ′
2 is a valid

run as it fullfils the guards of its transitions, which are the same as those of ρ′
1).

σ̃ρ2⊗ρ′
2

reaches the same state of Rstrong(AP ⊗K A) as σ̃ρ1⊗ρ′
1
.

We translate these into three requirements on the dates (e′
i)i≤k of ρ′

2:
R1. We have e′

k = en,
R2. For every i ≤ k, the integral part ⌊e′

i⌋ = ⌊d′
i⌋ . Remark that we already have ⌊e′

k⌋ =
⌊en⌋ = ⌊dn⌋ = ⌊d′

k⌋ by R1 and by the hypothesis,
R3. Fractional parts (frac(e′

i))i≤k satisfy a set of constraints, defined hereafter as a partial
ordering on (frac(e′

i))i≤k ∪ (frac(ei))i≤n.

Notice that the value of a clock x just before firing transition ti is obtained by considering
the date di of ti minus the date dx

i of the latest transition tj , j < i at which x has been
last reset before i. In particular, the difference x− y between clocks x, y just before firing
transition ti is (di − dx

i) − (di − dy
i) = dy

i − dx
i . That is, the value of a clock or its difference

can be obtained by considering the difference between two dates of transitions. A constraint c
given by x− y ∈ (n, n+ 1) is equivalent with the constraint d(c) given by dy

i −dx
i ∈ (n, n+ 1).

We then characterize the conditions required for the run ρ2 ⊗ ρ′
2 to reach the same region

r of Rstrong(AP ⊗K A) which was reached by ρ1 ⊗ ρ′
1. These conditions are described as on

region r in the following equivalent ways:
1. A set of constraints C on the disjoint union X ′′ = XAP ⊎XA of clocks of AP and A, of

the form x − y ∈ (n, n + 1) or x − y = n or x − y > Max (possibly considering a null
clock y) for n ∈ Z,

2. The associated set of constraints C ′ = {d(c) | c ∈ C} on D = {dx | x ∈ XAP } ⊎ {d′
x′ |

x′ ∈ XA}, with dx the date of the latest transition t⊗j that resets the clock x ∈ XAP , and
d′

x′ the date of the latest transition t⊗l that resets clock x′ ∈ XA,
3. An ordering ≤′ over FP = {frac(τ) | τ ∈ D} defined as follows: for each constraint

τ −τ ′ ∈ (n, n+1) of C ′, if ⌊τ⌋ = ⌊τ ′⌋+n then frac(τ) <′ frac(τ ′), and if ⌊τ⌋ = ⌊τ ′⌋+n+1
then frac(τ ′) <′ frac(τ).

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:11

For each constraint τ − τ ′ = n of C ′, then frac(τ ′) =′ frac(τ).
For each constraint τ − τ ′ > cmax of C ′ such that ⌊τ⌋ = ⌊τ ′⌋ + cmax, we have frac(τ ′) >′

frac(τ) (if ⌊τ⌋ ≥ ⌊τ ′⌋ + cmax + 1, then we dont need to do anything), where cmax =
max({cx | x ∈ X}).

Further, path ρ′
2 needs to visit the regions r1, . . . rk visited by ρ′

1. For each i, visiting
region ri is characterized by a set of constraints Ci, which we translate as above as an
ordering ≤′

i on FP ′ = {frac(d′
i) | i ≤ k}.

Thus, finally, we can collect all the requirements for having ρ′ with required properties by
defining ≤′′ over FP ′ ∪FP (notice that it is not a disjoint union) as the transitive closure of
the union of all ≤′

i and of ≤′. As the union of constraints on C ′
i and on C ′ is satisfied by the

dates (di)i≤n and (d′
i)i≤k of ρ1 and ρ′

1, the union of constraints is satisfiable. Equivalently,
≤′′ is a partial ordering, respecting the total natural ordering ≤ on FP ∪ FP ′. We will
denote τ =′′ τ ′ whenever τ ≤′′ τ ′ and τ ′ ≤′′ τ , and τ <′′ τ ′ if τ ≤′′ τ ′ but we dont have
τ =′′ τ ′. Because ≤′′ is a partial ordering, there is no τ, τ ′ with τ <′′ τ ′ <′′ τ .

Note that there is only one way of fulfilling the first two requirements R1. and R2; namely
by matching e′

k and en, and by witnessing dates with the same integral parts in e′
k, en as

well as d′
k, dn. While this takes care of the last values, to obtain the remaining values, we

can apply any greedy algorithm fixing successively frac(e′
k−1) . . . frac(e′

1) and respecting ≤′′

to yield the desired result. We provide a concrete such algorithm for completeness:
We will start from the fixed value of frac(e′

k−1) and work backwards. Let us assume
inductively that frac(e′

k−1) . . . frac(e′
i+1) have been fixed. We now describe how to obtain

frac(e′
i). If frac(d′

i) =′′ frac(d′
j), j > i then we set frac(e′

i) = frac(e′
j). If frac(d′

i) =′′ frac(dj),
then we set frac(e′

i) = frac(ej). Otherwise, consider the sets Li = {frac(ej) | j ≤ n, frac(dj) <′′

frac(d′
i)} ∪ {frac(e′

j) | i < j ≤ n, frac(d′
j) <′′ frac(d′

i)}. Also, consider Ui = {frac(ej) | j ≤
n, frac(dj) >′′ frac(d′

i)} ∪ {frac(e′
j) | i < j ≤ n, frac(d′

j) >′′ frac(d′
i)}. We let li = max(Li)

and ui = min(Ui). We then set frac(e′
i) to any value in (li, ui). It remains to show that we

always have li < ui, which will show that such a choice of value for the fractional part of e′
i

is indeed possible.
By contradiction, consider that there exists i such that li ≥ ui, and consider the

maximal (first) such i. First, assume that both li and ui are of the form frac(ej), frac(ek)
respectively, i.e. corresponds to clock values in the last regions of ρ2. The contradiction
hypothesis is li = frac(ej) ≥ ui = frac(ek). By definition of Li and Ui, we also have
frac(dj) <′′ frac(d′

i) <′′ frac(dk). In particular, frac(dj) < frac(dk). This is a contradiction
with σ̃ρ1 = σ̃ρ2 , as the strong region reached by ρ1 and ρ2 are the same. A contradiction.

Otherwise, at least one of li, ui is of the form frac(e′
j), with j > i (consider j minimal

if both are of this form). By symetry, let say li = frac(e′
j) ≥ ui. Let say ui = frac(ek),

as ui = frac(e′
k) with k > j is similar since it has been fixed before frac(e′

j). We have
frac(d′

j) <′′ d′
i <

′′ frac(dk) by definition of Li, Ui. In particular frac(d′
j) <′′ frac(dk): That

is, k ∈ Uj , and by construction, and as j > i, we have li = frac(e′
j) < frac(ek) = ui, a

contradiction. ◀

Lemma 12 completes the proof of Proposition 11 immediately. Indeed, the lemma implies
that (lAP , lA,K, r) ∈ S⊗K

ρ2
from which we infer that S⊗K

ρ1
⊆ S⊗K

ρ2
. By a symmetric argument

we get the other containment also, and hence we conclude that S⊗K
ρ1

= S⊗K
ρ2

. ◀

Lemma 12, which is crucial for our decidability results for existential timed resilience, shows
that a timed run can be re-timed, i.e., it shows the existence of a timed run with the
same transitions but possibly different timestamps. For this, the global time-stamps (dj)
of actions need to be fixed, and in particular the ordering between their fractional parts

FSTTCS 2021

33:12 Resilience of Timed Systems

s1 s2 s3
t1, y < 1

z := 0

t4, 1 < y < 2 ∧ z < 1

t2, y := 0

t3, z := 0
s1 s2 s3

t1, y < 1, z := 0

xι < 1

t4, 1 < y < 2 ∧ z < 1

xι < 1

xι = 1, xι := 0 xι = 1, xι := 0xι = 1, xι := 0

t2, xι < 1, y := 0

t3, xι < 1, z := 0

Figure 3 Example timed automaton (left) and its strong timed automaton (right).

frac(dj). The normal region automaton only ensures ordering between the differences of
(dj)’s, but not (dj) themselves. Let us illustrate this with an concrete example of a TA
c.f., Figure 3 (left), having 3 locations s1, s2, s3, 2 clocks y, z and transitions t1 = (y <
1, z := 0), t2 = (y := 0), t3 = (z := 0), t4 = (1 < y < 2, z < 1) such that t1 goes from
location s1 to s2, t2, t3 are loops at s2 and t4 goes from s2 to s3. We can see the run in the
standard region automaton σ = (s1, [{0}, {0}]) t1−→ (s2, [(0, 1), {0}]) t2−→ (s2, [{0}, (0, 1)]) t3−→
(s2, [(0, 1), {0}]) t4−→ (s3, [(1, 2), (0, 1), frac(y) < frac(z)]). The following two timed runs
ρ1 = (t1, d1 = 0.8)(t2, d2 = 1.2)(t3, d3 = 1.9)(t4, d4 = 2.4) and ρ2 = (t1, d′

1 = 0.9)(t2, d′
2 =

1.89)(t3, d′
3 = 2.69)(t4, d′

4 = 3.39) correspond to abstract run σ. Note that frac(d2) < frac(d3)
but frac(d′

2) > frac(d′
3).

We build the strong region automaton by adding a virtual clock xι reset at all integer
points (reset x when xι = 1) c.f., Figure 3 (right). As explained above, concrete runs ρ1 and ρ2
have the same abstract run σ in the standard region automaton. Now, if we consider abstract
runs in the strong region automaton (i.e. with the addition of a clock xι reset at integral time
points), the concrete run ρ1 will correspond to abstract run σ1 = (s1, [{0}, {0}, {0}]) t1−→
(s2, [(0, 1), (0, 1), {0}, frac(xι) = frac(y)]) t2−→ (s2, [(0, 1), {0}, (0, 1), frac(xι) < frac(z)]) t3−→
(s2, [(0, 1), (0, 1), {0}, frac(y) < frac(xι)])

t4−→ (s3, [(0, 1), (1, 2), (0, 1), frac(y) < frac(xι) <
frac(z)]), and the concrete run ρ2 will correspond to abstract run σ2 = (s1, [{0}, {0}, {0}]) t1−→
(s2, [(0, 1), (0, 1), {0}, frac(xι) = frac(y)]) t2−→ (s2, [(0, 1), {0}, (0, 1), frac(xι) < frac(z)]) t3−→
(s2, [(0, 1), (0, 1), {0}, frac(xι) < frac(y)]) t4−→ (s3, [(0, 1), (1, 2), (0, 1), frac(xι) < frac(y) <
frac(z)]). The abstract run σ1 ends with a relation frac(y) < frac(xι) < frac(z) on fractional
parts of clocks xι, y, z, the abstract runs σ2 end with the relation frac(xι) < frac(y) < frac(z).
Thus, ρ1 and ρ2, do not have the same abstract “strong” run.

Algorithm to solve Existential Timed Resilience. We can now consider existential timed
resilience, and prove that it is decidable thanks to Propositions 10 and 11. The main idea is
to reduce the existential resilience question to a question on the sets of regions reachable
after just faulty runs. Indeed, focusing on just faulty runs means that we do not have any
actions to match, only the duration of the run till the fault, whereas if we had tried to reason
on faulty runs in general, actions have to be synchronized K steps after the fault and then
we cannot compute the set of S⊗K

ρf
. We can show that reasoning on S⊗K

ρf
for just faulty runs

is sufficient. Let ρf be a just faulty timed run of AP . We say that s ∈ S⊗K
ρf

is safe if there
exists a (finite or infinite) maximal accepting run of AP ⊗K A from s, and that S⊗K

ρf
is safe

if there exists s ∈ S⊗K
ρf

which is safe.

▶ Lemma 13. There exists a maximal accepting extension of a just faulty run ρf that is
BTN in K-steps iff S⊗K

ρf
is safe. Further, deciding if S⊗K

ρf
is safe can be done in PSPACE.

Proof. Let ρf a just faulty run. By Proposition 10, there exists an extention ρ of ρf that is
BTN in K steps if and only if there exists an accepting run ρ⊗K of AP ⊗K A such that ρf

is a prefix of the projection of ρ⊗K on its first component, if and only if there exists a just
faulty run ρ⊗K

f of AP ⊗K A such that its projection on the first component is ρf , and such
that an accepting state of AP ⊗K A can be reached after ρ⊗K

f , if and only if S⊗K
ρf

is safe.

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:13

Safety of S⊗K
ρf

can be verified using a construction similar to the one in Theorem 16: it is
hence a reachability question in a region automaton, solvable with a PSPACE complexity. ◀

This lemma means that it suffices to consider the set of S⊗K
ρf

over all ρf just faulty, which
we can compute using region automaton thanks to Prop. 11, which gives:

▶ Theorem 14. K-∃-resilience of timed automata is in EXPSPACE.

Proof. Lemma 13 implies that A is not K-timed existential resilient if and only if there exists
a just faulty run ρf such that S⊗K

ρf
is not safe. This latter condition can be checked. Let us

denote by Rstrong(AP) = (SR(AP), IR(AP),Σ, TR(AP), FR(AP)) the strong region automaton
associated with AP . We also denote R⊗K

= (SR⊗K
, IR⊗K

,Σ, TR⊗K
, FR⊗K

) the strong region
automaton Rstrong(AP ⊗K A). Let ρf be a just faulty run, and let σ = σ̃ρf

denote the run
of Rstrong(AP) associated with ρf . Thanks to Proposition 11, we have S⊗K

ρf
= S⊗K

σ , as S⊗K
ρf

does not depend on the exact dates in ρf , but only on their regions, i.e., on σ. So it suffices to
find a reachable witness S⊗K

σ of R⊗K
which is not safe, to conclude that A is not existentially

resilient. For that, we build an (untimed) automaton B. Intuitively, this automaton follows
σ up to a fault of the region automaton Rstrong(AP), and maintains the set S⊗K

σ of regions
of R⊗K

. This automaton stops in an accepting state immediately after occurrence of a
fault. Formally, the product subset automaton B is a tuple (SB, I,Σ, T, F) with set of states
SB = SRstrong(AP) ×2SR⊗K ×{0, 1}, set of initial states I = IRstrong(AP) ×{IR⊗K

}×{0}, and
set of final states F = SRstrong(AP) × 2SR⊗K × {1}. The set of transitions T ⊆ SB × Σ × SB

is defined as follows,(
(l, r, S, 0), a, (l′, r′, S′, ♭)

)
∈ T if and only if tR =

(
(l, r), a, (l′, r′)

)
∈ TRstrong(AP) and

♭ = 1 if and only if tR is faulty and ♭ = 0 otherwise.
S′ is the set of states s′ of Rstrong(AP ⊗K A) whose first component is (l′, r′) and such
that there exists s ∈ S, (s, a, s′) ∈ TR(⊗K).

Intuitively, 0 in the states means no fault has occurred yet, and 1 means that a fault has
just occurred, and thus no transition exists from this state. We have that for every prefix
σ of a just faulty abstract run of Rstrong(AP), ending on a state (l, r) of Rstrong(AP) then,
there exists a unique accepting path σ⊗ in B such that σ is the projection of σ⊗ on its first
component. Let (l, r, S, 1) be the state reached by σ⊗. Then S⊗K

σ = S. Thus, non-existential
resilience can be decided by checking reachability of a state (l, r, S, 1) such that S is not safe
in automaton B. Recall (from Lemma 13) that checking safety of S is in PSPACE. As B is
of doubly exponential size, reachability can be checked in EXPSPACE. As EXPSPACE is
closed under complement, checking existential resilience is in EXPSPACE. ◀

While we do not have a matching lower bound, we complete this subsection with following
(easy) hardness result (we leave the details in Appendix B due to lack of space).

▶ Theorem 15. The K-∃-resilience problem for timed automata is PSPACE-Hard.

Proof. We proceed by reduction from the language emptiness problem, which is known
to be PSPACE-Complete for timed automata. We can reuse the gadget Gund of Figure 4.
We take any automaton A and collapse its initial state to state s1 in the gadget. We
recall that s1 is accessible at date 15 only after a fault. We add a self loop with transition,
te = (s2, σ, true, ∅, s2) for every σ ∈ Σ. This means that after reaching s2, which is accessible
only at date 15 if no fault has occurred, the automaton accepts any letter with any timing.
Then, if A has no accepting word, there is no timed word after a fault which is a suffix
of a word in L(A), and conversely, if L(A) ̸= ∅, then any word recognized from s1 is also
recognized from qe. So the language emptiness problem reduces to 2-∃-resilience. ◀

FSTTCS 2021

33:14 Resilience of Timed Systems

v0 v1

v2 qe

v3 A

x = 1, a, {y}
x = 1, y = 0, b

{x}

x = 10, c

X1

x = 9, c

X2

x = 2, y = 0, b{x}

⊤, Σ, ∅

1 < x ≤ 2, a, {y}

s0 si

si,1

si,2

s1

s2

x ≤ 10, a

{y}

x > 11 ∧ y < 1, b

x ≤ 10, b

z = 15, c

X1

z = 15, c

X2

Figure 4 The gadget automaton BΣ∗⊆A (left) and the gadget Gund (right).

Existential Untimed Resilience. We next address untimed existential resilience, which we
show can be solved by enumerating states (l, r) of R(A) reachable after a fault, and for
each of them proving existence of a BTN run starting from (l, r). This enumeration and the
following check uses polynomial space, yielding PSPACE-Completeness of K-∃-resilience.

▶ Theorem 16. Untimed K-∃-resilience is PSPACE-Complete.

Proof (sketch). Membership: A is untimed K-∃-resilient if and only if for all states q = (l, r)
reached by a just faulty run of R(AP), there exists a maximal accepting path σ from q such
that its suffix σs after K steps is also the suffix of a path of R(A). This property can be
verified in PSPACE. A detailed proof is provided in Appendix B.

Hardness: We can now show that untimed K-∃-resilience is PSPACE-Hard. Consider
a timed automaton A with alphabet Σ and the construction of an automata that uses a
gadget shown in Figure 4 (left). Let us call this automaton BΣ∗⊆A. This automaton reads a
word (a, 1)(b, 1)(c, 11) and then accepts all timed words 2 steps after a fault, via Σ loop on a
particular accepting state qe. If BΣ∗⊆A takes the faulty transition (marked in dotted red)
then it resets all clocks of A and behaves as A. The accepting states are qe ∪ F . Then, A
has an accepting word if and only if BΣ∗⊆A is untimed 2-∃-resilient. Since the emptiness
problem for timed automata is PSPACE-Complete, the result follows. ◀

▶ Remark 17. The hardness reduction in the proof of Theorem 16 holds even for determin-
istic timed automata. It is known [2] that PSPACE-Hardness of emptiness still holds for
deterministic TAs. Hence, considering deterministic timed automata will not improve the
complexity of K-∃-resilience. Considering IRTAs does not change complexity either, as the
gadget used in Theorem 16 can be adapted to become an IRTA (as shown in Appendix C).

5 Universal Resilience

In this section, we consider the problem of universal resilience and show that it is very close to
the language inclusion question in timed automata, albeit with a few subtle differences. One
needs to consider timed automata with ε-transitions [11], which are strictly more expressive
than timed automata. First, we show a reduction from the language inclusion problem.

▶ Proposition 18. Language inclusion for timed automata can be reduced in polynomial time
to K-∀-resilience. Thus, K-∀-resilience is undecidable in general for timed automata.

Proof. Let A1 = (L1, {l01}, X1,Σ1, T1, F1) and A2 = (L2, {l02}, X2,Σ2, T2, F2) be two timed
automata with only one initial state (w.l.o.g). We build a timed automaton B such that
L(A1) ⊆ L(A2) if and only if B is 2-∀-resilient.

We first define a gadget Gund that allows to reach a state s1 at an arbitrary date d1 = 15
when a fault happens, and a state s2 at date d2 = d1 = 15 when no fault occur. This gadget
is shown in Fig 4(right). Gund has 6 locations s0, si, si,1, s1, s2 /∈ L1 ∪ L2, three new clocks
x, y, z /∈ X1 ∪ X2, three new actions a, b, c /∈ Σ1 ∪ Σ2, and 5 transitions t0, t1, t2, t3, t4 /∈

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:15

T1 ∪ T2 defined as: t0 = (s0, a, g0, {y}, si) with g0 ::= x ≤ 10, t1 = (si, b, g1, ∅, si,1) with
g1 ::= x > 11 ∧ y < 1, t2 = (si, b, g2, ∅, si,2) with g2 ::= x ≤ 10, t3 = (si,1, c, g3, X1, s1)
with g3 ::= z = 15, and t4 = (si,2, c, g4, X2, s2) with g4 ::= z = 15. Clearly, in this gadget,
transition t1 can never fire, as a configuration with x > 11 and y < 1 is not accessible.

We build a timed automaton B that contains all transitions of A1 and A2, but preceded
by Gund by collapsing the initial location of A1 i.e., l01 with s1 and the initial location of A2
i.e., l02 with s2. We also use a fault model P : a → [0, 2], that can delay transitions t0 with
action a by up to 2 time units. The language L(B) is the set of words:

L(B) = { (a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) | (d1 ≤ 10) ∧ (d2 ≤ 10) ∧ (d2 − d1 < 1)
∧∃w = (σ1, d′

3) . . . (σn, d′
n+2) ∈ L(A2), ∀i ∈ 3..n + 2, d′

i = di − 15}
The enlargement of B is denoted by BP . The words in L(BP) is the set of words in L(B)

(when there is no fault) plus the set of words in:
LF (BP) = {(a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) | (10 < d1 ≤ 12) ∧ d2 > 11

∧(d2 − d1 < 1) ∧ ∃w = (σ1, d′
3) . . . (σn, d′

n+2) ∈ L(A1), ∀i ∈ 3..n + 2, d′
i = di − 15}

Now, B is K-∀-resilient for K = 2 if and only if every word in LF (BP) is BTN after 2
steps (K = 2), i.e., for every word w = (a, d1)(b, d2)(c, 15)(σ1, d3) . . . (σn, dn+2) in LF (BP),
if there exists a word w = (a, d′

1)(b, d′
2)(c, 15)(σ1, d3) . . . (σn, dn+2) in L(B). This means that

every word of A1 is a word of A2. So L(A1) ⊆ L(A2) if and only if B is 2-∀-resilient.
As language inclusion for timed automata is undecidable [2], an immediate consequence

is that K-∀-resilience of timed automata is undecidable. ◀

Next we show that the reduction is also possible in the reverse direction.

▶ Proposition 19. K-∀-resilience can be reduced in polynomial time to language inclusion
for timed automata with ε-transitions.

Proof. Given a timed automaton A = (L, I,X,Σ, T, F), we can build a timed automaton
AS that recognizes all suffixes of timed words recognized by A (see Appendix B, Figure 7
for an example). Formally, AS contains the original locations and transitions of A, a copy of
all location, a copy of all transitions where letters are replaced by ε, and a transition from
copies to original locations labeled by their original letters.

We have AS = (LS , IS , X,Σ∪{ε}, TS , F), where LS = L∪{l′ | l ∈ L}, IS = {l′ ∈ LS , l ∈
I} TS = T ∪ {(l′1, g, ε, R, l′2) | ∃(l1, g, σ,R, l2) ∈ T} ∪ {(l′1, g, σ,R, l2) | ∃(l1, g, σ,R, l2) ∈ T}.
Obviously, for every timed word (a1, d1)(a2, d2) . . . (an, dn) recognized by A, and every
index k ∈ 1..n, the words (ε, d1)(ε, dk)(ak+1, dk+1) . . . (an, dn) = (ak+1, dk+1) . . . (an, dn) is
recognized by AS .

Given a timed automaton A and a fault model P, we build an automaton BP which
remembers if a fault has occurred, and how many transitions have been taken since a fault
(see Definition 9 in Appendix B). Then, we can build an automaton BP,ε by re-labeling every
transition occurring before a fault and until K steps after the fault by ε, keeping the same
locations, guards and resets, and leave transitions occurring more than K steps after a fault
unchanged. The relabeled transitions are transitions starting from a location (l, n) with
n ̸= 0. Accepting locations of BP,ε are of the form (l, 0) where l is an accepting locations
of A occurring after a fault in BP . Then, every faulty run accepted by BP,ε is associated
with a word of the form ρ = (t1, d1) . . . (tf , df)(tf+1, df+1) . . . (tf+K , df+K). . . . (tn, dn) where
t1, . . . tf+K are ε transitions. A run ρ is BTN if and only if (af+K+1, df+K+1) . . . (an, dn) is
a suffix of a timed word of A, i.e., is recognized by AS .

Now one can check that every word in BP,ε (reading only ε before that fault) is recognized
by the suffix automaton AS , i.e. solve a language inclusion problem for timed automata with
ε transitions. ◀

FSTTCS 2021

33:16 Resilience of Timed Systems

We note that ε-transitions are critical for the reduction of Proposition 19. To get
decidability of K-∀-resilience, it is thus necessary (but not sufficient) to be in a class with
decidable timed language inclusion, such as Event-Recording timed automata [3], Integer
Reset timed automata (IRTA) [18], or Strongly Non-Zeno timed automata [4]. However,
to obtain decidability of K-∀-resilience using Proposition 19, one needs also to ensure
that inclusion is still decidable for automata in the presence of ε transitions. When a
subclass C of timed automata is closed by enlargement (due to the fault model), and if timed
language inclusion is decidable, even with ε transitions, then Proposition 19 implies that
K-∀-resilience is decidable for C. We show that this holds for the case of IRTA and leave
other subclasses for future work. For IRTA [18], we know that L(A) ⊆ L(B) is decidable
in EXPSPACE when B is an IRTA [18] (even with ε transitions), from which we obtain an
upper bound for K-∀-resilience of IRTA. The enlargement of guards due to the fault can add
transitions that reset clocks at non-integral times, but it turns out that the suffix automaton
AS of Proposition 19 is still an IRTA. A matching lower bound is obtained by encoding
inclusion for IRTA with K-∀-resilience using a trick to replace the gadget in Proposition 18
by an equivalent IRTA. Thus, we have Theorem 20 (proof in Appendix C).

▶ Theorem 20. K-∀-resilience is EXPSPACE-Complete for IRTA.

Finally, we conclude this section by remarking that universal untimed resilience is decidable
for timed automata in general, using the reductions of Propositions 18 and 19:

▶ Theorem 21. Untimed K-∀-resilience is EXPSPACE-Complete.

Proof. Recall that untimed language inclusion of timed automata is EXPSPACE-Complete [9].
The lower bound is readily obtained by using the reduction of Proposition 18.

For the upper bound, we will use the construction of automata AS and BP,ε built during
the reduction of Proposition 19. We however need inclusion of TA with ε transitions, and
thus we adapt the EXPSPACE algorithm in the presence of ε transitions:

We can consider ε transitions as transitions labeled by any letter, and build the region
automata A♯ = R(AS) and B♯ = R(BP,ε). The size of these untimed automata is exponential
in the number of clocks, with ε transitions. We can perform an ε reduction on A♯ to obtain
an automaton AS

U with the same number of states as A♯ that recognizes untimed suffixes of
words of A. Similarly, we can perform an ε reduction on B♯ to obtain an automaton BP

U with
the same number of states as B♯ that recognizes suffixes of words played K steps after a fault.
We then check L(BP

U) ⊆ L(AS
U) with an usual PSPACE inclusion algorithm, which yields the

EXPSPACE upper bound, as AS
U ,BP

U have an exponential number of states w.r.t. |A|. ◀

6 Conclusion

Resilience allows to check robustness of a timed system to unspecified delays. A universally
resilient timed system recovers from any delay in some fixed number of steps. Existential
resilience guarantees the existence of a controller that can bring back the system to a normal
behavior within a fixed number of steps after an unexpected delay. Interestingly, we show
that existential resilience enjoys better complexities/decidability than universal resilience.
Universal resilience is decidable only for well behaved classes of timed automata such as IRTA,
or in the untimed setting. A future work is to investigate resilience for other determinizable
classes of timed automata, and a natural extension of resilience called continuous resilience,
where a system recovers within some fixed duration rather than within some number of steps.
Another natural question is to consider resilience questions when K is not fixed, i.e., check
existence of a value for K such that A is K-∃-resilient (resp. K-∀-resilient).

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:17

References
1 S. Akshay, B. Bollig, P. Gastin, M. Mukund, and K. Narayan Kumar. Distributed timed

automata with independently evolving clocks. Fundam. Informaticae, 130(4):377–407, 2014.
2 R. Alur and D.L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,

1994.
3 R. Alur, L. Fix, and T.A. Henzinger. Event-clock automata: A determinizable class of timed

automata. Theor. Comput. Sci., 211(1-2):253–273, 1999.
4 C. Baier, N. Bertrand, P. Bouyer, and T. Brihaye. When are timed automata determinizable?

In Proc. of ICALP’09, volume 5556 of LNCS, pages 43–54, 2009.
5 Roderick Bloem, Peter Gjøl Jensen, Bettina Könighofer, Kim Guldstrand Larsen, Florian

Lorber, and Alexander Palmisano. It’s time to play safe: Shield synthesis for timed systems.
CoRR, abs/2006.16688, 2020. arXiv:2006.16688.

6 P. Bouyer, F. Chevalier, and D. D’Souza. Fault diagnosis using timed automata. In Proc. of
FOSSACS 2005, pages 219–233, 2005.

7 P. Bouyer, N. Markey, and O. Sankur. Robust model-checking of timed automata via pumping
in channel machines. In Proc. of FORMATS 2011, volume 6919 of LNCS, pages 97–112, 2011.

8 P. Bouyer, N. Markey, and O. Sankur. Robustness in timed automata. In International
Workshop on Reachability Problems, volume 8169 of LNCS, pages 1–18, 2013.

9 R. Brenguier, S. Göller, and O. Sankur. A comparison of succinctly represented finite-state
systems. In Proc. of CONCUR 2012, volume 7454 of LNCS, pages 147–161. Springer, 2012.

10 M. De Wulf, L. Doyen, N. Markey, and J-F Raskin. Robust safety of timed automata. Formal
Methods Syst. Des., 33(1-3):45–84, 2008.

11 V. Diekert, P. Gastin, and A. Petit. Removing epsilon-transitions in timed automata. In
Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science, STACS
’97, pages 583–594, Berlin, Heidelberg, 1997. Springer-Verlag.

12 Catalin Dima. Dynamical properties of timed automata revisited. In Formal Modeling and
Analysis of Timed Systems, 5th International Conference, FORMATS 2007, Salzburg, Austria,
October 3-5, 2007, Proceedings, volume 4763 of Lecture Notes in Computer Science, pages
130–146. Springer, 2007.

13 D. D’Souza, M. Gopinathan, S. Ramesh, and P. Sampath. Conflict-tolerant real-time features.
In Fifth International Conference on the Quantitative Evaluaiton of Systems (QEST 2008),
pages 274–283. IEEE Computer Society, 2008.

14 Rüdiger Ehlers and Ufuk Topcu. Resilience to intermittent assumption violations in reactive
synthesis. In Martin Fränzle and John Lygeros, editors, 17th International Conference on
Hybrid Systems: Computation and Control (part of CPS Week), HSCC’14, Berlin, Germany,
April 15-17, 2014, pages 203–212. ACM, 2014.

15 V. Gupta, T.A. Henzinger, and R. Jagadeesan. Robust timed automata. In Proc. Of HART’97,
Hybrid and Real-Time Systems, volume 1201 of LNCS, pages 331–345, 1997.

16 A. Puri. Dynamical properties of timed automata. In DEDS, 10(1-2):87–113, 2000.
17 Matthieu Renard, Yliès Falcone, Antoine Rollet, Thierry Jéron, and Hervé Marchand. Optimal

enforcement of (timed) properties with uncontrollable events. Math. Struct. Comput. Sci.,
29(1):169–214, 2019.

18 P. V. Suman, P.K. Pandya, S.N. Krishna, and L. Manasa. Timed automata with integer resets:
Language inclusion and expressiveness. In Proc. of FORMATS’08, volume 5215 of LNCS,
pages 78–92, 2008.

19 M. Swaminathan, M. Fränzle, and J-P. Katoen. The surprising robustness of (closed) timed
automata against clock-drift. In Fifth IFIP International Conference On Theoretical Computer
Science - TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations of Computer
Science, September 7-10, 2008, Milano, Italy, volume 273 of IFIP, pages 537–553. Springer,
2008.

FSTTCS 2021

http://arxiv.org/abs/2006.16688

33:18 Resilience of Timed Systems

ℓ1 ℓ2 ℓ1 ℓ2
•
ℓ2

•
ℓ1

a, 3 < x < 12 ∧ y > 5

y := 0

x := 0

b, y < 7

a, 3 < x < 12 ∧ y > 5

y := 0

x := 0

b, y < 7

y := 0

a, 12 ≤ x ≤ 14 ∧ y > 5

b,
y

<
7

x
:=

0

a, 3 <
x <

12 ∧ y >
5

y :=
0

x := 0

b, y = 7

Figure 5 A on the left; Enlargement AP on the right, P(a) = 2, P(b) = 0.

A Example for Universal Resilience

▶ Example 22. Consider the automaton A in Figure 5, with two locations ℓ1 and ℓ2, a
transition t12 from ℓ1 to ℓ2 and a transition t21 from ℓ2 to ℓ1. The enlarged automaton AP has
two extra locations

•
ℓ1,

•
ℓ2, extra transitions between

•
ℓ1 and

•
ℓ2, and from ℓ1 to

•
ℓ2 and from ℓ2 to

•
ℓ1 respectively. We represent a configuration of the automata with a pair

(
ℓ, ν(x)|ν(y)

)
where,

ℓ belongs to the set of the locations and ν(x) (resp. ν(y)) represents the valuation of clock x

(resp. clock y). Let ρf = (ℓ1, 0|0) (t12,6)−→ (ℓ2, 6|0) (
•
t21,13)−→ (

•
ℓ1, 0|7) (

••
t 12,19)−→ (

•
ℓ2, 4|0) be a faulty

run reading the faulty word (a, 6)(b, 13)(a, 19) ∈ L(AP). This run is 1-BTN since the run σ =
(ℓ, 0|0) (t12,6)−→ (ℓ2, 6|0) (t21,12)−→ (ℓ1, 0|6) (t12,19)−→ (ℓ2, 7|0) is an accepting run of A, reading timed

word wσ = (a, 6)(b, 12)(a, 19) ∈ L(A). Similarly, the run ρ′ = (ℓ, 0|0) (
•

t12,14)−→ (
•
ℓ2, 14|0) (

••
t21,20)−→

(
•
ℓ1, 0|6) (

••
t12,31)−→ (

•
ℓ2, 11|0) of AP reading word (a, 14)(b, 20)(a, 31) is 1-BTN because of run

σ′ = (ℓ1, 0|0) (t12,10)−→ (ℓ2, 10|0) (t21,15)−→ (ℓ1, 0|5) (t12,19)−→ (ℓ2, 4|0) (t21,20)−→ (ℓ1, 0|1) (t12,31)−→ (ℓ2, 11|0)
reading the word wσ′ = (a, 10)(b, 15)(a, 19)(b, 20)(a, 31). One can notice that ρ′ and σ′ are
of different lengths. In fact, we can say something stronger, namely it is 1-∀-resilient (and
hence 1-∃-resilient) as explained below.

The example consists of a single (a.b)∗ loop, where action a occurs between 3 and 12 time
units after entering location ℓ1, and action b occurs less than 7 time units after entering ℓ2. A
fault occurs either from ℓ1, in which case action a occurs 12 + d time units after entering ℓ1,
with d ∈ [0, 2], or from ℓ2, i.e., when b occurs exactly 7 time units after entering ℓ2. Once a
fault has occurred, the iteration of a and b continues on

•
ℓ1 and

•
ℓ2 with non-faulty constraints.

Consider a just faulty run ρf where fault occurs on event a. The timed word generated in ρf

is of the form wf = (a, d1).(b, d2) . . . (a, dk).(b, dk+1).(a, dk+2), where dk+2 = dk+1 + 12 + x

with x ∈ [0, 2]. The word w = (a, d1).(b, d2) . . . (a, dk).(b, dk+1).(a, dk+1 + 5).(b, dk+1 + 5 +
x).(a, dk+1 + 5 + x + 7) is also recognized by the normal automaton, and ends at date
dk+1 + 12 +x. Hence, for every just faulty word wf which delays action a, there exists a word
w such for every timed word v, if wf .v is accepted by the faulty automaton, w.v is accepted
by the normal automaton. Now, consider a fault occurring when playing action b. The just
faulty word ending with a fault is of the form wf = (a, d1).(b, d2) . . . (a, dk).(b, dk + 7). All
occurrences of a occur at a date between dj +3 and dj +12 for some date dj at which location ℓ1
is reached, (except the first time stamp d1 ∈ (5, 12)) and all occurrences of b at a date strictly
smaller than di + 7, where di is the date of last occurrence of a. Also, for any value ϵ ≤ 7 the
word wϵ = (a, d1).(b, d2) . . . (a, dk).(b, dk + 7 − ϵ) is non-faulty. Let v1 = 12 − d1, recall that
d1 ∈ (5, 12). If we choose ϵ < v1 then the run w+

ϵ = (a, d1+ϵ).(b, d2+ϵ) . . . (a, dk +ϵ).(b, dk +7)
is also non-faulty because 5 < d1 + ϵ < d1 + v1 = 12. Clearly, we can extend w+

ϵ to match
transitions fired from wϵ hence, the automaton of the example is 1-∀-resilient.

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:19

B K-∃-resilience and untimed K-∃-resilience

s0 si

s1

s2

x ≤ 10, a, {y} x > 11 ∧ y < 1, b

{X1}
x ≤ 10, b

{X2}10 < x ≤ 12, a, {y}

v0 v1

v2 qe

v3 A

x = 1, a, {y}
x = 1, y = 0, b

{x}

x = 10, c

X1

x = 9, c

X2

x = 2, y = 0, b{x}

⊤, Σ, ∅

1 < x ≤ 2, a, {y}

Figure 6 The gadgets G (left) and BΣ∗⊆A (right) which is untimed 2-∃-resilient iff L(A) ̸= ∅.

▶ Theorem 16 Untimed K-∃-resilience is PSPACE-Complete.

Proof. Membership: For every run of A, there is a path in R(A). So, A is untimed
K-∃-resilient if and only if, for all states q reached by a just faulty run, there exists a
maximal accepting path σ from q such that, K steps after, the sequence of actions on its
suffix σs agrees with that of an accepting path σ in R(A). We now prove that this property
can be verified in PSPACE.

Let q = (l, r) be a state of R(AP) reached after a just faulty run. K steps after reaching
q = (l, r) of R(AP), one can check in PSPACE, if there exists a path σs whose sequence
of actions is the same as the suffix of an accepting path σ of R(A). That is, either both
these end in a pair of accepting states from which no transitions are defined (both paths are
maximal), or visit a pair of states twice such that the cyclic part of the path contains both
an accepting state of R(AP) and an accepting state of R(A). To find these paths σ, σs, one
just needs to guess them, i.e., build them synchronously by adding a pair of transitions to
the already built path only if they have the same label. One needs to remember the current
pair of states reached, and possibly guess a pair of states (sA, sAP) on which a cycle starts,
and two bits bA (resp. bAP) to remember if an accepting state of A (resp. AP) has been seen
since (sA, sAP). A maximal finite path or a lasso can be found on a path of length smaller
than |R(AP)| × |R(A)|, and the size of the currently explored path can be memorized with
log2(|R(AP)| × |R(A)|) bits. This can be done in PSPACE. The complement of this, i.e.,
checking that no maximal path originating from q with the same labeling as a suffix of a
word recognized by R(A) K steps after a fault exists, is in PSPACE too.

Now, to show that A is not untimed K-∃-resilient, we simply have to find one untimed
non-K-∃-resilient witness state q reachable immediately after a fault. To find it, non
deterministically guess such a witness state q along with a path of length not more than the
size of |R(AP)| and apply the PSPACE procedure above to decide whether it is a untimed
non-K-∃-resilience witness. Guess of q is non-deterministic, which gives an overall NPSPACE
complexity, but again, using Savitch’s theorem, we can say that untimed K-∃-resilience is
in PSPACE.

Hardness: We can now show that untimed K-∃-resilience is PSPACE-Hard. Consider a
timed automaton A with alphabet Σ and the construction of an automata that uses a gadget
shown in Figure 6 (right). Let us call this automaton BΣ∗⊆A. This automaton reads a word
(a, 1).(b, 1).(c, 11) and then accepts all timed words 2 steps after a fault, via Σ loop on a
particular accepting state qe. If BΣ∗⊆A takes the faulty transition (marked in dotted red)
then it resets all clocks of A and behaves as A. The accepting states are qe ∪ F . Then, A
has an accepting word if and only if BΣ∗⊆A is untimed 2-∃-resilient. Since the emptiness
problem for timed automata is PSPACE-Complete, the result follows. ◀

FSTTCS 2021

33:20 Resilience of Timed Systems

ℓ0

ℓ1 ℓ2

a, x
≤

4 b,
y

≤
2

c, x ≤ 6

x := 0

a, y ≤ 3

x, y := 0

a, x ≤ 1

ℓ′
0

ℓ′
1

ℓ2

ℓ1

ℓ′
2

ℓ0

ε, x ≤
4

ε, y ≤ 2
y := 0

ε, x ≤ 6

x := 0

ε, y ≤ 3, x, y := 0

ε, x ≤ 1

a, x ≤ 4
a, x ≤ 4

a, x ≤ 1

b, y ≤ 2, y := 0

b, y ≤ 2, y := 0

c, x ≤ 6

x :=
0

c,
x

≤
6,

x
:=

0a, y ≤ 3

x, y :=
0

c, a ≤ 3, x, y := 0

a, x ≤ 1

Figure 7 An example automaton A (left) and its suffix automaton AS (right).

▶ Definition 23 (Counting automaton). Let AP = (L, I,X,Σ, T, F) and be a timed automaton
with faulty transitions. Let K ∈ N be an integer. Then, the faulty automaton BP is a tuple
BP = (LP , IP , X,Σ, TP , FP) where LP ⊆ {L× {0}}, FP = F × [−1,K], and initial set of
states IP = I × {−1}. Intuitively, −1 means no fault has occurred yet. Then we assign K

and decrement to 0 to denote that K steps after fault have passed. The set of transitions TP

is as follows: We have
(
(l, n), g, a, R, (l′, n′)

)
∈ TP if and only if either:

n ̸= 0 (no fault has occurred, or less than K steps of B have occurred), we have transition
t = (l, g, a,R, l) ∈ T , and either: n = −1, the transition t is faulty and n′ = K, or
n = −1, the transition t is non faulty and n′ = −1, or n > 0 and n′ = n− 1.
n = n′ = 0 (at least K steps after a fault have occurred), and there exists a transition
t = (l, g, a,R, l′) ∈ T .

C Resilience of Integer Reset Timed Automata

Let us recall some elements used to prove decidability of language inclusion in IRTA. For
a given IRTA A we can define a map f : ρ → wunt that maps every run ρ of A to an
untimed word wunt ∈ ({✓, δ} ∪ Σ)∗. For a real number x with k = ⌊x⌋, we define a map
dt(x) from R to {✓, δ}∗ as follows : dt(x) = (δ.✓)k if x is integral, and dt(x) = (δ.✓)k.δ

otherwise. Then, for two reals x < y, the map dte(x, y) is the suffix that is added to dt(x)
to obtain dt(y). Last, the map f associates to a word w = (a1, d1) . . . (an, dn) the word
f(w) = w1.a1.w2.a2 . . . wn.an where each wi is the word wi = dte(di−1, di). The map f maps
global time elapse to a word of ✓ and δ but keeps actions unchanged. We define another map
f↓ : w → {✓, δ}∗ that maps every word w of A to a word in {✓, δ}∗ dropping the actions from
f(w). Consider for example, a word w = (a, 1.6)(b, 2.7)(c, 3.4) then, f(w) = δ✓δa✓δb✓δc,
and f↓(w) = δ✓δ✓δ✓δ. It is shown in [18] for two timed words ρ1, ρ2 with f(ρ1) = f(ρ2)
then ρ1 ∈ L(A) if and only if ρ2 ∈ L(A). It is also shown that we can construct a Marked
Timed Automaton (MA) from A with one extra clock and polynomial increase in the number
of locations such that Unt(L(MA)) = f(L(A)). The MA of A duplicates transitions of A to
differentiate firing at integral/non integral dates, plus transitions that make time elapsing
visible using the additional clock which is reset at each global integral time stamp.

▶ Definition 24 (Marked Timed Automaton (MA)). Given a timed automaton A =
(L,L0, X,Σ, T, F) the Marked Timed Automaton of A is a tuple MA=(L′, L′

0, X∪ {n},Σ ∪
{✓, δ}, T ′, F ′) such that

S. Akshay, B. Genest, L. Hélouët, S. Krishna, and S. Roychowdhury 33:21

i) n /∈ X

ii) L′ = L0 ∪ L+ where for α ∈ {0,+}, Lα = {lα | l ∈ L}
iii) L′

0 = {l0 | l ∈ L0}, F ′ = {l0, l+ | l ∈ F} and

iv) T ′ is defined by
T ′ = {(l0, a, g ∧ n = 0?, R, l′0) | (l, a, g, R, l′) ∈ E}

∪{(l+, a, g ∧ 0 < n < 1?, R, l′+) | (l, a, g, R, l′) ∈ E}
∪

⋃
l∈L

(l0, δ, 0 < n < 1, ∅, l+) ∪
⋃

l∈L

(l+,✓, n = 1?, {n}, l0)

Then we have the following results.

▶ Theorem 25 ([18], Thm. 5). Let A be a timed automaton and MA be its marked automaton.
Then Unt(L(MA)) = f(L(A))

▶ Remark 26. The marked timed automaton of an IRTA is also an IRTA.
The proofs of resilience for IRTA will also rely on the following properties,

▶ Theorem 27 ([18], Thm. 3). If A is an IRTA and f(w) = f(w′), then w ∈ L(A) if and
only if w′ ∈ L(A)

▶ Lemma 28. The timed suffix language of an IRTA A can be recognized by an ε-IRTA AS

Proof. Let A = (L,X,Σ, T,G, F) be a timed automaton. We create an automaton
AS = (LS , X,Σ ∪ {ε}, TS ,G, F) as follows. We set LS = L ∪ Lε, where Lε = {lε |
l ∈ L} i.e., LS contains a copy of locations in A and another “silent” copy. The ini-
tial location of AS is l0,ε. We set TS = T ∪ Tε ∪ T ′

ε, where Tε = {(lε, ε, true, ∅, l) |
l ∈ L} and T ′

ε = {(lε, ε, g, R, l′ε) | ∃(l, a, g, R, l′) ∈ T}. Clearly, for every timed
word w = (a1, d1) . . . (ai, di)(ai+1, di+1) . . . (an, dn) of L(A) and index i, the word w′ =
(ε, d1). . . . (ε, di)(ai+1, di+1) . . . (an, dn) = (ai+1, di+1) . . . (an, dn) is a recognized by AS , and
it is easy to verify that As is an ε-IRTA. ◀

▶ Lemma 29. For two IRTA A and B and their corresponding marked automata AM and
BM , L(A) ⊆ L(B) if and only if untime(L(AM)) ⊆ untime(L(BM)).

Proof. (⇒) Assume, L(A) ⊆ L(B) and assume there exists a word w ∈ untime(L(AM)), but
w /∈ untime(L(BM)). Now, there exists a timed word ρ ∈ L(A) such that, f(ρ) = w. Clearly,
ρ ∈ L(B), then clearly f(ρ) = w ∈ untimed(L(BM)) a contradiction. So, untime(L(Am)) ⊆
untime(L(Bm)).

(⇐)Assume, untime(L(AM)) ⊆ untime(L(BM)), and L(A) ⊈ L(B). Then, there
exists a timed word ρ ∈ L(A) such that ρ /∈ L(B). Assume f(ρ) = w, then clearly,
w ∈ untime(L(AM)) and w ∈ untime(L(BM)). So, there exists a timed word ρ′ ∈ L(A)
such that, f(ρ′) = w = f(ρ). According to Theorem 27 we can conclude that, ρ ∈ L(B) a
contradiction. ◀

▶ Remark 30. Lemma 29 shows that the timed and untimed language inclusion problems
for IRTA are in fact the same problem. So, as we can solve the timed language inclusion
problem by solving an untimed language inclusion problem of IRTA and vice-versa, the
untimed language inclusion for IRTA is also EXPSPACE-Complete.

▶ Theorem 31. Timed K-∀-resilience of IRTA is EXPSPACE-Hard.

Proof. We proceed by a reduction from the language inclusion problem of IRTA, known
to be EXPSPACE-Complete [4]. The idea of the proof follows the same lines as the
untimed K-∀-resilience of timed automata. Assume we are given IRTA A1,A2. a, b, c are
symbols not in the alphabets of A1,A2. Consider B in Figure 8 (left). It is easy to see that
L(B)=(a, 1)(b, 1)(c, 11)(L(A1)+11), where L(A1)+k = {(a1, d1+k)(a2, d2+k) . . . (an, dn+k) |

FSTTCS 2021

33:22 Resilience of Timed Systems

v0 v1

v2 A1

v3 A2

x = 1, a

{y}

x = 1, y = 0, b

{x}

x = 10, c, X1

x = 9, c, X2

x = 2, y = 0, b{x}

v0 v1

v2 A1

v3 A2

x = 1, 2, a

{y}

x = 1, y = 0, b

{x}

x = 10, c, X1

x = 9, c, X2

x = 2, y = 0, b{x}

Figure 8 The automaton B (left) and the faulty automaton BP (right).

(a1, d1) . . . (an, dn) ∈ L(A1)}. Associate a fault model P(a) = 1, where the fault of a is 1.
We construct an IRTA BP as shown in Figure 8 (right). Notice that in general, IRTAs are
not closed under the fault insertion; the enlarged transition in B has guard 1 ≤ x ≤ 2, and
resets y. This violates the integer reset condition; however, since a value 1 < x < 2 when
resetting y clearly does not lead to acceptance in BP , we prune away that transition resulting
in BP as in Figure 8 (right). This resulting faulty automaton is an IRTA.

The language accepted by BP is L(B) ∪ (a, 2)(b, 2)(c, 11)(L(A2) + 11). Considering K = 2,
BP is BTN in 2 steps after the fault if and only if L(A2) ⊆ L(A1). The EXPSPACE
hardness of the timed K-∀-resilience of IRTA follows from the EXPSPACE completeness of
the inclusion of IRTA. ◀

▶ Theorem 32. K-∃-resilience for IRTA is PSPACE-Hard.

Proof. Consider an IRTA A with alphabet Σ and the construction of an automata that
uses a gadget shown below in Figure 9 (left). Let us call this automaton BΣ∗⊆A. It
is easy to see that the L(BΣ∗⊆A)=(a, 1)(b, 1)(c, 11)

(
(Σ × R)∗ + 11

)
, where L(A1) + k =

{(a1, d1 + k)(a2, d2 + k) . . . (an, dn + k) | (a1, d1) . . . (an, dn) ∈ L(A1)}. The Σ loop on a
particular accepting state qe is responsible for acceptance of all timed word. Now, associate a
fault model P(a) → 1 with B, where the fault of a is 1. Let us call this enlarged automaton
B(Σ∗⊆A)P

. We can prune away the transition 1 < x < 2 resetting y which does not lead
to acceptance, and resulting in an IRTA with the same language, represented in Figure 9
(right). The language accepted by B(Σ∗⊆A)P

is L(BΣ∗⊆A) ∪ (a, 2)(b, 2)(c, 11)(L(A) + 11).
The accepting states are qe ∪ F , where F is the set of final states of A. Then BΣ∗⊆A is
K-∃-resilient if and only if L(A) ̸= ∅. ◀

v0 v1

v2 qe

v3 A

x = 1, a

{y}

x = 1, y = 0, b

{x}

x = 10, c

x = 9, c, X

x = 2, y = 0, b{x}

⊤,Σ, ∅
v0 v1

v2 qe

v3 A

x = 1, 2, a

{y}

x = 1, y = 0, b

{x}

x = 10, c

x = 9, c, X

x = 2, y = 0, b{x}

⊤,Σ, ∅

Figure 9 The IRTA BΣ∗⊆A (left) and the faulty IRTA B(Σ∗⊆A)P
(right).

▶ Remark 33. The untimed language inclusion problem is shown to be EXPSPACE-Complete
in Remark 30. The emptiness checking of timed automata is done by checking the emptiness
of its untimed region automaton. So, to show the hardness of untimed K-∀-resilient or
K-∃-resilient problems for IRTA, it is sufficient to reduce the untimed language inclusion
problem and untimed language emptiness problem of IRTA respectively. This reduction can
be done by using the same gadget as shown in Theorem 31 and Theorem 32 respectively.

On the Complexity of Intersection Non-emptiness
for Star-Free Language Classes
Emmanuel Arrighi #

University of Bergen, Norway

Henning Fernau # Ñ

Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Stefan Hoffmann #

Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Markus Holzer #

Institut für Informatik, Universität Giessen, Germany

Ismaël Jecker #

Institute of Science and Technology, Klosterneuburg, Austria

Mateus de Oliveira Oliveira #

University of Bergen, Norway

Petra Wolf # Ñ

Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Abstract
In the Intersection Non-emptiness problem, we are given a list of finite automata A1, A2, . . . , Am

over a common alphabet Σ as input, and the goal is to determine whether some string w ∈ Σ∗ lies
in the intersection of the languages accepted by the automata in the list. We analyze the complexity
of the Intersection Non-emptiness problem under the promise that all input automata accept a
language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy.
Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context
of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem
is already NP-complete when all input automata accept languages of the levels B0 or B1/2 and already
PSPACE-hard when all automata accept a language from the level B1. Conversely, we identify a
tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC0

when restricted to level L0; complete for L or NL, depending on the input representation, when
restricted to languages in the level L1/2; NP-complete when the input is given as DFAs accepting a
language in L1 or L3/2; and finally, PSPACE-complete when the input automata accept languages in
level L2 or higher. Moreover, we show that the proof technique used to show containment in NP
for DFAs accepting languages in L1 or L3/2 does not generalize to the context of NFAs. To prove
this, we identify a family of languages that provide an exponential separation between the state
complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this
is the first superpolynomial separation between these two models of computation.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Intersection Non-emptiness Problem, Star-Free Languages, Straubing-Thérien
Hierarchy, dot-depth Hierarchy, Commutative Languages, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.34

Related Version Full Version: http://arxiv.org/abs/2110.01279 [3]

Funding Emmanuel Arrighi: Research Council of Norway (no. 274526), IS-DAAD (no. 309319).
Henning Fernau: DAAD PPP (no. 57525246).
Ismaël Jecker : Marie Skłodowska-Curie Grant Agreement no. 754411.
Mateus de Oliveira Oliveira: Research Council of Norway (no. 288761), IS-DAAD (no. 309319).
Petra Wolf : DFG project FE 560/9-1, DAAD PPP (no. 57525246).

© Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus de
Oliveira Oliveira, and Petra Wolf;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emmanuel.arrighi@uib.no
https://orcid.org/0000-0002-0326-1893
mailto:fernau@informatik.uni-trier.de
https://www.uni-trier.de/index.php?id=49861
https://orcid.org/0000-0002-4444-3220
mailto:hoffmanns@informatik.uni-trier.de
https://orcid.org/0000-0002-7866-075X
mailto:holzer@informatik.uni-giessen.de
https://orcid.org/0000-0003-4224-4014
mailto:ismael.jecker@ist.ac.at
https://orcid.org/0000-0002-6527-4470
mailto:mateus.oliveira@uib.no
https://orcid.org/0000-0001-7798-7446
mailto:wolfp@informatik.uni-trier.de
https://www.wolfp.net/
https://orcid.org/0000-0003-3097-3906
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.34
http://arxiv.org/abs/2110.01279
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

Acknowledgements We like to thank Lukas Fleischer and Michael Wehar for our discussions. This
work started at the Schloss Dagstuhl Event 20483 Moderne Aspekte der Komplexitätstheorie in der
Automatentheorie https://www.dagstuhl.de/20483.

1 Introduction

The Intersection Non-emptiness problem for finite automata is one of the most funda-
mental and well studied problems in the interplay between algorithms, complexity theory, and
automata theory [12,20, 21, 24, 26,43, 44, 45]. Given a list A1, A2, . . . , Am of finite automata
over a common alphabet Σ, the goal is to determine whether there is a string w ∈ Σ∗ that is
accepted by each of the automata in the list. This problem is PSPACE-complete when no
restrictions are imposed [24], and becomes NP-complete when the input automata accept
unary languages (implicitly contained already in [38]) or finite languages [34].

In this work, we analyze the complexity of the Intersection Non-emptiness problem
under the assumption that the languages accepted by the input automata belong to a
given level of the Straubing-Thérien hierarchy [33,39,40,42] or to some level of the Cohen-
Brzozowski dot-depth hierarchy [6, 11, 33]. Somehow, these languages are severely restricted,
in the sense that both hierarchies, which are infinite, are entirely contained in the class of
star-free languages, a class of languages that can be represented by expressions that use union,
concatenation, and complementation, but no Kleene star operation [6, 8, 33]. Yet, languages
belonging to fixed levels of either hierarchy may already be very difficult to characterize, in
the sense that the very problem of deciding whether the language accepted by a given finite
automaton belongs to a given full level or half-level k of either hierarchy is open, except for
a few values of k [2, 15, 16, 33]. It is worth noting that while the problem of determining
whether a given automaton accepts a language in a certain level of either the dot-depth or of
the Straubing-Thérien hierarchy is computationally hard (Theorem 1), automata accepting
languages in lower levels of these hierarchies arise naturally in a variety of applications such
as model checking where the Intersection Non-emptiness problem is of fundamental
relevance [1, 4, 5].

An interesting question to consider is how the complexity of the Intersection Non-
emptiness problem changes as we move up in the levels of the Straubing-Thérien hierarchy
or in the levels of the dot-depth hierarchy. In particular, does the complexity of this problem
changes gradually, as we increase the complexity of the input languages? In this work, we show
that this is actually not the case, and that the complexity landscape for the Intersection
Non-emptiness problem is already determined by the very first levels of either hierarchy (see
Figure 1). Our first main result states that the Intersection Non-emptiness problem for
NFAs and DFAs accepting languages from the level 1/2 of the Straubing-Thérien hierarchy are
NL-complete and L-complete, respectively, under AC0 reductions (Theorem 3). Additionally,
this completeness result holds even in the case of unary languages. To prove hardness for NL
and L, respectively, we will use a simple reduction from the reachability problem for DAGs
and for directed trees, respectively. Nevertheless, the proof of containment in NL and in L,
respectively, will require a new insight that may be of independent interest. More precisely,
we will use a characterization of languages in the level 1/2 of the Straubing-Thérien hierarchy
as shuffle ideals to show that the Intersection Non-emptiness problem can be reduced
to concatenation non-emptiness (Lemma 5). This allows us to decide Intersection
Non-emptiness by analyzing each finite automaton given at the input individually. It is
worth mentioning that this result is optimal in the sense that the problem becomes NP-hard
even if we allow a single DFA to accept a language from L1, and require all the others to
accept languages from L1/2 (Theorem 8).

https://www.dagstuhl.de/20483

E. Arrighi et al. 34:3

Subsequently, we analyze the complexity of Intersection Non-emptiness when all
input automata are assumed to accept languages from one of the levels of B0 or B1/2 of the
dot-depth hierarchy, or from the levels L1 or L3/2 of the Straubing-Thérien hierarchy. It is
worth noting that NP-hardness follows straightforwardly from the fact that Intersection
Non-emptiness for DFAs accepting finite languages is already NP-hard [34]. Containment
in NP, on the other hand, is a more delicate issue, and here the representation of the input
automaton plays an important role. A characterization of languages in L3/2 in terms of
languages accepted by partially ordered NFAs [37] is crucial for us, combined with the
fact that Intersection Non-emptiness when the input is given by such automata is
NP-complete [29]. Intuitively, the proof in [29] follows by showing that the minimum length
of a word in the intersection of languages in the level 3/2 of the Straubing-Thérien hierarchy is
bounded by a polynomial on the sizes of the minimum partially ordered NFAs accepting these
languages. To prove that Intersection Non-emptiness is in NP when the input automata
are given as DFAs, we prove a new result establishing that the number of Myhill-Nerode
equivalence classes in a language in the level L3/2 is at least as large as the number of states
in a minimum partially ordered automaton representing the same language (Lemma 12).

Interestingly, we show that the proof technique used to prove this last result does not
generalize to the context of NFAs. To prove this, we carefully design a sequence (Ln)n∈N≥1

of languages over a binary alphabet such that for every n ∈ N≥1, the language Ln can be
accepted by an NFA of size n, but any partially ordered NFA accepting Ln has size 2Ω(

√
n).

This lower bound is ensured by the fact that the syntactic monoid of Ln has many J -factors.
Our construction is inspired by a technique introduced by Klein and Zimmermann, in a
completely different context, to prove lower bounds on the amount of look-ahead necessary to
win infinite games with delay [22]. To the best of our knowledge, this is the first exponential
separation between the state complexity of general NFAs and that of partially ordered NFAs.
While this result does not exclude the possibility that Intersection Non-emptiness for
languages in L3/2 represented by general NFAs is in NP, it gives some indication that proving
such a containment requires substantially new techniques.

Finally, we show that Intersection Non-emptiness for both DFAs and for NFAs is
already PSPACE-complete if all accepting languages are from the level B1 of the dot-depth
hierarchy or from the level L2 of the Straubing-Thérien hierarchy. We can adapt Kozen’s
classical PSPACE-completeness proof by using the complement of languages introduced in [28]
in the study of partially ordered automata. Since the languages in [28] belong to L3/2, their
complement belong to L2 (and to B1), and therefore, the proof follows.

Due to space constraints, many details of the paper can be found in the long version [3].

2 Preliminaries

We let N≥k denote the set of natural numbers greater or equal than k.
We assume the reader to be familiar with the basics in computational complexity the-

ory [31]. In particular, we recall the inclusion chain: AC0 ⊂ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP ⊆
PSPACE. Let AC0 (NC1, respectively) refer to the class of problems accepted by Turing
machines with a bounded (unbounded, respectively) number of alternations in logarithmic
time; alternatively one can define these classes by uniform Boolean circuits. Here, L (NL,
respectively) refers to the class of problems that are accepted by deterministic (nondetermin-
istic, respectively) Turing machines with logarithmic space, P (NP, respectively) denotes the
class of problems solvable by deterministic (nondeterministic, respectively) Turing machines
in polynomial time, and PSPACE refers to the class of languages accepted by deterministic or

FSTTCS 2021

34:4 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

NL

NP
PSPACE

L0 L 1
2

B0

L1

B 1
2

L 3
2

B1

L2

Figure 1 Straubing-Thérien and dot-depth hierarchies: the Intersection Non-emptiness status.

nondeterministic Turing machines in polynomial space [35]. Completeness and hardness are
always meant with respect to deterministic logspace many-one reductions unless otherwise
stated. We will also consider the parameterized class XP of problems that can be solved
in time nf(k), where n is the size of the input, k is a parameter, and f is a computable
function [13].

We mostly consider nondeterministic finite automata (NFAs). An NFA A is a tuple
A = (Q, Σ, δ, q0, F), where Q is the finite state set with the start state q0 ∈ Q, the alphabet Σ
is a finite set of input symbols, and F ⊆ Q is the final state set. The transition function
δ : Q × Σ → 2Q extends to words from Σ∗ as usual. Here, 2Q denotes the powerset of Q. By
L(A) = { w ∈ Σ∗ | δ(q0, w) ∩ F ̸= ∅ }, we denote the language accepted by A. The NFA A is
a deterministic finite automaton (DFA) if |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. Then, we
simply write δ(q, a) = p instead of δ(q, a) = {p}. If |Σ| = 1, we call A a unary automaton.

We study Intersection Non-emptiness problems and their complexity. For finite
automata, this problem is defined as follows:

Input: Finite automata Ai = (Qi, Σ, δi, q(0,i), Fi), for 1 ≤ i ≤ m.
Question: Is there a word w that is accepted by all Ai, i.e., is

⋂m
i=1 L(Ai) ̸= ∅?

Observe that the automata have a common input alphabet. Note that the complexity of
the non-emptiness problem for finite automata of a certain type is a lower bound for the
Intersection Non-emptiness for this particular type of automata. Throughout the paper
we are mostly interested in the complexity of the Intersection Non-emptiness problem
for finite state devices whose languages are contained in a particular language class.

We study the computational complexity of the intersection non-emptiness for languages
from the classes of the Straubing-Thérien [39,42] and Cohen-Brzozowski’s dot-depth hier-
archy [11]. Both hierarchies are concatenation hierarchies that are defined by alternating the
use of polynomial and Boolean closures. Let’s be more specific. Let Σ be a finite alphabet. A
language L ⊆ Σ∗ is a marked product of the languages L0, L1, . . . , Lk, if L = L0a1L1 · · · akLk,
where the ai’s are letters. For a class of languages M, the polynomial closure of M is the set
of languages that are finite unions of marked product of languages from M.

The concatenation hierarchy of basis M (a class of languages) is defined as follows (also
refer to [32]): Level 0 is M, i.e., M0 = M and, for each n ≥ 0,
1. Mn+1/2, that is, level n + 1/2, is the polynomial closure of level n and
2. Mn+1, that is, level n + 1, is the Boolean closure of level n + 1/2.
The basis of the dot-depth hierarchy is the class of all finite and co-finite languages1 and their
classes are referred to as Bn (Bn+1/2, respectively), while the basis of the Straubing-Thérien
hierarchy is the class of languages that contains only the empty set and Σ∗ and their classes
are denoted by Ln (Ln+1/2, respectively). Their inclusion relation is given by

1 The dot-depth hierarchy, apart level B0, coincides with the concatenation hierarchy starting with the
language class {∅, {λ}, Σ+, Σ∗}.

E. Arrighi et al. 34:5

Bn+1/2 ⊆ Bn+1 ⊆ Bn+3/2 and Ln+1/2 ⊆ Ln+1 ⊆ Ln+3/2,

for n ≥ 0, and

Ln−1/2 ⊆ Bn−1/2 ⊆ Ln+1/2 and Ln ⊆ Bn ⊆ Ln+1,

for n ≥ 1. In particular, L0 ⊆ B0, B0 ⊆ B1/2, and L0 ⊆ L1/2. Both hierarchies are infinite
for alphabets of at least two letters and completely exhaust the class of star-free languages,
which can be described by expressions that use union, concatenation, and complementation,
but no Kleene star operation. For singleton letter alphabets, both hierarchies collapse to B0
and L1, respectively. Next, we describe the first few levels of each of these hierarchies:
Straubing-Thérien hierarchy: A language of Σ∗ is of level 0 if and only if it is empty or

equal to Σ∗. The languages of level 1/2 are exactly those languages that are a finite
(possibly empty) union of languages of the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are
letters from Σ. The languages of level 1 are finite Boolean combinations of languages of
the form Σ∗a1Σ∗a2 · · · akΣ∗, where the ai’s are letters. These languages are also called
piecewise testable languages. In particular, all finite and co-finite languages are of level 1.
Finally, the languages of level 3/2 of Σ∗ are the finite unions of languages of the form
Σ∗

0a1Σ∗
1a2 · · · akΣ∗

k, where the ai’s are letters from Σ and the Σi are subsets of Σ.
Dot-depth hierarchy: A language of Σ∗ is of dot-depth (level) 0 if and only if it is finite or

co-finite. The languages of dot-depth 1/2 are exactly those languages that are a finite
union of languages of the form u0Σ∗u1Σ∗u2 · · · uk−1Σ∗uk, where k ≥ 0 and the ui’s are
words from Σ∗. The languages of dot-depth 1 are finite Boolean combinations of languages
of the form u0Σ∗u1Σ∗u2 · · · uk−1Σ∗uk, where k ≥ 0 and the ui’s are words from Σ∗.

It is worth mentioning that in [37] it was shown that partially ordered NFAs (with multiple
initial states) characterize the class L3/2, while partially ordered DFAs characterize the class
of R-trivial languages [7], a class that is strictly in between L1 and L3/2. For an automaton A

with input alphabet Σ, a state q is reachable from a state p, written p ≤ q, if there is a word
w ∈ Σ∗ such that q ∈ δ(p, w). An automaton is partially ordered if ≤ is a partial order.
Partially ordered automata are sometimes also called acyclic or weakly acyclic automata.
We refer to a partially ordered NFA (DFA, respectively) as poNFA (poDFA, respectively).

The fact that some of our results have a promise looks a bit technical, but the following
result implies that we cannot get rid of this condition in general. To this end, we study, for a
language class L, the following question of L-Membership.

Input: A finite automaton A.
Question: Is L(A) ∈ L?

▶ Theorem 1. For each level L of the Straubing-Thérien or the dot-depth hierarchies, the
L-Membership problem for NFAs is PSPACE-hard, even when restricted to binary alphabets.

Proof. For the PSPACE-hardness, note that each of the classes contains {0, 1}∗ and is closed
under quotients, since each class is a positive variety. As Non-universality is PSPACE-hard
for NFAs, we can apply Theorem 3.1.1 of [19], first reducing regular expressions to NFAs. ◀

For some of the lower levels of the hierarchies, we also have containment in PSPACE, but
in general, this is unknown, as it connects to the famous open problem if, for instance,
L-Membership is decidable for L = L3; see [27, 33] for an overview on the decidability
status of these questions. Checking for L0 up to L2 and B0 up to B1 containment for DFAs
can be done in NL and is also complete for this class by ideas similar to the ones used in [9].

FSTTCS 2021

34:6 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

3 Inside Logspace

A language of Σ∗ belongs to level 0 of the Straubing-Thérien hierarchy if and only if it is
empty or Σ∗. The Intersection Non-emptiness problem for language from this language
family is not entirely trivial, because we have to check for emptiness. Since by our problem
definition the property of a language being a member of level 0 is a promise, we can do the
emptiness check within AC0, since we only have to verify whether the empty word belongs to
the language L specified by the automaton. In case ε ∈ L, then L = Σ∗; otherwise L = ∅.
Since in the definition of finite state devices we do not allow for ε-transitions, we thus only
have to check whether the initial state is also an accepting one. Therefore, we obtain:

▶ Theorem 2. The Intersection Non-emptiness problem for DFAs or NFAs accepting
languages from L0 belongs to AC0.

For the languages of level L1/2 we find the following completeness result.

▶ Theorem 3. The Intersection Non-emptiness problem for NFAs accepting languages
from L1/2 is NL-complete. Moreover, the problem remains NL-hard even if we restrict the
input to NFAs over a unary alphabet. If the input instance contains only DFAs, the problem
becomes L-complete (under weak reductions2).

Hardness is shown by standard reductions from variants of graph accessibility [17,41].

▶ Lemma 4. The Intersection Non-emptiness problem for NFAs over unary alphabet
accepting languages from L1/2 is NL-hard. If the input instance contains only DFAs, the
problem becomes L-hard under weak reductions.

It remains to show containment in logspace. To this end, we utilize an alternative
characterization of the languages of level 1/2 of the Straubing-Thérien hierarchy as ex-
actly those languages that are shuffle ideals. A language L is a shuffle ideal if, for every
word w ∈ L and v ∈ Σ∗, the set w�v is contained in L, where w�v := { w0v0w1v1 . . . wkvk |
w = w0w1 . . . wk and v = v0v1 . . . vk with wi, vi ∈ Σ∗, for 0 ≤ i ≤ k }. The operation � nat-
urally generalizes to sets. For the level L1/2, we find the following situation.

▶ Lemma 5. Let m ≥ 1 and languages Li ⊆ Σ∗, for 1 ≤ i ≤ m, be shuffle ideals, i.e.,
they belong to L1/2. Then,

⋂m
i=1 Li ̸= ∅ iff the shuffle ideal L1L2 · · · Lm ̸= ∅ iff Li ̸= ∅ for

every i with 1 ≤ i ≤ m. Finally, Li ̸= ∅, for 1 ≤ i ≤ m, iff (a1a2 . . . ak)ℓi ∈ Li, where
Σ = {a1, a2, . . . ak} and the shortest word in Li is of length ℓi.

Now, we are ready to prove containment in logspace.

▶ Lemma 6. The Intersection Non-emptiness problem for NFAs accepting languages
from L1/2 belongs to NL. If the input instance contains only DFAs, the problem is solvable
in L.

Proof. In order to solve the Intersection Non-emptiness problem for given finite auto-
mata A1, A2, . . . , Am with a common input alphabet Σ, regardless of whether they are
deterministic or nondeterministic, it suffices to check non-emptiness for all languages L(Ai),
for 1 ≤ i ≤ m, in sequence, because of Lemma 5. To this end, membership of the words
(a1a2 . . . ak)ℓi in Li has to be tested, where ℓi is the length of the shortest word in Li. Obvi-
ously, all ℓi are linearly bounded in the number of states of the appropriate finite automaton

2 Some form of AC0 reducibility can be employed.

E. Arrighi et al. 34:7

that accepts Li. Hence, for NFAs as input instance, the test can be done on a nondetermin-
istic logspace-bounded Turing machine, guessing the computations in the individual NFAs on
the input word (a1a2 . . . ak)ℓi . For DFAs as input instance, nondeterminism is not needed,
so that the procedure can be implemented on a deterministic Turing machine. ◀

4 NP-Completeness

In contrast to the Straubing-Thérien hierarchy, the Intersection Non-emptiness problem
for languages from the dot-depth hierarchy is already NP-hard in the lowest level B0. More
precisely, Intersection Non-emptiness for finite languages is NP-hard [34, Theorem 1]
and B0 already contains all finite languages. Hence, the Intersection Non-emptiness
problem for languages from the Straubing-Thérien hierarchy of level L1 and above is NP-hard,
too. For the levels B0, B1/2, L1, or L3/2, we give matching complexity upper bounds if the
input are DFAs, yielding the first main result of this section proven in Subsection 4.1.

▶ Theorem 7. The Intersection Non-emptiness problem for DFAs accepting languages
from either B0, B1/2, L1, or L3/2 is NP-complete. The same holds for poNFAs instead
of DFAs. The results hold even for a binary alphabet.

For the level L1 of the Straubing-Thérien hierarchy, we obtain with the next main theorem a
stronger result. Recall that if all input DFAs accept languages from L1/2, the Intersection
Non-emptiness problem is L-complete due to Lemmata 4 and 6.

▶ Theorem 8. The Intersection Non-emptiness problem for DFAs is NP-complete even
if only one DFA accepts a language from L1 and all other DFAs accept languages from L1/2
and the alphabet is binary.

The proof of this theorem will be given in Subsection 4.2.
For the level B0, we obtain a complete picture of the complexity of the Intersection

Non-emptiness problem, independent of structural properties of the input finite automata,
i.e., we show that here the problem is NP-complete for general NFAs.

For the level L3/2, if the input NFA are from the class of poNFA, which characterize
level L3/2, then the Intersection Non-emptiness problem is known to be NP-complete [28].
Recall that L3/2 contains the levels B1/2, and L1 and hence also languages from these classes
can be represented by poNFAs. But if the input automata are given as NFAs without any
structural property, then the precise complexity of Intersection Non-emptiness for B1/2,
L1, and L3/2 is an open problem and narrowed by NP-hardness and membership in PSPACE.
We present a “No-Go-Theorem” by proving that for an NFA accepting a co-finite language,
the smallest equivalent poNFA is exponentially larger in Subsection 4.3.

▶ Theorem 9. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing Ln

has more than 2n−1 states.

While for NFAs the precise complexity for Intersection Non-emptiness of languages
from L1 remains open, we can tackle this gap by narrowing the considered language class
to commutative languages in level L1; recall that a language L ⊆ Σ∗ is commutative if, for
any a, b ∈ Σ and words u, v ∈ Σ∗, we have that uabv ∈ L implies ubav ∈ L. We show that
for DFAs, this restricted Intersection Non-emptiness problem remains NP-hard, in case
the alphabet is unbounded. Concerning membership in NP, we show that even for NFAs,
the Intersection Non-emptiness problem for commutative languages is contained in NP

FSTTCS 2021

34:8 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

in general and in particular for commutative languages on each level. This generalizes the
case of unary NFAs. Note that for commutative languages, the Straubing-Thérien hierarchy
collapses at level L3/2. See Subsection 4.4 for the proofs.

▶ Theorem 10. The Intersection Non-emptiness problem
is NP-hard for DFAs accepting commutative languages in L1, but
is contained in NP for NFAs accepting commutative languages that might not be star-free.

The proof of NP-hardness for commutative star-free languages in L1 requires an arbitrary
alphabet. However, we show that Intersection Non-emptiness is contained in XP for
specific forms of NFAs such as poNFAs or DFAs accepting commutative languages, with the
size of the alphabet as the parameter, i.e., for fixed input alphabets, our problem is solvable
in polynomial time.

4.1 NP-Membership
Next, we focus on the NP-membership part of Theorem 7 and begin by proving that for B0,
regardless of whether the input automata are NFAs or DFAs, the Intersection Non-
emptiness problem is contained in NP and therefore NP-complete in combination with [34].

▶ Lemma 11. The Intersection Non-emptiness problem for DFAs or NFAs all accepting
languages from B0 is contained in NP.

Proof. Let A1, A2, . . . , Am be NFAs accepting languages from B0. If all NFAs accept co-finite
languages, which can be verified in deterministic polynomial time, the intersection

⋂m
i=1 L(Ai)

is non-empty. Otherwise, there is at least one NFA accepting a finite language, where the
longest word is bounded by the number of states of this device. Hence, if

⋂m
i=1 L(Ai) ̸= ∅,

there is a word w of length polynomial in the length of the input that witnesses this fact.
Such a w can be nondeterministically guessed by a Turing machine checking membership
of w in L(Ai), for all NFAs Ai, in sequence. This shows containment in NP as desired. ◀

Notice that Masopust and Krötzsch have shown in [28] that Intersection Non-
emptiness for poDFAs and for poNFAs is NP-complete. Also the unary case is discussed
there, which can be solved in polynomial time. We cannot directly make use of these results,
as we consider arbitrary NFAs or DFAs as inputs, only with the promise that they accept
languages from a certain level of the studied hierarchies. In order to prove that for the
levels B0, B1/2, L1, and L3/2, the Intersection Non-emptiness problem for DFAs is
contained in NP, it is sufficient to prove the claim for L3/2 as all other stated levels are
contained in L3/2. We prove the latter statement by obtaining a bound, polynomial in the
size of the largest DFA, on the length of a shortest word accepted by all DFAs. Therefore,
we show that for a minimal poNFA A, the size of an equivalent DFA is lower-bounded by
the size of A and use a result of [28] for poNFAs. They have shown that given poNFAs
A1, A2, . . . , Am, if the intersection of these automata is non-empty, then there exists a word
of size at most

∑
i∈{1,...,m} di, where di is the depth of Ai [28, Theorem 3.3]. Here, the depth

of Ai is the length of the longest path (without self-loops) in the state graph of Ai. This result
implies that the Intersection Non-emptiness problem for poNFAs accepting languages
from L3/2 is contained in NP. We will further use this result to show that the Intersection
Non-emptiness problem for DFAs accepting languages from L3/2 is NP-complete. First, we
show that the number of states in a minimal poNFA is at most the number of classes in the
Myhill-Nerode equivalence relation.

E. Arrighi et al. 34:9

0 i1 i1+1 i1+2 i2 i2+1 i2+2 n n+1

i1+1 i1+2 i2+1 i2+2 n

Σ 0
1

Σ Σ 0
1

Σ Σ Σ Σ

Σ Σ Σ Σ Σ

Figure 2 DFA Aei with L(Aei) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1. A dotted arrow
between some states j and j′ represents a chain of length j′ − j with the same transition labels.

▶ Lemma 12. Let A = (Q, Σ, δ, q0, F) be a minimal poNFA. Then, L(q1A) ̸= L(q2A) for all
states q1, q2 ∈ Q, where qA is defined as (Q, Σ, δ, q, F).

Now, we can use the result from Masopust and Krötzsch to prove that the Intersection
Non-emptiness problem for DFAs accepting languages in L3/2 is in NP.

▶ Lemma 13. The Intersection Non-emptiness problem for DFAs accepting languages
from L3/2 belongs to NP.

Proof. By Lemma 12, we have that the number of states in a minimal poNFA is at most the
number of classes of the Myhill-Nerode equivalence relation. Hence, given a DFA accepting
a language L ∈ L3/2, there exists a smaller poNFA that recognizes L. By [28, Theorem 3.3],
if the intersection is not empty, then there is a certificate of polynomial size. ◀

4.2 NP-Hardness
Recall that by [34, Theorem 1] Intersection Non-emptiness for finite languages accepted
by DFAs is already NP-complete. As the level B0 of the dot-depth hierarchy contains all finite
language, the NP-hardness part of Theorem 7 follows directly from inclusion of language
classes. Combining Lemma 13, and [28, Theorem 3.3] with the inclusion between levels in
the Straubing-Thérien and the dot-depth hierarchy, we conclude the proof of Theorem 7.
▶ Remark 14. Recall that the dot-depth hierarchy, apart form B0, coincides with the
concatenation hierarchy starting with the language class {∅, {λ}, Σ+, Σ∗}. The Intersection
Non-emptiness problem for DFAs or NFAs accepting only languages from {∅, {λ}, Σ+, Σ∗}
belongs to AC0, by similar arguments as in the proof of Theorem 2.
We showed in Section 3 that Intersection Non-emptiness for DFAs, all accepting
languages from L1/2, belongs to L. If we allow only one DFA to accept a language from L1,
the problem becomes NP-hard. The statement also holds if the common alphabet is binary.

▶ Theorem 8. The Intersection Non-emptiness problem for DFAs is NP-complete even
if only one DFA accepts a language from L1 and all other DFAs accept languages from L1/2
and the alphabet is binary.

Proof sketch. The reduction is from Vertex Cover. Let k ∈ N≥0 and let G = (V, E) be a
graph with vertex set V = {v0, v1, . . . , vn−1} and edge set E = {e0, e1, . . . , em−1}. The only
words w = a0a1 . . . aℓ accepted by all DFAs will be of length exactly n = ℓ + 1 and encode a
vertex cover by: vj is in the vertex cover if and only if aj = 1. Therefore, we construct for
each edge ei = {vi1 , vi2} ∈ E, with i1 < i2, a DFA Aei , as depicted in Figure 2, that accepts
the language L(Aei

) = Σi1 · 1 · Σn−i1−1 ∪ Σi2 · 1 · Σn−i2−1 ∪ Σ≥n+1. We show that L(Aei
)

is from L1/2, as it also accepts all words of length at least n + 1. We further construct a
DFA A=n,≤k that accepts all words of length exactly n that contain at most k letters 1. The
finite language L(A=n,≤k) is the only language from L1 in the instance. ◀

FSTTCS 2021

34:10 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

4.3 Large Partially Ordered NFAs
The results obtained in the last subsection left the precise complexity membership of
Intersection Non-emptiness in the case of input automata being NFAs without any
structural properties for the levels B1/2, L1, and L3/2 open. We devote this subsection to
the proof of Theorem 9, showing that already for languages of B0 being accepted by an NFA,
the size of an equivalent minimal poNFA can be exponential in the size of the NFA.

▶ Theorem 9. For every n ∈ N≥1, there exists a language Ln ∈ B0 on a binary alphabet
such that Ln is recognized by an NFA of size O(n2), but the minimal poNFA recognizing Ln

has more than 2n−1 states.

Proof. While the statement requires languages over a binary alphabet, we begin by con-
structing an auxiliary family (Mn)n∈N≥1 of languages over an unbounded alphabet. For all
n ∈ N≥1 we then define Ln by encoding Mn with a binary alphabet, and we prove three
properties of these languages that directly imply the statement of the Theorem.

For every n ∈ N≥1, we define the languages M ′
n and M ′′

n over the alphabet {1, 2, . . . , n}
as follows. The language M ′

n contains all the words of odd length, and M ′′
n contains all the

words in which there are two occurrences of some letter i ∈ {1, 2, . . . , n} with only letters
smaller than i appearing in between.3 Formally,

M ′
n = { x ∈ {1, 2, . . . , n}∗ | |x| is odd },

M ′′
n = { xiyiz ∈ {1, 2, . . . , n}∗ | i ∈ {1, 2, . . . , n}, y ∈ {1, 2, . . . , i − 1}∗ }.

We then define Mn as the union M ′
n ∪ M ′′

n . Moreover, we define Ln by encoding Mn with the
binary alphabet {a, b}: Let us consider the function ϕn : {1, 2, . . . , n}∗ → {a, b}∗ defined by
ϕ(i1i2 . . . im) = ai1bn−i1ai2bn−i2 . . . aimbn−im . We set Ln ⊆ {a, b}∗ as the union of ϕn(Mn)
with the language {a, b}∗ \ ϕ({1, 2, . . . , n}∗) containing all the words that are not a proper
encoding of some word in {1, 2, . . . , n}∗.

The statement of the theorem immediately follows from the following claim

▷ Claim 15. 1. The languages Mn and Ln are cofinite, thus they are in B0.
2. The languages Mn and Ln are recognized by NFAs of size n + 4, resp. O(n2).
3. Every poNFA recognizing either Mn or Ln has a size greater than 2n−1.

The formal proof of this claim is presented in the long version [3]. ◀

4.4 Commutative Star-Free Languages
In the case of commutative languages, we have a complete picture of the complexities for both
hierarchies, even for arbitrary input NFAs. Observe, that commutative languages generalize
unary languages, where it is known that for unary star-free languages both hierarchies collapse.
For commutative star-free languages, a similar result holds, employing [18, Prop. 30].

▶ Theorem 16. For commutative star-free languages the levels Ln of the Straubing-Thérien
and Bn of the dot-depth hierarchy coincide for all full and half levels, except for L0 and B0.
Moreover, the hierarchy collapses at level one.

Next we will give the results, summarized in Theorem 10, for the case of the commutative
(star-free) languages. The NP-hardness follows by a reduction from 3-CNF-SAT.

3 The languages (M ′′
n)n∈N≥1 were previously studied in [22] with a game-theoretic background. We also

refer to [30] for similar “fractal languages.”

E. Arrighi et al. 34:11

q3 q2 q0 q1

a

aa

a
a

Figure 3 An example of a non-totally star-free NFA that accepts a star-free language.

▶ Lemma 17. The Intersection Non-emptiness problem is NP-hard for DFAs accepting
commutative languages in L1.

The upper bound shown next also holds for arbitrary commutative languages.

▶ Theorem 18. The Intersection Non-emptiness problem for NFAs accepting arbitrary,
i.e., not necessarily star-free, commutative languages is in NP.

Proof. It was shown in [38] that Intersection Non-emptiness is NP-complete for unary
NFAs as input. Fix some order Σ = {a1, a2, . . . , ar} of the input alphabet. Let A1, A2, . . . , Am

be the NFAs accepting commutative languages with Ai = (Qi, Σ, δi, q0,i, Fi) for 1 ≤ i ≤ m.
Without loss of generality, we may assume that every Fi is a singleton set, namely Fi = {qf,i}.
For each 1 ≤ i ≤ m and 1 ≤ j ≤ r, let Bi,j be the automaton over the unary alphabet {aj}
obtained from Ai by deleting all transitions labeled with letters different from aj and only
retaining those labeled with aj . Each Bi,j will have one initial and one final state. Let
q⃗0 = (q0,1, q0,2, . . . , q0,m) be the tuple of initial states of the NFAs; they are the initial states
of B1,1, B2,1, . . . , Bm,1, respectively. Then, nondeterministically guess further tuples q⃗j from
Q1 ×Q2 × . . .×Qm for 1 ≤ j ≤ r −1. The jth tuple is considered as collecting the final states
of the Bi,j but also as the start states for the Bi,j+1. Finally, let q⃗f = (qf,1, qf,2, . . . , qf,m)
and consider this as the final states of B1,r, B2,r, . . . , Bm,r. Then, for each 1 ≤ j ≤ r solve
Intersection Non-emptiness for the unary automata B1,j , B2,j , . . . , Bm,j . If there exist
words wj in the intersection of L(B1,j), L(B2,j), . . . , L(Bm,j), for each 1 ≤ j ≤ r, then,
by commutativity, there exists one in a∗

1a∗
2 · · · a∗

r , namely, w1w2 · · · wm, and so the above
procedure finds it. Conversely, if the above procedure finds a word, this is contained in the
intersection of the languages induced by the Ai’s. ◀

For fixed alphabets, we have a polynomial-time algorithm, showing that the problem
is in XP for alphabet size as a parameter, for a class of NFAs generalizing, among others,
poNFAs and DFAs (accepting star-free languages). This is in contrast to the other results
on the Intersection Non-emptiness problem in this paper. We say that an NFA
A = (Q, Σ, δ, q0, F) is totally star-free, if the language accepted by qAp = (Q, Σ, δ, q, {p}) is
star-free for any states q, p ∈ Q. For instance, partially ordered NFAs are totally star-free.

An example of a non-totally star-free NFA accepting a star-free language is given next.
Consider the following NFA A = ({q0, q1, q2, q3}, δ, q0, {q0, q2}) with δ(q0, a) = {q1, q2},
δ(q1, a) = {q0}, δ(q2, a) = {q3}, and δ(q3, a) = {q2} that accepts the language {a}∗. The
automaton is depicted in Figure 3. Yet, neither L(q0Aq0) = {aa}∗ nor L(q0Aq2) = {a}{aa}∗ ∪
{ε} are star-free.
The proof of the following theorem uses classical results of Chrobak and Schützenberger [10,36].

▶ Theorem 19. The Intersection Non-emptiness problem for totally star-free NFAs
accepting star-free commutative languages, i.e., commutative languages in L3/2, is contained
in XP (with the size of the alphabet as the parameter).

FSTTCS 2021

34:12 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

▶ Remark 20. Note that Theorem 19 does not hold for arbitrary commutative languages
concerning a fixed alphabet, but only for star-free commutative languages, since in the general
case, the problem is NP-complete even for languages over a common unary alphabet [38].

5 PSPACE-Completeness

Here, we prove that even when restricted to languages from B1 or L2, Intersection Non-
emptiness is PSPACE-complete, as it is for unrestricted DFAs or NFAs. We will profit from
the close relations of Intersection Non-emptiness to the Non-universality problem
for NFAs: Given an NFA A with input alphabet Σ, decide if L(A) ̸= Σ∗. Conversely, we can
also observe that Non-universality for NFAs is PSPACE-complete for languages from B1.

▶ Theorem 21. The Intersection Non-emptiness problem for DFAs or NFAs accepting
languages from B1 or L2 is PSPACE-complete, even for binary input alphabets.

As B1 ⊆ L2, it is sufficient to show that the problem is PSPACE-hard for B1. While without
paying attention to the size of the input alphabet, this result can be readily obtained by
re-analyzing Kozen’s original proof in [24], the restriction to binary input alphabets needs
some more care. Details can be found in the long version [3]. We modify the proof of
Theorem 3 in [25] that showed PSPACE-completeness for Non-universality for poNFAs
(that characterize the level 3/2 of the Straubing-Thérien hierarchy). Also, it can be observed
that the languages involved in the intersection are actually locally testable languages. Without
giving details of definitions, we can therefore formulate:

▶ Corollary 22. The Intersection Non-emptiness problem for DFAs or NFAs accepting
locally testable languages is PSPACE-complete, even for binary input alphabets.

By the proof of Theorem 3 in [25], also
⋃

i Li belongs to B1, so that we can conclude:

▶ Corollary 23. The Non-universality problem for NFAs accepting languages from B1 is
PSPACE-complete, even for binary input alphabets.

6 Conclusion and Open Problems

We have investigated how the increase in complexity within the dot-depth and the Straubing-
Thérien hierarchies is reflected in the complexity of the Intersection Non-emptiness
problem. We have shown the complexity of this problem is already completely determined
by the very first levels of either hierarchy.

Our work leaves open some very interesting questions and directions of research. First, we
were not able to prove containment in NP for the Intersection Non-emptiness problem
when the input automata are allowed to be NFAs accepting a language in the level 3/2 or
in the level 1 of the Straubing-Thérien hierarchy. Interestingly, we have shown that such
containment holds in the case of DFAs, but have shown that the technique we have used to
prove this containment does not carry over to the context of NFAs. In particular, to show
this we have provided the first exponential separation between the state complexity of general
NFAs and partially ordered NFAs. The most immediate open question is if Intersection
Non-emptiness for NFAs accepting languages in B1/2, L1, or L3/2 is complete for some level
higher up in the polynomial-time hierarchy (PH), or if this case is already PSPACE-complete.
Another tantalizing open question is whether one can capture the levels of PH in terms

E. Arrighi et al. 34:13

of the Intersection Non-emptiness problem when the input automata are assumed to
accept languages belonging to levels of a sub-hierarchy of L2. Such sub-hierarchies have been
considered for instance in [23].

It would also be interesting to have a systematic study of these two well-known sub-
regular hierarchies for related problems like Non-universality for NFAs or Union Non-
universality for DFAs. Notice the technicality that Union Non-universality (similar
to Intersection Non-emptiness) has an implicit Boolean operation (now union instead
of intersection) within the problem statement, while Non-universality lacks this implicit
Boolean operation. This might lead to a small “shift” in the discussions of the hierarchy
levels that involve Boolean closure. Another interesting hierarchy is the group hierarchy [32],
where we start with the group languages, i.e., languages acceptable by automata in which
every letter induces a permutation of the state set, at level 0. Note that for group languages,
Intersection Non-emptiness is NP-complete even for a unary alphabet [38]. As Σ∗ is a
group language, the Straubing-Thérien hierarchy is contained in the corresponding levels
of the group hierarchy, and hence, we get PSPACE-hardness for level 2 and above in this
hierarchy. However, we do not know what happens in the levels in between.

References
1 Parosh Aziz Abdulla. Regular model checking. International Journal on Software Tools for

Technology Transfer, 14(2):109–118, 2012.
2 Jorge Almeida and Ondrej Klíma. New decidable upper bound of the second level in the

Straubing-Thérien concatenation hierarchy of star-free languages. Discrete Mathematics &
Theoretical Computer Science, 12(4):41–58, 2010.

3 Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus
de Oliveira Oliveira, and Petra Wolf. On the Complexity of Intersection Non-emptiness for
Star-Free Language Classes. CoRR, abs/2110.01279, 2021. URL: http://arxiv.org/abs/
2110.01279, arXiv:2110.01279.

4 Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model check-
ing. In E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verification, 12th
International Conference, CAV, volume 1855 of Lecture Notes in Computer Science, pages
403–418. Springer, 2000.

5 Ahmed Bouajjani, Anca Muscholl, and Tayssir Touili. Permutation rewriting and algorithmic
verification. Information and Computation, 205:199–224, 2007.

6 Janusz A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Informatique théorique et
Applications/Theoretical Informatics and Applications, 10(2):33–49, 1976.

7 Janusz A. Brzozowski and Faith E. Fich. Languages of R-trivial monoids. Journal of Computer
and System Sciences, 20(1):32–49, February 1980.

8 Janusz A. Brzozowski and Robert Knast. The dot-depth hierarchy of star-free languages is
infinite. Journal of Computer and System Sciences, 16(1):37–55, 1978.

9 Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theoretical
Computer Science, 88(1):99–116, September 1991.

10 Marek Chrobak. Finite automata and unary languages. Theoretical Computer Science,
47(3):149–158, 1986.

11 Rina S. Cohen and Janusz A. Brzozowski. Dot-depth of star-free events. Journal of Computer
and System Sciences, 5(1):1–16, 1971.

12 Henning Fernau and Andreas Krebs. Problems on finite automata and the exponential time
hypothesis. Algorithms, 10(1):24, 2017.

13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.
14 Pawel Gawrychowski. Chrobak normal form revisited, with applications. In Béatrice Bouchou-

Markhoff, Pascal Caron, Jean-Marc Champarnaud, and Denis Maurel, editors, Implementation
and Application of Automata - 16th International Conference, CIAA, volume 6807 of Lecture
Notes in Computer Science, pages 142–153. Springer, 2011.

FSTTCS 2021

http://arxiv.org/abs/2110.01279
http://arxiv.org/abs/2110.01279
http://arxiv.org/abs/2110.01279

34:14 On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

15 Christian Glaßer and Heinz Schmitz. Decidable hierarchies of starfree languages. In Sanjiv
Kapoor and Sanjiva Prasad, editors, Foundations of Software Technology and Theoretical
Computer Science, 20th Conference, FST TCS, volume 1974 of Lecture Notes in Computer
Science, pages 503–515. Springer, 2000.

16 Christian Glaßer and Heinz Schmitz. Level 5/2 of the Straubing-Thérien hierarchy for two-letter
alphabets. In Werner Kuich, Grzegorz Rozenberg, and Arto Salomaa, editors, Developments
in Language Theory, 5th International Conference, DLT, volume 2295 of Lecture Notes in
Computer Science, pages 251–261. Springer, 2001.

17 Juris Hartmanis, Neil Immerman, and Stephen R. Mahaney. One-way log-tape reductions.
In 19th Annual Symposium on Foundations of Computer Science, FOCS, pages 65–72. IEEE
Computer Society, 1978.

18 Stefan Hoffmann. Regularity conditions for iterated shuffle on commutative regular languages.
accepted at CIAA, 2021.

19 Harry B. Hunt III and Daniel J. Rosenkrantz. Computational parallels between the regular
and context-free languages. SIAM Journal on Computing, 7(1):99–114, 1978.

20 George Karakostas, Richard J. Lipton, and Anastasios Viglas. On the complexity of intersecting
finite state automata and NL versus NP. Theoretical Computer Science, 302(1):257–274, 2003.

21 Takumi Kasai and Shigeki Iwata. Gradually intractable problems and nondeterministic
log-space lower bounds. Mathematical Systems Theory, 18(1):153–170, 1985.

22 Felix Klein and Martin Zimmermann. How much lookahead is needed to win infinite games?
Logical Methods in Computer Science, 12(3), 2016. doi:10.2168/LMCS-12(3:4)2016.

23 Ondrej Klíma and Libor Polák. Subhierarchies of the second level in the straubing-thérien
hierarchy. International Journal of Algebra and Computation, 21(7):1195–1215, 2011.

24 Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on
Foundations of Computer Science, FOCS, pages 254–266. IEEE Computer Society, 1977.

25 Markus Krötsch, Tomás Masopust, and Michaël Thomazo. Complexity of universality and
related problems for partially ordered NFAs. Information and Computation, 255:177–192,
2017.

26 Klaus-Jörn Lange and Peter Rossmanith. The emptiness problem for intersections of regular
languages. In Ivan M. Havel and Václav Koubek, editors, Mathematical Foundations of
Computer Science 1992, 17th International Symposium, MFCS, volume 629 of Lecture Notes
in Computer Science, pages 346–354. Springer, 1992.

27 Tomás Masopust. Separability by piecewise testable languages is PTime-complete. Theoretical
Computer Science, 711:109–114, 2018.

28 Tomás Masopust and Markus Krötzsch. Partially ordered automata and piecewise testability.
CoRR, abs/1907.13115, 2019. arXiv:1907.13115.

29 Tomás Masopust and Michaël Thomazo. On the complexity of k-piecewise testability and
the depth of automata. In Igor Potapov, editor, Developments in Language Theory - 19th
International Conference, DLT, number 9168 in Lecture Notes in Computer Science, pages
364–376. Springer, 2015.

30 Mike Naylor. Abacaba! – using a mathematical pattern to connect art, music, poetry and
literature. Bridges, pages 89–96, 2011.

31 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
32 Jean-Éric Pin. Bridges for concatenation hierarchies. In Kim Guldstrand Larsen, Sven Skyum,

and Glynn Winskel, editors, Automata, Languages and Programming, 25th International
Colloquium, ICALP, volume 1443 of Lecture Notes in Computer Science, pages 431–442.
Springer, 1998.

33 Thomas Place and Marc Zeitoun. Generic results for concatenation hierarchies. Theory of
Computing Systems, 63(4):849–901, 2019.

34 Narad Rampersad and Jeffrey Shallit. Detecting patterns in finite regular and context-free
languages. Information Processing Letters, 110(3):108–112, 2010.

https://doi.org/10.2168/LMCS-12(3:4)2016
http://arxiv.org/abs/1907.13115

E. Arrighi et al. 34:15

35 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

36 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8(2):190–194, 1965.

37 Thomas Schwentick, Denis Thérien, and Heribert Vollmer. Partially-ordered two-way automata:
A new characterization of DA. In Werner Kuich, Grzegorz Rozenberg, and Arto Salomaa,
editors, Developments in Language Theory, 5th International Conference, DLT, volume 2295
of Lecture Notes in Computer Science, pages 239–250. Springer, 2001.

38 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W.
Floyd, Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, 5th Annual
Symposium on Theory of Computing, STOC, pages 1–9. ACM, 1973.

39 Howard Straubing. A generalization of the Schützenberger product of finite monoids. Theoret-
ical Computer Science, 13:137–150, 1981.

40 Howard Straubing. Finite semigroup varieties of the form V ∗D. Journal of Pure and Applied
Algebra, 36:53–94, 1985.

41 Ivan Hal Sudborough. On tape-bounded complexity classes and multihead finite automata.
Journal of Computer and System Sciences, 10(1):62–76, February 1975.

42 Denis Thérien. Classification of finite monoids: the language approach. Theoretical Computer
Science, 14(2):195–208, 1981.

43 Todd Wareham. The parameterized complexity of intersection and composition operations
on sets of finite-state automata. In Sheng Yu and Andrei Paun, editors, Implementation and
Application of Automata, 5th International Conference, CIAA, volume 2088 of Lecture Notes
in Computer Science, pages 302–310. Springer, 2000.

44 Michael Wehar. Hardness results for intersection non-emptiness. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP, Part II, volume 8573 of Lecture Notes
in Computer Science, pages 354–362. Springer, 2014.

45 Michael Wehar. On the Complexity of Intersection Non-Emptiness Problems. PhD thesis,
University at Buffalo, 2016.

FSTTCS 2021

Complexity of Coverability in Bounded Path
Broadcast Networks
A. R. Balasubramanian # Ñ

Technische Universität München, Germany

Abstract
Broadcast networks are a formalism of distributed computation that allow one to model networks of
identical nodes communicating through message broadcasts over a communication topology that does
not change over the course of executions. The parameterized verification problem for these networks
amounts to proving correctness of a property for any number of nodes, and on all executions. Dually
speaking, this problem asks for the existence of an execution of the broadcast network that violates
a given property. One specific instance of parameterized verification is the coverability problem
which asks whether there is an execution of the network in which some node reaches a given state
of the broadcast protocol. This problem was proven to be undecidable by Delzanno, Sangnier and
Zavattaro (CONCUR 2010). In the same paper, the authors also prove that, if we additionally
assume that the underlying communication topology has a bound on the longest path, then the
coverability problem becomes decidable.

In this paper, we provide complexity results for the above problem and prove that the coverability
problem for bounded-path topologies is Fϵ0 -complete, where Fϵ0 is a class in the fast-growing
hierarchy of complexity classes. This solves an open problem of Hasse, Schmitz and Schnoebelen
(LMCS, Vol 10, Issue 4).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Distributed computing models

Keywords and phrases Parameterized verification, Bounded path networks, Fast-growing complexity
classes

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.35

Funding A. R. Balasubramanian: Supported by funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

1 Introduction

In recent years, significant effort has been put into understanding the precise computational
complexity of problems which are non-elementary, i.e., problems whose running times cannot
be upper bounded by any fixed tower of exponentials of the input size [13, 6, 20, 19, 1, 18, 8].
A well-known such problem is the satisfiability problem of the weak monadic theory of one
successor (WS1S) [17]. A more recent addition to this collection is the reachability problem
for Petri nets [7]. We refer the reader to the excellent survey by Schmitz [19] for a collection
of various non-elementary problems from logic, automata theory and verification which have
been proven to be complete for appropriate complexity classes in the fast-growing hierarchy.
This hierarchy allows for a finer classification of problems lying beyond the elementary regime.

From a tractability perspective, these results are of course negative. However, there are
non-elementary problems for which tools have been developed, for e.g. MONA for WS1S [11];
and considerable effort has been put into the development of fast heuristics to solve some
non-elementary problems on realistic inputs, for e.g., there is a huge wealth of heuristics and
special cases which have been studied for the Petri net reachability problem [3, 12, 14, 4, 5, 15].
Hence, understanding the precise complexity of a non-elementary problem can help us to
solve it in practice by reducing it to various other well-studied non-elementary problems.

© A. R. Balasubramanian;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bala.ayikudi@tum.de
https://arbalan96.github.io/
https://orcid.org/0000-0002-7258-5445
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Coverability in Bounded Path Broadcast Networks

The fast-growing hierarchy mentioned above can help us in this goal of understanding
the computational complexity of non-elementary problems. Proving a problem to be hard
for one of these classes implies that that problem cannot have an efficient encoding into any
of the non-elementary problems which lie strictly below this class. In their invited paper for
CONCUR 2013 [21], Schmitz and Schnoebelen explicity state the program of populating the
catalog of hard problems for classes in the fast-growing hierarchy, so that hardness proofs do
not have to begin from Turing machines, but can instead rely on simpler reductions.

In this paper, we contribute to this program by considering a problem from the paramet-
erized verification of broadcast networks and proving that it is Fϵ0 -complete, where Fϵ0 is a
complexity class in the fast-growing hierarchy. We now offer a brief overview of broadcast
networks [9, 2]. Broadcast networks are a formalism of distributed computation that allow
one to model networks of identical nodes communicating through message broadcasts. Each
node runs the same protocol and an underlying communication topology specifies for each
node, the set of neighbors that it can broadcast messages to. This topology remains invariant
over the course of executions of the network. At any point, a node can broadcast a message
which is received by all of its neighbors.

The parameterized verification problem for these networks amounts to proving correctness
of a property for any number of nodes and over any communication topology. Dually, we ask
for the existence of an execution of the network that violates a given property. One specific
instance of parameterized verification is the coverability problem which asks whether there
is an execution of the network in which some node reaches a given state of the broadcast
protocol. This problem was proven to be undecidable by Delzanno, Sangnier and Zavattaro
(Theorem 1 of [9]). In the same paper, the authors also prove that, if we additionally assume
that the underlying communication topology has a bound on the longest path (bounded-
path topologies), then the coverability problem becomes decidable (Theorem 5 of [9]). Our
main result in this paper is that the coverability problem for bounded-path topologies is
Fϵ0 -complete, where Fϵ0 is a class in the aforementioned fast-growing hierarchy of complexity
classes.

Our result settles a conjecture raised by Hasse, Schmitz and Schnoebelen (Section 8.3
of [16]) and also settles the complexity of the last remaining question from the original paper
that initiated the study of parameterized verification problems for broadcast networks [9].
Moreover, we provide a new and rather natural problem to the list of Fϵ0 -complete problems,
which when compared to the list of Fω-complete and Fωω -complete problems, is rather small
currently (Section 6.4 of [19]). (Both Fω and Fωω are classes in the fast-growing hierarchy
which are much smaller than Fϵ0). Hence, in this sense, we contribute to the above-mentioned
program of finding hard problems for classes in the fast-growing hierarchy. Further, we hope
that the present work might prove to be useful in settling the complexity of other problems
conjectured to be Fϵ0 -complete (Section 8.3 of [16]), since all the problems mentioned there
are concerned with infinite-state systems regarding bounded-path trees and graphs, and so
those problems are in some sense “close” to the problem that we consider here.

2 Preliminaries

In this section, we recall the model of broadcast networks as defined in [2]. Intuitively, a
broadcast network consists of several nodes, each executing the same finite-state broadcast
protocol. A communication topology assigns to each node, a finite set of neighbors, to which
it can communicate. At any point, some node can broadcast a message which is received by
all of its neighbors. We now proceed to formalize this intuition.

A. R. Balasubramanian 35:3

Broadcast networks
▶ Definition 1. A broadcast protocol is a tuple P = (Q, I, Σ, ∆) where Q is a finite set of states,
I ⊆ Q is the set of initial states, Σ is a finite set of messages and ∆ ⊆ Q×{!a, ?a, : a ∈ Σ}×Q

is the transition relation.

For ease of notation, we will write q
!a−→ q′ (resp. q

?a−→ q′) for (q, !a, q′) ∈ ∆ (resp.
(q, ?a, q′) ∈ ∆). A transition q

!a−→ q′ (resp. q
?a−→ q′) intuitively corresponds to broadcasting

(resp. receiving) the message a. We will assume that broadcast protocols are complete, i.e.
for every state q and every message a there exists q′ such that q

?a−→ q′.
As mentioned before, a broadcast network consists of several identical nodes running a

broadcast protocol and each node has a finite set of neighbors. To formalize this, given a
broadcast protocol P = (Q, I, Σ, ∆), a configuration of P is a labelled graph γ = (N, E, L)
where N is a finite set of nodes, E ⊆ N × N is a finite set of (undirected) edges specifying
for every pair of nodes whether or not there is a communication link between them and
L : N → Q is a labelling function that specifies the current state of each node. We let
L(γ) = {L(n) : n ∈ N} be the set of labels appearing in the nodes of γ. We say that γ is
initial if L(γ) ⊆ I.

The semantics of the broadcast network of a protocol P is given by means of an infinite-
state transition system T (P) which consists of all the configurations of the protocol P . There
is a step from the configuration γ = (N, E, L) to the configuration γ′ = (N′, E′, L′) if N′ = N,
E′ = E and there exists a node n and a message a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and
for every other node n′, if (n, n′) ∈ E, then (L(n), ?a, L′(n′)) ∈ ∆; otherwise L(n′) = L′(n′).
In this case, we write γ

n,a−−→ γ′ or simply γ −→ γ′. Intuitively, a step consists of a node n
broadcasting some message a which is then received by all of its neighbors; all the other
nodes do nothing. Notice that between steps, the set of nodes and edges do not change.

A run from the configuration γ to the configuation γ′ is a sequence of steps γ −→ γ1 −→
γ2 −→ . . . γk−1 −→ γ′. If a run exists between configurations γ and γ′ we denote it by γ

∗−→ γ′.
An execution is a run starting from an initial configuration.

Given a state f and a configuration γ we say that γ covers f if f ∈ L(γ), i.e., if the
state of some node in γ is f . We say that an execution γ0

∗−→ γ covers f , if γ covers f . The
coverability problem for broadcast protocols is to decide, given a broadcast protocol P and a
state f , whether there is an execution from some initial configuration that covers f . It is
known that the coverability problem is undecidable (Theorem 1 of [9]).

(a, 1) (b, 1) (c, 1) (d, 1) (e, 1)
?ht0 !ht1 !ht1 ?ht0

(a, 0) (c, 0)

?ht1, ?ht1

(e, 0)
!ht0 !ht0

Figure 1 Example of a broadcast protocol where we set I = {(a, 0), (a, 1)} and Σ = {hti, hti :
0 ≤ i ≤ 1}. If for a state (f, i), we have not depicted what happens when message m is received at
(f, i), we assume that (f, i) ?m−−→ (⊥, i). Here (⊥, 0) and (⊥, 1) are new sink states, i.e., states with
no outgoing transition.

▶ Example 2. We consider the broadcast protocol given in Figure 1. Figure 2 shows an
execution in this protocol covering the state (e, 0). Moreover, let γ = (N, E, L) be any initial
configuration and γ′ = (N′, E′, L′) be any configuration covering (e, 0) such that γ

∗−→ γ′.

FSTTCS 2021

35:4 Coverability in Bounded Path Broadcast Networks

(a, 0) (a, 1)

(a, 1) (a, 1)

!ht0

(c, 0) (b, 1)

(b, 1) (b, 1)

!ht1

3×

(c, 0) (c, 1)

(c, 1) (c, 1)

!ht1

3×

(c, 0) (d, 1)

(d, 1) (d, 1)

!ht0

(e, 0) (e, 1)

(e, 1) (e, 1)

Figure 2 Example of an execution covering (e, 0) in the broadcast protocol given in Figure 1.
The nodes marked in green make the broadcasts, i.e., first the node on the topmost left broadcasts
ht0, then all the other nodes broadcast ht1 in some order, and then ht1 in some order, and then the
node on the topmost left broadcasts ht0.

Hence, there is a node n such that L′(n) = (e, 0). Note that L(n) must be (a, 0). Hence n
must have broadcasted both ht0 and ht0 to move into the states (c, 0) and (e, 0) at different
points during the run. This means that all of the neighbors of n received ht0 at some point,
and so the labels of all of its neighbors in γ′ must be either (e, 1) or (⊥, 0) or (⊥, 1).

Suppose n′ is a neighbor of n such that L′(n′) = (e, 1). Notice that if there is a neighbor
n′′ ̸= n of n′ which was at (c, 0) during some point in the run, then n′′ must have broadcasted
ht0 during the run. However, then n′ would have received two ht0 messages, which would
have caused it to move into either (⊥, 0) or (⊥, 1). Hence, there is exactly one neighbor of n′

which was labelled by (c, 0) at some point during the run.
This protocol along with the above discussion will prove useful later on for the lower

bound reductions in section 5.

Bounded-path broadcast networks

Motivated by the undecidability of the coverability problem, the authors of [9] also study a
different variant of the problem, which we now describe.

Let P be a broadcast protocol and let k ≥ 1 be some number. Let γ be a configuration
of P. We say that γ is k-path bounded if the length of the longest simple path in γ is at
most k. Now, let Tk(P) be the restriction of the transition system T (P) to only k-path
bounded configurations. Notice that since the set of nodes and edges do not change during
a run, Tk(P) is closed under the step relation. The path bounded coverability problem
(Bounded-Path-Cover) is then defined as follows:

Given: A broadcast protocol P = (Q, I, Σ, ∆), a state f ∈ Q and a number k.
Decide: If there is an execution in Tk(P) which covers f .

The authors of [9] prove that this problem is decidable (Theorem 5 of [9]). The main
result that we prove in this paper is that

▶ Theorem 3. Bounded-Path-Cover is Fϵ0-complete.

Here Fϵ0 is a member of the fast-growing complexity class hierarchy. We refer the reader
to Section 2.3 of [19] for a description of the fast-growing hierarchy and the class Fϵ0 . To
prove the upper bound for our problem, we will consider the algorithm given in [9] and
analyze its running time by means of controlled-bad sequences of a suitable well-quasi order,
whose upper bounds will allow us to place Bounded-Path-Cover in the complexity class
Fϵ0 . The lower bound is proved by giving a logspace reduction from a known Fϵ0-hard
problem, which we now proceed to describe.

A. R. Balasubramanian 35:5

3 Nested counter systems (NCS)

A nested counter system is a generalisation of a usual counter system with higher-order
counters, i.e., counters which can themselves contain other (lower-order) counters. Intuitively,
an one-dimensional counter is a usual counter, which can either add or subtract 1. A
two-dimensional counter can either add or remove an one-dimensional counter, a three-
dimensional counter can either add or remove a two-dimensional counter and so on. Here,
we slightly alter the definition of nested counter systems as given in [8] so that it better
suits our purposes. It can be easily verified that our altered definition does not affect the
semantics of the system as given in [8].

A k-nested counter system (k-NCS) is a tuple N = (Q, δ) where Q is a finite set of states
and δ ⊆

⋃
1≤i,j≤k+1(Qi × Qj) is a set of rules. The set CN of configurations of N is defined

to be the set of all labelled rooted trees of height atmost k, with labels from the set Q.
The operational semantics of N is defined in terms of the following transition relation

→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ be a rule with
i ≤ j ≤ k. We say that a configuration C can move to the configuration C ′ using the rule r

(denoted by C
r−→ C ′), if there is a path v0, v1 . . . , vi in C starting at the root such that for

every 0 ≤ l ≤ i, the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ i,
changing the label of each vl to q′

l and 2) for every i + 1 ≤ l ≤ j, creating a new vertex vl

with label q′
l and adding it as a child to vl−1.

Similarly, suppose r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ is a rule with j < i ≤ k. Then
C

r−→ C ′ if there is a path v0, v1, . . . , vi in C starting at the root such that for every 0 ≤ l ≤ i,
the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ j, changing the label
of each vl to q′

l and 2) removing the subtree rooted at the node vj+1.

▶ Example 4. Let us consider the NCS N given by the states Q = {pi, p′
i, qi, q′

i : 0 ≤ i ≤ 4}
and consisting of the following rules: r1 = ((q0, q1), (q′

0, q′
1, q′

2)), r2 = ((q′
0, q3, q2), (p0)), r3 =

((p0), (p′
0)). In Figure 3, we illustrate the application of these rules to a configuration of N .

q0

q1 q3

q2

q4

q2

r1

q′
0

q′
1

q′
2

q3

q2

q4

q2

r2

p0

q′
1

q′
2

r3

p′
0

q′
1

q′
2

Figure 3 Application of the rules r1, r2 and r3 to a configuration of N , which is described in
Example 4.

We say that C −→ C ′ if C
r−→ C ′ for some rule r. We let ∗−→ denote the reflexive and

transitive closure of → and we say that a configuration C reaches C ′ if C
∗−→ C ′. Given two

states qin, qf ∈ Q, we say that qin can cover qf if the (unique) configuration consisting of the
single root vertex labelled with qin can reach some configuration where the root is labelled
by qf . The coverability problem for an NCS is then the following: Given an NCS N and
two states qin, qf , can qin cover qf ? It is known that the coverability problem is Fϵ0-hard
(Theorem 7 of [8]).

FSTTCS 2021

35:6 Coverability in Bounded Path Broadcast Networks

Lossy semantics. In addition to the “usual” semantics of an NCS that we have described in
the previous section, we also need a lossy semantics which we now define here. Let N = (Q, δ)
be a k-NCS and let qin, qf ∈ Q. We say that there is a lossy step between configurations C

and C ′, if C ′ can be obtained from C by deleting the subtree rooted at some vertex v in C.
We let C 99K C ′ if either there is a lossy step between C and C ′ or C

r−→ C ′ for some rule r.
As usual, we let ∗

99K denote the reflexive and transitive closure of 99K and we say that C

can reach C ′ in a lossy manner if C
∗
99K C ′. We can then define the notion of the state qin

covering the state qf in a straightforward manner.
For configurations C, C ′, we say that C ≥ C ′ iff C ′ can be obtained from C by a sequence

of lossy steps. Since NCS do not have any zero tests, from the definition of the transition
relation, we can easily infer the following proposition.

▶ Proposition 5. If C1 ≥ C ′
1 and C ′

1
∗
99K C ′

2 then there exists C2 ≥ C ′
2 such that C1

∗−→ C2.

Hence, we get the following corollary.

▶ Corollary 6. qf can be covered from qin in a lossy manner iff qf can be covered from qin

under the usual semantics.

This corollary will be useful later on in order to prove our hardness result.

4 A simulator protocol Psim

Throughout this section, let N = (Q, δ) be a fixed k-NCS with two fixed states qin and qf .
In this section, we will construct a broadcast protocol Psim = (Qsim, Isim, Σsim, δsim), a state
p of Psim, and define a notion of good initial configurations of Psim such that the following
property is satisfied: qf can be covered from qin in the NCS N iff p can be covered in
T2k(Psim) by some execution starting at a good initial configuration. Intuitively, the protocol
Psim will simulate the NCS N , provided that the initial configuration that it begins with is a
good initial configuration.

States, alphabet and good configurations. For each 0 ≤ i ≤ k, Psim will have
two states (start, i), (finish, i). For each 0 ≤ i ≤ k and each r ∈ δ, we will have
five states (req-rec[r], i), (req-fwd[r], i), (wait[r], i), (ack-rec[r], i), (ack-fwd[r], i). Fi-
nally, for each 0 ≤ i ≤ k and each q ∈ Q, Psim will have a state (q, i). No-
tice that each state of Psim is of the form (a, b) where a ∈ Q ∪ {start, finish} ∪
{req-rec[r], req-fwd[r], wait[r], ack-rec[r], ack-fwd[r]} and 0 ≤ b ≤ k. The first part
“a” will be called the base of the state and the second part “b” will be called the grade. Some-
times we will abuse notation and refer to the base (resp. grade) of a node in a configuration
to mean the base (resp. grade) of the label of that node.

The initial set of states Isim will be the set {(qin, 0)} ∪ {(start, i) : 1 ≤ i ≤ k}. (The
asymmetry in the initial set of states between the case of 0 and others will be discussed in the
following paragraphs). The alphabet Σsim will be the set {beginr

i , endr
i : r ∈ δ, 0 ≤ i ≤ k}.

A configuration γ of Psim is called good if γ is a tree of height at most k such that 1) the
base of the label of every node is in the set Q ∪ {start, finish}, 2) there is exactly one node n
labelled by a state of grade 0, which will be called the root of γ and, 3) every node at distance
i from n is labelled by a state of grade i. Notice that if γ is a good initial configuration then
γ ∈ T2k(P). Further, notice that in a good initial configuration, the root must be labelled by
(qin, 0) and every node at distance i from the root is labelled by (start, i).

A. R. Balasubramanian 35:7

Intuition behind good configurations of Psim. Before we describe the transition relation
of Psim, we describe some intuition behind the notion of a good configuration.

Let γ be a good configuration of Psim. Notice that there is a way to map γ to a
configuration of N : First, forget all the grades from the labels of each node in γ and just
keep the bases. Next, remove all nodes whose label is either start or finish and from the
resulting forest, pick the tree T containing the root. In this way, to every good configuration
γ of Psim we can define a configuration E(γ) of N . Hence, we can use good configurations of
Psim to encode configurations of N and this is the reason behind defining good configurations
of Psim. An example of this mapping is given in Figure 4.

Further, notice that if γ is any good initial configuration, then E(γ) is the initial config-
uration of N . This is the reason behind the asymmetry in the definition of the initial set of
states between the case of 0 and others.

(q0, 0)

(q1, 1)

(finish, 2)

(start, 1)

(q2, 2)

(q3, 1)

(q2, 2)

(q4, 3)

(start, 2)

(q4, 3)

q0

q1 q3

q2

q4

Figure 4 An example of the map E between good configurations of P and configurations of N .
On the left is a good configuration γ of P and on the right is its corresponding mapped configuration
E(γ) of N .

4.1 Transitions involving the letters beginr
i and endr

i

For the rest of this section, let us fix a rule r = ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ where i, j ≤ k

and let w = max(i, j). For the sake of uniformity, if i < j, then let ql = start for every
i < l ≤ j. If i > j, then let q′

l = finish for every j < l ≤ i.
Intuitively, the gadget that we will demonstrate will use the messages beginr

i and endr
i

to find a path n0, . . . , nw labelled by (q0, 0), (q1, 1), . . . , (qw, w) and then change the labels
along this path to (q′

0, 0), (q′
1, 1), . . . , (q′

w, w). Notice that if i ≤ j, this means that a path
of the form (q0, 0), . . . , (qi, i), (start, i + 1), . . . , (start, j) becomes (q′

0, 0), . . . , (q′
i, i), (q′

i+1, i +
1), . . . , (q′

j , j). Similarly, if i > j then a path of the form (q0, 0), . . . , (qj , j), . . . (qi, i) becomes
(q′

0, 0), . . . , (q′
j , j), (finish, j + 1), . . . , (finish, i). This would then allow us to simulate the rule

r on good configurations of Psim.
Formally, we now describe the transitions involving the letters {beginr

i , endr
i : 0 ≤ i ≤ k}.

First, we make a small remark:

▶ Remark 7. In the following, if we do not specify what happens upon receiving a message
m from a state with base a and grade b, then it is to be assumed that (a, b) ?m−−→ (finish, b).

The “gadget” for “simulating” the rule r. We now present the main transitions involving
the messages beginr

i and endr
i .

FSTTCS 2021

35:8 Coverability in Bounded Path Broadcast Networks

First, we have four transitions

(q0, 0) !beginr
0−−−−→ (req-fwd[r], 0) ?beginr

1−−−−−→ (wait[r], 0) ?endr
1−−−−→ (ack-rec[r], 0) !endr

0−−−→ (q′
0, 0)

Then, for every 1 ≤ l ≤ w − 1, we have

(ql, l)
?beginr

l−1−−−−−−→ (req-rec[r], l)
!beginr

l−−−−→ (req-fwd[r], l)
?beginr

l+1−−−−−−→ (wait[r], l)

(ack-rec[r], l)
!endr

l−−−→ (ack-fwd[r], l)
?endr

l−1−−−−−→ (q′
l, l)

?endr
l+1

Finally, we have four transitions

(qw, w)
?beginr

w−1−−−−−−→ (req-rec[r], w)
!beginr

w−−−−→ (wait[r], w)
!endr

w−−−−→ (ack-fwd[r], w)
?endr

w−1−−−−−−→ (q′
w, w)

Self-loops. While the previous gadget comprised the main transitions involving beginr
i

and endr
i , for technical reasons we need the following self-loop transitions as well: For

every state with base a ∈ Q ∪ {start, finish} and grade 1 ≤ i ≤ k, there are two transitions

(a, i)
?beginr

i−1−−−−−−→ (a, i) and (a, i)
?endr

i−1−−−−−→ (a, i).
This finishes our description of the transition relation of Psim.

Intuition behind the transitions. We now give a brief intuition behind the gadget in the
case of w = 2. Notice that only the root n0 in a good configuration can be labelled by (q0, 0).
Hence if n0 broadcasts beginr

0, it is forwarding its request of wanting to simulate the rule
r to its children. The children have two choices: either stay where they are by means of
the self-loops or receive the request and move to (req-rec[r], 1). Atleast one child n1 has
to receive the request and move, otherwise the configuration enters into a deadlock. From
(req-rec[r], 1) n1 can forward this request to its children by broadcasting beginr

1 (and also
let n0 know that is has received its request, whereby it enters a waiting mode). Notice that
if two children of n0 forward the request, then n0 will enter (finish, 0) and the simulation of
the rule r cannot happen. Similarly, some child n2 of n1 must receive the request of n1, move
to (req-rec[r], 2), then broadcast beginr

2. At this point, the base of each ni is wait[r].
Now n2 can broadcast endr

2, forwarding an acknowledgment to the request made by n1.
n1 can receive this acknowledgment and broadcast endr

1, forwarding an acknowledgment to
n0 which can broadcast endr

0 and move to (q′
0, 0). At this point, the labels of n0, n1 and n2

are (q′
0, 0), (q′

1, 1) and (q′
2, 2) respectively, which means that we have changed the labels along

a path from (q0, 0), (q1, 1) and (q2, 2) to (q′
0, 0), (q′

1, 1) and (q′
2, 2).

4.2 Proof of correctness

The following lemma tells us that we can use good configurations of Psim along with the
gadget for the rule r described in the previous section to simulate steps of N .

▶ Lemma 8 (Psim simulates N). Suppose C
r−→ C ′ is a step in the NCS N . Suppose γ is

a good configuration such that 1) E(γ) = C and, 2) there is a path n0, . . . , nw in γ where
the label of each nl is (ql, l). Then there is a good configuration γ′ with γ

∗−→ γ′ such that 1)
E(γ′) = C ′ and, 2) γ′ is the same as γ except the label of each nl is (q′

l, l).

A. R. Balasubramanian 35:9

Proof sketch. For ease of presentation, we provide the proof in the case of w = 2. This
proof can be generalized to any w in a straightforward manner.

The proof for w = 2 is essentially the same argument that is given in the intuition
paragraph. Throughout the run that we are going to describe, if a node n /∈ {n0, n1, n2}
receives a message, then it will always take the self-loop transitions that we have constructed
in the gadget for the rule r.

From γ, n0 broadcasts beginr
0 and moves to (req-fwd[r], 0) and n1 receives it and moves

to (req-rec[r], 1). Then, n1 broadcasts beginr
1 and moves to (req-fwd[r], 1) and n0 and n2

receive it and move to (wait[r], 0) and (req-rec[r], 2) respectively. Then, n2 broadcasts
beginr

2 and moves to (wait[r], 2) and n1 receives it and moves to (wait[r], 1). Notice that at
this point, the base of each ni is wait[r] and the labels of all the other nodes are unchanged,
i.e., the same as the labels in γ.

Now, we proceed in the reverse direction. n2 broadcasts endr
2 and moves to (ack-fwd[r], 2)

and n1 receives it and moves to (ack-rec[r], 1). Then, n1 broadcasts endr
1 and moves to

(ack-fwd[r], 1) and n0 and n2 receive it and move to (ack-rec[r], 0) and (q′
2, 2) respectively.

Then, n0 broadcasts endr
0 and moves to (q′

0, 0) and n1 receives it and moves to (q′
1, 1). It is

clear that the configuration reached at the end of this run satisfies the required properties. ◀

We now show a partial converse to the above lemma. It says that if there is a run of good
configurations which uses only the transitions given in the gadget for the rule r and begins
and ends with the root being in (q0, 0) and (q′

0, 0), then it is possible to “lift” that run back
to the corresponding configurations in the NCS N .

▶ Lemma 9 (N simulates Psim). Suppose γ
∗−→ γ′ where 1) γ is a good configuration, 2) the

labels of the root in γ and γ′ are (q0, 0) and (q′
0, 0) and 3) in all the configurations between γ

and γ′, the base of the root is in the set {req-fwd[r], wait[r], ack-rec[r]}. Then, 1) γ′ is a
good configuration and, 2) E(γ) ∗

99K E(γ′).

Proof sketch. Let the run γ
∗−→ γ′ be of the form γ = γ0 −→ γ1 −→ . . . γm−1 −→ γm = γ′. By

means of induction and some extensive case analysis on the gadget that we have constructed,
we can first prove that there exists a path n0, n1, . . . , nw in γ with the following properties:

For each 0 ≤ l ≤ w, the label of nl is (ql, l) in γ and (q′
l, l) in γ′.

For each 0 ≤ l ≤ w, nl broadcasts exactly two messages: beginr
l and endr

l .
For each 0 ≤ l < w, the only child of nl that broadcasts a message in the run is nl+1.

We then let Ch(nl) denote the set of children of nl. Notice that the only node which could
broadcast a message in γ0 is n0 and so it must be the case that γ0

n0,beginr
0−−−−−−→ γ1. Now, suppose,

for some 0 ≤ l < w, we have shown that it must be the case that γ0
n0,beginr

0−−−−−−→ γ1 . . . γl
nl,beginr

l−−−−−→
γl+1. Then, notice that the only nodes whose labels in γl+1 could have an outgoing broadcast
transition are the nodes in

⋃
0≤l′<l(Ch(nl′)\{nl′+1})∪Ch(nl). By our claim, among these only

nl+1 broadcasts a message and so we must have that γl+1
nl+1,beginr

l+1−−−−−−−−→ γl+2. Hence, in this way
we get that γ0

n0,beginr
0−−−−−−→ . . . γw

nw,beginr
w−−−−−−→ γw+1. In exactly the same way, we can show that it

must be the case that γw+1
nw,endr

w−−−−−→ γw+2
nw−1,endr

w−1−−−−−−−−−→ γw+3 . . . γ2w+1
n0,endr

0−−−−−→ γ2w+2 = γm.
Let S be the set of all nodes whose base in γ belonged to Q∪{start} and whose base in γ′

is finish. (Notice that S ⊆
⋃

0≤l<w Ch(nl) and S ∪ {n0, . . . , nw} are exactly the set of nodes
whose labels have changed during the run). It is then easy to see that, by firing the rule r

from E(γ) and then deleting all the subtrees whose roots are in S, we get E(γ) ∗
99K E(γ′). ◀

With these two “simulation” lemmas, we have the following main result.

▶ Theorem 10. The state qin can cover the state qf in the NCS N iff (qf , 0) can be covered
by some execution in P starting at a good initial configuration.

FSTTCS 2021

35:10 Coverability in Bounded Path Broadcast Networks

5 A seeker protocol Pseek

In the previous section, we have shown that given a k-NCS N = (Q, δ) along with two states
qin, qf ∈ Q, we can construct a simulator protocol Psim, such that qin can cover qf in N iff
(qf , 0) can be covered in Psim by an execution starting at a good initial configuration. In
this section, we will construct a seeker protocol Pseek and “attach” it to Psim which will let
us get rid of the goodness assumption. The seeker protocol Pseek will begin at an arbitrary
initial communication topology and seek for a subgraph to act as a good initial configuration
for Psim. Hence, once we have deployed Pseek to find such a subgraph, we can then use Psim
to simulate the k-NCS N on this subgraph.

Formally, the seeker protocol Pseek = (Qseek, Iseek, Σseek, δseek) will be a generalization of
the protocol given in Figure 1 (with the exception that the (e, i) and (⊥, i) states will be
replaced by (start, i) and (finish, i) respectively).

States and alphabet. For each 0 ≤ i ≤ k, Pseek will have six states of the form
(a, i), (b, i), (c, i), (d, i), (start, i) and (finish, i). Notice that (start, i) and (finish, i) are also
present in Psim. Pseek will also have the state (qin, 0), which is a part of Psim as well. Similar
to Psim, we can define base and grade of a state.

The initial set of states will be {(a, i) : 0 ≤ i ≤ k}. For each 0 ≤ i ≤ k, Σseek will have
two letters: hti and hti. Σseek will also have another additional letter: transfer.

Transitions. Before we define the set of transitions, we make the same convention for Pseek
that we had made in Remark 7 for Psim. Having stated this, we now describe the transitions:

For the case of i = 0, we have the following transitions:

(a, 0) (c, 0)

?ht1, ?ht1

(start, 0) (qin, 0)
!ht0 !ht0 !transfer

For the case of 1 ≤ i ≤ k, we have the following transitions: (The self-loops over the state
(c, i) are not included when i = k).

(a, i) (b, i) (c, i) (d, i) (start, i)
?hti−1 !hti

?hti+1, ?hti+1

!hti ?hti−1

?transfer

Intuition behind the transitions. Let us give a brief intuition behind the transitions in
the case of k = 2. A node n0 which is at (a, 0) aims to become the root of the good initial
configuration that the seeker protocol should find, and so broadcasts ht0, letting its neighbors
know that it wants to be the root of the good subgraph. If any neighbor of n0 is not in (a, 1)
then it immediately moves to a state with base finish. Otherwise, the set of all neighbors in
(a, 1) move to (b, 1). From here, all of these nodes can broadcast ht1, letting their neighbors
know that they now want to become a child of the root. All these messages will also be
received n0 which will use the self-loop at (c, 0) to ignore these messages. All the nodes
which receive a ht1 message can either move to a state with base finish or move to (b, 2),
from where they can broadcast ht2 and thereby move to (c, 2). At this point, we must have
a tree subgraph in which n0 is labelled by (c, 0), its children are labelled by (c, 1) and its
children are labelled by (c, 2).

A. R. Balasubramanian 35:11

Now the nodes labelled by (c, 2) can all broadcast ht2, then the nodes labelled by (c, 1)
can all broadcast ht1 and then the node n0 can broadcast ht0. This leads to a tree subgraph
where n0 is labelled by (start, 0), its children are labelled by (start, 1) and its children are
labelled by (start, 2). Now, n0 can broadcast the letter “transfer” and move into (qin, 0),
thereby transferring the control over to the simulator protocol Psim. In this manner, Pseek
has found a good initial subgraph in which to run Psim.

Proof of correctness. Let P = (Qseek ∪Qsim, Iseek, Σseek ∪Σsim, δseek ∪ δsim) be the protocol
obtained by taking the union of the seeker and the simulator protocols, such that the initial
set of states is the initial set of states of the seeker protocol. Similar to the intuition given
above, the protocol P first runs the seeker protocol till a node with label (qin, 0) is reached,
at which point it runs the simulator protocol. The following lemma tells us that if a node
gets labelled by (qin, 0) while running P, then with that node as the root, there is a good
initial configuration for the simulator protocol Psim. This then allows us the protocol P to
run the simulator protocol on this good initial configuration.

▶ Lemma 11. Suppose γ
∗−→ γ′ n,transfer−−−−−−→ η is an execution of P. After removing all nodes

whose label’s base is finish in η, the connected component containing the node n is a good
initial configuration for the simulator protocol Psim.

Proof sketch. First, let us focus on the execution γ
∗−→ γ′. By definition of an execution, γ

is an initial configuration for the protocol Pseek and so all the nodes in γ have their labels in
the set {ai : 0 ≤ i ≤ k}.

Let T be the connected component containing the node n in γ′ after removing all nodes
whose base is finish. Let F := {(start, i) : 0 ≤ i ≤ k}. First, we show that all nodes in T

must have labels from the set F . Suppose there is a node n′ in T whose label is not in F .
Pick such an n′ which is at the shortest distance from n and let n = n0, n1, n2, . . . , nl, n′ be a
shortest path from n to n′.

By a generalization of the argument given in Example 2, we can prove by induction that
for each 1 ≤ i ≤ l, the label of each ni in T is (start, i) and the only neighbor of ni which
was labelled by (c, i − 1) at some point during the run is ni−1. Using this, we can then show
that n′ must have moved to (start, l + 1) at some point during the run.

By assumption, the label of n′ is not (start, l + 1) in T , and so it must moved out of
(start, l +1) to some state of the simulator protocol. By analysing the constructed protocol P ,
we can then prove that n′ must have received two htl messages. But any node that receives
two htl messages must necessarily move to a state with base finish, contradicting the fact
that n′ ∈ T .

Having proved that every node in T has its label in F , we can then show by examining the
structure of the transitions, that T must be a tree of height atmost k such that n0 is labelled
by (start, 0) and all nodes at distance i from n0 are labelled by (start, i). This then implies
that after removing all nodes with base finish in η, the connected component containing the
node n is a good initial configuration for the simulator protocol. ◀

▶ Theorem 12. The state qin can cover qf in the NCS N iff the state (qf , 0) can be covered
from any initial configuration in T2k(P).

Proof sketch. Due to lack of space, we focus only on the right to left implication. Suppose
γ

∗−→ γ′ is an execution of P such that some node n in γ′ is labelled by (qf , 0). Let γ0 be
the configuration along this run when the node n first got the label (qin, 0). (Notice that

FSTTCS 2021

35:12 Coverability in Bounded Path Broadcast Networks

such a configuration must exist because of the construction of P). By Lemma 11, in γ0,
if we remove all nodes whose base is finish, then we get a good initial configuration T for
Psim with n as the root. Notice that no node with base finish can ever broadcast a message.
Hence, in the run γ0

∗−→ γ′, none of the nodes in T ever receive a message from any node
outside of T . It follows that we can restrict the run γ0

∗−→ γ′ to only the subtree T , to get a
run of Psim starting at a good initial configuration and covering (qf , 0). By Theorem 10, we
get that qf can be covered from qin in N . ◀

Hence, we get,

▶ Corollary 13. Bounded-Path-Cover is Fϵ0-hard.

6 Upper bound for Bounded-Path-Cover

In this section, we give a sketch of the proof that Bounded-Path-Cover is in Fϵ0 . Let
P = (Q, I, Σ, ∆) be a fixed protocol.

▶ Definition 14. Let γ1 = (N1, E1, L1) and γ2 = (N2, E2, L2) be two configurations of P. We
say that γ1 is an induced subgraph of γ2 (denoted by γ1 ⪯is γ2) if there is a label preserving
injection h from N1 to N2 such that (n, n′) ∈ E1 if and only if (h(n), h(n′)) ∈ E2.

It is known that, for any k ≥ 1, the set of all k-path bounded configurations of P is a
well-quasi ordering under the induced subgraph relation ⪯is (Theorem 2.2 of [10]). Using this
fact, the authors of [9] show that for every k, the transition system Tk(P) is a well-structured
transition system (WSTS) and then apply the generic backward exploration algorithm for
WSTS (See [20, 13]) to prove that Bounded-Path-Cover is decidable. By using the
standard and generic complexity arguments for WSTS (See [20, 13, 21]), an upper bound on
the running time of their procedure simply boils down to estimating the length of controlled
bad sequences of k-path bounded configurations under the induced subgraph relation.

Let H : N → N be the successor function and let n ∈ N. For each i ∈ N, let Hi denote
the i-fold application of H to itself i times, with H0 being the identity function.

▶ Definition 15. A sequence γ0, γ1, . . . , of k-path bounded configurations is (H, n)-controlled
bad if the number of nodes in each γi is at most Hi(n) and γi ̸⪯is γj for any i < j.

Our main result is an upper bound on the length of (H, n)-controlled bad sequences
of k-path bounded configurations, by embedding these configurations into the well-quasi
ordering of generalized priority alphabets (See [16]). This encoding is inspired by a similar
encoding given for bounded depth trees in Section 8.1 of [16]. This result then allows us to
prove that

▶ Theorem 16. Bounded-Path-Cover is in Fϵ0 and hence Fϵ0-complete.

References
1 Sergio Abriola, Santiago Figueira, and Gabriel Senno. Linearizing well quasi-orders and

bounding the length of bad sequences. Theor. Comput. Sci., 603:3–22, 2015. doi:10.1016/j.
tcs.2015.07.012.

2 Nathalie Bertrand, Patricia Bouyer, and Anirban Majumdar. Reconfiguration and message
losses in parameterized broadcast networks. Log. Methods Comput. Sci., 17(1), 2021. URL:
https://lmcs.episciences.org/7280.

3 Michael Blondin. The abcs of petri net reachability relaxations. ACM SIGLOG News,
7(3):29–43, 2020. doi:10.1145/3436980.3436984.

https://doi.org/10.1016/j.tcs.2015.07.012
https://doi.org/10.1016/j.tcs.2015.07.012
https://lmcs.episciences.org/7280
https://doi.org/10.1145/3436980.3436984

A. R. Balasubramanian 35:13

4 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. The logical view on
continuous petri nets. ACM Trans. Comput. Log., 18(3):24:1–24:28, 2017. doi:10.1145/
3105908.

5 Michael Blondin and Christoph Haase. Logics for continuous reachability in petri nets and
vector addition systems with states. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005068.

6 Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of lossy channel
systems. In Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer
Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 205–216, 2008. doi:
10.1109/LICS.2008.47.

7 Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
The reachability problem for petri nets is not elementary. In Moses Charikar and Edith
Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 24–33. ACM, 2019.
doi:10.1145/3313276.3316369.

8 Normann Decker and Daniel Thoma. On freeze LTL with ordered attributes. In Bart Jacobs
and Christof Löding, editors, Foundations of Software Science and Computation Structures -
19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8,
2016, Proceedings, volume 9634 of Lecture Notes in Computer Science, pages 269–284. Springer,
2016. doi:10.1007/978-3-662-49630-5_16.

9 Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verification of
ad hoc networks. In CONCUR 2010 - Concurrency Theory, 21th International Conference,,
pages 313–327, 2010. doi:10.1007/978-3-642-15375-4_22.

10 Guoli Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory, 16(5):489–502,
1992. doi:10.1002/jgt.3190160509.

11 Jacob Elgaard, Nils Klarlund, and Anders Møller. Mona 1.x: New techniques for ws1s and
ws2s. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, pages 516–520,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

12 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An smt-based approach to coverability analysis. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer,
2014. doi:10.1007/978-3-319-08867-9_40.

13 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and primitive-recursive bounds with dickson’s lemma. In Proceedings of the 26th Annual IEEE
Symposium on Logic in Computer Science, pages 269–278, 2011. doi:10.1109/LICS.2011.39.

14 Estíbaliz Fraca and Serge Haddad. Complexity analysis of continuous petri nets. Fundam.
Informaticae, 137(1):1–28, 2015. doi:10.3233/FI-2015-1168.

15 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture
Notes in Computer Science, pages 112–124. Springer, 2014. doi:10.1007/978-3-319-11439-2_
9.

16 Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The power of priority channel
systems. Log. Methods Comput. Sci., 10(4), 2014. doi:10.2168/LMCS-10(4:4)2014.

17 Albert R. Meyer. Weak monadic second order theory of succesor is not elementary-recursive.
In Rohit Parikh, editor, Logic Colloquium, pages 132–154, Berlin, Heidelberg, 1975. Springer
Berlin Heidelberg.

FSTTCS 2021

https://doi.org/10.1145/3105908
https://doi.org/10.1145/3105908
https://doi.org/10.1109/LICS.2017.8005068
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1007/978-3-662-49630-5_16
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.3233/FI-2015-1168
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.2168/LMCS-10(4:4)2014

35:14 Coverability in Bounded Path Broadcast Networks

18 Sylvain Schmitz. Complexity bounds for ordinal-based termination - (invited talk). In
Reachability Problems - 8th International Workshop, RP 2014, pages 1–19, 2014. doi:10.
1007/978-3-319-11439-2_1.

19 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016. doi:10.1145/2858784.

20 Sylvain Schmitz and Philippe Schnoebelen. Multiply-recursive upper bounds with higman’s
lemma. In Automata, Languages and Programming - 38th International Colloquium, ICALP
2011, pages 441–452, 2011. doi:10.1007/978-3-642-22012-8_35.

21 Sylvain Schmitz and Philippe Schnoebelen. The power of well-structured systems. In Pedro R.
D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013 - Concurrency Theory - 24th
International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings, volume 8052 of Lecture Notes in Computer Science, pages 5–24. Springer, 2013.
doi:10.1007/978-3-642-40184-8_2.

A Appendix

A.1 Proofs for Section 6
First, let us describe the backward exploration algorithm for solving Bounded-Path-Cover
that is given in Section 5 of [9]. Given a protocol P = (Q, I, Σ, δ), a state f and a number k, we
consider the set of all configurations in Tk(P) with the induced subgraph ordering ⪯is. Given a
set S of Tk(P) we let ↑ S := {γ′ : ∃γ ∈ S, γ ⪯is γ′}. A set S is called upward-closed if S =↑ S.

In Section 5 of [9], the following results are proved about Tk(P):
If S is upward-closed, then there exists a finite set B such that ↑ B = S. Such a B will
be called the basis of S.
If S is upward-closed and if Pre(S) is the set of all configurations γ′ ∈ Tk(P) such that
there is a configuration γ ∈ S with γ′ −→ γ, then S ∪ Pre(S) is upward-closed. Moreover,
given a basis B of S, we can compute a basis B′ of S ∪ Pre(S) such that the number
of nodes of each configuration in B′ is at most one more than the maximum number of
nodes in any configuration of B.

In Theorem 5 of [9] it is shown that the following algorithm terminates and is correct
for Bounded-Path-Cover : Construct a sequence of finite sets B0, B1, . . . , such that
each Bi ⊆ Tk(P), B0 is the single node configuration labelled by f and Bi+1 is a basis for
↑ Bi ∪ Pre(↑ Bi). The algorithm then finds the first m such that ↑ Bm =↑ Bm+1 and checks
if there is an initial configuration in ↑ Bm.

The running time complexity of the algorithm is mainly dominated by the length of the
sequence B0, B1, . . . , Bm. Since m is the first index such that ↑ Bm =↑ Bm+1, we can find a
minimal element γi ∈↑ Bi+1\ ↑ Bi for each i < m.

Consider the sequence γ0, . . . , γm−1. Notice that γi ̸⪯is γj for any j > i and further the
number of nodes in each γi is at most Hi(1), where H is the successor function. It follows
that γ0, . . . , γm−1 is a controlled bad sequence. Our main result is that

▶ Lemma 17. The length of (H, n)-controlled bad sequences over k-path bounded configur-
ations of P is upper bounded by the function Fϵ0(p(|Q|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some fixed primitive recursive
function. For our purposes, we do not need the actual definition of Fϵ0 , but we only need to
know that Fϵ0 contains the set of problems whose running time is upper bounded by the
function Fϵ0 composed with any primitive recursive function (See [19]). By the lemma above
and the fact that the running time complexity of the algorithm for Bounded-Path-Cover
is primarily dominated by the length of (H, 1)-controlled bad sequences we get,

https://doi.org/10.1007/978-3-319-11439-2_1
https://doi.org/10.1007/978-3-319-11439-2_1
https://doi.org/10.1145/2858784
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-40184-8_2

A. R. Balasubramanian 35:15

▶ Theorem 18. Bounded-Path-Cover is in Fϵ0 .

All that suffices is to prove Lemma 17. To do so, we will reduce the problem of estimating
the length of controlled bad sequences over k-path bounded configurations to the problem of
estimating the length of controlled bad sequences over another well-quasi order for which we
already know upper bounds. We now proceed to recall this well-quasi order as it is defined
in [16].

Generalized priority alphabets

Given a number k ∈ N called the priority level and a finite set Γ, a generalised priority
alphabet is the set ΣΓ,k := {(a, i) : a ∈ Γ, 0 ≤ i ≤ k}. Given m = (a, i) ∈ ΣΓ,k, we say that i is
the priority of m. Then for x, y ∈ Σ∗

Γ,k, we say that x ⊑Γ,k y if x = (a1, i1), (a2, i2), . . . , (al, il)
where each (aj , ij) ∈ ΣΓ,k and y = y1(a1, i1)y2(a2, i2)y3 . . . yl(al, il) such that ∀1 ≤ j ≤ l, we
have yj ∈ Σ∗

Γ,ij
, i.e., x can be obtained from y by removing subwords in such a manner so that

the priority of each removed subword is not bigger than the first preserved letter to its right.
It is known that for every k and Γ, the ordering ⊑Γ,k is a well-quasi ordering. (Theorem
3.6 of [16]). Now, similar to controlled bad sequences for k-path bounded configurations, we
can define (a slightly different notion of) controlled bad sequences for words over ΣΓ,k. Let
Sq : N → N be the squaring function and let Sqi denote the squaring function composed
with itself i times.

▶ Definition 19. A sequence w0, w1, . . . , of words over ΣΓ,k is (Sq, n)-controlled bad if the
length of each wi is at most Sqi(n) and wi ̸⊑Γ,k wj for any i < j.

Encoding k-path bounded graphs using generalized priority alphabets

A labelled k-path bounded graph is any graph G = (N, E, L) such that there is a labelling
function L : N → A for some some finite set A. (Notice that the set of k-path bounded
configurations of a protocol is a labelled k-path bounded graph where A is the set of states
of the protocol). We have the following theorem regarding labelled k-path bounded graphs.

▶ Theorem 20 (Lemma 2.1 of [10]). Suppose G is a labelled k-path bounded graph for
k ≥ 1. Then there is a node n such that every connected component of G \ {n} is a labelled
(k − 1)-path bounded graph.

This theorem suggests the following inductive encoding of labelled k-path bounded graphs
as strings over a priority alphabet: Let G = (N, E, L) be any labelled graph with labelling
function L : N → A where A is some finite set. Let e, ē be two symbols not in the finite set
A and let Ak := ∪0≤i≤kA × {e, ē}i. Notice that A0 := A. By induction on k, we will now
define a string ⟨G⟩ ∈ ΣAk,k.

Base case: If G is a 0-path bounded configuration, then G is a single node n and can be
encoded as (L(n), 0) ∈ Σ∗

A0,0.
Induction step: Suppose G is a k-path bounded configuration for some k ≥ 1 such that

G is not (k − 1)-path bounded. Let n be a vertex such that all the connected components
C1, . . . , Cl of G \ {n} are (k − 1)-path bounded configurations. (Such a node exists by
Theorem 20). For every node n′ in every Ci, first change its label from L(n′) to (L(n′), e) if
n′ is a neighbor of n in G and otherwise change its label to (L(n′), ē). Call these new labelled
graphs as Cn

1 , . . . , Cn
l .

By induction hypothesis, for each Cn
i , we have a string ⟨Cn

i ⟩ ∈ Σ∗
((A×{e,ē})k−1,k−1) ⊆

Σ∗
Ak,k−1. We now let ⟨G⟩ := ⟨Cn

1⟩(L(n), k)⟨Cn
2⟩(L(n), k) . . . ⟨Cn

l ⟩(L(n), k).

FSTTCS 2021

35:16 Coverability in Bounded Path Broadcast Networks

Notice that if G is a labelled k-path bounded graph which is not (k − 1)-path bounded,
then ⟨G⟩ is of the form ⟨Cn

1⟩(a, k)⟨Cn
2⟩(a, k) . . . ⟨Cn

l ⟩(a, k) where 1) a is the label of some node
n in G, 2) C1, . . . , Cl are connected components of G \ {n} which are labelled (k − 1)-path
bounded subgraphs of G. This will be called the decomposition of ⟨G⟩ and the node n will
be called its crown.

We then have the following lemma:

▶ Lemma 21. If G and H are such that ⟨G⟩ ⊑Ak,k ⟨H⟩ then G ⪯is H.

Proof. Notice that if ⟨G⟩ ⊑Ak,k ⟨H⟩, then the highest priority appearing in ⟨G⟩ and ⟨H⟩
must be the same, which, without loss of generality, we can assume to be k.

We prove the lemma by induction on k. The base case of 0 is clear.
For the induction step, let ⟨Cn

1⟩(a, k)⟨Cn
2⟩(a, k) . . . ⟨Cn

m⟩(a, k) be the decomposition of
⟨G⟩ with crown n and let ⟨Dn′

1 ⟩(a′, k)⟨Dn′

2 ⟩(a′, k) . . . ⟨Dn′

n ⟩(a′, k) be the decomposition of ⟨H⟩
with crown n′. Since ⟨G⟩ ⊑Ak,k ⟨H⟩, it must be the case that a = a′.

By definition of the ⊑Ak,k relation, it must be the case that for every Cn
j , there exists

ij such that ⟨Cn
j ⟩ ⊑Ak,k−1 ⟨Dn′

ij
⟩. Notice that the priority has reduced and we can apply

the induction hypothesis to conclude that for each j, Cn
j ⪯is Dn′

ij
and so there exists a label

preserving injection hj from the nodes of Cn
j to the nodes of Dn′

ij
such that (u, v) is an edge

in Cn
j iff (hj(u), hj(v)) is an edge in Dn′

ij
.

Now, consider the following label preserving injection h from G to H: Map the crown n
to the other crown n′ and if n′′ is any other node in any one of the connected components
Cj , then map n′′ to hj(n′′). Notice that if u and v are nodes in G which belong to the same
connected component of G \ {n} then (u, v) is an edge in G iff (h(u), h(v)) is an edge in
H. Similarly, if u and v are nodes in G which belong to different connected components of
G \ {n} then h(u) and h(v) also belong to different connected components of H \ {n′} and so
the statement “(u, v) is an edge in G iff (h(u), h(v)) is an edge in H” is vacously true.

Finally suppose u = n and v is some other node of G. Notice that the last field in the
label of v is e if (u, v) is an edge in G and ē otherwise. By definition of h we have that
h(u) = n′ and also that the label of h(v) is the same as v. But by definition of decomposition
of ⟨H⟩, the last field in the label of h(v) is e if (n′, h(v)) is an edge in H and ē otherwise.
Hence, in this case as well, we have shown that (u, v) is an edge in G iff (h(u), h(v)) is an
edge in H. This concludes the proof. ◀

Upper bound on the length of controlled bad sequences for k-path bounded
configurations

Fix a protocol P with states Q and a number k and consider the set of configurations in
Tk(P). By the previous lemma, we can infer that the length of the longest (H, n)-controlled
bad sequence over the set of configurations of Tk(P) is at most the length of the longest
(Sq, n)-controlled bad sequence over the generalized priority alphabet ΣQk,k, which we know
is at most Fϵ0(p(|Q|, k, n)) where p is some primitive recursive function (Proposition 4.1 and
Sections 4.1.1 and 4.1.2 of [16]). This then implies Lemma 17, which is what we wanted to
prove.

On Classical Decidable Logics Extended with
Percentage Quantifiers and Arithmetics
Bartosz Bednarczyk #

Computational Logic Group, Technische Universität Dresden, Germany
Institute of Computer Science, University of Wrocław, Poland

Maja Orłowska
Institute of Computer Science, University of Wrocław, Poland

Anna Pacanowska
Institute of Computer Science, University of Wrocław, Poland

Tony Tan #

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

Abstract
During the last decades, a lot of effort was put into identifying decidable fragments of first-order
logic. Such efforts gave birth, among the others, to the two-variable fragment and the guarded
fragment, depending on the type of restriction imposed on formulae from the language. Despite the
success of the mentioned logics in areas like formal verification and knowledge representation, such
first-order fragments are too weak to express even the simplest statistical constraints, required for
modelling of influence networks or in statistical reasoning.

In this work we investigate the extensions of these classical decidable logics with percentage
quantifiers, specifying how frequently a formula is satisfied in the indented model. We show,
surprisingly, that all the mentioned decidable fragments become undecidable under such extension,
sharpening the existing results in the literature. Our negative results are supplemented by decidability
of the two-variable guarded fragment with even more expressive counting, namely Presburger
constraints. Our results can be applied to infer decidability of various modal and description logics,
e.g. Presburger Modal Logics with Converse or ALCI, with expressive cardinality constraints.

2012 ACM Subject Classification Theory of computation → Logic and databases

Keywords and phrases statistical reasoning, knowledge representation, satisfiability, fragments of
first-order logic, guarded fragment, two-variable fragment, (un)decidability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.36

Related Version Full Version: https://arxiv.org/abs/2106.15250

Funding Bartosz Bednarczyk: supported by “Diamentowy. Grant” no. DI2017 006447.
Tony Tan: supported by Taiwan Ministry of Science and Technology under grant no. 109-2221-E-
002-143-MY3 and National Taiwan University under grant no. 109L891808.

1 Introduction

Since the works of Church, Turing and Trakhtenbrot, it is well-known that the (finite)
satisfiability and validity problems for the First-Order Logic (FO) are undecidable [29]. Such
results motivated researchers to study restricted classes of FO that come with decidable
satisfiability problem, such as the prefix classes [9], fragments with fixed number of vari-
ables [28], restricted forms of quantification [1, 30] and the restricted use of negation [6].
These fragments have found many applications in the areas of knowledge representation,
automated reasoning and program verification, just to name a few. To the best of our
knowledge, none of the known decidable logics incorporate a feature that allows for stating

© Bartosz Bednarczyk, Maja Orłowska, Anna Pacanowska, and Tony Tan;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 36; pp. 36:1–36:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartosz.bednarczyk@cs.uni.wroc.pl
https://orcid.org/0000-0002-8267-7554
mailto:tonytan@csie.ntu.edu.tw
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.36
https://arxiv.org/abs/2106.15250
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

even a very modest statistical property. For example, one may want to state that “to qualify
to be a major, one must have at least 51% of the total votes”, which may be useful to
formalise, e.g. the voting systems.

Our results. In this paper, we revisit the satisfiability problem for some of the most prom-
inent fragments of FO, namely the two-variable fragment FO2 and the guarded fragment GF.
We extend them with the so-called percentage quantifiers, in two versions: local and global.
Global percentage quantifiers are quantifiers of the form ∃=q%x φ(x), which states that
the formula φ(x) holds on exactly q% of the domain elements. Their local counterparts
are quantifiers of the form ∃=q%

R y φ(x, y), which intuitively means that exactly q% of the
R-successors of an element x satisfy φ.

In this paper, we show that both FO2 and GF become undecidable when extended
with percentage quantifiers of any type. In fact, the undecidability of GF already holds
for its three variable fragment GF3. Our results strengthen the existing undecidability
proofs of ALCISCC++ from [4] and of FO2 with equicardinality statements (implemented
via the Härtig quantifier) from [18] and contrast with the decidability of FO2 with counting
quantifiers (C2) [17, 23, 26] and modulo and ultimately-periodic counting quantifiers [8].

Additionally, we show that the decidability status of GF can be regained if we consider
GF2, i.e. the intersection of GF and FO2, which is still a relevant fragment of FO that
captures standard description logics up to ALCIHbself [5, 14]. We in fact show a stronger
result here: GF2 remains decidable when extended with local Presburger quantifiers, which
are essentially Presburger constraints on the neighbouring elements, e.g. we can say that the
number of red outgoing edges plus twice the number of blue outgoing edges is at least three
times as many as the number of green incoming edges.

We stress here that the semantics of global percentage quantifiers makes sense only
over finite domains and hence, we study the satisfiability problem over finite models only.
Similarly, the semantics of local percentage quantifiers only makes sense if the models
are finitely-branching. While we stick again to the finite structures, our results on local
percentage quantifiers also can be transferred to the case of (possibly infinite) finitely-
branching structures.

Related works. Some restricted fragments of GF2 extended with arithmetics, namely
the (multi) modal logics, were already studied in the literature [11, 20, 2, 4], where the
decidability results for their finite and unrestricted satisfiability were obtained. However, the
logics considered there do not allow the use of the inverse of relations. Since GF2 captures the
extensions of all the aforementioned logics with the inverse relations, our decidability results
subsume those in [11, 20, 2, 4]. We note that prior to our paper, it was an open question
whether any of these decidability results still hold when inverse relations are allowed [4]. In
our approach, despite the obvious difference in expressive power, we show that GF2 with
Presburger quantifiers can be encoded directly into the two-variable logic with counting
quantifiers [17, 23, 26], which we believe is relatively simple and avoids cumbersome reductions
of the satisfiability problem into integer programming.

2 Preliminaries

We employ the standard terminology from finite model theory [21]. We refer to structures/-
models with calligraphic letters A,B,M and to their universes with the corresponding capital
letters A,B,M . We work only on structures with finite universes over purely relational (i.e.

B. Bednarczyk, M. Orłowska, A. Pacanowska, and T. Tan 36:3

constant- and function-free) signatures of arity ≤ 2 containing the equality predicate =. We
usually use a, b, . . . to denote elements of structures, ā, b̄, . . . for tuples of elements, x, y, . . .
for variables and x̄, ȳ, . . . for tuples of variables (all of these possibly with some decorations).
We write φ(x̄) to indicate that all free variables of φ are in x̄. We write M, x/a |= φ(x) to
denote that φ(x) holds in the structure M when the free variable x is assigned with element
a. Its generalization to arbitrary number of free variables is defined similarly. The (finite)
satisfiability problem is to decide whether an input formula has a (finite) model.

2.1 Percentage quantifiers
For a formula φ(x) with a single free-variable x, we write |φ(x)|M to denote the total number
of elements of M satisfying φ(x). Likewise, for an element a ∈ M and a formula φ(x, y) with
free variables x and y, we write |φ(x, y)|x/a

M to denote the total number of elements b ∈ M

such that (a, b) satisfies φ(x, y).
The percentage quantifiers are quantifiers of the form ∃=q%x φ(x, y), where q is a rational

number between 0 and 100, stating that exactly q% of domain elements satisfy φ(x, y) with
y known upfront. Formally:

M, y/a |= ∃=q%x φ(x, y) iff |φ(x, y)|y/a
M = q

100 · |M |.

Percentage quantifiers for other thresholds (e.g. for <) are defined analogously. We stress
here that the above quantifiers count globally, i.e. they take the whole universe of M into
account. This motivates us to define their local counterpart, as follows: for a binary1 relation
R and a rational q between 0 and 100, we define the quantifier ∃=q%

R y φ(x, y), which evaluates
to true whenever exactly q% of R-successors y of x satisfy φ(x, y). Formally,

M, x/a |= ∃=q%
R y φ(x, y) iff |R(x, y) ∧ φ(x, y)|x/a

M = q

100 · |R(x, y)|x/a
M .

We define the percentage quantifiers w.r.t. R− (i.e. the inverse of R) and for other thresholds
analogously.

2.2 Local Presburger quantifiers
The local Presburger quantifiers are expressions of the following form:

n∑
i=1

λi · #ri
y [φi(x, y)] ⊛ δ

where λi, δ are integers; ri is either R or R− for some binary relation R; φi(x, y) is a formula
with free variables x and y; and ⊛ is one of =, ̸=, ≤, ≥, <, >, ≡d or ̸≡d, where d ∈ N+. Here
≡d denotes the congruence modulo d. Note that the above formula has one free variable x.

Intuitively, the expression #ri
y [φi(x, y)] denotes the number of y’s that satisfy ri(x, y) ∧

φi(x, y) and evaluates to true on x, if the (in)equality ⊛ holds. Formally,

M, x/a |=
n∑

i=1
λi · #ri

y [φi(x, y)] ⊛ δ iff
n∑

i=1
λi · |ri(x, y) ∧ φi(x, y)|x/a

M ⊛ δ

Note that local percentage quantifiers can be expressed with Presburger quantifiers, e..g.
∃50%

R yφ(x, y) can be expressed as local Presburger quantifier: #R
y [φ(x, y)] − 1

2 #R
y [⊤] = 0.

1 Local percentage quantifiers for predicates of arity higher than two can also be defined but we will never
use them. Hence, for simplicity, we define such quantifiers only for binary relations.

FSTTCS 2021

36:4 On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

2.3 Logics

In this paper we mostly consider two fragments of first-order logic, namely the two-variable
fragment FO2 and the guarded fragment GF. The former logic is a fragment of FO in which
we can only use the variables x and y. By allowing local and global percentage quantifiers in
addition to the standard universal and existential quantifiers, we obtain the logics FO2

loc% and
FO2

gl%. The latter logic is defined by relativising quantifiers with relations. More formally,
GF is the smallest set of first-order formulae such that the following holds.

GF contains all atomic formulae R(x̄) and equalities between variables.
GF is closed under boolean connectives.
If ψ(x̄, ȳ) is in GF and γ(x̄, ȳ) is a relational atom containing all free variables of ψ, then
both ∀ȳ γ(x̄, ȳ) → ψ(x̄, ȳ) and ∃ȳ γ(x̄, ȳ) ∧ ψ(x̄, ȳ) are in GF.

By allowing global percentage quantifiers additionally in place of existential ones, we obtain
the logic GFgl%. We obtain the logic GFloc% by extending GF’s definition with the rule:2

∃=q%
R y φ(x, y) is in GFloc% iff φ(x, y) in GF with free variables x, y.

Similarly, we obtain GFpres by extending GF’s definition with the rule:∑n
i=1 λi · #ri

y [φi(x, y)] ⊛ δ is in GFpres iff φi(x, y) are in GF with free variables x, y.
Finally, we use GFk

gl%, GFk
loc% and GFk

pres to denote the k-variable fragments of the mentioned
logics. Specifically, we use GF2

gl%, GF2
loc% and GF2

pres for the two-variable fragments.

2.4 Semi-linear sets

Since we will exploit the semi-linear characterization of Presburger constraints, we introduce
some terminology. The term vector always means row vectors. For vectors v̄0, v̄1, . . . , v̄k ∈ Nℓ,
we write L(v̄0; v̄1, . . . , v̄k) to denote the set:

L(v̄0; v̄1, . . . , v̄k) :=
{
ū ∈ Nℓ ū = v̄0 +

∑k
i=1 niv̄i for some n1, . . . , nk ∈ N

}
A set S ⊆ Nℓ is a linear set, if S = L(v̄0; v̄1, . . . , v̄k), for some v̄0, v̄1, . . . , v̄k ∈ Nℓ. In this
case, the vector v̄0 is called the offset vector of S, and v̄1, . . . , v̄k are called the period vectors
of S. We denote by offset(S) the offset vector of S, i.e. v̄0 and prd(S) the set of period
vectors of S, i.e. {v̄1, . . . , v̄k}. A semilinear set is a finite union of linear sets.

The following theorem is a well-known result by Ginsburg and Spanier [13] which states
that every set S ⊆ Nℓ definable by Presburger formula is a semilinear set. See [13] for the
formal definition of Presburger formula.

▶ Theorem 1 ([13]). For every Presburger formula φ(x1, . . . , xℓ) with free variables
x1, . . . , xℓ, the set {ū ∈ Nℓ | φ(ū) holds in N} is semilinear. Moreover, given
the formula φ(x1, . . . , xℓ), one can effectively compute a set of tuples of vectors
{(v̄1,0, . . . , v̄1,k1), . . . , (v̄p,0, v̄p,1, . . . , v̄p,kp

)} such that {ū ∈ Nℓ | φ(ū) holds in N} is equal
to

⋃p
i=1 L(v̄i,0; v̄i,1, . . . , v̄i,ki

).

2 Note that R in the subscript of a quantifier serves the role of a “guard”.

B. Bednarczyk, M. Orłowska, A. Pacanowska, and T. Tan 36:5

2.5 Types and neighbourhoods
A 1-type over a signature Σ is a maximally consistent set of unary predicates from Σ or
their negations, where each atom uses only one variable x. Similarly, a 2-type over Σ is a
maximally consistent set of binary predicates from Σ or their negations containing the atom
x ̸= y, where each atom or its negation uses two variables x and y.3

Note that 1-types and 2-types can be viewed as quantifier-free formulae that are the
conjunction of their elements. We will use the symbols π and η (possibly indexed) to
denote 1-type and 2-type, respectively. When viewed as formula, we write π(x) and η(x, y),
respectively. We write π(y) to denote formula π(x) with x being substituted with y. The
2-type that contains only the negations of atomic predicates is called the null type, denoted
by ηnull. Otherwise, it is called a non-null type.

For a Σ-structure M, the type of an element a ∈ M is the unique 1-type π that a satisfies
in M. Similarly, the type of a pair (a, b) ∈ M ×M , where a ̸= b, is the unique 2-type that
(a, b) satisfies in M. For an element a ∈ M , the η-neighbourhood of a, denoted by NM,η(a),
is the set of elements b such that η is the 2-type of (a, b). Formally,

NM,η(a) :=
{
b ∈ M M, x/a, y/b |= η(x, y)

}
.

The η-degree of a, denoted by degM,η(a), is the cardinality of NM,η(a).
Let η1, . . . , ηℓ be an enumeration of all the non-null types. The degree of a in M is defined

as the vector degM(a) := (degM,η1(a), · · · , degM,ηℓ
(a)). Intuitively, degM(a) counts the

number of elements adjacent to a with non-null type. We note that our logic can be easily
extended with atomic predicates of the form of a linear constraint C over the variables
degη(x)’s or deg(x) ∈ S, where S is a semilinear set. Semantically, M, x/a |= C iff the
linear constraint C evaluates to true when each degη(x) is substituted with degM,η(a) and
M, x/a |= deg(x) ∈ S iff degM(a) ∈ S. We stress that these atomic predicates will only be
used to facilitate the proof of our decidability result.

3 Negative results

In this section we turn our attention to the negative results announced in the introduction.

3.1 Two-Variable Fragment
We start by proving that the two-variable fragment of FO extended with percentage quantific-
ation has undecidable finite satisfiability problem. Actually, in our proof, we will only use the
∃=50% quantifier. Our results strengthen the existing undecidability proofs of ALCISCC++

from [4] and of FO2 with equicardinality statements (implemented via the Härtig quantifier)
from [18]. Roughly speaking, our counting mechanism is weaker: we cannot write arbitrary
Presburger constraints (as it is done in [4]) nor compare sizes of any two sets (as it is done
in [18]). Nevertheless, we will see that in our framework we can express “functionality” of a
binary relation and “compare” cardinalities of sets, but under some technical assumptions of
dividing the intended models into halves. Due to such technicality, we cannot simply encode
the undecidability proofs of [4, 18] and we need to prepare our proof “from scratch”.

3 We should remark here that the standard definition of 2-type, such as in [16, 26], a 2-type also contains
unary predicates or its negation involving variable x or y. However, for our purpose, it is more convenient
to define a 2-type as consisting of only binary predicates that strictly use both variables x and y. Note
also that we view a binary predicate such as R(x, x) as a unary predicate.

FSTTCS 2021

36:6 On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

Our proof relies on encoding of Hilbert’s tenth problem, whose simplified version is
introduced below. In the classical version of Hilbert’s tenth problem we ask whether a
diophantine equation, i.e. a polynomial equation with integer coefficients, has a solution
over N. It is well-known that such problem is undecidable [22]. By employing some
routine transformations (e.g. by rearranging terms with negative coefficients, by replacing
exponentiation by multiplication and by introducing fresh variable for partial results of
multiplications or addition), one can reduce any diophantine equation to an equi-solvable
system of equations, where the only allowed operations are addition or multiplication of two
variables or assigning the value one to some of them. We refer to the problem of checking
solvability (over N) of such systems of equations as SHTP (simpler Hilbert’s tenth problem)
and present its precise definition next. Note that, by the described reduction, SHTP is
undecidable.

▶ Definition 2 (SHTP). An input of SHTP is a system of equations ε, where each of its
entries εi is in one of the following forms: (i) ui = 1, (ii) ui = vi + wi, (iii) ui = vi · wi,
where ui, vi, wi are pairwise distinct variables from some countably infinite set Var. In SHTP
we ask whether an input system of equations ε, as described before, has a solution over N.

3.1.1 Playing with percentage quantifiers
Before reducing SHTP to FO2

gl%, let us gain more intuitions of FO2
gl% and introduce a useful

trick employing percentage quantifiers to express equi-cardinality statements. Let M be a
finite structure and let Half,R, J be unary predicates. We say that M is (Half,R, J)-separated
whenever it satisfies the following conditions: (a) exactly half of the domain elements from
M satisfy Half (b) the satisfaction of R implies the satisfaction of Half (c) the satisfaction of
J implies the non-satisfaction of Half. Roughly speaking, the above conditions entail that
the elements satisfying R and those satisfying J are in different halves of the model. We
show that under these assumptions one can enforce the equality |R(x)|M = |J(x)|M. Indeed,
such a property can be expressed in FO2

gl% with the following formula φeq(Half,R, J):

A := |= φeq(Half,R, J) := ∃=50%x (Half(x) ∧ ¬R(x)) ∨ J(x)

Half ¬Half

R J

For intuitions on φeq(Half,R, J), consult the above picture. We basically take all the
elements satisfying Half (so exactly half of the domain elements, indicated by the green area).
Next, we discard the elements labelled with R (so we get the green area without the circle
inside) and replace them with the elements satisfying J (the red circle, note that JA and RA

are disjoint!). The total number of selected elements is equal to half of the domain, thus
|JM| = |RM|. The following fact is a direct consequence of the semantics of FO2

gl%.

▶ Fact 1. For (Half,R, J)-separated M we have M |= φeq(Half,R, J) iff |R(x)|M = |J(x)|M.

3.1.2 Undecidability proof
Until the end of this section, let us fix ε, a valid input of SHTP. By Var(ε) = {u, v, w, . . .}
we denote the set of all variables appearing in ε, and with |ε| we denote the total number of
entries in ε. Let M be a finite structure.

The main idea of the encoding is fairly simple: in the intended model M some elements
will be labelled with Au predicates, ranging over variables u ∈ Var(ε), and the number of
such elements will indicate the value of u in an example solution to ε. The only tricky part

B. Bednarczyk, M. Orłowska, A. Pacanowska, and T. Tan 36:7

here is to encode multiplication of variables. Once ε contains an entry w = u · v, we need to
ensure that |Aw(x)|M = |Au(x)|M · |Av(x)|M holds. It is achieved by linking, via a binary
relation MultM, each element from AM

u with exactly |Av(x)|M elements satisfying Aw, which
relies on imposing equicardinality statements. To ensure that the performed multiplication
is correct, each element labelled with AM

w has exactly one predecessor from AM
u and hence

the relation MultM is backward-functional.
We start with a formula inducing a labelling of elements with variable predicates and

ensuring that all elements of M satisfy at most one variable predicate. Note that it can
happen that there will be auxiliary elements that are not labelled with any of the variable
predicates.

(φε
var) ∀x

∧
u ̸=v∈Var(ε) ¬(Au(x) ∧Av(x)).

We now focus on encoding the entries of ε. For an entry εi of the form ui = 1 we write:

(φui=1) ∃x Aui
(x) ∧ ∀x∀y (Aui

(x) ∧Aui
(y)) → x = y

▶ Fact 2. M |= φui=1 holds iff there is exactly one element in M satisfying Au(x).
To deal with entries εi of the form wi = ui + vi or wi = ui · vi we need to “prepare an area”
for the encoding, similarly to Section 3.1.1. First, we cover domain elements of M by layers.
The i-th layer is divided into halves with FHalf[i] and SHalf[i] predicates with:

(φi
halves) ∀x

(
FHalf[i](x) ↔ ¬SHalf[i](x)

)
∧ ∃=50%x FHalf[i](x)

▶ Fact 3. M |= φi
halves holds iff exactly half of the domain elements from M are labelled

with FHalf[i] and the other half of elements are labelled with SHalf[i].

Second, we need to ensure that in the i-th layer of M, the elements satisfying Aui
or Avi

are in the first half, whereas elements satisfying Awi
are in the second half. We do it with:

(φi
parti(ui, vi, wi)) ∀x

(
[(Aui(x)∨Avi(x)) → FHalf[i](x)] ∧ [Awi(x) → SHalf[i](x)]

)
▶ Fact 4. M |= φi

parti(ui, vi, wi) holds iff for all elements a ∈ M , if a satisfies Aui(x)∨Avi(x)
then a also satisfies FHalf[i](x) and if a satisfies Awi

(x) then a also satisfies SHalf[i](x).

Gathering the presented formulae, we call a structure M well-prepared, if it satisfies the
conjunction of all previous formulae over 1 ≤ i ≤ |ε| and over all entries εi from the system ε.
The forthcoming encodings will be given under the assumption of well-preparedness.

Now, for the encoding of addition, assume that εi is of the form ui + vi = wi. Thus in
our encoding, we would like to express that |Aui(x)|M + |Avi(x)|M = |Awi(x)|M, which
is clearly equivalent to |Awi

(x)|M − |Aui
(x)|M − |Avi

(x)|M = 0 and also to |Awi
(x)|M +

|FHalf[i](x)|M − |Aui
(x)|M − |Avi

(x)|M = |FHalf[i](x)|M. Knowing that exactly 50% of
domain elements of an intended model satisfy FHalf[i] and that Aui

, Avi
and Awi

label
disjoint parts of the model, we can write the obtained equation as an FO2

gl% formula:

(φi
add(ui, vi, wi)) ∃=50%x

(
Awi(x) ∨ (FHalf[i](x) ∧ ¬Aui(x) ∧ ¬Avi(x))

)
Note that the above formula is exactly the φeq(Half,R, J) formula from Section 3.1.1, with
Half = FHalf[i](x), J = Awi

and R defined as a union of Aui
and Avi

. Hence, we conclude:

▶ Lemma 3. A well-prepared M satisfies φi
add(ui, vi, wi) iff |Aui(x)|M+|Avi(x)|M =

|Awi
(x)|M.

FSTTCS 2021

36:8 On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

The only missing part is the encoding of multiplication. Take εi of the form ui · vi = wi.
As already described in the overview, our definition of multiplication requires three steps:

(link) A binary relation Multi
M links each element from AM

wi
to some element from AM

ui
.

(count) Each element from M satisfying Aui
(x) has exactly |Avi

(x)|M Multi
M-successors.

(bfunc) The binary relation Multi
M is backward-functional.

Such properties can be expressed with the help of ∃=50% quantifier, as presented below:

(φi
link(ui, wi)) ∀y Awi

(y) → ∃x Multi(x, y) ∧ ∀x∀y Multi(x, y) → (Aui
(x) ∧Awi

(y))
(φi

count(ui, vi, wi)) ∀x Aui
(x) → ∃=50%y

(
[SHalf[i](y) ∧ ¬Multi(x, y)] ∨Avi

(y)
)

(φi
bfunc(ui, vi, wi)) ∀x Awi

(x) → ∃=50%y
(

[SHalf[i](y) ∧ x ̸= y] ∨ Multi(y, x)
)

While the first formula, namely φi
link(ui, wi), is immediate to write, the next two are more

involved. A careful reader can notice that they are actually instances of φeq(Half,R, J)
formula from Section 3.1.1. In the case of φi

count(ui, vi, wi) we have Half = SHalf[i], J = Avi

and the Multi-successors of x play the role of elements labelled by R. For the last formula
one can see that we remove exactly one element from SHalf[i] (y that is equal to x) and
we replace it with the Multi-predecessors of x, which implies that there is the unique such
predecessor. We summarise the mentioned facts as follows:

▶ Lemma 4. Let M be a well-prepared structure satisfying φi
link(ui, wi). We have that (i) M

satisfies φi
count(ui, vi, wi) iff every a ∈ M satisfying Aui is connected via Multi to exactly |Avi |

elements satisfying Awi
and (ii) M satisfies φi

bfunc(ui, vi, wi) iff the binary relation Multi
M

linking elements satisfying Aui(x) with those satisfying Awi(x) is backward-functional.

Putting the last three properties together, we encode multiplication as their conjunction:

(φi
mult(ui, vi, wi)) φi

link(ui, vi, wi) ∧ φi
count(ui, vi, wi) ∧ φi

bfunc(ui, vi, wi)

▶ Lemma 5. If a well-prepared M satisfies φi
mult(ui, vi, wi), then |Aui

(x)|M·|Avi
(x)|M =

|Awi(x)|M.

Let φε
red be φε

var supplemented with a conjunction of formulae φεi
entry, where φεi

entry is
respectively: (i) φui=1 if εi is equal to ui=1, (ii) φi

halves ∧ φi
parti(ui, vi, wi) ∧ φi

add(ui, vi, wi)
for εi of the form ui + vi = wi and (iii) φi

halves ∧ φi
parti(ui, vi, wi) ∧ φi

mult(ui, vi, wi) for εi

of the form ui · vi = wi. As the last piece in the proof we show that each solution of the
system ε corresponds to some model of φε

red. Its proof is routine and relies on the correctness
of all previously announced facts (consult [7, Appendix B] for more details). Hence, by the
undecidability of SHTP, we immediately conclude:

▶ Theorem 6. The finite satisfiability problem for FO2
gl% is undecidable, even when the only

percentage quantifier allowed is ∃=50%.

Note that in our proof above, all the presented formulas can be easily transformed to
formulae under the local semantics of percentage quantifiers as follows. First, we introduce
a fresh binary symbol U and enforce it to be interpreted as the universal relation with
∀x∀y U(x, y). Then, we replace every occurrence of ∃=50%x φ by ∃=50%

U x φ. Obviously, the
resulting formula is FO2 formula with local percentage quantifiers. Thus we conclude:

▶ Corollary 7. The finite satisfiability problem for FO2
loc% is undecidable.

B. Bednarczyk, M. Orłowska, A. Pacanowska, and T. Tan 36:9

3.2 Guarded Fragment
We now focus on the second seminal fragment of FO considered in this paper, namely on
the guarded-fragment GF. We start from the global semantics of percentage quantifiers.
Consider a unary predicate H, whose interpretation is constrained to label exactly half of
the domain with ∃=50%x H(x). We then employ the formula

∀x x = x → ∃=50%y [U(x, y) ∧ H(y)] ∧ ∃=50%y [U(x, y) ∧ ¬H(y)] ,

whose satisfaction by M entails that UM is the universal relation. Hence, by putting U as a
dummy guard in every formula in the undecidability proof of FO2

loc%, we conclude:

▶ Corollary 8. The finite satisfiability problem for GFgl% is undecidable, even when restricted
to its two-variable fragment GF2

gl%.

It turns out that the undecidability still holds for GF once we switch from the global to
the local semantics of percentage counting. In order to show it, we present a reduction from
GF3[F] (i.e. the three-variable fragment of GF with a distinguished binary F interpreted as
a functional relation), whose finite satisfiability was shown to be undecidable in [15].

▶ Theorem 9. The finite satisfiability problem for GFloc% (and even GF3
loc%) is undecidable.

Proof sketch. By reduction from GF3[F] it suffices to express that F is functional. Let H,R
be fresh binary relational symbols. We use a similar trick to the one from Section 3.1.1, where
H(x, ·) plays the role of Half (note that H may induce different partitions for different x),
R(·, y) plays the role of R and y in x = y plays the role of J.

The functionality of F can be expressed with:

φfunc := ∀x x = x → [(∀y F (x, y) → R(x, y)) ∧ (∃=50%
R y H(x, y))∧

(∀y F (x, y) → (¬H(x, y) ∨ x = y)) ∧ (∃=50%
R y ((H(x, y) ∧ x ̸= y) ∨ F (x, y)))]

In the appendix we will show that if M |= φfunc then F is indeed functional and every
structure M with functional F can be extended by H and R, such that φfunc holds. ◀

The similar proof techniques do not work for GF2, since GF2 with counting is decidable [27].
Thus, in the forthcoming section we show that decidability status transfers not only to GF2

with percentage counting, but also with Presburger arithmetics. This can be then applied to
infer decidability of several modal and description logics, see [7, Appendix A].

4 Positive results

We next show that the finite satisfiability problem for GF2
pres is decidable, as stated below.

▶ Theorem 10. The finite satisfiability problem for GF2
pres is decidable.

It is also worth pointing out that Theorem 10 together with a minor modification of existing
techniques [3] yields decidability of conjunctive query entailment problem for GF2

pres, i.e.
a problem of checking if an existentially quantified conjunction of atoms is entailed by
GF2

pres formula. This is a fundamental object of study in the area of logic-based knowledge
representation. All the proofs and appropriate definitions are moved to [7, Appendix D].

▶ Theorem 11. Finite conjunctive query entailment for GF2
pres is decidable.

FSTTCS 2021

36:10 On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

The rest of this section will be devoted to the proof of Theorem 10, which goes by
reduction to the two-variable fragment of FO with counting quantifiers ∃=k, ∃≤k for k ∈ N
with their obvious semantics. Since the finite satisfiability of C2 is decidable [26], Theorem 10
follows.4

4.1 Transforming GF2
pres formulae into C2

It is convenient to work with formulae in the appropriate normal form. Following a routine
renaming technique (see e.g. [19]) we can convert in linear time a GF2

pres formula into the
following equisatisfiable normal form (over an extended signature):

Ψ0 := ∀x γ(x) ∧
n∧

i=1

(
∀x∀y ei(x, y) → αi(x, y)

)
∧

m∧
i=1

∀x
(ni∑

j=1
λi,j · #ri,j

y [x ̸= y] ⊛ δi

)
,

where γ(x) and each αi(x, y) are quantifier-free formulae, each ei(x, y) is atomic predicate
and all λi,j ’s and δi’s are integers, and ⊛ is as in Section 2.2.

Then, for every non-null type η, we replace each of the expressions #ri,j
y [x ̸= y] with the

sum of all the degrees degη(x) with η containing ri,j(x, y), i.e. the sum
∑

ri,j(x,y)∈η degη(x).
Moreover, since

∧
∀ commutes, we obtain the following formula:

Ψ′ := ∀x γ(x)∧
n∧

i=1

(
∀x∀y ei(x, y) → αi(x, y)

)
∧∀x

m∧
i=1

(ni∑
j=1

λi,j ·
∑

ri,j(x,y)∈η

degη(x) ⊛ δi

)

Note that the conjunction
∧m

i=1

(∑ni

j=1 λi,j ·
∑

ri,j(x,y)∈η degη(x) ⊛ δi

)
is a Presburger

formula with free variables degη(x)’s, for every non-null type η.5 Thus, by Theorem 1, we
can compute a set of tuples of vectors {(v̄1,0, c̄1,1, . . . , v̄1,k1), . . . , (v̄p,0, v̄p,1, . . . , v̄p,kp

)} and
further rewrite Ψ′ into the following formula:

Ψ = ∀x γ(x) ∧
∧n

i=1

(
∀x∀y ei(x, y) → αi(x, y)

)
∧ ∀x deg(x) ∈ S

where S =
⋃p

i=1 L(c̄i,0; c̄i,1, . . . , c̄i,ki
). We stress that technically Ψ is no longer in GF2

pres.
In the following we will show how to transform Ψ into a C2 formula Ψ∗ such that they

are (finitely) equi-satisfiable. For every i = 1, . . . , p, let Si = L(v̄i,0; v̄i,1, . . . , v̄i,ki). Recall
that offset(Si) is the offset vector v̄i,0 and prd(Si) is the set of periodic vectors of Si, i.e.
{v̄i,1, . . . , v̄i,ki

}. Consider the following formulae ξ and ϕ.

ξ := ∀x

p∨
i=1

deg(x)=offset(Si) ∨ deg(x)∈prd(Si), ϕ := ∀x

p∧
i=1

deg(x) ̸=offset(Si) → ∃y φ(x, y)

where φ(x, y) is the conjunction expressing the following properties:
The 1-types of x and y equal. It can be expressed with the formula

∧
U U(x) ↔ U(y),

where U ranges over unary predicates appearing in Ψ.
deg(x) ∈ prd(Sj) and deg(y) = offset(Sj) for some 1 ≤ j ≤ p.

4 Note that we propose a reduction into C2, not into the guarded C2, which might seem to be more
appropriate. As we will see soon, a bit of non-guarded quantification is required in our proof.

5 Technically speaking, in the standard definition of Presburger formula, the equality f ≡d g is not
allowed. However, it can be rewritten as ∃x1∃x2(f + x1d = g + x2d).

B. Bednarczyk, M. Orłowska, A. Pacanowska, and T. Tan 36:11

Note that deg(x) = offset(Si) can be written as a C2 formula. For example, if v̄i,0 =
(d1, . . . , dℓ), it is written as

∧ℓ
j=1 ∃=djy ηj(x, y). We can proceed with deg(x) ∈ prd(Si)

similarly, since prd(Si) contains only finitely many vectors. Finally, we put Ψ∗ to be

Ψ∗ := ∀x γ(x) ∧
n∧

i=1
∀x∀y ei(x, y) → αi(x, y) ∧ ξ ∧ ϕ.

We will show that Ψ and Ψ∗ are finitely equi-satisfiable, as stated formally below.

▶ Lemma 12. Ψ is finitely satisfiable if and only if Ψ∗ is.

We delegate the proof of Lemma 12 to the next section. We conclude by stating that
the complexity of our decision procedure is 3NExpTime. For more details of our analysis,
see Section 4.3. Note that if we follow the decision procedure described in [13] for converting a
system of linear equations to its semilinear set representation we will obtain a non-elementary
complexity. This is because we need to perform k−1 intersections, where k is the number of
linear constraints in the formula Ψ′, and the procedure in [13] for handling each intersection
yields an exponential blow-up. Instead, we use the results in [12, 25, 10] and obtain the
complexity 3NExpTime, which though still high, falls within the elementary class.

4.2 Correctness of the translation
Before we proceed with the proof, we need to define some terminology. Let M be a finite
model. Let a, b ∈ A be such that the 2-type of (a, b) is ηnull, i.e. the null-type and that
a and b have the same 1-type. Suppose c1, . . . , cs are all elements such that the 2-type of
each (a, cj), denoted by η′

j , is non-null. Likewise, d1, . . . , dt are all the elements such that
the 2-type of (b, dj), denoted by η′′

j , is non-null. Moreover, c1, . . . , cs, d1, . . . , dt are pair-wise
different.

“Merging” a and b into one new element â is defined similarly to the one in the graph-
theoretic sense where a and b are merged into â such that the following holds.

The 2-types of each (â, cj) are equal to the original 2-types of (a, cj), for all j = 1, . . . , s.
The 2-types of each (â, dj) are equal to the original 2-types of (a, dj), for all j = 1, . . . , t.
The 2-types of (â, a′) is the null type, for every a′ /∈ {c1, . . . , c2, d1, . . . , dt}.
The 1-type of â is the original 1-type of a (which is the same as the 1-type of b).

ra ✘✘✘✘✘✘✿η′
1

rc1♣♣♣❳❳❳❳❳❳③
η′

s rcs

rb ✘✘✘✘✘✘✿η′′
1

rd1♣♣♣❳❳❳❳❳❳③
η′′

t rdt

=⇒ râ

✸
η′

1

rc1♣♣♣
✿η′

s rcs

③η′′
1

rd1♣♣♣
s

η′′
t rdt

Note that we require that the original 2-type of (a, b) is the null type. Thus, after the
merging, the degree of â is the sum of the original degrees of a and b. Moreover, the 1-type
of â is the same as the original 1-type of a and b. Thus, if ∀x∀y ei(x, y) → αi(x, y) holds in
M, after the merging, it will still hold. Likewise, if ∀x γ(x) holds in M, it will still hold
after the merging.

For the inverse, we define the “splitting” of an element â into two elements a and b as
illustrated above, where the 1-type of a and b is the same as the 1-type of â and the 2-type
of (a, b) is set to be ηnull. After the splitting, the sum of the degrees of a and b is the same as
the original degree of â. Moreover, since the 2-type of (a, b) is ηnull, M, x/a, y/b ̸|= ei(x, y).
Thus, if ∀x∀y ei(x, y) → αi(x, y) holds in the original M, it will still hold after the splitting.

FSTTCS 2021

36:12 On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

▶ Lemma 13. If Ψ is finitely satisfiable then Ψ∗ is.

Proof. Let M be a finite model of Ψ. We will construct a finite model M∗ |= Ψ∗ by splitting
every element in M into several elements so that their degrees are either one of the offset
vectors of S or one of the period vectors.

Let a ∈ A and degM(a) ∈ Si, for some 1 ≤ i ≤ p. Suppose degM(a) = v̄i,0 +
∑ki

j=1 nj v̄i,j ,
for some n1, . . . , nki

≥ 0. Let N = 1 +
∑ki

j=1 nj . We split a into N elements b1, . . . , bN . Let
M∗ denote the resulting model after such splitting. Note that it should be finite since the
degree of a is finite. It is straightforward to show that M∗ |= Ψ∗. ◀

▶ Lemma 14. If Ψ∗ is finitely satisfiable then Ψ is.

Proof. Let M∗ be a finite model of Ψ∗. Note that the degree of every element in M∗ is
either the offset vector or one of the period vectors of Si, for some 1 ≤ i ≤ p. To construct
a finite model M |= Ψ, we can appropriately “merge” elements so that the degree of every
element is a vector in Si, for some 1 ≤ i ≤ p.

To this end, we call an element a in M∗ a periodic element, if its degree is not an offset
vector of some Si. Let N be the number of periodic elements in M∗. We make 3N copies of
M∗, which we denote by Mi,j , where 0 ≤ i ≤ 2 and 1 ≤ j ≤ N . Let M be a model obtained
by the disjoint union of all of Mi,j ’s, where for every b, b′ that do not come from the same
Mi,j , the 2-type of (b, b′) is the null-type.

We will show how to eliminate periodic elements in M by appropriately “merging” its
elements. We need the following terminology. Recall that S = S1 ∪ · · · ∪ Sp, where each
Si is a linear set. For two vectors ū and v̄, we say that ū and v̄ are compatible (w.r.t. the
semilinear set S), if there is Si such that ū is the offset vector of Si and v̄ is one of the period
vectors of Si. We say that two elements a and b in M are merge-able, if their 1-types are the
same and their degrees are compatible.

We show how to merge periodic elements in M0,j , for every j = 1, . . . , N .
Let b1, . . . , bN be the periodic elements in M0,j .
For each l = 1, . . . , N , let al be an offset element in M1,l such that every bl and al are
merge-able. (Such bl exists, since M∗ satisfies Ψ∗ and each Mi,j is isomorphic to M∗.)
Then, merge al and bl into one element, for every l = 1, . . . , k.

See below, for an illustration for the case when j = 1.

M0,1 q
b1

q
b2

· · · q
bN

M0,2

♣♣♣
M0,N

M1,1q a1

M1,2q a2

♣♣♣
M1,N

q aN

M2,1

M2,2

♣♣♣
M2,N

Obviously, after this merging, there is no more periodic element in M0,j , for every
j = 1, . . . , N . We can perform similar merging between the periodic elements in M1,1 ∪ · · · ∪
M1,N and the offset elements in M2,1 ∪ · · · ∪ M2,N , and between the periodic elements in
M2,1 ∪ · · · ∪ M2,N and the offset elements in M0,1 ∪ · · · ∪ M0,N .

After such merging, there is no more periodic element in M and the degree of every
element is now a vector in Si, for some 1 ≤ i ≤ p. Moreover, since the merging preserves the
satisfiability of ∀x γ(x) and each ∀x∀y ei(x, y) → αi(x, y), the formula Ψ holds in M. That
is, Ψ is finitely satisfiable. ◀

B. Bednarczyk, M. Orłowska, A. Pacanowska, and T. Tan 36:13

4.3 Complexity analysis of the decision procedure

We need to introduce more terminology. For a vector/matrix X, we write ∥X∥ to denote its
L∞-norm, i.e. the maximal absolute value of its entries. For a set of vector/matrices B, we
write ∥B∥ to denote maxX∈B ∥X∥.

Let P = {v̄1, . . . , v̄k} ⊆ Nℓ be a finite set of (row) vectors of natural number components.
To avoid clutter, we write L(ū;P) to denote the linear set L(ū; v̄1, . . . , v̄k). For a finite set
B ⊆ Nℓ, we write L(B;P) to denote the set

⋃
ū∈B L(ū;P).

We will use the following fact from [12, 25]. See also Proposition 2 in [10].

▶ Proposition 15. Let A ∈ Zℓ×m and c̄ ∈ Zm. Let Γ be the space of the solutions of the
system x̄A = c̄ (over the set of natural numbers N).6 Then, there are finite sets B,P ⊆ Nℓ

such that the following holds.
L(B;P) = Γ.
∥B∥ ≤ ((m+ 1)∥A∥ + ∥c̄∥ + 1)ℓ.
∥P∥ ≤ (m∥A∥ + 1)ℓ.
|B| ≤ (m+ 1)ℓ.
|P | ≤ mℓ.

By repeating some of the vectors, if necessary, we can assume that Proposition 15 states that
|B| = |P | = (m+ 1)ℓ.

Proposition 15 immediately implies the following naïve construction of the sets B and P
in deterministic double-exponential time (in the size of input A and c̄).

Enumerate all possible sets B,P ⊆ Nℓ of cardinality (m + 1)ℓ whose entries are all
bounded above by ((m+ 1)∥A∥ + ∥c̄∥ + 1)ℓ.
For each pair B,P , where P = {v̄1, . . . , v̄k}, check whether for every i1, . . . , ik ∈ N and
every ū ∈ B, the following equation holds.

(ū+
k∑

j=1
ij v̄j)A = c̄. (1)

The number of bits needed to represent the sets B and P is O(ℓ2(m + 1)ℓ logK), where
K = (m+ 1)∥A∥ + ∥c̄∥ + 1. Since Eq. 1 can be checked in deterministic exponential time
(more precisely, it takes non-deterministic polynomial time to check if there is i1, . . . , ik such
that Eq. 1 does not hold) in the length of the bit representation of the vectors in B, P , A
and the vector c̄, see, e.g. [24], constructing the sets B and P takes double-exponential time.

For completeness, we repeat the complexity analysis in Section 4. First, the formula
Ψ0 takes linear time in the size of the input formula. Constructing the formula Ψ′ requires
exponential time (in the number of binary predicates), i.e. ℓ = 2k − 1, where k is the
number of binary predicates. Thus, constructing the sets B and P takes deterministic triple
exponential time in the size of Ψ0. However, the size of B and P is O(22k(m+ 1)2k logK),
i.e. double exponential in the size of Ψ0. The C2 formulas ξ and ϕ are constructed in
polynomial time in the size of B and P . Since both the satisfiability and finite satisfiability of
C2 formulas is decidable in nondeterministic exponential time, we have another exponential
blow-up. Altogether, our decision procedure runs in 3NExpTime.

6 Recall that vectors in this paper are row vectors. So, x̄ and c̄ are row vectors of ℓ variables and m
constants, respectively.

FSTTCS 2021

36:14 On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

5 Concluding remarks

In the paper we studied the finite satisfiability problem for classical decidable fragments
of FO extended with percentage quantifiers (as well as arithmetics in the full generality),
namely the two-variable fragment FO2 and the guarded fragment GF. We have shown that
even in the presence of percentage quantifiers they quickly become undecidable.

The notable exception is the intersection of GF and FO2, i.e. the two-variable guarded
fragment, for which we have shown that it is decidable with elementary complexity, even
when extended with local Presburger arithmetics. The proof is quite simple and goes via
an encoding into the two-variable logic with counting (C2). One of the bottlenecks in our
decision procedure is the conversion of systems of linear equations into the semilinear set
representations, which incurs a double-exponential blow-up. We leave it for future work
whether a decision procedure with lower complexity is possible and/or whether the conversion
to semilinear sets is necessary.
We stress that our results are also applicable to the unrestricted satisfiability problem
(whenever the semantics of percentage quantifiers make sense), see [7, Appendix C].

References
1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal Languages and Bounded

Fragments of Predicate Logic. J. Philosophical Logic, 1998.
2 Franz Baader. A new description logic with set constraints and cardinality constraints on role

successors. In Clare Dixon and Marcelo Finger, editors, FroCoS, 2017.
3 Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability checking and

conjunctive query answering in description logics with global and local cardinality constraints.
In DL, 2019.

4 Franz Baader, Bartosz Bednarczyk, and Sebastian Rudolph. Satisfiability and query answering
in description logics with global and local cardinality constraints. In ECAI, 2020.

5 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

6 Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. J. ACM, 2015.
7 Bartosz Bednarczyk, Maja Orłowska, Anna Pacanowska, and Tony Tan. On Classical Decidable

Logics extended with Percentage Quantifiers and Arithmetics. CoRR, abs/2106.15250, 2021.
arXiv:2106.15250.

8 Michael Benedikt, Egor V. Kostylev, and Tony Tan. Two variable logic with ultimately periodic
counting. In ICALP 2020, 2020.

9 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997.

10 Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In ICALP, 2016.
11 Stéphane Demri and Denis Lugiez. Complexity of modal logics with presburger constraints. J.

Appl. Log., 2010.
12 Eric Domenjoud. Solving systems of linear diophantine equations: An algebraic approach. In

MFCS, 1991.
13 Seymour Ginsburg and Edwin Henry Spanier. Semigroups, presburger formulas, and languages.

Pac. J. of Math., 16:285–296, 1966.
14 Erich Grädel. Description logics and guarded fragments of first order logic. In DL, 1998.
15 Erich Grädel. On the restraining power of guards. J. Symb. Log., 1999.
16 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-

variable first-order logic. Bulletin of Symbolic Logic, 1997.
17 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable. In

LICS, 1997.

http://arxiv.org/abs/2106.15250

B. Bednarczyk, M. Orłowska, A. Pacanowska, and T. Tan 36:15

18 Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics.
Arch. Math. Log., 1999.

19 Yevgeny Kazakov. A polynomial translation from the two-variable guarded fragment with
number restrictions to the guarded fragment. In JELIA, volume 3229 of LNCS, 2004.

20 Clemens Kupke and Dirk Pattinson. On modal logics of linear inequalities. In Lev D.
Beklemishev, Valentin Goranko, and Valentin B. Shehtman, editors, AIML, 2010.

21 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

22 Yuri V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
23 Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity results for first-order

two-variable logic with counting. SIAM J. Comput., 29(4):1083–1117, 2000.
24 Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768,

1981.
25 Loic Pottier. Minimal solutions of linear diophantine systems: Bounds and algorithms. In

RTA, 1991.
26 Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. J.

Log. Lang. Inf., 14(3):369–395, 2005.
27 Ian Pratt-Hartmann. Complexity of the guarded two-variable fragment with counting quantifi-

ers. J. Log. Comput., 17(1):133–155, 2007.
28 Dana Scott. A decision method for validity of sentences in two variables. Journal of Symbolic

Logic, 1962.
29 B. Trakhtenbrot. The impossibility of an algorithm for the decidability problem on finite

classes. In Proc. USSR Acad. Sci., volume 70(4), pages 569–572, 1950.
30 Willard van Orman Quine. The Ways of Paradox and Other Essays, Revised Edition. Harvard

University Press, 1976.

FSTTCS 2021

Branching Automata and Pomset Automata
Nicolas Bedon #

LITIS (EA 4108), University of Rouen, France

Abstract
We compare, in terms of expressive power, two notions of automata recognizing finite N-free pomsets:
branching automata by Lodaya and Weil [7, 8, 9, 10] and pomset automata by Kappé, Brunet, Luttik,
Silva and Zanasi [5]. In the general case, they are equivalent. We also consider sub-classes of both
kind of automata that we prove equivalent.

2012 ACM Subject Classification Theory of computation → Regular languages

Keywords and phrases Finite N-free Pomsets, Finite Series-Parallel Pomsets, Branching Automata,
Pomset Automata, Series-Parallel Rational Languages

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.37

Acknowledgements The author would like to thank the anonymous referees of this paper, whose
comments helped in improving its quality.

1 Introduction

Automata are among the main tools in theoretical computer science. They are at the center
of a large number of theoretical results and practical applications. Among them, let us cite
as examples pattern matching, lexical analysis in compilers, and model-checking. In the
latter, automata are used both for modeling sequential processes and to represent logical
specifications. A state of an automaton represents a state of the system that is modeled, and
transitions are used to change from states to states when an event occurs or an instruction is
executed.

Inputs of automata as they were originally defined by Kleene [6] are finite words, that
naturally model finite totally ordered sequences of events. Mainly motivated by the use of
automata as a key argument in decidability algorithms in formal logic and circuits modeling,
automata have quickly been extended to more complex inputs, such as for example infinite
(ω) and transfinite words, terms, finite and infinite trees.

In this paper we focus on automata for languages of finite series-parallel pomsets. In-
formally speaking, a pomset is a word in which the total ordering of elements is not required.
When A is an alphabet, finite words over A are the elements freely generated by A in the
variety of monoids, and finite series-parallel pomsets over A are the elements freely generated
by A in the variety of algebras (X, ·, ∥), with (X, ·) a monoid and (X, ∥) a commutative
monoid. Series-parallel pomsets have natural applications in computer science: when words
are though of as traces of sequential executions of programs, series-parallel pomsets are traces
of concurrent programs in which concurrency relies of the fork/join principle: a process forks
into several concurrent parallel processes, waits for all of them to end their executions, and
then continues its run. The class of series-parallel pomsets have an interesting characterisation
in terms of sub-ordering: it coincides with that of N-free pomsets [11, 12].

In [7, 8, 9, 10], Lodaya and Weil introduced a class of automata on finite N-free pomsets,
named branching automata, that extends Kleene automata with two kinds of unlabeled
transitions: the fork and join transitions. A fork transition splits a path into several paths
that run in parallel. When they are all finished, those parallel paths are grouped together
with a join transition that goes into a single state. This join transition can be any of the
join transitions: it does not depend on the definition of the branching automata, but must

© Nicolas Bedon;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 37; pp. 37:1–37:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.bedon@univ-rouen.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.37
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Branching Automata and Pomset Automata

be chosen consistently with the definition of a path; in particular it may not be unique, and
may not exist. Lodaya and Weil defined rational expressions for this class, and studied the
algebraic counterpart of branching automata.

Kappé, Brunet, Luttik, Silva and Zanasi [5] introduced another class of automata on
finite N-free pomsets, named pomset automata. Their approach is an extension of Kleene
automata by an additional kind of transitions that split a path into several paths that run in
parallel, and define also the destination state to reach when all those parallel paths terminate.
Whereas in the definition of branching automata the fork transition that starts parallel paths
and the join transition that ends are not linked, both the start and the end are defined by the
same transition in pomset automata. In the general case, languages of pomset automata are
those of context-free grammars. Assuming a restriction on the definition of pomset automata,
their languages are precisely the series-parallel rational languages, which are defined similarly
to the usual rational languages of finite words with additional parallel product and a parallel
iteration.

In this paper we compare branching and pomset automata. We first slightly generalize
the original definition of branching automata by allowing the empty pomset in parallel parts
of paths, and show that this corresponds to remove a condition on the rational expressions
of the Kleene-like theorem of Lodaya and Weil. Under this generalisation, languages of
branching automata are exactly the languages of context-free grammars. As a consequence,
they are also exactly the languages of pomset automata. We finally characterize the sub-class
of branching automata corresponding to series-parallel rational languages. All results are
effective.

2 Notation and basic definitions

Let E be a set. We denote by P(E), P+(E) and M>1(E) respectively the set of subsets
of E, the set of non-empty subsets of E and the set of multi-subsets of E with at least two
elements. For any integer n, the set {1, . . . , n} is denoted [n] and the group of permutations
of [n] by Sn. The cardinality of E is denoted by |E|. When c = (x, y) is a pair, we denote by
π1(c) = x and π2(c) = y.

An alphabet is a set A whose elements are named letters. Since in this paper all alphabets
are finite and non-empty we will omit to mention it. Pomsets (partially ordered multi-sets) are
a generalization of words [2, 3, 13]. A labeled poset (P, <P , ρP) over an alphabet A consists
of a set P , a partial ordering <P of the elements of P and a labeling map ρP : P → A. For
simplicity we often denote (P, <P , ρP) by P . Two labeled posets (P, <P , ρP) and (Q, <Q, ρQ)
are isomorphic if there is a bijection from P to Q that preserves and reflects both labeling
and ordering. A pomset P over A is (a representative of) an isomorphism class of labeled
posets over A. The width of P is the maximal size of an antichain of P . Observe that the
finite pomsets of width 1 correspond precisely to the usual finite words: finite totally ordered
sequences of letters. The unique empty pomset is denoted by ϵ, and the unique pomset
consisting of only one element labeled by a ∈ A is simply denoted a. Since in this paper all
labeled posets and pomsets are finite we omit to say it by now.

Let (P, <P , ρP) and (Q, <Q, ρQ) be two disjoint pomsets over respectively A and A′. The
parallel product of P and Q, denoted P ∥ Q, is the pomset (P ∪ Q, <P ∪ <Q, ρP ∪ ρQ) over
A ∪ A′. The sequential product of P and Q, denoted by P · Q or PQ for simplicity, is the
pomset (P ∪ Q, <P ∪ <Q ∪P × Q, ρP ∪ ρQ) over A ∪ A′. Observe that the parallel product is
an associative and commutative operation on pomsets, whereas the sequential product does

N. Bedon 37:3

not commute (but is associative). The parallel and sequential products can be generalized
to finite sequences of pomsets. Let (Pi)i≤n be a finite sequence of pomsets. We denote by∏

i≤n Pi = P0 · · · · · Pn and ∥i≤n Pi = P0 ∥ · · · ∥ Pn.
The class of series-parallel pomsets over A, denoted SP (A), is defined as the smallest class

containing ϵ and a for all a ∈ A, and closed under finite parallel and finite sequential product.
It is well known that this class corresponds precisely to the class of N-free pomsets [11, 12]
over A, in which the exact ordering relation between any four elements x1, x2, x3, x4 cannot
be x1 < x2, x3 < x2 and x3 < x4. We write SP +(A) for SP (A) − {ϵ}. Note that for every
pomset P of SP (A) exactly one of the following is true: (i) P = ϵ, (ii) P = a ∈ A, (iii)
P = RS or (iv) P = R ∥ S for some non-empty pomsets R, S.

A language of SP (A) is a sub-class of SP (A). Sequential and parallel products are
extended from pomsets to languages of pomsets in the usual way: when L and L′ are
languages of pomsets and op is either the sequential or the parallel product, then L op L′ =
{P op P ′ : P ∈ L, P ′ ∈ L′}.

Let A and B be two alphabets, P ∈ SP (A), L ⊆ SP (B) and ξ ∈ A. The language of
SP (A \ {ξ} ∪ B) consisting of the pomset P in which each element labeled by the letter ξ is
non-uniformly replaced by a pomset of L is denoted by L◦ξP . By non-uniformly we mean that
the elements labeled by ξ may be replaced by different elements of L. This substitution L◦ξ

is the homomorphism from (SP (A), ∥,
∏

) into the power-set algebra (P(SP (A ∪ B)), ∥,
∏

)
with ξ 7→ L and a 7→ a for all a ∈ A \ {ξ}. Formally:

L ◦ξ ϵ = {ϵ}

L ◦ξ a =
{

{a} if a ∈ A \ {ξ}
L if a = ξ

L ◦ξ (P1 · P2) = (L ◦ξ P1) · (L ◦ξ P2)
L ◦ξ (P1 ∥ P2) = (L ◦ξ P1) ∥ (L ◦ξ P2)

This operation can again be extended from pomsets to languages of pomsets by L′ ◦ξ L =
∪P ∈LL′ ◦ξ P .

▶ Example 1. Let B = {a, b}, A = B ∪ {ξ}, P = b ∥ (ξ · ξ) ∈ SP (A) and L = {a ∥ b, b · a} ⊆
SP (B). Then L ◦ξ P = {b ∥ ((a ∥ b) · (a ∥ b)), b ∥ ((b · a) · (b · a)), b ∥ ((a ∥ b) · (b · a)), b ∥
((b · a) · (a ∥ b))}.

We also set

L∗ξ = ∪
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = (∪
j≤i

Ljξ) ◦ξ L

L∗ = {
∏
i<n

Pi : n ∈ N, Pi ∈ L for each i < n} L+ = L∗ \ {ϵ}

Assuming ξ is not used in L, we use the following abbreviation:

L⊛ = {ϵ} ◦ξ (L ∥ ξ)∗ξ = {∥i<n Pi : n ∈ N, Pi ∈ L for each i < n} (1)

and L⊕ = L⊛ \ {ϵ}. L∗ and L+ are the sequential iterations of L whereas L⊛ and L⊕ are its
parallel iterations.

FSTTCS 2021

37:4 Branching Automata and Pomset Automata

3 Branching Automata

Branching automata are a generalization of usual Kleene automata. They were introduced by
Lodaya and Weil [7, 8, 9, 10]. A branching automaton is a tuple A = (Q, A, E, I, F) where
Q is a finite set of states, A is an alphabet, I ⊆ Q is the set of initial states, F ⊆ Q the
set of final states, and E is the finite set of transitions of A. The set of transitions of E is
partitioned into E = (Eseq, Efork, Ejoin):

Eseq ⊆ Q × A × Q contains the sequential transitions, which are usual transitions of
Kleene automata;
Efork ⊆ Q × M>1(Q) and Ejoin ⊆ M>1(Q) × Q are respectively the sets of fork and join
transitions.

Sequential transitions (p, a, q) ∈ Q × A × Q are sometimes denoted by p
a→ q. The arity of a

fork (resp. join) transition (p, R) ∈ Q × M>1(Q) (resp. (R, q) ∈ M>1(Q) × Q) is |R|. Here
the source of a sequential or fork transition is p and the destination of a sequential or join
transition is q.

We now turn to the definition of paths in A. We give two definitions, namely b-paths and
b*-paths, which are not equivalent: paths labeled by ϵ are allowed in the latter but not in
the former. As we will see, considering ϵ as a possible label for paths changes the expressive
power of branching automata.

3.1 b-regular and b-rational languages
We recall in this section the original definitions and basic results from Lodaya and Weil.

We define the relation →
A

⊆ Q × SP +(A) × Q as the smallest relation satisfying:

1. p
a→
A

q if and only if (p, a, q) ∈ E;

2. if p
P→
A

q and q
Q→
A

r then p
P Q→
A

r;

3. for all integer n > 1, if pi
Pi→
A

qi for all i ∈ [n], (p, {p1, . . . , pn}) ∈ Efork, ({q1, . . . , qn}, q) ∈

Ejoin then p
∥i∈[n]Pi→

A
q.

If p
P→
A

q we say that there is a b-path from p to q labeled by P in A.

A b-path is an equivalence class of (finite) terms over X = {p
a→
A

q : (p, a, q) ∈ E} using (2)
and (3) in the definition above as composition rules, in which terms are equivalent up to the
associativity of (2) and to the ordering of the multi-sets {p1, . . . , pn} and {q1, . . . , qn} in the
fork and join transitions of (3). Thus, the signature of terms is X ∪ {·} ∪n>1 Efork,n × Ejoin,n,
where elements of X are symbols of arity 0, · has arity 2, and the elements of Efork,n × Ejoin,n,
pairs of a fork and a join transition of same arity n, have arity n. When Rule (3) is used to
form a term t from n terms using fork and join transitions f and j we say that t is a parallel
term rooted by (f, j). When Rule 2 is used to form t from two terms then t is sequential.
Each term or b-path t naturally evaluates into a unique p

P→
A

q (in this case t is from p to q

labeled by P in A). Reciprocally, each element of →
A

is the evaluation of at least one term
(or b-path). We denote by t′ ⪯ t (resp. t′ ≺ t) when t′ is a (resp. strict) sub-term of the
term t. A term t uses a transition u if u is a sequential transition used to form t or u is a
fork or a join transition and there is some t′ ⪯ t rooted by some (f, j) with either f = u or
j = u. It uses a state q if q appear in a transition used in t. Let f and j be respectively a
fork and a join transition. A term t uses (f, j) at the upper level if there is some t′ ⪯ t rooted

N. Bedon 37:5

by (f, j) and if t′ ⪯ t′′ ⪯ t for some t′′ rooted by some (f ′, j′) then t′′ is t′. It uses (f, j) at
a sequential level if there are some t′′ ⪯ t′ ⪯ t with t′′ rooted by (f, j) and t′ a sequential
term. Observe that two terms of the same b-path p use exactly the same transitions and
states, which allows us to say that p uses a transition u (or a state r) if there is some term
(or equivalently, if all terms) of p that uses u (or r). The same remark applies for pairs of
fork and join transitions used at the upper level or at a sequential level, and can be used to
naturally qualify a b-path to be parallel or sequential.

Set Lp,q = {P ∈ SP +(A) : p
P→
A

q}. The language of A is L(A) = ∪(i,f)∈I×F Li,f . We call
b-automaton a branching automaton equipped with the notion of b-path above. A language
L ⊆ SP +(A) is b-regular if L is the language of some b-automaton.

The class of b-rational languages of SP +(A) is the smallest containing ∅, {a} for all
a ∈ A, and closed under the operations of Sb = {∪, ·,+ , ∥, ◦ξ,∗ξ }, provided that
▶ Condition 1. In L∗ξ any element labeled by ξ in some P ∈ L is incomparable with another
element of P .
In particular, Condition 1 excludes from the b-rational languages those of the form (aξb)∗ξ =
{anξbn : n ∈ N}, for example.

Let S be a set of functions of arity > 0 on languages. A S-rational expression e is a
well-formed term of signature {∅}∪A∪S denoting a language L(e). The b-rational expressions
are the Sb-rational expressions (verifying Condition 1).

▶ Theorem 2 ([7]). A language of SP +(A) is b-regular if and only if it is b-rational.

Condition 1 is mandatory in the proof of Theorem 2. That ϵ is forbidden in labels for the
parallel composition of b-paths (in Item 3 of the definition of →

A
each Pi is different from ϵ)

is also mandatory.

3.2 b*-regular and b*-rational languages
In this section we slightly modify the definition of a b-path by allowing ϵ as a label, in
particular in parallel parts.

We define the relation →
A

⊆ Q × SP (A) × Q as the smallest relation satisfying:

1. p
ϵ→
A

p for all p ∈ Q;

2. p
a→
A

q if and only if (p, a, q) ∈ E;

3. if p
P→
A

q and q
Q→
A

r then p
P Q→
A

r;

4. for all integer n > 1, if pi
Pi→
A

qi for all i ∈ [n], (p, {p1, . . . , pn}) ∈ Efork, ({q1, . . . , qn}, q) ∈

Ejoin then p
∥i∈[n]Pi→

A
q.

The notions of b*-path, b*-automaton, b*-regularity, etc. are defined similarly as
in Section 3.1 by a replacement of the relation →

A
with the definition above. As in b-

automata, there is no ϵ-transition in a b*-automaton. However, p
ϵ→
A

q with p ̸= q is

possible using Item 4 with pi
ϵ→
A

qi and pi = qi for all i ∈ [n]. In a b*-automaton, we have

Lp,q = {P ∈ SP (A) : p
P→
A

q} and L(A) = ∪(i,f)∈I×F Li,f . Note that because of Item 1 in the

definition of the relation →
A

above, there are b*-paths of the form p
ϵ→
A

p that do not use any
transition. Such b*-paths are named trivial. A b*-path t uses a pair (f, j) of a fork and
a join transition at a sequential level if there are some t′′ ⪯ t′ ⪯ t with t′′ rooted by (f, j)
and t′ of the form t′ = t′

1 · t′
2 with t′

1, t′
2 both non-trivial.

FSTTCS 2021

37:6 Branching Automata and Pomset Automata

▶ Example 3. Let A = {a, b, c}, L = {ancbn : n ≥ 0}, and A be the b*-automaton pictured
in Figure 1. Then L(A) = L. Note that L is not b-regular, thus the class of b-regular

1start 2 3 4

5

a

c

c b

1 2 1 2 1 2 3 4 3 4 3 4

5

5

a a a c b b b

Figure 1 On the top, a b*-automaton A with L(A) = {ancbn : n ≥ 0}. The only fork transition
is (2, {1, 5}), the only join transition ({4, 5}, 3), the only initial state is 1 and the only final state 4.
At the bottom, a representation of a b*-path labeled by aaacbbb.

languages is strictly included into the class of b*-regular ones.

A (pomset) context-free grammar, or CFG for short, G = (T, N, S, R) is given by finite
sets T of terminals, N of non-terminals, R of rules (or productions) and an axiom S ∈ N .
Rules are of the form X → u with X ∈ N and u a finite term built from N ∪ T ∪ {ϵ} with
the sequential and parallel products as operations. The language L(G) of G is defined with
the axiom S as a start symbol as usual.

▶ Theorem 4. A language of SP (A) is context-free if and only if it is b*-regular.

Proof. First consider a language L ⊆ SP (A) with L = L(G) for some context-free grammar
G = (T, N, S, R). Up to usual transformations, we may assume that there there is at most
one production whose right member is ϵ, if there is such a production it is S → ϵ, and that
the axiom S does not appear in any of the right member of the productions in R. For each
rule X → u ∈ R, X ∈ N , build a b*-automaton AX→u on the alphabet T ∪ N such that
L(AX→u) = {u}. For each X ∈ N , build a b*-automaton AX from the disjoint union of all
AX→u, X → u ∈ R. Now build a b*-automaton AG such that L = L(AG) as follows. For
all X ∈ N \ {S}, take 2 copies AX,1 and AX,2 of AX . Consider the disjoint union AG of
AS and of all b*-automata AX,i, x ∈ N , i ∈ [2]. For each transition t = (p, X, q), X ∈ N ,
in AS or AY,i, Y ̸= X, i ∈ [2], add a new state t, a fork transition (p, {s, t}) for each initial
state s of AX,1, and a join transition ({s′, t}, q) for each final state s′ of AX,1. Remove the
transition t. For each transition t = (p, X, q), X ∈ N , in AX,i, i ∈ [2], add a new state t, a
fork transition (p, {s, t}) for each initial state s of AX,j , j ̸= i, and a join transition ({s′, t}, q)
for each final state s′ of AX,j . Remove the transition t. The initial and final states of AG

are taken from AS . The accepting b*-paths of AG are precisely those of AS is which each
use of a transition (p, X, q), X ∈ N , is replaced by an accepting path of AX . Immediately,
we get L(AG) = L(G).

Let us turn to the other direction. Consider a b*-automaton A, and for each pair (p, q)
of its states consider the language Lp,q of the labels of b*-paths from p to q. Following a
McNaughton-Yamada like construction, we build a finite system S of equalities where each
Lp,q is expressed as a term depending of the Lr,s, the letters of the alphabet, union, parallel
and sequential composition. We refer to [7, Proof of Theorem 6] for the construction of
such S. The system S can be easily transformed into a CFG G with L(G) = L(A). ◀

N. Bedon 37:7

As a consequence, the class of b*-regular languages of SP (A) is not closed under boolean
operations, whereas the class of b-regular languages of SP +(A) is [1].

The class of b*-rational languages of SP (A) is the smallest containing ∅, {a} for all
a ∈ A, and closed under Sb∗ = {∪, ·,∗ , ∥, ◦ξ,∗ξ }. This definition is the same as b-rational
languages, except that sequential iteration + has been replaced by ∗ and thus ϵ is taken into
consideration, and that the restriction expressed by Condition 1 has been removed.

▶ Example 5. The language L of Example 3 is given by the b*-rational expression L =
c ◦ξ (aξb)∗ξ.

Observe that the usual Kleene rational languages of A∗ are a particular case of the
b*-rational languages of SP (A), in which the operators ∥, ◦ξ and ∗ξ are not allowed. The
class of commutative rational languages of A⊛ (or over A), which is the smallest containing
∅, {a} for all a ∈ A, and closed under ∪, ∥ and ⊛, is also a particular case of the b*-rational
languages of SP (A) (recall Equalities (1)).

▶ Theorem 6. A language of SP (A) is b*-regular if and only if it is b*-rational.

Proof. First we build a b*-automaton Ae from a b*-rational expression e such that L(Ae) =
L(e). Using Theorem 4 it suffices to build a CFG G from e, such that L(G) = L(e). This is
done by induction over e. For the cases where e has one of the form e = ∅, e = {ϵ}, e = {a}
with a ∈ A, e = e1 ∪ e2, e = e1 · e2, e = e1 ∥ e2, e = f∗, the CFG is directly obtained using
the induction hypothesis and usual techniques, so we focus on e = e1 ◦ξ e2 and e = f∗ξ. First
assume e = e1 ◦ξ e2 and that by induction hypothesis we have two CFG Gi = (A, Ni, Si, Ri)
with L(Gi) = L(ei), i ∈ [2]. Build G = (A, N1 ∪N2 ∪{Xξ}, S2, R1 ∪R ∪{Xξ → ξ, Xξ → S1})
in which Xξ ̸∈ N1 ∪ N2 is a new non-terminal and R is R2 is which every occurrence of the
terminal ξ has been replaced by Xξ. Then L(G) = L(e1 ◦ξ e2). Assume now e = f∗ξ for some
b*-rational expression f and let Gf = (A, Nf , Sf , Rf) be the CFG build from f by induction
hypothesis. Let G = (A, Nf , Sf , R ∪ {Sf → ξ}) where R is Rf is which every occurrence of
the terminal ξ has been replaced by Sf . Then L(G) = L(f∗ξ).

Now let A be a b*-automaton. The proof that L(A) is b*-rational uses exactly the same
arguments as those of the direction from left to right of Theorem 2. ◀

We will need later the following particular form of branching automata, adapted from [7]
to our case. A b*-automaton A is misbehaved if it has a fork transition (p, {p1, . . . , pn}) such
that pj

P→
A

f for some j ∈ [n], P and final state f , or if it has a join transition ({p1, . . . , pn}, p)

such that i
P→
A

pj for some j ∈ [n], P and initial state i. If A is not misbehaved then it is
behaved.

▶ Proposition 7. For every b*-automaton A there is a behaved b*-automaton B such that
L(A) = L(B).

Proof. For each fork transition f = (p, {p1, . . . , pn}) we take n copies (Af,i)i∈[n] of A. The
b*-automaton B is the disjoint union of these copies with another copy A0. Delete all the
fork and join transitions from A0. For each fork transition f = (p, {p1, . . . , pn}) of A, we add
to B a fork transition (p, {p1, . . . , pn}) where p is taken in A0 and for all i ∈ [n], pi is taken
in Af,i. For each join transition j = ({q1, . . . , qn}, q), we add all the possible join transitions
simulating j where q is taken in A0 and all the qi are taken in the different copies (Aj,i)i∈[n].
It can be verified that if the initial and final states of B are those of A taken in A0, then B
is behaved and that L(B) = L(A). ◀

The definitions and results about behaveness also trivially apply to b-automata.

FSTTCS 2021

37:8 Branching Automata and Pomset Automata

4 Pomset Automata

Pomset automata are also a generalization of usual Kleene automata, introduced by Kappé,
Brunet, Luttik, Silva and Zanasi [5]. A pomset automaton is a tuple A = (Q, A, E, {i}, F)
where Q is a finite set of states, A is an alphabet, i is the initial state, F ⊆ Q the set of final
states, and E forms the transitions of A. The transitions E consists in two functions:

Eseq : Q×A → Q is the sequential transition function, as for usual transitions in complete
deterministic Kleene automata;
Epar : Q × Q × Q → Q is the parallel transition function.

We define the relation →
A

⊆ Q × SP (A) × Q as the smallest relation satisfying:

1. p
ϵ→
A

p;

2. p
a→
A

Eseq(p, a);

3. if p
P→
A

q and q
Q→
A

r then p
P Q→
A

r;

4. if p
P→
A

q ∈ F and r
Q→
A

s ∈ F then t
P ∥Q→

A
Epar(t, p, r).

When presenting a pomset automaton A, we may define the transition function only partially
and implicitely assume the existence of an additional sink state ⊥ (if ⊥ P→

A
q for some P then

q = ⊥) and a final state ⊤ such that all transitions from ⊤ go to ⊥.
If p

P→
A

q we say that there is a p-path from p to q labeled by P in A. We call p-automaton
a pomset automaton equipped with the notion of p-path defined as in Section 3.1 but with
the relation →

A
above. The language of A is L(A) = {P ∈ SP (A) : i

P→
A

q for some q ∈ F}. A
language L ⊆ SP (A) is p-regular if L is the language of some p-automaton.

▶ Example 8. A p-automaton with same language as the b*-automaton of Example 3 is
pictured in Figure 2. For simplicity we do not consider the states ⊥ and ⊤.

1start 2 3 4

6
7

a

c

b

1 2

1

6

2
1

6

7
3 4

3 4a

a

c

b

b

Figure 2 On the left, a p-automaton A with L(A) = {ancbn : n ≥ 0}. The parallel transition
function is Epar : (2, 1, 6) → 3, the only initial state is 1 and the final states are 4,6,7. On the right,
a representation of a p-path labeled by aacbb.

It is to notice that the transitions in branching automata are in the definition given by
relations, whereas the transitions in pomset automata are functions. However, this does
not mean that p

P→
A

r and p
P→
A

s implies r = s in a p-automaton A: consider for example
that A may have different p-paths starting from a state q and labeled with P = a ∥ b ∥ c:
one composing p-paths p1

a→
A

p2 and p3
b∥c→
A

p4 using a transition (p, p1, p3) → r, and another

composing some q1
a∥b→
A

q2 and q3
c→
A

q4 using a transition (p, q1, q3) → s.

▶ Theorem 9 ([5]). A language of SP (A) is context-free if and only if it is p-regular.

N. Bedon 37:9

As an immediate corollary of Theorems 4 and 9, b*-automata and p-automata have the
same expressive power:

▶ Corollary 10. A language of SP (A) is b*-regular if and only if it is p-regular.

5 Series-parallel rational languages

The class of series-parallel rational languages of SP (A) is the smallest containing ∅, {a}
for all a ∈ A, and closed under Ssp = {∪, ·,∗ , ∥,⊛ }. As a consequence of Equalities (1), any
series-parallel rational language of SP (A) is also b*-rational, and any series-parallel rational
language of SP +(A) (ϵ not considered) is also b-rational. As noticed in the conclusion of [8],
the inclusion is strict, since for example a ◦ξ (a ∥ (aξ))∗ξ is b-rational but not series-parallel
rational.

In the conclusion of [9] the authors left open the question of a necessary and sufficient
condition on a b-automaton A for L(A) to be series-parallel rational. We answer this question
in this section with b*-automata. The result also applies to b-automata, provided that ϵ is
not taken into consideration on both automata and rational expressions sides (for example ⊛

and ∗ have to be replaced by respectively ⊕ and + in the definition of series-parallel rationality
above).

A language is series-parallel regular if it is the language of some b*-automaton A verifying
Condition 2 below.

▶ Condition 2. There is no b*-path p rooted by some pair (f, j) of a fork and a join transition,
such that p uses (f, j) at a sequential level.

Whether a b*-automaton verifies Condition 2 or not is decidable using methods similar
to those developed in [10].

▶ Theorem 11. A language L of SP (A) is series-parallel regular if and only if it is series-
parallel rational.

Proof. From right to left we proceed by induction over a series-parallel rational expression e

with L = L(e). Since the construction given in the proof of Proposition 7 preserves Condition 2
we may assume that b*-automata constructed at induction steps are behaved. The cases
where e has an elementary form, or e = e1 ∪ e2 for some e1, e2 are as usual in automata
theory. Assume e = e1 · e2; by induction hypothesis we have behaved b*-automata A1 and
A2 for respectively e1 and e2. Consider the disjoint union A of A1 and A2. For each final
state f of A1, initial state i of A2 and sequential or fork transition t of source i, duplicate t

by replacing the source i with f . The initial states of the resulting b*-automaton are those
of A1. The final states are those of A2 and in addition the final states of A1 when ϵ ∈ L(A2).
Assume now e = e′∗ and let A′ be a behaved b*-automaton for e′. For each final state
f , initial state i, sequential and fork transition t of source i, duplicate t by replacing the
source i with f . The initial states are those of A′, the final states are those of A′ plus the
initial states. When e = e1 ∥ e2 the construction is the disjoint union of A1 and A2 with
a unique initial new state i, a unique final new state f , for each initial states i1 and i2 of
respectively A1 and A2 a new normal fork transition (i, {i1, i2}), for each final states f1 and
f2 of respectively A1 and A2 a new join transition ({f1, f2}, f). Assume finally e = e′⊛.
We build from A′ a b*-automaton A for e as follows. Let T be the set of all sequential or
join transitions whose destination is a final state of A′. Let A′

0 and A′
t, t ∈ T , be copies

of A′. We build A from the disjoint union of these copies. Add two new states i and f .
For each initial state i′ (resp. final state f ′) of A′

0 add a fork transition (i, {i, i′}) (resp. a

FSTTCS 2021

37:10 Branching Automata and Pomset Automata

join transition ({f ′, f}, f)). For each t ∈ T duplicate each sequential and fork transition of
source i′ taken in A′

t by replacing the source i′ with i. Duplicate t ∈ T in At by replacing
the destination f ′ with f . For each sequential transition (i′, a, f ′) add (i, a, f). The unique
initial state of A is i, and its final states are i and f .

We now prove that the language of some b*-automaton A = (Q, A, E, I, F) verifying
Condition 2 is series-parallel rational. We adapt the McNaughton-Yamada construction of
a rational expression from an automaton (see [7, Section 4.2] for the case of b-automata).
When p, q ∈ Q, D, D′ ⊆ Efork × Ejoin, (f, j) ∈ Efork × Ejoin, denote by:

Lp,q = {P ∈ SP (A) : p
P→
A

q};

LD,D′

p,q is the set of labels of b*-paths from p to q that can use only pairs of fork and join
transitions from D at the upper level and from D′ at a sequential level;
L(D′, f, j) is the set of label of b*-paths rooted by (f, j) that can use only pairs of fork
and join transitions from D′ at a sequential level.

A rational expression for L∅,D′

p,q is found as for automata on words since no fork and join
transitions are allowed. Otherwise, D ̸= ∅ and since A verifies Condition 2:

Lp,q =L
Efork×Ejoin,Efork×Ejoin
p,q

LD,D′
p,q =

⋃
(f,j)∈D∩D′

(
LD\{(f,j)},D′

p,q ∪ L
D\{(f,j)},D′

p,π1(f) (L(D′, f, j)LD\{(f,j)},D′

π2(j),π1(f))∗L
D\{(f,j)},D′

π1(f),q

)
⋃

(f,j)∈D
π1(f)=p

π2(j)=q

(
LD\{(f,j)},D′

p,q ∪ L(D′, f, j)
)

L(D′, f, j) =
⋃

σ∈Sk

∥
i∈[k]

L
Efork×Ejoin,D′\{(f,j)}
ri,sσi

where f and j have the form f = (r, {r1, . . . , rk}) and j = ({s1, . . . , sk}, s) in the last equality.
The above equalities form a system of equations where the unknowns are the LD,D′

p,q , D ≠ ∅,
and the L∅,D′

p,q are the constants. First observe that when D ̸= ∅, LD,∅
p,q depends only of the

LD′,∅
p′,q′ , D′ ⊂ D or D′ = Efork × Ejoin. The only operations involved in the equalities for the

LD,∅
p,q are ∪ and ∥. The system of equations is solved as usual using substitutions and ⊛ is

used to resolve circular substitutions. ◀

A similar result holds for p-automata [5] A. In A, define ⪯ as the smallest preorder on
states such that Eseq(q, a) ⪯ q, Epar(q, r, s) ⪯ q, and if Epar(q, r, s) ̸= ⊥ then r, s ⪯ q. Set
also p ≺ q if and only if p ⪯ q and q ̸⪯ p. Say that A is well-nested if each state q verifies
exactly one of the following properties:
1. r, s ≺ q for all states r, s with Epar(q, r, s) ̸= ⊥;
2. q ∈ F , Eseq(q, a) = ⊥ for all a, and if Epar(q, r, s) ̸= ⊥ then Epar(q, r, s) = ⊤, s = q and

r ≺ q.

▶ Theorem 12 ([5]). A language L of SP (A) is series-parallel rational if and only if there
is a well-nested p-automaton A with L = L(A).

We now show that a very similar characterisation also exists for b*-automata to have
them correspond to series-parallel rational languages. For every b*-automaton there is a
b*-automaton with the same language and with all its fork and join transitions of arity 2. We
assume here that all fork and join transitions of b*-automata are of arity 2. In a b*-automaton
A, define ⪯f as the smallest preorder on states such that
1. if p →

A
q then q ⪯f p;

2. if (p, {p1, p2}) ∈ Efork then p1, p2 ⪯f p;
3. if ({q1, q2}, q) ∈ Ejoin then q1, q2 ⪯f q.

N. Bedon 37:11

Set p ≺f q if and only if p ⪯f q and q ̸⪯f p. Define ⪯j and ≺j similarly, by replacing Item 1
above by: if p →

A
q then p ⪯f q. Observe that if there is a b*-path p →

A
q then r ⪯f p and

r ⪯j q for all states r used in the b*-path.
A fork transition (p, {p1, p2}) (resp. join transition ({p1, p2}, p)) is normal if p1, p2 ̸= p.

It is recursive otherwise. A state p is normal when all the fork transitions (p, {p1, p2}) and
join transitions ({p1, p2}, p) verify p1, p2 ≺f p and p1, p2 ≺j p. It is fork recursive when all
the conditions below are verified:

there is some recursive fork transition (p, {p, p′}), and in this case p′ ≺f p and p′ ≺j p for
all such transitions;
for all normal fork transition (p, {p1, p2}) then p1, p2 ≺f p and p1, p2 ≺j p;
for all normal fork transition (p, {p1, p2}) and join transition ({q1, q2}, q), when p1 →

A
q1

and p2 →
A

q2 then q ≺f p;
for all sequential transition (p, a, q) then q ≺f p;
there is no transition of the form (q, a, p) or ({p1, p2}, p).

It is join recursive when all the conditions below are verified:
there is some recursive join transition ({p, p′}, p), and in this case p′ ≺f p and p′ ≺j p for
all such transitions;
for all normal join transition ({p1, p2}, p) then p1, p2 ≺f p and p1, p2 ≺j p;
for all normal fork transition (q, {q1, q2}) and join transition ({p1, p2}, p), when q1 →

A
p1

and q2 →
A

p2 then q ≺j p;
for all sequential transition (q, a, p) then q ≺j p;
there is no transition of the form (p, a, q) or (p, {p1, p2}).

Then A is well-nested if each state as a unique classification as normal, fork recursive
or join recursive, and, when x = (p, {p1, p2}) and y = ({q1, q2}, q) are a fork and a join
transition and pi →

A
qi, i ∈ [2], then x, y are both recursive, or both normal.

▶ Proposition 13. For every well-nested b*-automaton A there is a behaved and well-nested
b*-automaton B such that L(A) = L(B), and the initial and final states of B are normal.

Proof. It suffices to check that the construction of the proof of Proposition 7 preserves
well-nestedness, and that in the copy A0 all states are normal. ◀

▶ Theorem 14. A language L of SP (A) is series-parallel rational if and only if there is a
well-nested b*-automaton A with L = L(A).

Proof. The implication from left to right is by induction over a series-parallel rational
expression e for L. The steps are the same as in the proof of Theorem 11 (it suffices to check
that the constructions preserve well-nestedness).

For the implication from right to left we show that a well-nested b*-automaton A verifies
Condition 2, and the conclusion follows by Theorem 11. Assume by contradiction that A
does not verify Condition 2, ie. it has a b*-path p rooted by some pair (f, j) of a pair
and a join transition such that p uses (f, j) at a sequential level. Let f = (r, {r1, r2}) and
j = ({s1, s2}, s). Take a term t which is a representative of p: there are some t′′ ⪯ t′ ⪯ t with
t′′ rooted by (f, j) and t′ of the form t′ = t′

1 · t′
2 with t′

1, t′
2 both non-trivial. Consider t as a

tree. In this tree, consider the path α from the root node n of t to the root node n′ of the
sub-tree t′′. This path goes through the root node n′′ of the sub-tree t′, that we may consider
the first one along α such that t′ = t′

1 · t′
2 for some non-trivial t′

1, t′
2. The term t has the form

(f, j)(t1, t2), with ti a b*-path ri →
A

si, i ∈ [2]. Either the root node of t1 or of t2 belongs to

FSTTCS 2021

37:12 Branching Automata and Pomset Automata

α, say wlog. t1. If r1 ≺f r or s1 ≺j s we get a contradiction since x ⪯f r1 and x ⪯j s1 for
all states x used in t1, and thus for x = r. Thus r1 = r and s1 = s. This reasoning is true
for all nodes of α between n and n′. Thus t′

1 and t′
2 are respectively non-trivial b*-paths

r →
A

x and x →
A

s for some x, that can not use recursive fork or join transitions at the upper
level, since there is no fork recursive state y and state y′ such that y′ →

A
y, and there is no

join recursive state y and state y′ such that y →
A

y′. Thus x ≺f r and x ≺j s. For all states
y used in t′

1 it holds y ⪯f r, and for all states y used in t′
2 we have y ⪯j s. Assume first

t′′ is a sub-term of t′
2. Then we have z ⪯f x for all states z appearing in t′

2, in particular
r ⪯f x, which is a contradiction. Thus t′′ is a sub-term of t′

1. We have z ⪯j x for all states z

appearing in t′
1, in particular s ⪯j x, which is again a contradiction. ◀

▶ Example 15. Figure 3 represents a well-nested b*-automaton A obtained by induction
on the series-parallel rational expression e = ((a ∥ b)∗)⊛ following the steps of the proof of
Theorem 14. Note that it is misbehaved since for example 1 is initial, 1

a∥b→
A

8 and because of
the join transition ({2′, 8}, 8). The only fork recursive state is 1, the only join recursive state
is 8, and all other states are normal.

2

3

4

5

6

71start 8

2′

3′

4′

5′

6′

7′

a

b

a

b

3 5 2 7 1

4 6 8

3′ 5′ 2′ 7′

4′ 6′

3 5 2 7 1

4 6 8

3′ 5′ 2′ 7′

4′ 6′

Figure 3 On the left, a well-nested b*-automaton A with L(A) = ((a ∥ b)∗)⊛. It has 6 fork
transitions f1 = (1, {3, 4}), f2 = (1, {1, 2′}), f3 = (2, {3, 4}), f4 = (7, {3, 4}), f5 = (2′, {3′, 4′}),
f6 = (7′, {3′, 4′}), 4 join transitions j1 = ({5, 6}, 8), j2 = ({7′, 8}, 8), j3 = ({5, 6}, 7), j4 = ({2′, 8}, 8),
j5 = ({5′, 6′}, 7′). On the right top, a diagram of the preorder ⪯f over the states of A. On the right
bottom, a diagram of ⪯j .

6 Conclusion

We have compared branching versus p-automata. When they are defined in the most general
manner, they have the same expressive power which corresponds to that of context-free
grammars, or equivalently, to series-parallel rational expressions with additional L ◦ξ L′

and L∗ξ operations that enable respectively substitutions and iterated substitutions. As
consequences of the equivalence between b*-automata and context-free grammars questions
such as ”Is a b*-regular language b-regular, or series-parallel rational?” are undecidable.

N. Bedon 37:13

We also gave characterizations on branching automata to have them exactly as expressive
as series-parallel rational expressions, answering of question of [9]; a similar restriction
(well-nestedness) was already known for p-automata [5]. All the results are effective. Series-
rational languages are defined similarly to series-parallel languages without the ability to
iterate parallelism (ie. series-rational expressions are series-parallel expressions without
L⊛). They have been investigated in [9] for branching automata and in [4] for p-automata.
Corresponding automata have the fork-acyclicity property, ie. they can not use a transition
that splits an execution flow into several parallel flows f1, . . . , fn into the fi’s again. The
following diagram sums-up those results:

b*-rational
b*-regular
p-regular

context-free

b-rational
b-regular

series-parallel rational
b-regular ∩ Condition 2
b*-regular ∩ well-nested
p-regular ∩ well-nested

series-rational
b-regular ∩ fork-acyclic
p-regular ∩ fork-acyclic

⊋ ⊋ ⊋

References
1 Nicolas Bedon. Logic and branching automata. Logical Methods in Computer Sciences,

11(4:2):1–38, October 2015.
2 Jay L. Gischer. The equational theory of pomsets. Theoret. Comput. Sci., 61(2):199–224, 1988.

doi:10.1016/0304-3975(88)90124-7.
3 Jan Grabowski. On partial languages. Fundam. Inform., 4(1):427–498, 1981.
4 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. Brzozowski

goes concurrent - A Kleene theorem for pomset languages. In Proc. CONCUR 2017: 28th
International Conference on Concurrency Theory, volume 28, pages 21:1–21:15, January 2017.

5 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. On series-parallel
pomset languages: Rationality, context-freeness and automata. Journal of Logical and Algebraic
Methods in Programming, 103, December 2018. doi:10.1016/j.jlamp.2018.12.001.

6 Stephen C. Kleene. Representation of events in nerve nets and finite automata. In Shannon
and McCarthy, editors, Automata studies, pages 3–41, Princeton, New Jersey, 1956. Princeton
University Press.

7 Kamal Lodaya and Pascal Weil. A Kleene iteration for parallelism. In V. Arvind and
R. Ramanujam, editors, Foundations of Software Technology and Theoretical Computer
Science, volume 1530 of Lect. Notes in Comput. Sci., pages 355–367. Springer-Verlag, 1998.

8 Kamal Lodaya and Pascal Weil. Series-parallel posets: algebra, automata and languages. In
M. Morvan, Ch. Meinel, and D. Krob, editors, STACS’98, volume 1373 of Lect. Notes in
Comput. Sci., pages 555–565. Springer-Verlag, 1998.

9 Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theoret. Comput. Sci., 237(1–2):347–380, 2000.

10 Kamal Lodaya and Pascal Weil. Rationality in algebras with a series operation. Inform.
Comput., 171:269–293, 2001.

11 Jacobo Valdes. Parsing flowcharts and series-parallel graphs. Technical Report STAN-CS-78-
682, Computer science departement of the Stanford University, Standford, Ca., 1978.

12 Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel
digraphs. SIAM J. Comput., 11:298–313, 1982. doi:10.1137/0211023.

13 Józef Winkowski. An algebraic approach to concurrence. In MFCS’79, volume 74 of Lect.
Notes in Comput. Sci., pages 523–532. Springer Verlag, 1979.

FSTTCS 2021

https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/j.jlamp.2018.12.001
https://doi.org/10.1137/0211023

History Determinism vs. Good for Gameness
in Quantitative Automata
Udi Boker # Ñ

Reichman University, Herzliya, Israel

Karoliina Lehtinen #

CNRS, Marseille-Aix Université, Université de Toulon, LIS, Marseille, France

Abstract
Automata models between determinism and nondeterminism/alternations can retain some of the
algorithmic properties of deterministic automata while enjoying some of the expressiveness and
succinctness of nondeterminism. We study three closely related such models – history determinism,
good for gameness and determinisability by pruning – on quantitative automata.

While in the Boolean setting, history determinism and good for gameness coincide, we show
that this is no longer the case in the quantitative setting: good for gameness is broader than history
determinism, and coincides with a relaxed version of it, defined with respect to thresholds. We further
identify criteria in which history determinism, which is generally broader than determinisability by
pruning, coincides with it, which we then apply to typical quantitative automata types.

As a key application of good for games and history deterministic automata is synthesis, we clarify
the relationship between the two notions and various quantitative synthesis problems. We show that
good-for-games automata are central for “global” (classical) synthesis, while “local” (good-enough)
synthesis reduces to deciding whether a nondeterministic automaton is history deterministic.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Good for games, history determinism, alternation, quantitative automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.38

Acknowledgements We thank Jan Otop for discussing Borel definability in quantitative automata.

1 Introduction

Boolean automata recognise languages of finite or infinite words, often used in verification to
describe system behaviours. In contrast, quantitative automata define functions from words
to values, and can describe system properties such as energy usage, battery-life or costs. Like
Boolean automata, quantitative automata can have nondeterministic choices (disjunctions)
and universal choices (conjunctions), which make them more powerful than deterministic
models. Alternating automata combine both nondeterministic and universal choices.

However, not all nondeterminism is born equal. Generally, nondeterminism increases the
expressiveness and succinctness of an automata model, but at the cost of also increasing
the complexity of algorithmic problems on it, sometimes even rendering them undecidable.
However, restricted forms of nondeterministic and even alternating automata can enjoy
some of the good algorithmic properties of deterministic automata while also gaining in
expressiveness and succinctness.

We focus on three closely related restrictions on nondeterminism and alternations, relevant
to the synthesis problem. History determinism [11] postulates that the choices in the
automaton – whether they be nondeterministic or universal – should not depend on the
future of the input word. That is, one should be able to construct runs letter by letter while
reading the input word, so that the resulting run is as good as one constructed with the
knowledge of the full word. The notion of good for games automata comes from solving
two-player games without determinisation [14]. It postulates that the composition of such an

© Udi Boker and Karoliina Lehtinen;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 38; pp. 38:1–38:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:udiboker@idc.ac.il
https://faculty.idc.ac.il/udiboker
mailto:lehtinen@lis-lab.fr
https://orcid.org/0000-0003-1171-8790
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 History Determinism vs. Good for Gameness

automaton A with games whose payoff function is described by A should be an equivalent
game – that is, one with the same winner in the Boolean setting, or the same value in the
quantitative setting. Finally, an automaton is determinisable by pruning if it embeds an
equivalent deterministic automaton and, at least in the nondeterministic case, this notion
can be seen as a (stronger) “semi-syntactic” version of history determinism.

The three notions are well studied in the Boolean setting. There, history determinism and
good for gameness coincide, and are broader than determinisability by pruning in general,
but coincide with it for some automata types [8].

We generalize these notions to the quantitative setting and study the relations between
them. Some versions of these notions already appear in the literature with respect to
quantitative automata, as we elaborate on in the related-work paragraph, however not in a
systematic and consistent way, and without analysis of the relations between them.

We start with general results concerning arbitrary quantitative automata and then provide
a more specific analysis of the following most common types of quantitative automata:
Sum, Avg, Inf, Sup, discounted sum (DSum), LimInf, LimSup, LimInfAvg and LimSupAvg.

Surprisingly, it turns out that good for gameness and history determinism no longer
coincide in the quantitative setting. The surprise comes from the fact that the two names
are used interchangeably in the Boolean setting and are already starting to mix in the
quantitative setting. (In the Boolean setting, even the seminal paper of Henzinger and
Piterman [14], which named the “good for games” notion, defined history deterministic
automata and showed that they are indeed good for games, while the other direction was only
shown later [8]. In the quantitative setting, [16, 17, 18] speak of good for games quantitative
automata, although their definition is closer to history determinism.)

We first observe that in the quantitative setting, the three notions need sub-notions,
relating to whether one considers automata/games equivalence with respect to values or
thresholds. (See Section 3 for the exact definitions.)

We then show that while good for gameness coincides with threshold good for gameness,
history determinism is stricter than threshold history determinism, and only the latter, under
some assumptions, is equivalent to good for gameness. (See Figure 2 for a detailed scheme of
the relations.) The assumption for the equivalence of threshold history determinism and good
for gameness is that the “letter game” played on the quantitative automaton (which defines
whether or not it is history deterministic) is determined. We show that this is guaranteed
for quantitative automata whose threshold versions define Borel sets.

Determinizability by pruning, which has an appealing structural definition, is generally
stricter than history determinism for nondeterministic automata, already in the Boolean
setting, while equivalent to it for some automata types. We observe that the two notions
are incomparable for alternating automata, already in the Boolean setting (see Figure 5).
We then analyse general properties of value functions that guarantee the equivalence of
determinizability by pruning and history determinism for all nondeterministic quantitative
automata whose value function has these properties. We apply these results to specific
automata types. Specifically, we show the equivalence for Sum, Avg, Inf and Sup automata
on finite words and DSum automata on finite and infinite words.

Finally, we discuss how the different notions are relevant for different quantitative synthesis
problems. In quantitative synthesis [9, 2], the specification is a function f that maps sequences
of input-output pairs onto values. The goal of the system is to respond to input letters by
producing output letters while maximising the value of the resulting input-output sequence.
Given a function f , one can ask several questions: (i) what is the best value a system can
guarantee over all inputs [4]? (ii) can it guarantee at least a threshold value? (iii) can it

U. Boker and K. Lehtinen 38:3

guarantee for each input sequence I the best value that an input-output sequence including I

has [12]? (iv) can it achieve a threshold value t for all inputs that appear in an input-output
sequence with value at least t? In a nutshell, we show that on one hand, (threshold) good
for games alternating quantitative automata can be used to solve (i) and (ii) via a product
construction similar to the one used for deterministic automata [4]; and on the other hand,
(iii) and (iv) for (threshold) history deterministic nondeterministic automata are linearly
inter-reducible with deciding the (threshold) history-determinism of an automaton.

Related work. Thomas Colcombet’s original definition of history determinism [11] also
considered non-Boolean automata, namely cost automata. While the restriction of his
definition to ω-regular automata coincides with the original definition in [14] of good for
games automata [8], in the quantitative setting his definition is different from what we
provide here. His notion can be viewed as ‘approximated history-deterministic with respect
to a threshold’ as it asks for an approximation ratio that describes the difference between
the value achieved by a strategy without the knowledge of the full input word and the
actual value of the word. Another notion of approximative history determinism appears
in [16, 17, 18] under the name of r-GFGness, where r is a bound on the difference of
the two values. Zero-regret determinizability [3, 17] on the other hand lies somewhere
between approximative determinizability by pruning and approximative history determinism.
It requires an automaton to be approximatively equivalent to a deterministic automaton
obtained by taking the product of the input automaton with a finite memory, with both the
size of the memory and permitted regret as parameters. When both are set to zero, we have
determinizability by pruning.

Observe that we use the term “quantitative automata” rather than “weighted automata”.
The latter usually relates to the algebraic definition, whereby the value of a nondeterministic
automaton on a word is the semiring sum (or valuation-monoid sum) of its accepting runs’
values. It is generally not defined for alternating automata. The former defines the value
of a nondeterministic or alternating automaton on a word to be the supremum/infimum of
its runs’ values, having the “choice” and “obligation” interpretation of nondeterminism and
universality, respectively. (See [5] for a discussion on the differences between the two.) Since
history determinism naturally relates to “choice” and “obligation” in nondeterministic and
alternating automata, quantitative automata better fit the present work.

Due to space constraints, some of the proofs appear in the appendix.

2 Preliminaries

Words. An alphabet Σ is a finite nonempty set of letters. A finite (resp. infinite) word
u = u0 . . . uk ∈ Σ∗ (resp. w = w0w1 . . . ∈ Σω) is a finite (resp. infinite) sequence of letters
from Σ. We write Σ∞ for Σ∗ ∪ Σω. We use [i..j] to denote a set {i, . . . , j} of integers, [i]
for [i..i], [..j] for [0..j], and [i..] for integers equal to or larger than i. We write w[i..j], w[..j],
and w[i..] for the infix wi . . . wj , prefix w0 . . . wj , and suffix wi . . . of w. A language is a set
of words, and the empty word is written ε.

Games. We consider turn-based zero-sum games between Adam and Eve, with Σ-labelled
transitions. A play generates a word, and each word has a value, given by the game’s payoff
function. Eve tries to maximise the value of the play, while Adam tries to minimise it.
Formally, for a payoff function f , an f game is defined on an arena (V, E, VE , VA, L : E →
Σ ∪ {ε}), which consists of a (potentially infinite) set of positions V , partitioned into Eve’s

FSTTCS 2021

38:4 History Determinism vs. Good for Gameness

positions VE and Adam’s positions VA, and a set of edges E ⊆ V × V , labelled by L with
letters from Σ ∪ {ε}. In infinite-duration games every position has at least one outgoing edge.
A play is a maximal path over V ; its non-ε labels induce a word w ∈ Σ∗ or Σω. The payoff
of a play is the value of this word, given by the payoff function f .

Strategies for Adam and Eve map partial plays ending in a position v in VA and VE

respectively to outgoing edges from v. A play or partial play π agrees with a strategy sP ,
written π ∈ sP , for a player P ∈ {A, E}, if whenever its prefix p ends in a position in VP , the
next edge is sP (p). The value f(sE) of a strategy sE for Eve is infπ∈sE

f(π) and the value
f(sA) of a strategy sA for Adam is supπ∈sA

f(π). Let SE and SA be the sets of strategies for
Eve and Adam respectively. If sups∈SE

f(s) (the best Eve can do) coincides with infs∈SA
f(s)

(the best Adam can do), we say that G is determined and sups∈SE
f(s) = infs∈SA

f(s) is
called the value of G. Eve wins the t-threshold game on G, for some t ∈ R, if the value of G

is at least t; else Adam wins. Eve wins the strict t-threshold game on G if the value of G is
greater than t. Two games are equivalent in this context if they have the same value. We
restrict the scope of this article to determined games.

Quantitative Automata. An alternating quantitative automaton on words is a tuple A =
(Σ, Q, ι, δ), where: Σ is an alphabet; Q is a finite nonempty set of states; ι ∈ Q is an initial
state; and δ : Q × Σ → B+(Q × Q) is a transition function, where B+(Q × Q) is the set of
positive Boolean formulas (transition conditions) over weight-state pairs.

A transition is a tuple (q, a, x, q′) ∈ Q×Σ×Q× Q, sometimes also written q
a:x−−→ q′. (Note

that there might be several transitions with different weights over the same letter between
the same pair of states1.) We write γ(t) = x for the weight of a transition t = (q, a, x, q′).

An automaton A is nondeterministic (resp. universal) if all its transition conditions are
disjunctions (resp. conjunctions), and it is deterministic if all its transition conditions are just
weight-state pairs. We represent the transition function of nondeterministic and universal
automata as δ : Q × Σ → 2(Q×Q), and of a deterministic automaton as δ : Q × Σ → Q × Q.

We require that the automaton A is total, namely that for every state q ∈ Q and letter
a ∈ Σ, there is at least one state q′ and a transition q

a:x−−→ q′. For a state q ∈ Q, we denote
by Aq the automaton that is derived from A by setting its initial state ι to q.

A run of the automaton on a word w is intuitively a play between Adam and Eve. It
starts in the initial state ι, and in each round, when the automaton is in state q and the next
letter of w is a, Eve resolves the nondeterminism (disjunctions) of the transition condition
δ(q, a) and Adam resolves its universality (conjunctions), yielding a transition q

a:x−−→ q′. The
output of a play is thus a sequence π = t0t1t2 . . . of transitions. As each transition ti carries
a weight γ(ti) ∈ Q, the sequence π provides a weight sequence γ(π) = γ(t0)γ(t1)γ(t2)
More formally, given the automaton A = (Σ, Q, ι, δ) and a word w ∈ Σ∗ (resp. w ∈ Σω), we
define the arena G(A, w) with positions Q × Σ∗ × B+(Q × Q) (resp. Q × Σω × B+(Q × Q)),
the initial position (ι, w, δ(ι, w[0])), ε-labelled edges from (q, u, b) to (q, u, b′) when b′ is an
immediate subformula of b, and x-labelled edges from (q, u, (x, q′)) to (q′, u[1..], δ(q′, u[1])).
Conjunctive positions belong to Adam while disjunctive ones belong to Eve.

A Val automaton (for example a Sum automaton) is one equipped with a value function
Val : Q∗ → R or Val : Qω → R. The corresponding game is the Val game on the arena
G(A, w): each run π (play in G(A, w)) has a real value Val(γ(π)), which we abbreviate by

1 This extra flexibility of allowing for “parallel” transitions with different weights is often omitted (e.g., in
[10]) since it is redundant for some value functions while important for others.

U. Boker and K. Lehtinen 38:5

Val(π). When this game is determined, we say that the value of A(w) is the value of G(A, w),
and if G(A, w) is determined for all w ∈ Σω, we say that A realizes a function from words to
real numbers. We restrict the scope of this article to automata realizing functions.

Two automata A and A′ are equivalent, denoted by A ≡ A′, if they realize the same
function. For a threshold t ∈ R and a Val automaton A, we also speak of a corresponding
Boolean t-threshold Val automaton A′ that accepts the words w such that A(w) ≥ t.

Observe that when A is nondeterministic, a run of A on a word w is a sequence π of
transitions, and the value of A on w is the supremum of Val(π) over all these runs π.

Value functions. We list here the most common value functions for quantitative automata
on finite/infinite words, defined over sequences of rational weights2:

For finite sequences v = v0v1 . . . vn−1:

Sum(v) =
n−1∑
i=0

vi Avg(v) = 1
n

n−1∑
i=0

vi

For finite and infinite sequences v = v0v1 . . .:

Inf(v) = inf{vn | n ≥ 0} Sup(v) = sup{vn | n ≥ 0}

For a discount factor λ ∈ Q ∩ (0, 1), DSum(v) =
∑
i≥0

λivi

For infinite sequences v = v0v1 . . .:

LimInf(v) = lim
n→∞

inf{vi | i ≥ n} LimSup(v) = lim
n→∞

sup{vi | i ≥ n}

LimInfAvg(v) = LimInf(Avg(v0), Avg(v0, v1), Avg(v0, v1, v2), . . .)

LimSupAvg(v) = LimSup(Avg(v0), Avg(v0, v1), Avg(v0, v1, v2), . . .)

(LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff.)

Products. The synchronized product of a Σ-labelled game G and an automaton A over
alphabet Σ is (like in the Boolean setting, see e.g., [8, Definition 1]) a game G × A obtained
by taking the product of the positions of G and the states and transition conditions of A, and
their corresponding transitions. Positions with nondeterminism are of Eve and positions with
universality are of Adam. Transitions carry their weight from the corresponding transition
in A. The payoff function of the game is the value function of A.

3 Good For Gameness, History Determinism, and Determinizability By
Pruning

In the Boolean setting, “good for gameness” and “history determinism”, stemming from
different concepts, coincide both for nondeterministic and alternating automata [8].

We generalize these definitions to quantitative automata, observing that under this setting
they need some sub-variants, relating to whether one considers automata/games equivalence
with respect to all values or some threshold3. As shown in Section 4, the two main notions,
as well as some of their variants, are generally not equivalent in the quantitative setting.

2 There are also value functions that are more naturally defined over sequences of tuples of rational
numbers, for example discounted-summation with multiple discount factors [6].

3 For a threshold t ∈ R, we provide the definitions with respect to a non-strict inequality ≥ t . Using
strict inequality > t instead, yields the same relations between the notions, as stated in Theorem 4.

FSTTCS 2021

38:6 History Determinism vs. Good for Gameness

The notion of determinizability by pruning, which has an appealing structural definition,
is generally stricter than good for gameness and history determinism in the setting of
nondeterministic automata, already in the Boolean setting, yet we show that for some value
functions it is equivalent to history determinism. For alternating automata, we show that it
is incomparable with history determinism and good for gameness.

▶ Definition 1 (Good for gameness). An automaton A realizing a function f : Σ∗ → R or
f : Σω → R is

good for games if for every determined4 game G with a Σ-labelled arena and payoff
function f , we have that G and G × A have the same value;
good for t-threshold games, for some t ∈ R, if for every determined game G with a
Σ-labelled arena and payoff function f , Eve wins the t-threshold game on G if and only if
she wins the t-threshold game on G × A;
good for threshold games if it is good for t-threshold games for all t ∈ R.

An automaton is history deterministic if there are strategies to resolve its nondeterminism
and universality, such that for every word, the (threshold) value remains the same.

▶ Definition 2 (History-determinism). Consider an alternating Val automaton A = (Σ, Q, ι, δ)
realizing a function f : Σ∗ → R or f : Σω → R. Formally, history determinism is defined via
letter games, detailed below.

A is history deterministic if Eve and Adam win their letter games.
A is t-threshold history deterministic, for some t ∈ R, if Eve and Adam win their
t-threshold letter games.
A is threshold history deterministic if it is t-threshold history deterministic for all t ∈ R.

Eve’s (Adam’s) letter games are the following win-lose games, in which Adam (Eve)
chooses the next letter and Eve and Adam resolve the nondeterminism and universality,
aiming to construct a run whose value is (threshold) equivalent to the generated word’s value.
Eve’s letter game: A configuration is a pair (σ, b) where b ∈ B+(Q) is a transition condition

and σ ∈ Σ ∪ {ε} is a letter. (We abuse ε to also be an empty letter.) A play begins in
(σ0, b0) = (ε, ι) and consists of an infinite sequence of configurations (σ0, b0)(σ1, b1) In
a configuration (σi, bi), the play proceeds to the next configuration (σi+1, bi+1) as follows.

If bi is a state of Q, Adam picks a letter a from Σ, and (σi+1, bi+1) = (a, δ(bi, a)).
If bi is a conjunction bi = b′ ∧ b′′, Adam chooses between (ε, b′) and (ε, b′′).
If bi is a disjunction bi = b′ ∨ b′′, Eve chooses between (ε, b′) and (ε, b′′).

In the limit, a play consists of an infinite word w that is derived from the concatenation of
σ0, σ1, . . ., as well as an infinite sequence b0, b1, . . . of transition conditions, which yields
an infinite sequence π = t0, t1, . . . of transitions.
If A is over infinite words, Eve wins a play in the letter-game if Val(π) ≥ A(w). In the
t-threshold letter game, Eve wins if A(w) ≥ t =⇒ Val(π) ≥ t. For A over finite words,
Eve wins if Val(π[0..i]) ≥ A(w[0..i]) or A(w[0..i]) ≥ t =⇒ Val(π[0..i]) ≥ t for all i.

Adam’s letter game is similar to Eve’s game, except that Eve chooses the letters instead of
Adam, and Adam wins a play in his letter game if Val(π) ≤ A(w) and in his t-threshold
letter game if A(w) < t =⇒ Val(π) < A(w). (The asymmetry of < and ≤ is intended).

Intuitively, an automaton is determinizable by pruning if it can be determinized to an
equivalent (w.r.t. a threshold) deterministic automaton by removing some of its states and
transitions. (In an alternating automaton, “removing transitions” means removing some
disjunctive and conjunctive choices.)

4 We discuss in the conclusion questions that arise if this restriction is lifted

U. Boker and K. Lehtinen 38:7

▶ Definition 3 (Determinizability by Pruning). A Val automaton A is
determinizable by pruning if there exists a deterministic Val automaton A′ that is derived
from A by pruning, such that A′ ≡ A;
t-threshold determinizable by pruning if there is a deterministic Val automaton A′ that is
derived from A by pruning, such that for every word w, we have A′(w) ≥ t iff A(w) ≥ t;
threshold determinizable by pruning if it is t-threshold determinizable by pruning ∀t ∈ R.

Observe that a Val-automaton can be good for games, history deterministic, or determ-
inizable by pruning when interpreted on infinite words, but not when interpreted on finite
words, as demonstrated in Figure 1 .

q0 q1 q2q3q4q4

0

01 2
0

−12
0

Figure 1 A nondeterministic DSum-automaton with discount factor 1
2 over a unary alphabet

that is determinizable by pruning, good for games, and history deterministic with respect to infinite
words, but none of them with respect to finite words: For the single infinite word, the initial choice
of going from q0 to q1 provides the optimal value of 1, making it all of the above. On finite words,
on the other hand, it is not even threshold history deterministic (and by Theorem 4 neither of the
rest), since in order to guarantee a value of at least 1, the first transition should be different for the
word of length 1 and the word of length 2, going to q3 for the former and to q1 for the latter.

4 The Relations Between Notions

Having defined these notions, we now establish which inclusions hold in general, and which
are conditional on characteristics of the value function, as summarised in Figure 2.

▶ Theorem 4. (Threshold) good for gameness, (threshold) history determinism, and
(threshold) determinizability by pruning of quantitative automata are related as described in
Figure 2.

Considering good for gameness, if an automaton A is good for all games then it is
obviously good for all threshold games. The implication for the other direction stems from
the fact that every concrete game G has a single value v. Then for G, it is enough to be good
for v-threshold games, and for all automata, it is enough to be good for all threshold games.

▶ Lemma 5. Good for Gameness ⇐⇒ Threshold Good for Gameness.

For a t-threshold history deterministic automaton A, Eve and Adam have strategies to
win their t-letter games on A. Thus, whenever Eve or Adam win some t-threshold game G,
they can combine their two winning strategies to win G × A.

▶ Lemma 6. Threshold History Determinism =⇒ Threshold Good for Gameness

For the other direction, we generalize proofs from [7, 8]: assuming that the automaton
A is not threshold history deterministic we construct a threshold game G with respect to
which A is not good for composition (namely, the product of G with A does not have the
same winner as G). However, to build this game, we assume that either Adam wins Eve’s
letter game on A or Eve wins Adam’s letter game on A, that is, we assume that the letter
games on A are determined. We later show that this determinacy requirement holds for all
the specific value functions that we consider in the paper.

FSTTCS 2021

38:8 History Determinism vs. Good for Gameness

Good For Gameness =1 Threshold Good For Gameness ∼=2 Threshold History Determinism

⊊ 4(for nondet.) ⊊3

Threshold Determinizability by Pruning History Determinism̸=5

Determinizability by Pruning

⊊3 ⊊ 4 (for nondet.)

1. Always holds (Lemma 5).

2. The ⇐= implication always holds (Lemma 6); The =⇒ implication holds at least for
all Val automata whose threshold letter games are determined (Lemma 7),
e.g., for Inf, Sup, LimInf, LimSup, DSum and all functions on finite words (Theorem 9).

3. Strict containment for all non-trivial value functions with at least three values (Lemma 10);
Equal (the same notion) for value functions with two values.

4. Strict containment, in general, for nondeterministic automata (Propositions 11 and 12);
Equivalent notions for some nondeterministic Val automata (Section 4.1);
Incomparable for alteranting automata (Proposition 13).

5. Incomparable, in general, for value functions with at least three values
(Lemma 10 and Propositions 12 and 13);
For value functions with two values, as relation 4 above.

Figure 2 The relations between the different notions.

▶ Lemma 7. For Val automata whose threshold letter games are determined, Threshold Good
for Gameness =⇒ Threshold History Determinism.

Proof. Consider a Val automaton A whose threshold letter games are determined. Then, if
A is not threshold history deterministic, it follows that Adam wins Eve’s t-letter game on A
for some threshold t, or Eve wins Adam’s t-letter game on A for some t. We show below that
in both cases A is not good for threshold games, proving the contra-positive of the claim.

Assume that Adam wins Eve’s t-letter game GA,t on A for some threshold t with a
strategy s. We can build a one-player Σ-labelled (infinite) game Gs in which the positions,
which all belong to Adam, are the finite words that can be constructed along plays of GA,t

that agree with s, and where for every positions u and u · a, there is an a-labelled edge from
the position u to the position u · a. The empty word ε is the initial position. In other words,
this is the one-player arena in which plays correspond to (infinite) words that occur in the
letter game if Adam uses the strategy s. Notice that since s is a winning strategy in the
t-letter game, all words w that are plays of Gs have A(w) ≥ t. The t-threshold game on Gs

is therefore winning for Eve.
We now argue that Adam wins the product game Gs × A. Indeed, Adam can now use

the strategy s to choose directions in Gs according to the run constructed so far in A, and
resolve conjunctions in A according to the history of the word and run so far. Since s is a
winning strategy for Adam in the letter game, this guarantees that the resulting run ρ is
such that Val(ρ) < t. Then A is not threshold-good-for-games, as witnessed by Gs.

By a similar argument, if Eve wins Adam’s t-letter game for some t with a strategy s,
then we can construct a one-player game Gs in which all positions belong to Eve such that
Gs is winning for Adam (i.e., all words have value strictly smaller than t), but in the product

U. Boker and K. Lehtinen 38:9

G × A, Eve wins, i.e., can force value at least t.
Hence if either player has a winning strategy in the other player’s threshold letter game

for some threshold, then the automaton is not good for threshold games. ◀

We now show that letter games on Val automata whose threshold variants define Borel
sets are determined. This stems from the fact that their winning condition is a union between
two conditions that can be defined by threshold Val automata or their complement.

▶ Proposition 8. If for some value function Val, all threshold Val automata define Borel
sets, then threshold letter games on Val automata are determined.

Proof. Consider Eve’s t-letter game on a Val automaton A, for some threshold t ∈ R. A
play of the game generates a sequence ρ ∈ (Σ × V)ω, where Σ is A’s alphabet and V is the
finite set of its weights. We may view ρ as a pair of sequences (ρΣ, ρV), where ρΣ ∈ Σω and
ρV ∈ V ω. Then the winning set of Eve is {ρ | Val(ρV) ≥ t or A(ρΣ) < t}.

Observe that the set SV = {ρ | Val(ρV) ≥ t} can be defined by a t-threshold deterministic
Val automaton B, in which the weight of a transition over the input letter (σ, v) is v. Let
A′ be a t-threshold Val automaton that is identical to A, except that its alphabet is Σ × V ,
while the transitions are sensitive, as in A, only to the Σ component of the input. Then the
set SΣ = {ρ | A(ρΣ) ≥ t} is defined by A′.

As the winning condition of Eve’s letter game is the union of SV and the complement
of SΣ, and as both are Borel sets, so is the winning condition. Hence, by [20] the game is
determined.

The argument regarding Adam’s letter game is analogous. ◀

A direct corollary of Proposition 8 is that for most of the common quantitative automata,
we have that good for gameness is equivalent to threshold history determinism. In particular,
this is the case for all the concrete value functions that are considered in this paper.

▶ Theorem 9. Good For Gameness ⇐⇒ Threshold History Determinism for all Val automata
on finite words, and Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg and DSum automata on
infinite words.

Proof. It is enough to show that threshold automata of these types define Borel sets, and
then the claim directly follows from Lemmas 5 and 6 and Proposition 8.
Automata on finite words. Every threshold Val automaton on finite words defines a set of

finite words, which is a countable union of singletons and thus a Borel set.
Inf and Sup automata. Observe that Inf, Sup automata on infinite words are “almost” like

automata on finite words, in the sense that the value of the automaton on a word is
equal to its value on some prefix of the word. Formally, for a Sup automaton A, we
have that the set of infinite words {w ∈ Σω | A(w) ≥ t} is equal to the set of infinite
words {w ∈ Σω | exists p ∈ N such that A(w[..p]) ≥ t} (when considering A to operate
on finite words). Observe that it is indeed a Borel set, since it is a countable union of
open sets. The argument for Inf-automata is analogous, having a countable intersection
of closed sets.

LimInf and LimSup automata. Observe that threshold LimInf and LimSup automata are
equivalent to coBüchi and Büchi automata, respectively, thus defining ω-regular languages,
which are known to be Borel sets [22].

LimInfAvg and LimSupAvg automata. Directly follows from [15, Corollaries 6 and 10].

FSTTCS 2021

38:10 History Determinism vs. Good for Gameness

DSum automata. For DSum automata the argument stems from the continuity with respect
to the Cantor topology of functions defined by DSum automata.
Consider a DSum automaton A and a threshold t ∈ R. Define the following set
of infinite words Bt = {w ∈ Σω | for every n ∈ N and p0 ∈ N, there exists p >

p0, such that A(w[..p]) ≥ t − 1
n } (when considering A to operate on finite words).

Observe that Bt is a Borel set, since {w | A(w[..p]) ≥ t − 1
n } is an open set, and the

existential and universal quantifiers can be defined by countable unions and intersections.
We claim that Bt is equivalent to the set At = {w | A(w) ≥ t}, which will prove the
required statement. One direction is immediate – if a word w is in At then by the
definition of A(w), there are runs of A on w whose supremum is at least t, admitting the
membership of w in Bt.
As for the other direction, we show that for every n ∈ N, there is a run r of A on w, such
that Val(r) ≥ t − 1

n , proving that w is in At. (One can then even combine these runs
to create a single run that attains a value at least t.) Consider some n ∈ N, and let R

be the infinite set of finite runs r1, r2, . . . that witness the membership of w in Bt with
respect to 2n. That is, ri is a run on a prefix of w of length at least i, whose value is
at least t − 1

2n . We create a single run r from R in a “Konig’s lemma” approach (for
simplicity, we detail the construction for a nondeterministic automaton, and later explain
how to extend it to an alternating automaton):
We choose the first transition t1 in r to be a transition that appears as the first transition
in infinitely many ri’s. We then choose the next transition t2 to be a transition that
appears as the second transition, where t1 is the first transition, in infinitely many ri’s,
and so on. Notice that r is indeed a run of A and its value is at least t − 1

n : By the
discounted-sum value function, if the value of a long enough prefix is at least t − 1

2n , the
value of the entire run cannot be smaller than t − 1

n .
Now, for an alternating automaton, rather than “choosing transitions” we need to “resolve
the nondeterminism”, while ensuring that the choice we make appears in infinitely many
runs after the previous nondeterministic and universal choices that were already made. ◀

History determinism and determinizability by pruning obviously imply their threshold
versions; Figure 3 demonstrates that the converse does not hold.

▶ Lemma 10.
History Determinism =⇒

/⇐= Threshold History Determinism;
Determinizability by Pruning =⇒

/⇐= Threshold Determinizability by Pruning;
History Determinism /⇐= Threshold Determinizability by Pruning

Proof. The implications are straightforward: a winning strategy for each player in their
letter game is also a winning strategy in their t-threshold letter game, for every threshold
t ∈ R; further, if an automaton A′ that results from pruning A is equivalent to A, then for
every threshold t and word w, if A(w) ≥ t then A′(w) ≥ t.

As for the non-implications, Figure 3 provides such counter examples, which hold, with
some variations, with respect to every non-trivial value function with at least 3 values, and
in particular with respect to all value functions discussed in the paper.

Consider, for example, the automaton A of Figure 3 with respect to the Sup value function.
It is not history deterministic, since if the nondeterminism in q0 is resolved by going to q1,
the resulting automaton is not equivalent to A with respect to the finite word aa and infinite
word aω, and if it is resolved by going to q2, the resulting automaton fails on ab and abω.

U. Boker and K. Lehtinen 38:11

On the other hand, A is threshold determinizable by pruning and threshold history
deterministic: For a threshold up to 1, the nondeterminism is resolved by going to q1 and for
the threshold 2 by going to q2. ◀

A

q0

q1

q2

q3
Σ:0

Σ:0

Σ:1

a :2, b :0

Σ:0
B

s0

s1

s2

s3

s4

Σ:0

Σ:0

Σ:1

a :2

b :0

Σ:2

Σ:0

Figure 3 Nondeterministic automata that are threshold history deterministic and threshold
determinizable by pruning, but not history deterministic and not determinizable by pruning. The
automaton A has this property with respect, for example, to the Sum/DSum/Sup value functions,
and B with respect, for example, to Avg/LimSup/LimInf/LimSupAvg/LimInfAvg.

History Determinism ̸= Determinizability by Pruning

For nondeterministic automata, it is clear that determinizability by pruning implies
history determinism: the pruning provides a strategy for Eve in her letter game.

▶ Proposition 11. For nondeterministic automata, determinizability by pruning =⇒ history
determinism.

The converse was shown to be false for Büchi and coBüchi automata [7], directly implying
the same for LimSup and LimInf automata. Considering LimInfAvg and LimSupAvg automata,
the automaton depicted in Figure 4, which is similar to the coBüchi automaton in [7, Figure
3], is history deterministic but not determinizable by pruning.

a :1

a :1

b :0

a :1

a :0

b :1

a :1

a :1

b :0

a :1

a :0

b :1

Figure 4 (Similar to [7, Figure 3].) A history deterministic LimInfAvg or LimSupAvg automaton
that is not determinizable by pruning. (Missing transitions lead to a sink with a 0-weighted self loop
on both a and b.) It is history deterministic by a strategy that chooses in the initial state to go up if
and only if it went down the previous time. Following this strategy in the letter game, Eve returns
infinitely often to the initial state only on (aaab)ω, getting a value 1

2 , which is also the automaton’s
value on it. For every other word, the run of Eve moves to the right part of the automaton, which is
deterministic, guaranteeing Eve the optimal value on the word. On the other hand, every pruning of
it yields an automaton whose value on either aω or (ab)ω is 1

2 instead of 1.

▶ Proposition 12. For nondeterministic LimInf, LimSup, LimInfAvg, and LimSupAvg auto-
mata, history determinism /=⇒ determinizability by pruning.

FSTTCS 2021

38:12 History Determinism vs. Good for Gameness

For alternating automata, it turns out that (threshold) history determinism and
determinizability by pruning are incomparable, as demonstrated in Figure 5.

▶ Proposition 13. For (Boolean and quantitative) alternating automata, determinizability
by pruning /=⇒ history determinism, good for gameness.

Proof. The claim holds for Boolean automata as well as quantitative automata with every
non-trivial value function. Consider the alternating finite automaton on finite words (which
can also be viewed, for example as a Sup automaton) in Figure 5. It does not accept any word,
and can be determinized by pruning the right nondeterministic transition. However, it is not
history deterministic: Eve wins Adam’s letter game, by choosing the right nondeterministic
transition. ◀

q0 ∨
∧

q1q2

q3

q4

q5

q6

Σ

Σ

a

b
b

aΣ

Σ

Σ

Figure 5 An alternating finite automaton on finite words that is determinizable by pruning, but
not history deterministic nor good for games.

4.1 When (History Determinism = Determinizability by Pruning)
In general for nondeterministic automata, determinizability by pruning is strictly contained
in history determinism; here we study when the two notions coincide. In the Boolean setting,
they are equivalent for nondeterministic finite automata on finite words (NFAs) [19] as well as
for nondeterministic weak automata on infinite words [21]. Here we analyse general properties
of value functions that guarantee this equivalence, and then consider specific value functions
on finite and infinite words. The general properties that we analyze relate to how “sensitive”
the value function is to the prefix, current position, and suffix of the weight sequence.

We begin by defining cautious5 strategies for Eve in the letter game, that we then use
to define value functions that are “present focused”. Intuitively, a strategy is cautious if it
avoids mistakes, that is, it only builds run prefixes that can still achieve the maximal value
of any continuation of the word so far.

▶ Definition 14 (Cautious strategies). Consider Eve’s letter game on a Val automaton A.
A move (transition) t = q

σ:x−−→ q′ of Eve, played after some run ρ ending in a state q, is
non-cautious if for some word w, there is a run π′ from q over σw such that Val(ρπ′) is
strictly greater than the value of Val(ρπ) for any π starting with t.

A strategy is cautious if it makes no non-cautious moves.

We call a value function present focused if, morally, it depends on the prefixes of the
value sequence, formalized by winning the letter game via cautious strategies.

▶ Definition 15 (Present-focused value functions). A value function Val, on finite or infinite
sequences, is present focused if for all automata A with value function Val, every cautious
strategy in the letter game on A is also a winning strategy in that game.

Value functions on finite sequences are present focused, as they can only depend on prefixes.

5 Similar transitions are sometimes called “residual” in the literature.

U. Boker and K. Lehtinen 38:13

▶ Lemma 16. Every value function Val on finite sequences is present focused.

Proof. Assume Eve plays a cautious strategy s in some letter game on an automaton A on
finite words. Towards a contradiction, assume that there is a finite play π, in which Adam
plays some word w and Eve plays a run ρ over w such that Val(ρ) < A(w). Then, let ρ′ be
the longest prefix of ρ such that the highest value of a run over w starting with ρ′ is A(w).
Since ρ is not a run with value A(w), ρ′ is a strict prefix of ρ. However, since ρ′ is the longest
prefix that could be continued into a run with value A(w), Eve’s next move after ρ′ must be
non-cautious, contradicting that s never plays non-cautious moves. ◀

▶ Remark 17. Value functions on infinite sequences are not necessarily present focused. For
example, consider the automaton depicted in Figure 1, but viewed as a Sup automaton on
infinite words rather than a DSum automaton. Observe that Eve can forever stay in q0,
always having the potential to continue to an optimal run with value 2, but never fulfilling
this potential.

We now define “suffix monotonicity” of value functions, which, with present-focus, will
guarantee the equivalence of history determinism and determinizability by pruning.

▶ Definition 18. A value function Val is suffix monotonic if for every finite set S ⊂ Q,
sequence α ∈ S∗ and sequences β, β′ ∈ S∞, we have Val(β) ≥ Val(β′) iff Val(αβ) ≥ Val(αβ′).

Observe that the above definition does not consider arbitrary sequences of rational numbers,
but rather sequences of finitely many different rational numbers, which is the case in sequences
of weights that are generated by runs of quantitative automata.

Value functions that are suffix dependent (namely Val functions such that for every finite
set S ⊂ Q, sequences α, α′ ∈ S∗ and sequence β ∈ S∞ \{ε}, we have Val(αβ) = Val(α′β)) are
obviously suffix monotonic. Examples for such value functions are the acceptance condition
of NFAs (i.e, a “last” value function, that depends only on the last weight of 0 for rejection
and 1 for acceptance), all ω-regular conditions (which depend on the states/transitions that
are visited infinitely often), LimInf, LimSup, LimInfAvg, and LimSupAvg. Examples for value
functions that are suffix monotonic but not suffix dependent are Sum, Avg and DSum, and
examples for value functions that are not suffix monotonic are Inf and Sup.

We next show that suffix monotonicity together with present-focus guarantee the equi-
valence of history determinism and determinizability by pruning. The idea is that under
these conditions, every cautious strategy in the letter game can be arbitrarily pruned into a
positional strategy (with respect to the automaton states).

▶ Theorem 19. For nondeterministic Val automata, where Val is a present-focused and
suffix-monotonic value function, we have that history determinism ⇐⇒ determinizability by
pruning.

Proof. We show that Eve wins her letter game on A with a positional strategy, which implies
that A is determinizable by pruning.

Let s be a cautious strategy for Eve in the letter game on A. Let ŝ be an arbitrary
positional strategy that only uses transitions also used by s. We argue that ŝ is also cautious.
Indeed, if ŝ chooses τ = q

σ:x−−→ q′ after a play (ŵ, ρ̂) of the letter game, there is some play
(w, ρ) from which s plays τ . Since s is cautious, for every word v and every run π′ from
q over σv, there is a run π from q starting with τ such that Val(ρπ) ≥ Val(ρπ′). Thus, by
suffix monotonicity, we have Val(π) ≥ Val(π′), and then again by the other direction of suffix
monotonicity, we get that Val(ρ̂π) ≥ Val(ρ̂π′), implying that ŝ choosing τ is a cautious move.

FSTTCS 2021

38:14 History Determinism vs. Good for Gameness

Then A is determinisable by pruning: the subautomaton Aŝ that only has transitions
used by ŝ is equivalent to A. Indeed, for every word w, Aŝ(w) is Val(ρw), where ρw is the
unique run of Aŝ over w. The run ρw is also the run built by ŝ in the letter game over
w. Since ŝ is cautious and Val is present focused, we have that ŝ is a history-deterministic
strategy, which guarantees that Val(ρw) = A(w), giving us the equivalence of A and Aŝ. ◀

▶ Remark 20. Both present-focus and suffix-monotonicity are necessary in Theorem 19. For
example LimInf is suffix monotonic, but LimInf automata are not determinizable by pruning.
On the other hand, Figure 6 demonstrates a present-focused value function whose history
deterministic automata on finite words are not determinizable by pruning.

q0 q1

q2

q3

a :0
b :1

Σ:0

Σ:1

Σ:0

Σ:1

Figure 6 A nondeterministic Val automaton A on finite words with the value function Val(ρ) = 1
if ρ has both even and odd values, and 0 otherwise. Notice that Val is present focused and A is
history deterministic but not determinizable by pruning.

We now apply these results to specific value functions.

▶ Theorem 21. 6 For nondeterministic Sum and Avg automata (on finite words), history
determinism ⇐⇒ determinizability by pruning.

Proof. From Lemma 16 and Theorem 19 and the suffix monotonicity of these value functions.
◀

We continue with showing that DSum is present focused due to the function’s continuity.

▶ Lemma 22. DSum on infinite sequences is a present-focused value function.

▶ Theorem 23 ([17, Section 5]). For nondeterministic DSum automata on finite and infinite
words, history determinism ⇐⇒ determinizability by pruning.

Proof. The claim, which was also proved in [17, Section 5], is a direct consequence of
Lemmas 16 and 22 and Theorem 19 and the suffix monotonicity of the DSum value functions.

◀

The Inf and Sup value function are not suffix monotonic, and indeed the proof of
Theorem 19 does not hold for them – not every cautious transition of a history deterministic
Sup automaton on finite words can be used for pruning it into a deterministic automaton.
Yet, also for Inf and Sup automata on finite words we have that history determinism is
equivalent to determinizability by pruning, using other characteristics of these value functions
– we can prune the automaton, by choosing the transitions that are used by the strategy of
the letter game after reading words with minimal values for Sup and maximal value for Inf.

▶ Theorem 24. For nondeterministic Inf and Sup automata on finite words, history determ-
inism ⇐⇒ determinizability by pruning.

6 A slightly weaker result is given in [3, Theorem 5.1]: a Sum automaton is history deterministic with a
finite-memory strategy for resolving the nondeterminism if and only if it is determinizable by pruning.

U. Boker and K. Lehtinen 38:15

5 Applications to Quantitative Synthesis

Establishing the non-equivalence of history determinism, good for gameness and their
threshold versions leaves us with the question of which definitions, if any, are the most useful
or interesting ones. We explore this question from the perspective of quantitative synthesis.

In the Boolean setting, Church’s classical synthesis problem asks for a transducer T that
produces, letter by letter, for every input sequence I ∈ Σω

I an output sequence T (I) ∈ Σω
O

such that I ⊗ T (I) ∈ L for some specification language L ∈ (ΣI ⊗ ΣO)ω. This synthesis
requirement is global, in the sense that the output of all input sequences should satisfy the
same constraint. A local variant of the problem, termed “good enough synthesis” in [1],
considers each input sequence I separately, requiring that the output T (I) of the transducer
on the input I satisfies I ⊗ T (I) ∈ L only if I ⊗ O ∈ L for some sequence O ∈ Σω

O.
In quantitative synthesis, the specification is a function f : (ΣI × ΣO)ω → R (generalizing

languages L : (ΣI ×ΣO)ω → {true, false}), and the two synthesis problems above naturally
generalize into two quantitative variants each – requiring either the best possible value or
a value matching a given threshold. We thus have four variants of quantitative synthesis:
Global/Local Threshold/Best-value synthesis. It turns out that good for gameness is
closely related to global synthesis, while history determinism is closely related
to local synthesis, both for the threshold and best-value settings.

Global Threshold and Best-value Synthesis. The global threshold variant is the closest to
Church synthesis: given a function f and a threshold t ∈ R, it requires that f(I ⊗ T (I)) ≥ t

for all input sequences I. In the best-value version, t is not given and we are interested in
what is the highest threshold that the system can guarantee.

Analogously to the Boolean setting, a t-threshold good for games Val automaton A
realizing f can be used instead of a deterministic automaton to solve the global threshold
synthesis problem: A is turned into a t-threshold Val game GA, in which Adam controls the
input letters and Eve controls the output letters. Then, the synthesis problem is realizable
if and only if Eve has a winning strategy in GA. If A is nondeterministic, Eve’s winning
strategy in GA induces a transducer for the synthesis problem. In the best-value case, the
same is true, but A must be good for games, rather than just for t-threshold games, and it is
Eve’s optimal strategy, if it exists, that induces the solution transducer.

Local Best-value and Threshold Synthesis. We define Bestf (I) = supO∈Σω
O

f(I ⊗ O) for
I ∈ Σω

I , i.e., the best value that the input I can get, or converge to, according to f . The local
best value synthesis problem requires that for every I ∈ Σω

I , we have f(I ⊗ T (I)) = Bestf (I).
Since Bestf (I) is a supremum, it need not be attained by any word; then the synthesis
problem is unrealisable, even if the system could force a value arbitrarily close to Bestf (I).
The threshold variant requires that for every I ∈ Σω

I , such that Bestf (I) ≥ t, we have
f(I ⊗ T (I)) ≥ t, for a given threshold t ∈ R.

The local best value (or t-threshold) synthesis problem of a function given by deterministic
(or even history-deterministic nondeterministic) automata and the problem of whether a
nondeterministic automaton is (t-threshold) history deterministic reduce to each other. The
relationship between good-enough synthesis [1] and history determinism was noted for visibly
pushdown automata in [13]; a similar reduction in [12] reduces the approximative local best-
value synthesis of deterministic quantitative automata over finite words by finite transducers
to the notion of r-regret determinisability, that is, whether a nondeterministic automaton
is close enough to a deterministic automaton obtained by pruning its product with a finite

FSTTCS 2021

38:16 History Determinism vs. Good for Gameness

memory. Our reductions are in the same spirit, but relate the synthesis problem to history
determinism rather than determinisability, and obtain a two-way correspondence for all
history-deterministic nondeterministic quantitative automata. In the alternating case, only
one direction is preserved, and only for realisability, rather than synthesis.

▶ Proposition 25. Deciding the local best value (resp. t-threshold) synthesis problem with
respect to a function f given by a (t-threshold) history deterministic nondeterministic Val-
automaton A and deciding whether a nondeterministic Val-automaton A′ is (t-threshold)
history deterministic are linearly inter-reducible. Furthermore, the witness of (t-threshold)
history determinism of A′ is implementable by the same computational models as a solution
to the best-value (t-threshold) synthesis of A.

6 Conclusions

We have painted a picture of how definitions of good for gameness and history determinism
behave in the quantitative setting, and how they relate to quantitative synthesis. Our work
opens up many directions for further work, of which we name a few.

The reductions between local synthesis and history determinism motivate expanding
methods used to decide history determinism of ω-regular automata to quantitative ones.
So far, we have restricted our attention to determined games, but one could also consider
more general classes of games and study the effect of composition in that setting.
One appeal of good for games and history deterministic automata is that they can be
more expressive and more succinct than deterministic ones, while their synthesis problems
retain the same complexity. The expressivity and succinctness of quantitative good for
games and history deterministic automata is open for most value functions.
It is natural to look at approximative versions of the discussed notions (as has been done,
see the related work section); we expect our results to also generalise in that direction.

References
1 Shaull Almagor and Orna Kupferman. Good-enough synthesis. In CAV, volume 12225 of

Lecture Notes in Computer Science, pages 541–563. Springer, 2020.
2 Shaull Almagor, Orna Kupferman, Jan Oliver Ringert, and Yaron Velner. Quantitative assume

guarantee synthesis. In International Conference on Computer Aided Verification, pages
353–374. Springer, 2017.

3 Benjamin Aminof, Orna Kupferman, and Robby Lampert. Reasoning about online algorithms
with weighted automata. ACM Trans. Algorithms, 6(2):28:1–28:36, 2010.

4 Roderick Bloem, Krishnendu Chatterjee, Thomas A Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In International Conference on
Computer Aided Verification, pages 140–156. Springer, 2009.

5 Udi Boker. Quantitative vs. weighted automata. In Proc. of Reachbility Problems, pages 1–16,
2021.

6 Udi Boker and Guy Hefetz. Discounted-sum automata with multiple discount factors. In
Proc. of CSL, volume 183 of LIPIcs, pages 12:1–12:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

7 Udi Boker, Denis Kuperberg, Orna Kupferman, and Michał Skrzypczak. Nondeterminism in
the presence of a diverse or unknown future. In Proceedings of ICALP, pages 89–100, 2013.

8 Udi Boker and Karoliina Lehtinen. Good for games automata: From nondeterminism to
alternation. In Proceedings of CONCUR, volume 140 of LIPIcs, pages 19:1–19:16, 2019.

U. Boker and K. Lehtinen 38:17

9 Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A Pérez, Mickael Randour,
Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-zero sum games for reactive
synthesis. In Language and Automata Theory and Applications, pages 3–23. Springer, 2016.

10 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Alternating weighted
automata. In Proceedings of FCT, pages 3–13, 2009.

11 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Proceedings of ICALP, pages 139–150, 2009.

12 Emmanuel Filiot, Christof Löding, and Sarah Winter. Synthesis from weighted specifications
with partial domains over finite words. In Nitin Saxena and Sunil Simon, editors, FSTTCS,
volume 182 of LIPIcs, pages 46:1–46:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020.

13 Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. A bit of
nondeterminism makes pushdown automata expressive and succinct. In MFCS, volume
202 of LIPIcs, pages 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.MFCS.2021.53.

14 Thomas Henzinger and Nir Piterman. Solving games without determinization. In Proceedings
of CSL, pages 395–410, 2006.

15 Paul Hunter, Arno Pauly, Guillermo A. Pérez, and Jean-François Raskin. Mean-payoff games
with partial observation. Theor. Comput. Sci., 735:82–110, 2018.

16 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Reactive synthesis without regret.
In Luca Aceto and David de Frutos-Escrig, editors, CONCUR, volume 42 of LIPIcs, pages
114–127, 2015.

17 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Minimizing regret in discounted-
sum games. In Jean-Marc Talbot and Laurent Regnier, editors, CSL, volume 62 of LIPIcs,
pages 30:1–30:17, 2016.

18 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Reactive synthesis without regret.
Acta Informatica, 54(1):3–39, 2017.

19 Orna Kupferman, Shmuel Safra, and Moshe Y Vardi. Relating word and tree automata. Ann.
Pure Appl. Logic, 138(1-3):126–146, 2006. Conference version in 1996.

20 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2), 1975.
21 Gila Morgenstern. Expressiveness results at the bottom of the ω-regular hierarchy. M.Sc.

Thesis, The Hebrew University, 2003.
22 Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and Arto Salomaa,

editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages 389–455. Springer,
1997.

A Proofs of Section 4

Proof of Lemma 5. One direction is immediate: if an automaton A is good for all games
then it is also good for all threshold games. Indeed, assuming that A is good for games, if
the value of a game G is v, then the value of the product game G × A is also v. Then, for all
thresholds t, Eve wins the t-threshold game on both G and G × A if and only if v ≥ t.

As for the other direction, assume A is good for threshold games. Let G be a game with
value v. Since A composes with threshold games, considering the v-threshold game on G, we
know that Eve can achieve at least v in the product v-threshold game G × A. Conversely, let
v′ ≥ v be the value of G × A. Since Eve wins the v′-threshold game on G × A, and A is good
for threshold games, Eve can also achieve at least v′ in G, i.e., v′ = v, the value of G. ◀

Proof of Lemma 6. Consider a threshold history deterministic automaton A over an alpha-
bet Σ, realizing a function f . Then for every threshold t ∈ R, Eve has a winning strategy s′

in the t-threshold letter game on A.

FSTTCS 2021

https://doi.org/10.4230/LIPIcs.MFCS.2021.53

38:18 History Determinism vs. Good for Gameness

Now, consider a Σ-labelled t-threshold game G with payoff function f , in which Eve has
a winning strategy s. Then in the product game G × A, Eve can combine s and s′ into a
strategy ŝ, so that s guarantees that any play π = (w, ρ) that agrees with ŝ reads a word w

such that A(w) ≥ t, and s′ guarantees that Val(ρ) ≥ t (since A(w) ≥ t).
By a similar argument, if Adam has a winning strategy in his threshold letter game, he

can combine it with his winning strategy in a threshold game for getting a winning strategy
in the product threshold game. ◀

A.1 Proofs of Section 4.1

Proof of Lemma 22. Consider a λ-DSum Val automaton A and let m be the maximal
absolute transition weight in A. Observe that for every word w and state q of A, we have
|Aq(w)| ≤ m

1−λ .
Let s be a cautious strategy of Eve in the letter game on A. By the definition of a

cautious strategy, for every finite word u, playing according to s on u generates a finite run
ρ that ends in some state q, such that for every infinite word v, there is an infinite run π on
v from q, such that Val(ρπ) = A(uv).

Now, consider a word w, let r be the run of A on w that is generated by following s, and
let r′ be an optimal run of A on w. For every position i, let qi be the state that r[0..i] ends
in and q′

i be the state that r′[0..i] ends in. By the cautiousness of s, for every position i,
there is a run π from qi on w[i + 1..], such that for every run π′ from q′

i on w[i + 1..], we
have Val(r[0..i]) + λiVal(π) ≥ Val(r′[0..i]) + λiVal(π′).

Since Val(π) ≤ m
1−λ and Val(π′) ≥ − m

1−λ , we get that Val(r′[0..i]) − Val(r[0..i]) ≤ 2m·λi

1−λ .
Since limi→∞

2m·λi

1−λ = 0, we get that Val(r) = Val(r′), implying that Eve wins the letter
game. ◀

Proof of Theorem 24. We provide the proof for Sup automata and then describe the required
changes for adapting it to Inf automata.

Consider a history deterministic Sup automaton A on finite words in Σ∗, whose history
determinism is witnessed by a strategy s. We derive from s a positional strategy s′, by taking
for every state q of A and letter σ ∈ Σ, the transition that s chooses over a minimal prefix,
where minimality is with respect to the Sup function.

Formally, for every state q, let m(q) be a Sup-minimal run that reaches q along s; namely
m(q) = ρ, such that ρ is a run of A that agrees with s and ends in q, and such that for every
run ρ′ of A that agrees with s and ends in q, we have Sup(ρ) ≤ Sup(ρ′). (Notice that since
there are finitely many weights in A, such a minimal run, which need not be unique, always
exists.) For every state q of A and letter σ ∈ Σ, we define s′(q, σ) = t, such that s chooses t

over the prefix run m(q) and current letter σ.
We claim that s′ is cautious. Indeed, for the correctness proof, we shall change s into

s′ iteratively, considering in each iteration a single state q and letter σ. Assume by way of
contradiction that exists a word u ∈ Σ∗ on which s′ generates a path τ that ends in a state
q, such that s′(uσ) = t for a non-cautious transition t. Without loss of generality, we may
assume that this is not the case for any strict prefix of u, as otherwise we can consider that
prefix instead of u.

By the definition of non-cautiousness, there exists a word w, such that the maximal value
of Sup(τπ) for a run π from q over σw starting with t is strictly smaller than the maximal
value of Sup(τπ′) where π′ is a run from q over σw that does not start with t.

U. Boker and K. Lehtinen 38:19

It thus follows that Sup(π′) > Sup(τ) and that for every run π from q over σw starting
with t, we have Sup(π′) > Sup(π). Now, let ρ be a run that witnesses t’s minimality in the
definition of s′, namely s chooses t when reading σ after reaching q over ρ, and for every run
ρ′ that ends in q, we have Sup(ρ) ≤ Sup(ρ′).

Then, in particular, Sup(ρ) ≤ Sup(τ). Hence, Sup(π′) > Sup(ρ). Therefore, for every run
π from q over σw starting with t, we have Sup(ρπ′) > Sup(ρπ), contradicting the cautiousness
of s.

Having that s′ is cautious, we get from Lemma 16 that it is also winning in the letter
game, implying that the deterministic automaton that results from pruning A along s′ is
indeed equivalent to A.

Now, for Inf automata, the proof is analogous, choosing the Inf-maximal run rather than
the Sup-minimal run, switching between some ≥ and ≤ and between some < and >, and
providing the following final argument: For every run π from q over σw starting with t, we
have Inf(π) < Inf(τ) and Inf(π) < Inf(π′). Now, let ρ be a run that witnesses t’s maximality
in the definition of s′, namely s chooses t when reading σ after reaching q over ρ, and for
every run ρ′ that ends in q, we have Inf(ρ) ≥ Inf(ρ′).

Then, in particular, Inf(ρ) ≥ Inf(τ). Hence, for every run π from q over σw starting
with t, we have Inf(π) < Inf(ρ) and Inf(π) < Inf(π′). Hence, for every run π from q over σw

starting with t, we have Inf(ρπ) < Inf(ρπ′), contradicting the cautiousness of s. ◀

B Proofs of Section 5

Proof of Proposition 25.
=⇒: Reducing the synthesis problem to the history-determinism problem.
The idea of the reduction (both in the best-value and t-threshold case) is to turn output

letter choices in A into nondeterministic choices in A′. Then A′ maps I ∈ Σω
I onto BestA(I).

A solution to the synthesis problem for A corresponds exactly to a function that resolves the
nondeterminism of A′ on the fly to build a run with value BestA(I), that is, a witnesses of
the history determinism of A′. If A is itself nondeterministic, then A′ will have both the
nondeterminism of A and the nondeterminism that stems from the choice of output letters.
As long as the nondeterminism of A is history deterministic, the nondeterminism of A′ is
history deterministic if and only if A is local best value realisable.

More formally, first let us define formally the projection of A onto its first component:
A′ = (ΣI , Q, ι, δ′), where δ′(q, a) =

∨
b∈ΣO

δ(q, (a, b)). In other words, the automaton A′

moves the ΣO letters from the input word into a nondeterministic choice. It implements
a mapping of inputs I ∈ Σω

I onto BestA(I). We now argue that witnesses of history
determinism for A′ coincide with solutions to the best-value synthesis problem for A. Let s

be the witness of the history determinism of A.
We first argue that a solution s′ to the best-value synthesis problem for A, combined with

s is a witness that A′ is history-deterministic. Indeed, in Eve’s letter game on A′, Eve has
two types of choices: a choice

∨
b∈ΣO

δ(q, (a, b)) of an ΣO-letter, and the choice in δ(q, (a, b))
that stems from A. Let ŝ be the strategy that after a run prefix ρ ending in a state q over a
word w ∈ ΣI chooses the letter s′(w), that is, the disjunct δ(q, (a, s′(w))) in the disjunction∨

b∈ΣO
δ(q, (a, b)). Then, from δ(q, (a, s′(w))), ŝ behaves as s would after a run of A over

w ⊗ s̄(w).
First, observe that a run ρ of A′ over I ∈ Σω

I , labelled with the choices of ΣO-letters
forming some O ∈ Σω

O, corresponds to a run of A over I ⊗ O with the same value.

FSTTCS 2021

38:20 History Determinism vs. Good for Gameness

Then, since s′ is a solution to the best value synthesis problem, it guarantees that given
an input word ΣI , the sequence of ΣO letters chosen by ŝ is s̄(I), and A(I ⊗ s̄(I)) = BestA(I).
Then, as s witnesses the history determinism of A, ŝ guarantees that ρ has value A(I ⊗ s̄(I),
that is, ŝ witnesses the history determinism of A′.

For the converse direction, assume A′ is history deterministic, as witnessed by some
strategy s. We claim that s induces a solution s′ to the synthesis problem for A as follows:
after reading an finite sequence of inputs Ia ∈ Σ∗

I , s has built some run ρ over I that ends in
a state q, after which s resolves a disjunction

∨
b∈ΣO

δ(q,
(

a
b

)
) by choosing some b ∈ ΣO. We

then set s′(Ia) = b. Then, as s witnesses that A′ is history-deterministic, the run chosen by
s over an input I ∈ Σω

I has the value BestA(I). By construction of A′ and s′, this is the
value A(I ⊗ s̄′(I), that is, s′ is indeed a solution to the synthesis problem on A. Furthermore,
observe that an implementation of s also implements s′ by ignoring the outputs of s that do
not choose ΣO letters, so the memory of the solution to the synthesis problem is bounded by
the memory required by a witness of history determinism.

⇐=: Reducing the history-determinism problem to the synthesis problem.
Dually to the previous translation, we turn the nondeterminism in an automaton A

into choices of output letters in the best-value synthesis problem. We build a deterministic
automaton A′ that is similar to A except that it reads both an input letter and a transition;
then a transition can only be chosen if it is the second element of the input (that is, the
output letter). Then A′ maps valid runs of A to their value and a solution to the local best
value synthesis problem of A′ corresponds exactly to a witness of history-determinism for A.

Formally, let A′ be the Val automaton (Σ × ∆, Q, ι, δ′) where δ′(q, (a, q
a:x−−→ q′)) = (x, q′)

if (x, q′) ∈ δ(q, a). A′ maps valid runs of A written as pairs (w, r) where r is a run of A over
w, onto Val(r) and in particular BestA′(I) = A(I).

We claim that A′ is best-value realisable if and only A is history-deterministic. Indeed, a
solution s to the best value synthesis problem of A′ corresponds to a function building a run
of A over the input I transition by transition such that the value of the run is BestA′(I).
Since BestA′(I) is A(I), s is precisely a witness of history-determinism in A. Similarly, a
witness of history-determinism in A induces a solution to the best value synthesis problem
for A′ since it builds a run of A over I with value at least A(I), exactly what is required
from a solution to the best value synthesis. ◀

Local First-Order Logic with Two Data Values
Benedikt Bollig
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

Arnaud Sangnier
IRIF, Université de Paris, CNRS, France

Olivier Stietel
IRIF, Université de Paris, CNRS, France
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

Abstract
We study first-order logic over unordered structures whose elements carry two data values from an
infinite domain. Data values can be compared wrt. equality so that the formalism is suitable to
specify the input-output behavior of various distributed algorithms. As the logic is undecidable in
general, we introduce a family of local fragments that restrict quantification to neighborhoods of a
given reference point. Our main result establishes decidability of the satisfiability problem for one
of these non-trivial local fragments. On the other hand, already slightly more general local logics
turn out to be undecidable. Altogether, we draw a landscape of formalisms that are suitable for the
specification of systems with data and open up new avenues for future research.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases first-order logic, data values, specification of distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.39

Related Version Full Version: https://hal.archives-ouvertes.fr/hal-03353214

Funding Partly supported by ANR FREDDA (ANR-17-CE40-0013).

Acknowledgements The authors would like to thank the reviewers for their careful reading of the
paper and their helpful comments.

1 Introduction

Data logics have been introduced to reason about structures whose elements are labeled with
a value from an infinite alphabet (e.g., XML documents) [26]. Expressive decidable fragments
include notably two-variable logics over data words and data trees [5, 6]. The decidability
frontier is fragile, though. Extensions to two data values, for example, quickly lead to
an undecidable satisfiability problem. From a modeling point of view, those extensions
still play an important role. When specifying the input-output behavior of distributed
algorithms [13,23], processes get an input value and produce an output value, which requires
two data values per process. In leader election or renaming algorithms, for instance, a process
gets its unique identifier as input, and it should eventually output the identifier of a common
leader (leader election) or a unique identifier from a restricted name space (renaming).

In this paper, we consider a natural extension of first-order logic over unordered structures
whose elements carry two data values from an infinite domain. There are two major differences
between most existing formalisms and our language. While previous data logics are usually
interpreted over words or trees, we consider unordered structures (or multisets). When each
element of such a structure represents a process, we therefore do not assume a particular
processes architecture, but rather consider clouds of computing units. Moreover, decidable
data logics are usually limited to one value per element, which would not be sufficient to
model an input-output relation. Hence, our models are algebraic structures consisting of a

© Benedikt Bollig, Arnaud Sangnier, and Olivier Stietel;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 39; pp. 39:1–39:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.39
https://hal.archives-ouvertes.fr/hal-03353214
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Local First-Order Logic with Two Data Values

universe and functions assigning to each element two integers. We remark that, for many
distributed algorithms, the precise data values are not relevant, but whether or not they
are the same is. Like [5, 6], we thus add binary relations that allow us to test if two data
values are identical and, for example, whether all output values were already present in the
collection of input values (as required for leader election).

The first fundamental question that arises is whether a given specification is consistent.
This leads us to the satisfiability problem. While the general logic considered here turns
out to be undecidable already in several restricted settings, our main result shows that an
interesting fragment preserves decidability. The fragment is a local logic in the sense that
data values can only be compared within the direct neighborhood of a (quantified) reference
process. The first value at the reference point can be compared with any second value in the
neighborhood in terms of what we call the diagonal relation. In this work, we do not allow
the symmetrical relation, but we hope we could adapt our technique to this case as well.

However, we do not restrict comparisons of first values with each other in a neighborhood,
nor do we restrict comparisons of second values with each other. Note that adding only one
diagonal relation still constitutes an extension of the (decidable) two-variable first-order logic
with two equivalence relations [18–20]: equivalence classes consist of those elements with
the same first value, respectively, second value. In fact, our main technical contribution is
a reduction to this two-variable logic. The reduction requires a careful relabelling of the
underlying structures so as to be able to express the diagonal relation in terms of the two
equivalence relations. In addition, the reduction takes care of the fact that our logic does
not restrict the number of variables. We can actually count elements up to some threshold
and express, for instance, that at most five processes crash (in the context of distributed
algorithms). This is a priori not possible in two-variable logic.

More Related Work. Orthogonal extensions for multiple data values include shuffle ex-
pressions for nested data [3] and temporal logics [10, 17]. Other generalizations of data
logics allow for an order on data values [24, 27]. The application of formal methods in
the context of distributed algorithms is a rather recent but promising approach (cf. for a
survey [21]). A particular branch is the area of parameterized systems, which, rather than
on data, focuses on the (unbounded) number of processes as the parameter [4, 12]. Other
related work includes [11], which considers temporal logics involving quantification over
processes but without data, while [1] introduces an (undecidable) variant of propositional
dynamic logic that allows one to reason about totally ordered process identifiers in ring
architectures. First-order logics for synthesizing distributed algorithms were considered
in [7,14]. A counting extension of two-variable first-order logic over finite data words with
one data value per position has been studied in [2].

Outline. Section 2 introduces basic notions such as structures and first-order logic, and our
local first-order logic and the associated satisfiability problem(s). We identify and solve the
decidable case in Section 3. In Section 4, we show that minor extensions of our logic result in
undecidability. We conclude in Section 5. Some proof details can be found in the full version
of this paper, which is available at: https://hal.archives-ouvertes.fr/hal-03353214.

https://hal.archives-ouvertes.fr/hal-03353214

B. Bollig, A. Sangnier, and O. Stietel 39:3

2 Structures and First-Order Logic

2.1 Structures and First-Order Logic
Let Σ be a finite set of unary relation symbols, sometimes called unary predicates. A data
structure over Σ is a tuple A = (A, f1, f2, (Pσ)σ∈Σ) (in the following, we simply write
(A, f1, f2, (Pσ))) where A is a nonempty finite set, Pσ ⊆ A for all σ ∈ Σ, and f1 and f2
are mappings A → N assigning a data value to each element. We let ValA = {f1(a) | a ∈
A} ∪ {f2(a) | a ∈ A}. The set of all data structures over Σ is denoted by Data[Σ].

While this representation of data structures is often very convenient to refer to the first
or second data value of an element, a more standard way of representing mathematical
structures is in terms of binary relations. For every (i, j) ∈ {1, 2} × {1, 2}, the mappings f1
and f2 determine a binary relation i∼A

j ⊆ A × A as follows: a i∼A
j b if fi(a) = fj(b). We

may omit the superscript A if it is clear from the context. This representation is particularly
useful when we consider logics as specification languages.

Let Γ ⊆ {1, 2} × {1, 2} be a set of binary relation symbols, which determines the binary
relation symbols i∼j at our disposal, and let V = {x, y, . . .} be a countably infinite set of
variables. The set FO[Σ; Γ] of first-order formulas interpreted over data structures over Σ is
inductively given by the grammar φ ::= σ(x) | x i∼j y | x = y | φ ∨ φ | ¬φ | ∃x.φ, where x
and y range over V , σ ranges over Σ, and (i, j) ∈ Γ. We use standard abbreviations such as
∧ for conjunction and → for implication. We write φ(x1, . . . , xn) to indicate that the free
variables of φ are among x1, . . . , xn. A formula without free variables is called a sentence.

For A = (A, f1, f2, (Pσ)) ∈ Data[Σ] and a formula φ ∈ FO[Σ; Γ], the satisfaction relation
A |=I φ is defined wrt. an interpretation function I : V → A. The purpose of I is to assign
an interpretation to every (free) variable of φ so that φ can be given a truth value. For x ∈ V
and a ∈ A, the interpretation function I[x/a] maps x to a and coincides with I on all other
variables. We then define:

A |=I σ(x) if I(x) ∈ Pσ A |=I φ1 ∨ φ2 if A |=I φ1 or A |=I φ2

A |=I x i∼j y if I(x) i∼A
j I(y) A |=I ¬φ if A ̸|=I φ

A |=I x = y if I(x) = I(y) A |=I ∃x.φ if there is a ∈ A with A |=I[x/a] φ

Finally, for a sentence φ (without free variables), we write A |= φ if there exists an
interpretation function I such that A |=I φ.

▶ Example 1. Assume a unary predicate leader ∈ Σ and (1, 2) ∈ Γ. We use the first
data value to denote the input of a distributed algorithm and the second data value to
denote the output. The following formula from FO[Σ; Γ] expresses correctness of a leader-
election algorithm: (i) there is a unique process that has been elected leader, and (ii) all
processes agree, in terms of their output values, on the identity (the input value) of the
leader: ∃=1x.leader(x) ∧ ∀y.∃x.(leader(x) ∧x 1∼2 y). Here ∃=1x is a shortcut for “there
exists exactly one x”. Its definition is provided later on. ⌟

Note that every choice of Γ gives rise to a particular logic, whose formulas are interpreted
over data structures over Σ. Instead of FO[Σ; {(1, 1), (2, 2)}], we may also simply write
FO[Σ; (1, 1), (2, 2)] and so on. We will focus on the satisfiability problem for these logics. Let
F denote a generic class of first-order formulas, parameterized by Σ and Γ. In particular, for
F = FO, we have that F [Σ; Γ] is the class FO[Σ; Γ].

▶ Definition 2. The problem DataSat(F ,Γ) for F and Γ is defined as follows: Given a
finite set Σ and a sentence φ ∈ F [Σ; Γ], is there A ∈ Data[Σ] such that A |= φ ?

FSTTCS 2021

39:4 Local First-Order Logic with Two Data Values

The following negative result, which was shown in [16, Theorem 1], calls for restrictions
of the general logic:

▶ Theorem 3 ([16]). DataSat(FO, {(1, 1), (2, 2)}) is undecidable, even when requiring that
Σ = ∅.

A Normal Form

When Γ = ∅, satisfiability of monadic first-order logic is decidable [9, Corollary 6.2.2]
and the logic actually has a useful normal form. Let φ(x1, . . . , xn, y) ∈ FO[Σ; ∅] and
k ≥ 1 be a natural number. We use ∃≥ky.φ(x1, . . . , xn, y) as an abbreviation for
∃y1 . . . ∃yk.

∧
1≤i<j≤k ¬(yi = yj) ∧

∧
1≤i≤k φ(x1, . . . , xn, yi). Thus, ∃≥ky.φ says that there

are at least k distinct elements y that verify φ. We call a formula of the form ∃≥ky.φ a
threshold formula. We also use ∃=ky.φ as an abbreviation for ∃≥ky.φ ∧ ¬∃≥k+1y.φ.

When Γ = ∅, the out-degree of every element is 0 so that, over this particular signature, we
deal with structures of bounded degree. The following lemma will turn out to be useful. It is
due to Hanf’s locality theorem [15,22] for structures of bounded degree (cf. [8, Theorem 2.4]).

▶ Lemma 4. Every formula from FO[Σ; ∅] with one free variable x is effectively equivalent
to a Boolean combination of formulas of the form σ(x) with σ ∈ Σ and threshold formulas of
the form ∃≥ky.φU (y) where U ⊆ Σ and φU (y) =

∧
σ∈U σ(y) ∧

∧
σ∈Σ\U ¬σ(y).

Extended Two-Variable First-Order Logic

An orthogonal way to obtain decidability is to restrict to two variables and Γ = {(1, 1), (2, 2)}.
The two-variable fragment FO2[Σ; Γ] contains all FO[Σ; Γ] formulas that use only two variables
(usually x and y). In a two-variable formula, however, each of the two variables can be
used arbitrarily often. The satisfiability problem of two-variable logic over arbitrary finite
structures with two equivalence relations is decidable [20, Theorem 15]. By a straightforward
reduction to this problem, we obtain:

▶ Theorem 5 ([20]). The problem DataSat(FO2, {(1, 1), (2, 2)}) is decidable.

Actually, this result can be generalized to extended two-variable first-order logic. A formula
belongs to ext-FO2[Σ,Γ] if it is of the form φ∧ψ where φ ∈ FO[Σ; ∅] and ψ ∈ FO2[Σ,Γ]. To
obtain the next result, the idea consists in first translating the formula φ ∈ FO[Σ; ∅] to a
two-variable formula thanks to new unary predicates.

▶ Proposition 6. The problem DataSat(ext-FO2, {(1, 1), (2, 2)}) is decidable.

2.2 Local First-Order Logic
We are interested in logics that combine the advantages of the logics considered so far, while
preserving decidability. With this in mind, we will study local logics, where the scope of
quantification is restricted to the neighborhood of a given element.

The neighborhood of an element a includes all elements whose distance to a is bounded
by a given radius. It is formalized using the notion of a Gaifman graph (for an introduction,
see [22]). In fact, we use a variant that is suitable for our setting and that we call data
graph. Fix sets Σ and Γ. Given a data structure A = (A, f1, f2, (Pσ)) ∈ Data[Σ], we define
its data graph G(A) = (VG(A),EG(A)) with set of vertices VG(A) = A× {1, 2} and set of edges
EG(A) = {((a, i), (b, j)) ∈ VG(A) × VG(A) | a = b and i ̸= j, or (i, j) ∈ Γ and a i∼j b}. The
graph G(A) is illustrated in Figure 1.

B. Bollig, A. Sangnier, and O. Stietel 39:5

1
2
a

3
1

3
2

1
4

3
5

1
2
a

8
1

9
2

1
6

Figure 1 On the left: A data structure A and its data graph G(A) when Γ = {(1, 1), (2, 2), (1, 2)}.
Unidirectional edges are dashed. The blue nodes represent BA

1 (a). On the right is A|1a.

We define the distance dA((a, i), (b, j)) ∈ N∪{∞} between two elements (a, i) and (b, j)
from A× {1, 2} as the length of the shortest directed path from (a, i) to (b, j) in G(A). In
fact, as the graph is directed, the distance function might not be symmetric. For a ∈ A and
r ∈ N, the radius-r-ball around a is the set BA

r (a) = {(b, j) ∈ VG(A) | dA((a, i), (b, j)) ≤ r for
some i ∈ {1, 2}}. That is, it contains the elements of VG(A) that can be reached from (a, 1)
or (a, 2) through a directed path of length at most r. In the left-hand side of Figure 1, BA

1 (a)
is given by the blue nodes.

Consider an injective mapping π : A× {1, 2} → N \ValA. We define the r-neighborhood
of a in A as the structure A|ra = (A′, f ′

1, f
′
2, (P ′

σ)) ∈ Data[Σ]. Its universe is A′ = {b ∈
A | (b, i) ∈ BA

r (a) for some i ∈ {1, 2}}. Moreover, f ′
i(b) = fi(b) if (b, i) ∈ BA

r (a), and
f ′

i(b) = π((b, i)) otherwise. Finally, P ′
σ is the restriction of Pσ to A′. To illustrate this

definition, we use again Figure 1. The structure A|1a is given by the four elements that
contain at least one blue node. However, the values of the red nodes have to be replaced by
pairwise distinct fresh values not contained in {1, . . . , 5}. Note that the precise values do not
matter.

We are now ready to present the logic r-Loc-FO[Σ; Γ], where r ∈ N, interpreted over
structures from Data[Σ]. It is given by the grammar

φ ::= ⟨⟨ψ⟩⟩r
x | x = y | ∃x.φ | φ ∨ φ | ¬φ

where ψ is a formula from FO[Σ; Γ] with (at most) one free variable x. For A ∈ Data[Σ] and
interpretation function I, we define A |=I ⟨⟨ψ⟩⟩r

x if A|rI(x) |=I ψ.

▶ Example 7. We can rewrite the formula from Example 1 so that it falls into the fragment
1-Loc-FO[Σ; (1, 1), (2, 2), (2, 1)]: ∃=1x.⟨⟨leader(x)⟩⟩1

x ∧ ∀y.⟨⟨∃x.leader(x) ∧ y 2∼1 x⟩⟩1
y. The

next formula specifies an algorithm in which all processes suggest a value and then choose a
new value among those that have been suggested at least three times: ∀x.⟨⟨∃≥3y.x 2∼1 y⟩⟩1

x.
We can also specify partial renaming, i.e., two output values agree only if their input values
are the same: ∀x.⟨⟨∀y.(x 2∼2 y → x 1∼1 y)⟩⟩1

x. Conversely, ∀x.⟨⟨∀y.(x 1∼1 y → x 2∼2 y)⟩⟩1
x

specifies partial fusion of equivalences classes. ⌟

3 Decidability With One Diagonal Relation

We will show in this section that DataSat(1-Loc-FO, {(1, 1), (2, 2), (1, 2)}) (or, symmetrically,
DataSat(1-Loc-FO, {(1, 1), (2, 2), (2, 1)})) is decidable. To this end, we will give a reduction
to DataSat(ext-FO2, {(1, 1), (2, 2)}). The rest of this section is devoted to this reduction.

Henceforth, we fix a finite set Σ as well as Γ = {(1, 1), (2, 2), (1, 2)} and the diagonal-free
set Γdf = {(1, 1), (2, 2)}. Moreover, we let Θ range over arbitrary finite sets such that Σ ⊆ Θ
and Θ ∩ {eq, ed} = ∅, where eq and ed are special unary symbols that are introduced below.

FSTTCS 2021

39:6 Local First-Order Logic with Two Data Values

(a)

1
2

a

1
1

1
1

1
1

2
2

3
4

2
1

3
1

(b)

1
2

a

1
2

(1,1)
(2,2)

1
1

(1,1)
(1,2)

1
1

(1,1)
(1,2)

1
1

(1,1)
(1,2)

2
2

(2,2)

3
4

2
1

(1,2) 3
1

(1,2)

(c) 1
2

a

≥ 1

≥ 1

≥ 2

≥ 3

1
1

1
1

1
1

2
2

3
4

2
1 3

1

(d) 1
1

≥ 1

≥ 2

≥ 3

eq

1
1

≥ 1

≥ 2

≥ 3

eq

1
1

≥ 1

≥ 2

≥ 3

eq

2
2

≥ 1

≥ 1

≥ 1

eq

1
2

≥ 1

≥ 1

≥ 2

≥ 3

2
1

≥ 3

≥ 1

≥ 1

≥ 1

3
1

≥ 1

≥ 3

≥ 1

3
4

≥ 1

≥ 1

: {(1, 1)}

: {(2, 2)}

: {(1, 2)}

: {(1, 1), (2, 2)}

: {(1, 1), (1, 2)}

: {(2, 2), (1, 2)}

: {(1, 1), (2, 2), (1, 2)}

Figure 2 (a) A data structure over Σ = ∅. (b) Adding unary predicates for a given element a.
(c) Adding counting constraints to a. (d) A well-typed data structure from Data[{eq} ∪ C3].

We start with some crucial notion. Suppose Γ′ ⊆ Γ (which will later be instantiated
by either Γdf or Γ). Consider a data structure A = (A, f1, f2, (Pσ)) ∈ Data[Θ] with Σ ⊆ Θ.
Given U ⊆ Σ and a nonempty set R ⊆ Γ′, the environment of a ∈ A is defined as

EnvA,Σ,Γ′(a, U,R) =
{
b ∈ A | U = {σ ∈ Σ | b ∈ Pσ} and R = {(i, j) ∈ Γ′ | a i∼A

j b}
}

.

Thus, it contains the elements that carry exactly the labels from U (relative to Σ) and to
which a is related precisely in terms of the relations in R (relative to Γ′).

▶ Example 8. Consider A ∈ Data[Σ] from Figure 2(a) where Σ = ∅. Then, the set
EnvA,Σ,Γ(a, ∅, {(1, 1), (1, 2)}) = EnvA,Σ,Γdf

(a, ∅, {(1, 1)}) contains exactly the yellow elements
(with data-value pairs (1, 1)), and EnvA,Σ,Γ(a, ∅, {(1, 2)}) contains the two blue elements
(with data-value pairs (2, 1) and (3, 1)). ⌟

Let us now go through the reduction step by step.

Step 1: Transform Binary into Unary Relations
In the first step, we get rid of the binary relations by representing them as unary ones. In
fact, in a formula ⟨⟨ψ⟩⟩1

x from 1-Loc-FO[Σ; Γ], ψ only talks about elements that are directly
related to a = I(x) in terms of pairs from Γ. In fact, we can rewrite ψ into ψ′ so that all
comparisons are wrt. x, i.e., they are of the form x i∼j y. Then, a pair (i, j) ∈ Γ can be seen
as a unary predicate that holds at b iff a i∼j b. In this way, we eliminate the binary relations
and replace ψ′ with a first-order formula ψ′′ over unary predicates.

▶ Example 9. Adding unary relations to a data structure for a given element a is illustrated
in Figure 2(b) (recall that Σ = ∅). ⌟

Thanks to the unary predicates, we can now apply Lemma 4 (which was a consequence
of locality of first-order logic over unary symbols only). That is, to know whether ψ′′ holds
when x is interpreted as a, it is enough to know how often every unary predicate is present
in the environment of a, counted only up to some M ≥ 1. However, we will then give
up the information of whether the two data values at a coincide or not. Therefore, we
introduce a unary predicate eq, which shall label those events whose two data values coincide.
Accordingly, we say that A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}] is eq-respecting if, for all
a ∈ A, we have a ∈ Peq iff f1(a) = f2(a).

B. Bollig, A. Sangnier, and O. Stietel 39:7

(a) A + ed A

1
1

b1

1
1
ed
eq

2
2

b2

2
2
ed
eq

3
3

b3

3
3
ed
eq

4
4

b4

4
4
ed
eq

1
2

a7

1
1

a1

1
1
eq

1
1

a2

1
1
eq

1
1

a3

1
1
eq

2
2

a6

2
2
eq

3
4

a82
1

a5

3
1

a4

(b)

3
1

b1

3
1
ed
eq

1
2

b2

1
2
ed
eq

4
3

b3

4
3
ed
eq

2
4

b4

2
4
ed
eq

3
2

a7

3
1

a1

3
1
eq

3
1

a2

3
1
eq

3
1

a3

3
1
eq

1
2

a6

1
2
eq

4
4

a81
1

a5

4
1

a4

Figure 3 (a) Adding diagonal elements. (a)←(b) Making a data structure eq-respecting.

Once we add this information to a, it is enough to know the size of EnvA,Σ,Γ(a, U,R)
for every U ⊆ Σ and nonempty R ⊆ Γ, measured up to M . To reason about these
sizes, we introduce a unary predicate HU,R,mI for all U ⊆ Σ, nonempty sets R ⊆ Γ, and
m ∈ {1, . . . ,M} (which is interpreted as “≥m”). We also call such a predicate a counting
constraint and denote the set of all counting constraints by CM (recall that we fixed Σ and
Γ). For a finite set Θ with Σ ⊆ Θ, we call A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ CM] cc-respecting
if, for all a ∈ A, we have a ∈ PHU,R,mI iff |EnvA,Σ,Γ(a, U,R)| ≥ m.

Finally, we call A ∈ Data[Θ ∪ {eq} ∪ CM] well-typed if it is eq-respecting and cc-respecting.

▶ Example 10. In Figure 2(c), where we suppose M = 3 and Σ = ∅, the element a
satisfies the counting constraints H∅, {(2, 2)}, 1I, H∅, {(1, 1), (2, 2)}, 1I, H∅, {(1, 2)}, 2I, and
H∅, {(1, 1), (1, 2)}, 3I, as well as all inherited constraints for smaller constants (which we
omitted). We write H∅, R,mI as R ≥ m. In fact, pairs from R are represented as black
bars in the obvious way (cf. Figure 2(d)); moreover, for each constraint, the corresponding
elements have the same color. Finally, the data structure from Figure 2(d) is well-typed, i.e.,
eq- and cc-respecting. Again, we omit inherited constraints. ⌟

To summarize, we have the following reduction:

▶ Lemma 11. For each formula φ ∈ 1-Loc-FO[Σ; Γ], we can effectively compute M ∈ N and
χ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅] such that φ is satisfiable iff χ has a well-typed model.

Step 2: Well-Diagonalized Structures
In CM , we still have the diagonal relation (1, 2) ∈ Γ. Our goal is to get rid of it so that
we only deal with the diagonal-free set Γdf = {(1, 1), (2, 2)}. The idea is again to extend a
given structure A, but now we add new elements, one for each value n ∈ ValA, which we tag
with a unary symbol ed and whose two data values are n. Diagonal equality will be ensured
through making a detour via these “diagonal” elements (hence the name ed).

Formally, when we start from some A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}], the data
structure A + ed ∈ Data[Θ ∪ {eq, ed}] is defined as (A′, f ′

1, f
′
2, (P ′

σ)) where A′ = A ⊎ ValA,
f ′

i(a) = fi(a) for all a ∈ A and i ∈ {1, 2}, f ′
1(a) = f ′

2(a) = a for all a ∈ ValA, P ′
σ = Pσ for all

σ ∈ Θ \ {eq}, P ′
ed = ValA, and P ′

eq = Peq ∪ ValA.

▶ Example 12. The structure A + ed is illustrated in Figure 3(a), with Θ = ∅. ⌟

With this, we say that B ∈ Data[Θ ∪ {eq, ed}] is well-diagonalized if it is of the form
A + ed for some eq-respecting A ∈ Data[Θ ∪ {eq}]. Note that then B is eq-respecting, too.

▶ Example 13. The data structure A + ed from Figure 3(a) is well-diagonalized. The one
from Figure 3(b) is not well-diagonalized (in particular, it is not eq-respecting). ⌟

FSTTCS 2021

39:8 Local First-Order Logic with Two Data Values

We will need a way to ensure that the considered data structures are well-diagonalized.
To this end, we introduce the following sentence from FO2[Θ ∪ {eq, ed}; Γdf]:

ξΘ
ed :=

∧
i∈{1,2} ∀x.∃y.(ed(y) ∧ x i∼i y) ∧

(
∀x.∀y.(ed(x) ∧ ed(y) ∧ x i∼i y) → x = y

)
∧ ∀x.eq(x) ↔ ∃y.(ed(y) ∧ x 1∼1 y ∧ x 2∼2 y)
∧ ∀x.ed(x) →

∧
σ∈Θ ¬σ(x)

Every structure that is well-diagonalized satisfies ξΘ
ed. The converse is not true in general. In

particular, a model of ξΘ
ed is not necessarily eq-respecting. However, if a structure satisfies a

formula φ ∈ FO[Θ ∪ {eq, ed}; Γdf], then it is possible to perform a permutation on the first
(or the second) values of its elements while preserving φ. This allows us to get:

▶ Lemma 14. Let B ∈ Data[Θ ∪ {eq, ed}] and φ ∈ FO[Θ ∪ {eq, ed}; Γdf]. If B |= φ ∧ ξΘ
ed,

then there exists an eq-respecting A ∈ Data[Θ ∪ {eq}] such that A + ed |= φ.

▶ Example 15. Consider Figure 3 and let Θ = ∅. The data structure from Figure 3(b)
satisfies ξΘ

ed, though it is not well-diagonalized. Suppose it also satisfies φ ∈ FO[{eq, ed}; Γdf].
By permutation of the first data values, we obtain the well-diagonalized data structure in
Figure 3(a). As φ does not talk about the diagonal relation, satisfaction of φ is preserved. ⌟

Finally, we can inductively translate φ ∈ FO[Θ ∪ {eq}; ∅] into a formula [[φ]]+ed ∈ FO[Θ ∪
{eq, ed}; ∅] that avoids the extra “diagonal” elements: [[σ(x)]]+ed = σ(x), [[x = y]]+ed = (x = y),
[[∃x.φ]]+ed = ∃x.(¬ed(x) ∧ [[φ]]+ed), [[φ ∨ φ′]]+ed = [[φ]]+ed ∨ [[φ′]]+ed, and [[¬φ]]+ed = ¬[[φ]]+ed.
We immediately obtain:

▶ Lemma 16. Let A ∈ Data[Θ ∪ {eq}] and φ ∈ FO[Θ ∪ {eq}; ∅] be a sentence. We have
A |= φ iff A + ed |= [[φ]]+ed.

Step 3: Getting Rid Of the Diagonal Relation
We will now exploit well-diagonalized data structures to reason about environments relative
to Γ in terms of environments relative to Γdf . Recall that Θ ranges over finite sets such that
Σ ⊆ Θ.

▶ Lemma 17. Let A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq}] be eq-respecting and B = A + ed.
Moreover, let a ∈ A, U ⊆ Σ, and R ⊆ Γ be a nonempty set. We have EnvA,Σ,Γ(a, U,R) =

EnvB,Σ,Γdf
(a, U,Γdf) \ Ped if a ∈ Peq and R = Γ (1)

EnvB,Σ,Γdf
(a, U,Γdf) if a /∈ Peq and R = Γdf (2)

EnvB,Σ,Γdf
(a, U, {(1, 1)}) ∩ (Peq \ Ped) if a /∈ Peq and R = {(1, 1), (1, 2)} (3)

EnvB,Σ,Γdf
(a, U, {(2, 2)}) if a ∈ Peq and R = {(2, 2), (1, 2)} (4)

EnvB,Σ,Γdf
(a, U, {(2, 2)}) \ Ped if a /∈ Peq and R = {(2, 2)} (5)

EnvB,Σ,Γdf
(a, U, {(1, 1)}) \ Peq if R = {(1, 1)} (6)

EnvB,Σ,Γdf
(d, U, {(2, 2)}) if a /∈ Peq and R = {(1, 2)} (7)

for the unique d ∈ Ped such that d 1∼B
1 a

∅ otherwise (8)

▶ Example 18. Let us go through some cases of Lemma 17 using Figure 3(a), and letting
Σ = Θ = ∅.

B. Bollig, A. Sangnier, and O. Stietel 39:9

1
1
ed
eq

2
2
ed
eq

3
3
ed
eq

4
4
ed
eq

α1
3

1
1
p
eq
γ1

1
1
p
eq
γ2

1
1
p
eq
γ3

1
1
p
eq
γ3

α2
3

1
2
p
γ1

1
2
p
γ2

1
2
p
γ3

α3
2

1
3
p
γ1

1
3
p
γ2

α4
2

1
4
p
γ1

1
4
p
γ2

Figure 4 Counting intersections for M = 3 and elements with label p.

(1) Let a = a1 and R = Γ. Then, EnvA,Σ,Γ(a, ∅, R) = {a1, a2, a3}. We also have that
EnvB,Σ,Γdf

(a, ∅,Γdf) = {a1, a2, a3, b1}: These are the elements that coincide with a

exactly on the first and the on the second data value when we dismiss the diagonal
relation. Of course, as we consider B, this includes b1, which we have to exclude. Thus,
EnvA,Σ,Γ(a, ∅, R) = EnvB,Σ,Γdf

(a, ∅,Γdf) \ Ped.
(6) Let a = a4 and R = {(1, 1)}. We have EnvA,Σ,Γ(a, ∅, R) = {a8}. Looking at B and

discarding the diagonal relation would also include b3 and any element with data-value pair
(3, 3). Discarding Peq, we obtain EnvB,Σ,Γdf

(a, ∅, {(1, 1)}) \ Peq = {a8, b3} \ {b3} = {a8}.
(7) Let a = a7 and R = {(1, 2)}. Then, EnvA,Σ,Γ(a, ∅, R) = {a4, a5}, which is the set of

elements whose second data value is 1 and whose first data value is different from 1. The
idea is now to change the reference point. Take the unique d ∈ Ped such that d 1∼B

1 a.
Thus, d = b1. The set EnvB,Σ,Γdf

(b1, ∅, {(2, 2)}) gives us exactly the elements that have
1 as the second data value and a first value different from 1, as desired. ⌟

Let us wrap up: By Lemmas 11 and 17, we end up with checking counting constraints in
an extended data structure without using the diagonal relation.

Step 4: Counting in Two-Variable Logic
The next step is to express these constraints using two-variable formulas. Counting in
two-variable logic is established using further unary predicates. These additional predicates
allow us to define a partitioning of the universe of a structure into so-called intersections.
Suppose A = (A, f1, f2, (Pσ)) ∈ Data[Θ ∪ {eq, ed}], where Σ ⊆ Θ. Let a ∈ A \Ped and define
ℓΣ(a) = {σ ∈ Σ | a ∈ Pσ}. The intersection of a in A is the set {b ∈ A \ Ped | a 1∼1 b ∧
a 2∼2 b ∧ ℓΣ(a) = ℓΣ(b)}. A set is called an intersection in A if it is the intersection of some
a ∈ A \ Ped.

▶ Example 19. Consider Figure 4 and suppose Σ = {p}. The intersections of the given data
structure are gray-shaded. ⌟

Let us introduce the various unary predicates, which will be assigned to non-diagonal
elements. There are three types of them (for the first two types, also see Figure 4):

1. The unary predicates Λγ
M = {γ1, . . . ,γM } have the following intended meaning: For all

intersections I and i ∈ {1, . . . ,M}, we have |I| ≥ i iff there is a ∈ I such that a ∈ Pγi . In
other words, the presence (or absence) of γi in an intersection I tells us whether |I| ≥ i.

2. The predicates Λα
M = {αj

i | i ∈ {1, . . . ,M} and j ∈ {1, . . . ,M + 2}} have the following
meaning: If a is labeled with αj

i , then (i) there are at least j intersections sharing the
same first value and the same label set ℓΣ(a), and (ii) the intersection of a has i elements
if i ≤ M − 1 and at least M elements if i = M . Hence, in αj

i , index i counts the elements
inside an intersection, and j labels up to M + 2 different intersections. We need to go
beyond M due to Lemma 17: When we remove certain elements (e.g., Peq) from an
environment, we must be sure to still have sufficiently many to be able to count until M .

FSTTCS 2021

39:10 Local First-Order Logic with Two Data Values

3. Labels from Λβ
M = {βj

i | i ∈ {1, . . . ,M} and j ∈ {1, . . . ,M + 1}} will play a similar role
as those in Λα

M but consider the second values of the elements instead of the first ones.

▶ Example 20. A suitable labeling for types γ and α is illustrated in Figure 4 for M = 3. ⌟

Let ΛM = Λα
M ∪ Λβ

M ∪ Λγ
M denote the set of all these unary predicates. It is relatively

standard to come up with sentences φα, φβ, φγ ∈ FO2[Θ ∪ {eq, ed} ∪ ΛM ; Γdf] that guarantee
the respective properties. In particular, they make use of the formula x 1∼1 y ∧ x 2∼2
y ∧

∧
σ∈Σ σ(x) ↔ σ(y) saying that two (non-diagonal) elements x and y are in the same

intersection.

Now that we can count on a consistent labeling with predicates from ΛM , let us see
how we can exploit it to express HU,R,mI ∈ CM , with additional help from Lemma 17, as a
formula φU,R,m(x) ∈ FO2[Θ ∪ {eq, ed} ∪ ΛM ; Γdf] applied to non-diagonal elements (outside
Ped). Let us look at two sample cases according to the case distinction done in Lemma 17.
Hereby, we will use, for U ⊆ Σ, the formula φU (y) =

∧
σ∈U σ(y) ∧

∧
σ∈Σ\U ¬σ(y).

(1) In this simple case with R = {(1, 1), (2, 2), (1, 2)}, we need to say that (i) the element a
under consideration is in Peq, and (ii) there is an intersection of size at least m (i..e., it
contains a γm-labeled element) whose elements b satisfy a 1∼1 b, a 2∼2 b, and ℓΣ(b) = U :

φU,R,m(x) := eq(x) ∧ ∃y.
(
φU (y) ∧ x 1∼1 y ∧ x 2∼2 y ∧ γm(y)

)
(6) For R = {(1, 1)}, we first need an extra definition. Given m ∈ {1, . . . ,M}, we define the

set Sα,m of subsets of Λα
M as follows: Sα,m = {{αj1

i1
, . . . ,αjk

ik
} | i1 + . . .+ ik ≥ m and j1 <

j2 < . . . < jk}. It corresponds to the sets of elements αj
i whose sum of i is greater than

or equal to m. We can then translate the constraint according to Lemma 17 as follows:

φU,R,m(x) :=
∨

S∈Sα,m

∧
α∈S

∃y.
(
φU (y) ∧ α(y) ∧ ¬eq(y) ∧ x 1∼1 y ∧ ¬(x 2∼2 y)

)
Finally, it remains to say that all elements are labeled with the suitable counting con-

straints. So we let φcc = ∀x.¬ed(x) →
∧

HU,R,mI ∈ CM
HU,R,mI(x) ↔ φU,R,m(x).

▶ Lemma 21. Let A = (A, f1, f2, (Pσ)) ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM] be eq-respecting. If
A + ed |= φα ∧ φβ ∧ φγ ∧ φcc, then A is cc-respecting.

Step 5: Putting it All Together
Let All = Σ ∪ {eq, ed} ∪ CM ∪ ΛM denote the set of all the unary predicates that we have
introduced so far. Recall that, after Step 1, we were left with M ≥ 1 and a formula
φ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅]. The question is now whether φ has a well-typed model (i.e., a
model that is eq-respecting and cc-respecting). Altogether, we get the following reduction:

▶ Proposition 22. Let φ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅]. Then, φ has a well-typed model iff
φ̂ := [[φ]]+ed ∧ ξ

All\{eq,ed}
ed ∧ φα ∧ φβ ∧ φγ ∧ φcc ∈ ext-FO2[All; Γdf] is satisfiable.

Proof. Suppose φ̂ is satisfiable. Then, there is B ∈ Data[All] such that B |= φ̂. By Lemma
14, there exists an eq-respecting data structure A ∈ Data[Σ ∪ {eq} ∪ CM ∪ ΛM] such that
A + ed |= [[φ]]+ed ∧ φα ∧ φβ ∧ φγ ∧ φcc. Using Lemma 21, we deduce that A is cc-respecting
and, thus, well-typed. Furthermore, by Lemma 16, we have A |= φ. Note that A belongs to
Data[Σ ∪ {eq} ∪ CM ∪ ΛM]. However, by removing the unary predicates in ΛM , we still have
a model of φ from Data[Σ ∪ {eq} ∪ CM] as required. Hence, φ has a well-typed model.

B. Bollig, A. Sangnier, and O. Stietel 39:11

Assume now that there exists a well-typed data structure A ∈ Data[Σ ∪ {eq} ∪ CM] such
that A |= φ. Using Lemma 16, we have that A + ed |= [[φ]]+ed. Furthermore, using the fact
that A is well-typed, we can add the unary predicates from ΛM to A + ed to obtain a data
structure A′ in Data[All] such that A′ |= φα ∧φβ ∧φγ ∧φcc. Note that A′ is well-diagonalized.
We deduce that A′ |= φ̂. ◀

▶ Theorem 23. DataSat(1-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is decidable.

Proof. Let ψ ∈ 1-Loc-FO[Σ; (1, 1), (2, 2), (1, 2)]. Using Lemma 11, we can effectively compute
M ∈ N and φ ∈ FO[Σ ∪ {eq} ∪ CM ; ∅] such that ψ is satisfiable iff φ has a well-typed
model. By Proposition 22, φ has a well-typed model iff φ̂ is satisfiable. Since φ̂ belongs to
ext-FO2[All; Γdf], we conclude using Proposition 6. ◀

4 Undecidability Results

Let us show that extending the neighborhood radius yields undecidability. We rely on a
reduction from the domino problem [9] and use a specific technique presented in [25].

The Tiling Problem

A domino system D is a triple (D,H, V) where D is a finite set of dominoes and H,V ⊆ D×D
are two binary relations. Let Gm denote the standard grid on an m×m torus, i.e., Gm =
(Gm, Hm, Vm) where Hm and Vm are two binary relations defined as follows: Gm = Zmodm×
Zmodm, Hm = {((i, j), (i′, j)) | i′ − i ≡ 1 mod m}, and Vm = {((i, j), (i, j′)) | i′ − i ≡ 1
mod m}. In the sequel, we will suppose Zmodm = {0, . . . ,m− 1} using the least positive
member to represent residue classes.

A bi-binary structure is a triple (A,R1, R2) where A is a finite set and R1, R2 are subsets
of A×A. Domino systems and Gm for any m are examples of bi-binary structures. For two
bi-binary structures G = (G,H, V) and G′ = (G′, H ′, V ′), we say that G is homomorphically
embeddable into G′ if there is a morphism π : G → G′, i.e., a mapping π such that, for
all a, a′ ∈ G, (a, a′) ∈ H ⇒ (π(a), π(a′)) ∈ H ′ and (a, a′) ∈ V ⇒ (π(a), π(a′)) ∈ V ′. For
instance, Gk·m is homomorphically embeddable into Gm through reduction mod m. For a
domino system D, a periodic tiling is a morphism τ : Gm → D for some m and we say that
D admits a periodic tiling if there exists a periodic tiling of D.

The problem Tiles (or periodic tiling problem), which is well known to be undecidable [9],
is defined as follows: Given a domino system D, does D admit a periodic tiling?

To use Tiles in our reductions, we first use some specific bi-binary structures, which
we call grid-like and which are easier to manipulate in our context to encode domino
systems. A bi-binary structure G = (A,H, V) is said to be grid-like if some Gm is
homomorphically embeddable into G. The logic FO over bi-binary structures refers to
the first-order logic on two binary relations H,V, and we write Hxy to say that x and y

are in relation for H. Consider the two following FO formulas over bi-binary structures:
φcomplete = ∀x.∀y.∀x′.∀y′.((Hxy ∧ Vxx′ ∧ Vyy′) → Hx′y′) and φprogress = ∀x.(∃y.Hxy ∧ ∃y.
Vxy). The following lemma, first stated and proved in [25], shows that these formulas suffice
to characterize grid-like structures:

▶ Lemma 24 ([25]). Let G = (A,H, V) be a bi-binary structure. If G satisfies φcomplete and
φprogress, then G is grid-like.

FSTTCS 2021

39:12 Local First-Order Logic with Two Data Values

X0

Y0

X0

Y0

X0

Y0

X0

Y0

X1

Y1

X1

Y1

X1

Y1

Figure 5 The local pattern of A2m. Dots denote elements. Two dots are in the same 1∼1-
equivalence class (resp. 2∼2) iff they are in the same green (resp. purple) area. The thick black lines
represent the relation 1∼2 in the following way: if a 1∼1-equivalence class C1 and a 2∼2-equivalence
class C2 are connected with a thick black line, then for any a ∈ C1 and b ∈ C2, we have a 1∼2 b.

φ00
H = X0(x) ∧X1(y) ∧Y0(x) ∧Y0(y) ∧x 1∼1 y

φ10
H = X1(x) ∧X0(y) ∧Y0(x) ∧Y0(y) ∧x 2∼2 y

φ01
H = X0(x) ∧X1(y) ∧Y1(x) ∧Y1(y) ∧x 1∼1 y

φ11
H = X1(x) ∧X0(y) ∧Y1(x) ∧Y1(y) ∧x 2∼2 y

φH = φ00
H ∨φ10

H ∨φ01
H ∨φ11

H

φ00
V = X0(x) ∧X0(y) ∧Y0(x) ∧Y1(y) ∧x 1∼1 y

φ10
V = X1(x) ∧X1(y) ∧Y0(x) ∧Y1(y) ∧x 1∼1 y

φ01
V = X0(x) ∧X0(y) ∧Y1(x) ∧Y0(y) ∧x 2∼2 y

φ11
V = X1(x) ∧X1(y) ∧Y1(x) ∧Y0(y) ∧x 2∼2 y

φV = φ00
V ∨φ10

V ∨φ01
V ∨φ11

V

Figure 6 Link between A2m and G2m.

Given A = (A, f1, f2, (Pσ)) ∈ Data[Σ] and φ(x, y) ∈ FO[Σ; Γ], we define the binary
relation [[φ]]A = {(a, b) ∈ A× A | A |=I[x/a][y/b] φ(x, y) for some interpretation function I}.
Thus, given two FO[Σ; Γ] formulas φ1(x, y), φ2(x, y) with two free variables, (A, [[φ1]]A, [[φ2]]A)
is a bi-binary structure.

As we want to reason on data structures, we build a data structure A2m that corresponds
to the grid G2m = (G2m, H2m, V2m). This structure is depicted locally in Figure 5. To define
A2m, we use four unary predicates given by Σgrid = {X0, X1, Y0, Y1}. They give us access to
the coordinate modulo 2. We then define A2m = (G2m, f1, f2, (Pσ)) ∈ Data[Σgrid] as follows:
For k ∈ {0, 1}, we have PXk

= {(i, j) ∈ G2m | i ≡ k mod 2} and PYk
= {(i, j) ∈ G2m | j ≡ k

mod 2}. For all i, j ∈ {0, . . . , 2m−1}, we set f1(i, j) = ((i/2) mod m)+m∗ ((j/2) mod m)
(where / stands for the Euclidian division). Finally, for all i, j ∈ {1, . . . , 2m}, set f2(i
mod (2m), j mod (2m)) = f1(i− 1, j − 1).

In Figure 6, we define quantifier free formulas φH(x, y) and φV (x, y) from the logic
FO[Σgrid ; (1, 1), (2, 2)] with two free variable. These formulas allow us to make the link
between the data structure A2m and the grid G2m, and we will use them later on to ensure
that a data structure has a shape ’similar’ to A2m.

▶ Remark 25. Note that, using the definitions of G2m and of A2m we can show that, if G is
the bi-binary structure (G2m, [[φH]]A2m

, [[φV]]A2m
), then G2m = G.

B. Bollig, A. Sangnier, and O. Stietel 39:13

The Reduction from Radius 3

We first use the previously introduced notions to show that DataSat(3-Loc-FO, {(1, 1), (2, 2)})
is undecidable, hence we assume now that Γ = {(1, 1), (2, 2)}. The first step in our reduction
from Tiles consists in defining φ3 -loc

grid ∈ 3-Loc-FO[Σgrid ; (1, 1), (2, 2)] to check that a data
structure corresponds to a grid (⊕ stands for exclusive or):

φ3 -loc
complete = ∀x.⟨⟨∀y.∀x′.∀y′.φH(x, y) ∧φV (x, x′) ∧φV (y, y′) → φH(x′, y′)⟩⟩3

x

φ3 -loc
progress = ∀x.⟨⟨∃y.φH(x, y) ∧ ∃y.φV (x, y)⟩⟩3

x

φ3 -loc
grid = φ3 -loc

complete ∧φ3 -loc
progress ∧ ∀x.⟨⟨(X0(x) ⊕X1(x)) ∧(Y0(x) ⊕ Y1(x))⟩⟩3

x

▶ Lemma 26. We have A2m |= φ3 -loc
grid . Moreover, for all A = (A, f1, f2, (Pσ)) in Data[Σgrid],

if A |= φ3 -loc
grid , then (A, [[φH]]A, [[φV]]A) is grid-like.

Given a domino system D = (D,HD, VD), we now provide a formula φD from the logic
3-Loc-FO[D; (1, 1), (2, 2)] that guarantees that, if a data structure corresponding to a grid
satisfies φD, then it can be embedded into D:

φD := ∀x.⟨⟨
∨

d∈D

(
d(x) ∧

∧
d ̸=d′∈D ¬(d(x) ∧ d′(x))

)
⟩⟩3

x

∧ ∀x.⟨⟨∀y.φH(x, y) →
∨

(d,d′)∈HD
d(x) ∧ d′(y)⟩⟩3

x

∧ ∀x.⟨⟨∀y.φV (x, y) →
∨

(d,d′)∈VD
d(x) ∧ d′(y)⟩⟩3

x

▶ Proposition 27. Given D = (D,HD, VD) a domino system, D admits a periodic tiling iff
the 3-Loc-FO[Σgrid ⊎D; (1, 1), (2, 2)] formula φ3 -loc

grid ∧φD is satisfiable.

As a corollary of the proposition, we obtain the main result of this section.

▶ Theorem 28. DataSat(3-Loc-FO, {(1, 1), (2, 2)}) is undecidable.

We can also reduce Tiles to DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}). In that case, it
is a bit more subtle to build a formula similar to the formula φcomplete as we have only
neighborhood of radius 2, but we use the diagonal binary relation (1, 2) to overcome this.

▶ Theorem 29. DataSat(2-Loc-FO, {(1, 1), (2, 2), (1, 2)}) is undecidable.

5 Future Work

There are some interesting open questions. For example, we leave open whether our main
decidability result holds for two diagonal relations. Recall that, when comparing the
expressiveness, two-variable first-order logic can be embedded in our logic. We do not know
yet whether the converse holds. Until now our work has focused on the satisfiability problem.
Another next step would be to see how our logic can be used to verify practical distributed
algorithms.

References
1 C. Aiswarya, B. Bollig, and P. Gastin. An automata-theoretic approach to the verification of

distributed algorithms. Inf. Comput., 259(Part 3):305–327, 2018.
2 B. Bednarczyk and P. Witkowski. A Note on C2 Interpreted over Finite Data-Words. In 27th

International Symposium on Temporal Representation and Reasoning, TIME 2020, September
23-25, 2020, Bozen-Bolzano, Italy, volume 178 of LIPIcs, pages 17:1–17:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.TIME.2020.17.

FSTTCS 2021

https://doi.org/10.4230/LIPIcs.TIME.2020.17

39:14 Local First-Order Logic with Two Data Values

3 H. Björklund and M. Bojanczyk. Shuffle expressions and words with nested data. In Ludek
Kucera and Antonín Kucera, editors, Mathematical Foundations of Computer Science 2007,
32nd International Symposium, MFCS 2007, Ceský Krumlov, Czech Republic, August 26-31,
2007, Proceedings, volume 4708 of Lecture Notes in Computer Science, pages 750–761. Springer,
2007.

4 R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decidability
of Parameterized Verification. Synthesis Lectures on Distributed Computing Theory. Morgan
& Claypool Publishers, 2015.

5 M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on
data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011.

6 M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data trees
and XML reasoning. J. ACM, 56(3), 2009.

7 B. Bollig, P. Bouyer, and F. Reiter. Identifiers in registers - describing network algorithms
with logic. In FOSSACS’19, volume 11425 of LNCS, pages 115–132. Springer, 2019.

8 B. Bollig and D. Kuske. An optimal construction of hanf sentences. J. Appl. Log., 10(2):179–186,
2012. doi:10.1016/j.jal.2012.01.002.

9 E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspectives in
Mathematical Logic. Springer, 1997.

10 N. Decker, P. Habermehl, M. Leucker, and D. Thoma. Ordered navigation on multi-attributed
data words. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 - Concurrency
Theory - 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014.
Proceedings, volume 8704 of Lecture Notes in Computer Science, pages 497–511. Springer,
2014.

11 E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput. Sci.,
14(4):527–550, 2003.

12 J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification (invited
talk). In STACS’14), volume 25 of LIPIcs, pages 1–10. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014.

13 W. Fokkink. Distributed Algorithms: An Intuitive Approach. MIT Press, 2013.
14 S. Grumbach and Z. Wu. Logical locality entails frugal distributed computation over graphs

(extended abstract). In WG’09, volume 5911 of LNCS, pages 154–165. Springer, 2009.
15 W. Hanf. Model-theoretic methods in the study of elementary logic. In J.W. Addison,

L. Henkin, and A. Tarski, editors, The Theory of Models, pages 132–145. North Holland, 1965.
16 A. Janiczak. Undecidability of some simple formalized theories. Fundamenta Mathematicae,

40:131–139, 1953.
17 A. Kara, T. Schwentick, and T. Zeume. Temporal logics on words with multiple data values.

In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18,
2010, Chennai, India, volume 8 of LIPIcs, pages 481–492. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2010.

18 E. Kieronski. Results on the guarded fragment with equivalence or transitive relations. In
C.-H. Luke Ong, editor, CSL’05, volume 3634 of LNCS, pages 309–324. Springer, 2005.

19 E. Kieronski, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera. Two-variable first-order
logic with equivalence closure. In LICS’12, pages 431–440. IEEE, 2012.

20 E. Kieronski and L. Tendera. On finite satisfiability of two-variable first-order logic with
equivalence relations. In LICS’09, pages 123–132. IEEE, 2009.

21 I. V. Konnov, H. Veith, and J. Widder. What you always wanted to know about model
checking of fault-tolerant distributed algorithms. In PSI’15 in Memory of Helmut Veith,
volume 9609 of LNCS, pages 6–21. Springer, 2015.

22 L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004.

23 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.

https://doi.org/10.1016/j.jal.2012.01.002

B. Bollig, A. Sangnier, and O. Stietel 39:15

24 A. Manuel and T. Zeume. Two-variable logic on 2-dimensional structures. In Simona
Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013, September
2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 484–499. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2013.

25 M. Otto. Two-variable first-order logic over ordered domains. Journal of Symbolic Logic,
66:685–702, 2001.

26 L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL’06,
volume 4207 of LNCS, pages 41–57. Springer, 2006.

27 T. Tan. Extending two-variable logic on data trees with order on data values and its automata.
ACM Trans. Comput. Log., 15(1):8:1–8:39, 2014.

FSTTCS 2021

Diagrammatic Polyhedral Algebra
Filippo Bonchi
University of Pisa, Italy

Alessandro Di Giorgio
University of Pisa, Italy

Paweł Sobociński
Tallinn University of Technology, Estonia

Abstract
We extend the theory of Interacting Hopf algebras with an order primitive, and give a sound and
complete axiomatisation of the prop of polyhedral cones. Next, we axiomatise an affine extension
and prove soundness and completeness for the prop of polyhedra.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Concurrency

Keywords and phrases String diagrams, Polyhedral cones, Polyhedra

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.40

Related Version Full Version: https://arxiv.org/abs/2105.10946 [5]

Funding Filippo Bonchi: Supported by the Ministero dell’Università e della Ricerca of Italy under
Grant No. 201784YSZ5, PRIN2017 – ASPRA (Analysis of Program Analyses).
Alessandro Di Giorgio: Supported by the Ministero dell’Università e della Ricerca of Italy under
Grant No. 201784YSZ5, PRIN2017 – ASPRA (Analysis of Program Analyses).
Paweł Sobociński: Supported by the ESF funded Estonian IT Academy research measure (project
2014-2020.4.05.19-0001) and the Estonian Research Council grant PRG1210.

Acknowledgements The authors have benefited, at the early stage of this work, of enlightening
comments and exciting discussions with Guillaume Boisseau. In particular, Guillaume proposed
several simplifications to the axiomatisations, showed us the first proof of the generalised spider and
the one for its polar.

1 Introduction

Engineers and scientists of different fields often rely on diagrammatic notations to model
systems of various sorts but, to perform a rigorous analysis, diagrams usually need to be
translated to more traditional mathematical language. Indeed diagrams have the advantage
to be quite intuitive, highlight connectivity, distribution and communication topology of
systems but they usually have an informal meaning and, even when equipped with a formal
semantics, diagrams cannot be easily manipulated like standard mathematical expressions.
Compositional network theory [3, 24] is a multidisciplinary research program studying diagrams
as first class citizens: diagrammatic languages come equipped with a formal semantics, which
has the key feature to be compositional; moreover diagrams can be manipulated like ordinary
symbolic expressions if an appropriate equational theory–ideally characterising semantic
equality–can be identified. This approach has been shown effective in various settings like
for instance, digital [20] and electrical circuits [4, 24], quantum protocols [14, 15], linear
dynamical systems [2, 32], Petri nets [7], Bayesian networks [23] and query languages [19, 10].

The common technical infrastructure is provided by string diagrams [31]: arrows of a
symmetric monoidal category freely generated by a monoidal signature. Intuitively, the
signature is a set of generators and diagrams are simply obtained by composing in series

© Filippo Bonchi, Alessandro Di Giorgio, and Paweł Sobociński;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 40; pp. 40:1–40:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3433-723X
https://orcid.org/0000-0002-6428-6461
https://orcid.org/0000-0002-7992-9685
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.40
https://arxiv.org/abs/2105.10946
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Diagrammatic Polyhedral Algebra

(horizontally) and in parallel (vertically) generators plus some basic wires (and).
The following set of generators is common to (most of) the aforementioned systems and,
surprisingly enough, (almost) the same algebraic laws hold in the various settings.

It is convenient to give an intuition of the intended meaning of such generators by relying on
the semantics from [32] that, amongst the aforementioned works, is the most relevant for the
present paper: the copier receives one value on the left and emits two copies on the
right; the discharger receives one value on the left and nothing on the right; the adder

receives two values on the left and emits their sum on the right; the zero receives
nothing on the left and constantly emits 0 on the right. The behaviour of the remaining four
generators is the same but left and right are swapped. Here values are meant to be rational
numbers. To deal with values from an arbitrary fields k, one has to add a generator k

for each k ∈ k; its intended meaning is the one of an amplifier: the value received on the left
is multiplied by k and emitted on the right.

This semantics has two crucial properties: first, it enjoys a sound and complete axiomat-
isation called the theory of Interacting Hopf Algebras (IH); second, it can express exactly
linear relations, namely relations forming vector spaces over k. In other words, diagrams
modulo the laws of IH are in one to one correspondence with linear relations.

In this paper we extend IH in order to express exactly relations that are polyhedra, rather
than mere vector spaces. Indeed, polyhedra allow the modeling of bounded spaces which
are ubiquitous in computer science. For instance, in abstract interpretation [17] polyhedra
represent bounded sets of possible values of variables; in concurrency theory and linear
optimisation one always deals with systems having a bounded amounts of resources.

To catch a glimpse of our result, consider the flow network [1] in (1): edges are labeled
with a positive real number representing their maximum capacity; the flow enters in the
source (the node s) and exits from the sink (the node t).

b

s

a6

2
2 t

5

1
(1) 2

1

5

6

2

(2)
≥ ≥k (3)

The network in (1) is represented within our diagrammatic language as in (2) where k

is syntactic sugar for the diagram in (3). Here ≥ and are the two novel generators that
we need to add to Interacting Hopf Algebras to express exactly polyhedra: ≥ constrains
the observation on the left to be greater or equal to the one on the right; constantly emits
1 on the right. Observe that (3) forces the values on the left and on the right to be equal
and to be in the interval [0, k]; the use of and for the nodes forces the sum of the
flows entering on the left to be equal to the sum of the flows leaving from the right.

An important property of flow networks is the maximum flow that can enter in the source
and arrive to the the sink. The sound and complete axiomatisation that we introduce allows
to compute their maximum flow by mean of intuitive graphical manipulations: for instance,
the diagram in (2) can be transformed in 5 , meaning that its maximum flow is exactly
5. We will come back to flow networks at the end of §5 (Example 31).

The remainder of the paper is organised as follows. We recall the basic categorical tools
for string diagrams in §2 and the theory of Interacting Hopf Algebras in §3. In §4, we extend
the syntax of Interacting Hopf Algebras with the generator ≥ . On the semantic side, this

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:3

allows to move from linear relations to polyhedral cones, for which we give a sound and fully
complete axiomatisation in terms of the diagrammatic syntax. The proof of completeness
involves a diagrammatic account of Fourier-Motzkin elimination, two normal forms leading
to the Weyl-Minkowski theorem, and a simple, inductive account of the notion of polar cone.

The results in §4 represent our main technical effort. Indeed, to pass from polyhedral
cones to polyhedra in §5, it is enough to add the generator , originally introduced in [9] to
move from linear to affine relations, and one extra axiom. The proof substantially exploits
the homogenization technique to reduce completeness for polyhedra to the just proved
completeness for polyhedral cones.

Finally, in §6, we conclude by showing a stateful extension of our diagrammatic calculus.
By simply adding a register x we obtain a complete axiomatisation for stateful polyhedral
processes: these are exactly all transition systems where both states and labels are vectors
from some vector spaces and the underlying transition relation forms a polyhedron. Stateful
polyhedral processes seem to be a sweet spot in terms of expressivity: on the one hand, they
properly generalise signal flow graphs [29], on the other, as illustrated in §6, they allow us to
give a compositional account of continuous Petri nets [18].

2 Props and Symmetric Monoidal Theories

The diagrammatic languages studied in network theory, e.g., [16, 30, 21, 7], can be treated
formally using the category theoretic notion of prop [28, 26] (product and permutation
category). A prop is a symmetric strict monoidal (ssm) category with objects natural
numbers, where the monoidal product ⊕ on objects is addition. Morphisms between props
are ssm functors that act as identity on objects. The usual methodology is to use two props:
Syn, the arrows of which are the diagrammatic terms of the language, and Sem, the arrows of
which are the intended semantics. A morphism J·K : Syn→ Sem assigns semantics to terms,
with the functoriality of J·K guaranteeing compositionality.

The syntactic prop Syn is usually freely generated from a monoidal signature Σ, namely
a set of generators o : n→ m with arity n ∈ N and coarity m ∈ N. Intuitively, the arrows of
Syn are diagrams wired up from the generators. A way of giving a concrete description is
via Σ-terms. The set of Σ-terms is obtained by composing generators in Σ, the identities
id0 : 0→ 0, id1 : 1→ 1 and the symmetry σ1,1 : 2→ 2 with ; and ⊕. This is a purely formal
process: given Σ-terms t : k → l, u : l → m, v : m→ n, one constructs Σ-terms t;u : k → m

and t⊕ v : k + n→ l + n. Now, the prop freely generated by a signature Σ, hereafter denoted
by PΣ, has as its arrows n→ m the set of Σ-terms n→ m modulo the laws of ssm categories.

There is a well-known, natural graphical representation for arrows of a freely generated
prop as string diagrams, which we now sketch. A Σ-term n→ m is pictured as a box with
n ordered wires on the left and m on the right. Composition via ; and ⊕ are rendered
graphically by horizontal and vertical juxtaposition of boxes, respectively.

t s
...

...
...

t
...

...

s
...

...

(4)

Moreover id1 : 1→ 1 is pictured as , the symmetry σ1,1 : 1 + 1→ 1 + 1 as , and the
unit object for ⊕, that is, id0 : 0→ 0 as the empty diagram . Arbitrary identities idn and
symmetries σn,m are generated according to (4) and drawn as n and

n

n

m

m , respectively.

FSTTCS 2021

40:4 Diagrammatic Polyhedral Algebra

Given a diagrammatic language Syn and a morphism J·K : Syn→ Sem, a useful task is to
identify a sound and (ideally) complete set of characterising equations E: JcK = JdK iff c and
d are equal in E=, the smallest congruence (w.r.t. ; and ⊕) containing E. Formally, the set E

consists of pairs (t, t′ : n→ m) of Σ-terms with the same arity and coarity. Then Σ together
with E form a symmetric monoidal theory (smt), providing a calculus of diagrammatic
reasoning. Any smt (Σ, E) yields a prop PΣ,E , obtained by quotienting the PΣ by E=.

Another issue is expressivity: one would like to characterise the image of Syn through
J·K, namely a subprop IM of Sem consisting of exactly those arrows d of Sem for which there
exists some c in Syn such that JcK = d. When this is possible and a sound and complete
axiomatization is available, the semantics map J·K factors as follows:

Syn = PΣ
q // //

J·K
''

PΣ,E

∼= // IM // ι // Sem .

The morphism q quotients PΣ by E=, ι is the inclusion of IM in Sem and ∼= is an iso between
PΣ,E and IM. In this case we say that (Σ, E) is the (symmetric monoidal) theory of IM.

Let k be an ordered field. In this paper Sem is fixed to be the following prop.

▶ Definition 1. Relk is the prop where arrows n→ m are relations R ⊆ kn × km.
Composition is relational: given R : n→ m and S : m→ o,

R ; S = { (u, v) ∈ kn × ko | ∃w ∈ km. (u, w) ∈ S ∧ (w, v) ∈ R }

The monoidal product is cartesian product: given R : n→ m and S : o→ p,

R⊕ S = { (
(

u1
u2

)
,

(
v1
v2

)
) ∈ kn+o × km+p | (u1, v1) ∈ R ∧ (v1, v2) ∈ S }

The symmetries σn,m : n + m→ m + n are the relations { (
(

u

v

)
,

(
v

u

)
) | u ∈ kn, v ∈ km }

For IM, we will consider the following three props.

▶ Definition 2. We define three sub-props of Relk. Arrows n→ m

in LinRelk are vector spaces {(x, y) ∈ kn × km | A
(

x

y

)
= 0} for some matrix A;

in PCk are polyhedral cones {(x, y) ∈ kn × km | A
(

x

y

)
≥ 0} for some matrix A;

in Pk are polyhedra {(x, y) ∈ kn × km | A
(

x

y

)
+ b ≥ 0} for some matrix A and b ∈ kp.

Identities, permutations, composition and monoidal product are defined as in Relk.

▶ Remark 3. In Definition 2, A is a matrix with n + m columns and p rows, for some p ∈ N.
Observe that the matrix A gives rise also to arrows n′ → m′ with n′, m′ different from n, m

but, such that n′ +m′ = n+m. This is justified by the isomorphism of kn×km and kn′×km′ .
Note therefore that the left and the right boundaries should not be confused with inputs
and outputs. This is a common feature in diagrammatic approaches relying on a notion of
relational composition which is unbiased.

Showing that the above are well-defined – e.g. that the composition of polyhedral cones is
a polyhedral cone – requires some well-known results, which are given in [5, Appendix A]. In
§3, we recall the theory of LinRelk, in §4 we identify the theory of PCk and, in §5, that of Pk.

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:5

2.1 Ordered Props and Symmetric Monoidal Inequality Theories
As relations R, S : n→ m in Relk carry the partial order of inclusion ⊆, it is useful to be able
to state when JcK ⊆ JdK for some c, d in Syn (see e.g. [6] for motivating examples). In order
to consider such inclusions, it is convenient to look at Relk as an ordered prop.

▶ Definition 4. An ordered prop is a prop enriched over the category of posets: a symmetric
strict monoidal 2-category with objects the natural numbers, monoidal product on objects
given by addition, where each set of arrows n→ m is a poset, with composition and monoidal
product monotonic. Similarly, a pre-ordered prop is a prop enriched over the category of
pre-orders. A morphism of (pre-)ordered props is an identity-on-objects symmetric strict
2-functor.

Just as SMTs yield props, Symmetric Monoidal Inequalities Theories [6] (SMITs) give rise to
ordered props. A SMIT is a pair (Σ, I) where Σ is a signature and I is a set of inequations:
as for equations, the underlying data is a pair (t, t′ : n→ m) of Σ-terms with the same arity
and coarity. Unlike equations, however, we understand this data as directed: t ≤ t′.

To obtain the free ordered prop from an SMIT, first, we construct the free pre-ordered
prop: arrows are Σ-terms. The homset orders, hereafter denoted by

I
⊆, are determined by

closing I by reflexivity, transitivity, ; and ⊕: this is the smallest precongruence (w.r.t. ; and
⊕) containing I. Then, we obtain the free ordered prop by quotienting the free pre-ordered

prop by the equivalence induced by
I
⊆, i.e. quotienting wrt anti-symmetry.

Any prop can be regarded as an ordered prop with the discrete ordering. Moreover any
SMT (Σ, E) gives rise to a canonical SMIT (Σ, I) where each equation is replaced by two
inequalities I = E ∪ Eop in the obvious way. In the remainder of this paper, we always
consider SMITs but, for the sake of readability, we generically refer to them just as theories.
Such theories consist of both inequalities and equations, that are generically called axioms.
Similarly, all props considered in the paper, their morphisms and isomorphisms are ordered.

3 The theory of Linear relations

In this section, we recall from [11, 2, 32] the theory of Interacting Hopf algebras. The
signature consists of the following set of generators, where k ranges over a fixed field k.

| | k | | | (5)
| | k | | (6)

For each generator, its arity and coarity are given by the number of dangling wires on the
left and, respectively, on the right. For instance has arity 1 and coarity 0. We call Circ
the prop freely generated by this signature and we refer to its arrows as circuits. We use Circ
as the syntax of our starting diagrammatic language. The semantics is given as the prop
morphism J·K : Circ→ Relk defined for the generators in (5) as

J K = {(x,

(
x

x

)
) | x ∈ k} J K = {(

(
x

y

)
, x + y) | x, y ∈ k}

J K = {(x, •) | x ∈ k} J K = {(•, 0)}
q

k
y

= {(x, k · x) | x ∈ k}
(7)

and, symmetrically, for the generators in (6). For instance,
q

k
y

= {(k · x, x) | x ∈ k}.
The semantics of the identities, symmetries and compositions is given by the functoriality of
J·K, e.g., Jc ; dK = JcK ; JdK. Above we used • for the unique element of the vector space k0.

FSTTCS 2021

40:6 Diagrammatic Polyhedral Algebra

We call C−→irc the prop freely generated from the generators in (5) and C←−irc the one freely
generated from (6). The semantics of circuits in C−→irc can be thought of as functions taking
inputs on left ports and giving output on the right ports, with the intuition for the generators
as given in the Introduction. Symmetrically, the semantics of circuits in C←−irc are functions
with inputs on the right ports and outputs on the left. The semantics of an arbitrary circuit
in Circ is, in general, a relation.

▶ Example 5. Two circuits will play a special role in our exposition: and . Using
the definition of J·K, it is immediate to see that their semantics forces the two ports on the
right (resp. left) to carry the same value.

q y
= {(•,

(
x

x

)
) | x ∈ k}

q y
= {(

(
x

x

)
, •) | x ∈ k}

Using these diagrams (along with and) one defines for each n ∈ N, n : 0→ n + n

and n : n + n→ 0 with semantics {(
(

x

x

)
, •) | x ∈ kn} and {(•,

(
x

x

)
) | x ∈ kn}. These

circuits give rise, modulo the axioms that we will illustrate later, to a self-dual compact
closed structure. See [13, Sec.5.1] for full details. As for identities and symmetries, also
for n and n we will sometimes omit n for readability. Given an arbitrary circuit
c : n→ m, its opposite circuit cop : m→ n is defined as illustrated below. It is easy to see
that cop denotes the opposite relation of JcK, i.e., JcopK = {(y, x) ∈ km × kn | (x, y) ∈ JcK}.(

mn
c

)op

:= m

n

c

As for n above, one can define the n-version of each of the generators in (5) and (6)
(as well as generators (8) and (10) that we shall introduce later). For instance

q n y
=

{(
(

x

y

)
, x + y) | x, y ∈ kn}. When clear from the context, we will omit the n.

A sound and complete axiomatisation for semantic equality was developed in [11, 2, 32],
and in [6] for inclusion. The above signature together with the axioms, recalled in Figure 1,
form the theory of Interacting Hopf Algebras. The resulting prop is denoted by IHk.
▶ Remark 6. Thanks to the compact closed structure, each of the axioms and laws that we
prove in the text can be read both as c

IH= d and cop IH= dop. For example, by •–coas we also

know that IH= .

▶ Theorem 7. For all circuits c, d in Circ, JcK ⊆ JdK if and only if c
IH
⊆ d.

We now come to expressivity: which relations in Relk are expressed by Circ? The answer
is that Circ captures exactly LinRelk (see Definition 2).

▶ Theorem 8. IHk
∼= LinRelk.

The above result means that IHk is the theory of linear relations. It is convenient to recall
from [27] a useful fact: circuits in C−→irc express exactly k-matrices, as illustrated below:

▶ Example 9. Consider the circuit c : 3 → 4 below and its representation as a 4 × 3
matrix. Note that Aij = k whenever k is the scalar encountered on the path from the
ith port to the jth port. If there is no path, then Aij = 0. It is easy to check that
JcK = {(x, y) ∈ k3 × k4 | y = Ax}.

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:7

◦−as= ◦−co= ◦−unl=

•−coas= •−coco= •−counl=

◦•−bi= ◦•−biun= •◦−biun= ◦•−bo=

k

k add= k
zer= k k

dup=
k

k
k

del=

k1 k2
×= k1k2

k1

k2 += k1 + k2 0
0=

k k
r−inv= r−coinv= k k for k ̸= 0, k ∈ k

•−fr1= •−fr2= •−sp= •−bo=

◦−fr1= ◦−fr2= ◦−sp= ◦−bo=

cc−1=
−1 cc−2=

−1 ◦•−inc
⊆

Figure 1 Axioms of Interacting Hopf Algebras (IHk).

c = k2

k1

A =

k1 0 0
1 0 0
k2 1 0
0 0 0

 d = k2

k1

Dually, circuits in C←−irc are “reversed” matrices: inputs on the right and outputs on the left.
For instance d : 4→ 3 again encodes A, but its semantics is JdK = {(y, x) ∈ k4× k3 | y = Ax}.

4 The Theory of Polyhedral cones

Hereafter, we assume k to be an ordered field, namely a field equipped with a total order ≤
such that for all i, j, k ∈ k: (a) if i ≤ j, then i + k ≤ j + k; (b) if 0 ≤ i and 0 ≤ j, then 0 ≤ ij.

FSTTCS 2021

40:8 Diagrammatic Polyhedral Algebra

≥
P 1
⊆

≥

≥
≥

P 2=
≥

≥
≥

P 3=
P 4
⊆ ≥

k ≥
P 5= ≥ k (k > 0) k ≥

P 6= ≤ k (k < 0)

≥

≤

antisym

⊆
≥

≥

≥

≥

spider=

≥

≥

≥

≥

≤ ≥
direction=

Figure 2 Axioms of IH≥
k .

We extend the signature in (5) and (6) with the following generator

≥ (8)

and denote the resulting free prop Circ≥. The morphism J·K : Circ≥ → Relk behaves as (7)
for the generators in (5) and (6), whereas for ≥ , it is defined as hinted by our syntax:q

≥
y

= { (x, y) | x, y ∈ k, x ≥ y }.

▶ Example 10. Let −→
A

n + m p
be a diagram in C−→irc denoting some matrix A (see

Example 9). Consider the following circuit in Circ≥

−→
A ≥

n
p

m

m

(9)

It easy to check that its semantics is the relation C = {(x, y) ∈ kn×km | A
(

x

y

)
≥ 0}. Thus (9)

denotes a polyhedral cone, i.e., the set of solutions of some system of linear inequations.

We denote by IH≥
k the prop generated by the theory consisting of this signature (namely, (5),

(6) and (8)), the axioms of IHk and the axioms in Figure 2, where ≤ is just ≥ op

(see Example 5). The first two rows of axioms describe the interactions of ≥ with the
generators in (5). The third row asserts that ≥ is antisymmetric and satisfies an appropriate
spider condition. In the last axiom, the right-to-left inclusion states that for all k, l ∈ k, there
exists an upper bound u, i.e. u ≥ k, u ≥ l. The left-to-right inclusion is redundant.

The axioms are perhaps surprising: e.g. reflexivity and transitivity are not included. As
a taster for working with the diagrammatic calculus, we prove these properties below.

▶ Remark 11. We will often use the alternative antipode notation for the scalar −1 .

≥≥
P 3=

≥

≥

≥

≥

spider=

≥

≥

≥

≥

IH=
≥

≥ ≤ ≥

direction=

direction=
≥

≥

P 3= ≥

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:9

The derivation above proves transitivity. The following derivation

≥ IH= ≥
P 2=

≥

≥

P 6=
≤

≥ IH= ≥
≥

(⋆)

is used below to show that ≥ is reflexive:

IH=
P 4
⊆

≥ (⋆)=
≥

≥
IH= ≥≥

trans= ≥

▶ Remark 12. When we annotate equalities with IH, we are making use of multiple unmen-
tioned derived laws presented in related works. These can be seen to hold also by appealing
to Theorem 7.

Routine computations confirm that all the axioms are sound. To prove completeness, we
give diagrammatic proofs of several well-known results.

▶ Proposition 13 (Fourier-Motzkin elimination). For each arrow A : n → m of C−→irc , there
exists an arrow B : n− 1→ l of C−→irc such that

n− 1 ≥−→
A

m IH≥
=

n− 1
≥−→

B
l

The proof, in [5, Appendix B.1], mimics the Fourier-Motzkin elimination, an algorithm for
eliminating variables from a system of linear inequations (i.e. projecting a polyhedral cone).

The next step is a normal form theorem. A circuit c : n → m of Circ≥ is said to be in
polyhedral normal form if there is an arrow −→

A
n + m p

of C−→irc , such that c = (9).

▶ Theorem 14 (First Normal Form). For each arrow c : n → m of Circ≥, there is another

arrow d : n→ m of Circ≥ in polyhedral normal form such that c
IH≥
= d.

The proof is by induction on the structure of Circ≥. The only challenging case is sequential
composition, which uses the Fourier-Moztkin elimination. Details are in [5, Appendix B.2].

Diagrams in Circ≥ enjoy a second normal form: an arrow c : n→ m of Circ≥ is said to be
in finitely generated normal form if there is an arrow ←−

V
n + m p

of C←−irc , such that

c = ←−
V ≥

n
p

m

m

As recalled in Example 9, the semantics of the circuit in C←−irc is
s

←−
V

n + m p
{

=

{(u, z) ∈ kn+m × kp | u = V z} for some (n + m)× p matrix V . Then, it is easy to check that

JcK = {(x, y) ∈ kn × km | ∃z ∈ kp s.t.
(

x

y

)
= V z, z ≥ 0}. The matrix V can be regarded

as a set of column vectors {v1, . . . , vp} and JcK as the conic combination of those vectors,
defined as cone(V) = {z1v1 + . . . + zpvp | zi ∈ k, zi ≥ 0}. Sets of vectors generated in this
way are known as finitely generated cones, which justifies the name of the normal form.

To prove the existence of this normal form, we introduce the polar operator, an important
construction in convex analysis which, in our approach, has a simple inductive definition.

FSTTCS 2021

40:10 Diagrammatic Polyhedral Algebra

▶ Definition 15. The polar operator ·◦ : Circ≥ → Circ≥ is the functor inductively defined as:

7−→ 7−→ k 7−→ k 7−→ 7−→
7−→ 7−→ k 7−→ k 7−→ 7−→

≥ 7−→
≥

(c ; d)◦ = c◦ ; d◦ (c⊕ d)◦ = c◦ ⊕ d◦

The polar operator enjoys the following useful properties.

▶ Proposition 16. For all arrows c, d : n→ m in Circ≥, it holds that

1. if c
IH≥

⊆ d then (d)◦
IH≥

⊆ (c)◦;

2. (c◦)◦ IH≥
= c;

3. if c is an arrow of C−→irc , then c◦ is an arrow of C←−irc .

▶ Proposition 17. For each arrow c : n→ m of Circ≥ in polyhedral normal form there is an
arrow d : n→ m of Circ≥ in finitely generated normal form, such that (c)◦ IH≥

= d.

Proof. Let c as in (9). Then, by applying the definition of ·◦

c◦ =

 −→
A ≥

n

m

m

◦

= ←−
A ◦

≥
n

m

m

IH=

IH= ←−
A ◦ ≥

n

−1
m

m

which is in finitely generated normal form, since ←−
A ◦

−1
is by Proposition 16 in

C←−irc . ◀

▶ Theorem 18 (Second Normal Form). For each arrow c : n→ m of Circ≥, there is an arrow

d : n→ m of Circ≥ in finitely generated normal form such that c
IH≥
= d.

Proof. By Theorem 14, there exists an arrow p : n→ m of Circ≥ in polyhedral normal form,
such that c◦ IH≥

= p. By Proposition 16.1, p◦ IH≥
= (c◦)◦ and, by Proposition 16.2 , (c◦)◦ IH≥

= c,

thus p◦ IH≥
= c. Since p is in polyhedral normal form, by Proposition 17, there exists a circuit

d in finitely generated normal form such that d
IH≥
= p◦ IH≥

= c. ◀

An immediate consequence of the two normal form theorems is the well-known Weyl-
Minkowski theorem, which states that every polyhedral cone is finitely generated and,
vice-versa, every finitely generated cone is polyhedral. It is worth emphasising that neither
the polyhedral nor the finitely generated normal form are unique: different matrices may
give rise to the same cone. However, with the finitely generated normal form, proving
completeness requires only a few more lemmas, which are given in [5, Appendix B.4].

▶ Theorem 19 (Completeness). For all circuits c, d ∈ Circ≥, if JcK ⊆ JdK then c
IH≥

⊆ d.

We now come to the problem of expressivity: what is the image of Circ≥ through J·K? It
turns out that Circ≥ denotes exactly the arrows of PCk (see Definition 2).

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:11

dup= del= ∅= AP 1= ≥

Figure 3 Axioms of aIH≥
k .

▶ Proposition 20 (Expressivity). For each arrow C : n → m in PCk there exists a circuit
c : n→ m of Circ≥, such that C = JcK. Vice-versa, for each circuit c : n→ m of Circ≥ there
exists an arrow C : n→ m of PCk, such that JcK = C.

By Theorem 19 and Proposition 20 it follows that

▶ Corollary 21. IH≥
k
∼= PCk

The above allows us to conclude that IH≥
k is the theory of polyhedral cones.

5 The theory of Polyhedra

In [9], the signature of Circ was extended with an additional generator

(10)

with semantics J K = {(•, 1)}. The three leftmost equations in Figure 3 provide a complete
axiomatisation for semantic equality. In terms of expressivity, the resulting calculus expresses
exactly affine spaces, namely sets of solutions of Ax + b = 0 for some matrix A and vector b.

Here we extend Circ≥ with (10). Let ACirc≥ be the prop freely generated by (5), (6), (8)
and (10). The circuits of ACirc≥ can denote polyhedra, namely sets P = {x ∈ kn | Ax+b ≥ 0 }.
Observe that the empty set ∅ is a polyhedron, but not a polyhedral cone.

▶ Example 22. Let −→
A

n + m p
and −→

b
p

be circuits in C−→irc denoting, respectively

some matrix A and some vector b. Consider the following circuit in ACirc≥.

−→
A

−→
b

≥

m

n

p

p

(11)

It is easy to check that its semantics is the relation P = { (x, y) ∈ kn × km | A
(

y

x

)
+ b ≥ 0 }.

Another useful circuit is : J K = {(•, 1)};{(0, •)} = ∅. Intuitively, it behaves as a
logical false, since for any relation R in Relk, R⊕ ∅ = ∅ = ∅ ⊕R.

In order to obtain a complete axiomatisation, it is enough to add to the three axioms
in [9], only one axiom: AP 1 in Figure 3. Intuitively, AP 1 states that 1 ≥ 0. The prop freely
generated by (5), (6), (8), (10) and the axioms in Figures 1, 2 and 3 is denoted by aIH≥

k .
With these axioms, any circuit in ACirc≥ can be shown equivalent to one of the form (11).

This is shown using the first normal form (Theorem 14) for Circ≥ and the following lemma.

▶ Lemma 23. For any c : n→ m of ACirc≥, there exists c′ : n + 1→ m of Circ≥ such that

c
mn aIH≥

= c′
m

n

FSTTCS 2021

40:12 Diagrammatic Polyhedral Algebra

▶ Theorem 24. For all c of ACirc≥, there exist d in the form of (11) such that c
aIH≥
= d.

To prove completeness, the notion of homogenization is pivotal. The homogenization of a
polyhedron P = {x ∈ kn | Ax + b ≥ 0} is the cone P H = {(x, y) ∈ kn+1 | Ax + by ≥ 0, y ≥ 0}.

Diagrammatically, this amounts to replace the in (11) with
≥

, obtaining the
following diagram

−→
A

−→
b

≥

m

n

p

p

≥

(12)

▶ Lemma 25. Let P1, P2 ⊆ kn be two non-empty polyhedra. Then, P1 ⊆ P2 iff P H
1 ⊆ P H

2 .

Using Theorem 24 and Lemma 25, we can reduce completeness for non-empty polyhedra to
completeness of polyhedral cones.

▶ Theorem 26. Let c, d : n→ m in ACirc≥ denote non-empty polyhedra. If JcK ⊆ JdK, then

c
aIH≥

⊆ d.

Completeness for empty polyhedra requires a few additional lemmas, given in [5, Appendix D].

▶ Theorem 27. For all circuits c in ACirc≥, if JcK = ∅ then c
aIH≥
=

▶ Corollary 28 (Completeness). For all circuits c, d in ACirc≥, if JcK ⊆ JdK then c
aIH≥

⊆ d.

Finally, we characterise the semantic image of circuits in ACirc≥.

▶ Proposition 29 (Expressivity). For each arrow P : n → m in Pk there exist a circuit
c : n → m in ACirc≥, such that P = JcK. Vice-versa, for each circuit c : n → m of ACirc≥

there exists an arrow P : n→ m of Pk, such that JcK = P .

Indeed, aIH≥
k is the theory of polyhedra:

▶ Corollary 30. aIH≥
k
∼= Pk

▶ Example 31 (Flow networks). Consider again flow networks, previously mentioned in
the Introduction: edges with capacity k can be expressed in ACirc≥ by the diagram in (3)
hereafter referred as k . Observe that

q
k

y
= {(x, x) | 0 ≤ x ≤ k} is exactly the

expected meaning of an edge in a flow network. Nodes with n incoming edges and m outgoing
edges can be encoded by the diagram ...

...n m. Again the semantics is the expected
one: the total incoming flow must be equal to the total outgoing flow. For an example of the
encoding, check the flow network in (1) and the corresponding diagram in (2).

The axioms in aIH≥
k can be exploited to compute the maximum flow of a network. By

using the following two derived laws (proved in [5, Appendix E])

k

l

aIH≥
= k + l (13)

k

q
l

aIH≥
=

k

q
(k + q ≤ l) (14)

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:13

one can transform the diagram in (2) into 5

1

2

2
5

6
(14)=

1

2

2

◦−as=

1

2

2

(13)=
3

2

(13)= 5

meaning that J(2)K = {(x, x) | 0 ≤ x ≤ 5}, i.e., the maximum flow of (2) is exactly 5.

6 Adding states to polyhedra

We have shown that ACirc≥ with its associated equational theory aIH≥
k provides a sound and

complete calculus for polyhedra. In this section, we extend the calculus with a canonical
notion of state. Our development follows step-by-step the general recipe illustrated in [8, §4].

6.1 The Calculus of Stateful Polyhedral Processes
We call SPP the prop freely generated by (5), (6), (8), (10) and the following.

x (15)

Intuitively, the register x is a synchronous buffer holding a value k ∈ k: when it receives
l ∈ k on the left port, it emits k on the right one and stores l. To give a formal semantics
to such behaviour we exploit a “state bootstrapping” technique that appears in several
places in the literature, e.g. in the setting of cartesian bicategories [25] and geometry of
interaction [22].

▶ Definition 32 (Stateful processes [25]). Let T be a prop. Define St(T) as the prop where:
morphisms n→ n are pairs (s, c) where s ∈ N and c : s + n→ s + m is a morphism of T,
quotiented by the smallest equivalence relation including every instance of

c mn
s s ∼ s

n mc
σ σ−1s

for a permutation σ:s→ s; the order is defined as (s, c)
St(T)
⊆ (s, d) if and only c

T
⊆ d.

the composition of (s, c) : n→ m and (t, d) : m→ o is (s + t, e) where e is the arrow of T
given by

s

d

s
t

n m

t c o

the monoidal product of (s1, c1) : n1 → m1 and (s2, c2) : n2 → m2 is (s1 + s2, e) where e

is given by

n2

c1

c2
n1 m1

m2

s2
s1 s1

s2

the identity on n is (0, idn) and the symmetry of n, m is (0, σn,m).

We use St(Relk) as our semantic domain: in an arrow (s, R) : n → m, s records the
number of registers while R : s + n→ s + m is a relation R ⊆ ks × kn × ks × km containing
quadruples (u, l, v, r) representing transitions: u and v are the starting and arrival state

FSTTCS 2021

40:14 Diagrammatic Polyhedral Algebra

(namely vectors in ks, holding a value in k to each of the s registers), while l and r are vectors
of values occurring on the left and the right ports. The equivalence relation ∼ ensures that
registers remains anonymous: it equates arrows that only differ by a bijective relabelling of
their lists of registers. This is, therefore, a syntactic form of equivalence similar in flavour to
α-equivalence, since it discards intentional details not relevant for the dynamics of processes.

We can now give the semantics of SPP as the morphism ⟨⟨·⟩⟩ : SPP→ St(Relk) defined:

⟨⟨ x ⟩⟩ = (1, {(k, l, l, k) | l, k ∈ k}) and ⟨⟨o⟩⟩ = (0, JoK)

for all generators o in (5), (6), (8), (10). For instance ⟨⟨ ⟩⟩ = (0, {(•, k) | k ∈ k}). The
semantics of x is the expected behaviour: from any state k (the stored value), it makes
a transition to state l when l is on the left port and k is on the right. This can be restated
as a structural operational semantics (sos) axiom (x , k) l−→

k
(x , l) where the labels

above and under the arrow stand, respectively, for the values on the left and right ports.
Theorem 30 in [8] ensures that no other data is needed for an axiomatisation: let SaIH≥

be the prop generated by (5), (6), (8), (10), (15) and the axioms in Figures 1, 2 and 3.

▶ Theorem 33. For all c, d in SPP, if ⟨⟨c⟩⟩ ⊆ ⟨⟨d⟩⟩ then c
SaIH≥
⊆ d. Moreover SaIH≥ ∼= St(Pk).

Proof of Theorem 33. We make more clear the correspondence with [8]. Considering the
following diagram.

SPP q // //

⟨⟨·⟩⟩

**
S⅁IH≥ F // St(aIH≥

k)
St(∼=) // St(Pk) // St(ι) // St(Relk)

The morphism St(ι) is just the obvious extension of the inclusion ι : Pk → Relk. Similarly,
St(∼=) is the extension of the isomorphism shown in Corollary 30. The morphism q is just
the obvious quotient from SPP to SaIH≥. The interesting part is provided by the morphism
F : SaIH≥ → St(aIH≥

k) defined in [8, §4.1]: take T as aIH≥
k and T + X as SaIH≥. By Theorem

30 in [8], since aIH≥
k is compact closed, then F is an isomorphism of props. To see that it is

an isomorphism of ordered props, it is immediate to check that both F and its inverse G

defined in [8, §4.1] preserves the order. ◀

We conclude by observing the semantics can be presented with intuitive sos rules. Indeed,
the same rules as in [8, §2] – interpreted over a field rather than the naturals – and:

x≥y

(≥ , •) x−→
y

(≥ , •) (, •) •−→1 (, •)

This diagrammatic language is, therefore, similar in flavour to traditional process calculi, and
we call it the calculus of stateful polyhedral processes. Theorem 33 affirms that it expresses
exactly the stateful polyhedral processes.

6.2 Bounded Continuous Petri Nets
Hereafter k is fixed to be the real numbers R and the set of non-negative reals is denoted by
R+ = { r ∈ R | r ≥ 0 }. A continuous Petri net [18] differs from a (discrete) Petri net in that:

markings are real valued – that is, places hold a non-negative real number of tokens,
transitions can consume and produce non-negative real numbers of tokens,
transitions can be fired a non-negative real number amount of times – for example a
transition can be fired 0.5 times, producing and consuming half the tokens.

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:15

▶ Definition 34 (Continuous Petri nets and their semantics). A Petri net P = (P, T, ◦−,−◦)
consists of a finite set of places P , a finite set of transitions T , and functions ◦−,−◦ : T →
R+

P . Given y, z ∈ R+
P , we write y→ z if there exists t ∈ R+

T such that ◦t ≤ y and z =
y−◦t+t◦, where ◦t and t◦ are the evident liftings of ◦() and ()◦, e.g. ◦t(p) =

∑
s∈T t(s)·◦s(p).

The (step) operational semantics of P is the relation ⟨P⟩ = {(y, z) | y→ z} ⊆ R+
P × R+

P .

As for ordinary Petri nets, one can consider bounded nets: each place has a maximum
capacity c ∈ R+∪{⊤}: a place with capacity ⊤ is unbounded. The above definition is therefore
extended with a boundary function b ∈ (R+ ∪ {⊤})P and the transition relation y→ z is
modified by additionally requiring that y, z ≤ b. Since r ≤ ⊤ for all r ∈ R+, continuous
Petri nets are instances of bounded continuous nets where every place is unbounded.

To encode continuous Petri nets and their bounded variant as stateful polyhedral processes,
it is convenient to introduce syntactic sugar: the circuit below left is an adder that takes only
positive values as inputs, the central circuit models a place, and the last one a transition.

≥ :=

≥

≥

:= ≥ x ≤ :=
≥

Observe that for , it is essential the use of ≥ and and its opposite ≤ . Indeed,
replacing them by ordinary adders and , would give as semantics the whole space
R2 × R2, while as defined above ⟨⟨ ⟩⟩ = (1, {(m, i, m− o + i, o) | i, o, m ∈ R+, o ≥ m}),
modelling exactly the expected behaviour of a place. In the diagrams below c is either
a scalar r ∈ R+ or ⊤ = .

x
c

:= x
≥ ≤c c

c
:= ≥ x ≤

c

The leftmost diagram models a buffer with capacity c, while the rightmost a place with
capacity c. Since ⊤ = , it holds that x

⊤

SaIH≥= x and
⊤

SaIH≥= .

By choosing an ordering on places and transitions, the functions ◦−,−◦ : T → R+
P can

be regarded as R+-matrices of type |T | → |P | and thus can be encoded as C−→irc circuits,
hereafter denoted by respectively W − and W +. The ordering on P also makes the boundary

function b a vector

 c1
...

c|P |

 in (R+ ∪ {⊤})|P |: we write
b

for
c1

c|P |

... . Any bounded

Continuous Petri net P can be encoded as the following circuit dP : 0→ 0 in SPP.

|P ||T |
−−→
W −

−−→
W +

b

It is easy to show that P and dP have the same semantics.

▶ Proposition 35. For all bounded continuous Petri net P, ⟨P⟩ ∼ ⟨⟨dP⟩⟩.

Proof of Proposition 35. In order to compute ⟨⟨dP⟩⟩, it is convenient to cut dP in three
parts. The leftmost part of dP has the following semantics

⟨⟨
|T |

⟩⟩ = (0, {(•, •, •,
(

t

t

)
) | t ∈ R+

|T |})

FSTTCS 2021

40:16 Diagrammatic Polyhedral Algebra

The central part

⟨⟨
−−→
W −

−−→
W +

⟩⟩ = (0{(•,
(

x1
x2

)
, •,

(
y1
y2

)
) |W −x1 = y1, W +x2 = y2})

By definition of ⟨⟨·⟩⟩, the composition of the two semantics above is the pair

(0, {(•, •, •,
(

y1
y2

)
) | ∃t ∈ R+

|T | s.t. W −t = y1, W +t = y2})

The right-most part
t

|P |

|

= {(y,

(
i

o

)
, y − o + i, •) | i, o, y ∈ R+

|T |, o ≥ y}

The semantics of rightmost part is the pair

⟨⟨
|P |

b

⟩⟩ = (|P |, {(y,

(
o

i

)
, y− o + i, •) | i, o, y ∈ R+

|P |, o ≥ y, y− o + i ≤ b, y ≤ b})

By composing everything we obtain (|P |, {(y, •, y − i + o, •) | ∃t ∈ R+
|T | s.t. i, o, y ∈

R+
|P |, o ≥ y, y − o + i ≤ b, y ≤ b, W −t = o, W +t = i}) that is ⟨⟨dP⟩⟩ = (|P |, {(y, •, z, •) |

∃t ∈ R+
|T | s.t. W −t ≥ y, y −W −t + W +t = z ≤ b, y ≤ b}).

Since the equivalence is stated modulo ∼, then it is safe to fix an ordering on P and
T . Thus, rather than considering (y, z) ∈ ⟨P ⟩ as functions in R+

P they can be regarded as
vectors in R+

|P |. One can thus conclude by observing that y → z if and only if there exists
t ∈ R+

|T | such that W −t ≥ y, y −W −t + W +t = z and y, z ≤ b. ◀

7 Conclusions and Future Work

We have introduced the theories of polyhedral cones and the one of polyhedra. In other words,
we have identified suitable sets of generators and axioms for which we proved completeness
and expressivity. As side results, we get an inductive definition of the notion of polar cone,
as well as an understanding of Weyl-Minkowski theorem as a normal form result.

As shown by Example 31, the theory of polyhedra allows us to represent networks with
bounded resources, not expressible in IH, and to manipulate them as symbolic expressions.

Indeed the passage from linear relations to polyhedra is a reflection of the fact that,
operationally, we are able to consider several patterns of computations important in computer
science, as opposed to purely linear patterns, traditionally studied in system/control theory.

For instance, as shown in §6, the addition to aIH≥ of a single generator, x , directly
gives us a concurrent extension of the signal flow calculus [2, 12], introduced as a compositional
account for linear dynamical systems, that is expressive enough to encode continuous Petri
nets [18].

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, Inc., USA, 1993.
2 John Baez and Jason Erbele. Categories in control. Theory and Applications of Categories,

30:836–881, 2015. arXiv:1405.6881.

http://arxiv.org/abs/1405.6881

F. Bonchi, A. Di Giorgio, and P. Sobociński 40:17

3 John C. Baez. Network theory, 2014. URL: http://math.ucr.edu/home/baez/networks/.
4 John C Baez and Brendan Fong. A compositional framework for passive linear networks.

arXiv preprint, 2015. arXiv:1504.05625.
5 Filippo Bonchi, Alessandro Di Giorgio, and Pawel Sobocinski. Diagrammatic polyhedral

algebra, 2021. arXiv:2105.10946.
6 Filippo Bonchi, Joshua Holland, Dusko Pavlovic, and Paweł Sobociński. Refinement for

signal flow graphs. In 28th International Conference on Concurrency Theory, CONCUR 2017,
September 5-8, 2017, Berlin, Germany, pages 24:1–24:16, 2017. doi:10.4230/LIPIcs.CONCUR.
2017.24.

7 Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawel Sobocinski, and Fabio Zanasi. Diagram-
matic algebra: from linear to concurrent systems. Proc. ACM Program. Lang., 3(POPL):25:1–
25:28, 2019. doi:10.1145/3290338.

8 Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Dia-
grammatic algebra: from linear to concurrent systems. Proceedings of the 46th ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL), 3:1–28, 2019.

9 Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Graphical affine algebra.
In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–12, 2019.

10 Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical Conjunctive Queries. In Dan
Ghica and Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018), volume 119 of Leibniz International Proceedings in Informatics (LIPIcs), pages
13:1–13:23, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CSL.2018.13.

11 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical semantics of signal
flow graphs. In Proceedings of the 25th International Conference on Concurrency Theory
(CONCUR), pages 435–450. Springer, 2014.

12 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Full abstraction for signal flow graphs.
In Proceedings of the 42nd Annual ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 515–526, 2015.

13 Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. The calculus of signal flow diagrams I:
linear relations on streams. Information and Computation, 252:2–29, 2017.

14 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011.

15 Bob Coecke, Ross Duncan, Aleks Kissinger, and Quanlong Wang. Strong complementarity
and non-locality in categorical quantum mechanics. In LiCS 2012, pages 245–254, 2012.

16 Bob Coecke and Aleks Kissinger. Picturing Quantum Processes - A first course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

17 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

18 René David and Hassane Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer, Berlin,
2 edition, 2010. doi:10.1007/978-3-642-10669-9.

19 Brendan Fong and David Spivak. String diagrams for regular logic (extended abstract). In
John Baez and Bob Coecke, editors, Applied Category Theory 2019, volume 323 of Electronic
Proceedings in Theoretical Computer Science, pages 196–229. Open Publishing Association,
September 2020. doi:10.4204/eptcs.323.14.

20 Dan R Ghica and Achim Jung. Categorical semantics of digital circuits. In Proceedings of the
16th Conference on Formal Methods in Computer-Aided Design (FMCAD), pages 41–48, 2016.

FSTTCS 2021

http://math.ucr.edu/home/baez/networks/
http://arxiv.org/abs/1504.05625
http://arxiv.org/abs/2105.10946
https://doi.org/10.4230/LIPIcs.CONCUR.2017.24
https://doi.org/10.4230/LIPIcs.CONCUR.2017.24
https://doi.org/10.1145/3290338
https://doi.org/10.4230/LIPIcs.CSL.2018.13
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-10669-9
https://doi.org/10.4204/eptcs.323.14

40:18 Diagrammatic Polyhedral Algebra

21 Nathan Haydon and Paweł Sobociński. Compositional diagrammatic first-order logic. In 11th
International Conference on the Theory and Application of Diagrams (DIAGRAMS 2020),
2020.

22 Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. Memoryful geometry of interaction: from
coalgebraic components to algebraic effects. In Proceedings of the Joint Meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), page 52. ACM, 2014.

23 Bart Jacobs and Fabio Zanasi. The logical essentials of bayesian reasoning. CoRR,
abs/1804.01193, 2018. arXiv:1804.01193.

24 Franciscus Rebro John C. Baez, Brandon Coya. Props in network theory. CoRR,
abs/1707.08321, 2017. arXiv:1707.08321.

25 P Katis, N Sabadini, and RFC Walters. Bicategories of processes. Journal of Pure and Applied
Algebra, 115(2):141–178, 1997.

26 Stephen Lack. Composing PROPs. Theory and Application of Categories, 13(9):147–163, 2004.
27 Yves Lafont. Towards an algebraic theory of Boolean circuits. Journal of Pure and Applied

Algebra, 184(2–3):257–310, 2003.
28 Saunders Mac Lane. Categorical algebra. Bulletin of the American Mathematical Society,

71:40–106, 1965.
29 Samuel J Mason. Feedback Theory: I. Some Properties of Signal Flow Graphs. MIT Research

Laboratory of Electronics, 1953.
30 Robin Piedeleu and Fabio Zanasi. A string diagrammatic axiomatisation of finite-state

automata. In FoSSaCS 2021, 2021.
31 Peter Selinger. A survey of graphical languages for monoidal categories. Springer Lecture

Notes in Physics, 13(813):289–355, 2011.
32 Fabio Zanasi. Interacting Hopf Algebras: the theory of linear systems. PhD thesis, Ecole

Normale Supérieure de Lyon, 2015.

http://arxiv.org/abs/1804.01193
http://arxiv.org/abs/1707.08321

From Local to Global Determinacy
in Concurrent Graph Games
Benjamin Bordais
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Patricia Bouyer
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Stéphane Le Roux
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Abstract
In general, finite concurrent two-player reachability games are only determined in a weak sense: the
supremum probability to win can be approached via stochastic strategies, but cannot be realized.

We introduce a class of concurrent games that are determined in a much stronger sense, and
in a way, it is the largest class with this property. To this end, we introduce the notion of local
interaction at a state of a graph game: it is a game form whose outcomes (i.e. a table whose entries)
are the next states, which depend on the concurrent actions of the players. By definition, a game
form is determined iff it always yields games that are determined via deterministic strategies when
used as a local interaction in a Nature-free, one-shot reachability game. We show that if all the local
interactions of a graph game with Borel objective are determined game forms, the game itself is
determined: if Nature does not play, one player has a winning strategy; if Nature plays, both players
have deterministic strategies that maximize the probability to win. This constitutes a clear-cut
separation: either a game form behaves poorly already when used alone with basic objectives, or it
behaves well even when used together with other well-behaved game forms and complex objectives.

Existing results for positional and finite-memory determinacy in turn-based games are extended
this way to concurrent games with determined local interactions (CG-DLI).

2012 ACM Subject Classification Theory of computation

Keywords and phrases Concurrent games, Game forms, Local interaction

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.41

Related Version Full Version: https://arxiv.org/abs/2107.04081

1 Introduction

We consider games that involve two players and that are played on infinite (unless otherwise
stated) graphs. On such games, we consider several flavors of determinacy properties.
Specifically, the existence of a winning deterministic strategy for either of the players, of
optimal deterministic strategies for both players, of almost-sure stochastic strategies for
either of the players, and of ϵ-optimal stochastic strategies for both of the players. Generic
determinacy results have been established on many classes of games. We illustrate these
notions on turn-based and concurrent games with either a deterministic or stochastic Nature
on Figures 1, 2, 3 and 4 (see [21] for the introduction of the most general setting, the
stochastic concurrent games). In all cases the game starts in q0 and the goal for Player A is
to see y at some point while Player B wins if y never occurs.

Consider the turn-based game in Figure 1. There, Player A chooses either the self-loop or
the edge to q1; a symbol x, called a color, is seen in either case; then the game proceeds to
state q0 or q1. In q1 Player B chooses either the y-labeled self-loop or the x-labeled edge to
q0. This generates an infinite sequence over {x, y}. Player B has a winning strategy, which
consists in never using the self-loop in q1: however Player A may play, the generated sequence

© Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.41
https://arxiv.org/abs/2107.04081
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 From Local to Global Determinacy

is xω. Thus, the game is said to be determined, in a very strong sense, and many sorts of
objectives enjoy similar properties on such turn-based games. More generally, Martin [14, 15]
proved that turn-based games with Borel objective are deterministically determined.

q0 q1

x

x y

x

Figure 1 A turn-based game w/o Nature
with diamond-shaped nodes for Player A,
circle-shaped nodes for Player B and color
labels on edges.

q0

d2

d1 q1

q2

d3

1/3,x

2/3,x

1,x

1,x

1,x

p,y

1− p,x

Figure 2 A turn-based game with Nature with
probabilities displayed in purple on Nature-to-player
edges, and colors in black on the same edges for
convenience.

q0,

[
q0 q1
q1 q0

]
q1,

[
q1
]x

x

y

Figure 3 A concurrent game w/o Nature,
with two actions for each player: Player A
chooses a row, Player B chooses a column.

q0,

[
d0 d1
d1 d2

]
d0

d1

d2

q1,
[
q1
]

q2,
[
q2
]

1,x
1,x

y

1,x
x

Figure 4 A concurrent game with Nature (albeit
deterministic) with probabilities displayed in purple
on Nature-to-player edges.

Now consider the turn-based game with (stochastic) Nature in Figure 2. In q0 Player
B moves to Nature state d1 or d2. In d1 Nature goes to q1 and q2 with probability 1

3 and
2
3 , respectively; in d2 with probability 1 to q2. In q1 there is only a self-loop, which is a
shorthand for an edge towards a Nature state that goes back to q1 with probability 1. In
q2 Player A stays in q2 or moves to d3. In d3 Nature goes to q1 and q2 with probabilities
p, 1 − p ∈]0, 1[. The edge (q2, q1) is labeled with y, and the other edges between the qi are
labeled with x. From q0, Player B has a strategy that minimizes the probability to see y (to
2
3), namely to play towards d1; and Player A maximizes this probability (to the same value
2
3) by playing d3 when in q2. Note that from q2, this Player A’s strategy wins almost surely
but not surely. These optimal strategies of the Players are deterministic. The game is said to
be determined, in a sense that is rather strong but weaker than above without Nature, and
several objectives (though fewer than above) enjoy similar properties on turn-based games
with Nature. More generally, it was proved [4, 23] that turn-based parity games played on
finite graphs with stochastic Nature have deterministic optimal strategies.

Consider the game in Figure 3. The table depicted within state q0 records the concurrent
interaction between the two players at q0: Player A chooses a row of the table while Player
B independently chooses a column of the table; depending on the two choices, the game
proceeds either to state q0 again (first row first column, or second row second column) or
to state q1. In the two cases x is seen. In q1 the interaction is trivial, i.e. each player has
only one option, and y is seen. It is easy to see that Player A has no deterministic winning
strategy, but a stochastic strategy that wins almost surely: in q0, she picks each row with
probability one half.

In the game from [8, 5] in Figure 4, Player A has no stochastic strategy that wins almost
surely, but for all ϵ ∈]0, 1], she has a stochastic strategy that wins with a probability at least
1− ϵ: in q0, she chooses the second row with probability ϵ. More generally, Martin [16] proved
that such a weak determinacy holds in games with Borel objective if the local interactions
involve finitely many rows and columns.

B. Bordais, P. Bouyer, and S. Le Roux 41:3

The above examples and existing results suggest that what prevents the existence of
optimal strategies is more the structure of the local interaction rather than the presence of a
stochastic Nature. This article substantiates this impression.

q0,

x y y
x z t
x z t

y, t

z

x

Figure 5 A concurrent game reachability
game that is determined for every set of states
as target set for either of the players.

q0,

x y y
z x y
z z x

y

z

x

Figure 6 A concurrent reachability game that
is not determined if a player tries to reach the
set of states T = {x}.

Our contribution. A game form is a table whose entries are called outcomes, see e.g.
Figures 5, 6, 7. By definition, it is determined if replacing each outcome with 1 or 0 yields a
table with a row full of 1 (Player A wins) or a column full of 0 (Player B wins). It is easy to
show that it is determined iff every “one-shot” reachability game using it as local interaction
is deterministically determined. E.g. consider the one-shot reachability arena in Figure 5,
involving a determined game form. Setting any subset of {x, y, z, t} as target for either of
the players yields a deterministically determined game. However, the game form in Figure 6
is non-determined, e.g. by setting x := 1 and y, z := 0. Equivalenty, setting the target of
Player A to {x} yields a game with no winning strategies. Thus, the determinacy of a game
form amounts to its good behavior when used individually as local interaction in very simple
games. We will show that individually well-behaved game forms are collectively well-behaved.
More specifically, we extend various determinacy results from turn-based [14, 3, 4, 23, 11] to
concurrent games with determined local interactions (CG-DLI). Fix a set K of colors. Each
edge of our games is labeled with some color, and the winning objective is expressed as a
subset of Kω. We prove the following:
1. In all CG-DLI with Borel (parity) objective, one player has a (positional) winning strategy.
2. In all CG-DLI with Borel (parity) objective and stochastic Nature, both players have

(positional) optimal strategies.
3. Let M be a memory skeleton (DFA on K, explained later). The following are equivalent.

W and Kω \ W are M-monotone and M-selective (notions recalled later).
All CG-DLI with finitely many states and actions, and objective W has a finite-memory
winning strategy implemented via M.

Moreover in the three statements above, the winning/optimal strategies can be chosen both
deterministic and dependent only on the history of observed colors, rather than visited states.

Conversely, let G be any non-determined game form. As hinted at above, one can show
that for all Borel objectives ∅ ⊊ W ⊊ Kω, there is a Nature-free game with one single
non-trivial state whose local interaction is G, and no deterministic optimal (or winning)
strategy, even one that would depend on the history of visited states. A similar result holds
for finite-memory strategies. Hence, these results provide a clear-cut separation: determined
game forms are well-behaved basic bricks that collectively build well-behaved-only concurrent
games, while non-determined game forms are ill-behaved already when used alone.

A large part of the proofs of the above extensions is factored out by our following theorem:
a CG-DLI is (finite-memory, positionnaly, “plainly”) determined (via winning deterministic
or optimal stochastic strategies) if and only if its sequential version is. The sequential version

FSTTCS 2021

41:4 From Local to Global Determinacy

of the game is obtained by letting one player (whichever, but keep the convention) act first
at each state of the game, and the opponent act second. Although most of the extensions are
straightforward applications of this theorem, the finite-memory case is different: the result
in [3] requires the objective to satisfy specific properties, and it is rather long to prove that
these properties satisfy the assumptions of the theorem.

Outline. Section 2 contains notations; Section 3 recalls the notion of game form; Section 4
presents the game-theoretic formalism; Section 5 defines the sequentialization and paralleliz-
ation, and proves related preservation results; Section 6 presents determinacy extensions.

Additional details and complete proofs are available in the arXiv version of this paper [1].

2 Preliminaries

Consider a non-empty set D. We denote by D↑ := D∗ ∪ Dω the set of finite or infinite
sequences in D. For a sequence π = π0π1 . . . πn ∈ D∗, we denote by lt(π) the last element of
the sequence: lt(π) = πn.

For a function f : E → F and F ′ ⊆ F , the notation f−1[F ′] refers to the preimage
{e ∈ E | f(e) ∈ F ′} of F ′ by the function f. Furthermore, a function f : E → F can be
lifted into a function f : E↑ → F ↑ defined by: f(ε) = ε, f(e) = f(e) for all e ∈ E, and
f(π · π′) = f(π) · f(π′) for all π ∈ E∗ and π′ ∈ E↑. For a set E′ ⊆ E, we define the projection
function ϕE,E′ : E↑ → E′↑ such that ϕE,E′(e) = e if e ∈ E′, ϕE,E′(e) = ε otherwise and
ϕE,E′(π · π′) = ϕE,E′(π) · ϕE,E′(π′) for all π ∈ E∗ and π′ ∈ E↑. For a set Q and a function
f : Q × Q → T , we denote by trf : Q+ → T ∗ × Q the function that associates to a sequence
π ∈ Q+, its trace trf(π) = (f(π), lt(π)). For instance, trf(a · b · c) = (f(a, b) · f(b, c), c).

Let us now recall the definition of cylinder sets. For a non-empty set Q, for all π ∈ Q∗,
the cylinder set Cyl(π) generated by π is the set Cyl(π) = {π · ρ ∈ Qω | ρ ∈ Qω}. We denote
by CylQ the set of all cylinder sets on Qω. The open sets of Qω are the sets equal to an
arbitrary union of cylinder sets. The set of Borel sets on Qω, denoted Borel(Q), is then
equal to the smallest set containing all open sets that is closed under complementation and
countable union. Recall that, considering two probability measures ν, ν′ : Borel(Q) → [0, 1],
if for all C ∈ CylQ, we have ν(C) = ν′(C), then ν = ν.

3 Game Forms and Win/Lose Games

Informally, game forms (used in [10, 12]) are games without objectives, see Definition 1 and
examples in Figure 7. They are similar to what is sometimes called arena, but are presented
in normal form, i.e. by ignoring their possible underlying graph or tree structure.

▶ Definition 1 (Game form and win/lose game). A game form is a tuple F = ⟨SA, SB, O, ϱ⟩
where SA (resp. SB) is the non-empty set of strategies available to Player A (resp. B), O
is a non-empty set of possible outcomes, and ϱ : SA × SB → O is a function that associates
an outcome to each pair of strategies. A win/lose game is a pair G = ⟨F , V⟩ where F is a
game form and V ⊆ O is the set of winning outcomes for Player A whereas O \ V is the set
of winning outcomes for Player B.

As in Definition 1, a player wins if she obtains an outcome that makes her win, hence
winning for Player A means reaching an outcome in V , whereas winning for Player B means
reaching an outcome in O \ V . So, one player wins if and only if the other player loses, hence
the terminology. In the context of win/lose games, we can define the notion of winning
strategy, that is, a strategy for a player that ensures winning regardless of his opponent’s
strategy. The definition of determinacy follows.

B. Bordais, P. Bouyer, and S. Le Roux 41:5

I1 =

[
x y
y x

]
I2 =

[
x x
y z

]
I3 =

x x z
x y y
z y z

 I4 =

x y z
y x z
z z z

 I5 =

x x z
x z y
z y y

Figure 7 Five game forms: I1 and I5 are not determined, whereas I2, I3, and I4 are.

▶ Definition 2 (Winning Strategies and Determinacy). Consider a game form F = ⟨SA, SB, O, ϱ⟩
and a subset of outcomes V ⊆ O. In the win/lose game G = ⟨F , V⟩, a winning strategy sA ∈ SA
(resp. sB ∈ SB) for Player A (resp. B) is a strategy such that, for all sB ∈ SB (resp. sA ∈ SA),
we have ϱ(sA, sB) ∈ V (resp. O \ V). We write WA(F , V) (resp. WB(F , O \ V)) the set of win-
ning strategies for Player A (resp. Player B) with objective V (resp. O\V). The win/lose game
G is determined if either of the players has a winning strategy: WA(F , V)∪WB(F , O\V) ̸= ∅.
The game form F is said to be determined if, for all V ⊆ O, the win/lose game G = ⟨F , V⟩
is determined. We denote by DetGF the set of determined game forms.

▶ Example 3. Consider the game forms represented in Figure 7. We argue that I2, I3, and
I4 are determined, while I1 and I5 are not. Consider any subset V of the outcomes and, in
I2, I3, and I4, replace each occurence of outcome in V with wA (indicating winning outcomes
for Player A) and the others with wB (indicating winning outcomes for Player B). There
is always a row of wA or a column of wB, so these game forms are determined. However,
rewriting x with wA and y with wB in I1 yields the well-known matching-penny game, which
clearly has no winning strategies. Similarly, rewriting z with wA and x, y with wB in I5 leads
to no row full of wA and no column full of wB.

As we shall see, determined game forms are exactly the game forms that share enough
similarities with “turn-based interactions”, so that our determinacy transfer may hold. Hence,
we may ask whether the determined game forms are nothing but turn-based interactions in
disguise. Of course, the answer depends on what we mean by “in disguise”. For a natural
notion of being similar to a turn-based interaction, the answer is negative. Thus, determined
game forms are more than turn-based interactions.

In addition to the toy examples in Figure 7, let us exemplify that determined game forms
arise naturally in computer science. A parity game ([7, 17, 22]) is defined on a priority arena,
i.e. a graph where each vertex is controlled by one player and every edge is labeled with a
natural number less than a fixed bound. The outcome of an infinite run in such an arena is
the maximum of all the numbers that occur infinitely often during the run. If the priorities
are seen not as concrete numbers but as abstract outcomes, the priority arena can be seen as
a game form. By a slight generalization of [7, 17, 22] described, e.g., in [19, Corollary 3.8], it
is moreover a determined game form. So, as we shall see, choosing the next state following a
local interaction given by a parity game will be a well-behaved interaction.

Finally, consider the complexity of deciding if a given game form is determined (the
corresponding decision problem is denoted DetGF). It is straightforwardly in coNP since
proving that a game form is not determined amounts to exhibiting a {wA, wB}-valuation for
which there is neither a row full of wAs nor a column full of wBs, which can be checked in
polynomial time. In fact, in [2] (where determinacy is refered to as tightness), the authors
mentioned that DetGF could be solved in quasi-polynomial time via a reduction to the
dualization of monotone CNF formulae (denoted MonotoneDual), which can be solved in
quasi-polynomial time [9]. Note that it is an open problem if MonotoneDual is in P or
is coNP-complete [6]. In fact, we can show that DetGF is equivalent (modulo polytime
reduction) to MonotoneDual thus showing that answering if DetGF is in P or coNP-complete
directly answers the same question for MonotoneDual.

FSTTCS 2021

41:6 From Local to Global Determinacy

4 Concurrent Graph Games and Strategies

Colored stochastic win/lose concurrent graph games. Informally, a stochastic concurrent
game is played on a graph as follows: from a given state, both players simultaneously choose
an action, and the next state is set according to a probability distribution that depends on
the two actions. We want to consider the ways the two players interact at each state (which
we call the local interactions of the game) as game forms. To facilitate this, we decouple
the concurrent interaction of the players from the stochastic choice of Nature; we therefore
add intermediate states belonging to Nature, and ensure that they do not impact winning
conditions by assigning colors to ordered pairs of player states, thus hiding the Nature states
that are visited. To sum up, the outcome of an interaction of the players is a Nature state
from which the next (relevant) state of the game is chosen via a probability distribution.

▶ Definition 4 (Stochastic concurrent games). A colored stochastic concurrent graph arena
C is a tuple ⟨A, B, Q, q0, D, δ, dist, K, col⟩ where A (resp. B) is the non-empty set of actions
available to Player A (resp. B), Q is the (non-empty) set of states, q0 ∈ Q is the initial state,
D is the set of Nature states, δ : Q × A × B → D is the transition function, dist : D → Dist(Q)
is the distribution function, K is a non-empty set of colors, and col : Q × Q → K is a
coloring function. The composition of the transition and distribution functions dist ◦ δ :
Q × A × B → Dist(Q) will be denoted ∆. A win/lose concurrent graph game is a pair ⟨C, W ⟩
where W ∈ Borel(K) is the set of winning sequences of colors (for Player A).

In the following, the arena C will always refer to the tuple ⟨A, B, Q, q0, D, δ, dist, K, col⟩ unless
otherwise stated. In section 6, we will be able to apply some of our results only to finite
arenas, i.e. when A, B and Q ∪ D are finite.

Strategies and their values. We consider two kinds of strategies: those that only depend
on the sequence of colors seen (and the current state) and that output a specific action –
called chromatic strategies [13] – and those that may depend on the sequence of states seen
and that output a distribution over the available actions – called state strategies.

▶ Definition 5 (State and chromatic strategies). Let C be an arena.
A state strategy, for Player A is a function sA : Q+ → Dist(A) and the set of all such
strategies in arena C for that player is denoted StaStA

C .
A chromatic strategy for Player A is a function sA : K∗ × Q → A and the set of all
such strategies in arena C for that player is denoted ColStA

C . From a chromatic strategy
sA ∈ ColStA

C , we can extract the state strategy s̃A : Q+ → Dist(A) defined by s̃A = sA ◦ trcol.
The definitions are likewise for Player B. Two state strategies sA and sB for Players A and B
then induce a probability of occurrence of finite paths and, following, of cylinder sets. This,
in turn, induces a probability measure PC

sA,sB
over all Borel sets.

In a game ⟨C, W ⟩, Player A tries to maximize the probability to be in the set W whereas
Player B tries to minimize it. We will show that the concurrent games we consider are
determined and that chromatic strategies are sufficient to play optimally. However, since the
games considered are stochastic, for a strategy to be optimal, it has to achieve the optimal
value against all strategies – i.e. state strategies – of the antagonist player. For convenience
in the proofs, we give below this assymetric definition of values, where one player plays
with chromatic strategies while the other is allowed to use state strategies. This is without
restriction as we will be able to prove that the color values of the two players coincide.

B. Bordais, P. Bouyer, and S. Le Roux 41:7

▶ Definition 6 (Value of strategies and color value of the game). Let C be an arena. The
corresponding winning set for Player A to a Borel set W ⊆ Kω is equal to UW = col−1[W] ⊆
Qω, which is also Borel.1 Let sA ∈ ColStA

C be a chromatic strategy for Player A. The value
of strategy sA is equal to χC

sA
[W] := infsB∈StaStB

C
PC

s̃A,sB
[UW]. The color value χC

A of the game
for Player A is: χC

A[W] := supsA∈ColStA
C

χC
sA

[W]. The definitions are likewise for Player B, by
reversing the supremum and infimum.

A win/lose stochastic concurrent graph game ⟨C, W ⟩ is limit-determined if χC
A[W] =

χC
B[W]. If in addition there are strategies sA ∈ ColStA

C and sB ∈ ColStB
C such that χC

sA
[W] =

χC
A[W] and χC

sB
[W] = χC

B[W], we say that the game is determined. In this case, such strategies
are called optimal strategies.

Let us look at what the local determinacy of a concurrent game refers to, which will yield
the definition of locally determined stochastic concurrent games.

▶ Definition 7 (Local interactions). The local interaction in a stochastic concurrent graph
arena C at state q ∈ Q is the game form Fq = ⟨A, B, D, δ(q, ·, ·)⟩ where the strategies available
for Player A (resp. B) are the actions in A (resp. B) and the outcomes are the Nature states.
For a set of game forms I, we say that a concurrent arena C = ⟨A, B, Q, q0, D, δ, dist, K, col⟩
is built on I if, for all q ∈ Q, we have Fq ∈ I (up to a renaming of the outcomes). A
stochastic concurrent graph arena/game is locally determined if it is built on DetGF.

Turn-based games. Usually, turn-based games and concurrent games are described in two
different formalisms. Indeed, in a turn-based game, a player plays only in the states that
she controls, whereas in a concurrent game, in each state both players play an action and
subsequently the next (Nature) state is reached. However, turn-based games can be seen as
a special case of concurrent games, where at each state, the next (Nature) state is chosen
regardless of one of the player’s action. We choose the second option .

Section 5 will translate locally determined concurrent games into turn-based games, then
transfer existing determinacy results on turn-based games back into extension results for the
more general locally determined concurrent games.

Chromatic strategy implementations. We recall the notion of memory skeleton (see, for
instance, [3]) and we see how it can implement the chromatic strategies. For a set of colors
K and a set of states Q, a memory skeleton on K is a triple M = ⟨M, minit, µ⟩, where M

is a non-empty set called the memory, minit ∈ M is the initial state of the memory and
µ : M × K → M is the update function. An action map with memory M is a function
λ : M × Q → T for a non-empty set T . Note that T is a set of possible decisions that can be
made. Here, T will be instantiated with the set of actions of either of the players. In fact, a
memory skeleton and an action map implement a chromatic strategy.

▶ Definition 8 (Implementation of strategies). Consider a concurrent colored arena C, a
player p ∈ {A, B} and the corresponding set of actions T ∈ {A, B}. A memory skeleton
M = ⟨M, minit, µ⟩ on K and an action map λ : M ×Q → T implement the chromatic strategy
s : K∗ × Q → T that is defined by s(ρ, q) = λ(µ(minit, ρ), q) ∈ T for all (ρ, q) ∈ K∗ × Q.

A strategy s is finite memory if there exists a memory skeleton M = ⟨M, minit, µ⟩, with
M finite, and an action map λ implementing s. If M is reduced to a singleton, s is positional,
aka memoryless. The amount of memory used to implement the strategy s is |M |.

1 As the preimage of a Borel set by the continuous function col.

FSTTCS 2021

41:8 From Local to Global Determinacy

Note that any chromatic strategy s : K∗ × Q → T can be implemented with a (possibly
infinite) memory skeleton and an action map: consider the memory skeleton M = ⟨K∗, ϵ, µ⟩
where µ : K∗ × K → K∗ is defined by µ(ρ, k) = ρ · k for all ρ ∈ K∗ and k ∈ K.

▶ Definition 9 (Finite-memory determinacy). A game is said to be finite-memory (resp.
positionally) determined if it is determined and optimal strategies can be found among
finite-memory (resp. positional) strategies.

5 Sequentialization of Games

In this section, we explain how we sequentialize a concurrent graph game. We then show
“correctness” of this sequentialization in a sense that we will make precise.

Sequential version of a concurrent graph game. The sequential version of an arbitrary
colored stochastic concurrent graph arena consists of a turn-based graph arena where Player
A plays first and then Player B responds.

▶ Definition 10 (Sequentialization of a concurrent arena and game). Consider a concurrent
arena C = ⟨A, B, Q, q0, D, δ, dist, K, col⟩ and an objective W ∈ Borel(K).

The sequential version of C is the turn-based arena Seq(C) = ⟨A, B, V, q0, DA ⊎
DB, δC , distC , KC , colC⟩ where V = VA ⊎ VB with VA = Q and VB = Q × A, DA = VB
and DB = D. Furthermore, for all q ∈ VA, a ∈ A and b ∈ B, we have δC(q, a, b) = (q, a) ∈
VB = DA and distC((q, a))[(q, a)] = 1. In addition, for all d ∈ D, we have distC(d) = dist(d)
and for all a′ ∈ A, b ∈ B, and (q, a) ∈ VB we have δC((q, a), a′, b) = δ(q, a, b) ∈ D = DB.
Finally, we have KC = K ∪ {kC} for some fresh color kC ̸∈ K and colC(q, (q, a)) = kC if
q ∈ VA and (q, a) ∈ VB and colC((q, a), q′) = col(q, q′) if (q, a) ∈ VB and q′ ∈ VA. The
function colC is defined arbitrarily on other pairs of states.
The sequential version of the concurrent game ⟨C, W ⟩ is the turn-based game
⟨Seq(C), Seq(W)⟩, where Seq(W) = (ϕKC,K)−1[W] is the preimage of the winning set
W by the projection function ϕKC,K : K↑

C → K↑.
In the above definition, one can notice that the states in VA belong to Player A whereas
states in VB belong to Player B.

▶ Example 11. Sequentialization of an arena is a rather simple operation that we illustrate
in Figure 8. Note that the initial concurrent arena (from Figure 4) has deterministic Nature
(all probabilities that appear equal 1), and the sequential version also does. From q0, Player
A selects either the first row (top choice in the figure) or the second row (bottom choice in
the figure), then Player B selects one of the options, i.e. one of the next states offered in the
subset – this corresponds to choosing a column in the game form. The fresh color kC appear
after the choice of Player A, and the original colors appear after the choice of Player B.

One can notice here that in the original concurrent game and its sequential version, the
value of the game for the players are different: in the turn-based game, from q0, Player B
has a strategy to ensure never seeing the color y (which induces a value of 0 for Player B)
whereas it is not the case in the original game. As we will see along that paper, this is due
to the fact that the local interaction at q0 is not determined.

We make several remarks: paths in a concurrent arena and in its sequential version relate
via a projection and, if W is Borel, so is Seq(W) as the continuous preimage of a Borel set.

B. Bordais, P. Bouyer, and S. Le Roux 41:9

q0

{d1, d2}

{d0, d1}

{d1, d2}

{d0, d1}

d0

d1

d2

q1

q2

1,kC

1,kC

1,x

1,x

1,x

1,kC · y

1,kC · z

Figure 8 Sequentialization of the concurrent arena from Figure 4. Diamond-shaped nodes
belong to Player A, ellipse-shaped ones belong to Player B and the rectangle-shaped are
Nature states. On the edges, probabilities appear in purple and colors in black. The pairs in
Q × A are represented as the corresponding set of states δ(q, a, B) ⊆ P(D).

Main theorem. We now state the main result, and discuss it in the rest of Section 5.

▶ Theorem 12. Consider a concurrent game ⟨C, W ⟩ and assume that it is locally determined.
Then, it is (resp. finite-memory, resp. positionnaly) determined if and only if its sequential
version ⟨Seq(C), Seq(W)⟩ is (resp. finite-memory, resp. positionnaly) determined.

We assume for the rest of the section that ⟨C, W ⟩ with C = ⟨A, B, Q, q0, D, δ, dist, K, col⟩
is a concurrent graph game, and ⟨Seq(C), Seq(W)⟩ with Seq(C) = ⟨A, B, V, q0, DA ⊎
DB, δC , distC , KC , colC⟩, is its sequential version.

The idea of the proof is to show that the same values are achieved by both players in the
two games while preserving the memory which is used (memory skeletons have to be slightly
adapted to take care of removing the new color kC used in Seq(C)). To do so:

given a chromatic strategy s (for either of the players) in the concurrent game C, build
a sequentialized version Seq(s) (which is also a chromatic strategy) in Seq(C) that is at
least as good in Seq(C) as s is in C. For both players, this is not difficult to achieve since
histories in Seq(C) give at least as much information for taking a decision as in C; it is
even the case that Player B has more information in Seq(C) since she plays second but
she doesn’t use it.
given a chromatic strategy σ (for either of the players) in the sequential game Seq(C),
build a parallelized version Par(σ) (which is also a chromatic strategy) in C that is at least
as good in C as σ is in Seq(C). This is not difficult to prove (while preserving the same
memory) for Player A. Indeed, she has the same information in both games on histories
when she has to take a decision (removing kC ’s). The case of Player B is very different
since she plays second, hence has more information in the sequentialized version than in
the original concurrent game. The next paragraph is dedicated to this case, highlighting
the role of the local determinacy hypothesis.

Overall, we obtain that the values of the concurrent game ⟨C, W ⟩ and its sequential version
⟨Seq(C), Seq(W)⟩ are equal for both players, which implies Theorem 12. Formally:

▶ Theorem 13. If the game ⟨C, W ⟩ is locally determined, we have the following:
χC

A[W] = χ
Seq(C)
A [Seq(W)] and χC

B[W] = χ
Seq(C)
B [Seq(W)];

the game ⟨C, W ⟩ is limit-determined iff its sequential version ⟨Seq(C), Seq(W)⟩ is;
if a chromatic strategy s is optimal in ⟨C, W ⟩, so is Seq(s) is in ⟨Seq(C), Seq(W)⟩;
if a chromatic strategy σ is optimal in ⟨Seq(C), Seq(W)⟩, so is Par(σ) is in ⟨C, W ⟩.

Parallelization of the strategy of Player B. We now give arguments for the difficult case,
the preservation of the value for Player B from Seq(C) back to C.

FSTTCS 2021

41:10 From Local to Global Determinacy

q

(q, {y, z})

(q, {x, y})

(q, {x, z})

(q, {y, z})

(q, {x, y})

(q, {x, z})

z

y

x

q3

q2

q1
1

1

1

·

·

·

·

·

I3 =

x x z
x y y
z y z

q,

x x z
x y y

z y z

x

y

z q3

q2

q1
·
·
·
·
·

Figure 9 On the left-hand side, we have a portion of a turn-based graph arena, with all the
states reachable in at most two steps from the state q. This turn-based arena corresponds to
the sequentialization of the portion of the concurrent arena on the right-hand side with the local
interaction in state q being I3 from Figure 7. Out of q, Player A has three choices (corresponding to
the three rows), hence the three outgoing edges; leading to three Nature states from which a specific
state belonging to Player B is reached with probability 1. From each of these three states, Player B
has two choices, leading to two out of the three x, y and z Nature states. A strategy for Player B
is represented in blue arrows in the turn-based arena, with the Nature states reachable with that
strategy represented in blue. It is done similarly in the local interaction I3, with the state that is
not reachable, i.e. z, in red. Finally, in the concurrent arena, the blue states are the Nature states
reachable if Player B opts for the second column, which is the winning strategy for Player B in the
win/lose game obtained from the game form I3 if she has {x, y} as winning set.

Consider a strategy σ for Player B in Seq(C). Such a strategy takes a finite sequence of
colors in KC and the current vertex (q, a) ∈ Q × A to make the next decision, where a is the
last action played by Player A. We assume that σ is implemented by a memory skeleton
M = ⟨M, minit, µ⟩ on KC and an action map λ : M × VB → B. The parallelization Par(σ)
will be implemented by the memory skeleton Par(M) and the action map Par(λ), where
Par(M) = ⟨M, minit, Par(µ)⟩ only adds occurrences of kC : Par(µ)(m, k) = µ(µ(m, kC), k).
The parallelization Par(λ) : M × Q → B of the action map λ : M × VB → B is more difficult
to define since λ has more information than is supposed to have Par(λ).

Since our goal is to ensure that the value of the game does not worsen, we want the new
strategy to ensure that the Nature states reachable in C with the parallel version of the
action map are also reachable in Seq(C) with the original action maps: that way, every path
that can be generated with some probability in the concurrent game could also be generated
(up to projection) with the same probability in the turn-based game.

We fix a memory state m ∈ M and a state q ∈ VA = Q in Seq(C). We define Rchσ
m,q =

{δ(q, a, λ(µ(m, kC), (q, a))) | a ∈ A} ⊆ D the set of Nature states that can be reached in two
steps when applying strategy σ from memory state m and state q in Seq(C), taking into
account all possible choices of Player A. The crux of the construction relies Lemma 14.

▶ Lemma 14. If the local interaction Fq is determined, WB(Fq, Rchσ
m,q) ̸= ∅.

Proof. Consider an action a ∈ A. There exists b ∈ B such that δ(q, a, b) ∈ Rchσ
m,q. Since

this is true for all a ∈ A, it implies that Player A has no strategy to avoid the set Rchσ
m,q in

the game form Fq, i.e. she has no winning strategy in the win/lose game ⟨Fq, Q \ Rchσ
m,q⟩.

In other words, WA(Fq, Q \ Rchσ
m,q) = ∅, which implies WB(Fq, Rchσ

m,q) ̸= ∅ by determinacy
of Fq: Player B has a winning strategy in this game. ◀

The parallelization of the action map λ for Player B follows: any winning action in
WB(Fq, Rchσ

m,q) will ensure that the strategy σ is correctly mimicked by Par(σ).

B. Bordais, P. Bouyer, and S. Le Roux 41:11

▶ Example 15. We illustrate the definition on the example on Figure 9. We keep the notations
used before. We consider Player B strategy depicted in the left-hand side of Figure 9 from
the state q and an arbitrary state of the memory m omitted on the figure. For each possible
choice of Player A (which corresponds to the rows of the local interaction I3), Player B
reacts with his strategy and either x or y is reached (in blue on the left figure). Specifically,
writing m′ for µ(m, kC), we have δ(q, a1, λ(m′, (q, a1))) = x, δ(q, a2, λ(m′, (q, a2))) = x and
δ(q, a3, λ(m′, (q, a3))) = y, where ai represents the action for player A for the i-th row
(similarly, bi represents the action for Player B for the i-th column). Then, we must define
the action for Player B to play in the concurrent game at state q, that is Par(λ)(m, q) ∈ B,
so that only the states x and y can be reached. To choose Par(λ)(m, q) we consider the local
interaction Fq = I3. We know that for each action of Player A, there is one for Player B to
reach the set {x, y} (it is given by the strategy depicted in the turn-based arena). It follows
that Player A has no winning strategy in the win/lose game I3 with {x, y} as winning set
for Player B. Since the local interaction I3 is determined, Player B has a winning strategy
that ensures reaching a state in {x, y}. By opting for this strategy, which corresponds to
choosing the second column in the local interaction, it follows that the states reachable in
the concurrent arena from q are {x, y} (depicted in blue). Hence, we set Par(λ)(m, q) = b2.

6 Applications

6.1 Games with deterministic Nature (i.e. without Nature)
We consider the special case of games C with a deterministic Nature (i.e. all probabilities are
equal to 1: for all Nature states d ∈ D, there is a state q ∈ Q such that dist(d)(q) = 1), as, on
turn-based games, this setting enjoys more determinacy results than the stochastic one. In
such a setting, it is relevant to consider infinite paths compatible with a chromatic strategy,
not only their probabilities. A winning strategy is a strategy whose set of compatible paths
is included in the winning set – UW for Player A and Qω \ UW for Player B.

A deterministic concurrent game ⟨C, W ⟩ is (resp. positionally, resp. finite-memory)
exactly-determined if either of the player has a (resp. positional, resp. finite-memory)
winning strategy. In the literature this notion is sometimes called “sure winning”, while
winning with probability 1 is called “almost-sure winning”. However, in deterministic
concurrent games with chromatic strategies (recall that they are deterministic strategies), we
have an equivalence between the two notions. This immediately gives us:

▶ Corollary 16. A deterministic CG-DLI is (resp. positionally, resp. finite-memory) exactly-
determined if and only if it is (resp. positionally, resp. finite-memory) determined.

In the following, the determinacy of a deterministic game will refer to exact-determinacy.
We consider the transfer of determinacy results from turn-based games to CG-DLI.

Borel determinacy. We apply Theorem 12 and Corollary 16 to prove the Borel determinacy
of CG-DLI. By rephrasing the famous result of Borel determinacy in our formalism, we
have that a deterministic turn-based graph arena C is determined for all Borel winning set
W ⊆ Borel(K). Note that this theorem is not directly given by the results proved by Martin
in [14, 15, 16]. To obtain this theorem, we additionally need to apply a result from [20] since
a strategy depends on color history instead of state history. We use this result to prove the
determinacy of CG-DLI.

FSTTCS 2021

41:12 From Local to Global Determinacy

▶ Theorem 17. For all Borel winning set W , for all locally determined deterministic
concurrent graph arena C, the concurrent game ⟨C, W ⟩ is determined. Conversely, for all
non-trivial Borel winning set ∅ ⊊ W ⊊ Kω, for all non-determined game form F , there exists
a deterministic concurrent arena C with only F as a local interaction that is not determined
such that the game ⟨C, W ⟩ is not determined.

Finite-memory determinacy. The next application only applies to finite arenas. In [3],
the authors proved an equivalence between the shape of a winning set and the existence
of winning strategies that can be implemented with a given memory skeleton2 M. They
defined the properties of M-selectivity and M-monotony and proved that for M a memory
skeleton and W ⊆ Kω, we have that W and Kω \ W are M-monotone and M-selective is
equivalent to every finite deterministic turn-based game with W as winning set is determined
with winning strategies for both players that can be found among strategies implemented
with memory skeleton M.

Let ⟨C, W ⟩ be a deterministic concurrent game, ⟨Seq(C), Seq(W)⟩ be its sequential version,
and M a memory skeleton on K. In fact, W is M-monotone and M-selective if and only
if Seq(W) is Seq(M)-monotone and Seq(M)-selective. The proof of this fact, longer than
the other applications, requires establishing algebraic properties of the projection function
ϕKC,K : K↑

C → K↑ . In turn, finite deterministic CG-DLI ensure the following theorem:

▶ Theorem 18. Let M be a memory skeleton and W ⊆ Kω. The following two assertions
are equivalent:
1. every finite deterministic locally determined concurrent game ⟨C, W ⟩ with finite action sets

is determined with winning strategies for both players that can be found among strategies
implemented with memory skeleton M;

2. W and Kω \ W are M-monotone and M-selective.
As for Borel determinacy, local determinacy is somehow a necessary condition as a one-shot
reachability game, with a non-determined initial local interaction, may not be determined
(see Figures 5, 6). In fact, this theorem can written as a more involved equivalence.

6.2 Stochastic Games (i.e. with Nature)
There are fewer determinacy results on stochastic games, especially with deterministic
strategies. Let us translate some of them into locally determined concurrent games. We con-
sider parity objectives and the more general case of tail-objectives (a.k.a. prefix-independent).

Parity Objectives. As already mentioned in Section 3, parity objectives are defined as
follows. For a set of colors K = Jm, nK for some m, n ∈ N, a parity objective on K is
the winning set W = {ρ ∈ Kω | max(n∞(ρ)) is even } where n∞(ρ) is the set of colors
seen infinitely often in ρ. A result from [4, 23] gives us that any finite turn-based parity
game is positionally determinedThis result can be directly transferred to locally determined
concurrent games thanks to Theorem 12. Note that, as in the two previous cases, the local
determinacy assumption is somewhat necessary.

2 In fact, they looked at the existence of Nash equilibria with antagonistic preference relations instead of
winning sets. However, a winning set W ⊆ Kω can be directly translated into an equivalent preference
relation ≺W ⊆ Kω × Kω by ρ ≺W ρ′ ⇔ ρ ̸∈ W ∧ ρ′ ∈ W . In the following we will refer to the preference
relation ≺W when mentionning the winning set W .

B. Bordais, P. Bouyer, and S. Le Roux 41:13

▶ Theorem 19. Consider a (stochastic) locally determined finite concurrent graph arena C
with color set K = Jm, nK for some m, n ∈ N. For all parity objective W ∈ Borel(K) on K,
the concurrent game ⟨C, W ⟩ is positionally determined.

Tail Objectives. We consider more general objectives than the parity objectives. In
particular, positional determinacy does not hold in the general case for these objectives
(consider, for instance, the Muller objectives). A tail objective is a winning set that is
closed by adding and removing finite prefixes, that is, for a set of colors K, a winning set
W ∈ Borel(K) is a tail-objective if, for all ρ ∈ Kω and π ∈ K∗, we have ρ ∈ W ⇔ π ·ρ ∈ W . In
particular, a parity objective is a tail objective. In fact, we have that every finite turn-based
game that is limit-determined with value 0 or 1 is determined.

This result can be directly transferred to locally determined concurrent games. As usual,
the local determinacy is a somewhat necessary condition.

▶ Theorem 20. Consider a (stochastic) locally determined finite concurrent graph arena C
with finite action sets. Then, for all Borel winning set W ⊆ Borel(K) that is a tail objective,
on K, if χC

A[W] = 1 or χC
B[W] = 0, then the game is determined.

7 Future Work

Several applications from Section 6 can be generalized in the setting of non-antagonistic
preferences instead of the win/lose setting that was used in this article. Apart from formatting
bureaucracy, most of these generalizations are automatic corollaries of the combination of
this paper’s results and [18]. The latter is a general transfer result, from determinacy results
in the win/lose setting, into existence of Nash equilibria in the setting of non-antagonistic
preferences. We intend to state and detail these generalizations in the journal version of this
paper.

References
1 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. From local to global determinacy

in concurrent graph games. CoRR, abs/2107.04081, 2021. arXiv:2107.04081.
2 Endre Boros, Ondrej Cepek, and Vladimir Gurvich. Separable discrete functions: Recognition

and sufficient conditions. Discret. Math., 342(5):1275–1292, 2019. doi:10.1016/j.disc.2018.
12.026.

3 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vanden-
hove. Games where you can play optimally with arena-independent finite memory. In 31st In-
ternational Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna,
Austria (Virtual Conference), pages 24:1–24:22, 2020. doi:10.4230/LIPIcs.CONCUR.2020.24.

4 Krishnendu Chatterjee, Marcin Jurdzinski, and Thomas A. Henzinger. Quantitative stochastic
parity games. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-
14, 2004, pages 121–130. SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.
982808.

5 Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games.
In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November 8-
11, 1998, Palo Alto, California, USA, pages 564–575. IEEE Computer Society, 1998. doi:
10.1109/SFCS.1998.743507.

6 Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational aspects of monotone
dualization: A brief survey. Discret. Appl. Math., 156(11):2035–2049, 2008. doi:10.1016/j.
dam.2007.04.017.

FSTTCS 2021

http://arxiv.org/abs/2107.04081
https://doi.org/10.1016/j.disc.2018.12.026
https://doi.org/10.1016/j.disc.2018.12.026
https://doi.org/10.4230/LIPIcs.CONCUR.2020.24
http://dl.acm.org/citation.cfm?id=982792.982808
http://dl.acm.org/citation.cfm?id=982792.982808
https://doi.org/10.1109/SFCS.1998.743507
https://doi.org/10.1109/SFCS.1998.743507
https://doi.org/10.1016/j.dam.2007.04.017
https://doi.org/10.1016/j.dam.2007.04.017

41:14 From Local to Global Determinacy

7 E. Allen Emerson and Charanjit S. Jutla. Tree automata, mu-calculus and determinacy
(extended abstract). In 32nd Annual Symposium on Foundations of Computer Science FOCS,
San Juan, Puerto Rico, 1-4 October 1991, pages 368–377, 1991. doi:10.1109/SFCS.1991.
185392.

8 Hugh Everett. Recursive games. Annals of Mathematics Studies – Contributions to the Theory
of Games, 3:67–78, 1957.

9 Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms, 21(3):618–628, 1996. doi:10.1006/jagm.1996.0062.

10 Allan Gibbard. Manipulation of voting schemes: A general result. Econometrica, 41(4):587–601,
1973. URL: http://www.jstor.org/stable/1914083.

11 Hugo Gimbert and Florian Horn. Solving simple stochastic tail games. In Moses Charikar,
editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 847–862. SIAM, 2010. doi:
10.1137/1.9781611973075.69.

12 V.A. Gurvich. The solvability of positional games in pure strategies. USSR Computational
Mathematics and Mathematical Physics, 15(2):74–87, 1975. doi:10.1016/0041-5553(75)
90042-7.

13 Eryk Kopczyński. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw
University, 2008.

14 Donald A Martin. Borel determinacy. Annals of Mathematics, pages 363–371, 1975.
15 Donald A Martin. A purely inductive proof of Borel determinacy. Recursion theory (Ithaca,

NY, 1982), 42:303–308, 1985.
16 Donald A Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,

63(4):1565–1581, 1998.
17 Andrzej Włodzimierz Mostowski. Games with forbidden positions. Preprint – Uniwersytet

Gdański. Instytut Matematyki. UG, 1991.
18 Stéphane Le Roux. From winning strategy to nash equilibrium. Math. Log. Q., 60(4-5):354–371,

2014. doi:10.1002/malq.201300034.
19 Stéphane Le Roux. Concurrent games and semi-random determinacy. In 43rd International

Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK, pages 40:1–40:15, 2018. doi:10.4230/LIPIcs.MFCS.2018.40.

20 Stéphane Le Roux. Time-aware uniformization of winning strategies. In Beyond the Horizon of
Computability - 16th Conference on Computability in Europe, CiE 2020, Fisciano, Italy, June
29 - July 3, 2020, Proceedings, pages 193–204, 2020. doi:10.1007/978-3-030-51466-2_17.

21 Lloyd S. Shapley. Stochastic games. Proceedings of the national academy of sciences,
39(10):1095–1100, 1953.

22 Wieslaw Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

23 Wieslaw Zielonka. Perfect-information stochastic parity games. In Igor Walukiewicz, editor,
Foundations of Software Science and Computation Structures, 7th International Conference,
FOSSACS 2004, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume
2987 of Lecture Notes in Computer Science, pages 499–513. Springer, 2004. doi:10.1007/
978-3-540-24727-2_35.

https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1109/SFCS.1991.185392
https://doi.org/10.1006/jagm.1996.0062
http://www.jstor.org/stable/1914083
https://doi.org/10.1137/1.9781611973075.69
https://doi.org/10.1137/1.9781611973075.69
https://doi.org/10.1016/0041-5553(75)90042-7
https://doi.org/10.1016/0041-5553(75)90042-7
https://doi.org/10.1002/malq.201300034
https://doi.org/10.4230/LIPIcs.MFCS.2018.40
https://doi.org/10.1007/978-3-030-51466-2_17
https://doi.org/10.1007/978-3-540-24727-2_35
https://doi.org/10.1007/978-3-540-24727-2_35

Quantitative Verification on Product Graphs of
Small Treewidth
Krishnendu Chatterjee #

IST Austria, Klosterneuburg, Austria

Rasmus Ibsen-Jensen #

University of Liverpool, UK

Andreas Pavlogiannis #

Aarhus University, Denmark

Abstract
Product graphs arise naturally in formal verification and program analysis. For example, the analysis
of two concurrent threads requires the product of two component control-flow graphs, and for language
inclusion of deterministic automata the product of two automata is constructed. In many cases, the
component graphs have constant treewidth, e.g., when the input contains control-flow graphs of
programs. We consider the algorithmic analysis of products of two constant-treewidth graphs with
respect to three classic specification languages, namely, (a) algebraic properties, (b) mean-payoff
properties, and (c) initial credit for energy properties.

Our main contributions are as follows. Consider a graph G that is the product of two constant-
treewidth graphs of size n each. First, given an idempotent semiring, we present an algorithm
that computes the semiring transitive closure of G in time Õ(n4). Since the output has size
Θ(n4), our algorithm is optimal (up to polylog factors). Second, given a mean-payoff objective, we
present an O(n3)-time algorithm for deciding whether the value of a starting state is non-negative,
improving the previously known O(n4) bound. Third, given an initial credit for energy objective,
we present an O(n5)-time algorithm for computing the minimum initial credit for all nodes of G,
improving the previously known O(n8) bound. At the heart of our approach lies an algorithm for
the efficient construction of strongly-balanced tree decompositions of constant-treewidth graphs.
Given a constant-treewidth graph G′ of n nodes and a positive integer λ, our algorithm constructs
a binary tree decomposition of G′ of width O(λ) with the property that the size of each subtree
decreases geometrically with rate (1/2 + 2−λ).

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Verification by model checking; Theory of computation → Graph algorithms analysis

Keywords and phrases graph algorithms, algebraic paths, mean-payoff, initial credit for energy

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.42

1 Introduction

Product graphs. Graphs are at the heart of formal analysis of reactive systems and programs.
The nodes of the graph represent states of the system, edges represent transitions, and paths
of the graph represent behaviors of the system. One graph problem that repeatedly arises
in many applications is the analysis of product graphs (i.e., the synchronous product of
two graphs). For example, in the analysis of two concurrent threads, the resulting graph
for analysis is the product of two component control-flow graphs. Similarly, in language
intersection or language inclusion between deterministic automata, the product of two
automata is considered.

Specification languages. The analysis of programs and reactive systems is performed w.r.t.
desired properties that are described as specification languages. We consider three classic
specification languages: (i) algebraic properties w.r.t. a semiring, (ii) mean-payoff properties,

© Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 42; pp. 42:1–42:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Krishnendu.Chatterjee@ist.ac.at
mailto:R.Ibsen-Jensen@liverpool.ac.uk
mailto:pavlogiannis@cs.au.dk
https://orcid.org/0000-0002-8943-0722
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Quantitative Verification on Product Graphs of Small Treewidth

and (iii) initial credit for energy properties. In algebraic properties for system analysis,
(a) each transition is associated with a weight from a semiring; (b) the value of a path is the
semiring product operation of the weights along the transitions of the path; and (c) path
aggregation is performed using the semiring sum operation across the values of paths. In
mean-payoff properties for system analysis, (a) each transition of the system is associated
with an integer-valued weight; (b) the value of an infinite path is the long-run average of
the weights of the transitions of the path; and (c) an optimal path is selected that has the
minimum mean-payoff value among all paths. In initial credit for energy for system analysis,
(a) each transition of the system is associated with an integer-valued weight; (b) the value of
an infinite path is the smallest weight of all of its prefixes, and (c) for each node, an optimal
path is selected that starts in that node and such that it has the largest value among all
paths originating in that node.

Constant-treewidth graphs. One key structural property of graphs that appears in several
contexts is that of constant-treewidth. Treewidth is a classic measure of closeness of a graph
to a tree [52]. Besides its mathematical elegance, constant-treewidth graphs are of practical
relevance in formal verification and program analysis. For example, (i) the control-flow graphs
of typical programming languages (such as goto-free Algol, Pascal, and C programs) have
constant treewidth [53], which has been exploited for fast static analyses [21, 15, 18], and
in practice even control-flow graphs of Java programs have constant treewidth [37]; (ii) the
analysis of constant-treewidth graphs in logic plays a crucial role, such as the celebrated
result of Courcelle for MSO [26] and its subsequent extensions [2, 30, 8]; as well as for logics
such as modal mu-calculus [48].

Significance of the problems. In this work we consider the algorithmic analysis of the
product of two constant-treewidth graphs with respect to algebraic properties and mean-payoff
properties. We discuss the significance of the problems we consider. First, as mentioned
above, products of two constant-treewidth graphs arise naturally (a) in the analysis of
concurrent programs, and (b) in model checking an implementation against a high-level
specification, a task typically expressed as language inclusion. We now discuss the relevance
of the specification languages we consider here.

Semiring properties. Semiring (or algebraic) properties have been widely used as specific-
ation formalisms as weighted automata [28], or properties of programs [51, 1]. Semirings
also form the basis of dataflow analysis of concurrent programs [36, 45, 32, 24, 41, 27, 19],
where the underlying analysis is based on an algebraic “meet-over-all-paths” formulation.
Finally, semirings also arise in concurrent Kleene algebras for the analysis of concurrent
programs [38, 39, 42].
Mean-payoff properties. Mean-payoff is a classic quantitative property in performance
analysis [33, 49, 3]. It has applications in (a) automata theoretic formalisms [17, 16];
(b) weighted logic formalisms [9, 12, 29]; (c) synthesis of reactive systems [5, 14]; and
(d) quantitative interprocedural analysis [22]; to name a few applications in verification
and program analysis.
Initial credit for energy properties. Initial credit is a useful quantitative property for
expressing energy constraints [11, 10, 13]. The goal is to determine for each state of the
system an initial energy supply so that the system can exhibit infinite behavior without
running out of energy, and has numerous applications in planning [31, 40].

In many cases in verification, instead of having a graph with constant treewidth, the input
is a graph G that is the product of two constant treewidth graphs G1, G2. For example, this
holds when we analyze control-flow graphs of two threads running in parallel, or when we test

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:3

for language inclusion and the system and specification automaton have constant-treewidth.
Note that G does not have constant treewidth: a simple example would be grid graphs - they
are trivial to get this way, but have tree-width equal to the minimum of height and width.
Due to this fact, existing algorithms for constant-treewidth graphs give sub-optimal solutions.
The question is thus whether better algorithms are possible given the fact that, although G

does not have constant treewidth, its two components G1 and G2 do have constant treewidth.
We address this challenge in this work.

Our contributions. Our main contributions are as follows.
1. Mean-payoff properties. Given a product G of two constant treewidth graphs G1, G2 of

size n each and a mean-payoff objective, we present an O(n3)-time algorithm for deciding
whether the value of a starting state is non-negative. Note that constant-treewidth graphs
have O(n) edges. Existing algorithms (such as Karp’s algorithm) solve this problem in
O(n · m) time on a graph of n nodes and m edges, which results to O(n4) complexity on
G (since G has n2 nodes and edges). Hence our algorithm yields a factor-n improvement
compared to existing approaches.

2. Semiring properties. Given an idempotent semiring and a product G of two constant-
treewidth graphs G1, G2 of size n each, we present an algorithm that computes the
semiring transitive closure of G in time Õ(n4). On the other hand, applying the classic
cubic-time transitive closure algorithm on G yields an O(n6) bound. Although this naive
bound has been improved to O(n4+ϵ), for fixed ϵ > 0 [19], our work yields a further
polynomial improvement to Õ(n4). Since G has n2 nodes, the output has size Θ(n4) and
thus our algorithm is optimal (up to polylog factors).

3. Initial credit for energy properties. Given a product G of two constant treewidth graphs
G1, G2 of size n each and an energy objective, we present an O(n5)-time algorithm for
computing the minimum initial credit for each node of G. The best existing solution is
due to [20] which has quartic complexity in the size of the graph, and thus implies an
O(n8) time bound on G (since G has n2 nodes). Hence our algorithm yields a factor-n3

improvement.
4. At the heart of our approach lies a new notion of (α, β) tree decompositions, as well

as an efficient algorithm for their construction for constant-treewidth graphs. Given a
constant-treewidth graph G of n nodes and an integer λ ≥ 2, our algorithm constructs
in O(λ2 · n · log n) time a binary tree decomposition of G of width O(λ) that has the
following property: for each bag B of the tree decomposition at level i, the number of
nodes of G contained in bags of the subtree rooted at B is at most n · (1/2 + 2−λ)i. Hence,
for increasing values of λ, the number of contained nodes gets exponentially close to the
optimal value of n · 2−i (since the tree decomposition is binary). Note that for λ = O(1),
we obtain a tree decomposition with logarithmic depth and increased width by a constant
factor. We complement this result with a lower bound stating that tree decompositions
of logarithmic depth must, in general, incur a constant-factor increase in the width.

Due to space restrictions, some proofs are relegated to the appendix.

Comparison to related existing work. The notion of balanced tree decompositions has
long existed in the literature. The classic work of [50] presents the first algorithm to
construct a balanced tree decomposition in time O(n · log n), by finding balanced separators
in the graph. Various works present parallel algorithms for constructing balanced tree
decompositions in (poly-)logarithmic parallel time with O(n) processors [46, 7]. The work

FSTTCS 2021

42:4 Quantitative Verification on Product Graphs of Small Treewidth

of [30] constructs balanced tree decompositions in Logspace. More recently, the work of [35]
constructs approximate balanced tree decompositions in time O(f(t) · n · log n)), where f(t)
is a polynomial function of the treewidth t.

In all these cases, the balancing guarantee is that the tree decomposition has depth
≤ c · log n, for some constant c (logarithms are on base 2). For binary tree decompositions,
these algorithms yield c ≥ 2. Crucially, the complexity of the algorithms for our results
(1)–(3) depends on c, and c ≥ 2 is prohibitively large. E.g., using the existing algorithms for
balanced tree decompositions yields a bound for the semiring properties (result (2)) that is
at least n6, as opposed to our Õ(n4) bound.

Although [19] also considers a notion of strong balancing, the balancing factor achieved
there for level i is, on average, (1/2 + P (λ−1))i, where P is a sub-linear function. Hence,
compared to that algorithm, our new algorithm yields an exponential improvement in the
balancing factor (i.e., (1/2 + 2−λ)i). This improvement is necessary to arrive at our results.
Moreover, our new techniques are quite different from previous ones, and might be of
independent interest.

2 Preliminaries

In this section we set up our main notation and introduce our new notion of (α, β) tree
decompositions. In the next sections we will show how to construct such decompositions
efficiently, as well as how they can be used for developing algorithmic improvements on
product graphs.

Graphs. We consider directed graphs G = (V, E) where V is a set of n nodes and E ⊆ V ×V

is an edge relation. Two nodes u, v ∈ V are called neighbors if (u, v) ∈ E. Given a set X ⊆ V ,
we denote by G ↾ X the subgraph (X, E ∩ (X × X)) of G induced by the set of nodes X.
A path P : u⇝ v is a sequence of nodes (x1, . . . , xk) such that u = x1, v = xk, and for all
1 ≤ i ≤ k − 1 we have (xi, xi+1) ∈ E. The path P is acyclic if every node appears at most
once in P . The length of P is k − 1, and a single node is by itself a 0-length path. Given a
path P we use the notation u ∈ P to say that a node u appears in P , and A ∩ P to refer to
the set of nodes that appear in both P and a set A.

Trees. A (rooted) tree T = (I, F) is an undirected graph (the edge relation F is symmetric)
without self loops and with a distinguished node r, which is the root of T , such that there is
a unique acyclic path P v

u : u⇝ v for each pair of nodes u, v. The size of T is |I|. Given a
tree T with root r, the level Lv(u) of a node u is the length of the path P r

u from u to the root
r. Every node in P r

u is an ancestor of u, and if v is an ancestor of u, then u is a descendant
of v (u is both an ancestor and a descendant of itself). We call v a strict ancestor (resp.,
strict descendant) of u if v ̸= u and v is an ancestor (resp., descendant) of u. For a pair of
nodes u, v ∈ I, the lowest common ancestor (LCA) of u and v is the common ancestor of u

and v with the largest level. Given a node v ̸= r, the parent u of v is the unique ancestor of
v in level Lv(v) − 1, and v is a child of u. We denote by Parent(v) the parent of node v ̸= r.
A leaf of T is a node with no children. For a node u ∈ I, we denote by T (u) the subtree of
T rooted in u (i.e., the tree consisting of all descendants of u). A node is k-ary if it has at
most k children, and a tree is k-ary if every node is k-ary. The depth of T is maxu Lv(u).

Connected components of trees. Let T = (I, F) be a tree. A connected component C ⊆ I of
T is such that for every pair of nodes u, v ∈ C, the unique acyclic path P v

u in T visits only nodes
in C. The border of a non-empty C is the set Border(C) = {u ∈ I \ C : ∃v ∈ C s.t. (u, v) ∈ F},

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:5

1

8

9

2

10

3

6

4

7

5
8, 9, 10

1, 8, 9

2, 8, 10

2, 3, 10

7, 8, 9

6, 7, 9

4, 6, 9 5, 6, 7

Figure 1 A graph with treewidth 2 (left) and a corresponding tree-decomposition (right).

i.e., it is the set of nodes of T that are adjacent to C. For technical convenience, in this work
we also make use of empty connected components of T . Empty connected components are
also associated with a border, which is two endpoints of an edge of T . Hence we have |F |
many different empty connected components.
Balancing separators. Consider a connected component C of a tree. A balancing separator
of C is a node u ∈ C such that removing u splits C into (at most) 3 connected components
{Ci}1≤i≤3, with |Ci| ≤ |C|/2 for each 1 ≤ i ≤ 3. The following lemma is well-known (e.g., [25]).

▶ Lemma 1. Consider a binary tree T and a connected component C of T . A balancing
separator of C can be computed in O(|C|) time.

Tree decompositions. A tree decomposition of a graph G = (V, E) is a pair (B, T) where
T = (I, F) is a tree and B = {Bi : i ∈ I} is a family of subsets of V such that the following
conditions hold.
1.
⋃

i∈I Bi = V

2. For all (u, v) ∈ E there exists i ∈ I with u, v ∈ Bi.
3. For all i, j, k ∈ I, if k ∈ P j

i in T then Bi ∩ Bj ⊆ Bk.
The sets Bi are called bags of the tree decomposition. Given a node u ∈ V , we denote by iu

the root node of u in T , which is the smallest-level node in T such that u ∈ Biu
, and call

Biu the root bag of u. Conditions Item 1 and Item 3 of tree decompositions guarantee that
every node has a unique root bag. The width of the tree decomposition is maxi∈I |Bi| − 1,
i.e., it is the size of the largest bag of B minus 1. The treewidth of G is the smallest width
of all tree decompositions of G. Given a node i ∈ I, we denote by NT

B (i) the set of nodes
of G that appear in bags of the subtree T (i) (i.e., u ∈ NT

B (i) iff i has a descendant j such
that u ∈ Bj), and by YT

B (i) the set of nodes of G that appear only in bags of the subtree
T (i) (i.e., u ∈ YT

B (i) iff for the root bag Bj of u, j is a descendant of i). Observe that
NT

B (i) ⊆ YT
B (i) ∪ Bi. We assume w.l.o.g. that YT

B (i) ̸= ∅ for every i ∈ I, as otherwise
the subtree T (i) can be removed from T and obtain a valid tree decomposition of G. For
simplicity of exposition, we associate properties of the tree T with the tree decomposition
(B, T), e.g., the depth of the tree decomposition is the depth of T , and we say that the
tree decomposition is balanced if T is balanced. The following lemma states a well-known
separator property of tree decompositions, which is a key property behind many efficient
algorithms on low-treewidth graphs.

▶ Lemma 2 (Lemma 3, [6]). Consider a graph G = (V, E), a tree-decomposition (B, T =
(I, F)) of G and a node i ∈ I. Let {Cj}j be the connected components of T created by
removing i from T . Consider two integers j1, j2 such that j1 ̸= j2, and two nodes i1 ∈ Cj1

and i2 ∈ Cj2 . For any two nodes u ∈ Bi1 and v ∈ Bi2 , every path P : u⇝ v in G contains a
node that appears in Bi.

FSTTCS 2021

42:6 Quantitative Verification on Product Graphs of Small Treewidth

Approximate, balanced, and (α, β) tree decompositions. Consider a graph G of n nodes
and treewidth t, and let (B, T = (I, F)) be a tree decomposition of G. We refer to (B, T)
as α-approximate, for some integer α ≥ 1, if the width of (B, T) is ≤ α · (t + 1) − 1. We
refer to (B, T) as β-balanced, for some 0 < β < 1, if for every node i ∈ I we have that
YT

B (i) ≤ n · βLv(i). If (B, T) is both α-approximate and β-balanced, it is called a (α, β) tree
decomposition. Intuitively, a (α, β) tree decomposition approximates the treewidth of G to a
factor α, and for every i ∈ I, the number of nodes of G contained in bags of the subtree T (i)
decreases geometrically with Lv(i) by a factor β. Note that if β is constant (i.e., independent
of G) then T has depth O(log n) (hence it is balanced).

3 Construction of (α, β) tree decompositions

In this section we present our algorithm for constructing (α, β) tree decompositions, where α

and β depend on some integer input λ ≥ 2. In particular, we establish the following theorem.

▶ Theorem 3. Consider a graph G of n nodes and treewidth t, and any integer λ ≥ 2. Let
T (G) be the time required to construct a tree decomposition of G with ≤ n bags and width t.
A (α, β) tree decomposition of G can be constructed in O(T (G) + λ2 · n · log n) time, where
α = 11 · λ + 32 and β = 1/2 + 2−λ.

Hence, for larger values of λ, the constructed tree decomposition is more strongly balanced,
which also incurs a factor increase in its width.

The motivation behind Theorem 3 is as follows. The properties we consider later for
product graphs (i.e., semiring, mean-payoff and initial credit for energy properties) are solved
by existing algorithms that operate on a tree decomposition of the input graph. In high
level, these algorithms iterate over every bag in the input tree decomposition and perform a
polynomial-time computation in it. Because we deal with tree decompositions of product
graphs, as we go down the tree decomposition, the number of bags in each level increases
geometrically. By using Theorem 3, we ensure that the size of the bags reduces geometrically
by an appropriate factor, which in turn ensures that the total time spent for all bags in each
level of the tree decomposition stays bounded. The constant λ is chosen in each case to
ensure this effect.

The high-level intuition behind Theorem 3 is as follows. We start with a tree decomposition
of G, obtained using standard algorithms. The tree decomposition is then split recursively.
Each recursive step operates on a part of the tree that consists of connected components,
and splits this part into two sub-parts, in such a way that the overall number of nodes is
balanced, meaning that the two parts are of approximately equal size. Since these parts
shrink by a factor of 1/2 in every step, after λ steps, the balance is only off by at most a
factor of 2−λ. The key challenge is to perform the aforementioned splits in such a way that
(i) the two constructed parts are approximately balanced, and (ii) the nodes appearing in
each such part are separated from the rest of the nodes via a few “border” nodes.

We complement Theorem 3 by showing that, generally, balanced tree decompositions are
approximate.

▶ Theorem 4. For any n and t = o(n/ log n), there exists a graph Gn
t that has treewidth at

most 2 · t − 1, but any tree decomposition of Gn
t with depth O(log n) has width at least 3 · t − 1.

In Section 3.1 we develop two operations on tree components that will be used later on.
In Section 3.2 we develop our main algorithm which uses the operations of Section 3.1 to
construct the (α, β) tree decomposition of Theorem 3. Finally, in Section 3.3 we prove the
lower-bound of Theorem 4.

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:7

3.1 Operations on tree components
In this section we define set-components of trees and two operations on such set-components
that will be used later for constructing (α, β) tree decompositions. In words, a set-component
of a tree is simply a set of pairwise-disjoint connected components of the tree. The operations
that we introduce here take as input a set-component. Each operation splits that set-
component into multiple sub-components so that certain properties are met. In what follows,
we fix a tree T = (I, F).

Set-components of trees. A set-component of T is a set X = {Ci}i of connected components
of T such that for each i ≠ j we have (i) Ci ∩ Cj = ∅ and (ii) Ci ∩ Border(Cj) = ∅. The size of
X is size(X) =

∑
i |Ci|, i.e., it is the total size of all of its connected components. The border

of the set-component X is defined as Border(X) =
⋃

i Border(Ci), i.e., the border of X is the
union of the borders of its connected components. Given two set-components X and X ′, we
define X ⊑ X ′ =

⋃
Ci∈X Ci ⊆

⋃
C′

i
∈X ′ C′

i and X ⊓ X ′ = (
⋃

Ci∈X Ci) ∩ (
⋃

C′
i
∈X ′ C′

i).

3.1.1 The operation BorderSplit
Intuitively, a component X is connected to the rest of the tree via the nodes of its border
Border(X). Our balancing algorithm later needs that this border never gets too large. To
achieve this, we define the operation BorderSplit. In particular, consider a set-component
X = {Ci}1≤i≤k of T . We define the operation BorderSplit on X which returns (at most)
three set-components{Xi}1≤i≤3 with Xi ⊑ I for each 1 ≤ i ≤ 3. In words, BorderSplit
splits X into three set-components Xi, possibly by removing a node u ∈ X , such that
|Border(Xi)| ≤ |Border(X)|/2 + 1 for each 1 ≤ i ≤ 3. Formally, BorderSplit operates as follows
(recall that the input tree T is binary). If |Border(X)| < 3, then we simply return {X }.
Otherwise, we perform the following steps. First, we construct the LCA tree T ′ = (I ′, F ′) of
Border(X), defined as follows.
1. I ′ is the smallest subset of I such that (i) Border(X) ⊆ I ′ and (ii) for every two nodes

u, v ∈ I ′, we have w ∈ I ′, where w is the LCA of u and v. Hence, I ′ is the LCA-closure
of Border(X).

2. For every pair of distinct nodes u, v ∈ I ′, we have that (u, v) ∈ F ′ iff v is the largest-level
strict ancestor of u in T that appears in I ′.

Then, we find a node u of T ′ such that the removal of u splits T ′ into three connected
components {Ai}i with |Ai ∩ Border(X)| ≤ ⌊|Border(X)|/2⌋. This is easily done by a bottom-
up pass of T ′. For each 1 ≤ i ≤ 3, we construct a set-component Xi, as follows.
1. For every connected component Cj ∈ X with u ̸∈ Cj , we make Cj ∈ Xi where i is such

that Border(Cj) ⊆ Ai.
2. If there exists a connected component Cj ∈ X with u ∈ Cj , we split Cj into three connected

components {Ci
j}i by removing u from Cj , such that Border(Ci

j) \ {u} ⊆ Ai. In addition,
we take Ci

j ∈ Xi.
Finally, we return the set {Xi}i. The following lemma states the properties of BorderSplit.

▶ Lemma 5. Consider the operation BorderSplit on the set-component X = {Ci}1≤i≤k. Let
z = |size(X)|, m = |Border(X)|, and {Xi}1≤i≤3 be the returned component set. The following
assertions hold.
1. We have |

⋃
i Border(Xi)| ≤ m + 1.

2. For each 1 ≤ i ≤ 3, we have |Border(Xi)| ≤ ⌊m/2⌋ + 1.
3. After one O(n)-time preprocessing of T , every call to BorderSplit requires O(z + m2) time.

FSTTCS 2021

42:8 Quantitative Verification on Product Graphs of Small Treewidth

3.1.2 The operation Split
Consider a set-component X = {Ci}1≤i≤k of T and some λ ≥ 2. Let z = size(X) and
m = |Border(X)|. We define the operation Split on X which returns two set-components
{Xi}1≤i≤2 such that the following properties hold.
1. Xi ⊑ X and X1 ⊓ X2 = ∅.
2. size(Xi) ≤ z · (1/2 + 2−λ), i.e., the size of each set-component is approximately half the

size of X , and this approximation is controlled by λ, and
3. |Border(Xi)| ≤ 9/10 · m + λ + 3, i.e., the size of the border of each set-component is about

a fraction 9/10 of the size of the border of X .

Split initializes the two set-components as empty, i.e., X1 = X2 = ∅, and will be inserting
connected components in each Xi such that, in the end, the stated properties hold. The
algorithm operates in two steps, where the input to the second step is a set-component
X ∗ constructed in the first step. In the following, we describe the two steps. We say
that a set-component X ′ ⊑ X is border-balancing if either m < 10, or size(X ′) ≤ z/2 and
|Border(X ′)| ≥ m/10 − 1. Hence if m < 10 we take every sub-component of X to be border-
balancing, otherwise a border-balancing sub-component must be at most of half the size of
X and have about at least 1/10-th of the size of the border of X . Given two set-components
X ′ and X ′′, we say that we add X ′ to X ′′ meaning that we update X ′′ to X ′ ∪ X ′′.

Step 1: making X1, X2 border-balancing. If m < 10, then we proceed with the second
step with X ∗ = X . Otherwise, we apply the operation BorderSplit on X and obtain the
set-components {X ′

i }1≤i≤3. We assume w.l.o.g. that size(X ′
1) ≥ size(X ′

2) ≥ size(X ′
3). If there

are two border-balancing set-components, Xa and Xb, among X ′
1, X ′

2, X ′
3, we add Xa to X1

and Xb to X2, and proceed to the second step with X ∗ being the unique set-component in
{X ′

1, X ′
2, X ′

3} \ {Xa, Xb}. Otherwise, we apply the operation BorderSplit on X ′
1 and obtain the

set-components {X ′′
i }1≤i≤3. We assume w.l.o.g. that size(X ′′

1) ≥ size(X ′′
2) ≥ size(X ′′

3). In the
set A = {X ′′

1 , X ′′
2 , X ′′

3 , X ′
2, X ′

3} there are at least two border-balancing set-components, Xa and
Xb. We add Xa to X1 and Xb to X2. Finally, we let X ∗ be the set-component in A \ {Xa, Xb}
with the largest size. We add one of the set-components in A \ {X ∗, Xa, Xb} to the smaller
(in size) of X1 and X2, and repeat with the other set-component of A \ {X ∗, Xa, Xb}.

Step 2: balancing X1, X2 based on size. Let C be a largest connected component of X ∗.
First, we add every connected component of X ∗ except C to the smaller (in size) of X1 and
X2, in order (i.e., once we have added one connected component to X1 or X2, we take into
account the new size of X1 and X2 for choosing where to add the next connected component).
The remaining of the second step is recursive for λ levels. The j-th recursive call operates on
a connected component Cj , where C0 = C. Given Cj , we use Lemma 1 to identify a balancing
separator u ∈ Cj , such that the removal of u splits Cj into three connected components {Cj

i }i.
We assume w.l.o.g. that |Cj

1| ≥ |Cj
2| ≥ |Cj

3|. We add each of Cj
2 and Cj

3 to the smallest (in size)
of X1 and X2, in order, and proceed to the next recursive call with Cj+1 be Cj

1. Finally, at
the end of the recursion, we add Cλ (from the last recursive call) to the smallest of X1 or X2.

The following lemma states the properties of Split, and relies on Lemma 5.

▶ Lemma 6. Consider the operation Split on a set-component X = {Ci}1≤i≤k Let z = size(X)
and m = |Border(X)|, and {Xi}1≤i≤2 be the returned component set. The following assertions
hold.
1. For each 1 ≤ i ≤ 2, we have size(Xi) ≤ z · (1/2 + 2−λ).
2. For each 1 ≤ i ≤ 2, we have |Border(Xi)| ≤ 9/10 · m + λ + 3.
3. We have |Border(X1) ∪ Border(X2)| ≤ |Border(X)| + λ + 2
4. After O(n)-time preprocessing of T , Split requires O(z + m2) time.

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:9

3.2 Construction of (α, β) Tree Decomposition

Here we prove the main result of this section, which concerns the construction of an (α, β)
tree-decomposition of a graph G, where α = 11 · λ + 32 and β = 1/2 + 2−λ, for any integer
λ ≥ 2. Our construction proceeds in two steps. In Section 3.2.1 we present an intermediate
step that takes as input a tree T and constructs a tree decomposition of T that has width α

and is β-approximate. In Section 3.2.2 we use this construction towards Theorem 3.

3.2.1 Construction of tree decompositions of trees

Here we present algorithm Balance, which takes as input a tree T and some integer λ ≥ 2,
and constructs a tree decomposition of T that has width α and is β-approximate.

Step 1: constructing a component tree. Consider a tree T = (I, F). A component tree
of T is a pair (V, R) where R = (J , D) is a rooted tree and V = {Xi : i ∈ J } is a set of
components of T . In the first step, Balance constructs a component tree (V, R) recursively,
as follows.
1. The root of R is the component {I}.
2. Given a node i of R, if size(Xi) > 0, we use the operation Split on the component Xi to

obtain two components Xj1 , Xj2 . We insert these components in the set V, make j1, j2
children of i in R, and proceed recursively with each of j1, j2.

Step 2: turning the component tree to a tree decomposition. At the end of the first
step, we have constructed a component tree (V, R) where every leaf of R is an empty
set-component. In the second step, we construct a tree decomposition (B, T = (I, F)), such
that I = J \ L, where L is the set of leaves of R, and T = R ↾ I. In words, T is identical
to R without the leaves of the latter. For each i ∈ I, we have Bi =

⋃
j Border(Xj), where

j ranges over the children of i in R. Note that i ranges over non-leaves of R, and thus
each Bi is well-defined. The following remark states that given a node i of the induced tree
decomposition, the corresponding set-component Xi of the component tree contains exactly
the nodes that appear in the bags of the subtree T (i).

▶ Remark 7. Let (B, T = (I, F)) be the tree decomposition of the component tree (V, R =
(J , D)) constructed in the second step. For every i ∈ I, we have YT

B (i) = Xi.

The following lemmas establish the correctness and complexity of Balance.

▶ Lemma 8. (B, T = (I, F)) is a tree decomposition of T that has width ≤ α and is
β-balanced, for α = 11 · λ + 32 and β = 1/2 + 2−λ.

▶ Lemma 9. Balance runs in O(λ2 · |I| · log |I|) time.

3.2.2 Construction of (α, β) tree decompositions

Finally, we present an algorithm for constructing (α, β) tree decompositions of arbitrary
graphs. The input is a graph and a tree decomposition of the graph, and our algorithm
constructs a new tree decomposition with the desired properties.

FSTTCS 2021

42:10 Quantitative Verification on Product Graphs of Small Treewidth

Construction of an (α, β) tree decomposition. Consider a graph G = (V, E) with treewidth
t, and some integer λ ≥ 2. We construct a (α, β) tree decomposition of G, where α = 11·λ+32
and β = 1/2 + 2−λ in three steps.

1. Let (B = {B}i, T = (I, F)) be a tree decomposition of G with |I| ≤ n and width ≤ t. We
assume w.l.o.g. that, in (B, T), every node of G has a unique root bag, as we can always
replace a bag which is the root of k > 1 nodes with a sequence of k bags, each being the
root of a single node. In addition, we can remove any bag that is not the root bag of any
node, and thus the size of the tree decomposition is exactly n.

2. We use Balance to construct a tree decomposition (B′ = {B′
i}i, T ′ = (I ′, F ′)) of T .

3. We construct the tree decomposition (B = {Bi}i, T ′) with Bi =
⋃

j∈B′
i
Bj for each i ∈ I ′.

We conclude Theorem 3 by arguing that the construction produces a (α, β) tree decom-
position of G.

Proof of Theorem 3. Consider the tuple (B′ = {B′
i}i, T ′ = (I ′, F ′)) constructed in Step 2.

By Lemma 8, (B′, T ′) is a tree decomposition of T , and has width ≤ α and is β-balanced.
It follows that (B, T ′) is a α-approximate tree decomposition of G, and it remains to argue
that it is also β-balanced. For a node u ∈ V , let Au = {i ∈ I : u ∈ Bi} be the connected
component of T in which u appears and we have |Au| ≥ 1. In particular, this holds for the
(unique) root node iu of u in T . Observe that for every node j ∈ I ′, if u ∈ YT ′

B (j), then
Au ⊆ YT ′

B′ (j). Hence |YT ′

B (j)| ≤ |YT ′

B′ (j)|. By Lemma 8, we have that (B′, T ′) is β-balanced,
and thus |YT ′

B′ (j)| ≤ |I| · βLv(j). Since |I| = n, we conclude that |YT ′

B (j)| ≤ n · βLv(j), as
required.

We now turn our attention to the running time. The algorithm requires T (G) time in
Step 1 for obtaining the initial tree decomposition (B, T) plus O(n · t) time for ensuring the
properties of (B, T). By Lemma 9, the algorithm requires O(λ2 · n · log n) in Step 2. Finally,
the algorithm requires O(α · t · n) = O(λ · t · n) time in Step 3. ◀

3.3 A lower bound on the width of balanced tree decompositions
Here we present a family {Gn

t | n ≥ 3 · t and n ≡ 0 (mod t)} of graphs, where Gn
t has n

nodes and treewidth 2 · t − 1, and any tree decomposition of Gn
t with width t′ and depth h is

such that either h ≥ n/(2 · t′) or t′ ≥ 3 · t − 1. For t = o(n/ log n), only in the latter case can
the tree decomposition have depth O(log n) (i.e., be balanced), and hence the width must
increase by a constant factor.

The graph Gn
t . The graph Gn

t is defined as follows. Let n′ = n/t. For each i ∈ {1, . . . , n′},
let Vi be a set of t nodes, such that Vi ∩ Vj = ∅ for i ̸= j and V =

⋃
i Vi. Also, let

V0 = Vn′+1 = ∅. For each i ∈ {1, . . . , n′}, each node in Vi has an edge to each other node
in Vi−1 ∪ Vi ∪ Vi+1 (see Figure 2). We start with a technical lemma that will help us later.
Recall that NT

B (i) denotes the set of nodes contained in bags of the subtree T (i).

▶ Lemma 10. For any t and n consider the graph Gn
t and a tree decomposition (B, T = (I, F))

of Gn
t with width t′ and depth h. Either h ≥ n/(2 · t′) or there exists integers i, i1, i2, such

that i1 − i2 ≥ 2 and Vi1 ∪ Vi2 ⊆ Bi.

Proof. Without loss of generality, we assume that for every i ∈ I, we have NT
B (j) \ Bi ≠ ∅,

where j ranges over the children of i in T . This is valid since, otherwise, we can simply remove
the subtree T (j) and still have a tree decomposition of Gn

t with the same or lower depth and
width. Similarly, for every i ∈ I that is not the root of T , we assume that V \ NT

B (i) ̸= ∅,
otherwise T (i) is a tree decomposition of Gn

t with the same or lower depth and width.

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:11

v1
1

v1
2

v1
3

V1
v2

1

v2
2

v2
3

V2
v3

1

v3
2

v3
3

V3
v4

1

v4
2

v4
3

V4
v5

1

v5
2

v5
3

V5

v1
1

v1
2

v1
3

V1
v2

1

v2
2

v2
3

V2

v3
1

v3
2

v3
3

V3
v4

1

v4
2

v4
3

V4

v5
1

v5
2

v5
3

V5
v6

1

v6
2

v6
3

V6

Figure 2 The graphs G15
3 (left) and G(2, 5, 3, 18) (right).

We distinguish the following cases. Either there exists an i ∈ I with children j1, . . . , jk

where k ≥ 2 (or k ≥ 3, if i is the root of T) or not. If not, T forms a line with length at least
n/t′, hence the depth of T is at least n/(2 · t′) (regardless of how T is rooted).

Otherwise, pick three nodes v1, v2, v3 such that v1 ∈ NT
B (j1) \ Bi, v2 ∈ NT

B (j2) \ Bi and
v3 ∈ V \ NT

B (i) (or v3 ∈ NT
B (j3) \ Bi in case i is the root of T). Let i′, j′, k′ be such that

v1 ∈ Vi′ , v2 ∈ Vj′ and v3 ∈ Vk′ . We assume w.l.o.g. that i′ ≤ j′ ≤ k′. We have that j′ − i′ ≥ 2
(resp. k′ − j′ ≥ 2), since otherwise there is an edge between v1 and v2 (resp. v2 and v3)
and hence a path between them that does not intersect with nodes in Bi, contradicting
Lemma 2. Also, there exist integers i1 and i2 such that i′ < i2 < j′ < i1 < k′ (hence,
i1 − i2 ≥ 2) and such that Vi2 ∪ Vi1 ⊆ Bi, since otherwise, there is at least one node in Vi2 ,
for i′ < i2 < j′ (resp. in j′ < i1 < k′) which is not in Bi and thus there is a path P : v1 ⇝ v2
(resp. P : v2 ⇝ v3) that does not contain nodes in Bi, again contradicting Lemma 2.

The desired result follows. ◀

We now show that the treewidth of Gn
t is at most 2 · t − 1.

▶ Lemma 11. For any t and n, the treewidth of Gn
t is ≤ 2 · t − 1.

Proof. Construct a tree T = (I, F), where I = {1, . . . , n′ − 1} and F = {(i, i + 1)}i∈I\{n′−1}.
Construct the set of bags B = {Bi = Vi ∪ Vi+1}i∈I . It is easy to see that (B, T) is a tree
decomposition of Gn

t . ◀

The graph G(i, j, t, n). Given numbers i and j and the graph Gn
t , for some t and n, let

G(i, j, t, n) be the graph similar to Gn
t , except that it also has an edge between each pair of

nodes in Vi × Vj (see Figure 2). Next, we show that the treewidth of G(i, j, t, n) is a factor
larger than the one of Gn

t .

▶ Lemma 12. For any i, j, t, n, where j − i ≥ 2, the treewidth of G(i, j, t, n) is ≥ 3 · t − 1.

Proof. We construct a minor G′(i, j, t, n) of G(i, j, t, n) by contracting every edge (vi
k, vj

k) for
1 ≤ k ≤ t. Observe that the clique K3·t is a minor of G′(i, j, t, n). Since K3·t has treewidth
3 · t − 1 and treewidth is monotonic under graph minors [6, Lemma 16], it follows that the
treewidth of G(i, j, t, n) is a least 3 · t − 1. ◀

We next show that any tree decomposition of Gn
t has either large depth or large width.

▶ Lemma 13. For any n and t, consider a tree decomposition (B, T = (I, F)) of Gn
t of width

t′ and depth h. Either h ≥ n/(2 · t′) or t′ ≥ 3 · t − 1.

FSTTCS 2021

42:12 Quantitative Verification on Product Graphs of Small Treewidth

1

1 2 1 3

a

a b a c

⟨1, a⟩
⟨1, b⟩ ⟨2, a⟩
⟨1, c⟩ ⟨3, a⟩

⟨1, a⟩ ⟨1, b⟩
⟨3, a⟩ ⟨3, b⟩

⟨1, a⟩ ⟨1, b⟩
⟨2, a⟩ ⟨2, b⟩

⟨1, a⟩ ⟨1, c⟩
⟨2, a⟩ ⟨2, c⟩

⟨1, a⟩ ⟨1, c⟩
⟨3, a⟩ ⟨3, c⟩

Figure 3 The product tree-decomposition given tree decompositions of the two constituent graphs.

Proof. If h ≥ n/(2 · t′), we are done. Otherwise, by Lemma 10, there exist integers i, i1, i2
such that i1 − i2 ≥ 2 and Vi1 ∪ Vi2 ⊆ Bi. Then, (B, T) is also a tree decomposition of
G(i2, i1, t, n), since each edge between Vi1 and Vi2 has both endpoints in Bi. By Lemma 12,
the width of (B, T) is at least 3 · t − 1. ◀

We conclude with the proof of Theorem 4.

Proof of Theorem 4. The bound on t implies that any tree decomposition of width t′ < 3·t−1
and depth h, such that h ≥ n/(2 · t′) cannot be balanced. The statement then follows directly
from Lemma 11 and Lemma 13. ◀

4 Applications to verification on product graphs

Here we discuss three applications of (α, β) tree decompositions in the analysis of product
graphs of two constant-treewidth graphs, when the specification language is either w.r.t.
semiring, mean-payoff or initial credit for energy properties. Product graphs arise frequently
in verification, for example, when analyzing the behavior of two concurrent threads, or when
the verification task is expressed as language inclusion wrt two automata. In such cases,
the control-flow graphs or the automata are given explicitly, and the analysis proceeds by
constructing and reasoning on the product graph.

We first establish a lemma which concerns the construction of a tree decomposition of the
product graph with some desired properties. Afterwards we present algorithmic improvements
for the analysis of such product graphs, w.r.t. mean-payoff, semiring and energy properties.

Product graphs. Given two graphs Gi = (Vi, Ei), for 1 ≤ i ≤ 2, the product graph of
G1 and G2 is defined as the graph G = (V, E) where V = V1 × V2 and E is such that
(⟨u1, u2⟩, ⟨v1, v2⟩) ∈ E iff (ui, vi) ∈ Ei for each 1 ≤ i ≤ 2. Let (Bi = {Bj

i }j , Ti) be a tree
decomposition of the graph Gi, for each 1 ≤ i ≤ 2. We construct a tree decomposition (B, T)
of G as follows (see Figure 3).
1. Let ji be the root of Ti. Recall that NTi

Bi
(ji) is the set of nodes of Gi appearing in the

bags of Ti(ji). We create a node j in T , and construct the bag Bj =
(

Bj1
1 × NT2

B2
(j2)

)
∪(

NT1
B1

(j1) × Bj2
2

)
.

2. If for some 1 ≤ i ≤ 2, the node ji does not have a child (i.e., ji is also a leaf in Ti), the
process terminates. Otherwise, for every 1 ≤ i ≤ 2 and child j′

i of ji, we repeat recursively
for the trees Ti(j′

i), and make every node j′ constructed in the next recursive step a child
of j in T .

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:13

It is not hard to verify that (B, T) is a tree decomposition of G, and T is a quaternary
tree. By letting each (Bi, Ti) be a (α, β) tree decomposition for the graph Gi, we obtain the
following lemma.

▶ Lemma 14. Let G = (V, E) be a product graph of two constant-treewidth graphs Gi =
(Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each, and consider any integer λ ≥ 2. A quaternary tree
decomposition (B = {Bj}j , T = (I, F)) of G can be constructed in O((λ · n)2) time, such that
for every j ∈ I we have |Bj | = O(λ · n · βLv(j)), where Lv(j) is the level of node j in T .

Proof. For each 1 ≤ i ≤ 2, we use Theorem 3 to obtain a (α, β) tree decomposition
(Bi = {Bj

i }j , Ti) for the graph Gi, where α = 11 · λ + 32 and β = 1/2 · (1 + 2−λ). Given
each (Bi, Ti), the algorithm constructs the quaternary tree decomposition (B, T) of G. The
bound |Bj | = O(λ · n · βLv(j)) follows easily from Theorem 3 and the fact that each graph
has treewidth t.

We now turn our attention to the time complexity, and show that the construction of (B, T)
requires O((λ · n)2) time. It is easy to see that the construction requires time proportional to
the total sizes of all bags in B, hence it suffices to argue that

∑
j |Bj | = O((λ · n)2). We have∑

j

|Bj | ≤ 2 ·
∑
j1

∑
j2

∣∣∣Bj1
1

∣∣∣ ·
∣∣∣Bj2

2

∣∣∣ ≤
∑
j1

(
|Bj1

1 | ·
∑
j2

|Bj2
2 |
)

(1)

≤
∑
j1

(
α · (t + 1) ·

∑
j2

α · (t + 1)
)

= O((λ · n)2) (2)

since t = O(1). ◀

Note that the root bag of the product tree decomposition has Θ(n) nodes, and thus the
width of the constructed tree decomposition is Θ(n) (as bags below the root decrease in size).
We remark that this is unavoidable in general – e.g., two straight-line graphs G1 and G2 of n

nodes each yield a product graph G that is a grid and thus has treewidth n − 1. The crucial
property of our product tree decomposition is that, although it has width Θ(n), most bags
have smaller size (as stated in Lemma 14).

4.1 Mean-payoff properties
In the minimum mean payoff problem, we are given a weighted graph G = (V, E), a weight
function wt : E → Z, and a starting node u ∈ V . The decision problem is to compute whether

inf
u=x1,x2,...

(xi,xi+1)∈E

lim
k→∞

inf
∑k−1

i=1 wt(xi, xi+1)
k

≥ 0

In words, we are interested in deciding whether the smallest weight-average among all infinite
paths that originate in u is non-negative. Here we focus on the case where G is the product
of two constant treewidth graphs Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each.

Solution on tree decompositions. The problem reduces to determining whether G contains
a negative cycle w.r.t. wt that is reachable from u. We outline an existing algorithm for
detecting negative cycles on G given a tree decomposition (B = {Bi}i, T = (I, F)) of G. We
refer to [23] for details. We use a single data structure, which is a map D :

⋃
i(Bi × Bi) →

Q ∪ {∞}. Initially, D(u, v) = wt(u, v) for each (u, v) ∈ E, and D(u, v) = ∞ if (u, v) ̸∈ E.
Given a set of nodes X ⊆ V , we denote by DX the restriction of D to the set X. We traverse
T bottom-up and for each encountered node i, we compute all-pairs distances in the weighted

FSTTCS 2021

42:14 Quantitative Verification on Product Graphs of Small Treewidth

graph Gi = (Bi, Bi × Bi) w.r.t. the weight function DBi , using the Floyd-Warshall algorithm.
If a negative cycle is detected, we report that G has a negative cycle w.r.t. wt and stop.
Otherwise, for every pair of nodes u, v ∈ Bi, we update the entry D(u, v) with the distance
d(u, v) in Gi, and proceed with the next node of T .

Algorithm for product graphs. Now consider that G = (V, E) is the product of two
constant-treewidth graphs Gi = (Vi, Ei) with n nodes each. We choose λ = 3 and use
Lemma 14 to construct a tree decomposition (B, T) of G for α = 11 · λ + 32 = O(1) and
β = 1/2 + 2−λ = 5/8. Afterwards, we use the solution on tree decompositions for (B, T). We
have the following theorem.

▶ Theorem 15. Let G = (V, E) be the product graph of two constant treewidth graphs
Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. Let wt : E → Z be a weight function on G.
The decision problem of minimum mean payoff on (G, wt) can be solved in O(n3) time.

Proof. The correctness follows directly from [23], and here we focus on the complexity. Since
the tree decomposition of the product graph is quaternary, the i-th level has 4i nodes. Since
Floyd-Warshall has cubic complexity, the complexity of the algorithm for the whole level i of
the tree decomposition is bounded, up to constant factors, by the following expression.

4i ·
(
βi · n

)3 = n3 ·

(
4 ·
(

5
8

)3
)i

= n3 · Ai (3)

where A = 53/27 < 1. It follows that the cost decreases geometrically along the levels of T

and thus the running time is dominated by the first level, which runs in time O(n3). The
desired result follows. ◀

The best current complexity bound for the problem is O(n4), achieved by Karp’s classic
algorithm [43] (recall that G has n2 nodes). Hence Theorem 15 yields an improvement by a
factor n, asymptotically.

4.2 Semiring properties

The problem of all-pairs semiring distances is defined w.r.t. a graph G = (V, E) and a weight
function wt : E → Σ, where Σ is the domain of an algebraic structure (Σ, ⊕, ⊗, 0, 1) with two
associative operators ⊕ and ⊗ with neutral elements 0 and 1, respectively, such that (i) ⊗
distributes over ⊕, (ii) ⊕ is idempotent and (iii) 0 absorbs in ⊗. The task is to determine
for very pair of nodes u, v ∈ V the semiring distance from u to v, defined as

d(u, v) =
⊕

P =(u1,...,uk):u⇝v

⊗
1≤i<k

wt(ui, ui+1)

Here we focus on the case where G is the product of two constant treewidth graphs Gi =
(Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. There are various classic algorithms for the
problem, e.g. Lehmann’s [47], Floyd’s [34], Warshall’s [54] and Kleene’s [44], all of which
have cubic complexity, assuming constant-time semiring operations. Since G has n2 nodes,
these algorithms take O(n6) time on G. Here we use strongly-balanced tree decompositions
to obtain a solution in Õ(n4) time.

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:15

Solution on tree decompositions. We now outline an existing algorithm for computing
the semiring transitive closure of G, given a tree decomposition (B = {Bi}i, T = (I, F)) of
G. The algorithm is similar in spirit to the one in [23] for solving all-pairs distances. We
use a single data structure, which is a map D : V × V → Σ. Given a set of nodes X ⊆ V ,
we denote by DX the projection of D to the set X. Initially, D(u, v) = wt(u, v) for each
(u, v) ∈ E, and D(u, v) = 0 if (u, v) ̸∈ E. The algorithm consists of two parts.
1. We traverse T twice, first bottom-up and then top-down. For each encountered node i,

we use the Floyd-Warshall algorithm to solve the algebraic path problem on the graph
Gi = (Bi, Bi × Bi) w.r.t. the weight function DBi

. For every pair of nodes u, v ∈ Bi, we
update the entry D(u, v) with the semiring distance d(u, v) in Gi.

2. For every node u, we perform a DFS in T starting from iu. Given a current node i, for
every node v ∈ Bi, we set D(u, v) =

⊕
x∈Bi

(D(u, x) ⊗ D(x, v)). Finally, we return the
map D, which contains the all-pairs semiring distances in G, and thus the solution to the
algebraic path problem.

Algorithm for product graphs. Now consider that G = (V, E) is the product of two
constant-treewidth graphs Gi = (Vi, Ei) with n nodes each. We choose λ = c + log log n + 1,
for some suitable constant c, and use Lemma 14 to construct a tree decomposition (B, T) of
G for α = 11 · λ + 32 = O(log log n) and β = 1/2 + 2−λ. Afterwards, we use the solution on
tree decompositions for (B, T). We have the following theorem.

▶ Theorem 16. Let G = (V, E) be the product graph of two constant treewidth graphs
Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. Let wt : E → Σ be a weight function, where
Σ is the domain of an idempotent semiring (Σ, ⊕, ⊗, 0, 1). The semiring transitive closure of
(G, wt) can be solved in Õ(n4) time.

Proof. The correctness follows directly from [23], and here we focus on the complexity.
Let m = n · log log n. In Step 1, the algorithm spends cubic time in each bag, and by an
argument similar to the proof of Theorem 15, we have that the running time of the first step
is O(m3) = Õ(n3).

We now proceed with the analysis of Step 2, which dominates the complexity. Observe
that for each node u, the algorithm spends quadratic time in each bag of the product tree
decomposition. Since the tree decomposition of the product graph is quaternary, the i-th
level has 4i nodes. Hence, the complexity of this step for the whole level i is bounded, up to
constant factors, by the following expression

4i ·
(
βi · m

)2 = m2 ·

(
4 ·
(

1 + 2−λ+1

2

)2)i

= m2 ·
(

1 + 1
c′ · log n

)i

(4)

where c′ = 2c. Observe that the complexity increases with the level i, and there are at most
c′′ · log n levels, for some constant c′′. We let c′ = c′′ and thus c = log(c′′), and hence the
complexity in the last level is bounded by

m2 ·
(

1 + 1
c′′ · log n

)c′′·log n

= O(m2) (5)

since (1 + 1/x)x ≤ e for x > 0. Summing up over all O(log n) levels, Step 2 of the algorithm
spends O(m2 · log n) time per node u and thus O(n2 · m2 · log n) = Õ(n4) time for all
nodes. ◀

Note that since the output has size Θ(n4), the algorithm is optimal (up to polylog factors).

FSTTCS 2021

42:16 Quantitative Verification on Product Graphs of Small Treewidth

4.3 Initial credit for energy properties
In the minimum initial credit for energy problem, we are given a weighted graph G = (V, E)
and a weight function wt : E → Z. The task is to compute for every node u ∈ V the smallest
energy value E(u) ∈ N ∪ {∞} with the following property: there exists an infinite path
P = (u1, u2, . . .) with u1 = u such that for every i we have E(u) +

∑
j<i wt(uj , uj+1) ≥ 0.

Conceptually, E(u) is the smallest “charge” we need to supply the system, so that starting
from u it can exhibit infinite behavior without running out of energy. Conventionally, we let
E(u) = ∞ if no finite value exists.

Solution on tree decompositions. We outline an existing algorithm for the problem on
G, given a tree decomposition (B = {Bi}i, T = (I, F)) of G. We first sketch the solution
for arbitrary graphs G, and then explain how the solution is adapted to constant-treewidth
graphs. We refer to [20] for details. The problem reduces to detecting non-positive cycles on
weighted graphs of the form (Gi = (V i, Ei), wti)i, where initially
1. V 1 = V ∪ {s}, for some fresh node s ̸∈ V (intuitively, s acts as a sink in which all nodes

x with E(x) = 0 are collapsed),
2. E1 = E ∪ ({s} × V), and
3. wt1(u, v) = −wt(u, v) if u ̸= s and wt1(u, v) = 0 otherwise.
Given some i ≥ 1, we detect a non-positive cycle on (Gi, wti), which determines a node x in
that cycle for which E(x) = 0. Then, we construct the weighted graph (Gi+1, wti+1) where
1. V i+1 = V i \ {x},
2. Ei+1 = (Ei \ (V i × {x})) ∪ {(u, s) : (u, x) ∈ Ei}, and
3. wti+1(u, v) = wti(u, v) if v ̸= s else wti+1(u, v) = min(z, wti(u, x)), where z = wti(u, s) if

(u, s) ∈ Ei and z = ∞ otherwise.
Finally, if (Gi, wti) has no non-positive cycle, we compute the distance d(u, s) from every
u ∈ V i \ {s} to s in (Gi, wti) and assign E(u) = d(u, s) (at this point d(u, s) > 0 for each u).

We now consider the tree decomposition (B = {Bi}i, T = (I, F)) of G. The above solution
is adapted as follows. First we construct the family of bags B′ = {{s} ∪ Bi}i, i.e., we insert
the fresh node s in all bags. Observe that (B′, T) is a valid tree decomposition of all Gi.
Then, every step of non-positive-cycle detection, as well as the last step of computing the
distances d(u, s) is performed by a single bottom-up pass of T . In every encountered node
i, an all-pairs distance computation is performed in the graph induced by B′

i, using the
Floyd-Warshall algorithm.

Algorithm for product graphs. Now consider that G = (V, E) is the product of two
constant-treewidth graphs Gi = (Vi, Ei) with n nodes each. We choose λ = 3 and use
Lemma 14 to construct a tree decomposition (B, T) of G for α = 11 · λ + 32 = O(1) and
β = 1/2 + 2−λ = 5/8. Afterwards, we use the solution on tree decompositions for (B, T). We
have the following theorem.

▶ Theorem 17. Let G = (V, E) be the product graph of two constant treewidth graphs
Gi = (Vi, Ei), for 1 ≤ i ≤ 2, with n nodes each. Let wt : E → Z be a weight function on G.
The minimum initial credit for energy problem on (G, wt) can be solved in O(n5) time.

Proof. The correctness follows directly from [20], and here we focus on the complexity.
Similarly to Theorem 15, every bottom-up traversal of the tree decomposition (B′, T) requires
O(n3) time. Since every time we construct Gi+1 from Gi we remove one node, we have
i ≤ n2, i.e., there will be at most n2 iterations of non-positive-cycle detection. Hence we
make at most n2 + 1 bottom-up traversals of (B′, T), for a total running time of O(n5). The
desired result follows. ◀

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:17

The best existing solution for the problem is due to [20], which has running time
O((n2)4) = O(n8). Hence, Theorem 17 yields an improvement by a factor n3, asymptotically.

5 Conclusion

Product graphs have numerous applications in verification, such as in the analysis of con-
current systems, as well as in language inclusion problems, which arise frequently in model
checking. In this work, we have studied product graphs of two components w.r.t. three
classic specification languages that arise in verification, namely semiring, mean-payoff, and
initial credit for energy properties. We have studied these problems under the consideration
that the components are specified as low-treewidth graphs, a property that is met by control-
flow graphs of programs and has also found applications in logic, most notably due to the
celebrated theorem of Courcelle for MSO. Our results show that these problems admit faster
solutions than existing approaches, and in the case of semiring properties, our algorithm
is optimal. At the heart of our new algorithms lies the newly introduced concept of (α, β)
tree decompositions, which have a strong balancing property while suffering a small factor
increase in their width. Moreover, we have shown that for balanced tree decompositions,
such a factor increase in the width is generally unavoidable. Finally, we have developed an
algorithm for constructing (α, β) tree decompositions efficiently for low-treewidth graphs.

References
1 Luca Aceto, A. Ingólfsdóttir, Mohammad Reza Mousavi, and M. A. Reniers. Algebraic

properties for free! Bulletin of the European Association for Theoretical Computer Science,
99:81–103, 2009.

2 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12(2):308–340, April 1991.

3 C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.
4 Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. Journal of Computer and

System Sciences, 48(2), 1994.
5 Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.

Better quality in synthesis through quantitative objectives. In Computer Aided Verification,
pages 140–156, 2009.

6 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1-2):1–45, 1998.

7 Hans L. Bodlaender and Torben Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. In Zoltán Fülöp and Ferenc Gécseg, editors, Automata, Languages and
Programming, pages 268–279, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

8 Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs of
bounded treewidth. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’16, pages 407–416, New York, NY, USA, 2016. ACM.

9 Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. Temporal
specifications with accumulative values. ACM TOCL, 15(4):27:1–27:25, 2014.

10 Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Timed automata with
observers under energy constraints. In Proceedings of the 13th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC ’10, pages 61–70, New York, NY, USA,
2010. ACM.

11 Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jiří Srba. Infinite runs
in weighted timed automata with energy constraints. In Formal Modeling and Analysis of
Timed Systems, volume 5215 of Lecture Notes in Computer Science, pages 33–47. Springer
Berlin Heidelberg, 2008.

FSTTCS 2021

42:18 Quantitative Verification on Product Graphs of Small Treewidth

12 Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. Averaging in LTL. In CONCUR
2014, pages 266–280, 2014.

13 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.
Average-energy games. Acta Informatica, 55(2):91–127, March 2018.

14 Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and Rohit
Singh. Quantitative synthesis for concurrent programs. In Computer Aided Verification, pages
243–259, 2011.

15 Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. Optimal dyck reach-
ability for data-dependence and alias analysis. PACMPL, 2(POPL):30:1–30:30, 2018.

16 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Expressiveness and closure
properties for quantitative languages. LMCS, 6(3), 2010.

17 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM TOCL, 11(4):23, 2010.

18 Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas
Pavlogiannis. Optimal and perfectly parallel algorithms for on-demand data-flow analysis. In
Peter Müller, editor, ETAPS (ESOP), volume 12075 of Lecture Notes in Computer Science,
pages 112–140. Springer, 2020.

19 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Amir Kafshdar Goharshady, and Andreas
Pavlogiannis. Algorithms for algebraic path properties in concurrent systems of constant
treewidth components. ACM Trans. Program. Lang. Syst., 40(3):9:1–9:43, 2018. doi:10.1145/
3210257.

20 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Faster algorithms
for quantitative verification in constant treewidth graphs. In Daniel Kroening and Corina S.
Păsăreanu, editors, Computer Aided Verification, pages 140–157, Cham, 2015. Springer
International Publishing.

21 Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis, and Prateesh Goyal.
Faster algorithms for algebraic path properties in recursive state machines with constant
treewidth. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’15, pages 97–109, New York, NY, USA, 2015.
ACM.

22 Krishnendu Chatterjee, Andreas Pavlogiannis, and Yaron Velner. Quantitative interprocedural
analysis. In Principles of Programming Languages, POPL 2015, pages 539–551, 2015.

23 Shiva Chaudhuri and Christos D. Zaroliagis. Shortest Paths in Digraphs of Small Treewidth.
Part I: Sequential Algorithms. Algorithmica, 27:212–226, 1995.

24 Ravi Chugh, Jan W. Voung, Ranjit Jhala, and Sorin Lerner. Dataflow analysis for concurrent
programs using datarace detection. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI, 2008.

25 Fan RK Chung. Separator theorems and their applications. Universität Bonn. Institut für
Ökonometrie und Operations Research, 1988.

26 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Information and Computation, 85, 1990.

27 Arnab De, Deepak D’Souza, and Rupesh Nasre. Dataflow analysis for datarace-free programs.
In Proceedings of the 20th European Conference on Programming Languages and Systems: Part
of the Joint European Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11,
pages 196–215. Springer-Verlag, 2011.

28 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata. Springer,
1st edition, 2009.

29 Manfred Droste and Ingmar Meinecke. Weighted automata and weighted MSO logics for
average and long-time behaviors. Inf. Comput., 220:44–59, 2012.

30 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems of
Bodlaender and Courcelle. In Proceedings of the 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, FOCS ’10, pages 143–152, USA, 2010. IEEE Computer
Society.

https://doi.org/10.1145/3210257
https://doi.org/10.1145/3210257

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:19

31 Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jiří Srba. Energy games in multiweighted
automata. In Proceedings of the 8th International Conference on Theoretical Aspects of
Computing, ICTAC’11, pages 95–115, Berlin, Heidelberg, 2011. Springer-Verlag.

32 Azadeh Farzan and P. Madhusudan. Causal dataflow analysis for concurrent programs. In
Proceedings of the 13th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS, 2007.

33 J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, 1997.
34 Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.
35 Fedor V. Fomin, Daniel Lokshtanov, MichałPilipczuk, Saket Saurabh, and Marcin Wrochna.

Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, pages 1419–1432, Philadelphia, PA, USA, 2017. Society for Industrial and Applied
Mathematics.

36 Dirk Grunwald and Harini Srinivasan. Data flow equations for explicitly parallel programs. In
Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP, 1993.

37 Jens Gustedt, OleA. Maehle, and JanArne Telle. The treewidth of java programs. In Algorithm
Engineering and Experiments, volume 2409 of Lecture Notes in Computer Science, pages 86–97.
Springer Berlin Heidelberg, 2002.

38 C. A. Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent kleene algebra.
In Proceedings of the 20th International Conference on Concurrency Theory, CONCUR 2009,
pages 399–414, Berlin, Heidelberg, 2009. Springer-Verlag.

39 Peter Jipsen. Concurrent kleene algebra with tests. In Peter Höfner, Peter Jipsen, Wolfram
Kahl, and Martin Eric Müller, editors, Relational and Algebraic Methods in Computer Science,
pages 37–48, Cham, 2014. Springer International Publishing.

40 Line Juhl, Kim Guldstrand Larsen, and Jean-François Raskin. Optimal bounds for multi-
weighted and parametrised energy games. In Zhiming Liu, Jim Woodcock, and Huibiao Zhu,
editors, Theories of Programming and Formal Methods, pages 244–255, Berlin, Heidelberg,
2013. Springer-Verlag.

41 Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. Static data race detection for
concurrent programs with asynchronous calls. In Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE ’09, pages 13–22, 2009.

42 Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent kleene algebra:
Free model and completeness. In Amal Ahmed, editor, Programming Languages and Systems,
pages 856–882, Cham, 2018. Springer International Publishing.

43 Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 1978.

44 S. C. Kleene. Representation of events in nerve nets and finite automata. Automata Studies,
1956.

45 Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Parallelism for free: Efficient and optimal
bitvector analyses for parallel programs. ACM Trans. Program. Lang. Syst., 1996.

46 J. Lagergren. Efficient parallel algorithms for tree-decomposition and related problems. In
Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science, pages 173–182
vol.1, 1990.

47 Daniel J. Lehmann. Algebraic structures for transitive closure. Theoretical Computer Science,
1977.

48 Jan Obdrzálek. Fast mu-calculus model checking when tree-width is bounded. In CAV, 2003.
49 M.L. Puterman. Markov Decision Processes. John Wiley and Sons, 1994.
50 Bruce A. Reed. Finding approximate separators and computing tree width quickly. In

Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC
’92, 1992.

FSTTCS 2021

42:20 Quantitative Verification on Product Graphs of Small Treewidth

51 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL, New York, NY, USA, 1995. ACM.

52 Neil Robertson and P.D Seymour. Graph minors. iii. planar tree-width. Journal of Combinat-
orial Theory, Series B, 36(1):49–64, 1984.

53 Mikkel Thorup. All Structured Programs Have Small Tree Width and Good Register Allocation.
Information and Computation, 142(2):159–181, 1998.

54 Stephen Warshall. A Theorem on Boolean Matrices. J. ACM, 9(1):11–12, January 1962.

A Proofs of Section 3

Here we present the proofs of Section 3. The structure of this section follows the structure of
Section 3.

A.1 Proofs of Section 3.1
Here we prove Lemma 5 and Lemma 6 which state the correctness and complexity of the
two operations on components BorderSplit and Split, respectively.

Proof of BorderSplit. Here we prove Lemma 5 which concerns the correctness and com-
plexity of the operation BorderSplit.

▶ Lemma 5. Consider the operation BorderSplit on the set-component X = {Ci}1≤i≤k. Let
z = |size(X)|, m = |Border(X)|, and {Xi}1≤i≤3 be the returned component set. The following
assertions hold.
1. We have |

⋃
i Border(Xi)| ≤ m + 1.

2. For each 1 ≤ i ≤ 3, we have |Border(Xi)| ≤ ⌊m/2⌋ + 1.
3. After one O(n)-time preprocessing of T , every call to BorderSplit requires O(z + m2) time.

Proof. We prove each assertion separately.
1. This item holds trivially, since we remove at most one node u from X .
2. If m ≥ 3, by construction, we have |Ai ∩ Border(X)| ≤ ⌊m/2⌋ for each i. In addition,

Border(Xi) ⊆ (Ai ∩ Border(X)) ∪ {u} and thus |Border(Xi)| ≤ ⌊m/2⌋ + 1. Finally, if
|Border(X)| < 3 then the algorithm simply returns {X } and thus |Border(Xi)| = m ≤
⌊m/2⌋ + 1.

3. Since T is binary, we have m = O(z), thus obtaining the set Border(X) requires O(z) time.
Note that the LCA tree TBorder(Cj) contains O(m) nodes, as it is binary and it has O(m)
leaves. It is known that T can be preprocessed in O(n) time, after which LCA queries
can be answered in O(1) time [4]. It follows easily that TBorder(C) can be constructed in
O(m2) time, by performing O(m2) LCA queries. Determining the desired node u can
easily be done in O(m) time. Finally, constructing each connected component Ci can be
easily done in O(m) time.

The desired result follows. ◀

Proof of Split. Here we prove Lemma 6 which concerns the correctness and complexity of
the operation Split.

Towards the proof of Lemma 6, we will present some simple lemmas. In the end, we will
combine these lemmas in the proof of Lemma 6. Recall that Split operates on a component
X , and given a positive integer λ. We also let z = size(X) and m = |Border(X)|. We start
with a simple lemma that will be used frequently.

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:21

▶ Lemma 18. Consider integers x1, x2, x3,x 4. If x1 ≥ x2 and x3 ≥ x4 and x1 +x2 ≥ x3 +x4,
then x4 ≤ x1.

Proof. The proof is trivial:

x4 ≤ x3 + x4

2 ≤ x1 + x2

2 ≤ x1 ◀

The following lemma states the properties of the first step of Split.

▶ Lemma 19. At the end of first step, either m < 10 and C∗ = X and X1 = X2 = ∅, or each
Xi is border-balancing.

Proof. The claim clearly holds if m < 10. Now consider that m ≥ 10, and the algorithm
performs an operation BorderSplit on X to obtain the components {X ′

i }1≤i≤3. If there are
two border-balancing components among all X ′

i then the claim holds by construction.
Now assume that there are no two such components, and hence the algorithm proceeds

with performing the operation BorderSplit on the component X ′
1. We first argue that in the

set A = {X ′
2, X ′

3, X ′′
2 , X ′′

3 } there are at least two border-balancing components, Xa and Xb.
Since X ′

1 is the largest component among X ′
i , we have that size(X ′

3) ≤ size(X ′
2) ≤ z/2. Also,

by Lemma 5, we have |Border(X ′
1)| ≤ m/2 + 1, thus at least one of X ′

2, X ′
3 has border with

size at least

m − (m/2 + 1)
2 = m

4 − 1
2 ≥ m

10 − 1 (6)

Hence at least one of X ′
2, X ′

3 is border-balancing. We take that component to be Xa.
Second, we argue that at least one of X ′′

2 , X ′′
3 is border-balancing. A similar argument

to the previous case shows that size(X ′′
3) ≤ size(X ′′

2) ≤ z/2. Let m′ = |Border(X ′
1)|. Since

one of X ′
1, X ′

2 is not border-balancing and by Lemma 5 the other has border of size at most
m/2 + 1, we have that

m′ ≥ m −
(m

2 + 1
)

−
(m

10 − 1
)

= 4
10 · m (7)

A similar argument as before shows that at least one of C′′
2 , C′′

3 has border with size at least

m′ − (m′/2 + 1)
2 = m′

4 − 1
2 ≥ m

10 − 1/2 (8)

and thus it is border-balancing. We take that component to be Xb.
It remains to argue that size(Xi) ≤ z/2 for each 1 ≤ i ≤ 2. Since each Xa and Xb are

border-balancing, the claim clearly holds after we have added Xa to X1 and Xb to X2. Assume
w.l.o.g. that size(X1) ≤ size(X2), and let x1 = m/2 − size(X1) and x2 = m/2 − size(X2), thus
x1 ≥ x2. Let x3 = size(X ∗), and x4 be the size of any other component in A \ {X ∗, Xa, Xb},
and by definition x3 ≥ x4. Observe that x1 + x2 ≥ x3 + x4 since x1 + x2 is at least as large
as |A \ {Xa, Xb}|. It follows by Lemma 18 that we can add the component with size x4 to X1
while ensuring that the size of X1 stays at most z/2 after this operation. Similarly for adding
the second component in the smaller of X1, X2. It follows that at the end of the second step,
each X1, X2 is border-balancing, as desired. ◀

We now turn our attention to the second step of Split. The following lemma is straight-
forward.

▶ Lemma 20. For all j we have that size(Cj+1) ≤ size(Cj)/2 and thus size(Cj) ≤ z · 2−j.

FSTTCS 2021

42:22 Quantitative Verification on Product Graphs of Small Treewidth

Proof. The lemma follows since Cj+1 = Cj
1, and due to Lemma 1 we have |Cj

1| ≤ |Cj |/2. ◀

We now show that throughout the recursion of the second step, each of X1, X2 has size at
most z/2.

▶ Lemma 21. Until (but not including) the very end of the second step, we have
size(X1), size(X2) ≤ z/2.

Proof. The statement holds at the beginning of the second step since by Lemma 19 each
of X1, X2 is border-balancing. The statement also holds at the beginning of the recursion,
since C is the largest connected component of X ∗, by Lemma 18 similarly to the proof of
Lemma 19. Now consider the recursive step j. The statement follows by the induction
hypothesis and the fact that Cj

1 is the largest connected component among {Cj
i }1≤i≤3, as

above. ◀

Finally, we conclude with the proof of Lemma 6.

Proof of Lemma 6. We prove each item separately.
1. Lemma 20 and Lemma 21 together ensure that size(Xi) ≤ z ·(1/2+2−λ) for each 1 ≤ i ≤ 2

(because we add Cλ to either X1 or X2 at the very end of the second step).
2. First assume that m ≥ 10. By Lemma 19, we have that each of X1, X2 is border-balancing,

thus Border(Xi) ≥ m/10 − 1 for each 1 ≤ i ≤ 2. Also, for each 1 ≤ i ≤ 2, we have
|Border(Xi) ∩ (Border(X3−i) ∪ Border(X ∗)| ≤ 2. This follows from the fact that every
time we apply the operation BorderSplit, we create three components and the intersection
between the borders of any pair of components is either empty, or it is the singleton {u},
where the node u is defined in BorderSplit. The inequality then holds as the components
X1, X2 and X ∗ are created by applying BorderSplit at most twice. Let Qi and Q′

i

denote the border of component Xi at the beginning of the second step, and before the
recursive process of the second step, hence the previous inequality can be written as
|Qi ∩ (Q3−i ∪ Border(X ∗))| ≤ 2. Thus, we have |Qi \ (Q3−i ∪ Border(X ∗))| ≥ m/10 − 3.
In addition, we have Q′

i ⊆ Qi ∪ Border(X ∗), and thus Q′
i ≤ 9/10 · m + 3. Finally, in each

recursive call of the second step we create at most one new border node, which is the
balancing separator of the connected component Cj . Hence after λ recursive calls, we
have created at most λ new border nodes. It follows that at the end of the second step,
we have |Border(Xi)| ≤ 9/10 · m + λ + 3.
Now assume that m < 10. Then clearly Border(Xi) ≤ m + λ ≤ 9/10 · m + λ + 3.

3. This part is trivial, since Split removes at most λ + 2 nodes when creating the components
X1 and X2.

4. The first step takes O(z + m2) time, by Lemma 5. Each recursive call of the second step
takes O(|X j |) time, by Lemma 1. By Lemma 20 the size of X j halves in each call, hence
the time for the second step is O(|X ∗|) = O(z). ◀

A.2 Proofs of Section 3.2
Here we prove Lemma 8 and Lemma 9 which concern the correctness and complexity of
Balance. We start with an auxiliary lemma, which states a bound on the size of the border
of each component of the component tree constructed in the first step of Balance.

▶ Lemma 22. Consider the component tree (V, R = (J , D)) constructed by Balance. For
every i ∈ J , we have |Border(Xi)| ≤ 10 · (λ + 3).

K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis 42:23

Proof. The claim clearly holds for i being the root of R, since in that case |Border(Xi)| = 0.
Now we will argue that the claim holds for any i ∈ J , assuming that it holds for the parent
j of i in R.

Indeed, let m = |Border(Xj)| and m′ = |Border(Xi)|. By Lemma 6 we have that

m′ ≤ 9
10 · m + λ + 3 ≤ 9

10 · 10 · (λ + 3) + λ + 3 = 10 · (λ + 3) (9)

The desired result follows. ◀

We now turn our attention to Lemma 8 which concerns the correctness of Balance.

▶ Lemma 8. (B, T = (I, F)) is a tree decomposition of T that has width ≤ α and is
β-balanced, for α = 11 · λ + 32 and β = 1/2 + 2−λ.

Proof. We first argue that (B, T) is a tree decomposition of T , and then that it has width
≤ α and is β-balanced.

First, consider any edge (u, v) ∈ F , and assume w.l.o.g. that u is the parent of v.
Observe that T has the (empty) connected component C with Border(C) = {u, v}. It follows
easily that there exists a leaf i of R such that C ∈ Xi and thus {u, v} ⊆ Border(Xi). By
construction, u, v ∈ Bj , where j is the parent of i in R. Hence, (B, R) satisfies condition 2
of tree decompositions. Since T is connected, it follows that condition 1 is also satisfied.

We now turn our attention into showing that every node u appears in a contiguous
subtree of (B, R), which will prove that (B, T) satisfies condition 3 of tree decompositions.
First, observe that there exists a lowest-level node i ∈ I such that u ∈ Xi, and in fact u ∈ Bi,
as u ∈ Border(Xj) for some child j of i. In addition, note that for every bag Bj with u ∈ Bj ,
we have that j is a descendant of i. Finally, consider any strict descendant j of i in R such
that u ̸∈ Bj . It follows that (i) u ̸∈ Xj (by our choice of i) and (ii) u ̸∈ Border(Xj) (since
u ̸∈ Bj). It is straightforward to see that u ̸∈ Bj′ for any descendant j′ of j in R, which
concludes the condition 3.

We now turn our attention in showing that (B, T) has width ≤ α and is β-balanced. We
first argue about the width. Consider the component tree (V, R = (J , D)) constructed by
Balance in the first step. Consider any node i ∈ J that is not a leaf, and let j1, j2 be the
children of i in R. By Lemma 22, we have |Border(Xi)| ≤ 10 · (λ + 3). By Lemma 6, we have

|Border(Xj1) ∪ Border(Xj2)| ≤ |Border(Xi)| + λ + 2 ≤ 11 · λ + 32

By construction, we have Bi = Border(Xj1) ∪ Border(Xj2), and thus |Bi| ≤ 11 · λ + 32.
Finally, we show that (B, T) is β-balanced. By Lemma 6, for every i ∈ I and j

child of i in R, we have size(Xj) ≤ size(Xi) · (1/2 + 2−λ), and since the size of the root
component of R is |I|, we have size(Xj) ≤ |I| · (1/2 + 2−λ)Lv(j). By Remark 7, we have
YT

B (j) = size(Xj) ≤ |I| · (1/2 + 2−λ)Lv(j), as required.
The desired result follows. ◀

Finally, we prove Lemma 9 which captures the running time of Balance.

Proof of Lemma 9. We start with the first step of Balance. Since λ ≥ 2, by Lemma 6 the
size of each component decreases by at least a constant factor with each recursive call, hence
the first step is executed for O(log |I|) levels. By the same lemma, and since the border of
each component has size O(λ) (by Lemma 22), each level in this recursion runs in O(λ2 · |I|).
Hence the first step runs in O(λ2 · |I| · log |I|) time. In the second step, the tree decomposition
is easily constructed in O(α · |I|) = O(λ · |I|) time.

The desired result follows. ◀

FSTTCS 2021

Synthesizing Computable Functions from Rational
Specifications over Infinite Words
Emmanuel Filiot #

Université libre de Bruxelles, Brussels, Belgium

Sarah Winter # Ñ

Université libre de Bruxelles, Brussels, Belgium

Abstract
The synthesis problem asks to automatically generate, if it exists, an algorithm from a specification of
correct input-output pairs. In this paper, we consider the synthesis of computable functions of infinite
words, for a classical Turing computability notion over infinite inputs. We consider specifications
which are rational relations of infinite words, i.e., specifications defined by non-deterministic parity
transducers. We prove that the synthesis problem of computable functions from rational specifications
is undecidable. We provide an incomplete but sound reduction to some parity game, such that if
Eve wins the game, then the rational specification is realizable by a computable function. We prove
that this function is even computable by a deterministic two-way transducer.

We provide a sufficient condition under which the latter game reduction is complete. This
entails the decidability of the synthesis problem of computable functions, which we proved to be
ExpTime-complete, for a large subclass of rational specifications, namely deterministic rational
specifications. This subclass contains the class of automatic relations over infinite words, a yardstick
in reactive synthesis.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Automata over infinite objects; Theory of computation → Transducers

Keywords and phrases uniformization, synthesis, transducers, continuity, computability

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.43

Related Version A preliminary version of this work is hosted on arXiv under a different title.
Preliminary Version: https://arxiv.org/abs/2103.05674v1
Full Version: https://arxiv.org/abs/2103.05674

Funding Emmanuel Filiot: This work is partially supported by the MIS project F451019F (F.R.S.-
FNRS). Emmanuel Filiot is a research associate at F.R.S.-FNRS.
Sarah Winter : Sarah Winter is a postdoctoral researcher at F.R.S.-FNRS.

Acknowledgements The authors want to thank Nathan Lhote for a discussion on two-way transducers
and Martin Zimmermann for pointing out a reference.

1 Introduction

Program synthesis aims at automatically generating programs from specifications. This
problem can be formalized as follows. There are four parameters: two sets of input and
output domains I, O, a set S of relations (called specifications) from I to O, and a set I of
(partial) functions (called implementations) from I to O. Then, given a specification S ∈ S
defining the correct input/output relationships, the synthesis problem asks to check whether
there exists a function f ∈ I satisfying S in the following sense: its graph is included in S

and it has the same domain as S (i.e., f is defined on x ∈ I iff (x, y) ∈ S for some y ∈ O).
Using a set-theoretic terminology, f is said to uniformize S. Moreover in synthesis, if such
an f exists, then the synthesis algorithm should return (a finite presentation of) it.

© Emmanuel Filiot and Sarah Winter;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 43; pp. 43:1–43:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:efiliot@ulb.ac.be
https://orcid.org/0000-0002-2520-5630
mailto:swinter@ulb.ac.be
https://sarahwinter.net
https://orcid.org/0000-0002-3499-1995
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.43
https://arxiv.org/abs/2103.05674v1
https://arxiv.org/abs/2103.05674
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Synthesizing Computable Functions from Rational Specifications over Infinite Words

Program synthesis quickly turns to be undecidable depending on the four parameters
mentioned before. Therefore, research on synthesis either turn to developing efficient sound
but incomplete methods, see for example the syntax-guided synthesis approach [2] or bounded
synthesis [14, 15], or restrict the class of specifications S and/or the class of implementations
I. A well-known example of the latter approach is reactive synthesis, where S are automatic
relations1 over infinite words, and I are Mealy machines [6, 23, 10]. Infinite words (over a
finite alphabet) are used to model infinite executions of reactive systems, and Mealy machines
are used as a model of reactive systems processing bit streams.

In this paper, our goal is to synthesize, from specifications which are semantically binary
relations of infinite words, stream-processing programs, which are semantically streaming
computable functions of infinite words (just called computable functions in the sequel). Let us
now make the computability notion we use more precise. Let Σ and Γ be to finite alphabets.
A partial function f : Σω → Γω, whose domain is denoted dom(f), is said to be computable,
if there exists a deterministic (Turing) machine M with three tapes, a read-only one-way
input tape, a two-way working tape, and a write-only output tape that works as follows:
if the input tape holds an input sequence α ∈ dom(f), then M outputs longer and longer
prefixes of f(α) when reading longer and longer prefixes of α. A definition of this machine
model can be found, for instance, in [25].

▶ Example 1. Over the alphabet Σ = Γ = {a, b, A, B}, consider the specification given by
the relation R1 = {(uxα, xuβ) | uα, uβ ∈ {a, b}ω, x ∈ {A, B}}. The relation R1 is automatic:
an automaton needs to check that the input prefix u occurs shifted by one position on the
output, which is doable using only finite memory. Checking that the first output letter x

also appears after u on the input can also be done by storing x in the state. Note that
some acceptance condition (e.g., parity) is needed to make sure that x is met again on the
input. There is no Mealy machine which can realize R1, because Mealy machines operate in
a synchronous manner: they read one input symbol and must deterministically produce one
output symbol. Here, the first output symbol which has to be produced depends on the letter
x which might appear arbitrarily far in the input sequence. However, R1 can be uniformized
by a computable function: there is an algorithm reading the input from left to right and
which simply waits till the special symbol x ∈ {A, B} is met on the input. Meanwhile, it
stores longer and longer prefixes of u in memory (so it needs unbounded memory) and once
x is met, it outputs xu. Then, whatever it reads on the input, it just copies it on the output
(realizing the identity function over the remaining infinite suffix α). Note that this algorithm
produces a correct output under the assumption that x is eventually read.

Contributions. We first investigate the synthesis of computable functions from rational
specifications, which are those relations recognizable by non-deterministic finite state trans-
ducers, i.e., parity automata over a product of two free monoids. We however show this
problem is undecidable (Proposition 4). We then give an incomplete but sound algorithm
in Section 3, based on a reduction to ω-regular two-player games. Given a transducer T
defining a specification RT , we show how to effectively construct a two-player game GT ,
proven to be solvable in ExpTime, such that if Eve wins GT , then there exists a computable
function which uniformizes the relation recognized by T , which can even be computed by
some input-deterministic two-way finite state transducer (a transducer which whenever
it reads an input symbol, it deterministically produces none or several output symbols
and either moves forward or backward on the input). It is easily seen that two-wayness is

1 relations recognized by two-tape parity automata alternatively reading one input and one output symbol.

E. Filiot and S. Winter 43:3

necessary: the relation R1 cannot be uniformized by any deterministic device which moves
only forward over the input and only uses finitely many states, as the whole prefix u has to
be remembered before reaching x. However, a two-way finite-state device can do it: first, it
scans the prefix up to x, comes back to the beginning of the input, knowing whether x = A

or x = B, and then can produce the output.
Intuitively, in the two-player game we construct, called unbounded delay game, Adam

picks the input symbols while Eve picks the output symbols. Eve is allowed to delay her
moves an arbitrarily number of steps, gaining some lookahead information on Adam’s input.
We use a finite abstraction to store the lookahead gained on Adam’s moves. We show that any
finite-memory winning strategy in this game can be translated into a function uniformizing
the specification such that it is computable by an input-deterministic two-way transducer.

In Section 4, we provide a sufficient condition P on relations for which the game reduction
is complete. In particular, we show that if a relation R satisfies P , then Eve wins the game
iff R can be uniformized by a computable function. A large subclass of rational relations
satisfying this sufficient condition is the class of deterministic rational relations (DRAT, [24]).
Deterministic rational relations are those relations recognizable by deterministic two-tape
automata, one tape holding the input word while the other holds the output word. It strictly
subsumes the class of automatic relations, and, unlike for automatic relations, the two heads
are not required to move at the same speed. Furthermore, when the domain of the relation
is topologically closed for the Cantor distance2, we show that strategies in which Eve delays
her moves at most a bounded number of steps are sufficient for Eve to win. Such a strategy
can in turn be converted into an input-deterministic one-way transducer. This entails
that for DRAT-specifications with a closed domain (such as for instance specifications with
domain Σω, i.e., total domains), if it is uniformizable by a computable function, then it is
uniformizable by a function computable by an input-deterministic one-way transducer.

Based on the completeness result, we prove our main result, that the synthesis problem of
computable functions from deterministic rational relations is ExpTime-complete. Hardness
also holds in the particular case of automatic relations of total domain.

Total versus partial domains. We would like to emphasize here on a subtle difference
between our formulation of synthesis problems and the classical formulation in reactive
synthesis. Classically in reactive synthesis, it is required that a controller produces for
every input sequence an output sequence correct w.r.t. the specification. Consequently,
specifications with partial domain are by default unrealizable. So, in this setting, the
specification R1 of the latter example is not realizable, simply because its domain is not
total (words with none or at least two occurrences of a symbol in {A, B} are not in its
domain). In our definition, specifications with partial domain can still be realizable, because
the synthesized function, if it exists, can be partial and must be defined only on inputs for
which there exists at least one matching output in the specification. A well-known notion
corresponding to this weaker definition is that of uniformization [21, 9, 7, 13], this is why
we often use the terminology “uniformizes” instead of the more widely used terminology
“realizes”. The problem of synthesizing functions which uniformize quantitative specifications
has been recently investigated in [1]. In [1], it was called the good-enough synthesis problem,
a controller being good-enough if it is able to compute outputs for all inputs for which there

2 A set X ⊆ Σω is closed if the limit, if it exists, of any sequence (xi)i of infinite words in X is in X. The
limit here is defined based on the Cantor distance, which, for any two infinite words u, v, is 0 if u = v
and otherwise 2−ℓ where ℓ is the length of their longest common prefix.

FSTTCS 2021

43:4 Synthesizing Computable Functions from Rational Specifications over Infinite Words

exists a least one matching output by the specification. The uniformization setting can be
seen as an assumption that the input the program receives is not any input, but belongs
to some given language. Related to that, there is a number of works on reactive synthesis
under assumptions on the behavior of the environment [8, 4, 22, 11, 5].

Related work. To the best of our knowledge, this work is the first contribution which
addresses the synthesis of algorithms from specifications which are relations over infinite
inputs, and such that these algorithms may need unbounded memory, as illustrated by the
specification R1 for which any infinite-input Turing-machine realizing the specification needs
unbounded memory. There are however two related works, in some particular or different
settings.

First, in [12], the synthesis of computable functions has been shown to be decidable in the
particular case of functional relations, i.e., graphs of functions. The main contribution of [12]
is to prove that checking whether a function represented by a non-deterministic two-way
transducer is computable is decidable, and that computability coincides with continuity (for
the Cantor distance) for this large class of functions. The techniques of [12] are different to
ours, e.g., games are not needed because output symbols functionally depends on input ones,
even in the specification, so, there is not choice to be made by Eve.

Second, Hosch and Landweber [19] proved decidability of the synthesis problem of
Lipschitz-continuous functions from automatic relations with total domain, Holtmann, Kaiser
and Thomas [17] proved decidability of the synthesis of continuous functions from automatic
relations with total domain, and Klein and Zimmermann [20] proved ExpTime-completeness
for the former problem. So, we inherit the lower bound because automatic relations are
particular DRAT relations, and as we show in the last section of the paper, the synthesis
problem of computable functions is the same as the synthesis problem of continuous functions.
We obtain the same upper bound as [20] for a more general class of specifications, namely
DRAT, and in the more general setting of specifications with partial domain. As we show,
total vs. partial domains make an important difference: two-way transducers may be necessary
in the former case, while one-way transducers are sufficient in the latter. [17, 20] also rely
on a reduction to two-player games called delay games, but for which bounded delay are
sufficient. However, our game is built such that it accounts for the fact that unbounded delays
can be necessary and it also monitors the domain, which is not necessary in [17, 20] because
specifications have total domain. Accordingly, the main differences between [20] and our delay
games are their respective winning objectives and correctness proofs. Another difference
is that our game applies to the general class of rational relations, which are asynchronous
(several symbols, or none, can correspond to a single input symbol) in contrast to automatic
relations which are synchronous by definition.

Omitted and sketched proofs can be found in full in the full version.

2 Preliminaries

Words, languages, and relations. Let N denote the set of non-negative integers. Let Σ
and Γ denote alphabets of elements called letters or symbols. A word resp. ω-word over Σ
is an empty or non-empty finite resp. infinite sequence of letters over Σ. The empty word
is denoted by ε, the length of a word by | · |. Usually, we denote finite words by u, v, w,
etc., and infinite words by α, β, γ, etc. Given an (in)finite word α = a0a1 · · · over Σ with
a0, a1, · · · ∈ Σ, let α(i) denote the letter ai, α(i : j) denote the infix aiai+1 · · · aj , α(: i) the
prefix a0a1 · · · ai, and α(i :) the suffix aiai+1 · · · for i ≤ j ∈ N. For two (in)finite words

E. Filiot and S. Winter 43:5

α, β, let α ∧ β denote their longest common prefix. Let Σ∗, Σ+, and Σω denote the set of
finite, non-empty finite, and infinite words over Σ, respectively. Let Σ∞ denote Σ∗ ∪ Σω.
A language resp. ω-language L is a subset of Σ∗ resp. Σω, its set of prefixes is denoted by
Prefs(L). A (binary) relation resp. ω-relation R is a subset of Σ∗ × Γ∗ resp. Σω × Γω. An
ω-relation is just called a relation when infiniteness is clear from the context. The domain
dom(R) of a (ω)-relation R is the set {α | ∃β (α, β) ∈ R}. It is total if dom(R) = Σ∗ resp.
Σω. Likewise, we define img(R) the image of R, as the domain of its inverse. A relation R is
functional if for each u ∈ dom(R) there is at most one v such that (u, v) ∈ R. By default in
this paper, relations and functions are partial, i.e., are not necessarily total.

Automata. A parity automaton is a tuple A = (Q, Σ, q0, ∆, c), where Q is a finite set of
states, Σ a finite alphabet, q0 ∈ Q an initial state, ∆ ⊆ Q × Σ × Q a transition relation, and
c : Q → N is a function that maps states to priorities, also called colors. A parity automaton
is deterministic if its transition relation ∆ is given as a transition function δ. We denote by δ∗

the usual extension of δ from letters to finite words. A run of A on a word w ∈ Σ∞ is a word
ρ ∈ Qω such that (ρ(i), w(i), ρ(i + 1)) ∈ ∆ for all 0 ≤ i ≤ |w|. A run on ε is a single state.
We say that ρ begins in ρ(0) and ends in ρ(|w|) if w is finite. We define Occ(ρ) as the set of
states that occur in ρ, Inf(ρ) as the set of states that occur infinitely often in ρ, and c(ρ) as
c(ρ(0))c(ρ(1)) · · · . A run ρ is accepting if ρ ∈ Qω, ρ(0) = q0 and max Inf(c(ρ)) is even. The
language recognized by A is the set L(A) = {α ∈ Σω | there is an accepting run ρ of A on α}.
A language L ⊆ Σω is called regular if L is recognizable by a parity automaton.

One-way transducers. A transducer (1NFT) is a tuple T = (Q, Σ, Γ, q0, ∆, c), where Q is
finite state set, Σ and Γ are finite alphabets, q0 ∈ Q is an initial state, ∆ ⊆ Q × Σ∗ × Γ∗ × Q

is a finite set of transitions, and c : Q → N is a parity function. It is input-deterministic
(1DFT) (also called sequential in the literature) if ∆ is expressed as a function Q × Σ →
Γ∗ × Q. A finite non-empty run ρ is a non-empty sequence of transitions of the form
(p0, u0, v0, p1)(p1, u1, v1, p2) . . . (pn−1, un−1, vn−1, pn) ∈ ∆∗. The input (resp. output) of ρ is
α = u0 · · · un−1 (resp. β = v0 · · · vn−1). As shorthand, we write T : p0

α/β−−→ pn. An empty
run is denoted as T : p

ε/ε−−→ p for all p ∈ Q. Similarly, we define an infinite run. A run is
accepting if it is infinite, begins in the initial state and satisfies the parity condition. In this
paper, we also assume that for any accepting run ρ, its input and output are both infinite.
This can be syntactically ensured with the parity condition. The relation recognized by T
is R(T) = {(α, β) | there is an accepting run of T with input α and output β}. Note that
with the former assumption, we have R(T) ⊆ Σω × Γω. A relation is called rational if it is
recognizable by a transducer, we denote by RAT the class of rational relations. A sequential
function is a function whose graph is R(T) for an input-deterministic transducer T .

Two-way transducers. Given Σ, let Σ⊢ denote Σ ⊎ {⊢}, ⊢ is a new left-delimiter symbol.
An input-deterministic two-way transducer (2DFT) is a tuple T = (Q, Σ⊢, Γ, q0, δ, c), where
Q is a finite state set, Σ and Γ are finite alphabets, q0 ∈ Q is an initial state, δ : Q ×
Σ → ×Γ∗ × {1, −1} × Q is a transition function, and c : Q → N is a function that maps
states to colors. A two-way transducer has a two-way read-only input tape and a one-
way write-only output tape. Given an input sequence α ∈ Σω, let α(−1) = ⊢, the input
tape holds ⊢ α. We denote a transition δ(p, a) = (γ, d, q) as a tuple (p, a, γ, d, q), and ∆
denotes the tuple representation of δ. A run of T on α ∈ Σω is a sequence of transitions
(q0, α(i0), γ0, d0, q1)(q1, α(i1), γ1, d1, q2) · · · ∈ ∆ω such that i0 = 0, and ik+1 = ik + dk for
all k ∈ N. The input of ρ is α and the output of ρ is β = γ0γ1 · · · . We define c(ρ) as

FSTTCS 2021

43:6 Synthesizing Computable Functions from Rational Specifications over Infinite Words

the sequence of colors c(q0)c(q1) · · · , ρ is accepting if max Inf(c(ρ)) is even. The functional
ω-relation recognized by the deterministic-two way transducer is defined as R(T) = {(α, β) |
there is an accepting run of T with input α and output β}.

Games. A game arena is a tuple G = (V0, V1, v0, A, E), where V = V0 ⊎ V1 is a set of
vertices, V0 belongs to Eve and V1 to Adam, v0 is an initial vertex, A is a finite set of actions,
and E ⊆ V ×A×V is a set of labeled edges such that (v, a, v′) ∈ E and (v, a, v′′) ∈ E implies
that v′ = v′′ for all v ∈ V and a ∈ A. We assume that the arena is deadlock-free. We use
letters on edges as it is more convenient to have them at hand for the proofs, it is however not
necessary. A play in G is an infinite sequence v0a0v1a1 · · · such that (vi, ai, vi+1) ∈ E for all
i ∈ N. Note that a play is uniquely determined by its action sequence. A game is of the form
G = (G, Win), where G is a game arena and Win ⊆ V ω is a winning condition. Eve wins a
play α = v0a0v1a1 · · · if v0v1 · · · ∈ Win, otherwise Adam wins. For ease of presentation, we
also write α ∈ Win.

A strategy for Eve resp. Adam is a function (V A)∗V0 → A resp. (V A)∗V1 → A such
that σ(xv) = a with x ∈ (V A)∗, v ∈ V , and a ∈ A implies that there is v′ ∈ V such that
(v, a, v′) ∈ E. A play v0a0v1a1 · · · is consistent with a strategy σ for Eve resp. Adam if
σ(v0a0 · · · vi) = ai for all i ∈ N with vi ∈ V0 resp. vi ∈ V1. A strategy σ for Eve is a winning
strategy if α ∈ Win for all plays α consistent with σ. A strategy automaton for Eve is a tuple
S = (M, V, m0, δ, µ), where M is a finite set of (memory) states, V is the alphabet, m0 is an
initial state, δ : M × V → M is the memory update function, and µ : M × V0 → A is the next
action function such that for all v ∈ V0 and m ∈ M , there is v′ ∈ V with (v, µ(m, v), v′) ∈ E.

Problem statement. In this section, we introduce the problem we want to solve. Let Σ, Γ
be two finite alphabets. Given a relation R ⊆ Σω × Γω and a (partial) function f : Σω → Γω,
f is said to uniformize R if dom(f) = dom(R) and (α, f(α)) ∈ R for all α ∈ dom(R). We
also say that R is uniformizable by f or that f is a uniformizer of R. We are interested in
computable uniformizers, which we now introduce.

▶ Definition 2 ([25] computable functions). A function f : Σω → Γω is called computable if
there exists a deterministic multi-tape machine M that computes f in the following sense,
M has a read-only one-way input tape, a two-way working tape, and a write-only one-way
output tape. All tapes are infinite to the right, finite to the left. For any finite word w ∈ Σ∗,
let M(w) denote the output3 of M on w. The function f is said to be computable if for all
α ∈ dom(f) and i ∈ N there exists j ∈ N such that f(α)(: i) is prefix of M(α(: j)).

Note that in the above definition, checking whether the infinite input belongs to the
domain is not a requirement and should not be, because in general, it is impossible to do it
reading only a finite prefix of the input. That is why in this definition, we assume that the
input belongs to the domain of the function. It is a reasonable assumption. For instance, the
inputs may have been produced by another program (e.g., a transducer) for which one has
guarantees that they belong to some well-behaved (e.g., regular) language.

▶ Example 3. To begin with, consider the function f1 : {a, b, c}ω → {b, c}ω defined by
f1(anbaω) = bω and f1(ancaω) = cω for all n ∈ N≥1. It is computable by a TM which
on inputs of the form anxaω for x ∈ {b, c}, outputs nothing up to reading x, and then,
depending on x, either outputs c or b whenever it reads an a in the remaining suffix aω.

3 The finite word written on the output tape the first time M reaches the |w|th cell of the input tape

E. Filiot and S. Winter 43:7

Consider the function f2 : {a, b}ω → {a, b}ω defined by f2(α) = aω if α contains infinitely
many a and f(α) = bω otherwise for all α ∈ {a, b}ω. It is rational but not computable,
because to determine even the first output letter, an infinite lookahead is needed.

Let S be a class of relations. The S-synthesis problem asks, given a relation S ∈ S
(finitely represented), whether there exists a computable function which uniformizes S. If
such a function exists, then the procedure must return a TM computing it. Our first
result, proved using an easy adaptation of the proof of [7, Theorem 17], showing that it is
undecidable whether a given rational relation of finite words has a sequential uniformizer, is
an undecidability result.

▶ Proposition 4. The RAT-synthesis problem is undecidable, even if restricted to the subclass
of rational relations with total domain.

Proof sketch. We sketch a reduction from Post’s correspondence problem. Let u1, . . . , un

and v1, . . . , vn be a PCP instance. We construct the ω-rational relation R that contains
pairs (α, β) of the form α = i1 · · · ikα′ with i1 · · · ik ∈ {1, . . . , n}∗ and α ∈ {a, b}ω and
β = ui1 · · · uik

aω if α′ contains infinitely many a and β ≠ vi1 · · · vik
β′ otherwise. If the

PCP has no solution, then the function f : i1 · · · ikα′ 7→ ui1 · · · uik
aω uniformizes R, because

ui1 · · · uik
̸= vi1 · · · vik

. The function f is clearly computable. If the PCP has a solution, no
computable function uniformizes R. If the integer sequence i1 · · · ik is the solution, then
ui1 · · · uik

= vi1 · · · vik
. Intuitively, for an input sequence starting with the solution, no prefix

of the input sequence allows to determine whether the output must begin with ui1 · · · uik
or

is not allowed to begin with ui1 · · · uik
.

The relation R can be made complete by also allowing all “invalid” inputs together with
any output, i.e., by adding all pairs (α, β) ∈ {1, . . . , n, a, b}ω × {1, . . . , n, a, b}ω where the
input sequence α is not of the form i1 · · · ikα′ with i1 · · · ik ∈ {1, . . . , n}∗ and α ∈ {a, b}ω,
and any output sequence β. Any Turing machine that computes f can easily be adapted to
verify whether the input valid. ◀

Next, we give a semi-decision procedure for solving the RAT-synthesis problem which is
sound but not complete. In Section 4, we introduce a sufficient condition for completeness
which yields a (sound and complete) decision procedure for large classes of rational relations.

3 Unbounded Delay Game

In this section, given a rational relation (as a transducer), we show how to construct a
finite-state ω-regular two-player game called (unbounded) delay game. We prove that if
Eve wins this game then there exists a computable function which uniformizes the relation.
Moreover, this function is computable by an input-deterministic two-way transducer. We
analyze the complexity of solving the game, which turns out to be in ExpTime. Solving these
games yields an incomplete, but sound, decision procedure for the RAT-synthesis problem.

In the game, Adam provides inputs and Eve must produce outputs such that combination
of inputs and outputs is in the relation. However, as seen in Example 1, Eve might need
to wait arbitrarily long before she can safely produce output. Hence, as the game is finite,
it can not store arbitrary long input words, and Eve’s actions cannot produce arbitrarily
long words neither. Instead, we finitely abstract input and output words using a notion we
call profiles. Informally, a profile of an input word stores the effects of the word (together
with some output word) on the states of the transducer (that specifies the relation) as well
as the maximal priority seen along the induced state transformation. Such profiles contain

FSTTCS 2021

43:8 Synthesizing Computable Functions from Rational Specifications over Infinite Words

sufficient information to express a winning condition which makes sure that given the word of
input symbols provided by Adam, if Eve would output concrete output words instead of their
abstraction, she would produce infinitely often non-empty output words whose concatenation,
together with the input word, belongs to the relation.

State transformation profiles. Let R ⊆ Σω × Γω be a rational relation given by a trans-
ducer T = (QT , Σ, Γ, qT

0 , ∆T , cT), and CT = img(cT) its set of used priorities. Let
D = (QD, Σ, qD

0 , δD, cD) be a deterministic parity automaton that recognizes dom(R), and
CD = img(cD) its set of used priorities; D can always be constructed from T by projecting
away its outputs and by determinizing the resulting automaton.

Given u ∈ Σ∗, its profile Pu are all the possible state transformations it induces
for any output. Formally, Pu ⊆ QT × QT × CT is defined as

{
(p, q, c) | there is v ∈

Γ∗ and there is a run ρ of the form T : p
u/v−−→ q with max Occ(ρ) = c

}
. Profiles can be mul-

tiplied as P1 ⊗P2 = {(p, r, max{m, n}) | ∃q : (p, q, m) ∈ P1, (q, r, n) ∈ P2}. Given u1, u2 ∈ Σ∗,
it is easy to verify that Pu1u2 = Pu1 ⊗ Pu2 , and Pε is neutral for ⊗.

Finite-state unbounded delay game. We now present a two-player ω-regular game GT =
(G, Win) such that if Eve has a winning strategy, then R has a computable uniformizer. In this
game, Adam’s actions are to provide input letters, letter-by-letter. Eve’s goal is to construct
a sequence of state transformations (q0, q1, m1)(q1, q2, m2) . . . such that if the infinite input
α ∈ Σω provided by Adam is in dom(R), then (i) the maximal priority seen infinitely often
in (mi)i is even and (ii) α = u0u1 · · · for some ui ∈ Σ∗ such that (qi, qi+1, mi+1) ∈ Pui

for
all i ≥ 0. As a consequence, all these finite runs can be concatenated to form an accepting
run on α/v0v1 . . . , entailing (α, v0v1 . . .) ∈ R. One can then show that if Eve has a strategy
to pick the state transformations while ensuring the latter property, then this strategy can be
turned into a computable function, and conversely. Picking a state transformation is what we
call a producing action for Eve. Since a state transformation picked by Eve may correspond
to an arbitrarily long word ui, she also has an action skip which allows her to wait before
making such a producing action. Now, the difficulty for Eve is to decide when she makes
producing actions, in other words, how to decompose the input α, only based on prefixes of
α. To that end, before picking a state transformation, she may need to gather lookahead
information from Adam. Consequently, the vertices of the game manipulates two consecutive
profiles P1 and P2, with the invariant that P1 is the profile of ui while P2 is the profile of
ui+1, when the input played so far by Adam is u0 . . . ui+1. When Eve knows enough, she
picks a state transformation (qi, qi+1, mi) in P1, then P1 becomes P2 and P2 is reset to Pε.
The inputs of Adam up to the next producing action of Eve form the word ui+2, and so on.
The vertices of the game also store information to decide whether the input belongs to the
domain of R (states of D), the parities mi, as well as the states q0, q1, Formally, the
game graph G = (V, E) is composed of vertices of the form

(
q, c, P1, P2, r

)
× {∀, ∃}, where

q ∈ QT , State reached on the combination of input and output sequence.
c ∈ {−1} ∪ CT , Priorities of the state transformations, -1 is used to indicate that no
state transformation was chosen (skip action below).
P1, P2, Profiles obtained from the given lookahead of the input word.
r ∈ QD. State reached on the given lookahead of the input word.

From a vertex of the form
(
q, c, P1, P2, r, ∀

)
, Adam has the following actions:

a−→
(
q, −1, P1, P2 ⊗ Pa, δD(r, a), ∃

)
, for all a ∈ Σ.

Adam provides the next lookahead letter and P2 is updated accordingly.

E. Filiot and S. Winter 43:9

From a vertex of the form
(
q, c, P1, P2, r, ∃

)
, Eve has the following actions:

skip−−−→
(
q, −1, P1, P2, r, ∀

)
, and

Eve makes a non-producing action, i.e., she waits for further lookahead on the input.
(q,q′,m)−−−−−→

(
q′, m, P2, Pε, r, ∀

)
, where (q, q′, m) ∈ P1.

Eve makes a producing action: a state transformation from the first lookahead profile
is chosen, the state transformation is applied, and the first profile is consumed.

The initial vertex of the game is
(
qT

0 , −1, Pε, Pε, qD
0 , ∀

)
.

Let us now define Win ⊆ V ω. The condition makes sure that if the input sequence
provided by Adam is in the domain of R, then the sequence of state transformations can
be used to build on accepting run of T on that input. Win ⊆ V ω is the set of all plays γ

satisfying the property

max Inf(colD(γ)) is even → max Inf(colT (γ)) is even,

where colD(γ) = cD(π5(γ)), colT (γ) = π2(γ), and πi(γ) is the projection of γ onto the ith
component of each vertex. It is not difficult to see that Win is ω-regular, e.g., one can design
a parity automaton for it.

We explain the intuition behind Win. Our goal is to extract a computable function that
uniformizes the relation from a winning strategy. Intuitively, there is a computable function
that uniformizes R, if every input word α ∈ dom(R) can be read letter-by-letter, and from
time to time, a segment of output letters is produced, continuously building an infinite
output word β such that (α, β) ∈ R. We relate this to Win. Recall that R is defined by T ,
and dom(R) by D. Given a play γ, there is a unique input word α ∈ Σω that corresponds
to γ. Since we are looking to build a computable function f with dom(f) = dom(R), we
care whether α ∈ dom(R). The ω-word colD(γ) is equal to c(ρD), where ρD is the run of
D on α. If max Inf(colD(γ)) is even, α ∈ L(D), i.e., α ∈ dom(R). An output word β ∈ Γ∞

that corresponds to γ is only indirectly defined, instead the play defines a (possibly finite)
sequence of state transformations that an output word β should induce together with α.
How to extract a concrete β from γ is formally defined in the proof of Theorem 5. The
ω-word colT (γ) contains the relevant information to determine whether (α, β) ∈ R(T), i.e.,
(α, β) ∈ R. In particular, if β is finite, max InfcolT (γ) is −1, that means that only finitely
many producing actions have been taken. If max InfcolT (γ) is even, we have that (α, β) ∈ R.
Thus, Win expresses that if α ∈ L(D), then there is some β ∈ Γω, which can be built
continuously while reading α such that (α, β) ∈ R.

From winning strategies to uniformizers. We are ready to state our first positive result: If
Eve has a winning strategy in the unbounded delay game GT , then R(T) is uniformizable
by a computable function. In fact, we show a more precise result, namely, that if Eve
has a winning strategy, then the relation is uniformizable by a function recognized by a
deterministic two-way parity transducer. Additionally, if the domain of the relation is closed4,
then a deterministic one-way transducer suffices. Just as (one-way) transducers extend parity
automata with outputs on their transitions, input-deterministic two-way transducers extend
deterministic two-way parity automata with outputs. The reading tape is two-way, but the
output tape is one-way. The class of functions recognizable by 2DFTs is smaller than the
class of computable functions and enjoys many good algorithmic properties, e.g., decidability

4 Recall Footnote 2.

FSTTCS 2021

43:10 Synthesizing Computable Functions from Rational Specifications over Infinite Words

Algorithm 1 Algorithm computing continuous function f that uniformizes R. The
algorithm is described in the proof sketch of Theorem 5.

Input: α ∈ Σω, G game arena, S = (M, V, m0, δ, µ) strategy automaton
Output: β ∈ Γ∞, if α ∈ dom(R), then (α, β) ∈ R

1 m := m0 ; // current state of the strategy automaton
2 u1 := ε ; // first input block
3 u2 := ε ; // second input block
4 sprev := s0, initial vertex of G ; // previous vertex in the game
5 scur := s0 ; // current vertex in the game
6 a := α(0) ; // current letter of α

7 while true do
8 u2 := u2.a ;
9 scur := s if scur

a−→ s ∈ E ; // update game vertex according to Adam’s
action

10 m := δ(m, scur) ; // strategy automaton is updated with Adam’s action
11 sprev := scur ;

12 scur := s if scur
µ(m,scur)−−−−−−→ s ∈ E ; // strategy automaton yields Eve’s

action, the updated game vertex is of the form (·, ·, Pu1 , Pu2 , ·, ·)
13 m := δ(m, scur) ; // strategy automaton is updated with Eve’s action
14 if e := (sprev, (p, q, c), scur) is a producing edge then
15 choose output block v1 ∈ Γ∗ such that T : p

u1/v1−−−−→ q with max prio c ;
; // this choice can be made canonical by computing for instance
the smallest word in lexicographic order satisfying this
property

16 u1 := u2 ;
17 u2 := ε ;
18 print(v1) ; // produce output block
19 end
20 a := α.nextLetter() ; // read next input letter
21 end

of the equivalence problem [3]. Note that any function recognizable by a 2DFT is computable,
in the sense that it suffices to “execute” the 2DFT to get the output. So, from now on, we
may freely say that a function is computable by a 2DFT.

▶ Theorem 5. Let R be defined by a transducer T . If Eve has a winning strategy in GT ,
then R is uniformizable by a function computable by a 2DFT.

Proof sketch. If Eve has a winning strategy in GT , then she also has a finite-state winning
strategy because the winning condition is ω-regular. From such a strategy we can build an
algorithm (a Turing machine), see Algorithm 1, that computes a function f that uniformizes
R. The high-level idea of the algorithm is to simulate the strategy, which abstracts inputs
and outputs by profiles, and in parallel store concrete inputs and outputs corresponding to
those profiles. This is possible as Turing machines have infinite storage capacity. In the
algorithm, an input sequence α is read letter-by-letter and the corresponding play in G is
simulated where Adam plays according to α and Eve according to her winning strategy. In

E. Filiot and S. Winter 43:11

the play, a lookahead ui ∈ Σ∗ gained on Adam’s input is stored as its profile Pui . In the
algorithm, the lookahead ui is stored concretely in addition to its profile Pui

. When Eve
takes an action she picks a state transformation (that should occur in the transducer) from
Pui−1 , the profile of the previous lookahead sequence ui−1, also stored by the algorithm. The
algorithm picks some vi−1 ∈ Γ∗ such that ui−1/vi−1 induces the state transformation picked
by Eve. A new non-empty lookahead ui+1 ∈ Σ∗ is built, stored as its profile Pui+1 in the play
and as the concrete sequence ui+1 in the algorithm until Eve picks a state transformation
from Pui , and so on. The lookaheads that are built are non-empty (except for the first one),
and since Eve plays according to her winning strategy, the sequence of state transformations
she picked can be used to build an accepting run of T on (u0u1 . . . , v0v1 . . .), proving that
the latter pair belongs to R.

Then we show that f can be actually recognized by a 2DFT. The main idea is to use
two-wayness to encode finite lookahead over the input: the reading head goes forward to
gather input information, and then must return to the initial place where the lookahead was
needed to transform the input letter. The difficulty is for the 2DFT to return to the correct
position, even though the lookahead can be arbitrarily long. In order to find the correct
positions, we make use of a finite-state strategy automaton for Eve’s winning strategy in the
following sense. A (left-to-right) run of the strategy automaton on the input word yields a
unique segmentation of the input, such that segments i and i + 1 contain enough information
to determine the output for segment i. The idea is to construct a 2DFT that simulates the
strategy automaton in order to find the borders of the segments. If the 2DFT goes right,
simulating a computation step of the deterministic strategy automaton is easy. Recovering
the previous step of the strategy automaton when the 2DFT goes left is non-trivial, it is
possible to compute this information using the Hopcroft-Ullman construction presented
in [18]. We show that having the knowledge of the profiles of segments i and i+1 is enough to
deterministically produce a matching output for segment i on-the-fly going from left-to-right
over segment i again. ◀

We make some remarks about the form of the game, in particular the use of two lookahead
profiles, instead of one. Assume we would have only one profile abstracting the lookahead
over Adam inputs. For simplicity, assume the specification is automatic (i.e., letter-to-letter).
Suppose, so far, Adam and Eve have alternated between providing an input letter and
producing an output letter (in the finite-state game, Eve producing letter(s) corresponds to
the abstract action of picking state transformations), but now, she needs to wait for more
inputs before she can safely output something new. Suppose that Adam has provided some
more input, say the word u, and Eve now has enough information about the input to be able
to produce something new. Abstractly, it means that in the game, Adam has given the word
u but only its profile P is stored. Eve might not be able to produce an output of the same
length as u (for example, if producing the ith output letter depends on the i + kth input
letter). So, she cannot consume the whole profile P (i.e., pick a state transformation in P).
What she has to do, is to decompose the profile P into two profiles such that P = P1 ⊗ P2
and pick a state transformation in P1, and then continue the game with profile P2 (and keep
on updating it until she can again produce something). The problem is, firstly, that there is
no unique way of decomposing P as P1 ⊗ P2, and secondly, P1 might not correspond to any
prefix of u. That is why it is needed to have explicitly the decomposition at hand in the
game construction.

▶ Lemma 6. Deciding whether Eve has a winning strategy in GT is in ExpTime.

FSTTCS 2021

43:12 Synthesizing Computable Functions from Rational Specifications over Infinite Words

Proof sketch. Two-player ω-regular games are decidable (see, e.g., [16]). The claimed upper
bound is achieved by representing the winning condition as a deterministic parity automaton,
carefully analyzing its size, and then solving a parity game. ◀

▶ Remark 7. The converse of Theorem 5 is not true.
Clearly, if the converse was true, the RAT-synthesis problem would be decidable, which

is a contradiction to Proposition 4. We also give a small example that illustrates that
uniformizability does not imply the existence of a winning strategy.

▶ Example 8. Consider the identity function f : {a, b}ω → {a, b}ω such that all inputs with
either finitely many a or b are in the domain. A (badly designed) letter-to-letter transducer
T that recognizes f has five states S, A, B, A′, B′, where S is the starting state, A, B (resp.
A′, B′) are used to recognize finitely many b (resp. a), and from S, the first input/output
letter non-deterministically either enters A or A′. In a play in GT , at some point, Eve must
make her first output choice, i.e., she starts to build a run of T . This choice fixes whether
the run is restricted to A, B or A′, B′. No matter Eve’s choice, Adam can respond with an
infinite sequence of either only a (for A, B) or b (for A′, B′), making it impossible to build an
accepting run. Thus, Eve has no winning strategy, but clearly the function f is computable.

While in the above example, the point of failure is clearly the bad presentation of the
specification, this is not the case in general. Recall the proof sketch of Proposition 4,
where we provide a reduction from Post’s correspondence problem. A non-deterministic
transducer constructed from a given PCP instance u1, v1, . . . , un, vn can guess whether the
input word contains infinitely many a, and accordingly either checks that the output begins
with ui1 · · · uik

for input sequences beginning with indices i1 · · · ik, or checks that it does
not begin with a prefix equal to vi1 · · · vik

. As detailed in the proof sketch, if the PCP
instance has no solution, there is a computable uniformization, however, using the same
argumentation as in the above example, such a transducer would make it impossible to have
a winning strategy. In order to have a winning strategy, the transducer must be changed
such that it checks at the same time whether the output starts with ui1 · · · uik

and does
not start with something equal to vi1 · · · vik

for input sequences beginning with i1 · · · ik. In
general, depending on the PCP instance, it is not possible to make both checks in parallel.

We state a lemma about bounded delay.

▶ Lemma 9. Let R be defined by a transducer T . If there exists ℓ ≥ 0, such that Eve has a
winning strategy in GT with at most ℓ consecutive skip-moves, then R is uniformizable by a
function computable by a 1DFT.

Intuitively, such a strategy yields a function computable by a 1DFT, because the needed
lookahead (as it is bounded) can be stored in the state space.

4 A Sufficient Condition for Completeness

As we have seen in the previous section,
▶ Remark 10. Theorem 5 yields a semi-decision procedure for solving the RAT-synthesis
problem (it is sound but not complete).

In this section, we show that the procedure is complete for two known and expressive
classes of rational relations, namely the class of automatic relations (AUT), which are for
example used as specifications in Church synthesis, as well as the class of deterministic
rational relations (DRAT) [24] (to be formally defined below), see Corollary 13.

E. Filiot and S. Winter 43:13

To arrive at these results, we define a structural restriction on transducers that turns out
to be a sufficient condition for completeness. Let T be a transducer. An input (resp. output)
state is a state p from which there exists an outgoing transition (p, u, v, q) such that u ̸= ε

(resp. v ̸= ε). The set of input (resp. output) states is called Qi (resp. Qo). A transducer
T has property P if for all words u ∈ Σ∗, all v1, v2 ∈ Γ∗ such that v1 is a prefix of v2 the
following holds:

if T : p
u/v1−−−→ q, T : p

u/v2−−−→ r, and q, r are input states, then q = r.

This property implies that, given α ∈ Σω, β ∈ Γω such that there is a run of T with input α

and output β, for each prefix u ∈ Σ∗ of α there exists a unique prefix v ∈ Γ∗ of β that has to
be produced while reading u before the remainder α′ (let α = uα′) can be read. Furthermore,
the target state of T : q0

u/v−−→ is unique and this state is exited only when further input
(from α′) has to be read. In simpler terms, given a prefix of an input word, it is uniquely
determined how long the prefix of a given output word has to be so that further input can
be processed and the reached state is unique. This implies that input prefixes together with
(long enough) output prefixes are sufficient to determine the beginning of an accepting run if
such a run exists. This allows us to show the following.

▶ Theorem 11. Let R be defined by a transducer T with property P. If R is uniformizable
by a computable function, then Eve has a winning strategy in GT .

Proof sketch. In fact, we explain how to construct a winning strategy from a continuous
(a computable function is always continuous, see Section 5) uniformizer f of R. Given α ∈
dom(R) and f(α), we show that it is possible to decompose the input α into u0u1 · · · and the
output f(α) into v0v1 · · · such that there exists an accepting run T : q0

u0/v0−−−−→ q1
u1/v1−−−−→ q2 · · ·

where each qi is an input state for i > 0. Moreover, this decomposition and run can be
determined in a unique way and on-the-fly, in the sense that a factor ui/vi only depends on
the factors u0/v0,. . ., ui−1/vi−1. This makes it possible for Eve to pick a corresponding state
transformation sequence (q0, q1, c0)(q1, q2, c1) · · · which is only dependent on the so far seen
actions of Adam spelling u0u1 · · · . The main idea to determine the ui is to look at the indices
j for which the longest common prefix of the sets Sj = {f(α(:j)β) | α(:j)β ∈ dom(R)}
strictly increases. Given ui, the output v0v1 · · · vi is any common prefix of the sets Sj , such
that a run T : qi

ui/vi−−−→ is defined and its target is an input state. The fact that T has
property P guarantees that each of these runs has the same target, thus, the next state
transformation (qi, qi+1, ci) is uniquely determined. ◀

We turn to the setting of closed domains.

▶ Lemma 12. Let R with dom(R) closed be defined by a transducer T with property P. If
R is uniformizable by a computable function, then there exists a computable ℓ ≥ 0 such that
Eve has a winning strategy in GT with at most ℓ consecutive skip-moves.

Proof sketch. Intuitively, the reason why bounded lookahead suffices in the setting of closed
domains is that (basically at each point of time during a play) Adam’s moves describe a
series of longer and longer finite input words that “converge” to a valid infinite input word
from the domain. Hence, Eve can not wait arbitrarily long to make producing moves, as
such a play describes a valid infinite input sequence and a finite output sequence. ◀

We formally introduce AUT and DRAT. A relation is deterministic rational if it is
recognized by a transducer where Qi and Qo partition its state space, and its transition
relation ∆ is a function (Qi × Σ × {ε} → Q) ∪ (Qo × {ε} × Γ → Q). It is automatic if

FSTTCS 2021

43:14 Synthesizing Computable Functions from Rational Specifications over Infinite Words

additionally ∆ strictly alternates between Qi and Qo states. It is easy to see that every
DRAT-transducer (and a fortiori every AUT-transducer) satisfies the property P . In general,
given any transducer T , we do not know if it is decidable whether T has property P.

Main result. We now state our main result: Asking for the existence of a uniformization
which is computable by a Turing machine or computable by an input-deterministic two-way
transducer (2DFT), are equivalent questions, as long as specifications are DRAT relations.
Moreover, these questions are decidable.

▶ Corollary 13. Let R be defined by a DRAT-transducer T . The following are equivalent:
1. R is uniformizable by a computable function.
2. R is uniformizable by a function computable by a 2DFT.
3. Eve has a winning strategy in GT .
Moreover, if dom(R) is closed, then it is equivalent to R being uniformizable by a function
computable by a 1DFT.

Note that the above result also holds for the slightly more general case of relations given
by transducers with property P. We highlight two facts regarding closed domains.
▶ Remark 14. The set of infinite words over a finite alphabet is closed, i.e., every total
domain is closed. Furthermore, it is decidable whether a domain (e.g., given by a Büchi
automaton) is closed. It is a well-known fact that the topological closure of a Büchi language
is a Büchi language (one can trim the automaton and declare all states to be accepting) and
therefore one can check closedness by checking equivalency with its closure.

▶ Theorem 15. The AUT- and DRAT-synthesis problems are ExpTime-complete.

Proof. Membership in ExpTime directly follows from Lemma 6 and Corollary 13. In [20] it
was shown that this problem is ExpTime-hard in the particular case of automatic relations
with total domain, so the lower bound applies to our setting. ◀

5 Discussion

Continuous functions. We have shown that checking the existence of a computable function
uniformizing a relation given by transducer with property P is decidable (a consequence of
Theorems 5 and 11 and Lemma 6). The proofs of Theorems 5 and 11 use another notion,
which is easier to manipulate mathematically than computability, that of continuity. A
function is called continuous if

∀α ∈ dom(f) ∀i ∈ N ∃j ∈ N ∀β ∈ dom(f) : |α ∧ β| ≥ j → |f(α) ∧ f(β)| ≥ i. (1)

▶ Example 16. Consider the function f1 of Example 3. f1 is continuous, because the ith
output symbol only depends on the max(i, n + 1) first input symbols. Consider the function
f2 of Example 3. The function f2 is clearly rational, but it is not continuous. We verify that
f2 is not continuous, let αn denote anbω, we have that |αn ∧aω| = n and |f2(αn)∧f2(aω)| = 0
for all n ∈ N. Thus, f2 is not continuous.

The notions of computability and continuity are closely related. If a function f : Σω → Γω

is computable, it is also continuous. This is not difficult to see when comparing the definitions
of computable and continuous functions. The converse does not hold because the continuity
definition does not have any computability requirements (see [12] for a counter-example).
However, regarding synthesis, the two notions coincide:

E. Filiot and S. Winter 43:15

▶ Theorem 17. Let R be defined by T with property P. The following are equivalent:
1. R is uniformizable by a continuous function.
2. R is uniformizable by a computable function.
Proof. Indeed, any computable uniformizer is continuous. Theorem 11 states that if there
exists a computable uniformizer, then there exists a winning strategy in the delay game.
However, in the proof of this theorem, we show a stronger statement: If there exists a
continuous uniformizer, then there exists a winning strategy in the delay game. Such a
strategy can be assumed to have finite-memory (as finite-memory suffices to win games with
ω-regular conditions). We have shown in the proof (sketch) of Theorem 5 how to translate a
finite-state winning strategy into an algorithm (a Turing machine) that computes a function f

which uniformizes the relation. ◀

Conclusion and future work. We investigated the synthesis of algorithms (aka. Turing
machine computable functions) from rational specifications. While undecidable in general,
we have proven decidability for DRAT (and a fortiori AUT). Furthermore, we have shown
that the whole computation power of Turing machines is not needed, two-way transducers
are sufficient (and necessary). As TMs reading heads are read-only left-to-right, converting a
2DFT into a TM requires that the TM stores longer and longer prefixes of the input in the
working-tape for later access. This is the only use the TM needs to make of the working tape.
This is a naive translation, and sometimes the working tape can be flushed (some prefixes
of the input may possibly not be needed anymore). More generally, it is an interesting
research direction to fine-tune the class of functions targeted by synthesis with respect to
some constraints on the memory, including quantitative constraints.

Related to the latter research direction is the following open question: is the synthesis
problem of functions computable by input-deterministic one-way (aka. sequential) transducers
from deterministic rational relations decidable? It is already open for automatic relations. We
have shown that if a rational relation with closed domain is uniformizable by a computable
function, then also by a sequential function. However, closedness is not a sufficient condition:
e.g., the function which maps any anxcω to xcω for x ∈ {#, $}, is sequential; a sequential
transducer just has to erase the an part, but its domain is not closed. This problem
is interesting because sequential transducers only require bounded memory to compute a
function (in contrast to two-way transducers that require access to unboundedly large prefixes
of the input).

References
1 Shaull Almagor and Orna Kupferman. Good-enough synthesis. In International Conference

on Computer Aided Verification, pages 541–563. Springer, 2020.
2 Rajeev Alur, Rastislav Bodík, Eric Dallal, Dana Fisman, Pranav Garg, Garvit Juniwal, Hadas

Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund Raghothaman, Shambwaditya
Saha, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. In Dependable Software Systems Engineering, pages 1–25.
IEEE, 2015.

3 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite
strings. In 2012 27th Annual IEEE Symposium on Logic in Computer Science, pages 65–74.
IEEE, 2012.

4 Roderick Bloem, Rüdiger Ehlers, and Robert Könighofer. Cooperative reactive synthesis.
In Bernd Finkbeiner, Geguang Pu, and Lijun Zhang, editors, Automated Technology for
Verification and Analysis - 13th International Symposium, ATVA 2015, Shanghai, China,
October 12-15, 2015, Proceedings, volume 9364 of Lecture Notes in Computer Science, pages
394–410. Springer, 2015.

5 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
Acta Informatica, 54(1):41–83, 2017. doi:10.1007/s00236-016-0273-2.

FSTTCS 2021

https://doi.org/10.1007/s00236-016-0273-2

43:16 Synthesizing Computable Functions from Rational Specifications over Infinite Words

6 J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions finite-state
strategies. Trans. Ameri. Math. Soc., 138:295–311, 1969.

7 Arnaud Carayol and Christof Löding. Uniformization in Automata Theory. In Proceedings of
the 14th Congress of Logic, Methodology and Philosophy of Science Nancy, July 19-26, 2011,
pages 153–178. London: College Publications, 2014.

8 Krishnendu Chatterjee and Thomas A. Henzinger. Assume-guarantee synthesis. In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 -
April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science, pages 261–275.
Springer, 2007.

9 Christian Choffrut and Serge Grigorieff. Uniformization of rational relations. In Jewels are
Forever, pages 59–71. Springer, 1999.

10 Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick Bloem. Handbook of
model checking, volume 10. Springer, 2018.

11 Rodica Condurache, Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. The
complexity of rational synthesis. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

12 Vrunda Dave, Emmanuel Filiot, Shankara Narayanan Krishna, and Nathan Lhote. Synthesis
of computable regular functions of infinite words. In CONCUR, volume 171 of LIPIcs, pages
43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

13 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence and
uniformisation problems for finite transducers. In ICALP, volume 55 of LIPIcs, pages 125:1–
125:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

14 Bernd Finkbeiner and Sven Schewe. Bounded synthesis. Int. J. Softw. Tools Technol. Transf.,
15(5-6):519–539, 2013. doi:10.1007/s10009-012-0228-z.

15 Carsten Gerstacker, Felix Klein, and Bernd Finkbeiner. Bounded synthesis of reactive programs.
In Shuvendu K. Lahiri and Chao Wang, editors, Automated Technology for Verification and
Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-
10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer Science, pages 441–457.
Springer, 2018. doi:10.1007/978-3-030-01090-4_26.

16 Erich Gradel and Wolfgang Thomas. Automata, logics, and infinite games: a guide to current
research, volume 2500. Springer Science & Business Media, 2002.

17 Michael Holtmann, Łukasz Kaiser, and Wolfgang Thomas. Degrees of lookahead in reg-
ular infinite games. In International Conference on Foundations of Software Science and
Computational Structures, pages 252–266. Springer, 2010.

18 John E Hopcroft and Jeffrey D Ullman. An approach to a unified theory of automata. The
Bell System Technical Journal, 46(8):1793–1829, 1967.

19 F Hosch and Lawrence Landweber. Finite delay solutions for sequential conditions. Technical
report, University of Wisconsin-Madison Department of Computer Sciences, 1972.

20 Felix Klein and Martin Zimmermann. How much lookahead is needed to win infinite games?
Log. Methods Comput. Sci., 12(3), 2016. doi:10.2168/LMCS-12(3:4)2016.

21 K. Kobayashi. Classification of formal languages by functional binary transductions. Informa-
tion and Control, 15(1):95–109, July 1969.

22 Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational environments.
Ann. Math. Artif. Intell., 78(1):3–20, 2016.

23 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM Symposium on
Principles of Programming Languages (POPL). ACM, 1989.

24 Jacques Sakarovitch. Elements of automata theory. Cambridge University Press, 2009.
25 Klaus Weihrauch. Computable analysis: an introduction. Springer Science & Business Media,

2012.

https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1007/978-3-030-01090-4_26
https://doi.org/10.2168/LMCS-12(3:4)2016

Confluence of Conditional Rewriting in Logic Form
Raúl Gutiérrez # Ñ

Universidad Politécnica de Madrid, Spain

Salvador Lucas # Ñ

DSIC & VRAIN, Universitat Politècnica de València, Spain

Miguel Vítores # Ñ

VRAIN, Universitat Politècnica de València, Spain

Abstract
We characterize conditional rewriting as satisfiability in a Herbrand-like model of terms where
variables are also included as fresh constant symbols extending the original signature. Confluence of
conditional rewriting and joinability of conditional critical pairs is characterized similarly. Joinability
of critical pairs is then translated into combinations of (in)feasibility problems which can be efficiently
handled by a number of automatic tools. This permits a more efficient use of standard results for
proving confluence of conditional term rewriting systems, most of them relying on auxiliary proofs
of joinability of conditional critical pairs, perhaps with additional syntactical and (operational)
termination requirements on the system. Our approach has been implemented in a new system:
CONFident. Its ability to (dis)prove confluence of conditional term rewriting systems is witnessed by
means of some benchmarks comparing our tool with existing tools for similar purposes.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Logic and verification; Theory of computation → Equational logic and rewriting

Keywords and phrases Confluence, Program analysis, Rewriting-based systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.44

Supplementary Material Software (Online Tool): http://zenon.dsic.upv.es/confident/

Funding Partially supported by grant RTI2018-094403-B-C32 funded by MCIN/AEI/10.13039
/501100011033 and by “ERDF A way of making Europe”, and PROMETEO/2019/098.

1 Introduction

Confluence is a property of (abstract) reduction relations → guaranteeing that, for all abstract
objects s (often called expressions without loss of generality) which can be reduced into
two different reducts t and t′, respectively (written s →∗ t and s →∗ t′), there is another
expression u to which both t and t′ are reducible, i.e., both t →∗ u and t′ →∗ u hold. A
weaker property is local confluence, where only a single reduction step is allowed on s, i.e.,
s → t and s → t′. As usual, they are defined by the commmutation of the diagrams:

t

∗
��

s

??

��

u

t′

∗
??

t

∗
��

s

∗ ??

∗ ��

u

t′

∗
??

Local confluence confluence

These two properties of abstract reduction relations are connected by the well-known New-
man’s Lemma: if → is terminating (i.e., there is no infinite reduction sequence t1 → t2 → · · ·),
then local confluence and confluence coincide (see, e.g., [23, Lemma 2.2.5]). Now, the fol-
lowing issues naturally arise: (i) How to define → from the specification of a program of a

© Raúl Gutiérrez, Salvador Lucas, and Miguel Vítores;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 44; pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raguti@upv.es
https://scholar.google.com/citations?user=tJPADVkAAAAJ&hl=en
https://orcid.org/0000-0002-3984-2868
mailto:slucas@dsic.upv.es
http://slucas.webs.upv.es
https://orcid.org/0000-0001-9923-2108
mailto:mvitvic@dsic.upv.es
http://www.upv.es/ficha-personal/mvitvic
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.44
http://zenon.dsic.upv.es/confident/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Confluence of Conditional Rewriting in Logic Form

(rule-based) formalism (e.g., (conditional) term rewriting [3]) or programming language? (ii)
How to prove/disprove (local) confluence of such a reduction relation? (iii) How to automate
the proofs? In this paper we address these problems.

Regarding (i), we use a logical approach to define reduction relations. Given a specification
R, we obtain an inference system I(R) out from the generic description of the operational
semantics of the underlying formalism or language. Then, → and →∗ are defined by
satisfiability of atoms s → t and s →∗ t in a canonical model MR which is the Herbrand
model (in an “extended” Herbrand universe where variables are treated as constants) of the
atoms that can be proved using I(R). This general approach applies to many computational
systems and programming languages, in particular to conditional term rewriting systems
(CTRS, see, e.g., [23, Chapter 7]), and Maude [5]. In Section 3, we develop this approach
with a particular focus on CTRSs (to keep things simpler). Most ideas, though, can be easily
generalized. Regarding (ii), we represent confluence properties above in logic form, e.g.,

φWCR (∀x)(∀y)(∀z)(∃u) x → y ∧ x → z ⇒ y →∗ u ∧ z →∗ u Local confluence
φCR (∀x)(∀y)(∀z)(∃u) x →∗ y ∧ x →∗ z ⇒ y →∗ u ∧ z →∗ u Confluence

In Section 4, we show that (local) confluence is characterized as satisfiability in MR, i.e.,
R is (locally) confluent iff MR |= φCR (resp. MR |= φWCR) holds. Regarding (iii), in
Section 6 we show how to translate confluence problems into combinations of (in)feasibility
problems [11]. In this setting, automated proofs are possible by using several techniques
and tools developed so far, see [21] for a summary of techniques and tools in this respect.
Section 7 shows how these techniques are used to prove and disprove confluence of CTRSs.
We have implemented our results as part of the new tool CONFident, which can be found
here:

http://zenon.dsic.upv.es/confident/

Section 8 provides some details of its implementation and use. The good results of the
aforementioned techniques are witnessed by our participation in the 2021 edition of the
Confluence Competition (CoCo 2021) on which we report at the end of the section. Section 9
discusses some related work. Section 10 concludes. Proofs of technical results are given in an
appendix.

2 Preliminaries

Given a binary relation R ⊆ A × A on a set A, we often write a R b instead of (a, b) ∈ R. The
transitive closure of R is denoted by R+, and its reflexive and transitive closure by R∗. An
element a ∈ A is irreducible (or an R-normal form), if there exists no b such that a R b. Given
a ∈ A, if there is no infinite sequence a = a1 R a2 R · · · R an R · · · , then a is R-terminating
(or well-founded); also, R is said terminating if a is R-terminating for all a ∈ A. We say that
R is (locally) confluent if, for every a, b, c ∈ A, whenever a R∗b and a R∗c (resp. a R b and
a R c), there exists d ∈ A such that b R∗d and c R∗d.

We use the standard notations in term rewriting (see, e.g., [23]). In this paper, X denotes
a countable set of variables and F denotes a signature, i.e., a set of function symbols {f, g, . . .}
(disjoint from X), each with a fixed arity given by a mapping ar : F → N. The set of
terms built from F and X is T (F , X). The set of ground terms (i.e., terms without variable
occurrences) is denoted T (F). The set of variables occurring in t is Var(t). By abuse of
notation, we use Var also with sequences of terms or other expressions to denote the set of
variables occurring in them. Terms are viewed as labeled trees in the usual way. Positions

http://zenon.dsic.upv.es/confident/

R. Gutiérrez, S. Lucas, and M. Vítores 44:3

p, q, . . . are represented by chains of positive natural numbers used to address subterms t|p
of t. The set of positions of a term t is Pos(t). A substitution is a mapping from variables
into terms which is homomorphically extended to a mapping from terms to terms.

A conditional rule (with label α) is written α : ℓ → r ⇐ C, where ℓ ∈ T (F , X) − X
and r ∈ T (F , X) are called the left- and right-hand sides of the rule, respectively, and the
conditional part C is a sequence s1 ≈ t1, · · · , sn ≈ tn with s1, t1, . . . , sn, tn ∈ T (F , X) for
some n ≥ 0. The case n = 0 corresponds to an empty conditional part. A Conditional Term
Rerwiting System (CTRS) R is a set of conditional rules; if all rules ℓ → r ⇐ C in R have
an empty conditional part and Var(r) ⊆ Var(ℓ) holds, then R is called a Term Rewriting
System (TRS).

3 Term Rewriting as Satisfiability

In term rewriting variables occurring in terms ti in reduction sequences t1 → t2 → · · · → are
treated as constants in the sense that they are not instantiated in any way. This is in contrast
with variables occurring in rules of TRSs which are instantiated to implement reduction steps
by means of matching substitutions. In the following we provide a formal presentation of
this fact which permits the definition of a canonical model MR which captures the reduction
of terms with variables, in contrast to the usual (ground) models developed elsewhere (e.g.,
[6]) which are better suited to capture ground rewriting, i.e., rewriting of ground terms.

▶ Remark 1 (Confluence and ground confluence). In general, confluence and ground confluence
(i.e., confluence of → when restricted to ground terms) of (C)TRSs do not coincide. For
instance, the TRS R = {f(x) → a, f(x) → x} over the signature F = {a, f} is ground
confluent, but not confluent. If a new constant b is added to F , then R is not ground
confluent anymore.

In Section 4 we use MR to provide a characterization of confluence properties as satisfiability
in MR. In the following, as anticipated by the expression of (local) confluence using first-order
formulas φCR and φWCR, we view term rewriting from a logical point of view. A first-order
language with function symbols f, g, . . . from a signature F and predicate symbols P, Q, . . .

from a signature Π is considered where atoms and formulas are built in the usual way. The
pair F , Π is often called a signature with predicates [9]. In particular, rewriting expressions
s → t (one-step reduction), s →∗ t (zero or many-step reduction), s ↓ t (joinability), etc., are
viewed as atoms with (binary) predicate symbols →, →∗, ↓, etc.

3.1 Operational Semantics of Conditional Rewriting in Logic Form
Conditions s ≈ t in conditional rules admit several semantics, i.e., forms to evaluate them
see, e.g., [23, Definition 7.1.3]. Oriented CTRSs are those whose conditions s ≈ t are handled
as reachability tests. Join CTRSs use joinability tests instead. Semiequational CTRSs use
convertibility tests. For oriented CTRSs R, an inference system IO(R) is obtained from the
following generic inference system IO-CTRS:

(Rf)
x→∗ x

(C)f,i
xi → yi

f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)
for all f ∈ F and 1 ≤ i ≤ k

(T) x→ y y →∗ z

x→∗ z
(Rl)α

s1 →∗ t1 · · · sn →∗ tn

ℓ→ r

for α : ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R

FSTTCS 2021

44:4 Confluence of Conditional Rewriting in Logic Form

(∀x) x →∗ x (4)
(∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z (5)
(∀x, y, z) x → y ⇒ f(x, z) → f(y, z) (6)
(∀x, y, z) x → y ⇒ f(z, x) → f(z, y) (7)

a → b (8)
(∀x) f(x, a) →∗ f(b, b) ⇒ f(c, x) → x (9)

(∀y) (y, y) → b (10)

Figure 1 Theory RO for the oriented semantics of R in Example 3.

by specializing (C)f,i for each k-ary symbol f in the signature F and 1 ≤ i ≤ k and (Rl)α for all
conditional rules α : ℓ→ r ⇐ C in R [14, Section 4.5]. Inference rules in IO(R) are schematic: each
inference rule B1 ··· Bn

A
in IO(R) can be used under any instance σ(B1) ··· σ(Bn)

σ(A) of the rule by a
substitution σ. For join CTRSs, we replace rule (Rl)α by

(Rl)J
α

s1 →∗ z1 t1 →∗ z1 · · · sn →∗ zn tn →∗ zn

ℓ→ r

where z1, . . . , zn do not occur in ℓ, r, si, ti for 1 ≤ i ≤ n. In this way, we obtain IJ-CTRS and IJ (R)
from IJ-CTRS as before. Note that the joinability predicate ↓ is not necessary.
▶ Remark 2 (Semi-equational CTRSs). For semi-equational CTRSs we would proceed similarly,
defining a new rule (Rl)SE

α borrowing (Rl)α where ↔∗ is used instead of →∗, and adding more
inference rules to deal with ↔∗: first x→y

x↔y
, also y→x

x↔y
, and then x↔y y↔∗z

x↔∗z
.

We obtain a theory RO (resp. RJ , etc.) from IO(R) (resp. IJ (R), etc.) as follows [14, Section 4.5]:
the inference rules (ρ) B1 ··· Bn

A
in I(R) are considered as sentences ρ of the form (∀x⃗)B1∧· · ·∧Bn ⇒

A, where x⃗ is the sequence of variables occurring in atoms B1, . . . , Bn and A; if empty, we just write
B1 ∧ · · · ∧Bn ⇒ A.

▶ Example 3. Consider the CTRS R

a → b (1)
f(c, x) → x⇐ f(x, a) ≈ f(b, b) (2)
f(y, y) → b (3)

The theory RO can be found in Figure 1. Note that this gives R the computational semantics of an
oriented CTRS. Also, RJ = {(4), (5), (6), (7), (8), (10), (11)} for

(∀x)(∀z) f(x, a)→∗ z ∧ f(b, b)→∗ z ⇒ f(c, x)→ x (11)

i.e., we use (11) instead of (9). We usually just write R to denote the (appropriate) theory associated
to a (join, oriented,. . .) CTRS. In the following, given a first-order theory Th and a formula φ,
Th ⊢ φ means that φ is deducible from (or a logical consequence of) Th.

For all terms s, t, we write (i) s→R t (resp. s→∗
R t) iff there is a (well-formed)1 proof tree for

s → t (resp. s →∗ t) using I(R). Equivalently, we have (ii) s →R t (resp. s →∗
R t) iff R ⊢ s → t

(resp. R ⊢ s→∗ t) holds. The first presentation (i) is well-suited for the analysis of the termination
behavior of CTRSs: we say that R is operationally terminating if there is no (well-formed) infinite
proof trees for goals s→ t and s→∗ t in I(R) [16]. However, the proof theoretic presentation (ii) is
more important in the analysis of (in)feasibility of rewriting goals in Section 4. It also suffices to

1 By a well-formed proof tree we mean a proof tree where proof conditions introduced by inference rules
are developed from left to right, see [16].

R. Gutiérrez, S. Lucas, and M. Vítores 44:5

define termination of CTRSs: a CTRS R is terminating if →R is terminating. Termination and
operational termination of CTRSs differ, see [17, Section 3] for a deeper discussion about differences
and connections between both notions.

We use termination and operational termination in some confluence results for CTRSs (Section 7).
The tool mu-term [12] can be used for automatically proving and disproving termination and
operational termination of CTRSs.2

▶ Definition 4 (Joinable terms). Given a CTRS R and terms s, t, we write s ↓R t if and only if
there is a term u such that s→∗

R u and t→∗
R u. We often say that s and t are joinable.

3.2 Dealing With Variables in Terms as (Fresh) Constants
Let F be a signature and X be a set of variables such that F ∩ X = ∅. We let FX = F ∪ CX where
variables x ∈ X are considered (different) constant symbols cx of CX = {cx | x ∈ X} and F and CX

are disjoint. Note that the set T (F ,X) of terms with variables for the signature F is isomorphic
to the set T (FX) of ground terms for FX : given a term t ∈ T (F ,X), t↓ ∈ T (FX) is obtained by
replacing each occurrence of x ∈ X in t by cx.3 Vice versa: given t ∈ T (FX), t↑ ∈ T (F ,X) is
obtained by replacing, for all x ∈ X , each constant cx in t by x.

▶ Proposition 5. For all terms t ∈ T (F ,X), (t↓)↑ = t. For all terms t ∈ T (FX), (t↑)↓ = t.

Also, given a substitution σ : X → T (F ,X), define σ↓ : X → T (FX) to be σ↓(x) = σ(x)↓ for all
x ∈ X (given θ : X → T (FX), define θ↑ : X → T (F ,X) similarly). The following result shows that
rewriting with terms in T (F ,X) can be simulated as ground rewriting in T (FX).

▶ Proposition 6. Let R = (F , R) be a CTRS and s, t ∈ T (F ,X). Then, s →R t if and only if
s↓ →R t↓ and s→∗

R t if and only if s↓ →∗
R t↓.

In the following, given a condition C, i.e., s1 ≈ t1, . . . , sn ≈ tn, we write C↓ to denote s↓
1 ≈

t↓
1, . . . , s↓

n ≈ t↓
n.

3.3 A Ground Model for Rewriting Terms with Variables
Given a signature with predicates F , Π, an F , Π-structure A (or just structure if F , Π is clear from
the context) consists of a domain (also denoted) A together with an interpretation of the function
symbols f ∈ F and predicate symbols P ∈ Π as mappings fA and relations P A on A, respectively.
Then, the usual interpretation of first-order formulas with respect to A is considered [20, page 60].
An F , Π-model for a theory Th, i.e., a set of first-order sentences (formulas whose variables are all
quantified), is just a structure A that makes them all true, written A |= Th. A formula φ is a logical
consequence of a theory Th (written Th |= φ) iff every model A of Th is also a model of φ. The
canonical model MR of a CTRS R is defined as follows.

▶ Definition 7 (Canonical model for conditional rewriting). Let R be a CTRS. The canonical modelMR

of R has domain T (FX); each k-ary symbol f ∈ F is interpreted as fMR (t1, . . . , tk) = f(t1, . . . , tk)
for all t1, . . . , tk ∈ T (FX). Finally, predicate symbols → and →∗ are interpreted as follows:

→MR = {(s↓, t↓) | s, t ∈ T (F ,X) ∧ s→R t} (→∗)MR = {(s↓, t↓) | s, t ∈ T (F ,X) ∧ s→∗
R t}

2 Although the version of mu-term described in [12] did not allow proofs of termination of CTRSs, for the
purpose of serving as a backbone for CONFident, we recently modified mu-term as to provide explicit
use of the techniques described in [18], which can be used to prove and disprove termination of CTRSs.
Thus, mu-term users can prove and disprove termination of CTRSs by following the instructions in
http://zenon.dsic.upv.es/muterm/?name=documentation#CTRSs.

3 We use ↓ as superindex denoting this grounding operation as in t↓, hopefully not leading to confusion
with the infix use of ↓ as joinability operator, as in s ↓ t.

FSTTCS 2021

http://zenon.dsic.upv.es/muterm/?name=documentation#CTRSs

44:6 Confluence of Conditional Rewriting in Logic Form

Definition 7 generalizes to accomodate interpretations for ↔ and ↔∗ in semi-equational CTRSs in
the obvious way.4

▶ Theorem 8. For all CTRSs R, MR |= R.

We have the following:

▶ Proposition 9. Let R = (F , R) be a CTRS, s, t ∈ T (F ,X), and x⃗ = x1, . . . , xn denote the
variables occurring in s and t, i.e., Var(s) ∪ Var(t) = {x1, . . . , xn}. Then,
1. We have that σ(s) →∗

R σ(t) for all substitutions σ : X → T (F ,X), if and only if (s↓, t↓) ∈
(→∗)MR .

2. MR |= (∀x⃗) s→∗ t if and only if (s↓, t↓) ∈ (→∗)MR .
Proposition 9 shows that we can remove universal quantifiers from reachability formulas if variables
x in the involved terms are replaced by the corresponding constants cx.

4 Confluence of Rewriting as a Satisfiability Problem

In view of Section 3.1, it is perhaps natural to adopt a proof theoretical definition of (local) confluence
of CTRSs as follows: a CTRS is (locally) confluent if and only if R ⊢ φCR (resp. R ⊢ φWCR) holds.
The following example (using a TRS) shows that this is not equivalent to the usual definition.

▶ Example 10. A well-known example of a locally confluent but nonconfluent TRS is R = {b→
a, b→ c, c→ b, c→ d}. The theory R for R is

(∀x) x →∗ x

(∀x, y, z) x→ y ∧ y →∗ z ⇒ x →∗ z

b → a
b → c

c → b
c → d

Unfortunately, φWCR is not a logical consequence of R (i.e., R |= φWCR does not hold) and hence5

it cannot be proved from R (i.e., R ⊢ φWCR does not hold): there is a model A of R which is not a
model of φWCR. The interpretation domain is A = {0, 1, 2, 3, 4}, function symbols are interpreted
by: aA = 0, bA = 1, cA = 2, dA = 3, and predicate symbols by

→A = {(1, 0), (1, 2), (2, 1), (2, 3), (4, 0), (4, 3)}
(→∗)A = {(1, 0), (1, 2), (2, 1), (2, 3), (4, 0), (4, 3)} ∪ {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)} ∪ {(2, 0), (1, 3)}

Although A |= R holds, with the valuation α given by α(x) = 4, α(y) = 0 and α(z) = 3,
[x → y ∧ x → z]Aα holds true, but [y →∗ u ∧ z →∗ u]Aα is false for all valuations of u. Thus,
A |= φWCR does not hold. Hence R |= φWCR does not hold either.

Instead, we use MR to define (local) confluence as satisfiability in MR.

▶ Theorem 11 (Confluence of CTRSs as satisfiability in MR). A CTRS R is (locally) confluent if
and only if MR |= φCR (resp. MR |= φWCR) holds.

Now, as a consequence of [14, Corollary 14] and Theorem 11, we have the following:

▶ Corollary 12. Let R be a CTRS. If MR ⊢ φCR (resp. MR ⊢ φWCR) holds, then R is (locally)
confluent.

Example 10 shows that the statement in Corollary 12 cannot be reversed.

4 The theory RJ associated to a join CTRS R uses predicates → and →∗ only. Hence, no change in the
definition of MR is necessary. According to Remark 2, though, for semi-equational CTRSs additional
predicate symbols ↔ and ↔∗ are necessary. We just need to enrich MR with the corresponding
interpretations for those new predicate symbols.

5 By Gödel’s completeness theorem, see, e.g., [20, Corollary 2.19], deducibility and logical consequence
are equivalent, i.e., Th ⊢ φ iff Th |= φ.

R. Gutiérrez, S. Lucas, and M. Vítores 44:7

5 Proofs of confluence using critical pairs

In proofs of confluence, joinability of critical pairs plays a main role. A conditional critical pair
(CCP) is an expression ⟨s, t⟩ ⇐ C where ⟨s, t⟩ is the peak of the CCP, for terms s and t, and C is
the conditional part, i.e., a sequence s1 ≈ t1, . . . , sn ≈ tn of conditions. They are obtained from
CTRSs as follows, see, e.g., [7, Definition 3] and also [23, Definition 7.1.8(1)].

▶ Definition 13 (Conditional critical pair). Let R be a CTRS. Let α : ℓ→ r ⇐ C and α′ : ℓ′ → r′ ⇐ C′

be rules of R sharing no variable (rename if necessary). Let p ∈ PosF (ℓ) be a nonvariable position of
ℓ such that ℓ|p and ℓ′ unify with mgu σ. Then, we call the expression ⟨σ(ℓ[r′]p), σ(r′)⟩ ⇐ σ(C), σ(C′)
a conditional critical pair (CCP) of R. If α and α′ are (possibly renamed versions of) the same
rule, the case p = Λ is not considered to obtain a CCP.

CCPs ⟨s, t⟩ ⇐ C whose conditional part C is empty are called critical pairs and simply written ⟨s, t⟩
as in the usual notation and definition, see, e.g., [23, Definition 4.2.1]. TRSs have (unconditional)
critical pairs only; the set of critical pairs of a TRS R is denoted CP(R). In the following, CCP(R)
denotes the set of CCPs of a CTRS R. Note that CP(R) ⊆ CCP(R), as ordinary, unconditional
critical pairs are particular CCPs with an empty conditional part. Although conditions si ≈ ti

admit multiple interpretations (as joinability, reachability, etc.), joinability of a critical pair is
homogeneously defined as follows [23, Definition 7.1.8(2)]:

▶ Definition 14 (Joinable conditional critical pair). Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical
pair. We say that π is joinable if σ(s) ↓R σ(t) holds for all substitutions σ such that σ(C) holds.
Otherwise, π is not joinable.

An important aspect in the analysis of confluence is checking (conditional) critical pairs for
(non)joinability. The following result provides a logical characterization of joinability of the CCPs of
a CTRS R as satisfiability in MR.

▶ Proposition 15. Let R be a CTRS. A CCP π : ⟨s, t⟩ ⇐ C is joinable if and only if MR |=
(∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds, where x⃗ = x1, . . . , xm are the variables occurring in C, s, t and
z /∈ Var(C, s, t).

The following sections investigate how to prove and disprove joinability of conditional critical pairs
by (dis)proving appropriate feasibility problems using existing tools like infChecker6 to automatically
prove and disprove such feasibility problems [11].

6 Joinability of Terms and Feasibility Problems

Given a set P of (binary) predicates, let T = {Th▷◁ | ▷◁∈ P} be a P-indexed set of first-order theories
Th▷◁ defining predicates ▷◁. An f-condition is an atom s ▷◁ t where ▷◁ ∈ P and s, t ∈ T (F ,X).
Sequences F = (γi)n

i=1 = (γ1, . . . , γn) of f-conditions are called f-sequences. We often drop “f-” when
no confusion arises. Empty sequences are written ().

▶ Definition 16 (Feasibility). A condition s ▷◁ t is (T, σ)-feasible if Th▷◁ ⊢ σ(s) ▷◁ σ(t) holds;
otherwise, it is (T, σ)-infeasible. We also say that s ▷◁ t is T-feasible (or Th▷◁-feasible, or just feasible
if no confusion arises) if it is (T, σ)-feasible for some substitution σ; otherwise, we call it infeasible.

A sequence F is T-feasible (or just feasible) iff there is a substitution σ such that, for all γ ∈ F,
γ is (T, σ)-feasible. Note that () is trivially feasible.

In the following, Th▷◁ = R for all ▷◁ ∈ {→,→∗, ↓, . . .}.

6 http://zenon.dsic.upv.es/infChecker/

FSTTCS 2021

http://zenon.dsic.upv.es/infChecker/

44:8 Confluence of Conditional Rewriting in Logic Form

6.1 Proving Conditional Joinability
Proposition 15 characterizes joinability of the CCPs of a CTRS R as the satisfiability of a logical
sentence inMR. In the following, we show how to advantageously use the results in [14, 11] to prove
and disprove joinability of CCPs. The following consequence of Proposition 15 and [14, Corollary 14]
provides a sufficient condition for joinability of CCPs.

▶ Corollary 17. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If R ⊢ (∀x⃗)(∃z) C ⇒ s→∗

z ∧ t→∗ z holds, then π is joinable.

This result can be used together with theorem provers like Prover9 [19] for a practical use in proofs
of joinability of critical pairs. The following result is a consequence of Proposition 15.

▶ Corollary 18. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If s↓ →∗ z, t↓ →∗ z is
R-feasible, then π is joinable.

▶ Example 19. Consider the following variant R of the CTRS in Example 3:

a → b (12)
f(c, x) → a⇐ f(x, a) ≈ f(b, b) (13)
f(y, y) → b (14)

Note that rule (13) is feasible, both under join and oriented semantics: f(a, a)→ f(b, a)→ f(b, b)
(which implies f(a, a) ↓ f(b, b)). The only CCP is π : ⟨a, b⟩ ⇐ f(c, a) ≈ f(b, b). Since a→∗ z, b→∗ z

is R-feasible (both for the join and oriented semantics of R), by Corollary 18, π is joinable.

6.2 Disproving Conditional Joinability
Regarding proofs of non-joinability, we show how to formulate it as an feasibility problem.

▶ Proposition 20. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that C↓ is R-feasible.
If s↓ →∗ z, t↓ →∗ z is R-infeasible, then π is not joinable.

▶ Example 21. Consider the following CTRS R

f(x, x) → x⇐ f(x, x) ≈ b (15)
f(y, y) → b (16)

There is only one critical pair π : ⟨x, b⟩ ⇐ f(x, x) ≈ b. Note that f(cx, cx) ≈ b is R-feasible due to
the unconditional rule (this can be proved with infChecker). Non-joinability of π can be proved as
the R-infeasibility of

cx →∗ z, b→∗ z (17)

using infChecker. By Proposition 20, π is not joinable.

The following result characterizes joinability of CCPs ⟨s, t⟩ ⇐ C where the conditional part C and
the peak ⟨s, t⟩ share no variable.

▶ Proposition 22. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that Var(s, t)∩Var(C) =
∅. Then, π is joinable if and only if C is R-infeasible or s↓ →∗ z, t↓ →∗ z is R-feasible.

▶ Example 23. Consider the CTRS R in Example 3. As in Example 19 for (13), rule (2) is feasible,
both under join and oriented semantics. There is a single critical pair π : ⟨c, b⟩ ⇐ f(c, a) ≈ f(b, b).

As a join CTRS, R-feasibility of f(c, a) ↓ f(b, b) together with R-infeasiblity of c→∗ z, b→∗ z

can both be proved with infChecker. Thus, π is not joinable.
As an oriented CTRS, R-infeasibility of f(c, a)→∗ f(b, b) can be proved with infChecker. Thus,
π is joinable.

For TRSs, whose critical pairs have no conditional part, we have the following characterization of
joinability as a consequence of Proposition 22.

R. Gutiérrez, S. Lucas, and M. Vítores 44:9

▶ Corollary 24. Let R be a (C)TRS. A critical pair ⟨s, t⟩ is joinable if and only if s↓ →∗ z, t↓ →∗ z

is R-feasible.

Actually, Corollary 24 characterizes joinability of terms s and t (being part of a critical pair or not).

▶ Example 25. Consider the following TRS from COPS (http://cops.uibk.ac.at/?q=999)

a(b(x)) → b(c(x)) (18)
c(b(x)) → b(c(x)) (19)
c(b(x)) → c(c(x)) (20)
b(b(x)) → a(c(x)) (21)
a(b(x)) → a(b(x)) (22)
c(c(x)) → c(b(x)) (23)
a(c(x)) → c(a(x)) (24)

By Corollary 24, joinability of the critical pair ⟨a(a(c(x))), b(c(b(x)))⟩ can be disproved as the
infeasibility of a(a(c(cx)))→∗ z, b(c(b(cx)))→∗ z, which is proved by infChecker.

7 Confluence of CTRSs

In the analysis of confluence of CTRSs, a crucial notion is that of conditional critical pairs associated
to a CTRS R. We have the following (well-known) fact.

▶ Proposition 26. Let R be a CTRS. If CCP(R) contains a non-joinable CCP, then R is not
(locally) confluent.

▶ Example 27. For the TRS R in Example 25, since CP(R) contains a nonjoinable critical pair
⟨a(a(c(x))), b(c(b(x)))⟩, by Proposition 26 we conclude that R is not confluent.

▶ Example 28. As a consequence of Proposition 26, R in Example 3, when considered as a join
CTRS, is not confluent. Except for CONFident, no tool available on the confluence platform CoCoWeb
[13], which provides access to several confluence tools, was able to reach this conclusion, as join
CTRSs are accepted (as part of COPS syntax), but currently unsupported by other confluence tools
in the platform. CONFident is able to provide a negative answer using Proposition 22 to prove
nonjoinability of the only CCP, and then Proposition 26 to conclude nonconfluence.

Dershowitz, Okada, and Sivakumar proved that a terminating (noetherian in their terminology) join
CTRSs is confluent if all its critical pairs are joinable overlays [7, Theorem 4], where a (conditional)
critical pair is an overlay if the critical position is the top position Λ [7, Definition 8].

▶ Example 29. Note that the CCP π for R in Example 19 is an overlay. It is joinable, as proved
in the example (both for the join and oriented semantics). The CTRS R is terminating as the
underlying TRS Ru = {a→ b, f(c, x)→ a, f(x, x)→ b} is clearly terminating. Thus, by [7, Theorem
4], R (viewed as a join CTRS) is confluent.

Unfortunately, this does not hold for oriented CTRSs.

▶ Example 30. The following oriented CTRS R [26, Counterexample 3.3]

a → b (25)
f(x) → c⇐ x ≈ a (26)

is terminating (the underlying TRS Ru = {a → b, f(x) → c} is clearly terminating), and has
no (conditional) critical pair. However, f(b) ← f(a) → c, but c is irreducible and f(b) also is as
the conditional part x ≈ a of rule (26), when instantiated by b ≈ a is not satisfiable by using a
reachability test b→∗ a. Hence f(b) and c are not joinable and R is not confluent.

FSTTCS 2021

http://cops.uibk.ac.at/?q=999

44:10 Confluence of Conditional Rewriting in Logic Form

Normal CTRSs are CTRSs where terms t in conditions s ≈ t of the conditional part of rules are
ground, irreducible terms.
▶ Remark 31 (Normal join, oriented, and semiequational CTRSs). Nowadays, the notion of a normal
CTRS R usually assumes that R is an oriented CTRS, see, e.g., [23, Definition 7.1.3]. Other authors,
though, have defined the notion of a normal join CTRS as one whose joinability conditions s ↓ t in
conditional rules always satisfy the restriction of t being an irreducible ground term [7, Definition 2];
then, the authors remark that normal join CTRSs can be seen as what we call normal CTRSs today.
Hence, normal join and oriented CTRSs coincide. As for semi-equational CTRSs, if normality is
required, then s ↔∗ t if and only if s →∗ t because t is irreducible. Therefore, when referring to
normal join, oriented, or semiequational CTRSs we are actually dealing with one and the same kind
of CTRSs.
For this reason, conditions of normal CTRSs can be equivalently handled as joinability conditions
si ↓ ti. Neither R in Example 30 nor R in Example 19 are normal. The following result, which is a
simple consequence of [7, Theorem 4], is useful:

▶ Corollary 32. A terminating normal CTRS is confluent if all its critical pairs are joinable overlays.

▶ Example 33. Consider the following normal CTRS

c → b (27)
d → b (28)

f(a, x) → c⇐ x ≈ a (29)
f(x, x) → d⇐ x ≈ a (30)

g(x) → d⇐ g(x) ≈ b (31)
g(a) → f(a, a) (32)

which is terminating, as the underlying TRS Ru is clearly terminating. The system has two (overlay)
conditional critical pairs which are feasible and joinable:

⟨c, d⟩ ⇐ a ≈ a with (29) and (30) (33)
⟨d, f(a, a)⟩ ⇐ g(a) ≈ b with (31) and (32) (34)

As for (33), using (27) and (28) we join c and d into b. Regarding (34), we have f(a, a)→(30) d. By
Corollary 32, R is confluent. No tool in CoCoWeb is able to prove it.

An oriented CTRS R is called deterministic (DCTRS) if for each rule ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn

in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(ℓ) ∪
⋃i−1

j=1 Var(tj). In the literature on confluence
of DCTRSs, some results that use termination properties of CTRSs to guarantee confluence have
been reported. For instance, [2, Theorem 4.1] establishes that a quasi-reductive strongly deterministic
CTRS is confluent if and only if its CCPs are all joinable. Strongly deterministic CTRSs (SDCTRSs)
are DCTRSs R where all conditions s ≈ t in the conditional part C of rules ℓ → r ⇐ C ∈ R
are strongly irreducible, i.e., every instance σ(t) of t by an irreducible substitution σ is irreducible
[2, Definition 4.1]. Clearly, normal DCTRSs are SDCTRSs. Quasi-reductiveness (see, e.g., [23,
Definition 7.2.36]) guarantees quasi-decreasingness of the DCTRS (see [23, Definition 7.2.39 and
Lemma 7.2.40]). As proved in [16], quasi-decreasingness is equivalent to operational termination.
Other results in the literature (see [23, Section 7.3]) usually require quasi-decreasingness, i.e,
operational termination. Operationally terminating CTRSs are terminating, but not vice versa. For
instance, viewed as an oriented CTRS, the (deterministic) CTRS R in Example 33 is terminating
(this can be proved by using mu-term) but it is not operationally terminating (this can also be
proved with mu-term). Therefore, the aforementioned results in [2, 23] cannot be used to prove
confluence of R in Example 33. Further results for proving confluence of terminating CTRSs are
reported in [10]; however, they apply to join CTRSs only.

Most confluence criteria for proving confluence of CTRSs involve checking (non)joinability of
(feasible) CCPs, possibly in connection with other structural or syntactical requirements on the
CTRS (e.g., left-linearity, etc.). The focus in this paper has been the investigation of (non)joinability
criteria which can be used together with these confluence criteria. The following section discusses
our implementation of those techniques and its impact in proofs of confluence of CTRSs in practice.

R. Gutiérrez, S. Lucas, and M. Vítores 44:11

Table 1 Meaning of CONDITIONTYPE in COPS syntax.

CONDITIONTYPE here == means
ORIENTED →∗

JOIN ↓
SEMI-EQUATIONAL ↔∗

8 Implementation and Experimental Evaluation
CONFident 1.0 is written in Haskell and consists of 80 Haskell modules with around 14000 lines
of code. The tool is accessible through its web interface (see Section 1). The input format is an
extended version of the Confluence Competition (CoCo) format [21], which is the official format
used in the confluence (CR) category of the competition. The input is a CTRS R in TPDB/COPS
format7. As in COPS syntax, symbol == stands for ≈ above to specify the conditional part of
rewrite rules. Its meaning depends on the CONDITIONTYPE section of the input specifying how the
conditions of rules are evaluated [23, Definition 7.1.3] according to Table 1. Furthermore, in our
extended version of TPDB/COPS syntax we can combine those relations by using them directly in
the condition part of the rules: we use ->* for →∗, ->*<- for ↓ and <–>* for ↔∗.

The implementation is based on a divide and conquer schema where, given an input problem, there
is a set of techniques and an application strategy for those techniques. The techniques can simplify
the problem, reduce it into a set of simpler problems or just give a positive or negative answer. We
consider two types of problems: Rewriting problems and Conditional Rewriting problems. Each type
of problem has its own strategy and processors. Although there are processors that can be applied to
Rewriting and Conditional Rewriting problems indifferently, from the implementation point of view
we prefer to implement them separately because we can apply simplifications when conditions are not
considered. According to Section 3.1, when the system is parsed, the tool computes RJ , RO, or RSE

(depending on the CONDITIONTYPE section) and then applies the appropriate strategy. Our proof
strategy is based on experimentation: we try to first apply techniques that simplify the problems
and reduce them into simpler problems (e.g., remove unnecesary rules and apply modularity results).
When all simplification techniques have been applied, we analyze the problem in order to extract
good properties that guide the strategy (linearity, weak normalization, termination, operational
termination, strongly deterministic conditions, or right stability, see [16, 23] for definitions of these
concepts). Then we calculate its conditional critical pairs and apply the techniques presented
in the paper combined with classical techniques to check the joinability or non-joinability of the
critical pairs. We also apply transformations to convert CTRSs into confluence equivalent TRSs and
CS-TRSs [15]. If the final answer is YES or NO, the tool displays a report in plain text. Otherwise,
MAYBE is returned. More details can be found in [28].

We participated in the CTRS (CR) category of CoCo 2021.8 With a timeout of 60 seconds,
the participating tools are expected to return a proof of confluence or nonconfluence (or a maybe
answer) for each of the considered problems. The other participating tools this year were CO3 [22]
and ACP [1]. The test set used in CoCo 2021 included 100 examples (see http://cops.uibk.ac.
at/results/?y=2021&c=CTRS). The following table sumarizes the obtained results:9

CTRS CR Tool Yes No Total
CONFident 37 24 61

CO3 28 19 47
ACP 29 15 44

Accordingly, CONFident was declared the winner of the competition.10

7 See http://zenon.dsic.upv.es/muterm/?name=documentation#formats
8 http://project-coco.uibk.ac.at/2021/
9 The 2020 version of the tool ConCon http://cl-informatik.uibk.ac.at/software/concon/ particip-

ated in CoCo 2021 as the winner of the CTRS category in 2020. Its results are displayed in the
aforementioned web page.

10 See http://project-coco.uibk.ac.at/2021/results.php

FSTTCS 2021

http://cops.uibk.ac.at/results/?y=2021&c=CTRS
http://cops.uibk.ac.at/results/?y=2021&c=CTRS
http://zenon.dsic.upv.es/muterm/?name=documentation#formats
http://project-coco.uibk.ac.at/2021/
http://cl-informatik.uibk.ac.at/software/concon/
http://project-coco.uibk.ac.at/2021/results.php

44:12 Confluence of Conditional Rewriting in Logic Form

CONFident is able to obtain confluence proofs not only for oriented CTRSs (which is the focus
of CoCo CTRS category) but also for join CTRSs as explained above (and currently unsupported
by the tools participating in the confluence competition). Full proofs for the discussed examples of
join CTRSs can also be found in the benchmarks section of the tool web site.

9 Related Work

Plaisted’s presentation of conditional rewriting [24] is related to ours. Conditional rules are viewed
as (universally quantified) formulas C ⇒ ℓ→ r, which can be seen as first-order formulas. Semantic
interpretations, though, consist of a base domain DB (an “ordinary” domain as introduced in Section
3.3) and an extended domain DE = T (F ∪DB) where values of the domain DB are treated as
constants. Symbols f have an interpretation11 f I , i.e., a mapping f I : DE × · · · ×DE → DE defined
so that f I(t1, . . . , tk) = f(t1, . . . , tk). Conveniently, if a ∈ DB , then aI = a. Terms in T (F ,X) are
interpreted as usual, except that Plaisted also interprets variables x ∈ X as xI ∈ DE . The usual
valuation of variables of first-order logic is therefore integrated as part of the interpretation I. In this
respect, his semantic approach differs from the usual one in first order logic (indeed, he rather speaks
of term logic when referring it). Predicates→ and→∗ are interpreted as subsets of DE×DE . Atoms
s→ t and s→∗ t are then interpreted as expected: (s→ t)I = sI →I tI and (s→∗ t)I = sI(→∗)ItI .
An interpretation I is a rewriting model of a CTRS R if I satisfies the formulas in R together with
a number of axioms A which, essentially, are the ones we obtain from the inference rules (Rf), (T),
and (C)f,i for f ∈ F and 1 ≤ i ≤ ar(f). Plaisted writes R |=m φ if φ is true in all minimal rewriting
models of R.12 Then, a CTRS R is said to be confluent if R |=m φCR holds. Finally, on page 219,
the confluence property of a CTRS is proved equivalent to RI |=m φCR for all minimal rewriting
models I of R, where RI is the (possibly infinite) TRS (i.e., without conditional rules) obtained
from R and I by considering rules s → t (where s, t ∈ T (F ∪DB)) such that s → t is a ground
instance of ℓ → r for some conditional rule ℓ → r ⇐ C, where variables are replaced by terms in
T (F ∪DB) and the corresponding instance C′ of C is true in I. Similar definitions are provided
for local confluence and joinability of critical pairs (which Plaisted calls to pass the critical pair
test). Note that, since there can be infinitely many interpretations I for a given CTRS R, proofs
of confluence in term logic involve the consideration of infinitely many TRSs RI . In contrast, our
definitions of confluence, local confluence, and joinability of CCPs use a single model MR.

In the so-called first-order theory of rewriting (FOThR in the following), a restricted first-order
language (without constant or function symbols), is used. The predicate symbols → and →∗ are
interpreted on the least (ground) Herbrand model HR for the signature F and predicates → and→∗

[6]. In FOThR properties of TRSs R = (F , R) are expressed by satisfiability in HR of FOThR. For
instance HR |= φCR means “the TRS R is ground confluent” (the restriction to ground confuence
is due to the use of HR, which consists of atoms s → t and s →∗ t where s, t ∈ T (F)). Decision
algorithms for FOThR exist for restricted classes of TRSs R like left-linear right-ground TRSs,
where variables are allowed in the left-hand side of the rules (without repeated occurrences of the
same variable) but disallowed in the right-hand side [25]. However, a simple fragment of FOThR like
the First-Order Theory of One-Step Rewriting, where only a single predicate symbol → representing
one-step rewritings with R is allowed, has been proved undecidable even for linear TRSs [27]. In
contrast, we use the full expressive power of first-order logic to represent not only TRSs but also
CTRSs . Also in contrast to FOThR, where function symbols are not allowed in formulas, we can use
arbitrary sentences involving arbitrary terms. This is crucial, for instance, to investigate joinability
of CCPs ⟨s, t⟩ ⇐ C, as s and t are arbitrary terms, and C usually involves nonvariable terms.

On the other hand, the idea of turning variables into constants to see terms with variables as
ground terms of an extended signature is standard in algebraic specifications, see, e.g., [9, page 9].
However, as far as we know, such a model has not been used in the definition or verification of

11 Plaisted interprets symbols in two different ways. This is due to the more general kind of conditional
systems he considers, where the conditional part of rules can include first-order literals defined by an
additional first-order theory. Our simplified presentation suffices to handle the CTRSs considered here.

12 Plaisted obtains each of such minimal models as follows: given an interpretation I, he takes the least
model of the Horn clauses obtained as the ground instances of rules α : ℓ→ r ⇐ C when variables in α
are replaced by terms in T (F ∪DB) (see the proof of his Theorem 1).

R. Gutiérrez, S. Lucas, and M. Vítores 44:13

computational properties like confluence, which is the main focus of this paper. Also, the use of MR

in Section 4 to define joinability of CCPs as satisfaction in MR, and the translation in Section 6 of
joinability problems into feasibility problems where terms with variables are “grounded” using _↓ is,
to the best of our knowledge, also new.

Research on confluence of CTRSs goes back to [4, 7], and many advances have been introduced
in the last years, leading to the construction of several tools which are able to automatically prove
it, see [21] and the references therein. To the best of our knowledge, though, our characterization of
(local) confluence of CTRSs as the satisfiability of appropriate logical formulas in MR (Theorem 11)
and its practical use in Section 7 is new. Also, the idea of decomposing proofs of confluence into
(in)feasibility problems by taking into account the structure of the logic formula, and the use of
constants instead of variables to improve these proves seems to be new.

10 Conclusions and Future Work
In this paper, we deal with computational (reduction) relations → and →∗ associated to reduction-
based systems R in logic form: reduction steps are defined by provability in a given inference
system I(R) obtained from R and the generic system describing the operational semantics of the
language of R, or, equivalently, as logical consequences of a theory R obtained similarly. We
have characterized (local) confluence of CTRSs R as the satisfiability of appropriate first-order
formulas φWCR and φCR in a canonical model MR where variables are treated as constants and
terms with variables in T (F ,X) are treated as ground terms in T (F ∪ CX) (Theorem 11). We have
also similarly characterized joinability of CCPs ⟨s, t⟩ ⇐ C (Proposition 15). Then, we show how to
translate joinability problems into (combinations of) feasibility problems which can be solved using
appropriate techniques and tools. For this purpose, the introduction of constants cx ∈ CX instead
of variables x ∈ X in feasibility goals has been useful to obtain faster proofs.

We have developed a new tool implementing our results: CONFident. We participated in the 2021
edition of the Confluence Competition (CoCo) in the CTRS CR (confluence of CTRSs) category
obtaining good results.

As for future work, we plan to apply our techniques to prove confluence of rewriting-based
programming languages like Maude, whose conditional rules include componenents not explicitly
considered here (matching conditions, etc.) but whose semantics can be defined by using the general
approach sketched in Section 3. Since the analysis of confluence of rewrite theories (which provide
the formal basis for the operational description of Maude programs) is also based in the analysis of
joinability of the appropriate critical pairs [8], we think that our approach will be useful as well.

References
1 Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama. Proving confluence of term rewriting

systems automatically. In Ralf Treinen, editor, Rewriting Techniques and Applications, 20th
International Conference, RTA 2009, Brasília, Brazil, June 29 - July 1, 2009, Proceedings,
volume 5595 of Lecture Notes in Computer Science, pages 93–102. Springer, 2009. doi:
10.1007/978-3-642-02348-4_7.

2 Jürgen Avenhaus and Carlos Loría-Sáenz. On conditional rewrite systems with extra variables
and deterministic logic programs. In Frank Pfenning, editor, Logic Programming and Auto-
mated Reasoning, 5th International Conference, LPAR’94, Kiev, Ukraine, July 16-22, 1994,
Proceedings, volume 822 of Lecture Notes in Computer Science, pages 215–229. Springer, 1994.
doi:10.1007/3-540-58216-9_40.

3 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

4 Jan A. Bergstra and Jan Willem Klop. Conditional rewrite rules: Confluence and termination.
J. Comput. Syst. Sci., 32(3):323–362, 1986. doi:10.1016/0022-0000(86)90033-4.

5 Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007. doi:10.1007/978-3-540-71999-1.

FSTTCS 2021

https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/3-540-58216-9_40
https://doi.org/10.1016/0022-0000(86)90033-4
https://doi.org/10.1007/978-3-540-71999-1

44:14 Confluence of Conditional Rewriting in Logic Form

6 Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90), Phil-
adelphia, Pennsylvania, USA, June 4-7, 1990, pages 242–248. IEEE Computer Society, 1990.
doi:10.1109/LICS.1990.113750.

7 Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Confluence of conditional rewrite
systems. In Stéphane Kaplan and Jean-Pierre Jouannaud, editors, Conditional Term Rewriting
Systems, 1st International Workshop, Orsay, France, July 8-10, 1987, Proceedings, volume
308 of Lecture Notes in Computer Science, pages 31–44. Springer, 1987. doi:10.1007/
3-540-19242-5_3.

8 Francisco Durán and José Meseguer. On the church-rosser and coherence properties of
conditional order-sorted rewrite theories. J. Log. Algebraic Methods Program., 81(7-8):816–850,
2012. doi:10.1016/j.jlap.2011.12.004.

9 Joseph A. Goguen and José Meseguer. Models and equality for logical programming. In
Hartmut Ehrig, Robert A. Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT’87:
Proceedings of the International Joint Conference on Theory and Practice of Software De-
velopment, Pisa, Italy, March 23-27, 1987, Volume 2: Advanced Seminar on Foundations of
Innovative Software Development II and Colloquium on Functional and Logic Programming
and Specifications (CFLP), volume 250 of Lecture Notes in Computer Science, pages 1–22.
Springer, 1987. doi:10.1007/BFb0014969.

10 Bernhard Gramlich and Claus-Peter Wirth. Confluence of terminating conditional rewrite
systems revisited. In Harald Ganzinger, editor, Rewriting Techniques and Applications, 7th
International Conference, RTA-96, New Brunswick, NJ, USA, July 27-30, 1996, Proceedings,
volume 1103 of Lecture Notes in Computer Science, pages 245–259. Springer, 1996. doi:
10.1007/3-540-61464-8_56.

11 Raúl Gutiérrez and Salvador Lucas. Automatically proving and disproving feasibility conditions.
In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th
International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings,
Part II, volume 12167 of Lecture Notes in Computer Science, pages 416–435. Springer, 2020.
doi:10.1007/978-3-030-51054-1_27.

12 Raúl Gutiérrez and Salvador Lucas. mu-term: Verify termination properties automatically
(system description). In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated
Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,
Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science, pages 436–447.
Springer, 2020. doi:10.1007/978-3-030-51054-1_28.

13 Nao Hirokawa, Julian Nagele, and Aart Middeldorp. Cops and CoCoWeb: Infrastructure
for Confluence Tools. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors,
Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
volume 10900 of Lecture Notes in Computer Science, pages 346–353. Springer, 2018. doi:
10.1007/978-3-319-94205-6_23.

14 Salvador Lucas. Proving semantic properties as first-order satisfiability. Artif. Intell., 277,
2019. doi:10.1016/j.artint.2019.103174.

15 Salvador Lucas. Applications and extensions of context-sensitive rewriting. Journal of
Logical and Algebraic Methods in Programming, 121:100680, 2021. doi:10.1016/j.jlamp.
2021.100680.

16 Salvador Lucas, Claude Marché, and José Meseguer. Operational termination of conditional
term rewriting systems. Inf. Process. Lett., 95(4):446–453, 2005. doi:10.1016/j.ipl.2005.
05.002.

https://doi.org/10.1109/LICS.1990.113750
https://doi.org/10.1007/3-540-19242-5_3
https://doi.org/10.1007/3-540-19242-5_3
https://doi.org/10.1016/j.jlap.2011.12.004
https://doi.org/10.1007/BFb0014969
https://doi.org/10.1007/3-540-61464-8_56
https://doi.org/10.1007/3-540-61464-8_56
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1007/978-3-319-94205-6_23
https://doi.org/10.1016/j.artint.2019.103174
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1016/j.ipl.2005.05.002
https://doi.org/10.1016/j.ipl.2005.05.002

R. Gutiérrez, S. Lucas, and M. Vítores 44:15

17 Salvador Lucas and José Meseguer. Dependency pairs for proving termination properties
of conditional term rewriting systems. J. Log. Algebr. Meth. Program., 86(1):236–268, 2017.
doi:10.1016/j.jlamp.2016.03.003.

18 Salvador Lucas, José Meseguer, and Raúl Gutiérrez. The 2D Dependency Pair Framework for
conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci.,
96:74–106, 2018. doi:10.1016/j.jcss.2018.04.002.

19 William McCune. Prover9 & Mace4. Technical report, University of New Mexico, 2005–2010.
URL: http://www.cs.unm.edu/~mccune/prover9/.

20 Elliott Mendelson. Introduction to mathematical logic (4. ed.). Chapman and Hall, 1997.

21 A. Middeldorp, J. Nagele, and K. Shintani. CoCo 2019: report on the eight confluence
competition. J.International Journal on Software Tools for Technology Transfer, to appear,
2021. doi:10.1007/s10009-021-00620-4.

22 Naoki Nishida, Makishi Yanagisawa, and Karl Gmeiner. On Proving Confluence of Condi-
tional Term Rewriting Systems via the Computationally Equivalent Transformation. In 3rd
International Workshop on Confluence, IWC 2014, July 13, 2014, Vienna, Austria, page 42,
2014.

23 Enno Ohlebusch. Advanced topics in term rewriting. Springer, 2002.

24 David A. Plaisted. A logic for conditional term rewriting systems. In Stéphane Kaplan
and Jean-Pierre Jouannaud, editors, Conditional Term Rewriting Systems, 1st International
Workshop, Orsay, France, July 8-10, 1987, Proceedings, volume 308 of Lecture Notes in
Computer Science, pages 212–227. Springer, 1987. doi:10.1007/3-540-19242-5_16.

25 Franziska Rapp and Aart Middeldorp. Automating the first-order theory of rewriting for
left-linear right-ground rewrite systems. In Delia Kesner and Brigitte Pientka, editors, 1st
International Conference on Formal Structures for Computation and Deduction, FSCD 2016,
June 22-26, 2016, Porto, Portugal, volume 52 of LIPIcs, pages 36:1–36:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.FSCD.2016.36.

26 Taro Suzuki, Aart Middeldorp, and Tetsuo Ida. Level-confluence of conditional rewrite systems
with extra variables in right-hand sides. In Jieh Hsiang, editor, Rewriting Techniques and
Applications, 6th International Conference, RTA-95, Kaiserslautern, Germany, April 5-7,
1995, Proceedings, volume 914 of Lecture Notes in Computer Science, pages 179–193. Springer,
1995. doi:10.1007/3-540-59200-8_56.

27 Ralf Treinen. The first-order theory of linear one-step rewriting is undecidable. Theor. Comput.
Sci., 208(1-2):179–190, 1998. doi:10.1016/S0304-3975(98)00083-8.

28 Miguel Vítores. CONFident: a tool for confluence analysis of rewriting systems. PhD thesis,
Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València,
December 2021.

A Proofs of theorems
▶ Proposition 6. Let R = (F , R) be a CTRS and s, t ∈ T (F ,X). Then, s →R t if and only if
s↓ →R t↓ and s→∗

R t if and only if s↓ →∗
R t↓.

Proof. We develop the proof for oriented CTRSs. For join or equational CTRSs, it is similar. We
proceed by multiple induction on the depth d of the proof trees used to prove each goal s→ t (for
s→R t) and s→∗ t (for s→∗

R t). If d = 0, then we consider two cases (we develop the only if part;
the if part is analogous):

s → t is proved using (Rl)α for an unconditional rule α : ℓ → r, i.e., there is a substitution σ

such that s = σ(ℓ) and t = σ(r). Since s↓ = σ(ℓ)↓ = σ↓(ℓ) and t↓ = σ(ℓ)↓ = σ↓(ℓ), we have that
s↓ → t↓ is proved using the same rule.
s→ t is proved using (Rf). In this case, s = t and hence s↓ →∗ t↓ is proved using (Rf).

FSTTCS 2021

https://doi.org/10.1016/j.jlamp.2016.03.003
https://doi.org/10.1016/j.jcss.2018.04.002
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/s10009-021-00620-4
https://doi.org/10.1007/3-540-19242-5_16
https://doi.org/10.4230/LIPIcs.FSCD.2016.36
https://doi.org/10.1007/3-540-59200-8_56
https://doi.org/10.1016/S0304-3975(98)00083-8

44:16 Confluence of Conditional Rewriting in Logic Form

If d > 0, then
s→ t is proved in one of the following two possible ways:

using rule (C)f,i where s = f(s1, . . . , si, . . . sk), t = f(s1, . . . , ti, . . . , sk) for some terms
s1, . . . , sk, ti, using a proof tree T

s→t
, where T is of depth d− 1 and si → ti is the root of T .

By the induction hypothesis, s↓
i → t↓

i can be proved and hence f(s↓
i , . . . , s↓

i , . . . , s↓
k) = s↓ →

t↓ = f(s↓
i , . . . , t↓

i , . . . , s↓
k) can be proved as well using (C)f,i.

using rule (Rl)α for some rule α : ℓ → r ⇐ s1 ≈ t1, . . . , sn ≈ tn and proof tree T1 ··· Tn
s→t

,
where s = σ(ℓ) and t = σ(r) for some substitution σ, and, for all 1 ≤ i ≤ n Ti, is a proof tree
with root σ(si)→∗ σ(ti) and depth at most d− 1. By the induction hypothesis, σ(si)↓ →∗

σ(ti)↓ can be proved for all 1 ≤ i ≤ n using proof trees T ↓
i with root σ(si)↓ →∗ σ(ti)↓. Since

for all terms u ∈ T (F ,X), σ(u)↓ = σ↓(u), there is a proof of s↓ = σ↓(ℓ)→ σ↓(ℓ) = t↓ using
(Rl)α with proof tree T

↓
1 ··· T

↓
n

s↓→t↓ .

s→∗ t is proved using (T) using a proof tree T1 T2
s→∗t

where T1 is a proof tree with root s→ u of
depth at most d− 1 for some term u and T2 is a proof tree with root u→∗ t of depth at most
d − 1. By the induction hypothesis, there are proof trees T ↓

1 and T ↓
2 with roots s↓ → u↓ and

u↓ →∗ t↓. Thus, s↓ →∗ t↓ is proved by the proof tree T
↓
1 T

↓
2

s↓→∗t↓ . ◀

▶ Theorem 8 For all CTRSs R, MR |= R.

Proof. We develop the proof for oriented CTRSs, for join and semi-equational CTRSs being similar.
We consider the sentences derived from each of the four inference rules in IO-CTRS:

From rule (Rf) a single sentence (∀x) x →∗ x ∈ R is obtained. We need to prove that for all
t ∈ T (F ,X), (t↓, t↓) ∈ (→∗)MR holds (remind that T (F ,X) and T (FX) are isomorphic). Since
for all terms t ∈ T (F ,X), t→∗

R t can be proved in I(R) by using axiom (Rf), by definition of
MR, we have (t↓, t↓) ∈ (→∗)MR as required.
From rule (T), a single sentence (∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z ∈ R is obtained.
Then, MR |= (∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z holds if and only if for all substitutions
σ : X → T (F ,X), whenever both (σ↓(x), σ↓(y)) ∈→MR and (σ↓(y), σ↓(z)) ∈ (→∗)MR hold,
then (σ↓(x), σ↓(z)) ∈ (→∗)MR holds as well. If both (σ↓(x), σ↓(y)) ∈→MR and (σ↓(y), σ↓(z)) ∈
(→∗)MR hold, then, by definition of MR, we have σ(x) →R σ(y) and σ(y) →∗

R σ(z). Hence,
σ(x)→∗

R σ(z) can be proved in I(R) and therefore (σ↓(x), σ↓(z)) ∈ (→∗)MR as desired.
For all k-ary symbols f ∈ F and 1 ≤ i ≤ k, from (C)f,i a sentence (∀x1) · · · (∀xk)(∀yi)xi →
yi ⇒ f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk) is obtained. It holds in MR because, for all
terms s1, . . . , sk, ti ∈ T (F ,X), if (s↓

i , t↓
i) ∈→MR , then, by definition of MR, si →R ti can be

proved in I(R), and using (C)f,i we know that f(s1, . . . , si, . . . , sk)→R f(s1, . . . , ti, . . . , sk) can
also be proved, i.e., (f(s↓

1, . . . , s↓
i , . . . , s↓

k), f(s↓
1, . . . , t↓

i , . . . , s↓
k)) ∈→MR holds.

As for (Rl)α, with α : ℓ → r ⇐ s1 ≈ t1, . . . , sn → tn, there is a sentence (∀x⃗)
∧n

i=1 si →∗

ti ⇒ ℓ → r in R. Then, MR |= (∀x⃗)
∧n

i=1 si →∗ ti ⇒ ℓ → r holds if and only if for all
substitutions σ : X → T (F ,X), whenever (σ↓(si), σ↓(ti)) ∈ (→∗)MR holds for all 1 ≤ i ≤ n,
then (σ↓(ℓ), σ↓(r)) ∈→MR holds as well. By definition of MR, if (σ↓(si), σ↓(ti)) ∈ (→∗)MR

holds for all 1 ≤ i ≤ n, then σ(si) →∗
R σ(ti) holds for all 1 ≤ i ≤ n. Therefore, σ(ℓ) →R σ(r)

can be proved in I(R), and hence (σ↓(ℓ), σ↓(r)) ∈→MR , as desired. ◀

▶ Proposition 9. Let R = (F , R) be a CTRS, s, t ∈ T (F ,X), and x⃗ = x1, . . . , xn denote the
variables occurring in s and t, i.e., Var(s) ∪ Var(t) = {x1, . . . , xn}. Then,
1. We have that σ(s) →∗

R σ(t) for all substitutions σ : X → T (F ,X), if and only if (s↓, t↓) ∈
(→∗)MR .

2. MR |= (∀x⃗) s→∗ t if and only if (s↓, t↓) ∈ (→∗)MR .

Proof.
1. As for the if part, if (s↓, t↓) ∈ (→∗)MR holds, then, by definition of MR, s →∗

R t holds. By
closedness of →∗ under substitution application, for all substitutions σ, we have σ(s)→∗

R σ(t).
Regarding the only if part, assume that for all substitutions σ, σ(s)→∗

R σ(t) holds. In particular,
for the empty substitution ϵ, we have s = ϵ(s)→∗

R ϵ(t) = t, i.e., (s↓, t↓) ∈ (→∗)MR .

R. Gutiérrez, S. Lucas, and M. Vítores 44:17

2. The if part is as in the previous item, considering the definition of satisfiability in MR of a
universally quantified formula. Regarding the only if part, if MR |= (∀x⃗) s→∗ t holds, then
for all substitutions σ : X → T (F ,X), (σ↓(s), σ↓(t)) ∈ (→∗

R)MR holds. In particular, for the
empty substitution ϵ, we have ϵ↓(s) = s↓ and ϵ↓(t) = t↓, i.e., (s↓, t↓) ∈ (→∗)MR holds. ◀

▶ Theorem 11. A CTRS is (locally) confluent if and only if MR |= φCR (resp. MR |= φWCR)
holds.

Proof. We develop the proof for confluence (i.e., φCR). For local confluence (i.e., φWCR)) it is
analogous. For the if part, if MR |= φCR holds, then, for all terms s, t, u ∈ T (F ,X), whenever
both (s↓, t↓) ∈ (→∗)MR and (s↓, u↓) ∈ (→∗)MR hold, there is v ∈ T (F ,X) such that both
(t↓, v↓) ∈ (→∗)MR and (u↓, v↓) ∈ (→∗)MR hold. By using Proposition 9, we conclude that, if
s→∗

R t and s→∗
R u hold, then t→∗

R v and u→∗
R v. Hence, R is confluent.

As for the only if part, if R is confluent, then for all terms s, t, u ∈ T (F ,X), whenever s→∗
R t

and s →∗
R u, there is v ∈ T (F ,X) such that t →∗

R v and u →∗
R v. By definition of MR, this

means that whenever (s↓, t↓), (s↓, u↓) ∈ (→∗)MR , we also have (t↓, v↓), (u↓, v↓) ∈ (→∗)MR . Thus,
by Proposition 9,MR |= (∀x⃗)s→∗ t∧s→∗ u impliesMR |= (∀x⃗)t→∗ v∧u→∗ v, i.e.,MR |= φCR

holds. ◀

▶ Proposition 15. Let R be a CTRS. A CCP π : ⟨s, t⟩ ⇐ C is joinable if and only if MR |=
(∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds, where x⃗ = x1, . . . , xm are the variables occurring in C, s, t and
z /∈ Var(C, s, t).

Proof. We treat the particular case of oriented CTRSs. For join or semi-equational CTRSs it
is similar. Let C = s1 ≈ t1, . . . , sn ≈ tn. As for the only if part, if π is joinable, then for all
substitutions σ ∈ X → T (F ,X) such that σ(C) holds, i.e., for all 1 ≤ i ≤ n, σ(si)→∗

R σ(ti) holds,
there is a term u ∈ T (F ,X) such that σ(s) →∗

R u and σ(t) →∗
R u holds as well. By Proposition

6, if σ(C) holds, then σ↓(C) holds as well. Furthermore, if σ(s) →∗
R u and σ(t) →∗

R u, then
σ↓(s) →∗

R u↓ and σ↓(t) →∗
R u↓. Therefore, for all substitutions σ : X → T (F ,X), whenever

σ↓(C) holds, then there is z ∈ T (FX) such that σ↓(s) →∗ z ∧ σ↓(t) →∗ z holds as well, i.e.,
MR |= (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds.

As for the if part, ifMR |= (∀x⃗)(∃z)C ⇒ s→∗ z∧t→∗ z holds, then by definition of satisfiability
in MR, for all substitutions σ : X → T (F ,X), if (σ(si)↓, σ(ti)↓) ∈ (→∗)MR holds for all 1 ≤ i ≤ n,
then there is u ∈ T (F ,X) such that both (σ(s)↓, u↓) ∈ (→∗)MR and (σ(t)↓, u↓) ∈ (→∗)MR hold as
well. By definition of MR, for all substitutions σ, whenever σ(si)→∗

R σ(ti) holds for all 1 ≤ i ≤ n,
we have σ(s)→∗ u and σ(s)→∗ u, i.e., π is joinable. ◀

▶ Corollary 17. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If R ⊢ (∀x⃗)(∃z) C ⇒ s→∗

z ∧ t→∗ z holds, then π is joinable.

Proof. If R ⊢ (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds, then R |= (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds
as well. By Theorem 8, MR |= R holds. Hence, MR |= (∀x⃗)(∃z) C ⇒ s→∗ z ∧ t→∗ z holds. By
Proposition 15, π is joinable. ◀

▶ Corollary 18. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair. If s↓ →∗ z, t↓ →∗ z is
R-feasible, then π is joinable.

Proof. If s↓ →∗ z, t↓ →∗ z is R-feasible, there is a term u ∈ T (F ,X) such that s↓ →∗
R u↓ and

t↓ →∗
R u↓, i.e., by Proposition 6, s →∗

R u and t →∗
R u, hence (s↓, u↓), (t↓, u↓) ∈ (→∗)MR . By

Proposition 9, MR |= (∀x⃗) s →∗ u ∧ t↓ →∗ u, i.e., MR |= (∀x⃗)(∃z) s →∗ z ∧ t↓ →∗ z holds. By
Proposition 15, π is joinable. ◀

▶ Proposition 20. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that C↓ is R-feasible.
If s↓ →∗ z, t↓ →∗ z is R-infeasible, then π is not joinable.

FSTTCS 2021

44:18 Confluence of Conditional Rewriting in Logic Form

Proof. By contradiction. If π is joinable, then for all substitutions σ : X → T (F ,X), if σ(C)
holds, then there is a term u such that σ(s) →∗ u and σ(t) →∗ u. Since C↓ is R-feasible, no
instantiation of variables in C is necessary for the condition C of π to hold, i.e., ϵ(C) holds and
therefore ϵ(s) = s ↓R t = ϵ(t) holds as well. By Proposition 6, s↓ ↓R t↓ holds, i.e., s↓ →∗ z, t↓ →∗ z

is R-feasible, leading to a contradiction. ◀

▶ Proposition 22. Let R be a CTRS and π : ⟨s, t⟩ ⇐ C be a critical pair such that Var(s, t)∩Var(C) =
∅. Then, π is joinable if and only if C is R-infeasible or s↓ →∗ z, t↓ →∗ z is R-feasible.

Proof. By Proposition 15, π is joinable if and only if MR |= (∀x⃗)(∃z)C ⇒ s→∗ z ∧ t→∗ z holds.
Since Var(s, t) ∩ Var(C) = ∅, this is equivalent to MR |= (∀y⃗1)¬C ∨ (∀y⃗2)(∃z)s →∗ z ∧ t →∗ z,
where y⃗1 are the variables Var(C) and y⃗2 are the variables Var(s, t), with y⃗1∩ y⃗2 = ∅ and x⃗ = y⃗1∪ y⃗2.
This is equivalent to (i) MR |= ¬(∃y⃗1)C or (ii) MR |= (∀y⃗2)(∃z)s→∗ z ∧ t→∗ z. By definition of
satisfiability in MR and using Proposition 6, (ii) is equivalent to the existence of a term u such that
both (s↓, u↓) ∈ (→∗)MR and (t↓, u↓) ∈ (→∗)MR hold.

Now, for the if part, we show that R-infeasibility of C implies (i) and R-feasibility of s↓ →∗

z, t↓ →∗ z implies (ii). First, if C is R-infeasible, then there is no substitution σ : X → T (F ,X)
such that R ⊢ σ(C) holds. This clearly implies MR |= ¬(∃y⃗1)C; otherwise, there would be a
substitution σ : X → T (F ,X) such that MR |= σ(C) holds. By Proposition 6, though, this
implies that R ⊢ σ(C) holds as well, leading to a contradiction. Second, if s↓ →∗ z, t↓ →∗ z is
R-feasible, then there is u ∈ T (F ,X) such that R ⊢ s↓ →∗ u↓ and R ⊢ t↓ →∗ u↓, i.e., s→∗

R u

and t→∗
R u holds. Therefore, MR |= (∃z)s→∗ z ∧ t→∗ z holds and π is joinable.

For the only if part, if (i) holds, then there is no substitution σ : X → T (F ,X) such that
MR |= σ(C) holds. If C would beR-feasible, though, then, by [11, Theorem 1], R ⊢ (∃y⃗1)C holds.
By using Theorem 8, we then conclude that MR |= (∃y⃗1)C holds, leading to a contradiction.
Finally, if (ii) holds, then both (s↓, u↓) ∈ (→∗)MR and (t↓, u↓) ∈ (→∗)MR hold. By definition of
MR and Proposition 6, we have s↓ →∗

R u and t↓ →∗
R u, i.e., s↓ →∗ z, t↓ →∗ z is R-feasible. ◀

▶ Proposition 26. Let R be a CTRS. If CCP(R) contains a non-joinable CCP, then R is not
(locally) confluent.

Proof. If ⟨s, t⟩ ⇐ D ∈ CCP(R) is not joinable, then, according to Definition 14, there is a substitution
σ such that σ(D) holds and σ(s) ↓R σ(t) does not hold. Note that s = θ(ℓ[r′]p) and t = θ(r′) for
some rules ℓ → r ⇐ C and ℓ′ → r′ ⇐ C′, p ∈ PosF (ℓ), mgu θ of ℓ|p and ℓ′, and D = θ(C), θ(C′).
Since σ(D) = σ(θ(C)), σ(θ(C′)) holds, both σ(θ(C)) and σ(θ(C′)) hold as well (disregarding the
join, oriented, or semiequational semantics for R). Thus, σ(θ(ℓ))→ σ(s) using α′ and σ(θ(ℓ))→ σ(t)
using α. Since σ(s) and σ(t) are not joinable, R is not locally confluent. Hence, it is not confluent. ◀

▶ Corollary 32. A terminating normal CTRS is confluent if all its critical pairs are joinable overlays.

Proof. By [7, Theorem 4], a terminating conditional join CTRS whose critical pairs are all joinable
overlays is confluent. Now, considering Remark 31, the statement of the corollary follows. ◀

On the Expressive Equivalence of TPTL in the
Pointwise and Continuous Semantics
Raveendra Holla #

Citrix Systems India Pvt. Ltd., Bangalore, India

Nabarun Deka #

Indian Institute of Science Bangalore, India

Deepak D’Souza #

Indian Institute of Science Bangalore, India

Abstract
We consider a first-order logic with linear constraints interpreted in a pointwise and continuous
manner over timed words. We show that the two interpretations of this logic coincide in terms
of expressiveness, via an effective transformation of sentences from one logic to the other. As a
consequence it follows that the pointwise and continuous semantics of the logic TPTL with the since
operator also coincide. Along the way we exhibit a useful normal form for sentences in these logics.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Real-Time Logics, First-Order Logics

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.45

1 Introduction

Several real-time logics proposed in the literature have been interpreted over timed behaviours
in two natural ways which have come to be known as the “pointwise” and “continuous”
interpretations. In the pointwise semantics, formulas may be asserted only at points where
an action occurs (the so-called “action points”), while in the continuous semantics formulas
may be asserted at arbitrary time points. To illustrate these semantics, consider the popular
timed temporal logic Metric Temporal Logic (MTL) [10, 1, 12], which extends the U operator
of classical LTL with an interval index, to allow formulas of the form θUIη which says that,
with respect to the current time point, there is a future time point where η is satisfied and
which lies at a distance that falls within the interval I, and at all time points in between θ is
satisfied. Consider a timed word σ depicted in Fig. 1 below, in which the first action is an a

at time 2, followed subsequently by only b’s. Then the MTL formula ♢(♢[1,1]a) is satisfied in
σ in the continuous semantics, but not in the pointwise semantics since there is no action
point at time 1.

The Timed Temporal Logic (TPTL) of Alur and Henzinger [2, 3] is a well-known timed
temporal logic for specifying real-time behaviors. The logic is interpreted over timed words
and extends classical LTL with the “freeze” quantifier x.θ which binds x to the value of
the current time point, along with the ability to constrain these time points using linear
constraints of the form x ∼ y + c. For example the formula x.(♢y.(a ∧ y = x+ 2)) says that
with respect to the current time point, an action a occurs exactly two time units later. Then
the TPTL formula ♢x.♢y.(a ∧ y = x+ 1) is satisfied in σ in the continuous semantics, but
not in the pointwise semantics, since there is no action point at time 1. It is not difficult to

0 1 2 3 4

a b b

Figure 1 Timed word σ.

© Raveendra Holla, Nabarun Deka, and Deepak D’Souza;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 45; pp. 45:1–45:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:raveendrak@gmail.com
mailto:nabarundeka@iisc.ac.in
mailto:deepakd@iisc.ac.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.45
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Equivalence of Pointwise and Continuous TPTL

see that for a typical timed temporal logic the continuous semantics is at least as expressive
as the pointwise one, since one can ask for a time point to be an action point by asserting∨

a∈Σ a at each quantified time point.
There have been several results in the literature which show that for the logic MTL and

its variants the continuous semantics is in fact strictly more expressive than the pointwise
one. In particular, the logics MTL over infinite words [4, 5] and finite words [13]; MTLS

(MTL with the “since” operator S) and MTLSI
(MTL with the SI operator), over both

infinite and finite words [7]; are all strictly more expressive in the continuous semantics than
their pointwise counterparts. In addition, Ho et al [9] show the strict inclusion of MTL in a
first-order logic FO(<,+1) over finite words in the pointwise semantics, in contrast to their
equivalence in the continuous semantics [11].

In this paper we show, somewhat surprisingly, that the logic TPTLS (TPTL with the
“since” operator) has the same expressive power in both the pointwise and continuous
semantics. We do this by considering a natural first-order logic FO(<,+Q) interpreted over
timed words, which is similar in flavour to TPTLS . The logic allows atomic predicates of
the form a(x) which says that an a-event occurs at time point x, and constraints of the form
x < y + c. The interpretation of the quantifier ∃x depends on the pointwise or continuous
semantics: in the pointwise it is interpreted as “there exists an action point x”, while in the
continuous semantics it is interpreted as “there exists a time point x.” The main technical
result in this paper is that the expressiveness of FO(<,+Q) in the pointwise and continuous
interpretations coincide.

The main proof idea is to show that we can go from an arbitrary sentence in the
continuous version of FO(<,+Q) to an equivalent sentence in FO(<,+Q) which uses only
“active” quantifiers, where each ∃x is qualified by an assertion that x is an action point. A
sentence in which all quantifiers are active, is clearly equivalent to a pointwise formula.

The technique in this paper builds on the work reported in a preprint [6] by giving a more
transparent argument for a key step of the proof via Thm. 2. In the next few sections of this
paper we focus on the result for FO(<,+Q), and turn to its application to TPTL in Sec. 7.

2 Preliminaries

We begin with some preliminary definitions. Let R≥0 denote the set of non-negative real
numbers, Q the set of rational numbers, and N the set of non-negative integers. We use the
standard notation to represent intervals, which are convex subsets of R. For example [1,∞)
denotes the set {t ∈ R | 1 ≤ t}.

For an alphabet A we denote by Aω the set of infinite words over A. Let Σ be a finite
alphabet of actions, which we fix for the rest of this paper. An (infinite) timed word σ over
Σ is an element of (Σ × R≥0)ω of the form (a0, t0)(a1, t1) · · · , satisfying the conditions that:
for each i ∈ N, ti < ti+1 (monotonicity), and for each t ∈ R≥0 there exists an i ∈ N such
that t < ti (progressiveness). For convenience, we will also assume in this paper that t0 = 0,
so that the timed word begins with an action at time 0. We will sometimes represent the
timed word σ above as a pair (α, τ), where α = a0a1 · · · and τ = t0t1 · · · . Thus α(i) and
τ(i) denote the the action and the time stamp respectively, in σ at position i. We write TΣω

to denote the set of all timed words over Σ.
We now introduce the linear constraints we use in this paper, and some notation for

manipulating them. We assume a supply of variables Var = {x, y, . . .} which we will use
in constraints as well as later in our logics. We use restricted linear constraints of the
form x ∼ y + c or x ∼ c, where x and y are variables in Var , ∼ is one of the relations
{<,≤,=,≥, >}, and c is in Q. We call these constraints simple constraints. In general, by
(an unqualified) “constraint” we will mean a conjunction of simple constraints.

R. Holla, N. Deka, and D. D’Souza 45:3

0 ≤ x ≤ 1
x+ 1 ≤ y ≤ x+ 1.2

0 ≤ y

(a)

0 ≤ x ≤ 1
y − 1.2 ≤ x ≤ y − 1

0 ≤ y

(b)

0 ≤ y − 1
y − 1.2 ≤ 1
y − 1.2 ≤ y − 1

0 ≤ y

(c)

1 ≤ y ≤ 2.2

(d)

Figure 2 Illustrating steps of the Fourier-Motzkin elimination method.

An assignment for variables is a map I : Var → R≥0. For t ∈ R≥0 and x ∈ Var we will
use I[t/x] to represent the assignment which sends x to t, and agrees with I on all other
variables. When we are interested in a finite set of variables {x1, . . . , xn} we will write
[t1/x1, . . . , tn/xn] to represent an assignment that maps each xi to ti. For an assignment I
and a constraint δ, we write I |= δ to mean that the constraint δ is satisfied in the assignment
I, and defined in the expected way.

As a final piece of notation, we will make use of the well-known Fourier-Motzkin method
for eliminating variables from constraints. Given a conjunction π of simple constraints, some
of which contain a variable x, the technique gives us a conjunction π′ of simple constriants
not containing x, such that the formula ∃xπ is logically equivalent to π′ (assuming a standard
first-order logic interpreted over rationals or reals). When we are interested in the domain
of R≥0 (like in this paper), we assume that π implicitly contains the constraint z ≥ 0 for
each variable z in π. As an illustration of the method, consider the conjunction π of the
constraints in Fig. 2(a). To eliminate x from π, we first rewrite the constraints involving
x as lower and upper bounds on x, as shown in the first two constraints in Fig. 2(b), and
carry forward the constraints not involving x (like the third one). Next we relate each lower
bound of x to each upper bound of x, as shown in the first three constraints of Fig. 2(c),
while carrying forward the constraints not involving x. Finally, we simplify the constraints
by dropping looser bounds and removing redundant constraints like 0 ≤ 1, to obtain the
constraint π′ in Fig. 2(d). The constraint π′ can be seen to be logically equivalent to ∃xπ.

We will use the notation FMEx(π) to refer to the constraint π′. We refer the reader
to [14] for the details of this technique.

3 The FO(<, +Q) logic

We now define our first order logic with simple constraints FO(<,+Q), which is interpreted
over timed words over the alphabet Σ. The formulas of FO(<,+Q) are given by:

φ ::= a(x) | g | ¬φ | φ ∨ φ | ∃xφ,

where a ∈ Σ, x ∈ Var , and g is a simple constraint.
We first define the continuous semantics for FO(<,+Q). Let φ be a formula in FO(<,+Q).

Let σ = (α, τ) be a timed word over Σ, and let I be an assignment for variables. Then the
satisfaction relation σ, I |=c φ (read “σ satisfies φ with the assignment I in the continuous
semantics”) is inductively defined as:

σ, I |=c a(x) iff ∃i : τ(i) = I(x) and α(i) = a

σ, I |=c g iff I |= g

σ, I |=c ¬ν iff σ, I ̸|=c ν

σ, I |=c ν ∨ ψ iff σ, I |=c ν or σ, I |=c ψ

σ, I |=c ∃xν iff ∃t ∈ R≥0 such that σ, I[t/x] |=c ν.

FSTTCS 2021

45:4 Equivalence of Pointwise and Continuous TPTL

The derived connectives ∧, ⊃ (implies), ∀, etc are defined in the standard way. A variable
x is said to occur free in a formula φ if there is an occurrence of x that is not within the scope
of any ∃x quantifier in φ. A sentence is a formula in which there are no free occurrences of
variables. The satisfaction of a sentence in a timed word is independent of an assignment
for variables. The timed language defined by an FO(<,+Q) sentence φ in the continuous
semantics is given by Lc(φ) = {σ ∈ TΣω | σ |=c φ}.

We can similarly define the pointwise semantics of the logic FO(<,+Q), where the
quantification is over action points in the timed word. The satisfaction relation σ, I |=pw φ is
defined as above, except for the ∃ clause which is interpreted as follows:

σ, I |=pw ∃xν iff ∃t ∈ R≥0 such that t = τ(i) for some i ∈ N, and σ, I[t/x] |=pw ν.

The timed language defined by a sentence φ in the pointwise semantics is given by
Lpw(φ) = {σ ∈ TΣω | σ |=pw φ}.

The formulas of the logic FO(<,+Q) can be seen to be essentially that of a first-order logic
over the signature (0, {+c}c∈Q, <, {a}a∈Σ), where each +c is a function that adds the rational
c to its argument, and each a ∈ Σ is a unary predicate. The logic is interpreted over timed
words in the expected way, with the domain being R≥0 in the continuous interpretation, and
the set of action points in the pointwise interpretation. In the sequel we will write FOc(<,+Q)
to denote the logic with the continuous interpretation, and similarly FOpw(<,+Q) to denote
the pointwise interpretation.

4 A normal form for FO sentences

In this section we exhibit a normal form for FOc(<,+Q) sentences which will be useful in our
proofs. We begin with a normal form for formulas of the form ∃xφ. An FOc(<,+Q) formula
is said to be in ∃-normal form if it is of the form ∃x(a(x) ∧ π(x) ∧ ν), where a ∈ Σ, π(x) is a
conjunction of simple constraints each containing x, and ν is a conjunction of formulas of
the form ψ or ¬ψ, where each ψ is again in ∃-normal form. In addition, we allow any of the
components a(x) and ν to be absent. We say a formula is in negated ∃-normal form if it is
the negation of a formula in ∃-normal form. Fig. 3 depicts a sentence which is a boolean
combination of ∃-normal form sentences.

∨

∃x

g′(q)

∧

∧∧

∧ ¬

g(q)

g(x)a(x)
∃p

∧

b(p)g(p)

∃y

¬∃q g(y)

Figure 3 Boolean combination of sentences in ∃-normal form.

▶ Theorem 1. Any FOc(<,+Q) sentence can be equivalently expressed as a boolean combin-
ation of sentences in ∃-normal form.

Proof. Let φ be an FOc(<,+Q) sentence. Since φ is a sentence it must be a boolean
combination of sentences of the form ∃xφ′. We transform φ into an equivalent sentence
which is a boolean combination of sentences in ∃-normal form, by repeatedly transforming
the formula tree of φ as follows:

R. Holla, N. Deka, and D. D’Souza 45:5

1. In every subtree rooted at a ∃-node, in the formula tree of φ, push every ¬ operator
downwards over ∨, ∧, and all the way through g nodes, till it reaches a ∃-node or an a

(action) node. After this step, the subtree below every ∃ node contains only conjunctions
and disjunctions of a, ¬a, ∃, ¬∃, and g nodes.

2. For convenience, in the next couple of steps, we will consider ¬∃ as a single composite
node in the formula tree. Pull all the ∨’s upwards in the resulting formula tree for φ, using
the following identities: ν1 ∧ (ν2 ∨ν3) ≡ (ν1 ∧ν2)∨ (ν1 ∧ν3), ∃x(ν1 ∨ν2) ≡ (∃xν1)∨ (∃xν2)
and ¬∃x(ν1 ∨ ν2) ≡ (¬∃xν1) ∧ (¬∃xν2). It is not difficult to see that using these identities
we obtain a formula φ′ in which each ∃-node or ¬∃-node contains only conjunctions of a,
¬a, ∃, ¬∃, and g nodes.

3. In this step we pull up from a subtree rooted at an ∃x node, all nodes which are independent
of x, namely nodes of the form b(y), ¬b(y) (with y ̸= x), and g where g does not contain
x. This is done by recursively applying following equivalences starting from the lower
most ∃x or ¬∃x nodes: ∃x(b(y) ∧ ν) ≡ b(y) ∧ ∃x(ν) and ¬∃x(b(y) ∧ ν) ≡ ¬b(y) ∨ ¬∃x(ν).
We can use similar equivalences for ¬b(y) and g to pull them up the tree. Finally, we
move all the newly generated ∨’s up the tree using Step 2.
After this step, the subtrees rooted at each ∃x node is a conjunction of a(x), ¬a(x), ∃,
¬∃ and g(x) nodes.

4. We now update the formula tree with the following equivalences: a(x) ∧ b(x) ≡⊥ and
a(x) ∧ ¬b(x) ≡ a(x), where a, b ∈ Σ with a ̸= b. After this step, the only action-related
nodes in a subtree rooted at a ∃x node are a single action node a(x) or a conjunction of
negation of actions of the form

∧
a∈X ¬a(x) for some X ⊆ Σ.

5. We can now replace formulas of the form
∧

a∈A ¬a(x) by a disjunction of formulas which
contain at most one action, as described below. We then pull up the newly generated
∨ nodes up the tree using Step 2. After this step, the subtree rooted at every ∃x node
contains only conjunctions of a(x), ∃, ¬∃ and g(x) nodes. We can collect the g(x) nodes
together to get a single conjunction of constraints π(x). Thus finally each subtree rooted
at ∃ node is in ∃-normal form.

To see how we can replace formulas of the form
∧

a∈A ¬a(x) by a disjunction of formulas
in ∃-normal form, consider a formula ψ of the form ∃x(

∧
a∈A ¬a(x) ∧ π(x) ∧ ν). Let A(x)

be shorthand for the formula
∨

a∈A a(x). Then, ψ = ∃x(¬A(x) ∧ π(x) ∧ ν). We claim that
φ ≡ ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4 with each ψi defined as follows. The figure below illustrates these
cases. We view the constraint π(x) as an interval determined by the values assigned to the
variables other than x.

ψ1 :
a a a

π

ψ2 :
a a a a

xl

ψ3 :
a a a

xjxi

ψ4 :
a a a a

xr

If an A-action does not occur anywhere in the interval π(x), then φ is satisfied if ν is
satisfied for any x in π(x):

ψ1 = ¬∃x(A(x) ∧ π(x)) ∧ ∃x(π(x) ∧ ν)

If there are one or more actions A(x) in π(x) then φ is satisfied iff ν is satisfied before the
first occurrence of A(x), or between any two consecutive occurrences of A(x), or after the
last occurrence of A(x), in π(x). These three cases are formulated as follows:

FSTTCS 2021

45:6 Equivalence of Pointwise and Continuous TPTL

ψ2 = ∃xl(A(xl) ∧ π(xl) ∧ ¬∃x′(A(x′) ∧ π(x′) ∧ x′ < xl) ∧ ∃x(π(x) ∧ x < xl ∧ ν))
ψ3 = ∃xi(A(xi) ∧ π(xi) ∧ ∃xj(A(xj) ∧ π(xj) ∧ ¬∃x′(A(x′) ∧ π(x′) ∧ xi < x′ < xj)

∧∃x(π(x) ∧ xi < x ∧ x < xj ∧ ν)))
ψ4 = ∃xr(A(xr) ∧ π(xr) ∧ ¬∃x′(A(x′) ∧ π(x′) ∧ xr < x′) ∧ ∃x(π(x) ∧ xr < x ∧ ν))

This completes the proof of the normal form transformation. ◀

5 Equivalence of FOc and FOpw semantics

In this section our aim is to show that the logics FOpw(<,+Q) and FOc(<,+Q) are ex-
pressively equivalent. It is easy to translate an FOpw(<,+Q) sentence φ to an equivalent
FOc(<,+Q) sentence by simply replacing every ∃xφ′ subformula, by ∃x(

∨
a∈Σ a(x) ∧ φ′′),

where φ′′ is obtained by similarly replacing ∃-subformulas in φ′.
In the converse direction, let us call an FOc(<,+Q) formula φ actively quantified (or

simply active) if every ∃-subformula is of the form ∃x(a(x) ∧ φ′) for some action a ∈ Σ and
formula φ′. Then, an active FOc(<,+Q) formula clearly defines the same language of timed
words, regardless of the semantics being pointwise or continuous. Hence, our aim in the rest
of this section is to show how we can go from an arbitrary formula in FOc(<,+Q) to an
equivalent active formula.

5.1 Proof Idea
A formula in the continuous semantics has the obvious advantage of being able to associate
any value in R≥0 to its variables, whereas an actively quantified variable can refer only to the
action points in a timed word. Consider the sentence below where x is passively quantified:

∃x(0 ≤ x ∧ x ≤ 1 ∧ ∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)). (1)

In the continuous semantics this is essentially asking for an a action sometime in the interval
[1, 2, 2]. However, if we interpret this sentence in the pointwise semantics we get a strictly
stronger requirement of there being an action point in the interval [0, 1] from which we have
an a-action at a distance of 1 to 1.2. In our approach we transform the given sentence to an
equivalent active sentence (all in the continuous semantics), which we can do as follows. The
given sentence is equivalent to the sentence (2) below by simple logical manipulation. Then
we apply Fourier-Motzkin elimination in the ∃x part of (2) to get the sentence (3), which is
now an equivalent active formula.

∃y(a(y) ∧ ∃x(0 ≤ x ∧ x ≤ 1 ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)) (2)
∃y(a(y) ∧ 1 ≤ y ∧ y ≤ 2.2) (3)

As another example, consider the language of all timed words over a and b, where for
every b in the interval [1,2], there is an a in [0,1] exactly one time unit earlier. This can be
written easily in FOc as:

¬∃x((¬a(x) ∧ 0 ≤ x ∧ x ≤ 1 ∧ ∃y(b(y) ∧ y = x+ 1)). (4)

But if we interpret this sentence in the pointwise semantics it does not describe the same
property. The given sentence is not in ∃-normal form and the normalization yields a
disjunction of four formulas ψ1, ψ2, ψ3, ψ4, where x is the only variable which is passively

R. Holla, N. Deka, and D. D’Souza 45:7

0 1

a

21.2

a

3

a a a

0.5 1.8

0.2 0.6 1.71.5

Figure 4 Timed word σ satisfying formula (5).

quantified. If we can eliminate x from ψ1, ψ2, ψ3, and ψ4 without introducing any new
passively quantified variables, the disjunction of these actively quantified formulas recognizes
the required language. The subformula involving x in each ψi looks like ∃x(π(x)∧∃y(b(y)∧y =
x+ 1)). This can be equivalently written as ∃y(b(y) ∧ ∃x(π(x) ∧ y = x+ 1)). We can now
use Fourier-Motzkin elimination to eliminate x from π(x) ∧ y = x+ 1 to obtain a constraint
π′(y) on y. The above formula can now be expressed equivalently as ∃y(b(y) ∧π′(y)), thereby
eliminating the passively quantified variable x.

As a final example, consider the following modified version of formula (2):

∃x(0 ≤ x ∧ x ≤ 1 ∧ ¬∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)). (5)

For the sake of simplicity, let us consider a scenario where a is the only action in Σ. The
above formula is true iff there is a point x in [0, 1] such that there is no action point a
in the interval [x + 1, x + 1.2]. To eliminate the passively quantified variable x from this
formula, we will consider the interval π1 = w1 < x+ 1 < w2 ∧ w3 < x+ 1.2 < w4 and find an
assignment to the variables w1–w4 such that for every point x which lies in the intersection of
the intervals [0, 1] and π1, there is no action point a in the interval [x+ 1, x+ 1.2]. Consider
as an example the timed word σ shown in Fig. 4. This timed word satisfies the formula (5)
with the valuation x = 0.5 since there is no action point a in the interval [1.5, 1.7]. Now
consider the following assignment, w1 = 1.2 is the first action point in σ before 1.5 and
w2 = 1.8 is the first action point in σ after 1.5. Similarly, w3 = 1.2 is the first action point
in σ before 1.7 and w4 = 1.8 is the first action point in σ after 1.7. With this assignment,
we get the interval π1 = 1.2 < x + 1 < 1.8 ∧ 1.2 < x + 1.2 < 1.8 which is equivalent to
0.2 < x < 0.6. It is easy to see that for any x in the intersection of the intervals [0, 1] and π1
there is no action point a in the interval [x+ 1, x+ 1.2]. Hence, the timed word σ will also
satisfy the equivalent formula:

∃w1∃w2∃w3∃w4(a(w1) ∧ a(w2) ∧ a(w3) ∧ a(w4)
∧∀x((0 ≤ x ≤ 1 ∧ π1) ⊃ ¬∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2))) (6)

≡ ∃w1∃w2∃w3∃w4(a(w1) ∧ a(w2) ∧ a(w3) ∧ a(w4)
∧¬∃x(0 ≤ x ≤ 1 ∧ π1 ∧ ∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2))) (7)

≡ ∃w1∃w2∃w3∃w4(a(w1) ∧ a(w2) ∧ a(w3) ∧ a(w4)
∧¬∃y(a(y) ∧ ∃x(0 ≤ x ≤ 1 ∧ π1 ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2))). (8)

We get (7) from (6) using the equivalence ∀xφ ≡ ¬∃x¬φ. Finally, we eliminate x from the
innermost part of formula (8) using Fourier-Motzkin elimination to get a formula which is
completely actively quantified. We will prove in the later part of this section that it is always
possible to identify the interval π1 using the syntax of FOc(<,+Q).

5.2 Equivalence Proof
We begin with some definitions. The quantifier depth of an FO formula is the maximum
nesting depth of quantifiers in the formula. Given a formula φ(x) (where x is free in φ) and a
timed word σ, we will call an assignment I an x-restricted assignment for φ w.r.t. the timed

FSTTCS 2021

45:8 Equivalence of Pointwise and Continuous TPTL

word σ iff for every atomic subformula y ∼ x+ c of φ, I(x) + c is not an action point of σ,
and for every atomic subformula y ∼ x− c of φ, I(x) − c is not an action point of σ. Finally,
consider a formula φ of the form ∃x(π(x) ∧ψ), where π is a conjunction of simple constraints
and ψ is a formula in ∃-normal form. We say that a timed word σ strongly satisfies φ if
there exists an x-restricted assignment I for ψ w.r.t. σ such that σ, I |= π(x) ∧ ψ.

Also, observe that for any formula in ∃-normal form, we can replace all the equality
atomic formulas, i.e. atomic formulas of the form x = y + c, with the equivalent formula
x ≤ y + c ∧ x ≥ y + c. Hence, we will first remove all the equalities in our formula using
this replacement. Furthermore, for simplicity, we will assume that the set of actions Σ is a
singleton set i.e. Σ = {a}. This idea can be generalised to a finite set of actions Σ. Now we
have the following theorem:

▶ Lemma 2. Consider a formula of the form φ = ∃x(π(x) ∧ ψ) where π is a conjunction
of simple constraints and ψ is an actively quantified formula in ∃-normal form or negated
∃-normal form. Then, we can construct a formula θ which is a disjunction of formulas of
the form:

∃w1∃w2 · · · ∃wn(
i=n∧
i=1

a(wi) ∧ ∃x(π(x) ∧π1(x,w1, . . . , wn)) ∧ ∀x((π(x) ∧π1(x,w1, . . . , wn)) ⊃ ψ)),

such that for any timed word σ which strongly satisfies φ, we also have σ |= θ.

We will prove this theorem in the next section. In the rest of this section we see how to
use it to prove the equivalence of the pointwise and continuous semantics of FO(<,+Q).

▶ Theorem 3. Given any formula φ in ∃-normal form of the form ∃x(π(x) ∧ ψ) where
ψ is actively quantified, we can construct an equivalent formula ν which is a disjunction
of formulas that are either actively quantified formulas in ∃-normal form or conjunctions
of simple constraints that do not contain x. In other words, we can eliminate the passive
variable x from φ.

Proof. We prove this by induction on the quantifier depth of the formula ψ.

Base case (quantifier depth 0): In this case our formula φ is of the form φ = ∃xπ(x). We
can use Fourier Motzkin elimination here to eliminate the variable x and get a formula which
is a conjunction of simple constraints.

Inductive case: Now assume that we have proved the theorem for quantifier depth up to n,
and consider the case when ψ has quantifier depth n+ 1. We consider three different cases
for the form of ψ.

Case 1a (Single positive conjunct): ψ = ∃y(a(y) ∧ δ ∧ ψ′). In this case, we have

φ = ∃x(π(x) ∧ ∃y(a(y) ∧ δ ∧ ψ′))
≡ ∃y(a(y) ∧ ∃x(π(x) ∧ δ ∧ ψ′)).

By the induction hypothesis the formula ∃x((π(x) ∧ δ) ∧ ψ′) can be expressed as an
equivalent formula ν = ν1 ∨ · · · ∨ νk with each νi actively quantified in ∃-normal form or
negated ∃-normal form. Hence, we get

φ ≡ ∃y(a(y) ∧ ν)
≡ ∃y(a(y) ∧ (ν1 ∨ · · · ∨ νk))
≡ ∃y(a(y) ∧ ν1) ∨ · · · ∨ ∃y(a(y) ∧ νk),

which completes the proof for this case.

R. Holla, N. Deka, and D. D’Souza 45:9

Case 1b (Single negative conjunct): ψ = ¬∃y(a(y) ∧ δ ∧ ψ′). In this case, we construct ν
as follows.

We apply Lemma 2 on the formula φ to get a disjunct θ such that for any timed word σ

if σ strongly satisfies φ, we have that σ |= θ.
Each formula in the disjunct θ is of the form:

θi = ∃w1 · · · ∃wn(
n∧

i=1
a(wi)

∧ ∃x(π(x) ∧ πi(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ)).

In the conjunct ∃x(π(x) ∧ πi(x,w1, . . . , wn)) we can eliminate the passive variable x using
Fourier-Motzkin elimination. The third conjunct is ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ).
Substituting ψ = ¬∃y(a(y) ∧ δ ∧ ψ′), we get

∀x((π ∧ πi) ⊃ ¬∃y(a(y) ∧ δ ∧ ψ′))
≡¬∃x(π ∧ πi ∧ ∃y(a(y) ∧ δ ∧ ψ′))
≡¬∃y(a(y) ∧ ∃x(π ∧ πi ∧ δ ∧ ψ′)).

Now rewrite the interval π ∧ πi ∧ δ as π′ and apply the induction hypothesis on the formula
∃x(π′ ∧ ψ′) to replace it with an equivalent disjunct ν′ = ν′

1 ∨ ν′
2 ∨ · · · ∨ ν′

k where each
disjunct is actively quantified. Hence, after these manipulations, θ is a disjunction of actively
quantified formulas in ∃-normal form and we have that for any timed word σ, if σ strongly
satisfies φ, we have σ |= θ.

Now we have to take care of the corner cases where σ |= φ but σ does not strongly satisfy
φ. For this, we do the following:

For each atomic formula of the form x ∼ v + c, where v is some variable other than x,
appearing in the formula ψ, define a formula

µ = ∃w(a(w) ∧ π(w + c) ∧ ψ[(w + c)/x]).

Define D1 to be the disjunction of all such µ’s. Similarly, for each atomic formula of the form
x+ c ∼ v appearing in the formula ψ, define a formula

µ = ∃x(a(w) ∧ π(w − c) ∧ ψ[(w − c)/x]).

Define D2 to be the disjunction of all such µ’s. Finally, define

ν = D1 ∨ D2 ∨ θ.

Observe that all the formulas in the disjuncts D1 and D2 are actively quantified formulas in
∃-normal form. Hence, ν is a disjunction of actively quantified formula in ∃ normal form.

Now, we need to show that for any timed word σ, we have σ |= φ ⇐⇒ σ |= ν. Assume
that σ |= φ, i.e. there is an assignment x = t1 such that σ, [t1/x] |= π ∧ ψ. Then, this can
happen in three ways:
1. For some atomic formula x ∼ v + c occurring in ψ, t1 − c is an action point of σ. In this

case, σ |= D1.
2. For some atomic formula x+ c ∼ v occurring in ψ, t1 + c is an action point of σ. In this

case, σ |= D2.
3. x = t1 is an x-restricted assignment for φ w.r.t σ. In this case, from Lemma 2, we get

that σ |= θ.
The other direction is straightforward.

FSTTCS 2021

45:10 Equivalence of Pointwise and Continuous TPTL

Case 2 (Multiple Conjuncts): Now we consider the case where ψ has more than one
conjunct. For simplicity, let ψ be the conjunct ψ1 ∧ ψ2. Our original formula is thus
φ = ∃x(π(x) ∧ ψ1 ∧ ψ2). We apply Lemma 2 to the formulas φ1 = ∃x(π(x) ∧ ψ1) and
φ2 = ∃x(π(x) ∧ ψ2) to get two formulas

θ′
1 =

k∨
j=1

θ1j and θ′
2 =

m∨
j=1

θ′
2j ,

where each θ′
ij is of the form:

θ′
ij = ∃w1 · · · ∃wn(

p∧
i=1

a(wi)

∧ ∃x(π(x) ∧ πij(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ πij(x,w1, . . . , wn)) ⊃ ψi).

Here note that p might be different for each (i, j) . Now for each i ∈ {1, 2, . . . , k} and
j ∈ {1, 2, . . . ,m} we construct a formula θij below:

∃w1 · · · ∃wl∃w′
1 · · · ∃w′

n(
l∧

i=1

a(wi)
n∧

i=1

a(w′
i)

∧ ∃x(π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n)) ⊃ (ψ1 ∧ ψ2)),

and define θ =
∨k

i=1
∨m

j=1 θij .
We will now show that if σ strongly satisfies φ, then σ |= θ. Suppose σ strongly satisfies

φ, then σ strongly satisfies both φ1 and φ2. Now by the single conjunct case, we know that
there exists i0 and j0 such that σ |= θ′

1i0
and σ |= θ′

2j0
. We will now show that σ |= θi0j0 .

Since σ |= θ1i0 , we have an assignment W such that

σ,W |=(
n∧

i=1
a(wi)

∧ ∃x(π(x) ∧ π1i0(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ π1i0(x,w1, . . . , wn)) ⊃ ψ1).

Similarly, since σ |= θ2j0 , we have an assignment W ′ such that

σ,W ′ |= (
n∧

i=1
a(wi)

∧ ∃x(π(x) ∧ π2j0(x,w1, . . . , wn))
∧ ∀x((π(x) ∧ π2j0(x,w1, . . . , wn)) ⊃ ψ2).

Now, it is easy to see that

σ,W,W ′ |= (
l∧

i=1
a(wi)

n∧
i=1

a(w′
i)

∧ ∃x(π(x) ∧ π1i0(x,w1, . . . , wl) ∧ π2j0(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π1i0(x,w1, . . . , wl) ∧ π2j0(x,w′
1, . . . , w

′
n)) ⊃ (ψ1 ∧ ψ2)).

Hence, σ |= θi0j0 and σ |= θ.

R. Holla, N. Deka, and D. D’Souza 45:11

Recall that we still have to eliminate x from the θ′
ijs which are of the form:

∃w1 · · · ∃wl∃w′
1 · · · ∃w′

n(
l∧

i=1

a(wi)
n∧

i=1

a(w′
i)

∧ ∃x(π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n)) (9)

∧ ∀x((π(x) ∧ π1i(x,w1, . . . , wl) ∧ π2j(x,w′
1, . . . , w

′
n)) ⊃ (ψ1 ∧ ψ2)).

(10)

We can eliminate x from (9) using Fourier-Motzkin elimination. As for (10), we do the
following manipulations (we drop the free variables wi’s to remove some clutter):

∀x((π ∧ π1i ∧ π2j) ⊃ (ψ1 ∧ ψ2))
≡∀x((π ∧ π1i ∧ π2j) ⊃ ψ1) ∧ ∀x((π ∧ π1i ∧ π2j) ⊃ ψ2)
≡¬∃x(π ∧ π1i ∧ π2j ∧ ¬ψ1) ∧ ¬∃x(π ∧ π1i ∧ π2j ∧ ¬ψ2). (11)

Now (11) has two formulas containing the passive variable x, but both of them can be
handled by the single conjunct case (Case 1 above). Hence, we have successfully eliminated
x for the multiple conjunct case.

To handle the cases where σ |= φ but σ does not strongly satisfy φ, we can do a
construction similar to the one done for Case 1b.

This completes the proof of the theorem. ◀

▶ Theorem 4. Every FOc sentence can be transformed to an equivalent active sentence.

Proof. Any FOc sentence φ can be written as a boolean combination of sentences in ∃-
normal form. Since translation is intact across the boolean operations, it is sufficient if we
can eliminate all the passive variables from formulas in ∃-normal form. We will now show
that given a formula φ in ∃-normal form which has passive variables, we can construct an
equivalent formula which is a disjunction of actively quantified formulas in ∃-normal form or
negated ∃-normal form. Observe that if we can show this, the theorem follows immediately.

We will show this by induction on the number of passive variables n of the formula φ.
We assume all quantified variables of φ are distinct, by renaming them if necessary.

Base Case: Suppose φ has 1 passive variable. Let T be the formula tree of φ, and let N be
the corresponding node in T . The subtree roooted at N is thus of the form ∃x(π(x) ∧ ψ)
where ψ is actively quantified. Now we can use Theorem 3 to replace the subtree at N with
a disjunction of actively quantified formulas in ∃-normal form. We then pull up the disjuncts
to the top of the tree to get a disjunction of actively quantified formulas in ∃-normal form.

Inductive Case: Now suppose we have shown our hypothesis for formulas with up to n

passive variables. Let φ be a formula in ∃-normal form with n+ 1 passive variables. Let T
be the formula tree of φ. We call a subtree of T rooted at node N a maximal passive subtree
if N is a passive node and has no passive nodes as ancestors.

Now, if T has more than one maximal passive subtree, then the corresponding formula for
each subtree is a formula in ∃-normal form with at most n passive variables. By our induction
hypothesis, we can replace any such subtree with a disjunction of actively quantified formulas.
We then pull out the disjunction to the top of T to get a finite disjunction of formulas
in ∃-normal form, each of which has at most n passive variables. We can then apply the
induction hypothesis on each of these to replace them with equivalent actively quantified
formulas.

FSTTCS 2021

45:12 Equivalence of Pointwise and Continuous TPTL

If T has exactly one maximal passive subtree, the formula corresponding to this subtree
is of the form ∃x(π(x) ∧ ψ) where ψ = ψ1 ∧ ψ2 ∧ · · · ∧ ψm where each ψi is in ∃-normal
form or negated ∃-normal form. Observe that since ∃x(π(x) ∧ ψ) has n+ 1 passive variables,
each ψi can have atmost n passive variables. If ψi is in negated ∃-normal form, it is of the
form ¬µi where µi is in ∃-normal form and has atmost n passive variables. We can now
apply the induction hypothesis on µi and replace it with a disjunction of acitvely quantified
formulas, i.e.

µi = νi1 ∨ νi2 ∨ · · · ∨ νik.

Therefore,

ψi = ¬µi = ¬νi1 ∧ ¬νi2 ∧ · · · ∧ ¬νik.

We first replace all such ψi’s. Now the remaining ψi’s are in ∃-normal form and each have at
most n passive variables. We apply the induction hypothesis on each of these and replace
them with disjunctions of actively quantified formulas in ∃-normal form. Hence, we get

∃x(π(x) ∧ ψ) = ∃x(π(x) ∧
k∧

i=1

li∨
j=1

νij).

Let S := {1, 2, . . . , l1} × {1, 2, . . . , l2} × · · · × {1, 2, . . . , lk}. Then

∃x(π(x) ∧ ψ) =
∨

(a1,...,ap)∈S

∃x(π(x) ∧
p∧

i=1
νiai

). (12)

Now each disjunct in (12) is in ∃-normal form with exactly one passive variable. We apply our
induction hypothesis here and replace each of them with a disjunction of actively quantified
formulas in ∃-normal form. We then pull up the disjuncts to the top of the tree T to get a
disjunction of actively quantified formulas in ∃-normal form.

Thus we have shown that for any formula in ∃-normal form, we have an equivalent actively
quantified formula, and we are done. ◀

To summarise:

▶ Theorem 5. The logics FOc and FOpw are expressively equivalent. Moreover there is an
effective procedure to translate a sentence in one logic to an equivalent one in the other. ◀

6 Proof of Lemma 2

Here we will give a proof of Lemma 2 in a simplified setting. A more detailed exposition
is given in the Appendix. For now, we will consider a simplified setting where our timed
words are two way infinite timed words i.e. the timeline is not [0,∞) but instead (−∞,∞)
and for any timed word σ and a point t0 there are action points before and after the point
t0. Recall the definition of x-restricted assignment and strong satisfaction from Section 5.
Now in this setting, we have the following lemma which says that given a timed word σ, an
interval δ(x, y) which is an interval for y determined by x (for example: x+ 1 ≤ y ≤ x+ 2),
and a value x = t1 for x, we can construct an interval π1(x) (using some other variables)
such that for any x = t′1 in the interval π1(x), the set of action points a(y) in the intervals
δ(t1, y) and δ(t′1, y) are exactly the same, i.e. for any point in the interval π1 the set of action
points in the interval δ are preserved.

R. Holla, N. Deka, and D. D’Souza 45:13

▶ Lemma 6 (Preservation of action points). Consider a formula φ = a(y) ∧ δ(x, y) where x, y
are free variables, a is an action and δ is a conjunction of simple constraints. Then, we can
construct an interval π1(x,w1, . . . , wn) where the wi’s are newly introduced free variables,
such that given any timed word σ and a x-restricted assignment I for φ w.r.t. σ (let I(x) = t1),
there exists an assignment W = [b1/w1, . . . , bn/wn] such that the bi’s are action points of σ
and, for any t′1 which satisfies [t′1/x],W |= π1(x), and for any t0, we have

σ, [t1/x, t0/y] |= φ ⇐⇒ σ, [t′1/x, t0/y] |= φ.

Furthermore, [t1/x],W |= π1(x,w1, . . . , wn).
Proof. We can think of δ as an interval for y that is determined by the value of x. This
lemma says that for any t′1 in the interval π1, the set of action points a(y) in the interval
δ([t′1/x]) is the same as that of the interval δ([t1/x]).

We construct the interval π1 using the right and left boundaries of δ. The right boundary
of δ will be of the form y ∼ x± c where ∼∈ {<,≤} and the left boundary will be of the form
y ∼ x± c where ∼∈ {>,≥}. W.l.o.g, take the left boundary to be y ≥ x− c1 and the right
boundary to be y ≤ x+ c2. Define four new variables w1, w2, w3 and w4 and define π1 as

π1 := w1 < x− c1 < w2 ∧ w3 < x+ c2 < w4.

Now take any timed word σ and a x-restricted assignment I for φ w.r.t. σ, with I(x) = t1.
The assignment W is defined as follows:
1. Let b1 be the first action point of σ that precedes the point t1 − c1. Assign w1 := b1
2. Let b2 be the first action point of σ that succeeds the point t1 − c1. Assign w2 := b2
3. Let b3 be the first action point of σ that precedes the point t1 + c2. Assign w3 := b3
4. Let b4 be the first action point of σ that succeeds the point t1 + c2. Assign w4 := b4
With this assignment, it is easy to see that for any x = t′1 in the interval π1 i.e. [x/t′1],W |= π1,
the set of action points in the intervals δ([x/t1]) and δ([x/t′1]) is the same. Also, [x/t1],W |=
π1(x,w1, . . . , wn). And hence, the lemma follows. ◀

With this lemma we will prove the version of Lemma 2 in our simplified setting, which
we state below:
▶ Lemma 7. Consider a formula of the form φ = ∃x(π(x) ∧ ψ) where π is a conjunction
of simple constraints and ψ is an actively quantified formula in ∃-normal form or negated
∃-normal form. Then, we can construct an equivalent formula µ which is of the form:

∃w1 · · · ∃wn(
n∧

i=1
a(wi) ∧ ∃x(π(x) ∧π1(x,w1, . . . , wn)) ∧ ∀x((π(x) ∧π1(x,w1, . . . , wn)) ⊃ ψ))

such that for any timed word σ which strongly satisfies φ, we also have σ |= µ

Proof. We will prove the lemma by inducting on the quantifier depth of the formula ψ.

Base Case (quantifier depth = 1): In this case, ψ = ∃y(a(y) ∧ δ) or ψ = ¬∃y(a(y) ∧ δ).
We apply the preservation of action points lemma on the formula a(y) ∧ δ to get the interval
π1(w1, w2, . . . , wn) for which action points in the interval δ are preserved. We define µ as
follows:

∃w1, w2, . . . , wn(
n∧

i=1
a(wi)∧∃x(π(x)∧π1(x,w1, . . . , wn))∧∀x((π(x)∧π1(x,w1, . . . , wn)) ⊃ ψ)).

Now pick any timed word σ such that σ strongly satisfies φ. The preservation of action
points lemma will give us a valuation W for the variables w1, . . . , wn. It is easy to see that
σ |= µ with the valuation W

FSTTCS 2021

45:14 Equivalence of Pointwise and Continuous TPTL

Inductive Case (quantifier depth = n): In this case, ψ = ∃y(a(y) ∧ δ ∧ ν) or ψ =
¬∃y(a(y) ∧ δ ∧ ν) where ν is of quantifier depth n− 1. To construct θ, we first look at the
formula φ′ = ∃x(π(x) ∧ ψ′) where ψ′ = ν if ψ = ∃y(a(y) ∧ δ ∧ ν) and ψ′ = ¬ν otherwise.
Applying induction hypothesis to this formula, we get the formula

µ′ = ∃w′
1, w

′
2, . . . , w

′
m(

m∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

1(x,w1, . . . , wm))

∧ ∀x((π(x) ∧ π′
1(x,w1, . . . , wm)) ⊃ ψ′)).

We apply the preservation of action points lemma on the formula a(y) ∧ δ to get the interval
π1(w1, w2, . . . , wn) for which action points in the interval δ are preserved. We construct µ
using π1 and µ′ as follows:

µ = ∃w1, . . . , wn∃w′
1, w

′
2, . . . , w

′
m(

n∧
j=1

a(wj)
m∧

i=1
a(w′

i)

∧ ∃x(π(x) ∧ π1(x,w1, . . . , wn) ∧ π′
1(x,w′

1, . . . , w
′
m))

∧ ∀x((π(x) ∧ π1(x,w1, . . . , wn) ∧ π′
1(x,w′

1, . . . , w
′
m)) ⊃ ψ)).

Pick any timed word σ such that σ strongly satisfies φ i.e. there is a x-restricted assigment
I(x) = t1 such that σ, [t1/x] |= π(x) ∧ ψ. We need to show that for any x = t′1 in the interval
π ∧ π1 ∧ π′

1 we have ψ. Now from the preservation of action points lemma, we know that
for any x = t′1 in the interval π1, the action points in the interval δ are preserved. Also, by
the induction, the interval π′

1 ensures that for any x = t′1 in the interval π′
1, σ, [t′1/x] |= ψ′.

Hence, for any x = t′1 in the intersection of these intervals, i.e. the interval π ∧ π1 ∧ π′
1 we

have σ, [t′1/x] |= ψ. Hence, we get that σ |= µ. ◀

7 Equivalence of FO and TPTLS

We can now argue that the logic TPTLS is expressively equivalent in its continuous and
pointwise semantics. We recall that the formulas of TPTLS [3, 5] over the alphabet Σ, are
defined as follows: θ ::= a | g | ¬θ | θ ∨ θ | θUθ | θSθ | x.θ where a ∈ Σ, x is a variable in
Var , and g is a simple constraint.

In the pointwise semantics, for a TPTLS formula θ, timed word σ = (α, τ) over Σ, i ∈ N,
and an assignment for variables I, we define the satisfaction relation σ, i, I |=pw θ, as:

σ, i, I |=pw a iff α(i) = a

σ, i, I |=pw g iff I |= g

σ, i, I |=pw θUη iff ∃k : i < k s.t. σ, k, I |=pw η and ∀j : i < j < k : σ, j, I |=pw θ

σ, i, I |=pw θSη iff ∃k : 0 ≤ k < i s.t. σ, k, I |=pw η and ∀j : k < j < i, σ, j, I |=pw θ

σ, i, I |=pw x.θ iff σ, i, I[τ(i)/x] |=pw θ,

with boolean operators handled in the expected way. For a “closed” TPTLS formula θ, in
which every occurrence of x is within the scope of a freeze quantifier “x.”, we set the language
defined by it to be Lpw(θ) = {σ ∈ TΣω | σ, 0 |=pw θ}.

In the continuous semantics, for a TPTLS formula θ, a timed word σ = (α, τ) over Σ,
t ∈ R≥0, and an assignment I, the satisfaction relation σ, t, I |=c θ is defined similarly, except
that:

R. Holla, N. Deka, and D. D’Souza 45:15

σ, t, I |=c a iff ∃i : α(i) = a and τ(i) = t

σ, t, I |=c θUη iff ∃t′ : t < t′ s.t. σ, t′, I |=c η and ∀t′′ : t < t′′ < t′, σ, t′′, I |=c θ

σ, t, I |=c θSη iff ∃t′ : 0 ≤ t′ < t s.t. σ, t′, I |=c η and ∀t′′ : t′ < t′′ < t, σ, t′′, I |=c θ

σ, t, I |=c x.θ iff σ, t, I[t/x] |=c θ.

We use the standard syntactic abbreviations of ♢,♢- ,□ and □- defined in a reflexive manner:
♢θ = θ ∨ (⊤Uθ), ♢- θ = θ ∨ (⊤Sθ), □θ = ¬♢¬θ, and □- θ = ¬♢- ¬θ. We note that in TPTLS it
is possible to express the U and S operators using ♢ and ♢- operators, in both the continuous
and pointwise semantics. For instance, θUη ≡ x.♢y.(η ∧ x < y ∧ □- z.(x < z ∧ z < y ⇒ θ)).
Hence we concentrate only on these operators in the translations below.

▶ Theorem 8. The logics TPTLc
S and TPTLpw

S are expressively equivalent. ◀

Proof. We first show that we can translate a formula in TPTLS to an equivalent one in
FO(<,+Q), and vice-versa. For a closed formula θ in TPTLS we show how to give a formula
tptl-fo(θ) in FO(<,+Q), which has a single free variable z, such that for any timed word
σ, σ, t |=c θ if and only if σ, [t/z] |=c tptl-fo(θ) (and similarly in pointwise semantics). The
translation tptl-fo is defined inductively on the structure of θ as follows:

tptl-fo(a) = a(z)
tptl-fo(g) = g

tptl-fo(♢θ′) = ∃x(x ≥ z ∧ tptl-fo(θ′)[x/z])
tptl-fo(♢- θ′) = ∃x(x ≤ z ∧ tptl-fo(θ′)[x/z])
tptl-fo(x.θ′) = (tptl-fo(θ′))[z/x]

with boolean operators handled in the expected manner. We can now translate a closed
formula θ in TPTLS to an FO(<,+Q) sentence φ = ∃z(z = 0 ∧ tptl-fo(θ)), with Lc(θ) =
Lc(φ).

In the other direction, we translate an FO(<,+Q) sentence φ, to an equivalent closed
TPTLS formula fo-tptl(φ) as follows. We first transform φ into its normal form as given in
Thm 1. The translation fo-tptl is defined inductively in a similar manner to tptl-fo above,
with ∃-subformulas being translated via the rule:

fo-tptl(∃x(a(x) ∧ π(x) ∧ ν)) = ♢x.(a ∧ π(x) ∧ fo-tptl(ν)) ∨ ♢-x.(a ∧ π(x) ∧ fo-tptl(ν)).

It is easy to see that Lc(φ) = Lc(fo-tptl(φ)).
We can now prove the non-trivial direction of the theorem. Consider a closed formula

θ of TPTLc
S . We go over to an equivalent FO(<,+Q) formula φ = tptl-fo(θ), obtain an

equivalent pointwise FO(<,+Q) formula φ′ using Thm. 5, and finally obtain an equivalent
pointwise TPTLS formula θ′, with Lc(θ) = Lpw(θ′). ◀

8 Conclusion

In this paper we have shown the expressive equivalence of, and in fact given an effective
translation between, the pointwise and continuous versions of two natural logics FO(<,+Q)
and TPTLS over timed words. Some interesting directions include addressing a similar
question for TPTL (i.e. without the since operator). One may be able to use an argument
like [8] to say that TPTL is as expressive as TPTLS in the pointwise setting. Another
interesting question is about first-order logic with Presburger constraints in general. Here it
appears that we can express strong properties in the continuous interpretation which seem
difficult to express in the pointwise setting.

FSTTCS 2021

45:16 Equivalence of Pointwise and Continuous TPTL

References
1 Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.

In 10th ACM Symposium on Principles of Distributed Computing, pages 139–152, 1991.
2 Rajeev Alur and Thomas A. Henzinger. A Really Temporal Logic. In IEEE Symposium on

Foundations of Computer Science, pages 164–169, 1989.
3 Rajeev Alur and Thomas A. Henzinger. A Really Temporal Logic. J. ACM, 41(1):181–204,

1994. doi:10.1145/174644.174651.
4 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and

MTL. In Foundations of Software Technology and Theoretical Computer Science, 2005.
5 Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness of TPTL and

MTL. Inf. Comput., 208(2):97–116, 2010. doi:10.1016/j.ic.2009.10.004.
6 Deepak D’Souza, Raveendra Holla, and Raj Mohan M. Equivalence of the pointwise and

continuous semantics of first order logic with linear constraints, 2010. URL: https://www.
csa.iisc.ac.in/~deepakd/papers/tptl.pdf.

7 Deepak D’Souza and Pavithra Prabhakar. On the expressiveness of MTL in the pointwise and
continuous semantics. In Formal Methods Letters, Software Tools for Technology Transfer,
Vol. 9, No. 1, pages 1–4. Springer, 2007.

8 Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis of
fairness. In 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 163–173, 1980.

9 Hsi-Ming Ho, Joël Ouaknine, and James Worrell. On the Expressiveness and Monitoring of
Metric Temporal Logic. Log. Methods Comput. Sci., 15(2), 2019. doi:10.23638/LMCS-15(2:
13)2019.

10 Ron Koymans. Specifying Real-Time Properties with Metric Temporal Logic. In Real Time
Systems, pages 2(4):255–299, 1990.

11 Joël Ouaknine, Alexander Rabinovich, and James Worrell. Time-Bounded Verification. In
Mario Bravetti and Gianluigi Zavattaro, editors, 20th International Conference on Concurreny
Theory, volume 5710 of Lecture Notes in Computer Science, pages 496–510. Springer, 2009.
doi:10.1007/978-3-642-04081-8_33.

12 Joël Ouaknine and James Worrell. On the Decidability of Metric Temporal Logic. In 20th
Annual IEEE Symposium on Logic in Computer Science, pages 188–197, 2005.

13 Pavithra Prabhakar and Deepak D’Souza. On the expressiveness of MTL with past operators.
In 4th Intl. Conference on Formal Modelling and Analysis of Timed Systems, pages 322–336,
2006. doi:10.1007/11867340_23.

14 Alexander Schrijver. Theory of Linear and Integer Programming, pages 155–157. John Wiley
& Sons, 2000.

A Proof of Lemma 2

▶ Lemma 9 (Preservation of action points). Consider a formula φ = a(y) ∧ δ(x, y) where x, y
are free variables, a is an action and δ is a conjunction of simple linear constraints. Then,
we can construct a finite number of intervals π1(x,w1, w2, . . . , wn), . . . , πm(x,w1, w2, . . . , wk)
where the wi’s are newly introduced free variables, such that given any timed word σ and
an x-restricted assignment, x = t1 for φ w.r.t σ, there exists an i ∈ {1, . . . ,m} and an
assignment W = {w1 = b1, w2 = b2, . . . , wn = bn} with the bi’s being action points of the
timed word σ, such that for any t′1 which satisifes x = t′1,W |= πi(x), and for any valuation
y = t0 for y, we have

σ, x = t1, y = t0 |= φ ⇐⇒ σ, x = t′1, y = t0 |= φ.

Furthermore, x = t1,W |= πi

https://doi.org/10.1145/174644.174651
https://doi.org/10.1016/j.ic.2009.10.004
https://www.csa.iisc.ac.in/~deepakd/papers/tptl.pdf
https://www.csa.iisc.ac.in/~deepakd/papers/tptl.pdf
https://doi.org/10.23638/LMCS-15(2:13)2019
https://doi.org/10.23638/LMCS-15(2:13)2019
https://doi.org/10.1007/978-3-642-04081-8_33
https://doi.org/10.1007/11867340_23

R. Holla, N. Deka, and D. D’Souza 45:17

Proof. Observe that the constraints in δ are defining an interval for y. Based on the
boundaries of this interval, we can have four different cases:
1. Both the left end and right end of δ are of the form y ∼ x+ c

2. the left end of δ is of the form y ∼ x− c and the right end of δ is of the form y ∼ x+ c

3. Both the left and right end of δ are of the form y ∼ x− c

4. the left end of δ is of the form y ∼ x+ c and the right end is of the form y ∼ x− c

We now provide the constructions for each of the cases.
Case 1: Let the left end of δ be y ∼ x + c1 and the right end be y ∼ x + c2. In this

case, we have only 1 interval π1. We introduce 4 new variables w1, w2, w3, w4 and construct
π1 = w1 < x+ c1 < w2 ∧ w3 < x+ c2 < w4

Case 2: Let the left end of δ be y ∼ x− c1 and the right end be y ∼ x+ c2. In this case,
we have two intervals:

π1 = w1 < x− c1 < w2 ∧ w3 < x+ c2 < w4
π2 = 0 < x < c1 ∧ w3 < x+ c2 < w4

Case 3: Let the left end of δ be y ∼ x− c1 and the right end be y ∼ x− c2. We have 4
intervals:

π1 = w1 < x− c1 < w2 ∧ w3 < x− c2 < w4

π2 = 0 < x < c1 ∧ w3 < x− c2 < w4

π3 = w1 < x− c1 < w2 ∧ 0 < x < c2

π4 = 0 < x < c1 ∧ 0 < x < c2

Case 4: Let the left end of δ be y ∼ x+ c1 and the right end be y ∼ x− c2. We have 2
intervals:

π1 = w1 < x+ c1 < w2 ∧ w3 < x− c2 < w4

π2 = w1 < x+ c1 < w2 ∧ 0 < x < c2

We will prove the theorem for case 2. The proof is similar for the others. Pick any timed
word σ and an x-restricted valuation x = t1 for φ w.r.t σ. W.l.o.g, let the left end of δ be
y ≥ x− c1 and the right end be y ≤ x+ c2. We can have two cases:

Case 1 : t1 − c1 > 0. For this case, pick the interval π1 = w1 < x − c1 < w2 ∧ w3 <

x+ c2 < w4. we define the assignment W as follows:
Set w1 to be the first action point of σ that is less than t1 − c1
Set w2 to be the first action point of σ that is greater than t1 − c1
Set w3 to be the first action point of σ that is less than t1 + c2
Set w4 to be the first action point of σ that is greater than t1 + c2

Now we need to show that for any assignment y = t0 for y and any t′1 such that x = t′1,W |=
π1(x), we have σ, x = t1, y = t0 |= φ ⇐⇒ σ, x = t′1, y = t0 |= φ. Pick any assignment y = t0
for y and any t′1 such that x = t′1,W |= π1(x). Assume σ, x = t1, y = t0 |= φ. Suppose that
σ, x = t′1, y = t0 ̸|= φ, then,

σ, x = t′1, y = t0 ̸|= δ

=⇒ σ, x = t′1, y = t0 ̸|= y ≥ x− c1 OR σ, x = t′1, y = t0 ̸|= y ≤ x+ c2

WLOG suppose σ, x = t′1, y = t0 ̸|= y ≥ x−c1 or in other words, σ, x = t′1, y = t0 |= y < x−c1.
Now observe that t′1,W |= π1(x) and hence, t′1 − c1 < w2. Furthermore,

σ, x = t1, y = t0 |= φ =⇒ σ, x = t1, y = t0 |= δ

=⇒ σ, x = t1, y = t0 |= y ≥ x− c1 =⇒ t0 ≥ t1 − c1

FSTTCS 2021

45:18 Equivalence of Pointwise and Continuous TPTL

Hence, we get the inequality, t1 − c1 ≤ t0 < t′1 − c1 < w2. This is saying that t0 is an action
point of σ which lies in between t1 − c1 and w2. This directly contradicts our assignment of
w2. Hence, our assumption is wrong. Therefore, σ, x = t′1, y = t0 |= y ≥ x− c1. An exactly
similar proof will show the other direction.

Case 2: t1 − c1 < 0. For this case, pick the interval π2 = 0 < x < c1 ∧ w3 < x+ c2 < w4.
We use the same assignment W as in case 1, but restricted to the variables w3 and w4. One
can argue similar to above to show that the lemma holds in this case also.

Hence, we get our Lemma. ◀

▶ Theorem 10. Consider a formula of the form φ = ∃x(π(x) ∧ ψ) where π is a conjunction
of simple constraints and ψ is an actively quantified formula in ∃-normal form or the negation
of an actively quantified formula in ∃-normal form. Then, we can construct a formula θ

which is a disjunction of formulas of the form:

θi = ∃w1∃w2 · · · ∃wn(
n∧

i=1
a(wi) ∧ ∃x(π(x) ∧ πi(x,w1, . . . , wn))

∧ ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ))

such that for any timed word σ which strongly satisfies φ we also have σ |= θ.

Proof. Assume that σ strongly satisfies φ with an x-restricted assignment x = t1 for φ w.r.t.
σ. Observe that if σ |= θ, then there is an i0 such that σ |= θi0 . We will not only show that
σ |= θi0 for some i0, but we will also further show that σ |= θi0 with an assignment W for the
wi’s such that x = t1,W |= πi0(x,w1, . . . , wn) and the choice of the assignment W depends
only on σ and the assignment x = t1 for x.

We prove this by inducting on the quantifier depth of the formula ψ.

Base Case: Quantifier depth = 1
In this case, we have φ = ∃x(π(x) ∧ ψ) where

ψ = ∃y(a(y) ∧ δ) OR ψ = ¬∃y(a(y) ∧ δ)

Now we apply the preservation of action points lemma on the formula a(y) ∧ δ to get a finite
number of intervals π1, π2, . . . , πm. For each such interval, we construct a formula

θi = ∃w1∃w2 · · · ∃wn(
n∧

i=1
a(wi) ∧ ∃x(π(x) ∧ πi(x,w1, . . . , wn))

∧ ∀x((π(x) ∧ πi(x,w1, . . . , wn)) ⊃ ψ)).

We define θ =
m∨

i=1
θi.

To prove the lemma, let ψ = ∃y(a(y) ∧ δ). Now pick any timed word σ such that σ
strongly satisfies φ, i.e. there is an x- restricted assignment x = t1 for ψ w.r.t σ, such that
σ, x = t1 |= π(x) ∧ ∃y(a(y) ∧ δ). Applying our preservation of action points lemma on the
formula a(y) ∧ δ, we get an i0 ∈ {1, 2, . . . ,m}. We will now show that σ |= θi0 . To show this,
we have to show that there is an assignment W = {w1 = b1, . . . , wn = bn} such that

σ,W |=(
i=n∧
i=1

a(wi) ∧ ∃x(π(x) ∧ πi0(x,w1, . . . , wn))

∧ ∀x((π(x) ∧ πi0(x,w1, . . . , wn)) ⊃ ψ)).

R. Holla, N. Deka, and D. D’Souza 45:19

The preservation of action points lemma gives us an assignment W which preserves the
action points in the interval δ. We will use the same assignment here. σ,W |= a(wj) holds
for each j by the preservation of action points lemma. By our hypothesis, σ, x = t1 |= π(x)
and by the preservation of action points lemma we also have σ, x = t1,W |= πi0 . Hence,
we also have σ,W |= ∃x(π ∧ πi0). Also, observe that from the preservation of action points
lemma, we get that the choice of W depends only on σ and the assignment x = t1.

Now all that remains is to show that σ,W |= ∀x((π(x) ∧ πi0(x,w1, . . . , wn)) ⊃ ψ). Pick
any assignment x = t′1 of the variable x such that σ, x = t′1,W |= π(x) ∧ πi0(x,w1, . . . , wn).
We need to show that σ, x = t′1 |= ψ. By our assumption, we have that σ, x = t1 |=
π(x) ∧ ∃y(a(y) ∧ δ). Hence, there is an assigment y = t0 such that σ, x = t1, y = t0 |= a(y) ∧ δ.
By the preservation of action points lemma, we get that σ, x = t′1, y = t0 |= a(y) ∧ δ. Hence,
we get that σ, x = t′1 |= ψ.

Hence, we get that σ |= θi0 and hence σ |= θ. Observe that, in the process we also showed
that σ |= θi0 with an assignment W such that x = t1,W |= πi0 and the choice of W depended
only on σ and the assignment x = t1 for x.

One can similarly argue that the lemma holds if ψ = ¬∃y(a(y) ∧ δ).

Inductive Step: Let us assume that we have proved the lemma for quantifier depth of
1, 2, . . . , n− 1. Now, consider a formula φ = ∃x(π(x) ∧ ψ) where ψ is of quantifier depth n.
We will split this proof into two cases based on whether ψ is a formula in ∃ normal form, or
negation of a formula ∃ normal form. We will show the lemma for the first case, and the
second case can be shown similarly.

Case 1 (Positive Case) : ψ = ∃y(a(y) ∧ δ ∧ ψ′).
We will first prove it assuming ψ′ is of the form ν or ¬ν where ν is in ∃ normal form of

quantifier depth n− 1. Later, we will give the construction for when ψ′ is a conjunction of
formulas of the form ν or ¬ν, where ν is in ∃ Normal form, and the proof of the lemma is
similar.

Now consider the formula φ′ = ∃x(π(x) ∧ ψ′). By our induction hypothesis, there exists

a formula θ′ =
k∨

j=1
θ′

j such that the lemma holds, and each θ′
j is of the form:

θ′
j = ∃w′

1, w
′
2, . . . , w

′
n(

n∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

j(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
j(x,w′

1, . . . , w
′
n)) ⊃ ψ′)).

We apply the preservation of action points lemma to the formula a(y) ∧ δ to get a finite
number of intervals π1, . . . , πm. We now construct m × k formulas denoted by θij where
i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , k} as follows:

θij = ∃w1, w2, . . . , wl∃w′
1, w

′
2, . . . , w

′
n(

l∧
i=1

a(wi)
n∧

i=1
a(w′

i)

∧ ∃x(π(x) ∧ πi(x,w1, . . . , wl) ∧ π′
j(x,w′

1, . . . , w
′
n))

∧ ∀x((π(x) ∧ πi(x,w1, . . . , wl) ∧ π′
j(x,w′

1, . . . , w
′
n)) ⊃ ψ)).

Now define θ =
m∨

i=1

k∨
j=1

θij .

FSTTCS 2021

45:20 Equivalence of Pointwise and Continuous TPTL

Pick any timed word σ such that σ strongly satisfies φ. We need to show that σ |= θ.
Observe that

σ |= φ =⇒ σ |= ∃x(π(x) ∧ ∃y(a(y) ∧ δ ∧ ψ′)
=⇒ σ, x = t1, y = t0 |= π(x) ∧ a(y) ∧ δ ∧ ψ′.

Hence, σ, y = t0 |= ∃x(π(x) ∧ ψ′) i.e. σ strongly satisfies φ′ with the x-restricted assignment
x = t1 for φ′ w.r.t σ. Now by the induction hypothesis, σ, y = t0 |= θ′ =⇒ σ, y =
t0 |= θ′

j0
for some j0. Furthermore, σ, y = t0 |= θ′

j0
with an assignmnet W ′ such that

x = t1,W ′ |= π′
j0

and the assignment W ′ depends only on σ and the assignment x = t1.

Applying the preservation of action points lemma on the formula a(y) ∧ δ gives us a
i0 ∈ {1, . . . ,m}. We will now show that σ |= θi0j0 . Recall that

θi0j0 = ∃w1, w2, . . . , wl∃w′
1, w

′
2, . . . , w

′
n(

l∧
i=1

a(wi)
n∧

i=1
a(w′

i)

∧ ∃x(π(x) ∧ πi0(x,w1, . . . , wl) ∧ π′
j0

(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ πi0(x,w1, . . . , wl) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ)).

We need to come up with an assignment W for the variables w1, . . . , wl and an assignment
W ′ for the variables w′

1, . . . , w
′
n. The preservation of action points lemma on the formula

a(y) ∧ δ using the timed word σ and the assignment x = t1 for x gives us the assignment W .
Also, observe σ, y = t0 |= θ′

j0
. Hence,

σ, y = t0 |= ∃w′
1, w

′
2, . . . , w

′
n(

n∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

j0
(x,w′

1, . . . , w
′
n))

∧ ∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′)).

This gives us a valuation W ′ such that

σ, y = t0,W ′ |=(
n∧

i=1
a(w′

i) ∧ ∃x(π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′)).

Hence, we have σ,W,W ′ |=
∧l

i=1 a(wi)
∧n

j=1 a(w′
j). From the preservation of action points

lemma, we know that, σ, x = t1,W |= πi0(x,w1, . . . , wl) and the choice of W depends only on
σ and the assignment x = t1. From the induction hypothesis, we know: σ, x = t1,W ′ |= π(x)∧
π′

j0
(x,w′

1, . . . , w
′
n). Combining these two together, we get, σ,W,W ′ |= ∃x(π(x) ∧ πi0 ∧ π′

j0
).

All that remains is to show that σ,W,W ′ |= ∀x((π ∧ πi0 ∧ π′
j0

) ⊃ ψ).
To do this, pick any assignment x = t′1 such that σ, x = t′1,W,W ′ |= π ∧ πi0 ∧ π′

j0
. Recall

that ψ = ∃y(a(y) ∧ δ ∧ ψ′). Hence, we need to show:

σ, x = t′1,W,W ′ |= ∃y(a(y) ∧ δ ∧ ψ′).

From the preservation of action points lemma, we know that since σ, x = t1, y = t0 |= a(y)∧δ,
and since σ, x = t′1,W |= πi0 , we have:

σ, x = t′1, y = t0,W,W ′ |= a(y) ∧ δ.

R. Holla, N. Deka, and D. D’Souza 45:21

We also already have that

σ, y = t0,W ′ |=(
n∧

i=1
a(w′

i) ∧ ∃x(π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′))

=⇒ σ, y = t0,W ′ |=∀x((π(x) ∧ π′
j0

(x,w′
1, . . . , w

′
n)) ⊃ ψ′).

Now σ, x = t′1,W,W ′ |= π ∧ π′
j0

. Hence, we get σ, x = t′1, y = t0,W,W ′ |= ψ′, which gives us
σ, x = t′1,W,W ′ |= ∃y(a(y) ∧ δ ∧ ψ′). This is what we needed to show. Hence we are done.

Now consider ψ = ∃y(a(y) ∧ δ ∧ ψ′) where ψ′ = ψ′
1 ∧ ψ′

2 ∧ · · · ∧ ψ′ and each ψ′
i is either

a formula in ∃ normal form, or the negation of a formula in ∃ normal form. Consider the
formulas: φ′

i = ∃x(π ∧ ψ′
i) for i = 1, 2, . . . , n. For each i = 1, 2, . . . , n, we can apply the

induction hypothesis to get a disjunction θ′
i =

ki∨
j=1

θ′
ij such that the lemma holds and where

each θ′
ij is of the form:

θ′
ij = ∃w′

1, w
′
2, . . . , w

′
n(

n∧
i=1

a(w′
i) ∧ ∃x(π(x) ∧ π′

ij(x,w′
1, . . . , w

′
n))

∧ ∀x((π(x) ∧ π′
ij(x,w′

1, . . . , w
′
n)) ⊃ ψ′

i)).

We apply the preservation of action points lemma to the formula a(y) ∧ δ to get a finite
number of intervals π1, . . . , πm. We now construct m× k1 × k2 × · · · × kn formulas denoted
by θij1j2...jn where i ∈ {1, 2, . . . ,m} and ji ∈ {1, 2, . . . , ki} as follows:

θij1j2...jn = ∃w1, w2, . . . , wl(
l∧

i=1
a(wi) ∧ ∃x(π(x) ∧ πi ∧ π′

1j1
∧ π′

2j2
∧ · · · ∧ π′

njn
)

∧ ∀x(π(x) ∧ πi ∧ π′
1j1

∧ π′
2j2

∧ · · · ∧ π′
njn

) ⊃ ψ)).

Now define θ =
i=m∨
i=1

j1=k1∨
j1=1

· · ·
jn=kn∨
jn=1

θij1j2...jn
.

It can be shown similar to the above that the theorem holds with this construction. ◀

FSTTCS 2021

Separating Regular Languages over Infinite Words
with Respect to the Wagner Hierarchy
Christopher Hugenroth #

TU Ilmenau, Germany

Abstract
We investigate the separation problem for regular ω-languages with respect to the Wagner hierarchy
where the input languages are given as deterministic Muller automata (DMA). We show that a
minimal separating DMA can be computed in exponential time and that some languages require
separators of exponential size. Further, we show that in this setting it can be decided in polynomial
time whether a separator exists on a certain level of the Wagner hierarchy and that emptiness of
the intersection of two languages given by DMAs can be decided in polynomial time. Finally, we
show that separation can also be decided in polynomial time if the input languages are given as
deterministic parity automata.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Regular languages

Keywords and phrases Separation, Regular, Wagner Hierarchy, Muller Automata, Parity Automata,
Product Automata, Membership

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.46

Acknowledgements I want to thank Christof Löding who supervised my Master thesis on which this
paper is based and Dietrich Kuske for clarifying discussions. Further, I want to thank the reviewers
of former versions of this paper for their helpful suggestions.

1 Introduction

The membership problem for a class of languages asks to decide whether a given language
is contained in this class. More generally, we can ask for a hierarchy of classes to decide
membership for each of its classes. This problem has been studied for a variety of classes and
hierarchies [11, 5, 6, 4, 12]. Solving the membership problem for a class helps us understand
the expressive power of a class [8].

For example, the regular ω-languages are classified by the Wagner hierarchy [12, 7] which
has been studied extensively. The hierarchy is infinite and refines both the Mostowski [7]
and the Borel hierarchy with respect to the regular ω-languages [12]. The class of a language
L is determined by the loop structure of any deterministic Muller automaton (DMA) that
recognizes L, every DMA that recognizes L has the same structure. Using this, membership
for the Wagner hierarchy can be decided efficiently if the language is given as a DMA [7].

Membership has also been studied with respect to the quantifier alternation hierarchy
of first order logic for regular language of finite or infinite words [9], [8]. This hierarchy is
infinite but the membership problem has only been solved for a few classes of the hierarchy.
One approach towards solving membership for more classes uses the separation problem [8].

The Separation problem asks given two languages L1, L2 and a class C whether there
is a language L in C that separates L1 and L2, i.e. L1 ⊆ L and L2 ∩ L = ∅. Separation is
more general than membership because a language L is in C iff L and its complement can
be separated by a language in C, so membership can be reduced to separation. Solving the
separation problem for a class C requires understanding the discriminating power of C and
therefore an even deeper understanding of a class than for solving membership [8].

© Christopher Hugenroth;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 46; pp. 46:1–46:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christopher.hugenroth@tu-ilmenau.de
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.46
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Separating Regular Languages over Infinite Words

In this paper, we study the separation problem for the Wagner hierarchy to gain a
deeper understanding of this hierarchy. Further, we might get some insights on how to
solve the membership problem for the Mostowski hierarchy for infinite trees [5, 6] and the
aforementioned quantifier alternation hierarchy which are similar to the Wagner hierarchy.

We assume that the input languages for the separation problem are given as DMAs. First,
we show that the loop structure of every separating DMA is similar. Using this, a DMA
whose language separates the two input languages and which is minimal with respect to the
Wagner hierarchy can be computed in exponential time. Next, we show that this result is
optimal in the sense that there are infinitely many pairs of DMAs for which every separating
DMA is exponentially larger than the DMAs in the pair.

Surprisingly, deciding whether a separator exists is possible in polynomial time. This can
be done by analyzing the loop structure of a special product automaton. This also works if
the input languages are given as deterministic parity automata (DPA).

We can also use the separation algorithm to decide in polynomial time whether the
languages of two DMAs (DPAs) are disjoint. Meanwhile, the intersection of DMAs (DPAs)
has exponential size in general [1], so our algorithm has better complexity than a naive
algorithm for disjointness and, to the best of our knowledge, is the first to do so.

2 Preliminaries

We denote the natural numbers by N = {0, 1, 2, . . . }. The strict linear order on the natural
numbers is denoted by <. All numbers in this paper are natural, we do not state that for
every number explicitly. The projection function to the i-th component is denoted by pri.

An alphabet Σ is a finite, non-empty set of symbols. A finite word over Σ is a mapping
from {0, 1, . . . , k − 1} to Σ for some k ∈ N. Here, k is the length of w. The empty word ε is
the unique word of length 0. The class of all finite words over Σ is Σ∗. An infinite word α

over Σ is a mapping from N to Σ. The class of all infinite words over Σ is denoted by Σω.
For w ∈ Σ∗ and i, j ∈ N with i, j < |w| we define w[i, j] as w[i, j] = w(i) . . . w(j) for i ≤ j

and w[i, j] = ε for i > j. For infinite words the definition is analogous.
A symbol a ∈ Σ occurs infinitely often in a word α ∈ Σω if there are infinitely many

i ∈ N with α(i) = a. For an infinite word α ∈ Σω let Inf(α) be the set of letters that occur
infinitely often in α.

2.1 Automaton Structures
An automaton structure is a tuple A = (Q, Σ, δ, q0) where Q is a finite, non-empty set of
states, Σ is an alphabet, δ : Q × Σ → Q is a transition function and q0 ∈ Q is the initial
state. All automata considered in this paper are deterministic.

The run of an automaton structure A = (Q, Σ, δ, q0) on a finite word w ∈ Σ∗ from p ∈ Q

is the word ρ ∈ Q∗ with ρ(0) = p and ρ(i + 1) = δ(ρ(i), w(i)) for all i ∈ N with i < |w|. The
run of an automaton structure A on an infinite word α ∈ Σω from a state p ∈ Q is an infinite
word ρ ∈ Qω with ρ(0) = p and ρ(i + 1) = δ(ρ(i), α(i)) for all i ∈ N. We denote such a run
by ρA(p, w) for w ∈ Σ∗, respectively ρA(p, α) for α ∈ Σω.

We write p
w−→
P

q if there is a run of A on w from p to q and the set of states visited on
this run is exactly P , i.e. P = {p′ ∈ Q | there is 0 ≤ i ≤ |w| such that ρA(p, w)(i) = p′}.
We write p

w−→ q if there is some P such that p
w−→
P

q. With p → q we denote that there is a

word w ∈ Σ∗ with p
w−→ q. We assume that all states are reachable from the initial state q0

for every automaton structure A, i.e. q0 → q for all q ∈ Q.

C. Hugenroth 46:3

A loop of an automaton structure A = (Q, Σ, δ, q0) is a non-empty, strongly connected
set of states. So, P ⊆ Q is a loop if there is a state p ∈ P and a finite word v ∈ Σ∗ with
v ̸= ε and p

v−→
P

p. Equivalently, P is a loop if there is an infinite word α ∈ Σω such that the
infinite run ρ of A on α from q0 satisfies Inf(ρ) = P . A loop P of A is a strongly connected
component (SCC) if there is no loop P ′ of A with P ′ ⊋ P .

Notice that for every loop P of A there is exactly one SCC S of A with P ⊆ S. If there
are two SCCs S, S′ with P ⊆ S, S′ we have S ∩ S′ ̸= ∅. So, S = S′ since the union of
non-disjoint loops is a loop again.

2.2 Deterministic Muller Automata
We denote the powerset of a set Q by 2Q = {P | P ⊆ Q}.

A deterministic Muller automaton (DMA) is a tuple A = (Q, Σ, δ, q0, F) where A =
(Q, Σ, δ, q0) is an automaton structure and F ⊆ 2Q is an acceptance condition, we also write
A = (A, F).

When we talk about a run or a loop of a DMA A we mean a run or a loop of its
automaton structure. A loop P is accepting in A if P ∈ F and rejecting otherwise. A
DMA A = (Q, Σ, δ, q0, F) accepts an infinite word α ∈ Σω if the run ρA(q0, α) satisfies
Inf(ρA(q0, α)) ∈ F , i.e. the set of states visited infinitely often is an accepting loop. The
language accepted by A is the set of words L(A) accepted by A.

The size |A| of a DMA A = (Q, Σ, δ, q0, F) is |Q| + |F|. Notice that |F| might be
exponentially larger than |Q|. For a DMA (A, F) we can compute a DMA (A, F ′) such that
L(A, F) = L(A, F ′) and F ′ contains only loops in polynomial time with respect to |(A, F)|.

An ω-language L is regular iff there is a DMA A with L(A) = L.

3 Wagner Hierarchy

Wagner defined chains and superchains for deterministic Muller automata. He proved that
if L is an ω-regular language then every DMA that recognizes L has the same maximal
superchain length [12]. So, the maximal length of superchains is an invariant of the language.
Hence, the regular ω-languages can be classified according to this invariant. This classification
forms the Wagner hierarchy.

3.1 Chains
Let A = (Q, Σ, δ, q0, F) be a DMA. For m ≥ 1 an m-chain of A is a sequence of loops
c = (P1, . . . , Pm) such that Pi ⊆ Pi+1 and Pi ∈ F iff Pi+1 ̸∈ F for all 0 < i < m. We also
speak of a chain c if it is clear from context that c is an m-chain for a certain m ∈ N. A
chain c = (P1, . . . , Pm) is positive if P1 is accepting and negative if P1 is rejecting.

An m′-chain c′ = (P ′
1, . . . , P ′

m′) is reachable from an m-chain c = (P1, . . . , Pm) if there are
states p ∈ P1, p′ ∈ P ′

1 with p → p′. We denote this by c → c′. Notice that this is equivalent
to saying that every (or some) state of P ′

m′ can be reached from every (or some) state of Pm.

3.2 Superchains
A superchain is a reachability-ordered sequence of chains which alternate between positive
and negative chains. Formally, an (m, n)-superchain is a sequence s = (c1, . . . , cn) of m-chains
such that ci is positive iff ci+1 is negative and further ci → ci+1 for all 0 < i < n. An
(m, n)-superchain s = (c1, . . . , cn) is positive if c1 is positive and negative otherwise.

FSTTCS 2021

46:4 Separating Regular Languages over Infinite Words

▶ Remark 1. Let A = (Q, Σ, δ, q0, F) be a DMA and m > 1. The following are equivalent:
1. A has an m-chain.
2. A has an (m − 1, n)-superchain for all n ∈ N.
3. A has an (m − 1, |Q| + 1)-superchain.

Let ≤ be the lexicographic order on N2. An (m′, n′)-superchain is longer than an (m, n)-
superchain if m′ > m or if m′ = m and n′ > n, i.e. (m′, n′) > (m, n). This order prioritizes
m over n which ensures that for each DMA there is a maximal length of superchains in this
DMA. If we prioritize n this is not the case as one can see with Remark 1.

3.3 Wagner hierarchy
Wagner showed that the superchains of a DMA A are an invariant of the language L(A) [12]
in the following sense: For m, n ∈ N and two DMAs A1, A2 with L(A1) = L(A2) it holds that
A1 has an (m, n)-superchain if and only if A2 has an (m, n)-superchain. So, the existence of
a superchain in A is completely determined by L(A).

The Wagner hierarchy classifies the regular ω-languages based on superchains. We
consider downward-closed classes that Wagner defined. For all m, n ∈ N there are three
classes C n

m, Dn
m, En

m which are defined as follows:

En
m = {L(A) | If A has an (k, ℓ)-superchain then (k, ℓ) ≤ (m, n)}

Dn
m = {L(A) | If A has an (k, ℓ)-superchain then (k, ℓ) ≤ (m, n)

and all (m, n)-superchains in A are positive}
C n

m = {L(A) | If A has an (k, ℓ)-superchain then (k, ℓ) ≤ (m, n)
and all (m, n)-superchains in A are negative}

It holds Cn
m, Dn

m ⊆ En
m and En

m is closed under complement.

4 Wagner Separation

Let Xn
m be a Wagner class. We say that two languages L1, L2 ⊆ Σω are Xn

m-separable if there
is a language L ∈ Xn

m with L1 ⊆ L and L2 ∩ L = ∅. Notice that L1, L2 are En
m-separable iff

L2, L1 are En
m-separable. Further, L1, L2 are C n

m-separable iff L2, L1 are Dn
m-separable, if L

separates L1, L2 then Σω \ L separates L2, L1. We investigate the following problem:
WagnerSeparation
Given: Two DMAs A1, A2, X ∈ {C, D, E} and m, n ∈ N.
Decide: Are the languages L(A1) and L(A2) Xn

m-separable?
In the following we define chains for DMAs that can recognize two languages and show how
to construct a separating DMA that is minimal with respect to the Wagner hierarchy.

4.1 Generalization of Chains
Consider a DMA A = (Q, Σ, δ, q0, F). Wagner defined chains in A as sequences of loops
that alternate between F and its complement. It turns out that a slight generalization
of this concept is helpful for this paper. Let F1, F2 be two subsets of 2Q. We say that
c = (P1, . . . , Pm) is an m-chain with respect to (F1, F2) if
1. Pi is a loop for 1 ≤ i ≤ m,
2. Pi ⊆ Pi+1 for 1 ≤ i < m,
3. Pi ∈ F1 ∪ F2 for 1 ≤ i ≤ m,
4. Pi ∈ F1 iff Pi+1 ∈ F2 for 1 ≤ i < m.

C. Hugenroth 46:5

(a) Blue-start, red-end 4-chain. (b) Blue-start (3, 2)-superchain. (c) A (3, 2)-forcing SCC.

Figure 1 Illustration of patterns in A. Each circle represents a loop in A. Notice that no matter
how the black loop in (c) is colored there will be a (3, 2)-superchain in A.

An m-chain c = (P1, . . . , Pm) with respect to (F1, F2) is F1-start if P1 ∈ F1 and otherwise
it is F2-start. Notice that c is an m-chain in A (in the sense of Wagner) if and only if c is an
m-chain with respect to (F , 2Q \ F). Further, notice that there are arbitrarily long chains
with respect to (F1, F2) whenever these sets are not disjoint.

An (m, n)-superchain with respect to (F1, F2) is a sequence s = (c1, . . . , cn) such that
each cj is an m-chain with respect to (F1, F2), cj+1 is reachable from cj and cj is F1-start iff
cj+1 is F2-start for all 1 ≤ j < n. The superchain s = (c1, . . . , cn) is F1-start if c1 is F1-start
and otherwise it is F2-start.

4.2 Blue and Red Chains
Let LB , LR ⊆ Σω be two regular ω-languages. An automaton structure A = (Q, Σ, δ, q0) can
accept both languages LB and LR if there are acceptance conditions FB , FR ⊆ 2Q such that
L(A, FB) = LB and L(A, FR) = LR. For example, the product automaton structure of two
automata can accept both their languages.

For the remainder of the section fix two languages LB , LR and an automaton structure
A = (Q, Σ, δ, q0) that can accept both LB and LR. There are unique sets of loops FB , FR

such that L(A, FB) = LB and L(A, FR) = LR. We refer to FB as the set of blue loops and
to FR as the set of red loops.

We study chains in A with respect to (FB , FR) and their connection to chains in DMAs
whose language separate LB and LR. In Section 4.4 we show that if there is an (m, n)-
superchain in A with respect to (FB , FR) then there is an (m, n)-superchain in every DMA
that separates LB and LR. Additionally, there are loops in A that are neither blue nor red
but nevertheless important for the existence of superchains in a separating DMA.

We say that an m-chain c = (P1, . . . , Pm) is blue-end (red-end) if Pm ∈ FB (Pm ∈ FR).
An SCC S in A is blue-end (red-end) if all of the longest chains in S are blue-end (red-end).
An SCC S is (m, n)-forcing for A if all of the following conditions hold:
1. A has a blue-end (m − 1)-chain cB = (P B

1 , . . . , P B
m−1) and a red-end (m − 1)-chain

cR = (P R
1 , . . . , P R

m−1).
2. These chains are contained in S, i.e. P B

m−1 ⊆ S and P R
m−1 ⊆ S.

3. A has an (m, n−1)-superchain sB whose first chain is blue-end and an (m, n−1)-superchain
sR whose first chain is red-end.

4. These superchains can be reached from S.
See Figure 1 for an illustration. Notice that if A has an (m, n)-superchain with respect to
(FB , FR) then the SCC that contains its first chain is (m, n)-forcing. We say that A is at
most (m, n)-forcing if for every SCC in A that is (k, ℓ)-forcing we have (k, ℓ) ≤ (m, n).

FSTTCS 2021

46:6 Separating Regular Languages over Infinite Words

4.3 Separator
In the following we show that we can define two DMAs that separate LB and LR (if possible)
and show later that one of them is minimal with respect to the Wagner hierarchy. To
construct these DMAs we use the automaton structure A. If there is a loop in A that is
blue and red then LB ∩ LR ̸= ∅, so the languages cannot be separated. Otherwise, L(A, FB)
separates LB and LR.

We give an intuitive description of the separator before defining it formally. We define an
automaton structure Asep that consists of three copies of A such that each loop of A is in
one of the copies. The languages LB and LR can be accepted by Asep using the sets F0

B , F0
R

of loops whose projection to A is in FB , FR respectively.
Each SCC is then added to F0

B or F0
R, this yields sets F1

B and F1
R. For example, a

blue-end SCC is in F1
B. If A is at most (m, n)-forcing then each superchain in Asep with

respect to (F1
B , F1

R) has at most length (m, n).
Then, it remains to fix the acceptance of the loops that are not an SCC and have no color

(neither blue nor red). We fix the acceptance of these remaining loops based on the longest
chains with respect to (F1

B , F1
R). This yields the sets F2

B , F2
R, analogously we construct

G1
B , G1

R, G2
B , G2

R. The DMA whose language separates LB and LR and which are minimal
with respect to the Wagner hierarchy are (Asep, F2

B) and (Asep, G2
B).

Separator Construction
Recall that A = (Q, Σ, δ, q0) is an automaton structure that can accept both LB and LR.
Let m, n ∈ N such that A is at most (m, n)-forcing.

We construct an automaton structure Asep = (Qsep, Σ, δsep, qsep). The states Qsep =
Q × {N, B, R} consist of three copies of the states of A. The initial state qsep = (q0, N) is in
the N -copy. These copies are used to remember in a run whether an m-chain has been seen
and if so it also remembers whether the most recent m-chain was blue-end or red-end. For
p ∈ Q, a ∈ Σ, q = δ(p, a) and C ∈ {N, B, R} let

δsep((p, C), a) =

(q, B) , if there is an SCC S in A with q ∈ S

and there is a blue-end m-chain in S

(q, R) , if there is an SCC S in A with q ∈ S

and there is a red-end m-chain in S

(q, C) , otherwise

The transition function δsep is well-defined because in no SCC in A there are both a blue-
and a red-end m-chain since A is at most (m, n)-forcing. Notice that if a run in Asep enters
a new copy then the corresponding run in A has to leave an SCC because the m-chains in
the SCC changed. So, every loop P in Asep is either in Q × {B}, in Q × {R} or in Q × {N}.

We define sets F1
B and F1

R that cover every SCC and every set whose projection is colored.
Let P ⊆ Qsep be a set. Then, P ∈ F1

B if one of the following is true:
1. pr1(P) is blue in A

2. pr1(P) is colorless, P ⊆ Q × {B}, P is an SCC
3. pr1(P) is colorless, P ⊆ Q × {N}, P is an SCC, pr1(P) is a blue-end SCC
4. pr1(P) is colorless, P ⊆ Q×{N}, P is an SCC and there is no (m, n)-superchain reachable

from pr1(P) whose first chain is red-end

C. Hugenroth 46:7

Similarly, P ∈ F1
R if one of the following is true:

1. pr1(P) is red in A

2. pr1(P) is colorless, P ⊆ Q × {R}, P is an SCC
3. pr1(P) is colorless, P ⊆ Q × {N}, P is an SCC, there is an (m, n)-superchain reachable

from pr1(P) whose first chain is red-end and pr1(P) is not a blue-end SCC

▶ Lemma 2. The longest superchains in Asep w.r.t. (F1
B , F1

R) have at most length (m, n).

The sets F1
B and F1

R are defined to minimize the chain length but there are other sets
that also do this. We define two such sets G1

B and G1
R that only differ in the third and fourth

condition from F1
B and F1

R. A loop P is in G1
B if one of the following is true

1. pr1(P) is blue in A

2. pr1(P) is colorless, P ⊆ Q × {B}, P is an SCC
3. pr1(P) is colorless, P ⊆ Q × {N}, P is an SCC, there is an (m, n)-superchain reachable

from pr1(P) whose first chain is blue-end and pr1(P) is not a red-end SCC
Similarly, P ∈ G1

R if one of the following is true
1. pr1(P) is red in A

2. pr1(P) is colorless, P ⊆ Q × {R}, P is an SCC
3. pr1(P) is colorless, P ⊆ Q × {N}, P is an SCC, pr1(P) is a red-end SCC
4. pr1(P) is colorless, P ⊆ Q×{N}, P is an SCC and there is no (m, n)-superchain reachable

from pr1(P) whose first chain is blue-end

▶ Lemma 3. The longest superchains in Asep w.r.t. (G1
B , G1

R) have at most length (m, n).

To obtain a separator that is minimal with respect to the Wagner hierarchy it is not only
important how long superchains are but also how they start.

▶ Lemma 4. If there are no blue-start (red-start) (m, n)-superchains in A then
there are no F1

B-start (F1
R-start) (m, n)-superchains in Asep with respect to (F1

B , F1
R) or

there are no G1
B-start (G1

R-start) (m, n)-superchains in Asep with respect to (G1
B , G1

R).

We define the acceptance for every loop P that is not in F1
B or F1

R based on the longest
chains with respect to (F1

B , F1
R) that start with a strict superloop of P . Let P be a loop

in Asep such that there is an SCC S with P ⊊ S. We define P⊊ = {P ′ | P ⊊ P ′ ⊆ S}. For
P consider the chains with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊). A loop P ⊆ Qsep is in F2

B if
P ∈ F1

B or if P ̸∈ F1
R and the longest chains with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊) are all

(F1
B ∩ P⊊)-start. So, a set P ⊆ Qsep is in its complement F2

R = 2Q \ F2
B if P ̸∈ F1

B and
P ∈ F1

R or if P ̸∈ F1
B and the longest chains with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊) are all

(F1
R ∩ P⊊)-start. We define G2

B and GR
B analogously.

We show that F2
B is well-defined, the proof for G2

B is analogous. The longest chains
with respect to (F1

B ∩ P⊊, F1
R ∩ P⊊) are all (F1

B ∩ P⊊)-end or all (F1
R ∩ P⊊)-end because

S is in F1
B ∩ P⊊ or in F1

R ∩ P⊊. So, the longest chains are also all (F1
B ∩ P⊊)-start or all

(F1
R ∩ P⊊)-start. Further, there is always a chain in P⊊ because (S) is a chain.

▶ Lemma 5. If there is a F2
B-start (F2

R-start) (k, ℓ)-superchain in A with respect to (F2
B , F2

R)
then there is a F1

B-start (F1
R-start) (k, ℓ)-superchain in A with respect to (F1

B , F1
R).

The analogous statement holds for (G1
B , G1

R) and (G2
B , G2

R). Finally, we can define the
DMA (Asep, F2

B) and (Asep, G2
B) whose languages separate LB and LR if possible.

▶ Lemma 6. If LB ∩ LR = ∅ then L(Asep, F2
B), L(Asep, G2

B) separate LB and LR.

FSTTCS 2021

46:8 Separating Regular Languages over Infinite Words

4.4 Translating Chains
We show that the separator constructed in the previous section is minimal with respect to
the Wagner hierarchy. Let AB , AR, Asep be DMAs such that L(Asep) separates L(AB) and
L(AR). Further, let A be an automaton structure that can accept both L(AB) and L(AR).

▶ Lemma 7. If A has an (m, n)-forcing SCC then Asep has an (m, n)-superchain.

To prove Lemma 7 we consider the loops that appear in the chains and in the superchains
of the (m, n)-forcing SCC. We find finite words that run repeatedly through these loops.
These words have runs in any separating DMA Asep. These runs yield loops and ultimately
superchains in Asep. An analysis of this proof yields the following result:

▶ Lemma 8. If A has a blue-start (red-start) (m, n)-superchain then Asep has a positive
(negative) (m, n)-superchain.

Combining all previous results yields the main result of this paper.

▶ Theorem 9. Let m, n ∈ N and LB , LR ⊆ Σω. Let A be an automaton structure that can
accept both LB and LR. The languages LB and LR are
1. E n

m-separable iff A is at most (m, n)-forcing,
2. D n

m-separable iff A is at most (m, n)-forcing and every (m, n)-superchain in A is blue-start,
3. C n

m-separable iff A is at most (m, n)-forcing and every (m, n)-superchain in A is red-start.

▶ Corollary 10. LB, LR are Cn
m- and Dn

m-separable iff there are no (m, n)-superchains in A.

5 Solving Separation

We use Theorem 9 to show how WagnerSeparation and related questions can be resolved.

5.1 Computing a Separator
We show that DMAs as defined in Section 4.3 can be computed in exponential time. For this
we use product automata. Let A1, A2 be two automaton structures with Ai = (Qi, Σ, δi, qi)
for i ∈ {1, 2}. The product automaton of A1 and A2 is the automaton structure A1 × A2 =
(Q1 × Q2, Σ, δ, (q1, q2)), where δ applies the transition functions component wise, i.e. for
(p1, p2) ∈ Q1 × Q2 and a ∈ Σ we have δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)) . The product
automaton of two DMAs is defined as the product automaton of their automaton structures.

▶ Theorem 11. Let A1, A2 with Ai = (Qi, Σ, δi, qi, Fi) be two DMA. A separating DMA
that is minimal with respect to the Wagner hierarchy can be constructed in exponential time.

The product automaton structure A1 × A2 can be computed in polynomial time and
it can accept both L(A1) and L(A2). The set of states of the automaton structure Asep
consists of three copies of Q1 × Q2 which clearly can be computed in polynomial time. The
transition function δsep and the acceptance conditions F2

B , G2
B are defined based on the chain

structure in the product automaton with respect to blue and red loops.
The chain structure with respect to the red and blue loops can be computed as follows.

Iterate over all subsets of Q1 × Q2 and color a subset blue if its projection to the first
component is in F1. Color a subset red if its projection to the second component is in F2.

Next, construct a graph that has the colored loops as nodes. Introduce an edge between
two loops if they have different colors and the first loop is a subset of the second. Then
the paths of maximal length in this graph correspond to chains of maximal lengths. To

C. Hugenroth 46:9

compute the superchains of maximal length a new graph can be constructed with chains of
maximal length as nodes. Further, there is an edge between two chains if the second chain
is reachable from the first chain and they start with different colors. The superchains of
maximal length then correspond to paths of maximal length in this graph. The constructed
graphs are acyclic.

These graphs are of exponential size in |A1|+ |A2| or smaller. Using for example Dijkstra’s
algorithm, the paths of maximal length in an acyclic graph can be computed in polynomial
time. Thus, the chain structure of A and therefore (Asep, F2

B), (Asep, G2
B) can be computed

in exponential time.

5.2 Exponential blowup of Separators
We show that in some cases the size of every separator that is minimal with respect to the
Wagner hierarchy is exponentially larger than the size of the input DMAs. So, if one wants to
compute a complete separator (not just deciding the value of a certain bit) then exponential
time is the best complexity one can hope for.

▶ Theorem 12. For all 1 ≤ m ≤ k ∈ N there are DMAs A1, A2 of size at most 2k such that
every DMA A with no (m + 1)-chain whose language separates L(A1) and L(A2) has size at
least 2k−m − k − 1 and there is such a DMA.

Proof. Let Σ = {1, . . . , k}. We define the DMA A1, A2 that have the same automaton
structure A. Let A = (Q, Σ, δ, 1) with Q = {1, . . . , k} ∪ {⊥} and δ as follows: For a state
i ∈ Q and j ∈ Σ let δ(i, j) = j if i ̸= j and δ(i, j) = ⊥ if i = j. Further, δ(⊥, j) = ⊥ for all
j ∈ Σ, so ⊥ is a sink state.

The DMA A1 = (Q, Σ, δ, 1, F1), A2 = (Q, Σ, δ, 1, F2) differ in their acceptance conditions.
The set {1, . . . , k − m + 1} is in F1. If {1, . . . , i} is in F1 then {1, . . . , i + 1} is in F2 for
i < m. Similarly, if {1, . . . , i} ∈ F2 then {1, . . . , i + 1} ∈ F1 for i < m. Further, {⊥} ∈ F1
and no other sets are in F1, F2.

Clearly, the automaton structure A can recognize both L(A1) and L(A2). Further, the
longest chain in A with respect to (F1, F2) is the F1-first m-chain c = (P1, . . . , Pm) with
Pi = {1, . . . , k − m + i}. Let F = F1 ∪ 2{1,...,k−m} and consider A = (Q, Σ, δ, 1, F). Then
L(A) separates L(A1), L(A2) and A has no (m + 1)-chain.

Let Asep = (Qsep, Σ, δsep, qsep, Fsep) be a DMA with no (m + 1)-chain that separates
L(A1) and L(A2) and let r = |Qsep|. To prove |Asep| ≥ 2k−m − m − 1, we define an injective
function f : (2{1,...,k−m} \ {∅, {1}, . . . , {k}}) → Fsep.

Definition of the function

For a set P = {p1, . . . , p|P |} ⊆ {1, . . . , k − m} with |P | > 1 we define the word wP =
p1 . . . p|P | where p1 < p2 < · · · < p|P |. Let P be a non-empty subset of {1, . . . , k − m} and
Pi = {1, . . . , k − m + i} with 1 ≤ i ≤ m and consider the words

w0 = wr
P ,

wi = (wi−1wPi
)r, for 1 ≤ i ≤ m.

Consider the finite run ρ of Asep on wm. For 1 ≤ i ≤ m consider the state in which Asep is
before reading wi = (wi−1wPi

)r and the states after each wi−1wPi
. These are r+1 = |Qsep|+1

many, so one state must occur twice. So, for 1 ≤ i ≤ m there are positions 0 ≤ di < ei ≤ |wm|

in the word wm and a number of repetitions ri ∈ N with ρ(di)
(wi−1wPi

)ri

−−−−−−−−→ ρ(ei). Because

FSTTCS 2021

46:10 Separating Regular Languages over Infinite Words

wi−1 is a proper infix of wi there is a sequence of indices dm+1 ≤ · · · ≤ d1 < e1 ≤ · · · ≤ em+1

with ρ(di)
(wi−1wPi

)ri

−−−−−−−−→ ρ(ei) for 0 ≤ i ≤ m. Consider Qi = {ρ(j) | di ≤ j ≤ ei} for
1 ≤ i ≤ m.

Similarly, we get d0, e0, r0 with ρ(d0) (wP)r0
−−−−→ ρ(e0) and d1 ≤ do < e0 ≤ e1. We set

f(P) = Q0 = {ρ(j) | d0 ≤ j ≤ e0}.

Image of the function

We show that (Q1, . . . , Qm) is an (2Q \ Fsep)-start m-chain in Asep. Notice that each Qi is a
loop and that Q0 ⊆ Q1 ⊆ · · · ⊆ Qm. Further, notice that Pi ∈ F1 if i is even and Pi ∈ F2 if
i is odd for 1 ≤ i ≤ m. So, wm(wi)ω ∈ L(A1) if i is even and wm(wi)ω ∈ L(A2) if i is odd
for 1 ≤ i ≤ m. Because L(Asep) separates L(A1) and L(A2) we have wm(wi)ω ∈ L(Asep) iff
i is odd. Let ρi be the run of Asep on wm(wi)ω. Then, Inf(ρi) = Qi and therefore Qi ∈ Fsep
iff i is odd.

Now assume that f(P) = Q0 ̸∈ Fsep for some P ⊆ {1, . . . , k−m}. Then c = (Q0, . . . , Qm)
is an (m + 1)-chain in Asep which contradicts the assumption. Thus, f(P) ∈ Fsep.

The function is injective

Assume that there are P, P ′ ⊆ {1, . . . , k − m} such that |P |, |P ′| > 1, P ̸= P ′ and f(P) =

f(P ′). There are states p ∈ f(P), p′ ∈ f(P ′) and r0, r′
0 ∈ N such that p

w
r0
P−−−→

f(P)
p and

p′ w
r′

0
P ′−−−→

f(P)
p′. We have P ̸= P ′, so wP ̸= wP ′ . Without loss of generality there is a letter

a in wP that does not occur in wP ′ . This letter is mapped to some state q in f(P) and
some letter b of wP ′ is mapped to this state as well because f(P) = f(P ′). Thus, there are
x, x′ ∈ Σ∗, a, b ∈ Σ, a ̸= b and a state q ∈ f(P) such that qsep

xa−→ q and qsep
x′b−−→ q.

So, the words xa and x′b are mapped to the same state. But xaaα ̸∈ L(Asep) for all
α ∈ Σω while there are α ∈ Σω with xbaα ∈ L(Asep). These words cannot be distinguished
by Asep, contradiction.

Thus, f is an injective mapping from 2{1,...,k−m} \ {∅, {1}, . . . , {k}} to Fsep and therefore
2k−m − k − 1 ≤ |Qsep| + |Fsep| = |Asep|. ◀

The proof idea is based on a construction in [10]. The construction can be extended to
show a lower bound for a symmetric separation concept, that is L2 ⊆ L and L ∩ L1 = ∅ is
also allowed, by adding a copy of A where F1 and F2 are swapped.

5.3 Deciding Separability
Let A1, A2 be two DMAs with Ai = (Qi, Σ, δi, qi, Fi) and consider their product automaton
structure A1 × A2. Further, let FB = {P ⊆ Q1 × Q2 | pr1(P) ∈ F1} and FR = {P ⊆
Q1 × Q2 | pr2(P) ∈ F2}. According to Theorem 9 it suffices to determine the loop structure
of A1 × A2 with respect to (FB , FR) to decide Wagner-separability.

However, there might be exponentially many loops in FB or in FR. We show that it
suffices to consider only certain maximal loops whose number is polynomial in |A1| + |A2|.
A similar idea has already been used in [3].

The set M ⊆ 2Q1×Q2 contains a set P ⊆ Q1 ×Q2 if there are P1 ∈ F1, P2 ∈ F2 such that
P is a maximal loop in P1 × P2 with respect to set-inclusion. There are at most polynomially
many sets of the form P1 ×P2 and each such set contains at most polynomially many maximal
loops because the union of two loops is again a loop. Further, the set MB contains a loop P

if P ∈ M and pr1(P) ∈ F1. Similarly, MR contains a loop P if P ∈ M and pr2(P) ∈ F2.

C. Hugenroth 46:11

▶ Lemma 13. Let S be an SCC of A1 × A2 and m ∈ N, m ≥ 1.
There is an FB-start (FR-start) m-chain in S with respect to (FB , FR) iff
there is an MB-start (MR-start) (m − 1)-chain in S with respect to (MB , MR).

Proof. “⇒” Let c = (P1, . . . , Pm) be an FB-start m-chain with respect to (FB , FR). For
1 ≤ i < m and b = i mod 2 the set pr2−b(Pi) × pr1+b(Pi+1) contains a maximal loop P ′

i

with pr2−b(P ′
i) = pr2−b(Pi) because Pi ⊆ pr2−b(Pi) × pr1+b(Pi+1) can be extended to such a

maximal loop. Because Pi ⊆ Pi+1 we have P ′
i ⊆ P ′

i+1 for 1 ≤ i < m. So, c′ = (P ′
1, . . . , P ′

m−1)
is an (m − 1)-chain with respect to (MB , MR). Further, P1 ∈ FB iff P ′

1 ∈ MB, so c′ is
MB-start.

“⇐” Let c = (P1, . . . , Pm−1) be an MB-start (m − 1)-chain with respect to (MB , MR).
Every chain with respect to (MB , MR) is a chain with respect to (FB , FR) because MB ⊆ FB

and MR ⊆ FR. So, c is an (m − 1)-chain with respect to (FB , FR). Further, c is FB-start.
Consider the case Pm−1 ∈ MB . By the definition of M there are R1 ∈ F1, R2 ∈ F2 such

that Pm−1 ⊆ R1 ×R2. So, there is a loop Pm with Pm−1 ⊆ Pm ⊆ Q1 ×R2 and pr2(Pm) = R2.
Thus, Pm ∈ MR and (P1, . . . , Pm−1, Pm) is an FB-start m-chain with respect to (FB , FR).

The case that c is MR-start follows analogously. ◀

▶ Theorem 14. The problem WagnerSeparation can be decided in polynomial time.

Proof. According to Lemma 13, it suffices to determine the superchains with respect to
(MB , MR). This can be done in polynomial time as mentioned in Section 5.3. ◀

The intersection of two DMAs can cause an exponential blowup [2]. In contrast to this,
Lemma 14 implies that the disjointness (emptiness of the intersection) of two DMAs can be
checked in polynomial time.

▶ Corollary 15. Given two DMAs A1, A2, it can be decided in polynomial time whether
L(A1) ∩ L(A2) is empty.

Proof. L(A1) ∩ L(A2) ̸= ∅ iff there are arbitrarily long chains in A1 × A2 with respect to
(FB , FR) iff L(A1), L(A2) are not E1

m-separable for m = |Q1| · |Q2| + 1. The proof of these
equivalences mirrors the proof of Remark 1. ◀

5.4 Wagner Separation for Parity Automata
In this section we consider the Wagner separation problem with deterministic parity automata
as input. A deterministic parity automaton (DPA) is a tuple A = (Q, Σ, δ, q0, Ω) where
A = (Q, Σ, δ, q0) is an automaton structure and Ω : Q → N is the priority function of A.
An infinite word α ∈ Σω is accepted by A if the maximal priority seen infinitely often by
the run ρ of A in α is even. That is, max({Ω(q) | q ∈ Inf(ρ)}) is even. For a set P ⊆ Q let
Ω(P) = {Ω(p) | p ∈ P}. Since every DPA can be transformed into an equivalent DPA with
Ω(Q) = {0, . . . , |Q|} we define the size of a DPA A = (Q, Σ, δ, q0, Ω) as |Q|.

An ω-language L is regular iff there is a DPA A with L(A) = L, so DMAs and DPAs
define the same class of languages. However, there are languages for which every DMA is
exponentially larger than the smallest DPA for the language and there are languages for
which every DPA is exponentially larger than the smallest DMA for the language [1]. So, it
makes a difference with respect to computational complexity whether a language is given as
a DMA or as a DPA.

WagnerSeparationParity
Given: Two DPAs A1, A2, X ∈ {C, D, E} and m, n ∈ N.
Decide: Are L(A1) and L(A2) Xn

m-separable?

FSTTCS 2021

46:12 Separating Regular Languages over Infinite Words

As in the previous section, we use maximal chains to show that this problem can be
solved in polynomial time. This implies that disjointness of two languages given as DPA can
be decided in polynomial time, too.

▶ Theorem 16. WagnerSeparationParity can be decided in polynomial time.

Proof. Let A1, A2 be two DPAs, Ai = (Qi, Σ, δi, qi, Ωi) and Ai the corresponding automaton
structure for i ∈ {1, 2}. Consider their product automaton and the acceptance conditions
FB = {P ⊆ Q1 × Q2 | max(Ω1(pr1(P))) is even and P is a loop} and FR = {P ⊆ Q1 × Q2 |
max Ω2(pr2(P))) is even and P is a loop}. As shown in Section 5.3 the chain structure
with respect to (FB , FR) suffices to decide separability. However, F1 and F2 might be of
exponential size.

For q, q′ ∈ Q1 × Q2, k1, k2 ∈ N we denote with q −−−−−→
≤(k1,k2)

q′ that there is a word w ∈ Σ∗

and a run ρ of A1 × A2 on w from q to q′ such that for all 0 ≤ j ≤ |ρ| we have pr1(ρ(j)) ≤ k1
and pr2(ρ(j)) ≤ k2. For q ∈ Q1 ×Q2, k1, k2 ∈ Ω(Q) consider the set P k1,k2

q = {q′ | q −−−−−→
≤(k1,k2)

q′ −−−−−→
≤(k1,k2)

q}. Consider MB = {P k1,k2
q ̸= ∅ | q ∈ Q1 × Q2, k1, k2 ∈ Ω(Q) and k1 is even}

and MR = {P k1,k2
q ≠ ∅ | q ∈ Q1 × Q2, k1, k2 ∈ Ω(Q) and k2 is even}. These sets can be

computed in polynomial time.
Let S be an SCC of A1 × A2. We show that there is an m-chain c in S with respect to

(MB , MR) iff there is an m-chain c′ in S with respect to (FB , FR). Further, we show that c

is MB-start iff c′ is FB-start.
“⇒” We have MB ⊆ FB and MR ⊆ FR, so every m-chain with respect to (MB , MR)

is an m-chain with respect to (FB , FR) and it is MB-start iff it is FB-start.
“⇐” Let c′ = (P ′

1, . . . , P ′
m) an m-chain in A1 × A2 with respect to (FB , FR). Let p ∈ P ′

1,
ki

1 = max(Ω1(pr1(P ′
i))) and ki

2 = max(Ω2(pr2(P ′
i))). Then c = (P k1

1,k1
2

p , . . . , P
km

1 ,km
2

p) is an
m-chain with respect to (MB , MR). Further, c is MB start iff c′ is FB-start and the chains
are in the same SCC.

Thus, the chain structure with respect to (MB , MR) is the same as it is with respect to
(FB , FR). So, separability can be decided using (MB , MR) as done in Section 5.3. ◀

6 Conclusion

We have seen that separation of two languages given by two DMAs with respect to the
Wagner hierarchy can be viewed as analyzing the loop structure in their product automaton.
Using this result one can compute a separator in exponential time. We showed that there are
languages of DMAs whose separator requires exponential size. So, if one wants to compute
the complete separator then exponential time is optimal. However, we can decide separation
with respect to the Wagner hierarchy in polynomial time using maximal loops. This implies
that we can decide disjointness of two languages given as DMAs in polynomial time. A
variation of the separation problem where the languages are given as DPAs can be solved in
polynomial time as well.

A separating DMA can be large because it has to list all accepting loops explicitly.
Meanwhile, we can decide separation efficiently because we can restrict ourselves to maximal
loops. These maximal loops, in a sense, give a more succinct representation of the acceptance
condition of a DMA.

In a follow-up paper we will investigate a new automaton model based on this suc-
cinct representation. We hope that this new model has better properties with respect to
computational complexity than current automata models.

C. Hugenroth 46:13

References
1 Udi Boker. On the (in) succinctness of Muller automata. In 26th EACSL Annual Conference

on Computer Science Logic (CSL 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

2 Udi Boker. Why these automata types? In LPAR, volume 18, pages 143–163, 2018.
3 Olivier Carton and Ramón Maceiras. Computing the Rabin index of a parity automaton.

RAIRO-Theoretical Informatics and Applications, 33(6):495–505, 1999.
4 Thomas Colcombet and Christof Löding. The nesting-depth of disjunctive µ-calculus for tree

languages and the limitedness problem. In International Workshop on Computer Science Logic,
pages 416–430. Springer, 2008.

5 Damian Niwiński and Igor Walukiewicz. Relating hierarchies of word and tree automata. In
Annual Symposium on Theoretical Aspects of Computer Science, pages 320–331. Springer,
1998.

6 Damian Niwiński and Igor Walukiewicz. Deciding nondeterministic hierarchy of deterministic
tree automata. Electronic Notes in Theoretical Computer Science, 123:195–208, 2005.

7 Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and games.
Academic Press, 2004.

8 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–10, 2014.

9 Thomas Place and Marc Zeitoun. The tale of the quantifier alternation hierarchy of first-order
logic over words. ACM SIGLOG News, 2(3):4–17, 2015.

10 Shmuel Safra. Complexity of automata on infinite objects. PhD thesis, The Weizmann Institute
of Science, 1989.

11 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control.,
8(2):190–194, 1965.

12 Klaus Wagner. On ω-regular sets. Information and control, 43(2):123–177, 1979.

FSTTCS 2021

Normal Sequences with Non-Maximal Automatic
Complexity
Liam Jordon1 # Ñ

Department of Computer Science, Maynooth University, Maynooth, Ireland

Philippe Moser # Ñ

Department of Computer Science, Maynooth University, Maynooth, Ireland

Abstract
This paper examines Automatic Complexity, a complexity notion introduced by Shallit and Wang
in 2001 [29]. We demonstrate that there exists a normal sequence T such that I(T) = 0 and
S(T) ≤ 1/2, where I(T) and S(T) are the lower and upper automatic complexity rates of T

respectively. We furthermore show that there exists a Champernowne sequence C, i.e. a sequence
formed by concatenating all strings of length one followed by concatenating all strings of length two
and so on, such that S(C) ≤ 2/3.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Automatic Complexity, finite-state complexity, normal sequences, Champer-
nowne sequences, de Bruijn strings, Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.47

Related Version Previous Version: https://arxiv.org/abs/2107.05979

Funding Liam Jordon: Supported by the Irish Research Council’s Government of Ireland Postgradu-
ate Scholarship Programme. Grant number: GOIPG/2017/1200.

1 Introduction

Due to the uncomputability of Kolmogorov complexity, finite-state automata and transducers
have acted as a popular setting to study the complexity of finite strings and infinite se-
quences. In this paper we examine the finite-state based complexity introduced by Shallit and
Wang, which is analogous to Sipser’s Distinguishing Complexity [30], known as Automatic
Complexity [29]. For a string x of length n, its automatic complexity A(x) is defined to be
the minimum number of states required by any deterministic finite-state automaton such
that x is the only string of length n the automaton accepts. A non-deterministic variation
was first examined by Hyde [15]. In their paper, Shallit and Wang found upper and lower
bounds for the automatic complexity of various sets of strings and of prefixes of the infinite
Thue-Morse sequence. Expanding on this line of research, Kjos-Hanssen has recently studied
the automatic complexity of Fibonacci and Tribonacci sequences [19].

We continue this line of research by examining the automatic complexity of some normal
sequences. A binary sequence is normal number in the sense of Borel [3] if for all n, every
string of length n occurs as a substring in the sequence with limiting frequency 2−n. The
complexity of normal sequences has been widely studied in the finite-state setting for many
years and a review of several old and new results can be found in [21].

Depending on how finite-state complexity is measured, normal sequences may have high or
low complexity. For instance, if complexity is defined as compressibility by lossless finite-state
compressors, normal sequences have maximum complexity. For example, combining results

1 Corresponding author

© Liam Jordon and Philippe Moser;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 47; pp. 47:1–47:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liam.jordon@mu.ie
https://www.researchgate.net/profile/Liam_Jordon
https://orcid.org/0000-0003-0583-666X
mailto:philippe.moser@mu.ie
http://www.cs.nuim.ie/~pmoser/
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.47
https://arxiv.org/abs/2107.05979
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Normal Sequences with Non-Maximal Automatic Complexity

of Schnorr and Stimm [28] and Dai, Lathrop, Lutz and Mayordomo [10] demonstrates that
a sequence is normal if and only if it cannot be compressed by any lossless finite-state
compressor (see [2] for a proof). This is also true when the finite-state compressor is equipped
with a counter [1] or when the reading head is allowed to move in two directions [8]. Another
definition examines the length of the minimal input required to output a string via finite-state
transducers and has been used in [5, 7, 11, 12, 17]. It was demonstrated in Theorem 24
of [7] that in a complexity based on this approach, one can construct normal sequences with
minimal complexity.

As automatic complexity is more of a “combinatorial” rather than an “information content”
measurement2, this leads to the question as to how low can the automatic complexity of
normal sequences be? Previously the automatic complexity of finite strings produced by
linear feedback shift registers which have a maximal number of distinct substrings (otherwise
known as m-sequences) [20] along with sequences and finite strings which do not contain
k-powers, i.e. substrings of the form xk, have been studied [16, 19, 29]. Normal sequences by
definition contain xk as a substring infinitely often for every possible pair (x, k). Is there a
trade-off between the randomness of normal sequences resulting in high complexity, in the
sense that they contain every string as a substring infinitely often, and the fact that some of
those substrings have the form xk which results in low automatic complexity?

We explore this question by constructing a normal sequence T whose upper automatic
complexity rate S(T) is bounded above by 1/2 and whose lower automatic complexity rate
I(T) is 0. We then study a specific class of normal sequences known as Champernowne
sequences [9], i.e. sequences formed by concatenating all strings of length one followed by
all strings of length two and so on. It is widely known that Champernowne sequences are
incompressible by the Lempel-Ziv 78 algorithm and results by Lathrop and Strauss show
that all sequences incompressible by Lempel-Ziv 78 are normal [22]. Due to this restriction
on their construction, one may expect Champernowne sequences to have high automatic
complexity. However, we demonstrate that there exists a Champernowne sequence C built
via a method presented by Pierce and Shields in [25] that satisfies S(C) ≤ 2/3. It has
previously been seen that Champernowne sequences built via their method are compressible
by a variation of the Lempel-Ziv 77 [25] and the PPM∗ [18] compression algorithms.

2 Preliminaries

We work with the binary alphabet {0, 1} in this paper. A finite string is an element of {0, 1}∗.
A sequence is an element of {0, 1}ω. {0, 1}≤ωdenotes the set {0, 1}∗ ⋃

{0, 1}ω. The length of
a string x is denoted by |x|. We say |S| = ω for S ∈ {0, 1}ω. λ denotes the string of length 0.
{0, 1}n denotes the set of strings of length n. For x ∈ {0, 1}≤ω and 0 ≤ i < |x|, x[i] denotes
the (i+1)th bit of x with x[0] being the first bit. For x ∈ {0, 1}≤ω and 0 ≤ i ≤ j < |x|, x[i..j]
denotes the substring of x consisting of its (i+1)th through (j +1)th bits. For x ∈ {0, 1}∗ and
y ∈ {0, 1}≤ω, xy (sometimes written as x · y) denotes the string (or sequence) x concatenated
with y. For a string x, xn denotes x concatenated with itself n times. For x ∈ {0, 1}≤ω,
a substring y of x is called a k-power if y = uk for some string u. For x ∈ {0, 1}∗ and
y, z ∈ {0, 1}≤ω such that z = xy, we call x a prefix of z and y a suffix of z. We write x[i..]
to denote the suffix of x beginning with its (i + 1)th bit. The lexicographic-length ordering of
{0, 1}∗ is defined by saying for two strings x, y, x comes before y if either |x| < |y| or else
|x| = |y| with x[n] = 0 and y[n] = 1 for the smallest n such that x[n] ̸= y[n].

2 In an information content measurement, we would like there to be roughly 2n objects with a complexity
of n while it trivially holds that all strings of the form 0n and 1n have an automatic complexity of 2.

L. Jordon and P. Moser 47:3

Given strings x, w we use the following notation to count the number of times w occurs
as a substring in x. The number of occurrences of w as a substring of x is given by

occ(w, x) = |{i : x[i..i + |w| − 1] = w}|.

The block number of occurrences of w as a substring of x is given by

occb(w, x) = |{i : x[i..i + |w| − 1] = w ∧ i ≡ 0 mod |w|}|.

For example, occ(00, 0000) = 3 while occb(00, 0000) = 2.
Automatic complexity is based on finite automata.

▶ Definition 1. A deterministic finite-state automaton (DFA) is a 4-tuple M = (Q, q0, δ, F),
where

Q is a non-empty, finite set of states,
q0 ∈ Q is the initial state,
δ : Q × {0, 1} → Q is the transition function,
F ⊆ Q is the set of final / accepting states.

A DFA M can be thought of as a function M : {0, 1}∗ → Q such that for all x ∈ {0, 1}∗ and
b ∈ {0, 1}, M is defined by the recursion M(λ) = q0 and M(xb) = δ(M(x), b). If M(x) ∈ F ,
we say M accepts x. We write L(M) to denote the language of M , i.e. the set of strings that
M accepts.

Shallit and Wang define automatic complexity as follows.

▶ Definition 2 ([29]). Let x ∈ {0, 1}∗. The automatic complexity of x, denoted by A(x), is
the minimal number of states required by any DFA M such that L(M)

⋂
{0, 1}|x| = {x}.

We say a DFA M uniquely accepts a string x if L(M)
⋂

{0, 1}|x| = {x}.

Shallit and Wang compute the following two ratios to examine the automatic complexity
of sequences.

▶ Definition 3. The lower and upper rates for the automatic complexity of a sequence T are
respectively given by

I(T) = lim inf
m→∞

A(T [0..m])
m + 1 and, S(T) = lim sup

m→∞

A(T [0..m])
m + 1 .

From the fact that for all x ∈ {0, 1}∗ it trivially holds that A(x) ≤ |x| + 2, it follows that for
all T ∈ {0, 1}ω, 0 ≤ I(T) ≤ S(T) ≤ 1.

Normal sequences and de Bruijn strings which we use to build normal sequences are
defined as follows.

▶ Definition 4. A sequence T ∈ {0, 1}ω is normal if for all x ∈ {0, 1}∗,

lim
m→∞

occ(x, T [0..m])
m + 1 = 2−|x|.

▶ Definition 5 ([4, 27]). A de Bruijn string of order n is a string u ∈ {0, 1}2n such that for
all w ∈ {0, 1}n, occ(w, u · u[0..n − 2]) = 1.

For example, 0011 and 00010111 are de Bruijn strings of order 2 and 3 respectively. We
generally use dn to denote a de Bruijn string of order n. It is known that there are 22n−1−n

de Bruijn strings of order n unique up to cycling, i.e. the two de Bruijn strings 0011 and
0110 are considered the same string for example when counting.

FSTTCS 2021

47:4 Normal Sequences with Non-Maximal Automatic Complexity

3 Normal Sequences with Low Automatic Complexity

In our first result we construct a normal sequence T such that I(T) = 0, that is, infinitely
many prefixes have close to minimal automatic complexity. We furthermore show that
S(T) ≤ 1/2, indicating that the sequence does not have high complexity. We require the
following variation of a result by Nandakumar and Vangapelli.

▶ Theorem 6 ([24]). Let f : N → N be increasing such that for all n, f(n) ≥ nn. Then
every sequence of the form T = d

f(1)
1 d

f(2)
2 d

f(3)
3 · · · where dn is a de Bruijn string of order n,

is normal 3.

▶ Theorem 7. There is a normal sequence T such that I(T) = 0 and S(T) ≤ 1
2 .

Proof. We recursively define the sequence T = T1T2 . . . and the function f : N → N as
follows. For all j ≥ 1, let dj be a de Bruijn string of order j such that if j is odd, dj begins
with a 1 and if j is even, dj begins with a 0. We set f(1) = 2 and T1 = d

f(1)
1 = d2

1. For j ≥ 2,
we define f(j) = |T1 . . . Tj−1||T1...Tj−1| and Tj = d

f(j)
j . Note that f(1) > 1 and for all j ≥ 2,

f(j) ≥ |Tj−1||Tj−1| and that |Tj−1| = 2j−1f(j − 1) ≥ j. Hence by Theorem 6, T is normal.
For simplicity, we write Tj for the prefix T1 · · · Tj of T .

We first show that I(T) = 0. Consider a prefix of the form Tn. Tn is uniquely accepted
by the DFA M1 which has a state for each bit of Tn−1 followed by a loop of length 2n for
the string dn whose root state is the only accepting state, and an error state. M1 can be
seen in Figure 1. M1 has |Tn−1| + 2n + 1 states. Thus we have that

A(Tn)
|Tn|

≤ |Tn−1| + 2n + 1
|Tn| + |Tn−1|

= |Tn−1| + 2n + 1
2nf(n) + |Tn−1|

≤ max
{ |Tn−1|

2n|Tn−1||Tn−1|
,

2n + 1
|Tn−1|

}
≤ max

{ 1
2n

,
2n + 1

(n − 1)n−1

}
.

Hence it follows that I(T) = 0.
Next consider an arbitrary prefix T [0..m] of T . Let n be largest such that Tn is a prefix

of T [0..m] but Tn+1 is not. Thus T [0..m] = Tn · w for some w ∈ {0, 1}∗ and is uniquely
accepted by the DFA M2 in Figure 1. M2 has a state for each bit of Tn−1, followed by a
loop of length 2n for the string dn, followed by a state for each bit of w and an error state.
M2 has |Tn−1| + 2n + |w| + 1 states.

Consider when 1 ≤ |w| ≤ 2n(f(n) − 1) + 2n+1. Note that

|Tn+1| = 2n+1f(n + 1) = 2n+1(f(n + 1) − 1) + 2n+1 > 2n(f(n) − 1) + 2n+1

so w can be this length. Note also that M2 has at most |Tn| + 2n+1 + 1 states for such w.

3 Nandakumar and Vangapelli’s original result was for when f(n) = nn. However, their argument easily
carries over for f(n) ≥ nn also and this fact has been used by other authors such as in [6, 7].

L. Jordon and P. Moser 47:5

Hence for such w we have that

A(T [0..m])
m + 1 ≤ |Tn−1| + 2n + |w| + 1

|Tn| + |w|

≤ |Tn−1| + 2n + 2n(f(n) − 1) + 2n+1 + 1
|Tn| + 2n(f(n) − 1) + 2n+1

= |Tn−1| + |Tn| + 2n+1 + 1
|Tn−1| + 2|Tn| + 2n

= |Tn−1| + 2n(|Tn−1||Tn−1| + 2) + 1
|Tn−1| + 2(2n|Tn−1||Tn−1|) + 2n

≤ max
{1 + 2n(|Tn−1||Tn−1|−1 + 2|Tn−1|−1)

1 + 2(2n|Tn−1||Tn−1|−1)
,

1
2n

}
. (1)

Note Equation (1) approaches 1/2 as n increases.
Furthermore consider when 2n(f(n) − 1) + 2n+1 < |w| ≤ |Tn+1|. Instead of looping on

dn, it becomes more beneficial to loop on dn+1 via a DFA similar to M1 in Figure 1 where
the accepting state is a single state in the loop depending on the length of w. Thus for
such prefixes A(Tn · w) ≤ |Tn| + 2n+1 + 1, i.e. it does not depend on w. Hence the ratio
A(T [0..m])/(m + 1) decreases and approaches I(T) for such w.

Therefore, by Equation (1), S(T) ≤ 1
2 . ◀

start
Tn−1

dn

start
Tn−1

dn

w

Figure 1 DFA M1 (left) and M2 (right) from Theorem 7. The error state (the state traversed to
if the bit seen is not the expected bit) and arrows to it are not included. By the construction of T ,
dn[0] ̸= w[0] to ensure determinism.

4 Automatic Complexity of Champernowne Sequences

In this section we present a Champernowne sequence with an upper automatic complexity
rate bounded above by 2/3.

▶ Definition 8. A sequence C is a Champernowne sequence if C = C1C2C3 . . . , such that
for each n, Cn is a concatenation of all strings of length n exactly once. That is, for all
x ∈ {0, 1}n, occb(x, Cn) = 1.

Unlike Champernowne’s original sequence which was a concatenation of all strings in
lexicogrpahic-length order (0100011011000...), we emphasise that the set of Champernowne
sequences do not require strings to be in length-lexicographic order for the construction.
There are 2n! possible choices for zone Cn in a Champernowne sequence. For instance,
00011011 and 11100001 are two possibilities for C2.

We now describe Pierce and Shields’ construction of Champernowne sequences from [25].
Suppose we wished to construct substring Cn. Let dn be a de Bruijn string of order n. For
0 ≤ j ≤ 2n − 1, let dn,j represent a cyclic shift to the left of the first j bits of dn. That is,

FSTTCS 2021

47:6 Normal Sequences with Non-Maximal Automatic Complexity

dn,j = dn[j..2n − 1] · dn[0..j − 1]. We write dn instead of dn,0 when no cyclic shift occurs.
Note that each n can be written uniquely in the form n = 2st where s ≥ 0 and t ≥ 1 where
t is odd. Each substring Cn is broken into further substrings Cn = Bn,0 · Bn,1 · · · Bn,2s−1
where Bn,j is a concatenation of dn,j with itself t times. That is, Bn,j = (dn,j)t. Hence, for
example, if n is odd then Cn = (dn)n and if n = 2k for k ≥ 1, Cn = dndn,1 · · · dn,n−1.

To help the reader visualise this, the result of using the lexicographic least de Bruijn
strings of order 3, 4 and 6 to build C3, C4 and C6 via Pierce and Shields’ method are provided
in Figures 2 and 3. An algorithm to construct the lexicographic least de Bruijn strings
was first provided by Martin in 1934 which requires exponential space [23]. Later works by
Fredricksen, Kessler and Maiorana led to the FKM-algorithm which only requires O(n) space
to construct such strings [13, 14].

00010111 0000100110101111
00010111 0001001101011110
00010111 0010011010111100

0100110101111000

Figure 2 Concatenating the three rows on the left hand side produces the substring C3 and
concatenating the four rows on the right hand side produces the substring C4 if d3 and d4 are chosen
to be the least lexicographic de Bruijn string of their order respectively.

0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000001000011000101000111001001011001101001111010101110110111111
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110
0000010000110001010001110010010110011010011110101011101101111110

Figure 3 Concatenating the six rows produces the substring C6 where d6 is chosen to be the
lexicographic least de Bruijn string of order 6. The first three rows are B0 while the second three
rows are B1.

In Figures 2 and 3 above, the bits shaded in blue indicate the bits of each zone read on a
single traversal of the loops described in the proof of Theorem 11 and shown in Figure 5 in
the case where either n or n + 1 is 3, 4 or 6 respectively.

We re-present Pierce and Shields’ proof that their construction builds Champernowne
sequences using our notation below. The proof requires some basic results and definitions
which can be seen in an undergraduate group theory course. We omit specifics as they are
unimportant to the paper as a whole but point towards [26] for those interested.

▶ Lemma 9 ([25]). Let C ∈ {0, 1}ω be constructed via Pierce and Shields’ construction.
Then C is a Champernowne sequence.

Proof. Let C ∈ {0, 1}ω be as described. In order to show that C is a Champernowne
sequence we must show that for each zone Cn, for all x ∈ {0, 1}n, occb(x, Cn) = 1.

Consider substring Cn. Let G2n be the cyclic group of order 2n, i.e. G2n = ⟨x |x2n = e⟩,
where e = x0 is the identity element and x is the generator of the group. There exists
a bijective mapping f : G2n → {0, 1}n such that for 0 ≤ a < 2n, xa is mapped to the
substring of dn of length n beginning in position a when dn is viewed cyclically. That is,
f(e) = dn[0..n − 1], f(x) = dn[1..n], . . . f(x2n−1) = dn[2n − 1] · dn[0..n − 2].

L. Jordon and P. Moser 47:7

Let s ≥ 0 and t ≥ 1 where t is odd such that n = 2st. Consider the subgroup ⟨xn⟩ of
G2n . From group theory it follows that

|⟨xn⟩| = 2n

gcd(n, 2n) = 22st−s = 2n−s.

So

⟨xn⟩ =
2n−s−1⋃

i=0
{xin mod 2n

} = {e, xn, x2n, . . . x(2n−s−1)n mod 2n

}.

Concatenating the result of applying f to each element of ⟨xn⟩ beginning with e in the
natural order gives the string

σ = f(e) · f(xn) · f(x2n) · · · f(x(2n−s−1)n mod 2n

).

σ can be thought of as beginning with the prefix of dn of length n, cycling through dn in
blocks of size n until the block containing dn’s suffix of length n is seen. As (2n−sn)/2n = t,
we have that σ = (dn)t = B0.

As |G2n |/|⟨xn⟩| = 2s, there are 2s cosets of ⟨xn⟩ in G2n . As cosets are disjoint, each
represents a different set of 2n−s strings of {0, 1}n. Specifically each coset represents
some Bj = (dn,j)t block. Therefore, for each x ∈ {0, 1}n, for some j ∈ {0, . . . , 2s − 1},
occb(x, Bj) = 1 and occb(x, Bi) = 0 for each i ̸= j. Thus occb(x, Cn) = 1. ◀

Before examining the main result of this section, we require the following result from
number theory.

▶ Theorem 10. For a, b, c ∈ Z, consider the Diophantine equation ax + by = c. If there
exists a solution to the equation (x0, y0) where x0, y0 ∈ Z, then all other solutions (x′, y′)
such that x′, y′ ∈ Z are of the form x′ = x0 + (b/g)d and y′ = y0 − (a/g)d where d ∈ Z is
arbitrary and g = gcd(a, b).

Henceforth, we write PSC to denote the set of Champernowne sequences constructed
using Pierce and Shields’ method such that for each zone Cn of the sequences, a de Bruijn
string dn of order n with prefix 0n was used to construct it. In the following theorem we
show that there exists sequences in PSC which have non-maximal automatic complexity as
their upper automatic complexity rates are bounded above by 2/3. We also briefly discuss
their lower automatic complexity rates in Section 4.1.

▶ Theorem 11. There exists C ∈ PSC such that S(C) ≤ 2
3 .

Proof. Let C ∈ PSC and consider an arbitrary prefix C[0..m] of C. Again we use Cn to
denote the prefix C1C2 · · · Cn. Let n be largest such that Cn+1 is a prefix of C[0..m] but
Cn+2 is not.

To examine A(C[0..m]) we build automata which make use of two loops which exploit the
repetitions of the de Bruijn strings in Cn and Cn+1. The automata have a single accepting
state which depend on the length of the prefix being examined. There are four cases to
consider which are dependent on the the value of n and can be seen in Figure 5.

Case 1: n is a power of 2,
Case 2: n + 1 is a power of 2,
Case 3: n is even but not a power of 2,
Case 4: n + 1 is even but not a power of 2.

FSTTCS 2021

47:8 Normal Sequences with Non-Maximal Automatic Complexity

Notation wise, we let vn be the string such that dn = 0n1vn. Note that dn[n] = 1 as
otherwise the string 0n would appear twice as a substring of dn. Also note that the final bit
of vn must be a 1.

Suppose we are in Case 3 where n = 2st where s ≥ 1 and t ≥ 3 where t is odd. We
examine Case 3 as later calculations which maximise the number of states needed require for
the possibility that n + 2 is even but not a power of 2.

Let pn+2 denote the prefix of Cn+2 such that C[0..m] = Cn+1pn+2. The automaton
for Case 3 in Figure 5 accepts C[0..m] by reading the prefix Cn−1 · 0n state by state, then
traversing the first loop 2s times, then reading 02s+1, then traversing the second loop fully n

times and then up to reading 1vn+1 on the n + 1th traversal of it. Then, depending on the
length of pn+2, we read the final 0n+1 of the second loop and exit it to read the remainder of
Cn+2[n + 1..] as needed. That is, if |pn+2| ≤ n + 1 then the final state is contained in the
last n + 1 states (including the root state) of the second loop of the DFA, else once finishing
the loop, we traverse through |pn+2| − (n + 1) extra states to the accepting state.

To see that C[0..m] is accepted by the DFA, note that the traversal through the DFA
described above can be factored as Cn−1xpn+2 where

x = 0n(1vndt−1
n 0n−1)2s

02s+1(1vn+10n+1)n(1vn+1).

Note that x = CnCn+1 since

x = 0n(1vndt−1
n 0n−1)2s

02s+1(1vn+10n+1)n(1vn+1)
= (0n1vndt−1

n)0n−1(1vndt−1
n 0n−1)2s−102s+1(1vn+10n+1)n(1vn+1)

= B0(0n−11vndt−1
n 0)0n−2(1vndt−1

n 0n−1)2s−102s+1(1vn+10n+1)n(1vn+1)
= B0B1(0n−21vndt−1

n 02)0n−3(1vndt−1
n 0n−1)2s−202s+1(1vn+10n+1)n(1vn+1)

· · · (Keep repeating this process of sectioning into the 2s blocks)
= B0B1 · · · B2s−10n−2s

02s+1(1vn+10n+1)n(1vn+1)
= Cn(0n+11vn+1)n+1 = CnCn+1.

Next we show that the DFA uniquely accepts C[0..m]. Note that all strings accepted
have length

|Cn−1| + n + (2nt − 1)a + 2s + 1 + 2n+1b + |pn+2| − (n + 1)

where a ≥ 0 and b ≥ 1 if |pn+1| < (n + 1), else b can possibly be 0 too. As stated
(a, b) = (2s, n + 1) is a solution to the Diophantine equation

|Cn−1| + n + (2nt − 1)a + 2s + 1 + 2n+1b + |pn+2| − (n + 1) = |C[0..m]|. (2)

By Theorem 10, as the first loop has odd length and the second has even length, all
solutions to (2) take the form (2s + 2n+1c, n + 1 − (2nt − 1)c) where c ∈ Z. As 2s = n/t

and t ≥ 3, we have that (n + 1) − (2nt − 1)c < 0 when c > 0 and 2s + 2n+1c < 0 when
c < 0, it follows that c = 0 is the only possibility that gives non-negative integer solutions,
i.e. C[0..m] is uniquely accepted by the DFA.

The number of states of the automaton is bounded above by

|Cn−1| + n + 2nt + 2s + 2n+1 + |pn+2|.

As 2s ≤ n/3, we then have that

A(C[0..m])
m + 1 ≤

|Cn−1| + 2nt + 4n
3 + 2n+1 + |pn+2|

|Cn+1| + |pn+2|
. (3)

L. Jordon and P. Moser 47:9

Hence for |pn+2| ≤ 2n(n − t) − n
3 + 1 + 2n+2(n+2

2) we find that

A(C[0..m])
m + 1 ≤

|Cn−1| + 2nt + 4n
3 + 2n+1 + |pn+2|

|Cn+1| + |pn+2|

≤
|Cn−1| + |Cn| + n + 2n+1 + 1 + 2n+2(n+2

2)
|Cn+1| − n

3 + 1 + 2n+2(n+2
2)

=
|Cn| + n + 2n+1 + 1 + 2n+2(n+2

2)
|Cn+1| − n

3 + 1 + 2n+2(n+2
2)

. (4)

We note that taking the limit of (4) as n increases has a value of 2/3.

However as |pn+2| increases, it becomes more advantageous to use a loop for the repetitions
in Cn+2 as opposed to the loop for Cn (similar to the proof of Theorem 7). Worst case
scenario, n + 2 has the form 2s′

t′ for s′ ≥ 1 and t′ ≥ 3 where t′ is odd. This results in an
automaton of Case 4 in Figure 5 where the accepting state is one of that states of the second
loop. One can show the prefix is uniquely accepted as before with a similar argument. Such
an automaton requires at most |Cn| + 2n+1 + n + 1 + 2n+2(n+2

2) states (as t′ ≤ (n + 2)/2).
Hence for j ≥ 1 such that 2n(n − t) − n

3 + 1 + 2n+2(n+2
2) ≤ |pn+2| + j < |Cn+2| we use

the automaton from Case 4 and get that

A(C[0..m])
m + 1 ≤

|Cn| + n + 2n+1 + 1 + 2n+2(n+2
2)

|Cn+1| − n
3 + 1 + 2n+2(n+2

2) + j
. (5)

One can see that for such pn+2, the number of states of the automaton used to calculate (5)
remains constant and the ratio decreases as j increases.

Similar calculations for the other three cases show that none achieve an upper bound
greater than 2/3 (see appendix). Therefore S(C) ≤ 2/3. ◀

4.1 Discussion on Lower Bounds for Champernowne Sequences

Let C ∈ PSC satisfy Theorem 11. As part of Theorem 11, we do not provide any insight
into the value of I(C). Currently many of the techniques for calculating lower bounds rely
on the absence of k-powers (such as proofs in [19, 29]). In particular, Shallit and Wang
show that for every x without k-powers, x satisfies A(x) ≥ (|x| + 1)/k. However, as C is a
Champernowne sequence, long enough prefixes contain k-powers, i.e. there eventually is a
substring x such that x = uk for some string u.

However, one can easily identify an upper bound for I(C) as follows. Consider prefixes of
the form Cn+1 where n is a power of 2, i.e. we are in Case 1. The automaton in Figure 5
for Case 1 where the final state is contained appropriately in the second loop will uniquely
accept the prefix and simple calculations give us that I(C) ≤ 1/4.

One prefix x of C such that A(x)/|x| < 1/4 which is in Case 1 is C65. The automaton
for Case 1 in Figure 5 which uniquely accepts C65 has n1 = |C63| + 264 + 265 + 128 states.
However, the number of states can be reduced further by using two more loops for zones
C62 and C63 instead of having a state for each of their bits. Consider the DFA M̂ shown in
Figure 4:

M̂ reads the prefix C61 · 062. It then traverses a loop for 1v62(d62)30061. It then reads 03

and enters a loop for the string (1v63063)21. Following this it reads 01v64063 and then enters
a loop for the string (1v64063)7. It then reads 065 and enters a loop for the string (1v65065)5,
with the final state being that state of this loop after reading (1v65065)4 · 1v65. M̂ can be

FSTTCS 2021

47:10 Normal Sequences with Non-Maximal Automatic Complexity

thought of as combining the DFAs from Figure 5, but altering the length of the loops for the
zones. Strings of length |C65| that M̂ accepts satisfy the equation

|C61| + (262 · 31 − 1)a + (21 · 263)b + (7 · (264 − 1))c + (5 · 265)d + 65 + 264 = |C65| (6)

where it must hold that d ≥ 1.
a = 2, b = 3, c = 9 and d = 13 is the only non-negative integer solution to Equation (6)

and so M̂ uniquely accepts C65. M̂ has n2 = |C61| + 31 · 262 + 7 · 263 + 8 · 264 + 5 · 265 + 120
states which is less than n1. Hence M̂ gives us that A(C65)/|C65| < 0.173 < 1/4.

start
C61 · 062

(1v62(d62)30061)

03

(1v63063)21

(01v64063)

(1v64063)7

065

(1v65065)41v65065

Figure 4 Automaton M̂ for C65. The dashed arrows represent the missing states belonging to
their labels. The error state (the state traversed to if the bit seen is not the expected bit) and arrows
to it are not included.

While the above demonstrates that more than two loops can be used, the size of the
loops are limited in each case. The following proposition demonstrates that if reading a zone
Cj where j is odd, any loop traversed used to read a substring x of Cj , if |x| ≥ j then |x|
must be a multiple of 2j .

▶ Proposition 12. Let C ∈ PSC. Let j be odd and C ′ be a prefix of C containing the substring
Cj. Let p0, p1, . . . p2jj be the sequence of states an automaton which uniquely accepts C ′

traverses while reading Cj. If there is some subsequence of states pi, . . . pi+l, . . . pi+2l where
l ≥ j and for all 0 ≤ m ≤ l, pi+m = pi+l+m, then l must be a multiple of 2j.

Proof. Let C, C ′ and j be as above. First suppose a loop of length l is traversed where
j ≤ l ≤ 2j − 1. Let x be the substring of Cj read during the loop. Hence x = yz where
|y| = j and |z| ≤ 2j − j − 1. Suppose the loop is traversed twice in a row indicating that
x2 = yzyz is a substring of Cj . Consider yzy which has length at most 2j + j − 1. By the
construction of Cj , yzy is a prefix of dj,k · dj,k[0..j − 2] for some k. By the nature of de
Bruijn stings, dj,k · dj,k[0..j − 2] contains every string of length j as a substring exactly once.
However, y is a substring of length j contained twice giving us a contradiction.

Next suppose a loop of length l is traversed where d · 2j < l < (d + 1) · 2j for some
d ≤ ⌊j/2⌋ as if d > ⌊j/2⌋, traversing the loop twice would result in a string longer than
Cn being read. Let x be the string read while traversing the loop. Hence x = yz where
|y| = d · 2j and 1 ≤ |z| < 2j . Suppose the loop is traversed twice in a row indicating that
x2 = yzyz is a substring of Cj . By the construction of Cj , yzy = (dj,k)dz(dj,k)d for some k

where z is a prefix of dj,k. This forces z = λ or z = dj,k which is a contradiction. ◀

Similar results to the above proposition can be shown for n even also. For instance, if
n is a power of 2, loops of length larger than n in zone Cn have to be a multiple of 2n − 1.
Details can be found in the appendix.

▶ Question 13. Let C ∈ PSC satisfy Theorem 11. Is there a limit to the number of beneficial
loops we can use to ensure prefixes of C are uniquely accepted? Finding the value of I(C) is
left as an open question. For instance, is I(C) > 0?

L. Jordon and P. Moser 47:11

1start

Cn−10n

1

vn0n−1

0n+1

1

vn+10n+1Cn+2[n + 1..]

3start

0n−1

Cn−1

0n

1

vn

dt−1
n

02s+1

1

vn+10n+1Cn+2[n + 1..]

2start

Cn−10n

1

vn0n

0

1

vn+10nCn+2

4start

0n

Cn−10n

1

vn0n

0

1

vn+1

dt′−1
n+1

02s′
+1Cn+2[n + 2..]

Figure 5 Automaton for Case 1 (top left), Case 2 (top right), Case 3 (bottom left) and Case 4
(bottom right). The dashed arrows represent the missing states belonging to their labels. The error
state (the state traversed to if the bit seen is not the expected bit) and arrows to it are not included
in each of the four diagrams. We point the reader to Figures 2 and 3 to help visualise the bits read
on a single traversal of a loop.

FSTTCS 2021

47:12 Normal Sequences with Non-Maximal Automatic Complexity

References
1 Verónica Becher, Olivier Carton, and Pablo Ariel Heiber. Normality and automata. J. Comput.

Syst. Sci., 81(8):1592–1613, 2015. doi:10.1016/j.jcss.2015.04.007.
2 Verónica Becher and Pablo Ariel Heiber. Normal numbers and finite automata. Theor. Comput.

Sci., 477:109–116, 2013. doi:10.1016/j.tcs.2013.01.019.
3 Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti

del Circolo Matematico di Palermo, 27(1):247–271, 1909. doi:10.1007/BF03019651.
4 Nicolaas Govert De Bruijn. A combinatorial problem. In Proc. Koninklijke Nederlandse

Academie van Wetenschappen, volume 49, pages 758–764, 1946.
5 Cristian S. Calude, Kai Salomaa, and Tania Roblot. Finite state complexity. Theor. Comput.

Sci., 412(41):5668–5677, 2011. doi:10.1016/j.tcs.2011.06.021.
6 Cristian S. Calude and Ludwig Staiger. Liouville, computable, Borel normal and Martin-

löf random numbers. Theory Comput. Syst., 62(7):1573–1585, 2018. doi:10.1007/
s00224-017-9767-8.

7 Cristian S. Calude, Ludwig Staiger, and Frank Stephan. Finite state incompressible infinite
sequences. Inf. Comput., 247:23–36, 2016. doi:10.1016/j.ic.2015.11.003.

8 Olivier Carton and Pablo Ariel Heiber. Normality and two-way automata. Inf. Comput.,
241:264–276, 2015. doi:10.1016/j.ic.2015.02.001.

9 D. G. Champernowne. The construction of decimals normal in the scale of ten. J. Lond. Math.
Soc., s1-8(4):254–260, 1933. doi:10.1112/jlms/s1-8.4.254.

10 Jack J. Dai, James I. Lathrop, Jack H. Lutz, and Elvira Mayordomo. Finite-state dimension.
Theor. Comput. Sci., 310(1-3):1–33, 2004. doi:10.1016/S0304-3975(03)00244-5.

11 David Doty and Philippe Moser. Finite-state dimension and lossy decompressors. CoRR,
abs/cs/0609096, 2006. arXiv:cs/0609096.

12 David Doty and Philippe Moser. Feasible depth. In CiE 2007: Computation and Logic
in the Real World - Siena, Italy, volume 4497 of LNCS, pages 228–237. Springer, 2007.
doi:10.1007/978-3-540-73001-9_24.

13 Harold Fredricksen and Irving J. Kessler. An algorithm for generating necklaces of beads in
two colors. Discret. Math., 61(2-3):181–188, 1986. doi:10.1016/0012-365X(86)90089-0.

14 Harold Fredricksen and James Maiorana. Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discret. Math., 23(3):207–210, 1978. doi:10.1016/0012-365X(78)90002-X.

15 Kayleigh Hyde. Nondeterministic finite state complexity. Master’s thesis, University of Hawaii
at Manoa, 2013. Accessed: April 20, 2021. URL: http://hdl.handle.net/10125/29507.

16 Kayleigh Hyde and Bjørn Kjos-Hanssen. Nondeterministic automatic complexity of overlap-free
and almost square-free words. Electron. J. Comb., 22(3):P3.22, 2015. doi:10.37236/4851.

17 Liam Jordon and Philippe Moser. On the difference between finite-state and pushdown depth.
In 46th International Conference on Current Trends in Theory and Practice of Informatics,
SOFSEM 2020, Limassol, Cyprus, volume 12011 of LNCS, pages 187–198. Springer, 2020.
doi:10.1007/978-3-030-38919-2_16.

18 Liam Jordon and Philippe Moser. A normal sequence compressed by PPM* but not by
Lempel-Ziv 78. In 47th International Conference on Current Trends in Theory and Practice
of Computer Science, SOFSEM 2021, Bolzano-Bozen, Italy, volume 12607 of LNCS, pages
389–399. Springer, 2021. doi:10.1007/978-3-030-67731-2_28.

19 Bjørn Kjos-Hanssen. Automatic complexity of Fibonacci and Tribonacci words. Discrete
Applied Mathematics, 289:446–454, 2021. doi:10.1016/j.dam.2020.10.014.

20 Bjørn Kjos-Hanssen. Automatic complexity of shift register sequences. Discrete Mathematics,
341(9):2409–2417, 2018. doi:10.1016/j.disc.2018.05.015.

21 Alexander Kozachinskiy and Alexander Shen. Automatic Kolmogorov complexity, normality,
and finite-state dimension revisited. J. Comput. Syst. Sci., 118:75–107, 2021. doi:10.1016/j.
jcss.2020.12.003.

https://doi.org/10.1016/j.jcss.2015.04.007
https://doi.org/10.1016/j.tcs.2013.01.019
https://doi.org/10.1007/BF03019651
https://doi.org/10.1016/j.tcs.2011.06.021
https://doi.org/10.1007/s00224-017-9767-8
https://doi.org/10.1007/s00224-017-9767-8
https://doi.org/10.1016/j.ic.2015.11.003
https://doi.org/10.1016/j.ic.2015.02.001
https://doi.org/10.1112/jlms/s1-8.4.254
https://doi.org/10.1016/S0304-3975(03)00244-5
http://arxiv.org/abs/cs/0609096
https://doi.org/10.1007/978-3-540-73001-9_24
https://doi.org/10.1016/0012-365X(86)90089-0
https://doi.org/10.1016/0012-365X(78)90002-X
http://hdl.handle.net/10125/29507
https://doi.org/10.37236/4851
https://doi.org/10.1007/978-3-030-38919-2_16
https://doi.org/10.1007/978-3-030-67731-2_28
https://doi.org/10.1016/j.dam.2020.10.014
https://doi.org/10.1016/j.disc.2018.05.015
https://doi.org/10.1016/j.jcss.2020.12.003
https://doi.org/10.1016/j.jcss.2020.12.003

L. Jordon and P. Moser 47:13

22 James I. Lathrop and Martin Strauss. A universal upper bound on the performance of the
Lempel-Ziv algorithm on maliciously-constructed data. In Compression and Complexity of
SEQUENCES 1997, Positano, Amalfitan Coast, Salerno, Italy, June 11-13, 1997, Proceedings,
pages 123–135. IEEE, 1997. doi:10.1109/SEQUEN.1997.666909.

23 M. H. Martin. A problem in arrangements. Bull. Amer. Math. Soc., 40(12):859–864, 1934.
doi:10.1090/S0002-9904-1934-05988-3.

24 Satyadev Nandakumar and Santhosh Kumar Vangapelli. Normality and finite-state di-
mension of Liouville numbers. Theory Comput. Syst., 58(3):392–402, 2016. doi:10.1007/
s00224-014-9554-8.

25 Larry A. Pierce and Paul C. Shields. Sequences incompressible by SLZ (LZW), yet fully
compressible by ULZ. In Numbers, Information and Complexity, pages 385–390. Springer,
2000. doi:10.1007/978-1-4757-6048-4_32.

26 Joseph J. Rotman. An Introduction to the Theory of Groups. Graduate Texts in Mathematics.
Springer, New York, 1995. ISBN: 978-1-4612-8686-8. doi:10.1007/978-1-4612-4176-8.

27 Camille Flye Sainte-Marie. Solution to question nr. 48. In L’Intermédiaire des Mathématiciens,
volume 1, pages 107–110, 1894.

28 Claus-Peter Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen. Acta Inf.,
1:345–359, 1972. doi:10.1007/BF00289514.

29 Jeffrey O. Shallit and Ming-wei Wang. Automatic complexity of strings. J. Autom. Lang.
Comb., 6(4):537–554, 2001. doi:10.25596/jalc-2001-537.

30 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, 1983, Boston, Massachusetts, USA, pages
330–335. ACM, 1983. doi:10.1145/800061.808762.

A Appendix

A.1 The other three cases for the proof of Theorem 11
The following is the reasoning for why Equation (4) from the proof of Theorem 11 gives us
the upper bound of S(C). We perform similar calculations as in the proof for Cases 1, 2 and
4 to see this.

Case 1. n is a power of 2.
Suppose we are in Case 1. Let pn+2 be such that C[0..m] = Cn+1pn+2. We have a

automaton as in Case 1. It requires at most |Cn−1| + 1 + 2n + 2n + 2n+1 + |pn+2| states.
Thus

A(C[0..m])
m + 1 ≤ |Cn−1| + 1 + 2n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|
.

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and use an
automaton in the style of Case 4 since worst case scenario n + 2 has the form 2s′

t′. Such an
automaton has at most |Cn| + 1 + n + 2n+1 + 2n+2(n+2

2) states.
So for |pn+2| ≤ 2n(n − 1) − n + 2n+2(n+2

2)

A(C[0..m])
m + 1 ≤ |Cn−1| + 1 + 2n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|

≤
|Cn−1| + 1 + 2n − n + 2n + 2n(n − 1) + 2n+1 + 2n+2(n+2

2)
|Cn+1| − n + 2n(n − 1) + 2n+2(n+2

2)

=
|Cn| + 1 + n + 2n+1 + 2n+2(n+2

2)
|Cn+1| − n + 2n(n − 1) + 2n+2(n+2

2)
.

FSTTCS 2021

https://doi.org/10.1109/SEQUEN.1997.666909
https://doi.org/10.1090/S0002-9904-1934-05988-3
https://doi.org/10.1007/s00224-014-9554-8
https://doi.org/10.1007/s00224-014-9554-8
https://doi.org/10.1007/978-1-4757-6048-4_32
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/BF00289514
https://doi.org/10.25596/jalc-2001-537
https://doi.org/10.1145/800061.808762

47:14 Normal Sequences with Non-Maximal Automatic Complexity

For j ≥ 1 such that 2n(n−1)−n+2n+2(n+2
2) ≤ |pn+2|+j < |Cn+2| we use an automaton

from Case 4 and have that

A(C[0..m])
m + 1 ≤

|Cn| + 1 + n + 2n+1 + 2n+2(n+2
2)

|Cn+1| − n + 2n(n − 1) + 2n+2(n+2
2) + j

,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn| + 1 + n + 2n+1 + 2n+2(n+2
2)

|Cn+1| − n + 2n(n − 1) + 2n+2(n+2
2)

= 4
7 <

2
3 .

Case 2. n + 1 is a power of 2
Suppose we are in Case 2. Let pn+2 be such that C[0..m] = Cn+1pn+2. We have a

automaton as in Case 2. It requires at most |Cn−1| + n + 2n + 2n+1 + |pn+2| states. Thus

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|
.

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and use an
automaton in the style of Case 1 as n + 2 is odd and n + 1 is a power of 2. As the final state
will be contained in the second loop, such an automaton requires |Cn| + 2 + 2n + 2n+1 + 2n+2

states.
So for |pn+2| ≤ 2 + n + 2n(n − 1) + 2n+2

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1 + |pn+2|

|Cn+1| + |pn+2|

≤ |Cn−1| + 2 + n + n + 2n + 2n(n − 1) + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2

= |Cn| + 2 + 2n + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2
.

For j ≥ 1 such that 2 + n + 2n(n − 1) + 2n+2 ≤ |pn+2| + j < |Cn+2| we use an automaton
from Case 1 and have that

A(C[0..m])
m + 1 ≤ |Cn| + 2 + 2n + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2 + j
,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn| + 2 + 2n + 2n+1 + 2n+2

|Cn+1| + 2 + n + 2n(n − 1) + 2n+2
= 2

5 <
2
3 .

Case 4. n + 1 is even but not a power of 2
Suppose we are in Case 4, i.e. n + 1 = 2st for some s ≥ 1 and t ≥ 3 odd. Let pn+2 be

such that C[0..m] = Cn+1pn+2. We have a automaton as in Case 4. It requires at most
|Cn−1| + n + 2n + 2n+1t + |pn+2| states.

Thus

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1t + |pn+2|

|Cn+1| + |pn+2|
.

L. Jordon and P. Moser 47:15

For |pn+2| long enough, it is more beneficial to loop in Cn+2 instead of Cn and use
an automaton in the style of Case 3 as n + 2 is odd and n + 1 is even but not power of
2. As the final state will be contained in the second loop, such an automaton requires
|Cn| + n + 2n+1t + 2s + 2n+2 states. Hence, as 2s ≤ n/3 and we have that the number of
states required is bounded above by |Cn| + 4n/3 + 2n+1t + 2n+2.

So for |pn+2| ≤ n/3 + 2n(n − 1) + 2n+2

A(C[0..m])
m + 1 ≤ |Cn−1| + n + 2n + 2n+1t + |pn+2|

|Cn+1| + |pn+2|

≤
|Cn−1| + n + n

3 + 2n + 2n(n − 1) + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

=
|Cn| + 4n

3 + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

.

For j ≥ 1 such that n/3 + 2n(n − 1) + 2n+2 ≤ |pn+2| + j < |Cn+2| we use an automaton
from Case 3 and have that

A(C[0..m])
m + 1 ≤

|Cn| + 4n
3 + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2 + j

,

i.e. the number of states required remains constant. Furthermore

lim
n→∞

|Cn| + 4n
3 + 2n+1t + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

≤ lim
n→∞

|Cn| + 4n
3 + 2n+1 (n+1)

2 + 2n+2

|Cn+1| + n
3 + 2n(n − 1) + 2n+2

= 3
5 <

2
3 .

A.2 Analogous Result to Proposition 12
The following is analogous for Proposition 12 and demonstrates that if reading a zone Cj

where j = 2k for k ≥ 1, any loop traversed used to read a substring x of Cj , if |x| ≥ j then
|x| must be a multiple of 2j − 1.

▶ Proposition 14. Let C ∈ PSC. Let j = 2k for some k ≥ 1 and let C ′ be a prefix of
C containing the substring Cj. Let p0 → p1 → · · · → p2jj be the sequence of states an
automaton which uniquely accepts C ′ traverses while reading Cj . If there is some subsequence
of states pi → · · · pi+l → · · · pi+2l where l ≥ j and for all 0 ≤ m ≤ l, pi+m = pi+l+m, then l

must be a multiple of 2j − 1.

Proof. Let C, C ′, j and k be as above. Recall in such a case that

Cj = dj · dj,1 · dj,2 · · · dj,2j−1 = 0 · (dj [1..2j − 1])j · 0j−1

for some de Bruijn string dj . First suppose a loop of length l is traversed where j ≤ l ≤ 2j −2.
Let x be the substring of Cj read during the loop. Hence x = yz where |y| = j and
|z| ≤ 2j − j − 2. Suppose the loop is traversed twice in a row indicating that x2 = yzyz is
a substring of Cj . Consider yzy which has length at most 2j + j − 2. By the construction
of Cj , every substring of length 2j + j − 2 contains 2j − 1 of the strings of length j as a
substring exactly once where either 0j or 10j−1 is the remaining string that does not appear.
If y = 0j then 10j−1 is missing, otherwise 0j is missing due to this shift between instances of
the de Bruijn strings. However, y is then a substring of length j contained twice withing a
substring of length 2j + j − 2 giving us a contradiction.

FSTTCS 2021

47:16 Normal Sequences with Non-Maximal Automatic Complexity

Next suppose a loop of length l is traversed where d(2j − 1) < l < (d + 1)(2j − 1) for
some d ≤ ⌊j/2⌋. Let x be the string read while traversing the loop. Hence x = yz where
|y| = d(2j − 1) and 1 ≤ |z| < 2j − 1. Note that y = (dj [i..2j − 1] · dj [1..i − 1])d for some
i ≥ 1 (i ̸= 0 as occ(0j , Cj) = 1). Suppose the loop is traversed twice in a row indicating that
x2 = yzyz is a substring of Cj . By the construction of Cj , this means that z is a prefix of
dj [i..2j − 1] · dj [1..i − 1]. This forces z = λ or z = dj [i..2j − 1] · dj [1..i − 1] which contradicts
the length requirement of z. ◀

Approximate Bisimulation Minimisation
Stefan Kiefer #

Department of Computer Science, University of Oxford, UK

Qiyi Tang #

Department of Computer Science, University of Oxford, UK

Abstract
We propose polynomial-time algorithms to minimise labelled Markov chains whose transition
probabilities are not known exactly, have been perturbed, or can only be obtained by sampling. Our
algorithms are based on a new notion of an approximate bisimulation quotient, obtained by lumping
together states that are exactly bisimilar in a slightly perturbed system. We present experiments
that show that our algorithms are able to recover the structure of the bisimulation quotient of the
unperturbed system.

2012 ACM Subject Classification Theory of computation → Program verification; Theory of
computation → Models of computation; Mathematics of computing → Probability and statistics

Keywords and phrases Markov chains, Behavioural metrics, Bisimulation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.48

Related Version Full Version: https://arxiv.org/abs/2110.00326 [15]

Supplementary Material
Software (Source Code): https://github.com/qiyitang71/approximate-quotienting

archived at swh:1:dir:42b8e694ce904b906e52bac502b425e424412461
Dataset (Experimental Results): https://bit.ly/3vcpblY

Funding Stefan Kiefer : Supported by a Royal Society University Fellowship.

Acknowledgements We thank the anonymous reviewers of this paper for their constructive feedback.

1 Introduction

For the algorithmic analysis and verification of system models, computing the bisimulation
quotient is a natural preprocessing step: it can make the system much smaller while preserving
most properties of interest. This applies equally to probabilistic systems: probabilistic model
checkers, e.g., Storm [12], speed up the verification process by “lumping” together states
that are equivalent with respect to probabilistic bisimulation. While this is a safe approach,
it may not be effective when the probabilities in the system are not known precisely. For

s1 s2 t1 t2

1
2

1
2

1
2 − ϵ

1
2 − ϵ

1
2

1
2

1
2 + ϵ 1

2 + ϵ

Figure 1 Two intuitively similar labelled Markov chains.

example, in the labelled Markov chain shown in Figure 1 the states s1, t1 are intuitively
“similar”, but they are not probabilistically bisimilar even though they carry the same label
(here indicated with the colour white) and they both lead, with similar probabilities, to states
s2, t2, which are again intuitively “similar” but not probabilistically bisimilar.

© Stefan Kiefer and Qiyi Tang;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 48; pp. 48:1–48:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stekie@cs.ox.ac.uk
https://orcid.org/0000-0003-4173-6877
mailto:qiyi.tang@cs.ox.ac.uk
https://orcid.org/0000-0002-9265-3011
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.48
https://arxiv.org/abs/2110.00326
https://github.com/qiyitang71/approximate-quotienting
https://archive.softwareheritage.org/swh:1:dir:42b8e694ce904b906e52bac502b425e424412461;origin=https://github.com/qiyitang71/approximate-quotienting;visit=swh:1:snp:37d4efd972f007c472013bcf859918288ddcf08e;anchor=swh:1:rev:6d4ea07894e92e8d1987031a1240248da4cb24d6
https://bit.ly/3vcpblY
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Approximate Bisimulation Minimisation

For analysis and verification of a probabilistic system, tackling state space explosion
is key. The more symmetry a system has (e.g., due to variables that do not influence the
observable behaviour of the model), the greater are the benefits of computing a quotient
system with respect to probabilistic bisimulation. However, when the transition probabilities
in the Markov chain are perturbed or not known exactly, bisimulation minimisation may fail
to capture the symmetries in the system and thus fail to achieve the objective of making the
probabilistic system amenable to algorithmic analysis. The motivation of this paper is to
counter this problem.

A principled approach towards this goal may consider notions of distance between
probabilistic systems or between states in a probabilistic system. A probabilistic bisimilarity
pseudometric, based on the Kantorovich metric, was introduced in [8, 9], which assigns to each
pair of states s, t a number in the interval [0, 1] measuring a distance between s, t: distance 0
means probabilistic bisimilar, and distance 1 means, in a sense, maximally non-bisimilar.
This pseudometric can be computed in polynomial time [5], and, quoting [5], has “been
studied in the context of systems biology, games, planning and security, among others”.
The corresponding distances can be intuitively large though: the pseudometric yields a
distance less than 1 only if the two states can reach, with the same label sequence, two states
that are exactly bisimilar; see [18, Section 4]. As a consequence, for any ϵ > 0, the states
s1, t1 in Figure 1 have distance 1 in the probabilistic bisimilarity pseudometric of [9] (in the
undiscounted version). From a slightly different point of view, a small perturbation of the
transition probabilities in the model can change the distance between two states from 0 to 1.

Another pseudometric, ϵ-bisimulation ∼ϵ, was defined in [10], which avoids this issue. It
has natural characterisations in terms of games and can be computed in polynomial time
using network-flow based algorithms [10]. The runtime of the algorithm from [10] is O(|S|7),
where S is the set of states, thus not practical for large systems. A more fundamental
problem lies in the fact that ϵ-bisimulation is not an equivalence: s ∼ϵ t ∼ϵ u implies s ∼2ϵ u

(by the triangle inequality) but not necessarily s ∼ϵ u. Therefore, efficient minimisation
algorithms via quotienting (such as partition refinement for exact probabilistic bisimilarity)
are not available for ϵ-bisimulation.

In this paper we develop algorithms that, given a labelled Markov chain M with possibly
imprecise transition probabilities and a slightly perturbed version, say M′, of M, compute
a compressed version, Q, of M′. By slightly perturbed we mean that for each state the
successor distributions in M′ and M have small (say, less than ϵ) L1-distance. We hope
that Q is not much bigger than the exact quotient of M, and we design polynomial-time
algorithms that fulfill this hope in practice, but we do not insist on computing the smallest
possible Q. Indeed, we show that, given an LMC, ϵ > 0 and a positive integer k, it is
NP-complete to decide whether there exists a perturbation of at most ϵ such that the (exact)
bisimulation quotient of the perturbed system is of size k. See, e.g., [1] for an exact but
non-polynomial approach, where the target number n of states is fixed, and a Markov chain
with at most n states is sought that has minimal distance (with respect to the probabilistic
bisimilarity pseudometric of [9]) to the given model.

It is not hard to prove (Proposition 2) that if an LMC can be made exactly bisimilar to
another LMC by a perturbation of at most ϵ, then these two LMCs are also ϵ

2 -bisimilar in
the sense of [10]. If, in turn, two states are ϵ-bisimilar, one can show (see [3, Theorem 4])
that any linear-time property that depends only on the first k labels has similar probabilities
in the two states, where similar means the difference in probabilities is at most 1 − (1 − ϵ)k.
Combining these two results, we obtain a continuity property that says if two LMCs can be

S. Kiefer and Q. Tang 48:3

made bisimilar by a small perturbation, then any k-bounded linear-time property has similar
probabilities in the two LMCs. In other words, our approximate minimisation approximately
preserves the probability of bounded linear-time properties.

We apply our approximate minimisation algorithms in a setting of active learning. Here
we assume we do not have access to the transition probabilities of the model; rather, for
each state we only sample the successor distribution. Sampling gives us an approximation of
the real Markov chain, and our approximate minimisation algorithms apply naturally. This
allows us to lump states that are exactly bisimilar in the real model, but only approximately
bisimilar in the sampled model. We give examples where in this way we recover the structure
(not the precise transition probabilities) of the quotient of the exact model, knowing only
the sampled model.

The rest of the paper is organised as follows. In Section 2 we introduce ϵ-quotient, a new
notion of approximate bisimulation quotient. In Section 3 given an LMC, ϵ and k > 0, we
show it is NP-complete to decide whether there exists an ϵ-quotient of size k. In Section 4
we present our approximate minimisation algorithms. We put them in a context of active
learning in Section 5. In Section 6 we evaluate these algorithms on slightly perturbed versions
of a number of LMCs taken from the probabilistic model checker PRISM [16]. We conclude
in Section 7.

2 Preliminaries

We write N for the set of nonnegative integers and Z+ for the set of positive integers. We
write R for the set of real numbers. Let S be a finite set. We denote by Distr(S) the
set of probability distributions on S. By default we view vectors, i.e., elements of RS , as
row vectors. For a vector µ ∈ RS we write ∥µ∥1 :=

∑
s∈S |µ(s)| for its L1-norm. A vector

µ ∈ [0, 1]S is a distribution (resp. subdistribution) over S if ∥µ∥1 = 1 (resp. 0 < ∥µ∥1 ≤ 1).
For a (sub)distribution µ we write support(µ) = {s ∈ S : µ(s) > 0} for its support.

A partition of the states S is a set X consisting of pairwise disjoint subsets E of S with⋃
E∈X = S. For an equivalence relation R ⊆ S × S, S/R denotes its quotient set and [s]R

denotes the R-equivalence class of s ∈ S.
A labelled Markov chain (LMC) is a quadruple ⟨S, L, τ, ℓ⟩ consisting of a nonempty finite

set S of states, a nonempty finite set L of labels, a transition function τ : S → Distr(S), and
a labelling function ℓ : S → L.

We denote by τ(s)(t) the transition probability from s to t. Similarly, we denote by
τ(s)(E) =

∑
t∈E τ(s)(t) the transition probability from s to E ⊆ S. For the remainder of

the paper, we fix an LMC M = ⟨S, L, τ, ℓ⟩. Let |M| denote the number of states, |S|.
The direct sum M1 ⊕ M2 of two LMCs M1 = ⟨S1, L1, τ1, ℓ1⟩ and M2 = ⟨S2, L2, τ2, ℓ2⟩

is the LMC formed by combining the state spaces of M1 and M2.
An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all (s, t) ∈ R,

ℓ(s) = ℓ(t) and τ(s)(E) = τ(t)(E) for each R-equivalence class E. Probabilistic bisimilarity,
denoted by ∼M (or ∼ when M is clear), is the largest probabilistic bisimulation.

Any probabilistic bisimulation R on M induces a quotient LMC denoted by M/R =
⟨S/R, L, τ/R, ℓ/R⟩ where the transition function τ/R([s]R)([t]R) = τ(s)([t]R) and the la-
belling function ℓ/R([s]R) = ℓ(s).

We define the notion of an approximate quotient. Let ϵ ≥ 0. An LMC Q is an ϵ-quotient of
M if and only if there is transition function τ ′ : S → Distr(S) such that for all s ∈ S we have
∥τ ′(s) − τ(s)∥1 ≤ ϵ and Q is the (exact) bisimulation quotient of the LMC M′ = ⟨S, L, τ ′, ℓ⟩,
that is, Q = M′/∼M′ . Since the choice of τ ′ is not unique, there might be multiple ϵ-quotients

FSTTCS 2021

48:4 Approximate Bisimulation Minimisation

of M. We are interested in the problem of obtaining an ϵ-quotient of M with small state
space. We retrieve the notion of (exact) quotient when ϵ = 0. For s from M, denote the
state in Q which corresponds to s by [s]ϵQ (or [s]ϵ when Q is clear).

The set Ω(µ, ν) of couplings of µ, ν ∈ Distr(S) is defined as Ω(µ, ν) ={
ω ∈ Distr(S × S) :

∑
t∈S ω(s, t) = µ(s) ∧

∑
s∈S ω(s, t) = ν(t)

}
. Note that a coupling ω ∈

Ω is a joint probability distribution with marginals µ and ν (see, e.g., [4, page 260-262]).
The ϵ-lifting of a relation R ⊆ S × S proposed by Tracol et al. [19] is the relation

R↑ϵ ⊆ Distr(S) × Distr(S) defined by (µ, ν) ∈ R↑ϵ if there exists ω ∈ Ω(µ, ν) such that∑
(u,v)∈R ω(u, v) ≥ 1 − ϵ.
The ϵ-bisimulation (∼ϵ) by Desharnais et al. [10] is a relation R ⊆ S × S in which for

all (s, t) ∈ R we have ℓ(s) = ℓ(t) and (τ(s), τ(t)) ∈ R↑ϵ. The ϵ-bisimulation is reflexive and
symmetric, but in general not transitive; hence, it is not an equivalence relation.

3 Properties of Approximate Quotients

M M/∼M

M′ Q

quotient

perturbation approximate quotient Q is not much bigger than M/∼M

Figure 2 Problem setup.

Recall from the introduction that we are given an LMC M′, which is a slightly perturbed
version of an (unknown) LMC M. By slightly perturbed we mean that for each state the
successor distributions in M′ and M have small (say, less than ϵ) L1-distance. For example,
with sampling we can obtain with high probability a perturbed system that has small distance
with M. Assume there are many symmetries, that is, lots of probabilistic bisimilar states
in M. The state space of M can then be compressed a lot by (exact) quotienting. Since
the transition probabilities are perturbed in M′, the states that are probabilistic bisimilar
in M might become inequivalent in M′; as a result, the (exact) bisimulation quotient of
M′ is much larger than that of M. Given a small compression parameter ϵ2 > 0, we aim
to compute an approximate quotient Q, an ϵ′-quotient of M′ that satisfies two conditions:
(1) ϵ′ should be small, so that little precision is sacrificed; and (2) the state space of the
quotient should be small, to speed up verification algorithms. Our contribution consists of
approximate quotienting algorithms with (a) theoretical guarantees on goal (1) in Theorem 7
and Corollary 8, applying to both algorithms: ϵ′ is bounded (and can be controlled) by a
compression parameter ϵ2 and the number of iterations i; (b) empirical results on goal (2):
the experiments show that our algorithms produce small quotients.

We first show that it is hard to find an ϵ2-quotient of M′ with minimum number of
states: Q∗ = arg min{|Q| : Q is an ϵ2-quotient of M′}. If there are several ϵ2-quotients of
M′ of minimum size, Q∗ can be taken to be any one of them. Unfortunately, this problem is
unlikely to have an efficient (polynomial-time) solution, as we will see from the next theorem
that the decision version of this problem is NP-complete.

Given an LMC M′, a compression parameter ϵ2 > 0 and a constant k ∈ Z+, it is NP-
complete to decide whether there exists an ϵ2-quotient of M′ of size k. The hardness result
is by reduction from the Subset Sum problem. Given a set P = {p1, . . . , pn} and N ∈ N,
Subset Sum asks whether there exists a set Q ⊆ P such that

∑
pi∈Q pi = N . Given an

instance of Subset Sum ⟨P, N⟩ where P = {p1, . . . , pn} and N ∈ N, we construct an LMC;

S. Kiefer and Q. Tang 48:5

s

s1 · · · sn

sa sb

p1
T

pn

T

11

1
2

1
2

1
2

1
2

t

t1 t2

ta tb

N
T 1 − N

T

1
2 − ϵ

1
2 + ϵ 1

2 + ϵ
1
2 − ϵ

11

Figure 3 The LMC in the reduction for NP-hardness. All states have the same label a except sb

and tb which have label b.

s1

s2 x

1
2

1
4

1
4

1
1
4 − 2ϵ

3
4 + 2ϵ

s3

x

3
4 + ϵ

1
4 − ϵ

1

Figure 4 An LMC in which s1 ∼ϵ s3 ∼ϵ s2.

see Figure 3. Let T =
∑

pi∈P pi, ϵ = 1
2T and k = 5. In the LMC, state s transitions to

state si with probability pi/T for all 1 ≤ i ≤ n. Each state si transitions to sa and sb with
equal probabilities. State t transitions to t1 and t2 with probability N/T and 1 − N/T ,
respectively. State t1 (resp. t2) transitions to ta (resp. tb) and tb (resp. ta) with probability
1
2 − ϵ and 1

2 + ϵ, respectively. All the remaining states transition to the successor state with
probability one. States sb and tb have label b and all other states have label a. We can show
that ⟨P, N⟩ ∈ Subset Sum ⇐⇒ there exists an 1

2T -quotient of M′ of size 5.

▶ Theorem 1. Given an LMC M′, ϵ2 ∈ (0, 1] and k ∈ Z+. The problem whether there exists
an ϵ2-quotient of M′ of size k is NP-complete. It is NP-hard even for (fixed) k = 5.

Due to the NP-hardness result, we hope to develop practical algorithms to compute
approximate quotients of M′ that are small but not necessarily of minimum size. To do
that, an intuitive idea is to merge “similar” states. As we have discussed in the introduction,
merging states with small probabilistic bisimilarity distances might be insufficient. Consider
the LMC shown in Figure 1. Assume ϵ>0. The states s1 and t1 (s2 and t2) have probabilistic
bisimilarity distance one. Thus, to merge s1, t1 or s2, t2, one needs to merge states with
probabilistic bisimilarity distance one. Alternatively, we explore the relation of approximate
quotient and ϵ-bisimulation. It is not hard to prove the following proposition:

▶ Proposition 2. Let Q be an ϵ2-quotient of M′. Then in the LMC M′ ⊕ Q, we have
s ∼ ϵ2

2
[s]ϵ2

Q for all s from M′.

Proposition 2 suggests that ϵ2-quotients and ϵ2-bisimulation are related. The runtime of
the algorithm to compute the ϵ2-bisimulation in [10] is O(|S|7) which makes it not practical
for large systems. Furthermore, the algorithms based on merging states that are ϵ2-bisimilar
may produce an ϵ′-quotient where ϵ′ is large, violating the first condition of a satisfying
approximate quotient. Assume the positive number ϵ is much smaller than 1

8 . Let us choose
the compression parameter ϵ2 to be the same as ϵ. We compute the ϵ-bisimulation of the
LMC shown in Figure 4 and get s1 ∼ϵ s3 ∼ϵ s2. Since ϵ-bisimulation is not an equivalence

FSTTCS 2021

48:6 Approximate Bisimulation Minimisation

s13

s2 x

5
8 + ϵ

2
1
8

1
4 − ϵ

2

1
1
4 − 2ϵ

3
4 + 2ϵ

(a) ϵ′-quotient

s1

s23 x

1
2

1
4

1
4

1
1
4 − 3ϵ

2

3
4 + 3ϵ

2

(b) ϵ-quotient

s123

x

3
4 + ϵ

1
4 − ϵ

1

(c) 2ϵ-quotient

Figure 5 (a) An ϵ′-quotient obtained by merging s1 and s3 where ϵ′ is at least 1
4 + ϵ; (b) An

ϵ-quotient obtained by merging s2 and s3; (b) A 2ϵ-quotient obtained by merging s1, s2 and s3.

relation, s1 ∼ϵ s2 does not necessarily follow. Indeed, in this LMC, we have s1 ∼2ϵ s2 but
not s1 ∼ϵ s2. If s2 and s3, related by ∼ϵ, are chosen to be merged, the resulting LMC in
Figure 5(b) is an ϵ-quotient. However, if s1 and s3 are (unfortunately) chosen to be merged,
the resulting LMC, shown in Figure 5(a), is an ϵ′-quotient where ϵ′ cannot be smaller than
1
4 + ϵ. This ϵ′, much bigger than ϵ under the assumption that ϵ is much smaller than 1

8 ,
makes the resulting LMC undesirable. This example shows that arbitrarily merging states
that are ϵ-bisimilar may not work. The LMC in Figure 5(c) is obtained by merging s1, s2
and s3, the states that are related by the transitive closure of ∼ϵ. We show in [15] that
for any n ∈ Z+ there exists an LMC M(n) such that merging all states in M(n) that are
related by the transitive closure of ∼ϵ results in an ϵ′-quotient where ϵ′ is at least nϵ.

Lemma 3, the additivity lemma, asserts an additivity property of approximate quotients.
In Section 4, this lemma will be applied as the two minimisation algorithms successively
compute a sequence of approximate quotients.

▶ Lemma 3. Consider three LMCs M1, M2 and M3. Let ϵ1 ≥ 0 and M2 be an ϵ1-quotient
of M1. Let ϵ2 ≥ 0 and M3 be an ϵ2-quotient of M2. Then M3 is an (ϵ1 + ϵ2)-quotient
of M1.

4 Approximate Minimisation Algorithms

M′ Q0 Q1 · · · Qi
exact

quotient
approximate

quotient
approximate

quotient
approximate

quotient

Figure 6 Overview of the minimisation algorithms. Lemma 3 applies to M′, Q0, Q1, · · · , Qi.

In this section, we present two practical minimisation algorithms that compute approxim-
ate quotients of M′. Given an LMC M′ = ⟨S, L, τϵ, ℓ⟩ with perturbed transition probabilities
and a small compression parameter ϵ2. Both algorithms start by computing Q0, the exact
quotient of M′. They proceed in iterations and compute a sequence of approximate quotients
where the approximate quotient (Qi) computed at the end of the ith iteration is an ϵ2-quotient
of the quotient (Qi−1) given at the beginning of that iteration. Using the additivity lemma,
we can show that the (approximate) quotient Qi after the ith iteration is an iϵ2-quotient
of M′. See Figure 6 for an overview of this approach. Each iteration computes a partition
of the state space, lumps the states that are together in the partition and concludes with
taking the exact quotient.

S. Kiefer and Q. Tang 48:7

4.1 Local Bisimilarity Distance
We define the notion of local bisimilarity distance, denoted by dM

local (or dlocal when M is clear).
Intuitively, two states s and t are at small local bisimilarity distance if they are probabilistic
bisimilar in an LMC which is slightly perturbed only at the successor distributions of s and t.
We provide a polynomial-time algorithm to compute the local bisimilarity distance. Given
an LMC M′ = ⟨S, L, τϵ, ℓ⟩ (with perturbed transition probabilities) and a small compression
parameter ϵ2, we propose an iterative minimisation algorithm to compute approximate
quotients of M′ by merging state pairs with small local bisimilarity distances. In each
iteration of the algorithm, we select the state pair with the same label and the minimum
local bisimilarity distance if such distance is at most ϵ2. We compute a partition in which
this state pair are together and lump together the states that are together in the partition.
The algorithm terminates when no pairs can be lumped, that is, all state pairs have local
bisimilarity distances greater than ϵ2.

Computing Local Bisimilarity Distances

Given two different states s, t ∈ S with the same label. We want to compute a new
transition function τ ′

ϵ by only changing the successor distributions of s and t (τϵ(s) and τϵ(t),
respectively) such that {s, t} belongs to an R-induced partition where R is a probabilistic
bisimulation of the LMC M′′ = ⟨S, L, τ ′

ϵ, ℓ⟩. Let T be the set of the all transition functions
that satisfy this condition, more precisely, we define T = {τ ′

ϵ : τ ′
ϵ(x) = τϵ(x) ∀x ̸∈ {s, t} ∧

{s, t} ∈ S/R where R is a probabilistic bisimulation of the LMC M′′ = ⟨S, L, τ ′
ϵ, ℓ⟩}. The

local bisimilarity distance is defined as dM′

local(s, t) = infτ ′∈T max{∥τ ′(s) − τϵ(s)∥1, ∥τ ′(t) −
τϵ(t)∥1}. It is not immediately clear how to compute it.

By the definition of T, the probabilistic bisimulation R is the same for any LMC ⟨S, L, τ ′
ϵ, ℓ⟩

with τ ′
ϵ ∈ T. Let us define the partition X = S/R where R is the common probabilistic

bisimulation. The local bisimilarity distance can be computed by using X:

▶ Proposition 4. We have dM′

local(s, t) = 1
2 ∥(τϵ(s)(E))E∈X − (τϵ(t)(E))E∈X∥1.

It turns out that X can simply be computed by Algorithm 1. As this algorithm is basically
taking the (exact) quotient of the LMC constructed on line 1, it runs in polynomial time. It
follows from Proposition 4 that the local bisimilarity distance can be computed in polynomial
time.

Algorithm 1 Compute Partition for Local Bisimilarity Distances.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a state pair (s, t) ∈ S × S

Output: A partition X over S containing {s, t}
1 Construct a new LMC M′′ from M′ by introducing a new label, labelling both s and

t with the new label and making both s and t absorbing1

2 X := S/∼M′′

▶ Example 5. Assume ϵ < 1
2 . Consider the LMC shown in Figure 1. Let τϵ denote

its transition function. To compute the local bisimilarity distance of s1 and t1, we
first compute the partition containing {s1, t1}: X =

{
{s1, t1}, {s2}, {t2}

}
. We have

1 An absorbing state is a state that, once entered, cannot be left; that is, a state with self-loop.

FSTTCS 2021

48:8 Approximate Bisimulation Minimisation

(τϵ(s1)(E))E∈X = (1
2 , 1

2 , 0) and (τϵ(t1)(E))E∈X = (1
2 + ϵ, 0, 1

2 − ϵ). By Proposition 4, the local
bisimilarity distance is dlocal(s1, t1) = 1

2 ∥(τϵ(s1)(E))E∈X − (τϵ(t1)(E))E∈X∥1 = 1
2 . Similarly,

we have dlocal(s2, t2) = 1
2 .

Algorithm 2 LMC Minimisation Using Local Bisimilarity Distances.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a compression parameter ϵ2
Output: An LMC Qi

1 i := 0
2 Qi := M′/∼M′ and Qi = ⟨SQi , L, τQi , ℓQi⟩
3 while ∃u, v ∈ SQi such that u ̸= v and ℓQi(u) = ℓQi(v) and dQi

local(u, v) ≤ ϵ2 do
4 (s, t) = arg min{dQi

local(u, v) : (u, v) ∈ SQi × SQi ∧ u ̸= v ∧ ℓQi(u) = ℓQi(v)}
5 Compute Xi by running Algorithm 1 with input Qi and (s, t)
6 Construct an LMC Mi+1 := ⟨Xi, L, τMi+1 , ℓMi+1⟩ from Qi where

τMi+1(E) :=
{

(τQi(u)(E′))E′∈Xi for any u ∈ E if E ∈ Xi and E ̸= {s, t}
(τQi (s)(E′))E′∈Xi

+(τQi (t)(E′))E′∈Xi

2 if E = {s, t}
and ℓMi+1(E) := ℓQi(u) for E ∈ Xi and any u ∈ E

7 Qi+1 := Mi+1/∼Mi+1

8 i := i + 1
9 end

Minimisation Algorithm Using Local Bisimilarity Distances

Algorithm 2 shows the minimisation algorithm using local bisimilarity distances. The input
is an LMC M′ and a compression parameter ϵ2. We start by initializing an index i to 0 and
building the quotient LMC Q0 = M′/∼M′ . If there are no states in Qi with local bisimilarity
distance less than ϵ2, the algorithm terminates. Otherwise, it steps into the i’th iteration of
the loop and computes the local bisimilarity distances for all pairs of states in Qi with the
same label. It selects the state pair (s, t) which has the smallest local bisimilarity distance
on line 4. It then computes the new approximate quotient by merging states s and t on
line 5-7. This computation is in three steps where the first step is to compute the partition
Xi (line 5) by running Algorithm 1 with input Qi and the state pair (s, t). The second
step is to construct a new LMC Mi+1 by setting Xi as its state space (line 6). The final
step is to compute a new approximate quotient Qi+1 by taking the exact quotient of the
LMC Mi+1 obtained from the previous step. We increment i at the end of the iteration and
continue with another iteration if there are states in Qi+1 with local bisimilarity distance at
most ϵ2. Since there are finitely many states and it is polynomial time to compute the local
bisimilarity distances, the algorithm always terminates and runs in polynomial time.

4.2 Minimisation by Approximate Partition Refinement
Consider the LMC in Figure 1. Assume ϵ < 1

2 and ϵ2 < 1
2 . The minimisation algorithm

using local bisimilarity distance (Algorithm 2) cannot merge states s1, t1 (or s2, t2) as
dlocal(s1, t1) = dlocal(s2, t2) = 1

2 > ϵ2 as shown by Example 5.
We introduce an approximate partition refinement, a polynomial algorithm similar to

the exact partition refinement, which can fix this problem. In the exact partition refinement
algorithm, the states will only remain in the same set in an iteration if they have the

S. Kiefer and Q. Tang 48:9

X0 = {S}
X1 =

{
{s1, t1}, {s2, t2}

}

(a) The partitions.

s t

1
2 − ϵ

2

1
2 − ϵ

2

1
2 + ϵ

2
1
2 + ϵ

2

(b) The final LMC.

Figure 7 Example of running the minimisation algorithm using approximate partition refinement
(Algorithm 3) on the LMC in Figure 1.

same label and their probability distributions over the previous partition are the same.
Similarly, we design the approximate partition refinement such that states only remain in
the same set in an iteration if they have the same label and the L1-distance between the
probability distributions over the previous partition is small, say, at most ϵ2. Given an
LMC M′ = ⟨S, L, τϵ, ℓ⟩ with perturbed transition probabilities, the minimisation algorithm
using the approximate partition refinement also proceeds in iterations. In each iteration,
the approximate partition refinement computes a partition X and then the states which are
together in X are lumped to form a new LMC. To make sure the new LMC is a quotient,
we take the (exact) quotient of this LMC as our new approximate quotient. The algorithm
continues when there are states that could be lumped, and it terminates when all sets in the
partition computed by the approximate partition refinement are singletons, that is, no states
can be lumped.

▶ Example 6. Consider again the LMC in Figure 1. Assume ϵ < 1
2 and the compression para-

meter ϵ2 ≥ 2ϵ. We run the above-mentioned minimisation algorithm using the approximate
partition refinement. It will only run for one iteration of approximate partition refinement,
as we will see in the following. Figure 7(a) shows the partitions of this iteration. At the
beginning of the approximate partition refinement, we have partition X0 as all states are
in the same set. The states are then split by the labels and we get partition X1. There is
no further split since the L1-distance between the probability distributions over X1 from
s1 and t1 (resp. s2 and t2) is 2ϵ which is bounded by the compression parameter ϵ2, that
is, ∥(τ(s1)(E))E∈X1 − (τ(t1)(E))E∈X1∥1 = ∥(τ(s2)(E))E∈X1 − (τ(t2)(E))E∈X1∥1 = 2ϵ ≤ ϵ2.
The states together in X1 are then lumped to form the new LMC shown in Figure 7(b). The
algorithm terminates as no states in the new LMC can be lumped.

Approximate Partition Refinement

Given a compression parameter ϵ2, the approximate partition refinement is shown in Al-
gorithm 3. At the beginning, an index i is initialized to zero and we have X0 = {S}, that
is, all states are in the same set. In a refinement step, we increment i and split each set
E ∈ Xi−1 into one or more sets. We iterate though all E ∈ Xi−1 and for each E we construct
a set XE , a partition of E. Starting with XE = ∅, we iterate over all s ∈ E (line 6). After
each iteration, the current s ∈ E appears in one set in XE : either as a singleton or as
an additional state in an already existing set in XE . We give more details on this loop
(lines 6-14) below. After having partitioned E into XE , we add all sets in XE to the new

FSTTCS 2021

48:10 Approximate Bisimulation Minimisation

Algorithm 3 Approximate Partition Refinement.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a compression parameter ϵ2
Output: A partition X over S

1 i := 0; X0 := {S}
2 repeat
3 i := i + 1; Xi := ∅
4 foreach E ∈ Xi−1 do
5 XE := ∅
6 for s ∈ E do
7 ESet := {E′ ∈ XE : for all t ∈ E′ we have ℓ(s) = ℓ(t) and

∥(τϵ(s)(E))E∈Xi−1 − (τϵ(t)(E))E∈Xi−1∥1 ≤ ϵ2}
8 if ESet = ∅ then E′ := {s}
9 else

10 E′ := arg min
E′∈ESet

{∑
t∈E′ ∥(τϵ(s)(E))E∈Xi−1 −(τϵ(t)(E))E∈Xi−1 ∥1

|E′|
}

11 remove E′ from XE ; E′ := E′ ∪ {s}
12 end
13 add E′ to XE

14 end
15 Xi := Xi ∪ XE

16 end
17 until Xi = Xi−1

partition Xi. The way we split the sets ensures that for any two states from the same set
in Xi the L1-distance between the successor distributions over Xi−1 is at most ϵ2. The
algorithm terminates when no splitting can be done. Let X be the final partition produced
by the approximate partition refinement. For any two states s, t ∈ E where E ∈ X, we have
ℓ(s) = ℓ(t) and ∥(τϵ(s)(E′))E′∈X − (τϵ(t)(E′))E′∈X∥1 ≤ ϵ2.

Let us give more details on the loop (lines 6-14) that partitions an E ∈ Xi. For a state
s ∈ E, a candidate set ESet is computed such that for all E′ ∈ ESet the state s and all
x ∈ E′ have the same label and the L1-distance between the successor distributions over
Xi−1 of s and any x ∈ E′ is at most ϵ2 (line 7). If ESet is empty, we add the singleton
{s} into XE (line 8 and 13). If there is only one set E′ in ESet, we add s to the set E′.
Otherwise, if there are multiple elements in ESet that satisfy the condition, we select the one
as E′ such that the average L1-distance between the successor distributions of s and x ∈ E′

is the smallest (line 10). We add s to the selected set E′ and include E′ in XE (line 10-13).

Minimisation Algorithm Using Approximate Partition Refinement

The minimisation algorithm using approximate partition refinement is shown in Algorithm 4.
The input is the same as the first minimisation algorithm: an LMC M′ and a compression
parameter ϵ2. An index i is initialised to 0. Similar to the approximate minimisation
algorithm using local bisimilarity distances, we also start by computing the quotient LMC
Q0 = M′/∼M′ . It then steps into a loop. We compute the approximate partition Xi of Qi

on line 4 and construct a new LMC Mi+1 by setting Xi as its state space on line 5. For any
state E ∈ Xi, we set the probability distribution as the average probability distribution over

S. Kiefer and Q. Tang 48:11

Algorithm 4 LMC Minimisation by Approximate Partition Refinement.

Input: An LMC M′ = ⟨S, L, τϵ, ℓ⟩, a compression parameter ϵ2
Output: An LMC Qi

1 i := 0
2 Qi := Mi/∼Mi

where Mi = M′ and Qi = ⟨SQi , L, τQi , ℓQi⟩
3 repeat
4 Compute Xi by running Algorithm 3 with Qi and ϵ2 as input
5 Construct an LMC Mi+1 := ⟨Xi, L, τMi+1 , ℓMi+1⟩ from Qi where

τMi+1(E) :=
∑

u∈E

(τQi (u)(E′))E′∈Xi

|E| and ℓMi+1(E) := ℓQi(x) for all E ∈ Xi and
any x ∈ E

6 Qi+1 := Mi+1/∼Mi+1

7 i := i + 1
8 until |SQi | = |SQi−1 |

Xi from all u ∈ E. The label of any E ∈ X is set to ℓQi(u) where u can be any state from
E. A new approximate quotient Qi+1 is obtained by taking the exact quotient of Mi+1. We
increment i at the end of the iteration and continue another iteration if the size of the state
space of the new approximate quotient decreases. Otherwise, the algorithm terminates as we
have no states to merge. As there are finitely many states, the algorithm always terminates.

Let i ∈ N. The following theorem applies to both the LMCs Qi from Algorithm 2 and
those from Algorithm 4.

▶ Theorem 7. For all i ∈ N, we have that Qi+1 is an ϵ2-quotient of Qi. Furthermore, by
the additivity lemma, we have that Qi is an iϵ2-quotient of M′.

In the case that M′ = ⟨S, L, τϵ, ℓ⟩ is a slightly perturbed version of M = ⟨S, L, τ, ℓ⟩, that
is, for all s ∈ S we have ∥τ(s) − τϵ(s)∥1 ≤ ϵ, the following corollary holds:

▶ Corollary 8. For all i ∈ N, we have that Qi is an (ϵ + iϵ2)-quotient of M.

5 Active LMC Learning

We apply our approximate minimisation algorithms in a setting of active learning. Before
that, we first describe how to obtain a perturbed LMC M′ by sampling. Assume that we
want to learn the transition probabilities of an LMC M, that is, the state space, the labelling
and the transitions are known. We also assume the system under learning (SUL) M could
answer the query next which takes a state s as input and returns a successor state of s

according to the transition probability distribution τ(s).
Given a state s of the LMC. We denote by xs the number of successor states of s and

by ns the number of times we query the SUL on next(s). Let Ns,t be the frequency counts
of the query result t, that is, the number of times a successor state t appears as the result
returned by the queries. We approximate the transition probability distribution by τϵ(s)
where τϵ(s)(t) = Ns,t

ns
for all successor states t of s. (Such an estimator is called an empirical

estimator in the literature.)
Intuitively, the more queries we ask the SUL, the more accurate the approximate probab-

ility distribution τϵ(s) would be. In fact, the following theorem holds [2, Section 6.4], [6].

▶ Theorem 9. Let ϵ > 0 be an error parameter and δ > 0 be an error bound. Let s ∈ S. We
have Pr(∥τ(s) − τϵ(s)∥1 ≤ ϵ) ≥ 1 − δ for ns ≥ 1

2ϵ2 ln(2xs

δ).

FSTTCS 2021

48:12 Approximate Bisimulation Minimisation

For each state s ∈ S, we query the SUL on next(s) for ns ≥ 1
2ϵ2 ln(2xs

δ) times. We can
make δ small since it appears in the logarithmic term. We then approximate the transition
function by τϵ and construct a hypothesis LMC M′ = ⟨S, L, τϵ, ℓ⟩. Since the queries next(s)
and next(t) for all s, t ∈ S and s ̸= t are mutually independent, by Theorem 9, we have that
Pr(∀s ∈ S : ∥τ(s) − τϵ(s)∥1 ≤ ϵ) ≥ (1 − δ)|S|.

We then apply the minimisation algorithms with compression parameter ϵ2 on M′ and
obtain a minimised system Qi which is an iϵ2-quotient of M′, the LMC constructed by
sampling. Since with high probability the LMC M′ (or its exact quotient Q0) has small
distance ϵ with the SUL M, it follows from Corollary 8 that with high probability the
minimised system Qi is an ϵ′-quotient of M where ϵ′ is small: for all i ∈ N, we have
Pr(Qi is an ϵ′-quotient of M with ϵ′ ≤ ϵ + iϵ2) ≥ (1 − δ)|S|. The probability does not come
from our minimisation algorithms and depends solely on the sampling procedure.

6 Experiments

In this section, we evaluate the performance of approximate minimisation algorithms on a
number of LMCs. These LMCs model randomised algorithms and probabilistic protocols
that are part of the probabilistic model checker PRISM [16]. The LMCs we run experiments
on have less than 100, 000 states and model the following protocols or randomised algorithms:
Herman’s self-stabilisation algorithm [13], the synchronous leader election protocol by Itai
and Rodeh [14], the bounded retransmission protocol [7], the Crowds protocol [17] and the
contract signing protocol by Even, Goldreich and Lempel [11].

We implemented algorithms to obtain the slightly perturbed LMCs M′. We call LMCs
with fewer than 300 states small; otherwise we call them large. For small LMCs, we sample the
successor distribution for each state and obtain an approximation of it with error parameter
ϵ and error bound δ. For large LMCs, sampling is not practical as the sample size required
by Theorem 9 is very large. For these LMCs, we perturb the successor distribution by
adding small noise to the successor transition probabilities so that for each state with at
least probability 1 − δ the L1-distance of the successor distributions in the perturbed and
unperturbed systems is at most ϵ and otherwise the L1-distance is 2ϵ. We vary the error
parameter ϵ in the range of {0.00001, 0.0001, 0.001, 0.01} and fix the error bound δ = 0.01.
For each unperturbed LMC and a pair of ϵ and δ, we generate 5 perturbed LMCs.

We also implemented the two minimisation algorithms in Java: Algorithm 2 and Al-
gorithm 4. The source code is publicly available2. We show some representative results
in [15]. The full experimental results are publicly available3.

For the small LMCs, we apply both approximate minimisation algorithms to the perturbed
LMCs with ϵ2 ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}. The results for a small LMC which models
the Herman’s self-stabilisation algorithm is shown on the left of Table 1. For the large
LMCs, we only apply the approximate minimisation algorithm using approximate partition
refinement to the perturbed LMCs, since the other minimisation algorithm could not finish
on the large LMCs with timeout of two hours. The results for a large LMC which models
the bounded retransmission protocol is shown on the right of Table 1.

For almost all models, given a perturbed LMC, we are able to recover the structure of
the quotient of the unperturbed LMC when ϵ2 is appropriately chosen, that is, ϵ2 is no less
than ϵ and is not too big; for example, see Table 1 where the rows are highlighted in yellow.
However, when ϵ2 is too big, the approximate minimisation algorithms may aggressively

2 https://github.com/qiyitang71/approximate-quotienting
3 https://bit.ly/3vcpblY

https://github.com/qiyitang71/approximate-quotienting
https://bit.ly/3vcpblY

S. Kiefer and Q. Tang 48:13

Table 1 In the tables, local and apr stand for the minimisation algorithms using local bisimilarity
distance and approximate partition refinement, respectively. The tables show the results for the
first perturbed LMC (labeled with #1) among the five perturbed LMCs generated by sampling or
perturbing with ϵ = 0.0001. (Left) Results of running the two minimisation algorithms on the LMC
that models Herman’s self-stabilisation algorithm with 5 processes. (Right) Results of running apr
on the LMC that models the bounded retransmission protocol with N = 32 and MAX = 2.

Herman5 # states # trans # iter
M & M′ 32 244
M/∼M 4 11
M′/∼M′ 23 167

Perturbed LMC #1
ϵ2 = 0.00001

local & apr 23 167 0
ϵ2 = 0.0001

local & apr 22 143 1
ϵ2 ∈ {0.001, 0.01, 0.1}

local 22 143 1
apr 4 11 1

BRP32-2 # states # trans # iter
M & M′ 1349 1731
M/∼M 647 903
M′/∼M′ 961 1343

Perturbed LMC #1
ϵ2 = 0.00001

apr 879 1230 2
ϵ2 = 0.0001

apr 705 986 2
ϵ2 ∈ {0.001, 0.01}

apr 647 903 1
ϵ2 = 0.1

apr 196 387 1

merge some states in the perturbed LMC and result in a quotient whose size is even smaller
than that of the quotient of the unperturbed LMC, as highlighted in red in Table 1. Also,
we find that, as expected, the exact partition refinement in general could not recover the
structure of quotient of the original LMCs, except for the LMCs which model the synchronous
leader election protocol by Itai and Rodeh. Furthermore, compared to the other approximate
minimisation algorithm using the local bisimilarity distance, the one using approximate
partition refinement performs much better in terms of running time and the ability to recover
the structure of the quotient of the original model.

One might ask whether the minimisation algorithm using approximate partition refinement
always performs better than the one using the local bisimilarity distances. In general, this is
not the case as shown by Example 10.

▶ Example 10. Consider the LMC M = ⟨S, L, τ, ℓ⟩ shown in Figure 8. Let ϵ2 = 0.1. First,
we run Algorithm 2. It proceeds in two iterations. In the first iteration, it computes the local
bisimilarity distances for all pairs of states with the same label. We have dlocal(s1, s2) =
dlocal(s2, s3) = 0.54 and dlocal(s1, s3) = 0.04. It then selects the pair s1 and s3 of which the
local bisimilarity distance is less than ϵ2 and is the smallest. These two states are merged
into s13 in the LMC shown on the left of Figure 9. In the second iteration, the only pair of
states with the same label are s13 and s2. Since dlocal(s13, s2) = 0.06 ≤ ϵ2, they are merged
and we arrive at the final LMC shown on the right of Figure 9.

Next, we run Algorithm 4 with the same inputs. In the first iteration, we run approximate
partition refinement on line 5 (Algorithm 3) and present Table 2 as the possible partitions
of the algorithm. At the beginning of the approximate partition refinement, we have
partition X0 as all states are in the same set. The states are then split by the labels and
we get partition X1. Next, we work on the set {s1, s2, s3}. Suppose that we see s1 and s2
before s3. We have s1 and s2 remain together as ∥(τ(s1)(E))E∈X1 − (τ(s2)(E))E∈X1∥1 =
0.08 ≤ ϵ2. However, since ∥(τ(s3)(E))E∈X1 − (τ(s2)(E))E∈X1∥1 = 0.16 > ϵ2, we have
ESet = ∅ for s3 on line 9 of Algorithm 3 and it is split out. In the next iteration, since

FSTTCS 2021

48:14 Approximate Bisimulation Minimisation

∥(τ(s1)(E))E∈X2 − (τ(s2)(E))E∈X2∥1 = 0.54 > ϵ2, {s1, s2} is split into two singleton sets.
The final partition X3 in which all sets are singletons suggests no merging can be done and
we are left with the original LMC M.

This example also shows that the order of iterating through the states matters for the
approximate partition refinement algorithm. Indeed, suppose we iterate though s1 and s3
before s2 after arriving at the partition X1, we will have Table 3 as the partitions and finally
get the LMC on the right of Figure 9 just as the other minimisation algorithm.

s1 s2 s3

v

0.5

0.5 0.46

0.54

0.54

0.46

1

Figure 8 The LMC for which Algorithm 2 may
perform better than Algorithm 4.

Table 2 Example of running Algorithm 3
on the LMC in Figure 8. (Suppose we iterate
through s1 and s2 before s3.)

X0 = {S}
X1 =

{
{s1, s2, s3}, {v}

}
X2 =

{
{s1, s2}, {s3}, {v}

}
X3 =

{
{s1}, {s2}, {s3}, {v}

}

s13 s2

v

0.52

0.48

0.46

0.54

1

s123

v

0.49

0.51

1

Figure 9 Two Steps of Running Algorithm 2.

Table 3 Example of running Algorithm 3
on the LMC in Figure 8. (Suppose we iterate
through s1 and s3 before s2.)

X0 = {S}
X1 =

{
{s1, s3, s2}, {v}

}
X2 =

{
{s1, s3}, {s2}, {v}

}

7 Conclusion

We have developed and analysed algorithms for minimising probabilistic systems via ap-
proximate bisimulation. These algorithms are based on ϵ-quotients, a novel yet natural
notion of approximate quotients. We have obtained theoretical bounds on the discrepancy
between the minimised and the non-minimised systems. In our experiments, approximate
partition refinement does well in minimising labelled Markov chains with perturbed transition
probabilities, suggesting that approximate partition refinement is a practical approach for
“recognising” and exploiting approximate bisimulation.

Future work might consider the following questions: Does approximate minimisation
allow for further forms of active learning? Can our techniques be transferred to Markov
decision processes?

S. Kiefer and Q. Tang 48:15

References
1 Giovanni Bacci, Giorgio Bacci, Kim G. Larsen, and Radu Mardare. On the metric-based

approximate minimization of Markov chains. J. Log. Algebraic Methods Program., 100:36–56,
2018. doi:10.1016/j.jlamp.2018.05.006.

2 Hugo Bazille, Blaise Genest, Cyrille Jégourel, and Jun Sun. Global PAC bounds for learning
discrete time Markov chains. In Shuvendu K. Lahiri and Chao Wang, editors, Computer
Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July
21-24, 2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science, pages
304–326. Springer, 2020. doi:10.1007/978-3-030-53291-8_17.

3 Gaoang Bian and Alessandro Abate. On the relationship between bisimulation and trace
equivalence in an approximate probabilistic context. In Javier Esparza and Andrzej S.
Murawski, editors, Foundations of Software Science and Computation Structures - 20th
International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10203 of Lecture Notes in Computer Science, pages 321–337, 2017.
doi:10.1007/978-3-662-54458-7_19.

4 Patrick Billingsley. Probability and measure. Wiley Series in Probability and Statistics. Wiley,
New York, NY, USA, 3rd edition, 1995.

5 Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabilistic
bisimilarity. In Lars Birkedal, editor, Foundations of Software Science and Computational
Structures - 15th International Conference, FOSSACS 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March
24 - April 1, 2012. Proceedings, volume 7213 of Lecture Notes in Computer Science, pages
437–451. Springer, 2012. doi:10.1007/978-3-642-28729-9_29.

6 Jianhua Chen. Properties of a new adaptive sampling method with applications to scalable
learning. Web Intelligence, 13(4):215–227, 2015. doi:10.3233/WEB-150322.

7 P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Reachability analysis of probabilistic
systems by successive refinements. In L. de Alfaro and S. Gilmore, editors, Proc. 1st Joint
International Workshop on Process Algebra and Probabilistic Methods, Performance Modelling
and Verification (PAPM/PROBMIV’01), volume 2165 of LNCS, pages 39–56. Springer, 2001.

8 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labeled Markov systems. In Jos Baeten and Sjouke Mauw, editors, Proceedings of the 10th
International Conference on Concurrency Theory, volume 1664 of Lecture Notes in Computer
Science, pages 258–273, Eindhoven, The Netherlands, August 1999. Springer-Verlag.

9 Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004. doi:10.1016/j.tcs.
2003.09.013.

10 Josée Desharnais, François Laviolette, and Mathieu Tracol. Approximate analysis of prob-
abilistic processes: Logic, simulation and games. In Fifth International Conference on the
Quantitative Evaluaiton of Systems (QEST 2008), 14-17 September 2008, Saint-Malo, France,
pages 264–273. IEEE Computer Society, 2008. doi:10.1109/QEST.2008.42.

11 S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Commu-
nications of the ACM, 28(6):637–647, 1985.

12 Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and Matthias Volk.
The probabilistic model checker Storm. CoRR, abs/2002.07080, 2020. arXiv:2002.07080.

13 T. Herman. Probabilistic self-stabilization. Information Processing Letters, 35(2):63–67, 1990.
14 Aron Itai and Michael Rodeh. Symmetry breaking in distributed networks. Information and

Computation, 88(1):60–87, September 1990.
15 Stefan Kiefer and Qiyi Tang. Approximate bisimulation minimisation, 2021. arXiv:2110.

00326.

FSTTCS 2021

https://doi.org/10.1016/j.jlamp.2018.05.006
https://doi.org/10.1007/978-3-030-53291-8_17
https://doi.org/10.1007/978-3-662-54458-7_19
https://doi.org/10.1007/978-3-642-28729-9_29
https://doi.org/10.3233/WEB-150322
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1109/QEST.2008.42
http://arxiv.org/abs/2002.07080
http://arxiv.org/abs/2110.00326
http://arxiv.org/abs/2110.00326

48:16 Approximate Bisimulation Minimisation

16 Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of probabilistic
real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Proceedings of
the 23rd International Conference on Computer Aided Verification, volume 6806 of Lecture
Notes in Computer Science, pages 585–591, Snowbird, UT, USA, July 2011. Springer-Verlag.
doi:10.1007/978-3-642-22110-1_47.

17 M. Reiter and A. Rubin. Crowds: Anonymity for web transactions. ACM Transactions on
Information and System Security (TISSEC, 1(1):66–92, 1998.

18 Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity distance one for
labelled markov chains. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981 of
Lecture Notes in Computer Science, pages 681–699. Springer, 2018.

19 Mathieu Tracol, Josée Desharnais, and Abir Zhioua. Computing distances between probabilistic
automata. In Mieke Massink and Gethin Norman, editors, Proceedings Ninth Workshop on
Quantitative Aspects of Programming Languages, QAPL 2011, Saarbrücken, Germany, April
1-3, 2011, volume 57 of EPTCS, pages 148–162, 2011. doi:10.4204/EPTCS.57.11.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.4204/EPTCS.57.11

Simple Derivation Systems for Proving Sufficient
Completeness of Non-Terminating Term Rewriting
Systems
Kentaro Kikuchi #

Tohoku University, Sendai, Japan

Takahito Aoto #

Niigata University, Niigata, Japan

Abstract
A term rewriting system (TRS) is said to be sufficiently complete when each function yields some
value for any input. Proof methods for sufficient completeness of terminating TRSs have been well
studied. In this paper, we introduce a simple derivation system for proving sufficient completeness
of possibly non-terminating TRSs. The derivation system consists of rules to manipulate a set of
guarded terms, and sufficient completeness of a TRS holds if there exists a successful derivation for
each function symbol. We also show that variations of the derivation system are useful for proving
special cases of local sufficient completeness of TRSs, which is a generalised notion of sufficient
completeness.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computation
→ Equational logic and rewriting

Keywords and phrases Term rewriting, Sufficient completeness, Local sufficient completeness, Non-
termination, Derivation rule, Well-founded induction schema

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.49

Funding This work was partially supported by JSPS KAKENHI Grant Numbers JP17K00005,
JP19K11891, JP20H04164 and JP21K11750.

Acknowledgements We are grateful to the anonymous reviewers for valuable comments.

1 Introduction

This paper addresses a kind of reachability problem in transformation of labelled trees (i.e.
terms) by rules schematised as term rewriting systems (TRSs). The main concern is whether
all ground terms (i.e. terms without variables) can be transformed into terms consisting
only of special labels called constructors. When the problem is solved positively, the TRS
is said to be sufficiently complete. This property is useful in automated inductive theorem
proving of TRSs, and has largely been studied. One of the sufficient conditions for sufficient
completeness of a TRS is that it is terminating (strongly normalising) and quasi-reducible.
For terminating TRSs, various decision procedures of sufficient completeness have been
proposed [2, 9, 11].

On the other hand, only a few results [3, 4, 17] have been known about proof methods for
sufficient completeness of non-terminating TRSs. In recent work [10], the authors proposed
a framework for proving inductive theorems of possibly non-terminating TRSs. It is based
on a generalised notion of sufficient completeness, called local sufficient completeness, where
the problem concerns not all ground terms but only terms of specific form, specific sort, etc.
In [10], the authors introduced a derivation system for proving local sufficient completeness,
but it involves complicated notations and rules with complicated side conditions. In later
work [15], the authors gave a proof method based on a sufficient condition for local sufficient

© Kentaro Kikuchi and Takahito Aoto;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 49; pp. 49:1–49:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kentaro.kikuchi@riec.tohoku.ac.jp
mailto:aoto@ie.niigata-u.ac.jp
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.49
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Simple Derivation Systems for Proving Sufficient Completeness

completeness. The method is applicable to some non-terminating TRSs for which the property
is difficult to show by the derivation system of [10]. However, the method of [15] works only
for TRSs that consist of functions on natural numbers and lists of natural numbers.

In the present paper, we introduce a simple derivation system for proving sufficient com-
pleteness of possibly non-terminating TRSs. The derivation system has rules to manipulate
a set of guarded terms, which are pairs of a term and a set of terms. Although the meaning
of a guarded term is not easy to grasp, we give its interpretation by introducing a notion
of well-founded induction schema. This notion plays an important role in the proof of the
correctness of our method based on the derivation system. It is easy to apply the method to
various non-terminating TRSs, and we give some examples of application of it.

We also introduce variations of the derivation system for proving two particular cases
of local sufficient completeness: local sufficient completeness with signature restriction and
local sufficient completeness with sort partition. Apart from the simplicity of the systems,
our method is different from the method of [10] in that a group of function symbols are
simultaneously tested for existence of successful derivations. In this respect, our proof method
can be seen as a natural extension of checking quasi-reducibility in the case of terminating
TRSs, i.e., it not only checks reducibility of f(t1, . . . , tn) for each function symbol f but also
traces results of reduction to terms to which the induction hypothesis can be applied.

Related work. The notion of sufficient completeness was originally introduced in [6, 7].
Since then, numerous works have treated the property in the fields of algebraic specification
and term rewriting. In the literature, sufficient completeness has often been defined not w.r.t.
reduction but w.r.t. conversion. Sufficient completeness w.r.t. reduction, as in the present
paper, was introduced in [11]. In most cases, efforts have been devoted to TRSs consisting of
those functions for which transformations by reduction rules are always terminating.

In [17], Toyama studied sufficient completeness w.r.t. reduction in the light of a more
general notion of “reachability”. He also gave a proof method for reachability, and applied it
to some examples of left-linear non-terminating TRSs. Some of those examples are related
to local sufficient completeness with signature restriction in terms of the present paper.

In [3, 4], Gnaedig and Kirchner studied sufficient completeness w.r.t. reduction (called
C-reducibility) of possibly non-terminating TRSs. They treated only usual sufficient com-
pleteness, and did not address any kind of local sufficient completeness. Although their
system involves notions of abstract variables and narrowing, the process of proving sufficient
completeness has some similarity with ours. We give an example of a TRS for which the
method of [3, 4] does not work but our method works.

Organisation of the paper. The paper is organised as follows. In Section 2, we explain basic
notions and notations of term rewriting. In Section 3, we introduce a derivation system for
proving sufficient completeness of TRSs. In Section 4, we discuss local sufficient completeness
with signature restriction. In Section 5, we discuss local sufficient completeness with sort
partition. In Section 6, we conclude with suggestions for further work.

2 Preliminaries

In this section, we introduce some notations and notions from the field of term rewriting.
For detailed information about term rewriting, see, e.g. [1, 14, 16].

A many-sorted signature is given by a non-empty finite set S of sorts and a finite set F
of function symbols; each f ∈ F is equipped with its sort declaration f : α1 × · · · × αn → α0
where α0, . . . , αn ∈ S (n ≥ 0). We also use f : α1 ×· · ·×αn → α0 to mean that f is equipped

K. Kikuchi and T. Aoto 49:3

with the sort declaration, or to denote such a function symbol f itself. We use V to denote
the set of variables where F ∩ V = ∅ and each x ∈ V has a unique sort α ∈ S. The set of
variables with sort α is denoted by Vα. Then the set T α(F , V) of terms of sort α is defined
inductively as follows:
1. If x ∈ Vα then x ∈ T α(F , V).
2. If f ∈ F , f : α1 × · · · × αn → α and ti ∈ T αi(F , V) for each i (1 ≤ i ≤ n) then

f(t1, . . . , tn) ∈ T α(F , V).
We define T (F , V) =

⋃
α∈S T α(F , V), and sort(t) = α for each t ∈ T α(F , V).

For a term t = f(t1, . . . , tn), its root symbol f is denoted by root(t). The set of variables
in a term t is denoted by V (t). A term t is ground if V (t) = ∅; the set of ground terms
is denoted by T (F). We write f(x⃗) for a term f(x1, . . . , xn) where x1, . . . , xn are distinct
variables.

A context is a term C ∈ T (F ∪ {□α | α ∈ S}, V) where F ∩ {□α | α ∈ S} = ∅ and the
special symbol □α, called a hole, is a term of sort α. A context C with only one hole is
denoted by C[], and C[t] denotes the term obtained by filling the hole with a term t of the
same sort. If s = C[t] for some context C[], then t is a subterm of s, denoted by t⊴ s.

A substitution is a mapping θ : V → T (F , V) such that sort(x) = sort(θ(x)) for every
x ∈ V , and dom(θ) = {x ∈ V | θ(x) ̸= x} is finite. A substitution θ is ground if θ(x) ∈ T (F)
for every x ∈ dom(θ). The term obtained by applying a substitution θ to a term t is written
as tθ. If θg is a ground substitution and V (t) ⊆ dom(θg), the ground term tθg is called a
ground instance of t. We sometimes write f (⃗t) for a term f(x⃗)θ where t⃗ is a sequence of
terms x1θ, . . . , xnθ.

A rewrite rule, written as l → r, is an ordered pair of terms l and r such that l /∈ V ,
V (r) ⊆ V (l) and sort(l) = sort(r). A term rewriting system (TRS, for short) is a finite set
of rewrite rules. For a TRS R, the binary relation →R on T (F , V) is defined by s →R t iff
s = C[lθ] and t = C[rθ] for some l → r ∈ R, some context C[] and some substitution θ. The
reflexive transitive closure of →R is denoted by ∗→R. A term s is in normal form if s →R t

for no term t. The set of terms in normal form is denoted by NF(R).
Let R be a TRS. The set D of defined symbols is given by D = {root(l) | l → r ∈ R},

and the set C of constructors is given by C = F \ D. Terms in T (C, V) are called constructor
terms, and terms in T (C) are called ground constructor terms.

Now we define the notion of sufficient completeness w.r.t. reduction.

▶ Definition 1 (Sufficient completeness). A TRS R is sufficiently complete for a ground term
tg ∈ T (F), denoted by SC (tg), if there exists a ground constructor term sg ∈ T (C) such that
tg

∗→R sg. R is (globally) sufficiently complete if SC (tg) for every ground term tg ∈ T (F).

Let R be a TRS. R is terminating if there exists no infinite sequence t0 →R t1 →R · · · .
R is quasi-reducible if f(t1, . . . , tn) /∈ NF(R) for every f(t1, . . . , tn) ∈ T (F) with f ∈ D and
t1, . . . , tn ∈ T (C). The next proposition provides a criterion of sufficient completeness of R.
(For its proof, see, e.g. Proposition 2.4 of [10].)

▶ Proposition 2. Let R be a terminating TRS. Then, R is sufficiently complete if and only
if R is quasi-reducible.

In this paper we do not use the above proposition, but the proof method by applying our
derivation system can be seen as an extension of checking quasi-reducibility.

Next we introduce some notions on orders. A (strict) partial order is a binary relation
that is irreflexive and transitive. A partial order ≻ on terms is monotonic if it is closed
under context, i.e. s ≻ t implies C[s] ≻ C[t] for every context C[]; it is stable if it is closed

FSTTCS 2021

49:4 Simple Derivation Systems for Proving Sufficient Completeness

under substitution, i.e. s ≻ t implies sθ ≻ tθ for every substitution θ; it is well-founded if
there exists no infinite descending chain t0 ≻ t1 ≻ · · · ; it has the subterm property if s⊴ t

and s ̸= t imply t ≻ s.
A well-founded monotonic stable partial order with the subterm property is called a

simplification order, and many methods for constructing such an order are known (cf. [1, 16]).

3 A Simple Derivation System for Sufficient Completeness

In this section, we present a derivation system for proving sufficient completeness of TRSs.
We illustrate the proof method by applying it to some non-terminating TRSs.

In the following, we use a lexicographic path order as an order that is required to define
the derivation system.

▶ Definition 3 (Lexicographic path order). Let > be a partial order, called a precedence, on
the set F of function symbols. The lexicographic path order >lpo on T (F , V) induced by the
precedence > is defined inductively as follows: s >lpo t iff
1. t ∈ V (s) and s ̸= t, or
2. s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

a. there exists i (1 ≤ i ≤ m) such that si >lpo t or si = t, or
b. f > g and s >lpo tj for every j (1 ≤ j ≤ n), or
c. f = g, s >lpo tj for every j (1 ≤ j ≤ n), and there exists i (1 ≤ i ≤ m, i ≤ n) such

that s1 = t1, . . ., si−1 = ti−1 and si >lpo ti.

Lexicographic path orders have the following properties.

▶ Proposition 4. Every lexicographic path order >lpo induced by any precedence > on F is
a simplification order. Furthermore, s >lpo t implies V (t) ⊆ V (s) for every s, t ∈ T (F , V).

▶ Lemma 5. Let > be a precedence on F such that f > g for every f ∈ D and g ∈ C. Then
the lexicographic path order >lpo induced by > satisfies sg >lpo tg for every sg ∈ T (F) \ T (C)
and tg ∈ T (C).

Next we introduce the derivation system, which acts on a set of guarded terms.

▶ Definition 6 (Guarded term). A guarded term, denoted by t|H, consists of a term t and a
set H of terms. We write Hθ for the set {uθ | u ∈ H}.

A derivation starts from a singleton set consisting of a guarded term of the form {t|{t}}.
Intuitively, it means the premise of well-founded induction for ground instances of t with
respect to the order >lpo. Derivation rules subsequently transform the set of guarded terms1,
preserving the meaning of the well-founded induction schema (Definition 10).

▶ Definition 7 (Derivation). Let R be a TRS, and let >lpo be a lexicographic path order
induced by some precedence > on F such that f > g for every f ∈ D and g ∈ C.

The derivation rules of the system are listed in Figure 1. It derives from a set of guarded
terms (given at the upper side) a set of guarded terms (given at the lower side) if the
side condition is satisfied.
For sets Γ, Γ′ of guarded terms, we write Γ ⇝ Γ′ if Γ′ is derived from Γ by one of the
derivation rules. The reflexive transitive closure of ⇝ is written as ∗

⇝.

K. Kikuchi and T. Aoto 49:5

Decompose
Γ ∪ {f(t1, . . . , tn)|H}
Γ ∪ {t1|H, . . . , tn|H}

f ∈ C

Expand
Γ ∪ {t|H}

Γ ∪ {tσi|Hσi}i

{σi}i = {{x 7→ f(x⃗)} | f ∈ C, sort(x) = sort(f(x⃗))}
where x ∈ V(t) and x⃗ is a sequence of fresh variables

Simplify
Γ ∪ {t|H}
Γ ∪ {s|H}

t →R s

Delete
Γ ∪ {t|H}

Γ ∃u ∈ H. t <lpo u

Figure 1 Derivation rules for proving sufficient completeness.

The Expand rule substitutes a variable in t by each pattern with a constructor as its root
symbol, and yields the same number of guarded terms as the constructors. (The index i

ranges over a set isomorphic to {f ∈ C | sort(x) = sort(f(x⃗))}.) The Delete rule removes the
guarded term t|H if t is less than some u ∈ H with respect to >lpo.

We have a lemma on preservation of variables occurring in guarded terms.

▶ Definition 8 (VP). For a set Γ of guarded terms, VP(Γ) means that for every t|H ∈ Γ
and every x ∈ V (t), there exists u ∈ H \ V such that x ∈ V (u).

▶ Lemma 9. If Γ⇝ Γ′ and VP(Γ) then VP(Γ′).

The predicate about the well-founded induction schema is defined as follows.

▶ Definition 10 (WIS). For a set Γ of guarded terms, WIS(Γ) means that for every t|H ∈ Γ
and every ground substitution σg, the following holds:

(∀u ∈ H. ∀wg <lpo uσg. SC (wg)) ⇒ SC (tσg). (WIS 1)

Now we prove a key lemma on the well-founded induction schema.

▶ Lemma 11. Let Γ⇝ Γ′ and VP(Γ). Then, WIS(Γ′) implies WIS(Γ).

Proof. Let Γ⇝ Γ′ and VP(Γ). We prove that if

(∀u ∈ H ′. ∀wg <lpo uσg. SC (wg)) ⇒ SC (t′σg)

for every t′|H ′ ∈ Γ′ and every ground substitution σg, then

(∀u ∈ H. ∀wg <lpo uσg. SC (wg)) ⇒ SC (tσg)

for every t|H ∈ Γ and every ground substitution σg. The proof is by case analysis depending
on the rule used in the derivation step Γ⇝ Γ′.

1 Actually, for any guarded term t|H in a derivation starting with the form {t|{t}}, a singleton set H is
sufficient, but we prove lemmas in the general setting for future developments.

FSTTCS 2021

49:6 Simple Derivation Systems for Proving Sufficient Completeness

(Decompose) Then Γ = Σ ∪ {f(t1, . . . , tn)|H ′} and Γ′ = Σ ∪ {t1|H ′, . . . , tn|H ′}, where f ∈ C.
The case t|H ∈ Σ follows directly from the hypothesis for Γ′. Thus, it remains to show the
case t|H = f(t1, . . . , tn)|H ′. Let σg be a ground substitution such that ∀u ∈ H. ∀wg <lpo
uσg. SC (wg). Then, by the hypothesis for Γ′, we have SC (tiσg) for every i (1 ≤ i ≤ n).
Thus, since f ∈ C, we have SC (f(t1, . . . , tn)σg).

(Expand) Then Γ = Σ∪{t′|H ′} and Γ′ = Σ∪{t′σi|H ′σi}i, where x ∈ V(t′), x⃗ is a sequence of
fresh variables, and {σi}i = {{x 7→ f(x⃗)} | f ∈ C, sort(x) = sort(f(x⃗))}. The case t|H ∈ Σ
follows directly from the hypothesis for Γ′. Thus, it remains to show the case t|H = t′|H ′.
Let σg be a ground substitution such that (β): ∀u ∈ H. ∀wg <lpo uσg. SC (wg). Our aim is
to show SC (tσg). For this, we distinguish two cases.
1. Suppose that there exists an index i such that tσg = (tσi)σ′

g for some σ′
g. Then, by

tσi|Hσi ∈ Γ′, we know from the hypothesis for Γ′ that if ∀u ∈ Hσi. ∀wg <lpo uσ′
g. SC (wg)

then SC ((tσi)σ′
g). Since tσg = (tσi)σ′

g, it remains to show ∀u ∈ Hσi. ∀wg <lpo uσ′
g.

SC (wg). Suppose u ∈ Hσi and wg <lpo uσ′
g. Then, there exists û ∈ H such that u = ûσi,

and we have wg <lpo uσ′
g = (ûσi)σ′

g = ûσg. Thus, SC (wg) holds by our assumption (β).
2. Otherwise. Then we have tσg = (tθ)σ′

g for some θ = {x 7→ f(y⃗)} with f ∈ D. By VP(Γ)
and the subterm property of >lpo, we have x <lpo u for some u ∈ H, and so by the
stability of >lpo, we have xσg <lpo uσg for some u ∈ H. Hence by our assumption (β),
we obtain SC (xσg). Then by the definition, we know there exists a ground constructor
term g(w⃗g) ∈ T (C) such that xσg

∗→R g(w⃗g). From g ∈ C, there is an index i such
that σi = {x 7→ g(x⃗)}. As x⃗ is fresh, we may assume xσg

∗→R g(w⃗g) = (xσi)σ′
g. Hence

tσg
∗→R (tσi)σ′

g. Also, we have xσg >lpo (xσi)σ′
g by Lemma 5.

The reminder of the proof proceeds in a similar way to 1 except that tσg
∗→R (tσi)σ′

g

instead of tσg = (tσi)σ′
g. By tσi|Hσi ∈ Γ′, we know from the hypothesis for Γ′ that

if ∀u ∈ Hσi. ∀wg <lpo uσ′
g. SC (wg) then SC ((tσi)σ′

g), which implies SC (tσg) since
tσg

∗→R (tσi)σ′
g. Thus, it remains to show ∀u ∈ Hσi. ∀wg <lpo uσ′

g. SC (wg). Suppose
u ∈ Hσi and wg <lpo uσ′

g. Then, there exists û ∈ H such that u = ûσi, and we have
wg <lpo uσ′

g = (ûσi)σ′
g ≤lpo ûσg, where the last part follows from xσg >lpo (xσi)σ′

g by
the monotonicity of >lpo (or (ûσi)σ′

g = ûσg if x /∈ V(û)). Hence SC (wg) holds by our
assumption (β).

(Simplify) Then Γ = Σ ∪ {t′|H ′} and Γ′ = Σ ∪ {s′|H ′}, where t′ →R s′. The case t|H ∈ Σ
follows directly from the hypothesis for Γ′. Thus, it remains to show the case t|H = t′|H ′.
Let σg be a ground substitution such that ∀u ∈ H. ∀wg <lpo uσg. SC (wg). Then, by the
hypothesis for Γ′, we have SC (s′σg). Since tσg = t′σg →R s′σg, SC (tσg) clearly holds.

(Delete) Then Γ = Γ′ ∪ {t′|H ′}, where t′ <lpo u for some u ∈ H ′. The case t|H ∈ Γ′ follows
directly from the hypothesis for Γ′. Thus, it remains to show the case t|H = t′|H ′. Let σg

be a ground substitution such that ∀u ∈ H. ∀wg <lpo uσg. SC (wg). Since t = t′ <lpo u for
some u ∈ H ′ = H, we have tσg <lpo uσg for some u ∈ H. Hence SC (tσg) holds. ◀

Now we are ready to show the theorem on global sufficient completeness of a TRS. In
the following proof of the theorem, we use the fact that every ground term tg has the form
h(x⃗)θg for some h ∈ F and some ground substitution θg.

▶ Theorem 12. Let R be a TRS, and let >lpo be a lexicographic path order induced by some
precedence > on F such that f > g for every f ∈ D and g ∈ C. If {h(x⃗)|{h(x⃗)}} ∗

⇝ { } for
every h ∈ F , then R is sufficiently complete.

K. Kikuchi and T. Aoto 49:7

Proof. Let {h(x⃗)|{h(x⃗)}} ∗
⇝ { } for every h ∈ F . We prove SC (h(x⃗)θg) for every h ∈ F and

every ground instance h(x⃗)θg by induction on T (F) with the lexicographic order >lpo. Let
h ∈ F and consider the derivation {h(x⃗)|{h(x⃗)}} ∗

⇝ { }. Then by Lemma 9, VP(Γ) holds for
every Γ appearing in the derivation. Since WIS({ }) vacuously holds, we have by Lemma 11
WIS({h(x⃗)|{h(x⃗)}}), i.e.,

(∀wg <lpo h(x⃗)θg. SC (wg)) ⇒ SC (h(x⃗)θg) (WIS 2)

for each ground instance h(x⃗)θg. To prove SC (h(x⃗)θg), it suffices to show ∀wg <lpo h(x⃗)θg.

SC (wg). Let wg <lpo h(x⃗)θg. Since wg = f(y⃗)ρg for some f ∈ F and some ground substitu-
tion ρg, we have SC (wg) by the induction hypothesis. Hence ∀wg <lpo h(x⃗)θg. SC (wg), and
we obtain SC (h(x⃗)θg). ◀

We give some examples of application of the theorem.

▶ Example 13 ([4, Example 8.1]). Consider a signature with S = {B} and

F =
{

and : B × B → B, or : B × B → B,

not : B → B, 0 : B, 1 : B

}

where C = {0 : B, 1 : B}. Let R1 be the following TRS:

R1 =

(1) and(1, x) → x

(2) and(0, x) → 0
(3) or(1, x) → 1
(4) or(0, x) → x

(5) and(1, x) → not(not(and(1, x)))
(6) not(1) → 0
(7) not(0) → 1
(8) not(and(x, y)) → or(not(x), not(y))

.

Note that R1 is not terminating since and(1, x) →R1 not(not(and(1, x))) →R1 not(not(not(
not(and(1, x))))) →R1 · · · . We show that R1 is sufficiently complete, using Theorem 12. For
this, take a lexicographic path ordering >lpo induced by any precedence > such that f > g

for every f ∈ D and g ∈ C. In Figure 2, we give derivations of {h(x⃗)|{h(x⃗)}} ∗
⇝ { } for h ∈ D.

Also, we have {0|{0}}⇝ { } and {1|{1}}⇝ { } using Decompose. Thus by Theorem 12, R1
is sufficiently complete. ◀

The next example shows that there exists a TRS for which the method of [3, 4] does not
work but our method works.

▶ Example 14. Let R2 be the TRS obtained from R1 of Example 13 by deleting the rule (1).
Then R2 is still sufficiently complete. Indeed, derivations for defined symbols except and are
the same as those of Figure 2. For and, we have a derivation of {and(x1, x2)|{and(x1, x2)}} ∗

⇝
{ } as shown in Figure 3. Note that the Simplify step using the rule (8) (the fifth row in the
figure) cannot be made by the abstract-narrow-based process of [3, 4] (cf. Appendix A). ◀

FSTTCS 2021

49:8 Simple Derivation Systems for Proving Sufficient Completeness

{
not(x)|{not(x)}

}
⇝Expand

{
not(0)|{not(0)}, not(1)|{not(1)}

}
∗
⇝Simplify

{
1|{not(0)}, 0|{not(1)}

}
∗
⇝Decompose

{ }
{

or(x1, x2)|{or(x1, x2)}
}

⇝Expand
{

or(0, x2)|{or(0, x2)}, or(1, x2)|{or(1, x2)}
}

∗
⇝Simplify

{
x2|{or(0, x2)}, 1|{or(1, x2)}

}
⇝Decompose

{
x2|{or(0, x2)}

}
⇝Delete

{ }
{

and(x1, x2)|{and(x1, x2)}
}

⇝Expand
{

and(0, x2)|{and(0, x2)}, and(1, x2)|{and(1, x2)}
}

∗
⇝Simplify

{
0|{and(0, x2)}, x2|{and(1, x2)}

}
⇝Decompose

{
x2|{and(1, x2)}

}
⇝Delete

{ }
Figure 2 Derivations for proving sufficient completeness of R1 in Example 13.

{
and(x1, x2)|{and(x1, x2)}

}
⇝Expand

{
and(0, x2)|{and(0, x2)}, and(1, x2)|{and(1, x2)}

}
∗
⇝Simplify

{
0|{and(0, x2)}, not(not(and(1, x2)))|{and(1, x2)}

}
⇝Decompose

{
not(not(and(1, x2)))|{and(1, x2)}

}
⇝Simplify

{
not(or(not(1), not(x2)))|{and(1, x2)}

}
∗
⇝Simplify

{
not(not(x2))|{and(1, x2)}

}
⇝Expand

{
not(not(0))|{and(1, 0)}, not(not(1))|{and(1, 1)}

}
∗
⇝Simplify

{
0|{and(1, 0)}, 1|{and(1, 1)}

}
∗
⇝Decompose

{ }
Figure 3 A derivation for proving sufficient completeness of R2 in Example 14.

The next example is a modification of [17, Example A.2].

▶ Example 15. Consider a signature with S = {N} and

F =
{

d : N → N, if : N × N × N → N,

− : N × N → N, 0 : N, s : N → N

}
where C = {0 : N, s : N → N}. Let R3 be the following TRS where d(n) computes the
double of a given natural number n:

R3 =

(1) d(x) → if(x, 0, s(s(d(−(x, s(0))))))
(2) if(0, y, z) → y

(3) if(s(x), y, z) → z

(4) −(0, y) → 0
(5) −(x, 0) → x

(6) −(s(x), s(y)) → −(x, y)

.

Note that R3 is not terminating by repeated application of the rule (1). We show that R3 is
sufficiently complete, using Theorem 12. For this, take a lexicographic path ordering >lpo
induced by any precedence > such that f > g for every f ∈ D and g ∈ C. In Figure 4,

K. Kikuchi and T. Aoto 49:9

{
d(x)|{d(x)}

}
⇝Expand

{
d(0)|{d(0)}, d(s(x1))|{d(s(x1))}

}
∗
⇝Simplify

{
0|{d(0)}, s(s(d(−(s(x1), s(0)))))|{d(s(x1))}

}
∗
⇝Decompose

{
d(−(s(x1), s(0)))|{d(s(x1))}

}
∗
⇝Simplify

{
d(x1)|{d(s(x1))}

}
⇝Delete

{ }
{

if(x1, x2, x3)|{if(x1, x2, x3)}
}

⇝Expand
{

if(0, x2, x3)|{if(0, x2, x3)}, if(s(x4), x2, x3)|{if(s(x4), x2, x3)}
}

∗
⇝Simplify

{
x2|{if(0, x2, x3)}, x3|{if(s(x4), x2, x3)}

}
∗
⇝Delete

{ }
{

−(x1, x2)|{−(x1, x2)}
}

⇝Expand
{

−(0, x2)|{−(0, x2)}, −(s(x3), x2)|{−(s(x3), x2)}
}

⇝Simplify
{

0|{−(0, x2)}, −(s(x3), x2)|{−(s(x3), x2)}
}

⇝Decompose
{

−(s(x3), x2)|{−(s(x3), x2)}
}

⇝Expand
{

−(s(x3), 0)|{−(s(x3), 0)}, −(s(x3), s(x4))|{−(s(x3), s(x4))}
}

∗
⇝Simplify

{
s(x3)|{−(s(x3), 0)}, −(x3, x4)|{−(s(x3), s(x4))}

}
∗
⇝Delete

{ }
Figure 4 Derivations for proving sufficient completeness of R3 in Example 15.

we give derivations of {h(x⃗)|{h(x⃗)}} ∗
⇝ { } for h ∈ D. Also, we have {0|{0}} ⇝ { } and

{s(x)|{s(x)}} ⇝ { } using Decompose and Delete. Thus by Theorem 12, R3 is sufficiently
complete. ◀

Without the rule (4), the above TRS R3 still has some kind of sufficient completeness,
which we discuss in the next section.

4 A Simple Derivation System for Local Sufficient Completeness with
Signature Restriction

In the remainder of the paper, we are concerned with local sufficient completeness [10], which
is a generalised notion of sufficient completeness. In this section, we consider local sufficient
completeness on the set of ground terms consisting of particular function symbols.

▶ Definition 16 (Local sufficient completeness with signature restriction). Let R be a TRS, and
let F ′ ⊆ F . Then R is locally sufficiently complete on T (F ′) if SC (tg) for every tg ∈ T (F ′).

The standard notion of sufficient completeness, as given in Definition 1, is the case of
local sufficient completeness on T (F ′) where F ′ = F . By the restriction to F ′, we can talk
about sufficient completeness locally, e.g. on T ({d, s, 0}) in Example 15 (cf. Example 25).

The notion of a derivation of the system in this section is defined as follows.

▶ Definition 17 (Derivation). Let R be a TRS, and let F ′ ⊆ F . Suppose that >lpo is a
lexicographic path order induced by some precedence > on F such that f > f ′ > g for every
f ∈ D \ F ′, f ′ ∈ F ′ \ C and g ∈ C. The derivation rules of the system are the same as those
listed in Figure 1. We write Γ⇝ℓ Γ′ if Γ′ is derived from Γ by one of the derivation rules.

▶ Lemma 18. Let >lpo be a lexicographic path order induced by a precedence > as above. If
sg ∈ T (F ′ ∪ C) and sg >lpo tg then tg ∈ T (F ′ ∪ C).

FSTTCS 2021

49:10 Simple Derivation Systems for Proving Sufficient Completeness

As before, we have a lemma on preservation of variables occurring in guarded terms.

▶ Lemma 19. If Γ⇝ℓ Γ′ and VP(Γ) then VP(Γ′).

In addition, we have a lemma on preservation of function symbols of guarded terms.

▶ Definition 20 (SigP). For a set Γ of guarded terms, SigP(Γ) means that for every t|H ∈ Γ
and every u ∈ H, u ∈ T (F ′ ∪ C, V).

▶ Lemma 21. If Γ⇝ℓ Γ′ and SigP(Γ) then SigP(Γ′).

The predicate about the well-founded induction schema is defined as follows.

▶ Definition 22 (WISℓ). For a set Γ of guarded terms, WISℓ(Γ) means that for every
t|H ∈ Γ and every ground substitution σg : V → T (F ′ ∪ C), the following holds:

(∀u ∈ H. ∀wg <lpo uσg. SC (wg)) ⇒ SC (tσg). (WIS 3)

▶ Lemma 23. Let Γ⇝ℓ Γ′, VP(Γ) and SigP(Γ). Then, WISℓ(Γ′) implies WISℓ(Γ).

Proof. The proof proceeds by case analysis in the same way as that of Lemma 11, except
that σ : V → T (F ′ ∪C) is enforced on every ground substitution σ appearing in the proof. ◀

We are now ready to show the theorem on local sufficient completeness on T (F ′).

▶ Theorem 24. Let R be a TRS, F ′ ⊆ F and >lpo be a lexicographic path order induced by
some precedence > on F such that f > f ′ > g for every f ∈ D \ F ′, f ′ ∈ F ′ \ C and g ∈ C.
If {h(x⃗)|{h(x⃗)}} ∗

⇝ℓ { } for every h ∈ F ′, then R is locally sufficiently complete on T (F ′).

Proof. Let {h(x⃗)|{h(x⃗)}} ∗
⇝ℓ { } for every h ∈ F ′. (Using Decompose and Delete, we can

automatically have {h(x⃗)|{h(x⃗)}} ∗
⇝ℓ { } for every h ∈ C.) It suffices to prove SC (h(x⃗)θg) for

every h ∈ F ′ ∪ C and every ground instance h(x⃗)θg with θg : V → T (F ′ ∪ C) by induction on
T (F ′ ∪ C) with respect to >lpo. This is shown by a similar argument to that of Theorem 12,
and we have that R is locally sufficiently complete on T (F ′ ∪ C) and thus on T (F ′). ◀

Now we consider the example mentioned at the end of the previous section.

▶ Example 25. Let R4 be the TRS obtained from R3 of Example 15 by deleting the rule
(4). Then R4 is not globally sufficiently complete any more, since −(0, s(0)) ∈ NF(R4) but
−(0, s(0)) /∈ T (C). However, it can be shown that R4 is locally sufficiently complete on T (F ′)
where F ′ = {d, s, 0}. Indeed, the derivation for the function symbol d ∈ D shown in Figure 4
works where the rule (4) is not used in the Simplify steps. The precedence can be given as
if, − > d > s, 0. Hence by Theorem 24, R4 is locally sufficiently complete on T (F ′). ◀

5 A Simple Derivation System for Local Sufficient Completeness with
Sort Partition

In this section, we treat another type of local sufficient completeness than that discussed
in the previous section. Specifically, we consider local sufficient completeness on the set of
ground terms of particular sorts.

▶ Definition 26 (Conditions on the signature). We assume the following conditions S1–S4 on
the signature of R.

S1. S = S0 ⊎ S1. (⊎ stands for the disjoint union.)

K. Kikuchi and T. Aoto 49:11

S2. The sets Fi (i = 0, 1) of function symbols are defined by
Fi = {f ∈ F | f : α1 × · · · × αn → α, α ∈ Si}.

S3. The sets Ti (i = 0, 1) of ground terms are defined by
Ti = {tg ∈ T (F) | sort(tg) ∈ Si}.

S4. For every g ∈ F0 ∩ C, if g : α1 × · · · × αn → α then α1, . . . , αn ∈ S0.

Our aim in this section is to show that the following holds under certain conditions.

▶ Definition 27 (Local sufficient completeness with sort partition). Let R be a TRS with
a signature satisfying the conditions S1–S4 of Definition 26. Then R is said to be locally
sufficiently complete on T0 if SC (tg) for every tg ∈ T0.

The next example illustrates the difference between global sufficient completeness and
local sufficient completeness on T0.

▶ Example 28 ([15, Example 8]). Consider a signature with S0 = {N}, S1 = {L} and

F =
{

sum : N × L → N, + : N × N → N, from : N → L,

0 : N, s : N → N, [] : L, :: : N × L → L

}
where C = {0 : N, s : N → N, [] : L, :: : N × L → L}. Let R5 be the following TRS where
sum(n, ts) computes the summation of the first n elements of a (possibly infinite) list ts of
natural numbers:

R5 =

(1) sum(0, xs) → 0
(2) sum(s(x), []) → 0
(3) sum(s(x), y :: ys) → +(y, sum(x, ys))
(4) +(0, y) → y

(5) +(s(x), y) → s(+(x, y))
(6) from(x) → x :: from(s(x))

.

R5 is not terminating since from(0) →R 0 :: from(s(0)) →R 0 :: s(0) :: from(s(s(0))) →R · · · .
R5 is not globally sufficiently complete either since u /∈ T (C) for any u with from(0) ∗→R u.
However, it can be shown that R5 is locally sufficiently complete on T0 (cf. Example 35). ◀

The notion of a derivation of the system in this section is defined similarly to Definition 7
except that the Expand rule is replaced by

Expand
Γ ∪ {t|H}

Γ ∪ {tσi|Hσi}i

{σi}i = {{x 7→ f(x⃗)} | f ∈ C ∪ F1, sort(x) = sort(f(x⃗))}
where x ∈ V(t) and x⃗ is a sequence of fresh variables

We write Γ⇝S Γ′ if Γ′ is derived from Γ by one of the derivation rules.

▶ Lemma 29. If Γ⇝S Γ′ and VP(Γ) then VP(Γ′).

In addition, we have a lemma on preservation of sorts of guarded terms.

▶ Definition 30 (SrtP). For a set Γ of guarded terms, SrtP(Γ) means that for every t|H ∈ Γ,
sort(t) ∈ S0 and sort(u) ∈ S0 for every u ∈ H.

▶ Lemma 31. If Γ⇝S Γ′ and SrtP(Γ) then SrtP(Γ′).

Proof. By case analysis depending on the rule used in the derivation step Γ⇝S Γ′. In the
case of the Decompose rule, we use the condition S4 of Definition 26. ◀

FSTTCS 2021

49:12 Simple Derivation Systems for Proving Sufficient Completeness

The predicate about the well-founded induction schema is defined as follows.

▶ Definition 32 (WISS). For a set Γ of guarded terms, WISS(Γ) means that for every
t|H ∈ Γ and every ground substitution σg, the following holds:

(∀u ∈ H. ∀wg ∈ T0. wg <lpo uσg ⇒ SC (wg)) ⇒ SC (tσg). (WIS 4)

▶ Lemma 33. Let Γ⇝S Γ′, VP(Γ) and SrtP(Γ). Then, WISS(Γ′) implies WISS(Γ).

Proof. We prove that if

(∀u ∈ H ′. ∀wg ∈ T0. wg <lpo uσg ⇒ SC (wg)) ⇒ SC (t′σg)

for every t′|H ′ ∈ Γ′ and every ground substitution σg, then

(∀u ∈ H. ∀wg ∈ T0. wg <lpo uσg ⇒ SC (wg)) ⇒ SC (tσg)

for every t|H ∈ Γ and every ground substitution σg. The proof proceeds by case analysis
depending on the rule used in the derivation step Γ⇝S Γ′. Here we only consider the cases
of Expand and Delete. The other cases are proved in the same way as those of Lemma 11.

(Expand) Then Γ = Σ ∪ {t′|H ′} and Γ′ = Σ ∪ {t′σi|H ′σi}i, where x ∈ V(t′), x⃗ is a sequence
of fresh variables, and {σi}i = {{x 7→ f(x⃗)} | f ∈ C ∪ F1, sort(x) = sort(f(x⃗))}. The case
t|H ∈ Σ follows directly from the hypothesis for Γ′. Thus, it remains to show the case
t|H = t′|H ′. Let σg be a ground substitution such that (β): ∀u ∈ H. ∀wg ∈ T0. wg <lpo
uσg ⇒ SC (wg). Our aim is to show SC (tσg). For this, we distinguish two cases.
1. Suppose that there exists an index i such that tσg = (tσi)σ′

g for some σ′
g. This case is

proved similarly to the same case of the proof of Lemma 11.
2. Otherwise. Then we have tσg = (tθ)σ′

g for some θ = {x 7→ f(y⃗)} with f ∈ F0 ∩ D. This
case is proved similarly to the case 2 of the proof of Lemma 11.

(Delete) Then Γ = Γ′ ∪ {t′|H ′}, where t′ <lpo u for some u ∈ H ′. The case t|H ∈ Γ′ follows
directly from the hypothesis for Γ′. Thus, it remains to show the case t|H = t′|H ′. Let
σg be a ground substitution such that ∀u ∈ H. ∀wg ∈ T0. wg <lpo uσg ⇒ SC (wg). Since
t = t′ <lpo u for some u ∈ H ′ = H, we have tσg <lpo uσg for some u ∈ H, and by SrtP(Γ),
we have tσg ∈ T0. Hence SC (tσg) holds. ◀

We are now ready to show the theorem on local sufficient completeness on T0.

▶ Theorem 34. Let R be a TRS with a signature satisfying the conditions S1–S4 of
Definition 26, and let >lpo be a lexicographic path order induced by some precedence > on F
such that f > g for every f ∈ D and g ∈ C. If {h(x⃗)|{h(x⃗)}} ∗

⇝S { } for every h ∈ F0, then
R is locally sufficiently complete on T0.

Proof. Let {h(x⃗)|{h(x⃗)}} ∗
⇝S { } for every h ∈ F0. We prove SC (h(x⃗)θg) for every h ∈ F0

and every ground instance h(x⃗)θg by induction on T (F) with respect to the order >lpo. Let
h ∈ F0 and consider the derivation {h(x⃗)|{h(x⃗)}} ∗

⇝S { }. Then by Lemmas 9 and 31, VP(Γ)
and SrtP(Γ) hold for every Γ appearing in the derivation. Since WISS({ }) vacuously holds,
we have by Lemma 33 WISS({h(x⃗)|{h(x⃗)}}), i.e.,

(∀wg ∈ T0. wg <lpo h(x⃗)θg ⇒ SC (wg)) ⇒ SC (h(x⃗)θg) (WIS 5)

for each ground instance h(x⃗)θg. For every wg ∈ T0, we have wg = f(y⃗)ρg for some f ∈ F0
and some ground substitution ρg. Hence, for every wg ∈ T0, wg <lpo h(x⃗)θg implies SC (wg)
by the induction hypothesis. Thus, by (WIS 5), we obtain SC (h(x⃗)θg). ◀

K. Kikuchi and T. Aoto 49:13

{
sum(x1, x2)|{sum(x1, x2)}

}
⇝SExpand

{
sum(0, x2)|{sum(0, x2)}, sum(s(x3), x2)|{sum(s(x3), x2)}

}
⇝SSimplify

{
0|{sum(0, x2)}, sum(s(x3), x2)|{sum(s(x3), x2)}

}
⇝SDecompose

{
sum(s(x3), x2)|{sum(s(x3), x2)}

}
⇝SExpand

sum(s(x3), [])|{sum(s(x3), [])},

sum(s(x3), x4 :: x5)|{sum(s(x3), x4 :: x5)},

sum(s(x3), from(x6))|{sum(s(x3), from(x6))}

∗
⇝SSimplify

0|{sum(s(x3), [])},

+(x4, sum(x3, x5))|{sum(s(x3), x4 :: x5)},

+(x6, sum(x3, from(s(x6))))|{sum(s(x3), from(x6))}

⇝SDecompose

{
+(x4, sum(x3, x5))|{sum(s(x3), x4 :: x5)},

+(x6, sum(x3, from(s(x6))))|{sum(s(x3), from(x6))}

}
∗
⇝SDelete

{ }
{

+(x1, x2)|{+(x1, x2)}
}

⇝SExpand
{

+(0, x2)|{+(0, x2)}, +(s(x3), x2)|{+(s(x3), x2)}
}

∗
⇝SSimplify

{
x2|{+(0, x2)}, s(+(x3, x2))|{+(s(x3), x2)}

}
⇝SDecompose

{
x2|{+(0, x2)}, +(x3, x2)|{+(s(x3), x2)}

}
∗
⇝SDelete

{ }
Figure 5 Derivations for proving local sufficient completeness of R5 in Example 28.

Now we apply the theorem to the TRS of Example 28.

▶ Example 35. Consider the TRS R5 of Example 28. We show that R5 is locally sufficiently
complete on T0, using Theorem 34. It is easily seen that the signature of R5 satisfies the
conditions S1–S4 of Definition 26. Let >lpo be the lexicographic path order induced by the
precedence > such that sum > + > from > 0, s, ::, []. In Figure 5, we give derivations of
{h(x⃗)|{h(x⃗)}} ∗

⇝S { } for h ∈ F0 ∩ D. Also, using Decompose and Delete, we have derivations
{h(x⃗)|{h(x⃗)}} ∗

⇝S { } for h ∈ F0 ∩ C. Thus, by Theorem 34, we conclude that R5 is locally
sufficiently complete on T0. ◀

6 Conclusion

We have presented simple derivation systems for proving sufficient completeness and two
types of local sufficient completeness. We have given transparent correctness proofs of the
derivation systems by introducing some suitable notions like well-founded induction schema.
This is in contrast to the approach and correctness proofs of [3, 4] which are involved. The
transparency allows us to provide derivation systems that deal with global and (two types of)
local sufficient completeness in a uniform manner. Our proof methods using the derivation
systems have been illustrated by applying them to some non-terminating TRSs.

The methods of [10] and our new methods are orthogonal in the following sense. In
our methods, a group of function symbols are simultaneously tested, while an individual
term pattern is tested in [10]. Then local sufficient completeness with signature restriction
discussed in Section 4 cannot be inspected by the methods of [10], since one cannot substitute
for a variable each term on a restricted signature (one can only substitute each term of the
same sort as the variable; for problems in Section 5, it might be possible that the proof
abilities of the two approaches are equivalent). On the other hand, any linear term pattern
that is not necessarily of the form f(x1, . . . , xn) can be tested in [10]. This is not possible by
the methods in the present paper.

FSTTCS 2021

49:14 Simple Derivation Systems for Proving Sufficient Completeness

The methods of [15] and our methods are also orthogonal. Example 28 of the present
paper (i.e. Example 8 of [15]) is one of the examples that cannot be handled by the methods
of [15]. On the other hand, the running example of [15] is difficult to handle by the current
derivation systems (in [10] and the present paper), since they cannot help inducing a failing
derivation with a divergent sequence as seen in Figure 4 of [15].

Găină et al. [5] have recently discussed a kind of local sufficient completeness with sort
partition, where the set S0 in our terminology (Definition 26) contains every sort that is the
codomain of some constructor. Earlier works [8, 13] discussed sufficient completeness relative
to a set of constructors, where non-terminating systems are transformed into terminating
ones using replacement restrictions of context-sensitive rewriting [12]. Detailed comparisons
between these approaches and ours are left as future work.

In the present paper, we employed lexicographic path orders to define the derivation
systems, but other simplification orders can be used if necessary. More generally, there would
be a way to give abstract conditions on orders and generate constraints for derivations to be
successful.

As a direction of further work, it is interesting to integrate the methods proposed in this
paper and those in the previous work [10, 15] into a unified framework for proving various
kinds of local sufficient completeness. Implementation of the methods and experiments to
examine to what extent they work are also left as future work.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
2 H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. Inf. Comput.,

187(1):123–153, 2003. doi:10.1016/S0890-5401(03)00134-2.
3 I. Gnaedig and H. Kirchner. Computing constructor forms with non terminating rewrite

programs. In Proceedings of the 8th PPDP, pages 121–132. ACM, 2006. doi:10.1145/1140335.
1140351.

4 I. Gnaedig and H. Kirchner. Proving weak properties of rewriting. Theor. Comput. Sci.,
412(34):4405–4438, 2011. doi:10.1016/j.tcs.2011.04.028.

5 D. Găină, M. Nakamura, K. Ogata, and K. Futatsugi. Stability of termination and sufficient-
completeness under pushouts via amalgamation. Theor. Comput. Sci., 848:82–105, 2020.
doi:10.1016/j.tcs.2020.09.024.

6 J. V. Guttag. The Specification and Application to Programming of Abstract Data Types. PhD
thesis, University of Toronto, 1975.

7 J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types. Acta
Informatica, 10(1):27–52, 1978. doi:10.1007/BF00260922.

8 J. Hendrix and J. Meseguer. On the completeness of context-sensitive order-sorted specifications.
In Proceedings of the 18th RTA, volume 4533 of Lecture Notes in Computer Science, pages
229–245. Springer, 2007. doi:10.1007/978-3-540-73449-9_18.

9 D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness and related properties of
term rewriting systems. Acta Informatica, 24(4):395–415, 1987. doi:10.1007/BF00292110.

10 K. Kikuchi, T. Aoto, and I. Sasano. Inductive theorem proving in non-terminating rewriting
systems and its application to program transformation. In Proceedings of the 21st PPDP,
pages 13:1–13:14. ACM, 2019. doi:10.1145/3354166.3354178.

11 A. Lazrek, P. Lescanne, and J. J. Thiel. Tools for proving inductive equalities, relative com-
pleteness, and ω-completeness. Inf. Comput., 84(1):47–70, 1990. doi:10.1016/0890-5401(90)
90033-E.

12 S. Lucas. Context-sensitive computations in functional and functional logic programs. J.
Funct. Log. Program., 1998(1), 1998. URL: http://danae.uni-muenster.de/lehre/kuchen/
JFLP/articles/1998/A98-01/A98-01.html.

https://doi.org/10.1016/S0890-5401(03)00134-2
https://doi.org/10.1145/1140335.1140351
https://doi.org/10.1145/1140335.1140351
https://doi.org/10.1016/j.tcs.2011.04.028
https://doi.org/10.1016/j.tcs.2020.09.024
https://doi.org/10.1007/BF00260922
https://doi.org/10.1007/978-3-540-73449-9_18
https://doi.org/10.1007/BF00292110
https://doi.org/10.1145/3354166.3354178
https://doi.org/10.1016/0890-5401(90)90033-E
https://doi.org/10.1016/0890-5401(90)90033-E
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.html
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.html

K. Kikuchi and T. Aoto 49:15

13 S. Lucas. Completeness of context-sensitive rewriting. Inf. Process. Lett., 115(2):87–92, 2015.
doi:10.1016/j.ipl.2014.07.004.

14 E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
15 T. Shiraishi, K. Kikuchi, and T. Aoto. A proof method for local sufficient completeness of

term rewriting systems. In Proceedings of the 18th ICTAC, volume 12819 of Lecture Notes in
Computer Science, pages 386–404. Springer, 2021. doi:10.1007/978-3-030-85315-0_22.

16 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
17 Y. Toyama. How to prove equivalence of term rewriting systems without induction. Theor.

Comput. Sci., 90(2):369–390, 1991.

A Proof Ability of the Method in Section 3

In this section, we compare the proof abilities of the method in [3, 4] and our method by the
derivation system in Section 3.

The next example is a modification of a TRS described in [3, page 125 (the right column)].
([3] discusses TRSs with possibly non-free constructors whereas we discuss TRSs with free
constructors in this paper.)

▶ Example 36. Consider a signature with S = {A} and

F =
{

f : A → A, a : A, b : A, c : A
}

where C = {c : A}. Let R6 be the following TRS:

R6 =

(1) a → b
(2) f(f(b)) → c
(3) b → f(b)
(4) f(c) → c

 .

Then, using Theorem 12, we can show that R6 is sufficiently complete. Required derivations
are, e.g., {b|{b}}⇝Simplify {f(b)|{b}}⇝Simplify {f(f(b))|{b}}⇝Simplify {c|{b}}⇝Decompose
{ }. However, as remarked in [3, page 125 (the right column)], these Simplify steps are not
represented by the abstract-narrow-based process of [3, 4]. ◀

FSTTCS 2021

https://doi.org/10.1016/j.ipl.2014.07.004
https://doi.org/10.1007/978-3-030-85315-0_22

Parikh Images of Register Automata
Sławomir Lasota
University of Warsaw, Poland

Mohnish Pattathurajan
University of Warsaw, Poland

Abstract
As it has been recently shown, Parikh images of languages of nondeterministic one-register automata
are rational (but not semilinear in general), but it is still open if the property extends to all register
automata. We identify a subclass of nondeterministic register automata, called hierarchical register
automata (HRA), with the following two properties: every rational language is recognised by a HRA;
and Parikh image of the language of every HRA is rational. In consequence, these two properties
make HRA an automata-theoretic characterisation of languages of nondeterministic register automata
with rational Parikh images.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Sets with atoms, register automata, Parikh images, rational sets, hierarchical
register automata

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.50

Funding This work was partially supported by NCN grant 2019/35/B/ST6/02322 and by the ERC
grant INFSYS, agreement no. 950398.

Acknowledgements We are grateful to Piotrek Hofman and Arka Ghosh for fruitful discussions.

1 Introduction

Register automata, also know as finite-memory automata, introduced over 25 years ago by
Francez and Kaminski [14], are nondeterministic finite-state devices recognising languages
over infinite alphabets. They are equipped with a finite number of registers that can store
data values (atoms) from an infinite data domain. A register automaton inputs a string
of data values (a data word) and compares each consecutive input to its registers; based
on this comparison and on the current control state, it chooses a next control state and
possibly stores the input value in one of its registers. The only allowed comparisons of data
values considered in this paper are equality and inequaltiy tests. An automaton can also
guess a fresh data value different from the ones seen currently in the input or stored in
registers, and store it in some register (we thus consider nondeterministic register automata
with guessing [24]). Likewise one may define register context-free grammars [6], [1, Sect.5].

Register automata lack most of the good properties of finite automata, like determinisation
or closure properties. In particular, no satisfactory characterisation in terms of rational
(regular) expressions is known. Indeed, all known generalisations of Kleene’s theorem for
register automata either apply to a restricted subclass of the model [17], or introduce an
involved syntax significantly extending the concept of rational expressions [19, 18], or rely on
a richer algebraic structure than the free monoid of data words [3].

Register automata are expressively equivalent to orbit-finite automata [5, 6], a natural
extension of finite automata where input alphabets and state spaces are possibly infinite, but
finite up to permutation of the data domain (such sets are called orbit-finite). Along these
lines, we focus on a natural extension of rational expressions, which differ from the classical
ones just by allowing for orbit-finite unions instead of only finite ones. In other words, we

© Sławomir Lasota and Mohnish Pattathurajan;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8674-4470
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.50
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Parikh Images of Register Automata

consider the class of rational languages, defined as the smallest class of languages containing
all single-word languages, and closed under concatenation, star, and orbit-finite unions. In
particular, the class contains the empty language, all finite and all orbit-finite languages.

Languages of register automata are not rational in general, even in case of deterministic
one-register automata. Kleene theorem may be however recovered, at least in case of automata
with one register, when commutative images (Parikh images) are considered: the language of
every one-register automaton is Parikh-equivalent to (i.e., has the same Parikh image as) a
rational language [16]. An analogous result holds for one-register context-free grammars [16].

▶ Example 1. Fix the data domain Atoms = {0, 1, 2, . . .}. As a working example we will
use the language L1 consisting of all nonempty words over Atoms of length divisible by 3,
where every three consecutive letters are pairwise different (we write ̸=(a, b, c) as a shorthand
for a ̸= b ̸= c ̸= a, to concisely express pairwise inequality of three atoms):

L1 = {a1a2 . . . a3n ∈ Atoms∗ : n ≥ 0, ̸=(a1, a2, a3), ̸=(a2, a3, a4), ̸=(a3, a4, a5), . . .}.

The language is recognised by a deterministic two-register automaton but it is not rational
(cf. Section 3). It is however Parikh-equivalent to a larger language L2, where the pairwise
inequality constraint is imposed at consecutive disjoint triples of positions only:

L2 = {a1a2 . . . a3n ∈ Atoms∗ : n ≥ 0, ̸=(a1, a2, a3), ̸=(a4, a5, a6), . . .},

which is defined by the following rational (regular) expression

L2 =
(⋃

a,b,c∈Atoms, ̸=(a,b,c)

abc
)∗

(1)

and is thus rational. The formal definition of rational languages will be given in Section 3;
here we note that the union is indexed by the set Atoms(3) = {⟨abc⟩ ∈ Atoms3 : ̸=(a, b, c)}
of all triples of pairwise-distinct atoms, which is infinite but orbit-finite, i.e., finite up to
permutations of Atoms (in fact, it is one orbit).

The language L1 is Parikh-equivalent to L2 as every w = a1a2 . . . a3n ∈ L2 can be
transformed, by swapping letters, to a word in w′ ∈ L1.

Indeed, consider the first two triples (a1, a2, a3) and (a4, a5, a6) in w. We keep the first
triple in w′. For the fourth position of w′, we choose a letter from {a4, a5, a6} − {a2, a3}, say
a6. For the fifth position we choose {a4, a5} − {a3}, say a4. We note that both the choices
are possible due to pigeon-hole principle. Finally, at the sixth position of w′ we place the
remaining letter a5. Then we consider next two triples, (a5, a4, a6) and (a7, a8, a9), and treat
them analogously by swapping a7, a8 and a9 accordingly. Continuing in this way we finally
arrive at a word in w′ ∈ L1. ⌟

Contribution. We contribute to understanding of expressive power of nondeterministic
register automata (NRA), by investigating sets of data vectors obtainable as commutative
images (Parikh images) of their languages. Parikh images of rational languages we call
rational as well. Here are our contributions:
(1) We identify a syntactic subclass of NRA, called hierarchical register automata (HRA).
(2) We show that every rational language is recognised by a HRA.
(3) We show that Parikh images of HRA languages are rational (as a set of data vectors).
(4) As a corollary, we deduce that an NRA has rational Parikh image if, and only if it is

Parikh-equivalent to some HRA (with, possibly, more registers).

S. Lasota and M. Pattathurajan 50:3

These results are a step towards the ultimate (but still unreachable) goal: generalise
the main result of [16], namely rationality of Parikh images of nondeterministic 1-register
automata, to all NRA. Point (3) is an extension from 1-NRA to all HRA. In consequence of
(4), the ultimate goal can be equivalently achieved by proving that every nondeterministic
register automaton is Parikh-equivalent to a hierarchical one. Finally, we believe that the
subclass of HRA (1) is interesting on its own, as it seems to be equally well-behaved as
one-register automata.

Related research. Register automata have been intensively studied with respect to their
foundational properties [14, 23, 17, 21]. Following the seminal paper of Francez and Kamin-
ski [14], subsequent extensions of the model allow for comparing data values with respect
to some fixed relations such as a total order, or introduce alternation, variations on the
allowed form of nondeterminism, etc. The model is well known to satisfy almost no semantic
equivalences that hold for classical finite automata, in particular register automata admit no
satisfactory characterizations in terms of regular expressions [19, 18] or logic [21, 10]. There
just are few positive results: simulation of two-way nondeterministic automata by one-way
alternating automata with guessing [1]; Myhill-Nerode-style characterisation of languages of
deterministic automata [15, 5, 6]; and the well-behaved class of languages definable by orbit-
finite monoids [2], characterised in terms of logic [9] and a syntactic subclass of deterministic
register automata [8]. Register automata have been also intensively studied with respect to
their applications to XML databases and logics [12, 21, 10, 24].

Other extensions of finite-state machines to infinite alphabets include: abstract refor-
mulation or register automata, known as orbit-finite automata, or nominal automata, or
automata over atoms) [5, 6, 1]; symbolic automata [11]; pebble automata [20]; and data
automata [4, 7] (the list is illustrative).

2 Orbit-finite sets

Sets with atoms. Our definitions rely on basic notions and results of the theory of sets
with atoms [1], also known as nominal sets [22]. In this section we recall, following [16],
what is necessary for understanding of our arguments. This paper is a part of a uniform
abstract approach to register automata in the realm of orbit-finite sets with atoms, developed
in [5, 6, 1].

Fix a countably infinite set Atoms, whose elements we call atoms. Informally speaking, a
set with atoms is a set that can have atoms, or other sets with atoms, as elements. Formally,
we define the universe of sets with atoms by a suitably adapted cumulative hierarchy of
sets, by transfinite induction: the only set of rank 0 is the empty set; and for a cardinal γ,
a set of rank γ may contain, as elements, sets of rank smaller than γ as well as atoms. In
particular, nonempty subsets X ⊆ Atoms have rank 1. Sets containing no atoms, whose
elements contain no atoms, and so on, we call pure (or atomless).

Denote by Perm the group of all permutations of Atoms. Atom permutations π :
Atoms → Atoms act on sets with atoms by consistently renaming all atoms in a given set.
Formally, by another transfinite induction we define π(X) = {π(x) : x ∈ X}. Via standard
set-theoretic encodings of pairs or finite sequences we obtain, in particular, the pointwise
action on pairs π(x, y) = (π(x), π(y)), and likewise on finite sequences. For pure sets X,
π(X) = X for every π ∈ Perm.

We restrict to sets with atoms that only depend on finitely many atoms, in the following
sense. A support of x is any set S ⊆ Atoms such that the following implication holds for
all π ∈ Perm: if π(s) = s for all s ∈ S, then π(x) = x. An element (or set) x is finitely

FSTTCS 2021

50:4 Parikh Images of Register Automata

supported if it has some finite support; in this case x has the least support, denoted supp(x),
called the support of x (cf. [1, Sect. 6]), [22, Prop. 2.3], [6, Cor. 9.4]). Sets supported by ∅ we
call equivariant. For instance, given a, b ∈ Atoms, the support of the set

Lab = {a1a2 . . . an ∈ Atoms∗ : n ≥ 2, a1 ̸= a, an = b}

is {a, b}; every pure set is equivariant; the support of a sequence ⟨a1 . . . an⟩ ∈ Atoms∗,
encoded as a set in a standard way, is the set of atoms {a1, . . . , an} appearing in it; and the
support of a function f : Atoms → N such that dom(f) = {a ∈ Atoms : f(a) > 0} is finite,
is exactly dom(f).

From now on, we shall only consider sets with atoms that are hereditarily finitely supported
(called briefly legal), i.e., ones that are finitely supported, whose every element is finitely
supported, and so on.

Orbit-finite sets. Two (elements of) sets with atoms x, y are in the same orbit if π(x) = y

for some π ∈ Perm. This equivalence relation splits every set with atoms X into equivalence
classes, which we call orbits in X. A (legal) set is orbit-finite if it splits into finitely many
orbits. Examples of orbit-finite sets are: Atoms (1 orbit); Atoms−{a} for some a ∈ Atoms
(1 orbit); Atoms2 (2 orbits: diagonal {⟨a, b⟩ : a = b} and non-diagonal {⟨a, b⟩ : a ̸= b});
Atoms3 (5 orbits, corresponding to equality types of triples); {1, . . . , n} × Atoms (n orbits,
as π(i) = i for every i ∈ N and π ∈ Perm, since {1, . . . , n} is pure); the set of non-repeating
n-tuples of atoms Atoms(n) = {a1 . . . an ∈ Atomsn : ai ̸= aj for every 1 ≤ i < j ≤ n} (1
orbit). On the other hand, the set Atoms∗ is an example of an orbit-infinite set.

A finer equivalence relation is defined using S-atom permutations, i.e., permutations that
fix a finite set S ⊆ Atoms. Each orbit splits into finitely many S-orbits (cf. [1, Sect. 3.2]).
For instance, for every a ∈ Atoms, the set Atoms2 splits into four {a}-orbits: {⟨a, a⟩},
{⟨a, b⟩ : b ̸= a}, {⟨b, a⟩ : b ̸= a}, {⟨b, c⟩ : b, c ̸= a}.

Given a family (Xi)i∈I of sets indexed by an orbit-finite set I, the union
⋃

i∈I Xi we call
orbit-finite union of sets Xi. (Formally, not only each set Xi is assumed to be legal, but also
the indexing function i 7→ Xi.) As an example, consider (Lab)b∈Atoms. The indexing function
b 7→ Lab is supported by {a}, and so is the union:⋃

b∈Atoms
Lab = {a1a2 . . . an ∈ Atoms∗ : n ≥ 2, a1 ̸= a}.

Orbit-finite sets are closed under Cartesian products, subsets, and orbit-finite unions: if each
of Xi is orbit-finite, their union

⋃
i∈I Xi is orbit-finite too [1, Sect. 3].

3 Rational sets

In this section we recall the definition of rational sets of data words and data vectors
introduced in [16], and state and prove its useful closure properties.

Data words and vectors. By a finite multiset over a set (an alphabet) Σ we mean any
function v : Σ → N such that v(α) = 0 for all α ∈ Σ except finitely many. We define the
domain of v as dom(v) = {α ∈ Σ : v(α) > 0}, and its size as |v| =

∑
α∈dom(v) v(α) (the

same notation is used for the size of a set, and for the length of a word). The Parikh image
(commutative image) of a word w ∈ Σ∗ is the multiset Par(w) : Σ → N, where Par(w)(α) is
the number of appearances of a letter α ∈ Σ in w. For a language L ⊆ Σ∗, its Parikh image
is Par(L) = {Par(w) : w ∈ L}. Two languages L,L′ ⊆ Σ∗ are Parikh-equivalent if they

S. Lasota and M. Pattathurajan 50:5

have the same Parikh images: Par(L) = Par(L′). Overloading the notation, we write |w|
for the length of a word w, and hence |Par(w)| = |w|. We order multisets pointwise: v ⊑ v′

if v(α) ≤ v′(α) for all α ∈ Σ. The zero (empty) multiset 0 satisfies 0(α) = 0 for every α ∈ Σ.
Thus 0 = Par(ε). A singleton {α} that maps α to 1 and all other letters to 0, is written as
α, omitting brackets {}. Addition of multisets is pointwise: (v + v′)(α) = v(α) + v′(α) for
every α ∈ Σ; likewise subtraction v − v′, for v′ ⊑ v.

When Σ is an orbit-finite alphabet, words w ∈ Σ∗ are traditionally called data words,
languages L ⊆ Σ∗ are called data languages, and finite multisets v : Σ → N are called data
vectors.

Orbit-finite unions. Consider a family of sets X . We say that X is closed under orbit-finite
unions if for every family (Xi)i∈I of sets Xi ∈ X indexed by an orbit-finite set I, the union⋃

i∈I Xi belongs to X . We instantiate below this abstract definition to families X of sets of
data words and data vectors.

Rational data languages. We consider data languages over a fixed orbit-finite alphabet
Σ. As usual, we define concatenation of two data languages LL′ = {ww′ : w ∈ L,w′ ∈ L′},
and the Kleene star (iteration): L∗ = {w1 . . . wn : n ≥ 0, w1, . . . , wn ∈ L}. Let rational data
languages be the smallest class of data languages that contains that contains {ε}, all singleton
languages {σ} containing a single one-letter word σ ∈ Σ, and is closed under concatenation,
iteration, and orbit-finite unions. In particular the empty language, all finite languages and
all orbit-finite ones are rational. For finite Σ we obtain the classical rational (regular) sets.
As expected, without the Kleene star we obtain exactly sets of words of bounded length, or
equivalently (cf. [16, Lemma 1]) orbit-finite languages.

When convenient, we may speak of a rational expression, by which we mean a formal
derivation of a rational language according to the closure rules listed above, in the form of
well-founded tree. Concretely, a derivation of

⋃
i∈I Li is the function mapping every i ∈ I to

a derivation of Li (a node in a tree whose children are labeled by I), a derivation of LL′ is a
pair of derivations of L and L′ (a binary node), a derivation of L∗ is just a derivation of L
(a unary node), and a derivation of {ε} or {σ} is a leaf node.

▶ Example 2. Continuing Example 1, the language L2 is rational, as it can be presented by
a rational expression:

L2 =
(⋃

a,b,c∈Atoms, ̸=(a,b,c)

{a}{b}{c}
)∗
.

For readability, in the sequel we omit brackets {} when denoting singletons, as in (1). On the
other hand, one easily shows that the language L1 is not rational (e.g., using Proposition 12
from Section 4 and Theorem 13 from Section 5).

Rational sets of data vectors. We consider sets of data vectors over a fixed orbit-finite
alphabet Σ. Let addition of two sets X,Y of data vectors be defined by Minkowski sum

X + Y = {x+ y : x ∈ X, y ∈ Y },

and let the additive star X∗ contain all finite sums of elements of X:

X∗ = {x1 + . . .+ xn : n ≥ 0, x1, . . . , xn ∈ X}.

FSTTCS 2021

50:6 Parikh Images of Register Automata

We define rational sets of data vectors as the smallest class of sets of data vectors that
contains {0}, all singletons {σ} where σ stands for the ’unit’ data vector over Σ that maps
σ to 1 and all other letters to 0, and is closed under addition, additive star, and orbit-finite
unions. In particular, the empty set, all finite sets and all orbit-finite sets of data vectors are
rational.

▶ Example 3. Continuing Example 2, the Parikh image of L1 (and L2) is rational (for
readability we keep omitting brackets {}):

Par(L1) =
(⋃

a,b,c∈Atoms, ̸=(a,b,c)

a+ b+ c
)∗
.

▷ Claim 4. (1) Rational sets of data vectors are exactly Parikh images of rational data
languages. (2) Par(L) is rational if, and only if, L is Parikh-equivalent to a rational data
language.

▶ Remark 5. The classical notion of rational sets in an arbitrary monoid ([13, Chapter
VII]) can be generalised along the same lines as above to sets with atoms, by considering
orbit-finite unions instead of finite ones. In this paper we stick to monoids of data words and
data vectors, over an orbit-finite alphabet.

Closure properties. As tools to be used later, we prove that rationality of a language is
preserved by the restriction to a subset of its alphabet, as well as by substitution by rational
languages. The same preservation property holds for languages with rational Parikh images.

▶ Lemma 6. If a language L ⊆ Σ∗ has rational Parikh image (resp. is rational) and Γ ⊆ Σ
then the restriction L ∩ Γ∗ has also rational Parikh image (resp. is rational).

Proof. Intuitively speaking, it is enough to syntactically remove, in the rational expression
defining Par(L), every appearance of a letter σ ∈ Σ − Γ.

Formally, we proceed by induction on a derivation of L. By Claim 4(2) we assume,
w.l.o.g., that the language L is rational.

The induction base: when L = {σ} is a singleton, σ ∈ Σ, then

L ∩ Γ∗ =
{
L if σ ∈ Γ,
∅ otherwise,

and in each case L ∩ Γ∗ is rational. The induction step follows immediately as restriction
commutes with all the operations involved:

(LK)∩Γ∗ = (L∩Γ∗)(K∩Γ∗) L∗∩Γ∗ = (L∩Γ∗)∗ (⋃
i∈I

Li

)
∩Γ∗ =

(⋃
i∈I

Li∩Γ∗)
. ◀

Consider a language L over an orbit-finite alphabet Σ and a (legal) family of languages
K = (Kσ)σ∈Σ over an alphabet Γ, indexed by Σ. We use the anonymous function notation

σ 7→ Kσ.

The substitution L(K) is the language over Γ containing all words obtained from some word
σ1σ2 . . . σn ∈ L, by replacing every letter σi by some word from Kσi :

L(K) =
⋃

σ1σ2...σn∈L

Kσ1Kσ2 . . .Kσn
.

S. Lasota and M. Pattathurajan 50:7

▶ Example 7. As usual, let L+ = L∗L. Consider the language L1 from Example 1 and
Σ = Γ = Atoms. By the equivariant substitution Ka = a+, or a 7→ a+, we obtain the
language L1(K) ⊆ Atoms∗ containing words, where each three consecutive maximal constant
infixes use three distinct letters (each two consecutive maximal constant infixes use two
distinct letters by the very definition), and the total number of these infixes is divisible by 3.

▶ Lemma 8 ([16], Lemma 5). If L and all languages Kσ have rational Parikh images (resp. are
rational) then the substitution L(K) has also rational Parikh image (resp. is rational).

4 Register automata

We define the model of nondeterministic register automata, and its syntactic subclass of
hierarchical automata.

Nondeterministic register automata (NRA). From now on we mostly consider input
alphabets of the form Σ = H × Atoms, where H is a finite pure (atomless) set.

Let k ≥ 1. In the sequel we consistently use variables xi, x
′
i, for 1 ≤ i ≤ k, to represent

the value of ith register at the start (pre-value) and at the end (post-value) of a transition,
respectively. We also consistently use the variable y to represent an input atom. A non-
deterministic k-register automaton (k-NRA) A consists of: a finite set H (finite component of
the alphabet), a finite set of control locations Q, subsets I, F ⊆ Q of initial resp. accepting
locations, and a finite set ∆ of transition rules of the form

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k)) (2)

where q, q′ ∈ Q, h ∈ H, and the transition constraint φ(x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k) is a

Boolean combination of equalities involving the variables x1, x2 . . . xk, y, x
′
1, x

′
2 . . . x

′
k. The

constraint specifies possible relation between the register pre-values (x1, x2 . . . xk), input
atom (y), and register post-values (x′

1, x
′
2 . . . x

′
k) resulting from a transition. If φ entails the

equality xi = x′
i, we say that the ith register is preserved by the transition rule.

A configuration ⟨q, (a1a2 . . . ak)⟩ ∈ Q × Atoms(k) of A, written briefly q(a1a2 . . . ak),
consists of a control location q ∈ Q and (pairwise distinct1) register values ai ∈ Atoms, for
1 ≤ i ≤ k. We note that different registers can not store the same value. For each tuple
r = a1a2 . . . ak ∈ Atoms(k), atom b ∈ Atoms, and tuple r′ = a′

1a
′
2 . . . a

′
k ∈ Atoms(k) that

satisfy the transition constraint, i.e., (a1a2 . . . ak, b, a
′
1a

′
2 . . . a

′
k) |= φ, a rule (2) induces a

transition

q(a1a2 . . . ak) ⟨h,b⟩−−−→ q′(a′
1a

′
2 . . . a

′
k)

labeled by ⟨h, b⟩ from the configuration q(a1a2 . . . ak) to the configuration q′(a′
1a

′
2 . . . a

′
k).

The semantics of k-NRA is defined as in case of classical NFA, with configurations considered
as states and Σ = H × Atoms as an alphabet. A run of A over a data word w =
⟨h1, b1⟩⟨h2, b2⟩ . . . ⟨hn, bn⟩ ∈ Σ∗ is any sequence of configurations q0(r0), q1(r1), . . . , qn(rn),
related by transitions labeled by consecutive letters of w:

q0(r0) ⟨h1,b1⟩−−−−→ q1(r1) ⟨h2,b2⟩−−−−→ . . .
⟨hn,bn⟩−−−−−→ qn(rn), (3)

1 Distinctness of register values is not relevant for expressiveness of register automata.

FSTTCS 2021

50:8 Parikh Images of Register Automata

where q0(r0) is an initial configuration (i.e., q0 ∈ I). A run is accepting if the ending
configuration qn(rn) is accepting (i.e., qn ∈ F). A data word w is accepted by A if A has an
accepting run over w.

Let Lq(r) q′(r′)(A) be the set of data words having an accepting run (3) that starts in
q0(r0) = q(r) and ends in qn(rn) = q′(r′). The language L(A) recognised by A is defined as:

L(A) =
⋃

q∈I,q′∈F,r,r′∈Atoms(k)

Lq(r) q′(r′)(A). (4)

▶ Remark 9. The above definition allows for guessing, i.e., an automaton may nondetermin-
istically choose, and store in its register, an atom not yet seen in the input (cf. [24]). In
particular, the initial register values are guessed nondeterministically.
▶ Remark 10. An alphabet H × Atoms and configurations Q× Atoms(k) are orbit-finite.
The model of NRA is a special case of the abstract notion of orbit-finite automata (cf. [1,
Sect. 5.2]), where alphabets and state spaces may be arbitrary orbit-finite sets. For alphabet
of the form Σ = H × Atoms, where H is pure and finite, NRA are expressively equivalent to
orbit-finite automata [1, Sect. 5.2].

Hierarchical register automata (HRA). We define a syntactical subclass of NRA by re-
stricting transition constraints. The idea is to update registers in a hierarchical manner: if a
transition rule does not preserve ith register, pre- and post-values of every larger register
(jth register, for j > i) are unspecified. Formally, a HRA is a NRA where each transition
constraint φ has the following form:

φ ≡ ψ(x1, x2, . . . , xi, y, x
′
i) ∧

∧
1≤j<i

xj = x′
j , (5)

for some i ∈ {1, . . . , k}. The sub-formula ψ describes how the post-value of ith register (x′
i)

depends on the relation between the input atom (y) and the pre-values of ith register and
smaller ones (x1, x2, . . . , xi). Note that all smaller registers are preserved, and larger ones are
not mentioned in φ (and hence their pre- and post-values are unspecified, which means that
any pre- and post-values are allowed). Note also that the constraint φ allows for updating
ith register (according to the sub-constraint ψ) as well as every larger register (arbitrarily);
the former we call specified update, and the latter one we call unspecified one. The number
i we call the level of the transition constraint, or of the transition (rule) it appears in. As
extreme examples, the following all-registers-preserving constraint∧

1≤j≤k

xj = x′
j ̸= y, (6)

as well as the most liberal constraint true satisfied by any pre- and post-values of registers
and any input atom, both are in the syntactic form (5), at level k and 1, respectively.

Intuitively speaking a HRA, when restricted to transition rules of some fixed level i,
resembles a NRA with just one (ith) register, with all larger registers removed, and all smaller
registers frozen to some fixed values. For i ≤ k and a tuple of atoms r ∈ Atoms(i), we may
define a refined semantics of a k-HRA A as the language of words accepted by a run where
the values of the first (smallest) i registers are continuously r and hence never change. We
denote the so defined language by Lr(A).

W.l.o.g. we may assume that a HRA is orbitized, i.e., its every transition constraint
φ(x1, . . . , xi, y, x

′
1, . . . , x

′
i) at level i defines one orbit (one equality type) in Atoms2i+1. For

instance, the constraint (6) defines one orbit, while true does not.

S. Lasota and M. Pattathurajan 50:9

▶ Example 11. Let H be a singleton, omitted below; we thus consider Atoms as an alphabet.
The following 2-HRA recognises the language L2 from Example 1. The control locations are
Q = {q1, q2, q3}, with single initial and accepting one I = F = {q3}. The automaton has the
following three transition rules:

(q3(x1, x2), y, x1 = x′
1 ̸= y ∧ x2 = x′

2 ̸= y, q2(x′
1, x

′
2)),

(q2(x1, x2), y, x1 = x′
1 ∧ x2 = x′

2 = y, q1(x′
1, x

′
2)),

(q1(x1, x2), y, x1 = y, q3(x′
1, x

′
2)).

the first two at level 2 and the last one at level 1. The post-value x′
2 of the second register

is unspecified in the last two rules. Moreover, the post-value x′
1 of the first register is also

unspecified in the last rule, and therefore the automaton is not orbitized. It can be easily
made orbitized by replacing this last rule with the following ones:

(q1(x1, x2), y, x1 = y = x′
1, q0(x′

1, x
′
2)),

(q1(x1, x2), y, x1 = y ̸= x′
1, q0(x′

1, x
′
2)).

It is not difficult to show that in terms of expressiveness HRA are a strict subclass of
NRA:

▶ Proposition 12. The language L1 from Example 1 is not recognised by any HRA.

Proof. Towards contradiction, suppose L1 is recognised by a k-HRA A. Consider a word
w = a1a2 . . . ak+2 ∈ Atoms∗ of length k+2 in which all letters are pairwise different (ai ̸= aj

for i ̸= j) and an accepting run π of A over w. Let ri be the valuation of registers in π after
reading ai.

We observe that each letter ai, for i < k+ 2, must be stored in a register in the considered
run π: ai it is the value of some register in ri. Indeed, suppose contrarily that ai is not the
value of any register in ri. By replacing this letter in w with ai+1 we obtain a word w′ where
two consecutive letters are equal, and hence w′ /∈ L1. On the other hand the run π is also an
accepting run over w′, and hence w′ ∈ L(A) – a contradiction.

Therefore we know that ai is the value of some ℓith register in ri, for every i = 1, . . . , k+1.
Note that this register with value ai is unique, and that it gets its value either by the
specified or unspecified update. We claim that ℓi < ℓi+1 for every i = 1, . . . , k. Indeed,
suppose ℓi ≥ ℓi+1 for some i. The inequality implies that either the value ai stored in ℓith
register is overwritten by the specified update (when ℓi = ℓi+1), or may be overwritten by an
unspecified one (when ℓi > ℓi+1). By replacing ai in w with ai+2 we obtain a word w′′ /∈ L1.
On the other hand the run π is easily modified into an accepting run over w′′ by replacing ai

with ai+2 in ri. In consequence, w′′ ∈ L(A) – a contradiction, similarly as before.
We have thus an increasing sequence 1 ≤ ℓ1 < ℓ2 < . . . < ℓk+1 ≤ k, thus yielding a

contradiction. ◀

As an intermediate corollary of Proposition 12 and Theorem 13 (cf. Section 5) we deduce
that L1 is not rational either.

5 Parikh-equivalence of HRA and rational languages

As our main contribution, we prove that Parikh images of rational languages (rational sets
of data vectors) coincide with Parikh images of HRA (cf. Corollary 22). This is split into two
parts: on one side we prove that rational data languages are recognised by HRA, and on the
other side Parikh images of HRA languages are rational (as sets of data vectors):

FSTTCS 2021

50:10 Parikh Images of Register Automata

▶ Theorem 13. Rational data languages are recognised by HRA.

▶ Theorem 14. Parikh images of HRA languages are rational.

Proof of Theorem 13. We proceed by induction on derivation of a rational language. For
convenience we assume, w.l.o.g., that each orbit-finite sum is indexed by a subset of I ⊆
Atoms(n) of non-repeating n-tuples of atoms, for some n ∈ N. Indeed, every orbit-finite
union can be split into a finite union of single-orbit unions, and every single-orbit set J is
the image of an equivariant function f from such a set I (cf. [1, Sect. 3.2]), J = f(I), hence⋃

j∈J

Lj =
⋃
i∈I

Lf(i) =
⋃
i∈I

Ki

where Ki = Lf(i). Under this simplifying assumption we prove, by induction on derivation
of a rational language, the following claim (we say that a tuple s ∈ Atoms(n) supports x if
the set of n atoms appearing in s does so):

▷ Claim 15. For every rational language L over an alphabet of the form Σ = H × Atoms,
and every tuple s supporting its derivation, there is a HRA A such that Ls(A) = L.

We emphasise that we consider supports of derivations of rational languages, defined as
well-founded trees (cf. Section 3), instead of supports of languages themselves. Clearly, a
tuple supporting a derivation of a language also support the language itself.

The induction base, for L = {ε} or L = {σ} where σ ∈ Σ, is straightforward. The
induction step splits into three cases.

Case 1: L = L1 L2 Let s be a tuple of atoms supporting the derivation of L, and hence
also the derivations of L1 and L2. Let A1 and A2 be the HRA which, due to the induction
assumption, recognize Ls(A1) = L1 and Ls(A2) = L2. Let the automaton A initially run
A1, and from each accepting location of A1 nondeterministically choose either to continue
inside A1, or to run A2. We have Ls(A) = L, as required.

Case 2: L = K∗ This case is dealt with similarly to the previous one.

Case 3: L =
⋃

i∈I Li Let s be a tuple of atoms supporting the derivation of L, and hence
also the set I and the mapping i 7→ Li. Thus the concatenated tuple si supports Li (recall
that i is assumed for convenience to be a tuple of atoms). For an s-orbit J in I, let

LJ =
⋃
j∈J

Lj ⊆ L.

Consider an arbitrary s-orbit J in I (each orbit is treated separately). Fix an arbitrary
element i ∈ J and an automaton B such that, due to the induction assumption, recognizes
Lsi(B) = Li. Therefore, for every j = π(i) ∈ J , where π is an s-automorphism, the same
automaton B recognizes Lsj(B) = Lj . Let the automaton AJ initially guess i ∈ J and put it
into the smallest registers not occupied by s, and then run B. We have Ls(AJ) = LJ . The
language L is the union of finitely many languages LJ , and hence L is recognized by a HRA
that initially chooses an s-orbit J in I and then runs AJ . ◀

Proof of Theorem 14. We now focus on showing that Parikh images of languages of HRA
are rational. The proof proceeds by induction on the number of registers.

S. Lasota and M. Pattathurajan 50:11

Induction base. The induction base, i.e., rationality of Parikh images of 1-HRA languages,
follows immediately by the following result of [16]:

▶ Lemma 16 ([16], Theorem 6). Parikh images of 1-NRA languages are rational.

Altering paths. Before proceeding to the induction step we recall an immediate corollary of
another results of [16] (cf. Lemma 17 below). Given a k-HRA A = ⟨H,Q, I, F,∆⟩, we define
the language PA over the alphabet2 (Q× Atoms ×Q) ∪ (H × Atoms) containing words of
the form:

⟨q1, a1, p1⟩⟨h1, b1⟩⟨q2, a2, p2⟩⟨h2, b2⟩ . . . ⟨qn−1, an−1, pn−1⟩⟨hn−1, bn−1⟩⟨qn, an, pn⟩ (7)

(n ≥ 1) such that, for i = 1, . . . , n− 1, it holds ai ̸= ai+1 and

pi(air) ⟨hi,bi⟩−−−−→ qi+1(ai+1r′) (8)

is a transition of A at level 1 for some tuples r, r′ ∈ Atoms(k−1), and such that q1 ∈ I and
pn ∈ F . The atoms ai and ai+1 are here pre- and post-values of the first register, and r, r′

are pre- and post-values of the remaining k− 1 registers. Words in P are called altering paths.
Intutively, a letter ⟨q, a, p⟩ represents a run of A starting from a configuration q(ar′) and
ending in p(ar), for some r, r′ ∈ Atoms(k−1), such that the first register contains a and is
preserved along the run until the automaton reaches the configuration p(ar), from which the
automaton finally updates the first register. Along this run other registers may be updated.
As an immediate consequence3 of [16, Lemma 17] we get:

▶ Lemma 17. The altering path language PA of a 1-HRA A has rational Parikh image.

We observe that the altering path language of a k-HRA A is the same as the altering path
language of a 1-HRA A′ obtained from A by removing all registers except the first (smallest)
one, and all transition rules of level greater than 1. Therefore, as an immediate corollary of
Lemma 17 we get:

▷ Claim 18. For every k ≥ 1, the altering path language PA of k-HRA A has rational Parikh
image.

Induction step. We now proceed to the induction step. To this aim we fix k > 1 and
assume that languages of HRA with less than k registers have rational Parikh images. We
consider a fixed k-HRA A = ⟨H,Q, I, F,∆⟩ and aim at showing that Parikh image of L(A)
is rational. W.l.o.g. we assume that A is orbitized. Let Σ = H × Atoms denote the input
alphabet.

We construct a k-HRA Aqp by removing from A all transition rules that update (i.e., do
not preserve) the first register, and by taking q as the only initial location and p as the only
accepting one. Intuitively speaking, the first register is frozen in Aqp, in the sense that it is
never updated and thus keeps its initial value a along the whole run. For a ∈ Atoms, we
denote by

La(Aqp) =
⋃

r,s∈Atoms(k−1)

Lq(ar) p(as)(Aqp) ⊆ L(Aqp)

2 This is the unique place where we consider reacher alphabets than H × Atoms, for finite H.
3 Altering path languages considered in Lemma 17 in [16] start and end in fixed locations. The language

PA is thus a finite union of these languages.

FSTTCS 2021

50:12 Parikh Images of Register Automata

the subset of L(Aqp) consisting of words accepted by Aqp by a run where the value of the
first register is (continuously) a. We need to deduce from the induction assumption the
following claim:

▷ Claim 19. The languages La(Aqp) have rational Parikh images.

Before proving the above claim we use it to complete the proof Theorem 14. Consider the
language K = PA(S) obtained by applying the following substitution S to the language PA:

⟨q, a, p⟩ 7→ La(Aqp) ⟨h, b⟩ 7→ {⟨h, b⟩}.

In words, triples ⟨q, a, p⟩ are replaced by any word accepted by Aqp by a run where the value
of the first register is continuously a, while pairs ⟨h, b⟩ are preserved.

▷ Claim 20. L(A) = K.

We argue that both inclusions hold. The inclusion L(A) ⊆ K is shown by factorising each
accepting run of A by transitions that update the first register, of the form (8), so that each
word w ∈ L(A) factorizes into:

w = w1 ⟨h1, b1⟩w2 ⟨h2, b2⟩ . . . wn−1 ⟨hn−1, bn−1⟩wn, (9)

for wi ∈ Lai
(Aqipi

) for some atom ai and control locations qi, pi, and therefore w ∈ K. For
the reverse inclusion K ⊆ L(A) consider a word w ∈ K, necessarily of the form (9), due to an
altering path as in (7) and accepting runs πi of Aqipi

over words wi, where the first register
is continuously equal ai along πi. By concatenating these runs (considered as sequences of
configurations) one gets an accepting run π = π1π2 . . . πn of A over the word w, as required.
The transitions (8) confirm that π is a run since A is hierarchical: all these transitions are
all at level 1 and may perform (unspecified) updates of all other registers.

Having Claims 18, 19 and 20 one easily completes the proof of Theorem 14. Indeed,
Parikh image of K = PA(S) is rational due to Lemma 8, as Parikh images of PA and all
languages La(Aqp) are so due to Claim 18 and 19, respectively, and therefore the same holds
for L(A), due to Claim 20.

Proof of Claim 19. For every q, p ∈ Q we define a new (k− 1)-HRA A′
qp that behaves exactly

as Aqp except that the first register is removed. The removal of the register is compensated by
an additional bit in the finite component of the alphabet of A′

qp that informs the automaton
whether the input atom is equal to the (removed) first register or not.

Formally, the new automaton is A′
qp = ⟨{=, ̸=} ×H,Q, {q}, {p},∆′⟩, where the transition

rules ∆′ are defined as follows. Due to the assumption that A is orbitized (and hence so are
all automata Aqp), its every transition constraint (5) at level i, say, either entails the equality
y = x1, or the inequality y ̸= x1. The transition rules ∆′ are obtained from the transition
rules of Aqp (i.e., from transition rules of A at level greater than 1) by transforming each
transition rule

(q(x1, x2 . . . xk), ⟨h, y⟩, φ, q′(x′
1, x

′
2 . . . x

′
k))

of Aqp to the following one:

(q(x1, x2 . . . xk), ⟨(∼, h), y⟩, φ′, q′(x′
1, x

′
2 . . . x

′
k))

where ∼∈ {=, ̸=} is chosen so that φ entails y ∼ x1, and φ′ is obtained from φ by removing
all (in)equalities referring to the first register.

S. Lasota and M. Pattathurajan 50:13

By induction assumption we know that Parikh image of A′
qp is rational, for every q, p ∈ Q.

For a ∈ Atoms, consider the following sub-alphabet (that fixes, intuitively, the value of the
first register to be a):

Σa = {⟨(=, h), a⟩ : h ∈ H} ∪ {⟨(̸=, h), b⟩ : h ∈ H, b ∈ Atoms − {a}} ⊆ Σ,

and define the languages Lqap as the restriction of L(A′
qp) to the sub-alphabet Σa:

Lqap := L(A′
qp) ∩ (Σa)∗.

By Lemma 6 we have:

▷ Claim 21. Parikh images of the languages Lqap are rational.

Finally, we observe that La(Aqp) is obtained from Lqap by applying the substitution (actually,
the projection):

⟨(∼, h), b⟩ 7→ {⟨h, b⟩}

and therefore also has rational Parikh image, as required. This completes the proof of
Claim 19, and hence also the proof of Theorem 14. ◁

◀

▶ Corollary 22. Parikh images of HRA languages and of rational languages coincide.

▶ Corollary 23. An NRA has rational Parikh image if, and only if, it is Parikh-equivalent to
some HRA.

References
1 Mikołaj Bojańczyk. Slightly infinite sets. A draft of a book. URL: https://www.mimuw.edu.

pl/~bojan/paper/atom-book.
2 Mikołaj Bojańczyk. Data monoids. In Proc. STACS 2011, volume 9 of LIPIcs, pages 105–116.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.
3 Mikołaj Bojańczyk. Regular expressions for data words. Personal communication, 2020.
4 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.

Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011.
5 Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata with group actions. In

Proc. LICS 2011, pages 355–364, 2011.
6 Mikołaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets. Log.

Methods Comput. Sci., 10(3), 2014.
7 Mikołaj Bojańczyk and Sławomir Lasota. An extension of data automata that captures XPath.

Log. Methods Comput. Sci., 8(1), 2012.
8 Mikołaj Bojańczyk and Rafał Stefański. Single-use automata and transducers for infinite

alphabets. In Proc. ICALP 2020, volume 168 of LIPIcs, pages 113:1–113:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

9 Thomas Colcombet, Clemens Ley, and Gabriele Puppis. Logics with rigidly guarded data
tests. Log. Methods Comput. Sci., 11(3), 2015.

10 Thomas Colcombet and Amaldev Manuel. Generalized data automata and fixpoint logic. In
Proc. FSTTCS 2014, volume 29 of LIPIcs, pages 267–278. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2014.

11 Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In Proc. POPL ’14,
pages 541–554. ACM, 2014.

FSTTCS 2021

https://www.mimuw.edu.pl/~bojan/paper/atom-book
https://www.mimuw.edu.pl/~bojan/paper/atom-book

50:14 Parikh Images of Register Automata

12 Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1–16:30, 2009.

13 Samuel Eilenberg. Automata, languages, and machines. A. Pure and applied mathematics.
Academic Press, 1974. URL: https://www.worldcat.org/oclc/310535248.

14 Nissim Francez and Michael Kaminski. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

15 Nissim Francez and Michael Kaminski. An algebraic characterization of deterministic regular
languages over infinite alphabets. Theor. Comput. Sci., 306(1-3):155–175, 2003.

16 Piotr Hofman, Marta Juzepczuk, Slawomir Lasota, and Mohnish Pattathurajan. Parikh’s
theorem for infinite alphabets. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021.

17 Michael Kaminski and Tony Tan. Regular expressions for languages over infinite alphabets.
Fundam. Informaticae, 69(3):301–318, 2006.

18 Alexander Kurz, Tomoyuki Suzuki, and Emilio Tuosto. On nominal regular languages with
binders. In Lars Birkedal, editor, Proc. FOSSACS 2012, volume 7213 of Lecture Notes in
Computer Science, pages 255–269. Springer, 2012.

19 Leonid Libkin, Tony Tan, and Domagoj Vrgoc. Regular expressions for data words. J. Comput.
Syst. Sci., 81(7):1278–1297, 2015.

20 Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. J. Comput.
Syst. Sci., 66(1):66–97, 2003.

21 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

22 A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

23 Hiroshi Sakamoto and Daisuke Ikeda. Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci., 231(2):297–308, 2000.

24 Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In Proc. CSL
2006, volume 4207 of Lecture Notes in Computer Science, pages 41–57. Springer, 2006.

https://www.worldcat.org/oclc/310535248

Concrete Categorical Model of a Quantum Circuit
Description Language with Measurement
Dongho Lee # Ñ

Université Paris-Saclay, CentraleSupélec, LMF, France & CEA, List, France

Valentin Perrelle #

Université Paris-Saclay, CEA, List, France

Benoît Valiron # Ñ

Université Paris-Saclay, CentraleSupélec, LMF, France

Zhaowei Xu #

Université Paris-Saclay, LMF, France

Abstract
In this paper, we introduce dynamic lifting to a quantum circuit-description language, following
the Proto-Quipper language approach. Dynamic lifting allows programs to transfer the result of
measuring quantum data – qubits – into classical data – booleans – . We propose a type system
and an operational semantics for the language and we state safety properties. Next, we introduce a
concrete categorical semantics for the proposed language, basing our approach on a recent model
from Rios&Selinger for Proto-Quipper-M. Our approach is to construct on top of a concrete category
of circuits with measurements a Kleisli category, capturing as a side effect the action of retrieving
classical content out of a quantum memory. We then show a soundness result for this semantics.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases Categorical semantics, Operational semantics, Quantum circuit description
language

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.51

Funding This work was supported in part by the French National Research Agency (ANR) under
the research projects SoftQPRO ANR-17-CE25-0009-02 and PPS ANR-19-CE48-0014, by the DGE
of the French Ministry of Industry under the research project PIA-GDN/QuantEx P163746-484124,
and by STICAMSUD 21-SITC-20 Qapla’.

Acknowledgements The authors want to thank Christophe Chareton and Sébastien Bardin for
enlightening discussions.

1 Introduction

In quantum computation, one considers a special kind of memory where data is encoded on
the state of objects governed by the laws of quantum mechanics. The basic unit for quantum
data is the quantum bit, or qubit, and in general, a quantum memory is understood as
consisting in individually addressable qubits. As derived in the no-cloning theorem [23],
qubits are non-duplicable objects. The state of a quantum memory can be represented
by a unit vector in a complex Hilbert space. Elementary operations on qubits consist in
unitary operations on the state space, called quantum gates, and measurements, which are
probabilistic operations returning a classical boolean.

The usual model for quantum computation is the notion of quantum circuits. Quantum
circuits consist of quantum gates and wires. A wire represents a qubit, and each gate,
attached to one or several wires, is a unitary operation acting on the corresponding qubits.
In this model, a computation consists in allocating a quantum register, applying a circuit
(i.e. the list of gates, in order), followed with a measurement to get back classical data.

© Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 51; pp. 51:1–51:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fredldh@gmail.com
https://lmf.cnrs.fr/Perso/Dongho_Lee
mailto:Valentin.PERRELLE@cea.fr
mailto:benoit.valiron@lri.fr
https://www.monoidal.net
mailto:zhaowei@lri.fr
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Categorical Model for a Quantum Language with Measurement

The QRAM model [8] generalizes circuits: in this model, quantum computation is
performed under the control of a classical host. It emits a stream of interleaved (pieces of)
quantum circuits and measurements to the quantum co-processor. The quantum co-processor
executes the instructions while returning the results of measurements on the fly to the
classical host. In this model, the computation is not a fixed linear list of quantum gates:
the quantum gates emitted to the quantum co-processor might depend on the results of
intermediate measurements. Although quantum circuits and QRAM models are equivalent
in terms of expressive power, practical quantum computation is more likely to be based on
the QRAM model. For this reason, many programming languages and their semantics are
based on the QRAM model [17, 11, 7, 22, 24, 20, 18].

An interesting implication of this model is that the quantum circuit construction in
the classical host can be dependent on the result of a measurement: there is a transfer of
information from the quantum co-processor to the classical host. This feature is implemented
for example in Quipper [7, 1] and QWire [11, 12]. Following Quipper’s convention, we call
this transfer dynamic lifting: classical information is lifted from the quantum co-processor
to the classical host. Some use-cases for dynamic lifting are as follows. First, quantum
error correction typically interleaves unitaries and measurements. Other examples include
subroutines with repeat-until-success, where the result of the measurement on one wire says
whether the computation succeeded or not [4], and measurement-based quantum computation.

The classical control over the circuit construction imposed by dynamic lifting has not
been explicitly formalized in the semantics of the circuit construction languages using it. To
illustrate this problem, let us look at the program in Eq. (1). The syntax we use is presented
in Section 2, so we explain what the program does here: The program measures the qubit vc

and obtains the updated state of the qubit together with the resulting boolean b. Based on
b, it then either allocates a new qubit initialized by true, then free the qubit vc, or simply
returns vc

1. Despite this simple structure, the program does not correspond to a circuit
because of the classical control.

exp ::= let ⟨b, vc⟩ = meas(vc) in if b then ⟨init(tt), free(vc)⟩ else ⟨vc, ∗⟩ (1)

In QWire, the operational semantics performs normalization for composition and unbox
operations but the classical control by dynamic lifting is hidden in the host term within the
unbox. In Quipper, the operational semantics is encoded in Haskell’s monadic type system
and captures a notion of dynamic circuit including measurements. However, this semantics
has never been fully formalized in the context of higher-order, functional quantum languages.

Besides operational semantics, programming languages for quantum circuits have been
formalized using denotational semantics based on density matrices [11] and categorical
semantics based on symmetric monoidal categories [16, 14, 9, 14, 5], or on the category of
C∗-algebras [19, 13]. However, these examples of formalization do not solve the problem in
that they either ignore the structure of circuit or keep the term with dynamic lifting abstract.
In particular, in [14, 5], the authors construct expressive categorical models for the family of
circuits – or parameterized circuits – and linear dependent type theory, respectively, while
they do not provide semantics of dynamic lifting explicitly.

Our goal in this paper is to find a model and formalize a semantics for interleaved
quantum circuits and dynamic lifting. The problem rests in how to analyze the structure
of the computation without requiring the quantum co-processor to decide on the value of

1 The program actually returns a pair consisting of a qubit and the unit term ∗ so that it is well-typed;
we assume that the return type of free is the unit-type.

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:3

measurement. The interest of such a model and semantics is that it can serve as a test-bed
to explore properties of the language. Mixing non-duplicable data, higher-order and circuits
in a language yields a non-trivial system, and dependent-types were for instance only added
recently for Proto-Quipper [5], with the use of such tools.

Contributions. In this paper, we propose both a small step operational semantics and a
categorical semantics for a typed language – called Proto-Quipper-L – extending quantum
lambda calculus [17] with circuit construction operators (box and unbox) and circuit constants.
The formalization extends the one of Proto-Quipper [15]: circuits are generalized to quantum
channels enabling the formalization of the semantics of the dynamic lifting. A quantum
computation that only consists of unitary gates deterministically reduces to only one possible
value. On the other hand, a quantum computation with dynamic lifting might reduce to
distinct values depending on the results of the measurements. We support this by making
circuits not only lists but trees branching over the results of measurements: we call such
objects quantum channels. The language is then extended with a notion of branching terms,
representing the possible choices along the computation. We prove the usual safety properties
for the language: subject reduction, progress and termination (Lemmas 7, 8 and 9).

Next, we propose a sound categorical model for Proto-Quipper-L. The model is based on
Proto-Quipper-M, the work of Rios&Selinger [14]. It consists of two categories: a symmetric
monoidal category abstracting the notion of circuit, and an extension capturing classical
computation and circuit manipulation. A morphism in the former category becomes a
circuit-element in the extension. If this construction captures a sound notion of circuit, in its
abstract formulation it is not a priori amenable to dynamic lifting. To answer the issue, we
propose a concrete instantiation of the model in which dynamic lifting can be represented:
we define a concrete, symmetric monoidal closed category for representing quantum channels,
and, based on the construction proposed in [14], a linear category admitting a strong monad
F representing the branching side-effect associated with the measurement. Following [10, 21],
we use the Kleisli category MF to represent terms of Proto-Quipper-L.

In fact, branching monad in our categorical model corresponds to the Circ monad in
Quipper which models non-deterministic branching in the level of type system. Although it
is standard to use monad to model non-deterministic side effects, it was not clear whether
such a monadic structure could be set up on the categorical model of parameterized circuits
by Rios&Selinger [14]. The main result of the paper is to show how to do it, using a concrete
category of quantum channels. We validate the model by showing a soundness property
(Theorem 18).

2 Syntax, Types and Operational Semantics

In this section, we present the syntax of a minimal lambda-calculus for manipulating quantum
channels and booleans. The language is an extension of Proto-Quipper [15].

In Proto-Quipper, the quantum lambda calculus presented in [17] is extended with circuit
operators and constants. Circuit operators give an efficient way to construct circuits instead
of having to sequentially apply all the gates one-by-one. Specifically, two operators on circuits
are added to the language: the box operator allows us to use quantum circuits as classical
data, while the unbox operator applies a boxed circuit to an argument (usually a structured
set of qubits called pattern). Boxed circuits are first-class objects and can come with useful
circuit operators like reverse and control. Technically, a circuit object in Proto-Quipper
can be seen as a tuple (p, C, M) where p is structured set of the input wires of a circuit C,

FSTTCS 2021

51:4 Categorical Model for a Quantum Language with Measurement

matching the input type of the circuit. M is a term corresponding to the output of the
circuit. Along the reduction of M , the circuit C is possibly updated with new gates. The
term M is open, and the output wires of C are used in M linearly, meaning that each output
wire appears in M exactly once.

However, Proto-Quipper does not support dynamic lifting within circuits. To extend
Proto-Quipper with dynamic lifting, we replace circuits with quantum channels and redefine
the circuit operators box and unbox over quantum channels.

2.1 Quantum Channels
A quantum channel is the generalization of a quantum circuit: a tree structure where
branching captures the action of measurement. In essence, quantum channels are instances
of QCAlg, defined by the following grammar.

(QCAlg) Q, Q1, Q2 ::= ϵ(W) | U(W) Q | init b w Q | meas w Q1 Q2 | free w Q.

The symbols w, b, and W respectively refer to wires, booleans, and finite sets of wires. The
channel ϵ(W) stands for the empty computation on the qubits W . U(W) Q represent the
unitary operator U acting on the qubits W , followed by the operations stored in the quantum
channel Q. In general, U can range over a fixed set of unitary operations: we write arity(U)
for the arity of U . The operator init b w Q creates and initializes the wire w in state b,
followed by the channel Q possibly using the newly allocated qubit. The operator meas
represents the conditional branching on the result of a measurement. In our interpretation, a
measurement is non-destructive: the wire being measured is still allocated and can be acted
upon. The two channels Q1 and Q2 stand for the two possible branches to follow based on
the measurement. Finally, free w Q frees the qubit w before running Q. From now on, we
call the instance of QCAlg as quantum channel object.

We define a notion of validity for quantum channels: Q is valid whenever, for instance,
an init-node introduces a non-existing wire, or whenever a free-node acts on an existing wire.
One subtlety consists in deciding what is an output wire for a branching quantum channel.
For instance, consider Q = meas w1 (init b w2 (ϵ{w1, w2})) (ϵ{w1}). This quantum channel
admits as output {w1, w2} on the left branch and {w1} on the right branch. We formalize
this notion and write out(Q) for a tree-structured set of outputs of Q: Here, out(Q) is
[{w1, w2}, {w1}]. We also define all(Q) to stand for the set of all of the wires appearing in
Q, and in(Q) for the set of input wires. We give a formal definition of validity from the
following definition of state of quantum channel.

▶ Definition 1 (State of quantum channel). A bunch of elements of X is a binary tree where
only the leaves are indexed, with elements of X. Formally, if x ranges over X, a bunch is
built from the grammar c1, c2 ::= x | [c1, c2]. The ternary relation “st” formalizes what it
means for a quantum channel to be valid. It is defined as the smallest relation satisfying the
rules presented in Table 1. Informally, we say that a quantum channel Q is valid whenever
there is some set of wires V and a bunch of sets of wires c such that st(Q, V, c) is derivable.
Moreover, such V and c are called input and output wires of Q, respectively.

2.2 Syntax of the Terms
Having extended the notion of circuit to the notion of quantum channel, we turn to the
question of the definition of the language. Compared to previous Proto-Quipper instances [15,
14, 5], there are two main changes. The first one concerns the circuit constant; the other one
concerns the fact that one has to deal with non-deterministic branching computations.

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:5

Table 1 Valid quantum channel.

st(ϵ(W), W, W)

W1 ⊆W

arity(U) = |W1|
st(Q, W, c)

st(U(W1) Q, W, c)
w ̸∈W st(Q, W ∪ {w}, c)

st(init b w Q, W, c)

w ∈W st(Q1, W, ca) st(Q2, W, cb)
st(meas w Q1 Q2, W, [ca, cb])

w ∈W st(Q, W \ {w}, c)
st(free w Q, W, c)

Table 2 Proto-Quipper-L: terms, values, patterns, branching terms, branching values, types and
pattern types.

M, Ma, Mb ::= x | ∗ | tt | ff | (p, Q, m) | λx.M | MaMb | ⟨Ma, Mb⟩ |
let ⟨x, y⟩ = Ma in Mb | if M then Ma else Mb | boxP | unbox

V, Va, Vb ::= x | ∗ | tt | ff | λx.M | ⟨Va, Vb⟩ | (p, Q, v) | boxP | unbox | unbox(V)
p, pa, pb ::= x | ∗ | ⟨pa, pb⟩

m, ma, mb ::= M | [ma, mb]
v, va, vb ::= V | [va, vb]

A, Aa, Ab ::= I | bool | qubit | QChan(P, A) | Aa ⊸ Ab | Aa ⊗Ab | ! A

P, Pa, Pb ::= I | qubit | Pa ⊗ Pb

We call the new language Proto-Quipper-L and define it as shown in Table 2. The
constant ∗ stands for the unit term, while tt and ff stands for the booleans true and false.
The term (p, Q, m) corresponds to a quantum channel object: p is a pattern: a structured set
of input wires of a valid quantum channel Q, and m is a branching term that will match the
branching structure of Q for valid quantum channel objects. For simplicity wire identifiers
and term variables range over the same set of names. We then have the quantum channel
operators box and unbox from Proto-Quipper: box makes a quantum channel out of a
function, while unbox turns a quantum channel into a function. The rest of the constructors
of the language are standard: abstraction, application, pair, let, and conditional statements.
We define a notion of value in the standard way, apart from the fact that unbox(V) is also a
value (as it is a function). Finally, branching terms and values are constructed using the
branching constructor [−,−]. A term of the form [M, N] represents a computation that has
probabilistically branched and that is performing either M or N . This is novel compared to
Proto-Quipper. We denote the set of free variables of a term m with FV(m).

One could argue that the language is missing constructors for unitary gates, qubit
allocation and measurement. As in the case of Proto-Quipper, they can be defined with
the unbox and quantum channel object. For instance, we can construct a measurement
operation inputting a qubit and outputting a boolean and the measured wire as meas ::=
unbox (x, meas x (ϵ{x}) (ϵ{x}), [⟨tt, x⟩, ⟨ff, x⟩]). The tuple consists of a singleton wire name
x, the quantum channel (meas x ϵ{x} ϵ{x}), and the branching tree [⟨tt, x⟩, ⟨ff, x⟩]. Note
that the measurement operator we wrote here returns both a qubit and a boolean: we could
discard the qubit with the use of a quantum channel constructor “free” if we only wanted to
output a boolean. Similarly, we can also build the macros initb and free which respectively
allocates a new qubit in state b and frees a qubit, as initb ::= unbox(∗, init b x (ϵ{x}), x) ∗
and free ::= unbox (x, free x (ϵ(∅)), ∗). We can similarly define terms for unitary application
by encapsulating the QCAlg constructors U inside a quantum channel object.

FSTTCS 2021

51:6 Categorical Model for a Quantum Language with Measurement

Table 3 Proto-Quipper-L: Typing Rules.

!∆, (x : A) ⊢ x : A
(var)

!∆, Q ⊢M : !A
!∆, Q ⊢M : A

(d)
!∆ ⊢ V : A V is value

!∆ ⊢ V : !A
(p)

!∆ ⊢ ∗ : I
(I)

!∆, Q, (x : Aa) ⊢M : Ab

!∆, Q ⊢ λx.M : Aa ⊸ Ab

(⊸I)
!∆, Qa ⊢Ma : Aa ⊸ Ab !∆, Qb ⊢Mb : Aa

!∆, Qa, Qb ⊢MaMb : Ab

(⊸E)

!∆, Qa ⊢M : bool !∆, Qb ⊢M1 : A

!∆, Qb ⊢M2 : A

!∆, Qa, Qb ⊢ if M then M1 else M2 : A
(if)

!∆, Qa ⊢Ma : Aa ⊗Ab

!∆, Qb, (x : Aa), (y : Ab) ⊢Mb : A

!∆, Qa, Qb ⊢ let ⟨x, y⟩ = Ma in Mb : A
(⊗E)

!∆ ⊢ tt : bool
(tt)

!∆ ⊢ ff : bool
(ff)

!∆, Qa ⊢Ma : Aa !∆, Qb ⊢Mb : Ab

!∆, Qa, Qb ⊢ ⟨Ma, Mb⟩ : A1 ⊗A2
(⊗I)

!∆ ⊢ boxP : !(P ⊸ A) ⊸ !QChan(P, A)
(box)

!∆ ⊢ unbox : QChan(P, A) ⊸ (P ⊸ A)
(unbox)

γa ⊢ ma : A γb ⊢ mb : A

γa × γb ⊢ [ma, mb] : A
(b)

p ⊨ P vBind(!∆, out(Q), m, A)
!∆ ⊢ (p, Q, m) : !QChan(P, A)

(QChanI)

2.3 Type System
Types of Proto-Quipper-L are defined as in Table 2. Following the standard strategy [17, 15, 3]
to account for the non-duplicability brought by the quantum memory, we are using a type
system based on linear logic [6]. Types consist in the constant types I, bool, qubit; the
function type Aa ⊸ Ab; the type for pairs Aa ⊗Ab; the type !A of duplicable terms of type
A; the type of quantum channels QChan(P, A) with input of type P and output of type A,
where P refers to patterns, that is, first-order types constructed from qubits and tensors.

Conventionally, a typing judgment consists in a typing context, which maps variables to
types, and a term assigned with a type. However, in Proto-Quipper-L, the term can be a
branching term. Although the terms of all branches in a branching term are assigned with
the same type, they may have different typing contexts. This is formalized in two distinct
definitions of typing judgments: regular typing judgments Γ ⊢M : A where where Γ is a list
of typed variables and M is a non-branching term, and branching typing judgments γ ⊢ m : A,
where m is a branching term and γ is an branching typing context: γ ::= Γ | γ1 × γ2.

A judgment is valid if it can be derived from the typing rules presented in Table 3. The
rules ensure that various constraints necessary for soundness are satisfied. One can note that
all terms constituting a branching term share the same type ; that valid branching typing
judgments have branching contexts and terms with the same tree structure ; that a quantum
channel object is duplicable with type !QChan ; that box sends a duplicable function to a
duplicable quantum channel object, and that unbox sends a quantum channel object to a
function. One can also note that only values can be promoted to duplicable objects: this is
due to the call-by-value reduction strategy we follow. The relation vBind(!∆, out(Q), m, A)
in the (QChanI) rule ensures that one can derive typing derivations for each term leaf of m

given that the output wires of the quantum channel Q is assigned with type qubit within
the typing context. The relation p ⊨ P simply states that the shapes of p and P match and
that the variables occurring in p are pairwise distinct.

The rules for vBind are found in Table 4. Note that the non-linear context !∆ is a list of
pairs of variables and non-linear types. We denote by FV(!∆) the set of variables in !∆. In
fact, the condition (X ∩ FV(!∆) = ∅) is implicitly assumed by the definition of the typing
judgment (!∆, (x : qubit)x∈X ⊢M : A).

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:7

Table 4 Validity of binding in quantum channel constant.

X ∩ FV(!∆) = ∅ !∆, (x : qubit)x∈X ⊢M : A

vBind(!∆, X, M, A)
(vBindnb)

vBind(!∆, ca, ma, A) vBind(!∆, cb, mb, A)
vBind(!∆, [ca, cb], [ma, mb], A)

(vBindb)

∗ ⊨ I x ⊨ qubit

∀i, pi ⊨ Pi

FV(p1) ∩ FV(p2) = ∅
⟨p1, p2⟩ ⊨ P1 ⊗ P2

▶ Example 2. In Section 2.2 we defined three macros: meas, free and initb. We can type
meas with !(qubit ⊸ (bool ⊗ qubit)) and free with !(qubit ⊸ I). For initb, note that
because there is a final argument “∗”, it is really an application and we can therefore only
type it with qubit and not !qubit: this is expected, as we don’t want to be able to construct
duplicable qubits. With these types, we can now type the term exp in Eq (1) of Section 1:
we can derive the judgment vc : qubit ⊢ exp : qubit⊗ I.

▶ Remark 3. In general, there can be more than one typing derivation for a typing judgment
but, for the types I, qubit or bool, there is a unique typing derivation when the term is a
value. We call these types basic types.

2.4 Operational Semantics
The computational model we have in mind for the language is a reduction-based semantics
specialized to circuit construction: the operational semantics is modeling an I/O side-effect,
where gates are emitted and buffered in a quantum channel. Based on Proto-Quipper [15],
the operational semantics we describe therefore updates a configuration consisting of a pair
(Q, m): a buffered QCAlg object and a branching term. The term m is reduced up to a
value representing the final state of the computation. Along the computation, quantum gates
might be emitted to the co-processor: the quantum channel Q keeps track of these. One can
notice that a configuration corresponds to a quantum channel constant without the input
wires, where there is a minor relaxation on the linearity of the output wires of Q in m which
will be recovered when we define well-typed configuration.

▶ Definition 4. A circuit-buffering configuration is a pair (Q, m) as described above. It is
said to be valid whenever Q is valid, Q and m share the same tree-structure, and whenever
output wires of Q corresponds to free variables of m (following the tree-structure). So
for instance, V ⊆ FV(M) implies the validity of (ϵ(V), M), and whenever (Q1, ma) and
(Q2, mb) are valid so is (meas w Q1 Q2, [ma, mb]).

▶ Remark 5. In order to define the reduction rules, we need to be able to extend a configuration
with new wires. For instance, let us consider the term (ϵ{x, y}, if (N x) then y else y) with
N some term not containing y. Evaluating this configuration requires to first evaluate N x

and possibly append a few gates to ϵ{x, y}. However, this can be factorized as first evaluating
(ϵ{x}, N x) to (Q, V) and then adding back the wire y to the resulting quantum channel Q.
We therefore define an operator extend taking a quantum channel and a set of wire names,
adding them as unused wires to the quantum channel.

The reduction rules for Proto-Quipper-L are defined in Table 5. (See Section A.1 for more
details.) Rules (a.x) always hold (b ranges over {tt, ff}). In Rules (b.1), p is a pattern of same
shape as P made from dynamically allocated fresh variables. In Rule (b.2), p and V have the
same shape, and σ is a substitution mapping p to V . Provided that (Q, m) −→ (Q′, m′), we have

FSTTCS 2021

51:8 Categorical Model for a Quantum Language with Measurement

Table 5 Reduction rules for operational semantics.

(a.1) (ϵ(W), (λx.M)V) −→ (ϵ(W), M [V/x])
(a.2) (ϵ(W), let ⟨x, y⟩ = ⟨V, U⟩ in M) −→ (ϵ(W), M [V/x, U/y])
(a.3) (ϵ(W), if b then Mtt else Mff) −→ (ϵ(W), Mb)
(b.1) (ϵ(∅), boxP V) −→ (ϵ(∅), (p, ϵ(FV(p)), V p))
(b.2) (ϵ(FV(V)), (unbox(p, Q, u))V) −→ (σ(Q), σ(u))

(ϵ(WC[M]), C[M]) −→ (extend(Q, WC[−]), C[m]) (c)
(Q, [ma, mb]) −→ (Q′, [mc, md]) (d.1)

(Q, [ma, v]) −→ (Q′, [mc, v]) (d.2)
(Q, [v, mb]) −→ (Q′, [v, md]) (d.3)
(G Q1, ma) −→ (G Q3, mc) (d.3)

let ⟨b, vc⟩ = meas(vc) in Tvc −→ meas vc

let ⟨b, vc⟩ = ⟨tt, vc⟩ in T

let ⟨b, vc⟩ = ⟨ff, vc⟩ in T

vc

vc

vc

−→∗

meas vc

⟨init(tt), free(vc)⟩

⟨vc, ∗⟩

vc

vc

vc

−→∗

meas vc

init true vd free vc ⟨vd, ∗⟩

⟨vc, ∗⟩vc

v c

vc, vd vd

vc

Figure 1 Reduction of the term of Eq (1).

(ϵ(∅), (p, Q, m)) −→ (ϵ(∅), (p, Q′, m′)). Provided that we have that (ϵ(WM), M) −→ (Q, m),
that all(Q) ∩WN = ∅ and that all(Q) ∩WV = ∅, the class of rules (c) apply. There, C[−]
ranges over [−]N , V [−], ⟨[−], N⟩, ⟨V, [0]⟩, if [−]then Ma else Mb and let ⟨x, y⟩ = [−] in N . We
use syntactic sugar for combining terms and branching terms, as in C[m]. It corresponds
to the term constructor applied to each leaf of m, for instance: for m = [[N1, N2], N3],
C[m] := [[C[N1], C[N2]], C[N3]]. In Rules (d.x), Q stands for meas w Q1 Q2 and Q′ for
meas w Q3 Q4. These rules apply whenever (Q1, ma) −→ (Q3, mc) and (Q2, mb) −→ (Q4, md).
In (d.3), G ranges over U(W), init b w and free w.

▶ Example 6. As an example, we show the reduction of the term shown in Eq. (1). For
convenience, we define T as if b then ⟨init(tt), free(vc)⟩ else ⟨vc, ∗⟩. Figure 1 shows the
reduction of the term. (check Section A.2 for more details). We use a graphical representation
for configuration. A green box represents a quantum channel whose leaves are linked to
square-boxed terms. The edges represent bundles of wires, which can contain multiple wires
and can be empty.

In the first line, the measurement in the term is reduced by the structural rule for let

and the reduction rule for measurement creating a branching term. Then, each term at
a leaf of the tree is reduced into the left-most configuration of the second line. Note how
classical computation can happen inside the leaves. The second line of the figure shows the
application of initialization and free operation. In particular, note how the tree expands as
the computation progresses.

2.5 Type safety for Proto-Quipper-L
In order to state the type safety theorem, we need to extend typing derivations to configura-
tions. We write !∆ ⊢ (Q, m) : A whenever vBind(!∆, out(Q), m, A) and Q is valid. Note
that the definition implies that the output wires of the quantum channel correspond to the
linear variables of type qubit in the context of the typing derivation. In any case, we can
now state type safety for Proto-Quipper-L, as follows.

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:9

▶ Lemma 7 (Subject reduction). For any configurations (Q1, m1) and (Q2, m2) such that
(Q1, m1) −→ (Q2, m2), if ⊢ (Q1, m1) : A, then ⊢ (Q2, m2) : A.

▶ Lemma 8 (Progress). If (⊢ (Q1, m1) : A), then either there exists (Q2, m2) such that
(Q1, m1) −→ (Q2, m2) or m1 is a branching value.

▶ Lemma 9 (Termination). Given a well-typed configuration ⊢ (Q, m) : A, any reduction
sequence starting with (Q, m) is terminating.

3 Categorical semantics

In this section, we turn to the question of developing a categorical semantics for Proto-
Quipper-L. The categorical semantics of circuit-description languages and Proto-Quipper
in particular originates from Rios&Selinger [14]. They developed a model parametrized
by a symmetric monoidal category M . In their model one can therefore interpret higher-
order circuit-description languages, and several extensions of the semantics [5, 9] have been
discussed. However, none of them were shown to be able to capture dynamic lifting: the
possibility to change behavior depending on the result of a measurement.

Our proposal. What we propose in this paper is a concrete, symmetric monoidal category
M such that applying Rios&Selinger’s construction gives us also access to an interpretation
of dynamic lifting. The model we propose follows Moggi’s categorical interpretation of side
effect [10] and models the action of measurement using a (strong) monad. Our semantics
is therefore based on: (1) A category of diagrams, serving as graph-like abstractions of
quantum channels. This category is compact-closed and features products: it matches the
requirements of the base category M in Rios&Selinger’s work. This category is discussed in
Section 3.1. (2) The category M , extending M with the same procedure as Rios&Selinger.
This category is the category of values, following Moggi’s computational interpretation. It is
presented in Section 3.2. (3) A strong monad on M that we denote with F . This monad
encapsulates computations involving measurements: a general term of Proto-Quipper-L is
therefore interpreted inside the Kleisli category MF : This is the main novelty compared
to other models of Proto-Quipper-like languages [14, 5, 9], and the critical reason for the
possibility to interpret dynamic lifting. This is discussed in Section 3.4.

Finally, we discuss the soundness of the model and presents a few examples. For sake
of space, the presentation of the definitions and results is only kept to a minimum: more
information is available in the appendix.

3.1 Categories of Diagrams
In this section, we aim at building a category of quantum channels. We first define a
graph-based language: we call the corresponding terms diagrams to distinguish them from
the terms of QCAlg of Section 2.1: these are directed graphs with edges labeled with marks.
We then build the category M out of these terms.

Marks. Formally, we define marks with the grammar M ::= q | M⊗M | ⊞i∈XMi | M⊥,

where X ranges over the class of sets, and is subject to the equivalence relation defined as
⊞i∈I ⊞j∈J M(i,j) = ⊞j∈J ⊞i∈I M(i,j); (M1 ⊗M2)⊥ = M⊥

1 ⊗M⊥
2 ; (⊞i∈IMi)⊥ = ⊞i∈I(M⊥

i);
(M⊥)⊥ = M ; ⊞l∈L ⊞x∈l M(l,x) = ⊞x∈l1++···++ln

M(l,x), whenever L = [l1, . . . , ln]. Note that
⊞i∈∅Mi acts as a unit for ⊞: we denote it with I. If A = [A1 . . . An] is a list of marks, we use
the notation A⊗ for A1 ⊗ · · · ⊗ An. We also use a binary notation for ⊞ when the indexed
set contains 2 elements: ⊞x∈{a,b}Ax = Aa ⊞ Ab.

FSTTCS 2021

51:10 Categorical Model for a Quantum Language with Measurement

in

out ⊗ ⊗A

A

A B

A⊗B

A⊗B

BA

tr

A

〈b|

q |b〉

q

�X

�x∈XA

A

πx

Ax

�x∈XAx

∩

A A⊥

∪

A A⊥ A

A

B

B

I

I

G1

q

q

G2

q ⊗ q

q ⊗ q

(a) Elementary nodes.

fx

~B

~C

Ax

A′
x

fx

~B

~C

Ax

A′
x

�x∈X

�x∈XAx

�x∈XA′
x

~C

~B

∀x ∈ X

(b) Box node.

fx
�

�x∈X ~C⊗

�x∈X ~Ax
⊗

~C⊗

~Ax
⊗

�X

~C⊗

x ∈ X

⊗

~C

(c) Product.

Figure 2 Diagram Nodes and Product.

▶ Remark 10. Box node is a way of representing additive connectives of intuitionistic linear
logic. It can be considered as a set of different proofs depending on the choice made for
the additive connective. Note that we are following the convention of linear logic for (−)⊥,
where the (−)⊥ operator is not changing the order of tensors.

Diagrams. A diagram is a (possibly infinite) directed graph with edges indexed with marks
and built from elementary nodes and boxes. A diagram is not necessarily a connected graph.
By graphical convention, all edges are flowing upward: a diagram is therefore acyclic.

Elementary nodes make the basic building blocks of diagrams: they are shown on Figure 2a.
As we work with directed graphs, each edge connected to a node is either an input or an
output for that node. There are several kinds of elementary nodes: the structural nodes for
capturing the compact closed structure: ∪ , ∩ , ⊗ , I and the swap-node (also written

σ); the structural nodes for handling the product: ⊞ for the diagonal map and π for the
projection; the structural nodes for pointing inputs in and outputs out of diagrams; the
nodes specifically for quantum: |b⟩ and ⟨b| , with b ranging over booleans, where the former
stands for initialization and the latter for projection onto the corresponding basis, tr for
representing tracing (also useful for products), G1 for unary unitary gates and G2 for binary
gates. Note that the nodes allows more expressivity than what we need: for instance, tr

and ⟨b| are indistinguishable. We nonetheless keep them in order to draw attention on the
correspondence with quantum computation and an obvious mapping to completely positive
maps. For the sake of legibility, we do not draw in and out nodes unless necessary.

Presented in Figure 2b, a box-node is built from a family of diagrams. They should all
share the same input and output marks except for one pair of input/output (represented on
the left of the box-node). As a node, box-node has the same input and output marks as its
contained diagrams except that the left-most marks: these are the ⊞ of all left-most marks
of the family. We represent juxtaposition of edges as a double arrows. This node is the last
piece needed for representing products.

Equivalence relation on diagrams. We define an equivalence relation on diagrams. The
equivalence is given with local rules that can be extended to larger diagrams coherently:
subgraphs can be rewritten inside a larger graph. These rules exactly capture what is needed
for the categorical semantics to work. For instance, we include all of the rules for compact
closed categories [16]. We also for instance need the fact that the π -node acts as a projection
over box-nodes. The complete list can be found in the appendix.

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:11

�{tt,ff}

tt ff

〈tt| 〈ff |

q

q q
n :=

I � I

i :=
|tt〉 |ff〉

I � I

tr

I � I

q

q qI I

tr tr

(a) Morphisms in M .

|tt〉

〈tt| 〈ff |

|ff〉

tt ff

�{tt,ff}

q � q

init tt free

⊗
q I

q

⊗

I I

tr

I

I � I q

I q

(q ⊗ I)� (q ⊗ I)

q

I � I q

(b) Figure for Example 17.

Figure 3 Examples of Morphisms.

Category of Diagrams. Based on the definition of diagrams, we define the category of dia-
grams M : object are lists of marks [A1, . . . , An], and a morphism [A1, . . . , An]→ [B1, . . . , Bm]
is a diagram with in -nodes of marks Ai and out -nodes of marks Bi, modulo the equivalence
relation defined on diagrams. We use the notation A⃗ for the list of the Ai’s. An identity
morphism is a diagram consisting of a bunch of simple edges connecting in and out nodes.
Composition consists in identifying out and in nodes of diagrams. The category M is sym-
metric monoidal: The unit is I = [], the empty list, and the monoidal structure is given with
⊗ : M ×M → M defined as [A1, . . . , An] ⊗ [B1, . . . , Bm] = [A1, . . . , An, B1, . . . , Bm], and
f ⊗ g the juxtaposition of diagrams. As for standard graphical representation of symmetric
monoidal structure [16], the associativity, unit laws and symmetry of the tensor product follow
their graphical conventions. Finally, the operation on marks (−)⊥ lifts to a contravariant
functor, giving a compact-closed structure to M . It then admits an internal hom: A⃗ ⊸ B⃗

can be defined as [A1, . . . , An] ⊸ [B1, . . . , Bm] = [A⊥
1 , . . . , A⊥

n , B1, . . . , Bm]. Thanks to the
π -nodes and the corresponding diagram equivalence rules, the category M also has products:

for any family of objects {A⃗x | x ∈ X} indexed by a set X, let ×x∈XA⃗x = [⊞x∈XA⃗x
⊗

] be
the product of the family of objects. Then, the family of projections πx : ×x∈XAx → Ax

is given by the π-node. Finally, for any family of maps {fx : C → Ax}x∈X , the morphisms
⟨fx⟩ : C → ×x∈XAx is the diagram presented in Figure 2c. As an abuse of notation we use
one ⊗ for tensoring several wires at once.

▶ Remark 11. The category of diagrams is strongly inspired from proof nets: tensor nodes
correspond to multiplicative connectives while boxes correspond to additive connectives.

Examples of morphisms in M . Lastly, we show in Figure 3a two interesting morphisms
in the category M . The morphism n : [q] → [I ⊞ I] corresponds to the measure: in each
branch we perform a projection, and we keep in the output the information of where we
were. Note that the semantics does not state what is doing ⟨tt|: what is important is to
(1) “remove” the q-wire, and (2) keep as information if we are on the “true” or the “false”
part. The morphism i corresponds to qubit creation: it takes a boolean I ⊞ I, initializes a
qubit depending on its state and “forgets” the boolean. As a last example we can build the
injections I → I ⊞ I in a similar way to n: first a ⊞ -node, followed with a box-node where
we trace out the component we do not need.

▶ Remark 12. The object [I ⊞ I] corresponds to the bit-type in Quipper or in Proto-Quipper,
corresponding to boolean values within the quantum co-processor, and manipulated with
circuits in Quipper. For simplicity we did not include such a bit-type in the language, but it
does exist in the model.

FSTTCS 2021

51:12 Categorical Model for a Quantum Language with Measurement

▶ Definition 13 (Intepreting QCAlg terms). Let us use the notation q⊗n to represent a list
[q, ...q] of size n. A QCAlg-term Q can be interpreted as a M -morphism [[Q]] : A→ B, where
A = q⊗in(Q) and B of tree-shape for instance (q⊗n1 ⊞ q⊗n2) ⊞ q⊗n3 , following the tree-shape
of out(Q). The M -morphism [[Q]] is then defined by induction, using the idea presented
above: initialization and unitary gates are simply composed, and the branches of a meas
operation are encapsulated inside box-nodes.

3.2 Coproduct completion
Coproduct completion allows us to define families of circuits [14, 5]: the categorical structure
clearly separate what is purely quantum and what is parameter to the computation: we
have parametric families of quantum channels. Formally, this is done using the coproduct
completion M of M . In this completion, an object corresponds to a pair (X, (Ax)x∈X) where
X is a set and Ax is an object of M for each x ∈ X: This should be understood as a
parametric families of objects of M . A morphism from (X, (Ax)) to (Y, (By)) corresponds to
a pair (f0, (fx)x∈X) where f0 : X → Y is a set function and fx : Ax → Bf0(x) is a morphism
in M for each x ∈ X. Intuitively, to each choice of parameter x we have a M -morphisms
Ax → Af0(x). Composition is defined with (g0, (gy))◦ (f0, (fx)) = (g0 ◦f0, (gf0(x) ◦fx)) where
(g0, (gy)) : (Y, (By))→ (Z, (Cx)) and (f0, (fx)) : (X, (Ax))→ (Y, (By)) are morphisms in M ,
while the identity is idA = (idX , (idAx

)) for an object A = (X, (Ax)).
According to Rios&Selinger [14], the category M is symmetric monoidal closed, and

features products and co-products. In particular, the monoidal unit is ({∅}, (I)) (where
∅ stands for the only representative of the singleton-set), and when A = (X, (Ax)) and
B = (Y, (By)), the tensor on objects is A ⊗ B = (X × Y, (Ax ⊗ By)(x,y)) and the internal
hom is A ⊸ B = (X → Y, (Cf)f∈X→Y) (X → Y is the set of all set-functions from X to
Y and Cf refers to the product ⊞x∈X(Ax ⊸ Bf(x)) of internal homs in M). Note that the
product is defined by ⊞ in the case of the category of diagrams. Also note that compared
to [14], we can capitalize on the concrete structure of the category for the proofs involving
the coproduct completion. For instance, the associativity is trivial in our category M .

Finally, in order to model the type operator “!”, Rios&Selinger rely on Benton’s linear/non-
linear model [2], based on an adjunction between a symmetric monoidal closed category
and a cartesian closed category. In our case, as in [14] the adjunction is built between the
SMCC M and the cartesian closed category Set. The two functors of the adjunction are
p : Set→M , defined on objects as p(X) = (X, (I)X), and b : M → Set, defined on objects
as b(X, (Ax)) =

∑
x∈X M(I, Ax) where M(I, Ax) is the set of morphisms between the objects

I and Ax of the category M and
∑

x∈X M(I, Ax) is the disjoint union of all such sets over
X . From the adjunction, one can then construct a comonad “!” defined as ! = p ◦ b.
▶ Remark 14. In M there are two classes of interesting objects. The parameters are objects
of the form (X, (I)x∈X): the family consists in trivial objects of M , and the only information
is given by. . . the parameter. The state object is the dual: the parameter is trivial and
the family is of size 1 with only one object of M . It is then of the form ({∅}, (A)). One
therefore has two booleans: a parameter boolean bp = ({tt, ff}, (I){tt,ff}) and the state
boolean bs = ({∅}, (I ⊞ I)) living in M .

3.3 Monad for Branching Computation
According to Rios&Selinger, the category M together with the structure sketched in Sec-
tion 3.2 forms a model of Proto-Quipper-M. We shall now see how our concrete construction
can also support dynamic lifting, therefore forming a model of Proto-Quipper-L.

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:13

The main problem consists in lifting a branching sitting inside a quantum channel – i.e.
inside the category M – to turn it into a coproduct on which one can act upon in the classical
world, represented by the category M : as in Remark 14, we need to lift a state-boolean into
a parameter-boolean. Our strategy consists in defining a strong monad (F, µ, η, t) to capture
the action of retrieving such a branching: a term featuring measurement (and dynamic
lifting) is therefore represented within the Kleisli category MF , following Moggi’s [10] view
on side-effects.

The functor F : M → M is defined as follows. For an object A = (X, (Ax)), we define
F (A) = (mset(X), ([⊞x∈lA

⊗
x])l∈mset(X)), where mset(X) is the set of multisets of X, while

for a morphism f = (f0, (fx)) : A → B we set F (f) = (g0 : mset(X) → mset(Y), gl :
[⊞x∈lA

⊗
x]→ [⊞y∈g0(l)B

⊗
y]), where g0 = {[x0, . . . , xn] 7→ [f0(x0), . . . , f0(xn)]} and where gl is

defined as shown on the right.

▶ Example 15. The lifting of the state boolean bs of Remark 14 to the parameter boolean
bp is then a M -map lb : bs → F (bp), where F (bp) is (mset{tt, ff}, (⊞x∈lI)l). The map
lb is defined as (lb0, (fx)x) where lb0 : {∅} → mset{tt, ff} sends ∅ to [tt, ff], and where
lb∅ : I ⊞ I → I ⊞ I is simply defined as the identity. In the other direction, the M -map
bp → bs consists of the constant set-function on ∅ together with the injections I → I ⊞ I

discussed in Section 3.1.

▶ Remark 16. In Quipper dynamic lifting is implemented in the Circ monad which corresponds
to the strong monad of F in our model. The branching side-effect corresponds to the RW_Read
constructor of the Circ monad.

3.4 Interpreting Typed Terms and Configurations
In this section, we introduce an interpretation of Proto-Quipper-L within the Kleisli category
MF . As it is customary, types are mapped to objects while typing derivations are mapped
to morphisms. When typed terms admit a unique typing derivation this entails a unique
denotation for typed terms. In our situation, due to the promotion and dereliction rules
typing derivations are not necessarily unique: we therefore adjust the statements of the
lemmas and theorems accordingly. However, in the case of values of basic types, thanks to
Remark 3 and the type safety properties, the denotation of closed terms of basic types is
independent from the choice of typing derivation: this gives Corollary 19.

The interpretation [[A]] of a type A is directly built against the categorical structure: [[I]] =
({∅}, (I)), [[bool]] = ({tt, ff}, (I, I)), [[qubit]] = ({∅}, ([q])), [[Aa ⊸ Ab]] = [[Aa]] ⊸

MF

[[Ab]] the

internal hom in the category MF , [[Aa⊗Bb]] = [[Aa]]⊗ [[Ab]], [[!A]] = ![[A]] = (p◦ b)[[A]]. Finally,
for quantum channels we follow Rios&Selinger’s strategy by defining [[QChan(P, B)]] =
p(MF ([[P]], [[A]])). In our situation, the set MF (A, B) is isomorphic to M(A, B) when A and
B are state objects: in this situation, QChan-types indeed correspond to morphisms of the
category M , i.e. quantum channels: this is used to interpret the box and unbox operators.
The quantum channel constant is just an encapsulation over Definition 13. Finally, a typed
configuration !∆ ⊢ (Q, m) : A is interpreted as the composition of Q (i.e. we first “compute”
Q) followed with the interpretation of M .

▶ Example 17. The term exp of Eq.(1) in Section 1 has for interpretation a morphism
({∅}, (q)) → (mset{(∅, ∅)}, (q)l) defined as (f0, (f∅)) where f0(∅) = [(∅, ∅), (∅, ∅)] and f∅ is
defined as shown in Figure 3b (the dashed lines are meant to be vertical). The bottom
box-node represents the measurement (I ⊞ I being the result) and the upper one the test.
The top result is a ⊞-superposition of 2 copies of q ⊗ I, as expected: these stand for the two
“classical” possibilities.

FSTTCS 2021

51:14 Categorical Model for a Quantum Language with Measurement

In general, soundness of categorical semantics states that the categorical interpretation of
the typing derivation is preserved over the reduction. However, there can be multiple type
derivations for each type judgement, in our type system, because of the reason explained
above. Therefore, in this paper, we show that for a type judgement and a typing derivation,
there exists a particular typing judgement of the reduced type judgement which has the
same interpretation of the original typing derivation.

▶ Theorem 18 (Soundness). For any configurations (Q1, m1) and (Q2, m2) such that
(Q1, m1) −→ (Q2, m2), if ⊢ (Q1, m1) : A, then for any typing derivation π1 of ⊢ (Q1, m1) : A,
there exists a typing derivation π2 of ⊢ (Q2, m2) : A such that [[π1]] = [[π2]].

Finally, from the type safety properties, we can derive the following, making it possible
to define the interpretation of a closed term of basic type.

▶ Corollary 19. All the typing derivations of a closed term of basic type share the same
interpretation.

4 Conclusion

In this paper, we introduce the language Proto-Quipper-L which formalizes several features
of Quipper (dynamic lifting, higher-order function, circuit composition, and branching) while
treating the qubits linearly using the type system. On one hand we propose a type system
and an operational semantics which explains the meaning of programs as a set of reduction
rules. On the other hand, we propose a concrete categorical model of the language which is
proven to be sound, meaning that the semantics is preserved over the operational semantics.

On one side, the model is closely related to models of intuitionistic linear logic. Diagrams
are akin to proof nets: tensor nodes correspond to multiplicative connectives while boxes
correspond to additive connectives. On the other side, they can be considered as an extension
of diagrammatic languages for quantum processes [19].

Our concrete semantics makes it possible to describe a monad, following closely Quipper’s
operational semantics encoded in Haskell’s type system. With this semantics we are able to
answer an open question in the community: finding a categorical representation of dynamic
lifting for a circuit-description language.

References
1 Linda Anticoli, Carla Piazza, Leonardo Taglialegne, and Paolo Zuliani. Towards quantum

programs verification: from Quipper circuits to qpmc. In International Conference on Reversible
Computation, pages 213–219. Springer, 2016.

2 P Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. In International
Workshop on Computer Science Logic, pages 121–135. Springer, 1994.

3 Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin T. Vechev. Silq: a high-level
quantum language with safe uncomputation and intuitive semantics. In Alastair F. Donaldson
and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20,
2020, pages 286–300. ACM, 2020. doi:10.1145/3385412.3386007.

4 Qingxiuxiong Dong, Marco Túlio Quintino, Akihito Soeda, and Mio Murao. Success-or-draw:
A strategy allowing repeat-until-success in quantum computation. Phys. Rev. Lett., 126:150504,
April 2021. doi:10.1103/PhysRevLett.126.150504.

5 Peng Fu, Kohei Kishida, and Peter Selinger. Linear dependent type theory for quantum
programming languages. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 440–453, 2020.

https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1103/PhysRevLett.126.150504

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:15

6 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
7 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.

Quipper: A scalable quantum programming language. In Hans-Juergen Boehm and Cormac
Flanagan, editors, Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’13, pages 333–342. ACM, 2013. doi:10.1145/2491956.
2462177.

8 Emmanuel Knill. Conventions for quantum pseudocode. Technical report, Los Alamos National
Lab., NM (United States), 1996.

9 Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev. Enriching a linear/non-linear
lambda calculus: A programming language for string diagrams. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 659–668. ACM, 2018.

10 Eugenio Moggi. Notions of computation and monads. Information and computation, 93(1):55–
92, 1991.

11 Jennifer Paykin, Robert Rand, and Steve Zdancewic. QWIRE: a core language for quantum
circuits. In Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL’17, pages 846–858.
ACM, 2017. doi:10.1145/3009837.3009894.

12 Robert Rand, Jennifer Paykin, and Steve Zdancewic. QWIRE practice: Formal verification
of quantum circuits in coq. In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th
International Conference on Quantum Physics and Logic, QPL 2017, volume 266 of Electronic
Proceedings in Theoretical Computer Science, pages 119–132, 2017. doi:10.4204/EPTCS.266.8.

13 Mathys Rennela and Sam Staton. Classical control, quantum circuits and linear logic in enriched
category theory. Log. Methods Comput. Sci., 16(1), 2020. doi:10.23638/LMCS-16(1:30)2020.

14 Francisco Rios and Peter Selinger. A categorical model for a quantum circuit description
language. In Bob Coecke and Aleks Kissinger, editors, Proceedings 14th International Con-
ference on Quantum Physics and Logic, QPL 2017, volume 266 of Electronic Proceedings in
Theoretical Computer Science, pages 164–178, 2018. doi:10.4204/EPTCS.266.11.

15 Neil J. Ross. Algebraic and logical methods in quantum computation. PhD thesis, Dalhousie
University, 2015.

16 Peter Selinger. A survey of graphical languages for monoidal categories. In New structures for
physics, pages 289–355. Springer, 2010.

17 Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science, 16(3):527–552, 2006.

18 Robert S. Smith, Michael J. Curtis, and William J. Zeng. A practical quantum instruction set
architecture. arXiv preprint, 2016. arXiv:1608.03355.

19 Sam Staton. Algebraic effects, linearity, and quantum programming languages. SIGPLAN
Not., 50(1):395–406, January 2015. doi:10.1145/2775051.2676999.

20 Krysta M. Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina
Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#:
Enabling scalable quantum computing and development with a high-level domain-specific
language. arXiv preprint, 2018. arXiv:1803.00652.

21 Benoît Valiron. Semantics for a higher order functional programming language for quantum
computation. PhD thesis, University of Ottawa, 2008.

22 Dave Wecker and Krysta M. Svore. LIQUi|⟩: A software design architecture and domain-specific
language for quantum computing. arXiv preprint, 2014. arXiv:1402.4467.

23 William K. Wootters and Wojciech H. Zurek. A single quantum cannot be cloned. Nature,
299:802–803, October 1982. doi:10.1038/299802a0.

24 Bernhard Ömer. Structured quantum programming. PhD thesis, Technical University of Vienna,
2003.

FSTTCS 2021

https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.4204/EPTCS.266.8
https://doi.org/10.23638/LMCS-16(1:30)2020
https://doi.org/10.4204/EPTCS.266.11
http://arxiv.org/abs/1608.03355
https://doi.org/10.1145/2775051.2676999
http://arxiv.org/abs/1803.00652
http://arxiv.org/abs/1402.4467
https://doi.org/10.1038/299802a0

51:16 Categorical Model for a Quantum Language with Measurement

A Operational semantics

A.1 Reduction
The reduction rules for Proto-Quipper-L are defined as follows.

Reduction rules for classical computation. The following rules always hold (b is tt or ff)

(ϵ(W), (λx.M)V) −→ (ϵ(W), M [V/x])
(ϵ(W), let ⟨x, y⟩ = ⟨V, U⟩ in M) −→ (ϵ(W), M [V/x, U/y])
(ϵ(W), if b then Mtt else Mff) −→ (ϵ(W), Mb)

Reduction rules for circuit operations. Provided that new is an operator that creates free
variables during the computation, meaning that these free variables do not appear in both
classical and quantum contexts and that the term new(P) is a pattern of same shape as P

made out of these new variables, we have

p = new(P) Wp = supp(p)
(ϵ(∅), boxP V) −→ (ϵ(∅), (p, ϵ(Wp), V p))

shape(p) = shape(V) σ = bind(p, V)
(ϵ(FV(V)), (unbox(p, Q, u))V) −→ (σ(Q), σ(u))

Structural reduction rule for quantum channel constant. Provided that (Q, m) −→ (Q′, m′),
we have (ϵ(∅), (p, Q, m)) −→ (ϵ(∅), (p, Q′, m′)).

Structural reduction rules for empty quantum channel. Provided that (ϵ(WM), M) −→
(Q, m), that all(Q) ∩WN = ∅ and that all(Q) ∩WV = ∅, we have

(ϵ(WM ∪WN), MN) −→ (extend(Q, WN), mN)
(ϵ(W ∪WV), V M) −→ (extend(Q, WV), V m)

(ϵ(WM ∪WN), ⟨M, N⟩) −→ (extend(Q, WN), ⟨m, N⟩)
(ϵ(WM ∪WV), ⟨V, M⟩) −→ (extend(Q, WV), ⟨V, m⟩)

(ϵ(WM ∪WN), if M then Ma else Mb)) −→ (extend(Q, WN), if m then Ma else Mb)
(ϵ(WM), let ⟨x, y⟩ = M in N) −→ (extend(Q, WN), let ⟨x, y⟩ = m in N)

We use syntactic sugar combining terms and branching terms, as in mM . It corresponds
to the term constructor applied to every leafs of m, for instance: for m = [[N1, N2], N3],
[[N1, N2], N3]M := [[N1M, N2M], N3M].

Structural reduction rules for non-empty quantum channel. Assume that (Q1, ma) −→
(Q3, mc) and (Q2, mb) −→ (Q4, md). Then

((meas w Q1 Q2), [ma, mb]) −→ ((meas w Q3 Q4), [mc, md])
((meas w Q1 Q2), [ma, v]) −→ ((meas w Q3 Q2), [mc, v])
((meas w Q1 Q2), [v, mb]) −→ ((meas w Q1 Q4), [v, md])

(U(W) Q1, ma) −→ (U(W)Q3, mc)
(init b w Q1, ma) −→ (init b w Q3, mc)

(free w Q1, ma) −→ (free w Q3, mc)

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:17

A.2 Derivation of the example of Example 6

Let us explain how the tree expands as the computation progresses for example 6. First, we
show that ((ϵ{}, init(tt)) −→ ((init true x ϵ{x}, x) as follows.

shape(∗) = shape(∗) σ = bind(∗, ∗)

init(tt) −→ ∗ init true x xx ∼ ∗ init true vd vd
vd

where we let

init(tt) = unbox
(
∗, ∗ init true x x , x

)
(∗).

Then we can show the following reduction:

init(tt) −→ ∗ init true vd vd
vd all(init true vd ϵ{vd}) ∩ {vc} = ∅

⟨init(tt), free(vc)⟩vc −→ init true vd ⟨vd, free(vc)⟩vc vc, vd

meas vc

⟨init(tt), free(vc)⟩

⟨vc, ∗⟩

vc

vc

vc

−→
meas vc

init true vd ⟨vd, free(vc)⟩

⟨vc, ∗⟩vc

v c

vc, vd

vc

Next, we show the last reduction step of the example.

shape(x) = shape(vc) σ = bind(x, vc)

free(vc)vc −→ free vc ∗vc

Recall that

free = unbox
(

x, free x ∗x , ∗
)

.

Then we can show the following reduction:

free(vc)vc −→ free vc ∗vc all(free vc ϵ{}) ∩ {vd} = ∅

⟨vd, free(vc)⟩vc, vd −→ free vc ⟨vd, ∗⟩vc, vd vd

init true vd ⟨vd, free(vc)⟩vc vc, vd −→ init true vd free vc ⟨vd, ∗⟩vc vc, vd vd

meas vc

init true vd ⟨vd, free(vc)⟩

⟨vc, ∗⟩vc

v c

vc, vd

vc

−→
meas vc

init true vd free vc ⟨vd, ∗⟩

⟨vc, ∗⟩vc

v c

vc, vd vd

vc

FSTTCS 2021

51:18 Categorical Model for a Quantum Language with Measurement

B Categorical semantics

B.1 Equivalence of diagrams
Complete list of the equivalence rules that are used to construct the categorical model is
shown in Figure 4.

Figure 4 Equivalence relation of diagrams.

D. Lee, V. Perrelle, B. Valiron, and Z. Xu 51:19

Table 6 Definition of isomorphism between b(A ⊸
M

B) and M(A, B).

iso−→ : b(A ⊸
M

B)→M(A, B): iso←− : M(A, B)→ b(A ⊸
M

B):

Given (f, df), which is

f,

, let Given (f0, (fx)X), let

f0 = f and fx = . f = f0 and df =

B.2 Interpretation of type system
For a typing context Γ = x1 : A1, . . . , xk : Ak, assuming the variables are ordered by some
linear order, [[Γ]] = [[A1]] ⊗ . . . ⊗ [[Ak]]. Next, the branching typing context is interpreted
as the coproduct of the objects assigned to the smaller branching typing contexts, namely:
[[γ1, γ2]] = [[γ1]] + [[γ2]]. Lastly, we interpret the typing derivation as a morphism in MF .

B.2.1 Quantum channel types, Box and Unbox
As in [14], we interpret the quantum channel types QChan(A, B) as an object p(MF (A, B)) =
(MF (A, B), (I)) in MF and M . Note that the object is a parameter object as in [14], which
means that the object has the form of (X, (I)X) for some X. When we define the quantum
channel types QChan(A, B) as a parameter object, box and unbox can be interpreted based
on an isomorphism between the set b(A ⊸

M
B) and M(A, B). In specific, we can define an

isomorphism as in Table 6.
Given the isomorphism, we can define the morphisms for box and unbox as morphisms in

M as follows:

unbox = p(M(A, F (B)) p(iso−→)−−−−−→ (p ◦ b)(A ⊸
M

F (B))
ϵ(A⊸

M
F (B))

−−−−−−−−−→ (A ⊸
M

F (B))

box = (p ◦ b)(A ⊸
M

F (B)) p(iso←−)−−−−−→ p(M(A, F (B)))

p(η(M(A,F (B))))−−−−−−−−−−−→ (p ◦ b ◦ p)(M(A, F (B))).

where ϵ refers to the counit from the comonad !.

B.2.2 Quantum channel constants
We define a natural transformations called bif and merge for the measurement as in Table 7.

A quantum channel Q is interpreted as a morphism [[in(Q)]] −→
MF

[[out(Q)]], where

[[in(Q)]] = ({∅}, ([q]⊗|in(Q)|))

[[out(Q)]] =
{

({∅}, ([q]⊗|V |)) if out(Q) is a set V

[[o1]] + [[o2]] if out(Q) = [o1, o2]

FSTTCS 2021

51:20 Categorical Model for a Quantum Language with Measurement

Table 7 Definition of bif and merge.

bif(A) : A −→
MF

A + A merge(A, B) : F (A) + F (B) −→
MF

A + B

For an object A = (X, (Ax)), we let

bif(X, (Ax)) =(
{x 7→ [(0, x), (1, x)]},

(fx : Ax → A⊗
x ⊞ A⊗

x)

)

where fx = .

For objects A, B, we let

merge(A, B) = ({
(0, [x1, . . . , xk]) 7→ [(0, x1), . . . , (0, xk)],
(1, [y1, . . . , yn]) 7→ [(1, y1), . . . , (1, yn)]},
(id[⊞x∈lA⊗

x])l:mset(X)

++(id[⊞y∈lB⊗
y])l:mset(Y))

It satisfies the following commute diagram
for naturality:

It satisfies the following commute diagram
for naturality:

A F (A + A)

B F (B + B)

f

bif(A)

F (f+f)

bif(B)

F (A) + F (B) F (A + B)

F (A′) + F (B′) F (A′ + B′)

F (f)+F (g)

merge(A,B)

F (f+g)

merge(A′,B′)

Table 8 Interpretation of quantum channel constants.

[[ϵ(V)]] = η({∅}, ([q]⊗|V |))

[[U(V1) Q]] = [[Q]] ◦ [[U(V1)]]0

[[free v Q]] = [[Q]] ◦ [[free(V)]]0

[[init b v Q]] = [[Q]] ◦ [[init(b, v)]]0

[[meas v Q1 Q2]] =

[[in(meas v Q1 Q2)]]

F (F [[out(Q1)]] + F [[out(Q2)]])

F ([[out(Q1)]] + [[out(Q2)]])

bif;F

(
[[Q1]]◦[[meas(v,0)]]0

+[[Q2]]◦[[meas(v,1)]]0

)
F (merge);µ

where

The interpretation of quantum channel is defined inductively as in Table 8 where µ

represents the multiplication of the monad F . In addition, the elementary nodes in Table 8–
(U(V1)), (free v), (| b⟩, v) and (⟨b |, v)–refers to the unitary gate node U (which is either
1 or 2-qubits gate) applied to wires V1, tr node applied to wire v, and ⟨b| and |b⟩ nodes
applied to wire v, respectively.

Linear-Time Temporal Logic with Team Semantics:
Expressivity and Complexity
Jonni Virtema #

Institute for Theoretical Computer Science, Leibniz Universität Hannover, Germany
Department of Computer Science, University of Sheffield, UK

Jana Hofmann # Ñ

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Bernd Finkbeiner # Ñ

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Juha Kontinen #

Department of Mathematics and Statistics, University of Helsinki, Finland

Fan Yang #

Department of Mathematics and Statistics, University of Helsinki, Finland

Abstract
We study the expressivity and complexity of model checking of linear temporal logic with team
semantics (TeamLTL). TeamLTL, despite being a purely modal logic, is capable of defining hyper-
properties, i.e., properties which relate multiple execution traces. TeamLTL has been introduced
quite recently and only few results are known regarding its expressivity and its model checking
problem. We relate the expressivity of TeamLTL to logics for hyperproperties obtained by extending
LTL with trace and propositional quantifiers (HyperLTL and HyperQPTL). By doing so, we obtain a
number of model checking results for TeamLTL and identify its undecidability frontier. In particular,
we show decidability of model checking of the so-called left-flat fragment of any downward closed
TeamLTL-extension. Moreover, we establish that the model checking problem of TeamLTL with
Boolean disjunction and inclusion atoms is undecidable.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Modal and temporal logics

Keywords and phrases Linear temporal logic, Hyperproperties, Model Checking, Expressivity

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.52

Related Version Full Version: https://arxiv.org/abs/2010.03311

Funding Jana Hofmann and Bernd Finkbeiner: Partially supported by the German Research
Foundation (DFG) as part of the Collaborative Research Center “Foundations of Perspicuous
Software Systems” (TRR 248, 389792660) and by the European Research Council (ERC) Grant
OSARES (No. 683300).
Jonni Virtema: Supported by the DFG grant VI 1045/1-1.
Juha Kontinen: Supported by grant 308712 of the Academy of Finland.
Fan Yang: Supported by grants 330525 and 308712 of Academy of Finland, and Research Funds of
University of Helsinki.

1 Introduction

Linear-time temporal logic (LTL) is one of the most prominent logics for the specification
and verification of reactive and concurrent systems. Practical model checking tools like
SPIN, NuSMV, and many others ([29, 6, 11]) automatically verify whether a given computer
system, such as a hardware circuit or a communication protocol, is correct with respect to

© Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 52; pp. 52:1–52:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.t.virtema@sheffield.ac.uk
https://orcid.org/0000-0002-1582-3718
mailto:jana.hofmann@cispa.de
https://www.react.uni-saarland.de/people/hofmann.html
https://orcid.org/0000-0003-1660-2949
mailto:finkbeiner@cispa.de
https://www.react.uni-saarland.de/people/finkbeiner.html
https://orcid.org/0000-0002-4280-8441
mailto:juha.kontinen@helsinki.fi
https://orcid.org/0000-0003-0115-5154
mailto:fan.yang@helsinki.fi
https://orcid.org/0000-0003-0392-6522
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52
https://arxiv.org/abs/2010.03311
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 LTL with Team Semantics: Expressivity and Complexity

its LTL specification. The basic principle, as introduced in 1977 by Amir Pnueli [39], is to
specify the correctness of a program as a set of infinite sequences, called traces, which define
the acceptable executions of the system.

Hyperproperties, i.e., properties which relate multiple execution traces, cannot be specified
in LTL. Such properties are of prime interest in information flow security, where dependencies
between the secret inputs and the publicly observable outputs of a system are considered
potential security violations. Commonly known properties of that type are noninterference [41,
37] or observational determinism [49]. In other settings, relations between traces are explicitly
desirable: robustness properties, for example, state that similar inputs lead to similar outputs.
Hyperproperties are not limited to the area of information flow control. E.g., distributivity
and other system properties like fault tolerance can be expressed as hyperproperties [17].

The main approach to specify hyperproperties has been to extend temporal logics like
LTL, CTL, and QPTL with explicit trace and path quantification, resulting in logics like
HyperLTL [7], HyperCTL∗ [7], and HyperQPTL [40, 9]. Most frequently used is HyperLTL,
which can express noninterference as follows: ∀π. ∀π′. (

∧
i∈I iπ ↔ iπ′) → (

∧
o∈O oπ ↔ oπ′).

The formula states that any two traces which globally agree on the value of the public inputs
I also globally agree on the public outputs O. Consequently, the value of secret inputs cannot
affect the value of the publicly observable outputs.

It is not clear, however, whether quantification over traces is the best way to express
hyperproperties. The success of LTL over first-order logics for the specification of linear-time
properties stems from the fact that its modal operators replace explicit quantification of
points in time. This allows for a much more concise and readable formulation of the same
property. The natural question to ask is whether a purely modal logic for hyperproperties
would have similar advantages. A candidate for such a logic is LTL with team semantics [34].
Under team semantics, LTL expresses hyperproperties without explicit references to traces.
Instead, each subformula is evaluated with respect to a set of traces, called a team. Temporal
operators advance time on all traces of the current team. Using the split operator ∨, teams
can be split during the evaluation of a formula, which enables us to express properties of
subsets of traces.

As an example, consider the property that there is a point in time, common for all traces,
after which a certain event a does not occur any more. We need a propositional and a trace
quantifier to express such a property in HyperQPTL (it is not expressible in HyperLTL). The
formula ∃p. ∀π. p ∧ (p → ¬aπ) states that there is a p-sequence s ∈ (2{p})ω such that
p is set at least once, and if p ∈ s[i], then a is not set on all traces π on all points in time
starting from i. The same property can be expressed in TeamLTL without any quantification
simply as ¬a. The formula exploits the synchronous semantics of TeamLTL by stating
that there is a point such that for all future points all traces have a not set. As a second
example, consider the case that an unknown input determines the behaviour of the system.
Depending on the input, its execution traces either agree on a or on b. We can express the
property in HyperLTL with three trace quantifiers: ∃π1. ∃π2. ∀π. (aπ1 ↔ aπ) ∨ (bπ2 ↔ bπ).
In TeamLTL, the same property can be simply expressed as (a 6 ¬a) ∨ (b 6 ¬b). The
Boolean or operator 6 expresses that in the current team, either the left side holds on all
traces or the right side does.

The use of the 6 operator reveals another strength of TeamLTL: its modularity. The
research on team semantics (see related work section) has a rich tradition of studying
extensions of team logics with new atomic statements and operators. They constitute a
well-defined way to increase a logic’s expressiveness in a step-by-step manner. Besides 6,
examples are Boolean negation ∼, the inclusion atom ⊆, and universal subteam quantifiers

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:3

A and
1
A. Inclusion atoms have been found to be fascinating for their ability to express

recursion in the first-order setting; the expressivity of FO(⊆) coincides with greatest fixed
point logic and hence PTIME [20]. In turn, all LTL-definable properties can be expressed by
TeamLTL-formulae of the form

1
Aφ. With the introduction of generalised atoms, TeamLTL

even permits custom extensions. Possibly most interesting in the context of hyperproperties
are dependence atoms. A dependence atom dep(x1, . . . , xn) is satisfied by a team X if any
two assignments assigning the same values to the variables x1, . . . , xn−1 also assign the same
value to xn. For example, the TeamLTL formula (dep(i1, i2, o)) ∨ (dep(i2, i3, o)) states
that the executions of the system can be decomposed into two parts; in the first part, the
output o is determined by the inputs i1 and i2, and in the second part, o is determined by
the inputs i2 and i3.

Temporal team logics constitute a new, fundamentally different approach to specify
hyperproperties. While HyperLTL and other quantification-based hyperlogics have been
studied extensively (see section on related work), only few results are known about the
expressive power and complexity of TeamLTL and its variants. In particular, we know
very little about how the expressivity of the two approaches compares. What is known is
that HyperLTL and TeamLTL are incomparable in expressivity [34] and that the model
checking problem of TeamLTL without splitjunctions ∨ (what makes the logic significantly
weaker) is in PSPACE [34]. On the other hand, it was recently shown that the complexity of
satisfiability and model checking of TeamLTL with Boolean negation ∼ is equivalent to the
decision problem of third-order arithmetic [35] and hence highly undecidable.

Our contribution. We advance the understanding of team-based logics for hyperproperties
by exploring the relative expressivity of TeamLTL and temporal hyperlogics like HyperLTL, as
well as the decidability frontier of the model checking problem of TeamLTL. Our expressivity
and model checking results are summarized in Table 1 and Table 2. We identify expressively
complete extensions of TeamLTL (displayed on the left of Table 1) that can express all (all
downward closed, resp.) Boolean relations on LTL-properties of teams, and present several
translations from team logics to hyperlogics. We begin by approaching the decidability
frontier of TeamLTL from above, and tackle a question posed in [35]: Does some sensible
restriction to the use of Boolean negation in TeamLTL(∼) yield a decidable logic? We show
that already a very restricted access to ∼ leads to high undecidability, whereas already
the use of inclusion atoms ⊆ together with Boolean disjunctions 6 suffices for undecidable
model checking. Furthermore, we establish that these complexity results transfer to the
satisfiability problem of the related logics. Next, regarding the expressivity of TeamLTL, we
show that its extensions with all (all downward closed, resp.) atomic LTL-properties of teams
translate to simple fragments of HyperQPTL+. Consequently, known decidability results for
quantification-based hyperlogics enable us to approach the decidability frontier of TeamLTL
extensions from below. We establish an efficient translation from the so-called k-coherent
fragment of TeamLTL(∼) to the universal fragment of HyperLTL (for which model checking
is PSPACE-complete [19]) and thereby obtain EXPSPACE model checking for the fragment.
Finally, we show that the so-called left-flat fragment of TeamLTL(6,

1
A) enjoys decidable

model checking via a translation to
u

∃∗
p∀∗
πHyperQPTL.

Related work. The development of team semantics began with the introduction of De-
pendence Logic [45], which adds the concept of functional dependence to first-order logic
by means of new atomic dependence formulae. During the past decade, team semantics
has been generalised to propositional [48], modal [46], temporal [33], and probabilistic [13]

FSTTCS 2021

52:4 LTL with Team Semantics: Expressivity and Complexity

Table 1 Expressivity results. The logics TeamLTL(6, ∼⊥,
1
A) and TeamLTL(

1
A, 6) can express

all/all downward closed atomic LTL-properties of teams (see the discussion at the end of Section 2).
† holds since TeamLTL(

1
A, 6) is downward closed.

(assuming left-flatness)

TeamLTL(6,
1
A)

Thm.14
≤

u

∃∗
q∀πHyperQPTL

Thm.6
≤ ∃p

u

Q∗
p∀πHyperQPTL+

< †

TeamLTL(6, ∼⊥,
1
A)

Thm.6
≤ ∃p

u

Q∗
p∃∗

π∀πHyperQPTL+

≤ [35] (assuming k-coherence)

TeamLTL(∼)
Thm.9

≤ ∀kHyperLTL

Table 2 Complexity results.

Logic Model Checking Result

TeamLTL without ∨ in PSPACE [34]

k-coherent TeamLTL(∼) in EXPSPACE [Thm. 10]

left-flat TeamLTL(6,
1
A) in EXPSPACE [Thm. 15]

TeamLTL(⊆, 6) Σ0
1-hard [Thm. 2]

TeamLTL(⊆, 6, A) Σ1
1-hard [Thm. 3]

TeamLTL(∼) complete for third-order arithmetic [35]

frameworks, and fascinating connections to fields such as database theory [23], statistics [12],
real valued computation [24], and quantum information theory [30] has been identified. In the
modal team semantics setting, model checking and satisfiability problems have been shown
to be decidable, see [26, page 627] for an overview of the complexity landscape. Expressivity
and definability of related logics is also well understood, see, e.g. [27, 32, 42]. The study
of temporal logics with team semantics, was initiated in [33], where team semantics for
computational tree logic CTL was given. The idea to develop team-based logics for hyper-
properties was coined in [34], where TeamLTL was first introduced and shown incomparable
to HyperLTL. The interest on logics for hyperproperties, so-called hyperlogics, was sparked
by the introduction of HyperLTL and HyperCTL∗ [7]. Many temporal logics have since been
extended with trace and path quantification to obtain various hyperlogics, e.g., to express
asynchronous hyperproperties [22, 4], hyperproperties on finite traces [21], probabilistic hy-
perproperties [1], or timed hyperproperties [28]. Model checking HyperLTL and the strictly
more expressive HyperQPTL is decidable, though k-EXPSPACE-complete, where k is the
number of quantifier alternations in the formula [19, 40]. Model checking HyperQPTL+,
on the other hand, is undecidable [16]. The expressivity of HyperLTL, HyperCTL∗, and
HyperQPTL has been compared to first-order and second-order hyperlogics resulting in a
hierarchy of hyperlogics [9]. Beyond model checking and expressivity questions, especially
HyperLTL has been studied extensively. This includes its satisfiability [15, 36], runtime
monitoring [18, 2] and enforcement problems [10], as well as synthesis [17].

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:5

2 Basics of TeamLTL

Let us start by recalling the syntax of LTL from the literature. Fix a set AP of atomic
propositions. The set of formulae of LTL (over AP) is generated by the following grammar:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | φ | φU φ | φW φ, where p ∈ AP.

We adopt, as is common in studies on team logics, the convention that formulae are given
in negation normal form. The logical constants ⊤,⊥ and connectives →,↔ are defined as
usual (e.g., ⊥ := p ∧ ¬p and ⊤ := p ∨ ¬p), and φ := ⊤ U φ and φ := φW ⊥.

A trace t over AP is an infinite sequence from (2AP)ω. For a natural number i ∈ N, we
denote by t[i] the ith element of t and by t[i,∞] the postfix (t[j])j≥i of t. The satisfaction
relation (t, i) |= φ, for LTL formulae φ, is defined as usual, see e.g., [38]. We use JφK(t,i) ∈
{0, 1} to denote the truth value of φ on (t, i). A (temporal) team is a pair (T, i) consisting a
set of traces T ⊆ (2AP)ω and a natural number i ∈ N representing the time step. We write
T [i] and T [i,∞] to denote the sets {t[i] | t ∈ T} and {t[i,∞] | t ∈ T}, respectively.

Let us next introduce the logic LTL interpreted with team semantics (denoted TeamLTL).
TeamLTL was first studied in [34], where it was called LTL with synchronous team semantics.
The satisfaction relation (T, i) |= φ for TeamLTL is defined as follows:

(T, i) |= p iff ∀t ∈ T : p ∈ t[i]
(T, i) |= ¬p iff ∀t ∈ T : p /∈ t[i]
(T, i) |= φ ∧ ψ iff (T, i) |= φ and (T, i) |= ψ

(T, i) |= φ iff (T, i+ 1) |= φ

(T, i) |= φ ∧ ψ iff (T, i) |= φ and (T, i) |= ψ

(T, i) |= φ iff (T, i+ 1) |= φ

(T, i) |= φ ∨ ψ iff (T1, i) |= φ and (T2, i) |= ψ, for some T1, T2 s.t. T1 ∪ T2 = T

(T, i) |= φU ψ iff ∃k ≥ i such that (T, k) |= ψ and ∀m : i ≤ m < k ⇒ (T,m) |= φ

(T, i) |= φW ψ iff ∀k ≥ i : (T, k) |= φ or ∃m such that i ≤ m ≤ k and (T,m) |= ψ

Note that (T, i) |= ⊥ iff T = ∅. Two formulae φ and ψ are equivalent (written φ ≡ ψ), if
the equivalence (T, i) |= φ iff (T, i) |= ψ holds for every (T, i). We say that a logic L2 is at
least as expressive as a logic L1 (written L1 ≤ L2) if for every L1-formula φ, there exists an
L2-formula ψ such that φ ≡ ψ. We write L1 ≡ L2 if both L1 ≤ L2 and L2 ≤ L1 hold. The
following are important semantic properties of formulae from the team semantics literature:

(Downward closure) If (T, i) |= φ and S ⊆ T , then (S, i) |= φ.
(Empty team property) (∅, i) |= φ.
(Flatness) (T, i) |= φ iff ({t}, i) |= φ for all t ∈ T .
(Singleton equivalence) ({t}, i) |= φ iff (t, i) |= φ.
A logic has one of the above properties if every formula of the logic has the property. TeamLTL
satisfies downward closure, singleton equivalence, and the empty team property [34]. However,
it does not satisfy flatness; for instance, the formula p is not flat.

The power of team semantics comes with the ability to enrich logics with novel atomic
statements describing properties of teams. We thereby easily get a hierarchy of team
logics of different expressiveness. The most prominent examples of such atoms are de-
pendence atoms dep(φ1, . . . , φn, ψ) and inclusion atoms φ1, . . . , φn ⊆ ψ1, . . . , ψn, with
φ1, . . . , φn, ψ, ψ1, . . . , ψn being LTL-formulae. The dependence atom states that the truth

FSTTCS 2021

52:6 LTL with Team Semantics: Expressivity and Complexity

value of ψ is functionally determined by that of φ1, . . . , φn. The inclusion atom states that
each value combination of φ1, . . . , φn must also occur as a value combination for ψ1, . . . , ψn.
Their formal semantics is defined as:

(T, i) |= dep(φ1, . . . , φn, ψ) iff ∀t, t′ ∈ T :
(∧

1≤j≤n

JφjK(t,i) = JφjK(t′,i)

)
⇒ JψK(t,i) = JψK(t′,i)

(T, i) |= φ1, . . . , φn ⊆ ψ1, . . . , ψn iff ∀t ∈ T ∃t′ ∈ T :
∧

1≤j≤n

JφjK(t,i) = JψjK(t′,i)

As an example, let o1, . . . , on be some observable outputs and s be a secret. The atom
(o1, . . . , on, s) ⊆ (o1, . . . , on,¬s) expresses a form of non-inference by stating that an observer
cannot infer the current value of the secret from the outputs. We also consider other
connectives known in the team semantics literature: Boolean disjunction 6, Boolean negation
∼, and universal subteam quantifiers A and

1
A, with their semantics defined as:

(T, i) |= φ6 ψ iff (T, i) |= φ or (T, i) |= ψ

(T, i) |= ∼ φ iff (T, i) ̸|= φ

(T, i) |= Aφ iff ∀S ⊆ T : (S, i) |= φ

(T, i) |=
1
Aφ iff ∀t ∈ T : ({t}, i) |= φ

If A is a collection of atoms and connectives, we let TeamLTL(A) denote the extension of
TeamLTL with the atoms and connectives in A. For any atom or connective ◦, we write
simply TeamLTL(A, ◦) instead of TeamLTL(A ∪ {◦}).

TeamLTL(∼) is a very expressive logic; all of the above connectives and atoms, as well
as many others, have been shown to be definable in TeamLTL(∼) [25, 35]. To systematically
explore less expressive variants of TeamLTL, we introduce two representative logics of different
expressiveness, namely TeamLTL(6,

1
A) and TeamLTL(6,∼⊥,

1
A). The expression ∼⊥ can

be used to enforce non-emptiness of a team. What makes these logics good representatives
is their semantic property that they can express a general class of Boolean relations. Let
B be a set of n-ary Boolean relations. We define the property [φ1, . . . , φn]B for an n-tuple
(φ1, . . . , φn) of LTL-formulae:

(T, i) |= [φ1, . . . , φn]B iff {(Jφ1K(t,i), . . . , JφnK(t,i)) | t ∈ T} ∈ B.

The logic TeamLTL(6,∼⊥,
1
A) is expressively complete with respect to all [φ1, . . . , φn]B .

That is, for every set of Boolean relations B and LTL-formulae φ1, . . . , φn, the property
[φ1, . . . , φn]B is expressible in TeamLTL(6,∼⊥,

1
A). Furthermore, TeamLTL(6,

1
A) can ex-

press all downward closed (S1 ∈ B & S2 ⊆ S1 imply S2 ∈ B) B. These results are
reformulated and proved using so-called generalised atoms in the extended version of this
paper [47]. Note that, e.g., k-ary inclusion and dependence atoms can be defined using
suitable Boolean relations B. Indeed it follows that, from the expressivity point-of-view,
TeamLTL(6,

1
A) and TeamLTL(6,∼⊥,

1
A) subsume all extensions of TeamLTL with down-

ward closed (resp. all) atomic notions of dependence, i.e., atoms which state some sort of
functional (in)dependence, like the dependence atom (which is downward closed) or the
inclusion atom (which is not).

3 Undecidable Extensions of TeamLTL

In [35], Lück established that the model checking problem for TeamLTL(∼) is highly unde-
cidable. The proof heavily utilises the interplay between Boolean negation ∼ and disjunction
∨; it was left as an open problem whether some sensible restrictions on the use of the Boolean

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:7

negation would lead toward discovering decidable logics. We show that, on the contrary,
the decidability bounds are much tighter. Already TeamLTL(⊆,6) (which is subsumed by
TeamLTL(6,∼⊥,

1
A)) is undecidable, and already very restricted access to ∼ (namely, a

single use of the A quantifier) leads to high undecidability.
We define the model checking problem based on Kripke structures K = (W,R, η, w0),

where W is a finite set of states, R ⊆ W 2 the transition relation, η : W → 2AP a labelling
function, and w0 ∈ W an initial state of W . A path σ through K is an infinite sequence
σ ∈ Wω such that σ[0] = w0 and (σ[i], σ[i + 1]) ∈ R for every i ≥ 0. The trace of σ is
defined as t(σ) := η(σ[0])η(σ[1]) · · · ∈ (2AP)ω. A Kripke structure K induces a set of traces
Traces(K) = {t(σ) | σ is a path through K}.

▶ Definition 1. The model checking problem of a logic L is the following decision prob-
lem: Given a formula φ ∈ L and a Kripke structure K over AP, determine whether
(Traces(K), 0) |= φ.

Our undecidability results are obtained by reductions from non-deterministic 3-counter
machines. A non-deterministic 3-counter machine M consists of a list I of n instructions
that manipulate three counters Cl, Cm, and Cr. All instructions are of the following forms:

C+
a goto {j1, j2}, C−

a goto {j1, j2}, if Ca = 0 goto j1else goto j2,
where a ∈ {l,m, r}, 0 ≤ j1, j2 < n. A configuration is a tuple (i, j, k, t), where 0 ≤ i < n is the
next instruction to be executed, and j, k, t ∈ N are the current values of the counters Cl, Cm,
and Cr. The execution of the instruction i : C+

a goto {j1, j2} (i : C−
a goto {j1, j2}, resp.) in-

crements (decrements, resp.) the value of the counter Ca by 1. The next instruction is selected
nondeterministically from the set {j1, j2}. The instruction i : if Ca = 0 goto j1, else goto j2
checks whether the value of the counter Ca is currently 0 and proceeds to the next in-
struction accordingly. The consecution relation ⇝c of configurations is defined as usual.
The lossy consecution relation (i1, i2, i3, i4) ⇝lc (j1, j2, j3, j4) of configurations holds if
(i1, i′2, i′3, i′4)⇝c (j1, j

′
2, j

′
3, j

′
4) holds for some i′2, i′3, i′4, j′

2, j
′
3, j

′
4 with i2 ≥ i′2, i3 ≥ i′3, i4 ≥ i′4,

j′
2 ≥ j2, j′

3 ≥ j3, and j′
4 ≥ j4. A (lossy) computation is an infinite sequence of (lossy) consec-

utive configurations starting from the initial configuration (0, 0, 0, 0). A (lossy) computation
is b-recurring if the instruction labelled b occurs infinitely often in it. Deciding whether a
given non-deterministic 3-counter machine has a b-recurring (b-recurring lossy) computation
for a given b is Σ1

1-complete (Σ0
1-complete, resp.) [3, 43].

We reduce the existence of a b-recurring lossy computation of a given 3-counter machine
M and an instruction label b to the model checking problem of TeamLTL(⊆,6). We also
illustrate that with a single instance of A we can enforce non-lossy computation instead.

▶ Theorem 2. Model checking for TeamLTL(⊆,6) is Σ0
1-hard.

Proof. Given a set I of instructions of a 3-counter machine M , and an instruction label b,
we construct a TeamLTL(⊆,6)-formula φI,b and a Kripke structure KI such that(

Traces(KI), 0
)

|= φI,b iff M has a b-recurring lossy computation. (1)

The Σ0
1-hardness then follows since our construction is clearly computable. The idea is

the following: Put n := |I|. A set T of traces using propositions {cl, cm, cr, d, 0, . . . , n− 1}
encodes the sequence (c⃗j)j∈N of configurations, if for each j ∈ N and c⃗j = (i, vl, vm, vr)

t[j] ∩ {0, . . . , n− 1} = {i}, for all t ∈ T ,
|{t[j,∞] | cs ∈ t[j], t ∈ T}| = vs, for each s ∈ {l,m, r}.

FSTTCS 2021

52:8 LTL with Team Semantics: Expressivity and Complexity

Hence, we use T [j,∞] to encode the configuration c⃗j ; the propositions 0, . . . , n − 1 are
used to encode the next instruction, and cl, cm, cr, d are used to encode the values of the
counters. The proposition d is a dummy proposition used to separate traces with identical
postfixes with respect to cl, cm, and cr. The Kriple structure KI = (W,R, η, w0) over the
set of propositions {cl, cm, cr, d, 0, . . . , n − 1} is defined such that every possible sequence
of configurations of M starting from (0, 0, 0, 0) can be encoded by some team (T, 0), where
T ⊆ Traces(KI). A detailed construction of the formula φI,b and the Kripke structure KI

together with a detailed proof for the fact that (1) indeed holds can be found in the full
version of this paper [47]. ◀

The underlying reason for utilising lossy computations in the above proof is the following:
In our encoding, we use the cardinality of the set |{t[j,∞] | cl ∈ t[j], t ∈ T}| to encode
the value of the counter Cl in the jth configuration. It might, however, happen that two
distinct traces t, t′ ∈ T have the same postfix, that is, t[j,∞] = t′[j,∞], for some j ∈ N. The
collapse of two traces encoding distinct increments of the counter Cl then corresponds to the
uncontrollable decrement of the counter values in lossy computations. Using the universal
team quantifier A we can forbid this effect, and encode non-lossy computations. The proof
of the following theorem can be found in the full version of this paper [47].

▶ Theorem 3. Model checking for TeamLTL(⊆,6,A) is Σ1
1-hard. This holds already for the

fragment with a single occurrence of A.

As is common in the LTL-setting, the model checking problem of TeamLTL(⊆,6) can
be embedded in its satisfiability problem using auxiliary propositions and TeamLTL(⊆,6)-
formulae. A formula φ is satisfiable, if there exists a non-empty T such that (T, 0) |= φ. We
thus obtain the following corollary, which is also proven in the full version of this paper [47].

▶ Corollary 4. The satisfiability problems for TeamLTL(⊆,6) and TeamLTL(⊆,6,A) are
Σ0

1-hard and Σ1
1-hard, resp.

4 Quantification-based Hyperlogics and Team Semantics

In this section, we define those quantification-based hyperlogics against which we compare
TeamLTL in the rest of the paper. TeamLTL and HyperLTL are known to have orthogonal
expressivity [34] but apart from that, nothing is known about the relationship between the
different variants of TeamLTL and other temporal hyperlogics such as HyperQPTL [40, 9].
We aim to identify fragments of the logics with similar expressivity to better understand the
relative expressivity of TeamLTL for the specification of hyperproperties.

HyperQPTL+ [16] is a temporal logic for hyperproperties. It subsumes HyperLTL and
HyperQPTL, so we proceed to give a definition of HyperQPTL+ and define the latter logics
as fragments. HyperQPTL+ extends LTL with explicit trace quantification and quantification
of atomic propositions. As such, it also subsumes QPTL, which can express all ω-regular
properties. Fix an infinite set V of trace variables. HyperQPTL+ has three types of quantifiers,
one for traces and two for propositional quantification.

φ ::= ∀π. φ | ∃π. φ |
u

∀p. φ |
u

∃p. φ | ∀p. φ | ∃p. φ | ψ
ψ ::= pπ | ¬pπ | ψ ∨ ψ | ψ ∧ ψ | ψ | ψ U ψ | ψW ψ

Here, p ∈ AP, π ∈ V, and ∀π and ∃π stand for universal and existential trace quantifiers,
∀p and ∃p stand for (non-uniform) propositional quantifiers, and

u

∀p and
u

∃p stand for
uniform propositional quantifiers. We also study two syntactic fragments of HyperQPTL+.

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:9

HyperQPTL is HyperQPTL+ without non-uniform propositional quantifiers, and HyperLTL
is HyperQPTL+ without any propositional quantifiers. In the context of HyperQPTL, we
also write ∀p and ∃p instead of

u

∀p and
u

∃p. For an LTL-formula φ and trace variable π, we
let φπ denote the HyperLTL-formula obtained from φ by replacing all proposition symbols p
by their indexed versions pπ. We extend this convention to tuples of formulae as well.

The semantics of HyperQPTL+ is defined over a set T of traces. Intuitively, the atomic
formula pπ asserts that p holds on trace π. Uniform propositional quantifications

u

∀p and
u

∃p
add an atomic proposition p such that all traces agree on the valuation of p on any given
time step i, whereas non-uniform propositional quantifications ∀p and ∃p colour the traces
in T in an arbitrary manner. Non-uniform propositional quantification thus implements true
second-order quantification, whereas uniform propositional quantification can be interpreted
as a quantification of a set of points in time.

A trace assignment is a function Π : V → T that maps each trace variable in V
to some trace in T . A modified trace assignment Π[π 7→ t] is equal to Π except that
Π[π 7→ t](π) = t. For any subset A ⊆ AP, we write t ↾ A for the projection of t on A

(i.e., (t ↾ A)[i] := t[i] ∩ A for all i ∈ N). For any two trace assignments Π and Π′, we
write Π =A Π′, if

(
Π(π) ↾ A

)
=

(
Π′(π) ↾ A

)
for all π ∈ V. Similarly, T =A T ′ whenever

{t ↾ A | t ∈ T} = {t ↾ A | t ∈ T ′}. For a sequence s ∈ (2{p})ω over a single propositional
variable p, we write T [p 7→ s] for the set of traces obtained from T by reinterpreting p on all
traces as in s while ensuring that T [p 7→ s] =AP\{p} T . We use Π[p 7→ s] accordingly. The
satisfaction relation Π, i |=T φ for HyperQPTL+-formulae φ is defined as follows:

Π, i |=T pπ iff p ∈ Π(π)[i]
Π, i |=T φ1 ∨ φ2 iff Π, i |=T φ1 or Π, i |=T φ2

Π, i |=T ¬pπ iff p ̸∈ Π(π)[i]
Π, i |=T φ1 ∧ φ2 iff Π, i |=T φ1 and Π, i |=T φ2

Π, i |=T pπ iff p ∈ Π(π)[i]
Π, i |=T ¬pπ iff p ̸∈ Π(π)[i]
Π, i |=T φ1 ∨ φ2 iff Π, i |=T φ1 or Π, i |=T φ2

Π, i |=T φ1 ∧ φ2 iff Π, i |=T φ1 and Π, i |=T φ2

Π, i |=T φ iff Π, i+ 1 |=T φ

Π, i |=T φ1 U φ2 iff ∃k ≥ i s.t. Π, k |=T φ2 and ∀m : i ≤ m < k ⇒ Π,m |=T φ1

Π, i |=T φ1 W φ2 iff ∀k ≥ i : Π, k |=T φ1 or ∃m : i ≤ m ≤ k : Π,m |=T φ2

Π, i |=T ∃π. φ iff Π[π 7→ t], i |=T φ for some t ∈ T

Π, i |=T ∀π. φ iff Π[π 7→ t], i |=T φ for all t ∈ T

Π, i |=T

u

∃p. φ iff Π[p 7→ s], i |=T [p 7→s] φ for some s ∈ (2{p})ω

Π, i |=T

u

∀p. φ iff Π[p 7→ s], i |=T [p 7→s] φ for all s ∈ (2{p})ω

Π, i |=T ∃p. φ iff Π′, i |=T ′ φ for some T ′ ⊆ (2AP)ωand Π′ : V → T ′ such that
T =AP\{p} T

′ and Π =AP\{p} Π′

Π, i |=T ∀p. φ iff Π′, i |=T ′ φ for all T ′ ⊆ (2AP)ωand Π′ : V → T ′ such that
T =AP\{p} T

′ and Π =AP\{p} Π′

In the sequel, we describe fragments of HyperQPTL+ by restricting the quantifier prefixes of
formulae. We use ∃π / ∀π to denote trace quantification,

u

∃p /
u

∀p for uniform propositional
quantification, and ∃p / ∀p for non-uniform propositional quantification. We use ∃ (∀, resp.)

FSTTCS 2021

52:10 LTL with Team Semantics: Expressivity and Complexity

if we do not need to distinguish between the different types of existential (universal, resp.)
quantifiers. We write Q to refer to both ∃ and ∀. For a logic L and a regular expression e, we
write eL to denote the set of L-formulae whose quantifier prefixes are generated by e. E.g.,
∀∗∃∗HyperQPTL refers to HyperQPTL-formulae with quantifier prefix {

u

∀p, ∀π}∗{
u

∃p, ∃π}∗.
Next we relate the expressivity of extensions of TeamLTL to fragments of HyperQPTL+.

We show that TeamLTL(6,
1
A) and TeamLTL(6,∼⊥,

1
A) can be translated to the prefix

fragments ∃p
u

Q∗
p∃∗
π∀π and ∃p

u

Q∗
p∀π of HyperQPTL+. The translations provide insight into

the limits of the expressivity of different extensions of TeamLTL. In particular, they show
that in order to simulate the generation of subteams with the ∨-operator in TeamLTL,
one existential second-order quantifier ∃p is sufficient. Meanwhile, the difference between
downward closed team properties and general team properties manifests itself by a different
need for trace quantifiers: for downward closed properties, a single ∀π quantifier is enough,
whereas in the general case, a ∃∗

π∀π quantifier alternation is needed.
As a prerequisite for the translation, we establish that evaluating TeamLTL(6,∼⊥,

1
A)-

formulae can only create countably many different teams. For a given team (T, i) and
TeamLTL(6,∼⊥,

1
A)-formula φ, the verification of (T, i) |= φ boils down to checking state-

ments of the form (S, j) |= ψ, where S ∈ ST ⊆ 2T for some set ST , j ∈ N, and ψ is an atomic
formula, together with expressions of the form S1 = S2 ∪ S3, where S1, S2, S3 ∈ ST . The
following lemma, proven in the full version of this paper [47], implies that the set ST can be
fixed as a countable set that depends only on T .

▶ Lemma 5. For every set T of traces over a countable AP, there exists a countable ST ⊆ 2T

such that, for every TeamLTL(6,∼⊥,
1
A)-formula φ and i ∈ N, (T, i) |= φ iff (T, i) |=∗ φ,

where the satisfaction relation |=∗ is defined the same way as |= except that in the semantic
clause for ∨ we require additionally that the two subteams T1, T2 ∈ ST .

Using of the above lemma, we obtain translations from the most interesting extensions
of TeamLTL to weak prefix fragments of HyperQPTL+; for details and proofs see the full
version of this paper [47].

▶ Theorem 6. For every φ ∈ TeamLTL(6,∼⊥,
1
A) there exists an equivalent HyperQPTL+-

formula φ∗ in the ∃p
u

Q∗
p∃∗
π∀π fragment. If φ ∈ TeamLTL(6,

1
A), φ∗ can be defined in the

∃p
u

Q∗
p∀π fragment. The size of φ∗ is linear w.r.t. the size of φ.

5 Decidable fragments of TeamLTL

In this section, we further study the expressivity landscape between the frameworks of
TeamLTL and HyperLTL. We utilise these connections to prove decidability of the model
checking problem of certain variants of TeamLTL. We compare the expressivity of exten-
sions of TeamLTL that satisfy certain semantic invariances to that of ∀∗HyperLTL and
u

∃∗
p∀πHyperQPTL. Thereby, we provide a partial answer to an open problem posed in [34]

concerning the complexity of the model checking problem of TeamLTL and its extensions.
The problem is known to be in PSPACE for the fragment of TeamLTL without ∨ [34].
However, for TeamLTL with ∨, no meaningful upper bounds for the problem was known
before. The best previous upper bound could be obtained from TeamLTL(∼), for which the
problem is highly undecidable [35]. The reason for this lack of results is that developing
algorithms for team logics with ∨ turned out to be comparatively hard. The main source of
difficulty is that the semantic definition of ∨ does not yield any reasonable compositional
brute force algorithm: the verification of (T, i) |= φ ∨ ψ with T generated by a finite Kripke

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:11

structure proceeds by checking that (T1, i) |= φ and (T2, i) |= ψ for some T1 ∪ T2 = T , but it
can well be that T1 and T2 cannot be generated from any finite Kripke structure whatsoever.
The main results of this section are the decidability of the model checking problems of
the k-coherent fragment of TeamLTL(∼) and the left-flat fragment of TeamLTL(6,

1
A). We

obtain inclusions to EXPSPACE by translations to ∀∗HyperLTL and
u

∃∗
p∀πHyperQPTL.

5.1 The k-coherent fragment and ∀∗HyperLTL
The universal fragment of HyperLTL is one of the most studied fragments as it contains the
set of safety hyperproperties expressible in HyperLTL [8]. In particular, formulae of the form
∀π1 . . . ∀πk. ψ state k-safety properties (if ψ is a safety LTL formula) [14], where non-satisfying
trace sets contain bad prefixes of at most k traces. In general, ∀kHyperLTL formulae satisfy
the following inherent invariance: ∅, i |=T φ iff ∅, i |=T ′ φ, for all T ′ ⊆ T s.t. |T ′| ≤ k.

That is, a ∀kHyperLTL-formula φ is satisfied by a trace set T , iff it is satisfied by all subsets of
T of size at most k. This property is called k-coherence in the team semantics literature [31].
The main result of this section is that all k-coherent properties expressible in TeamLTL(∼)
are expressible in ∀kHyperLTL. This implies that, with respect to trace properties, all logics
between TeamLTL(

1
A) and TeamLTL(∼) are equi-expressive to ∀HyperLTL, i.e., LTL.

▶ Definition 7. Let A be any collection of atoms and connectives introduced so far. A
formula φ in TeamLTL(A) is said to be k-coherent (k ∈ N) if for every team (T, i),

(T, i) |= φ iff (S, i) |= φ for every S ⊆ T with |S| ≤ k.

We will next show that, with respect to k-coherent properties, TeamLTL(∼) is at most
as expressive as ∀kHyperLTL. We define a translation from TeamLTL(∼) to ∀∗HyperLTL
that preserves the satisfaction relation with respect to teams of bounded size. Given a finite
set Φ of trace variables, the translation is defined as follows:

pΦ :=
∧
π∈Φ

pπ (¬p)Φ :=
∧
π∈Φ

¬pπ (∼ φ)Φ := ¬φΦ

(φ)Φ := φΦ (φ ∧ ψ)Φ := φΦ ∧ ψΦ (φ ∨ ψ)Φ :=
∨

Φ0∪Φ1=Φ
φΦ0 ∧ ψΦ1

(φU ψ)Φ := φΦ U ψΦ (φW ψ)Φ := φΦ W ψΦ

where ¬φΦ stands for the negation of φΦ in negation normal form. The following lemma,
from which the subsequent theorem follows, is proved by induction. See the full version of
this paper [47] for detailed proofs.

▶ Lemma 8. Let φ be a formula of TeamLTL(∼) and Φ = {π1, . . . , πk} a finite set of trace
variables. For any team (T, i) with |T | ≤ k, any set S ⊇ T of traces, and any assignment
Π with Π[Φ] = T , we have that (T, i) |= φ iff Π, i |=S φ

Φ. Furthermore, if φ is downward
closed and T ̸= ∅, then (T, i) |= φ iff ∅, i |=T ∀π1 . . . ∀πk. φΦ.

▶ Theorem 9. Every k-coherent property that is definable in TeamLTL(∼) is also definable
in ∀kHyperLTL.

Since model checking for ∀∗HyperLTL is PSPACE-complete and its data complexity
(model checking with a fixed formula) is NL-complete [19], and since the above translation
from TeamLTL(∼) to ∀∗HyperLTL is exponential for any k, we get the following corollary:

FSTTCS 2021

52:12 LTL with Team Semantics: Expressivity and Complexity

▶ Corollary 10. For any fixed k ∈ N, the model checking problem for TeamLTL(∼), restricted
to k-coherent properties, is in EXPSPACE, and in NL for data complexity.

Clearly (T, i) |=
1
Aφ iff ∅, i |=T ∀π. φπ for any φ ∈ LTL, and hence we obtain the following:

▶ Corollary 11. The restriction of TeamLTL(
1
A) to formulae of the form

1
Aφ is expressively

equivalent to ∀HyperLTL.

While model checking for k-coherent properties is decidable, checking whether a given
formula defines a k-coherent property is not, in general, decidable.

▶ Theorem 12. Checking whether a TeamLTL(⊆,6)-formula is 1-coherent is undecidable.

Proof. The idea of the undecidability proof is as follows: Given any TeamLTL(⊆,6)-formula
φ, we can use a simple rewriting rule to obtain an LTL-formula φ∗ such that φ is not
satisfiable (in the sense of TeamLTL) if and only if φ is 1-coherent and φ∗ is not satisfiable
(in the LTL-sense). Now, since checking LTL-satisfiability can be done in PSPACE [44] and
non-satisfiability for TeamLTL(⊆,6) is Π0

1-hard by Corollary 4, it follows that checking
1-coherence is Π0

1-hard as well. For a detailed proof, see the full version of this paper [47]. ◀

The same holds for any extension of TeamLTL with an undecidable satisfiability or validity
problem and whose formulae can be computably translated to TeamLTL while preserving
satisfaction over singleton teams.

5.2 The left-flat fragment and HyperQPTL+

In this subsection, we show that formulae φ from the left-flat fragment of TeamLTL(6,
1
A)

(defined below) can be translated to HyperQPTL formulae that are linear in the size of φ.
The known model checking algorithm of HyperQPTL [40] then immediately yields a model
checking algorithm for the left-flat fragment of TeamLTL(6,

1
A).

▶ Definition 13 (The left-flat fragment). Let A be a collection of atoms and connectives. A
TeamLTL(A)-formula belongs to the left-flat fragment if in each of its subformulae of the
form ψ U φ or ψW φ, ψ is a flat formula (as defined in Section 2).

Such defined fragment allows for arbitrary use of the operator, and therefore remains
incomparable to HyperLTL [34]. For instance, dep(a, b)∨ dep(c, d) is a nontrivial formula
in this fragment. It states that the set of traces can be partitioned into two parts, one where
eventually a determines the value of b, and another where eventually c determines the value
of d. The property is not expressible in HyperLTL, because HyperLTL cannot state the
property “there is a point in time at which p holds on all (or infinitely many) traces” [5].

It follows from Theorem 12 that checking whether a TeamLTL(⊆,6)-formula belongs
to the left-flat fragment is undecidable (as flatness equals 1-coherency). Nevertheless, a
decidable syntax for left-flat formulae can be obtained by using the operator

1
A. Formulae

1
Aψ are always flat and equivalent to ψ if ψ is flat. Therefore, in Definition 13, instead of
imposing the semantic condition of ψ being flat in subformulae ψ U φ and ψW φ, we could
require that the subformulae must be of the form (

1
Aψ) U φ or (

1
Aψ) W φ.

We now describe a translation from the left-flat fragment of TeamLTL(6,
1
A) to the

u

∃∗
p∀π

fragment of HyperQPTL. In this translation, we make use of the fact that satisfaction of
flat formulae φ can be determined with the usual (single-traced) LTL semantics. In the
evaluation of φ, it is thus sufficient to consider only finitely many subteams, whose temporal
behaviour can be reflected by existentially quantified q-sequences. The quantified sequences
refer to points in time, at which subformulae have to hold for a trace to belong to a team.

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:13

A left-flat TeamLTL(6,
1
A)-formula φ will be translated into a formula with existential

propositional quantifiers followed by a single trace quantifier. The existential propositional
quantifiers either indicate a point in time at which a subformula of φi is evaluated or
resolve the decision for 6-choices. For subformulae, we use propositions rφi , and if the same
subformula occurs multiple times, it is associated with different rφi . For the resolution of
6-choices we use propositions dφ6ψ. Additionally, r is a free proposition for the point in
time at which φ is to be evaluated. The universal quantifier ∀π sorts each trace into one of
the finitely many teams.

Let ∀π. ψ̂ be the HyperLTL formula given by Theorem 9 for any flat formula ψ (since a
flat formula is 1-coherent). We translate φ inductively with respect to r:

[p, r] := (rπ → pπ)
[¬p, r] := (rπ → ¬pπ)
[φ, r] := (rπ ↔ rφπ) ∧ [φ, rφ]

[
1
Aφ, r] := (rπ → φ̂)

[φ ∧ ψ, r] := [φ, r] ∧ [ψ, r]
[φ ∨ ψ, r] := [φ, r] ∨ [ψ, r]
[φ6 ψ, r] := (dφ6ψ

π → [φ, r]) ∧ (¬dφ6ψ
π → [ψ, r])

[φW ψ, r] := (rπ → rφπ W(rψπ ∧ ¬rψπ))

Now, let r1, . . . rn be the free propositions occurring in [φ, r] and π the free trace variable.
Define the following

u

∃∗
p∀π HyperQPTL formula:

u

∃r
u

∃r1 . . .
u

∃rn. ∀π. rπ ∧ ¬rπ ∧ [φ, r].
Correctness of the translation can be argued intuitively as follows. The left-flat formula φ
can be evaluated independently from the other traces in a team. Therefore, the operators U
and W, whose right-hand sides argue only about a single point in time, can only generate
finitely many teams. Thus, there are only finitely many points of synchronization, all of
which are quantified existentially. Every trace fits into one of the teams described by the
quantified propositional variables. We verify that the translation is indeed correct in the full
version of this paper [47]. As the construction in Theorem 9 yields a formula φ̂ whose size is
linear in the original formula φ, the translation is obviously linear. We therefore state the
following theorem.

▶ Theorem 14. For every formula φ from the left-flat fragment of TeamLTL(6,
1
A), we can

compute an equivalent
u

∃∗
p∀π HyperQPTL formula of size linear in the size of φ.

Recall that the model checking problem of HyperLTL formulae with one quantifier
alternation is EXPSPACE-complete [19] in the size of the formula, and PSPACE-complete
in the size of the Kripke structure [19]. These results directly transfer to HyperQPTL [40]
(in which HyperQPTL was called HyperLTL with extended quantification instead): for
model checking a HyperQPTL formula, the Kripke structure can be extended by two
states generating all possible q-sequences. Since the translation from TeamLTL(6,

1
A) to

HyperQPTL yields a formula in the
u

∃∗
p∀π fragment with a single quantifier alternation and

preserves the size of the formula, we obtain the following theorem.

▶ Theorem 15. The model checking problem for left-flat TeamLTL(6,
1
A)-formulae is in

EXPSPACE, and in PSPACE for data complexity.

FSTTCS 2021

52:14 LTL with Team Semantics: Expressivity and Complexity

6 Conclusion

We studied TeamLTL under the synchronous semantics. TeamLTL is a powerful but not yet
well-studied logic that can express hyperproperties without explicit quantification over traces
or propositions. As such, properties which need various different quantifiers in traditional
(quantification-based) hyperlogics become expressible in a concise fashion. One of the main
advantages of TeamLTL is the ability to equip it with a range of atomic statements and
connectives to obtain logics of varying expressivity and complexity.

We systematically studied TeamLTL with respect to two of the main questions related to
logics: the decision boundary of its model checking problem and its expressivity compared to
other logics for hyperproperties. We related the expressivity of TeamLTL to the hyperlogics
HyperLTL, HyperQPTL, and HyperQPTL+, which are obtained by extending the traditional
temporal logics LTL and QPTL with trace quantifiers. We discovered that the logics
TeamLTL(6,

1
A) and TeamLTL(6,∼⊥,

1
A) are expressively complete with respect to all

downward closed, and all atomic notions of dependence, respectively. We were able to show
that TeamLTL(6,∼⊥,

1
A) can be expressed in a fragment of HyperQPTL+. Furthermore,

for k-coherent properties, TeamLTL(∼) is subsumed by ∀∗HyperLTL. Finally, the left-flat
fragment of TeamLTL(6,

1
A) can be translated to HyperQPTL. The last two results induce

efficient model checking algorithms for the respective logics. In addition, we showed that
model checking of TeamLTL(⊆,6) is already undecidable, and that the additional use of
the A quantifier makes the problem highly undecidable.

We conclude with some open problems and directions for future work: What is the
complexity of model checking for TeamLTL (with the disjunction ∨ but without additional
atoms and connectives)? Is it decidable, and is there a translation to HyperQPTL? An
interesting avenue for future work is also to explore team semantics of more expressive logics
than LTL such as linear time µ-calculus, or branching time logics such as CTL∗ and the full
modal µ-calculus.

References

1 Erika Ábrahám and Borzoo Bonakdarpour. Hyperpctl: A temporal logic for probabilistic
hyperproperties. In Annabelle McIver and András Horváth, editors, Quantitative Evaluation
of Systems - 15th International Conference, QEST 2018, Beijing, China, September 4-7, 2018,
Proceedings, volume 11024 of Lecture Notes in Computer Science, pages 20–35. Springer, 2018.
doi:10.1007/978-3-319-99154-2_2.

2 Shreya Agrawal and Borzoo Bonakdarpour. Runtime verification of k-safety hyperproperties
in hyperltl. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 239–252. IEEE Computer Society, 2016. doi:
10.1109/CSF.2016.24.

3 Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM, 41(1):181–204, 1994.
doi:10.1145/174644.174651.

4 Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez.
A temporal logic for asynchronous hyperproperties. In Alexandra Silva and K. Rustan M. Leino,
editors, Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual
Event, July 20-23, 2021, Proceedings, Part I, volume 12759 of Lecture Notes in Computer
Science, pages 694–717. Springer, 2021. doi:10.1007/978-3-030-81685-8_33.

5 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic temporal
logics. In Proceedings of FoSSaCS, volume 9034 of LNCS, pages 167–182. Springer, 2015.
doi:10.1007/978-3-662-46678-0_11.

https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1145 / 174644.174651
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-662-46678-0_11

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:15

6 Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV: A
new symbolic model verifier. In Proc. International Conference on Computer Aided Verification,
pages 495–499, July 1999.

7 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and Steve
Kremer, editors, POST 2014, volume 8414 of Lecture Notes in Computer Science, pages
265–284. Springer, 2014. doi:10.1007/978-3-642-54792-8_15.

8 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

9 Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy
of hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019. doi:
10.1109/LICS.2019.8785713.

10 Norine Coenen, Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Yannick Schillo.
Runtime enforcement of hyperproperties. To appear at the 19th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2021), 2021.

11 Byron Cook, Eric Koskinen, and Moshe Vardi. Temporal property verification as a program
analysis task. In Proc. Computer Aided Verification, pages 333–348, July 2011.

12 Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and Jouko Väänänen. A
logical approach to context-specific independence. Ann. Pure Appl. Logic, 170(9):975–992,
2019. doi:10.1016/j.apal.2019.04.004.

13 Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Probabilistic
team semantics. In FoIKS, volume 10833 of Lecture Notes in Computer Science, pages 186–206.
Springer, 2018. doi:10.1007/978-3-319-90050-6_11.

14 Bernd Finkbeiner, Lennart Haas, and Hazem Torfah. Canonical representations of k-safety
hyperproperties. In 32nd IEEE Computer Security Foundations Symposium, CSF 2019,
Hoboken, NJ, USA, June 25-28, 2019, pages 17–31. IEEE, 2019. doi:10.1109/CSF.2019.
00009.

15 Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In Josée Desharnais and
Radha Jagadeesan, editors, 27th International Conference on Concurrency Theory, CONCUR
2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages 13:1–13:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.

16 Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Leander Tentrup. Realizing ømega-
regular hyperproperties. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided
Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part II, volume 12225 of Lecture Notes in Computer Science, pages 40–63.
Springer, 2020. doi:10.1007/978-3-030-53291-8_4.

17 Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander Tentrup.
Synthesis from hyperproperties. Acta Informatica, 57(1-2):137–163, 2020. doi:10.1007/
s00236-019-00358-2.

18 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitor-
ing hyperproperties. Formal Methods Syst. Des., 54(3):336–363, 2019. doi:10.1007/
s10703-019-00334-z.

19 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking
HyperLTL and HyperCTL∗. In Proceedings of CAV, volume 9206 of LNCS, pages 30–48.
Springer, 2015. doi:10.1007/978-3-319-21690-4_3.

20 Pietro Galliani and Lauri Hella. Inclusion Logic and Fixed Point Logic. In CSL 2013, pages
281–295, 2013.

21 Giuseppe De Giacomo, Paolo Felli, Marco Montali, and Giuseppe Perelli. Hyperldlf: a logic for
checking properties of finite traces process logs. In Zhi-Hua Zhou, editor, Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event
/ Montreal, Canada, 19-27 August 2021, pages 1859–1865. ijcai.org, 2021. doi:10.24963/
ijcai.2021/256.

FSTTCS 2021

https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-53291-8_4
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s00236-019-00358-2
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.24963/ijcai.2021/256
https://doi.org/10.24963/ijcai.2021/256

52:16 LTL with Team Semantics: Expressivity and Complexity

22 Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints
for asynchronous hyperproperties. Proc. ACM Program. Lang., 5(POPL):1–29, 2021. doi:
10.1145/3434319.

23 Miika Hannula and Juha Kontinen. A finite axiomatization of conditional independence and
inclusion dependencies. Inf. Comput., 249:121–137, 2016. doi:10.1016/j.ic.2016.04.001.

24 Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni Virtema. Descriptive
complexity of real computation and probabilistic independence logic. In Holger Hermanns,
Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages
550–563. ACM, 2020. doi:10.1145/3373718.3394773.

25 Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. Complexity of
propositional logics in team semantic. ACM Trans. Comput. Log., 19(1):2:1–2:14, 2018.
doi:10.1145/3157054.

26 Lauri Hella, Antti Kuusisto, Arne Meier, and Jonni Virtema. Model checking and validity
in propositional and modal inclusion logics. J. Log. Comput., 29(5):605–630, 2019. doi:
10.1093/logcom/exz008.

27 Lauri Hella, Kerkko Luosto, Katsuhiko Sano, and Jonni Virtema. The expressive power of modal
dependence logic. In Rajeev Goré, Barteld P. Kooi, and Agi Kurucz, editors, Advances in Modal
Logic 10, invited and contributed papers from the tenth conference on "Advances in Modal Logic,"
held in Groningen, The Netherlands, August 5-8, 2014, pages 294–312. College Publications,
2014. URL: http://www.aiml.net/volumes/volume10/Hella-Luosto-Sano-Virtema.pdf.

28 Hsi-Ming Ho, Ruoyu Zhou, and Timothy M. Jones. On verifying timed hyperproperties. In
Johann Gamper, Sophie Pinchinat, and Guido Sciavicco, editors, 26th International Symposium
on Temporal Representation and Reasoning, TIME 2019, October 16-19, 2019, Málaga, Spain,
volume 147 of LIPIcs, pages 20:1–20:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.TIME.2019.20.

29 Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23:279–295, 1997.

30 Tapani Hyttinen, Gianluca Paolini, and Jouko Väänänen. A Logic for Arguing About
Probabilities in Measure Teams. Arch. Math. Logic, 56(5-6):475–489, 2017. doi:10.1007/
s00153-017-0535-x.

31 Jarmo Kontinen. Coherence and computational complexity of quantifier-free dependence logic
formulas. Studia Logica, 101(2):267–291, 2013. doi:10.1007/s11225-013-9481-8.

32 Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. A van benthem
theorem for modal team semantics. In Stephan Kreutzer, editor, 24th EACSL Annual
Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany,
volume 41 of LIPIcs, pages 277–291. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.
doi:10.4230/LIPIcs.CSL.2015.277.

33 Andreas Krebs, Arne Meier, and Jonni Virtema. A team based variant of CTL. In Fabio
Grandi, Martin Lange, and Alessio Lomuscio, editors, 22nd International Symposium on
Temporal Representation and Reasoning, TIME 2015, Kassel, Germany, September 23-25,
2015, pages 140–149. IEEE Computer Society, 2015. doi:10.1109/TIME.2015.11.

34 Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team Semantics for the
Specification and Verification of Hyperproperties. In Igor Potapov, Paul Spirakis, and James
Worrell, editors, 43rd International Symposium on Mathematical Foundations of Computer
Science (MFCS 2018), volume 117 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 10:1–10:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.MFCS.2018.10.

35 Martin Lück. On the complexity of linear temporal logic with team semantics. Theoretical
Computer Science, 2020. doi:10.1016/j.tcs.2020.04.019.

https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1016/j.ic.2016.04.001
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1145/3157054
https://doi.org/10.1093/logcom/exz008
https://doi.org/10.1093/logcom/exz008
http://www.aiml.net/volumes/volume10/Hella-Luosto-Sano-Virtema.pdf
https://doi.org/10.4230/LIPIcs.TIME.2019.20
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.1007/s11225-013-9481-8
https://doi.org/10.4230/LIPIcs.CSL.2015.277
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1016/j.tcs.2020.04.019

J. Virtema, J. Hofmann, B. Finkbeiner, J. Kontinen, and F. Yang 52:17

36 Corto Mascle and Martin Zimmermann. The keys to decidable hyperltl satisfiability: Small
models or very simple formulas. In Maribel Fernández and Anca Muscholl, editors, 28th
EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020,
Barcelona, Spain, volume 152 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.CSL.2020.29.

37 John McLean. Proving noninterference and functional correctness using traces. Journal of
Computer Security, 1(1):37–58, 1992. doi:10.3233/JCS-1992-1103.

38 Nir Piterman and Amir Pnueli. Temporal logic and fair discrete systems. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 27–73. Springer, 2018. doi:10.1007/978-3-319-10575-8_2.

39 Amir Pnueli. The Temporal Logic of Programs. In FOCS 1977, pages 46–57, 1977.
40 Markus N. Rabe. A Temporal Logic Approach to Information-Flow Control. PhD thesis,

Saarland University, 2016.
41 A. W. Roscoe. CSP and determinism in security modelling. In Proceedings of the 1995

IEEE Symposium on Security and Privacy, Oakland, California, USA, May 8-10, 1995, pages
114–127. IEEE Computer Society, 1995. doi:10.1109/SECPRI.1995.398927.

42 Katsuhiko Sano and Jonni Virtema. Characterising modal definability of team-based logics
via the universal modality. Ann. Pure Appl. Log., 170(9):1100–1127, 2019. doi:10.1016/j.
apal.2019.04.009.

43 Philippe Schnoebelen. Lossy counter machines decidability cheat sheet. In Antonín Kucera
and Igor Potapov, editors, Reachability Problems, 4th International Workshop, RP 2010, Brno,
Czech Republic, August 28-29, 2010. Proceedings, volume 6227 of Lecture Notes in Computer
Science, pages 51–75. Springer, 2010. doi:10.1007/978-3-642-15349-5_4.

44 A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985. doi:10.1145/3828.3837.

45 Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.
46 Jouko Väänänen. Modal dependence logic. In New Perspectives on Games and Interaction,

2008.
47 Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang. Linear-time

temporal logic with team semantics: Expressivity and complexity. arXiv preprint, 2020.
arXiv:2010.03311.

48 Fan Yang and Jouko Väänänen. Propositional team logics. Annals of Pure and Applied Logic,
168(7):1406–1441, 2017. doi:10.1016/j.apal.2017.01.007.

49 Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program
security. In 16th IEEE Computer Security Foundations Workshop (CSFW-16 2003), 30
June - 2 July 2003, Pacific Grove, CA, USA, page 29. IEEE Computer Society, 2003. doi:
10.1109/CSFW.2003.1212703.

FSTTCS 2021

https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.3233/JCS-1992-1103
https://doi.org/10.1007/978-3-319-10575-8_2
https://doi.org/10.1109/SECPRI.1995.398927
https://doi.org/10.1016/j.apal.2019.04.009
https://doi.org/10.1016/j.apal.2019.04.009
https://doi.org/10.1007/978-3-642-15349-5_4
https://doi.org/10.1145/3828.3837
http://arxiv.org/abs/2010.03311
https://doi.org/10.1016/j.apal.2017.01.007
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703

	p000-Frontmatter
	Preface
	Program Committee
	List of External Reviewers: Track A
	List of External Reviewers: Track B

	p001-Aaronson
	p002-Esparza
	p003-Goldberg
	p004-Lin
	p005-Savani
	1 Talk summary

	p006-Albers
	1 Introduction
	2 A strong measure of random-order competitiveness
	3 Basic properties
	4 A simple 1.75-competitive algorithm
	5 The nearly 1.535-competitive algorithm
	6 Analysis of the algorithm
	7 Lower bounds
	A Lower bounds
	B Full description of the main algorithm

	p007-Allender
	1 Introduction
	1.1 Prior work
	1.2 Our results
	1.2.1 How significant are our results?

	1.3 Our techniques
	1.4 Paper organization

	2 Preliminaries
	2.1 Notation
	2.2 Probability theory
	2.3 KT complexity
	2.3.1 A universal Turing machine
	2.3.2 Definition of KT complexity, and some properties

	2.4 Minimum Conditional KT-complexity Problem, and variants
	2.5 One-way functions
	2.6 Average-case hardness/easiness

	3 OWFs from average-case hardness of McKTP
	3.1 Proof of

	4 Logspace-computable OWFs from average-case hardness of McKTP
	5 Average-case hardness of McKTP from logspace-computable OWFs: Proof of
	A Hard-on-average problems in NP
	B McKTP is NP-complete under randomized reductions
	B.1 Set Cover
	B.2 Approximation algorithms
	B.3 Proof of

	p008-Banchhor
	1 Introduction
	1.1 Related Work

	2 Preliminaries: a DP for Huffman codes
	3 Algorithm for the Soft-LLHC (Soft-LLHC) Problem
	4 Algorithms for the Generalized LLHC (Gen-LLHC) Problem
	4.1 Exact DP for Gen-LLHC: Proof of Theorem 3(a)
	4.2 PTAS for Gen-LLHC: Proof of Theorem 3(b) and Theorem 12

	5 Algorithms for the Code Optimal Prefix Tree (COPT) problem
	5.1 Proof of Theorem 1(b)

	6 Conclusion and open problems
	A Algorithm for Max-GHT: Proof of Theorem 6
	A.1 Introduction
	A.2 Reduction

	B Proof of Theorem 8
	C Proof of Lemma 14 pertaining to Exact DP for Gen-LLHC
	D Pseudo-code for PTAS for Gen-LLHC: Theorem 3(b)
	E Proof of Lemma 15 pertaining to PTAS for Gen-LLHC
	F Exact DP for COPT: Proof of Theorem 1(a)
	G Proof of Proposition 20 pertaining to Theorem 1(b)

	p009-Boyd
	1 Introduction
	2 A (k+1)-Approximation Algorithm for (1,k)-FGC
	3 Unweighted FGC
	4 A 4-Approximation Algorithm for (k,1)-FGC
	5 The Capacitated k-Connected Subgraph Problem

	p010-Chakraborty
	1 Introduction
	1.1 Thresholds considered for Chang's lemma
	1.2 Our contributions
	1.3 Applications of our results

	2 Lower bound proofs
	2.1 Proof of Theorem 1.3 (and Theorem 1.2)
	2.2 Proof of Theorem 1.5

	3 Proof techniques for upper bound results
	3.1 Proof techniques for Theorem 1.4
	3.2 Proof techniques for Theorem 1.6

	4 Conclusions
	A Preliminaries
	A.1 Fourier analysis of Boolean functions
	A.2 Fourier expansions and properties of some standard functions
	A.3 Fourier-analytic measures of Boolean functions

	B Upper bound proofs
	B.1 Setting parameters in our constructed functions

	p011-Chakraborty
	1 Introduction
	1.1 Related Work
	1.2 Technical Overview
	1.3 Preliminaries

	2 Probabilistic Generative Model
	3 Robustness of the Insertion-Deletion Channel
	4 Robustness of Approximate Median
	5 Near-Linear time Approximate Trace Reconstruction
	6 Conclusion
	A Description of Probabilistic Channel
	B Near-Linear-Time Median Algorithm

	p012-Chakraborty
	1 Introduction
	1.1 Technical overview

	2 Preliminaries
	3 Matrix Bi-coloring
	3.1 An upper bound on the bi-coloring number

	4 Approximation Algorithm for the Ulam Center
	4.1 Finding a length-restricted center string
	4.2 Converting a length-restricted center string to a permutation
	4.3 An exact algorithm for three permutations

	5 Closest String with Wildcards
	6 Conclusion
	A Ulam Median reduces to Ulam Center
	B Computing the Bi-coloring Number of a Colored Matrix
	C Computing a Length-restricted Center String
	D Pseudocodes from Section 4.2

	p013-Chattopadhyay
	1 Introduction
	1.1 Main Ideas
	1.2 Organization and plan of the paper

	2 Preliminaries
	2.1 Notation
	2.2 Basic facts about subspaces
	2.3 Parity decision trees, communication complexity and the corruption bound
	2.4 Basic notions from Fourier analysis

	3 The RPDT Complexity of Dual Subspace Designs
	3.1 Narrowing the gap between RPDT complexity and approximate sparsity to cubic
	3.2 On Extending this to Communication

	4 Conclusion and open problems

	p014-Chillara
	1 Introduction
	2 Preliminaries
	3 Hard Polynomial and Restrictions
	3.1 Polynomial Family: Iterated Matrix Multiplication polynomial
	3.2 Deterministic and Random Restrictions
	3.3 Complexity of P|_V

	4 Functional Lower Bounds against restricted Sigma wedge SigmaPi Circuits

	p015-Dahiya
	1 Introduction
	2 Preliminaries
	3 Game Characterisation for Rank
	4 The Rank of some natural functions
	5 Relation between Rank and Certificate Complexity
	6 Rank of Composed functions
	7 Tightness of Rank and Size relation
	8 Proofs using Prover-Delayer Games
	9 Conclusion

	p016-Datta
	1 Introduction
	1.1 Our Result
	1.2 Organization of the Paper

	2 Preliminaries and Notations
	3 Weight function
	3.1 Modifying the Component Tree
	3.2 Preserving nonzero circulation
	3.3 Tree decomposition
	3.4 Construction of G'

	4 Maximum Matching
	5 Conclusion

	p017-Du
	1 Introduction
	1.1 Previous Results
	1.2 Our Results
	1.3 Techniques
	1.4 Organization

	2 Preliminaries
	3 Algorithm and Technical Results
	4 Examples
	4.1 Example 1
	4.2 Example 2

	5 Discussion & Open Questions
	A Missing Proofs

	p018-Eberle
	1 Introduction
	2 Roadmap and Preliminaries
	3 A Single Knapsack
	4 Identical Knapsacks
	4.1 Oblivious Linear Grouping
	4.2 A Dynamic Algorithm for Many Identical Knapsacks

	5 Solving Multiple Knapsack
	6 Conclusion

	p019-Eom
	1 Introduction
	2 Preliminary
	2.1 The Algorithm of Chew and Kedem

	3 The number of changes in eDTtheta
	3.1 The number of changes for fixed k
	3.2 The number of changes with respect to k

	4 The number of critical orientations for four contact pairs

	p020-Esser
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Closest Pair Definition

	3 Our new Algorithm
	4 Different Input Distributions
	A Proofs Regarding Different Input Distributions
	A.1 Proof of Lemma 10
	A.2 Proof of Lemma 11

	B Practical Experiments

	p021-Fomin
	1 Introduction
	2 Geometric Graphs and Weighted Treedepth
	3 Cut&Count Algorithms
	3.1 Setup
	3.2 Steiner Tree
	3.3 Other Problems

	4 Cycle Cover
	5 Conclusion and Open Questions

	p022-Garg
	1 Introduction
	1.1 Other related work

	2 Notation and Preliminaries
	3 Relating the models
	4 Properties of MNW and Leximin
	5 Complexity of MNW and Leximin
	6 Algorithms for MNW and Leximin
	7 Discussion
	A Missing Proofs from Section 3

	p023-Gupta
	1 Introduction
	2 Preliminaries
	3 Voronoi Region
	3.1 Dividing Voronoi Regions using Pre-Frame-Loops

	4 Frame Graph
	4.1 Definition and construction of Frame Graph

	5 Construction of separator
	A Appendix
	A.1 Proof of Lemma 24

	p024-Jalan
	1 Our Contributions
	1.1 Main Result
	1.2 Wide Replacement Walks are Near-Optimal Character Samplers
	1.3 Applications
	1.4 Related Work
	1.5 Open Problems
	1.6 Organization

	2 Expanding Generating Sets for Abelian Groups
	2.1 The ordinary expander walk
	2.2 The wide replacement walk
	2.2.1 Setup
	2.2.2 Algebraic Expression for the Bias

	2.3 Bounding the matrix norm

	A Cayley Graphs and Expanders
	B Wide Replacement Walks
	C Parameters of the Construction

	p025-Kavitha
	1 Introduction
	1.1 Background and related results
	1.2 Techniques

	2 A witness for a popular critical matching
	3 An algorithm for a popular critical matching
	4 Finding a max-size popular critical matching
	A Appendix: Missing Proofs

	p026-Klimenko
	1 Introduction
	2 Preliminaries
	3 Convex Position
	3.1 Structural Properties and Definitions
	3.2 The min-k Algorithm
	3.3 The min-{epsilon} Algorithm

	4 The General Case
	4.1 Faster Approximations

	p027-Li
	1 Introduction
	1.1 Our Contribution
	1.2 Overview of our Techniques
	1.2.1 Lower Bounds

	1.3 Open Problems

	2 Organization of the paper
	3 Preliminaries
	4 Lower Bounds for Edit Distance
	5 Lower Bounds for LCS
	5.1 Exact computation
	5.1.1 Binary alphabet, deterministic algorithm
	5.1.2 Omega(n) size alphabet, randomized algorithm

	5.2 Approximation

	A Lower Bounds for LIS and LNS
	A.1 Lower bound for streaming LIS over small alphabet
	A.2 Longest Non-decreasing Subsequence
	A.3 Longest Non-decreasing Subsequence with Threshold

	B Algorithms for Edit Distance and LCS
	C Lower Bound for ED in the Standard Streaming Model

	p028-Lokshtanov
	1 Introduction
	2 An ETH-tight algorithm
	3 Conclusion and future work

	p029-Lokshtanov
	1 Introduction
	2 Notation and Preliminaries
	3 Obstructions to Weak Closure
	4 VC-dimension of Weakly Closed Graphs
	4.1 Set Cover and graphs of bounded VC-dimension

	5 Dominating Set in Weakly Closed Graphs
	6 Threshold Sets in Weakly Closed Graphs
	7 Conclusion and Barriers to Further Improvements
	A Proof of Lemma 6 (Obstructions to Weak Closure)
	B Proof of Lemma 18
	C Proof of Lemma 15
	D Minimal k-domination cores of size 2^k in weakly 1-closed graphs

	p030-Nasre
	1 Introduction
	2 Reduction
	3 Our algorithm and its feasibility
	4 Popularity of our matching
	4.1 The graph G~_N corresponding to a feasible matching N
	4.2 The graph G~_M corresponding to M obtained from M_s
	4.3 Linear Program and its Dual
	4.4 Dual Assignment and its correctness

	5 Discussion
	A Appendix
	A.1 Illustration of Reduction Method
	A.2 Proofs from Section 3

	p031-Radhakrishnan
	1 Introduction
	2 Proof of the main result
	A Proof of Lemma 2

	p032-Sharma
	1 Introduction
	1.1 Prior Work
	1.2 Multiple-Choice Packing
	1.3 Our Contributions

	2 Preliminaries
	2.1 Multiple-Choice Packing

	3 Important Ideas from the HDHk Algorithm
	3.1 Weighting Functions
	3.2 The Harmonic Function
	3.3 The HDH-unit-pack Subroutine

	4 Fast and Simple Algorithm for dMCBP (fullh_k)
	4.1 dBP with Rotations

	5 Better Algorithm for dMCBP (HGaP)
	5.1 Structured Packing
	5.2 Subroutines
	5.2.1 guessShelves
	5.2.2 chooseAndPack
	5.2.3 inflate

	5.3 Correctness and Running Time of HGaP
	5.4 dBP with Rotations
	5.5 Proof of the Structural Theorem
	5.5.1 Predecessors and Canonical Shelving
	5.5.2 Linear Grouping
	5.5.3 LP for Packing J^lo + I^_S

	A Details of the HGaP Algorithm
	A.1 Details of the Weighting Function from DLP(I^)
	A.2 Guessing Shelves and Bins
	A.3 chooseAndPack
	A.4 inflate
	A.4.1 Separating Base Types
	A.4.2 Forbidding Horizontal Slicing
	A.4.3 Shelf-Based dD packing
	A.4.4 The Algorithm

	A.5 Improving Running Time

	p033-Akshay
	1 Introduction
	2 Preliminaries
	3 Resilience Problems
	4 Existential Resilience
	5 Universal Resilience
	6 Conclusion
	A Example for Universal Resilience
	B Lg
	C Resilience of Integer Reset Timed Automata

	p034-Arrighi
	1 Introduction
	2 Preliminaries
	3 Inside Logspace
	4 NP-Completeness
	4.1 NP-Membership
	4.2 NP-Hardness
	4.3 Large Partially Ordered NFAs
	4.4 Commutative Star-Free Languages

	5 PSPACE-Completeness
	6 Conclusion and Open Problems

	p035-Balasubramanian
	1 Introduction
	2 Preliminaries
	3 Nested counter systems (NCS)
	4 A simulator protocol P_sim
	4.1 Transitions involving the letters begin^r_i and end^r_i
	4.2 Proof of correctness

	5 A seeker protocol P_seek
	6 Upper bound for Bounded-Path-Cover
	A Appendix
	A.1 Proofs for Section 6

	p036-Bednarczyk
	1 Introduction
	2 Preliminaries
	2.1 Percentage quantifiers
	2.2 Local Presburger quantifiers
	2.3 Logics
	2.4 Semi-linear sets
	2.5 Types and neighbourhoods

	3 Negative results
	3.1 Two-Variable Fragment
	3.1.1 Playing with percentage quantifiers
	3.1.2 Undecidability proof

	3.2 Guarded Fragment

	4 Positive results
	4.1 Transforming GF^2_{pres} formulae into C^2
	4.2 Correctness of the translation
	4.3 Complexity analysis of the decision procedure

	5 Concluding remarks

	p037-Bedon
	1 Introduction
	2 Notation and basic definitions
	3 Branching Automata
	3.1 b-regular and b-rational languages
	3.2 b*-regular and b*-rational languages

	4 Pomset Automata
	5 Series-parallel rational languages
	6 Conclusion

	p038-Boker
	1 Introduction
	2 Preliminaries
	3 Good For Gameness, History Determinism, and Determinizability By Pruning
	4 The Relations Between Notions
	4.1 When (History Determinism = Determinizability by Pruning)

	5 Applications to Quantitative Synthesis
	6 Conclusions
	A Proofs of Section 4
	A.1 Proofs of Section 4.1

	B Proofs of Section 5

	p039-Bollig
	1 Introduction
	2 Structures and First-Order Logic
	2.1 Structures and First-Order Logic
	2.2 Local First-Order Logic

	3 Decidability With One Diagonal Relation
	4 Undecidability Results
	5 Future Work

	p040-Bonchi
	1 Introduction
	2 Props and Symmetric Monoidal Theories
	2.1 Ordered Props and Symmetric Monoidal Inequality Theories

	3 The theory of Linear relations
	4 The Theory of Polyhedral cones
	5 The theory of Polyhedra
	6 Adding states to polyhedra
	6.1 The Calculus of Stateful Polyhedral Processes
	6.2 Bounded Continuous Petri Nets

	7 Conclusions and Future Work

	p041-Bordais
	1 Introduction
	2 Preliminaries
	3 Game Forms and Win/Lose Games
	4 Concurrent Graph Games and Strategies
	5 Sequentialization of Games
	6 Applications
	6.1 Games with deterministic Nature (i.e. without Nature)
	6.2 Stochastic Games (i.e. with Nature)

	7 Future Work

	p042-Chatterjee
	1 Introduction
	2 Preliminaries
	3 Construction of (alpha, beta) tree decompositions
	3.1 Operations on tree components
	3.1.1 The operation BorderSplit
	3.1.2 The operation Split

	3.2 Construction of (alpha, beta) Tree Decomposition
	3.2.1 Construction of tree decompositions of trees
	3.2.2 Construction of (alpha, beta) tree decompositions

	3.3 A lower bound on the width of balanced tree decompositions

	4 Applications to verification on product graphs
	4.1 Mean-payoff properties
	4.2 Semiring properties
	4.3 Initial credit for energy properties

	5 Conclusion
	A Proofs of Section 3
	A.1 Proofs of Section 3.1
	A.2 Proofs of Section 3.2

	p043-Filiot
	1 Introduction
	2 Preliminaries
	3 Unbounded Delay Game
	4 A Sufficient Condition for Completeness
	5 Discussion

	p044-Gutierrez
	1 Introduction
	2 Preliminaries
	3 Term Rewriting as Satisfiability
	3.1 Operational Semantics of Conditional Rewriting in Logic Form
	3.2 Dealing With Variables in Terms as (Fresh) Constants
	3.3 A Ground Model for Rewriting Terms with Variables

	4 Confluence of Rewriting as a Satisfiability Problem
	5 Proofs of confluence using critical pairs
	6 Joinability of Terms and Feasibility Problems
	6.1 Proving Conditional Joinability
	6.2 Disproving Conditional Joinability

	7 Confluence of CTRSs
	8 Implementation and Experimental Evaluation
	9 Related Work
	10 Conclusions and Future Work
	A Proofs of theorems

	p045-Holla
	1 Introduction
	2 Preliminaries
	3 The FO(<,+Q) logic
	4 A normal form for FO sentences
	5 Equivalence of foc and fop semantics
	5.1 Proof Idea
	5.2 Equivalence Proof

	6 Proof of Lemma 2
	7 Equivalence of fo and tptls
	8 Conclusion
	A Proof of Lemma 2

	p046-Hugenroth
	1 Introduction
	2 Preliminaries
	2.1 Automaton Structures
	2.2 Deterministic Muller Automata

	3 Wagner Hierarchy
	3.1 Chains
	3.2 Superchains
	3.3 Wagner hierarchy

	4 Wagner Separation
	4.1 Generalization of Chains
	4.2 Blue and Red Chains
	4.3 Separator
	4.4 Translating Chains

	5 Solving Separation
	5.1 Computing a Separator
	5.2 Exponential blowup of Separators
	5.3 Deciding Separability
	5.4 Wagner Separation for Parity Automata

	6 Conclusion

	p047-Jordon
	1 Introduction
	2 Preliminaries
	3 Normal Sequences with Low Automatic Complexity
	4 Automatic Complexity of Champernowne Sequences
	4.1 Discussion on Lower Bounds for Champernowne Sequences

	A Appendix
	A.1 The other three cases for the proof of Theorem 11
	A.2 Analogous Result to Proposition 12

	p048-Kiefer
	1 Introduction
	2 Preliminaries
	3 Properties of Approximate Quotients
	4 Approximate Minimisation Algorithms
	4.1 Local Bisimilarity Distance
	4.2 Minimisation by Approximate Partition Refinement

	5 Active LMC Learning
	6 Experiments
	7 Conclusion

	p049-Kikuchi
	1 Introduction
	2 Preliminaries
	3 A Simple Derivation System for Sufficient Completeness
	4 A Simple Derivation System for Local Sufficient Completeness with Signature Restriction
	5 A Simple Derivation System for Local Sufficient Completeness with Sort Partition
	6 Conclusion
	A Proof Ability of the Method in Section 3

	p050-Lasota
	1 Introduction
	2 Orbit-finite sets
	3 Rational sets
	4 Register automata
	5 Parikh-equivalence of HRA and rational languages

	p051-Lee
	1 Introduction
	2 Syntax, Types and Operational Semantics
	2.1 Quantum Channels
	2.2 Syntax of the Terms
	2.3 Type System
	2.4 Operational Semantics
	2.5 Type safety for Proto-Quipper-L

	3 Categorical semantics
	3.1 Categories of Diagrams
	3.2 Coproduct completion
	3.3 Monad for Branching Computation
	3.4 Interpreting Typed Terms and Configurations

	4 Conclusion
	A Operational semantics
	A.1 Reduction
	A.2 Derivation of the example of Example 6

	B Categorical semantics
	B.1 Equivalence of diagrams
	B.2 Interpretation of type system
	B.2.1 Quantum channel types, Box and Unbox
	B.2.2 Quantum channel constants

	p052-Virtema
	1 Introduction
	2 Basics of TeamLTL
	3 Undecidable Extensions of TeamLTL
	4 Quantification-based Hyperlogics and Team Semantics
	5 Decidable fragments of TeamLTL
	5.1 The k-coherent fragment and forall*HyperLTL
	5.2 The left-flat fragment and HyperQPTL+

	6 Conclusion

