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Abstract
We consider an approximate version of the trace reconstruction problem, where the goal is to recover
an unknown string s ∈ {0, 1}n from m traces (each trace is generated independently by passing s

through a probabilistic insertion-deletion channel with rate p). We present a deterministic near-linear
time algorithm for the average-case model, where s is random, that uses only three traces. It runs in
near-linear time Õ(n) and with high probability reports a string within edit distance Õ(p2n) from s,
which significantly improves over the straightforward bound of O(pn).

Technically, our algorithm computes a (1 + ϵ)-approximate median of the three input traces. To
prove its correctness, our probabilistic analysis shows that an approximate median is indeed close to
the unknown s. To achieve a near-linear time bound, we have to bypass the well-known dynamic
programming algorithm that computes an optimal median in time O(n3).
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1 Introduction

Trace Reconstruction. One of the most common problems in statistics is to estimate an
unknown parameter from a set of noisy observations (or samples). The main objectives
are (1) to use as few samples as possible, (2) to minimize the estimation error, and (3) to
design an efficient estimation algorithm. One such parameter-estimation problem is trace
reconstruction, where the unknown quantity is a string s ∈ Σn, and the observations are
independent traces, where a trace is a string that results from s passing through some noise
channel. The goal is to reconstruct s using a few traces. (Unless otherwise specified, in this
paper we consider Σ = {0, 1}.) Various noise channels have been considered so far. The most
basic one only performs substitutions. A more challenging channel performs deletions. Even
more challenging is the insertion-deletion channel, which scans the string s and keeps the
next character with probability 1− p, deletes it with probability p/2, or inserts a uniformly
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11:2 Approximate Trace Reconstruction via Median String (In Average-Case)

randomly chosen symbol (without processing the next character) with probability p/2, for
some noise-rate parameter p ∈ [0, 1). We denote this insertion-deletion channel by Rp(s), see
Section 2 for a formal definition.1

The literature studies mostly two variants of trace reconstruction. In the worst-case
variant, the unknown string s is an arbitrary string from Σn, while in the average-case
variant, s is assumed to be drawn uniformly at random from Σn. The trace reconstruction
problem finds numerous applications in computational biology, DNA storage systems, coding
theory, etc. Starting from early 1970s [30], various other versions of this problem have been
studied, including combinatorial channels [37, 38], smoothed complexity [12], coded trace
reconstruction [13], and population recovery [3, 44].

We focus on the average-case variant, where it is known that exp(O(log1/3 n)) samples
suffice to reconstruct a (random) unknown string s over the insertion-deletion channel [28]. On
the other hand, a recent result [9] showed that Ω̃(log5/2 n) samples are necessary, improving
upon the previous best lower bound of Ω̃(log9/4 n) [27]. We emphasize that all these upper
and lower bounds are for exact trace reconstruction, i.e., for recovering the unknown string x

perfectly (with no errors). A natural question proposed by Mitzenmacher [43] is whether such
a lower bound on the sample complexity can be bypassed by allowing approximation, i.e.,
by finding a string z that is “close” to the unknown string s. One of the most fundamental
measures of closeness between a pair of strings z and z′, is their edit distance, denoted
by ED(z, z′) and defined as the minimum number of insertion, deletion, and substitution
operations needed to transform z into z′. Observe that a trace generated from s via an
insertion-deletion channel Gp has expected edit distance about pn from the unknown string s

(see Section 3). We ask how many traces (or samples) are required to construct a string z at
a much smaller edit distance from the unknown s. (Since the insertion-deletion channel has
no substitutions, we also do not consider substitutions in our analysis of the edit distance.)

A practical application of average-case trace reconstruction is in the portable DNA-based
data storage system. In the DNA storage system [23, 51], a file is preprocessed by encoding it
into a DNA sequence. This encoded sequence is randomized using a pseudo-random sequence,
and thus the final encoding sequence could be treated as a (pseudo-)random string. The
stored (encoded) data is retrieved using next-generation sequencing (like single-molecule
real-time sequencing (SMRT) [52] that involves 12 − 18%, which generates several noisy
copies (traces) of the stored data via some insertion-deletion channel. The final step is
to decode back the stored data with as few traces as possible. Currently, researchers use
multiple sequence alignment algorithms to reconstruct the trace [55, 47]. Unfortunately,
such heuristic algorithms are notoriously difficult to analyze rigorously to show a theoretical
guarantee. However, the preprocessing step also involves error-correcting code to encode the
strings. Thus it suffices to reconstruct the original string up to some small error (depending
on the error-correcting codes used). This specific application gives one motivation to study
approximate trace reconstruction.

Our main contribution is to show that it is sufficient to use only three traces to reconstruct
the unknown string up to a small edit error.

1 In the literature, an insertion-deletion channel with different probabilities for insertion and for deletion
has been studied. For simplicity in exposition, we consider a single error probability throughout this
paper, however our results can easily be generalized to different insertion and deletion probabilities.
Another possible generalization is to allow substitutions along with insertions and deletions. Again, for
simplicity, we do not consider substitutions, but with slightly more careful analysis our results could be
extended.
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▶ Theorem 1. There is a constant c0 > 0 and a deterministic algorithm that, given as input
a noise parameter p ∈ (0, c0], and three traces from the insertion-deletion channel Rp(s) for
a uniformly random (but unknown) string s ∈ {0, 1}n, outputs in time Õ(n) a string z that
satisfies Pr[ED(s, z) ≤ O(p2 log(1/p)n)] ≥ 1− n−1.

The probability in this theorem is over the random choice of s and the randomness of
the insertion-deletion channel Rp. We note that the term log(1/p) in the estimation error
ED(s, z) can be shaved by increasing the alphabet size to poly(1/ϵ). An edit error of O(p2n)
is optimal for three traces, because in expectation O(p2n) characters of s are deleted in two
of the three traces, and look as if they are inserted to s in one of the three traces (which
occurs in expectation for even more characters).

Our theorem demonstrates that the number of required traces exhibits a sharp contrast
between exact and approximate trace reconstruction. In fact, approximate reconstruction
not only beats the Ω(log5/2 n) lower bound for exact reconstruction, but surprisingly uses
only three traces! We conjecture that the estimation error ED(s, z) can be reduced further
using more than three traces. We believe that our technique can be useful here, but this is
left open for future work.

▶ Conjecture 2. The estimation error ED(s, z) in Theorem 1 can be reduced to O(ϵpn) for
arbitrarily small ϵ > 0, using poly(1/ϵ) traces.

This conjecture holds for ϵ < 1/n, as follows from known bounds for exact reconstruction [28],
and perhaps suggests that a number of traces that is sub-polynomial in 1/ϵ it suffices for all
ϵ > 0.

Median String. As mentioned earlier, a common heuristic to solve the trace reconstruction
problem is multiple sequence alignment, which can be formulated equivalently (see [25] and
the references therein) as the problem of finding a median under edit distance. For general
context, the median problem is a classical aggregation task in data analysis; its input is a set
S of points in a metric space relevant to the intended application, and the goal is to find a
point (not necessarily from S) with the minimum sum of distances to points in S, i.e.,

min
y

∑
x∈S

d(y, x). (1)

Such a point is called a median (or geometric median in a Euclidean space). For many
applications, it suffices to find an approximate median, i.e., a point in the metric with
approximately minimal objective value (1) . The problem of finding an (approximate) median
has been studied extensively both in theory and in applied domains, over various metric
spaces, including Euclidean [15] (see references therein for an overview), Hamming (folklore),
the edit metric [53, 34, 46], rankings [19, 2, 32], Jaccard distance [14], Ulam [8], and many
more [21, 41, 6].

The median problem over the edit-distance metric is known as the median string prob-
lem [33], and finds numerous applications in computational biology [25, 50], DNA storage
system [23, 51], speech recognition [33], and classification [39]. This problem is known to be
NP-hard [18, 46] (even W[1]-hard [46]), and can be solved by standard dynamic program-
ming [53, 34] in time O(2mnm) when the input has m = |S| strings of length n each. From
the perspective of approximation algorithms, a multiplicative 2-approximation to the median
is straightforward (this works in every metric space by simply reporting the best among
the input strings, i.e., y∗ ∈ S that minimizes the objective). However, no polynomial-time
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algorithm is known to break below 2-approximation (i.e., achieve factor 2− δ for fixed δ > 0)
for the median string problem, despite several heuristic algorithms and results for special
cases [7, 35, 20, 48, 1, 26, 42, 8].

Although the median string (or equivalently multiple sequence alignment) is a common
heuristic for trace reconstruction [55, 47], to the best of our knowledge there is no definite
connection known between these two problems. We show that both the problems are roughly
the same in the average-case model. It is not difficult to show that any string close to the
unknown string is an approximate median. To see this, we can show that for a set S of m

traces of an (unknown) random string s, their optimal median objective value is at least
(1−O(ϵ))pnm, for any ϵ ∈ [110p log(1/p), 1/6], with high probability (see the full version). On
the other hand, the median objective value with respect to s itself is at most (1 + ϵ)pnm, for
any ϵ > 0, with high probability. Hence, the unknown string s is an (1 + O(ϵ))-approximate
median of S, for any ϵ ∈ [110p log(1/p), 1/6], and by the triangle inequality, every string close
(in edit distance) to s is also an approximate median of S. One of the major contributions of
this paper is the converse direction, showing that given a set of traces of an unknown string,
any approximate median of the traces is close (in edit distance) to the unknown string. This
is true even for three traces.

▶ Theorem 3. For a large enough n ∈ N and a noise parameter p ∈ (0, 0.001), let the string
s ∈ {0, 1}n be chosen uniformly at random, and let s1, s2, s3 be three traces generated by the
insertion-deletion channel Rp(s). If xmed is a (1 + ϵ)-approximate median of {s1, s2, s3} for
ϵ ∈ [110p log(1/p), 1/6], then Pr[ED(s, xmed) ≤ O(ϵ) · OPT] ≥ 1− n−3, where OPT denotes the
optimal median objective value of {s1, s2, s3}.

An immediate consequence (see Corollary 14) is that for every 3 ≤ m < nO(1) traces, every
(1 + ϵ)-approximate median xmed satisfies ED(s, xmed) ≤ O(ϵ) OPT

m .
Thus if we could solve any of the two problems (even approximately), we get an approx-

imate solution to the other problem. E.g., the current best (exact) trace reconstruction
algorithm for the average-case [28] immediately gives us an n1+o(1) time algorithm to find
an (1 + O(ϵ))-approximate median of a set of (at least exp(O(log1/3 n))) traces. (Note,
to apply the result of [28], we need at least exp(O(log1/3 n)) traces.) We leverage this
interplay between the two problems to design an efficient algorithm for approximate trace
reconstruction. Since one can compute the (exact) median of three strings s1, s2, s3 in time
O(|s1| · |s2| · |s3|) [53, 34], the above theorem immediately provides us the unknown string up
to some small edit error in time O(n3). We further reduce the running time to near-linear
by cleverly partitioning each of the traces into polylog n-size blocks and then applying the
median algorithm on these blocks. Finally, we concatenate all the block-medians to get an
“approximate” unknown string, leading to Theorem 1. One may further note that Theorem 1
also provides a (1 + O(ϵ))-approximate median for any set of traces in the average-case (again
due to Theorem 3).

Taking the smallest possible ϵ in Theorem 3, we get that for three traces generated from
s, with high probability ED(s, xmed) ≤ Õ(p2n). In comparison, it is not hard to see that
with high probability OPT is bounded by roughly 3pn. We conjecture that as the number
of traces increases, the median string converges to the unknown string s. In particular,
ED(s, xmed) ≤ ϵn when using poly(1/ϵ) traces (instead of just three), with high probability.
We hope that our technique can be extended to prove the above conjecture, but we leave it
open for future work.

The main implication of this conjecture is an Õ(n) time approximate trace reconstruction
algorithm, for any fixed ϵ > 0, as follows. It is straightforward to extend our approximate
median finding algorithm (in Section 5) to more input strings. (For brevity, we present only
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for three input strings.) For m strings, the running time would be n(log n)O(m), and thus
even for m = poly(1/ϵ) strings this running time is n polylog n. As a consequence, we will
be able to reconstruct in Õ(n) time a string z such that ED(s, z) ≤ ϵn, which in particular
implies Conjecture 2.

1.1 Related Work
A systematic study on the trace reconstruction problem has been started since [37, 38, 5].
However, some of its variants appeared even in the early ’70s [30]. One of the main objectives
here is to reduce the number of traces required, aka the sample complexity. Both the
deletion only and the insertion-deletion channels have been considered so far. In the general
worst-case version, the problem considers the unknown string s to be any arbitrary string
from {0, 1}n. The very first result by Batu et al. [5] asserts that for small deletion probability
(noise parameter) p ≤ 1

n1/2+ϵ , to reconstruct s considering O(n log n) samples suffice. A
very recent work [11] improved the sample complexity to poly(n) while allowing a deletion
probability p ≤ 1

n1/3+ϵ . For any constant deletion probability bounded away from 1, the first
subexponential (more specifically, 2Õ(

√
n)) sample complexity was shown by [29], which was

later improved to 2O(n1/3) [45, 17], and then finally to 2O(n1/5) [10].
Another natural variant that has also been widely studied is the average-case, where

the unknown string s is randomly chosen from {0, 1}n. It turns out that this version is
significantly simpler than the worst-case in terms of the sample complexity. For sufficiently
small noise parameter (p = o(1) as a function of n), efficient trace reconstruction algorithms
are known [5, 31, 54]. For any constant noise parameter bounded away from 1 in case
of insertion-deletion channel, the current best sample complexity is exp(O(log1/3 n)) [28]
improving up on exp(O(log1/2 n)) [49]. Both of these results are built on the worst-case trace
reconstruction by [45, 17]. Furthermore, the trace reconstruction algorithm of [28] runs in
n1+o(1) time.

In the case of the lower bound, information-theoretically, it is easy to see that Ω(log n)
samples must be needed when the deletion probability is at least some constant. In the
worst-case model, the best known lower bound on the sample complexity is Ω̃(n3/2) [9]. For
the average-case, McGregor, Price, and Vorotnikova [40] showed that Ω(log2 n) samples are
necessary to reconstruct the unknown (random) string s. This bound was further improved
to Ω̃(log9/4 n) by Holden and Lyons [27], and very recently to Ω̃(log5/2 n) by Chase [9].

The results described above show an exponential gap between the upper bound and
lower bound of the sample complexity. The natural question is, instead of reconstructing
the unknown string exactly, if we allow some error in the reconstructed string, then can
we reduce the sample complexity? Recently, Davies et al. [16] presented an algorithm that
for a specific class of strings (considering various run-lengths or density assumptions), can
compute an approximate trace with ϵn additive error under the edit distance while using
only polylog(n) samples. The authors also established that to approximate within the edit
distance n1/3−δ, the number of required samples is n1+3δ/2/polylog(n), for 0 < δ < 1/3, in
the worst case. Independently, Grigorescu et al. [24] showed assuming deletion probability
p = 1/2, there exist two strings within edit distance 4 such that any mean-based algorithm
requires exp(Ω(log2 n)) samples to distinguish them.

1.2 Technical Overview
The key contribution of this paper is a linear-time approximate trace reconstruction algorithm
that uses only three traces to reconstruct an unknown (random) string up to some small
edit error (Theorem 1). To get our result, we establish a relation between the (approximate)
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11:6 Approximate Trace Reconstruction via Median String (In Average-Case)

trace reconstruction problem and the (approximate) median string problem. Consider
a uniformly random (unknown) string s ∈ Σn. We show that for any three traces of s

generated by the probabilistic insertion-deletion channel Rp, an arbitrary (1+ ϵ)-approximate
median of the three trace must be, with high probability, O(ϵ)OPT-close in edit distance to
s (Theorem 3). Once we establish this connection, it suffices to solve the median problem
(even approximately). The median of three traces can be solved optimally in O(n3) time
using a standard dynamic programming algorithm [53, 34]. It is not difficult to show that
the optimal median objective value OPT is at least 3(1−O(ϵ))pn (see the full version), and
thus the computed median is at edit distance at most O(ϵpn) from the unknown string s.
This result already beats the known lower bound for exact trace reconstruction in terms
of sample complexity. However, the running time is cubic in n, whereas the current best
average-case trace reconstruction algorithm runs in time n1+o(1) [28].

Next we briefly describe the algorithm that improves the running time to Õ(n). Instead
of finding a median of the entire traces, we compute the median block-by-block and then
concatenate the resulting blocks. A natural idea is that each such block is just the median of
three substrings taken from the three traces, but the challenge is to identify which substring
to take from each trace, particularly because s is not known. To mitigate this issue, we take
the first trace s1 and partition it into disjoint blocks of length Θ(log2 n) each. For each such
block, we consider its middle log2 n-size sub-block as an anchor. We then locate for each
anchor its corresponding substrings in the other two traces s2 and s3, using any approximate
pattern matching algorithm under the edit metric (e.g. [36, 22]) to find the best match of the
anchor inside s2, s3. Each anchor has a true match in s2 and in s3, i.e., the portion that the
anchor generated under the noise channel. Since the anchors in s1 are “well-separated” (by
at least ω(log n)), their true matches are also far apart both in s2, s3. Further, exploiting the
fact that s is a random string, we can argue that each anchor’s best match and true match
overlap almost completely, i.e., except for a small portion (see Section 5). We thus treat
these best match blocks as anchors in s2 and s3 and partition them into blocks. From this
point, the algorithm is straightforward. Just consider the first block of each of s1, s2, s3 and
compute their median. Then consider the second block from each trace and compute their
median, and so on. Finally, concatenate all these block medians, and output the resulting
string.

The claim that the best match and true match of an anchor in s1 are the same except for
a small portion, is crucial from two aspects. First, it ensures that any r-th block of s2, s3
contains the true match of the r-th anchor of s1. Consequently, computing a median of these
blocks reconstructs the corresponding portion of the unknown string s up to edit distance
O(ϵ)p log2 n with high probability. Thus for “most of the blocks”, we can reconstruct up to
such edit distance bound. We can make the length of the non-anchor portions negligible
compared to the anchors (simply because a relatively small “buffer” around each anchor
suffices), and thus, we may ignore them and still ensure that the output string is O(ϵpn)-close
(in edit distance) to the unknown string s. (See the proof of Lemma 24 for the details.) The
second use of that crucial claim is that it helps in searching for the best match of each anchor
“locally” (within a O(log2 n)-size window) in each sj , j ∈ {2, 3}. As a result, we bound the
running time of the pattern matching step by Õ(n). The median computations are also on
Θ(log2 n)-size blocks, and thus takes total Õ(n) time.

It remains to explain the key contribution, which is the connection between the (approxi-
mate) trace reconstruction and the (approximate) median string problem. Its first ingredient
is that there is an “almost unique” alignment between the unknown string s and a trace
of it generated by the insertion-deletion channel Rp. Next, we use this to argue about the
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similarity between an approximate median and the unknown string s. Let us now briefly
describe how the uniqueness (or robustness) of the alignment between a random string s

and Rp(s) helps us in showing the similarity between s and any approximate median of
the traces. Let s1, s2, s3 be three independent traces of s, generated by Rp. We can view
s1 as a uniformly random string, and s2, s3 are generated from s1 by a insertion-deletion
channel Rq with a higher noise rate q ≈ 2p. (See Section 2 for the details.) Hence, any
near-optimal alignment between s1, s2 and s1, s3 “agree” with the planted alignment Aq

induced by Rq (denoted by Aq
1,2 and Aq

1,3 respectively). Next, we consider the alignment A1,2
from s1 to s2 via s, that we get by composing the planted alignment from s1 to s induced by
Rp (actually the inverse of the alignment from s to s1) with the planted alignment from s to
s2 induced by Rp. Similarly, consider the alignment A1,3 from s1 to s3 via s. Then we take
any (1 + ϵ)-approximate median xmed of {s1, s2, s3}. Consider an optimal alignment between
s1, xmed, and xmed, s2, and xmed, s3. Use these three alignments to define an alignment M1,2
from s1 to s2 via xmed, and an alignment M1,3 from s1 to s3 via xmed. It is not hard to
argue that both A1,2 and M1,2 are near-optimal alignments between s1, s2. Thus, both of
them agree with the planted alignment Aq

1,2. Similarly, both A1,3 and M1,3 agree with the
planted alignment Aq

1,3. Observe, s2, s3 are not independently generated from s1 by Rq. The
overlap between Aq

1,2 and Aq
1,3 essentially provides an alignment from s1 to s. Again, using

the robustness property of the planted alignment, this overlap between Aq
1,2 and Aq

1,3 agrees
with the planted alignment from s1 to s by Rp (actually the inverse of the alignment from s

to s1). On the other hand, since M1,2 agrees with Aq
1,2 and M1,3 agrees with Aq

1,3, there is
also a huge agreement between the overlap of M1,2, M1,3 and the overlap of Aq

1,2, Aq
1,3. The

overlap between M1,2, M1,3 is essentially the optimal alignment from s1 to xmed (that we
have considered before). This in turn implies that there is a huge agreement between the
optimal alignment from s1 to xmed and the planted alignment from s1 to s by Rp. Hence,
we can deduce that xmed and s are the same in most of the portions, and thus have small
edit distance. We provide the detailed analysis in Section 4.

We have just seen that it suffices to show that a near-optimal alignment between a
random string s and Rp(s) is almost unique (or robust). We provide below an overview of
this analysis (see Section 3 for details). We start by considering the random string s and
a string y generated by passing s through the noise channel Rp. For sake of analysis, we
can replace Rp with an equivalent probabilistic model Gp, that first computes a random
alignment Ap between s and y, and only then fills in random characters in s and in the
insertion-positions in y. This model is more convenient because it separates the two sources
of randomness, for example we can condition on one (Ap) when analyzing typical behavior
of the other (characters of s).

In expectation, the channel Gp generates a trace y by performing about pn random edit
operations in s (planting insertions/deletions), hence the planted alignment Ap has expected
cost about pn. But can these edit operations cancel each other? Can they otherwise interact,
leading to the optimal edit distance being smaller? For example, suppose s[i] = 0. If Gp

first inserts a 0 before s[i] and then deletes s[i], then clearly these two operations cancel
each other. We show that such events are unlikely. Following this intuition, we establish
our first claim, that with high probability the edit distance between s, y is large, specifically
ED(s, y) ≥ (1− 6ϵ)pn for ϵ ≥ 15p log(1/p), see Lemma 7; thus, the planted alignment Ap is
near-optimal. Towards proving this, we first show that a vast majority of the planted edit
operations are well-separated, i.e., have Θ(1/p) positions between them. In this case, for one
operation to cancel another one, the characters appearing between them in s must all be
equal, which happens with a small probability because s is random.
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Figure 1 (a) An example of well separated edit operation: Ap deletes s[i] and aligns rest of the
characters in block B with block B′. (b) M aligns s[i] and y[̄i]. For each index j appearing left of i

in B, Ap[j] ̸= M(j).

Formally, for almost all indices i where Gp performs some edit operation, the block
around it B = {i− c

r , i− c
r + 1, . . . , i + c

r} in s (for a small constant c > 0), satisfies that i

is the only index in B that Gp edits (see Lemma 6). Next we show that in every optimal
alignment between s and y, almost all these blocks contribute a cost of 1. As otherwise,
there is locally an alignment M that aligns each index in B to some character in y, while Gp

makes exactly one edit operation, say deletes s[i]. See for example Figure 1, where M aligns
s[i] and y[̄i] whereas Ap deletes s[i]. In this case, M and Ap must disagree on at least c/r

indices (all indices either to the right or to the left of i in B). In Figure 1, all j ∈ [i− c
r , i]

satisfy M [j] ̸= Ap[j]. The crux is that any pair of symbols in s, y are chosen independently at
random unless Ap aligns their positions. Thus probability that in each of the c

r pairs aligned
by M , the two matched symbols will be equal is (1/|Σ|) c

r . In the formal proof, we address
several technical issues, like having not just one but many blocks, and possible correlations
due to overlaps between different pairs, which are overcome by a carefully crafted union
bound.

We further need to prove that the planted alignment is robust, in the sense that, with high
probability, every near-optimal alignment between s and y must “agree” with the planted
alignment Ap on all but a small fraction of the edit operations. Formally, we again consider
a partition of s into blocks containing exactly one planted edit operation, and show that for
almost all such blocks B, if Ap maps B to a substring B′ in y, that near-optimal alignment
also maps B to B′ (see Lemma 10). To see this, suppose there is a near-optimal alignment
that maps B to B̄ ≠ B′. Then following an argument similar to the above, we can show
there are many indices in the block B such that Ap and M disagree on them. Thus, in
each such block, M tries to match many pairs of symbols that are chosen independently at
random, and therefore the probability that M matches B and B̄ with a cost at most 1 is
small. Compared to Lemma 6, an extra complication here is that now we allow M to match
B and B̄ with cost at most 1 (and not only 0), and in particular B̄ can have three different
lengths: |B|, |B| − 1, |B|+ 1. Hence the analysis must argue separately for all these cases,
requiring a few additional ideas/observations.

1.3 Preliminaries

Alignments. For two strings x, y of length n, an alignment is a function A : [n]→ [n]∪ {⊥}
that is monotonically increasing on the support of A, defined as supp(A) := A−1([n]), and also
satisfies x[i] = y[A(i)] for all i ∈ supp(A). An alignment is essentially a common subsequence
of x, y, but provides the relevant location information. Define the length (or support size) of
the alignment as len(A) := | supp(A)|, i.e., the number of positions in x (equivalently in y)
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that are matched by A. Define the cost of A to be the number of positions in x and in y that
are not matched by A, i.e., cost(A) := 2(n− len(A)). Let ED(x, y) denotes the minimum
cost of an alignment between x, y.

Given a substring x′ = x[i1, i2] of x, let ℓ1 := min {k ∈ [i1, i2] | A(k) ̸= ⊥} and ℓ2 :=
max {k ∈ [i1, i2] | A(k) ̸= ⊥}, be the first and last positions in the substring x′ that are
matched by alignment A. If the above is not well-defined, i.e., A(k) = ⊥ for all k ∈ [i1, i2],
then by convention ℓ1 = ℓ2 = 0. Let A(x′) := y[A(ℓ1), A(ℓ2)] be the mapping of x′ under A. If
ℓ1 = ℓ2 = 0, then by convention y′ is an empty string. Let Ux′ := {i1 ≤ k ≤ i2; k /∈ supp(A)}
be the positions in x′ that are not aligned by A, and similarly let Uy′ be the positions in y′

not aligned by A. These quantities are related because the number of matched positions in
x′ is the same as in y′, giving us |x′| − |Ux′ | = |y′| − |Uy′ |. Define the cost of alignment A on
substring x′ to be

costA(x′) := |Ux′ |+ |Uy′ |.

By abusing the notation, sometimes we will also use costA([i1, i2]) in place of costA(x′).
These definitions easily extend to strings of non-equal length, and even of infinite length.

▶ Lemma 4. Given two strings x, y and an alignment A, let x1, . . . , xp be disjoint substrings
of x. Then
1. A(x1), . . . , A(xp) are disjoint substrings of y; and
2. costA(x) ≥

∑
i∈[p] costA(xi)

Proof. The first claim directly follows from the fact that x1, . . . , xp are disjoint and A is
monotonically increasing. Since x1, . . . , xp are disjoint, also UA(x1), . . . ,UA(xp) are disjoint.
Similarly, since A(x1), . . . , A(xp) are disjoint, also Ux1 , . . . ,Uxp

are disjoint. Therefore,
costA(x) ≥

∑
i∈[p](|Ux1 |+ |UA(x1)|). Hence we can claim costA(x) ≥

∑
i∈[p] costA(xi). ◀

For an alignment A : [n]→ [n]∪{⊥}, we define the inverse alignment A−1 : [n]→ [n]∪{⊥}
as follows: For each j ∈ [n], if A(i) = j for some i ∈ [n], set A−1(j) = i; otherwise, set
A−1(j) = ⊥.

We use the notation ◦ for composition of two functions. Composition of two alignments
(or inverse of alignments) is defined in a natural way.

Approximate Median. Given a set S ⊆ Σ∗ and a string y ∈ Σ∗, we refer the quantity∑
x∈S ED(y, x) by the median objective value of S with respect to y, denoted by Obj(S, y).
Given a set S ⊆ Σ∗, a median of S is a string y∗ ∈ Σ∗ (not necessarily from S)

such that Obj(S, y∗) is minimized, i.e., y∗ = arg miny∈Σ∗ Obj(S, y). We refer Obj(S, y∗) by
OPT(S). Whenever it will be clear from the context, for brevity we will drop S from both
Obj(S, y) and OPT(S). We call a string ỹ a c-approximate median, for some c > 0, of S iff
Obj(S, ỹ) ≤ c · OPT(S).

2 Probabilistic Generative Model

Let us first introduce a probabilistic generative model. For simplicity, our model is defined
using infinite-length strings, but our algorithmic analysis will consider only a finite prefix of
each string. Fixing a finite alphabet Σ, we denote by ΣN the set of all infinite-length strings
over Σ. We write x⊙ y to denote the concatenation of two finite-length strings x and y.

We actually describe two probabilistic models that are equivalent. The first model Rp

is just the insertion-deletion channel mentioned in Section 1. These models are given an
arbitrary string x (base string) to generate a random string y (a trace), but in our intended
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application x is usually a random string. The second model Gp consists of two stages,
first “planting” an alignment between two strings, and only then placing random symbols
(accordingly). This is more convenient in the analysis, because we often want to condition
on the planted alignment and rely on the randomness in choosing symbols. We provide
the formal description of the model Rp and Gp along with a few key properties of them in
Appendix A.

3 Robustness of the Insertion-Deletion Channel

In this section we analyze the finite-length version of our probabilistic model Gp (from
Section 2), which gets a random string x ∈ Σn and generates from it a trace y. We provide
a high-probability estimates for the cost of the planted alignment Ap between x and y

(Lemma 5), and for the optimal alignment (i.e., edit distance) between the two strings
(Lemmas 7 and 8). It follows that with high probability the planted alignment Ap is near-
optimal. We then further prove that the planted alignment is robust, in the sense that, with
high probability, every near-optimal alignment between the two strings must “agree” with the
planted alignment Ap on all but a small fraction of the edit operations (Lemmas 10 and 11).

Assume henceforth that x ∈ Σn is a random string x, and given a parameter p > 0,
generate from it a string y by the random process Gp described in Section 2, denoting by
Ap

x,y the random mapping used in this process. A small difference here is that now x has
finite length, but it can also be viewed as an n-length prefix of an infinite string. Similarly,
now y has finite length and is obtained by applying Gp on x[1, n], and it can be viewed also
as a finite prefix of an infinite string.

Let IAp
x,y be the set of indices i ∈ [n], for which process Gp performs at least one

insert/delete operation after (not including) x[i− 1] and up to (including) x[i] (i.e., inserting
at least one character between x[i− 1], x[i], or deleting x[i], or both). This information can
clearly be described using Ap

x,y alone (independently of x and of the symbols chosen for
insertions to y in the second stage of process Gp); we omit the formal definition. When clear
from the context, we shorten IAp

x,y to I.

▶ Lemma 5. For every i ∈ [n], the probability that i ∈ I is

r = r(p) :=
∞∑

k=1
(2− p)(p/2)k = p. (2)

For all ϵ ∈ [r, 1], we have Pr[|I| /∈ (1± ϵ)rn] ≤ 2e−ϵ2rn/3.

Proof. For every i ∈ [n], the probability that Gp performs k ≥ 1 edit operations after x[i−1]
and up to x[i] is (p/2)k + (p/2)k(1− p) = (p/2)k(2− p), where the first summand represents
k − 1 insertions and one deletion, and the second summand represents k insertions and no
deletion. Thus r = Pr[i ∈ I] =

∑∞
k=1(2− p)(p/2)k = p.

For every i ∈ [n], the probability it appears in I is r. Then E[|I|] = r · n. These events
are independent, hence by Chernoff’s bound, the probability that |I| /∈ (1± ϵ)rn is at most
2e−ϵ2rn/3. ◀

As shown in (2), r :=
∑∞

k=1(2 − p)(p/2)k = p. Hence from now on we replace r by p.
Given ϵ ∈ [p, 1] and i ∈ [n], we consider the event Sϵ(i), which informally means that process
Gp makes a single “well-spaced” edit operation at position i, i.e., there is an edit operation
at position i and no other edit operations within ( 2ϵ

p positions away from i. To define it
formally, we separate it into two cases, an insertion and a deletion. Observe that these events
depend on Ap alone. Let Sdel

ϵ (i) be the event that
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1. Ap(i + 1) = Ap(i− 1) + 1 (thus Ap(i) = ⊥); and
2. for all j ∈ [2, 2ϵ

p ], we have Ap(i + j) = Ap(i + j − 1) + 1 and Ap(i− j) = Ap(i− j + 1)− 1
(in particular, they are not ⊥).

Similarly, let Sins
ϵ (i) be the event that

1. Ap(i) = Ap(i− 1) + 2 (thus no index is mapped to Ap(i− 1) + 1);
2. for all j ∈ [1, 2ϵ

p ], we have Ap(i + j) = Ap(i + j − 1) + 1; and
3. for all j ∈ [2, 2ϵ

p ], and Ap(i− j) = Ap(i− j + 1)− 1.
Now define the set of indices for which any of these two events happens

ĨAp
x,y

ϵ := {i ∈ [n] | event Sϵ(i) := Sdel
ϵ (i) ∪ Sins

ϵ (i) occurs}.

When clear from the context, we shorten ĨAp
x,y

ϵ to Ĩ.

▶ Lemma 6. For every ϵ ≥ p, we have Pr[|Ĩ| ≤ (1− 5ϵ)pn] ≤ e−ϵ2p2n/2.

Proof. For an index i ∈ [n], define the random variable Xi ∈ {0, 1} to be an indicator
for the union event Sdel

ϵ (i) ∪ Sins
ϵ (i). Observe that each of the two events, Sdel

ϵ (i) and
Sins

ϵ (i), occurs with probability p
2 (1− p)4ϵ/p/(1− p/2), and these events are disjoint. Hence,

Pr[Xi = 1] = p(1− p)4ϵ/p/(1− p/2) ≥ p(1− p)4ϵ/p ≥ p(1− 4ϵ)
Next we prove a deviation bound for the random variable X :=

∑
i∈[n] Xi = |Ĩ|, which has

expectation is E[X] ≥ (1−4ϵ)pn. Observe that {X|X1, . . . , Xi}n
i=1 is a Doob Martingale, and

let us apply the method of bounded differences. Revealing Xi (after X1, . . . , Xi−1 are already
known) might affect the value of Xj ’s for j < i + 4ϵ

p , but by definition their sum is bounded∑
i≤j<i+ 4ϵ

p
Xj ≤ 2, while the other Xj ’s are independent of Xi hence the expectation of∑

j≥i+ 2ϵ
p

Xj by revealing it. Together, we see that |E[X|X1, . . . , Xi]−E[X|X1, . . . , Xi−1]| ≤
2, and therefore by Azuma’s inequality, Pr[X ≤ (1 − 5ϵ)pn] ≤ Pr[X ≤ E[X] − ϵpn] <

e−2ϵ2p2n2/(4n) = e−ϵ2p2n/2. ◀

Edit Distance (Optimal Alignment) between x, y. For each i ∈ Ĩ, define a window
W i

ϵ = [i− ϵ
p , i + ϵ

p ].

▶ Lemma 7. For every ϵ ∈ [15p log 1
p , 1

6 ], we have Pr[ED(x, y) < (1− 6ϵ)pn] ≤ 2e−ϵ2p2n/2.

At a high level, our proof avoids a direct union bound over all low-cost potential alignments,
because there are too many of them. Instead, we introduce a smaller set of basic events that
“covers” all these potential alignments, which is equivalent to carefully grouping the potential
alignments to get a more “efficient” union bound.

Proof of Lemma 7. We assume henceforth that Ap (the alignment from process Gp) is
known and satisfies |Ĩ| > (1− 5ϵ)pn, which occurs with high probability by Lemma 6. In
other words, we condition on Ap and proceed with a probabilistic analysis based only on the
randomness of x and of the characters inserted into y.

Our plan is to define basic events ES,S̄ for every two subsets S, S̄ ⊂ [n] of the same size
ℓ = |S| = |S̄|, representing positions in x and in y, respectively. We will then show that our
event of interest is bounded by these events{

ED(x, y) < (1− 6ϵ)pn
}
⊆

⋃
S,S̄|ℓ=ϵpn

ES,S̄ , (3)

and bound the probability of each basic event by

Pr[ES,S̄ ] ≤ |Σ|−ϵℓ/(3p). (4)

The proof will then follow easily using a union bound and a simple calculation.
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To define the basic event ES,S̄ , we need some notation. Write S = {i1, i2, . . . , iℓ} in
increasing order, and similarly S̄ = {̄i1, ī2, . . . , īℓ}, and use these to define ℓ blocks in x and
in y, namely, Bij

= x[ij − ϵ
p , ij + ϵ

p ] and B̄ij
= y[̄ij − ϵ

p , īj + ϵ
p ]. Notice that all the blocks are

of the same length 1 + 2 ϵ
p . Now define ES,S̄ to be the event that (i) S ⊆ Ĩ;2 (ii) the blocks

B̄̄i1 , . . . , B̄īℓ
in y are disjoint; and (iii) each block Bij

in x is equal to its corresponding block
B̄īj

in y. Notice that conditions (i) and (ii) actually depend only on Ap, and thus can be
viewed as restrictions on the choice of S, S̄ in (3); with this viewpoint in mind, we can simply
write

ES,S̄ := {Bi1 = B̄ī1
, . . . , Biℓ

= B̄īℓ
}.

We proceed to prove (3). Suppose there is an alignment M from x to y with cost(M) <

(1 − 6ϵ)pn, and consider its cost around each position i ∈ Ĩ, namely, costM [i − ϵ
p , i + ϵ

p ].
These intervals in x are disjoint (by definition of Ĩ), and thus by Lemma 4,∑

i∈Ĩ

costM (x[i− ϵ
p , i + ϵ

p ]) ≤ cost(M) < (1− 6ϵ)pn.

Let S ⊂ Ĩ include (the indices of) the summands equal to 0. Each other summand contributes
at least 1, thus |Ĩ|−|S| = |Ĩ\S|·1 < (1−6ϵ)pn and by rearranging |S| > |Ĩ|−(1−6ϵ)pn > ϵpn.
To get the exact size |S| = ϵpn, we can replace S with an arbitrary subset of it of the exact
size. Now define S̄ = {M(i) | i ∈ S}. It is easy to verify that the event ES,S̄ holds. Indeed,
each i ∈ S satisfies costM [i − ϵ

p , i + ϵ
p ] = 0, which implies M(i) ̸= ⊥, and thus |S̄| = |S|.

Moreover, the block x[i − ϵ
p , i + ϵ

p ] in x is equal to the corresponds block in y, and these
blocks in y are disjoint. This completes the proof of (3).

Next, we prove (4). Fix S, S̄ ⊂ [n] of the same size ℓ, and assume requirements (i)
and (ii) hold (otherwise, the probability is 0). Let Bij and B̄īj

be the corresponding
blocks in x and in y. Consider for now a given j ∈ [ℓ]. The requirement Bij

= B̄īj

means that for all t ∈ {− ϵ
p , . . . , 0, . . . , + ϵ

p} we require x[ij + t] = y[̄ij + t]. The issue is
that x and y are random but correlated through Ap; in particular, the symbols x[ij + t]
and y[̄ij + t] are chosen independently at random unless Ap aligns their positions, i.e.,
Ap(ij + t) = īj + t. The key observation is that this last event cannot happen for both t = −1
and t = 1, because in that case, Ap(ij + 1) − Ap(ij − 1) = īj + 1 − (̄ij − 1) = 2; however,
ij ∈ Ĩ implies that Ap has exactly one edit operation (insertion or deletion) in the interval
[ij − 1, ij + 1] (and not at its endpoints), thus Ap(ij + 1)−Ap(ij − 1) ∈ {1, 3}. Assume first
that Ap(ij + t) ̸= īj + t for t = 1. Then the same must hold also for all t = 2, . . . , ϵ

p ; indeed,
we again use that ij ∈ Ĩ, which implies that Ap has no edit operations near position ij , thus
Ap(ij + t) = Ap(ij + 1) + (t − 1) ̸= īj + 1 + (t − 1). The argument for t = −1 is similar,
and we conclude that the requirement Bij

= B̄īj
encompasses at least ϵ

p requirements of the
form x[ij + t] = y[̄ij + t] where these two positions are not aligned by Ap, and thus these
two symbols are chosen independently at random.

The above argument applies to every j ∈ [ℓ], yielding overall at least ℓ · ϵ
p requirements of

the form x[ij + t] = y[̄ij + t], where these two symbols are chosen independently at random.
Observe that each y[̄ij + t] is either a character x[t′] (for t′ arising from Ap) or completely
independent. Since each character of x appears in at most 2 requirements (once on each

2 This implies that the blocks Bi1 , . . . , Biℓ in x are disjoint.
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side), we can extract a subset of at one-third of the requirements such that the positions in
x appearing there are all distinct, and thus the events are independent.3 We overall obtain
at least 1

3 ℓ · ϵ
p requirements, each occurring independently with probability 1/|Σ|, and thus

Pr[ES,S̄ ] ≤ |Σ|−ϵℓ/(3p).

Finally, we are in position to prove the lemma. Combining (3) and (4) and a union bound

Pr[ED(x, y) < (1− 6ϵ)pn] ≤
(

n

ℓ

)2
· |Σ|−

ϵℓ
3p ≤

(ne

ℓ

)2ℓ

· 2− ϵℓ
3p =

( e

ϵp

)2ϵpn

· 2−ϵ2n/3

≤ (p2)−2ϵpn · 2−ϵ(15p log(1/p))n/3 ≤ p−4ϵpn+5ϵpn ≤ pϵpn.

Recall that this was all conditioned on Ap, which had error probability at most e−ϵ2p2n/2

(by Lemma 6), and now Lemma 7 follows by a union bound. ◀

A similar bound holds for even smaller values of ϵ, provided that the alphabet size is
large. The proof is the same, except for the final calculation.

▶ Lemma 8. Suppose |Σ| ≥ ( 1
p )15. Then for every ϵ ∈ [p. 1

6 ], we have Pr[ED(x, y) <

(1− 6ϵ)pn] ≤ 2e−ϵ2p2n/2.

Following an argument similar to the proof of Lemma 7 we can make the following claim.

▶ Lemma 9. Let ϵ ∈ [15p log 1
p , 1

6 ]. Then with probability at least 1 − 2e−ϵ2p2n/2, every
alignment M between x, y satisfies |{i ∈ Ĩ | costM (x[i− ϵ

r , i + ϵ
r ]) = 0}| ≤ 6ϵpn.

Near-Optimal Alignments between x, y. Given ϵ > 0, a potential alignment M between
x, y, and an index i ∈ [n], define the event

EM
ϵ (i) :=

{
Ap(i− ϵ

p ) = min{M(k) ̸= ⊥ | k ∈ [i− ϵ
p , i + ϵ

p ]}; and
Ap(i + ϵ

p ) = max{M(k) ̸= ⊥ | k ∈ [i− ϵ
p , i + ϵ

p ]}.
(5)

By convention, EM
ϵ (i) is not satisfied if the minimization/maximization is over the empty

set (because M(k) = ⊥ for all relevant k). We will only use it for i ∈ Ĩ, in which case both
Ap(i− ϵ

p ), Ap(i + ϵ
p ) ̸= ⊥. Intuitively, this event means that Ap and M agree on the block

boundaries; for example, in the simpler case where all relevant M(k) ̸= ⊥, this event simply
means that Ap(i− ϵ

p ) = M(i− ϵ
p ) and Ap(i + ϵ

p ) = M(i + ϵ
p ).

Denote the set of indices where the event EM
ϵ (i) occurs and the cost of M over substring

x[i− ϵ
p , i + ϵ

p ] is 1, by

ĨAp
x,y

ϵ,M := {i ∈ Ĩ | event EM
ϵ (i) occurs and costM ([i− ϵ

p , i + ϵ
p ]) = 1 }.

When clear from the context, we shorten ĨAp
x,y

ϵ,M to ĨM .

▶ Lemma 10. Let ϵ ∈ [42p log 1
p , 1

6 ] and p ≤ δ ≤ ϵ. Then with probability at least 1−4e− ϵ2p2n
2 ,

every alignment M between x, y with cost(M) ≤ (1 + δ)pn satisfies |ĨM | ≥ (1− 23ϵ− δ)pn.

3 To see this, consider an auxiliary graph whose a vertex for each character x[t], and connect two by an
edge if they appear in the same constraint. Since every vertex has degree at most 2, a greedy matching
contains at least one third of the edges.

FSTTCS 2021



11:14 Approximate Trace Reconstruction via Median String (In Average-Case)

At a high level, the proof follows the outline of Lemma 7, and avoids a direct union bound
over all (relevant) potential alignments, because there are too many of them. Instead, we
introduce a smaller set of basic events that “covers” all these potential alignments. However
the analysis is more elaborate with additional cases that require new technical ideas. The
proof appears in the full version.

A similar bound holds for even smaller values of ϵ, provided that the alphabet size is
large.

▶ Lemma 11. Suppose |Σ| ≥ ( 1
p )42. Then for every ϵ ∈ [p, 1

6 ] and every p ≤ δ ≤ ϵ, with

probability at least 1− 4e− ϵ2p2n
2 , every alignment M between x, y with cost(M) ≤ (1 + δ)pn

satisfies |ĨM | ≥ (1− 23ϵ− δ)pn.

4 Robustness of Approximate Median

In this section, we consider the (approximate) median string problem on a set of strings
generated by our probabilistic model Gp (from Section 2). For a random (unknown) string
s ∈ Σn, Gp generates a set S = {s1, s2, · · · , sm} of independent traces of s. We show that
with high probability, any (1 + ϵ)-approximate median of S must be close (in edit distance)
to the unknown string s. In other words, any (1 + ϵ)-approximate median must “agree” with
the unknown string s in most of the portions. It is true even when m = 3. In this section, we
state the results and the proofs by considering m = 3. In particular, we prove Theorem 3. At
the end of the section, we remark on why such result with three traces also directly provides
a similar result for any m > 3 traces. Another way to interpret this result is the following.
Suppose we take a set of three traces and find its (1 + ϵ)-approximate median. Then if we
add more traces in the set, its (1 + ϵ)-approximate median does not change by much. So in
some sense, (1 + ϵ)-approximate median is robust in the case of average-case traces.

For the purpose of the analysis, we start by considering infinite length strings (as in
Section 2), and then later we will move to the finite-length versions. Recall, U denotes
the uniform distribution over strings x ∈ ΣN, i.e., each character x[i], for i ∈ N, is chosen
uniformly at random and independently from Σ. Consider a parameter p ∈ (0, 0.001) and
define q := p(4−3p)

2−p2 . (Note, q = 2p−Θ(p2).) Then consider the following two processes:
Process 1: Draw a string s from U . Then draw three strings s1, s2, s3 independently
from Gp(s). Output the tuple (s, s1, s2, s3).
Process 2: Draw a string x1 from U . Then draw x̄ from Gp(x1) (and denote the
corresponding alignment function by Ap

1,x̄). Finally, draw x2, x3 independently from
Gp(x̄) (and denote the corresponding alignment functions by Ap

x̄,2, Ap
x̄,3 respectively).

Output the tuple (x̄, x1, x2, x3).

As an immediate corollary of Proposition 18 (see Appendix A), we know that the
distributions on (s, s1) and (x̄, x1) are the same. So we conclude the following about the
above two processes.

▷ Claim 12. The probability distributions on (s, s1, s2, s3) and (x̄, x1, x2, x3), the tuples
generated by Process 1 and Process 2 respectively, are identical.

Note, we want to investigate the property of an approximate median of the strings
generated through Process 1. Due to the above claim, instead of considering the strings
s1, s2, s3 from now on we focus on x1, x2, x3 generated through Process 2. By Proposition 16
(see Appendix A), both x2 and x3 can be viewed as strings drawn from Gq(x1). Let us
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use the notations Aq
1,2 and Aq

1,3 to denote the alignment functions produced by the random
process Gq while generating x2 and x3 respectively, from x1. We want to emphasize that the
process Gq is considered solely for the purpose of the analysis.

Next, we use the alignments Ap
1,x̄, Ap

x̄,2 (and Ap
x̄,3) to define an alignment between x1, x2

(and x1, x3) via x̄. Let Ap
1,x̄,2 and Ap

1,x̄,3 denote Ap
x̄,2 ◦Ap

1,x̄ and Ap
x̄,3 ◦Ap

1,x̄ respectively. (See
Section 1.3 for the definition of the notation ◦.)

Median of n-length prefixes of x1, x2, x3. So far in this section we have talked about
infinite length strings. From now on we restrict ourselves to the the n-length prefixes of
x1, x2 and x3 denoted by x1[1, n], x2[1, n] and x3[1, n] respectively. By abusing the notations,
we simply use x1, x2 and x3 to also denote x1[1, n], x2[1, n] and x3[1, n] respectively. Also, we
consider the (n-length) restriction of all the alignment functions (defined so far) accordingly.
Again, for simplicity, we use the same notations to refer to these restricted alignment
functions.

Now, we consider the (approximate) median string problem on the set S = {x1, x2, x3}.
Recall, for any string y, Obj(S, y) :=

∑3
k=1 ED(xk, y), and OPT(S) = miny∈Σ∗ Obj(S, y).

Since throughout this section, S = {x1, x2, x3}, to simplify the notations, we drop S from
both Obj and OPT. The main result of this section is the following.

▶ Theorem 13. For a large enough n ∈ N and a noise parameter p ∈ (0, 0.001), let x̄, x1, x2
and x3 be the n-length prefixes of the strings generated by Process 2. If xmed is a (1 + ϵ)-
approximate median of S = {x1, x2, x3} for ϵ ∈ [110p log(1/p), 1/6], then Pr[ED(x̄, xmed) ≤
195ϵ · OPT(S)] ≥ 1− e− log2 n.

We would like to emphasize that (for the simplicity in the analysis) we have made no attempt
to optimize the constants. By a more careful analysis, both the range of p and the constant
involved in the bound of ED(x̄, xmed) could be improved significantly. The above theorem
together with Claim 12 immediately gives us Theorem 3. Note, in Theorem 3, we do not
have any length restrictions on the traces. On the other hand, the above theorem considers
x̄, x1, x2 and x3 to be of length n. However, by a standard application of Chernoff-Hoeffding
bound, it suffices to restrict ourselves to the (n−

√
n log n)-length prefixes of all the traces

(of Theorem 3). Then we can apply the above theorem over them, to get Theorem 3. The
proof of Theorem 13 appears in the full version.

For more than three traces. So far, we have shown that for any set {s1, s2, s3} of three
traces of s, its any (1 + ϵ)-approximate median is close to s. Below we argue that a similar
result for any arbitrary number (less than some poly(n)) of traces directly follows.

▶ Corollary 14. For a large enough n ∈ N and a noise parameter p ∈ (0, 0.001), let the
string s ∈ {0, 1}n be chosen uniformly at random, and let s1, · · · , sm be m = nO(1) traces
generated by Gp(s). If xmed is a (1 + ϵ)-approximate median of S = {s1, · · · , sm} for any
ϵ ∈ [110p log(1/p), 1/6], then Pr[ED(s, xmed) ≤ O(ϵ) · OPT(S)

m ] ≥ 1− n−1.

We defer the proof to the full version.

5 Near-Linear time Approximate Trace Reconstruction

In this section, we describe a linear-time algorithm that reconstructs the unknown string
using only three traces, up to some small edit error. In particular, we prove Theorem 1.
Before describing our linear-time algorithm, first note, we can compute an (exact) median
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of three traces using a standard dynamic programming algorithm [53, 34] in cubic time.
Then by Theorem 13, that median string will be close (in edit distance) to the unknown
string. More specifically, the edit distance between the computed median string and the
unknown string will be at most O(ϵpn) with high probability. In this section, we design a
more sophisticated method to compute an approximation of the unknown string. For that
purpose, we first divide each trace into “well-separated” blocks of size log2 n each. Then we
run the dynamic programming-based median algorithm [53, 34] on these small blocks. Thus
we spend only poly log n time per block, and hence in total Õ(n) time. Since we consider
“well-separated” blocks, they are independent. Thus we apply Theorem 13 for each of these
blocks (instead of the whole string). Using standard Chernoff-Hoeffding bound, we get that
most of these block medians are close to their corresponding block of the unknown string.
Hence, by concatenating these block medians, we get back the whole unknown string up to
some small edit error. We defer the detailed description of our algorithm to Appendix B.

6 Conclusion

Trace reconstruction in the average case is a well-studied problem. The problem is to
reconstruct an unknown (random) string by reading a few traces of it generated via some
noise (insertion-deletion) channel. The main objective here is to minimize the sample
complexity and also the efficiency of the reconstruction algorithm. There is an exponential
gap between the current best upper and lower bound in the sample complexity despite
several attempts. The best lower bound is Ω̃(log5/2 n) [9]. A natural question is whether it
is possible to beat this lower bound by allowing some error in the reconstructed string. This
version is also referred to as the approximate trace reconstruction problem; however, nothing
is known except for a few special cases.

Our result not only beats the lower bound of the exact trace reconstruction but uses only
three traces. The reconstructed string is O(ϵpn) close (in edit distance) to the unknown
string with high probability. We establish a connection between the approximate trace
reconstruction and the approximate median string problem, another utterly significant
problem. We show that both the problems are essentially the same. We leverage this
connection to design a near-linear time approximate reconstruction algorithm using three
traces.

An exciting future direction is to get a similar result for the worst-case, where the
unknown string is arbitrary. It will also be fascinating if we could show some non-trivial
sample complexity lower bound for that version.
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A Description of Probabilistic Channel

Model Rp(x). Given an infinite-length string x ∈ ΣN and a parameter p ∈ [0, 1]. Consider
the following random procedure:
1. Initialize i = 1. (We use i to point to the current index positions of the input string.)

Also, initialize an empty string Out.
2. Do the following independently at random:

a. With probability 1− p, set Out← Out⊙ x[i] and increment i. (Match x[i].)
b. With probability p/2, increment i. (Delete x[i].)
c. With probability p/2, choose independently uniformly at random a character a ∈ Σ

and set Out← Out⊙ a. (Insert a random character.)
We call this procedure Rp, and denote the randomized output string Out by Rp(x).

Model Gp(x). This model first provides a randomized mapping (alignment) Ap : N →
N ∪ {⊥}, and then uses this alignment (and x) to generate the output string. First, given a
parameter p ∈ [0, 1], consider the following random procedure to get a mapping Ap:
1. Initialize i = 1 and j = 1. (Indices of current positions in the input and output strings,

respectively.)
2. Do the following independently at random:

a. With probability 1− p, set Ap(i)← j and increment both i and j. (Match x[i].)
b. With probability p/2, set Ap(i)← ⊥ and increment i. (Delete x[i].)
c. With probability p/2, increment j. (Insertion.)
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Next, use this Ap and a given string x ∈ ΣN to generate a string y ∈ ΣN as follows. For each
j ∈ N,

If there is i ∈ N with Ap(i) = j then set y[j]← x[i]. (Match x[i].)
Otherwise, choose independently uniformly at random a character a ∈ Σ and set y[j]← a.
(Insert a random character.)

We denote by Gp(x) the randomized string y generated as above. By construction, Ap is an
alignment between x and Gp(x).

Basic Properties. We claim next that Rp and Gp are equivalent, which is useful because we
find it more convenient to analyze Gp. We use X1

dist= X2 to denote that two random variable
Xi ∼ Di, i ∈ {1, 2} have equal distribution, i.e., D1 = D2. The next two propositions are
immediate.

▶ Proposition 15. For every string x ∈ ΣN and p ∈ [0, 1], we have Rp(x) dist= Gp(x).

▶ Proposition 16 (Transitivity). For every x ∈ ΣN and p ∈ [0, 1], let

q(p) := p(4− 3p)
2− p2 . (6)

Then Gp(Gp(x)) dist= Gq(p)(x).

Additional Properties (Random Base String). Let U be the uniform distribution over
strings x ∈ ΣN, i.e., each character x[i] is chosen uniformly at random and independently
from Σ. We now state two important observations regarding the process Gp. The first one is
a direct corollary of Proposition 16. The second observation follows because the probability
of insertion is the same as that of deletion at any index in the random process Gp.

▶ Corollary 17 (Transitivity). Let p ∈ [0, 1] and let q(p) be as in (6). Draw a random string
X ∼ U , and use it to draw Y ∼ Gp(Gp(X)) and Z ∼ Gq(p)(X). Then (X, Y ) dist= (X, Z).

▶ Proposition 18 (Symmetry). Let p ∈ [0, 1]. Draw a random string X ∼ U and use it to
draw another string Y ∼ Gp(X). Then (X, Y ) dist= (Y, X).

B Near-Linear-Time Median Algorithm

Formally, our result is the following.

▶ Theorem 19. There is a small non-negative constant c0 < 1 and a deterministic algorithm
that, for every sufficiently large n ∈ N and noise parameter p ∈ (0, c0], given as input three
traces s1, s2, s3 ∼ Gp(s), for a uniformly random (but unknown) string s ∈ {0, 1}n, and an
accuracy parameter ϵ ∈ [110p log(1/p), 1/6], outputs in time Õ(n) a string z that satisfies
Pr[ED(s, z) ≤ 5270ϵpn] ≥ 1− n−1.

Before describing the algorithm we would like to introduce a few notations, which we use
in this section. For a string x ∈ Σn, let y = x[i, i + 1, · · · , j] be a substring of it. Then we
use the notation start(y) to denote the index i and end(y) to denote the index j.
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Description of the algorithm. Let us now describe the algorithm. First, partition s1 into
r = |s1|

ℓ disjoint blocks s1
1, s2

1, · · · , sr
1 each of length ℓ = log2 n + 240

p log3/2 n. For each si
1, let

us call the middle log2 n-size sub-block, denoted by yi
1, an anchor. Next, for each i ∈ [r]

and j ∈ {2, 3}, find the best match of the anchor yi
1 in the string sj i.e., for each yi

1 find a
substring (breaking ties arbitrarily) in sj that has the minimum edit distance with yi

1. Let
us denote the matched substrings in s2 and s3 by yi

2 and yi
3 respectively. Then for each

j ∈ {2, 3}, we divide sj into blocks s1
j , · · · , sr

j (some of the si
j ’s could be empty) by treating

y1
j , · · · , yr

j as anchors. More specifically,
Set the start index of s1

j to be 1. For any other non-empty block si
j , set its start index to

be ⌊(end(yi−1
j ) + start(yi

j))/2⌋.
For the last non-empty block in sj , set its end index to be |sj |. For any other non-empty
block si

j , set its end index to be ⌊(end(yi
j) + start(yi+1

j ))/2⌋ − 1.
Next, for each i ∈ [r], compute a median of {si

1, si
2, si

3}, and let it be denoted by zi. Finally,
output z = z1 ⊙ · · · ⊙ zr (i.e., the concatenation of all the zi’s).

Correctness proof. Before proceeding with the correctness proof, let us state a known fact
about the edit distance between two random strings from [4].

▶ Proposition 20 ([4]). For any two strings x ∈ Σm and y ∈ Σn drawn uniformly at random,
Pr[ED(x, y) ≥ max{m,n}

10 ] ≥ 1− 2− max{m,n}/10.

▷ Claim 21. For every two substrings x, y of length at least 60 log n, of si, sj respectively,
where i, j ∈ [3], such that (Ap

s,si
)−1(x) and (Ap

s,sj
)−1(y) are two disjoint substrings of s,

Pr[ED(x, y) ≥ max{|x|,|y|}
10 ] ≥ 1− n−4.

Proof. By Proposition 18, x and y are two strings chosen uniformly at random by picking
each of its symbols independently uniformly at random from Σ. Then the claim directly
follows from Proposition 20 together with a standard application of union bound. ◁

Let us now define true match for each block yi
1 in strings s2 and s3. For each j ∈ {2, 3},

we call the block Ap
s,sj

((Ap
s,s1

)−1(yi
1)) in sj the true match of yi

1, denoted by ti
j . Next, we

want to claim that for each block yi
1, its best match yi

j in a string sj , for j ∈ {2, 3}, is close
to its true match ti

j . The following lemma is crucial to show the correctness of the algorithm
and also to establish a linear-time bound for the algorithm.

▷ Claim 22. For each i ∈ [r] and j ∈ {2, 3}, with probability 1− 5n−2,
1. |start(ti

j)− start(yi
j)| ≤ 200

p log n, and
2. |end(ti

j)− end(yi
j)| ≤ 200

p log n.

Proof. Let us partition yi
1 into p log n

10 sub-blocks yi,1
1 , · · · , y

i,(p log n)/10
1 , each of size 10 log n

p .
Next, for each of these sub-blocks yi,k

1 consider its true match in the string sj (for any
j ∈ {2, 3}) defined as ti,k

j := Ap
s,sj

((Ap
s,s1

)−1(yi,k
1 )).

Now, consider an (arbitrary) optimal alignment B between yi
1 and yi

j . Observe, if for all
1 ≤ k ≤ (p log n)/10, B(yi,k

1 ) has a non-empty overlap with the corresponding true match
ti,k
j , then the claim is true. So from now on, let us assume that at least for some block yi,k

1 ,
B(yi,k

1 ) does not overlap with ti,k
j . Let yi,k′

1 be the right-most sub-block such that there is a
non-empty overlapping between B(yi,k′

1 ) and ti,k′

j . Then for each k′ + 1 ≤ k ≤ (p log n)/10,
by Claim 21, costB(yi,k

1 ) ≥ log n
p with probability at least 1− n−4.
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We want to claim that k′ ≥ p log n
10 − 10

1−24p . If not, then we deduce that yi
j is not the

best match of yi
1 in the string sj . To argue this, suppose k′ < p log n

10 − 10
1−24p . Then we

modify the mapping B to derive another mapping B′ as follows: B′ respects B till the block
yi,k′−1

1 . Next, B′ deletes the block yi,k′

1 , and then use the mapping Ap
s,sj
◦ (Ap

s,s1
)−1 to map

the remaining blocks yi,k′+1
1 , · · · , y

i,(p log n)/10
1 . By Lemma 5 (applied on strings of size at

least 10 log n
p ) together with an union bound, we get that for all the blocks of s1 of size at

least 10 log n
p , the cost of the alignment Ap

s,sj
◦ (Ap

s,s1
)−1 is at most 24 log n with probability

at least 1− 2n−2.
Clearly, the cost of this new alignment B′ is at least ( 10

1−24p +1) log n
p −( 10 log n

p + 240 log n
1−24p ) > 0

less than that of B. Hence, yi
j cannot be the best match of yi

1 in sj . So we deduce
that k′ ≥ p log n

10 − 10
1−24p . Note, if an alignment function just deletes all the blocks

yi,k′+1
1 , · · · , y

i,(p log n)/10
1 , it would cost at most 100 log n

p(1−24p) . Thus, since ti
j is the best match of

yi
1, the cost of B for these blocks yi,k′+1

1 , · · · , y
i,(p log n)/10
1 must be at most 100 log n

p(1−24p) . From
this we conclude that |end(ti

j)− end(yi
j)| ≤ 100

p(1−24p) log n ≤ 200
p log n (for the choice of p we

have).
Similarly, we can argue that |start(ti

j) − start(yi
j)| ≤ 200

p log n. This concludes the
proof. ◁

The following is an immediate corollary of the above claim.

▶ Corollary 23. With probability at least 1− 10n−2, for each i ∈ [r] and j ∈ {2, 3}, yi
j and

yi+1
j do not overlap.

Proof. Consider the substring between the blocks yi
1 and yi+1

1 , which is of length 480
p log3/2 n.

By Lemma 5, Ap
s,sj
◦ (Ap

s,s1
)−1 maps that substring into a substring of length at least

240 log3/2 n > 400
p log n in sj with probability at least 1− n−3. Now, it directly follows from

Claim 22 that yi
j and yi+1

j do not overlap. ◀

Next, we use the above to establish an upper bound on the edit distance between the
unknown string s and the recovered string z.

▶ Lemma 24. With probability at least 1− n−1, ED(s, z) ≤ 1550ϵpn.

Proof. For any i ∈ [r], consider the set Si := {si
1, si

2, si
3}. Consider the substring yi of the

string s such that Ap
s,s1

(yi) = yi
1 (i.e., yi maps to yi

1 by the alignment Ap
s,s1

). Next, for the
analysis purpose, consider the set T i = {yi

1, ti
2, ti

3}. Recall, by the definition of ti
j = Ap

s,sj
(yi),

for j ∈ {2, 3} are the traces generated by Gp from the block yi.
Thus by Lemma 5, with probability at least 1 − 3n−4, for each t ∈ T i, ED(yi, t) ≤

(1 + ϵ)p|yi|. Since yi
1 is a substring of si

1 (where |si
1| = |yi

1| + 240
p log3/2 n), by triangular

inequality, ED(yi, si
1) ≤ (1 + ϵ)p|yi| + 240

p log3/2 n. Next observe, for each j ∈ {2, 3}, by
Corollary 23, ti

j is a substring of si
j . Furthermore, by definition, |si

j | ≤ |yi
j | + 240

p log3/2 n.
Thus, again by triangular inequality, ED(yi, si

j) ≤ (1 + ϵ)p|yi|+ 240
p log3/2 n. So we get

Obj(Si, yi) ≤ 3(1 + ϵ)p|yi|+ 750
p

log3/2 n. (7)

Since zi is an (exact) median of Si, Obj(Si, zi) ≤ Obj(Si, yi). Next, it follows from Claim 22
and the construction of the blocks si

j , for j ∈ {2, 3}, that ti
j is a substring of si

j where
|ti

j | ≥ |si
j | − 500

p log3/2 n. Hence, we can deduce that
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Obj(T i, zi) ≤ Obj(Si, zi) + 1500
p

log3/2 n

≤ Obj(Si, yi) + 1500
p

log3/2 n

≤ 3(1 + ϵ)p|yi|+ 2500
p

log3/2 n by (7). (8)

Further observe, it follows from Proposition 16 and Lemma 7, for each j ∈ {2, 3},

ED(yi
1, ti

j) ≥ (1− 6ϵ)q|yi
1| = (1− 6ϵ)q log2 n.

Recall, q = 2p−Θ(p2). Then

OPT(T i) ≥ 3(1− 7ϵ)p log2 n. (9)

From (8) and (9), we conclude that zi is an (1 + 9ϵ)-approximate median of T i. So by
Theorem 13, ED(yi, zi) ≤ 1755ϵ · OPT(T i) with probability at least 1− e−2 log2(log n).

Now, since all the yi’s are generated by picking each symbol uniformly at random and by
our construction for each j ∈ {2, 3} ti

j ’s are disjoint, the sets T i’s are independent. Hence, by
applying standard Chernoff-Hoeffding bound, we get that with probability at least 1− n−1,
all but at most e−2 log2(log n)r +

√
r log r many blocks satisfy, ED(yi, zi) ≤ 1755ϵ · OPT(T i).

Let s′ denote the string y1 ⊙ · · · ⊙ yr. Note as s′ is a subsequence of s,

ED(s, s′) = |s| − |s′| ≤ 500n

p
log1/2 n

Then,

ED(s, z) ≤ ED(s′, z) + 500n

p log1/2 n

≤
r∑

i=1
ED(yi, zi) + 500n

p log1/2 n

≤ 1755ϵ

r∑
i=1

OPT(T i) + (e−2 log2(log n)r +
√

r log r)2 log2 n + 500n

p log1/2 n

≤ 5270ϵpn.

The first inequality follows by triangular inequality and the last inequality follows by (8)
and r = Θ(n/ log2 n). ◀

Running time analysis. Partitioning the string s1 into r blocks clearly takes linear time.
The main challenge here is to find the best match yi

j (for j ∈ {2, 3}) for each block yi
1. To

do this, for each j ∈ {2, 3}, we start with the first 10 log2 n-sized substring of sj and run
the approximate pattern matching algorithm under the edit metric by [36, 22] to find the
best match y1

j for y1
1 (which takes O(log4 n) time). Next, we consider the 10 log2 n-sized

substring of sj starting from the end index of y1
j , and in a similar way find the best match

y2
j for y2

1 . We continue until we find the best matches for all the blocks y1
1 , · · · , yr

1. Lemma 5
ensures that y1

j indeed lies on the first 10 log2 n-sized substring of sj with probability at
least 1− n−4. Then Corollary 23 together with Lemma 5 guarantees that to find the best
match for a block yi

1, it suffices to look into the 10 log2 n-sized substring of sj after the best
match of the previous block yi−1

1 . Hence, we can identify the best matches for all the blocks
y1

1 , · · · , yr
1 in time Õ(n) (since r = Θ( n

log2 n
)). Once we get si

1, si
2, si

3 for each i ∈ [r], we can
compute their median using the dynamic programming algorithm [53, 34] in time O(log6 n)
time. So, the total running time is Õ(n).

FSTTCS 2021


	1 Introduction
	1.1 Related Work
	1.2 Technical Overview
	1.3 Preliminaries

	2 Probabilistic Generative Model
	3 Robustness of the Insertion-Deletion Channel
	4 Robustness of Approximate Median
	5 Near-Linear time Approximate Trace Reconstruction
	6 Conclusion
	A Description of Probabilistic Channel
	B Near-Linear-Time Median Algorithm

