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Abstract
In the Dominating Set problem the input is a graph G and an integer k, the task is to determine
whether there exists a vertex set S of size at most k so that every vertex not in S has at least
one neighbor in S. We consider the parameterized complexity of the Dominating Set problem,
parameterized by the solution size k, and the weak closure of the input graph G. Weak closure
of graphs was recently introduced by Fox et al. [SIAM J. Comp. 2020 ] and captures sparseness
and triadic closure properties found in real world graphs. A graph G is weakly c-closed if for every
induced subgraph G′ of G, there exists a vertex v ∈ V (G′) such that every vertex u in V (G′) which
is non-adjacent to v has less than c common neighbors with v. The weak closure of G is the smallest
integer γ such that G is weakly γ-closed. We give an algorithm for Dominating Set with running
time kO(γ2k3)nO(1), resolving an open problem of Koana et al. [ISAAC 2020].

One of the ingredients of our algorithm is a proof that the VC-dimension of (the set system
defined by the closed neighborhoods of the vertices of) a weakly γ-closed graph is upper bounded by
6γ. This result may find further applications in the study of weakly closed graphs.
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1 Introduction

A dominating set of a graph G = (V, E) is a set S ⊆ V of vertices of G such that every
vertex in V \S is adjacent to at least one vertex in S. In the Dominating Set problem, the
input is a graph G and a positive integer k and the task is to determine whether G has a
dominating set of size at most k. Dominating Set is NP-complete and has been extensively
studied within all established paradigms for coping with NP-hardness such as parameterized
complexity, approximation algorithms and exact exponential time algorithms [9, 13, 19, 31].
In fact, it is hard to overstate the pivotal role that Dominating Set has played in the
development of parameterized complexity; it was, together with Clique, one of the first
examples of natural parameterized problems that were proved intractable [13] as well as
FPT-inapproximable [6, 8, 18].

While, on the one hand, Dominating Set on general graphs has been a driver of paramet-
erized intractability, on the other hand, the study of Dominating Set on restricted graph
classes has been a treasure trove of algorithmic techniques. For instance, the subexponential
time algorithms for Dominating Set on planar graphs [1, 7], and the linear kernel [2]
on planar graphs led to the celebrated bidimensionality theory [11]. These algorithms and
kernels have been extended to much wider classes of graphs, such as, (topological) minor free
graphs [20], nowhere dense graphs [10, 14], d-degenerate graphs [3, 27], Ki,j-free graphs [27]
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29:2 Dominating Set in Weakly Closed Graphs

and induced ladder-free graphs [17]. In this article we study the Dominating Set problem
on c-closed graphs and weakly γ-closed graphs, which were recently introduced by Fox et
al. [21].

▶ Definition 1 ([21]). A graph G is said to be c-closed if for every pair of non-adjacent
vertices u and v in G, |NG(u) ∩ NG(v)| < c. A graph G is said to be weakly γ-closed if for
every induced subgraph G′ of G there exists a vertex v in G′ such that for every vertex u in
G′ not adjacent to v, |NG′(u) ∩ NG′(v)| < γ. The closure of a graph G is the smallest c

such that G is c-closed. The weak closure of a graph G is the smallest γ such that G is
weakly γ-closed.

The class of c-closed and weakly γ-closed graphs contains the class of graphs of maximum
degree at most c and graphs with degeneracy at most γ, respectively. Additionally they
capture the triadic closure principle, namely that two people who have many common friends
in a social network are likely to be friends themselves. From an application viewpoint, the
weak closure is typically found to be small for large real-world social network graphs [21, 23].
In addition, the parameters also have the appealing feature that they are computable in
polynomial time [21].

Motivated by the salient features of (weakly) closed graphs, Koana et al. [24] initiated a
systematic study of the parameterized complexity of computational problems on c-closed
graphs, closely followed by Husic and Roughgarden [22]. Koana et al. [24] show that a number
of problems, including Dominating Set, are FPT on closed graphs. In a follow up work
Koana et al. [23] show that a number of problems remain FPT even on weakly closed graphs.
Very recently, the same set of authors [25] provide polynomial kernels and kernel lower bounds
for various problems including Connected Vertex Cover and Capacitated Vertex
Cover on weakly closed graphs. They also obtain polynomial kernels for Dominating Set
on weakly closed split graphs and weakly closed bipartite graphs. However, they were not
able to obtain an FPT algorithm for Dominating Set on weakly closed graphs, leading
them to pose the existence of such an algorithm as an open problem. Specifically, Koana et
al. [23] asked whether the following parameterized problem is FPT or not.

Dominating Set in weakly γ-closed graph Parameter: γ, k

Input: Weakly γ-closed graph G and a non-negative integer k.
Question: Does there exist a set X ⊆ V (G) of size at most k such that NG[X] = V (G).

In this work, we give an algorithm with running time kO(γ2k3)nO(1), resolving the problem
in the affirmative. We now state our main result.

▶ Theorem 2. There exists a deterministic algorithm that given as input a weakly γ-closed
graph G and an integer k determines in time kO(γ2k3)nO(1) whether G has a dominating set
of size at most k and outputs one if it exists.

Methods. Our algorithm is based on domination cores, first defined by Dawar and
Kreutzer [10] and then later employed in multiple settings [14, 15, 17]. A k-domination core
of a graph is a set X of vertices of the graph such that every set of size at most k that
dominates X dominates the whole graph. Observe that the set of all vertices of a graph is a
domination core. It is well known (for example see [10] Lemma 4.1) that if one can efficiently
compute a domination core whose size is upper bounded by a function of k, then we can
obtain an FPT algorithm for Dominating Set. Thus our main technical contribution is an
algorithm that given a graph produces a k-domination core of the graph of size kO(γk2).
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We now give a very rough sketch of the proof for our main technical claim – every
domination core W of size at least b, where b = kO(γk2) contains at least one vertex w such
that W\{w} is also a domination core, and that such a vertex w can be found efficiently. In
this exposition we focus only on the claim of existence of w. Suppose such a vertex w does
not exist. Then, for every vertex w ∈ W there must exist a set Xw of size at most k that
dominates all of W\{w}, but does not dominate w – otherwise W\{w} is still a domination
core. We call a set W that has this property a k-threshold set1 and prove that a weakly
γ-closed graph can not contain a k-threshold set of size at least b.

The advantage of shifting our attention from k-domination cores to k-threshold sets is
that k-threshold sets are closed under subsets – every subset of a k-threshold set is also a
k-threshold set. This allows us to “dig for structure”, that is, prove results of the form “if G

has a sufficiently large k-threshold set W then W contains a large (as a function of k and
|W |) k-threshold set W ′ with some additional property”.

By invoking a (multi-color version of the) Ramsey Theorem [4] on an appropriately
constructed auxiliary graph, we extract from W a sufficiently large and sufficiently symmetric
threshold set W ′ ⊆ W . The existence of a large and symmetric threshold set W ′ in turn
implies that G must contain as an induced subgraph one of three simple pattern graphs
(such as a complete bipartite graph with γ + 1 vertices on both sides). Each one of these
three pattern graphs can easily be shown not to be weakly γ-closed, contradicting that G

was weakly γ-closed in the first place.
We remark that the actual proof proceeds in a different order of the exposition above.

First, in Section 3 we define the pattern graphs that we will use and show that they are
not weakly γ-closed. In Section 5 we prove that a purely existential upper bound on the
size of k-threshold sets implies both an FPT algorithm to find a small k-domination core,
and an FPT algorithm for Dominating Set. In Section 6 we obtain the aforementioned
upper bound on the size of k-threshold sets in weakly γ-closed graphs by showing that a
k-threshold set of size at least b = kO(γk2) implies that G must contain one of the forbidden
pattern graphs from Section 3.

Efficiently computing a domination core W of size kO(γk2) immediately leads to a
2kO(γk2)

nO(1) time algorithm for Dominating Set on weakly γ-closed graphs. Indeed,
to find a dominating set for G of size k (if one exists), it is sufficient to find a set S of size at
most k that dominates all of W . This can be done by trying all possible partitions of W

into k parts P1, . . . , Pk, and then determining whether there exists for every part Pi a single
vertex si ∈ V (G) that dominates Pi. This algorithm already resolves the open problem of
Koana et al. [23] in the affirmative. At the same time the double exponential running time
dependence on k is unsatisfactory.

We are able to improve the running time of our algorithm for Dominating Set to
kO(γ2k3)nO(1) by proving an additional purely graph-theoretic result regarding the structure
of weakly γ-closed graphs. A set system (U, F) consists of a universe U along with a collection
F of subsets of U . A subset containing A ⊆ U is shattered by F if each subset of A can
be expressed as the intersection of A with a set in F . The Vapnik-Chervonenkis dimension
(VC-dimension) of a set system is the cardinality of the largest subset A of U that is shattered
by F . The VC-dimension of a graph is defined as the VC-dimension of the set system induced
by the closed neighbourhoods of its vertices. We prove in Section 4 that weakly γ-closed
graphs have VC-dimension at most 6γ.

1 Note that a k-threshold set is not necessarily a k-domination core, however every inclusion minimal
k-domination core is a k-threshold set.
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29:4 Dominating Set in Weakly Closed Graphs

▶ Theorem 3. Every weakly γ-closed graph has VC-dimension at most 6γ.

Theorem 3 is tight up to the constant factor 6 (see Section 4 for a simple construction of a
weakly γ-closed graph with VC-dimension γ).

Theorem 3 (together with our bound on the size of k-threshold sets) quite directly leads
to a kO(γ2k3)nO(1) time algorithm for Dominating Set on weakly γ-closed graphs. Indeed,
the double exponential running time of the previous algorithm came from the algorithm to
determine whether there exists a set S of size at most k that dominates the entire domination
core W . The size of the k-domination core W is assumed to be upper bounded by kO(γk2).
Our improved algorithm to find S is remarkably simple: if two vertices u and v not in W

have exactly the same set of neighbors in W , we remove u from the graph (since we can
always pick v in its place). After this reduction, the Sauer-Shelah Lemma [28, 29] (See
Lemma 8) implies that there are at most kO(γ2k2) vertices left in G. Then a brute force
algorithm that tries all possibilities for S takes time kO(γ2k3)nO(1).

We believe that Theorem 3 will find further uses in the design of algorithms for problems
on weakly γ-closed graphs. For an example Theorem 3 also immediately implies that
the improved approximation algorithm for Dominating Set on graphs of bounded VC-
dimension [5, 16] applies to weakly γ-closed graphs (see Section 4 for details).

2 Notation and Preliminaries

In this section we give notations, and definitions that we use throughout the paper. Unless
specified we will be using all general graph terminologies from the book of Diestel [12].

Given a graph G, we use V (G) and E(G) to denote the set of vertices and edges,
respectively. We denote the open neighbourhood of a vertex v in G by NG(v) = {u : u ∈
V (G), (u, v) ∈ E(G)} and closed neighbourhood by NG[v] = {v} ∪ NG(v). Further, we
denote the non-neighbourhood of v by NG[v] = V (G)\N [v]. We extend this notation to a set
S ⊆ V (G) as well, that is NG(S) =

⋃
v∈S

NG(v), NG[S] =
⋃

v∈S

NG[v] and NG[S] = V (G)\NG[S].

Whenever the graph G is clear from the context, we will omit the subscript. A dominating
set of G is a set of vertices S ⊆ V (G) such that N [S] = V (G). For any X ⊆ V (G), we use
the notation G[X] to denote the subgraph induced by X in G.

We use the symbol ∪· to denote the disjoint union operation on sets. Let l be a positive
integer. We use the notation [l] to denote the set {1, . . . , l}. A graph G having vertex set
V (G) = A ∪· B is called a split graph if A is a clique and B is an independent set. A graph
G is d-degenerate if every subgraph G′ of G has a vertex having degree at most d. We will
need the notion of weak ordering of a weakly γ-closed graph. It is very similar to notion of
degeneracy ordering for degenerate graphs [12].

▶ Definition 4 ([21]). A weak ordering O of a weakly γ-closed graph G is an ordering
O = {v1, . . . , vn} of V (G) such that for each vi ∈ V (G) and for each u ∈ NGi

[vi], it holds
that |NGi(u) ∩ NGi(vi)| < γ, where Gi = G[{vi, . . . , vn}]. A forward neighbour of vi is a
vertex adjacent to vi in Gi.

3 Obstructions to Weak Closure

In this section, we define a few simple pattern graphs and proceed to show that they (except
split half-graphs, which are weakly 1-closed) are not weakly γ-closed. Many of our proofs are
of the form “every weakly γ-closed graph G either has some desirable property or contains
one of these patterns. The second case contradicts that G is weakly γ-closed, so we conclude
that G has the desirable property”.



D. Lokshtanov and V. Surianarayanan 29:5

▶ Definition 5. 2 Given a positive integer n, let A = {a1, . . . , an}, B = {b1, . . . , bn} and
C = {c1, . . . , cn} be disjoint vertex sets. We define the following graphs:
1. A bipartite graph G with vertex set V (G) = A ∪· B and bipartition A and B is called a

complete bipartite graph of order n if ∀i, j ∈ [n], (ai, bj) ∈ E(G).
2. A graph G with vertex set V (G) = A ∪· B is called a semi split co-matching of order

n if A is a clique and ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff i ̸= j. The edges between B can be
arbitrary.

3. A graph G with vertex set V (G) = A ∪· B is called a split half graph of order n if G is
a split graph with B being the independent set and ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff j > i.

4. A graph G with vertex set V (G) = A ∪· B ∪· C is called a double split half graph of
order n if G[A ∪ B] and G[B ∪ C] are split half graphs with B being the independent
set. That is ∀i, j ∈ [n], (ai, bj) ∈ E(G) iff j > i and (bi, cj) ∈ E(G) iff j > i. The edges
between A and C can be arbitrary.

▶ Lemma 6. 3 If G is weakly γ-closed, then it does not contain any of the following graphs
as an induced subgraph.

(i) Complete bipartite graph of order n ≥ γ.
(ii) Semi split co-matching of order n > γ.
(iii) Double split half graphs of order n ≥ 3γ.

4 VC-dimension of Weakly Closed Graphs

In this section we prove Theorem 3, that is we show that the VC dimension of weakly
γ-closed graphs is at most 6γ. Recall that the VC-dimension of a graph is defined as the
VC-dimension of the set system induced by the closed neighbourhoods of its vertices.

Proof of Theorem 3. Suppose that the VC dimension of G is greater than 6γ. We will show
that G is not weakly closed, thus contradicting our assumption. Since we assumed that the
VC dimension is at least 6γ + 1, there is a set X ⊆ V (G) of size 6γ + 1 that is shattered in
G. Since X is shattered, for each x ∈ X, there exists a vertex y that dominates all vertices
in X except x. We note that for each x ∈ X, there can be more than one such vertex but we
need only one for our proof. We will call y the partner of x and x the partner of y. Observe
that no two vertices in X can have the same partner. Let Y be the set of partners of all
vertices in X. Also observe that every x ∈ X dominates all vertices in Y except its partner
and every y ∈ Y dominates all vertices in X except its partner. We start by extracting a
sufficiently large clique from X or Y .

▷ Claim 7. There exists a clique Z of size at least γ + 1 such that Z ⊆ X or Z ⊆ Y .

Proof. Let X1 be an arbitrary subset of X of size 3γ, and let Y1 be an arbitrarily chosen
set of 3γ vertices in Y that have no partner in X1. If |X1 ∩ Y1| > γ then Z = X1 ∩ Y1 is a
clique that satisfies the conclusion of the lemma since every vertex in Y1 dominates X1.

We proceed with the case that |X1 ∩ Y1| ≤ γ. Define X ′ = X1\Y1 and Y ′ = Y1\X1 (i.e.
remove common vertices from X1 and Y1). Note that |X ′| ≥ 2γ and |Y ′| ≥ 2γ, that X ′ and
Y ′ are disjoint, and that every vertex in X ′ is adjacent to every vertex in Y ′. Let OX′∪Y ′

be the order induced by a weak ordering O of G on X ′ ∪ Y ′. There must be γ + 1 vertices
all from either X ′ or Y ′ among the first 2γ + 1 vertices in OX′∪Y ′ . Let Z be the set of

2 Refer to Figure 1 in Appendix A.
3 Proof in Appendix A.
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29:6 Dominating Set in Weakly Closed Graphs

these γ + 1 vertices all from X ′ or Y ′. Since all vertices in X ′ are adjacent to all vertices
in Y ′, every pair of vertices in Z must have at least γ common forward neighbours in the
ordering O. Thus, since G is weakly γ-closed, Z must be a clique. ◁

Let Z be a clique as provided by Claim 7. Let PZ be the set of partners of all vertices in
Z. Observe that Z and PZ are disjoint: for every z ∈ Z its partner z′ does not dominate z

(by definition of partners) and therefore cannot be in Z, since Z is a clique. Next, we observe
that every vertex z in Z is adjacent to every vertex in PZ except its partner by the definition
of X and Y and the fact that Z ⊆ X or Z ⊆ Y . The induced subgraph G[Z ∪ PZ ] is a
semi split co-matching (Definition 5) because Z is a clique, Z and PZ are disjoint and every
vertex z in Z is adjacent to every vertex in PZ except its partner. This contradicts Lemma 6,
concluding the proof. ◀

Theorem 3 is tight up to the constant factor 6, since there exists a weakly γ-closed graph
having VC-dimension γ: Consider the bipartite graph G with V (G) = A ∪· B where A has γ

vertices and for each set S ⊆ A, B has one vertex whose neighbourhood is S. The graph
G is weakly γ-closed and has VC-dimension at least γ since A is shattered by the closed
neighborhood of vertices in B.

4.1 Set Cover and graphs of bounded VC-dimension
In the Set Cover problem, we are given a universe U , a family F of sets over U , and a
positive integer k and the task is to determine whether there exists a subfamily F ′ ⊆ F of
size at most k such that

⋃
X∈F ′

X = U . It is known [28, 29] that if the VC-dimension of a set

system (U, F) is bounded, then the size of the family F must be bounded.

▶ Lemma 8 (Sauer-Shelah lemma [28, 29]). If the VC-dimension of a set system (U, F) is
bounded by d, then F can consist of at most

∑d
i=0

(|U |
i

)
= O(|U |d) sets.

We will exploit the fact that weakly closed graphs have bounded VC-dimension in the
following way. Dominating Set on a graph of bounded VC-dimension corresponds to Set
Cover on the set system (U, F) where U = V (G) and F = {N [v] : v ∈ U}.

For a general set system (U, F), there is a naive algorithm that goes over all families F ′

of size at most k in F and checks whether F ′ is a set cover in time |F|k|U |O(1). However if
the VC-dimension of (U, F) is bounded by d, then by Lemma 8, |F| = O(|U |d) and therefore
this algorithm solves Set Cover in O(|U |kd) time.

▶ Theorem 9. There exists a deterministic algorithm that given a Set Cover instance
(U, F , k) such that the VC-dimension of (U, F) is bounded by d determines in time O(|U |kd)
whether the instance has a set cover of size at most k and outputs one if it exists.

We remark that this is not an FPT algorithm parameterized by k and d. However we will be
invoking Theorem 9 with |U | bounded by 2poly(k) and d bounded by 6γ in our algorithm for
Dominating Set.

An upper bound on the VC-dimension of G also leads to an improved approximation
algorithm for Dominating Set. Indeed Brönnimann and Goodrich [5] give an O(d log(dk))
approximation algorithm for set systems of VC-dimension d, where k is the size of the optimal
solution. This, together with Theorem 3 directly yields an O(γ log(γk))-approximation for
Dominating Set on weakly γ-closed graphs.
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5 Dominating Set in Weakly Closed Graphs

Our algorithm is based on domination cores, which have been used for deriving several
algorithms for the Dominating Set problem [14, 15, 17].

▶ Definition 10. Given a graph G, an integer k, a set S ⊆ V (G) is called a k-domination
core of G if ∀X ⊆ V (G) such that |X| ≤ k and S ⊆ N [X], it holds that N [X] = V (G).

It is easy to see that the set of all vertices in a graph is a trivial domination core. We
wish to prove that weakly γ-closed graphs contain k-domination cores whose size is upper
bounded by a function of k and γ. This naturally leads our attention to inclusion minimal
k-domination cores.

▶ Definition 11. A k-domination core W is called a minimal k-domination core if
∀w ∈ W , W\{w} is not a k-domination core.

We note that whenever k is clear from the context, we will omit k while referring to
domination cores. In the following lemma, we provide a bound on the size of minimal
domination cores in weakly γ-closed graphs.

▶ Lemma 12. Every minimal k-domination core of a weakly γ-closed graph G has size at
most b, where b = kO(γk2).

Lemma 12 leads to the following intuitive algorithm - Start with the trivial domination
core D = V and as long as |D| > b keep discarding a vertex x from D such that D remains
a domination core (we will soon discuss how to algorithmically identify the vertex x, for now
ignore this issue).

Finally use D to construct a Set Cover instance having universe D and family F =
{N [v] ∩ D : v ∈ V (G)}. Since G is weakly γ-closed, by Theorem 3, G has VC-dimension at
most 6γ. Thus, the Set Cover instance also has VC-dimension at most 6γ and so we use
Theorem 9 to find a set cover of size at most k if it exists from which a dominating set for G

can be easily recovered.
We now turn to the issue of identifying a vertex x to remove from D when |D| > b. To

this end, we will use the following property of every minimal k-domination core W : for each
w ∈ W , there is a set Xw of size at most k that dominates all of W\{w} but not w. Indeed,
suppose there is a w ∈ W for which no such Xw exists, and consider a set X of size at most
k which dominates W\{w}. Then X also dominates w (by the non-existence of Xw) and by
extension all of G (since W is a k-domination core). But then W\{w} is also a domination
core, contradicting minimality. We capture this property in the following definition.

▶ Definition 13. A vertex set S is a k-threshold set if for every v ∈ S there exists a set
Xv of size at most k so that N [Xv] ∩ S = S\{v}.

Also note that every subset S′ of a k-threshold set S is also a k-threshold set because
for every v ∈ S′, a set Xv of size at most k such that N [Xv] ∩ S = S\{v} also satisfies
N [Xv] ∩ S′ = S′\{v} as S′ ⊆ S. We will use this property explicity in the next section. For
now, the discussion leading up to Definition 13 immediately leads to the following observation.

▶ Observation 14. Every minimal k-domination core of a graph G is also a k-threshold set
of G.

FSTTCS 2021



29:8 Dominating Set in Weakly Closed Graphs

Since every minimal k-domination core is a k-threshold set, we will bound the size of k-
threshold sets in weakly γ-closed graphs, proving Lemma 12 and leading to an algorithm.

▶ Lemma 15. Every k-threshold set of a weakly γ-closed graph G has size at most b, where
b = kO(γk2)

We now outline how Lemma 15 can be used to identify a vertex x to be removed from a
domination core D having size more than b such that D\{x} still remains a domination core.
No subset of D having size b + 1 can be a threshold set because of Lemma 15. Thus, we can
pick an arbitrary subset X of D having size b + 1 and for each x ∈ X, test whether X\{x}
has a dominating set of size at most k without dominating x. Since X is not a threshold set,
we will find a vertex x ∈ X for which such a dominating set does not exist. Thus, we can
remove x from D and D\{x} will still remain a domination core.

We are now ready to patch up our ideas and provide the full algorithm to prove Theorem 2
assuming Lemma 15 is true. We dedicate the next section solely for the proof of Lemma 15.

Proof of Theorem 2 (assuming the statement of Lemma 15). We first provide the
algorithm: Initialize D = V (G). As long as |D| > b, arbitrarily pick a subset X of D having
size b + 1. For each x ∈ X, construct a Set Cover instance Ix = (Ux, Fx, k) with universe
Ux = X\{x} and family Fx = {N [y] ∩ X\{x} : y ∈ N [x]}. Solve Ix using Theorem 9. If Ix

is a no instance, set D = D\{x} and proceed to start of the loop.
After the loop terminates, construct the Set Cover instance I = (U, F , k) where U = D

and F = {Xv = N [v] ∩ D : v ∈ V (G)}. Use Theorem 9 to find a set cover S ⊆ F having size
at most k if exists for I. Return no and terminate the algorithm if I is a no instance. If I is
a yes instance, return the set D′ = {v : Xv ∈ S}.

▷ Claim 16. During each iteration of the loop, the algorithm finds a vertex x to remove
from D.

Proof. Consider an arbitrary iteration of the loop. It is clear that |D| > b since the algorithm
enters the loop. Observe that no subset of D having size b + 1 can be a k-threshold set
by Lemma 15. Let X be the subset of D picked by the algorithm in that iteration, it is
clear that X is not a k-threshold set. Thus, by definition of a k-threshold set, there exists a
vertex x ∈ X for which X\{x} does not have a dominating set of size at most k that does
not dominate x. It is also easy to see that X\{x} has a dominating set of size at most k

not dominating x if and only if Ix has a set cover of size at most k. Thus, there is a vertex
x ∈ X for which Ix does not have a set cover of size at most k. Therefore, the algorithm
would have removed at least one element from D in that iteration. ◁

▷ Claim 17. In each iteration of the algorithm, D is a domination core.

Proof. Since the set of all vertices of G is itself a trivial domination core, the algorithm starts
with a domination core D = V (G). Let X be the subset of D of size b + 1 picked by the
algorithm in that iteration. Also let x ∈ X be the vertex removed from D in that iteration.
By the previous claim, such an x exists. Since the algorithm removed x from D, the set
cover instance Ix must have been a no instance. It is easy to see that Ix is a no instance
if and only if X\{x} does not have a dominating set of size at most k without dominating
x. Thus, since every set of size at most k dominating D\{x} will dominate X\{x} which in
turn will dominate x, D\{x} is a k-domination core.

Thus, in each iteration of the algorithm, D is a k-domination core. ◁
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Now consider D in the last step of the algorithm. The algorithm reaches this step because of
the first claim. It is easy to see that I is an yes instance if and only if D has a dominating
set of size at most k. Since D is a domination core by the previous claim, this implies that
G has dominating set of size at most k if and only if I is a yes instance. Thus, the algorithm
returns a dominating set of G of size at most k if one exists, otherwise returns no. Namely,
the recovered set D′ is a dominating set of G.

For the runtime, the time taken to identify a vertex to remove from D when |D| > b

is bO(γk) using Theorem 9 as |Ux| = b and the VC-dimension of the set system (Ux, Fx) is
bounded by 6γ by Theorem 3. This step is repeated at most n − b times. The final step to
find the dominating set again takes bO(γk) time since in the last step D has size at most b.
Thus, in total the algorithm takes bO(γk)nO(1) time which is kO(γ2k3). ◀

6 Threshold Sets in Weakly Closed Graphs

In this section, we prove the crux of our algorithm, namely Lemma 15 which bounds the size
of threshold sets in weakly γ-closed graphs. We first begin by stating that the graph induced
by any k-threshold set of a weakly γ-closed graph is sparse.

▶ Lemma 18. 4 Given a weakly γ-closed graph G and k-threshold set S of G, G[S] is
(γ − 1)k-degenerate.

Since every d-degenerate graph on n vertices has an independent set of size at least n/(d +
1) [12], any large k-threshold set will also have a large independent set. This leads us to
define the following notion.

▶ Definition 19. A k-threshold set S of a graph G is called an independent k-threshold
set of G if S is an independent set.

Further, since every k-threshold set S of a weakly γ-closed graph has an independent set of
size at least |S|

(γ−1)k+1 and since every subset of a k-threshold set is also a k-threshold set, we
obtain the following result.

▶ Lemma 20. Every k-threshold set S of a weakly γ-closed graph has an independent
k-threshold set of size at least |S|

(γ−1)k+1 .

By the previous lemma, it is clear that to bound the size of threshold sets in weakly closed
graphs, it is enough to bound the size of independent threshold sets. This fact along with
Lemma 21 stated below combined prove Lemma 155.

▶ Lemma 21. Every independent k-threshold set of a weakly γ-closed graph G has size at
most kO(γk2).

We prove Lemma 21 by contradiction. Assuming that G has a large independent k-
threshold set, we first use results from Ramsey theory to extract a sufficiently large and highly
symmetric independent 2-threshold set (this is never proved explitly in the argument). The
highly structured independent 2-threshold set implies that G contains one of the obstructions
from Lemma 6, contradicting that G is weakly γ-closed.

4 Proof in Appendix B.
5 Proof in Appendix C.
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Proof of Lemma 21. Let W be an independent k-threshold set of a weakly γ-closed graph
G having size greater than (315k2)(316γk2). As a first step, we will use results from Ramsey
theory to obtain three subsets of vertices of G having useful properties. We will then use
these sets to show that G has one of the graphs listed in Lemma 6 as an induced subgraph.
By Lemma 6, this will imply that G is not a weakly γ-closed graph, contradicting our
assumption and thus completing the proof.

Since W is a k-threshold set of G, for every vertex w ∈ W there exists a set Xw ⊆ V (G)
of size at most k that dominates all vertices in W except w. For each w ∈ W , order the
vertices in Xw arbitrarily. Let Xw = {x1

w, . . . , xpw
w } be the ordering. Also order the vertices

in W arbitrarily. Let W = {w1, . . . , wq} be the ordering.
We now create an auxiliary edge-colored complete graph H with vertex set W . Each

color will be a tuple6 whose size and possible values will become clear in the next step where
we assign colors to the edges.

For every pair i, j ∈ [|W |] such that i < j, we color the edge (wi, wj) in H as follows:
1. One entry for the number r such that xr

wi
dominates wj (if more than one such r exists,

choose one arbitrarily)
2. One entry for the number s such that xs

wj
dominates wi (if more than one such s exists,

choose one arbitrarily)
3. For each pair7 of vertices in the multi-set {wi, wj , xr

wi
, xs

wj
, xr

wj
, xs

wi
} one entry from

{0, 1, 2} to denote whether those two vertices are (0) the same vertex (1) different and
adjacent vertices or (2) different and non-adjacent vertices.

From the definition of H, it follows that the number of possible distinct edge-colors of H

is at most 315k2. Let B ⊆ W be a monochromatic clique of maximum size in H and let τ be
the color of all the edges in the clique. We will now use the well known fact (from Ramsey
theory [4]) that every edge-colored complete graph on n vertices colored with t colors has
a monochromatic clique of size at least logt(n)/t to lower bound the size of B. Since the
number of possible distinct edge-colors of H is at most 315k2 and the size of W is greater
than (315k2)(316γk2), the size of B is at least 3γ.

Let B = {b1, . . . , bl} be the ordering of vertices of B in W . Let r and s be the two entries
in τ that denote the numbers such that for every pair i, j ∈ [l] having i < j, xr

bi
dominates bj

and xs
bj

dominates bi. Let A = {xr
b1

, . . . , xr
bl

} and C = {xs
b1

, . . . , xs
bl

} be ordered multi-sets.
For now, we will assume that A and C could be multi-sets but we will soon prove that it is
not the case. We now capture some desired properties of A, B and C.

▷ Claim 22. The multi-sets B = {b1, . . . , bl}, A = {xr
b1

, . . . , xr
bl

}, and C = {xs
b1

, . . . , xs
bl

}
satisfy the following properties:
1. B is an independent set in G.
2. A, B and C are sets.
3. A ∩ B = ∅, B ∩ C = ∅ and either A ∩ C = ∅ or A = C.
4. ∀i ∈ [l], (bi, xr

bi
) /∈ E(G) and (bi, xs

bi
) /∈ E(G).

5. ∀i, j ∈ [l] such that j > i, (xr
bi

, bj) ∈ E(G) and (bi, xs
bj

) ∈ E(G).
6. A and C are each either an independent set or a clique in G.
7. ∀i, j ∈ [l], such that j < i, (xr

bi
, bj) ∈ E(G) or ∀i, j ∈ [l], such that j < i (xr

bi
, bj) /∈ E(G).

8. ∀i, j ∈ [l], such that j < i, (bi, xs
bj

) ∈ E(G) or ∀i, j ∈ [l], such that j < i, (bi, xs
bj

) /∈ E(G).

6 When comparing equality of two edge colors, we compare corresponding entries of the two tuples in the
order they are defined. Thus the order of the entries in the tuples matter.

7 We will not need all 15 pairs in our arguments. The colors are defined in this way to keep the description
simple.
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Proof. Since B ⊆ W and W is a independent threshold set, it follows that B is an independent
set (property 1). We now prove property 2. By definition, B is a subset of W which is a set.
Now we prove that for each pair i, j ∈ [l] such that i < j, xr

bi
̸= xr

bj
and xs

bi
̸= xs

bj
. Since r

and s are entries in the coloring τ , xr
bi

dominates bj and xs
bj

dominates bi. But by definition
xr

bj
does not dominate bj and xs

bi
does not dominate bi. Therefore xr

bi
̸= xr

bj
and xs

bi
̸= xs

bj
.

For property 3, we first show that A ∩ B = ∅. We prove that ∀i, j ∈ [l], bi ̸= xr
bj

. If i = j,
then bi ̸= xr

bj
because by definition xr

bi
belongs to Xi and thus does not dominate bi. Let

bi = xr
bj

for some i > j, then in the coloring τ the entry corresponding to the pair of vertices
bi and xr

bj
must be 0 since they are the same. Thus, since all edges in clique B in H have

color τ , it means that xr
b1

= b2 and xr
b1

= b3 but b2 ̸= b3. Thus, bi ≠ xr
bj

. Similarly, we can
prove that bi ̸= xr

bj
in the case when i < j. The proof that B ∩ C = ∅ is symmetric and

therefore omitted.
Now, we show that either A ∩ C = ∅ or A = C. If r = s, then A = C. If r ̸= s, we will

show that ∀i, j ∈ [l], xr
bi

≠ xs
bj

. If i = j, by the definition of Xbi , it follows that xr
bi

̸= xs
bi

. If
i ̸= j, without loss of generality let us consider the case when i < j and a similar argument
will hold for the case when i > j. If xr

bi
= xs

bj
, then by our coloring τ , xr

b1
= xs

b2
and

xr
b1

= xs
b3

. But xs
b2

̸= xs
b3

by property 2. Thus, xr
bi

̸= xs
bj

.
Property 4 is true because A ∩ B = ∅, B ∩ C = ∅ and for each bi in B, xr

bi
and xs

bi
are

in Xi and thus do not dominate bi. Property 5 follows because A ∩ B = ∅, B ∩ C = ∅ and
the fact that r and s are entries in the coloring τ such that ∀i, j ∈ [l], having j > i, xr

bi

dominates bj and xs
bj

dominates bi.
Since A ∩ B = ∅ and B ∩ C = ∅, ∀i, j ∈ [l] such that j < i the coloring τ has an entry

with value either 1 or 2 corresponding to each pair in {(xr
bi

, xr
bj

), (xs
bi

, xs
bj

), (xr
bi

, bj), (bi, xs
bj

)}.
Since (1) denotes that the pair of vertices are adjacent and (2) denotes that the pair of
vertices are non-adjacent, properties 6-8 are true. This completes the proof. ◁

We now use the sets (Claim 22 Property 2) A, B, and C to show that G has one of the graphs
listed in Lemma 6 as an induced subgraph. For this, we will use the properties listed in
Claim 22. We remark that we will directly refer to them as properties rather than referring
to the claim each time. Recall that l = |A| = |B| = |C|. Firstly, we consider two cases based
on whether A = C or not.
Case (i) A = C: By property 3, A and B are disjoint. We divide this case further into two

cases based on property 6 - A is either an independent set or a clique.
(a) A is a clique: Let G′ = G[A ∪ B]. Then, B is an independent set (by property 1) and

∀i, j ∈ [l] (xr
i , bi) /∈ E(G′) if i = j (by property 4) and (xr

i , bj) ∈ E(G′) otherwise (by
properties 5 and A = C). Thus G′ is a semi split co-matching of order l ≥ 3γ.

(b) A is an independent set: Let A′ = {xr
b1

, . . . , xr
bγ

}, B′ = {bγ+1, . . . , b2γ}, and G′ =
G[A′ ∪B′]. Observe that we can define sets A′ and B′ since l ≥ 3γ. Again, by property
5, ∀i ∈ {1, . . . , γ}, j ∈ {γ + 1, . . . , 2γ}, (xr

bi
, bj) ∈ E(G′). Thus G′ is a complete

bipartite graph of order γ.
Case (ii) A ̸= C: Since A ̸= C, by property 3 the sets A, B, and C are disjoint. We divide

this case further based on properties 6-8.
(a) A is an independent set: Let A′ = {xr

b1
, . . . , xr

bγ
}, B′ = {bγ+1, . . . , b2γ} and G′ =

G[A′ ∪ B′]. We can show that G′ is a complete bipartite graph by the same argument
as case (i.b).

(b) C is an independent set: Same argument as the previous case with sets B′ =
{b1, . . . , bγ}, C ′ = {xs

bγ+1
, . . . , xs

b2γ
} and graph G′ = G[B′ ∪ C ′].

(c) A is a clique and ∀i ∈ [l], ∀j < i, xr
bi

is adjacent to bj : Similar to case (i.a), G′ =
G[A ∪ B] is a semi split co-matching of order l ≥ 3γ.
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(d) C is a clique and ∀i ∈ [l], ∀j < i, bi is adjacent to xs
bj

: Same argument as previous
case with G′ = G[B ∪ C].

(e) A and C are cliques, ∀i ∈ [l], ∀j < i, xr
bi

is not adjacent to bj and ∀i ∈ [l], ∀j < i, bi is
not adjacent to xs

bj
: Let G′ = G[A ∪ B ∪ C]. By the case we are in and property 5, it

follows that G′ is a double split half graph with B being the independent set (property
1).

Thus, in all cases G[A ∪ B ∪ C] is not weakly γ-closed by Lemma 6, contradicting the
assumption that G is weakly γ-closed, and completing the proof of the lemma. ◀

7 Conclusion and Barriers to Further Improvements

In this work we gave an algorithm for Dominating Set with running time 2O(γ2k3)nO(1).
This resolves affirmatively an open problem of Koana et al. [23] who asked whether the
problem is fixed-parameter tractable when parameterized by k and the weak closure γ of the
input graph. Our running time hides a large constant in the exponent. We made no effort to
optimize this constant because, at this point, it is not even clear that the form O(γ2k3) of
the exponent in the running time is near-optimal.

On the way to obtaining our main result, we proved that every minimal k-domination
core of G has size at most kO(γk2). We also showed that the VC-dimension of a weakly
γ-closed graph G is at most 6γ and used this result in our FPT algorithm for Dominating
Set and to obtain an O(γ log(γk))-approximation for Dominating Set. The bound on
VC-dimension might be interesting for other problems on weakly-closed graphs.

Our work leaves the following natural open problem: does Dominating Set admit
a kernel of size kf(γ) for some function f? One natural approach would be to improve
the bound in Lemma 12 by obtaining a polynomial upper bound for the size of minimal
domination cores in weakly closed graphs. Unfortunately, this is not possible: for every
positive integer k, there exists a weakly 1-closed graph with a minimal k-domination core of
size 2k+1 (see Appendix D). Notice that the argument only shows an obstacle for using this
approach for getting polynomial kernels and does not rule out the existence of polynomial
kernels.

In light of the O(γ log(γk)) approximation algorithm from Section 4, it is natural to
ask whether Dominating Set could admit for every fixed constant γ a constant factor
approximation algorithm on weakly γ-closed graphs. It is known from [30] Theorem 2
that there exists a c such that a polynomial time c log n

log log n -approximation algorithm for
Dominating Set in K3,3-free graphs would imply that NP ⊆ DTIME(2n1−ε) for some
0 < ε < 1/2. The graphs constructed in the reduction8 are also weakly 3-closed and hence
we get the same result for weakly 3-closed graphs.
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A Proof of Lemma 6 (Obstructions to Weak Closure)

In order to prove Lemma 6, we will first prove that complete bipartite graphs, semi split
co-matchings and double split half graphs (see Figure 1) having order more than γ, γ, and
3γ respectively are not weakly γ-closed.

Let G be a graph, if for a vertex v in G, there exists a non-neighbour u in G such that
|N(u) ∩ N(v)| ≥ γ, we will refer to u as a weak-pair of v. Observe that if u is a weak-pair of
v, then v is also a weak-pair of u. To prove that G is not weakly γ-closed, it is enough to
show that every vertex in G has a weak-pair.

▶ Lemma 23. If G is a complete bipartite graph of order n ≥ γ, it is not weakly γ-closed.

Proof. Let V (G) = {a1, . . . , an} ∪· {b1, . . . , bn}. First, we show that ∀i, j ∈ [n], having i ≠ j,
ai is a weak-pair of aj . It holds that (ai, aj) /∈ E(G) and |N(ai) ∩ N(aj)| ≥ γ since it is a
complete bipartite graph and n ≥ γ. Similarly ∀i, j ∈ n, having i ̸= j, bi is a weak-pair of bj .
Thus G is not weakly γ-closed. ◀
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Figure 1 Sufficiently large (a) complete bipartite graph, (b) semi split co-matching and (c) double
split half graph are not weakly γ-closed. Edges are colored black and non-edges are colored red. Note
that there may be arbitrary edges between the vertices in B in a semi split co-matching and between
the two cliques (A and C) in a double split half graph. On the other hand split half graphs are weakly
1-closed.

▶ Lemma 24. If G is a semi split co-matching of order n > γ, it is not weakly γ-closed.

Proof. Let V (G) = {a1, . . . , an} ∪· {b1, . . . , bn}. We show that ∀i ∈ [n], bi is a weak-pair of
ai and thus ai is a weak-pair of bi. Since G is a semi-split co-matching, ai is not adjacent
to bi and both ai and bi are adjacent to all aj , j ̸= i. Because n > γ, |N(ai) ∩ N(bi)| ≥ γ.
Since all vertices in G have a weak pair, it is not weakly γ-closed. ◀

▶ Lemma 25. If G is a double split half graph of order n ≥ 3γ, it is not weakly γ-closed.

Proof. Let V (G) = {a1, . . . , an} ∪· {b1, . . . , bn} ∪· {c1, . . . , cn}.
First, we will prove that ∀i ∈ [n], bi has a weak-pair. Since G is a double split half

graph, observe that ∀i ∈ [n], bi is adjacent to all cj , j > i and to all aj , j < i. Thus,
since both G[{a1, . . . , an}] and G[{c1, . . . , cn}] are cliques and n ≥ 3γ, it follows that either
|N [bi] ∩ N [ai]| ≥ γ or |N [bi] ∩ N [ci]| ≥ γ. Hence, since bi is not adjacent to both ai and ci,
either ai or ci is a weak pair of bi.

Second, we will prove that ∀i ∈ [n], ai has a weak-pair. We divide the proof into two
cases: (a) i > γ and (b) i ≤ γ.

For case (a), we will show that bi is a weak-pair of ai. Since G is a double split half
graph, ai is not adjacent to bi, bi is incident to all aj , j < i and G[{a1, . . . , an}] is a clique.
Thus, as we are in the case when i > γ, it follows that |N(ai) ∩ N(bi)| ≥ γ. This proves that
bi is a weak-pair of ai.

For case (b), we will show that either bi or some cj , j > n − γ is a weak-pair of ai. If ai

is not adjacent to some cj , j > n − γ, then since G is a double split half graph, both ai and
cj are adjacent to all bk, i < k < j. Since, n ≥ 3γ, i ≤ γ and j > n − γ, |N(ai) ∩ N(cj)| ≥ γ

and thus cj is a weak-pair of ai. If ai is adjacent to all cj , j > n − γ. Then again since G is a
double split half graph, ai is not adjacent to bi and bi is adjacent to all cj , j > n − γ. Thus,
it follows that |N(ai) ∩ N(bi)| ≥ γ since n ≥ 3γ. This proves that bi is a weak-pair of ai.
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Finally, we can use a very similar argument to that used for ais to prove that ∀i ∈ [n], ci

has weak-pair. But here the two cases will be (a) i ≤ n − γ and (b) i > n − γ.
Therefore, since all vertices have a weak-pair, G is not weakly γ-closed. ◀

We give a short proof for lemma 6 using the previous lemmas.

Proof of Lemma 6. By the definition of weakly γ-closed graphs any graph having an induced
subgraph that is not weakly γ-closed graph is also not weakly γ-closed. Thus, Lemma 6
follows from all the previous lemmas in this section. ◀

B Proof of Lemma 18

We now prove Lemma 18 which says that given a weakly γ-closed graph G and a k-threshold
set S of G, G[S] is (γ − 1)k-degenerate.

Proof of Lemma 18. Given a weak ordering O of a weakly γ-closed graph G, let the order
induced by O on a subset S of vertices of G be denoted by OS . To complete the proof, it is
enough to prove the following claim.

▷ Claim 26. Given a weakly γ-closed graph G, weak ordering O of G and k-threshold set S

of G, every vertex in S has forward degree at most (γ − 1)k in OS .

Proof. Suppose the claim was not true. Let u be the first vertex in OS having more than
(γ − 1)k forward neighbours in OS . Let F be the set of forward neighbours of u in OS . Also,
let X be a dominating set of S\{u} having size at most k and not dominating u. Since S is
a k-threshold set of G, such a set X exists.

Firstly we prove that every vertex v ∈ X that is not adjacent to u can dominate at most
γ − 1 vertices in F since G is weakly γ-closed. If v is ahead of u in the ordering O, then
since no non-neighbour of u can have more than γ − 1 forward common neighbours with
u, v is adjacent to at most γ − 1 vertices in F . Similarly, if u is ahead of v in O, the same
argument holds with respect to v.

Now, since |F | > (γ − 1)k and |X| ≤ k, by pigeon hole principle there is a vertex v ∈ X

that is adjacent to more than γ − 1 vertices in F . Therefore u must be equal to or adjacent
to v as G is weakly γ-closed. Thus, we have reached a contradiction to the fact that X did
not dominate u. This completes the proof. ◁

Let O be a weak ordering of G, then by the above claim, OS is a degeneracy ordering of
G[S] with degeneracy (γ − 1)k. Thus G[S] is a (γ − 1)k-degenerate graph. ◀

C Proof of Lemma 15

We now give a short proof for Lemma 15, that is we prove that the size of k-threshold sets in
weakly γ-closed graphs is at most kO(γk2).

Proof of Lemma 15. Lemma 20 shows that every k-threshold set S of a weakly γ-closed
graph must have an independent k-threshold set of size at least |S|

(γ−1)k+1 . Lemma 21 shows
that every independent k-threshold set of a weakly γ-closed graph has size at most kO(γk2).
Combining these two results, we can infer that every k-threshold set of a weakly γ-closed
graph must have size at most kO(γk2). ◀
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D Minimal k-domination cores of size 2k in weakly 1-closed graphs

Consider the graph G obtained by taking a complete binary tree T of depth k +1 and making
every node adjacent to all its ancestors. The set S of all the nodes in level k + 1 is a minimal
k-domination core.

S is a k-domination core because any vertex adjacent to any vertex v in S is adjacent to
all vertices adjacent to v. Thus since N [S] = V (G), any set of size at most k dominating S

will dominate V (G) as well.
For every vertex v ∈ S, let Av be the set of ancestors of v in T and let Cv be the set of

all children of all the nodes in Av in T . Then for each v ∈ S, the set Cv\(Av ∪ {v}) is a
dominating set of S\{v} of size k that does not dominate v. Therefore S is minimal.

It is natural to ask whether the example can be strengthened to give a c-closed graph
with an exponential size minimal k-domination core. However, it is possible to upper bound
the size of minimal k-domination cores in c-closed graphs by ckc+1. We omit the proof of
this statement, as it is out of scope for this paper.
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