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Abstract
Broadcast networks are a formalism of distributed computation that allow one to model networks of
identical nodes communicating through message broadcasts over a communication topology that does
not change over the course of executions. The parameterized verification problem for these networks
amounts to proving correctness of a property for any number of nodes, and on all executions. Dually
speaking, this problem asks for the existence of an execution of the broadcast network that violates
a given property. One specific instance of parameterized verification is the coverability problem
which asks whether there is an execution of the network in which some node reaches a given state
of the broadcast protocol. This problem was proven to be undecidable by Delzanno, Sangnier and
Zavattaro (CONCUR 2010). In the same paper, the authors also prove that, if we additionally
assume that the underlying communication topology has a bound on the longest path, then the
coverability problem becomes decidable.

In this paper, we provide complexity results for the above problem and prove that the coverability
problem for bounded-path topologies is Fϵ0 -complete, where Fϵ0 is a class in the fast-growing
hierarchy of complexity classes. This solves an open problem of Hasse, Schmitz and Schnoebelen
(LMCS, Vol 10, Issue 4).
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1 Introduction

In recent years, significant effort has been put into understanding the precise computational
complexity of problems which are non-elementary, i.e., problems whose running times cannot
be upper bounded by any fixed tower of exponentials of the input size [13, 6, 20, 19, 1, 18, 8].
A well-known such problem is the satisfiability problem of the weak monadic theory of one
successor (WS1S) [17]. A more recent addition to this collection is the reachability problem
for Petri nets [7]. We refer the reader to the excellent survey by Schmitz [19] for a collection
of various non-elementary problems from logic, automata theory and verification which have
been proven to be complete for appropriate complexity classes in the fast-growing hierarchy.
This hierarchy allows for a finer classification of problems lying beyond the elementary regime.

From a tractability perspective, these results are of course negative. However, there are
non-elementary problems for which tools have been developed, for e.g. MONA for WS1S [11];
and considerable effort has been put into the development of fast heuristics to solve some
non-elementary problems on realistic inputs, for e.g., there is a huge wealth of heuristics and
special cases which have been studied for the Petri net reachability problem [3, 12, 14, 4, 5, 15].
Hence, understanding the precise complexity of a non-elementary problem can help us to
solve it in practice by reducing it to various other well-studied non-elementary problems.
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35:2 Coverability in Bounded Path Broadcast Networks

The fast-growing hierarchy mentioned above can help us in this goal of understanding
the computational complexity of non-elementary problems. Proving a problem to be hard
for one of these classes implies that that problem cannot have an efficient encoding into any
of the non-elementary problems which lie strictly below this class. In their invited paper for
CONCUR 2013 [21], Schmitz and Schnoebelen explicity state the program of populating the
catalog of hard problems for classes in the fast-growing hierarchy, so that hardness proofs do
not have to begin from Turing machines, but can instead rely on simpler reductions.

In this paper, we contribute to this program by considering a problem from the paramet-
erized verification of broadcast networks and proving that it is Fϵ0 -complete, where Fϵ0 is a
complexity class in the fast-growing hierarchy. We now offer a brief overview of broadcast
networks [9, 2]. Broadcast networks are a formalism of distributed computation that allow
one to model networks of identical nodes communicating through message broadcasts. Each
node runs the same protocol and an underlying communication topology specifies for each
node, the set of neighbors that it can broadcast messages to. This topology remains invariant
over the course of executions of the network. At any point, a node can broadcast a message
which is received by all of its neighbors.

The parameterized verification problem for these networks amounts to proving correctness
of a property for any number of nodes and over any communication topology. Dually, we ask
for the existence of an execution of the network that violates a given property. One specific
instance of parameterized verification is the coverability problem which asks whether there
is an execution of the network in which some node reaches a given state of the broadcast
protocol. This problem was proven to be undecidable by Delzanno, Sangnier and Zavattaro
(Theorem 1 of [9]). In the same paper, the authors also prove that, if we additionally assume
that the underlying communication topology has a bound on the longest path (bounded-
path topologies), then the coverability problem becomes decidable (Theorem 5 of [9]). Our
main result in this paper is that the coverability problem for bounded-path topologies is
Fϵ0 -complete, where Fϵ0 is a class in the aforementioned fast-growing hierarchy of complexity
classes.

Our result settles a conjecture raised by Hasse, Schmitz and Schnoebelen (Section 8.3
of [16]) and also settles the complexity of the last remaining question from the original paper
that initiated the study of parameterized verification problems for broadcast networks [9].
Moreover, we provide a new and rather natural problem to the list of Fϵ0 -complete problems,
which when compared to the list of Fω-complete and Fωω -complete problems, is rather small
currently (Section 6.4 of [19]). (Both Fω and Fωω are classes in the fast-growing hierarchy
which are much smaller than Fϵ0). Hence, in this sense, we contribute to the above-mentioned
program of finding hard problems for classes in the fast-growing hierarchy. Further, we hope
that the present work might prove to be useful in settling the complexity of other problems
conjectured to be Fϵ0 -complete (Section 8.3 of [16]), since all the problems mentioned there
are concerned with infinite-state systems regarding bounded-path trees and graphs, and so
those problems are in some sense “close” to the problem that we consider here.

2 Preliminaries

In this section, we recall the model of broadcast networks as defined in [2]. Intuitively, a
broadcast network consists of several nodes, each executing the same finite-state broadcast
protocol. A communication topology assigns to each node, a finite set of neighbors, to which
it can communicate. At any point, some node can broadcast a message which is received by
all of its neighbors. We now proceed to formalize this intuition.
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Broadcast networks
▶ Definition 1. A broadcast protocol is a tuple P = (Q, I, Σ, ∆) where Q is a finite set of states,
I ⊆ Q is the set of initial states, Σ is a finite set of messages and ∆ ⊆ Q×{!a, ?a, : a ∈ Σ}×Q

is the transition relation.

For ease of notation, we will write q
!a−→ q′ (resp. q

?a−→ q′) for (q, !a, q′) ∈ ∆ (resp.
(q, ?a, q′) ∈ ∆). A transition q

!a−→ q′ (resp. q
?a−→ q′) intuitively corresponds to broadcasting

(resp. receiving) the message a. We will assume that broadcast protocols are complete, i.e.
for every state q and every message a there exists q′ such that q

?a−→ q′.
As mentioned before, a broadcast network consists of several identical nodes running a

broadcast protocol and each node has a finite set of neighbors. To formalize this, given a
broadcast protocol P = (Q, I, Σ, ∆), a configuration of P is a labelled graph γ = (N, E, L)
where N is a finite set of nodes, E ⊆ N × N is a finite set of (undirected) edges specifying
for every pair of nodes whether or not there is a communication link between them and
L : N → Q is a labelling function that specifies the current state of each node. We let
L(γ) = {L(n) : n ∈ N} be the set of labels appearing in the nodes of γ. We say that γ is
initial if L(γ) ⊆ I.

The semantics of the broadcast network of a protocol P is given by means of an infinite-
state transition system T (P) which consists of all the configurations of the protocol P . There
is a step from the configuration γ = (N, E, L) to the configuration γ′ = (N′, E′, L′) if N′ = N,
E′ = E and there exists a node n and a message a ∈ Σ such that (L(n), !a, L′(n)) ∈ ∆, and
for every other node n′, if (n, n′) ∈ E, then (L(n), ?a, L′(n′)) ∈ ∆; otherwise L(n′) = L′(n′).
In this case, we write γ

n,a−−→ γ′ or simply γ −→ γ′. Intuitively, a step consists of a node n
broadcasting some message a which is then received by all of its neighbors; all the other
nodes do nothing. Notice that between steps, the set of nodes and edges do not change.

A run from the configuration γ to the configuation γ′ is a sequence of steps γ −→ γ1 −→
γ2 −→ . . . γk−1 −→ γ′. If a run exists between configurations γ and γ′ we denote it by γ

∗−→ γ′.
An execution is a run starting from an initial configuration.

Given a state f and a configuration γ we say that γ covers f if f ∈ L(γ), i.e., if the
state of some node in γ is f . We say that an execution γ0

∗−→ γ covers f , if γ covers f . The
coverability problem for broadcast protocols is to decide, given a broadcast protocol P and a
state f , whether there is an execution from some initial configuration that covers f . It is
known that the coverability problem is undecidable (Theorem 1 of [9]).

(a, 1) (b, 1) (c, 1) (d, 1) (e, 1)
?ht0 !ht1 !ht1 ?ht0

(a, 0) (c, 0)

?ht1, ?ht1

(e, 0)
!ht0 !ht0

Figure 1 Example of a broadcast protocol where we set I = {(a, 0), (a, 1)} and Σ = {hti, hti :
0 ≤ i ≤ 1}. If for a state (f, i), we have not depicted what happens when message m is received at
(f, i), we assume that (f, i) ?m−−→ (⊥, i). Here (⊥, 0) and (⊥, 1) are new sink states, i.e., states with
no outgoing transition.

▶ Example 2. We consider the broadcast protocol given in Figure 1. Figure 2 shows an
execution in this protocol covering the state (e, 0). Moreover, let γ = (N, E, L) be any initial
configuration and γ′ = (N′, E′, L′) be any configuration covering (e, 0) such that γ

∗−→ γ′.

FSTTCS 2021
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(a, 0) (a, 1)

(a, 1) (a, 1)

!ht0

(c, 0) (b, 1)

(b, 1) (b, 1)

!ht1

3×

(c, 0) (c, 1)

(c, 1) (c, 1)

!ht1

3×

(c, 0) (d, 1)

(d, 1) (d, 1)

!ht0

(e, 0) (e, 1)

(e, 1) (e, 1)

Figure 2 Example of an execution covering (e, 0) in the broadcast protocol given in Figure 1.
The nodes marked in green make the broadcasts, i.e., first the node on the topmost left broadcasts
ht0, then all the other nodes broadcast ht1 in some order, and then ht1 in some order, and then the
node on the topmost left broadcasts ht0.

Hence, there is a node n such that L′(n) = (e, 0). Note that L(n) must be (a, 0). Hence n
must have broadcasted both ht0 and ht0 to move into the states (c, 0) and (e, 0) at different
points during the run. This means that all of the neighbors of n received ht0 at some point,
and so the labels of all of its neighbors in γ′ must be either (e, 1) or (⊥, 0) or (⊥, 1).

Suppose n′ is a neighbor of n such that L′(n′) = (e, 1). Notice that if there is a neighbor
n′′ ̸= n of n′ which was at (c, 0) during some point in the run, then n′′ must have broadcasted
ht0 during the run. However, then n′ would have received two ht0 messages, which would
have caused it to move into either (⊥, 0) or (⊥, 1). Hence, there is exactly one neighbor of n′

which was labelled by (c, 0) at some point during the run.
This protocol along with the above discussion will prove useful later on for the lower

bound reductions in section 5.

Bounded-path broadcast networks

Motivated by the undecidability of the coverability problem, the authors of [9] also study a
different variant of the problem, which we now describe.

Let P be a broadcast protocol and let k ≥ 1 be some number. Let γ be a configuration
of P. We say that γ is k-path bounded if the length of the longest simple path in γ is at
most k. Now, let Tk(P) be the restriction of the transition system T (P) to only k-path
bounded configurations. Notice that since the set of nodes and edges do not change during
a run, Tk(P) is closed under the step relation. The path bounded coverability problem
(Bounded-Path-Cover) is then defined as follows:

Given: A broadcast protocol P = (Q, I, Σ, ∆), a state f ∈ Q and a number k.
Decide: If there is an execution in Tk(P) which covers f .

The authors of [9] prove that this problem is decidable (Theorem 5 of [9]). The main
result that we prove in this paper is that

▶ Theorem 3. Bounded-Path-Cover is Fϵ0-complete.

Here Fϵ0 is a member of the fast-growing complexity class hierarchy. We refer the reader
to Section 2.3 of [19] for a description of the fast-growing hierarchy and the class Fϵ0 . To
prove the upper bound for our problem, we will consider the algorithm given in [9] and
analyze its running time by means of controlled-bad sequences of a suitable well-quasi order,
whose upper bounds will allow us to place Bounded-Path-Cover in the complexity class
Fϵ0 . The lower bound is proved by giving a logspace reduction from a known Fϵ0-hard
problem, which we now proceed to describe.
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3 Nested counter systems (NCS)

A nested counter system is a generalisation of a usual counter system with higher-order
counters, i.e., counters which can themselves contain other (lower-order) counters. Intuitively,
an one-dimensional counter is a usual counter, which can either add or subtract 1. A
two-dimensional counter can either add or remove an one-dimensional counter, a three-
dimensional counter can either add or remove a two-dimensional counter and so on. Here,
we slightly alter the definition of nested counter systems as given in [8] so that it better
suits our purposes. It can be easily verified that our altered definition does not affect the
semantics of the system as given in [8].

A k-nested counter system (k-NCS) is a tuple N = (Q, δ) where Q is a finite set of states
and δ ⊆

⋃
1≤i,j≤k+1(Qi × Qj) is a set of rules. The set CN of configurations of N is defined

to be the set of all labelled rooted trees of height atmost k, with labels from the set Q.
The operational semantics of N is defined in terms of the following transition relation

→⊆ CN × CN on configurations: Let r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ be a rule with
i ≤ j ≤ k. We say that a configuration C can move to the configuration C ′ using the rule r

(denoted by C
r−→ C ′), if there is a path v0, v1 . . . , vi in C starting at the root such that for

every 0 ≤ l ≤ i, the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ i,
changing the label of each vl to q′

l and 2) for every i + 1 ≤ l ≤ j, creating a new vertex vl

with label q′
l and adding it as a child to vl−1.

Similarly, suppose r := ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ is a rule with j < i ≤ k. Then
C

r−→ C ′ if there is a path v0, v1, . . . , vi in C starting at the root such that for every 0 ≤ l ≤ i,
the label of vl is ql and, C ′ is obtained from C by 1) for every 0 ≤ l ≤ j, changing the label
of each vl to q′

l and 2) removing the subtree rooted at the node vj+1.

▶ Example 4. Let us consider the NCS N given by the states Q = {pi, p′
i, qi, q′

i : 0 ≤ i ≤ 4}
and consisting of the following rules: r1 = ((q0, q1), (q′

0, q′
1, q′

2)), r2 = ((q′
0, q3, q2), (p0)), r3 =

((p0), (p′
0)). In Figure 3, we illustrate the application of these rules to a configuration of N .

q0

q1 q3

q2

q4

q2

r1

q′
0

q′
1

q′
2

q3

q2

q4

q2

r2

p0

q′
1

q′
2

r3

p′
0

q′
1

q′
2

Figure 3 Application of the rules r1, r2 and r3 to a configuration of N , which is described in
Example 4.

We say that C −→ C ′ if C
r−→ C ′ for some rule r. We let ∗−→ denote the reflexive and

transitive closure of → and we say that a configuration C reaches C ′ if C
∗−→ C ′. Given two

states qin, qf ∈ Q, we say that qin can cover qf if the (unique) configuration consisting of the
single root vertex labelled with qin can reach some configuration where the root is labelled
by qf . The coverability problem for an NCS is then the following: Given an NCS N and
two states qin, qf , can qin cover qf ? It is known that the coverability problem is Fϵ0-hard
(Theorem 7 of [8]).

FSTTCS 2021
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Lossy semantics. In addition to the “usual” semantics of an NCS that we have described in
the previous section, we also need a lossy semantics which we now define here. Let N = (Q, δ)
be a k-NCS and let qin, qf ∈ Q. We say that there is a lossy step between configurations C

and C ′, if C ′ can be obtained from C by deleting the subtree rooted at some vertex v in C.
We let C 99K C ′ if either there is a lossy step between C and C ′ or C

r−→ C ′ for some rule r.
As usual, we let ∗

99K denote the reflexive and transitive closure of 99K and we say that C

can reach C ′ in a lossy manner if C
∗
99K C ′. We can then define the notion of the state qin

covering the state qf in a straightforward manner.
For configurations C, C ′, we say that C ≥ C ′ iff C ′ can be obtained from C by a sequence

of lossy steps. Since NCS do not have any zero tests, from the definition of the transition
relation, we can easily infer the following proposition.

▶ Proposition 5. If C1 ≥ C ′
1 and C ′

1
∗
99K C ′

2 then there exists C2 ≥ C ′
2 such that C1

∗−→ C2.

Hence, we get the following corollary.

▶ Corollary 6. qf can be covered from qin in a lossy manner iff qf can be covered from qin

under the usual semantics.

This corollary will be useful later on in order to prove our hardness result.

4 A simulator protocol Psim

Throughout this section, let N = (Q, δ) be a fixed k-NCS with two fixed states qin and qf .
In this section, we will construct a broadcast protocol Psim = (Qsim, Isim, Σsim, δsim), a state
p of Psim, and define a notion of good initial configurations of Psim such that the following
property is satisfied: qf can be covered from qin in the NCS N iff p can be covered in
T2k(Psim) by some execution starting at a good initial configuration. Intuitively, the protocol
Psim will simulate the NCS N , provided that the initial configuration that it begins with is a
good initial configuration.

States, alphabet and good configurations. For each 0 ≤ i ≤ k, Psim will have
two states (start, i), (finish, i). For each 0 ≤ i ≤ k and each r ∈ δ, we will have
five states (req-rec[r], i), (req-fwd[r], i), (wait[r], i), (ack-rec[r], i), (ack-fwd[r], i). Fi-
nally, for each 0 ≤ i ≤ k and each q ∈ Q, Psim will have a state (q, i). No-
tice that each state of Psim is of the form (a, b) where a ∈ Q ∪ {start, finish} ∪
{req-rec[r], req-fwd[r], wait[r], ack-rec[r], ack-fwd[r]} and 0 ≤ b ≤ k. The first part
“a” will be called the base of the state and the second part “b” will be called the grade. Some-
times we will abuse notation and refer to the base (resp. grade) of a node in a configuration
to mean the base (resp. grade) of the label of that node.

The initial set of states Isim will be the set {(qin, 0)} ∪ {(start, i) : 1 ≤ i ≤ k}. (The
asymmetry in the initial set of states between the case of 0 and others will be discussed in the
following paragraphs). The alphabet Σsim will be the set {beginr

i , endr
i : r ∈ δ, 0 ≤ i ≤ k}.

A configuration γ of Psim is called good if γ is a tree of height at most k such that 1) the
base of the label of every node is in the set Q ∪ {start, finish}, 2) there is exactly one node n
labelled by a state of grade 0, which will be called the root of γ and, 3) every node at distance
i from n is labelled by a state of grade i. Notice that if γ is a good initial configuration then
γ ∈ T2k(P). Further, notice that in a good initial configuration, the root must be labelled by
(qin, 0) and every node at distance i from the root is labelled by (start, i).
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Intuition behind good configurations of Psim. Before we describe the transition relation
of Psim, we describe some intuition behind the notion of a good configuration.

Let γ be a good configuration of Psim. Notice that there is a way to map γ to a
configuration of N : First, forget all the grades from the labels of each node in γ and just
keep the bases. Next, remove all nodes whose label is either start or finish and from the
resulting forest, pick the tree T containing the root. In this way, to every good configuration
γ of Psim we can define a configuration E(γ) of N . Hence, we can use good configurations of
Psim to encode configurations of N and this is the reason behind defining good configurations
of Psim. An example of this mapping is given in Figure 4.

Further, notice that if γ is any good initial configuration, then E(γ) is the initial config-
uration of N . This is the reason behind the asymmetry in the definition of the initial set of
states between the case of 0 and others.

(q0, 0)

(q1, 1)

(finish, 2)

(start, 1)

(q2, 2)

(q3, 1)

(q2, 2)

(q4, 3)

(start, 2)

(q4, 3)

q0

q1 q3

q2

q4

Figure 4 An example of the map E between good configurations of P and configurations of N .
On the left is a good configuration γ of P and on the right is its corresponding mapped configuration
E(γ) of N .

4.1 Transitions involving the letters beginr
i and endr

i

For the rest of this section, let us fix a rule r = ((q0, . . . , qi), (q′
0, . . . , q′

j)) ∈ δ where i, j ≤ k

and let w = max(i, j). For the sake of uniformity, if i < j, then let ql = start for every
i < l ≤ j. If i > j, then let q′

l = finish for every j < l ≤ i.
Intuitively, the gadget that we will demonstrate will use the messages beginr

i and endr
i

to find a path n0, . . . , nw labelled by (q0, 0), (q1, 1), . . . , (qw, w) and then change the labels
along this path to (q′

0, 0), (q′
1, 1), . . . , (q′

w, w). Notice that if i ≤ j, this means that a path
of the form (q0, 0), . . . , (qi, i), (start, i + 1), . . . , (start, j) becomes (q′

0, 0), . . . , (q′
i, i), (q′

i+1, i +
1), . . . , (q′

j , j). Similarly, if i > j then a path of the form (q0, 0), . . . , (qj , j), . . . (qi, i) becomes
(q′

0, 0), . . . , (q′
j , j), (finish, j + 1), . . . , (finish, i). This would then allow us to simulate the rule

r on good configurations of Psim.
Formally, we now describe the transitions involving the letters {beginr

i , endr
i : 0 ≤ i ≤ k}.

First, we make a small remark:

▶ Remark 7. In the following, if we do not specify what happens upon receiving a message
m from a state with base a and grade b, then it is to be assumed that (a, b) ?m−−→ (finish, b).

The “gadget” for “simulating” the rule r. We now present the main transitions involving
the messages beginr

i and endr
i .

FSTTCS 2021
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First, we have four transitions

(q0, 0) !beginr
0−−−−→ (req-fwd[r], 0) ?beginr

1−−−−−→ (wait[r], 0) ?endr
1−−−−→ (ack-rec[r], 0) !endr

0−−−→ (q′
0, 0)

Then, for every 1 ≤ l ≤ w − 1, we have

(ql, l)
?beginr

l−1−−−−−−→ (req-rec[r], l)
!beginr

l−−−−→ (req-fwd[r], l)
?beginr

l+1−−−−−−→ (wait[r], l)

(ack-rec[r], l)
!endr

l−−−→ (ack-fwd[r], l)
?endr

l−1−−−−−→ (q′
l, l)

?endr
l+1

Finally, we have four transitions

(qw, w)
?beginr

w−1−−−−−−→ (req-rec[r], w)
!beginr

w−−−−→ (wait[r], w)
!endr

w−−−−→ (ack-fwd[r], w)
?endr

w−1−−−−−−→ (q′
w, w)

Self-loops. While the previous gadget comprised the main transitions involving beginr
i

and endr
i , for technical reasons we need the following self-loop transitions as well: For

every state with base a ∈ Q ∪ {start, finish} and grade 1 ≤ i ≤ k, there are two transitions

(a, i)
?beginr

i−1−−−−−−→ (a, i) and (a, i)
?endr

i−1−−−−−→ (a, i).
This finishes our description of the transition relation of Psim.

Intuition behind the transitions. We now give a brief intuition behind the gadget in the
case of w = 2. Notice that only the root n0 in a good configuration can be labelled by (q0, 0).
Hence if n0 broadcasts beginr

0, it is forwarding its request of wanting to simulate the rule
r to its children. The children have two choices: either stay where they are by means of
the self-loops or receive the request and move to (req-rec[r], 1). Atleast one child n1 has
to receive the request and move, otherwise the configuration enters into a deadlock. From
(req-rec[r], 1) n1 can forward this request to its children by broadcasting beginr

1 (and also
let n0 know that is has received its request, whereby it enters a waiting mode). Notice that
if two children of n0 forward the request, then n0 will enter (finish, 0) and the simulation of
the rule r cannot happen. Similarly, some child n2 of n1 must receive the request of n1, move
to (req-rec[r], 2), then broadcast beginr

2. At this point, the base of each ni is wait[r].
Now n2 can broadcast endr

2, forwarding an acknowledgment to the request made by n1.
n1 can receive this acknowledgment and broadcast endr

1, forwarding an acknowledgment to
n0 which can broadcast endr

0 and move to (q′
0, 0). At this point, the labels of n0, n1 and n2

are (q′
0, 0), (q′

1, 1) and (q′
2, 2) respectively, which means that we have changed the labels along

a path from (q0, 0), (q1, 1) and (q2, 2) to (q′
0, 0), (q′

1, 1) and (q′
2, 2).

4.2 Proof of correctness

The following lemma tells us that we can use good configurations of Psim along with the
gadget for the rule r described in the previous section to simulate steps of N .

▶ Lemma 8 (Psim simulates N ). Suppose C
r−→ C ′ is a step in the NCS N . Suppose γ is

a good configuration such that 1) E(γ) = C and, 2) there is a path n0, . . . , nw in γ where
the label of each nl is (ql, l). Then there is a good configuration γ′ with γ

∗−→ γ′ such that 1)
E(γ′) = C ′ and, 2) γ′ is the same as γ except the label of each nl is (q′

l, l).
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Proof sketch. For ease of presentation, we provide the proof in the case of w = 2. This
proof can be generalized to any w in a straightforward manner.

The proof for w = 2 is essentially the same argument that is given in the intuition
paragraph. Throughout the run that we are going to describe, if a node n /∈ {n0, n1, n2}
receives a message, then it will always take the self-loop transitions that we have constructed
in the gadget for the rule r.

From γ, n0 broadcasts beginr
0 and moves to (req-fwd[r], 0) and n1 receives it and moves

to (req-rec[r], 1). Then, n1 broadcasts beginr
1 and moves to (req-fwd[r], 1) and n0 and n2

receive it and move to (wait[r], 0) and (req-rec[r], 2) respectively. Then, n2 broadcasts
beginr

2 and moves to (wait[r], 2) and n1 receives it and moves to (wait[r], 1). Notice that at
this point, the base of each ni is wait[r] and the labels of all the other nodes are unchanged,
i.e., the same as the labels in γ.

Now, we proceed in the reverse direction. n2 broadcasts endr
2 and moves to (ack-fwd[r], 2)

and n1 receives it and moves to (ack-rec[r], 1). Then, n1 broadcasts endr
1 and moves to

(ack-fwd[r], 1) and n0 and n2 receive it and move to (ack-rec[r], 0) and (q′
2, 2) respectively.

Then, n0 broadcasts endr
0 and moves to (q′

0, 0) and n1 receives it and moves to (q′
1, 1). It is

clear that the configuration reached at the end of this run satisfies the required properties. ◀

We now show a partial converse to the above lemma. It says that if there is a run of good
configurations which uses only the transitions given in the gadget for the rule r and begins
and ends with the root being in (q0, 0) and (q′

0, 0), then it is possible to “lift” that run back
to the corresponding configurations in the NCS N .

▶ Lemma 9 (N simulates Psim). Suppose γ
∗−→ γ′ where 1) γ is a good configuration, 2) the

labels of the root in γ and γ′ are (q0, 0) and (q′
0, 0) and 3) in all the configurations between γ

and γ′, the base of the root is in the set {req-fwd[r], wait[r], ack-rec[r]}. Then, 1) γ′ is a
good configuration and, 2) E(γ) ∗

99K E(γ′).

Proof sketch. Let the run γ
∗−→ γ′ be of the form γ = γ0 −→ γ1 −→ . . . γm−1 −→ γm = γ′. By

means of induction and some extensive case analysis on the gadget that we have constructed,
we can first prove that there exists a path n0, n1, . . . , nw in γ with the following properties:

For each 0 ≤ l ≤ w, the label of nl is (ql, l) in γ and (q′
l, l) in γ′.

For each 0 ≤ l ≤ w, nl broadcasts exactly two messages: beginr
l and endr

l .
For each 0 ≤ l < w, the only child of nl that broadcasts a message in the run is nl+1.

We then let Ch(nl) denote the set of children of nl. Notice that the only node which could
broadcast a message in γ0 is n0 and so it must be the case that γ0

n0,beginr
0−−−−−−→ γ1. Now, suppose,

for some 0 ≤ l < w, we have shown that it must be the case that γ0
n0,beginr

0−−−−−−→ γ1 . . . γl
nl,beginr

l−−−−−→
γl+1. Then, notice that the only nodes whose labels in γl+1 could have an outgoing broadcast
transition are the nodes in

⋃
0≤l′<l(Ch(nl′)\{nl′+1})∪Ch(nl). By our claim, among these only

nl+1 broadcasts a message and so we must have that γl+1
nl+1,beginr

l+1−−−−−−−−→ γl+2. Hence, in this way
we get that γ0

n0,beginr
0−−−−−−→ . . . γw

nw,beginr
w−−−−−−→ γw+1. In exactly the same way, we can show that it

must be the case that γw+1
nw,endr

w−−−−−→ γw+2
nw−1,endr

w−1−−−−−−−−−→ γw+3 . . . γ2w+1
n0,endr

0−−−−−→ γ2w+2 = γm.
Let S be the set of all nodes whose base in γ belonged to Q∪{start} and whose base in γ′

is finish. (Notice that S ⊆
⋃

0≤l<w Ch(nl) and S ∪ {n0, . . . , nw} are exactly the set of nodes
whose labels have changed during the run). It is then easy to see that, by firing the rule r

from E(γ) and then deleting all the subtrees whose roots are in S, we get E(γ) ∗
99K E(γ′). ◀

With these two “simulation” lemmas, we have the following main result.

▶ Theorem 10. The state qin can cover the state qf in the NCS N iff (qf , 0) can be covered
by some execution in P starting at a good initial configuration.
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5 A seeker protocol Pseek

In the previous section, we have shown that given a k-NCS N = (Q, δ) along with two states
qin, qf ∈ Q, we can construct a simulator protocol Psim, such that qin can cover qf in N iff
(qf , 0) can be covered in Psim by an execution starting at a good initial configuration. In
this section, we will construct a seeker protocol Pseek and “attach” it to Psim which will let
us get rid of the goodness assumption. The seeker protocol Pseek will begin at an arbitrary
initial communication topology and seek for a subgraph to act as a good initial configuration
for Psim. Hence, once we have deployed Pseek to find such a subgraph, we can then use Psim
to simulate the k-NCS N on this subgraph.

Formally, the seeker protocol Pseek = (Qseek, Iseek, Σseek, δseek) will be a generalization of
the protocol given in Figure 1 (with the exception that the (e, i) and (⊥, i) states will be
replaced by (start, i) and (finish, i) respectively).

States and alphabet. For each 0 ≤ i ≤ k, Pseek will have six states of the form
(a, i), (b, i), (c, i), (d, i), (start, i) and (finish, i). Notice that (start, i) and (finish, i) are also
present in Psim. Pseek will also have the state (qin, 0), which is a part of Psim as well. Similar
to Psim, we can define base and grade of a state.

The initial set of states will be {(a, i) : 0 ≤ i ≤ k}. For each 0 ≤ i ≤ k, Σseek will have
two letters: hti and hti. Σseek will also have another additional letter: transfer.

Transitions. Before we define the set of transitions, we make the same convention for Pseek
that we had made in Remark 7 for Psim. Having stated this, we now describe the transitions:

For the case of i = 0, we have the following transitions:

(a, 0) (c, 0)

?ht1, ?ht1

(start, 0) (qin, 0)
!ht0 !ht0 !transfer

For the case of 1 ≤ i ≤ k, we have the following transitions: (The self-loops over the state
(c, i) are not included when i = k).

(a, i) (b, i) (c, i) (d, i) (start, i)
?hti−1 !hti

?hti+1, ?hti+1

!hti ?hti−1

?transfer

Intuition behind the transitions. Let us give a brief intuition behind the transitions in
the case of k = 2. A node n0 which is at (a, 0) aims to become the root of the good initial
configuration that the seeker protocol should find, and so broadcasts ht0, letting its neighbors
know that it wants to be the root of the good subgraph. If any neighbor of n0 is not in (a, 1)
then it immediately moves to a state with base finish. Otherwise, the set of all neighbors in
(a, 1) move to (b, 1). From here, all of these nodes can broadcast ht1, letting their neighbors
know that they now want to become a child of the root. All these messages will also be
received n0 which will use the self-loop at (c, 0) to ignore these messages. All the nodes
which receive a ht1 message can either move to a state with base finish or move to (b, 2),
from where they can broadcast ht2 and thereby move to (c, 2). At this point, we must have
a tree subgraph in which n0 is labelled by (c, 0), its children are labelled by (c, 1) and its
children are labelled by (c, 2).
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Now the nodes labelled by (c, 2) can all broadcast ht2, then the nodes labelled by (c, 1)
can all broadcast ht1 and then the node n0 can broadcast ht0. This leads to a tree subgraph
where n0 is labelled by (start, 0), its children are labelled by (start, 1) and its children are
labelled by (start, 2). Now, n0 can broadcast the letter “transfer” and move into (qin, 0),
thereby transferring the control over to the simulator protocol Psim. In this manner, Pseek
has found a good initial subgraph in which to run Psim.

Proof of correctness. Let P = (Qseek ∪Qsim, Iseek, Σseek ∪Σsim, δseek ∪ δsim) be the protocol
obtained by taking the union of the seeker and the simulator protocols, such that the initial
set of states is the initial set of states of the seeker protocol. Similar to the intuition given
above, the protocol P first runs the seeker protocol till a node with label (qin, 0) is reached,
at which point it runs the simulator protocol. The following lemma tells us that if a node
gets labelled by (qin, 0) while running P, then with that node as the root, there is a good
initial configuration for the simulator protocol Psim. This then allows us the protocol P to
run the simulator protocol on this good initial configuration.

▶ Lemma 11. Suppose γ
∗−→ γ′ n,transfer−−−−−−→ η is an execution of P. After removing all nodes

whose label’s base is finish in η, the connected component containing the node n is a good
initial configuration for the simulator protocol Psim.

Proof sketch. First, let us focus on the execution γ
∗−→ γ′. By definition of an execution, γ

is an initial configuration for the protocol Pseek and so all the nodes in γ have their labels in
the set {ai : 0 ≤ i ≤ k}.

Let T be the connected component containing the node n in γ′ after removing all nodes
whose base is finish. Let F := {(start, i) : 0 ≤ i ≤ k}. First, we show that all nodes in T

must have labels from the set F . Suppose there is a node n′ in T whose label is not in F .
Pick such an n′ which is at the shortest distance from n and let n = n0, n1, n2, . . . , nl, n′ be a
shortest path from n to n′.

By a generalization of the argument given in Example 2, we can prove by induction that
for each 1 ≤ i ≤ l, the label of each ni in T is (start, i) and the only neighbor of ni which
was labelled by (c, i − 1) at some point during the run is ni−1. Using this, we can then show
that n′ must have moved to (start, l + 1) at some point during the run.

By assumption, the label of n′ is not (start, l + 1) in T , and so it must moved out of
(start, l +1) to some state of the simulator protocol. By analysing the constructed protocol P ,
we can then prove that n′ must have received two htl messages. But any node that receives
two htl messages must necessarily move to a state with base finish, contradicting the fact
that n′ ∈ T .

Having proved that every node in T has its label in F , we can then show by examining the
structure of the transitions, that T must be a tree of height atmost k such that n0 is labelled
by (start, 0) and all nodes at distance i from n0 are labelled by (start, i). This then implies
that after removing all nodes with base finish in η, the connected component containing the
node n is a good initial configuration for the simulator protocol. ◀

▶ Theorem 12. The state qin can cover qf in the NCS N iff the state (qf , 0) can be covered
from any initial configuration in T2k(P).

Proof sketch. Due to lack of space, we focus only on the right to left implication. Suppose
γ

∗−→ γ′ is an execution of P such that some node n in γ′ is labelled by (qf , 0). Let γ0 be
the configuration along this run when the node n first got the label (qin, 0). (Notice that
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such a configuration must exist because of the construction of P). By Lemma 11, in γ0,
if we remove all nodes whose base is finish, then we get a good initial configuration T for
Psim with n as the root. Notice that no node with base finish can ever broadcast a message.
Hence, in the run γ0

∗−→ γ′, none of the nodes in T ever receive a message from any node
outside of T . It follows that we can restrict the run γ0

∗−→ γ′ to only the subtree T , to get a
run of Psim starting at a good initial configuration and covering (qf , 0). By Theorem 10, we
get that qf can be covered from qin in N . ◀

Hence, we get,

▶ Corollary 13. Bounded-Path-Cover is Fϵ0-hard.

6 Upper bound for Bounded-Path-Cover

In this section, we give a sketch of the proof that Bounded-Path-Cover is in Fϵ0 . Let
P = (Q, I, Σ, ∆) be a fixed protocol.

▶ Definition 14. Let γ1 = (N1, E1, L1) and γ2 = (N2, E2, L2) be two configurations of P. We
say that γ1 is an induced subgraph of γ2 (denoted by γ1 ⪯is γ2) if there is a label preserving
injection h from N1 to N2 such that (n, n′) ∈ E1 if and only if (h(n), h(n′)) ∈ E2.

It is known that, for any k ≥ 1, the set of all k-path bounded configurations of P is a
well-quasi ordering under the induced subgraph relation ⪯is (Theorem 2.2 of [10]). Using this
fact, the authors of [9] show that for every k, the transition system Tk(P) is a well-structured
transition system (WSTS) and then apply the generic backward exploration algorithm for
WSTS (See [20, 13]) to prove that Bounded-Path-Cover is decidable. By using the
standard and generic complexity arguments for WSTS (See [20, 13, 21]), an upper bound on
the running time of their procedure simply boils down to estimating the length of controlled
bad sequences of k-path bounded configurations under the induced subgraph relation.

Let H : N → N be the successor function and let n ∈ N. For each i ∈ N, let Hi denote
the i-fold application of H to itself i times, with H0 being the identity function.

▶ Definition 15. A sequence γ0, γ1, . . . , of k-path bounded configurations is (H, n)-controlled
bad if the number of nodes in each γi is at most Hi(n) and γi ̸⪯is γj for any i < j.

Our main result is an upper bound on the length of (H, n)-controlled bad sequences
of k-path bounded configurations, by embedding these configurations into the well-quasi
ordering of generalized priority alphabets (See [16]). This encoding is inspired by a similar
encoding given for bounded depth trees in Section 8.1 of [16]. This result then allows us to
prove that

▶ Theorem 16. Bounded-Path-Cover is in Fϵ0 and hence Fϵ0-complete.
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A Appendix

A.1 Proofs for Section 6
First, let us describe the backward exploration algorithm for solving Bounded-Path-Cover
that is given in Section 5 of [9]. Given a protocol P = (Q, I, Σ, δ), a state f and a number k, we
consider the set of all configurations in Tk(P) with the induced subgraph ordering ⪯is. Given a
set S of Tk(P) we let ↑ S := {γ′ : ∃γ ∈ S, γ ⪯is γ′}. A set S is called upward-closed if S =↑ S.

In Section 5 of [9], the following results are proved about Tk(P):
If S is upward-closed, then there exists a finite set B such that ↑ B = S. Such a B will
be called the basis of S.
If S is upward-closed and if Pre(S) is the set of all configurations γ′ ∈ Tk(P) such that
there is a configuration γ ∈ S with γ′ −→ γ, then S ∪ Pre(S) is upward-closed. Moreover,
given a basis B of S, we can compute a basis B′ of S ∪ Pre(S) such that the number
of nodes of each configuration in B′ is at most one more than the maximum number of
nodes in any configuration of B.

In Theorem 5 of [9] it is shown that the following algorithm terminates and is correct
for Bounded-Path-Cover : Construct a sequence of finite sets B0, B1, . . . , such that
each Bi ⊆ Tk(P), B0 is the single node configuration labelled by f and Bi+1 is a basis for
↑ Bi ∪ Pre(↑ Bi). The algorithm then finds the first m such that ↑ Bm =↑ Bm+1 and checks
if there is an initial configuration in ↑ Bm.

The running time complexity of the algorithm is mainly dominated by the length of the
sequence B0, B1, . . . , Bm. Since m is the first index such that ↑ Bm =↑ Bm+1, we can find a
minimal element γi ∈↑ Bi+1\ ↑ Bi for each i < m.

Consider the sequence γ0, . . . , γm−1. Notice that γi ̸⪯is γj for any j > i and further the
number of nodes in each γi is at most Hi(1), where H is the successor function. It follows
that γ0, . . . , γm−1 is a controlled bad sequence. Our main result is that

▶ Lemma 17. The length of (H, n)-controlled bad sequences over k-path bounded configur-
ations of P is upper bounded by the function Fϵ0(p(|Q|, k, n)).

Here Fϵ0 is the fast-growing function at level ϵ0 and p is some fixed primitive recursive
function. For our purposes, we do not need the actual definition of Fϵ0 , but we only need to
know that Fϵ0 contains the set of problems whose running time is upper bounded by the
function Fϵ0 composed with any primitive recursive function (See [19]). By the lemma above
and the fact that the running time complexity of the algorithm for Bounded-Path-Cover
is primarily dominated by the length of (H, 1)-controlled bad sequences we get,
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▶ Theorem 18. Bounded-Path-Cover is in Fϵ0 .

All that suffices is to prove Lemma 17. To do so, we will reduce the problem of estimating
the length of controlled bad sequences over k-path bounded configurations to the problem of
estimating the length of controlled bad sequences over another well-quasi order for which we
already know upper bounds. We now proceed to recall this well-quasi order as it is defined
in [16].

Generalized priority alphabets

Given a number k ∈ N called the priority level and a finite set Γ, a generalised priority
alphabet is the set ΣΓ,k := {(a, i) : a ∈ Γ, 0 ≤ i ≤ k}. Given m = (a, i) ∈ ΣΓ,k, we say that i is
the priority of m. Then for x, y ∈ Σ∗

Γ,k, we say that x ⊑Γ,k y if x = (a1, i1), (a2, i2), . . . , (al, il)
where each (aj , ij) ∈ ΣΓ,k and y = y1(a1, i1)y2(a2, i2)y3 . . . yl(al, il) such that ∀1 ≤ j ≤ l, we
have yj ∈ Σ∗

Γ,ij
, i.e., x can be obtained from y by removing subwords in such a manner so that

the priority of each removed subword is not bigger than the first preserved letter to its right.
It is known that for every k and Γ, the ordering ⊑Γ,k is a well-quasi ordering. (Theorem
3.6 of [16]). Now, similar to controlled bad sequences for k-path bounded configurations, we
can define (a slightly different notion of) controlled bad sequences for words over ΣΓ,k. Let
Sq : N → N be the squaring function and let Sqi denote the squaring function composed
with itself i times.

▶ Definition 19. A sequence w0, w1, . . . , of words over ΣΓ,k is (Sq, n)-controlled bad if the
length of each wi is at most Sqi(n) and wi ̸⊑Γ,k wj for any i < j.

Encoding k-path bounded graphs using generalized priority alphabets

A labelled k-path bounded graph is any graph G = (N, E, L) such that there is a labelling
function L : N → A for some some finite set A. (Notice that the set of k-path bounded
configurations of a protocol is a labelled k-path bounded graph where A is the set of states
of the protocol). We have the following theorem regarding labelled k-path bounded graphs.

▶ Theorem 20 (Lemma 2.1 of [10]). Suppose G is a labelled k-path bounded graph for
k ≥ 1. Then there is a node n such that every connected component of G \ {n} is a labelled
(k − 1)-path bounded graph.

This theorem suggests the following inductive encoding of labelled k-path bounded graphs
as strings over a priority alphabet: Let G = (N, E, L) be any labelled graph with labelling
function L : N → A where A is some finite set. Let e, ē be two symbols not in the finite set
A and let Ak := ∪0≤i≤kA × {e, ē}i. Notice that A0 := A. By induction on k, we will now
define a string ⟨G⟩ ∈ ΣAk,k.

Base case: If G is a 0-path bounded configuration, then G is a single node n and can be
encoded as (L(n), 0) ∈ Σ∗

A0,0.
Induction step: Suppose G is a k-path bounded configuration for some k ≥ 1 such that

G is not (k − 1)-path bounded. Let n be a vertex such that all the connected components
C1, . . . , Cl of G \ {n} are (k − 1)-path bounded configurations. (Such a node exists by
Theorem 20). For every node n′ in every Ci, first change its label from L(n′) to (L(n′), e) if
n′ is a neighbor of n in G and otherwise change its label to (L(n′), ē). Call these new labelled
graphs as Cn

1 , . . . , Cn
l .

By induction hypothesis, for each Cn
i , we have a string ⟨Cn

i ⟩ ∈ Σ∗
((A×{e,ē})k−1,k−1) ⊆

Σ∗
Ak,k−1. We now let ⟨G⟩ := ⟨Cn

1⟩(L(n), k)⟨Cn
2⟩(L(n), k) . . . ⟨Cn

l ⟩(L(n), k).
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Notice that if G is a labelled k-path bounded graph which is not (k − 1)-path bounded,
then ⟨G⟩ is of the form ⟨Cn

1⟩(a, k)⟨Cn
2⟩(a, k) . . . ⟨Cn

l ⟩(a, k) where 1) a is the label of some node
n in G, 2) C1, . . . , Cl are connected components of G \ {n} which are labelled (k − 1)-path
bounded subgraphs of G. This will be called the decomposition of ⟨G⟩ and the node n will
be called its crown.

We then have the following lemma:

▶ Lemma 21. If G and H are such that ⟨G⟩ ⊑Ak,k ⟨H⟩ then G ⪯is H.

Proof. Notice that if ⟨G⟩ ⊑Ak,k ⟨H⟩, then the highest priority appearing in ⟨G⟩ and ⟨H⟩
must be the same, which, without loss of generality, we can assume to be k.

We prove the lemma by induction on k. The base case of 0 is clear.
For the induction step, let ⟨Cn

1⟩(a, k)⟨Cn
2⟩(a, k) . . . ⟨Cn

m⟩(a, k) be the decomposition of
⟨G⟩ with crown n and let ⟨Dn′

1 ⟩(a′, k)⟨Dn′

2 ⟩(a′, k) . . . ⟨Dn′

n ⟩(a′, k) be the decomposition of ⟨H⟩
with crown n′. Since ⟨G⟩ ⊑Ak,k ⟨H⟩, it must be the case that a = a′.

By definition of the ⊑Ak,k relation, it must be the case that for every Cn
j , there exists

ij such that ⟨Cn
j ⟩ ⊑Ak,k−1 ⟨Dn′

ij
⟩. Notice that the priority has reduced and we can apply

the induction hypothesis to conclude that for each j, Cn
j ⪯is Dn′

ij
and so there exists a label

preserving injection hj from the nodes of Cn
j to the nodes of Dn′

ij
such that (u, v) is an edge

in Cn
j iff (hj(u), hj(v)) is an edge in Dn′

ij
.

Now, consider the following label preserving injection h from G to H: Map the crown n
to the other crown n′ and if n′′ is any other node in any one of the connected components
Cj , then map n′′ to hj(n′′). Notice that if u and v are nodes in G which belong to the same
connected component of G \ {n} then (u, v) is an edge in G iff (h(u), h(v)) is an edge in
H. Similarly, if u and v are nodes in G which belong to different connected components of
G \ {n} then h(u) and h(v) also belong to different connected components of H \ {n′} and so
the statement “(u, v) is an edge in G iff (h(u), h(v)) is an edge in H” is vacously true.

Finally suppose u = n and v is some other node of G. Notice that the last field in the
label of v is e if (u, v) is an edge in G and ē otherwise. By definition of h we have that
h(u) = n′ and also that the label of h(v) is the same as v. But by definition of decomposition
of ⟨H⟩, the last field in the label of h(v) is e if (n′, h(v)) is an edge in H and ē otherwise.
Hence, in this case as well, we have shown that (u, v) is an edge in G iff (h(u), h(v)) is an
edge in H. This concludes the proof. ◀

Upper bound on the length of controlled bad sequences for k-path bounded
configurations

Fix a protocol P with states Q and a number k and consider the set of configurations in
Tk(P). By the previous lemma, we can infer that the length of the longest (H, n)-controlled
bad sequence over the set of configurations of Tk(P) is at most the length of the longest
(Sq, n)-controlled bad sequence over the generalized priority alphabet ΣQk,k, which we know
is at most Fϵ0(p(|Q|, k, n)) where p is some primitive recursive function (Proposition 4.1 and
Sections 4.1.1 and 4.1.2 of [16]). This then implies Lemma 17, which is what we wanted to
prove.
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