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Abstract
In this paper, we introduce dynamic lifting to a quantum circuit-description language, following
the Proto-Quipper language approach. Dynamic lifting allows programs to transfer the result of
measuring quantum data – qubits – into classical data – booleans – . We propose a type system
and an operational semantics for the language and we state safety properties. Next, we introduce a
concrete categorical semantics for the proposed language, basing our approach on a recent model
from Rios&Selinger for Proto-Quipper-M. Our approach is to construct on top of a concrete category
of circuits with measurements a Kleisli category, capturing as a side effect the action of retrieving
classical content out of a quantum memory. We then show a soundness result for this semantics.
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1 Introduction

In quantum computation, one considers a special kind of memory where data is encoded on
the state of objects governed by the laws of quantum mechanics. The basic unit for quantum
data is the quantum bit, or qubit, and in general, a quantum memory is understood as
consisting in individually addressable qubits. As derived in the no-cloning theorem [23],
qubits are non-duplicable objects. The state of a quantum memory can be represented
by a unit vector in a complex Hilbert space. Elementary operations on qubits consist in
unitary operations on the state space, called quantum gates, and measurements, which are
probabilistic operations returning a classical boolean.

The usual model for quantum computation is the notion of quantum circuits. Quantum
circuits consist of quantum gates and wires. A wire represents a qubit, and each gate,
attached to one or several wires, is a unitary operation acting on the corresponding qubits.
In this model, a computation consists in allocating a quantum register, applying a circuit
(i.e. the list of gates, in order), followed with a measurement to get back classical data.
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51:2 Categorical Model for a Quantum Language with Measurement

The QRAM model [8] generalizes circuits: in this model, quantum computation is
performed under the control of a classical host. It emits a stream of interleaved (pieces of)
quantum circuits and measurements to the quantum co-processor. The quantum co-processor
executes the instructions while returning the results of measurements on the fly to the
classical host. In this model, the computation is not a fixed linear list of quantum gates:
the quantum gates emitted to the quantum co-processor might depend on the results of
intermediate measurements. Although quantum circuits and QRAM models are equivalent
in terms of expressive power, practical quantum computation is more likely to be based on
the QRAM model. For this reason, many programming languages and their semantics are
based on the QRAM model [17, 11, 7, 22, 24, 20, 18].

An interesting implication of this model is that the quantum circuit construction in
the classical host can be dependent on the result of a measurement: there is a transfer of
information from the quantum co-processor to the classical host. This feature is implemented
for example in Quipper [7, 1] and QWire [11, 12]. Following Quipper’s convention, we call
this transfer dynamic lifting: classical information is lifted from the quantum co-processor
to the classical host. Some use-cases for dynamic lifting are as follows. First, quantum
error correction typically interleaves unitaries and measurements. Other examples include
subroutines with repeat-until-success, where the result of the measurement on one wire says
whether the computation succeeded or not [4], and measurement-based quantum computation.

The classical control over the circuit construction imposed by dynamic lifting has not
been explicitly formalized in the semantics of the circuit construction languages using it. To
illustrate this problem, let us look at the program in Eq. (1). The syntax we use is presented
in Section 2, so we explain what the program does here: The program measures the qubit vc

and obtains the updated state of the qubit together with the resulting boolean b. Based on
b, it then either allocates a new qubit initialized by true, then free the qubit vc, or simply
returns vc

1. Despite this simple structure, the program does not correspond to a circuit
because of the classical control.

exp ::= let ⟨b, vc⟩ = meas(vc) in if b then ⟨init(tt), free(vc)⟩ else ⟨vc, ∗⟩ (1)

In QWire, the operational semantics performs normalization for composition and unbox
operations but the classical control by dynamic lifting is hidden in the host term within the
unbox. In Quipper, the operational semantics is encoded in Haskell’s monadic type system
and captures a notion of dynamic circuit including measurements. However, this semantics
has never been fully formalized in the context of higher-order, functional quantum languages.

Besides operational semantics, programming languages for quantum circuits have been
formalized using denotational semantics based on density matrices [11] and categorical
semantics based on symmetric monoidal categories [16, 14, 9, 14, 5], or on the category of
C∗-algebras [19, 13]. However, these examples of formalization do not solve the problem in
that they either ignore the structure of circuit or keep the term with dynamic lifting abstract.
In particular, in [14, 5], the authors construct expressive categorical models for the family of
circuits – or parameterized circuits – and linear dependent type theory, respectively, while
they do not provide semantics of dynamic lifting explicitly.

Our goal in this paper is to find a model and formalize a semantics for interleaved
quantum circuits and dynamic lifting. The problem rests in how to analyze the structure
of the computation without requiring the quantum co-processor to decide on the value of

1 The program actually returns a pair consisting of a qubit and the unit term ∗ so that it is well-typed;
we assume that the return type of free is the unit-type.
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measurement. The interest of such a model and semantics is that it can serve as a test-bed
to explore properties of the language. Mixing non-duplicable data, higher-order and circuits
in a language yields a non-trivial system, and dependent-types were for instance only added
recently for Proto-Quipper [5], with the use of such tools.

Contributions. In this paper, we propose both a small step operational semantics and a
categorical semantics for a typed language – called Proto-Quipper-L – extending quantum
lambda calculus [17] with circuit construction operators (box and unbox) and circuit constants.
The formalization extends the one of Proto-Quipper [15]: circuits are generalized to quantum
channels enabling the formalization of the semantics of the dynamic lifting. A quantum
computation that only consists of unitary gates deterministically reduces to only one possible
value. On the other hand, a quantum computation with dynamic lifting might reduce to
distinct values depending on the results of the measurements. We support this by making
circuits not only lists but trees branching over the results of measurements: we call such
objects quantum channels. The language is then extended with a notion of branching terms,
representing the possible choices along the computation. We prove the usual safety properties
for the language: subject reduction, progress and termination (Lemmas 7, 8 and 9).

Next, we propose a sound categorical model for Proto-Quipper-L. The model is based on
Proto-Quipper-M, the work of Rios&Selinger [14]. It consists of two categories: a symmetric
monoidal category abstracting the notion of circuit, and an extension capturing classical
computation and circuit manipulation. A morphism in the former category becomes a
circuit-element in the extension. If this construction captures a sound notion of circuit, in its
abstract formulation it is not a priori amenable to dynamic lifting. To answer the issue, we
propose a concrete instantiation of the model in which dynamic lifting can be represented:
we define a concrete, symmetric monoidal closed category for representing quantum channels,
and, based on the construction proposed in [14], a linear category admitting a strong monad
F representing the branching side-effect associated with the measurement. Following [10, 21],
we use the Kleisli category MF to represent terms of Proto-Quipper-L.

In fact, branching monad in our categorical model corresponds to the Circ monad in
Quipper which models non-deterministic branching in the level of type system. Although it
is standard to use monad to model non-deterministic side effects, it was not clear whether
such a monadic structure could be set up on the categorical model of parameterized circuits
by Rios&Selinger [14]. The main result of the paper is to show how to do it, using a concrete
category of quantum channels. We validate the model by showing a soundness property
(Theorem 18).

2 Syntax, Types and Operational Semantics

In this section, we present the syntax of a minimal lambda-calculus for manipulating quantum
channels and booleans. The language is an extension of Proto-Quipper [15].

In Proto-Quipper, the quantum lambda calculus presented in [17] is extended with circuit
operators and constants. Circuit operators give an efficient way to construct circuits instead
of having to sequentially apply all the gates one-by-one. Specifically, two operators on circuits
are added to the language: the box operator allows us to use quantum circuits as classical
data, while the unbox operator applies a boxed circuit to an argument (usually a structured
set of qubits called pattern). Boxed circuits are first-class objects and can come with useful
circuit operators like reverse and control. Technically, a circuit object in Proto-Quipper
can be seen as a tuple (p, C, M) where p is structured set of the input wires of a circuit C,
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51:4 Categorical Model for a Quantum Language with Measurement

matching the input type of the circuit. M is a term corresponding to the output of the
circuit. Along the reduction of M , the circuit C is possibly updated with new gates. The
term M is open, and the output wires of C are used in M linearly, meaning that each output
wire appears in M exactly once.

However, Proto-Quipper does not support dynamic lifting within circuits. To extend
Proto-Quipper with dynamic lifting, we replace circuits with quantum channels and redefine
the circuit operators box and unbox over quantum channels.

2.1 Quantum Channels
A quantum channel is the generalization of a quantum circuit: a tree structure where
branching captures the action of measurement. In essence, quantum channels are instances
of QCAlg, defined by the following grammar.

(QCAlg) Q, Q1, Q2 ::= ϵ(W ) | U(W ) Q | init b w Q | meas w Q1 Q2 | free w Q.

The symbols w, b, and W respectively refer to wires, booleans, and finite sets of wires. The
channel ϵ(W ) stands for the empty computation on the qubits W . U(W ) Q represent the
unitary operator U acting on the qubits W , followed by the operations stored in the quantum
channel Q. In general, U can range over a fixed set of unitary operations: we write arity(U)
for the arity of U . The operator init b w Q creates and initializes the wire w in state b,
followed by the channel Q possibly using the newly allocated qubit. The operator meas
represents the conditional branching on the result of a measurement. In our interpretation, a
measurement is non-destructive: the wire being measured is still allocated and can be acted
upon. The two channels Q1 and Q2 stand for the two possible branches to follow based on
the measurement. Finally, free w Q frees the qubit w before running Q. From now on, we
call the instance of QCAlg as quantum channel object.

We define a notion of validity for quantum channels: Q is valid whenever, for instance,
an init-node introduces a non-existing wire, or whenever a free-node acts on an existing wire.
One subtlety consists in deciding what is an output wire for a branching quantum channel.
For instance, consider Q = meas w1 (init b w2 (ϵ{w1, w2})) (ϵ{w1}). This quantum channel
admits as output {w1, w2} on the left branch and {w1} on the right branch. We formalize
this notion and write out(Q) for a tree-structured set of outputs of Q: Here, out(Q) is
[{w1, w2}, {w1}]. We also define all(Q) to stand for the set of all of the wires appearing in
Q, and in(Q) for the set of input wires. We give a formal definition of validity from the
following definition of state of quantum channel.

▶ Definition 1 (State of quantum channel). A bunch of elements of X is a binary tree where
only the leaves are indexed, with elements of X. Formally, if x ranges over X, a bunch is
built from the grammar c1, c2 ::= x | [c1, c2]. The ternary relation “st” formalizes what it
means for a quantum channel to be valid. It is defined as the smallest relation satisfying the
rules presented in Table 1. Informally, we say that a quantum channel Q is valid whenever
there is some set of wires V and a bunch of sets of wires c such that st(Q, V, c) is derivable.
Moreover, such V and c are called input and output wires of Q, respectively.

2.2 Syntax of the Terms
Having extended the notion of circuit to the notion of quantum channel, we turn to the
question of the definition of the language. Compared to previous Proto-Quipper instances [15,
14, 5], there are two main changes. The first one concerns the circuit constant; the other one
concerns the fact that one has to deal with non-deterministic branching computations.
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Table 1 Valid quantum channel.

st(ϵ(W ), W, W )

W1 ⊆W

arity(U) = |W1|
st(Q, W, c)

st(U(W1) Q, W, c)
w ̸∈W st(Q, W ∪ {w}, c)

st(init b w Q, W, c)

w ∈W st(Q1, W, ca) st(Q2, W, cb)
st(meas w Q1 Q2, W, [ca, cb])

w ∈W st(Q, W \ {w}, c)
st(free w Q, W, c)

Table 2 Proto-Quipper-L: terms, values, patterns, branching terms, branching values, types and
pattern types.

M, Ma, Mb ::= x | ∗ | tt | ff | (p, Q, m) | λx.M | MaMb | ⟨Ma, Mb⟩ |
let ⟨x, y⟩ = Ma in Mb | if M then Ma else Mb | boxP | unbox

V, Va, Vb ::= x | ∗ | tt | ff | λx.M | ⟨Va, Vb⟩ | (p, Q, v) | boxP | unbox | unbox(V )
p, pa, pb ::= x | ∗ | ⟨pa, pb⟩

m, ma, mb ::= M | [ma, mb]
v, va, vb ::= V | [va, vb]

A, Aa, Ab ::= I | bool | qubit | QChan(P, A) | Aa ⊸ Ab | Aa ⊗Ab | ! A

P, Pa, Pb ::= I | qubit | Pa ⊗ Pb

We call the new language Proto-Quipper-L and define it as shown in Table 2. The
constant ∗ stands for the unit term, while tt and ff stands for the booleans true and false.
The term (p, Q, m) corresponds to a quantum channel object: p is a pattern: a structured set
of input wires of a valid quantum channel Q, and m is a branching term that will match the
branching structure of Q for valid quantum channel objects. For simplicity wire identifiers
and term variables range over the same set of names. We then have the quantum channel
operators box and unbox from Proto-Quipper: box makes a quantum channel out of a
function, while unbox turns a quantum channel into a function. The rest of the constructors
of the language are standard: abstraction, application, pair, let, and conditional statements.
We define a notion of value in the standard way, apart from the fact that unbox(V ) is also a
value (as it is a function). Finally, branching terms and values are constructed using the
branching constructor [−,−]. A term of the form [M, N ] represents a computation that has
probabilistically branched and that is performing either M or N . This is novel compared to
Proto-Quipper. We denote the set of free variables of a term m with FV(m).

One could argue that the language is missing constructors for unitary gates, qubit
allocation and measurement. As in the case of Proto-Quipper, they can be defined with
the unbox and quantum channel object. For instance, we can construct a measurement
operation inputting a qubit and outputting a boolean and the measured wire as meas ::=
unbox (x, meas x (ϵ{x}) (ϵ{x}), [⟨tt, x⟩, ⟨ff, x⟩]). The tuple consists of a singleton wire name
x, the quantum channel (meas x ϵ{x} ϵ{x}), and the branching tree [⟨tt, x⟩, ⟨ff, x⟩]. Note
that the measurement operator we wrote here returns both a qubit and a boolean: we could
discard the qubit with the use of a quantum channel constructor “free” if we only wanted to
output a boolean. Similarly, we can also build the macros initb and free which respectively
allocates a new qubit in state b and frees a qubit, as initb ::= unbox(∗, init b x (ϵ{x}), x) ∗
and free ::= unbox (x, free x (ϵ(∅)), ∗). We can similarly define terms for unitary application
by encapsulating the QCAlg constructors U inside a quantum channel object.
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51:6 Categorical Model for a Quantum Language with Measurement

Table 3 Proto-Quipper-L: Typing Rules.

!∆, (x : A) ⊢ x : A
(var)

!∆, Q ⊢M : !A
!∆, Q ⊢M : A

(d)
!∆ ⊢ V : A V is value

!∆ ⊢ V : !A
(p)

!∆ ⊢ ∗ : I
(I)

!∆, Q, (x : Aa) ⊢M : Ab

!∆, Q ⊢ λx.M : Aa ⊸ Ab

(⊸I)
!∆, Qa ⊢Ma : Aa ⊸ Ab !∆, Qb ⊢Mb : Aa

!∆, Qa, Qb ⊢MaMb : Ab

(⊸E)

!∆, Qa ⊢M : bool !∆, Qb ⊢M1 : A

!∆, Qb ⊢M2 : A

!∆, Qa, Qb ⊢ if M then M1 else M2 : A
(if)

!∆, Qa ⊢Ma : Aa ⊗Ab

!∆, Qb, (x : Aa), (y : Ab) ⊢Mb : A

!∆, Qa, Qb ⊢ let ⟨x, y⟩ = Ma in Mb : A
(⊗E)

!∆ ⊢ tt : bool
(tt)

!∆ ⊢ ff : bool
(ff)

!∆, Qa ⊢Ma : Aa !∆, Qb ⊢Mb : Ab

!∆, Qa, Qb ⊢ ⟨Ma, Mb⟩ : A1 ⊗A2
(⊗I)

!∆ ⊢ boxP : !(P ⊸ A) ⊸ !QChan(P, A)
(box)

!∆ ⊢ unbox : QChan(P, A) ⊸ (P ⊸ A)
(unbox)

γa ⊢ ma : A γb ⊢ mb : A

γa × γb ⊢ [ma, mb] : A
(b)

p ⊨ P vBind(!∆, out(Q), m, A)
!∆ ⊢ (p, Q, m) : !QChan(P, A)

(QChanI)

2.3 Type System
Types of Proto-Quipper-L are defined as in Table 2. Following the standard strategy [17, 15, 3]
to account for the non-duplicability brought by the quantum memory, we are using a type
system based on linear logic [6]. Types consist in the constant types I, bool, qubit; the
function type Aa ⊸ Ab; the type for pairs Aa ⊗Ab; the type !A of duplicable terms of type
A; the type of quantum channels QChan(P, A) with input of type P and output of type A,
where P refers to patterns, that is, first-order types constructed from qubits and tensors.

Conventionally, a typing judgment consists in a typing context, which maps variables to
types, and a term assigned with a type. However, in Proto-Quipper-L, the term can be a
branching term. Although the terms of all branches in a branching term are assigned with
the same type, they may have different typing contexts. This is formalized in two distinct
definitions of typing judgments: regular typing judgments Γ ⊢M : A where where Γ is a list
of typed variables and M is a non-branching term, and branching typing judgments γ ⊢ m : A,
where m is a branching term and γ is an branching typing context: γ ::= Γ | γ1 × γ2.

A judgment is valid if it can be derived from the typing rules presented in Table 3. The
rules ensure that various constraints necessary for soundness are satisfied. One can note that
all terms constituting a branching term share the same type ; that valid branching typing
judgments have branching contexts and terms with the same tree structure ; that a quantum
channel object is duplicable with type !QChan ; that box sends a duplicable function to a
duplicable quantum channel object, and that unbox sends a quantum channel object to a
function. One can also note that only values can be promoted to duplicable objects: this is
due to the call-by-value reduction strategy we follow. The relation vBind(!∆, out(Q), m, A)
in the (QChanI) rule ensures that one can derive typing derivations for each term leaf of m

given that the output wires of the quantum channel Q is assigned with type qubit within
the typing context. The relation p ⊨ P simply states that the shapes of p and P match and
that the variables occurring in p are pairwise distinct.

The rules for vBind are found in Table 4. Note that the non-linear context !∆ is a list of
pairs of variables and non-linear types. We denote by FV(!∆) the set of variables in !∆. In
fact, the condition (X ∩ FV(!∆) = ∅) is implicitly assumed by the definition of the typing
judgment (!∆, (x : qubit)x∈X ⊢M : A).
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Table 4 Validity of binding in quantum channel constant.

X ∩ FV(!∆) = ∅ !∆, (x : qubit)x∈X ⊢M : A

vBind(!∆, X, M, A)
(vBindnb)

vBind(!∆, ca, ma, A) vBind(!∆, cb, mb, A)
vBind(!∆, [ca, cb], [ma, mb], A)

(vBindb)

∗ ⊨ I x ⊨ qubit

∀i, pi ⊨ Pi

FV(p1) ∩ FV(p2) = ∅
⟨p1, p2⟩ ⊨ P1 ⊗ P2

▶ Example 2. In Section 2.2 we defined three macros: meas, free and initb. We can type
meas with !(qubit ⊸ (bool ⊗ qubit)) and free with !(qubit ⊸ I). For initb, note that
because there is a final argument “∗”, it is really an application and we can therefore only
type it with qubit and not !qubit: this is expected, as we don’t want to be able to construct
duplicable qubits. With these types, we can now type the term exp in Eq (1) of Section 1:
we can derive the judgment vc : qubit ⊢ exp : qubit⊗ I.

▶ Remark 3. In general, there can be more than one typing derivation for a typing judgment
but, for the types I, qubit or bool, there is a unique typing derivation when the term is a
value. We call these types basic types.

2.4 Operational Semantics
The computational model we have in mind for the language is a reduction-based semantics
specialized to circuit construction: the operational semantics is modeling an I/O side-effect,
where gates are emitted and buffered in a quantum channel. Based on Proto-Quipper [15],
the operational semantics we describe therefore updates a configuration consisting of a pair
(Q, m): a buffered QCAlg object and a branching term. The term m is reduced up to a
value representing the final state of the computation. Along the computation, quantum gates
might be emitted to the co-processor: the quantum channel Q keeps track of these. One can
notice that a configuration corresponds to a quantum channel constant without the input
wires, where there is a minor relaxation on the linearity of the output wires of Q in m which
will be recovered when we define well-typed configuration.

▶ Definition 4. A circuit-buffering configuration is a pair (Q, m) as described above. It is
said to be valid whenever Q is valid, Q and m share the same tree-structure, and whenever
output wires of Q corresponds to free variables of m (following the tree-structure). So
for instance, V ⊆ FV(M) implies the validity of (ϵ(V ), M), and whenever (Q1, ma) and
(Q2, mb) are valid so is (meas w Q1 Q2, [ma, mb]).

▶ Remark 5. In order to define the reduction rules, we need to be able to extend a configuration
with new wires. For instance, let us consider the term (ϵ{x, y}, if (N x) then y else y) with
N some term not containing y. Evaluating this configuration requires to first evaluate N x

and possibly append a few gates to ϵ{x, y}. However, this can be factorized as first evaluating
(ϵ{x}, N x) to (Q, V ) and then adding back the wire y to the resulting quantum channel Q.
We therefore define an operator extend taking a quantum channel and a set of wire names,
adding them as unused wires to the quantum channel.

The reduction rules for Proto-Quipper-L are defined in Table 5. (See Section A.1 for more
details.) Rules (a.x) always hold (b ranges over {tt, ff}). In Rules (b.1), p is a pattern of same
shape as P made from dynamically allocated fresh variables. In Rule (b.2), p and V have the
same shape, and σ is a substitution mapping p to V . Provided that (Q, m) −→ (Q′, m′), we have
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51:8 Categorical Model for a Quantum Language with Measurement

Table 5 Reduction rules for operational semantics.

(a.1) (ϵ(W ), (λx.M)V ) −→ (ϵ(W ), M [V/x])
(a.2) (ϵ(W ), let ⟨x, y⟩ = ⟨V, U⟩ in M) −→ (ϵ(W ), M [V/x, U/y])
(a.3) (ϵ(W ), if b then Mtt else Mff) −→ (ϵ(W ), Mb)
(b.1) (ϵ(∅), boxP V ) −→ (ϵ(∅), (p, ϵ(FV(p)), V p))
(b.2) (ϵ(FV(V )), (unbox(p, Q, u))V ) −→ (σ(Q), σ(u))

(ϵ(WC[M ]), C[M ]) −→ (extend(Q, WC[−]), C[m]) (c)
(Q, [ma, mb]) −→ (Q′, [mc, md]) (d.1)

(Q, [ma, v]) −→ (Q′, [mc, v]) (d.2)
(Q, [v, mb]) −→ (Q′, [v, md]) (d.3)
(G Q1, ma) −→ (G Q3, mc) (d.3)

let ⟨b, vc⟩ = meas(vc) in Tvc −→ meas vc

let ⟨b, vc⟩ = ⟨tt, vc⟩ in T

let ⟨b, vc⟩ = ⟨ff, vc⟩ in T

vc

vc

vc

−→∗

meas vc

⟨init(tt), free(vc)⟩

⟨vc, ∗⟩

vc

vc

vc

−→∗

meas vc

init true vd free vc ⟨vd, ∗⟩

⟨vc, ∗⟩vc

v c

vc, vd vd

vc

Figure 1 Reduction of the term of Eq (1).

(ϵ(∅), (p, Q, m)) −→ (ϵ(∅), (p, Q′, m′)). Provided that we have that (ϵ(WM ), M) −→ (Q, m),
that all(Q) ∩WN = ∅ and that all(Q) ∩WV = ∅, the class of rules (c) apply. There, C[−]
ranges over [−]N , V [−], ⟨[−], N⟩, ⟨V, [0]⟩, if [−]then Ma else Mb and let ⟨x, y⟩ = [−] in N . We
use syntactic sugar for combining terms and branching terms, as in C[m]. It corresponds
to the term constructor applied to each leaf of m, for instance: for m = [[N1, N2], N3],
C[m] := [[C[N1], C[N2]], C[N3]]. In Rules (d.x), Q stands for meas w Q1 Q2 and Q′ for
meas w Q3 Q4. These rules apply whenever (Q1, ma) −→ (Q3, mc) and (Q2, mb) −→ (Q4, md).
In (d.3), G ranges over U(W ), init b w and free w.

▶ Example 6. As an example, we show the reduction of the term shown in Eq. (1). For
convenience, we define T as if b then ⟨init(tt), free(vc)⟩ else ⟨vc, ∗⟩. Figure 1 shows the
reduction of the term. (check Section A.2 for more details). We use a graphical representation
for configuration. A green box represents a quantum channel whose leaves are linked to
square-boxed terms. The edges represent bundles of wires, which can contain multiple wires
and can be empty.

In the first line, the measurement in the term is reduced by the structural rule for let

and the reduction rule for measurement creating a branching term. Then, each term at
a leaf of the tree is reduced into the left-most configuration of the second line. Note how
classical computation can happen inside the leaves. The second line of the figure shows the
application of initialization and free operation. In particular, note how the tree expands as
the computation progresses.

2.5 Type safety for Proto-Quipper-L
In order to state the type safety theorem, we need to extend typing derivations to configura-
tions. We write !∆ ⊢ (Q, m) : A whenever vBind(!∆, out(Q), m, A) and Q is valid. Note
that the definition implies that the output wires of the quantum channel correspond to the
linear variables of type qubit in the context of the typing derivation. In any case, we can
now state type safety for Proto-Quipper-L, as follows.
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▶ Lemma 7 (Subject reduction). For any configurations (Q1, m1) and (Q2, m2) such that
(Q1, m1) −→ (Q2, m2), if ⊢ (Q1, m1) : A, then ⊢ (Q2, m2) : A.

▶ Lemma 8 (Progress). If (⊢ (Q1, m1) : A), then either there exists (Q2, m2) such that
(Q1, m1) −→ (Q2, m2) or m1 is a branching value.

▶ Lemma 9 (Termination). Given a well-typed configuration ⊢ (Q, m) : A, any reduction
sequence starting with (Q, m) is terminating.

3 Categorical semantics

In this section, we turn to the question of developing a categorical semantics for Proto-
Quipper-L. The categorical semantics of circuit-description languages and Proto-Quipper
in particular originates from Rios&Selinger [14]. They developed a model parametrized
by a symmetric monoidal category M . In their model one can therefore interpret higher-
order circuit-description languages, and several extensions of the semantics [5, 9] have been
discussed. However, none of them were shown to be able to capture dynamic lifting: the
possibility to change behavior depending on the result of a measurement.

Our proposal. What we propose in this paper is a concrete, symmetric monoidal category
M such that applying Rios&Selinger’s construction gives us also access to an interpretation
of dynamic lifting. The model we propose follows Moggi’s categorical interpretation of side
effect [10] and models the action of measurement using a (strong) monad. Our semantics
is therefore based on: (1) A category of diagrams, serving as graph-like abstractions of
quantum channels. This category is compact-closed and features products: it matches the
requirements of the base category M in Rios&Selinger’s work. This category is discussed in
Section 3.1. (2) The category M , extending M with the same procedure as Rios&Selinger.
This category is the category of values, following Moggi’s computational interpretation. It is
presented in Section 3.2. (3) A strong monad on M that we denote with F . This monad
encapsulates computations involving measurements: a general term of Proto-Quipper-L is
therefore interpreted inside the Kleisli category MF : This is the main novelty compared
to other models of Proto-Quipper-like languages [14, 5, 9], and the critical reason for the
possibility to interpret dynamic lifting. This is discussed in Section 3.4.

Finally, we discuss the soundness of the model and presents a few examples. For sake
of space, the presentation of the definitions and results is only kept to a minimum: more
information is available in the appendix.

3.1 Categories of Diagrams
In this section, we aim at building a category of quantum channels. We first define a
graph-based language: we call the corresponding terms diagrams to distinguish them from
the terms of QCAlg of Section 2.1: these are directed graphs with edges labeled with marks.
We then build the category M out of these terms.

Marks. Formally, we define marks with the grammar M ::= q | M⊗M | ⊞i∈XMi | M⊥,

where X ranges over the class of sets, and is subject to the equivalence relation defined as
⊞i∈I ⊞j∈J M(i,j) = ⊞j∈J ⊞i∈I M(i,j); (M1 ⊗M2)⊥ = M⊥

1 ⊗M⊥
2 ; (⊞i∈IMi)⊥ = ⊞i∈I(M⊥

i );
(M⊥)⊥ = M ; ⊞l∈L ⊞x∈l M(l,x) = ⊞x∈l1++···++ln

M(l,x), whenever L = [l1, . . . , ln]. Note that
⊞i∈∅Mi acts as a unit for ⊞: we denote it with I. If A = [A1 . . . An] is a list of marks, we use
the notation A⊗ for A1 ⊗ · · · ⊗An. We also use a binary notation for ⊞ when the indexed
set contains 2 elements: ⊞x∈{a,b}Ax = Aa ⊞ Ab.
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Figure 2 Diagram Nodes and Product.

▶ Remark 10. Box node is a way of representing additive connectives of intuitionistic linear
logic. It can be considered as a set of different proofs depending on the choice made for
the additive connective. Note that we are following the convention of linear logic for (−)⊥,
where the (−)⊥ operator is not changing the order of tensors.

Diagrams. A diagram is a (possibly infinite) directed graph with edges indexed with marks
and built from elementary nodes and boxes. A diagram is not necessarily a connected graph.
By graphical convention, all edges are flowing upward: a diagram is therefore acyclic.

Elementary nodes make the basic building blocks of diagrams: they are shown on Figure 2a.
As we work with directed graphs, each edge connected to a node is either an input or an
output for that node. There are several kinds of elementary nodes: the structural nodes for
capturing the compact closed structure: ∪ , ∩ , ⊗ , I and the swap-node (also written

σ ); the structural nodes for handling the product: ⊞ for the diagonal map and π for the
projection; the structural nodes for pointing inputs in and outputs out of diagrams; the
nodes specifically for quantum: |b⟩ and ⟨b| , with b ranging over booleans, where the former
stands for initialization and the latter for projection onto the corresponding basis, tr for
representing tracing (also useful for products), G1 for unary unitary gates and G2 for binary
gates. Note that the nodes allows more expressivity than what we need: for instance, tr

and ⟨b| are indistinguishable. We nonetheless keep them in order to draw attention on the
correspondence with quantum computation and an obvious mapping to completely positive
maps. For the sake of legibility, we do not draw in and out nodes unless necessary.

Presented in Figure 2b, a box-node is built from a family of diagrams. They should all
share the same input and output marks except for one pair of input/output (represented on
the left of the box-node). As a node, box-node has the same input and output marks as its
contained diagrams except that the left-most marks: these are the ⊞ of all left-most marks
of the family. We represent juxtaposition of edges as a double arrows. This node is the last
piece needed for representing products.

Equivalence relation on diagrams. We define an equivalence relation on diagrams. The
equivalence is given with local rules that can be extended to larger diagrams coherently:
subgraphs can be rewritten inside a larger graph. These rules exactly capture what is needed
for the categorical semantics to work. For instance, we include all of the rules for compact
closed categories [16]. We also for instance need the fact that the π -node acts as a projection
over box-nodes. The complete list can be found in the appendix.
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(b) Figure for Example 17.

Figure 3 Examples of Morphisms.

Category of Diagrams. Based on the definition of diagrams, we define the category of dia-
grams M : object are lists of marks [A1, . . . , An], and a morphism [A1, . . . , An]→ [B1, . . . , Bm]
is a diagram with in -nodes of marks Ai and out -nodes of marks Bi, modulo the equivalence
relation defined on diagrams. We use the notation A⃗ for the list of the Ai’s. An identity
morphism is a diagram consisting of a bunch of simple edges connecting in and out nodes.
Composition consists in identifying out and in nodes of diagrams. The category M is sym-
metric monoidal: The unit is I = [], the empty list, and the monoidal structure is given with
⊗ : M ×M → M defined as [A1, . . . , An] ⊗ [B1, . . . , Bm] = [A1, . . . , An, B1, . . . , Bm], and
f ⊗ g the juxtaposition of diagrams. As for standard graphical representation of symmetric
monoidal structure [16], the associativity, unit laws and symmetry of the tensor product follow
their graphical conventions. Finally, the operation on marks (−)⊥ lifts to a contravariant
functor, giving a compact-closed structure to M . It then admits an internal hom: A⃗ ⊸ B⃗

can be defined as [A1, . . . , An] ⊸ [B1, . . . , Bm] = [A⊥
1 , . . . , A⊥

n , B1, . . . , Bm]. Thanks to the
π -nodes and the corresponding diagram equivalence rules, the category M also has products:

for any family of objects {A⃗x | x ∈ X} indexed by a set X, let ×x∈XA⃗x = [⊞x∈XA⃗x
⊗

] be
the product of the family of objects. Then, the family of projections πx : ×x∈XAx → Ax

is given by the π-node. Finally, for any family of maps {fx : C → Ax}x∈X , the morphisms
⟨fx⟩ : C → ×x∈XAx is the diagram presented in Figure 2c. As an abuse of notation we use
one ⊗ for tensoring several wires at once.

▶ Remark 11. The category of diagrams is strongly inspired from proof nets: tensor nodes
correspond to multiplicative connectives while boxes correspond to additive connectives.

Examples of morphisms in M . Lastly, we show in Figure 3a two interesting morphisms
in the category M . The morphism n : [q] → [I ⊞ I] corresponds to the measure: in each
branch we perform a projection, and we keep in the output the information of where we
were. Note that the semantics does not state what is doing ⟨tt|: what is important is to
(1) “remove” the q-wire, and (2) keep as information if we are on the “true” or the “false”
part. The morphism i corresponds to qubit creation: it takes a boolean I ⊞ I, initializes a
qubit depending on its state and “forgets” the boolean. As a last example we can build the
injections I → I ⊞ I in a similar way to n: first a ⊞ -node, followed with a box-node where
we trace out the component we do not need.

▶ Remark 12. The object [I ⊞ I] corresponds to the bit-type in Quipper or in Proto-Quipper,
corresponding to boolean values within the quantum co-processor, and manipulated with
circuits in Quipper. For simplicity we did not include such a bit-type in the language, but it
does exist in the model.
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▶ Definition 13 (Intepreting QCAlg terms). Let us use the notation q⊗n to represent a list
[q, ...q] of size n. A QCAlg-term Q can be interpreted as a M -morphism [[Q]] : A→ B, where
A = q⊗in(Q) and B of tree-shape for instance (q⊗n1 ⊞ q⊗n2) ⊞ q⊗n3 , following the tree-shape
of out(Q). The M -morphism [[Q]] is then defined by induction, using the idea presented
above: initialization and unitary gates are simply composed, and the branches of a meas
operation are encapsulated inside box-nodes.

3.2 Coproduct completion
Coproduct completion allows us to define families of circuits [14, 5]: the categorical structure
clearly separate what is purely quantum and what is parameter to the computation: we
have parametric families of quantum channels. Formally, this is done using the coproduct
completion M of M . In this completion, an object corresponds to a pair (X, (Ax)x∈X) where
X is a set and Ax is an object of M for each x ∈ X: This should be understood as a
parametric families of objects of M . A morphism from (X, (Ax)) to (Y, (By)) corresponds to
a pair (f0, (fx)x∈X) where f0 : X → Y is a set function and fx : Ax → Bf0(x) is a morphism
in M for each x ∈ X. Intuitively, to each choice of parameter x we have a M -morphisms
Ax → Af0(x). Composition is defined with (g0, (gy))◦ (f0, (fx)) = (g0 ◦f0, (gf0(x) ◦fx)) where
(g0, (gy)) : (Y, (By))→ (Z, (Cx)) and (f0, (fx)) : (X, (Ax))→ (Y, (By)) are morphisms in M ,
while the identity is idA = (idX , (idAx

)) for an object A = (X, (Ax)).
According to Rios&Selinger [14], the category M is symmetric monoidal closed, and

features products and co-products. In particular, the monoidal unit is ({∅}, (I)) (where
∅ stands for the only representative of the singleton-set), and when A = (X, (Ax)) and
B = (Y, (By)), the tensor on objects is A ⊗ B = (X × Y, (Ax ⊗ By)(x,y)) and the internal
hom is A ⊸ B = (X → Y, (Cf )f∈X→Y ) (X → Y is the set of all set-functions from X to
Y and Cf refers to the product ⊞x∈X(Ax ⊸ Bf(x)) of internal homs in M). Note that the
product is defined by ⊞ in the case of the category of diagrams. Also note that compared
to [14], we can capitalize on the concrete structure of the category for the proofs involving
the coproduct completion. For instance, the associativity is trivial in our category M .

Finally, in order to model the type operator “!”, Rios&Selinger rely on Benton’s linear/non-
linear model [2], based on an adjunction between a symmetric monoidal closed category
and a cartesian closed category. In our case, as in [14] the adjunction is built between the
SMCC M and the cartesian closed category Set. The two functors of the adjunction are
p : Set→M , defined on objects as p(X) = (X, (I)X), and b : M → Set, defined on objects
as b(X, (Ax)) =

∑
x∈X M(I, Ax) where M(I, Ax) is the set of morphisms between the objects

I and Ax of the category M and
∑

x∈X M(I, Ax) is the disjoint union of all such sets over
X . From the adjunction, one can then construct a comonad “!” defined as ! = p ◦ b.
▶ Remark 14. In M there are two classes of interesting objects. The parameters are objects
of the form (X, (I)x∈X): the family consists in trivial objects of M , and the only information
is given by. . . the parameter. The state object is the dual: the parameter is trivial and
the family is of size 1 with only one object of M . It is then of the form ({∅}, (A)). One
therefore has two booleans: a parameter boolean bp = ({tt, ff}, (I){tt,ff}) and the state
boolean bs = ({∅}, (I ⊞ I)) living in M .

3.3 Monad for Branching Computation
According to Rios&Selinger, the category M together with the structure sketched in Sec-
tion 3.2 forms a model of Proto-Quipper-M. We shall now see how our concrete construction
can also support dynamic lifting, therefore forming a model of Proto-Quipper-L.
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The main problem consists in lifting a branching sitting inside a quantum channel – i.e.
inside the category M – to turn it into a coproduct on which one can act upon in the classical
world, represented by the category M : as in Remark 14, we need to lift a state-boolean into
a parameter-boolean. Our strategy consists in defining a strong monad (F, µ, η, t) to capture
the action of retrieving such a branching: a term featuring measurement (and dynamic
lifting) is therefore represented within the Kleisli category MF , following Moggi’s [10] view
on side-effects.

The functor F : M → M is defined as follows. For an object A = (X, (Ax)), we define
F (A) = (mset(X), ([⊞x∈lA

⊗
x ])l∈mset(X)), where mset(X) is the set of multisets of X, while

for a morphism f = (f0, (fx)) : A → B we set F (f) = (g0 : mset(X) → mset(Y ), gl :
[⊞x∈lA

⊗
x ]→ [⊞y∈g0(l)B

⊗
y ]), where g0 = {[x0, . . . , xn] 7→ [f0(x0), . . . , f0(xn)]} and where gl is

defined as shown on the right.

▶ Example 15. The lifting of the state boolean bs of Remark 14 to the parameter boolean
bp is then a M -map lb : bs → F (bp), where F (bp) is (mset{tt, ff}, (⊞x∈lI)l). The map
lb is defined as (lb0, (fx)x) where lb0 : {∅} → mset{tt, ff} sends ∅ to [tt, ff ], and where
lb∅ : I ⊞ I → I ⊞ I is simply defined as the identity. In the other direction, the M -map
bp → bs consists of the constant set-function on ∅ together with the injections I → I ⊞ I

discussed in Section 3.1.

▶ Remark 16. In Quipper dynamic lifting is implemented in the Circ monad which corresponds
to the strong monad of F in our model. The branching side-effect corresponds to the RW_Read
constructor of the Circ monad.

3.4 Interpreting Typed Terms and Configurations
In this section, we introduce an interpretation of Proto-Quipper-L within the Kleisli category
MF . As it is customary, types are mapped to objects while typing derivations are mapped
to morphisms. When typed terms admit a unique typing derivation this entails a unique
denotation for typed terms. In our situation, due to the promotion and dereliction rules
typing derivations are not necessarily unique: we therefore adjust the statements of the
lemmas and theorems accordingly. However, in the case of values of basic types, thanks to
Remark 3 and the type safety properties, the denotation of closed terms of basic types is
independent from the choice of typing derivation: this gives Corollary 19.

The interpretation [[A]] of a type A is directly built against the categorical structure: [[I]] =
({∅}, (I)), [[bool]] = ({tt, ff}, (I, I)), [[qubit]] = ({∅}, ([q])), [[Aa ⊸ Ab]] = [[Aa]] ⊸

MF

[[Ab]] the

internal hom in the category MF , [[Aa⊗Bb]] = [[Aa]]⊗ [[Ab]], [[!A]] = ![[A]] = (p◦ b)[[A]]. Finally,
for quantum channels we follow Rios&Selinger’s strategy by defining [[QChan(P, B)]] =
p(MF ([[P ]], [[A]])). In our situation, the set MF (A, B) is isomorphic to M(A, B) when A and
B are state objects: in this situation, QChan-types indeed correspond to morphisms of the
category M , i.e. quantum channels: this is used to interpret the box and unbox operators.
The quantum channel constant is just an encapsulation over Definition 13. Finally, a typed
configuration !∆ ⊢ (Q, m) : A is interpreted as the composition of Q (i.e. we first “compute”
Q) followed with the interpretation of M .

▶ Example 17. The term exp of Eq.(1) in Section 1 has for interpretation a morphism
({∅}, (q)) → (mset{(∅, ∅)}, (q)l) defined as (f0, (f∅)) where f0(∅) = [(∅, ∅), (∅, ∅)] and f∅ is
defined as shown in Figure 3b (the dashed lines are meant to be vertical). The bottom
box-node represents the measurement (I ⊞ I being the result) and the upper one the test.
The top result is a ⊞-superposition of 2 copies of q ⊗ I, as expected: these stand for the two
“classical” possibilities.
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In general, soundness of categorical semantics states that the categorical interpretation of
the typing derivation is preserved over the reduction. However, there can be multiple type
derivations for each type judgement, in our type system, because of the reason explained
above. Therefore, in this paper, we show that for a type judgement and a typing derivation,
there exists a particular typing judgement of the reduced type judgement which has the
same interpretation of the original typing derivation.

▶ Theorem 18 (Soundness). For any configurations (Q1, m1) and (Q2, m2) such that
(Q1, m1) −→ (Q2, m2), if ⊢ (Q1, m1) : A, then for any typing derivation π1 of ⊢ (Q1, m1) : A,
there exists a typing derivation π2 of ⊢ (Q2, m2) : A such that [[π1]] = [[π2]].

Finally, from the type safety properties, we can derive the following, making it possible
to define the interpretation of a closed term of basic type.

▶ Corollary 19. All the typing derivations of a closed term of basic type share the same
interpretation.

4 Conclusion

In this paper, we introduce the language Proto-Quipper-L which formalizes several features
of Quipper (dynamic lifting, higher-order function, circuit composition, and branching) while
treating the qubits linearly using the type system. On one hand we propose a type system
and an operational semantics which explains the meaning of programs as a set of reduction
rules. On the other hand, we propose a concrete categorical model of the language which is
proven to be sound, meaning that the semantics is preserved over the operational semantics.

On one side, the model is closely related to models of intuitionistic linear logic. Diagrams
are akin to proof nets: tensor nodes correspond to multiplicative connectives while boxes
correspond to additive connectives. On the other side, they can be considered as an extension
of diagrammatic languages for quantum processes [19].

Our concrete semantics makes it possible to describe a monad, following closely Quipper’s
operational semantics encoded in Haskell’s type system. With this semantics we are able to
answer an open question in the community: finding a categorical representation of dynamic
lifting for a circuit-description language.
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A Operational semantics

A.1 Reduction
The reduction rules for Proto-Quipper-L are defined as follows.

Reduction rules for classical computation. The following rules always hold (b is tt or ff)

(ϵ(W ), (λx.M)V ) −→ (ϵ(W ), M [V/x])
(ϵ(W ), let ⟨x, y⟩ = ⟨V, U⟩ in M) −→ (ϵ(W ), M [V/x, U/y])
(ϵ(W ), if b then Mtt else Mff) −→ (ϵ(W ), Mb)

Reduction rules for circuit operations. Provided that new is an operator that creates free
variables during the computation, meaning that these free variables do not appear in both
classical and quantum contexts and that the term new(P ) is a pattern of same shape as P

made out of these new variables, we have

p = new(P ) Wp = supp(p)
(ϵ(∅), boxP V ) −→ (ϵ(∅), (p, ϵ(Wp), V p))

shape(p) = shape(V ) σ = bind(p, V )
(ϵ(FV(V )), (unbox(p, Q, u))V ) −→ (σ(Q), σ(u))

Structural reduction rule for quantum channel constant. Provided that (Q, m) −→ (Q′, m′),
we have (ϵ(∅), (p, Q, m)) −→ (ϵ(∅), (p, Q′, m′)).

Structural reduction rules for empty quantum channel. Provided that (ϵ(WM ), M) −→
(Q, m), that all(Q) ∩WN = ∅ and that all(Q) ∩WV = ∅, we have

(ϵ(WM ∪WN ), MN) −→ (extend(Q, WN ), mN)
(ϵ(W ∪WV ), V M) −→ (extend(Q, WV ), V m)

(ϵ(WM ∪WN ), ⟨M, N⟩) −→ (extend(Q, WN ), ⟨m, N⟩)
(ϵ(WM ∪WV ), ⟨V, M⟩) −→ (extend(Q, WV ), ⟨V, m⟩)

(ϵ(WM ∪WN ), if M then Ma else Mb)) −→ (extend(Q, WN ), if m then Ma else Mb)
(ϵ(WM ), let ⟨x, y⟩ = M in N) −→ (extend(Q, WN ), let ⟨x, y⟩ = m in N)

We use syntactic sugar combining terms and branching terms, as in mM . It corresponds
to the term constructor applied to every leafs of m, for instance: for m = [[N1, N2], N3],
[[N1, N2], N3]M := [[N1M, N2M ], N3M ].

Structural reduction rules for non-empty quantum channel. Assume that (Q1, ma) −→
(Q3, mc) and (Q2, mb) −→ (Q4, md). Then

((meas w Q1 Q2), [ma, mb]) −→ ((meas w Q3 Q4), [mc, md])
((meas w Q1 Q2), [ma, v]) −→ ((meas w Q3 Q2), [mc, v])
((meas w Q1 Q2), [v, mb]) −→ ((meas w Q1 Q4), [v, md])

(U(W ) Q1, ma) −→ (U(W )Q3, mc)
(init b w Q1, ma) −→ (init b w Q3, mc)

(free w Q1, ma) −→ (free w Q3, mc)
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A.2 Derivation of the example of Example 6

Let us explain how the tree expands as the computation progresses for example 6. First, we
show that ((ϵ{}, init(tt)) −→ ((init true x ϵ{x}, x) as follows.

shape(∗) = shape(∗) σ = bind(∗, ∗)

init(tt) −→ ∗ init true x xx ∼ ∗ init true vd vd
vd

where we let

init(tt) = unbox
(
∗, ∗ init true x x , x

)
(∗).

Then we can show the following reduction:

init(tt) −→ ∗ init true vd vd
vd all(init true vd ϵ{vd}) ∩ {vc} = ∅

⟨init(tt), free(vc)⟩vc −→ init true vd ⟨vd, free(vc)⟩vc vc, vd

meas vc

⟨init(tt), free(vc)⟩

⟨vc, ∗⟩

vc

vc

vc

−→
meas vc

init true vd ⟨vd, free(vc)⟩

⟨vc, ∗⟩vc

v c

vc, vd

vc

Next, we show the last reduction step of the example.

shape(x) = shape(vc) σ = bind(x, vc)

free(vc)vc −→ free vc ∗vc

Recall that

free = unbox
(

x, free x ∗x , ∗
)

.

Then we can show the following reduction:

free(vc)vc −→ free vc ∗vc all(free vc ϵ{}) ∩ {vd} = ∅

⟨vd, free(vc)⟩vc, vd −→ free vc ⟨vd, ∗⟩vc, vd vd

init true vd ⟨vd, free(vc)⟩vc vc, vd −→ init true vd free vc ⟨vd, ∗⟩vc vc, vd vd

meas vc

init true vd ⟨vd, free(vc)⟩

⟨vc, ∗⟩vc

v c

vc, vd

vc

−→
meas vc

init true vd free vc ⟨vd, ∗⟩

⟨vc, ∗⟩vc

v c

vc, vd vd

vc

FSTTCS 2021



51:18 Categorical Model for a Quantum Language with Measurement

B Categorical semantics

B.1 Equivalence of diagrams
Complete list of the equivalence rules that are used to construct the categorical model is
shown in Figure 4.

Figure 4 Equivalence relation of diagrams.
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Table 6 Definition of isomorphism between b(A ⊸
M

B) and M(A, B).

iso−→ : b(A ⊸
M

B)→M(A, B): iso←− : M(A, B)→ b(A ⊸
M

B):

Given (f, df ), which is

f,

, let Given (f0, (fx)X), let

f0 = f and fx = . f = f0 and df =

B.2 Interpretation of type system
For a typing context Γ = x1 : A1, . . . , xk : Ak, assuming the variables are ordered by some
linear order, [[Γ]] = [[A1]] ⊗ . . . ⊗ [[Ak]]. Next, the branching typing context is interpreted
as the coproduct of the objects assigned to the smaller branching typing contexts, namely:
[[γ1, γ2]] = [[γ1]] + [[γ2]]. Lastly, we interpret the typing derivation as a morphism in MF .

B.2.1 Quantum channel types, Box and Unbox
As in [14], we interpret the quantum channel types QChan(A, B) as an object p(MF (A, B)) =
(MF (A, B), (I)) in MF and M . Note that the object is a parameter object as in [14], which
means that the object has the form of (X, (I)X) for some X. When we define the quantum
channel types QChan(A, B) as a parameter object, box and unbox can be interpreted based
on an isomorphism between the set b(A ⊸

M
B) and M(A, B). In specific, we can define an

isomorphism as in Table 6.
Given the isomorphism, we can define the morphisms for box and unbox as morphisms in

M as follows:

unbox = p(M(A, F (B)) p(iso−→)−−−−−→ (p ◦ b)(A ⊸
M

F (B))
ϵ(A⊸

M
F (B))

−−−−−−−−−→ (A ⊸
M

F (B))

box = (p ◦ b)(A ⊸
M

F (B)) p(iso←−)−−−−−→ p(M(A, F (B)))

p(η(M(A,F (B))))−−−−−−−−−−−→ (p ◦ b ◦ p)(M(A, F (B))).

where ϵ refers to the counit from the comonad !.

B.2.2 Quantum channel constants
We define a natural transformations called bif and merge for the measurement as in Table 7.

A quantum channel Q is interpreted as a morphism [[in(Q)]] −→
MF

[[out(Q)]], where

[[in(Q)]] = ({∅}, ([q]⊗|in(Q)|))

[[out(Q)]] =
{

({∅}, ([q]⊗|V |)) if out(Q) is a set V

[[o1]] + [[o2]] if out(Q) = [o1, o2]
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Table 7 Definition of bif and merge.

bif(A) : A −→
MF

A + A merge(A, B) : F (A) + F (B) −→
MF

A + B

For an object A = (X, (Ax)), we let

bif(X, (Ax)) =(
{x 7→ [(0, x), (1, x)]},

(fx : Ax → A⊗
x ⊞ A⊗

x )

)

where fx = .

For objects A, B, we let

merge(A, B) = ({
(0, [x1, . . . , xk]) 7→ [(0, x1), . . . , (0, xk)],
(1, [y1, . . . , yn]) 7→ [(1, y1), . . . , (1, yn)]},
(id[⊞x∈lA⊗

x ])l:mset(X)

++(id[⊞y∈lB⊗
y ])l:mset(Y ))

It satisfies the following commute diagram
for naturality:

It satisfies the following commute diagram
for naturality:

A F (A + A)

B F (B + B)

f

bif(A)

F (f+f)

bif(B)

F (A) + F (B) F (A + B)

F (A′) + F (B′) F (A′ + B′)

F (f)+F (g)

merge(A,B)

F (f+g)

merge(A′,B′)

Table 8 Interpretation of quantum channel constants.

[[ϵ(V )]] = η({∅}, ([q]⊗|V |))

[[U(V1) Q]] = [[Q]] ◦ [[U(V1)]]0

[[free v Q]] = [[Q]] ◦ [[free(V )]]0

[[init b v Q]] = [[Q]] ◦ [[init(b, v)]]0

[[meas v Q1 Q2]] =

[[in(meas v Q1 Q2)]]

F (F [[out(Q1)]] + F [[out(Q2)]])

F ([[out(Q1)]] + [[out(Q2)]])

bif;F

(
[[Q1]]◦[[meas(v,0)]]0

+[[Q2]]◦[[meas(v,1)]]0

)
F (merge);µ

where

The interpretation of quantum channel is defined inductively as in Table 8 where µ

represents the multiplication of the monad F . In addition, the elementary nodes in Table 8–
(U(V1)), (free v), (| b⟩, v) and (⟨b |, v)–refers to the unitary gate node U (which is either
1 or 2-qubits gate) applied to wires V1, tr node applied to wire v, and ⟨b| and |b⟩ nodes
applied to wire v, respectively.
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