Report from Dagstuhl Seminar 21292

Scalable Handling of Effects

Edited by

Danel Ahman', Amal Ahmed?, Sam Lindley3, and
Andreas Rossberg?

University of Ljubljana, SI, danel.ahman@fmf.uni-1j.si
Northeastern University — Boston, US, amal@ccs.neu.edu
University of Edinburgh, GB, sam.lindley@ed.ac.uk
Dfinity — Ziirich, CH, rossberg@mpi-sws.org

W N =

—— Abstract

Built on solid mathematical foundations, effect handlers offer a uniform and elegant approach

to programming with user-defined computational effects. They subsume many widely used
programming concepts and abstractions, such as actors, async/await, backtracking, coroutines,
generators/iterators, and probabilistic programming. As such, they allow language implementers
to target a single implementation of effect handlers, freeing language implementers from having
to maintain separate ad hoc implementations of each of the features listed above.

Due to their wide applicability, effect handlers are enjoying growing interest in academia
and industry. For instance, several effect handler oriented research languages are under active
development (such as Eff, Frank, and Koka), as are effect handler libraries for mainstream languages
(such as C and Java), effect handlers are seeing increasing use in probabilistic programming tools
(such as Uber’s Pyro), and proposals are in the pipeline to include them natively in low-level
languages (such as WebAssembly). Effect handlers are also a key part of Multicore OCaml,
which incorporates an efficient implementation of them for uniformly expressing user-definable
concurrency models in the language.

However, enabling effect handlers to scale requires tackling some hard problems, both in theory
and in practice. Inspired by experience of developing, programming with, and reasoning about
effect handlers in practice, we identify five key problem areas to be addressed at this Dagstuhl
Seminar in order to enable effect handlers to scale: Safety, Modularity, Interoperability, Legibility,
and Efficiency. In particular, we seek answers to the following questions:

How can we enforce safe interaction between effect handler programs and external resources?

How can we enable modular use of effect handlers for programming in the large?

How can we support interoperable effect handler programs written in different languages?

How can we write legible effect handler programs in a style accessible to mainstream program-

mers?

How can we generate efficient code from effect handler programs?

Seminar July 18-23, 2021 — http://www.dagstuhl.de/21292

2012 ACM Subject Classification Theory of computation — Control primitives; Theory of
computation — Program semantics

Keywords and phrases continuations, Effect handlers, Wasm

Digital Object Identifier 10.4230/DagRep.11.7.54

Edited in cooperation with Hillerstrém, Daniel

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 4.0 International license
Scalable Handling of Effects, Dagstuhl Reports, Vol. 11, Issue 06, pp. 54-81
Editors: Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

\\v pagstupL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21292
https://doi.org/10.4230/DagRep.11.7.54
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

1 Executive Summary

Danel Ahman (University of Ljubljana, SI)

Amal Ahmed (Northeastern University — Boston, US)
Sam Lindley (University of Edinburgh, GB)

Andreas Rossberg (Dfinity — Ziirich, CH)

License @ Creative Commons BY 4.0 International license
© Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

Algebraic effects and effect handlers are currently enjoying significant interest in both academia
and industry as a modular programming abstraction for expressing and incorporating user-
defined computational effects in programming languages. For example, there are a number
of effect handler oriented languages in development (such as Eff, Frank, and Koka); there
exist effect handler libraries for mainstream languages (such as C and Java); effect handlers
are a key part of languages such as Multicore OCaml (and indeed they are due to appear in
the production release of OCaml next year); effect handlers are being increasingly used in
statistical probabilistic programming (such as Uber’s Pyro tool); and proposals are in the
works to include effect handlers in new low-level languages (such as WebAssembly). While
effect handlers have solid mathematical foundations and have been extensively experimented
in prototype languages and on smaller examples, enabling effect handlers to scale still requires
tackling some hard problems. To this end, this Dagstuhl Seminar 21292 “Scalable Handling
of Effects” focused on addressing the following key problem areas for scalability: Safety,
Modularity, Interoperability, Legibility, and Efficiency.

This seminar followed the earlier successful Dagstuhl Seminars 16112 “From Theory
to Practice of Algebraic Effects and Handlers” and 18172 “Algebraic Effect Handlers go
Mainstream”, which were respectively dedicated to the foundations of algebraic effects and
to the introduction of them into mainstream languages. In contrast to these previous two
seminars which took place in person at Schloss Dagstuhl, the current seminar was organised
fully online due to the SARS-CoV-2 pandemic. As the seminar was attended by participants
from a wide range of time zones (ranging from the West coast of the US all the way to
Japan), coming up with a schedule that was suitable for everybody was a challenge. In
the end, we decided to have three scheduled two-hour sessions each day, with impromptu
informal discussions also happening between-times. These sessions were: (i) 15:00-17:00
CEST, which were deemed the Core Hours, where all participants were most likely to be able
to present; (ii) 10:00-12:00 CEST, which was most suitable for participants from Asia and
Europe; and (iii) 17:30-19:30 CEST, which was most suitable for participants from America
and Europe. The Core Hours included talks, breakouts, and discussions of interest to the
widest audience, with more specialised talks and breakouts taking place in the other two
daily scheduled blocks. Talks were recorded so that participants could catch up due to being
in an incompatible time zone, then deleted at the end of the week.

In order to run a successful virtual Dagstuhl seminar we exploited several different
technologies. For talks we used Zoom. For breakouts we used a combination of Zoom and
Gather.town, and for asynchronous communication and further discussions we used Zulip.
For scheduling purposes, we used the wiki page provided by Dagstuhl.

We collected initial lists of proposed talks and breakout topics before the seminar began
using an online form. We extended these throughout the week. We scheduled talks and
breakout groups daily depending on audience interest and the participant availability. While
the first part of the week was dominated by talks, the second part of the week saw more
emphasis on breakouts and discussions. During Friday’s Core Hours, the leaders of each

55

21292

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

56

21292 — Scalable Handling of Effects

breakout group presented a short overview of the discussions and results (11 reports in total).
Initially, we were a little unsure about how well breakout sessions would work in a virtual
seminar, but as the week went on they became more and more popular and they seemed to
go remarkably well. Initially, we mostly used Gather.town and its virtual whiteboards for
the breakout sessions. Subsequently, we transitioned to mostly using Zoom breakout rooms
(partly because some people had difficulty using Gather.town on their systems).

The seminar was a great success, particularly given the constraints of the virtual format.

There were vibrant discussions around multishot continuations. These are vital for
exciting new applications such as probabilistic programming and automatic differentiation,
but more research is needed on how to implement them safely and efficiently in different
contexts. Flipping perspective, it was mooted that for certain applications, particularly
those involving direct interaction with the external world, it might be worthwhile restricting
attention to runners, which are even more constrained than effect handlers with singleshot
continuations.

There were several discussions relating to usability of effect handlers. These resulted in
proposals to design a lecture course on effect handlers and to write a book on how to design
effectful programs.

A major area of interest instigated at a prior Dagstuhl Seminar (18172 “Algebraic Effect
Handlers go Mainstream”) is the addition of effect handlers to WebAssembly. A design
is being actively worked on as part of the official WebAssembly development process. At
the current seminar we worked out extensions to the existing proposal to accommodate
named effect handlers and symmetric stack-switching, both of which promise more efficient
execution.

An issue with many existing benchmarks for effect handlers is that they often require
installing a range of experimental software and configuring it with just the right settings. In
order to make it easier to compare systems and share experimental setups we created the
effect handlers benchmarks suite — a repository of benchmarks and systems covering effects
and handlers in various programming languages, based on Docker scripts that make it easy
for anyone to run the benchmarks and adapt them for their own research. The repository is
hosted on GitHub. Since the seminar, 5 systems have been added to the repository and it
has been actively updated and maintained by different members of the community.

At the end of the week, there was strong interest among the participants to continue this
successful seminar series and submit a proposal for another incarnation, hopefully possible
to take place on site in about two years.

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

2 Table of Contents

Executive Summary
Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

Overview of Talks

(Higher-Order) Asynchronous Effects
Danel Ahman

The real world cannot be handled
Andrej Bauer e e e

Taming Higher-Order Control and State with Precise Effect Dependencies
Oliver Bracevac it e e e

Higher-order Programming with Effects and Handlers — with First-Class Functions
Jonathan Immanuel Brachthduser 0.

A Separation Logic for Effect Handlers
Paulo Emilio de Vilhena e e e

Problems with resources and effects
Stephen Dolan e

Probabilistic Programming
Maria Gorinova o v o e e e e e

Composing UNIX with Effect Handlers
Daniel Hillerstrom o o e e e e e e e e e e

ParaFuzz: Fuzzing Multicore OCaml Programs
Sivaramakrishnan Krishnamoorthy Chandrasekaran

Retrofitting Effect Handlers onto OCaml
Stvaramakrishnan Krishnamoorthy Chandrasekaran

Koka update: Compilation to C via generalized evidence passing and Perceus
reference counting.
Daan Leijen o o e e e e e e e

Handler Calculus
Sam Lindley

Efficient Compilation of Algebraic Effect Handlers
Matija Pretnar o e e

Programming and Proving with Indexed effects in F*
Aseem Rastogi and Nikhil Swamy

Low-level effect handlers for Wasm
Andreas Rossberg

Back to Direct Style 3
Philipp Schuster e

CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism
Taro Sekiyamao

Effects with Shifted Names in OCaml
Antal Spector-Zabusky

57

21292

58 21292 — Scalable Handling of Effects

Effects, Interface Types and async APIs
Luke Wagner e e e 76

Working groups

Control Operators Breakout Session
Jonathan Immanuel Brachthduser, Youyou Cong, Sam Lindley, and Taro Sekiyama 76

UX of Effect Systems Breakout Session
Jonathan Immanuel Brachthduser, Youyou Cong, Paulo Emilio de Vilhena, and
Filip Koprivec 0 o i e e e e e 77

Effect Handlers Benchmark Suite
Daniel Hillerstrom e e e s

Wasm breakout session
Andreas Rossberg, Sam Lindley, and Luke Wagner 78

Dependent types breakout session
Wouter Swierstra and Robert Atkeyo 80

Open problems

Efficient stack layout for multishot handlers
Filip Koprivec 80

Participants 81

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

3 Overview of Talks

3.1 (Higher-Order) Asynchronous Effects
Danel Ahman (University of Ljubljana, SI)

License @ Creative Commons BY 4.0 International license
© Danel Ahman
Joint work of Danel Ahman, Matija Pretnar, Janez Radescek

While covering a large body of examples, the operational treatment of algebraic effects has
remained synchronous in nature, meaning that when executing code in a language with
algebraic effects, an algebraic operation op’s continuation is blocked until (i) op is propagated
to some implementation of it (such as an effect handler, a runner [1], or some top-level default
implementation), (ii) that implementation finishes executing, and (iii) the original program
is interrupted with the implementation’s result. In this talk, I gave an overview of our work
on accommodating asynchrony within algebraic effects based on observing that the different
phases (i)—(iii) of an algebraic operation’s execution can be split into separate programming
abstractions.

The first half of the talk was based on our recent paper [2]. In this part of the talk, I
showed how the different phases (i)—(iii) can be captured in a core A-calculus for asynchrony
using the following programming abstractions:

stgnals, which programmers can issue to indicate that some operation’s implementation

needs to be executed, and that behave operationally like algebraic operations (in that

they propagate outwards);

interrupts, which are propagated to a program as a result of some other program issuing

a corresponding signal, and that behave operationally like effect handling (in that they

propagate inwards);

interrupt handlers, which programmers can use to react to interrupts, and that (despite

their name) behave like (scoped [4]) algebraic operations (in that they propagate outwards,

just like signals); and

awaiting, with which programmers can selectively block a program’s execution by explicitly

awaiting for one of the promises made by interrupt handlers to be fulfilled.

The resulting system achieves asynchrony by ensuring that signals, interrupts, and interrupt
handlers never block the execution of their continuations (apart from when asked to do so by
explicitly awaiting). In order to model a program’s environment, such as the implementation

of some algebraic operation, our core calculus also included a simple form of parallel processes.

In the talk I also demonstrated the wide applicability of the proposed system: not only can we
implement tail-resumptive algebraic operation calls, but we can also implement much more
involved examples, such as (cancellable) remote function calls, multi-party web applications,
non-blocking post-processing of promises, and preemptive multi-tasking.

In the second part of the talk, I presented our ongoing work on resolving the shortcomings
we have since identified in our original system. These included: needing general recursion in
the core calculus due to its heavy usage in examples; not being able to pass higher-order
values in the payloads of signals and interrupts so as to ensure type safety; and not being
able to dynamically spawn new parallel processes. First, in order to remove general recursion
from the core calculus, we extended interrupt handlers to a notion of reinstallable interrupt
handlers, in which the interrupt handler code is allowed to selectively reinstall the given
interrupt handler, covering the uses of general recursion in our example programs. Next,
in order to support higher-order signal and interrupt payloads in a type-safe manner, we

59

21292

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

60

21292 — Scalable Handling of Effects

extended our core calculus and the allowed payload types with a Fitch-style modal O-type [3],
with which one can box up values of arbitrary types as payloads, while the type system
guarantees that these values do not refer to any promise-typed binders in interrupt handlers
(whose scope such payloads need to be able to escape). Finally, we also extended the core
calculus with a programming abstraction for spawning new parallel processes, again using
the technology involved in Fitch-style modal types to ensure type safety.

References

1 Ahman D., Bauer A. (2020) Runners in Action. In: Miiller P. (eds) Programming Languages
and Systems. ESOP 2020. Lecture Notes in Computer Science, vol 12075. Springer, Cham.

2 Danel Ahman and Matija Pretnar. 2021. Asynchronous effects. Proc. ACM Program. Lang.
5, POPL, Article 24 (January 2021), 28 pages.

3 Clouston R. (2018) Fitch-Style Modal Lambda Calculi. In: Baier C., Dal Lago U. (eds)
Foundations of Software Science and Computation Structures. FoSSaCS 2018. Lecture Notes
in Computer Science, vol 10803. Springer, Cham.

4 Maciej Pirég, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. 2018. Syntax and Semantics
for Operations with Scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS ’18). Association for Computing Machinery, New York,
NY, USA, 809-818.

3.2 The real world cannot be handled
Andrej Bauer (University of Ljubljana, SI)

License) Creative Commons BY 4.0 International license
© Andrej Bauer
Joint work of Danel Ahman, Andrej Bauer
Main reference Danel Ahman, Andrej Bauer: “Runners in Action”, in Proc. of the Programming Languages and
Systems — 29th European Symposium on Programming, ESOP 2020, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Lecture Notes in Computer Science, Vol. 12075, pp. 29-55, Springer, 2020.
URL https://doi.org/10.1007/978-3-030-44914-8 2

The language top level, or its runtime environment, is the interface to external resources,
which are not subject to the usual rules of handlers or a monad in the language, and therefore
should not be modeled as such. We should take the question “how to properly model and
implement the runtime environment” seriously and apply available technology to develop
modular and conceptually clean notion of “runtime environment”. One such proposal was
made by Danel Ahman and myself in our “Runners in action” paper. I would like to take
the opportunity to discuss alternatives and to advertise the question as an interesting and
important one.

3.3 Taming Higher-Order Control and State with Precise Effect
Dependencies

Oliver Bracevac (Purdue University — West Lafayette, US)

License @ Creative Commons BY 4.0 International license
© Oliver Bracevac

This talk presents a novel ownership-style type system that tracks sets of term variables and
assigns per-variable usage effects (e.g., reads, writes, kills) as determined by a user-defined
effect quantale structure. For instance, through “kill effects,” we support linear tracking

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://doi.org/10.1007/978-3-030-44914-8_2
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

of destructive updates to convert data structures between mutable and immutable accesses
without copying. Compared to previous works on ownership, our system has a particularly
lightweight type- and term-level footprint due subtyping and Scala/DOT-style abstract
“self-aliases” to model escaping closures. Combining ownership-style reasoning and effects
opens up interesting new avenues for the compilation of impure higher-order languages. Our
type system gives rise to a novel typed graph IR that infers precise local effect dependencies,
finally leading to affordable and aggressive global optimizations for impure higher-order
programs. The graph IR is part of the newest version of the Scala LMS compiler framework
and its optimizations enable significant speedups in real-world effectful programs.

3.4 Higher-order Programming with Effects and Handlers — with
First-Class Functions

Jonathan Immanuel Brachthduser (EPFL — Lausanne, CH)

License @ Creative Commons BY 4.0 International license
© Jonathan Immanuel Brachthéuser
Joint work of Jonathan Immanuel Brachthauser, Philipp Schuster, Edward Lee, Aleksander Boruch-Gruszecki
Main reference Jonathan Immanuel Brachthduser, Philipp Schuster, Klaus Ostermann: “Effects as capabilities:
effect handlers and lightweight effect polymorphism”, Proc. ACM Program. Lang., Vol. 4(OOPSLA),
pp. 126:1-126:30, 2020.
URL https://doi.org/10.1145/3428194

3.4.1 Introduction

Reasoning about the use of external resources is an important aspect of many practical
applications. Examples range from memory management, controlling access to privileged
resources like file handles or sockets, to analyzing the potential presence or absence of side
effects.

3.4.1.1 Effect Systems encourage type-based reasoning

Effect systems extend the static guarantees of type systems to additionally track the use
of effects [3]. They typically augment the type of functions with information about which
effects the function might use. The fundamental idea of enhancing types with additional
information is also one of the biggest problems of effect systems. Types quickly become
verbose, difficult to understand, and difficult to reason about — especially in the presence of
effect-polymorphic higher-order functions [7, 6, 1].

3.4.1.2 Capabilities encourage scope-based reasoning

Capabilities offer an alternative way to control the way resources are used. In this model,
one can access resources and effects only through capabilities [4]. Thus, restricting access
to capabilities restricts effects: a program can only perform effects of capabilities it can
use. Some capabilities have a limited lifetime and should not leave a particular scope — for
instance, if they are used to emulate checked exceptions. In these cases, treating capabilities
as second-class values [5] provides such static guarantees. From a language designer’s
perspective, capabilities and second-class values offer an interesting alternative to effect

systems: programmers can reason about effects the same way they reason about bindings.

Additionally, second-class values admit a lightweight form of effect polymorphism without
extending the language with effect variables or effect abstraction [1]. While lightweight, such
systems severely restrict expressivity.

61

21292

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194

62

21292 — Scalable Handling of Effects

3.4.2 Comonadic type systems enable transitioning between type-based and
scope-based reasoning

These systems allow programmers to reason about purity in an impure languages [2]. A
special type constructor Safe witnesses the fact that its values are constructed without
using any (impure) capabilities. Values of type Safe are introduced and eliminated with
special language constructs. Importantly, explicit box introduction and elimination marks
the transition between reasoning about effects by which capabilities are currently in scope,
and reasoning about effects by types that witness the potential use of capabilities (that is,
impurity). The type system presented by [2] only supports a binary distinction between pure
values and impure values, which is not fine-grained enough for many practical applications —
for instance, effect masking, or local handling of effects.

3.4.3 This Talk

In this talk, we draw inspiration from all three lines of research and present a calculus System
C that aims at striking the balance between expressivity and simplicity. In particular, we
combine and generalize the work by [5] and [2] to obtain a lightweight, capability-based
alternative to effect systems. System C is based on the following design decisions:

3.4.3.1 Second-class values

Following [5], we distinguish between functions that can be treated as first-class values,
and functions that are second-class. (To highlight this difference, we explicitly refer to
second-class functions as blocks.) Thus, we avoid confronting programmers with the ceremony
associated with tracking capabilities in types as much as possible. In particular, blocks can
freely close over capabilities and effectful computations can simply use all capabilities in
their lexical scope, with no visible type-level machinery to keep track of either fact.

3.4.3.2 Capability sets

Based on the work by [5] we annotate each binding in the typing context with additional
information. However, we do not only track whether a bound variable is first- or second-class,
but also track over which capabilities it closes. That is, we augment bindings (e.g., f :¢ o) in
the typing context with capability sets (e.g., C). This information is annotated at the binder
and is not part of the type. We will see that this is important for ergonomics as users are
never confronted with this information. It is only necessary to check and guarantee effect
safety.

3.4.3.3 Boxes

Blocks can freely close over other capabilities. However, they cannot be returned from a
function or stored in a field. To recover these abilities we generalize the work by [2]: System
C features explicit boxing and unboxing language constructs. Boxing converts a second-class
value to a first-class value, reifying the contextual information annotated on the binder
into the boxed value’s type (e.g., f :© o F box f : catC). That is, instead of completely
preventing first-class values from closing over capabilities, the capabilities they closed over
are tracked in their types. To use a boxed block, we have to unbox it. We make sure to only
perform this operation when the capabilities (e.g., C) are still in scope, which guarantees
effect safety. The box and unbox constructs allow programmers to freely move between
tracking capabilities implicitly, via scope, or explicitly, via type.

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

3.4.4 Discussion

In the talk, we will show how natural scope-based reasoning and precise type-based reasoning
can co-exist in the same language and how programs can switch between them. We initially
developed System C as a basis for adding first-class functions back to the Effekt language
[1] — hence the title of this proposal. However, we believe that our system has broader
applicability and we invite the participants to discuss the calculus, its limitations, and areas
of application.

References

1 Jonathan Immanuel Brachthéuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as
Capabilities: Effect Handlers and Lightweight Effect Polymorphism. Proc. ACM Program.
Lang. 4, OOPSLA, Article 126 (Nov. 2020).

2 Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering Purity with Comonads
and Capabilities. Proc. ACM Program. Lang. 4, ICFP, Article 111 (Aug. 2020).

3 J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In Proc. of the
Symposium on Principles of Programming Languages (POPL ’88). ACM, New York, NY,
USA, 47-57.

4 Mark Samuel Miller. 2006. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. Ph.D. Dissertation. Johns Hopkins University, Baltimore,
Maryland, USA. AAI3245526.

5 Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I Gonzélez Alayén, and Tiark Rompf. 2016.
Gentrification gone too far? affordable 2nd-class values for fun and (co-) effect. In Proc. of
the Conference on Object-Oriented Programming, Systems, Languages and Applications.
ACM, New York, NY, USA, 234-251.

6 Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight Polymorphic Effects. In
Proc. of the European Conference on Object-Oriented Programming, James Noble (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 258-282.

7 Yizhou Zhang, Guido Salvaneschi, Quinn Beightol, Barbara Liskov, and Andrew C. Myers.
2016. Accepting Blame for Safe Tunneled Exceptions. In Proc. of the Conference on
Programming Language Design and Implementation. ACM, New York, NY, USA, 281-295.

3.5 A Separation Logic for Effect Handlers
Paulo Emdlio de Vilhena (INRIA — Paris, FR)

License @@ Creative Commons BY 4.0 International license
© Paulo Emilio de Vilhena
Joint work of Paulo Emilio de Vilhena, Frangois Pottier
Main reference Paulo Emilio de Vilhena, Frangois Pottier: “A separation logic for effect handlers”, Proc. ACM
Program. Lang., Vol. 5(POPL), pp. 1-28, 2021.
URL https://doi.org/10.1145/3434314

A program logic is a pair of a language, for writing the specification of a program, and a
set of inference rules, for proving such specifications. In this talk, I present a program logic
for a programming language with support for both effect handlers and higher-order state. 1
will begin with the motivation for this line of work — why is it interesting, or even useful,
to conduct this research? I will then give an overview of the logic — how does it extend
previous logics and what are its novel notions and main reasoning principles? Finally, T will
present my vision for future research based upon this work: the verification of interesting
applications of handlers, the design of extensions of the logic and its application to the study
of effect systems.

63

21292

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3434314

64

21292 — Scalable Handling of Effects

3.6 Problems with resources and effects

Stephen Dolan (Jane Street — London, GB)

License @ Creative Commons BY 4.0 International license
© Stephen Dolan

Two useful applications for effects are in controlling nondeterministic search (using continu-
ations that are resumed multiple times), and organising programs that use asynchronous
I/O (which manipulate stateful resources).

Problems arise when trying to do both in the same language: it is difficult to maintain
guarantees of linearity and uniqueness in the presence of continuations that may resume
more than once. I will present several tricky programs that mix these features, explain
the problems they pose for the current crop of type systems, and leave their solution as a
challenge for the audience.

3.7 Probabilistic Programming
Maria Gorinova (University of Edinburgh, GB)

License) Creative Commons BY 4.0 International license
© Maria Gorinova

Probabilistic programming aims to democratise Bayesian statistics and inference by providing
a programming interface to the problem of probabilistic modelling. The user can specify
their model, typically by describing the generative process of the data, and, in a perfect
world, obtain inference results automatically. However, Bayesian inference is a challenging
task, and it often needs to be tailored to the specific model in order to be efficient.

In this talk, I will discuss how effect handlers have been utilised to implement the backend
of a few probabilistic programming languages, including Edward2 and Pyro. I will give several
examples of common to probabilistic programming model transformation, which can be easily
and compactly implemented using effect handlers. I will argue that such an effect-handling
based backed provides the right set of abstractions for probabilistic programming users to be
able to write and optimise model-specific and efficient inference strategies.

3.8 Composing UNIX with Effect Handlers
Daniel Hillerstrom (University of Edinburgh, GB)

License) Creative Commons BY 4.0 International license
© Daniel Hillerstrom
URL https://www.youtube.com/watch?v=Ye90HCCG-UA

3.8.1 Introduction

In functional programming effect handlers are often explained in terms of folds or case-
splits over computational trees (depending on whether the handlers in question are deep
or shallow) [7, 11, 12]. In imperative programming effect handlers are often explained as
a slight operational extension of exception handlers endowed with the ability to resume
exception-raising computations [10]. A compelling programming paradigm-agnostic way to
explain effect handlers is to explain them as tiny composable operating systems, where we

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.youtube.com/watch?v=Ye90HCCG-UA

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

may view effectful operations as system calls, whose implementations are given by the ambient
environment. In this analogy effect handlers play the role as the ambient environment. A
richer ambient environment may be obtained by composing ever so more effect handlers.
One can take this analogy quite literally, and use it to model the essence of an operating
system such as UNIX by extending a feature-limited basis with more features by composing
more handlers.

In the following sections we will demonstrate how to use effect handlers to model the
essence of an UNIX-y operating system, which we shall call Tiny UNIX (the following sections
are excerpts from my PhD dissertation [15]).

3.8.2 Basici/o

The file system is a cornerstone of UNIX as the notion of file in UNIX provides a unified
abstraction for storing text, interprocess communication, and access to devices such as
terminals, printers, network, etc. We shall take a rather basic view of the file system. In fact,
our system shall only contain a single file, and moreover, the system will only support writing
operations. This system hardly qualifies as a UNIX file system. Nevertheless, it suffices to
demonstrate the core idea, and it is not too difficult to grow it into a model of an actual
file system [15]. The basic file system serves a crucial role for development of Tiny UNIX,
because it provides the only means for us to be able to observe the effects of processes.

As in UNIX we shall model a file as a list of characters, i.e. File := List Char. We will use
the same model for strings, String := List Char, such that we can use string literal notation
to denote the "contents of a file". The signature of the basic file system will consist of
a single operation Write for writing a list of characters to the file.

BIO := {Write : (FileDescr; String) — 1}

The operation is parameterised by a FileDescr and a character sequence. In this note,
we will leave the details of FileDescr abstract as they are really only necessary when one
considers a file system with multiple distinct files. We shall assume the existence of a term
stdout : FileDescr such that we can perform invocations of Write. Let us define a suitable
handler for this operation.

basiclO : (1 — a!BIO) — (a; File)
basiclO m := handle m () with
return res — (res; [])
(Write (_;cs) — resume) — let (res; file) = resume () in
(res; cs +- file)

The handler takes as input a computation that produces some value a, and in doing so may
perform the BIO effect. The handler ultimately returns a pair consisting of the return value
«a and the final state of the file. The return-case pairs the result res with the empty file
[] which models the scenario where the computation m performed no Write-operations, e.g.
basiclO (A().()) ~T ({);""). The Write-case extends the file by first invoking the resumption,
whose return type is the same as the handler’s return type, thus it returns a pair containing
the result of m and the file state. The file gets extended with the character sequence cs
before it is returned along with the original result of m. Intuitively, we may think of this
implementation of Write as a peculiar instance of buffered writing, where the contents of the
operation are committed to the file when the computation m finishes.
Let us define an auxiliary function that writes a string to the stdout file.

echo : String — 1! BIO
echo ¢s := do Write (stdout; cs)

65

21292

66

21292 — Scalable Handling of Effects

The function echo is a simple wrapper around an invocation of Write. We can now write
some contents to the file and observe the effects.

basiclO (A().echo "Hello";echo "World")
~T((); "HelloWorld") : (1;File)

3.8.3 Exceptions: non-local exits

A process may terminate successfully by running to completion, or it may terminate with
success or failure in the middle of some computation by performing an exit system call. The
exit system call is typically parameterised by an integer value intended to indicate whether
the exit was due to success or failure. By convention, UNIX interprets the integer zero as
success and any nonzero integer as failure, where the specific value is supposed to correspond
to some known error code.

We can model the exit system call by way of a single operation Exit.

Status := {Exit : Int — 0}

The operation is parameterised by an integer value, however, an invocation of Exit can never
return, because the type 0 is uninhabited. Thus Exit acts like an exception. It is convenient
to abstract invocations of Exit to make it possible to invoke the operation in any context.

exit : Int — «!Status
exit n := absurd (do Exit n)

The absurd computation term is used to coerce the return type 0 of Exit into «. This
coercion is safe, because 0 is an uninhabited type. An interpretation of Exit amounts to
implementing an exception handler.

status : (1 — a!Status) — Int

status m := handle m () with
return _ +— 0
(Exit n) —n

Following the UNIX convention, the return-case interprets a successful completion of m as
the integer 0. The operation case returns whatever payload the Exit operation was carrying.
As a consequence, outside of status, an invocation of Exit 0 in m is indistinguishable from m
returning normally, e.g. status (A().exit 0) = status (A().()).

To illustrate status and exit in action consider the following example, where the computa-
tion gets terminated mid-way.

basiclO (A().status (A().echo "dead";exit 1;echo "code"))
~T (1;"dead") : {Int; File)

The (delimited) continuation of exit 1 is effectively dead code. Here, we have a choice as
to how we compose the handlers. Swapping the order of handlers would cause the whole
computation to return just 1 : Int, because the status handler discards the return value of
its computation. Thus with the alternative layering of handlers the system would throw
away the file state after the computation finishes. However, in this particular instance the
semantics the (local) behaviour of the operations Write and Exit would be unaffected if the
handlers were swapped. In general the behaviour of operations may be affected by the order
of handlers. The canonical example of this phenomenon is the composition of nondeterminism
and state, which we will discuss in Section 3.8.2.

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

3.8.4 Dynamic binding: user-specific environments

When a process is run in UNIX, the operating system makes available to the process a
collection of name-value pairs called the environment. The name of a name-value pair is
known as an environment variable. During execution the process may perform a system
call to ask the operating system for the value of some environment variable. The value of
environment variables may change throughout process execution, moreover, the value of
some environment variables may vary according to which user asks the environment. For
example, an environment may contain the environment variable USER that is bound to the
name of the enquiring user.

An environment variable can be viewed as an instance of dynamic binding. It is well-
known that dynamic binding can be encoded as a computational effect by using delimited
control [6]. Unsurprisingly, we will use this insight to simulate user-specific environments
using effect handlers.

For simplicity we fix the users of the operating system to be root, Alice, and Bob.

User := [Alice; Bob; Root]

Our environment will only support a single environment variable intended to store the
name of the current user. The value of this variable can be accessed via an operation
Ask : 1 — String. Using this operation we can readily implement the whoams utility from the
GNU coreutils [14, Section 20.3], which returns the name of the current user.

whoami : 1 — String!{Ask : 1 — String}
whoami () := do Ask ()

The following handler implements the environment.

env : (User; 1 — al{Ask : 1 — String}) — «
env (user;m) := handle m () with
return res — res
(Ask () — resume) — case user {Alice — resume "alice"
Bob +— resume "bob"
Root — resume "root"

The handler takes as input the current user and a computation that may perform the Ask
operation. When an invocation of Ask occurs the handler pattern matches on the user
parameter and resumes with a string representation of the user. With this implementation
we can interpret an application of whoami.

env (Root; whoami) ~»* "root" : String

It is not difficult to extend this basic environment model to support an arbitrary number of
variables. This can be done by parameterising the Ask operation by some name representation
(e.g. a string), which the environment handler can use to index into a list of string values.
In case the name is unbound the environment, the handler can embrace the laissez-faire
attitude of UNIX and resume with the empty string.

3.8.4.1 User session management

It is somewhat pointless to have multiple user-specific environments, if the system does
not support some mechanism for user session handling, such as signing in as a different
user. In UNIX the command substitute user (su) enables the invoker to impersonate another

67

21292

68

21292 — Scalable Handling of Effects

user account, provided the invoker has sufficient privileges. We will implement su as an
operation Su : User — 1 which is parameterised by the user to be impersonated. To model
the security aspects of su, we will use the weakest possible security model: unconditional
trust. Put differently, we will not bother with security at all to keep things relatively simple.
Consequently, anyone can impersonate anyone else.

The session signature consists of two operations, Ask, which we used above, and Su, for
switching user.

Session := {Ask : 1 — String; Su : User — 1}
As usual, we define a small wrapper around invocations of Su.

su : User — 11{Su : User — 1}
su user := do Su user

The intended operational behaviour of an invocation of Su user is to load the environment
belonging to user and continue the continuation under this environment. We can achieve
this behaviour by defining a handler for Su that invokes the provided resumption under a
fresh instance of the env handler.

sessionmgr : (User; 1 — «!Session) — «
sessionmgr (user; m) := env{user; (A().handle m () with
return res — res
{Su user’ — resume) — env{user’; resume)))

The function sessionmgr manages a user session. It takes two arguments: the initial user
(user) and the computation (m) to run in the current session. An initial instance of env is
installed with user as argument. The computation argument is a handler for Su enclosing
the computation m. The Su-case installs a new instance of env, which is the environment
belonging to user’, and runs the resumption resume under this instance. The new instance
of env shadows the initial instance, and therefore it will intercept and handle any subsequent
invocations of Ask arising from running the resumption. A subsequent invocation of Su
will install another environment instance, which will shadow both the previously installed
instance and the initial instance.

To make this concrete, let us plug together the all components of our system we have
defined thus far.

basiclO (A().
sessionmgr (Root; A().
status (A().su Alice; echo (whoami ()); echo " ";
su Bob; echo (whoami ()); echo " ";
su Root; echo (whoami ()))))

~*1 (0;"alice bob root") : (Int; File)

The session manager (sessionmgr) is installed in between the basic 10 handler (basiclO) and
the process status handler (status). The initial user is Root, and thus the initial environment
is the environment that belongs to the root user. Main computation signs in as Alice and
writes the result of the system call whoami to the global file, and then repeats these steps for
Bob and Root. Ultimately, the computation terminates successfully (as indicated by 0 in the
first component of the result) with global file containing the three user names.

The above example demonstrates that we now have the basic building blocks to build a
multi-user system.

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

3.8.5 Nondeterminism: time sharing

Time sharing is a mechanism that enables multiple processes to run concurrently, and hence,

multiple users to work concurrently. Thus far in our system there is exactly one process.

In UNIX there exists only a single process whilst the system is bootstrapping itself into
operation. After bootstrapping is complete the system duplicates the initial process to start

running user managed processes, which may duplicate themselves to create further processes.

The process duplication primitive in UNIX is called fork [2]. The fork-invoking process is

typically referred to as the parent process, whilst its clone is referred to as the child process.

Following an invocation of fork, the parent process is provided with a nonzero identifier for
the child process and the child process is provided with the zero identifier. This enables
processes to determine their respective role in the parent-child relationship, e.g.

let i < fork () in

if ¢ = 0 then child’s code

else parent’s code
In our system, we can model fork as an effectful operation, that returns a boolean to indicate
the process role; by convention we will interpret the return value true to mean that the
process assumes the role of parent.

fork : 1 — Bool!{Fork : 1 — Bool}

fork () := do Fork ()
In UNIX the parent process continues execution after the fork point, and the child process
begins its execution after the fork point. Thus, operationally, we may understand fork as
returning twice to its invocation site. We can implement this behaviour by invoking the
resumption arising from an invocation of Fork twice: first with true to continue the parent
process, and subsequently with false to start the child process (or the other way around if we
feel inclined). The following handler implements this behaviour.

nondet : (1 — a!{Fork : 1 - Bool}) — List o
nondet m := handle m () with
return res — [res]
(Fork () — resume) — resume true H resume false

The return-case returns a singleton list containing a result of running m. The Fork-case
invokes the provided resumption resume twice. Each invocation of resume effectively copies
m and runs each copy to completion. Each copy returns through the return-case, hence
each invocation of resume returns a list of the possible results obtained by interpreting Fork

first as true and subsequently as false. The results are joined by list concatenation ().

Thus the handler returns a list of all the possible results of m. (Remark: this handler is an
instance of the standard backtracking nondeterminism handler from the literature, which
has been used in related work to show that effect handlers endow their host language with
additional asymptotic computational efficiency [13].)

Let us consider nondet together with the previously defined handlers. But first, let us
define two computations.

ritchie, hamlet : 1 — 1I{Write : (FileDescr; String) — 1}

ritchie () := echo "UNIX is basically ";
echo "a simple operating system, ";
echo "but ";
echo "you have to be a genius
to understand the simplicity.\n"

hamlet () := echo "To be, or not to be, ";
echo "that is the question:\n";
echo "Whether ’tis nobler in the mind to suffer\n"

69

21292

70

21292 — Scalable Handling of Effects

The computation ritchie writes a quote by Dennis Ritchie to the file, whilst the computation
hamlet writes a few lines of William Shakespeare’s The Tragedy of Hamlet, Prince of Denmark,
Act III, Scene I [1] to the file. Using nondet and fork together with the previously defined
infrastructure, we can fork the initial process such that both of the above computations are
run concurrently.

basiclO (A().
nondet (A().
sessionmgr (Root; A().
status (A().if fork () then su Alice; ritchie ()
else su Bob; hamlet ()))))
~*([0,0]; "UNIX is basically a simple operating system, but

you have to be a genius to understand the simplicity.\n
To be, or not to be, that is the question:\n

Whether ’tis nobler in the mind to suffer\n"): (List Int;File)

The computation running under the status handler immediately performs an invocation of
fork, causing nondet to explore both the then-branch and the else-branch. In the former,
Alice signs in and quotes Ritchie, whilst in the latter Bob signs in and quotes a Hamlet.
Looking at the output there is supposedly no interleaving of computation, since the individual
writes have not been interleaved. From the stack of handlers, we know that there has been no
interleaving of computation, because no handler in the stack handles interleaving. Thus, our
system only supports time sharing in the extreme sense: we know from the nondet handler
that every effect of the parent process will be performed and handled before the child process
gets to run. In order to be able to share time properly amongst processes, we must be able
to interrupt them.

3.8.5.1 Interleaving computation

We need an operation for interruptions and corresponding handler to handle interrupts in
order for the system to support interleaving of processes.

interrupt : 1 — 1!{Interrupt : 1 — 1}
interrupt () := do Interrupt ()

The intended behaviour of an invocation of Interrupt is to suspend the invoking computation
in order to yield time for another computation to run. We can achieve this behaviour by
reifying the process state. For the purpose of interleaving processes via interruptions it
suffices to view a process as being in either of two states: 1) it is done, that is it has run to
completion, or 2) it is paused, meaning it has yielded to provide room for another process to
run. We can model the state using a recursive variant type parameterised by some return
value o and a set of effects € that the process may perform.

Pstate a € 0 := [Done : ¢;
Paused : 1 — Pstate a £ 8!{Interrupt : 0;¢}]

This data type definition is an instance of the resumption monad [3]. The Done-tag simply
carries the return value of type a. The Paused-tag carries a suspended computation, which
returns another instance of Pstate, and may or may not perform any further invocations of
Interrupt. Payload type of Paused is precisely the type of a resumption originating from a
handler that handles only the operation Interrupt such as the following handler.

reifyProcess : (1 — a!{Interrupt : 1 — 1;¢}) — Pstate a ¢
reifyProcess m := handle m () with
return res — Done res
(Interrupt () — resume) — Paused resume

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

This handler tags and returns values with Done. It also tags and returns the resumption
provided by the Interrupt-case with Paused. This particular implementation is amounts to a
handler-based variation of Harrison’s [5] non-reactive resumption monad. If we compose this
handler with the nondeterminism handler, then we obtain a term with the following type.

nondet (A().reifyProcess m) : List (Pstate a {Fork : 1 — Bool;e})

for some m : 1 — {Proc;e} where Proc := {Fork : 1 — Bool;Interrupt : 1 — 1}. The
composition yields a list of process states, some of which may be in suspended state. In
particular, the suspended computations may have unhandled instances of Fork as signified
by it being present in the effect row. The reason for this is that in the above composition
when reifyProcess produces a Paused-tagged resumption, it immediately returns through
the return-case of nondet, meaning that the resumption escapes the nondet. Recall that a
resumption is a delimited continuation that captures the extent from the operation invocation
up to and including the nearest enclosing suitable handler. In this particular instance, it
means that the nondet handler is part of the extent. We ultimately want to return just a list
of ass to ensure every process has run to completion. To achieve this, we need a function that
keeps track of the state of every process, and in particular it must run each Paused-tagged
computation under the nondet handler to produce another list of process state, which must
be handled recursively.

schedule : List (Pstate « {Fork : Bool;e} 6) — List ale
schedule ps := let run «+ rec sched {ps; done).
case ps { [] = done
(Done res) :: ps’ — sched (ps';res :: done)
(Paused m) :: ps’ — sched (ps’ ++ (nondet m); done)}
in run (ps;[])

The function schedule implements a process scheduler. It takes as input a list of process
states, where Paused-tagged computations may perform the Fork operation. Locally it defines
a recursive function sched which carries a list of active processes ps and the results of
completed processes done. The function inspects the process list ps to test whether it is
empty or nonempty. If it is empty it returns the list of results done. Otherwise, if the head
is Done-tagged value, then the function is recursively invoked with tail of processes ps’ and
the list done augmented with the value res. If the head is a Paused-tagged computation m,
then sched is recursively invoked with the process list ps’ concatenated with the result of
running m under the nondet handler.

Using the above machinery, we can define a function which adds time-sharing capabilities
to the system.

timeshare : (1 — a!Proc) — List «
timeshare m := schedule [Paused (\().reifyProcess m)]

The function timeshare handles the invocations of Fork and Interrupt in some computation m
by starting it in suspended state under the reifyProcess handler. The schedule actually starts
the computation, when it runs the computation under the nondet handler.

The question remains how to inject invocations of Interrupt such that computation gets
interleaved. The interested reader may consult my dissertation for a discussion of different
ways to inject interrupts, and for a more complete development of Tiny UNIX with file I/O,
process synchronisation, programmable shell environment via shallow handlers, and more, as
well as a discussion of ways to realise effect handlers, and hence, the operating system using
canonical implementation techniques [8, 9, 11, 12, 15].

71

21292

72

21292 — Scalable Handling of Effects

References
1 William Shakespeare. The Tragedy of Hamlet, Prince of Denmark. 1564-1616
2 Dennis Ritchie and Ken Thompson. The UNIX Time-Sharing System. Commun. ACM, 17,
1974
3 Nikolaos S. Papspyrou. A resumption monad transformer and its applications in the semantics
of concurrency Proceedings of the 3rd Panhellenic Logic Symposium, Anogia, Greece, 2001
4 Eric Steven Raymond. The Art of UNIX Programming. ISBN 0131429019. Pearson Educa-
tion, 2003
5 William L. Harrison. The Essence of Multitasking. AMAST, LNCS, 2006
6 Oleg Kiselyov, Chung-chieh Shan, and Amr Sabry. Delimited dynamic binding. ICFP,
Portland, Oregon, USA, 2006
7 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. ICFP, Boston, Mas-
sachusetts, USA, 2013
8 Daniel Hillerstrom and Sam Lindley. Liberating Effects with Rows and Handlers.
TyDe@QICFP, Nara, Japan, 2016
9 Daniel Hillerstrom, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. Continuation
Passing Style for Effect Handlers. FSCD, Oxford, UK, 2017
10 Daan Leijen. Implementing Algebraic Effects in C — “Monads for Free in C”. APLAS,
Suzhou, China, 2017
11 Daniel Hillerstrom and Sam Lindley. Shallow Effect Handlers. APLAS, New Zealand, 2018
12 Daniel Hillerstrom, Sam Lindley, and Robert Atkey. Effect Handlers via Generalised
Continuations. JEP (special issue on algebraic effects and handlers) 30:e5, 2020
13 Daniel Hillerstrom, Sam Lindley, and John Longley. Effects for Efficiency: Asymptotic
Speedup with First-Class Control. ICFP, New Jersey, USA, 2020
14 David MacKenzie and others. GNU Coreutils (for version 8.32). Free Software Foundation,
2020
15 Daniel Hillerstrom. Foundations for Programming and Implementing Effect Handlers. PhD
thesis, The University of Edinburgh, UK, 2021

3.9 ParaFuzz: Fuzzing Multicore OCaml Programs
Sivaramakrishnan Krishnamoorthy Chandrasekaran (Indian Institute of Techology, IN)

License @@ Creative Commons BY 4.0 International license
© Sivaramakrishnan Krishnamoorthy Chandrasekaran
Joint work of Sivaramakrishnan Krishnamoorthy Chandrasekaran, Sumit Padhiyar, Adharsh Kamath

Parallel programs are notoriously hard to test due to the particular combination of input
and scheduling non-determinsm. Techniques such as property-based testing and fuzz testing
are extremely effective for handling input non-determinsm. Crowbar is a tool for OCaml
which combines property-based testing and fuzz testing for OCaml programs. Can we extend
this to capture scheduling non-determinism? The answer is yes, and ParaFuzz shows how. A
key challenge is getting control over the thread scheduling decisions. We should how effect
handlers can help with this.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

3.10 Retrofitting Effect Handlers onto OCaml
Sivaramakrishnan Krishnamoorthy Chandrasekaran (Indian Institute of Techology, IN)

License @ Creative Commons BY 4.0 International license
© Sivaramakrishnan Krishnamoorthy Chandrasekaran
Joint work of Krishnamoorthy Chandrasekaran Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq

Jaffer, Anil Madhavapeddy

Main reference K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, Anil Madhavapeddy:
“Retrofitting effect handlers onto OCaml”, in Proc. of the PLDI '21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 20211, pp. 206221, ACM, 2021.

URL https://doi.org/10.1145/3453483.3454039

Multicore OCaml extends OCaml with support for effect handlers in order to express
concurrency natively in direct-style. Given that we’re extending an industrial-strength
language with millions of lines of existing code, none of which is written with non-local
control-flow in mind, our primary concern is backwards compatibility. Specifically, (a) not
breaking legacy code, (b) retaining the performance profile of legacy code, and (c) debugging
and profiling tool compatibility. In this talk, I shall discuss the backwards compatibility
challenges and our solutions in Multicore OCaml.

3.11 Koka update: Compilation to C via generalized evidence passing
and Perceus reference counting.

Daan Leijen (Microsoft Research — Redmond, US)

License @ Creative Commons BY 4.0 International license
© Daan Leijen

Koka can now compile effect handlers to standard C code; it uses a generalized evidence
passing in combination with a multi-prompt delimited control monad to compile effect
handlers (ICFP21). Moreover, it uses compile-time optimized reference counting (PLDI21)
to manage memory without needing a GC or runtime system. I will show some of the new
Koka language features, highlight the interesting parts of the compilation phases, and show
various benchmarks.

3.12 Handler Calculus
Sam Lindley (University of Edinburgh, GB)

License @@ Creative Commons BY 4.0 International license
© Sam Lindley

We present handler calculus, a core calculus of effect handlers. Inspired by the Frank

programming language, handler calculus does not have primitive functions, just handlers.

Functions, products, sums, and inductive types, are all encodable in handler calculus. We

extend handler calculus with recursive effects, which we use to encode recursive data types.

We extend handler calculus with parametric operations, which we use to encode existential
data types. We then briefly outline how one can encode universal data types by composing a
CPS translation for parametric handler calculus into System F with Fujita’s CPS translation
of System F into minimal existential logic.

73

21292

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

74

21292 — Scalable Handling of Effects

3.13 Efficient Compilation of Algebraic Effect Handlers
Matija Pretnar (University of Ljubljana, SI)

License @ Creative Commons BY 4.0 International license
© Matija Pretnar
Joint work of Georgios Karachalias, Filip Koprivec, Matija Pretnar, Tom Schrijvers
Main reference Georgios Karachalias, Filip Koprivec, Matija Pretnar, Tom Schrijvers: “Efficient Compilation of
Algebraic Effect Handlers”, Proc. ACM Program. Lang., Vol. 5(OOPSLA), Association for
Computing Machinery, 2021.
URL https://doi.org/10.1145/3485479

The popularity of algebraic effect handlers as a programming language feature for user-defined
computational effects is steadily growing. Yet, even though efficient runtime representations
have already been studied, most handler-based programs are still much slower than hand-
written code.

In the talk, I have presented our OOPSLA submission, which shows that the performance
gap can be drastically narrowed (in some cases even closed) by means of type-and-effect
directed optimising compilation. Our approach consists of source-to-source transformations
in two phases of the compilation pipeline. Firstly, elementary rewrites, aided by judicious
function specialisation, exploit the explicit type and effect information of the compiler’s
core language to aggressively reduce handler applications. Secondly, after erasing the effect
information further rewrites in the backend of the compiler emit tight code.

This work comes with a practical implementation: an optimising compiler from Eff, an
ML style language with algebraic effect handlers, to OCaml. Experimental evaluation with
this implementation demonstrates that in a number of benchmarks, our approach eliminates
much of the overhead of handlers, outperforms capability-passing style compilation and yields
competitive performance compared to hand-written OCaml code as well Multicore OCaml’s
dedicated runtime support.

3.14 Programming and Proving with Indexed effects in F*

Aseem Rastogi (Microsoft Research India — Bangalore, IN) and Nikhil Swamy (Microsoft
Research — Redmond, US)

License) Creative Commons BY 4.0 International license
© Aseem Rastogi and Nikhil Swamy
Joint work of Guido Martinez, Aymeric Fromherz, Tahina Ramananandro
Main reference Aseem Rastogi, Guido Martinez, Aymeric Fromherz, Tahina Ramananandro, Nikhil Swamy:
“Programming and Proving with Indexed Effects”
URL https://www.fstar-lang.org/papers/indexedeffects/

F* now supports a feature that allows programmers to define monadic effects with an
arbitrary indexing structure. We have been using this to program and prove a variety of
systems, using custom effect-typing disciplines, combining various prior approaches in novel
ways. For example, we’ve been developing graded parameterized monads, or parameterized
Dijkstra monads, graded Dijkstra monads, and parameterized-monad-indexed monads, and
other seemingly exotic but very useful constructions. We’ve applied them to settings ranging
from information flow control, to parsers, to separation logic, and to algebraic effects. The
talk is intended to tell people about these structures, point out how one can program with
them in F*, get feedback about it, and hopefully interest folks to develop new such structures,
to use them in practice, and to study their semantics.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485479
https://doi.org/10.1145/3485479
https://doi.org/10.1145/3485479
https://doi.org/10.1145/3485479
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.fstar-lang.org/papers/indexedeffects/
https://www.fstar-lang.org/papers/indexedeffects/
https://www.fstar-lang.org/papers/indexedeffects/

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

3.15 Low-level effect handlers for Wasm
Andreas Rossberg (Dfinity — Ziirich, CH)

License @ Creative Commons BY 4.0 International license
© Andreas Rossberg
Joint work of Andreas Rossberg, Daniel Hillerstrom, Sam Lindley, KC Sivaramakrishnan, Matija Pretnar, Daan
Leijen
URL https://github.com/effect-handlers/wasm-spec

I presented the ongoing work on a proposal for adding low-level effect handlers to Wasm.

3.16 Back to Direct Style 3
Philipp Schuster (Universitit Tibingen, DE)

License @@ Creative Commons BY 4.0 International license
© Philipp Schuster
Joint work of Philipp Schuster, Jonathan Immanuel Brachthduser, Marius Miiller, Klaus Ostermann

Programs in continuation-passing style are good to optimize but bad to run. We present a
program transformation that goes from continuation-passing style back to direct style. It is a
continuation of the “Back to Direct Style” line of work by Danvy and Lawall. We present a
language with a type-and-effect system where it is possible to have multiple levels of control.
Just like we can iterate the CPS transformation to make more and more levels of control
explicit, we can iterate the direct-style transformation, to make more and more levels of
control implicit. What we present is “work in progress” and we would like to discuss the
approach in general, possible applications, and a logical interpretation with the audience.

3.17 CPS Transformation with Affine Types for Call-By-Value Implicit
Polymorphism

Taro Sekiyama (National Institute of Informatics — Tokyo, JP)

License) Creative Commons BY 4.0 International license
© Taro Sekiyama
Joint work of Taro Sekiyama, Tsukada, Takeshi
Main reference Taro Sekiyama, Takeshi Tsukada: “CPS transformation with affine types for call-by-value implicit
polymorphism”, Proc. ACM Program. Lang., Vol. 5(ICFP), pp. 1-30, 2021.
URL https://doi.org/10.1145/3473600

Transformation of programs into continuation-passing style (CPS) reveals the notion of
continuations, enabling many applications such as control operators and intermediate rep-
resentations in compilers. Although type preservation makes CPS transformation more
beneficial, achieving type-preserving CPS transformation for implicit polymorphism with
call-by-value (CBV) semantics is known to be challenging. We identify the difficulty in the
problem that we call scope intrusion. To address this problem, we propose a new CPS target
language A°P™ that supports two additional constructs for polymorphism: one only binds
and the other only generalizes type variables. Unfortunately, their unrestricted use makes
A°P€™ unsafe due to undesired generalization of type variables. We thus equip A°P¢™ with
affine types to allow only the type-safe generalization. We then define a CPS transformation
from Curry-style CBV System F to type-safe A°P¢"™ and prove that the transformation is
meaning and type preserving. We also study parametricity of A°P°" as it is a fundamental

75

21292

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/effect-handlers/wasm-spec
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3473600
https://doi.org/10.1145/3473600
https://doi.org/10.1145/3473600

76

21292 — Scalable Handling of Effects

property of polymorphic languages and plays a key role in applications of CPS transformation.
To establish parametricity, we construct a parametric, step-indexed Kripke logical relation
for A°P¢™ and prove that it satisfies the Fundamental Property as well as soundness with
respect to contextual equivalence.

3.18 Effects with Shifted Names in OCaml
Antal Spector-Zabusky (Jane Street — London, GB)

License @ Creative Commons BY 4.0 International license
© Antal Spector-Zabusky
Joint work of Antal Spector-Zabusky, Stephan Dolan, Leo White

We are currently designing an effect system for OCaml consisting of algebraic effects with
a fused “resume a continuation inside a handler” operation. We use shifted names to
name effects, allowing operations that abstract over names to avoid shadowing names in
the surrounding environment via renaming. This talk presents the design of the runtime
semantics of this language as they currently stand.

3.19 Effects, Interface Types and async APls
Luke Wagner (Fastly — San Francisco, US)

License) Creative Commons BY 4.0 International license
© Luke Wagner

One focus of WASI right now is on HT'TP APIs and supporting efficient request chaining via
simple module linking/composition. Due to the streaming async nature of HTTP request
handling, effects/coroutines are a natural fit. Expressing async APIs in a cross-language-
compositional manner is challenging, though, when most of the constituent languages don’t
directly support algebraic effects. This talk discusses an idea we're working on for how to
reconcile these constraints by building in a fixed ‘async’ effect to Interface Types that can be
thought of as a specialized use of algebraic effects. When bound to JavaScript, Interface-
Typed async functions would naturally bind to JavaScript async (i.e., Promise-returning)
functions in a manner similar to the current wasm stack-switching JS API proposal.

4 Working groups

4.1 Control Operators Breakout Session

Jonathan Immanuel Brachthduser (EPFL — Lausanne, CH), Youyou Cong (Tokyo Institute of
Technology, JP), Sam Lindley (University of Edinburgh, GB), and Taro Sekiyama (National
Institute of Informatics — Tokyo, JP)

License) Creative Commons BY 4.0 International license
© Jonathan Immanuel Brachthéduser, Youyou Cong, Sam Lindley, and Taro Sekiyama

In this breakout session, we explored the correspondence between effect handlers and delimited
control operators from different perspectives. One question we discussed is what is the effect-
handler-counterpart of shift/reset and control/prompt. These control operators keep the

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

surrounding delimiter upon capture of a continuation, while effect handlers remove the
surrounding handler upon a call of an operation. Sam suggested that such effect handlers
may be useful for implementing the fork and yield operations, where we need a form of
recursion, but we found that the control operators do not have enough expressive power.

Inspired by Sam’s idea, we had a discussion on the correspondence between effect handlers
and recursion schemes. Jonathan drafted a version of effect handlers that could correspond
to histo-morphisms. In this sketch it appears histo-morphic effect handlers support a
combination of the usual (deep) resumptions and shallow resumptions at each effect call.

We also talked about what is the control-operator counterpart of multi-handlers. Multi-
handlers can handle multiple computations at once, which is difficult to express using
shift /reset-style control operators. Daniel suggested that fcontrol/run may be easier to work
with, and Youyou successfully implemented a “bi-handler” (handlers that can handle two
computations) using these operators.

4.2 UX of Effect Systems Breakout Session

Jonathan Immanuel Brachthduser (EPFL — Lausanne, CH), Youyou Cong (Tokyo Institute
of Technology, JP), Paulo Emilio de Vilhena (INRIA — Paris, FR), and Filip Koprivec
(University of Ljubljana, SI)

License @@ Creative Commons BY 4.0 International license
© Jonathan Immanuel Brachthiduser, Youyou Cong, Paulo Emilio de Vilhena, and Filip Koprivec

In this breakout session, we had a discussion on teaching effect systems. As a scenario
where effect systems can be useful, Conor suggested building an OS, and April suggested
developing GUIs (especially Web applications). As a tool for helping students understand
effects, Youyou introduced an algebraic stepper developed at Ochanomizu University, and
Matija introduced a similar tool supported in the aeff language. After the seminar, Nick,
Jonathan, and Youyou had a meeting on the curriculum design of an effect handler course.
There is also a plan to write a textbook called “How to Design Effectful Programs”, which
defines a series of design recipes for effect constructs.

4.3 Effect Handlers Benchmark Suite
Daniel Hillerstrom (University of Edinburgh, GB)

License @@ Creative Commons BY 4.0 International license
© Daniel Hillerstrém
URL https://github.com/effect-handlers/effect-handlers-bench

At the moment, a lot of work is about efficient runtime systems, or compilation, for effect
handlers. However, as identified by this working group there is no standard benchmark suite
for effect handler oriented programs. The literature makes use of a varying collection of ad-hoc
benchmarks. This working group has begun the effort to create a community-maintained
standardised benchmark suite for effect handler oriented programs. By standardised, we mean
that the suite will contain a set of benchmarks intended to measure different aspects of effect
handlers, e.g. single-shot, multi-shot, tail-resumptive handlers, etc, and each benchmark will
have a description of its objective, how it should be realised (e.g. common implementation),
and its parameters.

The benchmark suite is being actively developed on GitHub on the following repository.

https://github.com/effect-handlers/effect-handlers-bench

77

21292

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/effect-handlers/effect-handlers-bench
https://github.com/effect-handlers/effect-handlers-bench

78

21292 — Scalable Handling of Effects

4.4 Wasm breakout session

Andreas Rossberg (Dfinity — Ziirich, CH), Sam Lindley (University of Edinburgh, GB), and
Luke Wagner (Fastly — San Francisco, US)

License @ Creative Commons BY 4.0 International license
© Andreas Rossberg, Sam Lindley, and Luke Wagner

4.4.1 Introduction

The main purpose for adding effect handlers to WebAssembly is to provide a well-behaved
mechanism for “stack switching”. The proposal uses the asymmetric suspend/resume pair of
primitives that is characteristic of handlers. This has been criticised for lacking a symmetric
way of switching to another continuation directly, without going through a handler, and
there is some concern that the double hop through a handler might involve unnecessary
overhead for use cases like lightweight threading.

We discussed an idea, originally brought up by Luke Wagner, for extending the proposal
with a more symmetric switch_to primitive. In fact, this can be broken down into two
independent mechanisms:

1. Naming individual handlers, as a way of targeting them directly with a suspend, and
thereby avoiding the linear search for a handler (somewhat similar to multi-prompt
continuations).

2. A special built-in effect that switches to another continuation and is implicitly handled
by every handler (or can be declared to be).

In addition, we discussed the possibility of first-class effect tags.

4.4.2 Named handlers

The idea here is to introduce a new reference type (handler t*), which essentially is a
unique prompt created by executing a variant of the resume instruction and is passed to the
continuation:

cont.resume_from (event $tag $handler)* : [tix (cont $ft)] -> [t2*]
where:
-- $ft = [(handler t2%) tix] -> [t2x]

The handler reference is similar to a prompt in a system of multi-prompt continuations.
However, since its created fresh for each handler, multiple activations of the same prompt
cannot exist by construction.

This instruction is complemented by an instruction for suspending to a specific handler:

cont.suspend_to $tag : [tix (handler t3*)] -> [t2%]
where:
-- $tag : [t1x] -> [t2*]

If the handler is not currently active, e.g., because an outer handler has been suspended,
then this instruction would trap.

We briefly pondered over the possibility of also an additional instruction to terminate a
handler:

cont.return_to : [t3* ti1* (handler tix)] -> [t2*]

However, this would be like a throw, but without the ability to catch it. IT would therefore
introduce yet another form of control flow transfer, whose interaction with other control
operators (e.g., finally) would have to be considered. We concluded that it is preferable for
the time being not to go there.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

4.4.3 Direct switching

Given named handlers, it is possible to introduce a slightly more magic instruction for
switching directly to another continuation:

cont.switch_to : [ti*x (cont $ft1) (handler t3*)] -> [t2x*]

where:
-- $ft1
-- $£t2

[(handler t3*) (cont $ft2) tix] -> [t3%]
[t2x 1 -> [t3%]

This behaves as if there was a built-in tag
(tag Switch (param ti1* (cont $ft1)) (result t3x))

with which the computation suspends_to the handler, and the handler implicitly handles
this by resuming_to the continuation argument, thereby effectively switching to it in one
step. Like suspend_to, this would trap if the handler wasn’t currently active.

The fact that the handler implicitly resumes_ to, passing itself as a handler to the target
continuation, makes this construct behave like a deep handler, which is slightly add odds
with the rest of the proposal.

In addition to the handler, switch_to also passed the new continuation to the target,
which would allow the target to switch_to back to it in a symmetric fashion. Notably, in
such a use case, $ft1 and $£t2 would be the same type (and hence recursive).

One observation we made is that symmetric switching is not necessarily tied to named
handlers, since there could also be an indirect version with dynamic handler lookup:

cont.switch : [ti1x (cont $ft1) 1 -> [t2x%]

where:
—— $ft1 = [(cont $ft2) tix] —> [t3x*]
— $ft2 = [t2%x] -> [t3%]

Finally, it seems undesirable that every handler implicitly handles the built-in Switch
tag, so this should be opt-in by a mode flag on the resume instruction(s).

4.4.4 First-class effect tags

We also discussed the possibility of having first-class effect tags. This would address a
different but overlapping set of use cases compared to named handlers.

It would take the introduction of a new form of structured type, a tag type, and an
instruction to generate fresh tags of such a type:

(type $tagtype (tag ...))

tag.new $tagtype : [1 —> [(ref $tagtype)]

To be useful, though, this would require a new variant of resume instruction, whose
handler table is created dynamically from its tag operands:

cont.resume (event $handler)* : [(ref $tt)* ti*x (cont $ft) 1 -> [t2%]
where:

-— ($tt = tag ...)*

-—— $ft = [t1x] => [t2*]

79

21292

80

21292 — Scalable Handling of Effects

Since the dispatch table has to be created dynamically at each execution of this instruction,
it might be quite expensive in practice, especially since the handlers in the proposal behave
like shallow handlers, i.e., must be recreated for every resumption. Also, this cannot easily
be circumvented by adding first-class handlers, since the latter are made difficult because of
the local nature of the branch labels handlers depend on. More investigation is needed.

4.5 Dependent types breakout session

Wouter Swierstra (Utrecht University, NL) and Robert Atkey (University of Strathclyde —
Glasgow, GB)

License @ Creative Commons BY 4.0 International license
© Wouter Swierstra and Robert Atkey

In this session we discussed the various approaches to modelling effects and handlers accur-
ately using rich types, typically involving some variation of monads such as parametrised
monads, indexed monads, and graded monads. These can often be embedded in an existing
programming language — but languages such as F* add native support for collecting and
resolving the proof obligations associated with certain effectful computations.

5 Open problems

5.1 Efficient stack layout for multishot handlers
Filip Koprivec (University of Ljubljana, SI)

License) Creative Commons BY 4.0 International license
© Filip Koprivec
Joint work of Filip Koprivec, Matija Pretnar

Much has been done on optimizing the performance of effect handlers, from an optimized
runtime and evidence translation in Koka to a specialized stack structure in Multicore OCaml.
We proposed an efficient stack management technique based on heap-allocated fibres by
Sivaramakrishnan and others. We present a “work in progress” idea for a stack structure
specialized for multiple resumptions.

The program stack is stored as a sequence of fibres corresponding either to computation
or a handled effect. Once the computation is handled by an enclosing handler, the whole
part of the stack corresponding to that computation is “frozen” and specifically marked for a
copy on reuse when invoking the continuation. When the continuation is resumed before
the frozen computation gets popped from the stack, there is no need to allocate any heap
storage for the environment of continued computation as frozen fibre gets copied from the
stack to the top of the stack directly.

This decreases the pressure on both allocator and garbage collector while reusing already
allocated stack memory. Reuse of stack saved computations is faster than allocation on the
heap and this especially improves performance when reusing the same continuation multiple
times. The improvement an optimized stack structure offers is heavily dependent on handler
usage and memory allocator performance.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg

Participants

= Danel Ahman
University of Ljubljana, SI
= Amal Ahmed
Northeastern University —
Boston, US

- Robert Atkey
University of Strathclyde —
Glasgow, GB

= Andrej Bauer
University of Ljubljana, SI
= Oliver Bracevac

Purdue University — West
Lafayette, US

= Jonathan Immanuel
Brachthéuser

EPFL — Lausanne, CH

= Youyou Cong

Tokyo Institute of Technology, JP
= Paulo Emilio de Vilhena
INRIA - Paris, FR

= Stephen Dolan

Jane Street — London, GB

- Ronald Garcia

University of British Columbia —
Vancouver, CA

= April Gongalves

Heliax — Glasgow, GB

= Maria Gorinova
University of Edinburgh, GB

= Daniel Hillerstrom
University of Edinburgh, GB

= Mauro Jaskelioff

National University of
Rosario, AR

= Ohad Kammar

University of Edinburgh, GB

= Oleg Kiselyov

Tohoku University — Sendai, JP
= Filip Koprivec

University of Ljubljana, SI

= Sivaramakrishnan
Krishnamoorthy Chandrasekaran
Indian Institute of Techology, IN

= Daan Leijen

Microsoft Research —
Redmond, US

= Sam Lindley

University of Edinburgh, GB
= Conor McBride
University of Strathclyde —
Glasgow, GB

= Daniel Patterson
Northeastern University —
Boston, US

= Maciej Pirog

University of Wroclaw, PL

= Gordon Plotkin

Google — Mountain View, US

81

= Matija Pretnar
University of Ljubljana, SI

= Aseem Rastogi
Microsoft Research India —
Bangalore, IN

= Andreas Rossberg
Dfinity — Ziirich, CH

= Philipp Schuster
Universitat Tibingen, DE

= Taro Sekiyama
National Institute of Informatics —
Tokyo, JP

- Antal Spector-Zabusky
Jane Street — London, GB

= Nikhil Swamy
Microsoft Research —
Redmond, US

= Wouter Swierstra
Utrecht University, NL

= Luke Wagner
Fastly — San Francisco, US

= Leo White
Jane Street — London, GB

= Nicolas Wu
Imperial College London, GB

2)
b

April Gongalves

21292

	Executive Summary Danel Ahman, Amal Ahmed, Sam Lindley, and Andreas Rossberg
	Table of Contents
	Overview of Talks
	(Higher-Order) Asynchronous Effects Danel Ahman
	The real world cannot be handled Andrej Bauer
	Taming Higher-Order Control and State with Precise Effect Dependencies Oliver Bracevac
	Higher-order Programming with Effects and Handlers – with First-Class Functions Jonathan Immanuel Brachthäuser
	A Separation Logic for Effect Handlers Paulo Emílio de Vilhena
	Problems with resources and effects Stephen Dolan
	Probabilistic Programming Maria Gorinova
	Composing UNIX with Effect Handlers Daniel Hillerström
	ParaFuzz: Fuzzing Multicore OCaml Programs Sivaramakrishnan Krishnamoorthy Chandrasekaran
	Retrofitting Effect Handlers onto OCaml Sivaramakrishnan Krishnamoorthy Chandrasekaran
	Koka update: Compilation to C via generalized evidence passing and Perceus reference counting. Daan Leijen
	Handler Calculus Sam Lindley
	Efficient Compilation of Algebraic Effect Handlers Matija Pretnar
	Programming and Proving with Indexed effects in F* Aseem Rastogi and Nikhil Swamy
	Low-level effect handlers for Wasm Andreas Rossberg
	Back to Direct Style 3 Philipp Schuster
	CPS Transformation with Affine Types for Call-By-Value Implicit Polymorphism Taro Sekiyama
	Effects with Shifted Names in OCaml Antal Spector-Zabusky
	Effects, Interface Types and async APIs Luke Wagner

	Working groups
	Control Operators Breakout Session Jonathan Immanuel Brachthäuser, Youyou Cong, Sam Lindley, and Taro Sekiyama
	UX of Effect Systems Breakout Session Jonathan Immanuel Brachthäuser, Youyou Cong, Paulo Emílio de Vilhena, and Filip Koprivec
	Effect Handlers Benchmark Suite Daniel Hillerström
	Wasm breakout session Andreas Rossberg, Sam Lindley, and Luke Wagner
	Dependent types breakout session Wouter Swierstra and Robert Atkey

	Open problems
	Efficient stack layout for multishot handlers Filip Koprivec

	Participants

