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Preface

This volume contains the papers presented at CSL 2022, the 30th meeting in the conference
series Computer Science Logic (CSL), the annual conference of the European Association for
Computer Science Logic (EACSL). CSL 2022 was held from 14th to 19th February 2022. It
was organised at the University of Göttingen, but took place as an on-line meeting due to
the ongoing pandemic.

CSL started as a series of international workshops, and became an international conference
in 1992. Previous instalments of CSL were held in Ljubljana (2022, on-line), Barcelona (2020),
Birmingham (2018), Stockholm (2017), Marseille (2016), Berlin (2015), Vienna (2014), Torino
(2013), Fontainebleau (2012), Bergen(2011), Brno (2010), Coimbra (2009), Bologna (2008),
Lausanne (2007), Szeged (2006), Oxford (2005), Karpacz (2004), Vienna (2003), Edinburgh
(2002), Paris (2001), Munich (2000), Madrid (1999), Brno (1998), Aarhus (1997), Utrecht
(1996), Paderborn (1995), Kazimierz (1994), Swansea (1993) and San Miniato (1992).

CSL is an interdisciplinary conference, spanning both basic and application-oriented
research in mathematical logic and computer science. It is a forum for the presentation
of research on all aspects of logic and its applications, including automated deduction
and interactive theorem proving, constructive mathematics and type theory, equational
logic and term rewriting, automata and games, game semantics, modal and temporal logic,
logical aspects of computational complexity, finite model theory, computational proof theory,
logic programming and constraints, lambda calculus and combinatory logic, domain theory,
categorical logic and topological semantics, database theory, specification, extraction and
transformation of programs, logical aspects of quantum computing, logical foundations of
programming paradigms, verification and program analysis, linear logic, higher-order logic,
and non-monotonic reasoning.

The conference received 91 abstracts of which 75 were followed up by full-paper submissions.
The programme committee selected 35 papers for presentation at the conference. Each
paper was reviewed by at least three members of the programme committee, with the
help of external reviewers. The submission and reviewing process, programme committee
discussion, and author notifications were all handled by the Easychair conference management
system. In addition to the contributed papers, there were five invited talks, by: Udi Boker
(Interdisciplinary Center, Herzliya, Israel), Martín Escardó (University of Birmingham, UK),
Rosalie Iemhoff (Utrecht University, the Netherlands), Karen Lange (Wellesley College, USA),
and Annabelle McIver (Macquarie University, Australia). We thank the invited speakers for
their stimulating talks and papers, which greatly contributed to the success of the conference.

One of the major regular events at CSL conferences is the presentation of the Ackermann
Award: the annual EACSL award for an outstanding dissertation in the area of logic in
computer science. The recipients of the award are selected by jury from a field of international
nominees, and the recipients receive their award at a ceremony at which they give a prize
lecture on their dissertation. This year, the jury elected to give the Ackermann Award
2021 to Marie Fortin for her thesis Expressivity of first-order logic, star-free propositional
dynamic logic and communicating automata defended at ENS Paris-Saclay (France) in 2020,
supervised by Paul Gastin and Benedikt Bollig and to Sandra Kiefer for her thesis Power and
Limits of the Weisfeiler-Leman Algorithm defended at RWTH Aachen (Germany) in 2020,
with examiners Martin Grohe, Pascal Schweitzer, and Neil Immerman. The awards were
presented during the conference. The citation for the awards is included in the proceedings.
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0:x Preface

A significant event at CSL 2022 was the presentation of the inaugural Helena Rasiowa
Award, named after the eminent Polish mathematician and logician Helena Rasiowa (1917–
1994) whose work had an essential impact on the emerging field of logic in computer science.
The Helena Rasiowa Award is given to the best paper, as decided by the programme
committee, that is written solely by students or to which students were the main contributors.
This award, which was presented for the first time at CSL 2022, will be a regular feature of
CSL conferences henceforth. There was a strong field of candidates for the inaugural award,
with 10 of the accepted papers eligible. From these, the programme committee selected
Antonio Casares as the recipient of the 2022 Helena Rasiowa Award, for his paper On the
Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements
of Muller Conditions. Antonio Casares is a PhD student at the University of Bordeaux under
the supervision of Thomas Colcombet, Nathanaël Fijalkow and Igor Walukiewicz.

CSL 2022 also had two affiliated workshops: the 22nd International Workshop on Logic
and Computational Complexity – LCC 2022 and the Logic Mentoring Workshop.

We are very grateful to all the members of the CSL 2022 programme committee and
external reviewers for their careful and efficient evaluation of the papers submitted. We
would like to thank also the members of the organisation committee Maria Kosche, Tore Koß,
Patricia Nitzke, Viktoriya Pak, and Stefan Siemer, from the University of Göttingen, for
taking care to ensure a smooth-running and enjoyable conference, a task that was complicated
by organising a virtual meeting. The award-certificates offered at CSL 2022 to the winners of
the Ackermann Award and the Helena Rasiowa Award were designed by Elena Lykiardopol,
to whom we are very grateful. It was as always a pleasure to work with Thomas Schwentick
who, as the EACSL president, provided excellent guidance. The proceedings of CSL 2022 are
published as a volume in the LIPIcs series. We thank Michael Wagner, Michael Didas, and
all the Dagstuhl/LIPIcs team for their ongoing support and for the high quality preparation
of these proceedings. Last, but not least, we are very grateful to the University of Göttingen
and to the German Research Foundation (DFG) for supporting the organisation of this
conference.

Florin Manea and Alex Simpson 10th November 2021
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The Ackermann Award 2021

by Michael Benedikt, Prakash Panangaden and Thomas Schwentick
For the Jury of the EACSL Ackermann Award

The 17th Ackermann Award is presented at CSL’22, which is held online and organised by the
Fundamentals of Computer Science Group at University of Göttingen, Germany. The 2021
Ackermann Award was open to any PhD dissertation on any topic represented at the annual
CSL and LICS conferences that were formally accepted by a degree-granting institution in
fulfilment of the PhD degree between 1 January 2019 and 31 December 2020. The Jury
received eight nominations for the 2021 Award. The candidates came from a number of
different countries around the world. The institutions at which the nominees obtained their
doctorates represent different countries in Europe and Asia.

Again this year, EACSL Ackermann Award is sponsored by the association Alumni der
Informatik Dortmund e.V.1

The topics covered a wide range of areas in Logic and Computer Science as represen-
ted by the LICS and CSL conferences. All submissions were of a very high quality and
contained significant contributions to their particular fields. The jury wish to extend their
congratulations to all the nominated candidates for their outstanding work.

The wide range of excellent candidates presented the jury with an excruciating task.
After an extensive discussion, the jury unanimously decided to award the 2021 Ackermann
Award to (in alphabetic order):

Marie Fortin from France, for her thesis

Expressivity of first-order logic, star-free propositional dynamic logicand communicating
automata

approved by Université Paris-Saclay in 2020,

and

Sandra Kiefer from Germany, for her thesis

Power And Limits Of The Weisfeiler-Leman Algorithm

approved by RWTH Aachen in 2020.

Citation for Marie Fortin

Marie Fortin shares the 2021 Ackerman Award of the European Association of Computer
Science Logic (EACSL) for her thesis
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The thesis studies the expressive power of first-order logic over ordered structures. This
work has applications to message sequence charts, a fundamental structure that arises in the
verification of concurrent systems and more generally to the connection between automata
and logic. She proved a concurrent analogue of the classic Büchi-Elgot-Traktenbrot theorem
for the relation between concurrent finite-state machines and message sequence charts. A
second fundamental result obtained is the fact that first-order logic and FO restricted to
three variables are equally expressive over message sequence charts.

Background to the thesis

Fortin’s work belongs to the classic theme of relating automata to logics over suitable struc-
tures. The Büchi-Elgot-Traktenbrot theorem relates rfinite automata with monadic second-
order logic over words. In the realm of concurrency a fundamental result of Mazurkiewicz
relates his eponymous traces with asynchronous automata. For message sequence charts
and concurrent finite-state automata it is much more complicated because this is a richer
model. Earlier work by several authors established such connections in much more restricted
cases. In message sequence charts there are three important order relations: ≤ the causal
partial order which is generated by ▷ and →p which is the immediate precedence relation on
a process p. The best existing result was a proof due to Bollig and Leuker that CFSM’s are
expressively equivalent to EMSO(→p,▷), the existential fragment of second-order monadic
logic over the two given relations. Capturing the causal relation was out of reach but essential
to express many fundamental properties of concurrent computation.

Contributions of the thesis

Dr. Fortin made several fundamental contributions. First she showed that EMSO2(→p

,▷, ≤), which is the fragment restricted to two variables is expressively equivalent to CFSM’s.
This was a proof requiring great technical skill and originality. Later she settled the question
completely by showing that EMSO(→p,▷, ≤) is expressively equivalent to CFSM’s. In
this proof she had to formulate a suitable logic of paths (a kind of propositional dynamic
logic, PDL). As part of her overall proof she shows an equivalence between this logic and
FO(→p,▷, ≤) which is again a technically demanding contribution. A corollary of this result
is that FO(→p,▷, ≤) is expressively equivalent to FO3(→p,▷, ≤) over MSC’s. Finally, in a
single-authored paper at ICALP she shows that FO is expressively equivalent to FO3 over a
very general class of linear orders. It is very significant that she not only solves hard open
problems but invents new tools to attack such problems; these are tools that can be applied
to other problems as well so she has invigorated the subject with new techniques as well as
new results.

Biographical sketch

Marie Fortin carried out her PhD (under the supervision of Paul Gastin and Benedikt Bollig)
at ENS Paris-Saclay, Université Paris-Saclay. She was a winner of the EATCS Distinguished
Dissertation Award 2021, a best paper award at CONCUR 2018 and a best student paper
award at ICALP 2019 (Track B). She is currently a research associate at the University of
Liverpool.
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Citation for Sandra Kiefer

Sandra Kiefer shares the 2021 Ackerman Award of the European Association of Computer
Science Login (EACSL) for her thesis

Power And Limits Of The Weisfeiler-Leman Algorithm.

The Weisfeiler-Leman (WL) color refinement algorithm has long played a central role in
computational graph theory and descriptive complexity theory and has come into new
prominence recently via its role in machine learning over graphs. The thesis provides a
plethora of new and deep insights on the power of WL. WL can be parameterized by
the number of rounds required for termination and the number of pebbles required (“WL
dimension”). Both parameters can be interpreted in terms of logic – the former corresponding
to quantifier rank in an appropriate logic and the latter corresponding to number of variables.
The thesis provides new bounds on both of these quantities, including a bound of 3 on the
WL dimension for planar graphs.

The thesis is beautifully written, and makes use of a wide range of techniques; unusually
for a thesis with close connections to graph theory and logic, it even makes use of empirical
methods.

Background of the Thesis
The original version of the WL algorithm – now referred to as 1-dimensional WL – was
introduced by Russian mathematicians Boris Weisfeiler and Andrei Leman in 1968. The
algorithm evolved into its current, more general form, parameterized by a dimension k in
the 1980s. It iteratively computes a colouring of the k-tuples of vertices of a graph. It can
be seen in a number of lights: originally it was an approximate isomorphism test. Later it
was found to be intimately connected to logic, with the distinguishing power of the WL test
corresponding to the expressiveness of a canonical logic with counting. More recently it has
been seen to play a fundamental rule in analysis of so-called Graph Neural Networks.

Contributions of the Thesis
Kiefer’s dissertation provides a systematic analysis of the WL algorithm. It focuses on two
natural parameters: the number of iterations the algorithm needs to converge, and the
dimension it needs to recognize certain graph properties and identify certain graphs. For
both quantities, the thesis provides new upper and lower bounds; previously, non-trivial
results were only qualitative (bounded vs unbounded) or gave very rough estimates.

Notable results include bounds on the iteration number, making use of a combination of
analytical and experimental methods. For the WL dimension it gives a complete classification
of all graphs with WL dimension 1, along with an upper bound on dimension based on the
tree width. Perhaps most importantly, the thesis provides a bound of 3 on the dimension for
planar graphs.

The innovations in this thesis will be of interest to an unusually wide range of researchers,
from computational graph theory to descriptive complexity theory to machine learning.

Biographical Sketch
Sandra Kiefer carried out her PhD (under the supervision of Martin Grohe and Pascal
Schweitzer) at RWTH in Aachen Germany. For her project for female doctoral candidates,
RWTH Aachen University awarded her the Brigitte Gilles Prize in 2019. After completing
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her PhD, she took up a 1-year position as a postdoctoral research associate at the University
of Warsaw, Poland. She is currently a postdoctoral research associate at RWTH Aachen
University, Germany.
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Thomas Schwentick (TU Dortmund University), the president of EACSL,
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Between Deterministic and Nondeterministic
Quantitative Automata
Udi Boker
Reichman University, Herzliya, Israel

Abstract
There is a challenging trade-off between deterministic and nondeterministic automata, where the
former suit various applications better, however at the cost of being exponentially larger or even less
expressive. This gave birth to many notions in between determinism and nondeterminism, aiming at
enjoying, sometimes, the best of both worlds. Some of the notions are yes/no ones, for example
initial nondeterminism (restricting nondeterminism to allowing several initial states), and some
provide a measure of nondeterminism, for example the ambiguity level.

We analyze the possible generalization of such notions from Boolean to quantitative automata,
and suggest that it depends on the following key characteristics of the considered notion N– whether
it is syntactic or semantic, and if semantic, whether it is word-based or language-based.

A syntactic notion, such as initial nondeterminism, applies as is to a quantitative automaton
A, namely N(A). A word-based semantic notion, such as unambiguity, applies as is to a Boolean
automaton t-A that is derived from A by accompanying it with some threshold value t ∈ R, namely
N(t-A). A language-based notion, such as history determinism, also applies as is to t-A, while in
addition, it naturally generalizes into two different notions with respect to A itself, by either: i)
taking the supremum of N(t-A) over all thresholds t, denoted by Threshold-N(A); or ii) generalizing
the basis of the notion from a language to a function, denoted simply by N(A). While in general
N(A) ⇒ Threshold-N(A) ⇒ N(t-A), we have for some notions N(A) ≡ Threshold-N(A), and for some
not. (For measure notions, ⇒ stands for ≥ with respect to the nondeterminism level.)

We classify numerous notions known in the Boolean setting according to their characterization
above, generalize them to the quantitative setting and look into relations between them. The
generalized notions open new research directions with respect to quantitative automata, and provide
insights on the original notions with respect to Boolean automata.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Quantitative Automata, Measure of Nondeterminism, Determinism

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.1

Category Invited Talk

Acknowledgements We thank Karoliina Lehtinen for stimulating discussions on prelimiary versions
of the paper, and specifically for suggesting the all-thresholds generalization of the notions.

1 Introduction

The tension between determinism and nondeterminism is at the core of computer science,
most notably evident in the P vs. NP epic. In automata theory, determinism often suits
certain applications, such as synthesis, better and allows for efficient decision algorithms, while
nondeterminism allows for exponential succinctness, and sometimes higher expressiveness.

As a result, there is intensive research in automata theory on notions in between de-
terminism and nondeterminism, starting in the 1970s [41, 40], and actively continuing until
these days. (See, for example, the recent breakthrough on a superpolynomial lower bound
for the state complexity involved in complementing unambiguous finite automata [50, 30]).
Numerous such notions have developed over the years, many of which we classify in Section 3.
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Some of them are yes/no ones, for example determinizability by pruning, and some provide
a measure of nondeterminism, for example deviation. Deterministic automata have in the
former case value “yes”, and in the latter case value 0 or 1, depending on the notion.

We shall discuss the notions with respect to automata on finite and infinite words, while
they often apply also to automata over richer input structures, such as trees and graphs.
Further, while the notions are usually considered with respect to nondeterministic automata,
they often also apply to alternating automata, setting limitations on both nondeterministic
and universal transitions. (See, for example, [20, 13, 39])

Over the past decade, there is a growing interest in quantitative verification and syn-
thesis (e.g., [2, 9, 24, 18, 25, 6, 15, 3, 36, 27]), and in quantitative1 automata [17] as their
underlying computational model, for addressing the requirements of contemporary systems –
the traditional Boolean perspective of verification and synthesis falls short of many aspects
of contemporary systems, concerning performance, robustness, and resource-constraints,
according to which one system is often preferred over another, even though they are both
correct, since one is, for example, faster than the other, or, if they are both incorrect, one
misbehaves less frequently than the other.

Since quantitative automata keep the choice meaning of nondeterminism, notions of
limited nondeterminism can be naturally generalized from Boolean to quantitative automata,
which is indeed starting to take place in recent years [19, 4, 36, 26, 14]. In [14], the current
author and Karoliina Lehtinen have considered three such notions – determinizability by
pruning, history determinism, and good-for-gameness – and suggested to look into three
different generalizations of each of them to the setting of quantitative automata.

In this paper, we look into the question of how to generalize to the quantitative setting
the numerous limited-nondeterminism notions that exist for Boolean automata. We suggest
that it depends on the following key characteristics of the considered notion N – whether it
is syntactic or semantic, and if semantic, whether it is word-based or language-based.

A syntactic notion (Sections 3.1 and 4.1) applies as is to a quantitative automaton
A, namely N(A) – it only relates to the automaton’s structure, indifferent to whether
the semantics of the automaton is based on a Boolean acceptance condition or a value
function. Among these notions are initial nondeterminism, tree width, structural ambiguity,
and determinism in the limit.

A word-based semantic notion (Sections 3.2 and 4.2) applies as is to a Boolean automaton
t-A that is derived from the quantitative automaton A by accompanying it with some
threshold value t ∈ R, namely N(t-A). Among these notions are ambiguity, branching,
guessing, amount of nondeterminism, trace, and deviation.

A language-based notion (Sections 3.3 and 4.3) allows for the three natural generalizations
suggested in [14]: i) applying it as is to t-A; ii) applying it to A itself by taking the supremum
of N(t-A) over all thresholds t, denoted by Threshold-N(A); and iii) applying it to A itself by
generalizing the language basis of the notion to a function basis, denoted simply by N(A).

Interestingly, while in general N(A) ⇒ Threshold-N(A) ⇒ N(t-A), it might be that
N(A) /⇐ Threshold-N(A), even though Threshold-N(A) is defined with respect to all thresholds
t ∈ R, as is the case with history determinism (see Section 4.3.1). (For measure notions, ⇒
stands for ≥ with respect to the nondeterminism level.)

1 Quantitative automata generally suit verification needs better than weighted automata, since they
keep the choice meaning of nondeterminism and realize functions to the totally-ordered domain of real
numbers. (See Section 2 for the definition of nondeterministic quantitative automata and [8] for an
analysis of the differences between quantitative and weighted automata.)
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Among the language-based notions are residuality, history determinism, good-for-gameness,
good-for-MDPness, determinizability by pruning, and k-tokens games.

We provide in Section 3 partially-formal definitions of numerous notions known in
the Boolean setting, classified according to the above characterization. In Section 4 we
analyze their generalization to the quantitative setting, and in Section 5 we look into their
interrelations, observing that they refine the interrelations known for the Boolean setting.

The notion generalization provides novel definitions of automata classes, and opens up
many research directions on limited nondeterminism in each of the various quantitative
automata types (limit-average automata, discounted-sum automata, etc.): What advantages
of determinism are preserved (complexity of decision problems, suitability for various applica-
tions, etc.)? What advantages of nondeterminism are preserved (expressiveness, succinctness,
etc.)? What are the closure properties of the resulting class of automata? What is the
complexity of its membership check? etc.

Furthermore, the generalized notions provide insights on the original notions with respect
to Boolean automata. For example, the refined notion interrelations, whereby history
determinism and good-for-gameness are not equivalent, suggests that the two notions, which
are known to be equivalent with respect to ω-regular automata, might not be equivalent with
respect to other types of Boolean automata. Another example is the implication between
history determinism and pre-residuality, which is known to hold for ω-regular automata, but
turns out to depend on the suffix monotonicity of the acceptance condition.

2 Preliminaries

Words. An alphabet Σ is a finite nonempty set of letters. A finite (resp. infinite) word
u = σ0 . . . σk ∈ Σ∗ (resp. w = σ0σ1 . . . ∈ Σω) is a finite (resp. infinite) sequence of letters
from Σ. A language is a set of words.

Boolean automata. Many notions of limited nondeterminism apply to various types of
Boolean automata, namely to automata that define a language by accepting or rejecting
words, such as finite automata on finite words (NFAs), pushdown automata, ω-regular
automata, two-way automata, and more.

In our partially-formal presentation of the notions, we relate to a nondeterministic Boolean
automaton as a structure A = (Σ, Q, I, δ, α), where Σ is an alphabet; Q is a finite nonempty
set of states; I ⊆ Q is a set of initial states; δ : Q × Σ → 2Q is a transition function, and α is
an acceptance condition. This basic structure can be extended for various automata types.

We denote by Aq the automaton that is derived from A by changing its initial set of
states to be {q}. An automaton is deterministic if I is a singleton, and for every state q and
letter σ, we have |δ(q, σ)| ≤ 1.

A run of the automaton is a path over its states, starting with an initial state and
continuing along the transition function. A run is accepting if it satisfies the acceptance
condition; a word is accepted by A if there is an accepting run on it; and the language that
A recognizes, denoted by L(A), is the set of words that it accepts. Two automata A and A′

are equivalent, denoted by A ≡ A′, if they recognize the same language.
In the case of NFAs, which define regular languages, the acceptance condition α is a

subset of Q, and a run is accepting if it ends in a state in α. In the case of Büchi automata,
which define ω-regular languages, α is also a subset of Q, and a run is accepting if it visits a
state in α infinitely often. (More on acceptance conditions of ω-regular automata can be
found, for example, in [7].)

CSL 2022
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Quantitative Automata. A nondeterministic quantitative2 automaton on words is a tuple
A = (Σ, Q, I, δ), where Σ is an alphabet; Q is a finite nonempty set of states; I ⊆ Q is a set
of initial states; and δ : Q × Σ → 2(R×Q) is a transition function over weight-state pairs.

A transition is a tuple (q, σ, x, q′) ∈ Q×Σ×R× Q, also written q
σ:x−−→ q′. (Note that there

might be several transitions with different weights over the same letter between the same
pair of states3.) We write γ(t) = x for the weight of a transition t = (q, σ, x, q′).

We require that the automaton A is complete, namely that for every state q ∈ Q and
letter σ ∈ Σ, there is at least one state q′ and a transition q

σ:x−−→ q′.
A run of the automaton on a word w is a sequence ρ = q0

w[0]:x0−−−−→ q1
w[1]:x1−−−−→ q2 . . .

of transitions where q0 ∈ I and qi+1 ∈ δ(qi, w[i]). As each transition ti carries a weight
γ(ti) ∈ R, the sequence ρ provides a weight sequence γ(π) = γ(t0)γ(t1)γ(t2) . . ..

A Val automaton (for example a Sum automaton) is one equipped with a value function
Val : R∗ → R or Val : Rω → R, which assigns real values to runs of A. The value of a run π is
Val(γ(π)). The value of A on a word w is the supremum of Val(π) over all runs π of A on w.

Automata A and A′ are equivalent, denoted by A ≡ A′, if they realize the same function.

Value functions. We list below some of the common value functions used for quantitative
automata on finite/infinite words, defined over sequences of real weights.

For finite sequences v = v0v1 . . . vn−1:

Sum(v) =
n−1∑
i=0

vi Avg(v) = 1
n

n−1∑
i=0

vi Prod(v) =
n−1∏
i=0

vi

For finite and infinite sequences v = v0v1 . . .:

Inf(v) = inf{vn | n ≥ 0} Sup(v) = sup{vn | n ≥ 0}

For a discount factor λ ∈ Q ∩ (0, 1), λ-DSum(v) =
∑
i≥0

λivi

For infinite sequences v = v0v1 . . .:

LimInf(v) = lim
n→∞

inf{vi | i ≥ n} LimSup(v) = lim
n→∞

sup{vi | i ≥ n}

LimInfAvg(v) = LimInf(Avg(v0), Avg(v0, v1), Avg(v0, v1, v2), . . .)
LimSupAvg(v) = LimSup(Avg(v0), Avg(v0, v1), Avg(v0, v1, v2), . . .)

(LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff.)

3 Notion Classification

We consider notions that limit the nondeterminism of a Boolean automaton A. The notions
may either be yes/no ones (always having “yes” for deterministic automata) or provide
a measure of nondeterminism, having a fixed value k ∈ N, dependency on A’s size (e.g.,
polynomial), finite, or infinite value (and always have value 0 or 1 for deterministic automata).

2 We speak of “quantitative” rather than “weighted” automata, following the distinction made in [8]
between the two.

3 This extra flexibility of “parallel” transitions with different weights is often omitted (e.g., in [16]) since
it is redundant for some value functions while important for others.
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We classify the notions into syntactic and semantic ones, then classify the semantic ones
into word-based and language-based, and finally further classify the language-based ones.

Due to the extent of the different notions, we define them only partially formally.

3.1 Syntactic Notions
These notions only relate to the structure of A, unrelated to the language it recognizes.

Initially nondeterministic(A) holds if A is deterministic, except for possibly having several
initial states. Considering NFAs, such an automaton is called “deterministic finite
automaton with multiple initial states” (MDFA). See [37, 33]. (Such a Büchi automaton
is called in [52, Section 2] “semi deterministic”, however this name is currently more in
use for a “deterministic in the limit” automaton, as defined below.)
Tree width(A, w) = number of runs of A on a word w; Tree width(A) =
sup{tree width(A, w)} over all words w. It is also called leaf size. See [35].
Structural ambiguity(A) = k if there is a single initial state q0 in A, and for every word w

and state q of A, there are at most k runs of A over w that end in q. When k = 1, A is
structurally unambiguous. See [45].
General structural ambiguity(A) = k if for every word w and states q and q′ of A, there are
at most k paths from q to q′ over w. When k = 1, A is generally structurally unambiguous.
See [45].

We also consider in this class notions that do not relate to A’s language, but do relate to
its state labeling or transition labeling.

Deterministic in the limit(A) holds if Aq is deterministic for every accepting state q of A
(considering only the transitions and states reachable from q). See [23, page 34]. It is
also called limit determinism and semi determinism.

3.2 Semantic Word-Based Notions
A notion N in this class is derived from a word measure N(A, w), by setting its value for an
automaton A to be N(A) = sup{N(A, w) | w ∈ L(A)}, namely the supremum over all words
that the automaton accepts. (When it is clear from the context what A is, we write N(w)
instead of N(A, w).)

The most common such notion is of ambiguity, defined by
Ambiguity(w) = the number of accepting runs of A on w. When ambiguity(A) = 1, A is
said to be unambiguous. See a survey in [21].

There are various additional notions in the class, whose measure is based on aggregating
the nondeterminism along runs. They differ by the aggregation function, and by whether
they consider all runs, the best run, or the worst run on the word w.

Amount of nondeterminism(w) = the minimal number of nondeterministic choices that
occur in an accepting run of A on w. See [42].
Branching(w) = the minimum branching of an accepting run of A on w, where branching
of a run r is the product of the nodes’ degrees along r in the computation tree of A on w.
See [29].
Guessing(w) = log(branching(w)), namely summing up the logarithm of the nodes’ degrees
rather than multiplying the degrees. See [29].
Trace(w) = the maximum branching of an accepting run of A on w. See [49].
Deviation(w) is almost the same as guessing(w), just considering for each node its degree
minus one rather than its degree. See [28].
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3.3 Semantic Language-Based Notions
Notions within this class are not based on a word measure, but rather relate, explicitly or
implicitly, to language equality. We further classify them into the following subclasses.

3.3.1 Determinism Embedding
A nondeterministic such automaton embeds an equivalent deterministic automaton, which
can be derived from it by just pruning transitions or by more complicated manipulations,
such as merging and pruning. A well known example of merging is the standard minimization
procedure of DFAs, merging states within the same Myhill Nerode equivalence class.

Consider automata A = (Σ, Q, I, δ, α) and A′ = (Σ, Q′, I ′, δ′, α′). We say that A′ is
derived from A by pruning if Q′ ⊆ Q, I ′ ⊆ I and δ′ ⊆ δ. We further say that A′ is derived
from A by merging and pruning if Q′ ⊆ Q and there exists a partition P ⊆ 2Q of Q and
a mapping µ : P → Q, such that i) for every S ∈ P, µ(S) ∈ S; and ii) for every transition
p′ σ:x−−→ q′ ∈ δ′ we have states p ∈ µ−1(p′) and q ∈ µ−1(q′), such that there is a transition
p

σ:x−−→ q ∈ δ. (We’ve already added transition weights, which can be ignored when irrelevant.)
Determinizable by pruning(A) holds if there exists an automaton A′ that is equivalent to
A and derived from it by pruning. See [4, 10].
Determinizable by merging and pruning(A) holds if there exists an automaton A′ that is
equivalent to A and derived from it by merging and pruning. See [47, Section 2.1].

3.3.2 Language Similarity between States
The most common such notion requires all target states of transitions from the same state
over the same letter to have the same residual language. Pre-residuality loosens it by requiring
the existence of a target state whose residual language contains the languages of all other
target states.

Residual(A) holds if for every state q, letter σ, and states q′, q′′ ∈ δ(q, σ), we have
L(Aq′) = L(Aq′′). See [5, Definition 15]. It is called semantic determinism in [1].
Pre-residual(A) holds if A can be pruned into an equivalent residual automaton. See [5,
Definition 15].

3.3.3 Restricted Choice Function
A nondeterministic automaton has, in each of its choices, “unlimited view” of the entire
history of the word prefix read so far and of the entire future of the word suffix to be read.
Two natural restrictions are to only allow a (partial) view of the history or to only allow a
(partial) view of the future. An automaton is history deterministic if it can only view the
history of the word, and it has k lookahead if it can only see the next k letters. History
determinism is refined or made coarse by two orthogonal measures, the first considering the
size of the memory required to store the relevant part of the history, and the second allowing
to maintain several runs, one of which should always be correct.

History deterministic(A) holds if there exists a strategy s : Q × Σ∗ → δ to resolve A’s
nondeterminism. See [19, 13]. It is formally defined via a letter game played on A (see
Section 3.3.4), whereby A is history deterministic if Eve has a winning strategy in it.
History deterministic with memory M(A) holds if there exists a history-determinism
strategy for A that uses memory M , where M can be a fixed size, dependent on the size
of A, finite, or infinite. Notice that when M = 0, A is determinizable by pruning (see
Section 3.3.1).
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History determinism(A) = k if there exist k strategies that can be used in parallel to
resolve A’s nondeterminism. (When k = 1, A is history deterministic.) It is formally
defined via a k-runs letter game, in which Eve should have a winning strategy (see
Section 3.3.4). The notion is originally defined in [48], where it is called the width of A.
Lookahead(A) = k if there exists a strategy s : Q × Σ≤k+1 → δ to resolve A’s non-
determinism, where Σ≤k+1 stands for the current and next up to k letters of the word
read. See [51, 46].

3.3.4 Winning Letter Games on A

The letter game formalizes the history determinism notion (see Section 3.3.3). In the game,
Adam produces a word w letter by letter, and Eve should resolve the nondeterminism. Eve
wins a play if her run is accepting or w ̸∈ L(A). Then, A is history deterministic if Eve has
a winning strategy in the letter game. In the k-runs letter game, Eve has k runs to maintain,
one of which should be accepting if w ∈ L(A).

Notice that resolving the winner of a letter game, for deciding whether or not a given
automaton is history deterministic, is generally a difficult task, due to the complicated
winning condition of the game – it depends on w’s membership in L(A), which relates to
all (possibly uncountably many) runs of A on w. In an attempt to overcome this difficulty,
Bangol and Kuperberg defined in [5] the k-token game, which replaces the w ∈ L(A) part of
the winning condition by a requirement from Adam to provide an evidence for the membership
of w in A – Adam should also resolve the nondeterminism along k runs, and Eve wins a play
if her run is accepting or all of Adam’s runs are rejecting.

If Eve wins the letter game on A then she obviously wins the k-tokens game on A for
any k. As for the converse, the 1-token game is generally easier for Eve than the letter
game [5], but it is open whether or not the 2-tokens game is equivalent to the letter game,
known as the “G2 conjecture” [5, Conclusions]. It was proved correct so far for Büchi and
coBüchi automata [5, 11], and it is still open for stronger acceptance conditions.

There are various variants of the k-tokens game in the literature, depending on how
exactly Adam is allowed to conduct his runs, one of which is the joker game [43].

Letter game(A): In each round of a play, Adam chooses a letter σ ∈ Σ and then Eve
chooses a corresponding transition t ∈ δ. In the limit, a play consists of a word w

generated by Adam and a run r on w generated by Eve. Eve wins if r is accepting or
w ̸∈ L(A). See [32, 13].
k-runs letter game(A): As the letter game, except that Eve maintains k runs, by choosing
at each round k corresponding transitions, and she wins if at least one of her runs is
accepting or w ̸∈ L(A). See [48].
k-tokens game(A): In each round of a play, Adam chooses a letter σ ∈ Σ, then Eve chooses
a corresponding transition t ∈ δ, and then Adam chooses k corresponding transitions. In
the limit, a play consists of a word w generated by Adam, a run r on w generated by
Eve, and k runs on w generated by Adam. Eve wins if r is accepting or all of Adam’s
runs are rejecting. See [5].

3.3.5 Good For (composition with) Entities

An automaton A is intuitively good for some entities, e.g., games or Markov decision processes
(MDPs), if the composition of A with every entity E whose definition is based on A’s language
yields an entity E × A that is equivalent to E.
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Good for games(A) holds if for every game G with Σ-labeled transitions and winning
condition L(A), we have that G and G × A have the same winner. See [32, 13].
Good for small (n) games(A) holds if A is good for games with up to n positions. See [22,
Definition 8] and [44].
Good for trees(A) is equivalent to A being good for one-player games [13, Lemma 15].
See [10, Section 2.3] for the original definition.
Good for automata(A) holds if for every alternating automaton B with Σ-labeled trans-
itions (or states) and acceptance condition L(A), we have B × A is equivalent to B.
See [20] and [13, Definition 6].
Good for MDPs(A) holds if for every MDP M with Σ-labeled transitions and the objective
that its runs generate words in L(A), we have that M and M × A have the same value
to their optimal strategies. See [31, Definition 1].

4 Generalizing the Notions to the Quantitative Setting

We follow below the structure of Section 3, which classified the different notions, and explain
how the notions of each class can be generalized to the quantitative setting. When relevant,
we provide the (partially formal) definition of each of the considered generalized notions.

4.1 Syntactic Notions
Notions unrelated to the automaton’s language and acceptance labeling, as described in
Section 3.1, apply as is to quantitative automata – they only relate to the automaton’s
structure, which is indifferent to whether the semantics of the automaton relates to Boolean
or quantitative values. This is the case, in particular, with initial nondeterminsm, tree width,
structural ambiguity, and general structural ambiguity.

As for determinisim in the limit, which does not relate to a language, but does relate to
labeling of states or transitions, it can analogously apply to quantitative automata, requiring
for example that an automaton is deterministic after every transition with some designated
weight. It might be relevant only to quantitative automata of certain types, as it is only
relevant to Büchi automata among the standard ω-regular automata.

4.2 Semantic Word-Based Notions
A quantitative automaton A can be naturally turned into a Boolean one, by accompanying
it with a threshold value t ∈ R, and defining that a word w is accepted by the threshold
automaton t-A iff A(w) ≥ t (or A(w) > t).

Semantic word-based notions, as described in Section 3.2, measure for each accepted
word the level of nondeterminism in its runs. Since these measures only consider the
nondeterminism involved in the runs, they apply as is to threshold automata – Once an
acceptance criterion is set, the semantic word-based measures are analogous to the syntactic
measures considered in Section 3.1.

Looking for generalized notions that apply to A itself, and not only to t-A, as will be
defined in Section 4.3 for language-based notions, we currently do not see natural such
generalizations: i) Taking the supremum of the notion’s value on t-A over all thresholds
t ∈ R will eliminate the semantic meaning of the notion, making it just a syntactic notion
as in Section 3.1. For example, ambiguity will be the same as tree width. ii) Replacing the
Boolean acceptance criterion with some function that relates to the value of the automaton
on a word might be an interesting notion for some types of quantitative automata, but it
changes the original meaning of the notion and does not seem to provide a general notion
between determinism and nondeterminism.
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4.3 Semantic Language-Based Notions
A notion N that is based, explicitly or implicitly, on language equality, as described in
Section 3.3, can be naturally generalized to the quantitative setting in the following three ways.
Approach I. N(t-A). Applying the notion as is to a threshold automaton t-A, as described

in Section 4.2 above for word-based notions.
Approach II. Threshold-N(A). Defining the notion’s value on A to be the worst (supremum)

value of N(t-A) over all thresholds t ∈ R.
Approach III. N(A). Directly generalizing the notion to apply to A by replacing the language

basis of N with a function basis. For example, rather then requiring that A and some
related automaton A′ recognize the same language, we require that the quantitative
automata A and A′ realize the same function.

By definition, if Threshold-N(A) holds for some automaton A than N(t-A) holds with
respect to every threshold t ∈ R. (For a notion that provides a nondeterminism measure
rather than a yes/no value, we have Threshold-N(A) ≥ N(t-A)).

We also generally have N(A) ⇒ Threshold-N(A) (or N(A) ≥ Threshold-N(A)), since morally
the former requires exact equality and the latter requires equality with respect to thresholds.
Interestingly, it might be that N(A) /⇐ Threshold-N(A), even though Threshold-N(A) is defined
with respect to all thresholds t ∈ R, as is the case with history determinism (see Section 4.3.1).

Notice that when speaking of N(t-A), we consider the same definition of N as in the
Boolean case. Further, the definition of Threshold-N is directly derived from it. Yet, the
definition of N in N(A), for a quantitative automaton A, is more general than its definition
for a Boolean automaton, as its basis is generalized from languages to functions.

For each notion N listed in Section 3.3, we provide below its generalization N(A) to a
quantitative automaton A. Observe that if N is explicitly based on automata equivalence
or containment, then it can be directly generalized to quantitative automata, in which
setting automata equivalence stands for realizing the same function and an automaton A′ is
contained in A if for every word w, A′(w) ≤ A(w). However, if N is only implicitly based on
language equality, its generalization requires some subtlety.

Determinism Embedding. Such notions, and in particular determinizability by pruning and
determinizability by merging and pruning, consider the equivalence of A and an embedded
automaton A′, and are thus directly generalized to quantitative automata.

Language Similarity between States. These notions, and in particular residuality and
pre-residuality also directly speak of automata equivalence or containment, and can thus
directly apply to quantitative automata. Yet, it is natural to extend them in two aspects:
I. Since in quantitative automata there are weights on transitions, the first transition

can make a difference and should be considered. Thus, the definition should be that
Residual(A) holds, for a Val automaton A, if for every state q, letter σ, and transition
t = q

σ:x−−→ q′, we have that sup{Val(π) | π is a run of Aq on w starting with t} = Aq(w).
II. The intended meaning of residual transitions is that it is “safe” to follow them. However,

while this is the case when the value function only depends on the future, like in ω-regular
automata, or when it is monotonic with respect to suffixes (cf. “suffix-monotonic functions”
[14, Definition 18] ), it need not be the case with general value functions. (See more about
it in Section 5.) For making the notion relevant also to more general value functions, one
can define transitions to be “safe” if taking them allows to get the best value to every
suffix, following every prefix (cf. “cautious strategies” [14, Definition 14]).
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Restricted choice function. These notions, and in particular lookahead and the different
variants of history determinism, put limitations on the transition function of A, which stand
equally for Boolean and quantitative automata, and require the automaton A′ that is
obtained from A by these limitations to be equivalent to A, which again directly generalizes
to quantitative automata.

Notice that history determinism can still be formally defined via the letter game, whose
generalization to the quantitative setting is described below.

Winning Letter Games on A. These notions do not explicitly speak of language equality,
and thus need a bit more delicate handling. The games are played exactly as in the Boolean
setting and the only change is in the definition of Eve’s winning condition – In the letter game,
instead of requiring her run to accept if the generated word w is in L(A), we require that
the value of her run on w is exactly A(w); In the k-tokens game, instead of requiring her run
to accept if some of Adam’s runs are accepting, we require that the value of her run is at
least as high as all of Adam’s runs. See [14, Definition 2] (where the notions are formally
defined also with respect to alternating automata).

Good For (composition with) Entities. These notions, differently from all of the previously
discussed notions, consider also external entities – A “good for some entities” notion N holds
for a Boolean automaton A if A properly composes with every entity whose definition is
based on A’s language.

Hence, for generalizing N to apply to quantitative automata, which realize functions from
words to real numbers, we should first see if there is a relevant generalization of the external
entities to be based on functions to real numbers rather than on languages.

Good-for-gameness. The generalization of the notion relates to composition with zero-sum
games, which generalize the win-lose games used for Boolean automata. A quantitative
automaton A is good for games iff for every zero-sum game G whose transitions are
Σ-labeled and the payoff (value) of a play generating a word w is A(w), we have that G

and G × A have the same value. See [14, Definition 1].
Good-for-automataness. The generalization of the notion relates to composition with
alternating quantitative automata, which generalize alternating Boolean ones.
Notice that in the composition B × A of (Boolean or quantitative) automata A and B,
the transitions or states of B should be labeled with the alphabet of A. (See [20] and [13,
Definition 2]). A quantitative automaton B formally has transition labels (weights) in
R (usually in Q), implying that the alphabet Σ of A should be contained in R. Yet, as
there are finitely many weight labels in B, we may consider an arbitrary alphabet Σ for
A, where each letter σ ∈ Σ stands for a “name” to a weight from B’s labeling.
Then, a quantitative automaton A is good for automata iff for every alternating quantit-
ative automaton B with Σ-labeled transitions (or states) and value function A, we have
that B × A is equivalent to B.
Good-for-MDPness. The generalization is with respect to MDPs whose objective is to
maximize A’s value on the generated word; that is, instead of having an objective
function “f(w) = 1 if w ∈ L(A) and 0 otherwise”, the MDP has the objective function
“f(w) = A(w)”. Then, a quantitative automaton A is good for MDPs iff for every MDP
M with Σ-labeled transitions and the objective function A, we have that M and M × A
have the same value to their optimal strategies. (In the product M × A with a Val
automaton A, the transitions are labeled with the weight of the corresponding transition
in A, and the objective of the MDP is to maximize Val(r), where r is the sequence of
weights generated along a run of the MDP.)
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4.3.1 Notions vs. Threshold-Notions
While generally we have Notion ⇒ Threshold-Notion for the language-based notions, it depends
on the notion whether or not there is also a converse implication.

When Notions ≡ Threshold-Notions. This is the case with notions that are “based on direct
values”, for example residuality: If residual(A) does not hold, there is a transition t = q

σ:x−−→ q′

and a word w, such that v1 = sup{Val(π) | π is a run of Aq on w starting with t} < Aq(w) =
v2. Then the threshold automaton t-A, for t = (v1 − v2)/2, is not residual.

Notice that this is, however, not the case with pre-residuality, which is not based on direct
values, as it allows for a pruning phase.

Good-for-some-entities notions can also have equivalence between the two generalized
versions of the notion, since intuitively if an automaton A is not good for some entities
then there is some specific entity E having a specific value v with respect to which A is not
good, implying that t-A, with t = v, is also not good for E. This is indeed the case with
good-for-gamenesss [14, Lemma 5] and good-for-automataness (see Section 5).

When Notions ̸≡ Threshold-Notions. The two variants are generally different for notions
that are based on strategies, since Notion requires the same strategy for all values, while
Threshold-Notion allows for a different strategy to each threshold.

It is shown in [14, Lemma 10] and demonstrated in [14, Figure 3], which we repeat in
Figure 1, to be the case for history determinism and determinizability by pruning, and the same
reasoning applies also to determinizability by merging and pruning, pre-residuality, lookahead,
letter game, k-runs letter game, and k-tokens game.

A

q0

q1

q2

q3
Σ:0

Σ:0

Σ:1

a :2, b :0

Σ:0
B

s0

s1

s2

s3

s4

Σ:0

Σ:0

Σ:1

a :2

b :0

Σ:2

Σ:0

Figure 1 From [14, Figure 3]. Nondeterministic automata that demonstrate the case of Notion ̸≡
Threshold-Notion with respect to the notions listed above. The automaton A demonstrates it with
respect, for example, to the Sum/DSum/Sup value functions, and B with respect, for example, to the
Avg/LimSup/LimInf/LimSupAvg/LimInfAvg value functions. Consider, for instance, determinizability
by pruning – A is not determinizable by pruning, but for every threshold t it is: going only from q0

to q1 for a threshold t ≤ 1 and going only from q0 to q2 for a threshold t > 1.

5 Relations between Notions

Some of the notions are related to each other by means of implication or equivalence. In some
cases, their generalization to the quantitative setting does not change their interrelations,
while in other cases it strictly refines them.

Syntactic notions and word-based notions. The syntactic notions do not change when
generalized to the quantitative setting, and the semantic word-based notions also remain as is,
just relating to threshold automata. Hence, the basic relations between these notions are as
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in the Boolean setting. (See, for example, [34, 49, 38].) In addition, relations between notions
that depend on the automaton type can be further researched with respect to threshold
automata of various quantitative automata types.

All-Thresholds generalization of language-based notions. Considering Threshold-N(A)
notions, they morally relate to each other as in the Boolean setting. For example, notions
N1 and N2 that are equivalent with respect to Boolean automata (i.e., for every Boolean
automaton A, we have N1(A) = N2(A)) are also equivalent with respect to threshold automata
(i.e., for every quantitative automaton A and threshold t ∈ R, we have N1(t-A) = N2(t-A), as
the latter are also Boolean automata. Thus, we also have Threshold-N1(A) = Threshold-N2(A)).

Yet, observe that general Boolean automata need not be regular or ω-regular, and notions
that are equivalent with respect to (ω-)regular automata need not be equivalent with respect
to Boolean automata that are derived from quantitative automata. For example, over
ω-regular automata, history determinism implies pre-residuality, while the implication does not
hold for all Boolean automata nor for all threshold quantitative automata. (See Section 5).

Basis Generalization of Language-Based Notions

Generalizing the basis of notions from language equality to function equality refines the rela-
tions between them: Notions that are different with respect to Boolean (ω-)regular automata
are also different with respect to quantitative automata, as the former are special cases of the
latter, however notions “known to be equivalent” might turn inequivalent in the quantitative
setting, as is the case for example with history determinism and good-for-gameness.

As in the Boolean setting.

Determinizability by pruning ⇒1 history determinism ⇒2 good-for-gameness ≡3

good-for-automataness.

1. Determinizability by pruning is a special case of history determinism, restricting the
history-determinism strategy to be positional.

2. A history-determinism strategy for an automaton A can be combined with an optimal
strategy in a game G, giving an optimal strategy in the game G × A [14, Theorem 4].

3. A game is a special case of an alternating automaton B, giving the implication from
right to left, while for every specific word w, as in the Boolean setting [13, Theorem
16], the value of B on w is viewed as a game, giving the implication from left to right.

History determinism ⇒ good-for-MDPness. As in the Boolean setting [31], a history-
determinism strategy for an automaton A can be combined with an optimal strategy for
an MDP M , ensuring an optimal strategy in M × A.

The G2 conjecture. Two-token games (G2) characterize history determinism for Büchi and
coBüchi automata [5, 11], and it is conjectured in [5, Conclusions] that this characterization
also holds for parity automata (and thus for all ω-regular automata). It is shown in [12]
that G2 also characterizes history determinism for various quantitative automata, and it
is open whether this is the case for all quantitative automata.
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Different from the Boolean setting.
Good-for-gameness ̸⇒ history determinism. While the two notions are equivalent and often
mixed in the ω-regular setting, they turn out to be inequivalent in the quantitative
setting, having good-for-gameness ≡ Threshold-history-determinism /=⇒

⇐= history determinism
[14, Theorem 4]. (The left equivalence assumes that the letter game on A is determined
[14, Lemma 7].) For example, the automata in Figure 1 are good for games but not
history deterministic.
History determinism ̸⇒ pre-residuality. In the ω-regular setting, the implication holds [43,
Lemma 18] (and there is no back implication [1, Theorem 1]). Yet, the implication is
based on the implicit assumption that the value function depends on suffixes: a history
deterministic automaton A all of whose transitions are used by some history deterministic
strategy is guaranteed, in this case, to be residual, as otherwise once Eve chooses a non-
residual transition, Adam will choose a suffix that witnesses its non-residuality, leading
to Eve’s lose. However, this need not be the case if the value function also depends on
prefixes, as demonstrated in Figure 2.

q0

q1

q2

Σ:0

Σ:1

a :0; b :1
Σ:0

Σ:1

Figure 2 A Val automaton A on finite words with the value function Val(ρ) = 1 if ρ has both
even and odd values, and 0 otherwise. Notice that A is history deterministic but not pre-residual.

6 Conclusions

We have analyzed how notions of limited nondeterminism can be generalized from Boolean
to quantitative automata; first observing that it depends on whether the notion is syntactic,
semantic word-based, or semantic language-based, and then analyzing the possible notion
generalizations within each of these three classes.

Our analysis results with generalized notions that define novel classes of quantitative
automata, and opens up new research directions, which can contribute to the advance of
quantitative verification and synthesis. For example, results on history deterministic and
good for games quantitative automata directly relate to possible new solutions to quantitative
synthesis [14].

In addition, the interrelation between the notions in the quantitative setting is shown
to refine their known interrelation with respect to ω-regular automata, providing better
understanding of the notions also with respect to Boolean automata whose behavior need
not be regular.
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Abstract
The study of quantitative risk in security systems is often based around complex and subtle
mathematical ideas involving probabilities. The notations for these ideas can pose a communication
barrier between collaborating researchers even when those researchers are working within a similar
framework.

This paper describes the use of geometrical representation and reasoning as a way to share ideas
using the minimum of notation so as to build intuition about what kinds of properties might or
might not be true. We describe a faithful geometrical setting for the channel model of quantitative
information flow (QIF) and demonstrate how it can facilitate “proofs without words” for problems
in the QIF setting.
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1 Introduction

The analysis of security- and privacy vulnerabilities continues to be a challenging and
important problem. Most practitioners acknowledge that online activity will never be
absolutely safe, and so rigorous scrutiny on the basis of models and proof has a significant
role to play in explaining and evaluating the severity of the threats that remain. But
understanding risk is generally a fraught process: not only must it contend with opinions
about what constitutes risky behaviour, but understanding must necessarily accommodate
“invisible” extrinisic influences. For example nothing about the four digit integer 6174 suggests
that it would be risky to send it in an email unless we find out that it is someone’s PIN and
could therefore put their life’s savings in jeopardy. 1

Assuming that evaluating the impact of risk in a given scenario is something that is still a
useful thing to do, the following questions arise. Can we provide quantitative measurements
that provide some sense of severity of a discovered vulnerability? How can we elaborate
qualitative explanations for any numerical measurements of vulnerability that we might
compute? How can we advance and share our knowledge of security and privacy defences
when those explanations can be highly technical and abstract?

1 Actually 6174 turns out to have a very curious intrinsic property of being invariant under Kaprekar’s
operation.
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2:2 Geometry for Quantitative Information Flow

In this paper we describe our experience of addressing those questions using geometrical
visualisations of the Quantitative Information Flow (QIF) framework [1]. Our development
of this style of “geometrical reasoning” came about through a collaboration between teams
who were working on the similar problems in quantification of security risks, using (as it
turned out) the same basic mathematical principles, but with very different notations and
somewhat differing objectives. We discovered that using visualisations helped enormously
in sharing mathematical ideas and building intuition amongst the team members. The
visualisations helped confirm facts that we knew in various forms, and enabled us not only
to refute conjectures we thought might be true, but also to suggest to us conjectures that we
had not discovered for ourselves when we were using purely formal notations. Subsequent
rigorous proof was then able to remove the geometrical hunch, providing new theorems in
privacy (described below) [8].

Thus a completely unexpected benefit of our “geometry of risk” was its facilitation of
“notation-free” communication of fundamental but complex ideas providing summaries of
proof steps in the form of geometrical constructions. Equipped with a sense of certainty
endowed by the geometry allowed us to formulate and prove formally new theorems thus
advancing our understanding of QIF and how it could be used in security and privacy. In
this we find we are in agreement with Henri Poincaré’s insights on the benefit of pictorial
representations to promote intuition and communication of complex mathematical ideas
between scientitsts:

“I have already had occasion to insist on the place intuition should hold in the
teaching of the mathematical sciences. Without it young minds could not make a
beginning in the understanding of mathematics; they could not learn to love it and
would see in it only a vain logomachy; above all, without intuition they would never
become capable of applying mathematics. But now I wish before all to speak of the
role of intuition in science itself. If it is useful to the student, it is still more so to the
creative scientist.”

Extract from Intuition and Logic in mathematics appearing in La valeur de la
science, Henri Poincaré, 1905.

1.1 Related work
There are many examples in mathematics of visualisations used to provide explanation and
insight for formal reasoning. The earliest instance is of course Euclid’s elements for reasoning
about spacial relationships; Oliver Byrne’s 1847 treatise [3] is a masterful account of how
diagrams can be used optimally to convey complex geometrical ideas. Roger Nelsen’s Proofs
without words [11] promotes the use of visualisations to explain mathematical ideas in a
range of topics from algebra to calculus, and theorems about sequences and series. And one
of the shortest papers ever written consisted essentially of two figures, as the explanation of
a mathematical result [6].

The geometry underlying the study of Quantitative Information Flow first appeared
in Alvim [1]; this also includes Morgan’s “overlapping triangles” demonstration that the
at-least-as-secure-as partial order on information-flow channels is not (alas) a lattice as well.
Fernandes’ application of geometrical ideas to study universally-optimal utility mechanisms
for differential privacy appears in [8].

In this paper therefore we emphasise the role played by geometrical ideas in supporting
the communication via “proofs without words” for quantifying security and privacy risks
using quantitative information flow.
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2 Quantitative Information Flow Basics

The informal idea of a secret is that it is something about which there is some uncertainty,
and the greater the uncertainty the more difficult it is to discover exactly what the secret
is. For example, one’s 4-digit PIN should be kept secret, but if the last two digits are
discovered to be 7 and 4, then it becomes much easier to guess the rest of it. That is, when
any information about a secret becomes available to an observer (often referred to as an
adversary) the uncertainty is reduced, allowing the property, or even exact value of the secret,
to be more accurately inferred. When that happens, we say that information (about the
secret) has leaked.

Quantitative Information Flow (QIF) makes the above intuition mathematically precise.
Given a range of possible secret values of (finite) type X , we model a secret as a discrete
probability distribution of type DX , because it ascribes “probabilistic uncertainty” to the
secret’s exact value. Given some distribution π:DX , we write πx for the probability that π

assigns to x: X , with the idea that the more likely it is that the real value is some specific
x, then the closer πx will be to 1. Usually the uniform distribution over X models a secret
which could equally well take any one of the possible values drawn from its type and we
might say that, beyond the existence of the secret, nothing else is known. There could, of
course, be many reasons for using some other distribution: for example if the secret were the
height of an individual then a normal distribution might be more realistic. In any case, once
we have a secret, we are interested in analysing whether an algorithm, or protocol, that uses
it might leak some information about it. To do that we define a measure for uncertainty,
and use it to compare the uncertainty of the secret before and after executing the algorithm.
If we find that the two measurements are different then we can say that there has been an
information leak.

The idea of measuring security risk in terms of quantitative information flow (and that
name) was pioneered by Clarke et al. [4]. That and other early QIF analyses of information
leaks in computer systems [5, 4] used Shannon entropy [12] to measure uncertainty because
it captures the idea that more uncertainty implies “more secrecy” – and indeed the uniform
distribution corresponds to maximum Shannon entropy (corresponding to maximum “Shannon
uncertainty”). More recent treatments have shown however that Shannon entropy is not
always the best way to measure uncertainty in security contexts: precisely because of its
beautiful generality, it might not model scenarios relevant to the goals of a particular
adversary. Indeed there are some circumstances where a Shannon analysis actually gives
a more favourable assessment of security than is actually warranted, when the adversary’s
motivation is taken into account [13].

Alvim et al. [2] proposed a notion of uncertainty, more general than Shannon, based
on “gain functions”. In this paper we will use the equivalent formulation of loss functions. 2

A loss function measures a secret’s uncertainty according to how it affects an adversary’s
actions within his context. We write W for a (usually finite) set of actions available to an
adversary corresponding to an “attack scenario” where the adversary tries to infer something
(e.g. some property, but perhaps its actual value) about the secret. For a given secret x: X ,
an adversary’s choice of action w: W results in the adversary’s losing something beneficial
to his objective. That loss can vary depending on the adversary’s action (w) and the exact
value of the secret (x). The more effective is the adversary’s choice in how to act, the more
he is able to overcome any uncertainty concerning the secret’s value.

2 Shannon Entropy is a special case: it can be defined using a loss function.
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2:4 Geometry for Quantitative Information Flow

▶ Definition 1. Given a type X of secrets, a (real valued) loss function ℓ: W×X →R is such
that ℓ(w, x) determines the loss to an adversary if he chooses w and the secret is x.

A simple example of a loss function is br (for “Bayes Risk”, as explained below), where
W := X so that the available actions are simply “guess the value of x”, and thus 3

br(w, x) := 0 if w=x else 1 . (1)

For this scenario, the adversary’s goal is to determine the exact value of the secret, so
he loses nothing if he correctly guesses the value of a secret (a good outcome for him), and
otherwise he loses $1 (bad).

Elsewhere the great utility and expressivity of loss functions for measuring various attack
scenarios relevant to security –far beyond just guessing the secret’s value – have been
thoroughly explored [1]. Given a loss function we define the uncertainty of a secret in DX
relative to the scenario the loss function describes: it is the minimum average loss to an
adversary. More explicitly, for each action w, the adversary’s average loss relative to some
distribution π of the secret is

∑
x∈X ℓ(w, x)×πx; thus his minimum average loss is the action

that yields that minimal average.

▶ Definition 2. Let ℓ: W×X →R be a loss function, and π:DX be a secret. The uncertainty
Uℓ[π] of the secret wrt. ℓ is given by

Uℓ[π] := min
w: W

∑
x: X

ℓ(w, x)×πx .

For a secret π:DX , the uncertainty wrt. the loss function br is Ubr[π]:= 1− maxx: X πx,
that is the deficit of the maximum probability assigned by π to possible values of x. The
adversary’s best strategy for optimising his loss would therefore be to choose the value x that
corresponds to the maximum probability under π. This uncertainty Ubr is called Bayes’ Risk.

We now define a mechanism to be an abstract model of a protocol or algorithm that uses
secrets. As the mechanism executes we assume that there are a number of observables, that
is outputs it might produce, that can depend on the actual value of the secret it is processing:
we write Y for the type of those observables. The model of the mechanism therefore assigns
a probability that y: Y might be observed given that the secret is x. Such observables could
be sample timings in a timing analysis in cryptography, for example.

▶ Definition 3. A mechanism is a stochastic channel 4 C: X ×Y → [0, 1]. The value Cxy is
the probability that y is observed given that the secret is x.

Given a (prior) secret π:DX and mechanism C we write π▷C for the joint distribution
in D(X ×Y) defined

(π▷C)xy := πx×Cxy .

For each y: Y, the marginal probability that y is observed is py :=
∑

x: X (π▷C)xy. 5

For each observable y, the corresponding posterior probability of the secret is the condi-
tional π|y in DX defined (π|y)x := (π▷C)xy/py . 6

3 We write := for “is defined to be”.
4 “Stochastic” means that the rows sum to 1, i.e. that

∑
y: Y Cxy = 1 for each x.

5 Equivalently that is
∑

x
πxCxy.

6 We assume for convenience that when we write py the terms C, π and y are understood from the context.
Notation suited for formal calculation would need to incorporate C and π explicitly.
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Given a prior secret π and mechanism C, it’s clear that the entry πx×Cxy of the joint
distribution π▷C is the probability that the actual secret value is x and the observation is y.
That joint distribution contains two important pieces of information, which we single out:
the probability py of observing y and the corresponding posterior π|y which represents the
adversary’s updated view about the uncertainty of the secret’s value. If the uncertainty of
the posterior increases, then information about the secret has leaked and a rational adversary
might use it to decrease his loss by changing how he acts, i.e. by altering his choice of action
w. The adversary’s average overall loss, taking the observations into account, is defined
to be the average posterior uncertainty (i.e. the average loss of each posterior distribution,
weighted according to their respective marginals):

Uℓ[π▷C] :=
∑
y∈Y

py×Uℓ[π|y] , where py and π|y are defined at Def. 3. (2)

The “rationality” of the adversary is inside the Uℓ, expressed by the minw: W there (Def. 2).

2.1 Hyper-distributions summarise the risk
In the above model the key structure used to compute the posterior loss is [π▷C] – which
can be represented (more abstractly) as a hyper-distribution, that is a distribution of type
D2X where the outer probability is py, the marginal probability of an observation and the
inner distribution is the posterior corresponding to that y.

An advantage of that abstraction is that there is then a partial order on D2X which
allows the robust comparison of channels wrt. their information flow properties. It is the
relation (⊑), defined

▶ Definition 4. Let C, D be channels. We say that C ⊑ D if for all loss functions ℓ and
prior distributions π we have Uℓ[π▷C] ≤ Uℓ[π▷D].

That is, if D refines C then we can be sure that the adversary always loses no less with D

than with C in any scenario that can be defined by some π and ℓ of the correct type: that is,
for a defender D is at least as secure as C. As we noted above, Shannon Entropy is a special
case of an ℓ-uncertainty – but with infinitely many actions– and we call its loss function se,
so that Shannon entropy is Use.

2.2 Reasoning geometrically
The basic model of QIF – set out mathematically above – turns out to have an appealing
geometrical interpretation, one that we can use to visualise the relationships between channels
and also loss functions. The first step is to visualise hyper-distributions using a barycentric
representation of DX [1][chapter 12]. Recall from §2.1 above that a hyper-distribution is of
type D2X , equivalently D(DX ) or a “distribution of distributions”. The “inner D” defines
what we call “inners”, distribution on X directly, that correspond to posteriors associated
with the observations – and when X is finite the inners are (non-negative) 1-summing vectors
in R|X |. Thus a hyper-distribution corresponds to a convex sum of 1-summing vectors. The
“outer D” is the “outer” that gives the marginal probabilities associated with each inner, the
weights in that convex sum.

Suppose first that X := {xa, xb} and that u:DX is the uniform prior. As explained above
u corresponds to a 1-summing vector, so that as expected in this case u:= (1/2, 1/2). Here
the first component is the probability that the secret is xa and the second component is the
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xa xb

3/8 5/8

prior

�훿1 �훿2

inner inner

the distribution “certainly xa” the distribution “certainly xb”

barycentric representation of distributions on X = {xa,xb}

The inners are produced by a channel acting on the prior.

The dots’ sizes indicate the inners’ respective outer probabilities.

The barycentric representation of D{xa, xb} is the horizontal line between xa and xb (corres-
ponding to the 1-summing vectors (1, 0) and (0, 1)). The two inners are labelled δ1 and δ2 with
their positions relative to the xa(xb) labels corresponding to the probabilities δ1

xa
(δ1

xb
) and

δ2
xa

(δ2
xb

). The outers are indicated as the relative distance between the δ’s and their weighted
average to obtain the original prior u.

Figure 1 Barycentric representation of [u ▷ C].

probability that the secret is xb – since u is uniform, those probabilities are the same. Next let
the observations Y:= {y1, y2} be and consider the channel C ∈ X ×Y , and its corresponding
hyper-distribution [u▷C] when the prior is u.

C :=
( y1 y2

xa
1/2 1/2

xb
1/4 3/4

)
[u▷C] :=

3/8 5/8

xa
2/3 2/5

xb
1/3 3/5

As we can see, the inners (i.e. posteriors) are δ1:= (2/3, 1/3) and δ2:= (2/5, 3/5), and their
corresponding “outers” the marginal probabilities 3/8, 5/8.

Since X has only two elements, the barycentric representation of DX is one-dimensional,
running from distribution “certainly xa” at left to “certainly xb” at right, as in Fig. 1. A
point on that line represents a linear combination of those two extremes, and the larger
the probability the distribution assigns to xa, say, the closer its representing point is to
the left-hand side. This barycentric representation therefore locates inners δ1,2 on that
horizontal line, with for example δ1 lying closer to the left-hand side because it assigns
greater probability to xa.

Fig. 1 also shows the prior (as a point in the middle of the line, because it’s uniform),
and the points representing δ1,2 are given sizes corresponding to the outers associated with
them. If linearly combined with those sizes as coefficients, they will give the prior at the
position shown (and with “size” 1). That is a property of the construction [π▷C] for any
prior π (uniform or not) and channel C.

Next, given a loss function ℓ we can plot its associated uncertainty Uℓ(π) on the vertical
axis above the barycentric representation, and in fact (for all ℓ) it will determine a concave
and continuous curve there. Fig. 2 also shows an uncertainty Uℓ as a function from inners
to reals. Here a particular loss ℓ(w, ·) becomes a tangent to the curve Uℓ, and therefore
the curve shown is the envelope of all those w-determined tangents. Locating δ1, δ2 on the
(horizontal) barycentric axis, we can easily read off Uℓ[δ1] and Uℓ[δ2] as the height of the
curve Uℓ above them.
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The barycentric axis is the horizontal labelled xa, xb, and the inners (posteriors) of [u▷C] are
indicated as δ1, δ2. The circles’ sizes represent their respective outer (i.e. marginal) probabilities.
The curve denotes Uℓ as a function of points (distributions) on the horizontal barycentric axis.
Thus Uℓ[δ1]) is the height of the vertical line from δ1 up to the curve Uℓ.

The average of the inners δ1 and δ2 weighted according to their respective outer probabilities in
[u▷C] yields the prior u again; but the (same) average of the expected losses is Uℓ[u▷C], whose
value is the height of the vertical line from the prior u (in this case) to the line joining the two
points on the Uℓ curve.

Figure 2 Barycentric representation of uncertainties and loss functions.

With all that done, it is easy to compute Uℓ[u▷C] as that same weighted average of the
heights of Uℓ above them: and that is done geometrically by connecting those two points on
Uℓ[u▷C] with a straight line, and noting its height above the prior. That is, we simply take
the weighted average 3/8×Uℓ[δ1] + 5/8×Uℓ[δ2], which is depicted on the figure as the point at
which the vertical line from u meets the line joining the uncertainties at Uℓ[δ1,2].

Because Uℓ is concave, we now have a “proof without words” [11] of the well known
Jensen’s inequality. 7 8

7 For more than two inners, the same “proof” generalises; but the combinations have to be done two-by-two.
8 As has been noted by many authors, a “proof without words” is not a proof. We use it here to mean

that it is a suggestion for a proof strategy – of course the actual proof must be demonstrated with
appropriate words.
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The barycentric representation of distributions over three values {xa, xb, xc} is a (two-
dimensional) triangle, rather than a straight line as it was in Fig. 2 above when X
had just two values: it’s always one dimension smaller than the size of X , because the
constraint that the probabilities sum to 1 loses one degree of freedom.

Figure 3 Barycentric representations on three points.

In the following sections we use pictures and constructions given above as a way to build
and share intuition about the behaviour of channels. Our demonstrations can be thought
of as providing hints to explain a complex argument; here we suppress the accompanying
formal arguments leaving the constructions as “proofs with very few words”.

3 Some QIF proofs without many words

3.1 Refinement seen geometrically
In Def. 4 the refinement partial order is defined between hyper-distributions, that the loss
with respect to any uncertainty must increase. But the Coriaceous Theorem [10] gives
an equivalent geometric definition. One hyper – an (outer) distribution over (its inner)
distributions – is a refinement of another just when the more refined’s inners can be realised
as a weighted merge of the less refined’s inners. In Fig. 2 for example, the hyper represented
by the two smaller dots can be refined to another – to many others – by “carving off”
pieces of the inners and merging them according to their respective weights. 9 And the
proof of the Coriaceous Theorem is itself inspired geometrically, because it relies on the
Separating-Hyperplane Lemma, where the convex region represents the more refined hyper,
and the separating plane’s normal gives the coefficients of the loss function that satisfies the
original Def. 4.

The geometric view tells us immediately that a more-refined hyper’s inners must lie
(non-strictly) within the convex hull of the less-refined hyper, and helps us (in §3.2) to see –
again geometrically – whether the refinement partial order is a lattice. The following stronger
fact (requiring a full proof) allows us to make stronger geometric arguments [1].

9 In the extreme case, they can be refined to the singleton hyper whose sole inner is the original prior, as
illustrated by the arrows in that figure.
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Figure 4 Two triangular hypers ∆1,2 on X = {xa, xb, xc}.

▶ Lemma 5. Let the (finite) state space X have N elements, and let some hyper ∆ have
N linearly independent inners. Then any other hyper ∆′ all of whose inners lie within the
convex hull of ∆ (and that is derived from the same prior) is a refinement of ∆, no matter
how many inners ∆′ might have.

The original “qualitative” Lattice of Information [9] is (by its very title) a lattice; but in
the quantitative case (here), it turns out that it is not a lattice.

3.2 The refinement order is not a lattice
In Fig. 3 we show how our barycentric representation of distributions appears when X is
{xa, xb, xc}, no longer a line but now an equilateral triangle, shown in grey at the bottom.
We will reason about hypers in that triangle.

Fig. 4 shows two hypers ∆1,2 (green and red resp.) over a state space X = {xa, xb, xc}.
They are both generated from the uniform prior (1/3, 1/3, 1/3), shown as a black dot at the
centre of the barycentric triangle, and each of the hypers is a (smaller) equilateral triangle
itself, having three inners (each) all three with outer probability 1/3. All refinements of ∆1

must lie within the green triangle; and all refinements of ∆2 must lie within the red triangle;
and so all refinements of both must lie within the yellow hexagon.

And so from Lem. 5 we know that any hyper (with the same prior) in the yellow hexagon
must refine both ∆1,2, because they have only three inners (each).

Now consider three more hypers, each with only two inners (each with outer 1/2), named
∆3,4,5 as shown in Fig. 5. Each of ∆3,4,5 is a refinement of each of ∆1,2, as noted just above,
which fact we write compactly as ∆1,2 ⊑ ∆3,4,5. We show (after the following lemma) that
there is no hyper ∆ satisfying

∆1,2 ⊑ ∆ ⊑ ∆3,4,5 . (3)

▶ Lemma 6. If hypers ∆′, ∆′′ (with the same prior) lie (non-strictly) within the yellow
hexagon of Fig. 5, and ∆′ ⊑ ∆′′, then the outer probability of any of the (six) hexagon vertices
in ∆′′ cannot exceed the outer probability of that same vertex in ∆′. 10

That is because refinement interpolates inners, and interpolation of any inners of ∆′

(which, remember, are non-strictly within the hexagon) cannot increase the outer of one of
the hexagon’s vertices, because the hexagon is convex and its vertices are its extreme points.

10 If some vertex of the hexagon is not “actually” one of the inners of the hyper considered, we just consider
its outer to be zero.
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Figure 5 Three more two-inner hypers ∆3,4,5 on X = {a, b, c}.

Now from Lem. 6 we have immediately that there is no ∆ satisfying (3), because any ∆
that refines both ∆1,2 must lie within the hexagon; and by Lem. 6 if ∆ additionally is refined
by all of ∆3,4,5 then the outer of ∆ at all six vertices be at least 1/2, impossible because those
outers must sum to 1.

And so (⊑) on X = {xa, xb, xc} is not a lattice: for both the join ∆1 ⊔ ∆2 and the meet
∆3 ⊓ ∆4 ⊓ ∆5, if they existed, would as ∆ satisfy (3) – which Lem. 6 showed was impossible.
And so neither exists.

3.3 Channel composition is not idempotent. . . unless it is deterministic
Channel composition (or parallel) composition is defined to be the channel obtained by
independent executions of two channels, taking both their observations into account.

▶ Definition 7. Let C: X ×Y → [0, 1], D: X ×Z → [0, 1]. The parallel composition
C∥D: X ×(Y×Z) → [0, 1] of C, D is defined as the product space of observations which
are now drawn from Y×Z:

(C∥D)x(yz):= Cxy×Dxz .

Landauer [9] showed that parallel composition of deterministic channels are idempotent;
this suggests the question of whether parallel composition more generally is idempotent. Can
it be the case that C∥C = C when C is not deterministic?

We show that C∥C ̸= C for properly probabilistic channels by the geometric constructions
shown in Fig. 2 and Fig. 6. First Fig. 2 shows that whatever the prior π, when a properly
probabilistic channel with two observations is applied to it, there will be two inners, averaging
to the original channel. But now Fig. 6 shows how to apply that construction twice: first C is
applied tp the original prior, yielding two inners δ1,2 and then, because of the independence,
D is now applied to each of δ1,2, where these new corresponding inners average to the δ’s.

Using now the uncertainty Uℓ we can visualise how the information flow must be different
between C and C ∥ D: we apply the construction in Fig. 2 twice, each time averaging: first
to compute Uℓ[δ1,2 ▷D] must be strictly less than each of Uℓ[δ1,2]; and then again to show
that Uℓ[π▷(C∥D)]. Our question is now answered by setting D to C.
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The expected loss for [π▷C∥D] is determined by applying the construction from Fig. 2 twice.
First [π▷C] is represented by its two inners δ1,2 which average to π; then the same construction
is applied to [δ1 ▷D] and [δ2 ▷D] as shown. The average Uℓ[δ1 ▷D] and Uℓ[δ2 ▷D] are then weighted
averages as described in Fig. 2. The expected loss Uℓ[π▷C∥D] is then computed by averaging
those averages.

Figure 6 Construction for C∥D in 2 dimensions using Shannon Entropy.
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We note finally that this geometric construction assumes that the inners in [π▷C] are
spread either side of π. This does not happen when C is deterministic i.e. does not have any
values except 1’s and 0’s. For deterministic channels, the secrets are separated into equivalence
classes and the information flow yields exactly which class a secret is in. Geometrically this
means that when the support of an inner δ lies entirely within an equivalent class the inners
[δ▷C] are actually δ.

3.4 Which is better, the Laplace- or Geometric mechanism for
implementing differential privacy?

Figure 7 The Laplace (continuous pdf) and Geometric (discrete lines) noise mechanisms.

Differential privacy [7] is a technique for for providing individuals’ data some measure
of privacy when that data is shared through e.g. a query (to the database containing it).
The idea is that rather than reporting the result of a raw query, instead some random noise
(chosen according to a parameter ϵ) is added to the result and the noisy answer is then
reported. Different methods of adding random noise have different properties of course – and
those that are in keeping with the spirit of differential privacy can guarantee to make similar
query results “indistinguishable in output” so that in practice an observer cannot tell apart
the outputs of inputs that are already similar (in the raw), even when those raw results are
distinguishable enough to risk a privacy breach.

Two popular methods of randomisation are based on the Geometric and Laplace probability
distributions leading to the definition of the corresponding Geometric and Laplace mechanisms.
Given the output of a query is some number d (consisting of e.g. the count of data entries
satisfying a condition, or some average value) instead of outputting the raw d, the Geometric
mechanism would output d+c where c is distributed according to a geometric distribution;
similarly the Laplace mechanism would output d+e where e is distributed according to the
Laplace distribution. The two different methods of randomisation are depicted in Fig. 7.

Interestingly, although they have broadly similar shapes ( Fig. 7) albeit the Laplace gives
a continuous“probability density function” and the Geometric a discrete number of outputs,
there is no obvious way to compare the properties of these mechanisms in terms of how
their privacy properties work. Perhaps they leak the same, or entirely different amounts
of information when used as randomisers. It turns out that when viewed in terms of QIF
channels we find that, for the same ϵ parameter we can say definitively that the Geometric
mechanism leaks more information than does the Laplace mechanism, and thus the Laplace
mechanism is strictly more private.
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Our proof with very few words in illustrated in Fig. 8 which depicts the barycentric visu-
alisation of the hyper-distributions corresponding to the Geometric- and Laplace mechanisms
when applied to three secret values (i.e. potential raw query results) and represented as QIF
channels. As explained above, the inners of the corresponding hyper-distributions can be
located as points on the plane in three dimensions. Curiously we see that the Geometric
mechanism produces three inners (orange dots in Fig. 8) which are linearly independent
because they do not lie on a line. Even more curiously the inners from the Laplace mechan-
ism (blue dots in Fig. 8) lie within the convex hull of the Geometric’s inners, and therefore
by Lem. 5 the Laplace perforce refines the Geometric, which from Def. 4 means that the
Geometric mechanism always leaks more information about the secret than does the Laplace
mechanism. This observation, discovered purely by this visualisation led to the fully formal
proof of universal optimality of the Laplace mechanism for continuous inputs [8].

The Geometric mechanism on 3 secrets parametrised by ϵ consists of 3 linearly independent
posteriors (orange). The Laplace mechanism parametrised by the same ϵ (and on the same
domain) consists of the blue posteriors sitting on the edges – ie. in the convex hull – defined
by the Geometric posteriors. It follows that the Laplace mechanism is a refinement of the
Geometric mechanism.

Figure 8 Construction of Geometric (orange) and Laplace (blue) hypers in 3 dimensions.

4 Conclusions

In this paper we have demonstrated how to use geometrical ideas to explain complex ideas
within the framework of quantitative information flow. Although they do not represent full
formal proofs of these results they have proved to be useful for sharing ideas between different
groups of collaborators and therefore in developing the field.
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Abstract
Letter-to-letter transducers are a standard formalism for modeling reactive systems. Often, two
transducers that model similar systems differ locally from one another, by behaving similarly, up to
permutations of the input and output letters within “rounds”. In this work, we introduce and study
notions of simulation by rounds and equivalence by rounds of transducers. In our setting, words
are partitioned to consecutive subwords of a fixed length k, called rounds. Then, a transducer T1 is
k-round simulated by transducer T2 if, intuitively, for every input word x, we can permute the letters
within each round in x, such that the output of T2 on the permuted word is itself a permutation of
the output of T1 on x. Finally, two transducers are k-round equivalent if they simulate each other.

We solve two main decision problems, namely whether T2 k-round simulates T1 (1) when k is
given as input, and (2) for an existentially quantified k.

We demonstrate the usefulness of the definitions by applying them to process symmetry: a setting
in which a permutation in the identities of processes in a multi-process system naturally gives rise
to two transducers, whose k-round equivalence corresponds to stability against such permutations.
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1 Introduction

Reactive systems interact with their environment by receiving inputs, corresponding to the
state of the environment, and sending outputs, which describe actions of the system. Finite-
state reactive systems are often modeled by transducers – finite-state machines over alphabets
ΣI and ΣO of inputs and outputs, respectively, which read an input letter in ΣI , and respond
with an output in ΣO. Such transducers are amenable to automatic verification of certain
properties (e.g., LTL model-checking), and are therefore useful in practice. Nonetheless,
modeling complex systems may result in huge transducers, which make verification procedures
prohibitively expensive, and makes understanding the constructed transducers difficult.

A common approach to gain a better understanding of a transducer (or more generally,
any system) is simulation [19], whereby a transducer T1 is simulated by a “simpler” transducer
T2 in such a way that model checking is easier on T2, and the correctness of the desired
property is preserved under the simulation. Usually, “simpler” means smaller, as in standard
simulation [19] and fair simulation [13], but one can also view e.g., linearization of concurrent
programs [14] as a form of simulation by a simpler machine.
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In this work, we introduce and study new notions of simulation and of equivalence for
transducers, based on k-rounds: consider an input word x ∈ Σ∗

I whose length is k ·R for some
k,R > 0. We divide the word into R disjoint infixes of length k, called k-rounds. We then
say that two words x, x′ ∈ ΣkR

I are k-round equivalent, denoted x′ ≍k x, if x′ is obtained
from x by permuting the letters within each round of x. For example abcabc and cbaacb are
3-round equivalent. We now say that a transducer T1 is k-round simulated by a transducer
T2, denoted T1 ≺k T2, if for every1 input x ∈ ΣkR

I we can find some input x′ ≍k x, such that
the outputs of T1 on x and T2 on x′, denoted y, y′ respectively, are also equivalent: y′ ≍k y.
Intuitively, T1 ≺k T2 means that every behaviour of T1 is captured by T2, up to permutations
within each k-round.

The benefit of k-round simulation is twofold: First, it may serve as an alternative
simulation technique for reducing the state space while maintaining the correctness of certain
properties. Second, we argue that k-round simulation is in and of itself a design concern.
Indeed, in certain scenarios we can naturally design a transducer T2 that performs a certain
task in an ideal, but not realistic, way, and we want to check that an existing design, namely
T1, is simulated by this ideal. In particular, this is useful when dealing with systems that
naturally work in rounds, such as schedulers (e.g., Round Robin, cf. Example 3), arbiters,
and other resource allocation systems.

We start with an example demonstrating both benefits.

▶ Example 1. Consider a monitor M for the fairness of a distributed system with 10 processes
P = {1, . . . , 10}. At each timestep, M receives as input the ID of the process currently
working. The monitor then verifies that in each round of 10 steps, every process works
exactly once. As long as this holds, the monitor keeps outputting safe, otherwise error.

M can be modeled by a transducer T1 that keeps track of the set of processes that have
worked in the current round. Thus, the transducer has at least 210 states, as it needs to keep
track of the subset of processes that have been seen.

It is not hard to see that T1 is 10-round simulated by an “ideal” transducer T2 which
expects to see the processes in the order 1, . . . , 10. This transducer needs roughly 10 states,
as it only needs to know the index of the next process it expects to see.

Now, suppose we want to verify some correctness property which is invariant to permuta-
tions of the processes within each 10-round, such as “if there is no error, then Process 3
works at least once every 20 steps”. Then we can verify this against the much smaller T2. ⌟

The notion of k-round simulation arises naturally in the setting of process symmetry. There,
the input and output alphabets are ΣI = 2I and ΣO = 2O respectively, where I = {i1, . . . , im}
and O = {o1, . . . , om} represent signals corresponding to m processes. Process symmetry
addresses the scenario where the identities of the processes may be scrambled. For example,
if the input {i1, i2} is generated, the system might actually receive an input {i7, i4}. A
system exhibits process symmetry if, intuitively, its outputs are permuted in a similar way to
the inputs. Unfortunately, deterministic systems that are process symmetric are extremely
naive, as process symmetry is too restrictive for them. While this can be overcome using
probabilistic systems, as studied by the second author in [1], it is also desirable to find
a definition that is suited for deterministic systems. As we show in Section 6, k-round
simulation provides such a definition.

The main contributions of this work are as follows. We introduce the notion of k-round
simulation and k-round equivalence, and define two decision problems pertaining to them:
in fixed round simulation we need to decide whether T1 ≺k T2 for a given value of k, and

1 Our formal definition allows to also restrict the input to some regular language Λ ⊆ Σ∗
I , see Section 3.
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in existential round simulation we need to decide whether there exists some value of k for
which T1 ≺k T2 holds. In fact, we consider a somewhat more elaborate setting, by also
allowing the inputs to T1 to be restricted to some regular language Λ. We solve the first
problem by reducing it to the containment of two nondeterministic automata. For the
second problem, things become considerably more difficult, and the solution requires several
constructions, as well as tools such as Presburger Arithmetic and Parikh’s theorem. In
addition, we demonstrate the usefulness of the definitions in relation to process symmetry.

Related Work. Simulation relations between systems are a well studied notion. We refer
the reader to [7, Chapter 13] and references therein for an exposition. The connection of our
notion with standard simulation is only up to motivation, as our measure is semantic and
does not directly relate to the state space.

Technically, our work is closely related to commutative automata [4] and jumping auto-
mata [10, 18] – models of automata capable of reading their input in a discontinuous manner,
by jumping from one letter to another. Indeed, our notion of round simulation essentially
allows the simulating transducer to read the letters within rounds in a discontinuous manner.
This similarity is manifested implicitly in Section 5.2, where we encounter similar structures
as e.g., [15] (although the analysis here has a different purpose).

Finally, the initial motivation for this work comes from process symmetry [1, 6, 9, 16, 17].
We demonstrate the connections in depth in Section 6.

Paper organization. In Section 2 we present some basic definitions used throughout the
paper. In Section 3 we introduce k-round simulation and equivalence, define the relevant
decision problems, and study some fundamental properties of the definitions. In Section 4
we solve fixed round simulation, while developing some technical tools and characterizations
that are reused later. Section 5 is our main technical result, where we develop a solution
for existential round simulation. In particular, in Section 5.1 we give an overview of the
solution, before going through the technical details in Section 5.2. In Section 5.3 we give
lower bounds for the existential setting. In Section 6 we use round simulation to obtain a
definition of process symmetry for deterministic transducers. Finally, in Section 7, we discuss
some variants and open problems.

Due to lack of space, some proofs are omitted and can be found in the full version.

2 Preliminaries

Automata. A deterministic finite automaton (DFA) is A = ⟨Σ, Q, q0, δ, F ⟩, where Q is a
finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → Q is a transition function, and
F ⊆ Q is the set of accepting states.

The run of A on a word w = σ0 · σ2 · · ·σn−1 ∈ Σ∗ is a sequence of states q0, q1, . . . , qn

such that qi+1 = δ(qi, σi) for all 0 ≤ i < n. The run is accepting if qn ∈ F . A word w ∈ Σ∗

is accepted by A if the run of A on w is accepting. The language of A, denoted L(A),
is the set of words that A accepts. We also consider nondeterministic automata (NFA),
where δ : Q × Σ → 2Q. Then, a run of A on a word w ∈ Σ∗ as above is a sequence of
states q0, q1, . . . , qn such that qi+1 ∈ δ(qi, σi) for all 0 ≤ i < n. The language of A is defined
analogously to the deterministic setting. We denote by |A| the number of states of A.

As usual, we denote by δ∗ the transition function lifted to words. For states q, q′ and
w ∈ Σ∗, we write q w−→A q′ if q′ ∈ δ∗(q, w). That is, if there is a run of A from q to q′ while
reading w.
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An NFA A can be viewed as a morphism from Σ∗ to the monoid BQ×Q of Q × Q

Boolean matrices, where we associate with a letter σ ∈ Σ its type τA(σ) ∈ BQ×Q defined
by (τA(σ))q,q′ = 1 if q σ−→A q′, and (τA(σ))q,q′ = 0 otherwise. We extend this to Σ∗ by
defining, for a word w = σ1 · · ·σn ∈ Σ∗, its type as τA(w) = τA(σ1) · · · τA(σn) where the
concatenation denotes Boolean matrix product. It is easy to see that (τA(w))q,q′ = 1 iff
q

w−→A q′.

Transducers. Consider two sets ΣI and ΣO, representing Input and Output alphabets,
respectively. A ΣI/ΣO transducer is T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩ where Q, q0 ∈ Q, and δ : Q×
ΣI → Q are as in a DFA, and ℓ : Q → ΣO is a labelling function. For a word w ∈ Σ∗

I , consider
the run ρ = q0, . . . , qn of T on a word w. We define its output ℓ(ρ) = ℓ(q1) · · · ℓ(qn) ∈ Σ∗

O,
and we define the output of T on w to be T (w) = ℓ(ρ). Observe that we ignore the labelling
of the initial state in the run, so that the length of the output matches that of the input.

For a transducer T and a state s, we denote by T s the transducer T with initial state s.

Words and Rounds. Consider a word w = σ0 · · ·σn−1 ∈ Σ∗. We denote its length by |w|,
and for 0 ≤ i ≤ j < |w|, we define w[i : j] = σi · · ·σj . For k > 0, we say that w is a k-round
word if |w| = kR for some R ∈ N. Then, for every 0 ≤ r < R, we refer to w[rk : r(k+ 1) − 1]
as the r-th round in w, and we write w = γ0 · · · γR−1 where γr is the r-th round. We
emphasize that k signifies the length of each round, not the number of rounds.

In particular, throughout the paper we consider k-round words (x, y) ∈ (Σk
I × Σk

O)∗. In
such cases, we sometimes use the natural embedding of (Σk

I × Σk
O)∗ in (ΣI × ΣO)∗ and in

Σ∗
I × Σ∗

O, and refer to these sets interchangeably.

Parikh Vectors and Permutations. Consider an alphabet Σ. For a word w ∈ Σ∗ and
a letter σ ∈ Σ, we denote by #σ(w) the number of occurrences of σ in w. The Parikh
map2 P : Σ∗ → NΣ maps every word w ∈ Σ∗ to a Parikh vector P(w) ∈ NΣ, where
P(w)(σ) = #σ(w). We lift this to languages by defining, for L ⊆ Σ∗, P(L) = {P(w) : w ∈ L}.

For p ∈ NΣ (in the following we consistently denote vectors in NΣ by bold letters) we
write |p| =

∑
σ∈Σ p(σ). In particular, for a word w ∈ Σ∗ we have |P(w)| = |w|.

By Parikh’s Theorem [21], for every NFA A we have that P(L(A)) is a semilinear set,
namely a finite union of sets of the form {p + λ1s1 + . . .+ λ1sm : λ1, . . . , λm ∈ N} where
p, s1, . . . , sm ∈ Nd (and the translation is effective).

Consider words x, y ∈ Σ∗, we say that x is a permutation of y if P(x) = P(y) (indeed, in
this case y can be obtained from x by permuting its letters). Note that in particular this
implies |x| = |y|.

3 Round Simulation and Round Equivalence

Consider two k-round words x, y ∈ ΣkR with the same number of rounds R, and denote their
rounds by x = α0 · · ·αR−1 and y = β0 · · ·βR−1. We say that x and y are k-round equivalent,
denoted x ≍k y (or x ≍ y, when k is clear from context)3, if for every 0 ≤ r < R we have
that P(αr) = P(βr). That is, x ≍ y iff the r-th round of y is a permutation of the r-th
round of x, for every r. Clearly ≍ is indeed an equivalence relation.

2 We use NΣ rather than N|Σ| to emphasize that the vector’s indices are the letters in Σ.
3 Conveniently, our symbol for round equivalence is a rounded equivalence.
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▶ Example 2 (Round-equivalence for words). Consider the words x = abaabbabbbaa and
y = baabbaabbaba over the alphabet Σ = {a, b}. Looking at the words as 3-round words, one
can see in Table 1 that the 3-rounds in y are all permutations of those in x, which gives
x ≍3 y. However, looking at x, y as 4-round words, the number of occurrences of b already
in the first 4-round of x and of y is different, so x ̸≍4 y, as illustrated in Table 2. ⌟

Table 1 x and y are 3-round equivalent.

x aba abb abb baa
y baa bba abb aba

Table 2 x and y are not 4-round equivalent.

x abaa bbab bbaa
y baab baab baba

Let ΣI and ΣO be input and output alphabets, let Λ ⊆ Σ∗
I be a regular language, and let

k > 0. Consider two ΣI/ΣO transducers T1 and T2. We say that T2 k-round simulates T1
restricted to Λ, denoted T1 ≺k,Λ T2, if for every k-round word x ∈ Λ there exists a k-round
word x′ ∈ Σ∗

I such that x ≍k x
′ and T1(x) ≍k T2(x′).

Intuitively, T1 ≺k,Λ T2 if for every input word x ∈ Λ, we can permute each k-round of x
to obtain a new word x′, such that the k-rounds of the outputs of T1 on x and of T2 on x′

are permutations of each other. Note that the definition is not symmetric: the input x for T1
is universally quantified, while x′ is chosen according to x. We illustrate this in Example 4.

If T1 ≺k,Λ T2 and T2 ≺k,Λ T1 we say that T1 and T2 are k-round equivalent restricted to Λ,
denoted T1 ≡k,Λ T2. In the special case where Λ = Σ∗

I (i.e., when we require the simulation
to hold for every input), we omit it from the subscript and write e.g., T1 ≺k T2.

▶ Example 3 (Round Robin). We consider a simple version of the Round Robin scheduler
for three processes P = {0, 1, 2}. In each time step, the scheduler outputs either a singleton
set containing the ID of the process whose request is granted, or an empty set if the process
whose turn it is did not make a request. Depending on the ID i ∈ {0, 1, 2} of the first process,
we model the scheduler as a 2P/2P transducer Ti =

〈
2P , 2P , Q, q(i−1)%3, δ, ℓ

〉
depicted in

Figure 1, where % is the mod operator, Q = {q0, q1, q2, q
′
0, q

′
1, q

′
2}, δ(qi, σ) = q(i+1)%3 if

i+ 1 ∈ σ and δ(qi, σ) = q′
(i+1)%3 otherwise, ℓ(qi) = {i} and ℓ(q′

i) = ∅.

q0/0 q1/1 q2/2

q′
0/∅ q′

1/∅ q′
2/∅

1

¬1

2

¬2

0
¬0

1

¬1

2

¬2

0
¬0

Figure 1 The transducer Ti for Round Robin, initial state omitted. The input letters σ and ¬σ

mean all input letters from 2P that, respectively, contain or do not contain σ. The labels are written
in red on the states, singleton brackets omitted (e.g., 1 means {1}).

Technically, the initial state changes the behaviour of Ti significantly (e.g.
T0({0}{2}{1}) = {0}∅∅ whereas T1({0}{2}{1}) = ∅{2}∅). Conceptually, however, chan-
ging the initial state does not alter the behaviour, as long as the requests are permuted
accordingly. This is captured by round equivalence, as follows.
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3:6 Simulation by Rounds of Letter-To-Letter Transducers

We argue that, if we allow reordering of the input letters, then the set of processes whose
requests are granted in each round is independent of the start state. This is equivalent to
saying T0 ≡k Tj for j ∈ {1, 2}, which indeed holds: if j = 1 then we permute all rounds of
the form σ0σ1σ2 to σ1σ2σ0, and similarly if j = 2 then we permute all rounds to σ2σ0σ1. It
is easy to see that the run of Ti on the permuted input grants outputs that are permutations
of the output of T0 on the non-permuted input. ⌟

▶ Example 4 (Round simulation is not symmetric). Consider the ΣI/ΣO transducers T1 and T2
over the alphabet ΣI = {a, b} and ΣO = {0, 1}, depicted in Figure 2. We claim that T1 ≺2 T2

1 0

0 1

1
b

a a

b

a, b

a

b

a, b

0 1

0 1

0
b

a a

b

a, b

a

b

a, b

Figure 2 Transducers T1 (left) and T2 (right) illustrate the asymmetry in the definition of round
equivalence (see Example 4).

but T2 ̸≺2 T1. Starting with the latter, observe that T2(ab) = 00, but T1(ab) = T1(ba) = 01.
Since 00 ̸≍2 01, we have T2 ̸≺2 T1.

We turn to show that T1 ≺2 T2. Observe that for every input word of the form x ∈
(ab+ba)m, we have T1(x) = (01)m, and x ≍2 (ba)m. So in this case we have that T2((ba)m) =
(10)m ≍2 (01)m. Next, for x ∈ (ab+ba)m ·bb·w for some w ∈ Σ∗

I we have T1(x) = (01)m011|w|

and x ≍2 (ba)m · bb · w, for which T2((ba)m · bb · w) = (01)m101|w| ≍2 T1(x). The case where
x ∈ (ab+ ba)m · aa · w is handled similarly. We conclude that T1 ≺2 T2. ⌟

Round simulation and round equivalence give rise to the following decision problems:
In fixed round simulation (resp. fixed round equivalence) we are given transducers T1, T2,
an NFA for the language Λ, and k > 0, and we need to decide whether T1 ≺k,Λ T2 (resp.
whether T1 ≡k,Λ T2).
In existential round simulation (resp. existential round equivalence) we are given trans-
ducers T1, T2 and an NFA for the language Λ, and we need to decide whether there exists
k > 0 such that T1 ≺k,Λ T2 (resp. T1 ≡k,Λ T2).

In the following we identify Λ with an NFA (or DFA) for it, as we do not explicitly rely on
its description.

We start by showing that deciding equivalence (both fixed and existential) is reducible,
in polynomial time, to the respective simulation problem.

▶ Lemma 5. Fixed (resp. existential) round equivalence is reducible in polynomial time to
fixed (resp. existential) round simulation.

Proof. First, we can clearly reduce fixed round equivalence to fixed round simulation: given
an algorithm that decides, given T1, T2, Λ and k > 0, whether T1 ≺k,Λ T2, we can decide
whether T1 ≡k,Λ T2 by using it twice to decide whether both T1 ≺k,Λ T2 and T1 ≺k,Λ T2 hold.

A slightly more careful examination shows that the same approach can be taken to reduce
existential round equivalence to existential round simulation, using the following observation:
if T1 ≺k,Λ T2, then for every m ∈ N it holds that T1 ≺mk,Λ T2. Indeed, we can simply group
every m rounds of length k and treat them as a single mk-round.
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Now, given an algorithm that decides, given T1, T2 and Λ, whether there exists k > 0 such
that T1 ≺k,Λ T2, we can decide whether T1 ≡k,Λ T2 by using the algorithm twice to decide
whether there exists k1 such that T1 ≺k1,Λ T2 and k2 such that T1 ≺k2,Λ T2 hold. If there
are no such k1, k2, then clearly T1 ̸≡k,Λ T2. However, if there are such k1, k2, then by the
observation above we have T1 ≡k1k2,Λ T2 (we can also take lcm(k1, k2) instead of k1k2). ◀

By Lemma 5, for the purpose of upper-bounds, we focus henceforth on round simulation.

4 Deciding Fixed Round Simulation

In this section we show decidability of fixed round simulation (and, by Lemma 5, fixed round
equivalence). The tools we develop will be used in Section 5 to handle the existential variant.

Let ΣI and ΣO be input and output alphabets. Consider two ΣI/ΣO transducers T1 and
T2, and let Λ ⊆ Σ∗

I and k > 0. In order to decide whether T1 ≺k,Λ T2, we proceed as follows.
First, we cast the problem to a problem about deterministic automata. Then, we translate
k-rounds into letters, by working over the alphabets Σk

I and Σk
O. We construct an NFA,

dubbed the permutation closure, for each transducer T , that captures the behaviour of T on
words and their permutations. Intuitively, the NFA takes as input a word (x, y) ∈ (Σk

I ×Σk
O)∗,

guesses a round-equivalent word x′ ≍ x, and verifies that T (x′) ≍ T (x). We then show that
round-simulation amounts to deciding the containment of these NFAs. We now turn to give
the details of the construction.

The Trace DFA. Consider a transducer T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩, we define its trace DFA
Tr(T ) = ⟨ΣI × ΣO, Q ∪ {q⊥}, q0, η,Q⟩ where for q ∈ Q and (σ, σ′) ∈ ΣI × ΣO we define
η(q, (σ, σ′)) = δ(q, σ) if T q(σ) = σ′ and η(q, (σ, σ′)) = q⊥ otherwise. q⊥ is a rejecting sink.

Tr(T ) captures the behaviour of T in that L(Tr(T )) = {(x, y) ∈ (ΣI × ΣO)∗ : T (x) = y}.

The Permutation-Closure NFA. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let
k > 0. We obtain from N an NFA Permk(N ) =

〈
Σk

I × Σk
O, S, s0, µ, F

〉
where the alphabet is

Σk
I × Σk

O, and the transition function µ is defined as follows. For a letter (α, β) ∈ Σk
I × Σk

O

and a state s ∈ S, we think of (α, β) as a word in (ΣI × ΣO)∗. Then we have

µ(s, (α, β)) =
⋃

{η∗(s, (α′, β′)) : P(α′) = P(α) ∧ P(β) = P(β′)}. (1)

That is, upon reading (α, β), Permk(N ) can move to any state s′ that is reachable in N
from s by reading a permutation of α, β (denoted α′, β′). Recall that for two words x, x′

we have that x ≍k x′ if for every two corresponding k-rounds α, α′ in x and x′ we have
P(α) = P(α′). Thus, we have the following.

▶ Observation 6. L(Permk(N )) = {(x, y) ∈ Σ∗
I × Σ∗

O : ∃x′ ≍k x, y′ ≍k y, (x′, y′) ∈
L(N ) ∧ |x| = |y| = kR for some R ∈ N}

Since the transition function of Permk(N ) is only defined using permutations of its input
letters, we have the following property, which we refer to as permutation invariance:

▶ Observation 7 (Permutation Invariance). For every state s ∈ S and letters (α, β), (α′, β′) ∈
Σk

I × Σk
O, if P(α) = P(α′) and P(β) = P(β′) then µ(s, (α, β)) = µ(s, (α′, β′)).

Given a transducer T , we apply the permutation closure to the trace DFA of T . In
order to account for Λ ⊆ Σ∗

I , we identify it with Λ ⊆ Σ∗
I × Σ∗

O by simply ignoring the ΣO

component. We remind that Λ denotes both a language and a corresponding DFA or NFA.
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3:8 Simulation by Rounds of Letter-To-Letter Transducers

▶ Lemma 8. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1)∩Λ)

(where the intersection is obtained by the product NFA) and Ak
2 = Permk(Tr(T2)), then

L(Ak
1) = {(x, y) ∈ Σ∗

I × Σ∗
O : ∃x′ ≍k x, T1(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N ∧ x′ ∈ Λ}.

L(Ak
2) = {(x, y) ∈ Σ∗

I × Σ∗
O : ∃x′ ≍k x, T2(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N}.

Proof. Recall that Tr(T ) accepts a word (x′, y′) iff T (x′) = y′. The claim then follows from
Observation 6, by replacing the expression y ≍ y′ ∧ (x′, y′) ∈ L(Tr(T )) with the equivalent
expression T (x′) ≍k y. ◀

We now reduce round simulation to the containment of permutation-closure NFAs.

▶ Lemma 9. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1)∩Λ)

and Ak
2 = Permk(Tr(T2)), then, T1 ≺k,Λ T2 iff L(Ak

1) ⊆ L(Ak
2).

Proof. For the first direction, assume T1 ≺k,Λ T2, and let (x, y) ∈ L(Ak
1). By Lemma 8, x

and y are k-round words, and there exists a word x′ ∈ Λ such that x ≍ x′ and T1(x′) ≍ y.
Since T1 ≺k,Λ T2, then applying the definition on x′ yields that there exists a k-round word
x′′ such that x′ ≍ x′′ and such that T1(x′) ≍ T2(x′′). Since ≍ is an equivalence relation, it
follows that x ≍ x′′ and T2(x′′) ≍ y, so again by Lemma 8 we have (x, y) ∈ L(Ak

2).
Conversely, assume L(Ak

1) ⊆ L(Ak
2), we wish to prove that for every k-round word x ∈ Λ

there exists a word x′ such that x ≍ x′ and T1(x) ≍ T2(x′). Let x ∈ Λ be a k-round word, and
let y = T1(x), then clearly (x, y) ∈ L(Ak

1) ⊆ L(Ak
2) (since x ≍ x, T1(x) = y ≍ y and x ∈ Λ).

By Lemma 8, there exists x′ such that x ≍ x′ and T2(x′) ≍ y = T1(x), so T2(x′) ≍ T1(x),
thus concluding the proof. ◀

▶ Remark 10. The proof of Lemma 9 can be simplified by using instead of Ak
1 , the augment-

ation of Tr(T1) ∩ Λ to k-round words. However, such a DFA is not permutation invariant,
which is key to our solution for existential round simulation. Since this simplification does
not reduce the overall complexity, we use a uniform setting for both solutions.

Lemma 9 shows that deciding fixed round equivalence amounts to deciding containment
of NFAs. By analyzing the size of the NFAs, we obtain the following.

▶ Theorem 11. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is in PSPACE.

Proof. Let Ak
1 = Permk(Tr(T1) ∩ Λ) and Ak

2 = Permk(Tr(T2)). By Lemma 9, deciding
whether T1 ≺k,Λ T2 amounts to deciding whether L(Ak

1) ⊆ L(Ak
2). Looking at the dual

problem, recall that for two NFAs N1,N2 we have that L(N1) ̸⊆ L(N2) iff there exists
w ∈ L(N2) \ L(N1) with |w| ≤ |N1| · 2|N2| (this follows immediately by bounding the size of
an NFA for L(N1) ∩ L(N2)). Thus, we can decide whether L(Ak

1) ⊆ L(Ak
2) by guessing a

word w over Σk
I × Σk

O of single-exponential length (in the size of Ak
1 and Ak

2), and verifying
that it is accepted by Ak

1 and not by Ak
2 .

Observe that to this end, we do not explicitly construct Ak
1 nor Ak

2 , as their alphabet
size is exponential. Rather, we evaluate them on each letter of w based on their construction
from T . At each step we keep track of a counter for the length of w, a state of Ak

1 , and a set
of states of Ak

2 . Since the number of states in Ak
1 and Ak

2 is the same as that of T1 and T2,
this requires polynomial space.

By Savitch’s theorem we have that coNPSPACE = PSPACE, and the proof is concluded.
◀
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⊤ ⊤⊤

⊥
ac b, d

b

a, c, d

d

a, b, c

Figure 3 The transducer T1

in the proof of Theorem 12.

q

q0,0

q0,1

q1,0

q1,1

0
0

1
1

q

⊤
qa

⊤
qb

⊤
qc

⊤
qd

⊤
q0,0

⊤
q0,1

⊤
q1,0

⊤
q1,1

a

b

c

d

b

a

d

c

Figure 4 Every state and its 4 transitions in N (left) turn
into 8 transitions in T2 (right). All transitions not drawn in the
right figure lead to q⊥, a sink state labelled ⊥.

We now give a PSPACE-hardness lower bound, thus concluding the problem is PSPACE-
complete. By Lemma 5, we give a stronger lower bound already for round-equivalence.4

▶ Theorem 12. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2, is
PSPACE-hard, even for k = 2 and for a fixed Λ (given as a 4-state DFA).

Proof sketch. We show a reduction from the universality problem for NFAs over alphabet
{0, 1} where all states are accepting and the degree of nondeterminism is at most 2, to
round-equivalence with k = 2 and with Λ given as a DFA of constant size. See the full
version for a proof of PSPACE-hardness of the former problem, and for the full reduction.

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and
σ ∈ {0, 1}.

We construct two transducers T1 and T2 over input and output alphabets ΣI = {a, b, c, d}
and ΣO = {⊤,⊥} and Λ ⊆ Σ∗

I , such that L(N ) = {0, 1}∗ iff T1 ≡2,Λ T2.
Set Λ = (ab+ cd)∗. Intuitively, our reduction encodes {0, 1} over {a, b, c, d} by identifying

0 with ab and with ba, and 1 with cd and with dc. Then, T1 (Figure 3) keeps outputting ⊤
for all inputs in Λ, thus mimicking a universal language in {0, 1}∗. We then construct T2
so that every nondeterministic transition of N on e.g., 0 is replaced by two deterministic
branches on ab and on ba (see Figure 4). Hence, when we are allowed to permute ab and ba

by round equivalence, we capture the nondeterminism of N . The outputs in T2 are all ⊤,
except a sink state q⊥ labelled ⊥, which is reached upon any undefined transition (including
transitions from states of N that do not have an outgoing 0 or 1 transition).

We show that L(N ) = {0, 1}∗ iff T1 ≡2,Λ T2, by showing that T2 ≺2,Λ T1 always holds,
and that for the converse, namely T1 ≺2,Λ T2, permuting an input word w ∈ Λ essentially
amounts to choosing an accepting run of N on the corresponding word in {0, 1}∗. ◀

▶ Corollary 13. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is PSPACE-complete.

5 Deciding Existential Round Simulation

We turn to solve existential round simulation. That is, given T1, T2 and Λ, we wish to decide
whether there exists k > 0 such that T1 ≺k,Λ T2. By Lemma 9, this is equivalent to deciding
whether there exists k > 0 such that L(Ak

1) ⊆ L(Ak
2), as defined therein.

4 The reduction in Lemma 5 is a Turing reduction. Nonetheless, our PSPACE-hardness proof actually
explicitly shows the hardness of both simulation and equivalence.
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5.1 Intuitive Overview

We start with an intuitive explanation of the solution and its challenges. For simplicity,
assume for now Λ = Σ∗

I , so it can be ignored. The overall approach is to present a small-model
property for k: in Theorem 14, the main result of this section, we give an upper bound on
the minimal k > 0 for which T1 ≺k T2. In order to obtain this bound, we proceed as follows.
Observe that for a transducer T and for 0 < k ≠ k′ the corresponding permutation closure
NFAs Permk(Tr(T )) and Permk′(Tr(T )) are defined on the same state space, but differ by
their alphabet (Σk

I × Σk
O vs Σk′

I × Σk′

O ). Thus, by definition, these NFAs form infinitely many
distinct automata. Nonetheless, there are only finitely many possible types of letters (indeed,
at most |BQ×Q| = 2|Q|2). Therefore, there are only finitely many type profiles for NFAs
(namely the set of letter types occurring in the NFA), up to multiplicities of the letter types.

Recall that by Lemma 9, we have that T1 ≺k T2 iff L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))).
Intuitively, one could hope that if Permk(Tr(Ti)) and Permk′(Tr(Ti)) have the same type profile,
for each i ∈ {1, 2}, then L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))) iff L(Permk′(Tr(T1))) ⊆
L(Permk′(Tr(T2))). Then, if one can bound the index k after which no further type profiles
are encountered, then the problem reduces to checking a finite number of containments.

Unfortunately, this is not the case, the reason being that the mapping of letters induced
by the equal type profiles between Permk(Tr(T1)) and Permk′(Tr(T1)) may differ from the
one between Permk(Tr(T2)) and Permk′(Tr(T2)), and thus one cannot translate language
containment between the two pairs. We overcome this difficulty, however, by working from
the start with product automata that capture the structure of both T1 and T2 simultaneously,
and thus unify the letter mapping.

We are now left with the problem of bounding the minimal k after which all type profiles
have been exhausted. In order to provide this bound, we show that for every type profile,
the set of indices in which it occurs is semilinear. Then, by finding a bound for each type
profile, we attain the overall bound. The main result of this section is the following.

▶ Theorem 14. Given transducers T1, T2 and Λ, we can effectively compute K0 > 0 such
that if T1 ≺k,Λ T2 for some k ∈ N, then T1 ≺k′,Λ T2 for some k′ ≤ K0.

Which by Lemma 9 immediately entails the following.

▶ Corollary 15. Existential round simulation is decidable.

We prove Theorem 14 in Section 5.2, organized as follows. We start by lifting the
definition of types in an NFA to Parikh vectors, and show how these relate to the NFA
(Lemma 16). We then introduce Presburger Arithmetic and its relation to Parikh’s theorem.
In Lemma 17 we show that the set of Parikh vectors that share a type τ is definable in
Presburger arithmetic, which provides the first main step towards our bound.

We then proceed to define the “redundant products”, which are the product automata
mentioned above, that serve to unify the types between T1 and T2. In Observations 18 and 19
we formalize the connection of these products to the transducers T1, T2. We then define
the type profiles mentioned above, and prove in Lemma 20 that they exhibit a semilinear
behaviour. Finally, in Lemma 21 we prove that when two redundant-product automata have
the same type profile, then the containment mentioned above can be shown. We conclude by
combining these results to obtain Theorem 14.
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5.2 Proof of Theorem 14

Type Matrices of Parikh Vectors. Consider the alphabet Σk
I × Σk

O for some k > 0. Recall
that by Observation 7, permutation closure NFAs are permutation invariant, and from
Section 2, the type of a word in an NFA is the transition matrix it induces. In particular, for
permutation-invariant NFAs, two letters (α, β), (α′, β′) ∈ Σk

I × Σk
O with P(α) = P(α′) and

P(β) = P(β′) have the same type.
Following this, we now lift the definition of types to Parikh vectors. Consider an NFA

N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let p ∈ NΣI ,o ∈ NΣO be Parikh vectors with |p| = |o| = k.
We define the type τN (p,o) ∈ BS×S to be τPermk(N )(α, β) where (α, β) ∈ Σk

I × Σk
O are such

that P(α) = p and P(β) = o. By permutation invariance, this is well-defined, i.e. is
independent of the choice of α and β.

Note that the definition of types is “non-uniform”, since we use different automata to
extract the type of words of different length. We obtain a more uniform description as follows
(see the full version for the proof).

▶ Lemma 16. In the notations above, for every s1, s2 ∈ S, we have that (τN (p,o))s1,s2 = 1
iff there exist (α, β) ∈ Σk

I × Σk
O with P(α) = p and P(β) = o such that s1

(α,β)−→ N s2.

Presburger Arithmetic. The first ingredient in the proof of Theorem 14 is to characterize
the set of Parikh vectors whose type is some fixed matrix τ ∈ BQ×Q. For this characterization,
we employ the first-order theory of the naturals with addition and order Th(N, 0, 1,+, <,=),
commonly known as Presburger Arithmetic (PA). We do not give a full exposition of PA,
but refer the reader to [12] (and references therein) for a survey. In the following we briefly
cite the results we need.

For our purposes, a PA formula φ(x1, . . . , xd), where x1, . . . , xd are free variables, is
evaluated over Nd, and defines the set {(a1, . . . , ad) ∈ Nd : (a1, . . . , ad) |= φ(x1, . . . , xd)}.
For example, the formula φ(x1, x2) := x1 < x2 ∧ ∃y.x1 = 2y defines the set {(a, b) ∈ N2 :
a < b ∧ a is even}.

A fundamental result about PA states that the definable sets in PA are exactly the
semilinear sets. In particular, by Parikh’s theorem we have that for every NFA A, P(L(A))
is PA definable. In fact, by [22], one can efficiently construct a linear-sized existential PA
formula for P(L(A)). We can now show that the set of Parikh vectors whose type is τ is
PA definable.

▶ Lemma 17. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and a type τ ∈ BS×S, then the
set {(p,o) ∈ NΣI × NΣO : τN (p,o) = τ} is PA definable.

Proof. Let τ ∈ BS×S , and consider a Parikh vector (p,o) ∈ NΣI × NΣO with k = |p| = |o|.
By Lemma 16, we have that τN (p,o) = τ iff the following holds for every s1, s2 ∈ S: we
have τs1,s2 = 1 iff there exists a letter (α, β) ∈ Σk

I × Σk
O such that P(α) = p,P(β) = o, and

s1
(α,β)−→ N s2.
Consider s1, s2 ∈ S and define N s1

s2
to be the NFA obtained from N by setting the initial

state to be s1 and a single accepting state s2. Then, we have s1
(α,β)−→ N s2 iff (α, β) ∈ L(N s1

s2
).

Thus, τN (p,o) = τ iff for every s1, s2 ∈ S we have that τs1,s2 = 1 iff there exist a word
(α, β) with P(α′) = p and P(β′) = o such that (α, β) ∈ L(N s1

s2
). Equivalently, we have

τN (p,o) = τ iff for every s1, s2 ∈ S we have that τs1,s2 = 1 iff (p,o) ∈ P(L(N s1
s2

)).
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3:12 Simulation by Rounds of Letter-To-Letter Transducers

By Parikh’s Theorem, for every s1, s2 ∈ S we can compute a PA formula ψs1,s2 such that
(p,o) |= ψs1,s2 iff (p,o) ∈ P(L(N s1

s2
)). Now we can construct a PA formula Ψτ such that

τN (p,o) = τ iff (p,o) |= Ψτ , as follows:

Ψτ :=
∧

s1,s2 : τs1,s2 =1
ψs1,s2 ∧

∧
s1,s2 : τs1,s2 =0

¬ψs1,s2 .

Finally, observe that Ψτ defines the set in the premise of the lemma, so we are done. ◀

The Redundant Product Construction. As mentioned in Section 5.1, for the remainder
of the proof we want to reason about the types of Permk(Tr(T1) ∩ Λ) and Permk(Tr(T2))
simultaneously. In order to so, we present an auxiliary product construction.

Let T1, T2 be transducers, Λ ⊆ Σ∗
I be given by an NFA, and let D1 = Tr(T1) ∩ Λ and

D2 = Tr(T2). We now consider the product automaton of D1 and D2, and endow it with
two different acceptance conditions, capturing that of D1 and D2, respectively. Formally, for
i ∈ {1, 2}, denote Di =

〈
ΣI × ΣO, Si, s

i
0, ηi, Fi

〉
, then the product automaton is defined as

Bi =
〈
ΣI × ΣO, S1 × S2, (s1

0, s
2
0), η1 × η2, Gi

〉
, where G1 = F1 ×Q2 and G2 = Q1 × F2, and

η1 × η2 denotes the standard product transition function, namely η1 × η2((s1, s2), (σ, σ′)) =
(η1(s1, (σ, σ′)), η2(s2, (σ, σ′))). Thus, Bi tracks both D1 and D2, but has the same acceptance
condition as Di. This seemingly “redundant” product construction has the following important
properties, which are crucial for our proof:

▶ Observation 18. In the notations above, we have the following:
1. L(B1) = L(D1) and L(B2) = L(D2).
2. For every letter (σ, σ′) ∈ ΣI × ΣO, we have τB1(σ, σ′) = τB2(σ, σ′).

Indeed, Item 1 follows directly from the acceptance condition, and Item 2 is due to the
identical transition function of B1 and B2.

By Observation 6, L(Permk(Di)) depends only on L(Di). We thus have the following.

▶ Observation 19. For every k > 0 we have L(Permk(B1)) = L(Permk(Tr(T1) ∩ Λ)) and
L(Permk(B2)) = L(Permk(Tr(T2))).

Type Profiles. We now consider the set of types induced by the redundant product con-
structions B1 and B2 on Parikh vectors of words of length k. By Item 2 of Observation 18,
it’s enough to consider B1.

For k > 0, we define the k-th type profile of B1 to be Υ(B1, k) = {τB1(P(α),P(β)) :
(α, β) ∈ Σk

I × Σk
O}, i.e., the set of all types of Parikh vectors (p,o) with |p| = |o| = k that are

induced by B1. Clearly there is only a finite number of type profiles, as Υ(B1, k) ⊆ BS′×S′ ,
where S′ is the state space of B1. Therefore, as k increases, after some finite K0, every
distinct type profile will have been encountered. We now place an upper bound on K0.

▶ Lemma 20. We can effectively compute K0 > 0 such that for every k > 0 there exists
k′ ≤ K0 with Υ(B1, k

′) = Υ(B1, k).

Proof. Consider a type τ , and let Ψτ be the PA formula constructed as per Lemma 17 for the
NFA B1. Observe that for a Parikh vector (p,o) and for k > 0, the expression |p| = |o| = k

is PA definable. Indeed, writing p = (x1, . . . , x|ΣI |) and q = (y1, . . . , y|ΣO|), the expression is
defined by x1 + . . .+ x|ΣI | = k ∧ y1 + . . .+ y|ΣO| = k.
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Let T ⊆ BS′×S′ be a set of types (i.e., a potential type profile). We define a PA formula
ΘT (z) over a single free variable z such that k |= ΘT (z) iff Υ(B1, k) = T , as follows.

ΘT (z) =
(

∀p,o, |p| = |o| = z →
∨

τ∈T

Ψτ (p,o)
)

∧

(∧
τ∈T

∃p,o, |p| = |o| = z ∧ Ψτ (p,o)
)

Intuitively, ΘT (z) states that every Parikh vector (p,o) with |p| = |o| = z has a type within
T , and that all the types in T are attained by some such Parikh vector.

By [11, 3], we can effectively determine, for every T , whether ΘT (z) is satisfiable and
if it is, find a witness MT such that MT |= ΘT (z). By doing so for every set T ⊆ BS′×S′ ,
we can set K0 = max{MT : ΘT (z) is satisfiable}. Then, for every k > K0 if Υ(B1, k) = T ,
then T has already been encountered at MT ≤ K0, as required. ◀

The purpose of the bound K0 obtained in Lemma 20 is to bound the minimal k for which
T1 ≺k,Λ T2, or equivalently L(Permk(B1)) ⊆ L(Permk(B2)) (by Lemma 9 and Observation 19).
This is captured in the following.

▶ Lemma 21. Let 0 < k ̸= k′ such that Υ(B1, k
′) = Υ(B1, k), then L(Permk(B1)) ⊆

L(Permk(B2)) iff L(Permk′(B1)) ⊆ L(Permk′(B2)).

Proof. By the symmetry between k and k′, it suffices to prove w.l.o.g. that if L(Permk(B1)) ⊆
L(Permk(B2)), then L(Permk′(B1)) ⊆ L(Permk′(B2)).

Assume the former, and let w = (x′, y′) ∈ L(Permk′(B1)), where (x′, y′) ∈ (Σk′

I × Σk′

O )∗,
and we denote (x′, y′) = (α′

1, β
′
1) · · · (α′

n, β
′
n) with (α′

j , β
′
j) ∈ Σk′

I × Σk′

O for every 1 ≤ j ≤ n.
Since Υ(B1, k

′) = Υ(B1, k), there is a mapping φ that takes every letter (α′
j , β

′
j) in

w (over Σk′

I × Σk′

O ) to a letter (αj , βj) ∈ Σk
I × Σk

O that has same type in Permk(B1), so
that we can find (x, y) = (α1, β1) · · · (αn, βn) such that for every 1 ≤ j ≤ n we have
τB1(P(αj),P(βj)) = τB1(P(α′

j),P(β′
j)).

By the definition of the type of a Parikh vector, we have that

τPermk(B1)(αj , βj) = τB1(P(αj),P(βj)) = τB1(P(α′
j),P(β′

j)) = τPermk′ (B1)(α′
j , β

′
j).

In particular, since the type of a word is the concatenation (i.e., Boolean matrix product)
of its underlying letters, we have that τPermk(B1)(x, y) = τPermk′ (B1)(x′, y′). Since (x′, y′) ∈
L(Permk′(B1)), it follows that also (x, y) ∈ L(Permk(B1)). Indeed, (τPermk′ (B1)(x′, y′))s1

0,s1
f

= 1
where s1

0 and s1
f are an initial state and an accepting state of Permk′(B1), respectively. But

the equality of the types implies that (τPermk(B1)(x, y))s1
0,s1

f
= 1 as well, so Permk(B1) has an

accepting run on (x, y).
By our assumption, L(Permk(B1)) ⊆ L(Permk(B2)), so (x, y) = φ(w) ∈ L(Permk(B2)),

or equivalently, φ(w) ∈ L(Permk(B2)). We now essentially reverse the arguments above,
but with B2 instead of B1. However, this needs to be done carefully, so that the mapping
of letters lands us back at (x′, y′), and not a different word. Thus, instead of finding a
Parikh-equivalent word, we observe that for every 1 ≤ j ≤ n, we also have

τPermk(B2)(αj , βj) = τB2(P(αj),P(βj)) = τB2(P(α′
j),P(β′

j)) = τPermk′ (B2)(α′
j , β

′
j),

This follows from Item 2 in Observation 18 and the fact that the permutation construction
depends only on the transitions (and not on accepting states, which are the only difference
between B1 and B2).

Thus, similarly to the arguments above, we have that (x′, y′) ∈ L(Permk′(B2)), and the
mapping applied is in fact the the inverse map φ−1, where φ−1(φ(w)) = w. We conclude
that L(Permk′(B1)) ⊆ L(Permk′(B2)), as required.

The mapping is illustrated in Figure 5. ◀
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Permk′(B1) Permk′(B2)

Permk(B1) Permk(B2)

w ∈

φ(w) ∈
φ(w) ∈

φ
−1 (φ(w)) ∈

φ φ−1

⊆

Figure 5 A diagram for the proof structure of Lemma 21.

Combining Lemmas 20 and 21, we can effectively compute K0 such that if L(Ak
1) ⊆ L(Ak

2)
for some k, then this holds for some k < K0. Finally, using Lemma 9, this concludes the
proof of Theorem 14.
▶ Remark 22 (Complexity Results for Theorem 14 and Corollary 15). Let n be the number
of states in T1 × T2. Observe that the formula Ψτ constructed in Lemma 17 comprises a
conjunction of O(n2) PA subformulas, where each subformula is either an existential PA
formula of length O(n), or the negation of one. Then, the formula ΘT in Lemma 20 consists of
a universal quantification, nesting a disjunction over |T | formulas of the form Ψτ , conjuncted
with |T | existential quantifications, nesting a single Ψτ each. Overall, this amounts to a
formula of length |T | ≤ 2n2 , with alternation depth 3. 5

Using quantifier elimination [8, 20], we can obtain a witness for the satisfiability of ΘT of
size 4-exponential in n2. Then, finding the overall bound K0 amounts to 22n2

calls to find
such witnesses. Finally, we need K0 oracle calls to Lemma 9 in order to decide existential
simulation, and since K0 may have a 4-exponential size description, this approach yields a
whopping 5 - EXP algorithm. This approach, however, does not exploit any of the structure
of ΘT . See Section 7 for additional comments.

5.3 Lower Bounds for Existential Round Simulation
The complexity bounds in Remark 22 are naively analyzed, and we leave it for future work
to conduct a more in-depth analysis. In this section, we present lower bounds to delimit the
complexity gap. Note that there are two relevant lower bounds: one on the complexity of
deciding round simulation, and the other on the minimal value of K0 in Theorem 14.

We start with the complexity lower bound, which applies already for round equivalence.

▶ Theorem 23. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2 for
any k, is PSPACE-hard, even for a fixed Λ (given as a 5-state DFA).

Proof sketch. We present a similar reduction to that of Theorem 12, from universality of
NFAs (see the full version). In order to account for the unknown value of k, we allow padding
words with a fresh symbol #, which is essentially ignored by the transducers. ◀

Next, we show that the minimal value for K0 can be exponential in the size of the given
transducers (in particular, of T2). See the full version for the complete details.

▶ Example 24 (Exponential round length). Let p1, p2, . . . , pm be the first m prime numbers.
We define two transducers T1 and T2 over input and output alphabet P = {1, . . . ,m}, as
depicted in Figure 6 for m = 3. Intuitively, T1 reads input w ∈ Λ = (1 · 2 · · ·m)∗ and simply
outputs w, whereas T2 works by reading a letter i ∈ P, and then outputting i for pi steps
(while reading pi arbitrary letters) before getting ready to read a new letter i.

5 Alternation depth is usually counted with the outermost quantifier being existential, which is not the
case here, hence 3 instead of 2.
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In order for T2 to k-round simulate T1, it must be able to output a permutation of
(1 · 2 · · ·m)∗. In particular, the number of 1’s, 2’s, etc. must be equal, so k must divide every
prime up to pm, hence it must be exponential in the size of T2.

s3/3

s1/1

s2/2

1

2

3

s1
2 s2

2 s3
2

s1
1 s2

1

s1
3 s2

3 s3
3 s4

3 s5
3

1
2

3

P

ε
P P

ε
P P P P

ε

Figure 6 The transducers T1 (left) and T2 (right) for m = 3 in Example 24. The ε-edge from a
state spi

i to s0 in T2 mean that the transition function from state spi
i behaves identically as from s0.

6 From Process Symmetry to Round Equivalence

As mentioned in Section 1, our original motivation for studying round simulation comes from
process symmetry. We present process symmetry with an example before introducing the
formal model. Recall the Round Robin (RR) scheduler from Example 3. There, at each time
step, the scheduler receives as input the IDs of processes in P = {0, 1, 2} that are making a
request, and it responds with the IDs of those that are granted (either a singleton {i} or ∅).

In process symmetry, we consider a setting where the identities of the processes may
be permuted. This corresponds to the IDs representing e.g., ports, and the processes not
knowing which port they are plugged into. Thus, the input received may be any permutation
of the actual identities of the processes. Then, a transducer is process symmetric, if the
outputs are permuted similarly to the inputs. For example, in the RR scheduler, the output
corresponding to input {1, 2}{3}{3} is {1}∅{3}. However, if we permute the inputs by
swapping 1 and 3, the output for {3, 2}{1}{1} is ∅∅∅, so RR is not process symmetric.

In [1], several definitions of process symmetry are studied for probabilistic transducers.
In the deterministic case, however, process symmetry is a very strict requirement. In order
to overcome this, we allow some wriggle room, by letting the transducer do some local order
changes in the word that correspond to the permutation. Thus, e.g., if we were allowed to
rearrange the input {3, 2}{1}{1} to {1}{1}{3, 2}, then the output becomes {1}∅{3}, and
once we apply the inverse permutation, this becomes {3}∅{1}. This, in turn, can be again
rearranged to obtain the original output (i.e., without any permutation) {1}∅{3}. In this
sense, the scheduler is “locally stable” against permutations of the identities of processes.

We now turn to give the formal model. Consider a set of processes P = {1, . . . ,m} and
k > 0. For a permutation π of P (i.e. a bijection π : P → P) and a letter σ ∈ 2P , we obtain
π(σ) ∈ 2P by applying π to each process in σ. We lift this to words x ∈ (2P)∗ by applying
the permutation letter-wise to obtain π(x). A 2P/2P transducer T =

〈
2P , 2P , Q, q0, δ, ℓ

〉
is

k-round symmetric if for every permutation π of P for and every k-round word x ∈ (2P)∗

there exists a k-round word x′ ∈ (2P)∗ such that π(x) ≍k x
′ and π(T (x)) ≍k T (x′). We say

that T is k-round symmetric w.r.t. π if the above holds for a certain permutation π.
Here, too, we consider two main decision problems: fixed round symmetry (where k is

fixed) and existential round symmetry (where we decide whether there exists k > 0 for which
this holds). Observe that Λ = (2P)∗, and is hence ignored.
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From Round Symmetry to Round Simulation. In order to solve the decision problems
above, we reduce them to the respective problems about round symmetry. We start with the
case where the permutation π is given.

Given the transducer T as above, we obtain from T a new transducer T π which is
identical to T except that it acts on a letter σ ∈ 2P as T would act on π−1(σ), and it
outputs σ where T would output π−1(σ). Formally, T π =

〈
2P , 2P , Q, q0, δ

π, ℓπ
〉

where
δπ(q, σ) = δ(q, π−1(σ)) and ℓπ(q) = π(ℓ(q)). It is easy to verify that for every x ∈ (2P)∗

we have T π(x) = π(T (π−1(x))). As we now show, once we have T π, round symmetry is
equivalent to round simulation, so we can use the tools developed in Sections 4 and 5 to
solve the problems at hand (see the full version for the proof).

▶ Lemma 25. For a permutation π and k > 0, T is k-round symmetric w.r.t. π iff T π ≺k T .

Closure Under Composition. In order to deal with the general problem of symmetry under
all permutations, one could naively check for symmetry against each of the m! permutations.
We show, however, that the definition above is closed under composition of permutations
(see the full version for the proof).

▶ Lemma 26. Consider two permutations π, χ. If T π ≺k T and T χ ≺k T then T π◦χ ≺k T .

Recall that the group of all permutations of P is generated by two permutations: the
transposition (1 2) and the cycle (1 2 . . . m) [5]. By Lemma 26 it is sufficient to check
symmetry for these two generators in order to obtain symmetry for every permutation. Note
that for the existential variant of the problem, even if every permutation requires a different
k, by taking the product of the different values, we conclude that there is a uniform k for all
permutations. We thus have the following.

▶ Theorem 27. Both fixed and existential round symmetry are decidable. Moreover, fixed
round symmetry is in PSPACE.

Finally, the reader may notice that our definition of round symmetry w.r.t. π is not
commutative, as was the case with round symmetry v.s. round equivalence. However, when
we consider round symmetry w.r.t. to all permutations, the definition becomes inherently
symmetric, as a consequence of Lemma 26 (see the full version for the proof).

▶ Lemma 28. In the notations above, if T π ≺k T then T ≺k T π.

Thus, for symmetry, the notions of round simulation and round equivalence coincide.

7 Future Work

In this work, we introduced round simulation and provided decision procedures and lower
bounds (some with remaining gaps) for the related algorithmic problems.

Round simulation, and in particular its application to Round Symmetry, is only an
instantiation of a more general framework of symmetry, by which we measure the stability of
transducers under local changes to the input. In particular, we plan to extend this study
to other definitions, such as window simulation, where we use a sliding window of size k
instead of disjoint k-rounds, and Parikh round symmetry, where the alphabet is of the form
2P , and we are allowed not only to permute the letters in each round, but also to shuffle the
individual signals between letters in the round. In addition, the setting of infinite words is
of interest, where one can define ultimate simulation, requiring the simulation to only hold
after a finite prefix. Finally, other types of transducers may require variants of simulation,
such as probabilistic transducers, or streaming-string transducers [2].
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1 Introduction

Despite decades of research on how to best evaluate λ-terms, the topic is still actively studied
and recent years have actually seen a surge in new results and sophisticated techniques. This
paper is an attempt at harmonizing two of them, namely, strong call-by-need and useful
sharing, under the influence of a third recently identified setting, open call-by-value. To
describe our results, we have to first outline each of these approaches.

Call-by-Need. Call-by-need (shortened to CbNeed) is an evaluation scheme for the λ-
calculus introduced in 1971 by Wadsworth [53] as an optimization of call-by-name (CbN),
and nowadays lying at the core of the Haskell programming language. In the ’90s, it was
reformulated as operational semantics by Launchbury [45], Ariola and Felleisen [19], and
Maraist et al. [48], and implemented by Sestoft [52] and further studied by Kutzner and
Schmidt-Schauß [44]. Despite being decades old, CbNeed is still actively studied, perhaps
more than ever before. The last decade indeed saw a number of studies by e.g. Ariola
et al. [20], Chang and Felleisen [31], Danvy and Zerny [35], Downen et al. [36], Garcia et
al. [37], Hackett and Hutton [39], Pédrot and Saurin [50], Mizuno and Sumii [49], Herbelin
and Miquey [40], and Kesner et al. [42], plus those mentioned in the following paragraphs.

In the untyped, effect-free setting of the λ-calculus, CbNeed can be seen as borrowing
the best aspects of call-by-value (CbV), of which it takes efficiency, and of CbN, of which it
retains the better terminating behavior, as stressed in particular by Accattoli et al. [17]. In
contrast to CbN and CbV, however, CbNeed cannot easily be managed at the small-step level
of the usual operational semantics of the λ-calculus, based on β-reduction and meta-level
substitution. Its fine dynamics, indeed, requires a decomposition of the substitution process
acting on single variable occurrences at a time – what we refer to as micro-step (operational)
semantics – and enriching λ-terms with some form of first-class sharing. While Wadsworth’s
original presentation is quite difficult to manage, along the years presentations of CbNeed
have improved considerably ([45, 48, 19, 31]), up to obtaining neat definitions, as the one by
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Accattoli et al. [6] (2014) in the linear substitution calculus (shortened to LSC), which led to
elegant proofs of its correctness with respect to CbN, as done by Kesner [41] (2016), and of
its relationship with neededness from a rewriting point of view, by Kesner et al. [43] (2018).

Strong Call-by-Need. Being motivated by functional languages, CbNeed is usually studied
considering two restrictions with respect to the ordinary λ-calculus: 1) terms are closed, and
2) abstraction bodies are not evaluated. Let us call this setting Closed CbNeed. Extensions
of CbNeed removing both these restrictions have been considered, obtaining what we shall
refer to as Strong CbNeed. In his PhD thesis [27] (1999), Barras designs and implements an
abstract machine for Strong CbNeed, which has then been used in the kernel of the Coq
proof assistant to decide the convertibility of terms. Balabonski et al. [23] (2017) give instead
the first formal operational semantics of Strong CbNeed, proving it correct with respect to
Strong CbN– see also Barenbaum et al. [25], where the semantics of [23] is extended towards
Barras’s work; Biernacka and Charatonik [28], where it is studied via an abstract machine;
Balabonski et al. [24] where it has recently been revisited and partially formalized.

CbNeed and the Strong Barrier. The definition of Strong CbNeed in [23] builds over the
simple one in the LSC, and yet is very sophisticated and far from obvious. This is an instance
of a more general fact concerning implementation techniques: dealing with the strong setting
is orders of magnitude more difficult than with the closed setting, it is not just a matter
of adapting a few definitions. New complex issues show up, requiring new techniques and
concepts – let us refer to this fact as to the strong barrier. Another instance is the fact that
Lévy’s optimality [47] is far more complex in the strong case than in the weak one [29, 22].

For neededness, the tool to break the strong barrier is a complex notion of needed
evaluation context, parametrized and defined by mutual induction with their sets of needed
variables. Specifying the positions in a term where needed redexes take place is very subtle.

Reasonable Cost Models and the Strong Barrier. Another sophisticated form of sharing for
λ-calculi arose recently in the study of whether the λ-calculus admits reasonable evaluation
strategies, that is, strategies whose number of β steps is a reasonable time cost model (i.e.
measure of time complexity) for λ-terms. The number of function calls (that is, β-steps) is
the cost model often used in practice for functional programs – this is done for instance by
Charguéraud and Pottier in [32]. A time cost model is reasonable when it is polynomially
equivalent to the one of Turing machines, which is the requirement for good time cost models.
For the λ-calculus, the theory justifying the practice of taking the number of function calls
as a time cost model is far from trivial. It is an active research topic, see Accattoli [5].

The first result about λ-calculus reasonable strategies is due to Blelloch and Greiner [30]
(1995), and concerns Closed CbV. The 2000s have seen similar results for Closed CbN and
Closed CbNeed by Sands, Gustavson, and Moran [51] and Dal Lago and Martini [34, 33].
These cases are based on simulating the λ-calculus via simple forms of sharing such as those
at work in abstract machines. The same kind of sharing can also be represented in the LSC,
as shown by Accattoli et al. [6]. The strong case seemed elusive and was suspected not to be
reasonable, because of Asperti and Mairson’s result that Lévy’s optimal (strong) strategy is
not reasonable [21] – the elusiveness was just another instance of the strong barrier.

Useful Sharing. In 2014, Accattoli and Dal Lago managed to break the barrier, proving that
Strong CbN (also known as leftmost-outermost evaluation, or normal order) is a reasonable
strategy [14]. The proof rests on a simulation of Strong CbN in a refinement of the LSC with
a new further level of sharing, deemed useful sharing. They also show useful sharing to be
mandatory for breaking the strong barrier for reasonability.
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Useful sharing amounts to doing minimal unsharing work, namely only when it contributes
to creating β-steps, while avoiding to unfold the sharing (i.e. to substitute) when it only
makes the term grow in size. Similarly to CbNeed, the specification of useful sharing can
take place only at the micro-step level. Note that the replacement of a variable x in t

with u can create a β redex only if u is (or shall reduce to) an abstraction and there is an
applied occurrence of x in t (that is, t = T ⟨xs⟩ for some context T ). Therefore, restricting to
useful substitutions – that is, adopting useful sharing – amounts to two optimizations of the
substitution/unfolding process:
1. Never substitute normal applications: one must avoid substitutions of terms which are

not – and shall not reduce to – abstractions, such as, say, yz, because their substitution
cannot create β-redexes. Indeed, T ⟨(yz)s⟩ has a β redex if and only if T ⟨xs⟩ does.

2. Substituting abstractions on-demand : when the term to substitute is an abstraction, one
needs to be sure that the variable occurrence to replace is applied, because, for instance,
replacing x with I in yx (obtaining yI) is useless, as no β-redexes are created.

The first optimization is easy to specify, because it concerns the shape of the terms to
substitute, that is, what to substitute – it has a small-step nature. The second one instead is
very delicate, as it also concerns where to substitute. It depends on single variable occurrences
and thus it is inherently micro-step – note that x has both a useful and a useless occurrence
in xx. Similarly to Strong CbNeed, the difficulty is specifying useful evaluation contexts.

Strong CbNeed and Useful Sharing. Given the similar micro-step traits of CbNeed and
useful sharing, and their similar difficulties, it is natural to wonder whether they can
be combined. The operational semantics of Strong CbNeed in [23] has the easy useful
optimization hardcoded, as it substitutes only abstractions. However, it ignores the delicate
second optimization, and its number of β steps is therefore not a reasonable cost model.
Concretely, this means that the practice of counting function calls does not reflect the cost
of Balabonski et al.’s operational semantics for Strong CbNeed. Since Strong CbNeed is used
in the implementation of Coq, this issue has both theoretical and practical relevance.

The aim of this paper is to start adapting useful sharing to call-by-need, developing
reasonable operational semantics for CbNeed beyond the closed setting, and continuing a
research line about CbNeed started by Accattoli and Barras [7, 8]. To explain our approach,
we first need to overview a recent new perspective on the strong barrier.

Opening the Strong Barrier. The theory of the λ-calculus has mainly been developed in
CbN. Historically, Barendregt stressed the importance of head evaluation (which does not
evaluate arguments) for a meaningful representation of partial recursive functions – this is
the leading theme of his famous book [26]. A decade later, Abramsky and Ong stressed
the relevance of weak head evaluation (which does not evaluate abstraction bodies either)
to model functional programming languages [1]. Therefore, the usual incremental way to
understand strong evaluation is to start with the closed CbN case (i.e., weak head evaluation
and closed terms), then turn to the head case (head evaluation and open terms), and finally
add evaluation into arguments obtaining the strong case (and leftmost-outermost evaluation).
This is for instance the progression that has been followed by Accattoli and Dal Lago to
obtain a reasonable time cost model for Strong CbN [13, 14].

In a line of work by Accattoli and co-authors [9, 15, 16, 12] aimed at developing a theory
of CbV beyond the usual closed case, it became clear that there is an alternative and better
route to the strong setting. The idea is to consider the intermediate open setting (rather
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than the head one) obtained by enabling evaluation in arguments and open terms (as in the
strong case), while still forbidding evaluation in abstraction bodies (as in the closed case).
One can summarize the situation with the following diagram:

Closed Open

Head Strong

eval in arguments & open terms

eval under abstractions & open terms

eval in arguments

eval under abstractions

They also show that useful sharing factors through the open setting, rather than through the
head one: the two useful optimizations are irrelevant in the head case, while they make sense
in the open one, where they can be studied without facing the whole of the strong barrier.

The strong setting can be seen as the iteration of the open one under abstraction, (but
not as the iteration of the closed one, because diving into abstractions forces to deal with
open terms). This view is adopted by Grégoire and Leroy in the design of the second strong
abstract machine at work in Coq [38]. Useful sharing for the strong case then amounts to
understanding how open useful sharing and the iteration interact, which is subtle and yet is
an orthogonal problem. Studying the open case first is the progression followed recently by
Accattoli and co-authors to prove that Strong CbV is reasonable for time [9, 16, 11].

This Paper. According to the decomposition of the strong barrier, here we study, as a first
step, useful sharing for CbNeed in the open setting. Let us stress that, because of the barrier,
it is not practicable to directly study the strong setting – this is also how the study for CbN
and CbV, which are simpler than CbNeed, have been carried out in the literature.

An interesting aspect of useful sharing is that, while the underlying principle is the same,
its CbN and CbV incarnations look very different, as the two strategies provide different
invariants, leading to different realizations of the required optimizations. It is then interesting
to explore useful sharing in CbNeed, which can be seen as a merge of CbN and CbV.

Difficulties. It turns out that useful sharing is quite more difficult to specify in CbNeed than
in CbN or CbV. Useful sharing requires to know, for every variable replacement, both what
is being substituted (is it an abstraction?) and where (is the variable to replace applied?).
Evaluating only needed arguments, and only once, means that CbNeed evaluation moves
deeply into a partially evaluated environment, making hard to keep track of both the what
and the where of variable replacements. In particular, a variable might not be applied in
the environment but at the same time be meant to replace an applied variable – thus being
applied up to sharing – making the identification of applied variables a major difficulty.

The definition of useful rewriting steps is always involved. In CbN and CbV, they can
nonetheless be specified compactly via the concept of unfolding, that is, iterated meta-level
substitutions [14, 9]. These definitions can be called semantical, as they define useful micro
steps via side conditions of a small-step nature. They are also somewhat ineffective, because
they require further work to be made operational. Unfortunately, it is unclear how to give a
semantic definition of usefulness in CbNeed. In particular, defining useful CbNeed evaluation
contexts seems to require the unfolding of contexts, which is tricky, given that in CbNeed
the context hole might be shared, thus risking being duplicated by the unfolding.

Outcome. Despite these difficulties, we succeed in designing an operational semantics for
Open CbNeed with useful sharing, and proving that it validates the expected properties.

We proceed in three incremental steps. First, we provide a new split presentation of
Closed CbNeed tuned for the study of useful sharing developed later on. Second, we extend
it to the open setting, essentially mimicking Balabonski et al.’s approach [23], but limiting
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it to the open fragment. The real novelty is the third step, providing the refinement into
a useful open CbNeed calculus, of which we prove the good properties. The crucial and
sophisticated concept is the one of useful (CbNeed) evaluation contexts, which isolate where
useful needed substitutions can be triggered. They are parametrized and defined by mutual
induction with the notions of both applied and unapplied variables, similarly to how needed
evaluation contexts are parametrized and mutually dependent with needed variables. The
isolation of these concepts and the proof of their properties are our main contribution.

Our definition of useful step is operational rather than semantical, as we give a direct –
and unfortunately involved – definition of useful evaluation contexts, being unclear how to
give a semantic definition based on unfoldings in CbNeed. On the positive side, ours is the
first fully operational definition of usefulness in the literature. Previous work (in CbN and
CbV) has either adopted semantical ones [14, 9], or has given abstract machines realizing
the useful optimizations, but avoiding defining a useful calculus on purpose [3, 16, 11].

Among the properties that we prove, two can be seen as capturing the correctness and
the completeness of useful sharing with respect to Open CbNeed:

Correctness: useful substitution steps are eventually followed by a β step, the one that
they contribute to create. That is, our useful steps correctly captures the intended
semantics, as no steps irrelevant for β redexes are mistakenly considered as useful.
Completeness: normal forms in Useful Open CbNeed unfold to normal forms in Open
CbNeed (the unfolding of normal forms is easy to deal with). That is, useful steps do not
stop too soon: no steps contributing to β redexes are mistakenly considered as useless.

Sketched Complexity Analysis. The third essential property for useful sharing, and its
reason to be, is reasonability: the useful calculus can be implemented within a polynomial
(or even linear) overhead in the number of β-steps. We sketch the complexity analysis at the
end of the paper. A formal proof requires introducing an abstract machine implementing the
calculus. We have developed the machine, but left it to a forthcoming paper for lack of space.

Intersection Types in the Background. Because of the inherent difficulties mentioned
above, our calculus is involved, even very involved. To remove the suspicion that it is an
ad-hoc calculus, we paired it with a characterization of its key properties via intersection
types, used as a validation tool with a denotational flavor, refining the type-based studies in
[41, 23, 17]. In such typing system, the delicate notions of useful evaluation contexts, and
applied and unapplied variables have natural counterparts, and type derivations can be used
to measure both evaluation lengths and the size of normal forms exactly. Such a companion
study – omitted for lack of space – is in Leberle’s PhD thesis [46].

Proofs. We adopt a meticulous approach, developing proofs in full details, almost at the
level of a formalization in a proof assistant. The many technical details, mostly of a tedious
nature, are in the technical report [18]. This paper explains the relevant concepts.

2 The Need For Useful Sharing

Here we show a paradigmatic case of size exploding family – which is a family of terms whose
size grows exponentially with the number of β-steps – motivating the key optimization of
useful sharing for open and strong evaluation. Actually, there are two paradigmatic cases of
size explosion and, accordingly, two optimizations characterizing useful sharing. The first
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optimization amounts to forbid the substitution of normal applications, and it is hardcoded
into CbNeed evaluation, which by definition substitutes only values. Therefore, we omit
discussing the first case of size explosion – more details can be found in [14, 11].

Size Explosion. The example of size-explosion we are concerned with is due to Accattoli [2]
and based on the following families of terms, the ti, and results, the ui (where I := λz.z):

t1 := λx.λy.yxx tn+1 := λx.tn(λy.yxx) u0 := I un+1 := λy.yunun

▶ Proposition 1 (Closed and strategy-independent size explosion, [2]). Let n > 0. Then
tnI→n

β un. Moreover, |tnI| = O(n), |un| = Ω(2n), tnI is closed, and un is normal.

The Useful Optimization. It is easily seen that all the terms substituted along the evaluation
of the family are abstractions, namely the identity I and instances of ui, and that none of
these abstractions ever becomes the abstraction (on the left) of a β-redex – that is, their
substitution does not create, or it is not useful for, β-redexes. These abstractions are however
duplicated and nested inside each other, being responsible for the exponential growth of the
term size. Useful sharing is about avoiding such useless duplications.

If evaluation is weak, and substitution is micro-step (i.e. one variable occurrence at a
time, when in evaluation position, in a formalism with sharing), then the family does not
cause an explosion. The replaced variables indeed are all instances of x in some ti which are
under abstraction, and which are then never replaced in micro-step weak evaluation. With
micro-step strong evaluation, however, these replacement do happen, and the size explodes.
When evaluated with Balabonski et al. Strong CbNeed [23], this family takes a number of
micro-steps exponential in the number of β steps, showing that – for as efficient as Strong
CbNeed may be – the number of β steps does not reasonably measure its evaluation time.

To tame this problem, one needs to avoid useless substitutions, resting on an optimization
sometimes called substituting abstractions on-demand, which is tricky. It requires abstractions
to be substituted only on applied variable occurrences: note that the explosion is caused by
replacements of variables (namely the instances of x) which are not applied, and that thus
do not create β-redexes. For instance, the optimization should allow us substituting I on y in
yx, because it is useful, that is, it creates a β redex, while it should forbid substituting it on
x because it is useless for β-redexes. Note that this optimization makes sense only when one
switches to micro-step evaluation, that is, at the level of machines, because in xx there are
both a useful and a useless occurrence of x. The implementation of substituting abstractions
on-demand is very subtle, also because by not performing useless substitutions, it breaks
invariants of the usual open/strong evaluation process.

As shown by Accattoli and Guerrieri [16], in an open (but not strong) setting, substituting
abstractions on-demand is not mandatory for reasonability. They also show, however,
that it makes nonetheless sense to study it because it is mandatory for obtaining efficient
implementations, as it reduces the complexity of the overhead from quadratic to linear with
respect to the size of the initial term. On the other hand, the optimization is mandatory in
strong settings, and it is easier to first study it in the open setting, because the iteration
under abstraction (required to handle the strong case) introduces new complex subtleties.

3 The Split Presentation of Closed Call-by-Need

In this section we give an unusual split presentation of Closed CbNeed that shall be the
starting point for our study of the open and the useful open cases of the next sections.



B. Accattoli and M. Leberle 4:7

The Need to Split. The linear substitution calculus (LSC) provides a simple and elegant
setting for studying CbNeed, as shown repeatedly by Accattoli, Kesner and co-authors
[6, 41, 10, 23, 43, 17, 42]. The LSC extends the λ-calculus with explicit substitutions
(shortened to ES), noted t[x←u], which are a compact notation for let x = u in t. Capture-
avoiding meta-level substitution is noted t{x←u}. To model the useful optimization explained
above, we shall need to substitute abstractions only on applied variables. Now, in the LSC,
ES can appear everywhere in the term, for instance there are terms such as t := x[x←I]u.
Note that in t it is hard to say whether the replacement of x with I is useful by looking only
at the scope of the ES (which is the left of the [·←·] construct): the subtlety being that the
replacement is indeed useful, because the variable is applied and I is an abstraction, but the
application it is involved in is outside the scope of the ES. To avoid this complication, we
give a presentation of CbNeed where ES are separated from the term they act upon, and
cannot be nested into each other, similarly to what happens in abstract machines. The split
presentation is not mandatory to study useful sharing, but it is quite convenient.

Split Grammars. In the split syntax, a term is an ordinary λ-term (without ESs), and a
program is a term together with – in a separate place – a list of ESs, called environment.

Given a countable set of variables Var, the syntax of Closed CbNeed is given by:

Values v, w ::= λx.t Environments e, e′ ::= ϵ | e[x←t]
Terms t, u, s ::= x ∈ Var | v | tu Programs p, q ::= (t, e)

Note that the body of a λ-abstraction is a term and not a program. Of course, extending the
framework to strong evaluation – which is left for future work – requires to allow programs
under λ-abstractions. Note also that variables are not values. This is standard in works
dealing with implementations or efficiency, as excluding them brings a speed-up, as shown by
Accattoli and Sacerdoti Coen [10]. In e[x←t] and (u, e[x←t]) the variable x is bound in e and
u. Terms and programs are identified modulo α-renaming. Environments are concatenated
by simple juxtaposition. We also define the environment look-up operation as follows: set
e(x) := t if e = e′[x←t]e′′ and x is not bound in e′, and e(x) := ⊥ otherwise.

Split Contexts and Plugging. Micro-step CbN and CbV evaluation have easy split presenta-
tions, because their evaluation contexts may be seen as term contexts, using the environment
only for look up, see for instance [8]. CbNeed evaluation contexts, instead, need to enter into
the environment. Typically in a program such as (xy, [x←z][z←t]), whose head variable x has
been found, CbNeed evaluation has to enter inside [x←·], finding another (hereditary) head
variable z, and in turn enter inside [z←·] and evaluate t. The subtlety is that the evaluation
of t can create new ESs, which should be added to the program without breaking its structure,
that is, outside the ES which is being evaluated ([z←·] in the example). The trick to make it
work, is using an unusual notion of context plugging. Before defining evaluation contexts we
simply discuss split contexts, which are used throughout the paper.

Term ctxs T, T ′ ::= ⟨·⟩ | T t | tT Env. ctxs E, E′ ::= ϵ | e [x←T ] | E [x←u]
Prog. ctxs P, Q ::= (T, e) | (t, E)

Plugging of a term into a context is defined as expected. Plugging of a program into a
context, the tricky bit, requires an auxiliary notation p@[x←t] for the appending of an ES
[x←t] to the end of the environment of a program p:
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Appending ES Plugging of programs
(t, e)@[x←u] := (t, e[x←u]) (T, e)⟨t, e′⟩ := (T ⟨t⟩, e′e)

(T, e)@[x←u] := (T, e[x←u]) (u, e[x←T ])⟨t, e′⟩ := (u, e[x←T ⟨t⟩]e′)
(t, E)@[x←u] := (t, E[x←u]) (u, E[x←s])⟨t, e⟩ := (u, E)⟨t, e⟩@[x←s]

For instance, (xy, [x←t][y←⟨·⟩][z←u])⟨s, [x′←t′]⟩ = (xy, [x←t][y←s][x′←t′][z←u]). The
look-up operation is extended to environment and program contexts as expected.

Next, we define the CbNeed evaluation contexts in the split approach.

Head contexts H, J ::= ⟨·⟩ | Ht

Hereditary head contexts H∗, J∗ ::= (H, e) | H∗@[x←t] | H∗⟨x⟩@[x←H]

The third production for H∗ is what allows evaluation to be iterated inside ES, seeing for
instance (xy, [x←z][z←⟨·⟩]) as a hereditary head context of (xy, [x←z][z←t]) (by applying
the production twice, the first time obtaining (xy, [x←⟨·⟩])).

Split Evaluation Rules. In contrast to most λ-calculi, we do not define the root cases of
the rules and then extend them by a closure by evaluation contexts. We rather define them
directly at the global level. Adopting global rules is not mandatory, and yet it shall be
convenient for dealing with the useful calculus – we use them here too for uniformity.

Closed CbNeed evaluation rules
Multiplicative H∗⟨(λx.t)u⟩ →m H∗⟨t, [x←u]⟩

Exponential H∗⟨x⟩ →e H∗⟨v⟩ if H∗(x) = v

The names of the rules are due to the link between the LSC and linear logic, see Accattoli [4].
Note that we use both plugging of terms and programs, to ease up notations. An example
of how rule →m exploits the unusual notion of plugging is (xt, [x←(λy.u)st′][z←u′]) →m
(xt, [x←ut′][y←s][z←u′]). As it is standard in the study of CbNeed, garbage collection is
simply ignored, because it is postponable at the micro-step level. Normal forms of Closed
CbNeed are programs of the form (v, e), which are sometimes called answers.

4 Open Call-by-Need

We now shift to Open CbNeed, an evaluation strategy extending Closed CbNeed and allowing
reduction to act on possibly open programs. Roughly, the strategy iterates CbNeed evaluation
on the arguments of the head variable, when the normal form of ordinary CbNeed evaluation is
not an abstraction, which can happen when terms are not necessarily closed. Various aspects
of Closed CbNeed become subtler in Open CbNeed, namely the definition of evaluation
contexts and the structure of normal forms, together with the new notion of needed variables.
Essentially, we are giving an alternative presentation of the open fragment of Balabonski et
al.’s Strong Call-by-Need, with which we compare at the end of the section.

Some Motivating Examples. We show a few examples of the rewriting relation that we
aim at defining, as to guide the reader through the technical aspects. We want reduction to
take place in arguments, after a (hereditary) head variable has been found, having e.g.:

(x((λz.z)I), [y←t])→m (xz, [z←I][y←t]) and (xz, [z←I][y←t])→e (xI, [z←I][y←t])
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For appropriate generalizations of→m and→e. Of course, we retain and extend to arguments
the hereditary character of the reduction rules, therefore having also steps such as:

(yx, [x←y((λz.z)I)])→m (yx, [x←yz][z←I]), and (yx, [x←yz][z←I])→e (yx, [x←yI][z←I])

While the intended behavior is – we hope – clear, specifying these steps via evaluation
contexts requires some care and a few definitions. Essentially, we need to understand when
evaluation can pass to the next argument, and thus characterize when terms are normal.
This is easy for terms but becomes tricky for programs.

Evaluation Places and Needed Variables. The grammars of the language are the same
as for split Closed CbNeed, but defining the open evaluation contexts is quite subtler. In
Closed CbNeed there is only one place of the term where evaluation can take place, the
hereditary head context H∗. In the open setting the situation is more general: there is one
active evaluation place plus potentially many passive ones, which are those places where
evaluation already passed and ended. On some of these passive places, evaluation ended on
a free variable (occurrence). We refer to these free variables as needed (definition below1), as
they shall end up in the normal form, given that at least one of their occurrences has already
been evaluated and cannot be erased. For instance in p := (x(yI), [z←x][y←I]) the active
place is y, the first occurrence of x is a needed occurrence, while the second one is not.

Needed vars for terms
nv(x) := {x}

nv(λx.t) := ∅
nv(tu) := nv(t) ∪ nv(u)

Needed variables for programs
nv(t, ϵ) := nv(t)

nv(t, e[x←u]) :=

{
nv(t, e) x /∈ nv(t, e)
(nv(t, e) \ {x}) ∪ nv(u) x ∈ nv(t, e)

The difficulty in defining Open CbNeed is in the inductive definition of both normal forms
and evaluation contexts. The problem is that extending a term or a context with a new ES
may re-activate a passive evaluation place, if the ES binds a needed variable occurrence. For
instance, appending [x←δ] to p above would reactivate the needed occurrence of x.

Normal Terms. In Open CbNeed normal forms are not simply answers (i.e. abstractions
together with an environment), as free variables induce a richer structure. We shall later
characterize the subtle inductive structure of normal programs. For now, we need predicates
(that shall be later shown) characterizing normal terms, as they are used to define evaluation
contexts. The definition and the terminology are borrowed from Open CbV [9, 15], where
normal terms are called fireballs and are defined by mutual induction with inert terms:

Values v, w ::= λx.t Inert terms i, j ::= x ∈ Var | if
Fireballs f, g ::= v | i Non-var inert terms i+ ::= if

Later on, we shall often need to refer to inert terms that are not variables, which is why
we introduce now a dedicated notation. We shall sometimes write inert(t) (resp., abs(t)) to
express that t is an inert term (resp., an abstraction).

1 Needed variables are intended to be considered only for normal terms (or normal programs, or normal
parts of a context), and yet the definition is given here for every term (in particular every applications,
instead of only inert applications if). The reason for our lax definition is that the technical development
requires at times to consider the needed variables of a term that is not yet known to be normal. The lax
definition goes against the needed intuition, as one of the reviewers understandably complained about,
suggesting to call these variables frozen, following Balabonski et al. [23]. We preferred to keep needed
because they are similar but different from the frozen variables in [23], see the end of this section.
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4:10 Useful Open Call-By-Need

Needed vars for term ctxs
nv(⟨·⟩) := ∅
nv(Ht) := nv(H)
nv(iH) := nv(i) ∪ nv(H)

Open evaluation contexts and their needed vars

(H, ϵ) ∈ Env(H)
OAX

P ∈ EV x ∈ V
P @[x←i] ∈ E(V\{x})∪nv(i)

OI

P ∈ EV x /∈ V
P @[x←t] ∈ EV

OGC
P ∈ EV x /∈ V

P ⟨x⟩@[x←H] ∈ EV∪nv(H)
OHER

Figure 1 Needed variables for term contexts and the derivation rules for open evaluation contexts.

inert(i, ϵ) IAX
inert(p) x ∈ nv(p)

inert(p@[x←i]) II
inert(p) x /∈ nv(p)

inert(p@[x←t]) IGC

abs(v, ϵ) AAX
abs(p)

abs(p@[x←t]) AGC

Figure 2 Predicates for Open CbNeed normal programs.

Evaluation Contexts. Open evaluation contexts cannot be defined with a grammar, as
for the closed case, because they are defined by mutual induction with their own set of
needed variables, see the right part of Fig. 1. The notation P ∈ EV means that P is an open
evaluation context of needed variables V . We assume that x /∈ dom(P ) in rules OGC, OI and
OHER, in accordance with Barendregt’s variable convention. The base case OAX requires the
notion of needed variables for term contexts, which is on the left side of Fig. 1.

Rule OAX simply coerces term contexts to program contexts. The production P@[x←t]
for the closed case here splits into the two rules OGC and OI. This is relative to needed
variables: one can append the ES [x←t] only if x is not needed (OGC) or, when x is needed, if
the content t of the ES is inert (OI), as to avoid re-activation of a passive evaluation place on
x. Rule OHER is the open version of the production P ⟨x⟩@[x←H], with the needed variables
constraint to prevent re-activations. Examples: (xy, [y←⟨·⟩]) and (xy, [y←z][z←⟨·⟩]) for
OHER, (xy, [y←⟨·⟩][x←zz]) for OI, (xy, [y←⟨·⟩][z←zz]) for OI.

▶ Lemma 2 (Unique parameterization of open evaluation contexts).
Let P ∈ EV and P ∈ EW . Then V =W.

Open Evaluation Rules. The definition of the evaluation rules mimics exactly the one for
the split closed case. Given an Open CbNeed evaluation context P ∈ EV , we have:

Open CbNeed evaluation rules
Open multiplicative P ⟨(λx.t)u⟩ →om P ⟨t, [x←u]⟩

Open exponential P ⟨x⟩ →oe P ⟨v⟩ if P (x) = v

We shall say that p reduces to q in the Open CbNeed evaluation strategy, and write
p→ond q, whenever p→om q or p→oe q.

▶ Proposition 3 (Determinism of Open CbNeed). Reduction →ond is deterministic.

Normal Programs. Normal programs mimic normal terms and are of two kinds, inert or
abstractions. The definition however now depends on needed variables and cannot be given as
a simple grammar. The two predicates inert and abs are defined in Fig. 2. Finally, predicate
onorm is defined as the union of inert and abs, that is, onorm(p) if inert(p) or abs(p). The
intended meaning is that it characterizes programs in Open CbNeed-normal form.
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▶ Proposition 4 (Syntactic characterization of Open CbNeed-normal forms). Let p be a program.
Then p is in →ond-normal form if and only if onorm(p).

The proofs of Prop. 3 and 4 (in [18]) are subtler and longer than one might expect,
because of the fact that evaluation contexts and needed variables are mutually defined.

Relationship with Balabonski et al. With respect to the definition of Strong CbNeed in [23],
we follow essentially the same approach up to two differences, not counting the obvious fact
that we are open and not strong. First, we use a split calculus, while they do not, because
they do not study useful sharing.

Second, they have a similar but different parametrization of evaluation contexts. They are
more liberal, as their sets of frozen variables used as parameters are supersets of our needed
variables, but they also parametrize reduction steps, which we avoid. Our ’tighter’ choice is
related to the fine study of intersection types for Open CbNeed, which can be found in the
Leberle’s PhD thesis [46], and it is also essential for the refinement required by the useful
extension of Sect. 5. In [24], a reformulation of [23] using a deductive system (parametrized
by frozen variables) rather than evaluation contexts is used – it could also be used here.

5 Useful Open Call-by-Need

Roughly, useful sharing is an optimization of micro-step substitutions, that is, of exponential
steps. The idea is that there are substitution steps that are useful to create β/multiplicative
redexes and steps that are useless. For instance (the underline stresses the created β-redex):

Example of useful step Example of useless step
(xy, [x←I])→oe (Iy, [x←I]) (xy, [y←I])→oe (xI, [y←I])

The main idea is that useful steps replace applied variable occurrences, while useless steps
replace unapplied occurrences. The definition of the useful calculus then shall refine the
open one by replacing the set of needed variables with two sets, one for applied and one
for unapplied variable occurrences. Note a subtlety: variables can have both applied and
unapplied needed occurrences, as x in xx. Therefore, usefulness is a concept that can be
properly expressed only when considering replacements of single variable occurrences.

Usefulness unfortunately is not so simple. Consider the following step replacing z with I:

(xy, [x←z][z←I])→oe (xy, [x←I][z←I]) (1)

Is it useful or useless? It does not create a multiplicative redex – therefore it looks useless
– but without it we cannot perform the next step (xy, [x←I][z←I]) →oe (Iy, [x←I][z←I])
replacing x with I which is certainly useful – thus step (1) has to be useful.

We then have to refine the defining principle for usefulness: useful steps replace hereditarily
applied variable occurrences, that is, occurrences that are applied, or that are by themselves
(i.e. not in an application) and that are meant to replace a hereditarily applied occurrence.

Handling hereditarily applied variables is specific to CbNeed, and makes defining Useful
Open CbNeed quite painful. The key point is the global character of the hereditary notion,
that requires checking the evaluation context leading to the variable occurrence and it is
then not of a local nature. We believe that hereditarily applied variables, nonetheless, are
an unavoidable ingredient of usefulness in a CbNeed scenario, and not an ad-hoc point of
our study. This opinion is backed by the fact that such a convoluted mechanism is modeled
very naturally at the level of intersection types, as it is shown in Leberle’s PhD Thesis [46].
Important: from now on, we ease the language saying applied to mean hereditarily applied.
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Applied variables for terms and programs

a(λx.t) := ∅ a(x) := ∅ a(tu) :=

{
{x} ∪ a(u) t = x ∈ Var
a(t) ∪ a(u) t /∈ Var

a(t, ϵ) := a(t)

a(t, e[x←u]) :=


a(t, e) x /∈ nv(t, e),
(a(t, e)\{x}) ∪ a(u) x ∈ nv(t, e) ∧ (x /∈ a(t, e) ∨ u /∈ Var),
(a(t, e)\{x}) ∪ {y} x ∈ nv(t, e) ∧ x ∈ a(t, e) ∧ u = y ∈ Var

Unapplied variables for terms and programs

u(λx.t) := ∅ u(x) := {x} u(tu) :=

{
u(u) t ∈ Var
u(t) ∪ u(u) t /∈ Var

u(t, ϵ) := u(t)

u(t, e[x←u]) :=

{
u(t, e) x /∈ u(t, e) ∧ (x /∈ nv(t, e) ∨ u = y ∈ Var)
(u(t, e)\{x}) ∪ u(u) x ∈ u(t, e) ∨ (x ∈ nv(t, e) ∧ u /∈ Var)

Applied vars of term contexts Unapplied vars of term contexts
a(⟨·⟩) := ∅
a(Ht) := a(H)
a(iH) := a(i) ∪ a(H)

u(⟨·⟩) := ∅
u(Ht) := u(H)
u(iH) := u(i) ∪ u(H)

Figure 3 Applied and unapplied variables for terms, programs, and term contexts.

Applied and Unapplied Variables. We now define, for terms, programs, and term contexts,
the sets of applied and unapplied variables a(·) and u(·), that are subsets of needed variables
nv(·). We shall prove that nv(t) = a(t) ∪ u(t) (i.e., the two sets cover nv(t) exactly). As
already pointed out, applied and unapplied variables, however, are not a partition of needed
variables, that is, in general a(t)∩ u(t) ̸= ∅ as a variable can have both applied and unapplied
(needed) occurrences, as x in xx. The same holds also for programs and term contexts.

The set of applied variables of terms, programs, and term contexts are defined in Fig. 3 –
explanations follow. Having in mind that we want to define a(p) in such a way that it satisfies
a(p) ⊆ nv(p), note that condition x ∈ nv(t, e) ∧ x ∈ a(t, e) ∧ u = y ∈ Var in the definition of
a(t, e[x←u]) would more simply be x ∈ a(t, e) ∧ u = y ∈ Var. However, we have not proved
yet that a(p) ⊆ nv(p), which is why the definition is given in this more general form.

We give some examples. As expected, y is an applied variable of y z and z (y z). It is also
applied in p := (z x, [x←y z]), even if x is not applied in (z x, ϵ). Thus, Useful Open CbNeed
evaluation shall be defined as to include exponential steps such as (z x, [x←y z][z←v])→oe
(z x, [x←v z][y←v]), which are useful. Note that y is not applied in (x, [z←yx]), because
applied variables have to be needed variables, and y is not needed. Another example: if
p := (xt, [x←y]), then y ∈ a(p) (and also z ∈ a((xt, [x←y][y←z]))). Useful Open CbNeed,
then, shall retain the following two exponential steps of the open case, since the sequence is
supposed to continue with a →m step, contracting the redex given by vt:

(xt, [x←y][y←v])→oe (xt, [x←v][y←v])→oe (vt, [x←v][y←v])

The set of unapplied variables of terms, programs, and term contexts are defined in Fig. 3.
Once again, in the second clause defining u(t, e[x←u]) the side condition x ∈ nv(t, e) can be
replaced by x ∈ a(t, e), after Lemma 5 below is proved.
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(H, ϵ) ∈ Eu(H),a(H)
MAX

P ∈ EU,A x ∈ (U ∪ A)
P @[x←y] ∈ Eupd(U,x,y),upd(A,x,y)

MVAR

P ∈ EU,A x /∈ (U ∪ A)
P @[x←t] ∈ EU,A

MGC
P ∈ EU,A x ∈ (U ∪ A)

P @[x←i+] ∈ E(U\{x})∪u(i+),(A\{x})∪a(i+)
MI

P ∈ EU,A x ∈ (U \ A)
P @[x←v] ∈ EU\{x},A

MU
P ∈ EU,A x /∈ (U ∪ A)

P ⟨x⟩@[x←H] ∈ EU∪u(H),A∪a(H)
MHER

Figure 4 Derivation rules for multiplicative evaluation contexts.

We give some examples. A consequence of the definition is that, as for applied variables,
y is not unapplied in (xx, [z←xy]) because it is not needed. As it is probably expected,
y is unapplied in (zx, [z←xy]), even if xy is meant to replace z which is applied in zx.
Perhaps counter-intuitively, instead, our definitions imply both y ∈ a(p) and y ∈ u(p) for
p := (xx, [x←y]), that is, the unique occurrence of y is both applied and unapplied in p2.

▶ Lemma 5 (Unapplied and applied cover needed variables).

1. Terms: nv(t) = u(t) ∪ a(t) for every term t.
2. Programs: nv(p) = u(p) ∪ a(p) for every program p.
3. Term contexts: nv(H) = u(H) ∪ a(H), for every term context H.

Finally, the derived concept of useless variable shall also be used.

▶ Definition 6 (Useless variables). Given a term t, we define the set of useless variables as
ul (t) := u(t)\a(t). The set of useless variables of a program p is defined analogously.

Useless variables are crucial in differentiating Useful Open CbNeed from Open CbNeed.
We shall prove that if p is a useful open normal form and x ∈ ul (p), then p@[x←v] is also a
useful open normal form (while it is not a open normal form). The notion of useless variables
is intuitively simple but technically complex. Some examples. First, note that ul (x x, ϵ) = ∅.
The example can be extended to a hereditary setting, noting that ul (y, [y←x x]) = ∅.
However, the reasoning takes into account only needed occurrences, that is, note that
x ∈ ul (z x, [y←x x]) , as the occurrence of x that is applied to an argument is not needed.

Evaluation Contexts. The definition of evaluation contexts is particularly subtle in the
useful case. First of all, their set EU,A is indexed by two sets of variables (rather than one as
in the open case), the applied A and the unapplied U variables of the context, defined by
mutual induction with the contexts themselves. The second key point is that there are two
different kinds of evaluation contexts, a permissive one for multiplicative redexes, whose set
is noted EU,A, and a restrictive one for exponential redexes, noted E@

U,A and implementing
the fact that the variable occurrence to be replaced has to be in an applied position. The
asymmetry is unavoidable, because useful sharing concerns only exponential steps.

2 This fact is in accordance with the companion intersection type study in Leberle’s PhD thesis [46]
mentioned in the introduction: in spite of y having only one syntactic occurrence in p, it is needed
twice, and so intersection types derivations of p do type y twice.
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(H@, ϵ) ∈ E@
u(H@),a(H@)

EAX1

P ∈ EU,A x /∈ (U ∪ A)
P ⟨x⟩@[x←H@] ∈ E@

(U\{x})∪u(H@),A∪a(H@)

EAX2

P ∈ E@
U,A x ∈ (U ∪ A)

P @[x←y] ∈ E@
upd(U,x,y),upd(A,x,y)

EVAR
P ∈ E@

U,A x ∈ (U ∪ A)
P @[x←i+] ∈ E@

(U\{x})∪u(i+),(A\{x})∪a(i+)
EI

P ∈ E@
U,A x /∈ (U ∪ A)

P @[x←t] ∈ E@
U,A

EGC
P ∈ E@

U,A x ∈ (U \ A)
P @[x←v] ∈ E@

U\{x},A
EU

P ∈ E@
U,A x /∈ A

P ⟨x⟩@[x←⟨·⟩] ∈ E@
U\{x},A

ENA

Figure 5 Derivation rules for exponential evaluation contexts.

Multiplicative Contexts. They are a refinement of the open contexts defined in Fig. 4.
Their set is noted EU,A. The refinement is needed even if useful sharing concerns only
exponential steps: a multiplicative context such as ((yx)⟨·⟩, [x←v]) ∈ E∅,{y} indeed is not an
open context, because it contains a useless substitution step that in Open CbNeed would be
fired before evaluating the hole. The definition of multiplicative contexts follows the one for
Open CbNeed contexts (MAX, MGC, and MHER are essentially as before) except for rule:

P ∈ EV x ∈ V
P@[x←i] ∈ E(V\{x})∪nv(i)

OI

which is now generalized into 3 rules, depending on the kind of term contained in the ES.
That is, given P ∈ EU,A and x ∈ (U ∪A), the constraints to extend P with an ES [x←t] are:

Rule MI: there are no constraints if t is a non-variable inert term i+. Note that MI and MGC
together imply that we can always append ESs containing inert terms to multiplicative
contexts, without altering the Useful Open CbNeed order of reduction.
Rule MVAR: this rule covers the case where t is a variable y. It is used to handle the global
applicative constraint, as in such a case, if the evaluation context is P@[x←y], then y

has to be added to the applied and/or unapplied variables of the context, according to
the role played by x in P , which is realized via the function upd defined as follows:

upd(S, x, y) :=
{

S x /∈ S

(S \ {x}) ∪ {y} x ∈ S

Rule MU: it covers the case where t is a value v, requiring that x is not applied, that is,
/∈ A. Such an extension would have re-activated x in the plain open case, and created a
(useless) exponential redex, but here it shall not be the case. Note that it means that
P @[x←t] is a multiplicative context only if x ∈ (U \A), i.e. if x is a useless variable of P .

Exponential Contexts. Exponential contexts are even more involved, because they have
to select only applicative variable occurrences and the applicative constraint is of a global
nature. First, we need a notion of applicative term context, where the hole is applied.

▶ Definition 7 (Applicative term contexts). A term context H shall be called an applicative
term context if it is derived using the grammar H@, J@, I@ ::= ⟨·⟩t | H@t | iH@.

▶ Definition 8 (Exponential evaluation contexts). We shall say that an evaluation context P

is a exponential evaluation context if it is derived with the rules in Fig. 5.

Applicative term contexts serve as the base case of exponential evaluation contexts, now
given by two refinements of the multiplicative case:
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1. the base case EAX1 is akin to the base case MAX for multiplicative contexts, except that it
requires the term context to be applicative.

2. the plugging-based rule MHER splits in two. A first rule EAX2 which simply plugs an
applicative context H@ into a multiplicative evaluation context – note that this rule gives
another base case for exponential evaluation contexts. A second rule ENA that handles
the special case of the global applicative constraint.

Let us see the differences between rules ENA and EAX2 with two examples. Their side
conditions (x /∈ (U ∪ A) and x /∈ A) are explained at page 17 of the technical report [18].

ENA: consider the program p := (x t, [x←z]), where z is in applied position due to the
global applicative constraint, as it substitutes x which is applied to t. We may derive an
exponential evaluation context P that isolates z, that is, such that P ⟨z⟩ = p, as follows:

(⟨·⟩ t, ϵ) ∈ E@
∅,∅

EAX1
x /∈ ∅

P := ((⟨·⟩ t, ϵ)⟨x⟩) @[x←⟨·⟩] ∈ E@
∅,∅

ENA

noting that P = ((⟨·⟩ t, ϵ)⟨x⟩) @[x←⟨·⟩] = (x t, [x←⟨·⟩]), and so p = P ⟨z⟩ as expected. In
this case, we are extending an exponential context, which is already applied.
EAX2 : consider p := (x, [x←z t]), for which z is an applied variable because it is itself
applied, while its ES binds the needed but unapplied variable x. Let us derive an
exponential evaluation context P focusing on z in such a way that P ⟨z⟩ = p as follows:

(⟨·⟩, ϵ) ∈ E∅,∅
OAX

x /∈ (∅ ∪ ∅)
P := ((⟨·⟩, ϵ)) ⟨x⟩@[x←⟨·⟩ t] ∈ E@

∅,∅
EAX2

noting that P = ((⟨·⟩, ϵ)) ⟨x⟩@[x←⟨·⟩ t] = (x, [x←⟨·⟩ t]), and so p = P ⟨z⟩ as expected.
Here the context (⟨·⟩, ϵ) in the hypothesis is multiplicative and it becomes exponential
once extended with an ES containing an applicative term context.

The next proposition guarantees that exponential contexts are a restriction of multiplic-
ative contexts, that is, that the introduced variations over the deduction rules do not add
contexts that were not already available before.

▶ Proposition 9 (Exponential contexts are multiplicative). Let P ∈ E@
U,A. Then P ∈ EV,B, for

some V ⊆ U and B ⊆ A.

Let us repeat that, instead, multiplicative contexts are not in general exponential contexts,
because they are not required to be applicative, for instance P := (x⟨·⟩, [x←yy]) ∈ E{y},{y}
is a multiplicative context but not an exponential one.

Evaluation Rules. The reduction rules for the Useful Open CbNeed strategy are:

Useful Open CbNeed evaluation rules
Useful multiplicative P ⟨(λx.t)u⟩ →um P ⟨t, [x←u]⟩ if P ∈ EU,A

Useful exponential P ⟨x⟩ →ue P ⟨v⟩ if P ∈ E@
U,A and P (x) = v

Moreover, we shall say that p reduces in the Useful Open CbNeed strategy to q, and write
p→und q, if p→um q or p→ue q.
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Determinism. The first property of useful evaluation that we consider is determinism, that
is proved similarly for the open case, but for some further technicalities due to the existence
of two sets of variables parametrizing evaluation contexts.

▶ Proposition 10 (Determinism of Useful Open CbNeed). →und is deterministic.

Usefulness. We prove two properties ensuring that the defined reduction captures useful
sharing. The first one is a correctness property, stating that useful exponential steps are
eventually followed by a multiplicative step – no useless exponential steps are possible.

▶ Proposition 11 (Usefulness of exponential steps). Let p = P ⟨x⟩ →ue P ⟨v⟩ = q with P ∈ E@
U,A

and P (x) = v. Then there exists a program r and a reduction sequence d : q →k
ue→um r s.t.:

1. the evaluation context of each →ue steps in d is in E@
U,A, and the one of →um is in EU,A.

2. k ≥ 0 is the number of ENA rules in the derivation of P ∈ E@
U,A.

Completeness amounts to proving that useful normal forms, when unshared, give a
Open CbNeed normal term. The point is that useful substitutions, if erroneously designed,
might stop too soon, on programs that still contain – up to unsharing – some redexes.
Completeness is developed in the following paragraph about useful normal forms.

Useful Normal Forms. We are now going to develop an inductive description of useful
normal forms, that is, programs that are →und-normal. The key property guiding the
characterization of a useful normal program p is that if the sharing in p is unfolded (by
turning ES into meta-level substitutions and obtaining a term) it produces a normal term of
the open system, where the unfolding operation is defined as follows:

Unfolding of programs (t, ϵ) → := t (t, e[x←u]) → := (t, e) → {x←u}

The characterization rests on 3 predicates, defined in Fig. 6, for programs unfolding to
variables (genVarx(p)), values (uabs(p)), and non-variable inert terms (uinert(p)). Programs
satisfying genVarx(p) are called generalized variable of (hereditary) head variable x – we
also write genVar#(p) to state that there exists x ∈ Var such that genVarx(p). Programs
satisfying uabs(p) (resp. uinert(p)), instead, are useful abstractions (resp. useful inerts). The
predicate unorm(p) holds for programs satisfying either of the three described predicates,
which we shall show being exactly programs that are normal in Useful Open CbNeed.

Generalized variables play a special role, because they can be extended to unfold to values
or non-variable inert terms, by appending an appropriate ES to their environment with rule
AGV or IGV. For instance, a useful normal program such as (x, [x←y]) unfolds to a variable
but its useful normal extension (x, [x←y][y←I]) unfolds to the value I, while (x, [x←y][y←zz])
unfolds to the non-variable inert term zz.

▶ Proposition 12 (Disjointness and unfolding of useful predicates). For every program p, at
most one of the following holds: genVar#(p), uabs(p), or uinert(p). Moreover,
1. If genVarx(p) then p

→ = x.
2. If uabs(p) then p

→ is a value.
3. If uinert(p) then p

→ is a non-variable inert term.

While the concepts in the characterization of useful normal programs are relatively simple
and natural, the proof of the next proposition is long and tedious, because of the complex
shape of useful evaluation contexts and of their parametrization, see the technical report [18].

▶ Proposition 13 (Syntactic characterization of Useful Open CbNeed-normal forms). Let p be
a program. Then p is in →und-normal form if and only if unorm(p).
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genVarx(x, ϵ) GVAX
genVarx(p)

genVary(p@[x←y]) GVHER
genVarx(p) z ̸= x

genVarx(p@[z←t]) GVGC

uabs(v, ϵ) ALift
genVarx(p)

uabs(p@[x←v]) AGV
uabs(p)

uabs(p@[x←t]) AGC

uinert(i+, ϵ)
ILift

genVarx(p)
uinert(p@[x←i+])

IGV
uinert(p) x ∈ nv(p)

uinert(p@[x←i]) II

uinert(p) x ∈ u(p) x /∈ a(p)
uinert(p@[x←v]) IU

uinert(p) x /∈ nv(p)
uinert(p@[x←t]) IGC

uinert(p) ∨ uabs(p) ∨ genVar#(p)
unorm(p)

unorm P

Figure 6 Predicates characterizing Useful Open CbNeed normal forms.

The characterization of useful normal forms together with the fact that they unfold to
Open CbNeed normal terms (Lemma 12) express the completeness of useful sharing: our
useful evaluation does compute – up to unfolding – representations of normal terms.

Complexity. A precise complexity analysis requires an abstract machine implementing the
search for redexes specified by evaluation contexts. The machine – which we have developed
– is left to a forthcoming paper, for lack of space. Crucially, it avoids tracing sets of applied
and unapplied variables by simply using a boolean that indicates – when evaluation moves
into the environment – whether the current evaluation position is hereditarily applied.

We provide a sketch of the complexity analysis. The k in point 2 of Proposition 11 allows
us to bound any sequence of consecutive →ue steps with the length of the environment,
which – via the same reasoning used for the CbN case by Accattoli and Dal Lago [13] –
gives a quadratic bound to the whole number of →ue steps in terms of →um steps. A finer
amortized analysis, following Accattoli and Sacerdoti Coen [10], gives a linear bound. The
cost of duplications in exponential steps →ue is bound by the size of the initial program,
because the calculus evidently has the subterm property (i.e. only subterms of the initial
programs are duplicated): it duplicates values but it does not substitute nor evaluate into
them, therefore the initial ones are preserved. Then, the cost of implementing a reduction
sequence d : p →k

und q, omitting the cost of searching for redexes (itself usually realized
linearly in the size |p| of p by abstract machines [6, 9]), is linear in |p| and in the number
|d|m of multiplicative/β steps in d.

Therefore, the number of multiplicative/β steps in our Useful Open CbNeed calculus is a
reasonable time cost model, even realizable within an efficient, bilinear overhead.
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Abstract
We generalize to a rich dependent type theory a proof originally developed by Escardó that all
System T functionals are continuous. It relies on the definition of a syntactic model of Baclofen Type
Theory, a type theory where dependent elimination must be strict, into the Calculus of Inductive
Constructions. The model is given by three translations: the axiom translation, that adds an oracle
to the context; the branching translation, based on the dialogue monad, turning every type into a
tree; and finally, a layer of algebraic binary parametricity, binding together the two translations. In
the resulting type theory, every function f : (N → N) → N is externally continuous.
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Introduction

A folklore result from computatibility theory is that any computable function must be
continuous [4]. A more operational way to phrase this property is that a function can only
inspect a finite amount of its argument to produce a finite amount of output. There are
many ways to prove, or even merely state, this theorem, since it depends in particular on
how computable functions are represented [18, 37, 21]. Assuming we pick the λ-calculus
as our favourite computational system, a modern straightforward proof would boil down
to building a semantic model, typically some flavour of complete partial orders (cpos). By
construction, cpos are a specific kind of topological spaces, and all functions are interpreted
as continuous functions in the model. For some types simple enough, cpo-continuity implies
continuity in the traditional sense, thus proving the claim.

Instead of going down the semantic route, Escardó developed an alternative syntactic
technique called effectful forcing [11] to prove the continuity of all functionals (N → N) → N
definable in System T. While semantic models such as cpos are defined inside a non-
computational metatheory, Escardó’s technique amounts to building a model of System T
inside the dependent type theory MLTT, which is intrinsically a programming language with
a built-in notion of computation. The effectful epithet is justified by the fact that the model
construction extends System T with two different kinds of side-effects, and constrains those
two extensions by a logical relation.

A clear advantage of this approach is that there is a simple computational explanation for
why continuity holds in terms of elementary side-effects, which is not immediately apparent
in cpos. This computational aspect is reminiscent of a similar realizability model of NuPRL
internalizing continuity with a system of fresh exceptions [30]. But contrarily to the latter,
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the purely syntactic nature of Escardó’s argument can actually be leveraged to interpret
much richer languages than System T while preserving desirable properties that would be
lost with a semantic realizability model, such as decidability of type-checking.

Indeed, it happens that this technique can be formulated pretty much straightforwardly
as a syntactic model [13, 33]. From this initial observation, we show in this paper how it can
be generalized to a rich dependent type theory similar to MLTT, notably featuring universes
and a form of large dependent elimination. Unfortunately, since Escardó’s model introduces
observable side-effects in the sense of [25], the type theory resulting from our generalization
needs to be slightly weakened down or would otherwise be inconsistent. This effectively
means we provide a model of Baclofen Type Theory (BTT) rather than MLTT. The main
difference between those two theories lies in the typing rule for dependent elimination [28]. In
MLTT, the predicate of a dependent elimination is arbitrary, while it must be computationally
strict in BTT. This is discussed in detail in Section 1.2.

In the end we recover the continuity result of Escardó applied to BTT rather than
System T. That is, from any ⊢BTT f : (N → N) → N we get a proof that it is continuous.

Plan of the paper

Section 1 exposes preliminaries that are needed to understand this paper. In Section 2, we
describe a particular structure known as dialogue trees that will be critical for the rest of the
paper. Section 3 is dedicated to the model contruction per se. Section 4 provides the proof
that all functions (N → N) → N of this model are indeed continuous. Section 5 frames our
result in a larger context and discusses potential extensions.

1 Preliminaries

1.1 Syntactic Conventions
In this paper, we will work with various flavours of type theory. Our base system will always
be CCω, a predicative version of the Calculus of Constructions featuring an infinite hierarchy
of universes □i and dependent functions, which is summarized in Figure 1. We add inductive
types to this negative fragment, leading to the Calculus of Inductive Constructions (CIC) or
Baclofen Type Theory (BTT) depending on the formulation of dependent elimination. We
will summarize the defining features of BTT in the next section. Since we will manipulate
several type theories, we will write T := CIC as a notational device to make explicit that we
are referring to the ambient type theory.

For brevity, we will define inductive types in a Coq-like syntax, but we will use a pattern-
matching syntax à la Agda for definitions by induction. As an example, we give below the
definition of natural numbers and the resulting formal typing and conversion rules.

Inductive N := O : N | S : N → N

Γ ⊢
Γ ⊢ N : □i

Γ ⊢
Γ ⊢ O : N

Γ ⊢
Γ ⊢ S : N → N

Γ ⊢ P : N → □i Γ ⊢ tO : P O Γ ⊢ tS : Πn : N. P n → P (S n)
Γ ⊢ Nind P tO tS : Πn : N. P n

Nind P tO tS O ≡ tO Nind P tO tS (S n) ≡ tS n (Nind P tO tS n)
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A, B, M, N ::= □i | x | M N | λx : A. M | Πx : A. M | Σx : A. B | M.π1 | M.π2 | (M, N)

Γ, ∆ ::= · | Γ, x : A

⊢ ·

Γ ⊢ A : □i

⊢ Γ, x : A

⊢ Γ (x : A) ∈ Γ

Γ ⊢ x : A

⊢ Γ i < j

Γ ⊢ □i : □j

Γ ⊢ A : □i Γ ⊢ M : B

Γ, x : A ⊢ M : B

Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Πx : A. B : □max(i,j)

Γ ⊢ M : Πx : A. B Γ ⊢ N : A

Γ ⊢ M N : B{x := N}

Γ, x : A ⊢ M : B Γ ⊢ Πx : A. B : □i

Γ ⊢ λx : A. M : Πx : A. B

Γ ⊢ M : A Γ ⊢ B : □i Γ ⊢ A ≡ B

Γ ⊢ M : B

Γ ⊢ A : □i Γ, x : A ⊢ B : □j

Γ ⊢ Σx : A. B : □max(i,j)

Γ ⊢ M : Σx : A. B

Γ ⊢ M.π1 : A

Γ ⊢ M : Σx : A. B

Γ ⊢ M.π2 : B{x := M.π1}

Γ ⊢ M : A Γ ⊢ N : B{x := M} Σx : A. B : □i

Γ ⊢ (M, N) : Σx : A. B (conversion omitted)

Figure 1 Syntax of CCω extended with Σ-types.

We will mostly ignore universe constraints and silently rely on typical ambiguity for the
sake of readability. Definitions indexed by universe variables i, j are meant to be universe-
polymorphic in those variables [34]. All the translations we will give can be annotated with
universe variables to handle an arbitrary hierarchy of universes, but we will refrain from
doing so. We sometimes use implicit function arguments, which we bind with braces in
definitions.

Writing explicit terms in type theory can quickly become cumbersome for proofs, hence
we will omit them when the computational content is not important and write instead an
underscore as in ⊢ _ : A.

1.2 Dependence in an Effectful Setting

In this paper, we will build type theories that feature computational effects. Regrettably,
adding effects to dependent type theory is not without consequences. They make indeed
observable the difference between call-by-value and call-by-name [20], a phenomenon that
puts us in front of a dilemma [25]. If we stick to by-name, we preserve the behaviour of the
negative fragment, i.e. Π-types, but we break dependent elimination. If we stick to by-value,
we now preserve dependent elimination, but functions become quite different to what one is
used to, as substitution is now restricted to syntactic values. For historical reasons, there is
a clear bias in type theory towards by-name, and we will follow the same doctrine.

As explained above, an effectful call-by-name type theory does not support full-blown
dependent elimination in general. As dependent elimination is quite a critical feature [23], this
might look concerning. Thankfully, most effectful theories we know of support a restricted
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5:4 Gardening with the Pythia

form of it, which essentially amounts to forcing the predicate used in the eliminator to be
strict in its inductive argument1. The resulting theory is known as Baclofen Type Theory [28],
or BTT for short.

Contrarily to MLTT, which has a single dependent eliminator Iind for any given inductive
type I, BTT has two eliminators: a non-dependent one Icse, and a strict dependent one
Irec. These three eliminators enjoy the same computational ι-rules, i.e. they reduce on
constructors. The difference lies in their typing rules. The predicate of Icse does not depend
on its inductive argument, i.e. it is basically simply-typed. Meanwhile, the predicate of Irec
is wrapped in a storage operator [19] Istr that locally evaluates its argument in a by-value
fashion. This guarantees that it will only ever be applied to values, and never to effectful, or
non-standard, inductive terms. The important observation is that Istr can be defined in a
systematic way out of Icse, namely it is simply an η-expansion in CPS style. To make things
self-contained, we recall below the BTT eliminators for N.

Γ ⊢ P : □ Γ ⊢ tO : P Γ ⊢ tS : N → P → P

Γ ⊢ Ncse P tO tS : N → P

Γ ⊢ P : N → □ Γ ⊢ tO : Nstr O P Γ ⊢ tS : Π(n : N).Nstr n P → Nstr (S n) P

Γ ⊢ Nrec P tO tS : Π(n : N).Nstr n P

where Nstr (n : N) (P : N → □) : □ :=
Ncse ((N → □) → □) (λ(Q : N → □). Q O)

(λ(m : N) (_ : (N → □) → □) (Q : N → □). Q (S m)) n P .

From within CIC, one can prove that Π(n : N) (P : N → □).Nstr n P = P n. Hence, this
strictification is akin to double-negation translation, in so far as BTT is finer-grained than
CIC, just as LJ is finer-grained than LK where ¬¬A ↔ A. Note that in particular BTT is a
subset of CIC, a fact on which we will rely on silently in this paper.

1.3 Continuity
In the remainder of this article, we suppose given two types ⊢T I : □0 and ⊢T O : I → □0.
For simplicity, we set them in the lowest universe level, but all of the constructions to come
can handle an arbitrary base level by bumping them by an appropriate amount.

The type I is to be understood as a type of input or questions to a black-box, called an
oracle. Dually, O is the type of output or answers from the oracle. Since O depends on I,
we can encode a pretty much arbitrary interaction. Finally, we define the type of oracles
as Q := Π(i : I). O i. A reader more inclined towards computer science could also consider
that O and I describe an interface for system calls, and Q is the type of operating systems
implementing these calls.

Let us formally define the notion of continuity over Q.

▶ Definition 1. Given α1, α2 : Q and ℓ : list I, we say that α1 and α2 are finitely equal on ℓ,
written α1 ≈ℓ α2 when the following inductively defined predicate holds.

α1 ≈nil α2

α1 i = α2 i α1 ≈l α2

α1 ≈(cons i ℓ) α2

1 As in programming language theory, not as in higher category theory.
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▶ Definition 2. We say that a function is continuous when it satisfies the continuity predicate

C : Π{A : □}. (Q → A) → □

C f := Π(α : Q). Σ(ℓ : list I). Π(β : Q). α ≈ℓ β → f α = f β.

This definition captures in a generic way the intuitive notion that a computable functional
only needs a finite amount of information from its argument to produce an output. Note that
in particular the list of points ℓ where the function is evaluated depends on the argument
α, so this notion of continuity is weaker than uniform continuity, where the two quantifiers
for ℓ and α are swapped. Depending on the expressivity of T, one can also consider weaker
variants where the existential is squashed with various proof-irrelevant modalities [12, 30, 31].

2 Dialogue Trees and Intensionality

2.1 Talking with Trees
It is now time to justify the title of this article by giving some explanations on the links
between trees, oracles and functions. We consider an operator D : □ → □, which given a
type A : □, associates the type of well-founded trees, with leaves labelled in A. Each inner
node is labelled with a certain i : I and has O i children. In T, this amounts to the following
inductive definition:

Inductive D (A : □) : □ := η : A → D A | β : Π(i : I). (O i → D A) → D A.

This type of dialogue trees is known under several other names and has a lot of close
relatives [36, 26, 22, 16, 39]. They can be easily interpreted as functionals of type Q → A.
Intuitively, every inner node is an inert call to an oracle α : Q, and the answer is the label of
the leaf. This interpretation is implemented by a recursively defined dialogue function.

∂ : Π{A : □} (α : Q) (d : D A). A

∂ α (η x) := x

∂ α (β i k) := ∂ α (k (α i)).

▶ Definition 3 (Eloquent functions). A function f : Q → A is said to be eloquent if there is
a dialogue tree d : D A and a proof that Πα : Q. f α = ∂ α d.

Representing functions as trees is a well-known way to extract intensional content from
them [17, 14]. Moreover, elements of D A being well-founded, we get the following.

▶ Theorem 4 (Continuity). Eloquent functions are continuous.

Proof. The proof of the theorem is straightforward by induction on the dialogue tree d. ◀

This theorem is the fundamental insight of the proof. The rest of the paper is devoted to the
construction of a model where every function is eloquent and therefore continuous.

2.2 Liberating the Dialogue Monad
In an extensional enough setting, the D type former turns out to be a monad. The η natural
transformation is already part of the definition, and we can recursively define a bind function:

bind : Π{A B : □} (f : A → D B) (d : D A).D B

bind f (η x) := f x

bind f (β i k) := β i (λ(o : O i). bind f (k o))
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▶ Lemma 5. Assuming function extensionality, (D, η, bind) is a monad.

Since we want to build a model of dependent type theory, we need to preserve a call-by-
name equational theory, i.e. generated by the unrestricted β-rule. Following [28], this means
that we need to interpret types as some kind of D-algebras. Unfortunately, the standard
categorical definition of monads and their algebras is not usable in our context because it
fundamentally relies on funext, which is not available in CIC. Thankfully, even by categorical
standards, D is a very particular monad.

▶ Definition 6. A free monad in CIC is a parameterized inductive type M : □ → □ with a
dedicated constructor η : Π(A : □). A → M A and a finite set of constructors

ci : Π(A : □). Φi (M A) → M A

where Φi : □ → □ is a type former syntactically strictly positive in its argument.

Note that the formal definition of free monad from category theory requires a forgetful
functor to specify against what the monad would be free. The closest thing to our definition
would be a free monad relatively to pointed functors, but even there our definition is stricter.
A free monad can be thought of as a way to extend a type with unspecified, inert side-effects,
a trivial form of algebraic effects [27, 1]. Since we have neither QITs [2] nor HITs [38] in CIC,
we cannot enforce equations on these effects but we can still go a long way.

Free monads in CIC enjoy a lot of interesting properties. As the name implies, they
are indeed monads. Again, the η function is given by definition, and bind can be defined
functorially by induction similarly to the D case. Furthermore, the algebras of a free monad
can be described in an intensionally-friendly way.

▶ Definition 7. Given M as above, the type of intensional M-algebras is the record type

□□M := {A : □; . . . ; pi : Φi A → A; . . .}.

where the Φi are the same as in Definition 6.

▶ Theorem 8. Assuming funext, □□M is isomorphic to the usual definition of M-algebras.

Said otherwise, the pi functions are equivalent to the usual morphism hA : M A → A

preserving the monadic structure, except that this presentation does not require any equation.
This results in the main advantage of intensional algebras, namely that they are closed
under product type in a purely intensional setting. That is, if A : □ and B : A → □□M then
Πx : A. (B x).π1 can be equipped with an intensional algebra structure defined pointwise.
This solves a similar issue encountered in [35].

It is clear that D is a free monad, so we can define similarly intensional D-algebras.

▶ Definition 9 (Pythias). A pythia for A : □ is a term pA : Π(i : I). (O i → A) → A.

Per the above theorem, pythias for A are extensionally in one-to-one correspondence with
D-algebra structures over A, but are much better behaved intensionally. This will be the
crux of the branching translation from Section 3.3.
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3 The Syntactic Model

3.1 Overview
We prove that all BTT functions are continuous using a generalization of Escardó’s model.
While the latter only provides a model of System T, a simply-typed language, our model
accomodates not only dependent types, but also universes and inductive types equipped with
a strict form of dependent elimination. It is given as a program translation, and thus belongs
to the class of syntactic models [13, 7]. The final model is built in three stages, namely
1. An axiom model (Section 3.2),
2. A branching model (Section 3.3),
3. An algebraic parametricity model (Section 3.4).

The first two models are standalone, and the third one glues them together. Each
model can be explained computationally. The axiom model adds an blackbox oracle as a
global variable. Asking the oracle is just function application, so there is no internal way
to observe calls to the oracle. The branching model does the exact converse, as it provides
an oracle in a purely inert way. Every single call to the branching oracle is tracked as a
node of a dialogue tree, a representation that is reminiscent of game semantics. Finally,
the algebraic parametricity model internalizes the fact that these two interpretations are
computing essentially the same thing, behaving like a proof-relevant logical relation.

3.2 Axiom Translation
Let us fix a reserved variable α : Q. The axiom translation simply consists in adding α as
the first variable of the context. Everywhere else, this translation is transparent. Reserving
a variable has no technical consequence, if we were to use De Bruijn indices it just amounts
to shifting them all by one. We will also annotate both free and bound variables with an a

subscript for readability of the future parts of the paper, where we mix together different
translations. We formally give the translation of the negative fragment in Figure 2.

[x]a := xa

[λx : A. M ]a := λxa : JAKa. [M ]a
[M N ]a := [M ]a [N ]a
[Πx : A. B]a := Πxa : JAKa. JBKa

[□i]a := □i

JAKa := [A]a
J·Ka := α : Q
JΓ, x : AKa := JΓKa, xa : JAKa

Figure 2 Axiom Translation (negative fragment).

▶ Theorem 10. The axiom translation is a trivial syntactic model of CIC and hence of BTT.

3.3 Branching Translation
Using the results from Section 2.2, we can use a simplified form of the weaning construction [28]
to define the branching translation. It all boils down to interpreting types as intensional
D-algebras, whose type will be defined as

□□b := Σ(A : □). Π(i : I). (O i → A) → A.

Figure 3 defines the negative branching translation, which translates a type A as [A]b : □□b,
i.e. a pair (JAKb, βA) where JAKb : □ and βA is a pythia for JAKb. For readability, we give
the translation of types as these two components through a slight abuse of notation.
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5:8 Gardening with the Pythia

[x]b := xb

[λx : A. M ]b := λxb : JAKb. [M ]b
[M N ]b := [M ]b [N ]b

JAKb := [A]b.π1

J·Kb := ·
JΓ, x : AKb := JΓKb, xb : JAKb

J□Kb := □□b

β□ := λ(i : I) (k : O i → □□b).℧b

JΠx : A. BKb := Πxb : JAKb. JBKb

βΠx:A. B := λ(i : I) (k : O i → Πx : JAKb. JBKb) (x : JAKb). βB i (λo : O i. k o x)

Figure 3 Branching Translation (negative fragment).

The main difficulty is to endow □□b with a D-algebra structure. Since there is no constraint
on this structure, we simply assume as a parameter of the translation a dummy D-algebra
℧b : □□b. We will similarly need an inhabitant ωb : ℧b.π1 to define dependent elimination.
There are many possible choices for ℧b, the simplest one being the unit type which is trivially
inhabited and algebraic. As a simple instance of weaning, we get the following.

▶ Proposition 11 (CCω Soundness). We have the following.
If M ≡CCω

N then [M ]b ≡T [N ]b.
If Γ ⊢CCω M : A then JΓKb ⊢T [M ]b : JAKb.

The interpretation of inductive types is fairly straightforward. Given an inductive type
I, we create an inductive type Ib whose constructors are the pointwise translation of the
constructors of I, together with an additional βI constructor turning it into a free D-algebra.
We give as an example below the translation of N, which will be the running example for the
remainder of this paper. Parameters and indices present no additional difficulty and we refer
to [28] for more details.

Inductive Nb : □ := Ob : Nb | Sb : Nb → Nb | βN : Π(i : I). (O i → Nb) → Nb.

An astute reader would have remarked that JNKb is not defined in the same way as in
Escardó’s proof. This particular fact and its consequences are further discussed in Section 5.1.

▶ Theorem 12. For any inductive type I, its branching translation Ib is well-typed and
satisfies the strict positivity criterion.

We must now implement the eliminators. We first define the non-dependent ones.

[Ncse]b : ΠP : □□b. JP Kb → (Nb → JP Kb → JP Kb) → Nb → JP Kb

[Ncse]b P pO pS Ob := pO

[Ncse]b P pO pS (Sb n) := pS n ([Ncse]b P pO pS n)
[Ncse]b P pO pS (βN i k) := βP i (λ(o : O i). [Ncse]b P pO pS (k o))

As P : J□Kb, it has a pythia βP : Π(i : I). (O i → JP Kb) → JP Kb. Every time we encounter
a branching occurence of βN, we can thus use βP and propagate the call recursively in the
branches. This is the usual by-name semantics of recursors.

However, problems arise with dependent elimination. Given P : Nb → □□b and subproofs
for Ob and Sb, there is no clear way to produce a term of type (P (βN i k)).π1. There is
actually a good reason for that: if it were possible, this would make T inconsistent [25].
Following [28], we therefore restrict ourselves to a strict dependent elimination, relying on
the storage operator Nstr from Section 1.2. Since it is given in direct style, its translation is
systematic.
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▶ Lemma 13. We have the following conversions.
1. [Nstr]b Ob P ≡ P Ob

2. [Nstr]b (Sb n) P ≡ P (Sb n)
3. [Nstr]b (βN i k) P ≡ ℧b

Note that the two first equations above are a consequence of the conversion rules of Ncse
and thus hold in any model of BTT. Only the last one is specific to the current model at
hand. Using this, we define the dependent eliminator below. Thanks to the fact that the
predicate is wrapped in a storage operator, it is able to return a dummy term when applied
to an effectful argument.

Nrec : ΠP : N → □. P O →
(Πn : N.Nstr n P → Nstr (S n) P ) → Πn : N.Nstr n P

[Nrec]b P pO pS Ob := pO

[Nrec]b P pO pS (Sb n) := pS n ([Nrec]b P pO pS n)
[Nrec]b P pO pS (βN i k) := ωb

▶ Theorem 14. The branching translation provides a syntactic model of BTT.

3.4 Algebraic Parametricity Translation
Following Escardó, we now have to relate the two translations. We achieve this through a
third layer of algebraic parametricity. There are two major differences compared to Escardó’s
model [11]. The first one is that the logical relation does not live in the metatheory anymore
and is defined as a syntactic model similar to parametricity [5]. This is not unexpected, but
it is needed to interpret dependent types in a satisfactory way. The second difference is that
the parametricity predicate itself must be endowed with an algebraic structure. This was a
much more surprising structure that happens to be required to interpret large dependent
elimination.

Intuitively, every type A : □ is translated as a predicate JAKε : JAKa → JAKb → □. Note
that α : Q is implicitly part of the context as in the axiom model. As explained above, we
also ask for the predicate to be D-algebraic in the sense that it must be equipped with a
proof

βε
A : Π(xa : JAKa) (i : I) (k : O i → JAKb). JAKε xa (k (α i)) → JAKε xa (βA i k).

We will write the type of such algebraic parametricity predicates as

□□ε (Aa : J□Ka) (Ab : J□Kb) := Σ(Aε : JAKa → JAKb → □).
Π(xa : JAKa) (i : I) (k : O i → JAKb) (xε : Aε xa (k (α i))).

Aε xa (βA i k)

Just as we did for the branching translation, given A : □i we define separately the
predicate JAKε and the proof of parametric algebraicity βε

A. We define the translation in
Figure 4. As before we also ask for a dummy algebraic predicate ℧ε : Π(A : □).□□ε A ℧b

which can be taken to be always a trivially inhabited predicate, together with an arbitrary
proof ωε : Π(A : □) (x : A). (℧ε A).π1 x ωb.

▶ Theorem 15 (CCω Soundness). We have the following.
If M ≡CCω N then [M ]ε ≡T [N ]ε.
If Γ ⊢CCω

M : A then JΓKε ⊢T [M ]ε : JAKε [M ]a [M ]b.
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J□Kε := λ(Aa : J□Ka) (Ab : J□Kb).□□ε Aa Ab

βε
□ := λ(Aa : J□Ka) (i : I) (k : O i → J□Kb) (Aε : J□Kε Aa (k (α i))).℧ε Aa

[x]ε := xε

[λx : A. M ]ε := λ(xa : JAKa) (xb : JAKb) (xε : JAKε xa xb). [M ]ε
[M N ]ε := [M ]ε [N ]a [N ]b [N ]ε
JΠx : A. BKε := λ(fa : JΠx : A. BKa) (fb : JΠx : A. BKb).

Π(xa : JAKa) (xb : JAKb) (xε : JAKε xa xb). JBKε (fa xa) (fb xb)
βε

Πx:A. B := λ(fa : JΠx : A. BKa) (i : I) (k : O i → JΠx : A. BKb).
λ(fε : JΠx : A. BKε fa (k (α i))).

λ(xa : JAKa) (xb : JAKb) (xε : JAKε xa xb).
βε

B (fa xa) i (λ(o : O i). k o xb) (fε xa xb xε)
JAKε := [A]ε.π1

J·Kε := α : Q
JΓ, x : AKε := JΓKε, xa : JAKa, xb : JAKb, xε : JAKε xa xb

Figure 4 Algebraic Parametricity Translation (negative fragment).

Inductive Nε (α : Q) : N → Nb → □ :=
| Oε : Nε α O Ob

| Sε : Π(na : N) (nb : Nb) (nε : Nε α na nb).Nε α (S na) (Sb nb)
| βε

N : Π(na : N) (i : I) (k : O i → Nb) (nε : Nε α na (k (α i))).Nε α na (βN i k)

[N]ε := (Nε α, βε
N α) [O]ε := Oε α [S]ε := Sε α

Figure 5 Algebraic Parametricity for N.

The algebraic parametric translation of inductive types sticks closely to the branching
one. Given an inductive type I, we create an inductive type Iε whose constructors are the
pointwise J·Kε translation of those of I. An additional constructor βε

I freely implements the
algebraicity requirement. Since α : Q is implicitly part of the translated context, we have to
take it as a parameter of the translated inductive type and explicitly pass it as an argument
when interpreting those types and their proof of algebraicity. We give the translation on
our running example in Figure 5. Once again, parameters and indices present no particular
problem and are handled similarly to [28].

▶ Theorem 16. For any inductive type I, its algebraic parametricity translation Iε is well
typed and satisfies the positivity criterion.

As for the branching translation, we retrieve a restricted form of dependent elimination
based on storage operators. The argument is virtually the same, but now at the level of
parametricity, which makes the syntactic burden even heavier since we now have everything
repeated three times. To enhance readability, we will use the following shorthand for binders:

⟨x : A⟩ := xa : JAKa, xb : JAKb, xε : JAKε xa xb

and similarly for application to variables. We give the eliminators for our running example
in this lighter syntax, which is already the limit of what can be done on paper.

[Ncse]ε : Π⟨P : □⟩ ⟨pO : P ⟩ ⟨pS : N → P → P ⟩ ⟨n : N⟩.
JP Kε [Ncse P pO pS n]a [Ncse P pO pS n]b
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[Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ Oε := pOε

[Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (Sε ⟨n⟩) := pSε ⟨n⟩ ([Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ ⟨n⟩)
[Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (βε

N na i k nε) := βε
P

([Ncse P pO pS]a na) i

(λ(o : O i). [Ncse P pO pS]b (k o))
([Ncse]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ na (k (α i)) nε)

Note that the βε
N case explicitly calls the global axiom α to relate the oracular term with

the branching one. This is one of the few places that introduce an actual use of the oracle in
the translation, by opposition to merely passing it around.

We define [Nstr]ε as before, using the fact it is given directly in the source in terms of
Ncse. In particular we do not have to write its translation explicitly. Finally, we can define
the dependent eliminators, following the same structure as before.

[Nrec]ε : Π⟨P : N → □⟩ ⟨pO : P O⟩ ⟨pS : Π(n : N).Nstr n P → Nstr (S n) P ⟩.
Π⟨n : N⟩. JNstr n P Kε [Nrec P pO pS n]a [Nrec P pO pS n]b

[Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ Oε := pOε

[Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (Sε ⟨n⟩) := pSε ⟨n⟩ ([Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ ⟨n⟩)
[Nrec]ε ⟨P ⟩ ⟨pO⟩ ⟨pS⟩ _ _ (βε

N na i k nε) := ωε (Pa na) ([Nrec P pO pS]a na)

Following the results from [28], this translation can be generalized to any inductive type,
potentially with parameters and indices. Indeed, it basically amounts to the composition of
weaning with binary parametricity.

▶ Theorem 17. Algebraic parametricity is a syntactic model of BTT.

4 Continuity of (N → N) → N

This section is dedicated to the proof of the main theorem which we formally state below.

▶ Theorem 18. If ⊢BTT f : (N → N) → N then ⊢CIC _ : C f .

Proof. The proof follows the same structure as Escardó’s proof for System T, and requires a
clever instance of the model described above.
In short, we will define an element γb : Nb → Nb and lift it as a constant γ : N → N in the
source theory. Computationally, it behaves as an impure function that tracks the arguments it
is called on. We will then use it to prove that f is eloquent, with tree witness [f γ]b ≡ [f ]b γb.
Before getting to the nitty-gritty, we will fix henceforth the oracular type parameters for the
remainder of this section as

I := N and O := λ(i : I).N.

Some results exposed in this section are still independent from this precise choice of
oracle. When this is the case, we will stick to the Q notation to highlight this fact.

Since Nb is essentially a free algebra, we can define a dialogue function ∂N similar to the
one defined in Section 2.

∂N : Q → Nb → N
∂N α Ob := O
∂N α (Sb nb) := S (∂N α nb)
∂N α (βN i k) := ∂N α (k (α i)).
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▶ Proposition 19 (Unicity of specification). There is a proof

⊢T _ : Π(α : Q) ⟨n : N⟩. na = ∂N α nb.

Proof. By induction on nε. ◀

▶ Proposition 20 (Generic parametricity). There is a proof

⊢T _ : Π(α : Q) (nb : Nb).Nε α (∂N α nb) nb.

Proof. By induction on nb. ◀

Let us now define our generic element γb : Nb → Nb.

▶ Definition 21 (Generic tree). We define in T the generic tree t as

t : N → Nb

t := λ(n : N). βN n ηN

where ηN : N → Nb

ηN O := Ob

ηN (S n) := Sb (ηN n).

▶ Lemma 22 (Fundamental property of the generic tree). We have a proof

⊢T _ : Π(α : N → N) (n : N). ∂N α (t n) = α n.

Proof. Immediate by the definition of the ∂ function. ◀

▶ Definition 23 (Generic element). We define the generic element γb : Nb → Nb as follows.

γb nb := γ0 O nb where γ0 : N → Nb → Nb

γ0 a Ob := t a

γ0 a (Sb nb) := γ0 (S a) nb

γ0 a (βN i k) := βN i (λo : N. γ0 a (k o)).

Intuitively, γb adds a layer to its argument, replacing each leaf by a t n, where n is the
number of Sb encountered in the branch. It has the following property.

▶ Lemma 24 (Fundamental property of the generic element). We have a proof

⊢T _ : Π(α : N → N) (nb : Nb). ∂N α (γb nb) = α (∂N α nb).

Proof. Straightforward by induction on nb, using Lemma 22 for the Ob case. ◀

▶ Proposition 25. The γb term can be lifted to a function γ : N → N in the source theory.

Proof. It is sufficient to derive the following sequents, the first two being trivial.

α : N → N ⊢T α : JN → NKa ⊢T γb : JN → NKb α : N → N ⊢T γε : JN → NKε α γb

For γε, assuming ⟨n : N⟩ we have to prove JNKε (α na) (γb nb). By Proposition 19,
this is the same as JNKε (α (∂N α nb)) (γb nb). By Proposition 24, this is the same as
JNKε (∂N α (γb nb)) (γb nb). We conclude by Proposition 20. ◀

We can now get to the proof of the main result. Let ⊢BTT f : (N → N) → N. Since
γ : N → N can be reflected from the model into BTT, we can consider the term ⊢BTT f γ : N.
By soundness, it results in the three terms below.

α : N → N ⊢T [f ]a α : N
⊢T [f ]b γb : Nb

α : N → N ⊢T [f ]ε α γb γε : Nε α ([f ]a α) ([f ]b γb)
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Applying Proposition 19 to [f ]a, [f ]b and [f ]ε, we get:

⊢T _ : Π(α : N → N). [f ]a α = ∂N α ([f ]b γb)

Since f is a term in BTT that does not use any impure extension of the model, it is easy
to check that [f ]a ≡ f . Therefore, f is eloquent. By Theorem 4, this implies that f is
continuous, which concludes our proof. ◀

5 Discussion and Related Work

5.1 Comparison with Similar Models
As already stated, our proof follows the argument given by Escardó [11] for System T, which
can also be found as a close variant by Sterling that uses streams instead of trees [35]. Yet,
in order to scale to BTT there are a few non-trivial technical differences in our version that
ought to be highlighted.

The first obvious one is that Escardó’s model does not really qualify as a syntactic model
of System T. Rather, it is a model in a type-theoretic metatheory. The difference is subtle,
and lies in the fact that the source language is an AST of the ambient type theory in Escardó’s
model, while there is no such thing in sight in our variant. Actually, this would not even
have been possible because in order to internalize type theory inside itself, one needs some
form of induction-recursion to handle universes. Morally, we got rid of the middle man of an
overaching standard syntactic model of BTT [3].

Another major difference is that the parametricity predicates must be compatible with
the D-algebra structure of the underlying types. This is needed to interpret large elimination,
which is absent from System T. This requirement is thus void in Escardó’s model. It was
a surprising part of the model design, but in hindsight it is obvious that it would pop up
eventually. Furthermore, both to preserve conversion and to scale to richer inductive types,
the parametricity predicate needs to be given in an inductive way following the underlying
source type, rather than as an ad-hoc equality between two terms.

We emphasized that our interpretation of N is not the same as Escardó’s, which uses
instead JN′Kb := D N. The reason for that has been already briefly observed in [35] but it
is worth elaborating here. Said bluntly, Escardó’s interpretation is actually not a model of
System T. While it is indeed possible to write a simply-typed eliminator

N′
cse : Π(P : □). P → (N′ → P → P ) → P

it does not enjoy the correct computational behaviour. Namely, in general

N′
cse P pO pS (S′ n) ̸≡ pS n (N′

cse P pO pS n).

A typical situation where this equation would break happens when n is an effectful term,
i.e. its translation is of the form β i k. This can be explained by the fact that recursive
constructors in effectful call-by-name need to thunk their arguments, i.e. pattern-matching
on the head of an inductive term must not evaluate the subterms of the constructor. This is
not the case for Escardó’s intepretation, which is closer to a call-by-value embedding of N in
call-by-name. Since dependent type theory makes the requirement that this equation holds
in the typing rules themselves, we need to pick the right interpretation of N.

Escardó and Xu also gave related models to internalize uniform continuity [40, 10].
Contrarily to the above one, they build these models out of sheaves, which have also been
used similarly by Coquand and Jaber [8, 9]. Sheaves form a locally closed cartesian category,

CSL 2022



5:14 Gardening with the Pythia

hence they only implement a small fragment of MLTT. It is well-known that the universe
of sheaves is not a sheaf in general, and in particular the existence of universes in the first
model is an open problem. We have several remarks to make. First, assuming univalence and
HITs in the target theory, it turns out to be straightforward to build a syntactic sheaf model
of MLTT [32]. Univalence is typically needed to relax the strict uniqueness requirement of
sheaves into its fibrant version.
More interestingly, a closer look at [32] shows that univalent sheafification is basically the
HIT

Inductive S (A : □) : □ :=
| η : A → S A

| β : Π(i : I). (O i → S A) → S A

| σ1 : Π(i : I) (x : S A). β i (λ(o : O i). x) = x

| σ2 : . . .

where O : I → hProp and σ2 is such that (β, σ1, σ2) prove that λ(x : S A) (_ : O i). x

defines an equivalence S A ∼= (O i → S A). The relationship to D is obvious, and leads
us to challenge Escardó’s claim that the dialogue model is not a sheaf model. The higher
equalities are precisely what is missing to implement full dependent elimination, i.e. to
ensure that sheafification preserves observational purity. Otherwise said, the dialogue monad
is an impure variant of the sheafification monad, giving a curious and unexpected double
entendre to the phrase effectful forcing.

Rahli et al. [30] give another proof of uniform continuity for NuPRL using a form of
delimited exceptions. Computationally, their model tracks the accesses to the argument
of functions by passing them exception-raising placeholders. The control flow is inverted
w.r.t. Escardó’s model, which requires non-terminating realizers, but we believe that the
fundamental mechanism is similar. In the same context Rahli et al. [31] defines a sheaf model
with bar induction in mind, but this principle is inextricably tied to uniform continuity [6].

5.2 Internalization
In this paper we have constructed a model of BTT that associates to every closed term
⊢ f : (N → N) → N a proof in CIC that it is continuous. Can we do better? First, we know
that there is a major limitation. Indeed, MLTT extended with the internal statement

Πf : (N → N) → N.C f

results in an inconsistent theory [12]. We will call this property internal continuity below.
The proof crucially relies on two ingredients, namely congruence of conversion and large
dependent elimination. Thus, there might be hope for BTT where the latter is restricted.

▶ Theorem 26. Internal continuity holds in our model iff it holds in T.

This is obviously disappointing, since it implies that T is inconsistent. One can then
wonder if it is possible to aim for a middle ground, where we internalize the modulus of
continuity itself, but keep the computation of this modulus in the target. That is, construct
a term of type Π(α : N → N) ⟨f : (N → N) → N⟩. JC fK, where JAK stands for the triple
Σ(xa : JAKa) (xb : JAKb). JAKε xa xb. The implication regarding the target theory is a bit
more subtle.

▶ Lemma 27. If we have ⊢T _ : Π(α : N → N) ⟨f : (N → N) → N⟩. JC fK then we can also
get a proof that ⊢T _ : Πf : (N → N) → N. f ∼(N→N)→N f → C f , where ∼(N→N)→N is the
canonical setoid equality on the functional type.
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Proof. Let f : (N → N) → N such that f ∼(N→N)→N f , and α : N → N in T. We define a
term f̃ : J(N → N) → NK as follows.

[f̃ ]a := f [f̃ ]b := λ(ub : JNKb → JNKb). ηN (f (λn : N. ∂N α (ub (ηN n))))

These two terms are proved to be in relation by the parametricity predicate by applying
the preservation of pointwise equality followed by an induction on the parametricity proof
of the argument. Finally, if we have a term of type Π(α : N → N) ⟨f : (N → N) → N⟩. JC fK,
then we have JC f̃K and thus C f by projection. ◀

This lemma implies in particular that if our target theory features funext, internalization
of the modulus of continuity implies continuity of all functions f : (N → N) → N in T.
Thus, by the aforementioned theorem, our theory is inconsistent. Conversely, if our theory is
consistent, internalization of the modulus of continuity is out of reach.

As funext is independent from CIC, internalization of the modulus of continuity is unat-
tainable if our target theory is plain CIC. If our target theory does not feature funext, the
diagonalization argument of Escardó and Xu does not work anymore.

However, in BTT it is unclear whether it is possible to construct a similar paradox, or if
there exists a model of it which validates the internalization of the modulus of continuity.
This is still an open question. We nonetheless conjecture that adding an additional layer of
presheaves to allow a varying number of oracles in the context could be the key to realize
such a model. Indeed, adding a modal type of exceptions to MLTT is precisely what permits
to go from the external Markov’s rule [29] to the internal Markov’s principle [24]. If we were
able to locally create a fresh generic element independent from all the previously allocated
ones, it seems that we could turn the external continuity rule into an internal one, mimicking
what happens for the implementation of Markov’s principle. Fresh exceptions are precisely
used by Rahli et al. [30] to get what amounts to an independent generic element at every
call, so this argument does not seem far-fetched. We leave this to future work.

5.3 Coq Formalization
The results from this paper have been formalized in Coq using a presentation similar to
category with families. It is a shallow embedding in the style of [15], hence in particular all
conversions are interpreted as definitional equalities. The development relies on universe
polymorphism to implement universes in the model, but it could have been avoided at the
cost of duplicating the code for every level existing in the hierarchy. As usual, we use negative
pairs to handle context extensions in a definitional way. Apart from this, the development
does not make use of any fancier feature from the Coq kernel. The code can be found at
https://gitlab.inria.fr/mbaillon/gardening-with-the-pythia.

Conclusion

This paper gives a purely syntactic proof that functionals of a rich dependent type theory
are continuous. Not only is the argument syntactic, but it is also expressed as a program
translation into another dependent type theory. Thus, everything computes by construction
and conversion in the source is interpreted as conversion in the target. Despite being a
generalization of a simpler proof by Escardó, the dependently-typed presentation gives more
insight about the constraints one has to respect for it to work properly, and highlights a few
hidden flaws of the original version. Finally, the model gives empirical foothold to the claim
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that BTT is a natural setting for dependently-typed effects. We believe it is not merely an
ad-hoc set of rules, but a system that keeps appearing in various contexts, and thus a generic
effectful type theory.
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Abstract
The Kleene theorem establishes a fundamental link between automata and expressions over the free
monoid. Numerous generalisations of this result exist in the literature; on one hand, lifting this result
to a weighted setting has been widely studied. On the other hand, beyond the free monoid, different
monoids can be considered: for instance, two-way automata, and even tree-walking automata, can
be described by expressions using the free inverse monoid. In the present work, we aim at combining
both research directions and consider weighted extensions of automata and expressions over a class
of monoids that we call pre-rational, generalising both the free inverse monoid and graded monoids.
The presence of idempotent elements in these pre-rational monoids leads in the weighted setting to
consider infinite sums. To handle such sums, we will have to restrict ourselves to rationally additive
semirings. Our main result is thus a generalisation of the Kleene theorem for pre-rational monoids
and rationally additive semirings. As a corollary, we obtain a class of expressions equivalent to
weighted two-way automata, as well as one for tree-walking automata.
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1 Introduction

Automata are a convenient tool for algorithmically processing regular languages. However,
when a short and human-readable description is required, regular expressions offer a much
more proper formalism. When it comes to weighted automata (and transducers as a special
case), the Kleene-Schützenberger theorem [20] relates weighted languages defined by means
of such automata on one side, and rational series on the other side. Unfortunately, such
expressions seem to fit mainly for one-way machines. Indeed, when it comes to two-way
machines, finding adequate formalisms for expressions is not easy [13, 14].

Two-way automata have been studied in the setting of the Boolean semiring in [9]. In this
work, Janin and Dicky consider a fragment of the free inverse monoid called overlapping tiles.
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6:2 Weighted Automata and Expressions over Pre-Rational Monoids

overlapping tiles, which are words enriched with a starting and an ending position. Hence,
thanks to the Kleene theorem, such two-way runs can be described as regular expressions
(over tiles).

A particular class of weighted automata is that of transducers, where weights are words
on an output alphabet. For this setting, Alur et al proposed in [1] a formalism to describe
word transformations given as a deterministic streaming string transducer, a model equivalent
with deterministic (or unambiguous) two-way transducers [12]. This formalism is based
on some operators defining basic transformations that are composed to define the target
transformation. An alternative construction of these expressions starting directly from
two-way unambiguous transducers has been proposed in [3]. These expressions have also
been extended to run on infinite words [8]. The general case of non-deterministic two-way
transducers is much more challenging [13], as these machines may admit infinitely many
accepting runs on an input word. While this general case is still open (meaning that no
equivalent models of expressions are known), a solution has been proposed for the particular
case where both input and output alphabets are unary [6].

For a further weighted generalisation, the ability to sum values computed by different
runs on the same input structure (no matter if it is a word, a tree or even a graph) is also
crucial in terms of expressiveness. However, not all weighted two-way automata (or weighted
one-way automata with ε-transitions) are valid: indeed, as these machines may have infinitely
many runs over a single input, it may be the case that the automaton does not provide any
semantics for such inputs, infinite sums being not guaranteed to converge. To overcome this
issue, additional properties are required over the considered semiring: for instance, rationally
additive semirings [11] allow one to define valid non-deterministic two-way automata [15].

Our initial motivation was to elaborate on the approach proposed by Janin and Dicky in
the setting of weighted languages. As already said, the main ingredient of their approach
is to consider the free inverse monoid as an input structure. However, going one step
further, we consider a generalisation, namely pre-rational monoids. These are monoids M

such that for all finite alphabets A and for all morphisms from the free monoid A∗ to M ,
the pre-image of m ∈ M is a rational language of A∗. This class of monoids contains, in
particular, the free inverse monoid. After introducing the monoids and semirings of interest
in Section 2, we present our main contributions, which hold for pre-rational monoids and
rationally additive semirings:
1. We prove in Section 3 that all weighted automata are valid.
2. We introduce in Section 4 a syntax for weighted expressions and show that the semantics

of these expressions is always well-defined.
3. We prove in Section 5 a Kleene-like theorem stating that weighted automata and weighted

expressions define the same series.
4. We deal with the particular case of unambiguous automata and expressions in Section 6.

More precisely, our conversions are shown to preserve the ambiguity, meaning that an
element of the monoid “accepted” k times by a weighted automaton can be “decomposed”
in k different ways by the weighted expression we obtain, and vice versa.

5. In Section 7, we apply our results on two-way word automata and tree-walking automata
which can be viewed as part of the free inverse monoids (which are pre-rational) and
show how expressions are quite natural to write via a variety of examples. As a corollary,
we obtain a formalism of expressions equivalent to non-deterministic two-way transducers
(relying on the unambiguity result presented in the previous section).

Our results can be understood as a trade-off between the generality of the monoid and that
of the semiring. Indeed, instead of rationally additive semirings, one could have considered
continuous semirings in which all infinite sums are well-defined. On such semirings, weighted
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automata are valid on all input monoids [19]. However, our framework allows one to consider
semirings that are not continuous, and as a consequence we have to restrict in this case
the input monoid. On the other end of the spectrum, restricting oneself to graded monoids
(as also done in [19]) allows one to consider any semiring, since only finite sums are then
involved. However, the free inverse monoid is a typical example of non-graded monoid.

2 Monoids and semirings

We recall that a monoid (M, ·, εM ) is given by a set M and an associative product · with εM

as neutral element. For our purpose, we consider special classes of monoids:

▶ Definition 1. A monoid (M, ·, εM ) is pre-rational if for every finite alphabet A, for every
morphism µ : A∗ → M , and for every m ∈ M , the language µ−1(m) ⊆ A∗ is rational.

Many natural examples of monoids are pre-rational: the free monoid (A∗, ·, ε) over a
finite alphabet A, the natural monoid (N, +, 0), and even the one completed with an infinite
element (N ∪ {+∞}, +, 0). Other examples, of particular interest in this article, are free
inverse monoids that we study in Section 7. Another non-trivial example of pre-rational
monoid is ({L ⊆ A∗ | ε ∈ L}, ·, {ε}), with A a finite alphabet. In contrast, a typical example
of monoid that is not pre-rational is the free group generated by one element, or (Z, +, 0)
equivalently. For instance, given the morphism µ : {a, ā}∗ → Z mapping a to 1 and ā to −1,
then µ−1(0) =

{
w ∈ {a, ā}∗ | |w|a = |w|ā

}
which is not rational.

Showing pre-rationality might sometimes be challenging, since considering arbitrary
alphabets and arbitrary morphisms is not really convenient. An easier definition is however
possible for monoids M that are generated by a finite family G = {g1, . . . , gn} of generators.
In this case, consider the canonical morphism φ from the free monoid G∗ (considering
generators as letters) to M , that consists in evaluating the sequence of generators in M .
Then, M is pre-rational if and only if for all m ∈ M , the language φ−1(m) ⊆ G∗ is rational.
Pre-rationality is then easier to check, and this, without much of a restriction: the automata
and expressions we will consider thereafter only use a finite set of elements of the monoid
as atoms, and we can thus restrict ourselves to the finitely generated submonoid. An even
simpler sufficient condition for pre-rationality is:

▶ Lemma 2. If every element m of a monoid M has a finite number of prefixes, i.e. ele-
ments p ∈ M such that there exists p′ ∈ M with m = p · p′, then M is pre-rational.

Proof. For a finite alphabet A and a morphism µ : A∗ → M , and an element m ∈ M , with
{m1, . . . , mn} as finite set of prefixes, we can build a finite automaton reading letters of A

and, after having read a word w ∈ A∗, storing the current element µ(w) when it is a prefix
of m (going to a non-accepting sink state otherwise). This automaton can then be used to
recognise µ−1(m), by starting in the prefix εM and accepting in the prefix m. ◀

This allows us to easily show that all finitely generated graded monoids [19] (i.e. monoids M

equipped with a gradation φ : M → N such that φ(m) = 0 only if m = εM , and φ(mn) =
φ(m) + φ(n) for all m, n ∈ M) are pre-rational. Indeed, the gradation ensures that each
element m ∈ M can have only a finite number of prefixes [19, Chap. III, Cor. 1.2,p.384],
allowing us to apply the previous lemma. However, notice that the condition in Lemma 2 is
not a necessary one: (N ∪ {+∞}, +, 0) does not fulfil the condition, since +∞ has infinitely
many factors, while it is indeed pre-rational.

A semiring (K, +, ×, 0, 1) is an algebraic structure such that (K, ×, 1) is a monoid, (K, +, 0)
is a commutative monoid, the product × distributes over the sum + , and 0 is absorbing
for ×. Once again, we consider special classes of semirings, introduced in [11]:

CSL 2022



6:4 Weighted Automata and Expressions over Pre-Rational Monoids

▶ Definition 3. A semiring (K, +, ×, 0, 1) is rationally additive if it is equipped with a partial
operator defining sums of countable families, associating with some infinite families (αi)i∈I ,
with I at most countable, an element

∑
i∈I αi of K such that for all families (αi)i∈I :

Ax.1 If I is finite, the value
∑

i∈I αi exists and coincides with the usual sum in the semiring.
Ax.2 For each α ∈ K,

∑∞
n=0 αn exists.

Ax.3 If
∑

i∈I αi exists and β ∈ K, then
∑

i∈I βαi and
∑

i∈I αiβ exist, and are respectively
equal to β(

∑
i∈I αi) and (

∑
i∈I αi)β.

Ax.4 Let I be the disjoint union of (Ij)j∈J with J at most countable. If for all j ∈ J ,
rj =

∑
i∈Ij

αi exists, and if r =
∑

j∈J rj exists, then
∑

i∈I αi exists and is equal to r.
Ax.5 Let I be the disjoint union of (Ij)j∈J with J at most countable. If s =

∑
i∈I αi exists,

and for all j ∈ J , rj =
∑

i∈Ij
αi exists, then

∑
j∈J rj exists and is equal to s.

Examples of rationally additive semirings are the Boolean semiring, natural semirings
over positive rationals or reals (Q+ ∪ {∞}, +, ×, 0, 1)1, the tropical (or arctic) semiring
(Q∪{−∞, +∞} , sup, +, −∞, 0), the language semiring over a finite alphabet (2A∗

, ∪, ·, ∅, {ε}),
the sub-semiring of rational languages, or distributive lattices. Throughout this article, K
will denote a rationally additive semiring.

Let us state a few useful properties of rationally additive semirings. The support of a
family (αi)i∈I is the set {i ∈ I | αi ̸= 0} of indices of non-zero elements.

▶ Lemma 4 ([11]). Let (αi)i∈I be a countable family in K, of support J . Then,
∑

i∈I αi

exists if and only if
∑

i∈J αi exists, and when these sums exist, they are equal.

▶ Lemma 5. Let (αi)i∈I and (βi)i∈I be two countable families of K of disjoint supports,
i.e. for all i ∈ I, αi = 0 or βi = 0 (or both). If

∑
i∈I αi and

∑
i∈I βi exist, then

∑
i∈I(αi +βi)

exists and is equal to (
∑

i∈I αi) + (
∑

i∈I βi).

Proof. Let Jα and Jβ be the support of the families (αi)i∈I and (βi)i∈I , and J0 = J \(Jα∪Jβ).
If

∑
i∈I αi and

∑
i∈I βi exist,

∑
i∈I αi+

∑
i∈I βi exists, and by Lemma 4, is equal to

∑
i∈Jα

αi+∑
i∈Jb

βi. Since the supports are disjoint, this is equal to
∑

i∈Jα
(αi + βi) +

∑
i∈Jb

(αi + βi).
By definition of J0,

∑
i∈J0

(αi + βi) exists and is equal to 0. Therefore,
∑

i∈I αi +
∑

i∈I βi is
equal to

∑
i∈Jα

(αi + βi) +
∑

i∈Jb
(αi + βi) +

∑
i∈J0

(αi + βi). Ax.4 allows us to conclude. ◀

▶ Lemma 6. Let (αi,j)(i,j)∈I×J be a countable family of elements of K, such that αi,J =∑
j∈J αi,j exists for all i ∈ I, and αI,j =

∑
i∈I αi,j exists for all j ∈ J . Then,

∑
i∈I αi,J

exists if and only if
∑

j∈J αI,j exists, and when these sums exists, they are equal.

Proof. Immediate by Ax.4 and Ax.5. ◀

3 Series and Weighted Automata

A K-series over M is a mapping s : M → K associating a weight s(m) with each element m

of the monoid. The set of all such series is denoted by K⟨⟨M⟩⟩. Notice that the pointwise
sum of two series s1 and s2, defined for all m ∈ M by (s1 + s2)(m) = s1(m) + s2(m),
is a series. However, the Cauchy product s1 · s2 mapping m to the possibly infinite sum∑

m1m2=m s1(m1) × s2(m2) might not exist2. We define two canonical injections: M →
K⟨⟨M⟩⟩ which maps m to the characteristic function of m (mapping m to 1 and the other

1 All infinite sums of elements in Q+ do not converge towards a rational number or +∞, but all geometric
sums do. In particular, this semiring is not continuous (see [19, Chap. III, Sec. 5]).

2 Here and in the following,
∑

m1m2=m
is the sum over all pairs (m1, m2) ∈ M2 such that m1m2 = m.
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elements from M to 0), and K → K⟨⟨M⟩⟩ which maps k to the function mapping the neutral
element εM of M to k and all other values to 0. For this reason, we often abuse notations
and consider K and M as subsets of K⟨⟨M⟩⟩.

We now introduce the notion of weighted automata we consider in this article: weights
are taken from a rationally additive semiring K and labels from a pre-rational monoid M .

▶ Definition 7. A K-automaton over M , or simply a weighted automaton, is a tuple A =
(Q, I, ∆, F ), with Q a finite set of states, I ⊆ Q the set of initial states, ∆ ⊆ Q × M ×K× Q

the finite set of transitions each equipped with a label in M and a weight in K, and F ⊆ Q

the set of final states.

We introduce two mappings λA and πA that extract the label and the weight of a
transition, that we can extend to morphisms from ∆∗ to M and the multiplicative monoid of
K, respectively. A run of A is then a sequence w of transitions (pi, mi, ki, qi)1≤i≤n such that
for all i, qi = pi+1. The label of a run is given by λA(w); its weight is πA(w). The run is
said to be accepting if p1 ∈ I and qn ∈ F . We let RA ⊆ ∆∗ denote the rational language of
all accepting runs. The semantics of A is the series JAK such that for all m ∈ M , the weight
JAK(m) is the sum of the weights of accepting runs that are labelled by m, if the (potentially
infinite) sum exists: JAK(m) =

∑
w∈RA∩λ−1

A (m) πA(w).
The automaton A is called valid if the sum in JAK(m) exists for all m ∈ M . Instead

of enforcing properties on the automata for them to be valid, we ensure their validity by
combining the rational additivity of K and the pre-rationality of M . The crucial technical
property considers the special case of the monoid of strings A∗ over a finite alphabet A. We
then lift the result using pre-rationality. For a language L ⊆ A∗ and a semiring K, we denote
by χL ∈ K⟨⟨A∗⟩⟩ its characteristic series in K, defined for all w ∈ A∗ as χL(w) = 1 if w ∈ L,
and 0 otherwise. By Lemma 4, we have that for all series s over A∗,∑

w∈L

s(w) is defined iff
∑

w∈A∗

s(w)χL(w) is defined, and then these sums are equal. (1)

▶ Lemma 8. For every finite alphabet A, morphism π : A∗ → K, and rational language
L ⊆ A∗, the sum

∑
w∈L π(w) exists.

Proof. The proof is by induction on rational languages, denoted by unambiguous regular
expressions [5]. Indeed, all rational languages can be obtained by closing the set of finite
languages by the operations of disjoint unions, unambiguous concatenations (the concatena-
tion L1 · L2 is unambiguous when each word w of L1 · L2 can be uniquely decomposed as
w = w1 · w2 with w1 ∈ L1 and w2 ∈ L2), and unambiguous Kleene stars (the Kleene star L∗

is unambiguous when each word w ∈ L∗ can be uniquely decomposed as w = w1 · · · wn with
n ∈ N and wi ∈ L for all i). Please note that for convenience, the sentences “A = B” should
be read as “B exists and is equal to A”.

First, for finite languages L, the sum
∑

w∈L π(w) exists, by Ax.1. In the case where L is
the disjoint union of two languages L1 and L2, such that

∑
w∈L1

π(w) and
∑

w∈L2
π(w) exist,∑

w∈L1

π(w) +
∑

w∈L2

π(w) =
∑

w∈A∗

π(w)χL1(w) +
∑

w∈A∗

π(w)χL2(w) (by 1)

=
∑

w∈A∗

(π(w)χL1(w) + π(w)χL2(w)) (by Lemma 5)

=
∑

w∈A∗

π(w)χL1∪L2(w) (disjoint union)

=
∑

w∈L1∪L2=L

π(w).

CSL 2022



6:6 Weighted Automata and Expressions over Pre-Rational Monoids

If L is the unambiguous concatenation of two languages L1 and L2 such that
∑

u∈L1
π(u)

and
∑

v∈L2
π(v) exist, then( ∑

u∈L1

π(u)
)

×
( ∑

v∈L2

π(v)
)

=
∑

u∈L1

(
π(u) ×

∑
v∈L2

π(v)
)

(by Ax.3)

=
∑

u∈L1

∑
v∈L2

π(u)π(v) (by Ax.3)

=
∑

(u,v)∈L1×L2

π(u)π(v) (by Ax.4)

=
∑

(u,v)∈L1×L2

π(uv) (π is a morphism).

Moreover, by unambiguity, there exists a bijection from the pairs of L1 × L2 to the words of
the concatenation L1 · L2 sending (u, v) to uv. Bijections on the support of families conserve
the summability property by [11, Proposition 3], therefore

∑
w∈L π(w) exists (and is equal

to
∑

(u,v)∈L1×L2
π(uv)).

Finally, suppose that L is the unambiguous Kleene star L∗
1, and

∑
w∈L1

π(w) exists. In
particular, for all n ∈ N, the iterated concatenation Ln

1 is unambiguous, and thus, with a
straightforward induction using the previous case,

∑
w∈Ln

1
π(w) exist and we have( ∑

w∈L1

π(w)
)n

=
∑

w∈Ln
1

π(w).

By Ax.2,
∑∞

n=0

( ∑
w∈L1

π(w)
)n

exists, and by (1), we have:

∞∑
n=0

( ∑
w∈L1

π(w)
)n

=
∞∑

n=0

∑
w∈Ln

1

π(w) =
∞∑

n=0

∑
w∈A∗

π(w)χLn
1
(w).

By unambiguity, for all w ∈ A∗, the infinite sum
∑∞

n=0 π(w)χLn
1
(w) has finite support (at

most 1 non-zero element) and therefore exists (by Lemma 4). By Lemma 6, we deduce that
∞∑

n=0

∑
w∈A∗

π(w)χLn
1
(w) =

∑
w∈A∗

∞∑
n=0

π(w)χLn
1
(w) =

∑
w∈A∗

π(w)
∞∑

n=0
χLn

1
(w) (by Ax.3)

=
∑

w∈A∗

π(w)χL∗
1
(w) (by unambiguity)

=
∑
w∈L

π(w). ◀

From this result, to have a sufficient condition for validity we only need to have sums
over rational languages, hence our requirement that M is pre-rational.

▶ Theorem 9. If M is a pre-rational monoid, then every K-automaton A over M is valid,
i.e. JAK(m) exists for all m ∈ M .

Proof. Since M is pre-rational, the morphism λA is such that for all m ∈ M , λ−1
A (m) is a

rational language. Therefore, so is the language RA ∩ λ−1
A (m) of accepting runs that are

labelled by the element m. Lemma 8 gives that JAK(m) =
∑

w∈RA∩λ−1
A (m) πA(w) exists. ◀

Together with reasonable assumptions on computability for K and M , this also gives a
procedure to evaluate the weight JAK(m). Notice that this is a priori non-trivial, since it
involves an infinite sum. We say that M is effectively pre-rational if for all morphisms µ : A∗ →
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M and elements m ∈ M , one can compute a representation of the rational language µ−1(m).
We say that K is computable if internal operations (finite sums and products) of K are
computable, as well as Kleene star (geometric sum). Observe that we do not require
computability of arbitrary infinite sums, but only geometric ones.

▶ Proposition 10. If M is effectively pre-rational and K is computable, then for all K-
automata A over M and all elements m ∈ M , one can compute JAK(m). This computation is
achieved using a number of internal operations of K (i.e. sum, product and Kleene iteration)
that is polynomial in the size of A and in the size of a deterministic automaton recognising
λ−1

A (m).

Proof. By assumption of pre-rationality, the language λ−1
A (m) is rational. Moreover, by

effectiveness, we can let Dm be a deterministic automaton that recognises λ−1
A (m). We denote

by nm its number of states. The K-automaton Am obtained by considering the product of A
and Dm (with respect to the alphabet ∆ of transitions of A) thus restricts the runs of A to
the ones labelled by m. In addition, as Dm is deterministic, the accepting runs of A over m

are in bijection with those of Am. If we denote by n the number of states of A, then Am has
n × nm states. By removing all labels (replacing them by εM ), we obtain a K-automaton
that associates with the element εM the weight JAmK(εM ) = JAK(m). Applying classical
translations from automata to regular expressions such as state-elimination algorithms yields
an expression equivalent to JAK(m). This expression involves sum and product in K, as well
as Kleene star, which can be computed in K. As this expression only involves element εM ,
it can be evaluated during its computation, allowing to obtain the value of JAK(m) using a
number of internal operations of K that is polynomial in n and nm. ◀

4 Weighted Expressions

We now introduce the formalism of weighted expressions to generate K-series over a monoid M .

▶ Definition 11. The set of K-expressions over M , or simply weighted expressions, is
generated by the grammar (with k ∈ K and m ∈ M):

W ::= k | m | W + W | W · W | W ∗.

Expressions k and m are said to be atomic. We call subexpressions of W all the weighted
expressions appearing inside W : for instance, the subexpressions of W = (2 · a + b)∗ are 2,
a, b, 2 · a, 2 · a + b, and W . To define the semantics of weighted expressions, we will use a
sum operator over infinite families. As the semiring K is supposed to be rationally additive,
some of these infinite sums exist, some others do not3. Then, the semantics of a weighted
expression W is the series JW K ∈ K⟨⟨M⟩⟩ defined inductively as follows:

JkK is the series mapping εM to k and other elements to 0;
JmK is the characteristic series of m;
JU + V K = JUK + JV K;
for all m ∈ M , JU · V K(m) =

∑
m1m2=mJUK(m1) × JV K(m2) if the sum exists;

for all m ∈ M , JW ∗K(m) =
∑∞

n=0JW
nK(m) if the sum exists (with W n the expression

inductively defined by 1 if n = 0 and W · W n−1 otherwise).

3 In the rationally additive semiring (Q+ ∪ {∞}, +, ×, 0, 1), the infinite sum
∑

i∈N 1/i! does not exist,
since it converges to the non-rational real number e.
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The last two cases, defining the semantics of the concatenation (or Cauchy product) of
two weighted expressions, and the Kleene star of a weighted expression, are subject to the
existence of the infinite sums: we say that a weighted expression is valid when its semantics
exists for all m ∈ M (as well as the semantics of all its subexpressions, in particular).

More usual regular expressions are recovered by considering the Boolean semiring and
the monoid A∗ over a finite alphabet A: in the following, such expressions are called Kleene
expressions, and denoted by letters E, F, G, while weighted expressions are denoted by
letters U, V, W . Notice that Kleene expressions are valid, as expected, since the infinite sum
(i.e. disjunction in the Boolean semiring) is always defined in this case. Their semantics JEK
is the characteristic series of the language L(E) classically associated with such a regular
expression: alternatively, we can see L(E) as the support of JEK (all words w ∈ A∗ such
that JEK(w) is true). For any other semiring K, we let χE be the characteristic function of
the language of E to the semiring K, i.e. a shortcut notation for the series χL(E) ∈ K⟨⟨A∗⟩⟩
defined in Section 3.

We shall see that thanks to our hypothesis of K being rationally additive, and restricting
ourselves to pre-rational monoids, all weighted expressions are valid:

▶ Theorem 12. Let K be a rationally additive semiring, and M be a pre-rational monoid.
Every K-expression W over M is valid, i.e. the semantics JW K(m) exists for all m ∈ M .

Notice that this theorem relies on both its assumptions on M and K:
If M is not pre-rational, then the expressions may not be valid. For instance, consider
M to be the free group generated by a single element a (with a−1 its inverse in the free
group), and K be the semiring of rational languages over the alphabet {A, B}. Then, the
expression (a · {A} + a−1 · {B})∗ would associate with the element εM of M the language
of words over {A, B} having as many A’s than B’s, which is not rational, and thus not a
member of K.
If K is not rationally additive, then the expressions may not be valid. For instance,
considering the semiring (Q, +, ×, 0, 1), and the (pre-rational) trivial monoid {εM }, the
expression W = (−1)∗ gives as a semantics JW K(εM ) =

∑
n∈N(−1)n that is the archetypal

diverging series in Q.

The rest of this section is devoted to the proof of this theorem. This proof is split into
two parts. We first show that the validity of a weighted expression obtained by the rewriting
of “letters” in an unambiguous Kleene expression is equivalent to the existence of sums
resembling the ones of Lemma 8. We then explain how to generate such an unambiguous
Kleene expression from a weighted expression W , and apply the previous result to show the
validity of W .

More formally, a Kleene expression E (over a monoid A∗) is called unambiguous if for all
its subexpressions E′:

if E′ = F + G, then L(F ) ∩ L(G) = ∅;
if E′ = F · G, then for all w ∈ A∗, there exists at most one pair (w1, w2) ∈ L(F ) × L(G)
such that w1w2 = w;
if E′ = F ∗, then for all w ∈ A∗, there exists at most one natural number n, and one
sequence (w1, w2, . . . , wn) ∈ (L(F ))n such that w1w2 · · · wn = w.

As a direct corollary, for every semiring K,
if E + F is unambiguous, then χE+F = χE + χF ;
if E · F is unambiguous, then χE·F (w) =

∑
uv=w χE(u)χF (v);
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if E∗ is unambiguous, then χE∗ =
∑∞

n=0 χEn , this infinite sum having indeed a finite
support and being thus meaningful in any semiring (and formally existing in a rationally
additive semiring).

Given two morphisms λ : A∗ → M and π : A∗ → K, we let Eλ,π be the weighted expression
obtained from a Kleene expression E by substituting every letter a appearing in E by the
expression λ(a) · π(a), and by replacing Booleans true and false by elements 1 ∈ K and 0 ∈ K.

The next lemma aims at linking the validity of Eλ,π with the existence of specific infinite
sums. The same result is also fundamental in our later proofs of translations between
automata and expressions in the next section.

▶ Lemma 13. Let E be an unambiguous Kleene expression over a free monoid A∗, M be
a monoid (not necessarily pre-rational), K be a rationally additive semiring, λ : A∗ → M

and π : A∗ → K be two morphisms. Then, Eλ,π is valid if and only if for all m ∈ M

and all subexpressions F of E, the sum
∑

λ(w)=m π(w)χF (w) exists (where the sum is
over all words w ∈ A∗ such that λ(w) = m). In this case, for all m ∈ M , JEλ,πK(m) =∑

λ(w)=m π(w)χE(w).

Starting from a weighted expression W , and in order to use Lemma 13 which only applies
to unambiguous Kleene expressions, we will modify W to interpret it as an unambiguous
Kleene expression. We define its indexed expression I(W ) as the Kleene expression over
an alphabet being a finite subset of (K ∪ M) × N, obtained by replacing each of its atomic
subexpression ℓ ∈ K ∪ M by a letter (ℓ, i) ∈ (K ∪ M) × N where i is a unique index (starting
from 0 for the leftmost one) associated with each atomic subexpression. For instance, with
the weighted expression W = (2 ·a+3 ·b)∗ ·(a+5 ·b+3), one associates the indexed expression
I(W ) = ((2, 0)·(a, 1)+(3, 2)·(b, 3))∗ ·((a, 4)+(5, 5)·(b, 6)+(3, 7)). From the indexed expression,
one can recover the initial expression, by forgetting about the index. Formally, we let λ be the
morphism from ((K∪M)×N)∗ to M such that λ(x, n) = x if x ∈ M and εM otherwise, and π

be the morphism from ((K∪M)×N)∗ to K such that π(x, n) = x if x ∈ K and 1 otherwise. For
the above example, I(W )λ,π = ((εM ·2)·(a·1)+(εM ·3)·(b·1))∗ ·((a·1)+(εM ·5)·(b·1)+(εM ·3)),
which is equivalent to W . More generally, we obtain:

▶ Lemma 14. For all weighted expressions W over M , I(W )λ,π is valid if and only if W is
valid. When valid, they have the same semantics.

We would like to conclude by combining this result with Lemma 13 and by using the
pre-rationality of the monoid M , as in Theorem 9. However, I(W ) might not be unambiguous
as expected, as shown by the example W = (m∗)∗, with m ∈ M , that gives rise to the
(ambiguous) Kleene expression I(W ) = (((m, 0))∗)∗: indeed, the word (m, 0)(m, 0) has
several possible decompositions in the semantics of I(W ). To patch this last issue, we simply
incorporate a dummy marker after each Kleene star as follows: from a weighted expression W ,
ϕ(W ) is inductively defined by:

if W is an atomic expression, ϕ(W ) = W ;
if W = U + V then ϕ(W ) = ϕ(U) + ϕ(V );
if W = U · V then ϕ(W ) = ϕ(U) · ϕ(V );
if W = U∗ then ϕ(W ) = (ϕ(U))∗ · 1, with 1 being the neutral element of the semiring K.

We directly obtain:

▶ Lemma 15. Let W be a weighted expression. The Kleene expression I(ϕ(W )) is
unambiguous.
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We are now ready to conclude the proof of Theorem 12, moreover showing that for
all weighted expressions W and m ∈ M , JW K(m) =

∑
λ(w)=m π(w)χI(ϕ(W ))(w). Indeed,

operation ϕ(·) does not change the semantics of an expression, and therefore, ϕ(W ) is valid
if and only if W is valid, in which case they share the same semantics. Using the result of
Lemma 15, we can apply Lemma 14: W is valid if and only if I(ϕ(W ))λ,π is valid, in which
case they are equivalent. Let L = L(I(ϕ(W ))) ∩ λ−1(m). Since M is pre-rational, L is a
rational language, and

∑
w∈L π(w) exists. Moreover,∑

w∈L

π(w) =
∑

λ(w)=m

π(w)χI(ϕ(W ))(w)

= JI(ϕ(W ))λ,πK(m) (by Lemma 13)
= Jϕ(W )K(m) (by Lemma 14)
= JW K(m) (W and ϕ(W ) are equivalent).

5 A Kleene-Like Theorem

Our main result is the following Kleene-like theorem, stating the constructive equivalence
between expressions and automata over a pre-rational monoid and weighted over a rationally
additive semiring.

▶ Theorem 16. Let K be a rationally additive semiring, and M be a pre-rational monoid.
Let s ∈ K⟨⟨M⟩⟩ be a series. Then s is the semantics of some K-automaton over M if and
only if it is the semantics of some K-expression over M .

The rest of this section is devoted to the proof of this theorem, that consists in constructive
translations of automata into equivalent expressions, and vice versa.

From Automata to Expressions. The idea is to build a K-expression from an unambiguous
expression generating the accepting runs of the automaton. Let A = (Q, ∆, I, F ) be a
K-automaton over M . By applying the result of [5], we build an unambiguous Kleene
expression E over ∆∗ recognising the language RA of the accepting runs of A. By Lemma 13,
that we can apply on E since EλA,πA is valid (by Theorem 12), we have

JEλA,πAK(m) =
∑

λA(w)=m

πA(w)χE(w) =
∑

w∈RA|λA(w)=m

πA(w) = JAK(m).

the second equality coming from (1), since L(E) = RA.

From Expressions to Automata. We have shown in the previous section how, from a
K-expression E over M , we can construct an unambiguous Kleene expression I(ϕ(E)) and
two morphisms λ and π from4 (K∪ M) ×N to respectively M and K, such that I(ϕ(E))λ,π is
equivalent to E, and by Theorem 12, JEK(m) =

∑
λ(w)=m π(w)χI(ϕ(E))(w). We let {0, . . . , n}

be the set of indices used in I(ϕ(E)).
By [5], we can build (for instance, by considering the position automaton) from I(ϕ(E)) an

equivalent unambiguous Boolean automaton A = (Q, ∆, I, F ) with ∆ ⊆ Q×
(
(K∪M)×N

)
×Q

its set of transitions labelled by indexed atomic elements appearing in E. Here, unambiguous
means as usual that every accepted word in A is associated with a unique accepting run.

4 As before, in fact, we work with a finite subset of this set.
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From A, we build a K-automaton B = (Q×{0, . . . , n}, ∆′, I ×{0}, F ×{0, . . . , n}) over M

with transitions defined as follows: for all transitions (p, (m, i), q) ∈ ∆, with m ∈ M , we add
the transition ((p, j), m, 1, (q, i)) ∈ ∆′, and for all transitions (p, (k, i), q) ∈ ∆, with k ∈ K,
we add the transition ((p, j), εM , k, (q, i)) ∈ ∆′. The transfer of indices from letters to states
enables us to obtain a bijection f from accepted words of A to accepting runs of B. Moreover,
this bijection preserves the labels and weights, meaning that for all u = (x0, i0) · · · (xm, im)
accepted by A, we have λ(u) = λB(f(u)), and π(u) = πB(f(u)). Therefore, by applying the
change of variable w = f(u), we obtain

JBK(m) =
∑

w∈RB∩λ−1
B (m)

πB(w) =
∑

u∈L(I(ϕ(E)))∩λ−1(m)

π(u) =
∑

λ(u)=m

π(u)χI(ϕ(E))(u) = JEK(m).

6 Dealing with Ambiguity

We have already encountered ambiguity in the context of the Boolean semiring and free
monoids. We now study this notion for weighted expressions and automata. To do so, we
use the rationally additive semiring (N∞ = N ∪ {∞} , +, ×, 0, 1) where all infinite sums exist:
in particular, the sum over a family containing an infinite number of non-zero values is ∞,
and otherwise the sum is equal to the finite sum over the support of the family. We call this
semiring the counting semiring.

▶ Definition 17. Given a K-expression W over the monoid M , the ambiguity amb(W, m)
of W at m is a value in N∞ defined inductively over W as follows:

for W = n ∈ M , amb(n, m) = 1 if n = m, and 0 otherwise;
for W = k ∈ K, amb(k, m) = 1 if m = εM , and 0 otherwise;
for W = U + V , amb(U + V, m) = amb(U, m) + amb(V, m);
for W = U · V , amb(U · V, m) =

∑
m1m2=m amb(U, m1) × amb(V, m2);

for W = U∗, amb(U∗, m) =
∑

n∈N amb(Un, m).
An expression is called unambiguous if its ambiguity at every point is at most 1.

For instance, the expression W = 2 · a + 3 · a · a over the free monoid {a}∗ is unambiguous,
while W ∗ has ambiguity 2 at the word aaa = a · aa = aa · a.

The attentive reader may have noticed that the ambiguity of W is exactly the semantics
of W where every atomic weight of K is replaced with the unit 1 of N∞. Given two rationally
additive semirings K1 and K2, K1 ×K2 is also a rationally additive semiring with the natural
component-wise operations. In particular, given a K-expression W , we can define a K × N∞-
expression W ′ by replacing every weight k ∈ K appearing in W by (k, 1) ∈ K × N∞. Then,
the ambiguity of W at m is the second component of the weight JW ′K(m).

▶ Definition 18. Given a K-automaton A over the monoid M , the ambiguity of A at m is
a value in N∞ defined as the number (potentially ∞) of runs with label m. An automaton is
called unambiguous if its ambiguity at every point is at most 1.

Just as for expressions, the ambiguity of an automaton may be viewed as the semantics of
the automaton where the weights of transitions are replaced by the unit of N∞. Given A
over K, we can define A′ by replacing all weights k ∈ K of transitions by (k, 1) ∈ K × N∞.
Then the ambiguity of A at m is exactly the second component of JA′K(m). Now we claim:

▶ Theorem 19. Let K be a rationally additive semiring, M be a pre-rational monoid,
s ∈ K⟨⟨M⟩⟩, and k ∈ N. Then, s is the semantics of a K-automaton over M of ambiguity k

if and only if it is the semantics of a K-expression over M of ambiguity k.
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ℓ r ℓ r ℓ r ℓ r

ℓ r

ℓ

Figure 1 Munn bi-rooted trees of the elements of I({ℓ, r}): ℓ, r̄, ℓ̄rℓ̄r, and (ℓℓ̄r)2ℓ.

Proof. The procedures of section 5 to go from expressions to automata and back, over a
pre-rational monoid M , preserve ambiguity. Indeed, the two constructions used to prove
Theorem 16 do not introduce new weights. Thus, starting from a K-expression W , one
considers the K × N∞-expression W ′ defined above. Transforming W ′ into an automaton
preserves the semantics, and all the transitions have a second component equal to 1. Thus,
the second component of the semantics, which is preserved, is exactly the ambiguity of the
automaton. Forgetting about the second component, we get the result. Note that converting
W to W ′ is not actually a necessary step to build the automaton, it is simply a mental crutch
to make the argument simpler. Symmetrically when going from automata to expressions,
the transformation does not introduce new weights and thus preserves ambiguity. ◀

7 Free Inverse Monoids and Applications to Walking Automata

We conclude this article by demonstrating why our model is able to encompass and reason
about the usual models of two-way automata and tree-walking automata. To do so, we
consider the free inverse monoid, as it was observed by Pécuchet [18] to be linked with this
model. Dicky and Janin even gave in [9, Theorem 3.21] the equivalence in the boolean case
between two-way automata and regular expressions, using this monoid.

Let A be a finite alphabet, and A = {a | a ∈ A} be a copy of A. We define the
function † : (A ∪ A)∗ → (A ∪ A)∗ inductively as: ε† = ε, (ua)† = au†, and (ua)† = au†.

▶ Definition 20. The free inverse monoid I(A) generated by a finite alphabet A is the
quotient of (A ∪ A)∗ by the following equivalence relations:

“x† and x are pseudo-inverses”: for all x ∈ (A ∪ A)∗, xx†x = x, and x†xx† = x†;
“idempotent elements commute”: for all x, y ∈ (A ∪ A)∗: xx†yy† = yy†xx†.

Notice that xx† are indeed idempotent elements of the free inverse monoid, since
(xx†)(xx†) = (xx†x)x† = xx†.

The elements of this monoid are convenientely represented via tree-like structures, the
Munn bi-rooted trees [17]. They are directed graphs, whose underlying undirected graph is a
tree, and two special nodes are marked, the initial and the final one. Examples of elements
of the monoid with their Munn tree representation are given in Figure 1. Note that if you
see a ∈ A as the traversal of an edge labelled by a, and a its traversal in reverse, an element
of (A ∪ A)∗ describes a complete walk over the graph of the corresponding element of I(A).

With this tree representation in mind, we see that every element of I(A) has finitely
many prefixes, since such a prefix is a subtree of x, with the same initial node. Thanks to
Lemma 2, we obtain

▶ Proposition 21. The free inverse monoid is pre-rational.

We can thus apply our results on this pre-rational monoid, for instance by considering
expressions. In the Boolean semiring, for example, the expression (ℓ · ℓ̄ · r)∗ · ℓ describes the
language of Munn bi-rooted trees that are “right-combs” (see the rightmost tree of Figure 1),
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when considering ℓ to be left children, and r right ones. The initial node is at the top while
the final one is the farthest away from it. We can add weights to this expression: in the
tropical semiring (Z∪{−∞, +∞} , sup, +, −∞, 0), the unambiguous expression (ℓ · ℓ̄ · r · 1)∗ · ℓ
associates with a comb the length of its rightmost branch. More generally, the expression
W =

[ ∑
a∈A

(
a · 1 + ā · (−1)

)]∗ computes the (signed) length of the path linking the initial
and final nodes in any Munn bi-rooted tree over alphabet A: each tree is associated with the
difference between the number of positive letters of A and the number of negative letters
of Ā of the unique acyclic path linking the initial node to the final node. On the trees of
Figure 1, these lengths are respectively 1, −1, 0, 3. They represent the difference of “levels”
in-between the initial and final nodes. Each tree is associated with many decompositions in
the semantics of the expression W , but all of them have the same weight (and the chosen
semiring has an idempotent sum operation).

Two-way Automata. Over an alphabet A, we can consider the free inverse monoid I(A ⊎
{⊢, ⊣}), with two fresh symbols ⊢ and ⊣ that will help us distinguish the leftmost and
rightmost letters of the word. To model two-wayness, only certain elements of I(A ⊎ {⊢, ⊣})
are of interest, namely elements of ⊢A∗⊣, that have linear Munn bi-rooted trees with the
initial node at the leftmost position, and the final node at the rightmost one. The Munn
bi-rooted tree representation of such an element is given in Figure 2.

We thus consider weighted automata and expressions over I(A) with weights in K,
a rationally additive semiring, and restrict our attention to words of ⊢A∗⊣. From an
automata perspective, this is a way to define the usual model of two-way automata, a forward
movement of a two-way automaton being simulated by reading of a letter in A while a
backward movement is simulated by reading a letter in Ā. Indeed, our model of weighted
automata over I(A) can also be simulated by the usual two-way weighted automata, since
non-atomic elements of the monoid can be split into atomic elements. Therefore, in this
specific context, Theorem 16 gives a new way to express the semantics of two-way weighted
automata (over a rationally additive semiring) by using expressions.

Consider for example the function that maps a word ⊢w⊣ with w = w0 · · · wn−1 ∈ {a, b}∗

to the set of words {(wn−1 · · · w0)k | k ∈ N}. Considering the semiring of regular languages,
a weighted expression describing this function is(

⊢ · (a + b)∗ · ⊣ · ⊣ · (a · {a} + b · {b})∗ · ⊢
)∗ · ⊢ · (a + b)∗ · ⊣.

Notice the last pass over the word that allows one to finish the reading on the rightmost
position, i.e. the final node.

Consider the alphabet A = {0, 1}. For a word w ∈ A∗, let w|2 denote the rational number
between 0 and 1 that is written as 0.w in binary. Then, consider the following weighted
expression with weights in (Q+ ∪ {+∞}, +, ×, 0, 1):

W = ⊢ ·
(

0 · 1
2 + 1 · 1

2

)∗
· 1 · 1

2 · (0 + 1)∗ · ⊣.

⊢ a b a c ⊣

Figure 2 Munn bi-rooted tree of the “word” ⊢abac⊣.
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a

b c

d d

(⊤, a)
(0, b)

⊥

(1, c)
(0, d)

⊥

(1, d)

⊥

Figure 3 A binary tree, and its encoding in I(A′).

It associates with a word ⊢w⊣ the value w|2, since it non-deterministically chooses a position i

labelled by 1 in w and computes the value 1/2i. By considering the expression

(W · ⊣ · (0 + 1)∗ · ⊢)∗ · W.

that consists in repeating the computation of W any number of times (at least once),
with a reset of the word in-between, we associate with a word ⊢w⊣ the value

∑∞
n=1 wn

|2 =
w|2/(1 − w|2).

Tree-Walking Automata. Another model captured by our approach is the one of tree-
walking automata. These are automata whose head moves on the nodes of a rooted tree
of a bounded arity m. As for words before, we can encode such trees labelled with a finite
alphabet A by elements of I(A′) with an extended alphabet A′ = ({0, . . . , m − 1} ∪ {⊤}) ×
A ∪ {⊥}. In elements of I(A′), nodes contain no information, only edges do. The idea is
thus to simulate the root of a tree labelled with a by a single node labelled with (⊤, a); the
i-th child of a node, labelled with a ∈ A, will be simulated with a node of label (i, a); finally,
under each leaf of the tree, we add a node labelled with ⊥. The root of the tree will be
both the initial and the final node of the encoding, simulating a tradition of tree-walking
automata to start and end in the root of the tree (without loss of generality).

As an example, consider the binary tree on the left of Figure 3. It is modelled by the
following element of I(A′), obtained from the Munn bi-rooted tree represented on the right
by a depth-first search: (⊤, a)(0, b)⊥⊥ (0, b) (1, c)(0, d)⊥⊥ (0, d) (1, d)⊥⊥ (1, d) (1, c) (⊤, a).

When restricting the semantics of weighted automata and expressions to elements of I(A′)
that are encoding of trees, Theorem 16 gives an interesting model of weighted expressions
equivalent to weighted tree-walking automata over rationally additive semirings.

The depth-first search of a tree is describable by an unambiguous weighted expression
(and thus also an unambiguous weighted automaton): letting (i, A) denote

∑
a∈A(i, a), and

restricting ourselves to trees with nodes of arity 0 or 2 to simplify the writing, we let

W0 = (0, A)∗ · ⊥ , W1 = ⊥ · (1, A)
∗

, and Wsucc = W1 · (0, A) · (1, A) · W0.

The weighted expression W0 finds the leftmost leaf; W1 returns to the root from the rightmost
leaf; and Wsucc goes from a leaf to the next one in the depth-first search. Then, the depth-first
search is implemented by the weighted expression (⊤, A) · W0 · W ∗

succ · W1 · (⊤, A).
By Theorem 19, there exists an equivalent non ambiguous automaton, that thus visits the

whole tree. Since it is possible to reset the tree, going back to the root, in a non ambiguous
fashion, we can remove the requirement for the automata and the expressions to visit the
whole tree while starting and ending at the root. This allows for more freedom in the models.
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Taking advantage of this relaxation, it is possible to count the maximal number of
occurrences of a letter a in branches of the tree, starting at the root of the tree, non-
deterministically going down the chosen branch, and ending at the bottom: using the
rationally additive semiring (N ∪ {−∞, +∞}, sup, +, −∞, 0),(

(⊤, a) · 1 + (⊤, A \ {a})
)

·
(
(0, a) · 1 + (0, A \ {a}) + (1, a) · 1 + (1, A \ {a})

)∗ · ⊥.

8 Conclusion

We have given an application of our result to tree-walking automata. A natural extension
consists in investigating other kinds of structure like Mazurkiewicz traces or grids.

Our approach is able to capture tree-walking automata, however it is intrinsically more
of a tree-generating automaton model. Over trees it does not make a huge difference but
it does if we try to extend this approach to more general graph-walking automata models.
A natural way to define weighted automata over graphs is to take the sum of the weights
of all paths over a given graph (in a sense already explored in [16], but limiting itself to
non-looping runs). This means that a given path in the automaton can be a run in different
graphs, which is not compatible with our approach of generating monoid elements.

One possible research direction would be to consider so-called SD-expressions introduced by
Schützenberger (see [10]). These expressions were shown to coincide with star-free expressions
with the advantage of not using the complement (instead restricting the languages over
which the Kleene star can be applied, namely to prefix codes with bounded synchronisation
delay) which means it can be applied to the quantitative setting. Indeed, in [7], the authors
extended the result to transducers and showed that these expressions correspond to aperiodic
transducers. These expressions are naturally adapted to the unambiguous setting (maybe
this restriction can be overcome) but it would be interesting to study their expressive power
in the context of pre-rational monoids.

A final direction would be to use logics instead of expressions, to describe in a less
operational way the behaviour of weighted automata over monoids. Promising results have
already been obtained in specific contexts, like non-looping automata walking (with pebbles)
on words, trees or graphs [4], but a cohesive point of view via monoids is still lacking.
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Abstract
We study two-player reachability games on finite graphs. At each state the interaction between
the players is concurrent and there is a stochastic Nature. Players also play stochastically. The
literature tells us that 1) Player B, who wants to avoid the target state, has a positional strategy
that maximizes the probability to win (uniformly from every state) and 2) from every state, for every
ε > 0, Player A has a strategy that maximizes up to ε the probability to win. Our work is two-fold.

First, we present a double-fixed-point procedure that says from which state Player A has a
strategy that maximizes (exactly) the probability to win. This is computable if Nature’s probability
distributions are rational. We call these states maximizable. Moreover, we show that for every ε > 0,
Player A has a positional strategy that maximizes the probability to win, exactly from maximizable
states and up to ε from sub-maximizable states.

Second, we consider three-state games with one main state, one target, and one bin. We
characterize the local interactions at the main state that guarantee the existence of an optimal
Player A strategy. In this case there is a positional one. It turns out that in many-state games,
these local interactions also guarantee the existence of a uniform optimal Player A strategy. In a
way, these games are well-behaved by design of their elementary bricks, the local interactions. It is
decidable whether a local interaction has this desirable property.
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1 Introduction

Stochastic concurrent games. Games on graphs are an intensively studied mathematical
tool, with wide applicability in verification and in particular for the controller synthesis
problem, see for instance [16, 1]. We consider two-player stochastic concurrent games played
on finite graphs. For simplicity (but this is with no restriction), such a game is played over
a finite bipartite graph called an arena: some states belong to Nature while others belong
to the players. Nature is stochastic, and therefore assigns a probabilistic distribution over
the players’ states. In each players’ state, a local interaction between the two players (called
Player A and Player B) happens, specified by a two-dimensional table. Such an interaction
is resolved as follows: Player A selects a probability distribution over the rows of the table
while Player B selects a probability distribution over the columns of the table; this results
into a distribution over the cells of the table, each one pointing to a Nature state of the
graph. An example of game arena is given in Figure 1: circle states are players’ while square
states are Nature’s; note that dashed arrows assign only probability 1 to a next state in this
example (but in general could give probabilities to several states).
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q0,

[
d0 d1
d1 d2

]
d0

d1

d2

>

⊥

1 1

1

Figure 1 The game starts in q0 with two actions available
for each player. Player A wins if the state ⊤ is reached.

[
x y
y z

]
Figure 2 The local interaction at

q0 up to a renaming of the outcomes.

Globally, the game proceeds as follows: starting at an initial state q0, the two players
play the local interaction of the current state, and the joint choice determines (stochastically)
the next Nature state of the game, itself moving randomly to players’ states; the game
then proceeds subsequently from the new players’ state. The way players make choices is
given by strategies, which, given the sequence of states visited so far (the so-called history),
assign local strategies for the local interaction of the state the game is in. For application in
controller synthesis, strategies will correspond to controllers, hence it is desirable to have
strategies simple to implement. We will be in particular interested in strategies which are
positional, that is, strategies which only depend on the current state of the game, not on
the whole history. When each player has fixed a strategy (say sA for Player A and sB for
Player B), this defines a probability distribution Pq0

sA,sB
over infinite sequences of states of

the game. The objectives of the two players are opposite (we assume a zero-sum setting):
together with the game, a measurable set W of infinite sequences of states is fixed; the
objective of Player A is then to maximize the probability of W while the objective of Player B
is to minimize this probability.

Back to the example of Figure 1, assume Player A (resp. B) plays the first row (resp.
column) with probability pA (resp. pB), then the probability to move to ⊤ is pA + pB − 2pApB.
If Player A repeatedly plays the same strategy at q0 with pA < 1, then the probability to
reach ⊤ will lie between pA and 1, depending on Player B; however, if she plays pA = 1, then
by playing pB = 1, Player B enforces staying in q0, hence reaching ⊤ with probability 0.

Values and (almost-)optimal strategies. As mentioned above, Player A wants to maximize
the probability of W , while Player B wants to minimize this probability. Formally, given
a strategy sA for Player A, its value is measured by infsB Pq0

sA,sB
(W ), and Player A wants to

maximize that value. Dually, given a strategy sB for Player B, its value is measured by
supsA

Pq0
sA,sB

(W ), and Player B wants to minimize that value. Following Martin’s determinacy
theorem for Blackwell games [13], it actually holds that when W is Borel, then the game has
a value given by

χq0
= sup

sA

inf
sB

Pq0
sA,sB

(W ) = inf
sB

sup
sA

Pq0
sA,sB

(W )

While this ensures the existence of almost-optimal strategies (that is, ε-optimal strategies
for every ε > 0) for both players, it says nothing about the existence of optimal strategies,
which are strategies achieving χq0

. In general, as already mentioned in [8], optimal strategies
may not exist. Indeed assuming a reachability objective with target ⊤, the game in Figure 1
is such that χq0

= 1, however Player A can only achieve 1 − ε for every ε > 0 by playing
repeatedly at q0 the first row of the table with probability 1 − ε and the second row with
probability ε, but Player A cannot achieve 1.
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Our setting. In this paper we focus on reachability games, that is, W is a reachability
condition. They are a special case of recursive games (where targets are assigned payoffs),
as studied in [8]. As such, they enjoy several nice properties: (i) Player A has positional
almost-optimal strategies; (ii) Player B has positional optimal strategies [7]. These properties
are specific to reachability games (or slight generalizations thereof), and this is for instance
not the case of Büchi games, see [7, Thm. 2].

Our goal is to study maximizable and sub-maximizable states in (reachability) games:
maximizable (resp. sub-maximizable) states are states from which optimal strategies exist
(resp. no optimal strategies exist). Our contributions are then mostly twofolds:

1. We characterize via a double-fixed-point procedure maximizable and sub-maximizable
states. This characterization cautiously analyzes when and why no optimal strategies will
exist. Back to the example of Figure 1, we realize that no optimal strategy exists since
at the limit of ε-optimal strategies, i.e. when Player A plays the first row almost-surely,
Player B can enforce cycling back to q0, hence disabling state ⊤.This simple analysis
close to the target has to be propagated carefully in the game, in which some strategies
which are designated as risky (since they ultimately lead to such a situation) have to be
avoided.
As a byproduct of our construction, we have Theorem 28, which establishes that one can
build almost-optimal positional strategies, which are actually optimal where they can be.
This refines the result of [8] which did not ensure optimality where it could.
A consequence of that construction is that maximizable and sub-maximizable states can
be computed under slight assumptions, and that witness positional strategies can be
computed as well. For these results we rely on Tarski’s decidability result of the theory
of the reals [15].
We also show that our result cannot be extended to games with countably many states
by exhibiting such a game in which an optimal strategy exists, but there is no optimal
positional strategy.

2. Local interactions played by the players are abstracted into game forms, where cells of
the matrix are now seen as variables (some of them being equal). For instance, the game
form associated with state q0 in the running example has three outcomes: x, y and z, and
it is given in Figure 2. Game forms can be seen as elementary bricks that can be used
to build games on graphs. We can embed such a brick into various three-states games
with one main state, one target, and one bin (as is done in Figure 1 for the interaction of
Figure 2). We characterize the local interactions at the main state that guarantee the
existence of an optimal Player A strategy. In this case there is a positional one. It turns
out that in many-state games, these local interactions also guarantee the existence of a
uniform optimal Player A strategy. In a way, these games are well-behaved by design of
their elementary bricks, the local interactions. It is decidable whether a local interaction
has this desirable property.
Importantly we exhibit a simple condition on game forms which ensures the above:
determined game forms as studied in [2] do satisfy the condition. The latter game forms
generalize turn-based local interactions (where each players’ state is controlled by a unique
player – that is, the matrix defining the local interaction has a single row or a single
column). We therefore recover the fact that stochastic turn-based reachability games
admit optimal positional strategies, which was shown in [14, 4, 19].

Additional details and complete proofs are available in the arXiv version of this paper [3].

CSL 2022
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Related work. In [6], the authors characterize using fixed points as well states with
value 1: sure-winning states (all generated plays satisfy the reachability condition – as if no
probabilities were involved), almost-sure winning states (that is, maximizable states with
value 1) and limit-sure winning states (that is, sub-maximizable states with value 1). Our
work generalizes this result with states with arbitrary values.

There are many works dedicated to the study of stochastic turn-based games. These
games enjoy more properties. Indeed, in parity stochastic turn-based games, Player A always
has an optimal pure positional strategy [14, 4, 19]. These results do not extend in general to
infinite (turn-based) arenas (even when they are finitely-branching): optimal strategies may
not exist, and when they exist, they may require infinite memory [12].

2 Preliminaries

Consider a non-empty set Q. The support Supp(µ) of a function µ : Q → [0, 1] corresponds
to set of non-0s of the function: Supp(µ) = {q ∈ Q | µ(q) ∈ ]0, 1]}. A discrete probabilistic
distribution over a non-empty set Q is a function µ : Q → [0, 1] such that its support Supp(µ)
is countable and

∑
x∈Q µ(x) = 1. The set of all distributions over the set Q is denoted D(Q).

We also consider the product order on vectors ⪯ : Rn × Rn defined for any n ∈ N by, for all
v, v′ ∈ Rn, we have v ⪯ v′ ⇔ ∀i ∈ J1, nK, v(i) ≤ v′(i). For v ∈ Rn and x ∈ R, the notation
v + x refers to the vector v′ ∈ Rn such that, for all i ∈ J1, nK, we have v′(i) = v(i) + x.

3 Game Forms

We recall the definition of game forms which informally are 2-dim. tables with variables.

▶ Definition 1 (Game form and game in normal form). A game form is a tuple F =
⟨StA, StB, O, ϱ⟩ where StA (resp. StB) is the non-empty set of (pure) strategies available
to Player A (resp. B), O is a non-empty set of possible outcomes, and ϱ : StA × StB → O is a
function that associates an outcome to each pair of strategies. When the set of outcomes O
is equal to [0, 1], we say that F is a game in normal form. For a valuation v ∈ [0, 1]O of the
outcomes, the notation Fv refers to the game in normal form ⟨StA, StB, [0, 1], v ◦ ϱ⟩. A game
form F = ⟨StA, StB, O, ϱ⟩ is finite if the set of pure strategies StA ∪ StB is finite.

In the following, the game form F will always refer to the tuple ⟨StA, StB, O, ϱ⟩ unless
otherwise stated. Furthermore, we will be interested in valuations of the outcomes in the
interval [0, 1]. Informally, Player A (the rows) tries to maximize the outcome, whereas Player
B (the columns) tries to minimize it.

▶ Definition 2 (Outcome of a game in normal form). Consider a game in normal form
F = ⟨StA, StB, [0, 1], ϱ⟩. The set D(StA) corresponds to the set of mixed strategies available
to Player A, and analogously for Player B. For a pair of mixed strategies (σA, σB) ∈
D(StA) × D(StB), the outcome outF (σA, σB) in F of the strategies (σA, σB) is defined as:
outF (σA, σB) :=

∑
a∈StA

∑
b∈StB

σA(a) · σB(b) · ϱ(a, b) ∈ [0, 1].

The definition of the value of a game in normal form follows:

▶ Definition 3 (Value of a game in normal form and optimal strategies). Consider a game
in normal form F = ⟨StA, StB, [0, 1], ϱ⟩ and a strategy σA ∈ D(StA) for Player A. The
value of strategy σA, denoted valF (σA) is equal to: valF (σA) := infσB∈D(StB) outF (σA, σB),
and analogously for Player B, with a sup instead of an inf. When supσA∈D(StA) valF (σA) =
infσB∈D(StB) valF (σB), it defines the value of the game F , denoted valF .
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Note that von Neuman’s minimax theorem [18] ensures it does as soon as the game F is
finite. A strategy σA ∈ D(StA) ensuring valF = valF (σA) is called optimal. The set of all
optimal strategies for Player A is denoted OptA(F) ⊆ D(StA), and analogously for Player B.
Von Neuman’s minimax theorem ensures the existence of optimal strategies (for both players).

As it will be useful in Section 7, we define a least fixed point operator in a game form
given a partial valuation of the outcomes.

▶ Definition 4 (Total valuation induced by a partial valuation). For a game form F and a
partial valuation α : O \ E → [0, 1] for some E ⊆ O, we define the map fF

α : [0, 1] → [0, 1]
by, for all y ∈ [0, 1]: fF

α (y) := valFα[y] where α[y] : O → [0, 1] is such that α[y][E] = {y} and
α[y]|O\E = α. The map fα has a least fixed point (by monotonocity), denoted vα ∈ [0, 1].
The valuation α̃ ∈ [0, 1]O induced by the partial valuation α is then equal to α̃ = α[vα].

4 Concurrent stochastic games

In this section, we define the formalism we use throughout this paper for concurrent graph
games, strategies and values.

▶ Definition 5 (Stochastic concurrent games). A finite stochastic concurrent arena C is a
tuple ⟨A, B, Q, D, δ, dist⟩ where A (resp. B) is the non-empty finite set of actions of Player A
(resp. B), Q is the non-empty finite set of states, D is the non-empty set of Nature states,
δ : Q × A × B → D is the transition function, dist : D → D(Q) is the distribution function. A
concurrent reachability game is a pair ⟨C, ⊤⟩ where ⊤ ∈ Q is a target state (for Player A). It
is supposed to be a self-looping sink: for all a ∈ A and b ∈ B, we have Supp(δ(⊤, a, b)) = {⊤}.

In the following, the arena C will always refer to the tuple ⟨A, B, Q, D, δ, dist⟩ unless
otherwise stated, and ⊤ to the target in the game ⟨C, ⊤⟩, that we assume fixed in the rest of
the definitions. Let us now consider a crucial tool in our study: the notion of local interaction.
These are game forms induced by the transition function δ in states of the game.

▶ Definition 6 (Local interaction). The local interaction at state q ∈ Q is the game form
Fq := ⟨A, B, D, δ(q, ·, ·)⟩. That is, the strategies available for Player A (resp. B) are the
actions in A (resp. B) and the outcomes are the Nature states.

Local interactions also allow us to define the probability transition to go from one state
to another, given two local strategies.

▶ Definition 7 (Probability transition). Consider a state q ∈ Q and two local strategies
(σA, σB) ∈ D(A) × D(B) in the game form Fq. Let q′ ∈ Q. The probability pq,q′(σA, σB) to
go from q to q′ if the players opt for strategies σA and σB is equal to the outcome of the game
form Fq with the value of a Nature state d ∈ D equal to the probability to go from d to q′, i.e.
it is given by the valuation dist(·)(q′) ∈ [0, 1]D. That is: pq,q′(σA, σB) := outFdist(·)(q′)

q
(σA, σB).

Let us now look at the strategies we consider in such concurrent games.

▶ Definition 8 (Strategies). A Player A strategy is a map sA : Q+ → D(A). It is said to be
positional if, for all π = ρ · q ∈ Q+, we have sA(π) = sA(q): the strategy only depends on
the current state. We denote by SA

C and PSA
C the set of all strategies and positional strategies

respectively in arena C for Player A. The definitions are analogous for Player B.

A pair of strategies then induces a probability measure over paths.

CSL 2022
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▶ Definition 9 (Probability measure of paths given two strategies). For a pair of strategies
(sA, sB) ∈ SA

C × SB
C , we denote by sπ

A : Q+ → D(A) the Player A residual strategy after π ∈ Q+

is seen: for all π′ ∈ Q+, sπ
A(π′) = sA(π · π′). The residual strategy sπ

B is defined analogously.
Then, the probability of occurrence of a finite path π ∈ Q+ is defined inductively. For all
starting states q0 ∈ Q, for all q · π ∈ Q+, if q ̸= q0, we set Pq0

sA,sB
(q) := 0. Furthermore,

Pq0
sA,sB

(q0) := 1 and for all q · π ∈ Q+, we set:

Pq0
sA,sB

(q0 · q · π) := pq0,q(sA(q0), sB(q0)) · Pq

sq0
A ,sq0

B
(q · π)

A probability measure Pq0
sA,sB

is thus defined over the σ-algebra generated by cylinders (which
are continuations of finite paths). Standardly (see e.g. [17]), infinite sequences of states
visiting some subset Q′ ⊆ Q is measurable, and we note Pq0

sA,sB
(Q′) (resp. Pq0

sA,sB
(n, Q′)) the

probability to reach Q′ (resp. in at most n steps) from state q0.

Finally, we can define what is the value of strategies (for both players) and of the game.

▶ Definition 10 (Value of strategies and of the game). The value χC
sA

(q) of a Player A strategy
sA from a state q ∈ Q is equal to χC

sA
(q) := infsB∈SB

C
Pq

sA,sB
(⊤). The value χC

A(q) of the game
for Player A from q is: χC

A(q) := supsA∈SA
C

χC
sA

(q). It is analogous for Player B, by inverting
the inf and sup. When equality of these two values holds, it defines the value at state q,
denoted χC(q): χC(q) := χC

A(q) = χC
B(q) ∈ [0, 1]. The value of the game is then given by the

valuation χC ∈ [0, 1]Q. Since the game is finite, [13] gives that this equality is always ensured.
A strategy sA ∈ SA

C such that χC
sA

(q) = χC
A(q) (resp. χC

sA
(q) ≥ χC

A(q) − ε for some ε > 0) is
called a Player A optimal strategy (resp. ε-optimal) from state q. If χC

sA
= χC

A, the strategy sA
is uniformly optimal. This is defined analogously for Player B. For a valuation v ∈ [0, 1]Q of
the states, a Player A strategy sA ∈ SA

C such that v ⪯ χC
sA

is said to guarantee the valuation v.

Value of the game and least fixed point. In the context of a reachability game, the value
of the game is the least fixed point (lfp) of an operator on valuations on states. We define
this operator here.

▶ Definition 11 (Valuation of the Nature states and operator on values). For v ∈ [0, 1]Q,
we define the valuation µv ∈ [0, 1]D of the Nature states by µv(d) :=

∑
q∈Q dist(d)(q) · v(q)

for all d ∈ D. For the operator ∆ : [0, 1]Q → [0, 1]Q, for all valuations v ∈ [0, 1]Q, we set
∆(v)(⊤) := 1 and, for all q ̸= ⊤ ∈ Q, we set ∆(v)(q) := valFµv

q
.

As the operator ∆ is monotonous, it has an lfp for the product order ⪯. This lfp gives the
value of the game. Furthermore, Player B has an optimal positional strategy:

▶ Theorem 12 ([8, 9]). Let m denote the lfp of the operator ∆. Then: χC = m. Furthermore,
there exists a positional strategy sB ∈ PSC

B for Player B ensuring χC
sB

= χC = m.

Markov decision process induced by a positional strategy. Once a Player A positional
strategy is fixed, we obtain a Markov decision process, which, informally, is a game where
only one player (here, Player B) plays (against probabilistic transitions).

▶ Definition 13 (Induced Markov decision process). Consider a Player A positional strategy
sA ∈ PSA

C . The Markov decision process Γ (MDP for short) induced by the strategy sA is the
triplet Γ := ⟨Q, B, ι⟩ where Q is the set of states, B is the set of actions and ι : Q×B → D(Q)
is a map associating to a state and an action a distribution over the states. For all q ∈ Q,
b ∈ B and q′ ∈ Q, we set ι(q, b)(q′) := pq,q′(sA(q), b).
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Note that the set of Player B strategies in an induced MDP Γ is the same as in the concurrent
game C. Furthermore, the useful objects in MDPs are the end components [5]: informally,
sub-MDPs that are strongly connected.

▶ Definition 14 (End component). Consider a Player A positional strategy sA ∈ PSA
C and

consider the MDP Γ induced by that strategy. An end component (EC for short) H in Γ is a
pair (QH , β) such that QH ⊆ Q is a subset of states and β : QH → P(B) \ ∅ associates to
each state a non-empty set of actions compatible with the EC H such that:

for all q ∈ QH and b ∈ β(q), we have Supp(ι(q, b)) ⊆ QH ;
the underlying graph (QH , E) is strongly connected where (q, q′) ∈ E iff q′ ∈
Supp(ι(q, β(q))).

We denote by DH ⊆ D the set of Nature states compatible with the EC H: DH = {d ∈ D |
Supp(d) ⊆ QH}. Note that, for all q ∈ QH and b ∈ β(q), we have δ(q, Supp(sA(q)), b) ⊆ DH .

The interest of ECs lies in the proposition below: in the MDP induced by a Player A
strategy, for all Player B (positional) strategies (thus inducing a Markov chain), from all
states, there is a non-zero probability to reach an EC from which it is impossible to exit.

▶ Proposition 15. Consider a Player A positional strategy sA ∈ PSA
C . Let H denote the set

of all ECs in the MDP induced by the strategy sA. For all Player B strategies sB ∈ PSB
C , there

exists a subset of end components HsB ⊆ H called bottom strongly conneted components
(BSCC for short): for all H = (QH , β) ∈ HsB and q ∈ QH , we have Pq

sA,sB
(Q \ QH) = 0.

Furthermore, if q ∈ Q, we have: Pq
sA,sB

(n, ∪H∈HsB
H) > 0 where n = |Q|.

5 Crucial proposition

We fix a concurrent reachability game ⟨C, T ⟩ and a valuation v ∈ [0, 1]Q of the states that
Player A wants to guarantee. That is, she seeks a strategy sA ensuring that for all q ∈ Q, it
holds χC

sA
(q) ≥ v(q). In particular, when v = m, such a strategy sA would be optimal. We

state a sufficient condition for Player A positional strategies to ensure such a property.
Consider a Player A positional strategy sA ∈ PSC

A. The probability distribution chosen by
this strategy only depends on the current state. In fact, this strategy is built with one (local)
strategy per local interaction: for all state q ∈ Q, sA(q) ∈ D(A) is a strategy in the game form
Fq. As Player A wants to guarantee the valuation v, the valuation of interest of the outcomes
of the game form Fq = ⟨A, B, D, δ(q, ·, ·)⟩ is µv ∈ [0, 1]D – lifting the valuation v to the
Nature states. To ensure that χC

sA
(q) ≥ v(q), one may think that it suffices to choose sA(q) so

that its value in the game in normal form Fµv
q is at least v(q), that is: valFµv

q
(sA(q)) ≥ v(q).

In that case, the strategy sA is said to locally dominate the valuation v:

▶ Definition 16 (Strategy locally dominating a valuation). A Player A positional strategy
sA ∈ PSA

C locally dominates the valuation v if, for all q ∈ Q, we have: valFµv
q

(sA(q)) ≥ v(q).

However, this is not sufficient in the general case, as examplified in Figure 1. For the
valuation v = χC such that v(q0) = v(⊤) = 1 and v(⊥) = 0, a Player A positional strategy sA
that plays the first row in Fq0 with probability 1 ensures that valFµv

q0
(sA(q0)) = 1 ≥ v(q0).

However, we have seen that it does not ensure that χC
sA

(q0) = 1 since, if Player B always
plays the first column, the game indefinitely loops in q0. The issue is that, in the MDP
induced by the strategy sA, the trivial end component {q0} is a trap, as it does not intersect
the target set ⊤ – and therefore, the probability to reach ⊤ from q0 is equal to 0 – whereas
χC(q0) > 0. In fact, as soon as this issue is avoided, if the strategy sA locally dominates the
valuation v, the desired property on sA holds. Indeed:
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▶ Proposition 17. Consider a Player A positional strategy sA ∈ PSA
C locally dominating v,

and assume that v ⪯ m. Assume that for all end components H = (QH , β) in the MDP
induced by the strategy sA, if QH ≠ {⊤}, for all qH ∈ QH , we have χC(qH) = 0 (in other
words, for all q ∈ Q, if χC

sA
(q) = 0 then χC(q) = 0). In that case, for all q ∈ Q, we have

χC
sA

(q) ≥ v(q) (i.e. the strategy sA guarantees the valuation v).

Proof Sketch. Consider some ε > 0 and, for x ∈ {ε, ε/2}, the valuations vx = v −x ∈ [0, 1]Q.
We show that sA guarantees vε. As this holds for all ε > 0, it follows that sA guarantees v.
Consider an arbitrary positional strategy sB for Player B. Let κA be a Player A strategy
guaranteeing vε/2 in n ≥ 0 steps from every state (which exists since vε/2 ≺ m) and a strategy
κB for Player B optimal against κA. So Pq

κA,κB
(n, ⊤) ≥ vε/2(q) for all q ∈ Q. Now, for all

l ≥ 0, we consider the strategy sl
A that plays sA l times and then plays κA (and similarly for

a strategy sl
B for Player B). As sA locally dominates v, it also locally dominates vε/2 which is

obtained from v by translation. Therefore, for any state q ∈ Q, if the local strategy sA(q)
is played in q, then the convex combination of the values of the successors of q w.r.t. the
valuation vε/2 is at least vε/2(q). In other words, the probability to reach ⊤ from q in 1 + n

steps if the strategy s1
A is played is at least vε/2(q): Pq

s1
A,s1

B
(1 + n, ⊤) ≥ vε/2(q). In fact, by

induction, this holds for all l ≥ 0: Pq

sl
A,sl

B
(l + n, ⊤) ≥ vε/2(q). Now, with strategies sl

A and sl
B,

consider the state of the game after l steps: either it is in a BSCC (w.r.t. sA and sB) or it is
not. For a sufficiently large l, the probability not to have reached a BSCC is as close to 0 as we
want. Furthermore, for a state qH in a BSCC H that is not {⊤}, by assumption, we have that
χC(qH) = 0, hence PqH

κA,κB
(⊤) = 0. In addition, if the state is in the trivial BSCC {⊤}, then

⊤ is reached. Hence, for l large enough, the two probabilities Pq

sl
A,sl

B
(l + n, ⊤) and Pq

sl
A,sl

B
(l, ⊤)

are as close to one another as we want. Finally, note that the strategies sl
A, sl

B behave exactly
like the strategies sA, sB in the first l steps. That is, for l large enough, and q ∈ Q, we have
Pq

sA,sB
(⊤) ≥ Pq

sA,sB
(l, ⊤) = Pq

sl
A,sl

B
(l, ⊤) ≥ Pq

sl
A,sl

B
(l + n, ⊤) − ε/2 ≥ vε/2(q) − ε/2 = vε(q). ◀

Fix a Player A positional strategy sA locally dominating the valuation v and let Γ be the
MDP induced by sA. For sA to guarantee the valuation v, it suffices to ensure that any EC
in Γ that is not the trivial EC {⊤} has all its states of value 0. It does not necessarily hold
for sA (recall the explanations before Proposition 17). However, we do have the following:
fix an EC H in Γ. Then, all the states H have the same value w.r.t. the valuation v. It is
stated in the proposition below.

▶ Proposition 18. Consider a Player A positional strategy sA ∈ PSA
C locally dominating a

valuation v ∈ [0, 1]Q. For all EC H = (QH , β) in the MDP induced by the strategy sA, there
exists vH ∈ [0, 1] such that, for all q ∈ QH , we have v(q) = vH . Furthermore, for all q ∈ QH ,
we have valFµv

q
(sA(q)) = v(q).

6 Positional optimal and ε-optimal strategies

The aim of this section is, given a concurrent reachability game, to determine exactly from
which states Player A has an optimal strategy. This, in turn, will give that whenever she has
an optimal strategy, she has one that is positional which therefore extends Everett [8] (the
existence of positional ε-optimal strategies). We fix a concurrent reachability game ⟨C, ⊤⟩
for the rest of this section. Let us first introduce some terminology.

▶ Definition 19 (Maximizable and sub-maximizable states). A state q ∈ Q from which Player A
has (resp. does not have) an optimal strategy is called maximizable (resp. sub-maximizable).
The set of such states is denoted MaxQA (resp. SubMaxQA).
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The value of that game is given by the vector m ∈ [0, 1]Q (from Definition 11). We want
to build an optimal (and positional) strategy for Player A when possible. To be optimal,
a Player A positional strategy sA has to play optimally at each local interaction Fq (for
q ∈ Q) with regard to the valuation µm ∈ [0, 1]D (lifting the valuation m to Nature states).
However, it is not sufficient in general: in the snow-ball game of Figure 1, when Player A
plays optimally in Fq0 w.r.t. the valuation µm (that is, plays the first line with probability 1),
Player B can enforce the play never to leave the state q0 ̸= ⊤. Hence, locally, we want to
have strategies that not only play optimally but, regardless of the choice of Player B, have a
non-zero probability to get closer to the target ⊤. Such strategies will be called progressive
strategies. To properly define them, we introduce the following notation.

▶ Definition 20 (Optimal action). Let q ∈ Q be a state of the game. Consider the game in
normal form Fµm

q . For all strategies σA ∈ D(StA), we define the set BσA of optimal actions
w.r.t. the strategy σA by BσA := {b ∈ B | outFµm

q
(σA, b) = valFµm

q
(σA)}.

In Figure 3, the set BσA of optimal actions w.r.t. the strategy σA are represented in bold
purple: the weighted values of these actions is the value of the strategy: 1/2.

We can now define the set of progressive strategies.

▶ Definition 21 (Progressive strategies). Consider a state q ∈ Q and a set of states Gd ⊆ Q

that Player A wants to reach. The set of Nature states GdD ⊆ D corresponds to the Nature
states with a non-zero probability to reach the set Gd: GdD := {d ∈ D | Supp(dist(d)) ∩ Gd ̸=
∅}. Then, the set of progressive strategies Progq(Gd) at state q w.r.t. Gd is defined by
Progq(Gd) := {σA ∈ OptA(Fµm

q ) | ∀b ∈ BσA , δ(q, Supp(σA), b) ∩ GdD ̸= ∅}.

In Figure 3, the Nature states in GdD are arbitrarily chosen for the example and circled
in green. The depicted strategy is progressive as, for all bold purple actions, there is a
green-circled state in the support of the strategy (the circled 3/4).

However, in an arbitrary game, some states may be sub-maximizable. In that case,
playing optimally implies avoiding these states. Given a set Bd ⊆ Q of states to avoid, an
optimal strategy that has a non-zero probability to reach that set of states Bd is called risky.

▶ Definition 22 (Risky strategies). Let q ∈ Q be a state of the game and Bd ⊆ Q be a set of
sub-maximizable states. The corresponding set of Nature states BdD ⊆ D is defined similarly
to GdD in Definition 21: BdD := {d ∈ D | Supp(dist(d)) ∩ Bd ̸= ∅}. Then, the set of risky
strategies Riskq(Bd) at state q w.r.t. Bd is defined by Riskq(Bd) := {σA ∈ OptA(Fµm

q ) | ∃b ∈
BσA , δ(q, Supp(σA), b) ∩ BdD ̸= ∅}.

In Figure 3, the set of Nature states BdD are also arbitrarily chosen for the example and circled
in red. The strategy σA is not risky since no red-squared state appears in the intersection of
the support of σA and the purple actions in BσA

.
In fact, we want for local strategies to be efficient, that is both progressive and not risky.

▶ Definition 23 (Efficient strategies). Let q ∈ Q be a state of the game and Gd, Bd ⊆ Q

be sets of states. The set of efficient strategies Effq(Gd, Bd) at state q w.r.t. Gd and Bd is
defined by Effq(Gd, Bd) := Progq(Gd) \ Riskq(Bd).

In Figure 3, the strategy σA is efficient as it is both progressive and not risky.
We can now compute inductively the set of maximizable and sub-maximizable states.

First, given a set of sub-maximizable states Bd, we define iteratively below a set of secure
states w.r.t. Bd, there are the states with a non-zero probability to get closer to the target
⊤ while avoiding the set Bd. The construction is illustrated in Figure 4.
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σA :

0

0.5

0.5

0

1/2 1/2 0 0

1 3/4 1/4 1

3/4 1/4 3/4 1/2

0 0 1/2 1




Figure 3 A game in normal form with an

optimal strategy depicted in brown on the left.
Its value is 1/2 = 1/2 · 3/4 + 1/2 · 1/4.

⊤

Sec1(Bd)

··
·

Secn(Bd)

m−1[0]

Q \ Sec(Bd)

Bd

Figure 4 The construction of Definition 24
of the set of states Sec(Bd): it is the reunion of
the blue and green vertical stripe areas.

▶ Definition 24 (Secure states). Consider a set of states Bd ⊆ Q. We set Sec0(Bd) := {⊤}
and, for all i ≥ 0, Seci+1(Bd) := Seci(Bd) ∪ {q ∈ Q \ Bd | Effq(Seci(Bd), Bd) ̸= ∅}. The set
Sec(Bd) of states secure w.r.t. Bd is: Sec(Bd) := ∪n∈NSecn(Bd) ∪ m−1[0].

Note that, as the game C is finite, this procedure ends in at most n = |Q| steps.
Furthermore, the states of value 0 are added since any state of value 0 is maximizable. The
interest of this construction lies in the lemma below: if all states in Bd are sub-maximizable,
then all states in Q \ Sec(Bd) also are.

▶ Lemma 25. Assume that a set of states Bd is such that Bd ⊆ SubMaxQA. Then, the set
of states Q \ Sec(Bd) is such that Q \ Sec(Bd) ⊆ SubMaxQA (these correspond to the red
horizontal stripe areas in Figure 4).

Proof Sketch. For an arbitrary Player A strategy sA ∈ SA
C to be optimal, it roughly needs,

on all relevant paths, to be optimal. More precisely, on any finite path π = π′ · q ∈ Q+ with a
non-zero probability to occur if Player B plays (locally) optimal actions against the strategy
sA (called a relevant path), the strategy sA needs to play an optimal (local) strategy in the
local interaction Fq and it1 has to be optimal from q in the reachability game. Therefore, on
all relevant paths, the strategy sA, locally, has to play optimal strategies that are not risky.
However, in any local interaction of a state q ∈ Q \ Sec(Bd), there is no efficient strategies
available to Player A. Therefore, if the game starts from a state q ∈ Q \ Sec(Bd) an optimal
strategy sA for Player A (which therefore is locally optimal but not progressive) would allow
Player B to ensure staying in the set Q \ Sec(Bd) while playing optimal actions. In that case,
the game never leaves the set Q\Sec(Bd), which induces a value of 0, whereas χC(q) > 0 since
q /∈ Sec(Bd). Thus, there is no optimal strategy for Player A from a state in Q \ Sec(Bd). ◀

We define inductively the set of bad states (which, in turn, will correspond to the set of
sub-maximizable states) below.

▶ Definition 26 (Set of sub-maximizable states). Let Bad0 := ∅ and, for all i ≥ 0, Badi+1 :=
Q \ Sec(Badi). Then, the set Bad of bad states is equal to Bad := ∪n∈NBadn for n = |Q|.

Note that, as in the case of the set of secure states, since the game C is finite, this procedure
ends in at most n = |Q| steps. Lemma 25 ensures that the set of states Bad is included in
SubMaxQA. In addition, we have that there exists a Player A positional strategy optimal
from all states q in its complement Sec(Bad) = Q \ Bad, as stated in the lemma below.

1 In fact, the residual strategy sπ′

A .
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⊤

m− ε ⪯ v ≺ m

v = m

1

p
1− p

p′

1− p′

[
0 0
0 0

]
0

[
0 0
0 0

] 0=

=

[
v2 v2
v2 v2

]v1

+

[
v1 v4
v3 0

]
v2

+

+

[
0 1
1 0

]v4 =

[
v3 v2
v4 1

]
v3

=

+

=

Sec1(Bad)

·
·
·

Secn(Bad)

m−1[0]

Bad = Q \ Sec(Bad)

Figure 5 An illustration of the proof of Lemma 27 on the MDP induced by the strategy sA.
Labels v1, . . . , v4 is the value of the corresponding states given by the valuation v.

▶ Lemma 27. For all ε > 0, there exists a positional strategy sA ∈ PSC
A s.t.:

for all q ∈ Sec(Bad), we have χC
sA

(q) = m(q);
for all q ∈ Bad, we have χC

sA
(q) ≥ m(q) − ε.

In particular, it follows that Sec(Bad) ⊆ MaxQA.

Proof Sketch. To prove this lemma, we define a Player A positional strategy sA ∈ PSA
C ,

a valuation v ∈ [0, 1]Q of the states, prove that the strategy sA locally dominates that
valuation and prove that the only EC compatible with sA that is not the target has value
0. This will show that is guarantees the valuation v by applying Proposition 17. As we
want the strategy sA to be optimal from all secure states, we consider a partial valuation
v such that v|Sec(Bad) := m|Sec(Bad) (we will define it later on Bad). Then, on all secure
states q ∈ Seci(Bad), we set sA(q) to be an efficient strategy w.r.t. Seci−1(Bad) and Bad, i.e.
sA(q) ∈ Effq(Seci−1(Bad), Bad). In particular, sA(q) is optimal in the game form Fq w.r.t. the
valuation µm. However, we know that no strategy can be optimal from states in Bad. Hence,
we consider a valuation v that is ε-close to the valuation m on states in Bad for a well-chosen
ε > 0. This ε is chosen so that the value of the local strategy sA(q) for q ∈ Sec(Bad) is at
least v(q) w.r.t. the valuation µv

2. We can now define the valuation v and the strategy sA on
Bad such that the value of sA(q) in Fq w.r.t. µv is greater than v(q): valFµv

q
(sA(q)) > v(q)

(this requires a careful use the fact that the operator ∆ from Section 4 is 1-Lipschitz). The
valuation v and the strategy sA are now completely defined on Q. By definition, the strategy
sA locally dominates the valuation v.

The MDP induced by the strategy sA is schematically depicted in Figure 5. The different
split arrows appearing in the figure correspond to the actions (or columns in the local
interactions) available to Player B. Black +-labeled-split arrows correspond to the actions of
Player B that increase the value of v (i.e. in a state q, such that the convex combination –

2 Specifically, ε has to be chosen smaller than the smallest difference between the values of an optimal
actions b ∈ BsA(q) and a non-optimal action b ∈ BsA(q).
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Figure 6 An infinite concurrent reachability game C (the Nature states are omitted). The
probabilities pk are such that, for all i ≥ 1, the value of the state si is χC(si) = Πi

k=1pk = (1/2+1/2i).

w.r.t. to the probabilities chosen by the strategy sA – of the values w.r.t. v of the successor
states of q is greater than v(q)). For instance, we have v2 < p · v4 + (1 − p) · 0, where the
probability p ∈ [0, 1] is set by the strategy sA. On the other hand, purple =-labeled-split
arrows correspond to the actions whose values do not increase the value of the state. For
instance v4 = (1 − p′) · 0 + p′ · 1. We can see that the only split arrows exiting states in
Bad (the red horizontal stripe area) are black (since valFµv

q
(sA(q)) > v(q) for all q ∈ Bad).

However, from a secure state q ∈ Sec(Bad) (the green and blue vertical stripe areas) there are
also purple split arrows. Note that, in these secure states q ∈ Sec(Bad), purple split arrows
correspond to the optimal actions BsA(q) at the local interaction Fq. Furthermore, these split
arrows cannot exit the set of secure states Sec(Bad) since the local strategy sA(q) is not risky.

We can then prove that the strategy sA guarantees the valuation v by applying Propos-
ition 17: since sA locally dominates the valuation v, it remains to show that all the ECs
different from {⊤} have only states of value 0. In the figure, this corresponds to having
ECs only in the blue upper circle and dark green bottom right inner circle areas. In fact,
Proposition 18 gives that any state q in an EC ensures valFµv

q
(sA(q)) = v(q), which implies

that no state in Bad can be in an EC. This can be seen in the figure between the states
of value v1 and v2: because of the black arrow from v1 to v2, we necessarily have v1 < v2.
Then, v2 cannot loop (with probability one) to v1 since this would imply v2 < v1. As all
the split arrows are black for states in Bad, no EC can appear in this region. Furthermore,
the optimal actions in the secure states always have a non-zero probability to get closer to
the target ⊤. In the figure, this corresponds to the fact that there is always one tip of a
purple split arrow that goes down in the (Seci(Bad))i∈N hierarchy (since the strategy sA(q)
is progressive): in the example, from v3 to v4 and from v4 to the target ⊤. Therefore, the
only loop (with probability one) that can occur in the set (Seci(Bad))i∈N is at the target ⊤.
We conclude by applying Proposition 17. ◀

Overall, we obtain the theorem below summarizing the results proved in this section.

▶ Theorem 28. In a concurrent reachability game ⟨C, ⊤⟩, we have Bad = SubMaxQA and
Sec(Bad) = MaxQA. Furthermore, for all ε > 0, there is a Player A positional strategy sA
optimal from all states in MaxQA and ε-optimal from all states in SubMaxQA.

Infinite arenas. In this paper, we only consider finite arenas and the constructions we have
exhibited and results we have shown hold in that setting. Note that Theorem 28 does not
hold on infinite arenas (i.e. with an infinite number of states): Figure 6 depicts an infinite
concurrent reachability game where the state q0 is maximizable but, from q0, Player A does
not have any positional optimal strategy. Indeed, in state s is plugged the game of Figure 1,
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whose value is 1 but Player A does not have an optimal strategy. Then, for all i ≥ 0, the
probability to reach s from si is equal to vi = (1/2 + 1/2i) > 1/2. Hence, if Player A plays
an 0 < εi-optimal strategy in s such that (1 − εi) · qi > 1/2, then the value of the state si is
greater than 1/2. In that case, in the states ci, Player B plays the second columns obtaining
the value 1/2. This induces that the value in all states qi is 1/2. However, this is only possible
if Player A has (infinite) memory, since the greater the index i considered, the smaller the
value of εi needs to be to ensure (1 − εi) · qi ≥ 1/2 while still ensuring εi > 0 (since Player A
does not have an optimal strategy from s). In particular, for any Player A positional strategy
sA from q0 that is 0 < ε-optimal in s, the value – w.r.t. the strategy sA – of all states si for
indexes i such that (1 − ε) · qi < 1/2 is smaller than 1/2. In which case, Player B plays the
first column in ci, thus obtaining a value smaller than 1/2. It follows that the value of all
states (qn)n≥0 – w.r.t. the strategy sA – is smaller than 1/2. Hence, any Player A positional
strategy is not optimal from q0. Note that, when considering MDPs instead of two-player
games, optimal strategies need not exist but when they do there necessarily are positional
ones (see for instance [10]).

Computing the set of maximizable states. Finally, consider the problem, given a finite con-
current reachability game, to effectively compute the set of maximizable and sub-maximizable
states (assuming the probability distribution of the Nature states are rational). In fact, this
can be done by using the theory of the reals.

▶ Definition 29 (First-order theory of the reals). The first-order theory of the reals (denoted
FO-R) corresponds to the well-formed sentences of first-order logic (i.e. with universal and
existential quandtificators), also involving logical combinations of equalities and inequalities
of real polynomials, with integer coefficients.

The first-order theory of the reals is decidable [15], i.e. determining if a given formula
belonging to that theory is true is decidable. Now, let us consider a finite concurrent
reachability game C and a state q ∈ Q. It is possible to encode, with an FO-R formula, that
the state q is maximizable, i.e. q ∈ MaxQA. First, note that, given two positional strategies
sA and sB for both players, it is possible to compute the value of the game with the theory
of reals: it amounts to finding the least fixed point of the operator ∆ with the strategies
of both players fixed. Then, q being maximizable, denoting u := χC(q) ∈ [0, 1] its value, is
equivalent to having a Player A positional strategy ensuring at least u (against all Player B
positional strategies) and no Player A positional strategy ensures more than u (as ε-optimal
positional strategies always exists for Player A [8]). This can be expressed in FO-R. The
theorem below follows.

▶ Theorem 30. In a finite concurrent reachability game with rational distributions, the set
of maximizable states is computable.

7 Maximizable states and game forms

In the previous section, we were given a concurrent reachability game and we considered
a construction to compute exactly the sets of maximizable and sub-maximizable states. It
is rather cumbersome as it requires two nested fixed point procedures. Now, we would like
to have a structural condition ensuring that if a game is built correctly (i.e. built from
reach-maximizable local interactions), then all states are maximizable. More specifically, in
this section, we characterize exactly the reach-maximizable game forms, that is the game
forms such that every reachability game built with these game forms as local interactions
have only maximizable states.
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Figure 7 The three-state reachability game ⟨C(F,α), ⊤⟩
built from the game form F for some partial valuation
α : O \ E → [0, 1] with E = {x}.
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Figure 8 The game form that

constitutes the local interaction in
the state q0.

First, let us characterize a necessary condition for game forms to be reach-maximizable.
We want for reach-maximizable game forms to behave properly when used individually. That
is, from a game form F and a partial valuation α : O \ E → [0, 1] of the outcomes, we define
a three-state reachability game ⟨C(F,α), ⊤⟩. Note that such games were previously studied
in [11]. We illustrate this construction on an example.

▶ Example 31. In Figure 7, a three-state reachability game ⟨C(F,α), ⊤⟩ is built from a game
form F = ⟨StA, StB, {x, y, z}, ϱ⟩ – with ϱ depicted in Figure 8 – and a partial valuation
α : {y, z} → [0, 1]. We have a one-to-one correspondence between the outcomes of the
game form F and the Nature states of the reachability game ⟨C(F,α), ⊤⟩ via the bijection
g : {x, y, z} → D such that g(x) = dloop and for u ∈ {y, z}, g(u) = du. Furthermore, in the
reachability game ⟨C(F,α), ⊤⟩, we have m(⊤) = 1 and m(⊥) = 0. Therefore, for u ∈ {y, z},
we have µm ◦ g(u) = α(u). In fact, this game is built so that vα = m(q0) and µm = α̃ ◦ g−1

(recall that α̃ is the (total) valuation induced by the partial valuation α from Definition 4).
Let us now determine at which condition on the pair (F , α) is the starting state q0

maximizable in C(F,α). If we have vα = m(q0) = 0, the state q0 is maximizable in any case.
Now, assume that vα = m(q0) > 0. Recall the construction of the previous section, specifically
the set of secure states w.r.t. a set of bad states (Definition 24). Initially, Bad0 = ∅, so we
want for the state q0 to be in Sec(∅), i.e. we want (and need) an efficient strategy in the state
q0 where the set of good states Gd is the target Gd = {⊤} and the set of bad states is empty. In
that case, the set of efficient strategies coincide with the set of progressive strategies. Thus, q0
is maximizable if and only if Progq0

({⊤}) ̸= ∅. We assume for simplicity that α(y), α(z) > 0,
hence the set Nature states GdD with a non-zero probability to reach ⊤ is {g(y), g(z)} ⊆ D.
By definition of Prog (Definition 21), Progq0

({⊤}) ̸= ∅ amounts to have an optimal strategy
σA in Fµm

q0
such that, for all b ∈ BσA : δ(q0, Supp(σA), b) ∩ {g(y), g(z)} ≠ ∅ or, equivalently,

δ(q0, Supp(σA), b) ̸⊆ {g(x)}. In terms of F and α, the state q0 is maximizable if and only if
there is an optimal strategy σA in F α̃ such that, for all b ∈ BσA : ϱ(Supp(σA), b) ̸⊆ {x} = E

if the partial valuation α is defined as α : O \ E → [0, 1] for O = {x, y, z} and E = {x}.

This suggests the definition below of reach-maximizable game form w.r.t. a partial
valuation.

▶ Definition 32 (Reach-maximizable game forms w.r.t. a partial valuation). Consider a game
form F and a partial valuation of the outcomes α : O \ E → [0, 1]. The game form F is
reach-maximizable w.r.t. the partial valuation α if vα = 0 or there exists an optimal strategy
σA ∈ OptA(F α̃) such that for all b ∈ BσA , we have ϱ(Supp(σA), b) ̸⊆ E. Such strategies are
said to be reach-maximizing w.r.t. α.

This definition was chosen to ensure the lemma below.
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▶ Lemma 33. Consider a game form F and a partial valuation of the outcomes α : O \ E →
[0, 1]. The initial state (and thus all states) in the three-state reachability game C(F,α) is
maximizable if and only if the game form F is reach-maximizable w.r.t. the partial valuation α.

The definition of reach-maximizable game form is then obtained via a universal quantific-
ation over the partial valuations considered.

▶ Definition 34 (Reach-maximizable game form). Consider a game form F = ⟨StA, StB, O, ϱ⟩.
It is a reach-maximizable (RM for short) game form if it is reach-maximizable w.r.t. all
partial valuations α : O \ E → [0, 1].

Lemma 33 gives that RM game forms behave properly when used individually, such as in
three-state reachability games. Let us now look at how such game forms behave collectively,
that is we consider concurrent reachability games where all local interactions are RM. In
fact, in such a setting, all states are maximizable. This is stated in the lemma below.

▶ Lemma 35. Consider a concurrent reachability game ⟨C, ⊤⟩ and assume that all local
interactions are RM game forms. Then, all states are maximizable: Q = MaxQA.

Proof Sketch. We show that Q = MaxQA by showing that Bad = ∅, which is equivalent since,
by Theorem 28, we have Bad = SubMaxQA = Q \ MaxQA. That is, we consider the iterative
construction of the set of sub-maximizable states of the previous section and we show that
Bad1 = Q \ (Sec(Bad0)) = ∅ = Bad0 (see Definition 26), which induces that Bad = ∅. Let us
assume towards a contradiction that Q\(Secn(∅)∪m−1[0]) ̸= ∅ for n = |Q|. Since Riskq(∅) = ∅
for all q ∈ q, any efficient strategy in a state q w.r.t. to the sets Secn(∅) and ∅ is in fact a
progressive strategy w.r.t. the set Secn(∅). Hence, the goal is to exhibit such a progressive
strategy in a state q ∈ Q \ Sec(∅), thus showing a contradiction with the fact that q /∈ Sec(∅).
We consider the states with the greatest value – w.r.t. m – as we can hope that they are
the more likely to have progressive strategies. That is, for x := maxq∈Q\Secn(∅) m(q) > 0 the
maximum of m, we set Qx := m−1[x] \ Secn(∅) ̸= ∅ the set of states realizing that maximum.
We want to use the assumption that all local interactions are RM. That is, we need to define
a partial valuation on the outcomes of the local interactions, i.e. on Nature states. First, let
us define its domain. We can find intuition in the example of the three-state reachability
game in Figure 7: the outcome that is not valued by the partial valuation considered is
the Nature state looping on the state q0. Note that its value w.r.t. µm is the same as the
value of the state q0 w.r.t. m. In our case, we consider the set of Nature states Dx realizing
this value x that cannot reach the set Secn(∅), that is Dx := µ−1

m [x] \ Secn(∅)D. Then, we
define the partial valuation of the Nature states α : D \ Dx → [0, 1] by α := µm|D\Dx

. Now,
we can show that there exists a state q ∈ Qx such that α̃ = µm in the game form Fq. By
maximality of x, we can prove that any local strategy σA in Fq that is reach-maximizing
w.r.t. the partial valuation α of the outcomes of Fq is a progressive strategy w.r.t. Secn(∅)
in Fq. Equivalently, σA is efficient w.r.t. Secn(∅) and ∅. Hence the contradiction with the
fact that q /∈ Sec(∅). ◀

Overall, we obtain the theorem below.

▶ Theorem 36. For a set of game forms G, all states in all concurrent reachability games
with local interactions in G are maximizable if and only if all game forms in G are RM.

Deciding if game forms are RM. Consider the following decision problem RMGF: given a
game form, decide if it is a RM game form. We proved Theorem 30 by showing that the
fact that a state is maximizable in a concurrent reachability game can be encoded in the

CSL 2022



7:16 Concurrent Reachability Games

theory of the reals (FO-R). Since Lemma 33 ensures that a game form F is RM w.r.t. a
partial valuation α if and only if the initial state in the three-state reachability game C(F,α)
is maximizable, it follows that, via a universal quantification over partial valuations, the fact
that a game form is RM can be encoded in the theory of the reals. Note that it can also be
encoded directly from the definition of RM game form. We obtain the theorem below.

▶ Proposition 37. The problem RMGF is decidable.

Determined game forms and RM game forms. In [2], the authors have studied a problem
similar to the one we considered in this section: determining the game forms ensuring
that, when used as local interaction in a concurrent game (with an arbitrary Borel winning
condition), the game is determined (i.e. either of the players has a winning strategy). The
authors have shown that these game forms exactly correspond to determined game forms.
These roughly correspond to game forms where, for all subsets of outcomes E ⊆ O, there is
either of line of outcomes in E or a column of outcomes in O \ E, as formally defined below.

▶ Definition 38 (Determined game forms). Consider a game form F = ⟨StA, StB, O, ϱ⟩. It is
determined if, for all subsets of outcomes E ⊆ O, either there exists some a ∈ StA such that
ϱ(a, StB) ⊆ E or there exists some b ∈ StB such that ϱ(StA, b) ⊆ O \ E.

In fact, they proved an equivalence between turn-based games and concurrent games using
determined game forms as local interactions, which holds also when the game is stochastic.
In fact, positional optimal strategies exists for both players in turn-based reachability games
[4], it is also the case in concurrent reachability games with determined local interactions.
This result, combined with Theorem 36 gives immediately that determined game forms are
RM. Interestingly, determined game forms can also be characterized with the least fixed
point operator as in the proposition below.

▶ Proposition 39. A game form F is determined if and only if, for all partial valuations
α : O \ E → [0, 1] of the outcomes, we have vα = fF

α (0). In particular, this implies that all
determined game forms are RM.

8 Future Work

In this paper we give a double-fixed-point procedure to compute maximizable and sub-
maximizable states in a stochastic concurrent reachability (finite) game. Our procedure
yields de facto positional witnesses for the strategies. As further natural work, we seek
studying more general objectives. It is however interesting to notice that, as mentioned in
the introduction, it will not be so easy since even Büchi games do not enjoy positional almost
optimal strategies [7, Theorem 2].

We also plan to better grasp RM game forms, and understand what are RM game forms
for the two players, or analyze the complexity of the RMGF problem.
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Abstract
We study infinite two-player win/lose games (A, B, W ) where A, B are finite and W ⊆ (A × B)ω. At
each round Player 1 and Player 2 concurrently choose one action in A and B, respectively. Player 1
wins iff the generated sequence is in W . Each history h ∈ (A × B)∗ induces a game (A, B, Wh) with
Wh := {ρ ∈ (A × B)ω | hρ ∈ W }. We show the following: if W is in ∆0

2 (for the usual topology),
if the inclusion relation induces a well partial order on the Wh’s, and if Player 1 has a winning
strategy, then she has a finite-memory winning strategy. Our proof relies on inductive descriptions
of set complexity, such as the Hausdorff difference hierarchy of the open sets.

Examples in Σ0
2 and Π0

2 show some tightness of our result. Our result can be translated to games
on finite graphs: e.g. finite-memory determinacy of multi-energy games is a direct corollary, whereas
it does not follow from recent general results on finite memory strategies.
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1 Introduction

Two-player win/lose games have been a useful tool in various areas of logic and computer
science. The two-player win/lose games in this article consist of infinitely many rounds. At
each round i, Player 1 and Player 2 concurrently choose one action each, i.e. ai and bi in
their respective sets A and B. Player 1 wins and Player 2 loses if the play (a0, b0)(a1, b1) . . .

belongs to a fixed W ⊆ (A × B)ω. Otherwise Player 2 wins and Player 1 loses. We call
W the winning set of Player 1, or the winning condition for Player 1. A strategy is a map
that tells a player how to play after any finite history of actions played: a Player 1 (resp.
2) strategy is a map from (A × B)∗ to A (resp. B). A strategy is finite-memory (FM) if
the map can be implemented by a finite-state machine. Also, each history h ∈ (A × B)∗

induces a game starting at h and taking the past into account, i.e. with winning set
Wh := {ρ ∈ (A × B)ω | hρ ∈ W}.

For now we state a slightly weaker version of our main result: if A and B are finite, if the
(Wh)h∈(A×B)∗ constitute a well partial order (wpo) for the inclusion, if W ∈ ∆0

2, i.e. in the
usual cylinder topology W is a countable union of closed sets and a countable intersection
of open sets, and if Player 1 has a winning strategy, then she has a finite-memory winning
strategy. Of course, our result also applies to the turn-based version of such games.
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On the proof of the main result. The proof of our main result relies on descriptive set
theory. The Hausdorff-Kuratowski theorem (see, e.g., [5]) states that each set in ∆0

2 can be
expressed as an ordinal difference of open sets, and conversely. In general, this implies that
properties of sets in ∆0

2 may be proved by induction over the countable ordinals. Accordingly,
we prove our main result by induction on W , but the inductive step suggested by the
Hausdorff-Kuratowski theorem does not suit us completely. Instead, we mix it with a folklore
alternative way of describing ∆0

2 by induction. After this mix, our base case consists of
the open sets, the first inductive step consists of union with a closed set, and the second
inductive step of open union.

To prove our result, the base case, where W is open, amounts to reachability games, and
the wpo assumption is not needed. The case where W is closed is easy, and it includes the
multi-energy games (where Player 1 keeps all energy levels positive). Just above these, the
case where W is the union of an open set and a closed set is harder to prove. It includes
disjunctions of a reachability condition and a multi-energy condition. We will present this
harder case in details because it shows part of the complexity of the full result.

Yet another representation of ∆0
2. Above, we mentioned two hierarchies that describe ∆0

2.
In addition, this paper (re-)proves the folklore result that Π0

2 corresponds to Büchi winning
conditions and Σ0

2 to co-Büchi. If labeling each history with 0 or 1, the Büchi (co-Büchi)
condition requires that infinitely (only finitely) many 1’s be seen on a branch/play. The ∆0

2
sets are therefore the sets that can be expressed both by Büchi and co-Büchi conditions.
This is possible exactly if on every infinite play not both 0 and 1 occurs infinitely often. This
corresponds to the play’s crossing only finitely many layers in the previous paragraph.

From the four representations and the layer intuition, we can conclude that ∆0
2 sets are

infinite Boolean combinations of open sets, of course in a restricted sense.

Tightness of the result. The collection of the countable unions of closed sets is called Σ0
2,

and the collection of their complements, i.e. the countable intersections of open sets, is called
Π0

2. So ∆0
2 = Σ0

2 ∩ Π0
2. In this article we provide one example of a winning set W in Σ0

2
and one example in Π0

2 that satisfy the wpo assumption but not the FM-strategy sufficiency.
Hence tightness.

Note that without the wpo assumption, even Turing-computable strategies may not suffice
to win for closed winning sets: take a non-computable binary sequence ρ and a game where
Player 1 wins iff she plays ρ. She has a winning strategy, but no computable ones.

Connections with graph games. Our game ⟨A, B, W ⟩ can be seen as a one-state concurrent
graph game where the winning condition is defined via the actions rather than the visited
states. Winning strategies (resp. FM strategies) coincide in both models.

Alternatively, we can unfold any concurrent graph game into an infinite tree game
⟨A, B, W ⟩ whose nodes are the histories of pairs of actions. Winning strategies coincide in
both models. Moreover, an FM strategy in the tree game is, up to isomorphism, also an
FM strategy in the graph game. The converse may not hold since, informally, the player
may observe the current state only in the graph model. Nevertheless for finite graphs, the
observation of the state can be simulated by an additional finite memory, i.e. the graph itself.
To sum up, any FM result in our tree games can be translated into an FM result in graph
games. Almost conversely, FM results in finite-graph games can be obtained from our tree
games, possibly with non-optimal memory.
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Related works and applications. The two articles [7] and [2] provide abstract criteria
to show finite-memory determinacy in finite-graph games: [7] by Boolean combination of
complex FM winning conditions with simple winning conditions defined via regular languages;
[2] by characterizing, for a fixed memory, the winning conditions that yield, in all finite-graph
games, FM determinacy via this fixed memory. The FM determinacy of multi-energy games
is a corollary of neither, but as mentioned above, it is a direct corollary of our result. (Note
that this specific result was already proved in [10].)

More generally on a finite-graph game, consider the conjunction or disjunction of a
multi-energy winning condition and a Boolean combination of reachability conditions. This
is in ∆0

2 (actually low at some finite level of the hierarchy), this induces a wpo, so if Player 1
has a winning strategy she has an FM one.

However, the FM determinacy of Büchi games in finite-graph games is not a corollary of
our result, because the Büchi conditions may not be in ∆0

2. We mention three things about
this. First, this determinacy does not contradict our tightness results: in Π0

2 or Σ0
2, FM

determinacy holds when the corresponding labeling is regular. Second, in future work we
plan to seek a general theorem having both this determinacy and our main result as special
cases. Third, in finite-graph games, many winning conditions that yield memoryless or FM
determinacy can be simulated by finite games, and therefore clopen winning conditions, i.e.
∆0

1 instead of our more general ∆0
2. For instance, see [1], [8], [4]. This suggests that our work

could be used to prove more FM sufficiency results by reduction of finite-graph games to
tree games with wpo winning condition in ∆0

2.

Structure of the article. Section 2 defines our games and finite-memory strategies; Section 3
presents the related descriptive set theory; Section 4 presents our main result; Section 5
discusses tightness of our main result; Section 6 mentions possible future work.

2 Setting and definitions

We study two-player games, which consist in a tuple (A, B, W ): A is the action set for
Player 1, B is the action set for Player 2 and W ⊆ (A × B)ω is the winning set. Here we only
consider finitely branching games, where A and B are both finite. Such a game is played in
the following way: at each round, each player chooses an action from their respective action
set in a concurrent way, thus producing a pair of actions in A × B. The game then continues
for infinitely many rounds, generating a play which consists in an infinite word in (A × B)ω.
Player 1 then wins if the generated play belongs to the winning set W , while Player 2 wins if
it does not. In the following we will focus on Player 1.

To describe the Players’ behavior in such a game, we use the concepts of histories and
strategies. A history is a finite word in (A × B)∗ and represents the state of the game after
finitely many rounds. We call H the set of histories. For a (finite or infinite) word w and
k ∈ N, we denote by wk the k-th letter of w and by w<k the prefix of w of length k. A
strategy s : H → A for Player 1 is a function that maps histories to actions and represents a
behavior for Player 1: in history h, she will play action s(h). Given a strategy s, a history h

and a word β ∈ Bω, we call out(h, s, β) the only play where both players first play h, then
Player 1 plays according to s and Player 2 plays the actions of β in order. This play is
defined inductively as follows:

for k ≤ |h|, out(h, s, β)<k = h<k;
for k > |h|, out(h, s, β)<k = out(h, s, β)<k−1(s(out(h, s, β)<k−1), βk−|h|−1).
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We say that a play ρ is compatible with a given strategy s if there exists β ∈ Bω such that
ρ = out(ε, s, β), where ε is the empty history. Similarly, a history is compatible with s

if it is the finite prefix of a compatible play. We say that a strategy is winning if all the
plays compatible with it belong to W : if Player 1 plays according to such a strategy, she is
guaranteed to win. We can extend this concept to say that a strategy s is winning from a
history h when for all β ∈ Bω we have out(h, s, β) ∈ W (if after history h Player 1 starts
playing according to s then she will win). We call a winning history a history from which
there exists a winning strategy.

We call a tree any subset of (A × B)∗ which is closed by prefix, and a branch any (finite
or infinite) sequence of elements e0 = ε ⊏ e1 ⊏ e2 ⊏ ... of a tree. In particular, all histories
compatible with a given strategy form a tree, which we call the strategic tree induced by
the strategy. We makes extensive use of Kőnig’s lemma [6], which states that if a finitely
branching tree has no infinite branch then it is a finite tree. Specifically, we often use the
derived result that if some family in a tree intersects all infinte branches of the tree then it
has a finite subset that also does.

Given a history h ∈ Γ, we say that an action a ∈ A is non-losing for h if for any action
b ∈ B, h(a, b) is a winning history. Among all histories, we are particularly interested in
the set of histories along which Player 1 has only played non-losing actions: we call Γ this
particular set. Notice that Player 1 has a winning strategy from any history h ∈ Γ, but that
playing only non-losing actions for Player 1 might be a losing strategy.

A history h ∈ H induces a winning set Wh defined as Wh = {ρ ∈ (A × B)ω | hρ ∈ W}.
The set Wh contains all the infinite continuations ρ such that hρ is a winning play.

Recall that we introduced strategies for Player 1 as functions mapping histories to actions
in A. Among these strategies, we are particularly interested in those that can be described as
finite machines: we call them finite-memory strategies. Let us introduce first the concept of
finite-memory decision machines. A finite-memory decision machine is a tuple (M, σ, µ, m0)
such that:

M is a finite set (the memory);
σ : M → A is the decision function;
µ : M × (A × B) → M is the memory update function;
m0 ∈ M is the initial memory state.

Given a finite-memory decision machine (M, σ, µ, m0), we extend µ by defining µ(m, h)
for h ∈ H in the following inductive way:

µ(m, ε) = m

for all h in H and (a, b) ∈ A × B, µ(m, h(a, b)) = µ(µ(m, h), (a, b)).
For readability’s sake, in case m = m0 and the context is clear, we write µ(h) for µ(m, h).

A finite-memory decision machine (M, σ, µ, m0) induces a strategy s for Player 1 defined
for all h ∈ H as s(h) = σ(µ(m0, h)). We say that a strategy s is a finite-memory strategy if
it is induced by some finite-memory decision machine, and abusively write s = (M, σ, µ, m0)
(identifying the finite-memory decision machine with the strategy it induces) when it is the
case.

We often describe a finite-memory decision machine by only defining µ for the action
pairs that are compatible with σ (i.e. for m ∈ M we only define µ(m, (a, b)) when a = σ(m)).
Such a partial machine can be easily extended to a complete one, and contains all the relevant
information to decide on the winning aspect of the strategy (or rather, strategies, as many
different extensions are possible) it induces as it describes all plays compatible with itself.
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3 Descriptive set theory

3.1 Open sets and the Borel hierarchy

Given a set C and a finite word w ∈ C∗, we call cylinder of w the set cyl(w) = {wρ | ρ ∈ Cω}.
This set contains all the infinite words that start with w. In concordance with the usual
cylinder topology on Cω, the cylinders serve as the basis for the open sets, in the sense that
we define as an open set any set that can be written as an arbitrary union of cylinders. We say
that a family of words F is a generating family for an open set O if we have O = ∪f∈F cyl(f),
that is, O is the set of all plays that have at least one finite prefix in F .

These open sets allow to define a Borel algebra on Cω as the smallest σ-algebra that
contains all open sets. More precisely, the Borel algebra is the smallest collection of sets that
contains the open sets and is closed under both countable union and complement (for more
information about Borel sets, see [5]). This collection of sets can be organized into what is
called the Borel hierarchy, which is defined for countable ordinals in the following way:

Σ0
1 is the collection of all the open sets;

for all countable ordinals θ, Π0
θ is the collection of sets whose complements are in Σ0

θ;
for all countable ordinals θ, Σ0

θ is the collection of sets that can be defined as a countable
union of sets belonging to lower levels of the hierarchy;
finally, for all countable ordinals θ, ∆0

θ is the collection of sets that are in both Σ0
θ and Π0

θ.
To illustrate, let us detail the lowest levels of the hierarchy:

as per the definition, Σ0
1 is the collection of all the open sets;

the sets in Π0
1 are the sets whose complement is an open set, we call them the closed sets;

Σ0
2 contains the sets which can be written as a countable union of closed sets;

Π0
2 contains the sets which complement can be written as a countable union of closed sets:

by properties of the complement, these are the sets that can be written as a countable
intersection of open sets;
finally, ∆0

2 is the collection of sets that can be written both as a countable union of closed
sets and as a countable intersection of open sets.

In the following we will focus on the collection of sets ∆0
2.

3.2 The Hausdorff difference hierarchy

The Hausdorff difference hierarchy (see for instance [5]) provides us with a way of defining
inductively all the sets in ∆0

2. Formally, given an ordinal θ and an increasing sequence of
open sets (Oη)η<θ, the set Dθ((Oη)η<θ) is defined by:

ρ ∈ Dθ((Oη)η<θ) ⇔ ρ ∈ ∪η<θOη and the least η such that ρ ∈ Oη

has parity opposite to that of θ.

For any ordinal θ, we call Dθ the collection of sets S such that there exists an increasing
family of open sets (Oη)η<θ such that S = Dθ((Oη)η<θ). To illustrate, D1 is the collection
of all the open sets, D2 is the collections of the sets that can be written as O1 \ O0 where O1
and O0 are two open sets (and hence contains the closed sets), D3 is the collection of the
sets that can be written as O2 \ (O1 \ O0) where O2, O1 and O0 are three open sets, etc.

The Hausdorff-Kuratowski theorem [5] then states that a set S belongs to ∆0
2 if and only

if there exists an ordinal θ such that S ∈ Dθ.
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3.3 The fine Hausdorff hierarchy
In the spirit of the Hausdorff difference hierarchy, we propose another inductive way of
defining the sets in ∆0

2. This other hierarchy was already introduced in [9], and may have
appeared earlier in the literature but to our knowledge has never been studied in similar
depth. Most of the related results can however be considered folklore. First we introduce the
concept of open union: we say that the union of a family of sets (Si)i∈I is an open union if
there exists a family of disjoint open sets (Oi)i∈I such that for all i ∈ I have Si ⊆ Oi. We
denote such a union by ⋓i∈ISi.

We then define inductively collections of sets Λθ and Kθ, with θ a positive ordinal, in the
following way:

a set S is in Λ1 if and only if it is an open set;
a set S is in Kθ if and only if its complement is in Λθ;
a set S is in Λθ with θ > 1 if and only if there exists a family of sets (Si)i∈I such that for
each i there exists ηi < θ such that Si ∈ Ληi

∪ Kηi
and we have S = ⋓i∈ISi.

This definition is akin to the definition of the Borel hierarchy, with the exception that
the union operation is replaced with an open union. We then prove the following theorem,
which shows our hierarchy is a refinement of the Hausdorff difference hierarchy (and hence
justifies its name):

▶ Theorem 1 (folklore). For all ordinals θ, we have Dθ = Λθ.

This theorem is naturally proven by induction on θ and requires intermediate results
which help understand the nature of the two hierarchies. In particular, we have: (i) for all
ordinals θ the collection Dθ is closed under open union, (ii) for all ordinals θ the collection
Λθ is closed by intersection with an open set, (iii) for all ordinals θ the two collections Λθ and
Kθ are closed under intersection with a cylinder and (iv) for all limit ordinals θ the collection
Dθ is the collection of sets that can be written as the open unions of sets in ∪η<θDη. One
observation which proves pivotal for proving our main result on the existence of finite-memory
strategies is that for all ordinals θ, all sets in Kθ can be written as the union of a closed set
and a set that belongs to Λθ (if θ is a successor odinal, we can be even more precise as Kθ is
the collection of all sets that can be written as the union of a closed set and a set in Λθ−1).
All the details surrounding these two views and the proof of theorem 1 can be found in [3]

3.4 The 0-1 eventually constant labelling
A third possible view of sets in ∆0

2 is given via eventually constant labelling functions. We
say that a labelling function l : C∗ → {0, 1} is eventually constant if for all infinite words
ρ in Cω, the sequence (l(ρ<n))n∈N is eventually constant, which means that there exists a
finite k ∈ N and i ∈ {0, 1} such that for all n ≥ k we have l(ρ<n) = i. We then call 1l the
set of infinite words ρ ∈ C such that the set {n | l(ρ<n) = 1} is infinite. As we will see, the
sets S that belong to ∆0

2 are the sets such that there exists an eventually constant labelling
function l such that S = 1l.

3.5 Equivalence of representations
3.5.1 Representations of sets in ∆0

2

As expressed by the following theorem, the Hausdorff difference hierarchy, fine Hausdorff
hierarchy and eventually constant labelling functions actually define the same sets, which
are exactly the sets that belong to ∆0

2.
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▶ Theorem 2 (folklore). Given a subset S of Cω, the following propositions are equivalent:
(1) S ∈ ∆0

2;
(2) S belongs to the Hausdorff difference hierarchy;
(3) S belongs to the fine Hausdorff hierarchy;
(4) there exists an eventually constant labelling function l such that S = 1l.

The detailed proof can be found in [3], but we give some elements here: the Hausdorff-
Kuratowski theorem [5] shows that (1) ⇔ (2), and Theorem 1 shows that (2) ⇔ (3). We
prove that (3) ⇒ (4) by showing that the collection of sets of the form 1l where l is an
eventually constant labelling function is closed under both open union and complement, and
finally prove that (4) ⇒ (1) by showing that all sets of the form 1l where l is an eventually
constant labelling function can be expressed both as countable intersection of open sets and
countable union of closed sets.

3.5.2 Correspondence between Büchi/co-Büchi conditions and Π0
2/Σ0

2

Two much studied types of winning condition in computer science are the Büchi and co-Büchi
conditions. Such winning conditions are given by a coloring function c that provides a color
(elements in {0, 1}) for every history. In the case of a Büchi condition, a play is then winning
if infinitely many of its prefixes are associated with the color 1 while in the case of a co-Büchi
condition it is winning if finitely many of its prefixes are associated with the color 1 (Büchi
and co-Büchi conditions are thus the complement of each other). As stated by the following
lemma, whose proof can be found in [3], Büchi conditions actually describe the sets in Π0

2:

▶ Lemma 3. A subset S of Cω belongs to Π0
2 if and only if it can be expressed as a Büchi

condition.

A trivial corollary is that co-Büchi conditions describe the sets in Σ0
2:

▶ Corollary 4. W belongs to Σ0
2 if and only if it can be expressed as a co-Büchi condition.

4 On the existence of finite-memory winning strategies when the
winning set belongs to the Hausdorff difference hierarchy

Our aim is to exhibit conditions on W that ensure Player 1 has a finite-memory winning
strategy when some winning strategy exists.

Consider a game (A, B, W ) where the winning set W belongs to ∆0
2. We introduce a new

hypothesis on the induced winning sets of this game: the set inclusion relation, denoted by ⊆,
induces a well partial order (wpo) on the winning sets induced by the histories in Γ. That is,
for any sequence (hn)n∈N of histories in Γ, there exists k < l such that Whk

⊆ Whl
. A known

property of well partial orders which we will use is that any set S ⊆ Γ contains a finite subset
M such that for all h ∈ S there exists m ∈ M such that Wm ⊆ Wh. The set of winning sets
induced by the histories in M effectively functions as a finite set of under-approximations for
the winning sets induced by the histories in S.

Such hypotheses might seem exotic and restrictive, but are effectively satisfied for well-
studied classes of games, such as energy games or multi-energy games played on graphs (see
for instance [10]), or games with a winning condition expressed as a boolean combination
of reachability/safety conditions. Indeed, in the first case the induced winning sets are
isomorphic to the cartesian product of the state space and Nk, where k is the number of
energy dimensions, while in the second case they are isomorphic to the cartesian product of
the state space and the set of possible valuations.
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Under these specific conditions, we prove that Player 1 always has a finite-memory
winning strategy when she has a winning strategy:

▶ Theorem 5. Assume that W belongs to ∆0
2 and ⊆ induces a well partial order on {Wh |

h ∈ Γ}. If Player 1 has a winning strategy from ε, then she also has a finite-memory one.

Given a set S in the Hausdorff difference hierarchy, the rank of S is the least ordinal θ

such that S ∈ Dθ. We prove Theorem 5 by a transfinite induction on the rank of W .
First notice that the inclusion of induced winning sets has the nice property of being

preserved by the addition of a suffix, which is formally expressed by the following lemma:

▶ Lemma 6. If Wh ⊆ Wh′ then for all (a, b) ∈ A × B we have Wh(a,b) ⊆ Wh′(a,b).

▶ Corollary 7. If Wh ⊆ Wh′ then all non-losing actions of h are also non-losing for h′.

4.1 Proof for open sets
We begin by the case where W is an open set (W has rank 1), generated by a set F of
histories.

▶ Lemma 8. If W is an open set and ε ∈ Γ, then Player 1 has a finite-memory winning
strategy from ε.

Proof. Suppose that there exists a winning strategy s from ε. Then consider the strategic
tree T induced by s, and consider the tree T ′ = T \ {h ∈ H | ∃f ∈ F , f ⊏ h}, where ⊏ is the
strict prefix relation. Since s is winning, there is no infinite branch in T ′. By Kőnig’s lemma,
this means that T ′ is finite and by definition all maximal elements (with regards to ⊑, the
prefix relation) of T ′ belong to F . T ′ can then serve as the memory of a finite-memory
winning strategy sf = (T ′, σ, µ, m0) defined by:

for t ∈ T ′ \ F , σ(t) = s(t);
for t ∈ T ′ ∩ F , we set σ(t) as any action a ∈ A;
for t ∈ T ′ and b ∈ B, µ(t, (σ(t), b)) = t(σ(t), b) if t /∈ F and µ(t, (σ(t), b)) = t if t ∈ F ;
m0 = ε.

The strategy sf works by simply following s alongside the branches of T ′ until it reaches a
history in F , and is thus winning. ◀

4.2 Proof for closed sets
We now focus on the study of the case where the winning set W is a closed set. In that case,
the plays ρ such that ρ ∈ W are precisely the plays for which all finite prefixes h are such
that Wh ̸= ∅. As a consequence, any strategy playing non-losing actions for Player 1 is a
winning strategy: such a strategy only generates histories h in Γ, and in particular Wh ̸= ∅.

Furthermore, if ⊆ induces a well partial order on the partial winning sets, then:
(∗) there exists a finite subset M of Γ such that for all h ∈ Γ there exists m ∈ M such that

Wm ⊆ Wh;
(∗∗) any play ρ has two finite prefixes ρ0 and ρ1 such that ρ0 ⊏ ρ1 and Wρ0 ⊆ Wρ1 .
These two observations are the basis for two different approaches to prove the next lemma.

▶ Lemma 9. If W is a closed set, if ⊆ induces a well partial order on (Wh)h∈Γ and if ε ∈ Γ,
then Player 1 has a finite-memory winning strategy from ε.
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Proofs using the two approaches. Consider indeed a game (A, B, W ) where W is a closed
set, ⊆ induces a well partial order on the partial winning sets associated with the winning
histories and such that ε is a winning history. We consider a strategy s that is a winning
strategy for Player 1.

The first approach, derived from observation (∗), consists in building a finite-memory
strategy (M, σ, µ, m0) with memory set M in the following way:

for m ∈ M , we let σ(m) be any non-losing action from m,
for m ∈ M and b ∈ B, since σ(m) is non-losing we know that m(σ(m), b) ∈ Γ, which means
that there exists m′ ∈ M such that Wm′ ⊆ Wm(σ(m),b); we then let µ(m, (σ(m), b)) = m′;
finally m0 ∈ M is chosen such that we have Wm0 ⊆ Wε.

Informally, we have as our memory the set M which contains under-approximations for all
winning sets induced by the histories of Γ. We use the transition function to maintain an
under-approximation of the “real” induced winning set associated to the current history, and
play according to this under-approximation. By Corollary 7, this ensures that we always
play a non-losing action, which is enough to guarantee the win because W is a closed set.

The second approach is derived from observation (∗∗). Consider the winning strategy
s and its associated strategic tree Ts. Along every infinite branch ρ of Ts, there exist two
histories h, h′ such that h ⊏ h′ and Wh ⊆ Wh′ . Consider then the tree T f

s obtained by
pruning Ts along these histories: T f

s = {h′ ∈ Ts | ∀h ∈ Ts, h ⊏ h′ ⇒ Wh ⊈ Wh′}. By Kőnig’s
lemma, T f

s is a finite tree. We call P the set {h ∈ Ts | h /∈ T f
s and h′ ⊏ h ⇒ h′ ∈ T f

s } of the
minimal elements (with regards to the prefix relation) of Ts that do not belong to T f

s . We
then build a finite-memory strategy (M ′, σ, µ, m0) in the following way:

M ′ = T f
s

for m ∈ M ′, we let σ(m) = s(m),
for m ∈ M ′ and (a, b) ∈ A × B such that a = σ(m) = s(m),

if m(a, b) ∈ T f
s then we let µ(m, (a, b)) = m(a, b),

else by construction we have m(a, b) ∈ P and there exists m′ ∈ T f
s such that m′ ⊏

m(a, b) and Wm ⊆ Wm(a,b); we then let µ(m, (a, b)) = m′,
finally m0 = ε.

Informally, this approach consists in playing according to s until we reach a history whose
induced winning set is bigger than one we already met. We then forget the current history
and continue playing as if we were in the history with the smaller induced winning set. This
second approach also ensures that the memory consists of an under-approximation of the
“real” induced winning set, and hence by Corollary 7 it guarantees that the resulting strategy
is non-losing, and thus winning since W is a closed set. ◀

4.3 Limitations to the above approaches
Until now, we have studied the lowest levels of the Hausdorff difference hierarchy, focusing
on the cases where the winning sets belongs to Λ1, the open sets, and K1, the closed sets.
We will explain later how to handle the case for Λ2 and for now turn our attention to K2, as
it proves pivotal to the understanding of our method.

The sets in K2 are the sets that can be written as the union of a closed set and an open
set. Informally, this means that Player 1 can win in two different ways, by ensuring that
either the generated play lies in the closed set or they reach a history which belongs to the
generating family of the open set.
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({0} × B)ω ∅ ∅

({0} × B)ω ∅ ∅

(A × B)ω (A × B)ω (A × B)ω

(A × B)ω (A × B)ω (A × B)ω

...

00 01 10 11

00 01 10 11

00 01 10 11

00 01 10 11

00

Figure 1 A game for which the naive algorithm does not work. For the sake of concision, the
pairs of actions in A × B are written as two-letter words. In red is the partial winning set of the
corresponding history.

ε (0, 1)

0 0

(0, 0) {0} × B

(0, 1)

Figure 2 The finite-memory strategy generated by approaches (∗) and (∗∗) for the game
represented in Figure 1. Each state is labeled by the history associated to it, and in red is the action
associated to that state.

The first condition is akin to a safety objective (Player 1 manages to never go out of a
certain region) while the second condition is akin to a reachability objective (Player 1 meets
a certain given condition at a finite time and it suffices to ensure the win). As shown by the
following example, the two simple approaches we detailed previously for closed sets do not
suffice here:

▶ Example 10. Consider the game (A, B, W ) with A = B = {0, 1} and W =
(0, 0)∗(0, 1)({0} × B)ω + (0, 0)2(0, 0)∗({1} × B + A × {1})(A × B)ω. This game is described
in Figure 1. In other words, Player 1 has two ways to win:

either the players play (0, 1) or (0, 0)(0, 1) and Player 1 then only has to play action 0
forever;
or the players play (0, 0) twice and then one player plays action 1, reaching a point where
all possible continuations are winning for Player 1.

As W can be expressed via a regular expression, it induces finitely many partial winning
sets, which means that ⊆ trivially induces a well partial order over said partial winning sets.
Moreover, W can be expressed as the union of an open set and a closed set (the closed set
corresponds to the first item above, while the open set corresponds to the second item), and
hence belongs to the Hausdorff difference hierarchy (more precisely it belongs to K2).
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Moreover, one can easily check that Wε ⊆ W(0,0). As a consequence, both approach (∗)
and approach (∗∗) yield the finite-memory strategy described in Figure 2. This strategy is
not winning for Player 1, as if Player 2 always plays action 0 it will generate the play (0, 0)ω,
which does not belong to W .

4.4 Proofs for sets in K2

To better understand how the proof works in the general case, we propose here to study the
basic case of sets in K2. As we have seen previously, the two approaches that worked well
for the case where the winning set is a closed set do not suffice in that case. Nevertheless,
we prove the following result:

▶ Theorem 11. If W is in K2, if ⊆ induces a well partial order on (Wh)h∈Γ and if ε ∈ Γ,
then Player 1 has a finite-memory winning strategy from ε.

Let us suppose then that W is in K2: as already mentioned, W is the union of a closed set
C and an open set O. We let F be the generating family of O and denote by Pref(C) the set of
histories which have at least one continuation in C, that is Pref(C) = {h ∈ H | ∃ρ, hρ ∈ C}.

As a preliminary observation, recall we already know how to handle the case when the
winning set is open. The method also works well for the general case when Player 1 is able to
reach O by herself (that is, she have a winning strategy for O). We also know that finding a
finite-memory non-losing strategy for Player 1 is always possible (see for instance the method
(∗) for the case where the winning set is closed). As a consequence, a simple method one
would be tempted to try would be the following:

follow some non-losing strategy as long as the current history belongs to Pref(C);
as soon as we detect we have left Pref(C), play some finite-memory winning strategy to
reach a history in F (this is possible because if we have played in a non-losing fashion so
far and the current history does not belong to Pref(C), then the only way to win from
there is to produce a play that belongs to O).

This method should produce a finite-memory winning strategy, however it relies on the
assumption that one is able to detect whether or not the current history belongs to Pref(C)
using only finite memory. This assumption does not rely on any solid ground, which makes
this method incorrect. We propose another construction of a finite-memory winning strategy,
which does not need to detect when the current history stops belonging to Pref(C), but
which ensures that F will be reached if it were the case (despite not knowing it).

Consider indeed a history h in Γ∩Pref(C) and a history h in Γ such that h /∈ Pref(C) and
Wh ⊆ Wh. We call TC(h, h) the set {hl | hl ∈ Pref(C)} consisting of the finite continuations
from h that belong to Pref(C), but rooted in h. Notice that for all infinite continuations ρ

such that hρ ∈ C, we have hρ ∈ W , which means that hρ ∈ W (since Wh ⊆ Wh) and hence
that hρ ∈ O since h /∈ Pref(C) (which means that all winning continuations of h belong to O

because they cannot belong to C). We thus know that TC(h, h) contains a family of histories
Fh,h included in F (or in the case where h itself has a strict prefix in F , we set Fh,h = {h})
and such that all infinite branches of TC(h, h) have a finite prefix in Fh,h, and by Kőnig’s
lemma we know this family is finite. We call depth(h, h) the maximal length of the elements
in Fh,h. Intuitively, this means that, if the current history were h but Player 1 only knew of
its under-approximation h, she could ensure the win by following a play whose finite prefixes
l were such that hl ∈ Pref(C) for depth(h, h) steps. This however still requires to compute
the value of depth(h, h) and hence to know of h. However, as stated by the following lemma,
the value of depth(h, h) for all eligible h is bounded.
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▶ Lemma 12. For all h in Pref(C), {depth(h, h) | h ∈ Γ, h /∈ Pref(C), Wh ⊆ Wh} is bounded.

The proof of this lemma can be found in appendix [3], and makes use of the well partial
order hypothesis.

For h in Γ ∩ Pref(C), we will then call depth(h) the upper bound of depth(h, h) for h

meeting the criteria described above. The idea is the following: if the current history is
h ∈ Γ, but Player 1 only knows of its under-approximation h, and then plays some finite
continuation l of length depth(h) (which is independent of h) such that hl ∈ Pref(C), then
she ensured the win as hl has a finite prefix in F . This is formally stated in the following
lemma:

▶ Lemma 13. Let h ∈ Pref(C) and h /∈ Pref(C) such that Wh ⊆ Wh. Let ρ ∈ (A × B)ω such
that for all finite prefixes l of ρ such that |l| ≤ depth(h) we have hl ∈ Pref(C). Then hρ ∈ O.

Proof. Let l be the finite prefix of ρ of length depth(h). As depth(h, h) ≤ depth(h) we know
that hl has a prefix in F , hence the result. ◀

Consider now a finite family (hi)i∈I of histories in Γ\Pref(C) such that for all h ∈ Pref(C)
there exists i ∈ I such that Whi ⊆ Wh. For all i ∈ I there exists a finite-memory decision
machine (Mi, σi, µi, mi) associated with a of finite-memory strategy (si)i∈I such that si wins
from hi. As a consequence, for all h ∈ Γ \ Pref(C) there exists i ∈ I such that si wins from h.
Consider also a finite family (hj)j∈J of histories in Γ ∩ Pref(C) indexed by J ⊆ N such that
for all histories h in Pref(C) ∩ Γ there exists j ∈ J such that Whj

⊆ Wh. For all j ∈ J , let
Tj = {hj l | |l| ≤ depth(hj)}. Up to renaming, we can suppose that the Tj ’s are disjoint from
one another. We build our finite-memory winning strategy s = (M, σ, µ, m0) in the following
way:

M = ∪i∈IMi ∪ ∪j∈JTj ;
for m ∈ Mi we let σ(m) = σi(m);
for t ∈ Tj we let σ(t) be any non-losing action from t;
for m ∈ Mi and (a, b) ∈ A × B we let µ(m, (a, b)) = µi(m, (a, b));
for t ∈ Tj and (a, b) ∈ A × B such that a = σ(t):

if t(a, b) ∈ Tj then µ(t, (a, b)) = t(a, b);
else if t(a, b) ∈ Γ \ Pref(C) then there exists i ∈ I such that si wins from t(a, b): we let
µ(t, (a, b)) = mi;
else if t(a, b) ∈ Γ ∩ Pref(C) then there exists j ∈ J such that Whj

⊆ Wt(a,b) and we let
µ(h, (a, b)) = hj ;

m0 = hj where j ∈ J is such that Whj
⊆ Wε.

We prove this finite-memory strategy is winning for Player 1. To this end, let us first
show that for all compatible histories h such that µ(h) ∈ Tj for some j ∈ J , the memory
state µ(h) provides an under-approximation of the winning set induced by h:

▶ Lemma 14. If µ(h) ∈ Tj for some j ∈ J then we have Wµ(h) ⊆ Wh.

Proof. The proof is by induction on h. First we have µ(ε) = m0 and per the definition
Wm0 ⊆ Wε. Now consider h ∈ H such that µ(h) ∈ Tj for some j ∈ J and Wµ(h) ⊆ Wh. Let
(a, b) ∈ A × B such that µ(h(a, b)) ∈ Tj′ for some j′ ∈ J . Then,

if µ(h)(a, b) ∈ Tj then we have µ(h(a, b)) = µ(h)(a, b) and the desired result follows by
Lemma 6,
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else we must have µ(h)(a, b) ∈ Γ ∩ Pref(C) (else we would not have µ(h(a, b)) ∈ Tj′) and
µ(h(a, b)) = hj′ with j′ such that Whj′

⊆ Wµ(h)(a,b), and Wµ(h)(a,b) ⊆ Wh(a,b) once again
by Lemma 6, which ensures the result. ◀

As a consequence of Lemma 14, when h is such that µ(h) ∈ Tj for some j ∈ J then we
have Wµ(h) ⊆ Wh. As a consequence, for all (a, b) ∈ A × B we have Wµ(h)(a,b) ⊆ Wh(a,b).
This ensures that if µ(h)(a, b) ∈ Γ \ Pref(C) and the strategy si wins from µ(h)(a, b) then si

also wins from h(a, b), which explains why our finite-memory strategy is winning. Formally,
we have the following lemma:

▶ Lemma 15. If ρ ∈ (A × B)ω is compatible with s and there exists k ∈ N and i ∈ I such
that µ(ρ≤k) = mi then ρ ∈ W .

Proof. Without loss of generality, we can suppose that k is the smallest integer such that
µ(ρ≤k) /∈ ∪j∈JTj . We want to prove there exists a history h such that Wh ⊆ Wρ≤k

and si is
winning from h, as this will yield the desired result. Our candidate for h is µ(ρ≤k−1)(a, b)
where (a, b) = ρk.

By Lemma 14 we know that Wµ(ρ≤k−1) ⊆ Wρ≤k−1 , and thus Wµ(ρ≤k−1)(a,b) ⊆ Wρ≤k−1 .
Furthermore, we know per the definition of s that si is winning from µ(ρ≤k−1(a, b)) since
µ(ρ≤k) = mi.

Finally, a trivial induction shows that for any β ∈ Bω we have out(ρ≤k, s, β) = out(ρ≤k, si, β),
and since si is winning from ρ≤k we have ρ ∈ W . ◀

Finally, with the help of Lemma 14 and Lemma 15, we can prove the following, which
concludes the proof of Theorem 11.

▶ Lemma 16. s is winning from ε.

Proof. Let us consider ρ ∈ (A × B)ω compatible with s. We want to show that ρ ∈ W . If
there exists k ∈ N such that µ(ρ≤k) ∈ ∪i∈IMi then Lemma 15 suffices to conclude. Suppose
then that for all k ∈ N we have µ(ρ≤k) ∈ ∪j∈JTj . If ρ ∈ C then obviously we have ρ ∈ W , so
let us suppose that there exists n0 ∈ N such that ρ≤n0 /∈ Pref(C). Due to the construction of
s, there exists some n1 ≥ n0 and some j ∈ J such that µ(ρ≤n1) = hj . By Lemma 14 we then
have Wµ(ρ≤n1 ) ⊆ Wρ≤n1

. Notice that we also have ρ≤n1 /∈ Pref(C). Finally, let l be the prefix
of ρ>n1 of length depth(hj). By construction and since we do not have µ(ρ≤k) ∈ ∪i∈IMi for
any k, for all k ≤ depth(hj) we have µ(ρ≤n1+k) = hj l≤k ∈ Pref(C), and hence by application
of Lemma 13 we can conclude that ρ ∈ O and thus ρ ∈ W . ◀

We illustrate our method on the game described in Figure 1:

▶ Example 17. Consider once again the game represented in 1. We recall here that we have
A = B = {0, 1} and W = (0, 0)∗(0, 1)({0} × B)ω + (0, 0)2(0, 0)∗({1} × B + A × {1})(A × B)ω.
We let C = (0, 1)({0} × B)ω + (0, 0)(0, 1)({0} × B)ω and O = (0, 0)2(0, 0)∗[(0, 1) + (1, 0) +
(1, 1)](A × B)ω, and we have W = C ∪ O. One can check easily that C is a closed set and O

is an open set generated by the family of histories F = (0, 0)2(0, 0)∗[(0, 1) + (1, 0) + (1, 1)].
The histories in Pref(C) are of three different types: ε, whose induced winning set is W ,

(0, 0), whose induced winning set is included in W , and all the other histories in Pref(C),
whose induced winning set is ({0} × B)ω. We choose two histories in Pref(C) that provide
under-approximations for the open sets induced by all elements of Pref(C): ε and (0, 1).
Except for histories which already have a prefix in F , no history out of Pref(C) induces a
winning set that includes W(0,1), which means that depth((0, 1)) = 0. However Wε is included
in all winning sets induced by the histories in (0, 0)2(0, 0)∗. Since (0, 0)2(0, 0)∗(0, 0)(0, 1) ⊆ F ,
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ε

(0, 0) (0, 1)

(0, 0)(0, 1) (0, 1)(0, 0) (0, 1)(0, 1)

(0, 1)

m

(0, 0) (0, 1)

(0, 1) (0, 0) (0, 1)

(0, 0)

{0} × B

{0} × B

{0} × B

{0} × B

{1} × B

Figure 3 The finite-memory strategy for the game represented in Figure 1.

we have depth(ε) = 2. The only continuation of length 2 from ε that goes out of Pref(C) is
(0, 0)(0, 0), and the finite-memory strategy we chose that reaches O from (0, 0)(0, 0) is one
where Player 1 always plays action 1.

4.5 Proof for sets in Λθ

We study now the case where W ∈ Λθ for an ordinal θ > 1 and Theorem 5 is true for all
winning sets belonging to Λη or Kη for all η < θ. As always, we suppose that Player 1 has a
winning strategy from ε and we want to show she has a finite-memory winning strategy.

As W ∈ Λθ, there exists a family of sets (Si)i∈I such that W = ⋓i∈ISi and for each i

there exists θi < θ such that Si ∈ Λθi
or Si ∈ Kθi

. Furthermore, there exists a disjoint family
of open sets (Oi)i∈I such that for each i ∈ I we have Si ⊆ Oi. Finally, for each i the set Oi

is generated by a family of histories Fi.

Consider then a winning strategy s for Player 1 and let Ts be its induced strategic tree.
Consider the tree T ′

s = Ts \ {h ∈ H | ∃i ∈ I, ∃f ∈ Fi, f ⊏ h}. Since s is winning, all infinite
branches of Ts belongs to Oi for some i, and hence T ′

s does not have any infinite branch. By
Kőnig’s lemma, this means that T ′

s is a finite tree. Let us consider the set L of maximal
elements (with regards to the prefix relation) in T ′

s. By construction all histories h in L are
such that there exists a unique (because the Oi’s are disjoint from one another) i ∈ I such
that h ∈ Fi. This means that the winning plays which have h as a prefix are included in
Si and hence for h ∈ L we have Wh = h−1(Si ∩ cyl(h)). Since both Λθi

and Kθi
are closed

under intersection with a cylinder (see [3]) we know that Wh ∈ Λθi or Wh ∈ Kθi (depending
on whether Si belongs to Λθi

or Kθi
). Moreover, since all histories in L belong to Ts and s is

winning we know that L ⊆ Γ. This means that we have all the hypotheses we need to apply
the induction hypothesis to any l ∈ L (namely, l ∈ Γ and Wl ∈ Λη or Wl ∈ Kη for some
η < θ), and hence for all l ∈ L there exists a finite-memory strategy sl = (Ml, σl, µl, ml) that
wins from l (up to renaming, we suppose that the Ml’s are disjoint from one another and
from Ts).
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We will build a finite-memory strategy sf = (M, σ, µ, m0) for Player 1 in the following way:
M = T ′

s ∪ ⊎l∈LMl;
σ(m) = s(m) for m ∈ T ′

s, and σ(m) = σl(m) for m ∈ Ml;
µ(m, (a, b)) = m(a, b) if m ∈ T ′

s and m(a, b) ̸= l for all l ∈ L (where a = σ(m));
µ(m, (a, b)) = ml if m ∈ T ′

s and m(a, b) = l for some l ∈ L (where a = σ(m));
µ(m, (a, b)) = µl(m(a, b)) if m ∈ Ml;
m0 = ε if ε ̸= l for all l ∈ L, and m0 = ml if there exists l ∈ L such that l = ε.

The idea behind this construction is the following: we follow the winning strategy s until
we reach some l ∈ L, from which we know the strategy sl is winning. It remains only to
emulate sl from this point onwards to guarantee the win. The formal proof that this strategy
is winning can be found in [3].

4.6 Proof for sets in Kθ

The full induction step for Kθ is more complex than for K2, in term of overall structure as
well as detail-level technicalities. Especially, it involves nested inductions on the Hausdorff
difference hierarchy. We do not present it here, but provide a detailed proof in appendix [3].

5 Tightness of the result

We explore the tightness of our result. In particular, the winning sets of the two games in
Example 18 below are in Π0

2 and Σ0
2, respectively, just above ∆0

2 in the Borel hierarchy; the
two games satisfy the well partial order assumption and Player 1 has winning strategies, but
no finite-memory winning strategies. Note that the example in Π0

2 is harder to define and
deal with than the one in Σ0

2. (See details in [3].)

▶ Example 18. For the counter-example in Π0
2, let A be a finite set of at least two elements and

w a disjunctive sequence on A × {0}. We define the labeling function l : (A × {0})∗ → {0, 1}
in the following way: l(h) = 1 if and only if there exists h0 and h′ such that h = h0h′ and h′

is the longest factor of h that is also a prefix of w. Let then W be the set defined by ρ ∈ W

if and only if infinitely many prefixes h of ρ are such that l(h) = 1 and consider the game
(A, {0}, W ).

For the counter-example in Σ0
2, let A be a finite set of at least two elements and w

an irregular word (i.e. a word with infinitely many different suffixes) in (A × {0})ω. Let
W = {ρ ∈ (A × {0})ω | ∃h ∈ (A × {0})∗, ρ = hρ0 where ρ0 is a suffix of w}. W is the set of
sequences which have a suffix in common with w. Consider then the game (A, {0}, W ).

We also considered a relaxation of the well partial order assumption, but found a counter-
example with a closed winning set. (See details in [3].)

Finally, we studied the following statement “given a two-player game (A, B, W ) where W

belongs to the Hausdorff difference hierarchy and such that ⊆ induces a well partial order on
the induced winning sets for Player 1, if Player 2 has a winning strategy for ε then is it the
case that he also has a finite-memory winning strategy?”. When W is a closed set (and hence
its complement an open set), the answer is obviously yes, but we found a counter-example
where W ∈ Λ2.

6 Conclusion

To conclude, we have proven the existence of finite-memory winning strategies under certain
conditions on the winning set for Player 1. These conditions are met for well studied games
such as energy games [10] or games where the winning condition is a Boolean combination of
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reachability and safety objectives, which makes our result a generalization of known results
on the topic. This result relies on descriptive set theory, in particular representation of sets
in ∆0

2.
We have also studied the tightness of our result. The results we currently have in this

direction encourage us to think that our hypotheses are tight and that weakening them is
no easy task. In the future, we want to extend these tightness results by exploring other
possible hypotheses, as well as study infinitely branching games, when the action sets of the
players are not finite.

References
1 Benjamin Aminof and Sasha Rubin. First-cycle games. Inf. Comput., 254:195–216, 2017.

doi:10.1016/j.ic.2016.10.008.
2 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vanden-

hove. Games where you can play optimally with arena-independent finite memory. In 31st In-
ternational Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna,
Austria (Virtual Conference), pages 24:1–24:22, 2020. doi:10.4230/LIPIcs.CONCUR.2020.24.

3 Patricia Bouyer, Stéphane Le Roux, and Nathan Thomasset. Finite-memory strategies in
two-player infinite games. CoRR, abs/2107.09945, 2021. arXiv:2107.09945.

4 John Fearnley and Martin Zimmermann. Playing Muller games in a hurry. Int. J. Found.
Comput. Sci., 23(3):649–668, 2012. doi:10.1142/S0129054112400321.

5 Alexander Kechris. Classical Descriptive Set Theory. Springer, New York, NY, 1995. doi:
10.1007/978-1-4612-4190-4.

6 Dénes Kőnig. Über eine Schlussweise aus dem Endlichen ins Unendliche (in german). Acta
Sci. Math. (Szeged), 1927.

7 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by
boolean combination of winning conditions. In 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13,
2018, Ahmedabad, India, pages 38:1–38:20, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.38.

8 Robert McNaughton. Playing infinite games in finite time. In A Half-Century of Automata
Theory: Celebration and Inspiration, pages 73–91. World Scientific, 2000.

9 Stéphane Le Roux. Infinite subgame perfect equilibrium in the Hausdorff difference hierarchy.
In Mohammad Taghi Hajiaghayi and Mohammad Reza Mousavi, editors, Topics in Theoretical
Computer Science – The First IFIP WG 1.8 International Conference, TTCS 2015, Tehran,
Iran, August 26-28, 2015, Revised Selected Papers, volume 9541 of Lecture Notes in Computer
Science, pages 147–163. Springer, 2015. doi:10.1007/978-3-319-28678-5_11.

10 Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander Moshe
Rabinovich, and Jean-François Raskin. The complexity of multi-mean-payoff and multi-energy
games. Inf. Comput., 241:177–196, 2015. doi:10.1016/j.ic.2015.03.001.

https://doi.org/10.1016/j.ic.2016.10.008
https://doi.org/10.4230/LIPIcs.CONCUR.2020.24
http://arxiv.org/abs/2107.09945
https://doi.org/10.1142/S0129054112400321
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.1007/978-3-319-28678-5_11
https://doi.org/10.1016/j.ic.2015.03.001


Constructing the Space of Valuations of a
Quasi-Polish Space as a Space of Ideals
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Abstract
We construct the space of valuations on a quasi-Polish space in terms of the characterization
of quasi-Polish spaces as spaces of ideals of a countable transitive relation. Our construction is
closely related to domain theoretical work on the probabilistic powerdomain, and helps illustrate
the connections between domain theory and quasi-Polish spaces. Our approach is consistent with
previous work on computable measures, and can be formalized within weak formal systems, such as
subsystems of second order arithmetic.
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1 Introduction

Quasi-Polish spaces [2] are a class of well-behaved countably based sober spaces that includes
Polish spaces, ω-continuous domains, and countably based spectral spaces. They can be
interpreted via Stone-duality as the spaces of models of countably axiomatized propositional
geometric theories [12, 1]. In [7] another characterization of quasi-Polish spaces was presented
that is a natural generalization of the notion of an abstract basis for ω-continuous domains [8].
In this paper we use this latter characterization to extend domain theoretical work on
probabilistic powerdomains to the study of valuations on quasi-Polish spaces.

Valuations are a substitute for Borel measures which are used in the denotational semantics
of probabilistic programming languages [14] and in computable approaches to measure theory,
probability theory, and randomness [19, 13, 18]. See R. Heckmann’s excellent paper [11] for
more on the theory of valuations, spaces of valuations, and integration1. Every valuation on
a quasi-Polish space can be extended to a Borel measure [5], and this extension is unique if
the valuation is locally finite [3]. Conversely, it is easy to see that the restriction of a Borel
measure to the open sets is a valuation. Thus, in particular, there is a bijection between
probabilistic valuations and probabilistic Borel measures on quasi-Polish spaces.

The main result in this paper is a construction of the space of valuations on a quasi-Polish
space as a space of ideals of a transitive relation on a countable set (Theorem 13). Our
construction is closely related to domain theoretical work on the probabilistic powerdomain
(see [14] and [8, Section IV-9]). Along with the constructions of the upper and lower
powerspaces of quasi-Polish spaces as spaces of ideals given in [4], our results demonstrate
how some domain theoretic results generalize well to quasi-Polish spaces (see also [6] for
more on the upper and lower powerspaces of quasi-Polish spaces).

1 The valuations in this note correspond to the Scott-continuous valuations in [11].
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An immediate corollary of our construction is that the space of valuations on a quasi-Polish
space is again a quasi-Polish space, although this already follows from well-known results. A
locale theoretic proof easily follows from S. Vickers’ geometricity result in [20, Proposition 5]
by using R. Heckmann’s characterization of quasi-Polish spaces as countably presented
locales [12]. A proof based on quasi-metrics, at least for the case of subprobabilistic valuations,
follows from J. Goubault-Larrecq’s work on continuous Yoneda-complete quasi-metric spaces
in [9, Section 11] and his characterization of quasi-Polish spaces in [10, Theorem 8.18].
Independently, the first proof we found (which we presented at the Domains XII conference in
August 2015) was largely based on M. Schröder’s work in [19] on the space of (probabilistic)
measures within the cartesian closed category QCB0. That proof starts with the observation
that the QCB0 exponential SSX is quasi-Polish whenever X is2, then uses the cartesian closed
structure of QCB0 to show that Y SX is quasi-Polish whenever X and Y are, and finally
observes that M. Schröder’s construction of the space of valuations on X can be obtained as
the equalizer of the continuous functions ℓ, r : RSX

+ → R+ × RSX ×SX

+ defined as:

ℓ(ν) =
〈
ν(∅), λ⟨U, V ⟩.ν(U) + ν(V )

〉
, and

r(ν) =
〈
0, λ⟨U, V ⟩.ν(U ∪ V ) + ν(U ∩ V )

〉
.

It follows that the space of valuations is quasi-Polish because the space of extended reals R+
is quasi-Polish and the category of quasi-Polish spaces is closed under countable limits.

A nice characteristic of the construction we give in this paper is that it can be formalized
within relatively weak formal systems. For example, our approach is related to C. Mummert’s
formalization of general topology within subsystems of second order arithmetic [15, 16, 17]3.

2 Main result

We let R+ denote the positive extended reals (i.e., [0, ∞]) with the Scott-topology induced
by the usual order. Given a topological space X, we let O(X) denote the lattice of open
subsets of X with the Scott-topology.

▶ Definition 1 (Valuations). Let X be a topological space. A valuation on X is a continuous
function ν : O(X) → R+ satisfying:
1. ν(∅) = 0, and (strictness)
2. ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ). (modularity)

The space of valuations on X is the set V(X) of all valuations on X with the weak topology,
which is generated by subbasic opens of the form

⟨U, q⟩ := {ν ∈ V(X) | ν(U) > q}

with U ∈ O(X) and q ∈ R+ \ {∞}.

In this paper we will only consider the whole space of valuations V(X), but it is straight-
forward to modify our results for the subspaces of V(X) consisting of probabilistic valuations
(i.e., valuations satisfying ν(X) = 1) and sub-probabilistic valuations (i.e., valuations satisfying
ν(X) ≤ 1).

2 See [6] for a proof. The S here is the Sierpinski space, and the space O(O(X)) defined in [6] is
homeomorphic to the QCB0 exponential object SS

X

when X is quasi-Polish.
3 Note that C. Mummert’s MF-spaces are in general Π1

1-complete spaces, whereas quasi-Polish spaces
correspond to the Π0

2-level of the Borel hierarchy. This explains why Π1
1 − CA0 is required to prove

MF-spaces are closed under Gδ-subsets, whereas our construction of Π0
2-subspaces of quasi-Polish spaces

in Theorem 3 of [4] can be done within ACA0.
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Quasi-Polish spaces were introduced in [2]. In this paper we will define them using the
following equivalent characterization from [7] (see also [4]).

▶ Definition 2. Let ≺ be a transitive relation on N. A subset I ⊆ N is an ideal (with respect
to ≺) if and only if:
1. I ̸= ∅, (I is non-empty)
2. (∀a ∈ I)(∀b ∈ N) (b ≺ a ⇒ b ∈ I), (I is a lower set)
3. (∀a, b ∈ I)(∃c ∈ I) (a ≺ c & b ≺ c). (I is directed)

The collection I(≺) of all ideals has the topology generated by basic open sets of the form
[n]≺ = {I ∈ I(≺) | n ∈ I}. A space is quasi-Polish if and only if it is homeomorphic to I(≺)
for some transitive relation ≺ on N.

We often apply the above definition to other countable sets with the implicit assumption
that it has been suitably encoded as a subset of N.

Fix a transitive relation ≺ on N for the rest of this section. Let B be the (countable) set
of all partial functions r :⊆ N → Q>0 such that dom(r) is finite, where Q>0 is the set of
rational numbers strictly larger than zero.

▶ Definition 3. Define the transitive relation ≺V on B as r ≺V s if and only if∑
b∈F

r(b) <
∑

c∈↑F ∩dom(s)

s(c)

for every non-empty F ⊆ dom(r), where ↑F = {c ∈ N | (∃b ∈ F ) b ≺ c}.

Transitivity of ≺V follows from the transitivity of ≺. Note that if dom(r) = ∅ then
r ≺V s for every s ∈ B. We will sometimes use the fact that if r ≺V s and b ∈ dom(r) then
there is c ∈ dom(s) with b ≺ c.

▶ Definition 4. Define fV : V(I(≺)) → I(≺V ) and gV : I(≺V ) → V(I(≺)) as

fV (ν) =
{

r ∈ B

∣∣∣∣∣∑
b∈F

r(b) < ν(
⋃

b∈F

[b]≺) for every non-empty F ⊆ dom(r)
}

,

gV (I) = λU.
∨ ∑

b∈dom(r)

r(b)

∣∣∣∣∣∣ r ∈ I and
⋃

b∈dom(r)

[b]≺ ⊆ U

 .

We next prove a few lemmas which will be used to show that fV and gV are continuous
inverses of each other.

▶ Lemma 5. If I ∈ I(≺V ), r ∈ I, and A ⊆ dom(r), then r|A ∈ I, where r|A is the partial
function obtained by restricting the domain of r to A.

Proof. Since I is directed there is s ∈ I with r ≺V s. Then clearly r|A ≺V s hence r|A ∈ I

because I is a lower set. ◀

▶ Definition 6. Define the transitive binary relation ≺U on Pfin(N) (the set of finite subsets
of N) as F ≺U G if and only if (∀n ∈ G) (∃m ∈ F ) m ≺ n.

We write K(X) for the space of saturated compact subsets of X (see [6]).

▶ Lemma 7 (Lemma 9 & Theorem 10 of [4]). Given J ∈ I(≺U ), the set

gU (J) = {I ∈ I(≺) | (∀F ∈ J)(∃m ∈ I) m ∈ F}

is in K(I(≺)). Furthermore, for any S ⊆ N, gU (J) ⊆
⋃

b∈S [b]≺ if and only if there is finite
F ⊆ S with F ∈ J .
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▶ Lemma 8. If I ∈ I(≺V ) and r ∈ I, then there exists s ∈ I with r ≺V s and dom(r) ≺U

dom(s).

Proof. Choose any t ∈ I with r ≺V t. Let s be the restriction of t to have dom(s) = {c ∈
dom(t) | (∃b ∈ dom(r)) b ≺ c}. Clearly r ≺V s and dom(r) ≺U dom(s), and Lemma 5 implies
s ∈ I. ◀

▶ Lemma 9. Assume I ∈ I(≺V ) and r ∈ I. Then there exists K ∈ K(I(≺)) such that
K ⊆

⋃
b∈dom(r)[b]≺, and

For any finite F ⊆ N, if K ⊆
⋃

b∈F [b]≺, then there is s ∈ I with r ≺V s and F ≺U dom(s)
and K ⊆

⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺.

Proof. Fix I ∈ I(≺V ) and r ∈ I. Using Lemma 8, we can find a ≺V -ascending sequence
(ri)i∈N in I with r = r0 and dom(ri) ≺U dom(ri+1) for each i ∈ N. Then J = {F ∈ Pfin(N) |
(∃i ∈ N) F ≺U dom(ri)} is in I(≺U ), hence K = gU (J) ∈ K(I(≺)) and K ⊆

⋃
b∈dom(r)[b]≺

by Lemma 7 and the fact that dom(r) ∈ J . Assume F ⊆ N is finite and K ⊆
⋃

b∈F [b]≺.
Then F ∈ J by Lemma 7, hence F ≺U dom(ri) for some i ∈ N. Since ≺U is transitive, we
can assume without loss of generality that i > 0. Setting s = ri, we have s ∈ I and r ≺V s

and F ≺U dom(s), and since dom(s) ∈ J it follows from Lemma 7 that K ⊆
⋃

c∈dom(s)[c]≺.
The claim

⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺ follows from F ≺U dom(s). ◀

▶ Lemma 10. Let D ⊆ N be finite, and let P+(D) be the set of non-empty subsets of D.
Define

UG =
⋂

b∈G

[b]≺

VG = UG ∩
⋃

b∈D\G

[b]≺

for each G ∈ P+(D). Let P ⊆ P+(D) be an upper set (i.e., if F ∈ P and F ⊆ G ⊆ D then
G ∈ P ). If ν ∈ V(I(≺)) and ν(UG) < ∞ for each G ∈ P , then

∑
G∈P

(ν(UG) − ν(VG)) = ν

( ⋃
G∈P

UG

)
.

Proof. The proof is by induction on the size of P . It is trivial when P = ∅, so assume P is a
non-empty upper set and that the lemma holds for all upper sets of size strictly less than P .
If F is any minimal element of P , then

VF =
⋃

b∈D\F

UF ∪{b}

=
⋃

G∈P \{F }

UF ∪G

= UF ∩
⋃

G∈P \{F }

UG,

so the induction hypothesis and modularity yields
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∑
G∈P

(ν(UG) − ν(VG)) = ν(UF ) − ν(VF ) +
∑

G∈P \{F }

(ν(UG) − ν(VG))

= ν(UF ) − ν

UF ∩
⋃

G∈P \{F }

UG

+ ν

 ⋃
G∈P \{F }

UG


= ν

( ⋃
G∈P

UG

)
. ◀

▶ Lemma 11. fV is well-defined and continuous.

Proof. We first show that fV (ν) ∈ I(≺V ) for each ν ∈ V(I(≺)).
1. (fV (ν) is non-empty). The partial function with empty domain is in fV (ν).
2. (fV (ν) is a lower set). Assume r ≺V s ∈ fV (ν). Let F ⊆ dom(r) be non-empty, and define

G = ↑F ∩ dom(s). Since b ≺ c implies [c]≺ ⊆ [b]≺ it follows that
⋃

c∈G[c]≺ ⊆
⋃

b∈F [b]≺.
Then∑

b∈F

r(b) <
∑
c∈G

s(c) (because r ≺V s)

< ν(
⋃

c∈G

[c]≺) (because s ∈ fV (ν))

≤ ν(
⋃

b∈F

[b]≺) (because ν is monotonic),

hence r ∈ fV (ν).
3. (fV (ν) is directed). Our proof is related to the series of lemmas leading up to Theorem IV-

9.16 in [8]. Assume r0, r1 ∈ fV (ν). For each i ∈ {0, 1} and non-empty F ⊆ dom(ri) fix
some real number βi

F satisfying

∑
b∈F

ri(b) < βi
F < ν

(⋃
b∈F

[b]≺

)
,

and set

β = min
{

βi
F −

∑
b∈F ri(b)∑

b∈F ri(b)

∣∣∣∣ i ∈ {0, 1} & ∅ ̸= F ⊆ dom(ri)
}

.

Then α = 1/ (1 + β/2) satisfies 0 < α < 1 and is such that

∑
b∈F

ri(b) < αν

(⋃
b∈F

[b]≺

)

for each i ∈ {0, 1} and non-empty F ⊆ dom(ri) (see Lemma IV-9.11 (iii) of [8]). Set
M = 1 +

∑
b∈dom(r0) r0(b) +

∑
b∈dom(r1) r1(b), and D = dom(r0) ∪ dom(r1). Let UG and

VG be defined as in Lemma 10 for each non-empty G ⊆ D.
We define a finite set h(G) ⊆ N and a function sG : h(G) → Q> for each non-empty
G ⊆ D as follows. If ν(UG) = ν(VG) then let h(G) = ∅ and let sG be the empty function.
Otherwise, the set

C = {c ∈ N | (∀b ∈ D) [b ≺ c ⇐⇒ b ∈ G]}

CSL 2022
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is non-empty because ν(UG) > ν(VG) implies there is some ideal containing G which is
not in VG. If there is some c ∈ C with ν([c]≺) = ∞, then set h(G) = {c} and define
sG : h(G) → Q> as sG(c) = M . If no such c ∈ C exists, then let (ci)i∈N be an enumeration
of C and define

pi = ν([ci]≺) − ν

(
[ci]≺ ∩

(⋃
k<i

[ck]≺ ∪ VG

))
.

Using modularity and a simple inductive argument, we have

∑
i≤n

pi = ν(
⋃
i≤n

[ci]≺) − ν

⋃
i≤n

[ci]≺ ∩ VG


= ν(

⋃
i≤n

[ci]≺ ∪ VG) − ν(VG)

for each n ∈ N. Since UG =
⋃

i∈N[ci]≺ ∪ VG and ν is Scott-continuous, there is n0 ∈ N
with(

1 + α

2

) ∑
i≤n0

pi ≥ α(ν(UG) − ν(VG))

if ν(UG) < ∞, and(
1 + α

2

) ∑
i≤n0

pi ≥ M

if ν(UG) = ∞. Define

h(G) = {ci | i ≤ n0 & pi > 0}

and define sG : h(G) → Q> so that sG(ci) is a positive rational satisfying(
1 + α

2

)
pi ≤ sG(ci) < pi.

Since h(G) ∩ h(G′) ̸= ∅ implies G = G′, there is s ∈ B with

dom(s) =
⋃

{h(G) | G ⊆ D}

satisfying s(c) = sG(c) for the unique G ⊆ D with c ∈ h(G). From the construction of s,
if F ⊆ h(G) is non-empty then∑

c∈F

s(c) < ν(
⋃

c∈F

[c]≺) − ν(
⋃

c∈F

[c]≺ ∩ VG). (1)

Furthermore, if h(G) ̸= ∅, then ν(UG) < ∞ implies

α (ν(UG) − ν(VG)) ≤
∑

c∈h(G)

s(c), (2)

and ν(UG) = ∞ implies

M ≤
∑

c∈h(G)

s(c). (3)
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To show s ∈ fV (ν), we must prove
∑

c∈F s(c) < ν(
⋃

c∈F [c]≺) for each non-empty
F ⊆ dom(s). This clearly holds when F = {c} is a singleton. Next, assume it holds for
all sets of size less than or equal to n, and let F be a set of size n + 1. We can assume
ν(
⋃

c∈F [c]≺) < ∞, since otherwise the claim is trivial. Let G ⊆ D be a set of minimal size
satisfying F ∩ h(G) ̸= ∅. This implies that either F \ h(G) is empty or else it satisfies the
induction hypothesis. Furthermore, for any c ∈ F \ h(G) there is G′ ⊆ D with c ∈ h(G′),
and since the minimality of G implies G′ ̸⊆ G, there is b ∈ G′ \ G with b ≺ c, which
implies UG ∩ [c]≺ ⊆ VG. Therefore,∑

c∈F

s(c) =
∑

c∈F ∩h(G)

sG(c) +
∑

c∈F \h(G)

s(c)

< ν(
⋃

c∈F ∩h(G)

[c]≺) − ν(
⋃

c∈F ∩h(G)

[c]≺ ∩ VG) + ν(
⋃

c∈F \h(G)

[c]≺)

(by (1) and the induction hypothesis)

≤ ν(
⋃

c∈F ∩h(G)

[c]≺) − ν(
⋃

c∈F ∩h(G)

[c]≺ ∩
⋃

c∈F \h(G)

[c]≺)

+ ν(
⋃

c∈F \h(G)

[c]≺)

(because UG ∩ [c]≺ ⊆ VG for each c ∈ F \ h(G))

= ν(
⋃

c∈F

[c]≺),

which proves s ∈ fV (ν).
Finally, we must show r0 ≺V s and r1 ≺V s. Fix i ∈ {0, 1} and non-empty F ⊆ dom(ri).
Set P = {G ⊆ D | G ∩ F ≠ ∅} and note that ↑F ∩ dom(s) =

⋃
G∈P h(G). If ν(UG) < ∞

for each G ∈ P , then using (2) and the fact that G ̸= G′ implies h(G) ∩ h(G′) = ∅,
we have∑

c∈↑F ∩dom(s)

s(c) ≥
∑
G∈P

α(ν(UG) − ν(VG))

= αν

( ⋃
G∈P

UG

)
(by Lemma 10)

= αν

(⋃
b∈F

[b]≺

)
>
∑
b∈F

ri(b).

Otherwise, there is G ∈ P with ν(UG) = ∞, so (3) implies∑
c∈↑F ∩dom(s)

s(c) ≥ M >
∑
b∈F

ri(b).

This completes the proof that fV (ν) is directed.
It only remains to show that fV is continuous. Fix r ∈ B. For each F ⊆ dom(r) define
WF =

⋃
b∈F [b]≺ and qF =

∑
b∈F r(b), and set D = {F ⊆ dom(r) | F ̸= ∅}. Then

fV (ν) ∈ [r]≺V
if and only if

ν ∈
⋂

F ∈D

⟨WF , qF ⟩,

hence fV is continuous. ◀
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▶ Lemma 12. gV is well-defined and continuous.

Proof. We first show that ν = gV (I) is a valuation for each I ∈ I(≺V ).
1. ν(∅) = 0: Assume U ∈ O(I(≺)) and ν(U) > 0. Then there is r0 ∈ I and b0 ∈ dom(r0)

such that [b0]≺ ⊆ U and 0 < r0(b0). Since I is directed, there is an infinite sequence
r0 ≺V r1 ≺V · · · in I. Since b0 ∈ dom(r0) and r0 ≺V r1, there is b1 ∈ dom(r1) with
b0 ≺ b1. Similarly, there must be b2 ∈ dom(r2) with b1 ≺ b2. This yields an infinite
sequence b0 ≺ b1 ≺ · · · , hence {c ∈ N | (∃i ∈ N) c ≺ bi} is an element of [b0]≺ ⊆ U .
Therefore, U ̸= ∅.

2. ν(U) + ν(V ) = ν(U ∪ V ) + ν(U ∩ V ): We first show ν(U) + ν(V ) ≤ ν(U ∪ V ) + ν(U ∩ V ).
Let r, s ∈ I be such that (∀b ∈ dom(r)) [b]≺ ⊆ U and (∀b ∈ dom(s)) [b]≺ ⊆ V . Set

pr =
∑

b∈dom(r)

r(b), ps =
∑

b∈dom(s)

s(b).

Let t ∈ I be a ≺V -upper bound of r and s. Let

Dr = {c ∈ dom(t) | (∃b ∈ dom(r)) b ≺ c},

Ds = {c ∈ dom(t) | (∃b ∈ dom(s)) b ≺ c}.

Note that c ∈ Dr ∩ Ds implies [c]≺ ⊆ U ∩ V . Set

q0 =
∑

c∈Dr\Ds

t(c), q1 =
∑

c∈Ds\Dr

t(c), q2 =
∑

c∈Dr∩Ds

t(c).

Then r ≺V t implies pr ≤ q0 + q2 and s ≺V t implies ps ≤ q1 + q2. Furthermore, using
the fact t ∈ I, Lemma 5, and the definition of ν, we obtain ν(U ∪ V ) ≥ q0 + q1 + q2 and
ν(U ∩ V ) ≥ q2, hence pr + ps ≤ ν(U ∪ V ) + ν(U ∩ V ). It follows that ν(U) + ν(V ) ≤
ν(U ∪ V ) + ν(U ∩ V ).
Next we show ν(U ∪ V ) + ν(U ∩ V ) ≤ ν(U) + ν(V ). Let r, s ∈ I be such that (∀b ∈
dom(r)) [b]≺ ⊆ U ∪ V and (∀b ∈ dom(s)) [b]≺ ⊆ U ∩ V . Let K ⊆

⋃
b∈dom(r)[b]≺ be as

in Lemma 9. Since K is compact and K ⊆ U ∪ V , there exists a finite set F ⊆ N
with K ⊆

⋃
b∈F [b]≺ and such that each b ∈ F satisfies [b]≺ ⊆ U or [b]≺ ⊆ V . Apply

Lemma 9 to get t ∈ I with r ≺V t and F ≺U dom(t) and K ⊆
⋃

c∈dom(t)[c]≺ ⊆⋃
b∈dom(r)[b]≺. Next let u ∈ I be a ≺V -upper bound of t and s. By restricting the

domain of u if necessary, we can assume that (dom(t) ∪ dom(s)) ≺U dom(u), hence every
c ∈ dom(u) satisfies [c]≺ ⊆ U or [c]≺ ⊆ V . Let u0 be the restriction of u to have domain
dom(u0) = {b ∈ dom(u) | [b]≺ ⊆ U}, and let u1 be the restriction of u to have domain
dom(u1) = {b ∈ dom(u) | [b]≺ ⊆ V }. Note that u0 and u1 are both in I by Lemma 5,
and that dom(u) = dom(u0) ∪ dom(u1). Then using the fact that r ≺V u and s ≺V u,
we have∑

b∈dom(r)

r(b) +
∑

b∈dom(s)

s(b) ≤
∑

c∈dom(u)

u(c) +
∑

c∈dom(u0)∩dom(u1)

u(c)

=
∑

c∈dom(u0)

u0(c) +
∑

c∈dom(u1)

u1(c)

≤ ν(U) + ν(V ).

Therefore, ν(U ∪ V ) + ν(U ∩ V ) ≤ ν(U) + ν(V ).
3. ν is a continuous function: Assume U ∈ O(I(≺)) and q ∈ Q>0 and ν(U) > q. Since I(≺)

is consonant (see [6]), it suffices to find K ∈ K(I(≺)) such that K ⊆ U and ν(W ) > q

whenever W is an open set containing K. By definition of gV (I), there must be r ∈ I
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such that (∀b ∈ dom(r)) [b]≺ ⊆ U and
∑

b∈dom(r) r(b) > q. Now let K ∈ K(I(≺)) be
as in Lemma 9. Then K ⊆ U , and if K ⊆ W then there is s ∈ I with r ≺V s and
K ⊆

⋃
c∈dom(s)[c]≺ ⊆ W , hence q <

∑
c∈dom(s) s(c) ≤ ν(W ).

It only remains to show that gV is continuous. Assume gV (I) ∈ ⟨U, q⟩. Then there is r ∈ I

satisfying (∀b ∈ dom(r)) [b]≺ ⊆ U and q <
∑

b∈dom(r) r(b). Then I ∈ [r]≺V
⊆ g−1

V (⟨U, q⟩),
hence gV is continuous. ◀

▶ Theorem 13. V(I(≺)) and I(≺V ) are homeomorphic (via fV and gV ).

Proof. It only remains to show that fV and gV are inverses of each other.
To show that gV ◦ fV is the identity function, it suffices to show that gV (fV (ν)) ∈ ⟨U, q⟩

if and only if ν ∈ ⟨U, q⟩ for each ν ∈ V(I(≺)) and each subbasic open ⟨U, q⟩. If gV (fV (ν)) ∈
⟨U, q⟩, then there must be r ∈ fV (ν) with q <

∑
b∈dom(r) r(b) and

⋃
b∈dom(r)[b]≺ ⊆ U . This

implies that dom(r) ̸= ∅, and using the definition of fV we obtain q <
∑

b∈dom(r) r(b) <

ν(
⋃

b∈dom(r)[b]≺) ≤ ν(U), hence ν ∈ ⟨U, q⟩. Conversely, if ν ∈ ⟨U, q⟩ then since ν is continuous
there exist b0, . . . , bn ∈ N such that

⋃
i≤n[bi]≺ ⊆ U and q < ν(

⋃
i≤n[bi]≺). If ν([bi]≺) = ∞

for some i ≤ n, then the partial function r defined as dom(r) = {bi} and r(bi) = q + 1 is in
fV (ν), which implies gV (fV (ν)) ∈ ⟨U, q⟩. Otherwise ν([bi]≺) < ∞ for each i ≤ n, so define

mi = ν([bi]≺) − ν
(
[bi]≺ ∩

⋃
j<i

[bj ]≺
)
.

Note that the modularity of ν implies mi = ν(
⋃

j≤i[bj ]≺) − ν(
⋃

j<i[bj ]≺), hence a simple
inductive argument yields

∑
i≤n mi = ν(

⋃
i≤n[bi]≺), which is strictly larger than q. Let G =

{i | mi > 0}. Then there exists r ∈ B with dom(r) = {bi | i ∈ G} and (∀i ∈ G) r(bi) < mi

and q <
∑

b∈dom(r) r(b). If F ⊆ G is non-empty, then

∑
i∈F

r(bi) <
∑
i∈F

mi =
∑
i∈F

ν([bi]≺) − ν
(
[bi]≺ ∩

⋃
j<i

[bj ]≺
)

≤
∑
i∈F

ν([bi]≺) − ν
(
[bi]≺ ∩

⋃
j<i
j∈F

[bj ]≺
) = ν

(⋃
i∈F

[bi]≺

)
.

Thus, r ∈ fV (ν) and q <
∑

b∈dom(r) r(b), hence gV (fV (ν)) ∈ ⟨U, q⟩.
Next we show that fV (gV (I)) = I for each I ∈ I(≺V ). By unwinding the definitions

of fV and gV , we have r ∈ fV (gV (I)) if and only if for every non-empty F ⊆ dom(r)
there is s ∈ I such that

⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺ and

∑
b∈F r(b) <

∑
c∈dom(s) s(c). Thus,

given any r ∈ I, by Lemma 8 there is s ∈ I with r ≺V s and dom(r) ≺U dom(s), hence⋃
c∈dom(s)[c]≺ ⊆

⋃
b∈F [b]≺ and

∑
b∈F r(b) <

∑
c∈dom(s) s(c), which implies r ∈ fV (gV (I)).

Therefore, I ⊆ fV (gV (I)).
To prove fV (gV (I)) ⊆ I, fix any r ∈ fV (gV (I)). Then for every non-empty F ⊆ dom(r)

there is sF ∈ I such that
⋃

c∈dom(sF )[c]≺ ⊆
⋃

b∈F [b]≺ and
∑

b∈F r(b) <
∑

c∈dom(sF ) sF (c).
Using Lemma 9, we can assume that F ≺U dom(sF ). Let s ∈ I be a ≺V -upper bound of all
of the sF . Then for any non-empty F ⊆ dom(r), we have∑

b∈F

r(b) <
∑

c∈↑F ∩dom(sF )

sF (c) (by choice of sF )

<
∑

c∈↑F ∩dom(s)

s(c) (because sF ≺V s and ≺ is transitive).

Therefore r ≺V s, hence r ∈ I because I is a lower-set. It follows that fV (gV (I)) ⊆ I, which
completes the proof that fV (gV (I)) = I. ◀

CSL 2022



9:10 Constructing the Space of Valuations of a Quasi-Polish Space as a Space of Ideals

We remark that the homeomorphisms fV and gV are computable in the sense of TTE [21]
when ≺ is computably enumerable, and therefore our approach is consistent with previous
work on computable measures in [19, 13, 18]. The computability of fV is obvious. For gV ,
note that for any U ∈ O(I(≺)) and any A ⊆ N satisfying U =

⋃
a∈A[a]≺, Lemma 9 implies

gV (I)(U) =
∨ ∑

c∈dom(s)

s(c)

∣∣∣∣∣∣ s ∈ I & (∀c ∈ dom(s))(∃a ∈ A) a ≺ c

 ,

which shows that gV is computable.
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the negotiation function is complete for the second level of the Boolean hierarchy. Finally, the
SPE-verification problem – that is, the problem of deciding whether there exists a play supported
by a SPE that satisfies some LTL formula – is PSpace-complete, this problem was known to be
ExpTime-easy and PSpace-hard.
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1 Introduction

Nash equilibrium (NE) is one of the central concepts from game theory to formalize the
notion of rationality. It describes profiles of strategies in which no player has an incentive
to change their strategy unilaterally. However, in sequential games, like games played on
graphs, NEs are known to be plagued by non-credible threats: players can threaten other
players in subgames with non-rational actions in order to force an equilibrium that avoids
these subgames. To avoid non-credible threats, subgame-perfect equilibria are used instead.
Subgame-perfect equilibria (SPEs) are NEs that are NEs in all subgames of the original game:
the players must act rationally in all subgames even after a deviation by another player.
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10:2 On the Complexity of SPEs in Parity Games

In this paper, we study the complexity of decision problems related to SPEs in sequential
games played on graphs with parity objectives. In such a game, each vertex of the game
graph has one color per player, and each player wants the least color they see infinitely often
along a play, which is an infinite path in the graph, to be even. Parity conditions, in games as
well as in automata, are canonical ways to represent ω-regular constraints. It is known that
SPEs always exist in parity games, as shown in [14]. Unfortunately, the precise complexity
of the SPE constrained existence problem, i.e. the problem of deciding whether there exists
an SPE that generates payoffs between two given thresholds, is left open in the literature: it
is known to be ExpTime-easy and NP-hard. We prove here that it is in fact NP-complete,
and we provide several other new complexity results on related problems of interest.

While previous attempts to solve this decision problem were based on alternating tree
automata ([9]), we obtain the new tight complexity results starting from concepts that
we have introduced recently in [2] to capture SPEs in mean-payoff games: the notions of
requirements and negotiation. A requirement is a function λ that maps each vertex v of
the game graph to a real value, that represents the lowest payoff that the player controlling
v should accept when facing other rational players. A play ρ = ρ0ρ1 . . . is λ-consistent if
for each vertex ρk, the player controlling ρk gets at least the payoff λ(ρk) in ρ. In Boolean
games, such as parity games, we naturally consider requirements whose values are either 0
or 1 (1 meaning that the player must achieve their objective, 0 that they may not).

The negotiation function maps a requirement λ to a requirement nego(λ), which captures
from any vertex v the maximal payoff that the corresponding player can ensure, against
λ-rational players, that is, players who play in such a way that they obtain at least the payoff
specified by λ. Clearly, if λ0 maps each vertex to 0, then every play is λ0-consistent. Then,
the requirement nego(λ0) maps each vertex v to its antagonistic value, i.e. the best payoff
that the player controlling v can ensure against an adversarial coalition of the other players
(as any behavior of the other players is λ0-rational). It is the case that the nego(λ0)-consistent
plays are exactly the plays supported by NEs.

But then, the following natural question is: given v and λ, can the player who controls v
improve his worst-case value, if only plays that are consistent with λ are proposed by the
other players? Or equivalently, can this player enforce a better value when playing against
players that are not willing to give away their own worst-case value? which is clearly a
minimal goal for any rational adversary. So nego(λ)(v) returns this value; and this reasoning
can be iterated. In [2], it is shown that the least fixed point λ∗ of the negotiation function is
exactly characterizing the set of plays supported by SPEs, for all prefix independent payoff
functions with steady negotiation (which is the case for parity objectives) .

Using that characterization of SPEs, we prove that SPEs always exist in parity games
(Theorem 25). That result had already been proved by Ummels in [14]: we use the concepts
of requirements and negotiation to rephrase his proof in a more succinct way.

Main contributions

In order to get tight complexity results, we establish the links between the negotiation function
and a class of zero-sum two-player games, the abstract negotiation games (Theorem 28).
Those games are played on an infinite arena, but we show that the players can play simple
strategies that have polynomial size representation, while still playing optimally (Lemma 36).
We show that a non-deterministic polynomial algorithm can decide which player has a
winning strategy in that game, i.e. can decide whether nego(λ)(v) = 0 or 1, for a given
requirement λ on a given vertex in a given game: as a consequence, deciding whether the
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requirement λ is a fixed point of the negotiation function is NP-easy (Lemma 38). We
also show that the computation of λ∗, and consequently the SPE constrained existence
problem, are fixed-parameter tractable if we fix the number of players and colors in the game
(Theorem 43).

Those algorithms can be exploited to obtain upper bounds for several problems related
to SPEs. Most classical of them, the problem of deciding whether there exists an SPE
generating a payoff vector between two given thresholds (SPE constrained existence problem),
is NP-complete (Theorem 48). That problem can be solved without computing the least
fixed point of the negotiation function: such a problem is BH2-complete, as well as its
decisional version – i.e. deciding whether a given requirement λ is equal to λ∗ (Theorem 49).
Finally, deciding whether there exists an SPE generating a play that satisfies some LTL
formula (SPE-verification problem) is PSpace-complete (Theorem 50).

Related works

In [9], Ummels and Grädel solve the SPE constrained existence problem in parity games, and
prove that such games always contain SPEs. Their algorithm is based on the construction
of alternating tree automata, on which one can solve the emptiness problem in exponential
time. The SPE constrained existence problem is therefore ExpTime-easy, which was, to
our knowledge, the best upper bound existing in the literature. The authors also prove the
NP-hardness of that problem. In what follows, we prove that it is actually NP-complete.

In [8], Flesch and Predtetchinski present a general non-effective procedure to characterize
the plays supported by an SPE in games with finitely many possible payoff vectors, as parity
games. That characterization uses the abstract negotiation game, but does not use the
notions of requirements and negotiation, and as a consequence does not yield an effective
algorithm – their procedure requires to solve infinitely many games that have an uncountable
state space.

In [2], we solve the SPE constrained existence problem on mean-payoff games. To that
end, we define the notions of requirements and negotiation, and highlight the links between
negotiation and the abstract negotiation game. Part of our results can be applied to every
prefix-independent game with steady negotiation, which includes parity games. But, in order
to get tight complexity results, we need here to introduce new notions, such as reduced
strategies and deviation graphs.

In [4], Brihaye et al. prove that the SPE constrained existence problem on quantitative
reachability games is PSpace-complete. Their algorithm updates continuously a function
that heralds the notion of requirement, until it reaches a fixed point, that we can interpret
as the least fixed point of the negotiation function.

In [5], Brihaye et al. give a characterization of NEs in cost-prefix linear games, based on
the worst-case value. Parity games are cost-prefix linear, and the worst-case value is captured
by our notion of requirement. The authors do not study the notion of SPE in their paper.

In [11], Meunier proposes a method to decide the existence of SPEs generating a given
payoff, proving that it is equivalent to decide which player has a winning strategy in a
Prover-Challenger game. That method could be used with parity games, but it would not
lead to a better complexity than [14], and so it would not yield our NP-completeness result.

The applications of non-zero sum infinite duration games targeting reactive synthesis
problems have gathered significant attention during the recent years, hence a rich literature
on that topic. The interested reader may refer to the surveys [1, 6] and their references.

CSL 2022



10:4 On the Complexity of SPEs in Parity Games

Structure of the paper

In Section 2, we introduce the necessary background. In Section 3, we present the concepts
of requirements, negotiation and abstract negotiation game, and show how they can be
applied to characterize SPEs in parity games. In Section 4, we turn that characterization
into algorithms that solve the aforementioned problems, and deduce upper bounds for their
complexities. In Section 5, we match them with lower bounds, and conclude on the precise
complexities of those problems. The detailed proofs of our results can be found in appendices
of [3], the full version of this paper.

2 Background

In the sequel, we use the word game for Boolean turn-based games played on finite graphs.

▶ Definition 1 (Game). A game is a tuple G = (Π, V, (Vi)i∈Π, E, µ), where:
Π is a finite set of players;
(V,E) is a finite directed graph, whose vertices and edges are also called states and
transitions, and in which every state has at least one outgoing transition;
(Vi)i∈Π is a partition of V , where each Vi is the set of the states controlled by player i;
µ : V ω → {0, 1}Π is a payoff function, which maps each sequence of states ρ to the tuple
µ(ρ) = (µi(ρ))i of the players’ payoffs: player i wins ρ if µi(ρ) = 1, and loses otherwise.

A play in such a game can be seen as an infinite sequence of moves of a token on the
graph (V,E): when the token is on a given vertex, the player controlling that vertex chooses
the edge along which it will move. And then, the player controlling the next vertex chooses
where it moves next, and so on.

▶ Definition 2 (Play, history). A play (resp. history) in the game G is an infinite (resp.
finite) path in the graph (V,E). We write PlaysG (resp. HistG) for the set of plays (resp.
histories) in G. We write HistiG for the set of histories in G of the form hv, where v ∈ Vi.
We write Occ(ρ) (resp. Occ(h)) for the set of vertices that occur at least once in the play ρ

(resp. the history h), and Inf(ρ) for the set of vertices that occur infinitely often in ρ. We
write first(h) (resp. first(ρ)) the first vertex of h (resp. ρ), and last(h) its last vertex.

Often, we need to specify an initial state for a game.

▶ Definition 3 (Initialized game). An initialized game is a pair (G, v0), often written G↾v0 ,
where G is a game and v0 ∈ V is the initial vertex. A play (resp. history) of G is a play
(resp. history) of G↾v0 iff its first state is v0. We write PlaysG↾v0 (resp. HistG↾v0 , HistiG↾v0)
for the set of plays (resp. histories, histories ending in Vi) in G↾v0 .

When the context is clear, we call game both non-initialized and initialized games.

▶ Definition 4 (Strategy, strategy profile). A strategy for player i in G↾v0 is a function
σi : HistiG↾v0 → V such that for each history hv ∈ HistiG↾v0 , we have vσi(hv) ∈ E.

A strategy profile for P ⊆ Π is a tuple σ̄P = (σi)i∈P where each σi is a strategy for player
i. When P = Π, the strategy profile is complete, and we usually write it σ̄. For each i ∈ Π,
we write −i for the set Π \ {i}. When τ̄P , τ̄

′
Q are two strategy profiles with P ∩Q = ∅, we

write (τ̄P , τ̄
′
Q) the strategy profile σ̄P ∪Q defined by σi = τi if i ∈ P , and σi = τ ′

i if i ∈ Q. We
write ΣiG↾v0 (resp. ΣPG↾v0) the set of all strategies (resp. strategy profiles) for player i
(resp. the set P ) in G↾v0 .
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A history or a play is compatible with (or supported by) a strategy σi if for each of its
prefixes hv with h ∈ HistiG, we have v = σi(h). It is compatible with a strategy profile σ̄P if
it is compatible with σi for each i ∈ P . When a strategy profile σ̄ is complete, there is one
unique play in G↾v0 that is compatible with it, written ⟨σ̄⟩v0 and called the outcome of σ̄.

A strategy σi is memoryless when for each state v and every two histories h and h′, we
have σi(hv) = σi(h′v). In that case, we liberally consider that σi is defined from every state,
and write σi(v) for every σi(hv).

Before defining the notion of SPEs, we need to define a weaker, but more classical, solution
concept: Nash equilibria. A Nash equilibrium is a strategy profile such that no player can
improve their payoff by deviating unilaterally from their strategy.

▶ Definition 5 (Nash equilibrium). A complete strategy profile σ̄ in G↾v0 is a Nash equi-
librium – or NE for short – iff for each player i and for every strategy σ′

i, we have
µi(⟨σ̄−i, σ

′
i⟩v0) ≤ µi(⟨σ̄⟩v0).

An SPE is an NE in all the subgames, in the following formal sense.

▶ Definition 6 (Subgame, substrategy). Let hv be a history in G↾v0 . The subgame of G
after hv is the initialized game G↾hv = (Π, V, (Vi)i, E, µ↾hv)↾v, where µ↾hv maps each play to
its payoff in G, assuming that the history hv has already been played: formally, for every
ρ ∈ PlaysG↾hv, we have µ↾hv(ρ) = µ(hρ). If σi is a strategy in G↾v0 , its substrategy after hv
is the strategy σi↾hv in G↾hv, defined by σi↾hv(h′) = σi(hh′) for every h′ ∈ HistiG↾hv.

▶ Definition 7 (Subgame-perfect equilibrium). A complete strategy profile σ̄ in G↾v0 is
a subgame-perfect equilibrium – or SPE for short – iff for every history hv in G↾v0 , the
substrategy profile σ̄↾hv is a Nash equilibrium.

Throughout this paper, we mostly study parity games.

▶ Definition 8 (Parity game). The game G is a parity game if there exists a tuple of color
functions (κi : V → N)i∈Π, such that each play ρ is won by a given player i – i.e. µi(ρ) = 1
– iff the least color seen infinitely often by player i, i.e. the integer min κi(Inf(ρ)), is even.

A Büchi game is a parity game where all colors are either 0 or 1 – or equivalently, a
game in which the objective of each player is to visit infinitely often a given set of vertices.
A coBüchi game is a parity game where all colors are either 1 or 2 – or equivalently, a game
in which the objective of each player is to eventually avoid a given set of vertices.

▶ Example 9. Consider the (coBüchi) game represented by Figure 1: both players win the
play aceω, and lose any other. A first NE in that game is the strategy profile in which both
players always go to the right: its outcome is aceω, which is won by both players, hence none
can strictly improve their payoff by deviating. A second NE is the strategy profile in which
both players always go down: its outcome is abω, which is lost by both players. However,
player 2 cannot improve his strategy, because he never plays; and player # cannot neither,
because if she goes right, then 2 plans to go down, and she still loses. Only the first one is
an SPE: for player 2, planning to go down from the state c is a non-credible threat.

An important property of parity games is that they are prefix-independent.

▶ Definition 10 (Prefix-independent game). The game G is prefix-independent iff for every
history h, we have µ↾h = µ – or, equivalently, G↾h = G↾last(h).

In such games, we search algorithms that solve the following problems. Let us specify
that in all the sequel, tuples, as well as mappings, are ordered by the componentwise order.

CSL 2022



10:6 On the Complexity of SPEs in Parity Games
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Figure 1 A coBüchi game with two NEs and one SPE.

▶ Problem 11 (SPE constrained existence problem). Given a parity game G↾v0 and two
thresholds x̄, ȳ ∈ {0, 1}Π, is there an SPE σ̄ in G↾v0 such that x̄ ≤ µ(⟨σ̄⟩v0) ≤ ȳ?

The next problem requires a definition of the linear temporal logic, LTL.

▶ Definition 12 (LTL formulas). The linear temporal logic – or LTL for short – over the set
of atomic propositions A is defined as follows: syntactically, each a ∈ A is an LTL formula,
and if φ and ψ are LTL formulas, then ¬φ, φ ∨ ψ, Xφ, and φUψ are LTL formulas.

Semantically, if ν = ν0ν1 . . . is an infinite sequence of valuations of A, then:
ν |= a iff ν0(a) = 1;
ν |= ¬φ iff ν ̸|= φ;
ν |= φ ∨ ψ iff ν |= φ or ν |= ψ;
ν |= Xφ iff ν1ν2 . . . |= φ;
ν |= φUψ iff there exists k ∈ N such that νkνk+1 . . . |= ψ, and for each ℓ < k, we have
νℓνℓ+1 . . . |= φ.

We will also make use of the classical notations ∧, ⊤, ⊥, ⇒, F or G defined as abbreviations
using the symbols chosen here as primitives. In particular, we write ⊤ for a ∨ ¬a, Fφ
(“finally φ”) for ⊤Uφ, and Gφ (“globally φ”) for ¬F¬φ. When we use LTL to describe
plays in a game, w.l.o.g. and for simplicity, the atom set is A = V , and each play ρ is
assimilated to the sequence of valuations ν defined by νk(v) = 1 iff ρk = v. For example,
when u and v are two vertices, the play (uv)ω is the only play satisfying the formula
u ∧ G ((u ⇒ Xv) ∧ (v ⇒ Xu)).

▶ Problem 13 (SPE-verification problem). Given a parity game G↾v0 and an LTL formula φ,
is there an SPE σ̄ in G↾v0 such that ⟨σ̄⟩v0 |= φ?

▶ Remark. The natural problems of deciding whether all SPEs generate a payoff vector
between two thresholds, or a play that satisfies some LTL formula, are the duals of the
aforementioned problems, and their complexities are obtained as direct corollaries. For
example, in a given parity game, all the outcomes of SPEs satisfy the formula φ if and
only if there does not exist an SPE whose outcome satisfies ¬φ. Since we will show that
the SPE-verification problem is PSpace-complete, its dual will also be PSpace-complete.
Similarly, the SPE constrained universality problem is coNP-complete as we will show that
its dual, the SPE constrained existence problem, is NP-complete.

While we do not recall the definition of classical complexity classes here (such as NP,
coNP, or PSpace, see [12]), we recall the definition of the class BH2: the second level of
the Boolean hierarchy. For more details about the Boolean hierarchy itself, see [15].

▶ Definition 14 (Class BH2). The complexity class BH2 is the class of problems of the form
P ∩Q, where P is NP-easy and Q is coNP-easy, and both have the same set of instances.
In other words, a BH2-easy problem is a problem that can be decided with one call to an
NP algorithm, and one to a coNP algorithm.
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▶ Remark. The class BH2 must not be mistaken with the class NP ∩ coNP, that gathers
the problems that can be solved by an NP algorithm as well as by a coNP one: the latter
is included in NP and in coNP, while the former contains them.

To attach intuition to this definition, let us present a useful BH2-complete problem.

▶ Problem 15 (Sat × coSat). Given a pair (φ1, φ2) of propositional logic formulas, is it
true that φ1 is satisfiable and that φ2 is not?

▶ Lemma 16. The problem Sat × coSat is BH2-complete.

3 Negotiation in parity games

3.1 Requirements, negotiation, and link with SPEs
In the algorithms we provide, we make use of the characterization of SPEs in prefix-
independent games that has been presented in [2]. We recall here the notions needed,
slightly adapted to Boolean games.

▶ Definition 17 (Requirement). A requirement on a game G is a mapping
λ : V → {0, 1,+∞}. The set of the requirements on G is denoted by ReqG, and is
ordered by the componentwise order ≤: we write λ ≤ λ′ when we have λ(v) ≤ λ′(v) for all v.

▶ Definition 18 (λ-consistency). Let λ be a requirement on the game G. A play ρ in
G is λ-consistent iff for each player i and every index k such that ρk ∈ Vi, we have
µi(ρkρk+1 . . . ) ≥ λ(ρk). The set of λ-consistent plays in G↾v0 is denoted by λCons(v0).

In this paper, we will consider specifically requirements that are satisfiable.

▶ Definition 19 (Satisfiability). The requirement λ, on the game G, is satisfiable iff for each
state v ∈ V , there exists at least one λ-consistent play from v.

▶ Lemma 20. Given a parity game G and a requirement λ, deciding whether λ is satisfiable
is NP-easy.1

Proof. An NP algorithm for that problem guesses, first, a family (hv,Wv)v∈V , where for each
v, hv is a history without cycle starting from v and Wv is a subset of V with last(hv) ∈ Wv.
That family is an object of polynomial size, and certifies that λ is satisfiable if for each v:
(1) λ(v) ̸= +∞; (2) the subgraph (Wv, E ∩W 2

v ) is strongly connected; (3) for each vertex
u ∈ Occ(hv) ∪ Wv such that λ(u) = 1, if i is the player who controls u, then the color
min κi(Wv) is even.

Indeed, if those three points are satisfied, then for each v, the play hvc
ω
v , where cv is

a cycle (not necessarily simple, but which can be chosen of size at most (cardWv)2) that
visits all the vertices of Wv at least once and none other, is λ-consistent. Conversely, if from
each v, there exists a λ-consistent play ρ, then the pair (hv,Wv), where Wv = Inf(ρ) and hv

is a prefix of ρ ending in Wv in which the cycles have been removed, satisfies those three
properties – those can be checked in polynomial time. ◀

Each requirement induces a notion of rationality for a coalition of players.

1 It is actually NP-complete, as we can prove by slightly adapting the proof of Theorem 47.

CSL 2022



10:8 On the Complexity of SPEs in Parity Games

▶ Definition 21 (λ-rationality). Let λ be a requirement on the game G. A strategy profile
σ̄−i is λ-rational assuming the strategy σi iff for every history hv compatible with σ̄−i, the
play ⟨σ̄↾hv⟩v is λ-consistent. It is λ-rational if it is λ-rational assuming some strategy. The
set of λ-rational strategy profiles in G↾v0 is denoted by λRat(v0).

The notion of λ-rationality qualifies the environment against player i, i.e. the coalition of
all the players except i: they play λ-rationally if their strategy profile can be completed by a
strategy of player i, such that in every subgame, each player gets their requirement satisfied.

But then, λ-rationality restrains the behaviours of the players against player i: that one
may be able to win against a λ-rational environment while it is not the case against a fully
hostile one. This is what the negotiation function captures.

▶ Definition 22 (Negotiation). The negotiation function is a function that transforms every
requirement λ into a requirement nego(λ), defined by, for each i ∈ Π and v ∈ Vi, and with
the convention inf ∅ = +∞:

nego(λ)(v) = inf
σ̄−i∈λRat(v)

sup
σi∈Σi(G↾v)

µi(⟨σ̄−i, σi⟩v).

▶ Remark. If player i follows the strategy σi assuming which σ̄−i is λ-rational, then they
get at least the payoff λ(v), hence nego(λ)(v) ≥ λ(v) and the negotiation function is non-
decreasing. Moreover, if λ ≤ λ′, then all the λ′-rational strategy profiles are also λ-rational,
hence nego(λ) ≤ nego(λ′) and the negotiation function is monotonic.

The fixed points of the negotiation function characterize the SPEs of a game: indeed,
when some play ρ is λ-consistent for some fixed point λ, it means that it is won by every
player who could ensure their victory from a state visited by ρ, while playing against a
rational environment. Better: all the SPEs are characterized by the least fixed point of the
negotiation function, which exists by Tarski’s fixed point theorem, and which we will write
λ∗ in the rest of this paper. An equivalent result exists for NEs, that are characterized by
the requirement nego(λ0), where λ0 : v 7→ 0 is the vacuous requirement.

▶ Theorem 23. In a prefix-independent Boolean game G↾v0 :
the set of NE outcomes is exactly the set of nego(λ0)-consistent plays;
the set of SPE outcomes is exactly the set of λ∗-consistent plays.

Proof. By [2], this result is true for any prefix-independent game with steady negotiation,
i.e. such that for every requirement λ, for every player i and for every vertex v, if there
exists a λ-rational strategy profile σ̄−i from v, there exists one that minimizes the quantity
supσi

µi(⟨σ̄−i, σi⟩v). In the case of Boolean games, the function µi can only take the values
0 and 1, hence this supremum is always realized. ◀

▶ Example 24. Let us consider again the game of Figure 1. Every play in that game – like in
every game – is λ0-rational. The requirement λ1 = nego(λ0) is equal to 1 on the states c and
e (the states from which the player controlling those states can enforce the victory), and to 0
in each other one. Then, the λ1-consistent plays are exactly the plays supported by a Nash
equilibrium: the play aceω, and the play abω.

Now, from the state a, the only strategy profile that can make player # lose if she chooses
to go to c is σ2 : ac 7→ d, which was λ0-rational but is not λ1-rational: the play cdω is not
λ1-consistent. Therefore, against a λ1-rational environment, player # can enforce the victory
by going to the state c, hence λ2(a) = 1, where λ2 = nego(λ1). Then, the requirement λ2 is
a fixed point of the negotiation function, and consequently the least one, hence the only play
supported by an SPE from the state a is the only play that is λ2-consistent, namely aceω.
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Figure 2 An illustration of Ummels’ algorithm.

3.2 The existence of SPEs in parity games
In parity games, the existence of SPEs is guaranteed.

▶ Theorem 25 ([14]). There exists an SPE in every parity game.

Proof sketch. This theorem is a result due to Ummels. In [3], we rephrase his proof in
terms of requirements and negotiation. Let us give here the main intuitions. We define a
decreasing sequence (En)n of subsets of E, and an associated sequence (λ′

n)n of requirements,
keeping the hypothesis that En always contains at least one outgoing edge from each vertex.
First, E0 = E and λ′

0 is the vacuous requirement. Then, for every n, for each player i and
each v ∈ Vi, we define λ′

n+1(v) as equal to 1 if and only if in the game obtained from G by
removing the edges that are not in En, player i can enforce the victory from v, against a fully
hostile environment. Then, from each such state, we choose a memoryless winning strategy
(which always exists, see [10]), that is, we choose one edge to always follow to ensure the
victory, and we remove the other outgoing edges from En to obtain En+1. We prove that for
each n, we have λ′

n+1 ≥ nego(λ′
n), hence the sequence (λ′

n)n converges to a satisfiable fixed
point of the negotiation function – which is not necessarily the least one. ◀

As a consequence, in every parity game G, we have λ∗(v) ∈ {0, 1}: this is why in what
follows, we only consider requirements with values in {0, 1}.
▶ Example 26. Let us consider the (Büchi) game of Figure 2a: recall that the objective of
each player is to see infinitely often the color 0. If we follow the algorithm from [14], as
presented above, we remove the edge df – because always going to e is a winning strategy for
player 3 from d – and the edges ba and bd – because always going to c is a winning strategy
for player 2 from b. Then, the algorithm reaches a fixed point, see Figure 2b. Our proof
states that every play that uses only the remaining edges is a play supported by an SPE.
Indeed, those plays are λ′

1-consistent, where λ′
1 is the requirement given in red on Figure 2b:

it is a fixed point of the negotiation function. However, it is not the least one: for example,
the play ab(dedf)ω is not λ′

1-consistent, but it is also a play that is supported by an SPE.
The least fixed point is given in red on Figure 2a.

The interested reader will find in [3] an additional example of parity game, on which we
computed the iterations of the negotiation function.

3.3 Abstract negotiation game
Now, let us study how we can compute the negotiation function. The abstract negotiation
game is a tool which already appeared in [8], and which has been linked to the negotiation
function in [2]. It is a game on an infinite graph that opposes two players, Prover and
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10:10 On the Complexity of SPEs in Parity Games

Challenger : Prover constructs a λ-rational strategy profile by proposing plays, and Challenger
constructs player i’s response by accepting those plays or deviating from them. We slightly
simplify the definition here, by considering only satisfiable requirements, which guarantees
that Prover has always a play to propose2.

▶ Definition 27 (Abstract negotiation game). Let G be a parity game, let λ be a satisfiable
requirement, let i ∈ Π and let v0 ∈ Vi. The associated abstract negotiation game is the
two-player zero-sum game Absλi(G)↾[v0] = ({P,C}, S, (SP, SC),∆, ν)↾[v0] where:

the players P and C are called respectively Prover and Challenger ;
Challenger’s states are of the form [ρ], where ρ is a λ-consistent play of G;
Prover’s states are of the form [hv], where h ∈ Histi(G) ∪ {ε} and last(h)v ∈ E, plus one
additional sink state ⊤;
the set ∆ contains the transitions of the forms:

[v][ρ], where first(ρ) = v: Prover proposes the play ρ;
[ρ][ρ0 . . . ρkv], where k ∈ N, v ̸= ρk+1 and ρkv ∈ E: Challenger refuses and deviates;
[hv][v] with h ̸= ε: then, Prover has to propose a new play from the vertex v;
[ρ]⊤: Challenger accepts the proposed play;
⊤⊤: the game is over;

When π is a play in the abstract negotiation game, we will use the notation π̇ to denote the
play in the original game constructed by Prover’s proposals and Challenger’s deviations.
Thus, the play π is won by Challenger iff one of the following conditions is satisfied:

the play π has the form [v0][ρ0][h0v1][v1][ρ1] . . . [hn−1vn][vn][ρn]⊤ω, i.e. Challenger
accepts a play proposed by Prover, and the play π̇ = h0 . . . hn−1ρn is won by player i;
or the play π has the form [v0][ρ0][h0v1][v1][ρ1][h1v2] . . . , i.e. Challenger always deviates
from the play proposed by Prover, and the play π̇ = h0h1 . . . is won by player i.

▶ Theorem 28 ([2], Appendix E). Let G be a prefix-independant Boolean game, let λ be a
satisfiable requirement, let i ∈ Π and let v0 ∈ Vi. Then, we have nego(λ)(v0) = 0 if and only
if Prover has a winning strategy in the associated abstract negotiation game.3

▶ Example 29. Let G be the game from Figure 1. In this particular case, since there are
finitely many possible plays, the abstract negotiation games Absλ0#G and Absλ1# have a
finite state space. They are represented in Figure 3: the blue states are Prover’s states, and
the orange ones are Challenger’s. The dashed states belong to Absλ0#G but not to Absλ1#.
Observe that Prover has a winning strategy in Absλ0#G (in red), but not in Absλ1#G.

4 Algorithms

Let us now study how we can use the abstract negotiation game to solve the problems
presented in the introduction. We first define an equivalence relation between histories and
between plays; then, we show that in the abstract negotiation game, Prover can propose only
plays that are simple representatives of their equivalence class, and propose always the same
play from each vertex.

2 In [2], a second sink state ⊥ is added to enable Prover to give up when she has no play to propose.
Another purely technical difference is the existence here of a mandatory transition from each state [hv]
to the state [v], instead of letting Prover propose a play directly from the state [hv]: thus, there are few
states from which Prover has a choice to make, which will be useful in what follows.

3 The non-existence of the sink state ⊥, in which Prover is supposed to get the payoff −∞, does not
change this result: since λ is assumed to be satisfiable, Prover has always a strategy to get at least the
payoff 0, hence no optimal strategy of Prover plans to follow a transition to ⊥.
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⊤
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b

cdω

ceω

bω

Figure 3 An abstract negotiation game.

4.1 Reduced plays and reduced strategy
The equivalence relation that we use is based on the order in which vertices appear.

▶ Definition 30 (Occurrence-equivalence (histories)). Two histories h and h′ are occurrence-
equivalent, written h ≈ h′, iff first(h) = first(h′), last(h) = last(h′) and Occ(h) = Occ(h′).

▶ Definition 31 (Occurrence-equivalence (plays)). Two plays ρ and ρ′ are occurrence-equivalent,
written ρ ≈ ρ′, iff the three following conditions are satisfied:

Inf(ρ) = Inf(ρ′);
for each history prefix of ρ, there exists a occurrence-equivalent history prefix of ρ′;
for each history prefix of ρ′, there exists a occurrence-equivalent history prefix of ρ.

▶ Example 32. Let us consider the game of Figure 2a. In that game, the play ab(dedf)ω is
occurrence-equivalent to the play abde(dedf)ω, but not to the play ab(dfde)ω. Indeed, the
latter has the history abdf as a prefix, which is not occurrence-equivalent to any prefix of
ab(dedf)ω, in which the state f occurs only when the state e has already occurred.
▶ Remark. The operators Occ, Inf and µ are stable by occurrence-equivalence.

The interest of that equivalence relation lies in the finite number of its equivalence classes,
and by the existence of simple representatives of each of them.

▶ Lemma 33. Let ρ be a play of G. There exists a lasso hcω ≈ ρ with |h| ≤ n3 + n2 and
|c| ≤ n2, where n = cardV .

We call such lassos reduced plays. For each ρ, we write ρ̃ for an arbitrary occurrence-
equivalent reduced play. Then, operations such as computing µ(ρ̃), Occ(ρ̃), Inf(ρ̃), or checking
whether ρ̃ is λ-consistent, can be done in time O(n3).

▶ Definition 34 (Reduced strategy). A strategy τP for Prover in Absλi(G) is reduced iff it is
memoryless, and for each state v, the play ρ with [ρ] = τP([v]) is a reduced play.

▶ Example 35. In Figure 3, Prover’s winning strategy, defined by the red arrows, is reduced.
If ρ ≈ ρ′, and if Challenger can deviate from ρ after the history hv, then he can also

deviate in ρ′ after some history h′v that traverses the same states. Thus, Prover can play
optimally while proposing only reduced plays, and by proposing always the same play from
each vertex; that is, by following a reduced strategy.

▶ Lemma 36. Prover has a winning strategy in the abstract negotiation game if and only if
she has a reduced one.
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4.2 Checking that a reduced strategy is winning: the deviation graph

We have established that Prover is winning the abstract negotiation game if and only if
she has a reduced winning strategy. Such a strategy has polynomial size and can thus be
guessed in nondeterministic polynomial time. It remains us to show that we can verify in
deterministic polynomial time that a guessed strategy is winning. For that purpose, we
construct its deviation graph.

▶ Definition 37 (Deviation graph). Let τP be a reduced strategy of Prover, and let i ∈ Π.
The deviation graph associated to τP and v is the colored graph Devi(τP):

the vertices are the plays τP([w]), for every vertex w of the original game;
there is an edge from [ρ̃] to τP([w]) with color c iff there exists k ∈ N such that ρ̃k ∈ Vi,
ρ̃kw ∈ E, w ̸= ρ̃k+1 and min κi(Occ(ρ̃0 . . . ρ̃k)) = c.

Constructing the deviation graph associated to a memoryless strategy τP enables to decide
whether τP is a winning strategy or not.

▶ Lemma 38. The reduced strategy τP is winning in the abstract negotiation game if and
only if in the corresponding deviation graph, there neither exists, from the vertex τP([v0]):

a finite path to a vertex [ρ̃] such that the play ρ̃ is winning for player i;
nor an infinite path along which the minimal color seen infinitely often is even.

As a consequence, given a parity game G and a requirement λ, deciding whether λ is a
fixed point of the negotiation function is NP-easy.

Proof. Given G and λ, let n be the number of states in G, and m be the number of colors.
The deviation graph can be seen as the abstract negotiation game itself, where one removed
the transitions that were not compatible with τP; removed the states that were not accessible
from [v0]; and merged the paths [ρ̃][hv][v][ρ̃′] into one edge [ρ̃][ρ̃′] with color min κi(h).

Therefore, a path from the vertex τP([v0]) can be seen as a history (if it is finite) or a
play (if it is infinite), compatible with the strategy τP, in the abstract negotiation game. In
particular, the finite paths to a vertex [ρ̃] with µi(ρ̃) = 1 correspond to the histories that
lead Prover to propose a play that is winning for player i, that Challenger can accept to
win. Similarly, the infinite paths along which the minimal color seen infinitely often is even
correspond to the plays π where Challenger deviates infinitely often, and constructs the play
π̇ that is winning for player i. Such paths will be called winning paths.

Now, the deviation graph has n vertices, and at most mn2 edges. Constructing it requires
time O(n4). Deciding the existence of a finite winning path is a simple accessibility problem,
and can be done in time O(mn2). Deciding the existence of an infinite winning path is
similar to deciding the emptiness of a parity automaton, and requires a time O(mn3). As a
consequence, deciding whether a reduced strategy is winning can be done in polynomial time
– and it is an object of polynomial size.

Thus, an NP algorithm that decides whether the requirement λ is a fixed point of the
negotiation function is the following: we guess, at the same time, a certificate that proves
that λ is satisfiable (Lemma 20), and a reduced strategy τv

P for Prover in Absλi(G)↾[v], for
each i ∈ Π and v ∈ Vi such that λ(v) = 0: by Lemma 36, there exists such a winning strategy
if and only if nego(λ)(v) = 0. Those objects form a certificate of polynomial size, that can
be checked in polynomial time. ◀
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Figure 4 A deviation graph.
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Figure 5 The game Gφ.

▶ Example 39. Let us consider the game of Figure 2a, and the requirement λ∗, presented on
the same figure. Let τP be the memoryless strategy in the game Absλ∗#(G)↾[a] defined by:

τP([a]) = ab(dedf)ω τP([c]) = cω τP([e]) = (edfd)ω

τP([b]) = b(dedf)ω τP([d]) = (dedf)ω τP([f ]) = (fded)ω.

The corresponding deviation graph is given by Figure 4. The purple edges have color 0,
and the orange ones have color 1. Observe that there is no winning path from the vertex
τP([a]) = ab(dedf)ω: each purple edge can be used at most once, and even though the play
cω is winning for player #, the corresponding vertex is not accessible. Therefore, the strategy
τP is winning in Absλ∗#(G)↾[a], which proves the equality nego(λ∗)(a) = λ∗(a) = 0.

4.3 Upper bounds
Let us now give the main problems for which the concepts given above yield a solution.

A first application is an algorithm for the SPE constrained existence problem.

▶ Lemma 40. The SPE constrained existence problem for parity games is NP-easy.

Proof. Given a parity game G↾v0 and two thresholds x̄ and ȳ, we can guess a reduced play
η̃ from v0, a requirement λ, and the certificates required to decide whether λ is a fixed point
of nego, according to Lemma 38. All those objects have polynomial size. Then, to check that
η̃ is an SPE outcome, using Theorem 23, we check that λ is a fixed point of nego, that η̃ is
λ-consistent, and that x̄ ≤ µ(η̃) ≤ ȳ in polynomial time. ◀
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This algorithm does not need an effective characterization of all the SPEs in a game,
which is given by the least fixed point of the negotiation function λ∗. Computing such a
characterization can be done with a call to a NP oracle and to a coNP oracle, i.e. it belongs
to the class BH2.

▶ Lemma 41. Given a parity game G and a requirement λ, deciding whether λ = λ∗ is
BH2-easy.

Proof. First, deciding whether λ is a fixed point of the negotiation function is an NP-easy
problem by Lemma 38. Deciding whether it is the least one is coNP-easy, because a negative
instance can be recognized as follows. We guess a requirement λ′ < λ, and the certificates of
the algorithm given by Lemma 38; then, we check that λ′ is a fixed point of nego. ◀

Finally, SPE-verification requires polynomial space.

▶ Lemma 42. The SPE-verification problem is PSpace-easy.

Proof. Given a parity game G↾v0 and an LTL formula φ, by Lemma 41, the requirement λ∗

can be computed by a deterministic algorithm using polynomial space – indeed, we have the
inclusions NP ⊆ PSpace and coNP ⊆ PSpace, hence the guess of λ∗, followed by one call
to an NP algorithm and one call to a coNP algorithm, can be transformed into a PSpace
algorithm. Then, we can construct in polynomial time the LTL formula ψλ∗ , that is satisfied
exactly by the λ∗-consistent plays:

ψλ∗ =
∧

i

∧
v∈Vi,λ∗(v)=1

Fv ⇒
∨

2k≤m

 ∨
κi(w)=2k

GFw ∧
∨

κi(w)<2k

FG¬w

 ,

where m is the largest color appearing in G.
Then, deciding whether there exists an SPE outcome in G↾v0 that satisfies the formula φ

is equivalent to decide whether there exists a play in G↾v0 that satisfies the formula φ ∧ ψλ∗ .
As for any LTL formula, that can be done using polynomial space: see for example [13]. ◀

4.4 Fixed-parameter tractability
We end this section by mentioning an additional complexity result on the SPE constrained
existence problem: it is fixed-parameter tractable.

▶ Theorem 43. The SPE constrained existence problem on parity games is fixed-parameter
tractable when the number of players and the number of colors are parameters. More precisely,
there exists a deterministic algorithm that solves that problem in time O(22pm

n12), where n
is the number of vertices, p is the number of players and m is the number of colors.

Proof sketch. This result is obtained by constructing and solving a generalized parity game
on a finite arena, that is exponential in the number of players and polynomial in the size
of the original game. This game, called the concrete negotiation game, is equivalent to
the abstract negotiation game. Its construction is inspired by a construction that we have
introduced in [2], for games with mean-payoff objectives. The main idea of this construction
is to decompose the plays proposed by Prover, by passing them to Challenger edges by edges,
and by encoding the λ-consistence condition into a generalized parity condition. Then, we
can apply a FPT algorithm to solve generalized parity games that was first proposed in [7].
While this deterministic algorithm does not improve on the worst-case complexity of the
deterministic ExpTime algorithm of [14], it allows for a finer parametric analysis. ◀
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5 Matching lower bounds

In this section, we provide matching complexity lower bounds for the problems we adressed
in the previous section. For that purpose, we first need the following construction, inspired
from a game designed by Ummels in [9] to prove the NP-hardness of the SPE constrained
existence problem. Our definition is slightly different: while Ummels defined one player per
variable, we need one player per literal. However, the core intuitions are the same.

▶ Definition 44 (Gφ). Let φ =
∧

j∈Z/mZ Cj be a formula of the propositional logic, con-
structed on the finite set of variables {x1, . . . , xn}. We define the parity game Gφ as follows.

The players are the variables x1, . . . , xn, their negations, and Solver, denoted by S.
The states controlled by Solver are all the clauses Cj , and the sink state ⊥.
The states controlled by player L = ±xi are the pairs (Cj , L), where L is a literal of Cj .
There are edges from each clause state Cj to all the states (Cj , L); from each pair state
(Cj , L) to the state Cj+1, and to the sink state ⊥; and from the sink state ⊥ to itself.
For Solver, every state has the color κS(v) = 2, except the state ⊥, which has color 1.
For each literal player L, every state has the color κL(v) = 2, except the states of the
form (C,L), that have the color 1.

▶ Remark. The game Gφ is a coBüchi game: Solver has to avoid the sink state ⊥, and player
L the states of the form (C,L). Therefore, all the following theorems can also be applied to
the more restrictive class of coBüchi games.
▶ Example 45. The game Gφ, when φ is the tautology

∧6
j=1(xj ∨ ¬xj), is given by Figure 5.

The game Gφ is strongly linked with the satisfiability of φ, in the following formal sense.

▶ Lemma 46. The game Gφ has the following properties.
The least fixed point of the negotiation function is equal to 0 on the states controlled by
Solver, and to 1 on the other ones.
For every SPE outcome ρ in Gφ that does not reach ⊥, the formula φ is satisfied by:

νρ : x 7→
{

1 if ∃C, (C, x) ∈ Inf(ρ)
0 otherwise.

Conversely, for every valuation ν satisfying φ, the play ρν =
(C1(C1, L1) . . . Cm(Cm, Lm))ω, where for each j, the literal Lj is satisfied by ν,
is an SPE outcome.

A first consequence is the lower bound on the complexity of deciding whether some
requirement is, or not, a fixed point of the negotiation function.

▶ Theorem 47. Given a parity game G and a requirement λ, deciding whether λ is a fixed
point of the negotiation function is NP-complete.

Proof. Easiness is given by Lemma 38. For hardness, we proceed by reduction from the
NP-complete problem Sat. Given a formula φ =

∧
j∈Z/mZ Cj of the propositional logic, we

can construct the game Gφ in polynomial time. Then, let us define on Gφ the requirement λ
that is constantly equal to 1, except in ⊥, where it is equal to 0. Since there is no winning
play for Solver from ⊥, the requirement λ is a fixed point of the negotiation function if and
only if there exists a λ-consistent play from each vertex. If it is the case, then let ρ be a
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λ-consistent play from C1. Since λ ≥ λ∗, the play ρ is also λ∗-consistent, and is therefore an
SPE outcome. It is also a play won by Solver, since λ(C1) = 1: therefore, it does not reach
the state ⊥. Then, by Lemma 46, we can define the valuation νρ, which satisfies φ.

Conversely, if ν is a valuation satisfying φ, then the play ρν is an SPE outcome from
C1, and it does not end in ⊥, hence it is won by Solver, and is therefore λ-consistent. If we
consider the suffixes of ρν , we find a λ∗-consistent play from each state Cj ; and from the
states of the form (Cj , L), the play (Cj , L)⊥ω is λ∗-consistent, hence there is a λ∗-consistent
play from each vertex: deciding whether λ is a fixed point of the negotiation function is
NP-hard. ◀

A similar proof ensures the same lower bound on the SPE constrained existence problem.

▶ Theorem 48. The SPE constrained existence problem in parity games is NP-complete.

Proof. Easiness is given by Lemma 40. For hardness, we proceed by reduction from the
problem Sat. Given a formula φ =

∧
j∈Z/mZ Cj of the propositional logic, we can construct

the game Gφ in polynomial time. By Lemma 46, there exists an SPE outcome from C1
and won by Solver, i.e. an SPE outcome from C1 that does not reach the sink state ⊥, if
and only if there exists a valuation satisfying φ: the SPE constrained existence problem is
NP-hard. ◀

Now, we show that the algorithm we presented to compute λ∗ is optimal as well.

▶ Theorem 49. Given a parity game G and a requirement λ, deciding whether λ = λ∗ is
BH2-complete. Given a parity game G, computing λ∗ can be done by a non-deterministic
algorithm in polynomial time iff NP = BH2.

Finally, the LTL model-checking problem easily reduces to the SPE-verification problem,
which gives us the matching lower bound.

▶ Theorem 50. The SPE-verification problem is PSpace-complete.
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Abstract
This paper discusses the formalization of synthetic cohomology theory in a cubical extension of Agda
which natively supports univalence and higher inductive types. This enables significant simplifications
of many proofs from Homotopy Type Theory and Univalent Foundations as steps that used to require
long calculations now hold simply by computation. To this end, we give a new definition of the group
structure for cohomology with Z-coefficients, optimized for efficient computations. We also invent
an optimized definition of the cup product which allows us to give the first complete formalization
of the axioms needed to turn the integral cohomology groups into a graded commutative ring. Using
this, we characterize the cohomology groups of the spheres, torus, Klein bottle and real/complex
projective planes. As all proofs are constructive we can then use Cubical Agda to distinguish between
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1 Introduction

Homotopy Type Theory and Univalent Foundations (HoTT/UF) [38] extends Martin-Löf
type theory [30] with Voevodsky’s univalence axiom [41] and higher inductive types (HITs).
This is based on a close correspondence between types and topological spaces represented as
Kan simplicial sets [24]. With this interpretation, points in spaces correspond to elements of
types, while paths and homotopies correspond to identity types between these elements [3].
This enables homotopy theory to be developed synthetically using type theory. Many classical
results from homotopy theory have been formalized in HoTT/UF this way: the definition of
the Hopf fibration [38], the Blakers-Massey theorem [22], the Seifert-van Kampen theorem [23]
and the Serre spectral sequence [39], among others. Using these results, many homotopy
groups of spaces – represented as types – have been characterized. However, just like in
classical algebraic topology, these groups tend to be complicated to work with. Because of
this, other topological invariants like cohomology have been invented.
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11:2 Synthetic Integral Cohomology in Cubical Agda

Informally, the integral cohomology groups Hn(X) of a space X describe its n-dimensional
holes. For instance, the n-dimensional hole in the n-sphere Sn corresponds to Hn(Sn) ≃ Z.
These holes constitute a topological invariant, making cohomology a powerful technique for
establishing which spaces cannot be homotopy equivalent. The usual formulation of singular
cohomology using cochain complexes relies on taking the underlying set of topological spaces
when defining the singular cochains [19]. This operation is not invariant under homotopy
equivalence, which makes it impossible to use when formalizing cohomology synthetically.
Luckily, there is an alternative definition of cohomology using Eilenberg-MacLane spaces which
is homotopy invariant [26]. This was initially studied at the IAS special year on HoTT/UF
in 2012–2013 [33] and has since been used to develop the Eilenberg-Steenrod axioms [11]
and cellular cohomology [8]. This paper builds on this prior work, but uses Cubical Agda– a
recent cubical extension of the dependently typed programming language Agda [35].

The Cubical Agda system is based on a variation of cubical type theory formulated by
Coquand et al. [14]. These type theories can be seen as refinements of Book HoTT [38] where
the homotopical intuitions are taken very literally and made part of the theory. Instead
of relying on the inductively defined identity type [29] to define paths and homotopies, a
primitive interval type I is added. Paths and homotopies are then represented as functions
out of I, just like in traditional topology. This has some benefits compared to Book HoTT.
First, many proofs become simpler. For instance, function extensionality becomes trivial to
prove, as opposed to in Book HoTT where it either has to be postulated or derived from the
univalence axiom [42]. Second, it gives computational meaning to HoTT/UF, which makes it
possible to use the system to do computations using univalence and HITs. Finally, it makes it
possible to formulate a general schema for HITs where the eliminators compute definitionally
for higher constructors [12, 15]. This is still an open problem for Book HoTT, and HITs have
to be added axiomatically, which leads to bureaucratic transports that complicate proofs.

Mörtberg and Pujet explored practical implications of formalizing synthetic homotopy
theory in Cubical Agda in [31]. This work provided empirical evidence that formalizing
synthetic homotopy theory in cubical type theory can lead to significant simplifications of
the corresponding formal Book HoTT proofs. For instance, the proof of the 3× 3 lemma
for pushouts was shortened from 3000 lines of code (LOC) in HoTT-Agda [7] to only 200 in
Cubical Agda. Another proof that becomes substantially shorter is the proof that the torus
is equivalent to the product of two circles. This elementary result in topology turned out
to have a surprisingly non-trivial proof in Book HoTT because of the lack of definitional
computation rules for higher constructors [25, 34]. With the additional computation rules of
Cubical Agda, this proof is now trivial [40, Sect. 2.4.1].

The present paper is a natural continuation of this prior work and the two main goals
are to characterize Z-cohomology groups of types and to compute using these groups. In
classical algebraic topology, characterize and compute are often used interchangeably when
discussing cohomology. We are careful to distinguish these two notions. When characterizing
a cohomology group of some type, we prove that it is isomorphic to another group. As all of
our proofs are constructive, we can then use Cubical Agda to actually compute with this
isomorphism. Having the possibility of doing proofs simply by computation is one of the
most appealing aspects of developing synthetic homotopy theory cubically. As this is not
possible with pen and paper proofs, or even with many formalized proofs in Book HoTT,
one often has to resort to doing long calculations by hand. If proofs instead can be carried
out using a computer, many of these long calculations become obsolete. This is a reason
why many proofs from synthetic homotopy theory are substantially shorter in Cubical Agda.
However, not everything has successfully been possible to reduce to computations. A famous
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example is the Brunerie number. This is a synthetic definition of a number n : Z such that
π4(S3) = Z/nZ. Brunerie proved in his PhD thesis [5] that n = ±2, but even though this is
a constructive definition, it has thus far proved infeasible to compute using Cubical Agda,
despite considerable efforts. In this paper, we construct a similar number, also inspired by [5],
using the multiplicative structure on Hn(CP 2). This number was proved to be ±1 using
sophisticated techniques in [5, Chapter 6], but we have thus far been unable to verify this
purely by computation. However, as this number is substantially simpler than the Brunerie
number, it provides a new computational challenge which should be more feasible.

Contributions. The main novel result of the paper is the first computer formalization of the
graded commutative ring axioms for Z-cohomology in HoTT/UF (Section 4). To this end,
we first develop Z-cohomology groups (Section 3). The definitions are inspired by [5], but
the additive structure is new and optimized for efficient computations. The definition of the
cup product is also new and provides significant simplifications compared to related proofs in
HoTT-Agda [4]. We also characterize the cohomology groups of various types (Section 5); for
instance, we give the first synthetic characterizations of the cohomology groups of the Klein
bottle and real projective plane. In order to characterize Hn(CP 2), we have verified that
our definition of cohomology satisfies the Eilenberg-Steenrod axioms for cohomology theories
and constructed the Mayer-Vietoris sequence. We finally reap the fruits of our constructive
definitions in Section 6 where we prove that S2 ∨ S1 ∨ S1 and the torus are not equivalent by
computing with Cubical Agda.

All results in the paper have been formalized in Cubical Agda. Much of the code in the
paper is literal Cubical Agda code, but we have taken some liberties when typesetting, to
closer resemble standard mathematical notations. In order to clarify the connections be-
tween the paper and formalization, we provide a summary file: https://github.com/agda/
cubical/blob/master/Cubical/Papers/ZCohomology.agda. This file typechecks with the
--safe flag, which ensures that there are no postulates or unfinished goals.

2 Homotopy Type Theory in Cubical Agda

The Agda system [35] is a dependently typed programming language in which both programs
and proofs can be written using the same syntax. Dependent function types (Π-types) are
written (x : A) → B while non-dependent function types are written A → B. Implicit
arguments to functions are written using curly braces {x : A} → B and function application
is written using juxtaposition, so f x instead of f(x). Universes are written Type ℓ, where ℓ

is a universe level. In order to ease notation, we omit universe levels in this paper. Readers
familiar with Agda will also notice that we rename Set to Type. Agda supports many features
of modern proof assistants and has recently been extended with an experimental cubical mode.
The goal of this section is to introduce notions from HoTT/UF (including their formalizations
in Cubical Agda) which the rest of the paper relies on. Due to space constraints, we omit
many technical details and refer curious readers to the paper of Vezzosi et al. [40] for a
comprehensive technical treatment of the features of Cubical Agda.

2.1 Important notions in Cubical Agda
The first addition to make Agda cubical is an interval type I with endpoints i0 and i1. This
corresponds to the real interval [0, 1] ⊂ R. However, in Cubical Agda, this is a purely formal
object. A variable i : I represents a point varying continuously between the endpoints. There
are three primitive operations on I: minimum/maximum (_∧_, _∨_ : I→ I→ I) and reversal
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(∼_ : I → I). A function I→ Type represents a line between two types. By iterating this, we
obtain squares, cubes and hypercubes of types making Agda inherently cubical. In order to
specify the endpoints of a line, we use path types:

PathP : (A : I → Type) → A i0 → A i1 → Type

As paths are functions, they are introduced as λ i → t : PathP A t[i0 / i] t[i1 / i]. Given
p : PathP A a0 a1, we can apply it to r : I and obtain p r : A r. Also, we always have that p i0
reduces to a0 and p i1 reduces to a1. The PathP types should be thought of as representing
heterogeneous equalities since the two endpoints are in different types; this is similar to
dependent paths in Book HoTT [38, Section 6.2]. Given A : Type, we define the type of
non-dependent paths in A using PathP as follows:

_≡_ : A → A → Type
_≡_ x y = PathP (λ _ → A) x y

Representing equalities as paths allows us to directly reason about equality. For instance,
the constant path λ i→ x represents a proof of reflexivity refl : {x : A} → x ≡ x. We can
also directly apply a function to a path in order to prove that dependent functions respect
path-equality, as shown in the definition of cong below:

cong : {B : A → Type} {x y : A} (f : (x : A) → B x) (p : x ≡ y) → PathP (λ i → B (p i)) (f x) (f y)
cong f p = λ i → f (p i)

We write cong2 for the binary version of cong; its proof is equally direct. These functions
satisfy the standard property that refl gets mapped to refl. They are also definitionally
functorial. The latter is an important difference to the corresponding operations defined using
path induction which only satisfy the functoriality equations up to a path. Path types also
let us prove new things that are not provable in standard Agda, e.g. function extensionality:

funExt : {B : A → Type} {f g : (x : A) → B x} → ((x : A) → f x ≡ g x) → f ≡ g
funExt p i x = p x i

One of the key operations of type theoretic equality is transport: given a path between
types, we get a function between these types. In Cubical Agda, this is defined using another
primitive called transp. However, for this paper, the cubical transport function suffices:

transport : {A B : Type} → A ≡ B → A → B
transport p a = transp (λ i → p i) i0 a

The substitution principle, called “transport” in [38], is an instance of cubical transport:

subst : (B : A → Type) {x y : A} → x ≡ y → B x → B y
subst B p b = transport (λ i → B (p i)) b

This function invokes transport with a proof that the family B respects the equality p. By
combining transport and _∧_, we can define the induction principle for paths. However, an
important difference between path types in Cubical Agda and Book HoTT is that _≡_ does
not behave like an inductive type. In particular, the cubical path induction principle does
not definitionally satisfy the computation rule when applied to refl. Nevertheless, we can still
prove that this rule holds up to a path. This is a subtle, but important, difference between
cubical type theory and Book HoTT. Readers familiar with Book HoTT might be worried
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that the failure of this equality to hold definitionally complicates many proofs. However, in
our experience, this is rarely the case, as many proofs that require path induction in Book
HoTT can be proved more directly using cubical primitives.

Cubical Agda also has a primitive operation hcomp for composing paths and, more
generally, for composing higher dimensional cubes. An important special case is binary
composition of paths _·_ : x ≡ y → y ≡ z → x ≡ z. By composing paths and higher cubes
using hcomp, we can reason about paths in a very direct way, avoiding path induction.

2.2 Important concepts from HoTT/UF in Cubical Agda
Pointed types and functions will play an important role in this paper. Formally, a pointed
type is a pair (A , ∗A) where A is a type with ∗A : A. We write Type∗ for the universe of
pointed types. Given A, B : Type∗, a pointed function is a pair (f , p) : A →∗ B, where
f : A→ B and p : f ∗A ≡ ∗B . We often leave ∗A and p implicit and write simply A : Type∗
and f : A→∗ B. We also sometimes just write A for the underlying type of A : Type∗.

Most HITs in [38] can be defined directly using the general schema of Cubical Agda. For
example, the circle and suspension HITs can be written as:

data S1 : Type where
base : S1
loop : base ≡ base

data Susp (A : Type) : Type where
north : Susp A
south : Susp A
merid : (a : A) → north ≡ south

Functions out of HITs are written using pattern-matching equations, just like regular
Agda functions. When typechecking the cases for path constructors, Cubical Agda checks
that the endpoints of what the user writes match up. We could directly define specific
higher spheres as HITs with a base point and a constructor for iterated paths. However, the
following definition is often easier to work with, as one can reason inductively about it:

▶ Definition 1 (Sn). The n-spheres are pointed types defined by recursion:

Sn =


(Bool , true) if n = 0
(S1 , base) if n = 1
(Susp Sn−1 , north) if n ≥ 2

We could equivalently have defined S1 = (Susp Bool , north), but in our experience, the
base/loop-construction is often easier to work with and gives faster computations.

Consistent with the intuition that types correspond to topological spaces (up to homotopy
equivalence), we may consider loop spaces of pointed types.

▶ Definition 2 (Loop spaces). Given a pointed type A : Type∗, we define its loop space as
the pointed type Ω A = (∗A ≡ ∗A , refl). For n : N, we let Ωn+1 A = Ω (Ωn A).

As an example of a non-trivial result which is proved using path induction in Book HoTT,
but which can be proved very concisely in Cubical Agda, consider the Eckmann-Hilton
argument. It says that path composition in higher loop spaces is commutative and can be
proved using a single transport with the unit laws for _·_ and some interval operations.

EH : {n : N} (p q : Ω^ (2 + n) A) → p · q ≡ q · p
EH p q = transport (λ i → (λ j → rUnit (p j) i) · (λ j → lUnit (q j) i)

≡ (λ j → lUnit (q j) i) · (λ j → rUnit (p j) i))
(λ i → (λ j → p (j ∧ ∼ i) · q (j ∧ i)) · (λ j → p (∼ i ∨ j) · q (i ∨ j)))

CSL 2022
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A type A is not uniquely determined by its points – also (higher) paths in A have to be
taken into account. However, for some types, these paths become trivial at some point. We
define what this means formally as follows.

▶ Definition 3 (n-types). Given n ≥ −2, a type A is:
a (−2)-type if A is contractible (i.e. A is pointed by a unique point).
an (n + 1)-type if for all x, y : A, x ≡ y is an n-type.

We write n-Type for the universe of n-types (at some level ℓ).

Equivalently, we could have said that, for n ≥ −1, A is an n-type if Ωn+1A is contractible for
any choice of base point a : A. We follow HoTT/UF terminology and refer to (−1)-types as
propositions and 0-types as sets. A type is a proposition iff all of its elements are path-equal.

Sometimes we are only interested in the structure of a type A and its paths up to a
certain level n. That is, we want to turn A into an n-type while preserving the structure of
A for levels less than or equal to n. This can be achieved using the n-truncation HITs ∥A ∥n.
Just like for Sn, these are easily defined in Cubical Agda for fixed n, but for general n ≥ −2
we rely on the “hub and spoke” construction [38, Section 7.3].1 This construction introduces
a point constructor |_ | : A→ ∥A ∥n and constructors hub and spoke ensuring that any map
Sn+1 → ∥A ∥n is constant (thus contracting Ωn+1 ∥A ∥n). Using pattern-matching, we can
define the usual elimination principle which says: given B : ∥A ∥n → n-Type, in order to
construct an element of type B x, we may assume that x is of the form | a | for some a : A.
This extends to paths p : |x | ≡ | y | in ∥A ∥n+1. Suppose we have B : |x | ≡ | y | → n-Type
and want to construct B p. The elimination principle tells us that it suffices to do so when
p = cong |_ | q for q : x ≡ y in A. This is motivated by [38, Theorem 7.3.12].

Truncations allow us to talk about how connected a type is.

▶ Definition 4 (Connectedness). A type A is n-connected if ∥A ∥n is contractible.

Connectedness expresses in particular that |x | ≡ | y | holds in ∥A ∥n for all x, y : A of an
n-connected type A. This enables applications of the induction principle for truncated path
spaces discussed above. Most types in this paper are 0-connected. For such types, we can
assume that x≡ y holds for x, y : A whenever we are proving a family of propositions.

Another important class of HITs are pushouts. These correspond to homotopy pushouts
in topology. Given f : A→ B and g : A→ C, the pushout of the span B

f← A
g→ C is:

data Pushout (f : A → B) (g : A → C) : Type where
inl : B → Pushout f g
inr : C → Pushout f g
push : (a : A) → inl (f a) ≡ inr (g a)

Many types that we have seen so far can be defined as pushouts. For instance, Susp A is
equivalent to the pushout of the span 1← A→ 1. Another example is wedge sums:

▶ Definition 5 (Wedge sums). Given pointed types A and B, the wedge sum A∨B is the
pushout of the span A

λ x → ∗A←−−−−−− 1
λ x → ∗B−−−−−−→ B. This is pointed by inl ∗A.

1 For n = −2 this construction fails. In this case, simply let ∥ A ∥−2 = 1 where 1 is the unit type.
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2.3 Univalence
One of the most important notions in HoTT/UF is Voevodsky’s univalence axiom [41].
Informally, this postulates that for all types A and B, there is a term

univalence : (A ≃ B) ≃ (A ≡ B)

Here, A ≃ B is the type of functions e : A→ B equipped with a proof that the fiber/preimage
of e is contractible at every x : B [38, Chapter 4.4]. This axiom is a provable theorem in
Cubical Agda using the Glue types of [14, Section 6]. This gives a function ua : A ≃ B →
A ≡ B which converts equivalences to paths. Transporting along a path constructed using
ua applies the function e of the underlying equivalence.

Equivalences A ≃ B are often constructed by exhibiting functions f : A → B and
g : B → A together with proofs that they cancel. Such a quadruple is referred to as a
quasi-equivalence in [38]. It is a corollary of [38, Theorem 4.4.5] that all quasi-equivalences
can be promoted to equivalences. This fact is used throughout the formalization and paper.

An important consequence of univalence is that it also applies to structured types. A
structure on types is simply a function S : Type → Type. By taking the dependent sum
of this, one obtains types with S-structures as pairs (A , s) : ΣA:Type (S A). One example
is the type of groups. This is defined as (G , isGroup G), where isGroup G is a structure
which consists of proofs that G is a set, is pointed by some 0G : G, admits a binary
operation +G, and satisfies the usual group laws. In [2], a notion of univalent structure
and structure preserving isomorphisms ∼=, for which it is direct to prove that ua induces a
function sip : A ∼= B → A ≡ B, are introduced in Cubical Agda. This is one way to formalize
the informal Structure Identity Principle (SIP) [38, Section 9.8]. One can show that isGroup
(with group isomorphism) is a univalent structure and that equivalences e : G ≃ H sending
+G to +H preserve this structure. In other words: sip implies that isomorphic groups are
path-equal.

3 Integral cohomology in Cubical Agda

In classical mathematics, the nth cohomology group with coefficients in an abelian group
G of a CW-complex X may be characterized as the group of homotopy classes of functions
X → K(G, n). Here, K(G, n) denotes the nth Eilenberg-MacLane space of G. That is,
K(G, n) is the unique space with a single non-trivial homotopy group isomorphic to G, i.e.
πn(K(G, n)) ∼= G and πm(K(G, n)) ∼= 1 for m ̸= n. While this is a theorem in classical
mathematics, we take it as our definition of the nth cohomology group of a type A:

Hn(A; G) = ∥A→ K(G, n) ∥0

This type will inherit the group structure2 from K(G, n) and the goal of this section is to
define this explicitly when G = Z. The group structure which we will define here differs
(intensionally) from previous variations in that it is optimized for efficient computations.

3.1 Eilenberg-MacLane spaces
The family of spaces K(G, n) was constructed as a HIT and proved to be an n-truncated
and (n− 1)-connected pointed type by Licata and Finster [26]. In this paper, we focus on
the case G = Z and define this special case following Brunerie [5, Def. 5.1.1]:

2 Technically, K(G, n) is a higher group – it is not a set, but satisfies all other group axioms.

CSL 2022
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▶ Definition 6. The nth Eilenberg-MacLane space of Z, written Kn, is a pointed type:

Kn =
{

(Z , 0) if n = 0
(∥ Sn ∥n , | ∗Sn |) if n ≥ 1

We write Hn(A) for Hn(A;Z) with Kn for K(Z, n). The type Kn is clearly n-truncated and
the fact that it is (n− 1)-connected follows from the following proposition.

▶ Proposition 7. Sn is (n− 1)-connected for n : N.

Proof. By the definition of (n − 1)-truncation, the map |_ | : Sn → ∥Sn ∥n−1 is constant.
Hence, ∥ Sn ∥n−1 has a trivial constructor and must be contractible. ◀

Note that, in particular, Kn is 0-connected for n > 0; it is an easy lemma that any m-
connected type is also k-connected for k < m. Alternatively, one may prove 0-connectedness
of Kn directly by truncation elimination and sphere elimination.

The above proof is much more direct than the one in [5, Prop. 2.4.2] which relies on
general results about connectedness of pushouts. The reason we prefer this more direct, but
less general proof, is that it computes much faster. The problem seems to be that the general
theory of connectedness heavily uses univalence. In particular, it relies on repeated use of
[38, Thm. 7.3.12] which says that the type of paths |x | ≡ | y | over ∥A ∥n+1 is equivalent to
the type of truncated paths ∥x ≡ y ∥n.

A more substantial deviation from [5] is in the definition of the group structure on
Kn. This is defined in [5, Prop. 5.1.4] using Kn ≃ Ω Kn+1 which itself is proved using the
Hopf fibration [38, Section 8.5] when n = 1 and the Freudenthal suspension theorem [38,
Section 8.6] when n ≥ 2. This gives rather indirect definitions of addition and negation
on Kn by going through Ω Kn+1. It turns out that these indirect definitions lead to slow
computations [28]. To circumvent this, we give a direct definition of the group structure on
Kn which in turn gives a direct proof that Kn ≃ Ω Kn+1 inspired by the proof that Ω S1 ≃ Z
of Licata and Shulman [27]. The strategy of first defining the group structure on Kn to then
prove that Ω Kn+1 ≃ Kn is similar to the one for proving the corresponding statements for
general K(G, n) in [26]. However, we deviate in that we avoid the Freudenthal suspension
theorem and theory about connectedness.

The neutral element of Kn is ∗Kn
and we denote it by 0k. In order to prove that Kn is a

(higher) group, we first define addition +k : Kn → Kn → Kn. The following lemma is the
key for doing this. It is a special case of [38, Lemma 8.6.2], but the proof does not rely on
general theory about connected types.

▶ Lemma 8. Let n, m ≥ 1 and suppose we have a fibration P : Sn × Sm → (n + m− 2)-Type
together with functions

f l : (x : Sn)→ P (x , ∗Sm) f r : (y : Sm)→ P (∗Sn , y)

and a path p : f l ∗Sn ≡ f r ∗Sm . There is a function f : (z : Sn × Sm)→ P z with paths

left : (x : Sn)→ f l x ≡ f (x , ∗Sm) right : (y : Sm)→ f r y ≡ f (∗Sn , y)

such that p ≡ left ∗Sn · (right ∗Sm)-1. Furthermore, either left or right holds definitionally
(modulo pattern matching on n and m).

Proof. By sphere induction on both Sn and Sm. For details, see the formalization. ◀



G. Brunerie, A. Ljungström, and A. Mörtberg 11:9

The general version of Lemma 8 is used for K(G, n) in [26]. The advantage of the above
form is the definitional reductions which follow from use of sphere induction in its proof.
Consequently, we may define +k so that e.g. 0k +k |x | ≡ |x | holds definitionally. This
allows for statements and proofs which would otherwise not be well-typed.

We define +k : Kn → Kn → Kn and -k : Kn → Kn by cases on n. When n = 0, these are
integer addition and negation. Otherwise, we consider the following cases:

When n = 1, we define +k and -k by cases:

| base |+k |x | = |x |
| loop i |+k | base | = | loop i |
| loop i |+k | loop j | = |Q i j |

-k | base | = | base |
-k | loop i | = | loop (∼ i) |

where Q is a suitable filler of a square with loop on all sides. The filler Q is easily defined
by an hcomp so that cong2 (λ x y → |x | +k | y |) loop loop ≡ cong |_ | (loop · loop) holds
definitionally. We will, from now on, with some abuse of notation, simply write loop for
the canonical loop in K1, i.e. cong |_ | loop.
When n ≥ 2, we need to construct a map Sn × Sn → Kn to define addition. Because
Kn is n-truncated, it is also an (n + n − 2)-Type. By Lemma 8, we are done if we can
provide two maps Sn → Kn and prove that they agree on ∗Sn . In both cases we choose
the truncation map λ x→ |x |. We then just need to prove that | ∗Sn | ≡ | ∗Sn |, which
we do by refl.
To construct -k, we send | north | and | south | to 0k and |merid a i | to σn a (∼ i). Here,
σn is the map from the Freudenthal equivalence [38, Section 8.6] defined by:

σn : Kn → Ω Kn+1

σn |x | = cong |_ | (merid x · (merid ∗Sn)-1)

The fact that +k and -k satisfy the group laws follows from Lemma 8. In fact, all group
laws either hold by refl or have proofs that are at least path-equal to refl at 0k. This in
turn simplifies many later proofs and improves the efficiency of computations. We write
lUnitk/rUnitk for the left/right unit laws and lCancelk/rCancelk for the left/right inverse laws.

The definition of +k for n ≥ 2 may seem naive. However, it provably agrees with the
definition given in [5, Prop. 5.1.4]. In fact, a simple corollary of Lemma 8 is that there is at
most one binary operation on Kn with lUnitk and rUnitk such that lUnitk 0k ≡ rUnitk 0k (i.e.
there is at most one h-structure [26, Def. 4.1] on Kn). The fact that this is satisfied by +k

holds by refl. The same result was proved for the addition of [5, Prop. 5.1.4] in [28].
The group structure on Kn allows us to extend the usual encode-decode proof that

Z ≃ Ω S1 (or, equivalently, K0 ≃ Ω K1) to Kn with n ≥ 1. We should note that a similar
proof was used in [26] in order to prove that G ≃ π1(K(G, 1)).

▶ Theorem 9. Kn ≃ Ω Kn+1

Proof. The proof is a direct encode-decode proof involving +k and σn. As usual, this proof
technique uses univalence. The details can be found in the formalization. ◀

In addition to this, the direct definition of +k gives a short proof that Ω Kn is commutative.

▶ Lemma 10. For n ≥ 1 and p, q : Ω Kn, we have p · q ≡ cong2 +k p q.

Proof. First, we remark that the statement is well-typed due to the definitional equality
0k +k 0k ≡ 0k. Recall, p, q : 0k ≡ 0k and cong2 +k p q is of type 0k +k 0k ≡ 0k +k 0k.

CSL 2022
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Using this definitional equality, we may apply rUnitk and lUnitk pointwise to p and q:

p ≡ cong (λ x → x +k 0k) p q ≡ cong (λ y → 0k +k y) q

By functoriality of cong2, we get

p · q ≡ cong (λ x→ x +k 0k) p · cong (λ y → 0k +k y) q ≡ cong2 +k p q ◀

▶ Lemma 11. For n ≥ 1 and p, q : Ω Kn, we have cong2 +k p q ≡ cong2 +k q p.

Proof. By a very similar argument as in Lemma 10, but using commutativity of +k. ◀

▶ Theorem 12. Ω Kn is commutative with respect to path composition.

Proof. As Z is a set, this is trivial for n = 0. For n ≥ 1 it follows from Lemmas 10 and 11. ◀

An alternative proof of Theorem 12 can be found in [5, Prop. 5.1.4]. In that proof, one
first translates Ω Kn into Ω2 Kn−1, applies the Eckmann-Hilton argument and then translates
back. This translation back-and-forth is problematic from a computational point of view,
and the proof of Theorem 12 is more computationally efficient.

3.2 Group structure on Hn(A)
We now return to Hn(A) and define 0h = |λ x → 0k | together with the group operations:

| f | +h | g | = |λ x → f x +k g x | -h | f | = |λ x → -k f x |

The fact that (Hn(A), 0h, +h, -h) forms an abelian group follows immediately from the group
laws for Kn and funExt. We have also defined a reduced version of our cohomology theory and
proved that it satisfies the Eilenberg-Steenrod axioms [16]. We refer the interested reader
to the formalization for the statement and verification of these axioms. This allows us to
use abstract machinery to characterize cohomology groups of many spaces. However, in
order to obtain definitions with good computational properties, we often prefer giving direct
characterizations not relying on abstract results.

4 The cup product and cohomology ring

We will now equip the cohomology groups studied in the previous section with a multiplicative
structure ⌣ : Hn(A)→ Hm(A)→ Hn+m(A). This operation is called the cup product and
it turns the Hn(A) into a graded commutative ring H∗(A) called the cohomology ring of A.

4.1 Defining the cup product in Cubical Agda
The cup product ⌣ for Z-cohomology in HoTT/UF was introduced by Brunerie [5, Section
5.1]. The definition is induced from a pointed map Kn ∧Km →∗ Kn+m, where ∧ is the smash
product HIT. This HIT has proved to be surprisingly complex to reason about formally [6]
and we therefore consider an alternative definition of ⌣. The key observation in this
reformulation is the pointed equivalence of A∧B →∗ C and A →∗ B →∗ C proved in
HoTT/UF by van Doorn [39, Thm 4.3.8]. We hence construct ⌣ by first defining a pointed
map x ⌣k y : Kn → Km →∗ Kn+m by induction on n, thereby avoiding the smash product.
When n = 0, this map just adds y to itself x times and similarly when m = 0. When
n, m ≥ 1, the key lemma is:
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▶ Lemma 13. The type Km →∗ Kn+m is an n-type.

Proof. This is a special case of [9, Corollary 4.3]. We have formalized a direct proof of this
special case which does not rely on any explicit connectedness arguments. ◀

Truncation elimination can hence be applied and we only need to define | a |⌣k y for a : Sn.

n = 1 :
| base |⌣k y = 0k

| loop i |⌣k y = σm y i

n ≥ 2 :
| north |⌣k y = 0k

| south |⌣k y = 0k

|merid a i |⌣k y = σ(n−1)+m (| a |⌣k y) i

The fact that λ y → x ⌣k y is pointed for x : Kn follows easily. In addition, we get
pointedness in x immediately by construction. With this simple definition, we can now define
the cup product ⌣ : Hn(A)→ Hm(A)→ Hn+m(A) analogously to +h by:

| f |⌣ | g | = |λ x → f x ⌣k g x |

4.2 The cohomology ring
We will now prove that ⌣ turns Hn(A) into a graded ring. First of all, as ⌣k is pointed
in both arguments, we get that x ⌣ 0h ≡ 0h ≡ 0h ⌣ y. Furthermore, it is easy to see that
1h = |λ x → 1 | in H0(A) is a unit for ⌣. The key lemma for proving properties of ⌣k is:

▶ Lemma 14. Given a pointed type A and two pointed functions (f, p), (g, q) : A→∗ Kn, we
have that if f ≡ g then (f, p) ≡ (g, q).

Proof. This is proved using a notion of homogeneous types, see the formalization. ◀

In order to increase readability, we omit transports in Propositions 15, 17, and 18. We
first verify that ⌣k distributes over +k.

▶ Proposition 15. For z : Kn and x, y : Km, we have z ⌣k (x +k y) ≡ z ⌣k x +k z ⌣k y

and (x +k y) ⌣k z ≡ x ⌣k z +k y ⌣k z.

Proof. We sketch the proof for left distributivity and focus on the case when n, m ≥ 1. We
want to show that λ z → z ⌣k (x +k y) and λ z → z ⌣k x +k z ⌣k y are equal as pointed
functions. This allows for truncation elimination on x and y by Lemma 13. Thus we want
to show that z ⌣k (| a | +k | b |) ≡ z ⌣k | a | +k z ⌣k | b | for a, b : Sm. We are proving an
(m− 1)-type and Lemma 8 applies. Hence we need to construct

fl : (a : Sn)→ z ⌣k (| a | +k 0k) ≡ z ⌣k | a | +k z ⌣k 0k

fr : (b : Sm)→ z ⌣k (0k +k | b |) ≡ z ⌣k 0k +k z ⌣k | b |

such that fl(∗Sn) ≡ fr(∗Sm). By Lemma 14, we only need to construct fl and fr for the
underlying functions. We get fl and fr by applications of lUnitk/rUnitk and the law of right
multiplication by 0k. Due to definitional equalities at 0k, fl(∗Sn) ≡ fr(∗Sm) holds by refl. ◀

In order to prove that ⌣k is associative, we need the following lemma:

▶ Lemma 16. Let n, m ≥ 1. For x : Kn and y : Km, σn+m(x ⌣k y) ≡ cong (⌣k y) (σn x).

Lemma 16 occurs in [5, Prop. 6.1.1], albeit for a different definition of ⌣. Interestingly,
Brunerie does not use it to prove associativity of ⌣k, but to construct the Gysin sequence.
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▶ Proposition 17. For x : Kn, y : Km and z : Kℓ, we have x ⌣k (y ⌣k z) ≡ (x ⌣k y) ⌣k z.

Proof. The proof is easy when one of n, m or ℓ is 0. When n, m, ℓ ≥ 1, we want to show that
λ z y → x ⌣k (y ⌣k z) and λ z y → (x ⌣k y) ⌣k z are equal as doubly pointed functions,
i.e. as terms of Km →∗ Kℓ →∗ Kn+m+ℓ. This is an n-type by repeated use of Lemma 13
and we may let x = | a | for a : Kn. We again only need to prove the underlying functions
equal. We do this by induction on n. For n = 1, the case a = base holds by refl. In the case
a = loop i, we need to prove that σm+ℓ(y ⌣k z) ≡ cong (⌣k z) (σm y) which is Lemma 16.
The n ≥ 2 case follows by an analogous argument using the inductive hypothesis. ◀

Finally, we can verify that ⌣k is graded commutative.

▶ Proposition 18. For x : Kn and y : Km, we have x ⌣k y ≡ -k
m·n (y ⌣k x).

Proof. The proof is by induction on n and m. Due to space constraints, we omit the base
cases and focus on the inductive step where n, m ≥ 2 (the case n = 1 and m ≥ 1 is close
to identical). We may assume as our inductive hypothesis that the statement holds for all
n′, m′ : N such that n′ + m′ < n + m. The proof boils down to showing that

λ i j → |merid a i |⌣k |merid b j | ≡ λ i j → -k
m·n (|merid b j |⌣k |merid a i |)

ignoring coherence paths and transports. Here, a : Sn−1 and b : Sm−1. We fix i and j and
give a rough outline of the argument. We have:

|merid a i |⌣k |merid b j | ≡ σn+m−1(| a |⌣k |merid b j |) i

≡ -k
m·(n−1) (σn+m−1(|merid b j |⌣k | a |) i)

≡ -k
m·(n−1) (σn+m−1(σn+m−2(| b |⌣k | a |) j) i)

≡ -k
m·(n−1)-k

(n−1)·(m−1) (σn+m−1(σn+m−2(| a |⌣k | b |) j) i)
≡ -k

n+1 (σn+m−1(σn+m−2(| a |⌣k | b |) j) i)
≡ -k

n+1 (σn+m−1(|merid a j |⌣k | b |) i)

≡ -k
n+1-k

(m−1)·n (σn+m−1(| b |⌣k |merid a j |) i)

≡ -k
n+1-k

(m−1)·n (|merid b i |⌣k |merid a j |)
≡ -k

m·n+1 (|merid b i |⌣k |merid a j |)
≡ -k

m·n (|merid b j |⌣k |merid a i |)

The above chain of equalities repeatedly uses that for a path p : Ω2 A, we have (λ i j →
p j i) ≡ p -1, and for a path q : Ω Kn, we have cong -k q ≡ q -1. The remaining steps are
just unfoldings of the definition of ⌣k and applications of the inductive hypothesis and
σn(-k x) ≡ cong -k (σn x). ◀

Although this informal argument is fairly direct, the formal version is much more technical
as we also have to verify that the proof sketched above respects the boundary constraints (i.e.
our choices of paths for the point constructors). As we also need to express many of these
equalities using PathP or transport (over paths in N), things become even more complicated.

The cup product ⌣ inherits the properties of ⌣k and we can hence organize Hn(A) into
a graded commutative ring H∗(A).
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5 Characterizing integral cohomology groups

We will now characterize Hn(A) for A being the spheres, torus, Klein bottle, and real/complex
projective planes. The cases when Hn(A) ≃ 1 for n ≥ 1 are easy using connectedness
arguments (see the formalization). It is also an easy lemma that H0(X) ≃ Z if X is 0-
connected, which is the case for all types considered here. The main focus in this section will
hence be on the non-trivial Hn(A) with n ≥ 1. Furthermore, we only focus on the equivalence
parts of the characterizations, but we emphasize that all cases, including homomorphism
proofs, have been formalized.

5.1 Spheres
The key to characterizing the cohomology groups of Sn is the Suspension axiom for
cohomology. This axiom says that Hn(A) ≃ Hn+1 (Susp A) and a proof can be found
in the formalization. Recall that Sm+1 = Susp Sm for m ≥ 1 and thus we have that
Hn+1(Sm+1)≃Hn(Sm).

▶ Proposition 19. Hn(Sn) ≃ Z for n ≥ 1.

Proof. By Suspension and induction, it suffices to consider the n = 1 case. We inspect the
underlying function space of H1(S1), i.e. S1 → K1. A map f : S1 → K1 is uniquely determined
by f base : K1 and cong f loop : f base ≡ f base. Thus, we have H1(S1) ≃ ∥

∑
x:K1

x ≡ x ∥0.
By a base change we get (x ≡ x) ≃ (0k ≡ 0k) for any x : K1. Hence

H1(S1) ≃ ∥K1 × Ω K1 ∥0 ≃ ∥K1 ∥0 × ∥Ω K1 ∥0 ≃ ∥Ω K1 ∥0 ≃ ∥Ω S1 ∥0 ≃ Z ◀

5.2 The torus
The torus HIT, T 2, is defined as follows:

data T2 : Type where
pt : T2

ℓ1 ℓ2 : pt ≡ pt
□ : PathP (λ i → ℓ2 i ≡ ℓ2 i) ℓ1 ℓ1

The constructor □ corresponds to the usual gluing diagram for constructing the torus in
classical topology as it identifies ℓ1 with itself over an identification of ℓ2 with itself. As
discussed in the introduction, proving T 2≃ S1× S1 is easy in Cubical Agda. This allows us
to curry T 2 → Kn, which is the key step to prove Propositions 20 and 21.

▶ Proposition 20. H1(T 2) ≃ Z × Z

Proof. We inspect the underlying function space T 2 → K1, which is equivalent to S1 →(
S1 → K1

)
. From Proposition 19, we know that

(
S1 → K1

)
≃ K1 × Ω K1 ≃ K1 × Z. Hence

H1(T 2) ≃∥ S1 → K1×Z ∥0≃∥ S
1 → K1 ∥0×∥ S

1 → Z ∥0
def≡H1(S1) ×H0(S1)≃Z×Z ◀

▶ Proposition 21. H2(T 2) ≃ Z

Proof. The underlying function space, post currying, is S1 → (S1 → K2). Like above, this is
(S1 → K2 × Ω K2) ≃ (S1 → K2 × K1) ≃

(
S1 → K2

)
×
(
S1 → K1

)
. Hence

H2(T 2) ≃ ∥ (S1 → K2
)
×
(
S1 → K1

)
∥0 ≃ H2(S1) × H1(S1) ≃ Z ◀
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5.3 The Klein bottle and real projective plane
The Klein bottle and real projective plane are also HITs, but with twists in □ just like in the
classical gluing diagrams:

data K2 : Type where
pt : K2

ℓ1 ℓ2 : pt ≡ pt
□ : PathP (λ i → ℓ2 (∼ i) ≡ ℓ2 i) ℓ1 ℓ1

data RP 2 : Type where
pt : RP 2

ℓ : pt ≡ pt
□ : ℓ ≡ ℓ −1

Note that □ for K 2 equivalently may be interpreted as the path ℓ2 · ℓ1 · ℓ2 ≡ ℓ1. To
characterize the cohomology groups of K 2, we need to understand their underlying function
spaces. It is easy to see that(

K 2 → Kn

)
≃
∑
x:Kn

∑
p,q:x ≡ x

(p · q · p ≡ q)

By Theorem 12, _·_ in Ω Kn is commutative, so (p · q · p ≡ q) ≃ (p · p ≡ refl). Hence

(
K 2 → Kn

)
≃
∑
x:Kn

(
(x ≡ x) ×

∑
p:x ≡ x

(p · p ≡ refl)
)

(1)

▶ Proposition 22. H1(K 2) ≃ Z

Proof. Note that for x : K1, we have that
∑

p:x ≡ x(p · p ≡ refl) ≃
∑

a:Z(a + a ≡ 0) ≃ 1.
This allows us to simplify (1) and get

H1(K 2) ≃ ∥K 2 → K1 ∥0 ≃ ∥
∑
x:K1

(x ≡ x) ∥0 ≃ H1(S1) ≃ Z ◀

▶ Lemma 23. For n : Z, define p : ∥
∑

x:K1
(x +k x ≡ 0k) ∥0 by p = | (0k , loopn) |. We have

p ≡ | (0k , refl) | if n is even and p ≡ | (0k , loop) | if n is odd.

▶ Proposition 24. H2(K 2) ≃ Z/2Z

Proof. Using 0-connectedness of K2 and (x ≡ x) for x : K2, it is easy to see that, by
truncating both sides of (1), we get

H2(K 2) ≃ ∥ ∑
p:Ω K2

(p · p ≡ refl) ∥0

Using the equivalence Ω K2 ≃ K1 and the fact that it takes path composition to addition,
this can be further simplified to ∥

∑
x:K1

(x +k x ≡ 0k) ∥0. It is easy to see that for any
p : ∥

∑
x:K1

(x +k x ≡ 0k) ∥0, we have that p ≡ | (0k , loopn) | for some n : N. We map p into
Z/2Z by sending it to 0 if n is even and 1 if n is odd. As an immediate consequence of
Lemma 23, this map must be an equivalence, and thus we are done. ◀

The attentive reader will have noticed that something reminiscent of the real projective
plane, RP 2, appears in both proofs in this section. We characterize Hn(RP 2) for n ≥ 1 by

∥RP 2 → Kn ∥0≃∥
∑
x:Kn

∑
p:x ≡ x

(p≡ p -1) ∥0≃∥
∑
x:Kn

∑
p:x ≡ x

(p · p≡ refl) ∥0≃∥
∑

p:Ω Kn

(p · p≡ refl) ∥0

When n is 1 or 2, this is precisely one of the types appearing in the proofs of Propositions 22
and 24 respectively, so H1(RP 2) ≃ 1 and H2(RP 2) ≃ Z/2Z.
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5.4 The complex projective plane

We define the complex projective plane, CP 2, as the pushout of the span S2 h←− S3 → 1

where h is part of the Hopf fibration [38, Section 8.5]. The function space CP 2 → Kn is quite
hard to work with directly, so we settle for an indirect characterization of Hn(CP 2) via the
Mayer-Vietoris sequence (see the formalization). For n ≥ 2, this gives us an exact sequence:

Hn−1(S2)→ Hn−1(S3)→ Hn(CP 2)→ Hn(S2)→ Hn(S3)

For n ∈ {3, 5, 6, . . . }, we have that Hn(CP 2)≃1, as other groups in the sequence become
trivial. When n = 2, all groups but H2(S2) are trivial, and hence H2(CP 2)≃H2(S2)≃Z.
When n = 4, the only non trivial group is H3(S3), and hence we get H4(CP 2)≃H3(S3)≃Z.
A simple connectedness argument finally gives us that H1(CP 2)≃1.

6 Proving by computations in Cubical Agda

One of the appealing aspects of developing cohomology theory in Cubical Agda is that we can
prove properties purely by computation. This can discharge proof goals involving complex
path algebra as soon as the types are fully instantiated. For example, in Proposition 18 when
m = n = 1, the main subgoal involves compositions paths in Ω2 K2 which can be reduced
to a computation purely involving Z, using the equivalence Ω2 K2≃Z. As we have been
careful about proving things as directly as possible with efficient computations in mind, this
works quite well, but there are some cases which are surprisingly slow in Cubical Agda, and
we have collected some benchmarks at https://github.com/agda/cubical/blob/master/
Cubical/Experiments/ZCohomology/Benchmarks.agda.

Furthermore, we can use the fact that the isomorphisms compute to establish that some
types cannot be equivalent. This is the case for all spaces in the previous section, as they
have different cohomology groups. However, there are some spaces where it is not enough to
only look at the cohomology groups. We have proved that our cohomology theory satisfies the
Binary Additivity axiom which says that Hn(A∨B)≃Hn(A)×Hn(B). So we can easily
prove that S2 ∨ S1 ∨ S1 has the same cohomology groups as T 2. However, these two types are
not equivalent and the standard way to prove this is to use the cup product. We can do this
traditional proof computationally in Cubical Agda by defining a predicate P : Type→ Type
by P (A) = (x y : H1(A))→ x ⌣ y ≡ 0h and show that P (S2 ∨ S1 ∨ S1) holds while P (T 2)
does not. In Cubical Agda, we have defined isomorphisms:

f1 : H1(T 2)∼=Z × Z
f2 : H2(T 2)∼=Z

g1 : H1(S2 ∨ S1 ∨ S1)∼=Z × Z
g2 : H2(S2 ∨ S1 ∨ S1)∼=Z

To disprove P (T 2) we need x, y : H1(T 2) such that x ⌣ y ̸≡ 0h. Let x = f−1
1 (0, 1) and

y = f−1
1 (1, 0). In Cubical Agda, f2(x ⌣ y)≡ 1 holds by refl and thus x ⌣ y ̸≡ 0h. It

remains to prove P (S2 ∨ S1 ∨ S1). Let x, y : H1(S2 ∨ S1 ∨ S1). In Cubical Agda, we have that
g2(g−1

1 (g1 x) ⌣ g−1
1 (g1 y)) ≡ 0, again by refl, and thus g−1

1 (g1 x) ⌣ g−1
1 (g1 y) ≡ x ⌣ y ≡ 0h.

For a more ambitious example, consider [5, Chapter 6]. This is devoted to proving, using
sophisticated techniques like the Gysin sequence, that the generator e : H2(CP 2) when
multiplied with itself yields a generator of H4(CP 2). Let g : Z→ Z be the map described by

Z
∼=−→ H2(CP 2) λ x→x ⌣ x−−−−−−−→ H4(CP 2)

∼=−→ Z

The number g(1) should reduce to ±1 for e ⌣ e to generate H4(CP 2) and by evaluating it
in Cubical Agda we should be able to reduce the whole chapter to a single computation.
However, Cubical Agda is currently stuck on computing g(1). This number can hence be
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seen as another “Brunerie number” – a mathematically interesting number which is currently
infeasible to compute using an implementation of cubical type theory. This computation
should be more feasible than the original Brunerie number. As our definition of ⌣ produces
very simple terms, most of the work has to occur in the two isomorphisms, and we are
optimistic that future optimizations will allow us to perform this computation.

7 Conclusions

We have developed multiple classical results from cohomology theory synthetically in Cubical
Agda. This has led to new and more direct constructive proofs than what already existed
in the HoTT/UF literature. Furthermore, Section 4 contains the first fully formalized
verification of the graded commutative ring axioms for Z-cohomology. The key to this is the
new definition of ⌣ which avoids the smash product. The synthetic characterizations of
the cohomology groups of K 2 and RP 2 are also novel. The proofs have been constructed
with computational efficiency in mind, allowing us to make explicit computations involving
several non-trivial cohomology groups. In particular, the number g(1) is another “Brunerie
number” which should be more feasible to compute, and its computation would allow us to
reduce the complex proofs of [5, Chapter 6] to a single computation. This is hence a new
challenge for future improvements of Cubical Agda and related systems like cooltt [37].

Related and future work

In addition to the related work already mentioned in the paper, there is some related prior
work in Cubical Agda. Qian [32] formalized K(G, 1) as a HIT, following [26], and proved
that it satisfies π1(K(G, 1)) ≡ G. Alfieri [1] and Harington [18] formalized K(G, 1) as the
classifying space BG using G-torsors. Using this, H1(S1;Z) ≡ Z was proved – however,
computing using the maps in this definition proved to be infeasible. It is not clear where
the bottlenecks are, but we emphasize that with the definitions in this paper, there are no
problems computing with this cohomology group.

Certified computations of homology groups using proof assistants have been considered
prior to HoTT/UF. For instance, the Coq system [36] has been used to compute homology [21]
and persistent homology [20] with coefficients in a field. This was later extended to homology
with Z-coefficients in [10]. The approach in these papers was entirely algebraic and spaces
were represented as simplicial complexes. However, a synthetic approach to homology in
HoTT/UF was developed informally by Graham [17] using stable homotopy groups. This
was later extended with a proof of Hurewicz theorem by Christensen and Scoccola [13]. It
would be interesting to see if this could be made formal in Cubical Agda so that we can also
characterize and compute with homology groups.

The definition of H∗(A) in HoTT/UF is due to Brunerie [5, Chapter 5.1]. Here, however,
⌣ relies on the smash product which has proved very complex to reason about formally [6].
Despite this, Baumann generalized this to Hn(X; G) and managed to formalize graded
commutativity in HoTT-Agda [4]. Baumann’s formal proof of this property is ∼ 5000 LOC
while our formalization is just ∼ 900 LOC. This indicates that it would be infeasible to
formalize other algebraic properties of H∗(A) with this definition. Associativity seems
particularly infeasible, but with our definition the formal proof is only ∼ 200 LOC. However,
this comparison should be taken with a grain of salt as Baumann proves the result for
Hn(X; G). Nevertheless, we conjecture that our constructions should be relatively easy to
generalize to cohomology with coefficients in an arbitrary group.
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On the Minimisation of Transition-Based Rabin
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Requirements of Muller Conditions
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Abstract
In this paper, we relate the problem of determining the chromatic memory requirements of Muller
conditions with the minimisation of transition-based Rabin automata. Our first contribution is a
proof of the NP-completeness of the minimisation of transition-based Rabin automata. Our second
contribution concerns the memory requirements of games over graphs using Muller conditions. A
memory structure is a finite state machine that implements a strategy and is updated after reading
the edges of the game; the special case of chromatic memories being those structures whose update
function only consider the colours of the edges. We prove that the minimal amount of chromatic
memory required in games using a given Muller condition is exactly the size of a minimal Rabin
automaton recognising this condition. Combining these two results, we deduce that finding the
chromatic memory requirements of a Muller condition is NP-complete. This characterisation also
allows us to prove that chromatic memories cannot be optimal in general, disproving a conjecture
by Kopczyński.
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1 Introduction

Games and memory. Automata on infinite words and infinite duration games over graphs
are well established areas of study in Computer Science, being central tools used to solve
problems such as the synthesis of reactive systems (see for example the Handbook [8]). Games
over graphs are used to model the interaction between a system and the environment, and
winning strategies can be used to synthesize controllers ensuring that the system satisfies
some given specification. The games we will consider are played between two players (Eve
and Adam), that alternatively move a pebble through the edges of a graph forming an
infinite path. In order to define which paths are winning for the first player, Eve, we suppose
that each transition in the game produces a colour in a set Γ, and a winning condition is
defined by a subset W ⊆ Γω. A fundamental parameter of the different winning conditions is
the amount of memory that the players may require in order to define a winning strategy
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in games where they can force a victory. This parameter will influence the complexity of
algorithms solving games that use a given winning condition, as well as the resources needed
in a practical implementation of such a strategy as a controller for a reactive system.

A memory structure for Eve for a given game is a finite state machine that implements a
strategy: for every position of the game, each state of the memory determines what move
to perform next. After a transition of the game takes place, the memory state is updated
according to an update function. We consider 3 types of memory structures:

General memories.
Chromatic memories: if the update function only takes as input the colour produced by
the transition of the game.
Arena-independent memories for a condition W: if the memory structure can be used to
implement winning strategies in any game using the condition W.

In this work, we study these three notions of memories for Muller conditions, an important
class of winning conditions that can be used to represent any ω-regular language via some
deterministic automaton. Muller conditions appear naturally, for example, in the synthesis
of reactive systems specified in Linear Temporal Logic [23, 22].

In the seminal paper [12], the authors establish the exact general memory requirements
of Muller conditions, giving matching upper and lower bounds for every Muller condition
in terms of its Zielonka tree. However, the memory structures giving the upper bounds
are not chromatic. In his PhD thesis [18, 19], Kopczyński raised the questions of whether
minimal memory structures for games can always be chosen to be chromatic, and whether
arena-independent memories can be optimal, that is, if for each condition W there is a game
won by Eve where the optimal amount of memory she can use is the size of a minimal
arena-independent memory for W. Another question appearing in [18, 19] concerns the
influence in the memory requirements of allowing or not ε-transitions in games (that is,
transitions that do not produce any colour). In particular, Kopczyński asks whether all
conditions that are half-positionally determined over transition-coloured games without
ε-transitions are also half-positionally determined when allowing ε-transitions (it was already
shown in [29] that it is not the case in state-coloured games).

In this work, we characterise the minimal amount of chromatic memory required by Eve in
games using a Muller condition as the size of a minimal deterministic transition-based Rabin
automaton recognising the Muller condition, that can also be used as an arena-independent
memory (Theorem 27); further motivating the study of the minimisation of transition-based
Rabin automata. We prove that, in general, this quantity is strictly greater than the
general memory requirements of the Muller condition, answering negatively the question by
Kopczyński (Proposition 30). Moreover, we show that the general memory requirements
of a Muller condition are different over ε-free games and over games with ε-transitions
(Proposition 24), but that this is no longer the case when considering the chromatic memory
requirements (Theorem 27). In particular, in order to obtain the lower bounds of [12] we
need to use games with ε-transitions. However, the question stated in [18, 19] of whether
allowing ε-transitions could have an impact on the half-positionality of conditions remains
open, since it cannot be the case for Muller conditions (Lemma 23).

Minimisation of transition-based automata. Minimisation is a well studied problem for
many classes of automata. Automata over finite words can be minimised in polynomial
time [15], and for every regular language there is a canonical minimal automaton recognising it.
For automata over infinite words, the status of the minimisation problem for different models
of ω-automata is less well understood. Traditionally, the acceptance conditions of ω-automata
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have been defined over the set of states; however, the use of transition-based automata is
becoming common in both practical and theoretical applications (see for instance [13]), and
there is evidence that decision problems relating to transition-based models might be easier
than the corresponding problems for state-based ones. The minimisation of state-based
Büchi automata has been proven to be NP-complete by Schewe (therefore implying the
NP-hardness of the minimisation of state-based parity, Rabin and Streett automata), both
for deterministic [26] and Good-For-Games (GFG) automata [27]. However, these reductions
strongly use the fact that the acceptance condition is defined over the states and not over the
transitions. Abu Radi and Kupferman have proven that the minimisation of GFG-transition-
based co-Büchi automata can be done in polynomial time and that a canonical minimal
GFG-transition-based automaton can be defined for co-Büchi languages [1, 2]. This suggests
that transition-based automata might be a more adequate model for ω-automata, raising
many questions about the minimisation of different kinds of transition-based automata
(Büchi, parity, Rabin, GFG-parity, etc). Moreover, Rabin automata are of great interest,
since the determinization of Büchi automata via Safra’s construction naturally provides
deterministic transition-based Rabin automata [24, 25], and, as proven in Theorem 27, these
automata provide minimal arena-independent memories for Muller games.

In Section 2.2, we prove that the minimisation of transition-based Rabin automata is
NP-complete (Theorem 14). The proof consists in a reduction from the chromatic number
problem of graphs. This reduction uses a particularly simple family of ω-regular languages:
languages L ⊆ Σω that correspond to Muller conditions, that is, whether a word w ∈ Σω

belongs to L or not only depends in the set of letters appearing infinitely often in w (we call
these Muller languages). A natural question is whether we can extend this reduction to prove
the NP-hardness of the minimisation of other kinds of transition-based automata, like parity
or generalised Büchi ones. However, we prove in Section 2.3 that the minimisation of parity
and generalised Büchi automata recognising Muller languages can be done in polynomial
time. This is based in the fact that the minimal parity automaton recognising a Muller
language is given by the Zielonka tree of the associated condition [6, 21].

These results allow us to conclude that determining the chromatic memory requirements
of a Muller condition is NP-complete even if the condition is represented by its Zielonka tree
(Theorem 29). This is a surprising result, since the Zielonka tree of a Muller condition allows
to compute in linear time the non-chromatic memory requirements of it [12].

Related work. As already mentioned, the works [12, 18, 29] extensively study the memory
requirements of Muller conditions. In the paper [10], the authors characterise parity conditions
as the only prefix-independent conditions that admit positional strategies over transition-co-
loured infinite graphs. This characterisation does not apply to state-coloured games, which
supports the idea that transition-based systems might present more canonical properties.
Conditions that admit arena-independent memories are characterised in [3], extending the
work of [14] characterising conditions that accept positional strategies over finite games. The
memory requirements of generalised safety conditions have been established in [9]. The use
of Rabin automata as memories for games with ω-regular conditions have been fruitfully
used in [11] in order to obtain theoretical lower bounds on the size of deterministic Rabin
automata obtained by the determinisation of Büchi automata.

Concerning the minimisation of automata over infinite words, beside the aforementioned
results of [26, 27, 1], it is also known that weak automata can be minimised in O(n log n) [20].
The algorithm minimising a parity automaton recognising a Muller language used in the
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proof of Proposition 16 can be seen as a generalisation of the algorithm appearing in [4]
computing the Rabin index of a parity automaton. Both of them have their roots in the
work of Wagner [28].

Organisation of this paper. In Section 2 we discuss the minimisation of transition-based
Rabin and parity automata. We give the necessary definitions in Section 2.1, in Section 2.2
we show the NP-completeness of the minimisation of Rabin automata and in Section 2.3
we prove that we can minimise transition-based parity and generalised Büchi automata
recognising Muller languages in polynomial time.

In Section 3 we introduce the definitions of games and memory structures, and we discuss
the impact on the memory requirements of allowing or not ε-transitions in the games.

In Section 4, the main contributions concerning the chromatic memory requirements of
Muller conditions are presented.

2 Minimising transition-based automata

In this section, we present our main contributions concerning the minimisation of automata.
We start in Section 2.1 by giving some basic definitions and results related to automata used
throughout the paper. In Section 2.2 we show a reduction from the problem of determining
the chromatic number of a graph to the minimisation of Rabin automata, proving the NP-
completeness of the latter. Moreover, the languages used in this proof are Muller languages.
In Section 2.3 we prove that, on the contrary, we can minimise parity and generalised Büchi
automata recognising Muller conditions in polynomial time.

2.1 Automata over infinite words

General notations
The greek letter ω stands for the set {0, 1, 2, . . . }. We write [1, k] to denote the set {1, 2, . . . , k}.
Given a set A, we write P(A) to denote its power set and |A| to denote its cardinality. A
word over an alphabet Σ is a sequence of letters from Σ. We let Σ∗ and Σω be the set of finite
and infinite words over Σ, respectively. For an infinite word w ∈ Σω, we write Inf (w) to
denote the set of letters that appear infinitely often in w. We will extend functions γ : A → Γ
to A∗, Aω and P(A) in the natural way, without explicitly stating it.

A (directed) graph G = (V, E) is given by a set of vertices V and a set of edges
E ⊆ V × V . A graph G = (V, E) is undirected if every pair of vertices (v, u) verifies
(v, u) ∈ E ⇔ (u, v) ∈ E. A graph G = (V, E) is simple if (v, v) /∈ E for any v ∈ V . A coloured
graph G = (V, E) is given by a set of vertices V and a set of edges E ⊆ V ×C1 ×· · ·× Ck ×V ,
where C1, . . . , Ck are sets of colours.

Automata
An automaton is a tuple A = (Q, Σ, q0, δ, Γ, Acc), where Q is a finite set of states, Σ is a
finite input alphabet, q0 ∈ Q is an initial state, δ : Q × Σ → Q × Γ is a transition function,
Γ is an output alphabet and Acc is an accepting condition defining a subset W ⊆ Γω (the
conditions will be defined more precisely in the next paragraph). In this paper, all automata
will be deterministic, complete (δ is a function) and transition-based (the output letter that
is produced depends on the transition, and not only on the arrival state). The size of an
automaton is the cardinality of its set of states, |Q|.
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Given an input word w = w0w1w2 · · · ∈ Σω, the run over w in A is the only sequence of
pairs (q0, c0), (q1, c1), · · · ∈ Q×Γ verifying that q0 is the initial state and δ(qi, wi) = (qi+1, ci).
The output produced by w is the word c0c1c2 · · · ∈ Γω. A word w ∈ Σω is accepted by the
automaton A if its output belongs to the set W ⊆ Γω defined by the accepting condition.
The language accepted by an automaton A, written L(A), is the set of words accepted by
A. Given two automata A and B over the same input alphabet Σ, we say that they are
equivalent if L(A) = L(B).

Given an automaton A, the graph associated to A, denoted G(A), is the coloured graph
G(A) = (Q, EA), whose set of vertices is Q, and the set of edges EA ⊆ Q × Σ × Γ × Q is
given by (q, a, c, q′) ∈ EA ⇔ δ(q, a) = (q′, c). We denote ι : EA → Σ the projection over the
second component and γ : EA → Γ the projection over the third one.

A cycle of an automaton A is a subset of edges ℓ ⊆ EA such that there is a state q ∈ Q

and a path in G(A) starting and ending in q passing through exactly the edges in ℓ. We
write γ(ℓ) =

⋃
e∈ℓ γ(e) to denote the set of colours appearing in the cycle ℓ. A state q ∈ Q is

contained in a cycle ℓ ⊆ EA if there is some edge in ℓ whose first component is q. We write
States(ℓ) to denote the set of states contained in ℓ.

Acceptance conditions
Let Γ be a set of colours. We define next some of the acceptance conditions used to define
subsets W ⊆ Γω. All the subsequent conditions verify that the acceptance of a word w ∈ Γω

only depends on the set Inf (w).

Muller. A Muller condition is given by a family of subsets F = {S1, . . . , Sk}, Si ⊆ Γ. A
word w ∈ Γω is accepting if Inf (w) ∈ F .

Rabin. A Rabin condition is represented by a family of Rabin pairs, R = {(E1, F1), . . . ,

(Er, Fr)}, where Ei, Fi ⊆ Γ. A word w ∈ Γω is accepting if Inf (w) ∩ Ei ̸= ∅ and
Inf (w) ∩ Fi = ∅ for some index i ∈ {1, . . . , r}.

Streett. A Streett condition is represented by a family of pairs S = {(E1, F1), . . . , (Er, Fr)},
Ei, Fi ⊆ Γ. A word w ∈ Γω is accepting if Inf (w) ∩ Ei ≠ ∅ → Inf (w) ∩ Fi ≠ ∅ for every
i ∈ {1, . . . , r}.

Parity. To define a parity condition we suppose that Γ is a finite subset of N. A word w ∈ Γω

is accepting if max Inf (w) is even. The elements of Γ are called priorities in this case.
Generalised Büchi. A generalised Büchi condition is represented by a family of subsets

{B1, . . . , Br}, Bi ⊆ Γ. A word w ∈ Γω is accepted if Inf (w) ∩ Bi ≠ ∅ for all i ∈ {1, . . . , r}.
Generalised co-Büchi. A generalised co-Büchi condition is represented by a family of subsets

{B1, . . . , Br}, Bi ⊆ Γ. A word w ∈ Γω is accepted if Inf (w) ∩ Bi = ∅ for some
i ∈ {1, . . . , r}.

An automaton A using a condition of type X will be called an X-automaton.
We remark that all the previous conditions define a family of subsets F ⊆ P(Γ) and

can therefore be represented as Muller conditions (in particular, all automata referred to in
this paper can be regarded as Muller automata). Also, parity conditions can be represented
as Rabin or Streett ones. We say that a language L ⊆ Γω is a Muller language if w1 ∈ L

and w2 /∈ L implies that Inf (w1) ̸= Inf (w2). We associate to each Muller condition F the
language LF = {w ∈ Γω : Inf (w) ∈ F}.

The parity index (also called Rabin index) of an ω-regular language L ⊆ Σω is the
minimal p ∈ N such that there exists a parity automaton recognising L using p priorities in
its condition.
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Given an ω-regular language L ⊆ Σω, we write rabin(L) to denote the size of a minimal
Rabin automaton recognising L.

▶ Remark 1. Let A be a Rabin-automaton recognising a language L ⊆ Σω. If we consider the
Streett automaton obtained by regarding the Rabin pairs of A as defining a Streett condition,
we obtain an automaton A′ recognising the language Σω \ L (and vice-versa). Therefore, the
size of a minimal Rabin automaton recognising L coincides with that of a minimal Streett
automaton recognising Σω \ L, and the minimisation problem for both classes of automata is
equivalent. Similarly for generalised Büchi and generalised co-Büchi automata.

Let A be an automaton using some of the acceptance conditions above defining a family
F ⊆ P(Γ). We say that a cycle ℓ of A is accepting if γ(ℓ) ∈ F and that it is rejecting
otherwise.

We are going to be interested in simplifying the acceptance conditions of automata, while
preserving their structure. We say that we can define a condition of type X on top of a
Muller automaton A if we can recolour the transitions of A with colours in a set Γ′ and
define a condition of type X over Γ′ such that the resulting automaton is equivalent to A.
Definition 2 formalises this notion.

▶ Definition 2. Let X be some of the types of conditions defined previously and let A =
(Q, Σ, q0, δ, Γ, F) be a Muller automaton. We say that we can define a condition of type
X on top of A if there is an X-condition over a set of colours Γ′ and an automaton
A′ = (Q, Σ, q0, δ′, Γ′, X) verifying:

A and A′ have the same set of states and the same initial state.
δ(q, a) = (p, c) ⇒ δ′(q, a) = (p, c′), for some c′ ∈ Γ′, for every q ∈ Q and a ∈ Σ (that is,
A and A′ have the same transitions, except for the colours produced).
L(A) = L(A′).

The next proposition, proven in [6], characterises automata that admit Rabin conditions
on top of them. It will be a key property used throughout the paper.

▶ Proposition 3 ([6]). Let A = (Q, Σ, q0, δ, Γ, F) be a Muller automaton. The following
properties are equivalent:
1. We can define a Rabin condition on top of A.
2. Any pair of cycles ℓ1 and ℓ2 in A verifying States(ℓ1) ∩ States(ℓ2) ̸= ∅ satisfies that if

both ℓ1 and ℓ2 are rejecting, then ℓ1 ∪ ℓ2 is also a rejecting cycle.

The Zielonka tree of a Muller condition
In order to study the memory requirements of Muller conditions, Zielonka introduced in [29]
the notion of split trees (later called Zielonka trees) of Muller conditions. The Zielonka tree of
a Muller condition naturally provides a minimal parity automaton recognising the associated
language [6, 21]. We will use this property to show that parity automata recognising Muller
languages can be minimised in polynomial time in Proposition 16. We will come back to
Zielonka trees in Section 4 to discuss the memory requirements of Muller conditions.

▶ Definition 4. Let Γ be a set of labels. We define a Γ-labelled-tree by induction:
T = ⟨A, ⟨∅⟩⟩ is a Γ-labelled-tree for any A ⊆ Γ. In this case, we say that T is a leaf and
A is its label.
If T1, . . . , Tn are Γ-labelled-trees, then T = ⟨A, ⟨T1, . . . , Tn⟩⟩ is a Γ-labelled-tree for any
A ⊆ Γ. In that case, we say that A is the label of T and T1, . . . , Tn are their children.
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▶ Definition 5 ([29]). Let F ⊆ P(Γ) be a Muller condition. The Zielonka tree of F , denoted
ZF , is the Γ-labelled-tree defined recursively as follows: let A1, . . . Ak be the maximal subsets
of Γ (with respect to set inclusion) such that Ai ∈ F ⇔ Γ /∈ F (that is, producing an
“alternation of the acceptance condition”).

If no such subset Ai ⊆ Γ exists, then ZF = ⟨Γ, ⟨∅⟩⟩.
Otherwise, ZF = ⟨Γ, ⟨ZF1 , . . . , ZFk

⟩⟩, where ZFi is the Zielonka tree for the condition
Fi = F ∩ P(Ai) over the set of colours Ai.

An example of a Zielonka tree can be found in Figure 1 (page 15).

▶ Proposition 6 ([6, 21]). Let F be a Muller condition and ZF its Zielonka tree. We can
build in linear time in the representation of ZF a parity automaton recognising LF that
has as set of states the leaves of ZF . This automaton is minimal, that is, any other parity
automaton recognising LF has at least as many states as the number of leaves of ZF .

2.2 Minimising transition-based Rabin and Streett automata is
NP-complete

This section is devoted to proving the NP-completeness of the minimisation of transition-based
Rabin automata, stated in Theorem 14.

For the containment in NP, we use the fact that we can test language equivalence of Rabin
automata in polynomial time [7].

▶ Proposition 7 ([7]). Let A1 and A2 be two Rabin automata over Σ. We can decide in
polynomial time in the representation of the automata if L(A1) = L(A2). (We recall that all
considered automata are deterministic).

▶ Corollary 8. Given a Rabin automaton A and a positive integer k, we can decide in
non-deterministic polynomial time whether there is an equivalent Rabin automaton of size k.

Proof. A non-deterministic Turing machine just has to guess an equivalent automaton Ak

of size k, and by Proposition 7 it can check in polynomial time whether L(A) = L(Ak). ◀

In order to prove the NP-hardness, we will describe a reduction from the chromatic number
problem (one of 21 Karp’s NP-complete problems) to the minimisation of transition-based
Rabin automata. Moreover, this reduction will only use languages that are Muller languages
of parity index 3.

▶ Definition 9. Let G = (V, E) be a simple undirected graph. A colouring of size k of G

is a function c : V → [1, k] such that for any pair of vertices v, v′ ∈ V , if (v, v′) ∈ E then
c(v) ̸= c(v′). The chromatic number of a simple undirected G, written χ(G), is the smallest
number k such that there exists a colouring of size k of G.

▶ Lemma 10 ([16]). Deciding whether a simple undirected graph has a colouring of size k is
NP-complete.

Let G = (V, E) be a simple undirected graph, n be its number of vertices and m its
number of edges. We consider the language LG over the alphabet V given by:

LG =
⋃

(v,u)∈E

V ∗(v+u+)ω.

That is, a sequence w ∈ V ω is in LG if eventually it alternates between exactly two vertices
connected by an edge in G.
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▶ Remark 11. For any simple undirected graph G, LG is a Muller language over V , that is,
whether a word w ∈ V ω belongs to LG or not only depends on Inf (w). Moreover, the parity
index of this language is at most 3.

However, we cannot extend this reduction to show NP-hardness of the minimisation of
transition-based parity automata, as we will show in Section 2.3 that we can minimise parity
automata recognising Muller languages in polynomial time.

In order to show that this is indeed a polynomial-time reduction, we have to be able
to build a Rabin automaton recognising LG in polynomial time in the representation of G.
This is indeed the case, since we can consider a Rabin automaton that has as set of states
the vertices of G, and such that, from any state, when reading a letter v ∈ V we go to the
state v. We use the information about the edges of G to define a Rabin condition over this
automaton so that it recognises LG. The details of this construction can be found in the full
version [5].

▶ Lemma 12. We can build a Rabin automaton of size n recognising LG in O(mn2).

▶ Lemma 13. Let G = (V, E) be a simple undirected graph. Then, the size of a minimal
Rabin automaton recognising LG coincides with the chromatic number of G, χ(G).

Proof.
rabin(LG) ≤ χ(G): Let c : V → [1, k] be a colouring of size k of G. We will define a Muller

automaton of size k recognising LG and then use Proposition 3 to show that we can put
a Rabin condition on top of it. Let Ac = (Q, V, q0, δ, V, F) be the Muller automaton
defined by:

Q = {1, 2, . . . , k}.
q0 = 1.
δ(q, x) = (c(x), x) for q ∈ Q and x ∈ V .
A set C ⊆ V belongs to F if and only if C = {v, u} for two vertices v, u ∈ V such that
(v, u) ∈ E.

The language recognised by Ac is clearly LG, since the output produced by a word w ∈ V ω

is w itself, and the acceptance condition F is exactly the Muller condition defining the
language LG.
Let G(Ac) = (Q, EAc) be the graph associated to Ac. We will prove that the union of
any pair of rejecting cycles of Ac that have some state in common must be a rejecting
cycle. By Proposition 3 this implies that we can define a Rabin condition on top of Ac.
Let ℓ1, ℓ2 ⊆ EAc be two cycles such that γ(ℓi) /∈ F for i ∈ {1, 2} and such that
States(ℓ1) ∩ States(ℓ2) ̸= ∅. We distinguish 3 cases:

|γ(ℓi)| ≥ 3 for some i ∈ {1, 2}. In this case, their union also has more than 3 colours,
so it must be rejecting.
γ(ℓi) = {u, v}, (u, v) /∈ E for some i ∈ {1, 2}. In that case, γ(ℓ1 ∪ ℓ2) also contains two
vertices that are not connected by an edge, so it must be rejecting.
γ(ℓ1) = {v1} and γ(ℓ2) = {v2}. In this case, since from every state q of Ac and every
v ∈ V we have that δ(q, v) = (c(v), v), each of the cycles contains only one state:
States(ℓ1) = {c(v1)} and States(ℓ2) = {c(v2)}. As ℓ1 and ℓ2 share some state, we
deduce that c(v1) = c(v2). If v1 = v2, ℓ1 ∪ ℓ2 is rejecting because |γ(ℓ1 ∪ ℓ2)| = 1. If
v1 ̸= v2, it is also rejecting because c(v1) = c(v2), and therefore (v1, v2) /∈ E.

Since γ(ℓi) is rejecting, it does not consist on two vertices connected by some edge and we
are always in some of the cases above. We conclude that we can put a Rabin condition
on top of Ac, obtaining a Rabin automaton recognising LG of size k.
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χ(G) ≤ rabin(LG): Let A = (Q, V, q0, δ, Γ, R) be a Rabin automaton of size k recognising
LG and let G(A) = (Q, EA) be its graph. We will define a colouring of size k of G,
c : V → Q. For each v ∈ V we define a subset Qv ⊆ Q as:

Qv = {q ∈ Q : there is a cycle ℓ containing q and γ(ℓ) = {v}}.

For every v ∈ V , the set Qv is non-empty, as it must exist a (non-accepting) run over
vω in A. For each v ∈ V we pick some qv ∈ Qv, and we define the colouring c : V → Q

given by c(v) = qv.
In order to prove that it is indeed a colouring, we we will show that any two vertices
v, u ∈ V such that (v, u) ∈ E verify that Qv ∩ Qu = ∅, and therefore they also verify
c(v) ̸= c(u). Suppose by contradiction that there is some q ∈ Qv ∩ Qu. We write ℓx for a
cycle containing q labelled with x, for x ∈ {v, u} (they exist by the definition of Qx). By
the definition of LG, both cycles ℓv and ℓu have to be rejecting as xω /∈ LG for any x ∈ V .
However, since (u, v) ∈ E, their union is accepting, contradicting Proposition 3. ◀

We deduce the NP-completeness of the minimisation of Rabin automata.

▶ Theorem 14. Given a Rabin automaton A and a positive integer k, deciding whether there
is an equivalent Rabin automaton of size k is NP-complete.

▶ Corollary 15. Given a Streett automaton A and a positive integer k, deciding whether
there is an equivalent Streett automaton of size k is NP-complete.

2.3 Parity and generalised Büchi automata recognising Muller languages
can be minimised in polynomial time

In Section 2.2 we have proven the NP-hardness of the minimisation of Rabin automata showing
a reduction that uses Muller languages, that is, whether an infinite word w belongs to the
language only depends on Inf (w). We may wonder whether Muller languages could be used
to prove NP-hardness of the minimisation of parity or generalised Büchi automata. We shall
see now that this is not the case.

▶ Proposition 16. Let F ⊆ P(Σ) be a Muller condition. Given a parity automaton recognising
LF , we can build in polynomial time a minimal parity automaton recognising LF .

As stated in Proposition 6, a minimal parity automaton recognising a Muller language
can be obtained in linear time from the Zielonka tree of the condition, so it suffices to give
a polynomial-time algorithm building the Zielonka tree of the Muller condition F from a
parity automaton A recognising LF . The details of this algorithm are included in the full
version [5]. We give next the main ideas of it.

We start by labelling the root of ZF with Σ. Next, we try to find the maximal subsets of
Σ that are alternating (that is, Σ is in F if and only if they are not). To do so, we remove
the transitions of A corresponding to the maximal priority (that we suppose even), and
we compute a decomposition in strongly connected components of the obtained graph. We
keep the ergodic components (that is, those without edges leaving them), and we recursively
repeat this process in those components with a maximal even priority, until obtaining a set of
strongly connected components with maximal odd priorities. For each of these components,
we take the set of input letters that appear on their transitions. The maximal sets of letters
among them will constitute the children of the root of ZF . We continue recursively until we
do not find any new “alternating components”.
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▶ Proposition 17. Let F ⊆ P(Σ) be a Muller condition. If LF can be recognised by a
generalised Büchi (resp. generalised co-Büchi) automaton, then, it can be recognised by
one such automaton with just one state. Moreover, this minimal automaton can be built
in polynomial time from any generalised Büchi (resp. generalised co-Büchi) automaton
recognising LF .

The proof of Proposition 17 appears in the full version [5].

3 Memory in games

In this section, we introduce the definitions of games, memories and chromatic memories for
games, as well as ε-free games. We show in Section 3.4 that the memory requirements for
games where we allow ε-transitions might differ from those for ε-free games.

3.1 Games
A game is a tuple G = (V = VE ⊎ VA, E, v0, γ : E → Γ ∪ {ε}, Acc) where (V, E) is a directed
graph together with a partition of the vertices V = VE ⊎ VA, v0 is an initial vertex, γ is a
colouring of the edges and Acc is a winning condition defining a subset W ⊆ Γω. The letter
ε is a neutral letter, and we impose that there is no cycle in G labelled exclusively with ε.
We say that vertices in VE belong to Eve (also called the existential player) and those in VA

to Adam (universal player). We suppose that each vertex in V has at least one outgoing
edge. A game that uses a winning condition of type X (as defined in Section 2.1) is called
an X-game.

A play in G is an infinite path ϱ ∈ Eω produced by moving a token along edges starting
in v0: the player controlling the current vertex chooses what transition to take. Such a play
produces a word γ(ϱ) ∈ (Γ ∪ {ε})ω. Since no cycle in G consists exclusively of ε-colours, after
removing the occurrences of ε from γ(ϱ) we obtain a word in Γω, that we will call the output
of the play and we will also denote γ(ϱ) whenever no confusion arises. The play is winning
for Eve if the output belongs to the set W defined by the acceptance condition, and winning
for Adam otherwise. A strategy for Eve in G is a function prescribing how Eve should play.
Formally, it is a function σ : E∗ → E that associates to each partial play ending in a vertex
v ∈ VE some outgoing edge from v. A play ϱ ∈ Eω adheres to the strategy σ if for each
partial play ϱ′ ∈ E∗ that is a prefix of ϱ and ends in some state of Eve, the next edge played
coincides with σ(ϱ′). We say that Eve wins the game G if there is some strategy σ for her
such that any play that adheres to σ is a winning play for her (in this case we say that σ is
a winning strategy).

We will also study games without ε-transitions. We say that a game G is ε-free if γ(e) ̸= ε

for all edges e ∈ E.

3.2 Memory structures
We give the definitions of the following notions from the point of view of the existential
player, Eve. Symmetric definitions can be given for the universal player (Adam), and all
results of Section 4 can be dualised to apply to the universal player.

A memory structure for the game G is a tuple MG = (M, m0, µ) where M is a set of
states, m0 ∈ M is an initial state and µ : M × E → M is an update function (where E

denotes the set of edges of the game). Its size is |M |. We extend the function µ to M × E∗

in the natural way. We can use such a memory structure to define a strategy for Eve using a
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function next-move : VE × M → E, verifying that next-move(v, m) is an outgoing edge from
v. After each move of a play on G, the state of the memory MG is updated using µ; and
when a partial play arrives to a vertex v controlled by Eve she plays the edge indicated by
the function next-move(v, m), where m is the current state of the memory. We say that the
memory structure MG sets a winning strategy in G if there exists such a function next-move
defining a winning strategy for Eve.

We say that MG is a chromatic memory if there is some function µ′ : M × Γ → M such
that µ(m, e) = µ′(m, γ(e)) for every edge e ∈ E such that γ(e) ̸= ε, and µ(m, e) = m if
γ(e) = ε. That is, the update function of MG only depends on the colours of the edges of
the game.

Given a winning condition W ⊆ Γω, we say that M = (M, m0, µ : M × Γ → M) is an
arena-independent memory for W if for any W-game G won by Eve, there exists some function
next-moveG : VE × M → E setting a winning strategy in G. We remark that such a memory
is always chromatic.

Given a Muller condition F , we write memgen(F) (resp. memchrom(F)) for the least
number n such that for any F-game that is won by Eve, she can win it using a memory
(resp. a chromatic memory) of size n. We call memgen(F) (resp. memchrom(F)) the general
memory requirements (resp. chromatic memory requirements) of F . We write memind(F) for
the least number n such that there exists an arena-independent memory for F of size n.

We define respectively all these notions for ε-free F-games. We write memε-free
gen (F),

memε-free
chrom(F) and memε-free

ind (F) to denote, respectively, the minimal general memory require-
ments, minimal chromatic memory requirements and minimal size of an arena-independent
memory for ε-free F -games.
▶ Remark 18. We remark that these quantities verify that memgen(F) ≤ memchrom(F) ≤
memind(F) and that memε-free

X (F) ≤ memX(F) for X ∈ {gen, chrom, ind}.
A family of games is half-positionally determined if for every game in the family that is

won by Eve, she can win it using a strategy given by a memory structure of size 1.

▶ Lemma 19 ([17, 29]). Rabin-games are half-positionally determined.

If A is a Rabin automaton recognising the Muller language associated to the condition
F , given an F -game G we can perform a standard product construction G ⋉ A to obtain an
equivalent game using a Rabin condition that is therefore half-positionally determined. This
allows us to use the automaton A as an arena-independent memory for F -games.

▶ Lemma 20 (Folklore). Let F be a Muller condition. We can use a Rabin automaton A
recognising LF as an arena-independent memory for F-games.

3.3 The general memory requirements of Muller conditions
The Zielonka tree (see Definition 5) was introduced by Zielonka in [29], and in [12] it was
used to characterise the general memory requirements of Muller games as we show next.

▶ Definition 21. Let F be a Muller condition and ZF = ⟨Γ, ⟨ZF1 , . . . ZFk
⟩⟩ its Zielonka tree.

We define the number mZF recursively as follows:

mZF =


1 if ZF is a leaf.

max{mZF1
, . . . ,mZFk

} if Γ /∈ F and ZF is not a leaf.
k∑

i=1
mZFi

if Γ ∈ F and ZF is not a leaf.
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▶ Proposition 22 ([12]). For every Muller condition F , memgen(F) = mZF . That is,
1. If Eve wins an F-game, she can win it using a strategy given by a (general) memory

structure of size at most mZF .
2. There exists an F-game (with ε-transitions) won by Eve such that she cannot win it using

a strategy given by a memory structure of size strictly smaller than mZF .

3.4 Memory requirements of ε-free games
In [29] and [18] it was noticed that there can be major differences regarding the memory
requirements of winning conditions depending on the way the games are coloured. We
can differentiate 4 classes of games, corresponding to the combinations of two parameters:
state-coloured or transition-coloured, and allowing or not ε-transitions. In [29], Zielonka
showed that there are Muller conditions that are half-positional over state-coloured ε-free
games, but they are not half-positional over general state-coloured games (that is, games
where some states may be left uncoloured), and he exactly characterises half-positional Muller
conditions in both cases.

However, when considering transition-coloured games, this is no longer the case: in both
general games and ε-free games, half-positional Muller conditions correspond exactly to
Rabin conditions (Lemma 23). Nevertheless, the matching upper bounds for the memory
requirements of Muller conditions appearing in [12] are given by transition-labelled games
using ε-transitions. An interesting question is whether we can produce upper-bound ex-
amples using ε-free games. In this section we answer this question negatively. We show in
Proposition 24 that there are Muller conditions F for which the memory required by Eve
in ε-free F-games is strictly smaller than the memory she needs in general F-games, and
the difference can be arbitrarily large. In Section 4.1 we will see that this is not the case for
chromatic memories: memchrom(F) = memε-free

chrom(F) for any Muller condition F .
The details of the proofs of Lemma 23 and Proposition 24 can be found in the full version

of this paper [5].

▶ Lemma 23. For any Muller condition F ⊆ P(Γ), F is half-positional determined over
transition-coloured ε-free games if and only if F is half-positional determined over general
transition-coloured games. That is, memgen(F) = 1 if and only if memε-free

gen (F) = 1.

▶ Proposition 24. For any integer n ≥ 2, there is a set of colours Γn and a Muller condition
Fn ⊆ P(Γn) such that memε-free

gen (F) = 2 and memgen(F) = n.

Proof. Let us consider the set of colours Γn = {1, . . . , n} and the Muller condition Fn =
{A ⊆ Γn : |A| > 1}. The characterisation of [12] (Proposition 22) gives that memgen(F) = n.
However, if Eve wins some ε-free game G, she can force a victory using only 2 memory states.
The idea is the following: since the game is ε-free, from each position of the game, Eve
can directly produce one colour c ∈ Γn. Moreover, as she wins the game G, she also has a
strategy to force to see a different colour c′ from that position. She just has to remember if
she has to follow the strategy to see c′, or if she can directly produce the colour c. This can
be done with just two memory states, ensuring that the produced play will have at least two
different colours. ◀

▶ Remark 25. The condition of the previous proof also provides an example of a condition
that is half-positional over ε-free state-coloured arenas, but for which we might need memory
n in general state-coloured arenas (other examples for state-coloured games can be found
in [29, 18]).

However, the question raised in [18] of whether there can be conditions (that cannot be
Muller ones) that are half-positional only over ε-free games remains open.
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4 The chromatic memory requirements of Muller conditions

In this section we present the main contributions concerning the chromatic memory require-
ments of Muller conditions. In Section 4.1, we prove that the chromatic memory requirements
of a Muller condition (even for ε-free games) coincide with the size of a minimal Rabin
automaton recognising the Muller condition (Theorem 27). In Section 4.2 we deduce that
determining the chromatic memory requirements of a Muller condition is NP-complete, for
different representations of the condition. Finally, this results allow us to answer in Section 4.3
the question appearing in [18, 19] of whether the chromatic memory requirements coincide
with the general memory requirements of winning conditions.

4.1 Chromatic memory and Rabin automata
In this section we prove Theorem 27, establishing the equivalence between the chromatic
memory requirements of a Muller condition (also for ε-free games) and the size of a minimal
Rabin automaton recognising the associated Muller language.

Lemma 26 appears in Kopczyński’s PhD thesis [19, Proposition 8.9] (unpublished). We
present a similar proof here.

▶ Lemma 26 ([19]). Let F be a Muller condition. Then, memchrom(F) = memind(F). That
is, there is an F-game G won by Eve such that any chromatic memory for G setting a
winning strategy has size at least memind(F), where memind(F) is the minimal size of an
arena-independent memory for F .

The same result holds for ε-free games: memε-free
chrom(F) = memε-free

ind (F).

Proof. We present the proof for memchrom(F) = memind(F), the proof for the ε-free case
being identical, since we do not add any ε-transition to the games we consider.

It is clear that memchrom(F) ≤ memind(F), since any arena-independent memory for F
has to be chromatic. We will prove that it is not the case that memchrom(F) < memind(F).
Let M1, · · · , Mn be an enumeration of all chromatic memory structures of size strictly less
than memind(F). By definition of memind(F), for any of the memories Mj there is some
F -game Gj = (Vj , Ej , v0j

, γj) won by Eve such that no function next-moveGj
: Mj ×Vj → Ej

setting a winning strategy in Gj exists. We define the disjoint union of these games, G =
n⊎

i=1
Gi,

as the game with an initial vertex v0 controlled by Adam, from which he can choose to go to
the initial vertex of any of the games Gi producing the letter a ∈ Γ (for some a ∈ Γ fixed
arbitrarily), and such the rest of vertices and transitions of G is just the disjoint union of
those of the games Gi. Eve can win this game, since no matter the choice of Adam we arrive
to some game where she can win. However, we show that she cannot win using a chromatic
memory strictly smaller than memind(F). Suppose by contradiction that she wins using
a chromatic memory M = (M, m0, µ), |M| < memind(F). We let m′

0 = µ(m0, a), and we
consider the memory structure M′ = (M, m′

0, µ). Since |M′| < memind(F), M′ = Mi for
some i ∈ {1, . . . , n}, and therefore Adam can choose to take the transition leading to Gi,
where Eve cannot win using this memory structure. This contradicts the fact that Eve wins
G using M. ◀

▶ Theorem 27. Let F ⊆ P(Γ) be a Muller condition. The following quantities coincide:
1. The size of a minimal deterministic Rabin automaton recognising LF , rabin(LF ).
2. The size of a minimal arena-independent memory for F , memind(F).
3. The size of a minimal arena-independent memory for ε-free F-games, memε-free

ind (F).
4. The chromatic memory requirements of F , memchrom(F).
5. The chromatic memory requirements of F for ε-free games, memε-free

chrom(F).

CSL 2022



12:14 Minimisation of Rabin Automata and Chromatic Memory for Muller Conditions

Proof. The previous Lemma 26, together with Lemma 20, prove that

memε-free
ind (F) = memε-free

chrom(F) ≤ memchrom(F) = memind(F) ≤ rabin(LF ).

In order to prove that rabin(LF ) ≤ memε-free
ind (F), we are going to show that we can put a

Rabin condition on top of any arena-independent memory for ε-free F -games M, obtaining
a Rabin automaton recognising LF and having the same size than M.

Let M = (M, m0, µ : M × Γ → M) be an arena-independent memory for ε-free F -games.
First, we remark that we can suppose that every state of M is accessible from m0 by
some sequence of transitions. We define a Muller automaton AM using the underlying
structure of M: AM = (M, Γ, m0, δ, Γ, F), where the transition function δ is defined as
δ(m, a) = (µ(m, a), a), for a ∈ Γ. Since the output produced by any word w ∈ Γω is w itself
and the accepting condition is F , this automaton trivially accepts the language LF . We are
going to show that the Muller automaton AM satisfies the second property in Proposition 3,
that is, that for any pair of cycles in AM with some state in common, if both are rejecting
then their union is also rejecting. This will prove that we can put a Rabin condition on top
of AM.

Let ℓ1 and ℓ2 be two rejecting cycles in AM such that m ∈ M is contained in both ℓ1 and
ℓ2. We suppose by contradiction that their union ℓ1 ∪ ℓ2 is an accepting cycle. We will build
an ε-free F -game that is won by Eve, but where she cannot win using the memory M, leading
to a contradiction. Let a0a1 . . . ak ∈ Γ∗ be a word labelling a path to m from m0 in M, that
is, µ(m0, a0 . . . ak) = m. We define the ε-free F-game G = (V = VE , E, v0, γ : E → Γ, F) as
the game where there is a sequence of transitions labelled with a0 . . . ak from v0 to one vertex
vm controlled by Eve (the only vertex in the game where some player has to make a choice).
From vm, Eve can choose to see all the transitions of ℓ1 before coming back to m (producing
the corresponding colours), or to see all the transitions of ℓ2 before coming back to m.

First, we notice that Eve can win the game G: since ℓ1 ∪ ℓ2 is accepting, she only
has to alternate between the two choices in the state vm. However, there is no function
next-move : M × VE → E setting up a winning strategy for Eve. Indeed, for every partial
play ending in vm and labelled with a0a1 . . . as, it is clear that µ(m0, a0 . . . as) = m (the
memory is at state m). If next-move(m, vm) is the edge leading to the cycle corresponding
to ℓ1, no matter the value next-move takes at the other pairs, all plays will stay in ℓ1, so the
set of colours produced infinitely often would be γ(ℓ1) which is loosing for Eve. The result is
symmetric if next-move(m, vm) is the edge leading to the other cycle. We conclude that M
cannot be used as a memory structure for G, a contradiction. ◀

4.2 The complexity of determining the chromatic memory requirements
of a Muller condition

As shown in [12], the Zielonka tree of a Muller condition directly gives its general memory
requirements. In this section, we see that it follows from the previous results that determining
the chromatic memory requirements of a Muller condition is NP-complete, even if it is
represented by its Zielonka tree. The proofs can be found in the full version [5].

▶ Proposition 28. Given the Zielonka tree ZF of a Muller condition F (resp. a parity
automaton P recognising LF ), we can compute in O(|ZF |) (resp. polynomial time in |P|)
the memory requirements for F-games, memgen(F).
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▶ Theorem 29. Given a positive integer k > 0 and a Muller condition F represented as
either:
a) The Zielonka tree ZF .
b) A parity automaton recognising LF .
c) A Rabin automaton recognising LF .
The problem of deciding whether memchrom(F) ≥ k (or equivalently, memind(F) ≥ k) is
NP-complete.

The proof consists in showing that the reduction presented in Lemma 13 can also be
applied if the Muller condition is given by any of the representations considered in Theorem 29.

4.3 Chromatic memories require more states than general ones

In his PhD Thesis [18, 19], Kopczyński raised the question of whether the general memory
requirements of every winning condition coincides with its chromatic memory requirements.
In this section we prove that this is not the case: Eve needs strictly more memory if she is
restricted to use chromatic memories, and the difference can be arbitrarily large.

▶ Proposition 30. For each integer n ≥ 2, there exists a set of colours Γn and a Muller
condition Fn over Γn such that for any Fn-game won by Eve, she can win it using a memory
of size 2, but there is an Fn-game G where Eve needs a chromatic memory of size n to win.
Moreover, the game G can be chosen to be ε-free.

Proof. Let Γn = {1, 2, . . . , n} be a set of n colours, and let us define the Muller condition
Fn = {A ⊆ Γn : |A| = 2}. The Zielonka tree of Fn is depicted in Figure 1, where round
nodes represent nodes whose label is an accepting set, and rectangular ones, nodes whose
label is a rejecting set.

1, 2, . . . , n

1, 2 1, 3 . . . n − 1, n

1 2 1 3 . . . n − 1 n

Figure 1 Zielonka tree for the condition Fn = {A ⊆ {1, 2, . . . , n} : |A| = 2}. Square nodes are
associated with rejecting sets (A /∈ Fn) and round nodes with accepting ones (A ∈ Fn).

The characterisation of the memory requirements of Muller conditions from Proposition 22
gives that memgen(Fn) = 2.

On the other hand, the language LFn associated to this condition coincides with the
language LG (defined in Section 2.2) associated to a graph G that is a clique of size n.
By Lemma 13, the size of a minimal Rabin automaton recognising LFn

(and therefore, by
Theorem 27, the chromatic memory requirements of Fn) coincides with the chromatic number
of G. Since G is a clique of size n, its chromatic number is n. ◀

In the full version [5] we provide an explicit example of such a game.
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5 Conclusions and open questions

In this work, we have fully characterised the chromatic memory requirements of Muller
conditions, proving that arena-independent memory structures for a given Muller condition
correspond to Rabin automata recognising that condition. We have also answered several
open questions concerning the memory requirements of Muller conditions when restricting
ourselves to chromatic memories or to ε-free games. We have proven the NP-completeness
of the minimisation of transition-based Rabin automata and that we can minimise parity
automata recognising Muller languages in polynomial time, advancing in our understanding
on the complexity of decision problems related to transition-based automata.

The question of whether we can minimise transition-based parity or Büchi automata
in polynomial time remains open. The contrast between the results of Abu Radi and
Kupferman [1, 2], showing that we can minimise GFG transition-based co-Büchi automata in
polynomial time and those of Schewe [27], showing that minimising GFG state-based co-Büchi
automata is NP-complete; as well as the contrast between Theorem 14 and Proposition 16,
make of this question a very intriguing one.

Regarding the memory requirements of games, we have shown that forbidding ε-transitions
might cause a reduction in the memory requirements of Muller conditions. However, the
question raised by Kopczyński in [18] remains open: are there prefix-independent winning
conditions that are half-positional when restricted to ε-free games, but not when allowing
ε-transitions?
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In this work we propose a formal system for fuzzy algebraic reasoning. The sequent calculus we define
is based on two kinds of propositions, capturing equality and existence of terms as members of a fuzzy
set. We provide a sound semantics for this calculus and show that there is a notion of free model for
any theory in this system, allowing us (with some restrictions) to recover models as Eilenberg-Moore
algebras for some monad. We will also prove a completeness result: a formula is derivable from
a given theory if and only if it is satisfied by all models of the theory. Finally, leveraging results
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1 Introduction

One of the most fruitful and influential lines of research of Logic in Computer Science is
the algebraic study of computation. After Moggi’s seminal work [18] showed that notions of
computation can be represented as monads, Plotkin and Power [21] approached the problem
using operations and equations, i.e., Lawvere theories. Since then, various extensions of the
notion of Lawvere theory have been introduced in order to accommodate an ever increasing
number of computational notions within this framework; see, e.g., [22, 11, 20], and more
recently [3, 4] for quantitative algebraic reasoning for probabilistic computations.

Along this line of research, in this work we study algebraic reasoning on fuzzy sets.
Algebraic structures on fuzzy sets are well known since the seventies (see e.g., [24, 16, 1, 19]).
Fuzzy sets are very important in computer science, with applications ranging from pattern
recognition to decision making, from system modeling to artificial intelligence. So, one may
wonder if it is possible to use an approach similar to above for fuzzy algebraic reasoning.

In this paper we answer positively to this question. We propose a sequent calculus based
on two kind of propositions, one expressing equality of terms and the other the existence of a
term as a member of a fuzzy set. These sequents have a natural interpretation in categories of
fuzzy sets endowed with operations. This calculus is sound and complete for such a semantics:
a formula is satisfied by all the models of a given theory if and only if it is derivable from it.

It is possible to go further. Both in the classical and in the quantitative settings there is a
notion of free model for a theory; we show that is also true for theories in our formal system
for fuzzy sets. In general the category of models of a given theory will not be equivalent
to the category of Eilenberg-Moore algebras for the induced monad, but we will show that
this equivalence holds for theories with sufficiently simple axioms. Finally we will use the
techniques developed in [17] to prove two results analogous to Birkhoff’s theorem.
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13:2 Fuzzy Algebraic Theories

Synopsis. In Section 2 we recall the category Fuz(H) of fuzzy sets over a frame H . Section 3
introduces the syntax and the rules of fuzzy theories. Then, in Section 4 we introduce the
notions of algebras for a signature and of models for a theory; in this section we will also
show that the calculus proposed is sound and complete. Section 5 is devoted to free models
and it is shown that if a theory is basic then its category of models arose as the category of
Eilenberg-Moore algebras for a monad on Fuz(H). In Section 6 we use the results of [17] to
prove two HSP-like theorems for our calculus. Finally, Section 7 draws some conclusions and
directions for future work. Complete proofs are in the extended version [8].

2 Fuzzy sets

In this section we will recall the definition and some well-known properties of the category of
fuzzy sets over a frame H (i.e. a complete Heyting algebra [12]).

▶ Definition 2.1 ([26, 27]). Let H be a frame. A H-fuzzy set is a pair (A,µA) consisting in
a set A and a membership function µA : A → H. The support of µA is the set supp(A,µA)
of elements x ∈ A such that µA(x) ̸= ⊥. An arrow f : (A,µA) → (B,µB) is a function
f : A → B such that µA(x) ≤ µB(f(x)) for all x ∈ A.

We denote by Fuz(H) the category of H-fuzzy sets and their arrows. We will often drop
the explicit reference to the frame H when there is no danger of confusion.

▶ Proposition 2.2. For any frame H, the forgetful functor V : Fuz(H) → Set has both a
left and a right adjoint ∇ and ∆ endowing a set X with the function constantly equal to the
bottom and the top element of H, respectively.

Proof. If ∇(X) and ∆(X) are, respectively (X, c⊥) and (X, c⊤), where c⊥ and c⊤ are the
functions X → H constant in ⊥ and ⊤, then for any X ∈ Set, idX : V (∆(X)) = X → X =
V (∇(X)) is the counit of V ⊣ ∆ and the unit of ∇ ⊣ V . ◀

▶ Definition 2.3. Let e : A → B and m : C → D be two arrows in a category C, we say
that m has the left lifting property with respect to e if for any two arrows f : A → C and
g : B → D such that m ◦ f = g ◦ e there exists a unique k : B → C with m ◦ k = g.

A strong monomorphism is an arrow m which has the left lifting property with respect to
all epimorphisms.

▶ Proposition 2.4. Let f : (A,µA) → (B,µB) be an arrow of Fuz(H), then:
1. f is a monomorphism iff it is injective; f is an epimorphism iff it is surjective;
2. f is a strong monomorphism iff it is injective and µB(f(x)) = µA(x) for all x ∈ A;
3. f is a split epimorphism iff for any b ∈ B there exists ab ∈ f−1(b) such that µB(b) =

µA(ab).

▶ Definition 2.5 ([13]). A proper factorization system on a category C is a pair (E ,M )
given by two classes of arrows such that:

E and M are closed under composition;
every isomorphism belongs to both E and M ;
every e ∈ E is an epimorphism and every m ∈ M is a monomorphism;
every m ∈ M has the left lifting property with respect to every e ∈ E ;
every arrow of C is equal to m ◦ e for some m ∈ M and e ∈ E .

▶ Lemma 2.6. For any frame H, Fuz(H) has all products. Moreover the classes of
epimorphisms and strong monomorphisms form a proper factorization system on it.
▶ Remark 2.7. Completeness and the existence of both adjoints to V can be deduced directly
from the fact that Fuz(H) is topological over Set [26, Prop. 71.3].
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3 Fuzzy Theories

In this section we introduce the syntax and logical rules of fuzzy theories. The first step is
to introduce an appropriate notion of signature. Differently from usual signatures, in fuzzy
theories constants cannot be seen simply as 0-arity operations, because , as we will see in
Section 4, these are interpreted as fuzzy morphisms from the terminal object, and these
correspond only to elements whose membership degree is ⊤.

▶ Definition 3.1. A signature Σ = ()O, ar, C) is a set O of operations with an arity function
ar : O → N+ and a set C of constants. Signatures form a category Sign in which an arrow
Σ1 = (O1, ar1, C1) → Σ2 = (O2, ar2, C2) is a pair F = (F1, F2) of functions: F1 : O1 → O2
and F2 : C1 → C2 with the property that ar2 ◦ F1 = ar1.

An algebraic language L is a pair (Σ, X) where Σ is a signature and X a set. The
category Lng of algebraic languages is just Sign × Set.

▶ Example 3.2. The signature of semigroups ΣS in which O = {·}, ar(·) = 2 and C = ∅.

▶ Example 3.3. The signature of groups ΣG is equal to ΣS plus an operation (−)−1 of arity
1 and a constant e.

Given a language L we can inductively apply the operations to the set of variables to construct
terms, and once terms are built we can introduce equations.

▶ Definition 3.4. Given a language L = (Σ, X), the set L-Terms is the smallest set s.t.
X ⊔ C ⊂ L-Terms;
if f ∈ O and t1, . . . , tar(f) ∈ L-Terms then f

(
t1, . . . , tar(f)

)
∈ L-Terms.

▶ Proposition 3.5. There exists a functor Terms : Lng → Set sending L to L-Terms.

▶ Definition 3.6 (Formulae). For any language L we define the sets Eq(L) of equations as
the product Eq(L) := L-Terms × L-Terms and the set M(L) of membership propositions as
M(L) := H × L-Terms. We will write s ≡ t for (s, t) ∈ Eq(L) and E(l, t) for (l, t) ∈ M(L).
The set Form(L) of formulae is then defined as Eq(L) ⊔ M(L).

Clearly, a proposition s ≡ t means “s and t are equivalent and hence interchangeable”; on
the other hand, E(l, t) intuitively means “the degree of existence of t is at least l”.

▶ Definition 3.7 (Sequent ant fuzzy theory). A sequent Γ ⊢ ψ is an element (Γ, ψ) of
Seq(L) := P(Form(L)) × Form(L), where P is the (covariant) power set functor. A fuzzy
theory in the language L is a subset Λ ⊂ Seq(L) and we will use Th(L) for the set P(Seq(L)).

▶ Notation. We will write ⊢ ϕ for ∅ ⊢ ϕ.
For any function σ : X → L-Terms and t ∈ L-Terms we denote t[σ] the term obtained

substituting σ(x) to any occurence of x in t. Moreover, for any formula ϕ ∈ Form(L) we define
ϕ[σ] as t[σ] ≡ s[σ] if ϕ is t ≡ s or as E(l, t[σ]) if ϕ is E(l, t). Finally, given Γ ⊂ P(Form(L))
we put Γ[σ] := {ϕ[σ] | ϕ ∈ Γ}.

▶ Definition 3.8. For any L, the fuzzy sequent calculus is given by the rules in Figure 1.
Given a fuzzy theory Λ, its deductive closure Λ⊢ is the smallest subset of Seq(L) which

contains Λ and it is closed under the rules of fuzzy sequent calculus. A sequent is derivable
from Λ (or simply derivable if Λ = ∅) if it belongs to Λ⊢. We will write ⊢Λ ϕ if ⊢ ϕ ∈ Λ⊢.

Finally we say that two theories Λ and Θ are deductively equivalent if Λ⊢ = Θ⊢.
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ϕ ∈ Γ
Γ ⊢ ϕ

A
Γ ⊢ ϕ

Γ ∪ ∆ ⊢ ϕ
Weak

{Γ ⊢ ϕ | ϕ ∈ Φ} Φ ⊢ ψ

Γ ⊢ ψ
Cut

Γ ⊢ s ≡ s
Refl

Γ ⊢ s ≡ t

Γ ⊢ t ≡ s
Sym

Γ ⊢ s ≡ t Γ ⊢ t ≡ u

Γ ⊢ t ≡ u
Trans

σ : X → L-Terms Γ ⊢ ψ

Γ[σ] ⊢ ψ[σ]
Sub

f ∈ O {Γ ⊢ ti ≡ si}ar(f)
i=1

Γ ⊢ f
(
t1, . . . , tar(f)

)
≡ f

(
s1, . . . , sar(f)

) Cong

Γ ⊢ E(⊥, t)
Inf

Γ ⊢ E(l, t)
Γ ⊢ E(l ∧ l′, t)

Mon
{Γ ⊢ E(li, ti)}ar(f)

i=1

Γ ⊢ E
(
inf ({li}n

i=1), f
(
t1, . . . , tar(f)

)) Exp

S ⊂ H {Γ ⊢ E(l, t)}l∈S

Γ ⊢ E(sup(S), t)
Sup

Γ ⊢ t ≡ s Γ ⊢ E(l, t)
Γ ⊢ E(l, s)

Fun

Figure 1 Derivation rules for the fuzzy sequent calculus.

The next result shows how maps between languages are lifted to theories.

▶ Proposition 3.9. For any F : L1 → L2 arrow of Lng:
1. there exists a Galois connection F∗ ⊣ F∗ between (Th(L1),⊂) and (Th(L2),⊂);
2. F∗

(
Λ⊢

1
)

⊂ (F∗(Λ1))⊢ and (F∗(Λ2))⊢ ⊂ F∗(
Λ⊢

2
)

for any Λ1 ∈ Th(L1) and Λ2 ∈ Th(L2).

Usually, logics enjoy the so-called “deduction lemma”, which allows us to treat elements
of a theory on a par with assumptions in sequents. In fuzzy theories, this holds in a slightly
restricted form, as proved next.

▶ Lemma 3.10 (Partial deduction lemma). Let Λ be in Th(L) and Γ ∈ P(Form(L)), let also
Λ[Γ] be the theory Λ ∪ {∅ ⊢ ϕ | ϕ ∈ Γ}. Then the following are true:
1. Γ ∪ ∆ ⊢ ψ in Λ⊢ implies ∆ ⊢ ψ in (Λ[Γ])⊢;
2. if ∆ ⊢ ψ is derivable from Λ[Γ] without using rule Sub then Γ ∪ ∆ ⊢ ψ is in Λ⊢.

Proof.
1. By hypothesis Γ ∪ ∆ ⊢ ψ is in Λ⊢ then, since Λ ⊂ Λ[Γ], it is also in (Λ[Γ])⊢. Now, for

any ϕ ∈ Γ and θ ∈ ∆ rules Weak and A give

⊢ ϕ

∆ ⊢ ϕ
Weak

∆ ⊢ θ
A

so {∆ ⊢ ϕ | ϕ ∈ Γ ∪ ∆} is contained in (Λ[Γ])⊢ and we can apply Cut to get the thesis:

{∆ ⊢ ϕ | ϕ ∈ Γ ∪ ∆} Γ ∪ ∆ ⊢ ψ

∆ ⊢ ψ
Cut

2. Let us proceed by induction on a derivation of ∆ ⊢ ψ from Λ[Γ].
If ∆ ⊢ ψ ∈ Λ[Γ] then or ∆ ⊢ ψ ∈ Λ and we are done, or ψ ∈ Γ and we can conclude
since Γ ∪ ∆ ⊢ ϕi is in Λ⊢ by rules A and Weak
If ∆ ⊢ ψ follows from the application of one of the rules A, Inf or Refl then it
belongs to the closure of any theory, by Weak this is true even for Γ ∪ ∆ ⊢ ψ which,
in particular, it belongs to Λ⊢.
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Suppose that ∆ ⊢ ψ comes from an application of Weak, then there exists Ψ and Φ
such that Ψ ∪ Φ = ∆ and Ψ ⊢ ϕ is in (Λ[Γ])⊢. By inductive hypothesis we have the
following derivation of Γ ∪ ∆ ⊢ ψ from Λ:

Γ ∪ Ψ ⊢ ψ

Γ ∪ Ψ ∪ Φ ⊢ ψ
Weak

If ∆ ⊢ ψ is derived with an application of Cut as last rule then there exists a
set Θ such that {∆ ⊢ θ | θ ∈ Θ} ∪ {Θ ⊢ ψ} ⊆ (Λ[Γ])⊢, therefore, by the inductive
hypothesis, we have that {Γ ∪ ∆ ⊢ θ | θ ∈ Θ} ∪ {Γ ∪ Θ ⊢ ψ} is conteined in Λ⊢. Now,
{Γ ∪ ∆ ⊢ ϕ | ϕ ∈ Γ ∪ Θ} ⊂ Λ⊢ by rule A so an application of Cut gives the thesis:

{Γ ∪ ∆ ⊢ ϕ | ϕ ∈ Γ ∪ Θ} Γ ∪ Θ ⊢ ψ

Γ ∪ ∆ ⊢ ψ
Cut

Any other rule is of the form

{Ψ ⊢ ξj}j∈J

Ψ ⊢ ξ
R

therefore, if ∆ ⊢ ψ is derived with an application of one of this rules then the set
of its premises must be an element of (Λ[Γ])⊢ of type {∆ ⊢ ξj}j∈J , so by inductive
hypothesis {Γ ∪ ∆ ⊢ θj}j∈J ⊆ Λ⊢ and then the thesis is witnessed by

{Γ ∪ ∆ ⊢ ξj}j∈J

Γ ∪ ∆ ⊢ ψ
R

◀

▶ Example 3.11. Our first set of running examples is inspired by [19]. Let ΣS be the
signature of semigroups and X a countable set. The theory of fuzzy semigroups ΛS is simply
the usual theory of semigroups, i.e given by the sequent (using infix notation)

⊢ (x · y) · z ≡ x · (y · z)

We get the theory of left ideal ΛLI if we add the axioms (one for any l ∈ L):

E(l, y) ⊢ E(l, x · y)

Similarly the theory ΛRI of right ideal is obtained from the axioms:

E(l, x) ⊢ E(l, x · y)

Finally we get the theory of (bilateral) ideal ΛI taking the union of the above theories.

▶ Example 3.12 ([24, 1, 2]). Let ΣG be the signature of groups and X a countable set. The
theory ΛG of fuzzy groups is simply the usual theory of groups, i.e that given by the sequents

⊢ x · x−1 ≡ e ⊢ x−1 · x ≡ e ⊢ e · x ≡ x ⊢ x · x ≡ x ⊢ (x · y) · z ≡ x · (y · z)

We get the theory ΛN of normal fuzzy groups ([16]) if we add the axioms:

E(l, x) ⊢ E
(
l, y · (x · y−1)

)
It can be shown that the sequents E(l, x) ⊢ E(l, e) and E

(
l, y · (x · y−1)

)
⊢ E(l, x) are derivable,

respectively, from ΛG and from ΛN .
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4 Fuzzy algebras and semantics

In this section we provide a sound and complete semantics to the syntax and sequents
introduced in Section 3. The first step is to define the semantic counterpart of a signature.

▶ Definition 4.1. Given a signature Σ, a Σ-fuzzy algebra A := ((A,µA),ΣA) is a fuzzy set
(A,µA) and a collection ΣA = {fA | f ∈ O} ⊔ {cA | c ∈ C} of arrows:

fA : (A,µA)ar(f) → (A,µA) cA : (1, c⊥) → (A,µA)

where c⊥ is the constant function in ⊥. A morphism of Σ-fuzzy algebras A → B is an arrow
g : (A,µA) → (B,µB) such that g ◦ cA = cB and fB ◦ gar(f) = g ◦ fA for every c ∈ C and
f ∈ O. We will write Σ-Alg for the resulting category of Σ-fuzzy algebras.

▶ Remark 4.2. We will not distinguish between a function from the singleton and its value.

▶ Definition 4.3. Let L = (Σ, X) be a language and A =
(
(A,µA),ΣA)

be a Σ-algebra.
An assignment is simply a function ι : X → A. We define the evaluation in A with

respect to ι as the function (-)A,ι : L-Terms → A by induction:
xA,ι := ι(x) if x ∈ X;
cA,ι := cA if c ∈ C;
(f(t1, . . . , tar(f)))A,ι := fA(tA,ι

1 , . . . , tA,ι
ar(f)) if f ∈ O.

▶ Proposition 4.4. Let A be a Σ-algebra. Given a function σ : X → L-Terms and an
assignment ι : X → A define ισ : X → A as the assignment sending x to (σ(x))A,ι. Then
A ⊨ι ϕ[σ] if and only if A ⊨ισ ϕ.

Proof. This follows at once noticing that
(
t[σ]

)A,ι = tA,ισ holds for every term t. ◀

▶ Definition 4.5. A satisfies ϕ ∈ Form(L) with respect to ι, and we write A ⊨ι ϕ, if ϕ is
E(l, t) and l ≤ µA(tA,ι) or if ϕ is t ≡ s and tA,ι = sA,ι.

A satisfies ϕ if A ⊨ι ϕ for all ι : X → A, and we write A ⊨ ϕ, similarly, given
Γ ⊂ Form(L), A ⊨ Γ (A ⊨ι Γ) means A ⊨ ϕ (A ⊨ι ϕ) for any ϕ ∈ Γ.

Finally, given a sequent Γ ⊢ ϕ we say that A satisfies it with respect to ι and we will
write Γ ⊨A,ι ϕ if A ⊨ι ϕ whenever A ⊨ι Γ; if this happens for all assignments ι we say that
A satisfies the sequent and we will write Γ ⊨A ϕ.

We say that a Σ-fuzzy algebra A is a model of a fuzzy theory Λ ∈ Th(L) if it satisfies all
the sequents in it. Mod(Λ) denotes the full subcategory of Σ-Alg given by the models of Λ.

Clearly Σ-Alg = Mod(∅). For any Λ ∈ Th(L) there exist two forgetful functors UΛ :
Mod(Λ) → Fuz(L) and VΛ : Mod(Λ) → Set. We will write UΣ and VΣ for U∅ and V∅.

▶ Proposition 4.6. For any signature Σ, VΣ has a left adjoint F Set
Σ : Set → Mod(Λ).

Proof. For any set X take the language LX and define F Set
Σ (X) has

(∇(LX -Terms),ΣF Set
Σ (X)) where cF Set

Σ (X) := c and for any f ∈ O,

fF Set
Σ (X) : ∇(LX -Terms)ar(f) → ∇(LX -Terms)

(
t1, . . . , tar(f)

)
7→ f(t1, . . . , tar(f))

It is easy to see that for any ι : X → VΣ(A) the evaluation (-)A,ι is the unique morphism of
Σ-Alg that composed with the inclusion X → LX -Terms gives back ι. ◀

We now provide two technical results about interpretations. The first describes how
interpretations are moved along morphisms of algebras.
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▶ Proposition 4.7. Let L = (Σ, X) be a language, Λ ∈ Th(L) and A =
(
(A,µA),ΣA)

,
B =

(
(B,µB),ΣB)

be two Σ-algebras. Let also f : A → B be a morphism between them, then:
1. A is a model of Λ if and only if it is a model of Λ⊢;
2. f ◦ (−)A,ι = (−)B,f◦ι for every assignment ι : X → A;
3. for any assignment ι : X → A, A ⊨ι ϕ entails B ⊨f◦ι ϕ;
4. if UΣ(f) is a strong monomorphism in Fuz(H) and ι : X → A is an assignment then,

for any formula ϕ, A ⊨ι ϕ if and only if B ⊨f◦ι ϕ;
5. if UΣ(f) is a strong monomorphism in Fuz(H) and B ∈ Mod(Λ) then A ∈ Mod(Λ).

We can also move interpretations and theories along morphisms of signatures.

▶ Definition 4.8. For any F : Σ1 → Σ2 arrow of Sign and any A =
(
(A,µA),ΣA

2
)

∈ Σ2-Alg,
we define rF(A) =

(
(A,µA),ΣrF(A)

1

)
∈ Σ1-Alg putting, for any f ∈ O1

f rF(A) : (A,µA)ar(f) → (A,µA)
(
a1, . . . , aar(f)

)
7→ F2(f)A(

a1, . . . , aar(f)
)

and crF(A) := F3(c)A for every c ∈ C1.

▶ Lemma 4.9. Let L1 = (Σ1, X) and L2 = (Σ2, Y ) and F = ((F1, F2), g) : L1 → L2, then:
1. there exists a functor rF : Σ2-Alg → Σ1-Alg sending A to rF(A);
2. trF(A),ι◦g = (Terms(F)(t))A,ι for any assignment ι : Y → A and t ∈ L1-Terms;
3. for any assignment ι : Y → A, rF(A) ⊨ι◦g ϕ if and only if A ⊨ι Form(F)(ϕ);
4. If X = Y and g = idX then rF restricts to a functor rF, Λ : Mod(Λ) → Mod(F∗(Λ)).

▶ Example 4.10. The models for ΛS , ΛLI , ΛRI and ΛI (Example 3.11) are precisely the
structures defined in [19], while the models for ΛG (Example 3.12) are precisely the fuzzy
groups as in [24] and those of ΛN are the structures called normal fuzzy subgroups in [2, 1, 16].

Soundness. Now we can proceed proving the soundness of the rules in Figure 1.

▶ Lemma 4.11. Let L = (Σ, X) be a language and A = ((A,µA),ΣA) a Σ-algebra, then:
1. for any assignment ι : X → A and rule

{Ψi ⊢ ξi}i∈I

Ψ ⊢ ξ
R

different from Sub, if Ψi ⊨A,ι ξi for all i ∈ I then Ψ ⊨A,ι ξ too;
2. for any σ : X → L-Terms, if Γ ⊨A ψ then Γ[σ] ⊨A ψ[σ].

▶ Corollary 4.12 (Soundness). If a Σ-algebra satisfies all the premises of a rule of the fuzzy
sequent calculus then it satisfies also its conclusion.

▶ Remark 4.13. Let us see why the deduction lemma (Lemma 3.10) cannot be extended
to rule Sub. Take Σ to be the empty set, X = {x, y, z} and H = {0, 1}. Notice that
Σ-Alg = Fuz(H). We have the derivation

⊢ x ≡ y

⊢ x ≡ z
Sub

If the deduction lemma held for Sub, x ≡ y ⊢ x ≡ z would be in ∅⊢, hence satisfied by any
fuzzy set, but (H, idH) with ι : X → H sending x and y to 0 and z to 1 is a counterexample.
▶ Remark 4.14. Let us take Σ = ∅ and H = {0, 1} and X = {x, y, z} and the derivation as
in Remark 4.13. Now, a fuzzy set (A,µA) satisfies ⊢ι x ≡ y if and only if ι(x) = ι(y), thus, if
we take (H, idH) and the assignment ι of the previous example, then (H, idH) ⊢ι x ≡ y but
it does not satisfy x ≡ z with respect to ι.
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Completeness. Now we prove that the calculus we have provided in Section 3 is complete.
Let us start with the following observation.
▶ Remark 4.15. For any Λ ∈ Th(L) the relation ∼Λ given by all t and s such that ⊢Λ t ≡ s,
is an equivalence relation on L-Terms.
Using this equivalence, we can define the model of terms, as done next.

▶ Definition 4.16. Let L = (Σ, X) be a language and Λ ∈ Th(L), we define Terms(Λ) to be
the quotient of L-Terms by ∼Λ, moreover, by rule Fun, the function

µ̂ : L-Terms → H t 7→ sup {l ∈ H | ⊢Λ E(l, t)}

induces a function µΛ : Terms(Λ) → H. For any f ∈ O and c ∈ C putting cTΛ := [c] and

fTΛ : Terms(Λ)ar(f)
,→ Terms(Λ)

(
[t1], . . . , [tar(f)]

)
7→

[
f

(
t1, . . . , tar(f)

)]
gives us a Σ-algebra TΛ =

(
(Terms(Λ), µΛ),ΣTΛ

)
, called the Σ-algebra of terms in Λ. The

canonical assignment is the function ιcan : X → Terms(Λ) sending x to its class [x].

▶ Remark 4.17. Rule Cong assures us that fTΛ is well defined while Exp implies that it is
an arrow of Fuz(H).
The following Lemma will be needed to prove completeness.

▶ Lemma 4.18. Let L = (Σ, X) be a language and Λ ∈ Th(L), then:
1. for any ϕ ∈ Form(L) the following are equivalent:

a. TΛ ⊨ ϕ,
b. TΛ ⊨ιcan

ϕ,
c. ⊢Λ ϕ;

2. for any assignment ι : X → Terms(Λ) and formula ϕ, TΛ ⊨ι ϕ if and only if ⊢Λ ϕ[σ ◦ ι]
for one (and thus any) section σ of the quotient L-Terms → Terms(Λ);

3. TΛ =
(
(Terms(Λ), µΛ),ΣTΛ

)
is a model of Λ.

Let us start with a technical result.

▶ Proposition 4.19. Let L = (Σ, X) be a language, Λ ∈ Th(L), and σ : Terms(Λ) → L-Terms
a section of the quotient L-Terms → Terms(Λ). The equation tTΛ,ι = [t[σ ◦ ι]] holds for any
assignment ι : X → Terms(Λ) and t ∈ L-Terms. In particular tTΛ,ιcan = [t].

Now we can proceed with the proof of Lemma 4.18.

Proof of Lemma 4.18.
1. Let us show the three implications. (a)⇒(b) follows from the definition. For the

implication (b)⇒(c) we split the cases.
ϕ is t ≡ s. Then TΛ ⊨ιcan

ϕ means

[t] = tTΛ,ιcan = sTΛ,ιcan = [s]

thus t ∼Λ s i.e. ⊢Λ t ≡ s.
ϕ is E(l, t). Let S be {l′ ∈ H | Λ ⊢ E(l′, t)}, by hypothesis TΛ ⊨ιcan ϕ, so

l ≤ µΛ

(
tTΛ,ιcan

)
= µΛ([t]) = sup(S)

hence l = l ∧ sup(S) and, since H is a frame, l = sup ({l ∧ l′ | l′ ∈ S}), by rule Mon
we know that that ⊢Λ E(l ∧ l′, t) for all l′ ∈ S and so rule Sup gives us ⊢Λ E(l, t).
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Finally, for (c)⇒(a), let ι : X → Terms(Λ) be an assignment and σ a section as in the
hypothesis; by rule Sub we get ⊢Λ ϕ[σ ◦ ι], and by Proposition 4.19 follows the thesis.

2. By Proposition 4.19 we have

tTΛ,ι = [t[σ ◦ ι]] = (t[σ ◦ ι])TΛ,ιcan

we can conclude using the previous point.
3. Let Γ ⊢ ψ be a sequent in Λ with Γ = {ϕi}n

i=1 and ι : X → Terms(Λ) an assignment such
that TΛ ⊨ι Γ. By point 1 above this means that ⊢Λ Γ[σ ◦ ι] and applying Sub and Cut
we can conclude that ⊢Λ ψ[σ ◦ ι]. By the previous point this is equivalent to TΛ ⊨ι ψ. ◀

Since satisfaction of a formula by TΛ entails its derivability from Λ we can deduce immediately
a form of completeness.

▶ Corollary 4.20 (Completeness for formulae). For any theory Λ ∈ Th(L), A ⊨ ϕ for all
A ∈ Mod(Λ) if and only if ⊢Λ ϕ.

5 From theories to monads

Given a language L = (Σ, X) and a fuzzy theory Λ ∈ Th(L) we have a forgetful functor:
UΛ : Mod(Λ) → Fuz(L). In this section we first show that it has a left adjoint (Section 5.1)
and that for a specific class of theories, models correspond to Eilenberg-Moore algebras for
the monad induced by this adjunction (Section 5.2).

5.1 The free fuzzy algebra on a fuzzy set
To give the definition of free models (Definition 5.8) we need some preliminary constructions.

▶ Definition 5.1. Let A be a Σ-algebra and f : (B,µB) → UΣ(A) an arrow in Fuz(H), a
Σ-algebra generated by f in A is a morphism ϵ : ⟨B,µB⟩A,f → A such that:

UΣ(ϵ) is strong mono;
there exists f̄ : (B,µB) → ⟨B,µB⟩A,f such that UΣ(ϵ) ◦ f̄ = f ;
if g : C → A is a morphism such that UΣ(g) is strong monomorphism and UΣ(g) ◦ h = f

for some h then there exists a unique k : ⟨B,µB⟩A,f → C such that g ◦ k = ϵ.

We can construct ⟨B,µB⟩A,f closing f(B) under the iterated images of the functions gA,
when g varies between the operations in O, so we get easily the following.

▶ Proposition 5.2. For any signature Σ, Σ-algebra A and f : (B,µB) → UΣ(A), ⟨B,µB⟩A,f

exists and it is unique up to isomorphism.

▶ Remark 5.3. Proposition 4.7 implies that, given a model A =
(
(A,µA),ΣA)

of a theory
Λ ∈ Th(L), and a morphism f : (B,µB) → (A,µA), the Σ-algebra ⟨B,µB⟩A,f is in Mod(Λ).

The next result follows at once noticing that ⟨B,µB⟩A,f is built from f(B) closing it under
the interpretation of elements of O.

▶ Proposition 5.4. Let A be a Σ-algebra and f : (B,µB) → UΣ(A), then, for any other
Σ-algebra C and h : (B,µB) → UΣ(C) there exists at most one k : ⟨B,µB⟩A,f → C such that
k ◦ f̄ = h.

The next definition explains how to extend a theory in a given language with the data of
a fuzzy set.
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▶ Definition 5.5. Let (M,µM ) be a fuzzy set, L = (Σ, X) a language with Σ = (O, ar, C).
We define Σ[M,µM ] to be (O, ar, C ⊔M) and L(M,µM ) to be (Σ[M,µM ], X). We have an
obvious morphism I : L → L(M,µM ) given by the identities and the inclusion iC : C → C ⊔M .

For any Λ ∈ Th(L) we define Λ[M,µM ] ∈ L(M,µM ) as I∗(Λ) ∪ (M,µM ) where (M,µM ) =
{⊢ E(l,m) | m ∈ M, l ∈ L and µM (m) ≥ l}.

▶ Remark 5.6. It is immediate to see that I∗(Λ[M,µM ]) = Λ.
In the next proposition we show that, for any theory Λ, a fuzzy set can be mapped into

the term model of the theory Λ extended with it. Hence, the natural candidate to be the
free model is the algebra generated by such map.

▶ Proposition 5.7. For any fuzzy set (M,µM ) and any theory Λ ∈ Th(L):
1. the function η̄(M,µM ) sending m to the class [m] of the corresponding constant defines an

arrow of fuzzy sets η̄(M,µM ) : (M,µM ) → Terms(Λ[M,µM ]);
2. any element in ⟨M,µM ⟩TΛ[M,µM ],η̄(M,µM ) has a representative without variables;
3. ⟨M,µM ⟩TΛ[M,µM ],η̄(M,µM ) is the initial object of Mod(Λ[M,µM ]).

▶ Definition 5.8. For any language L, Λ ∈ Th(L) and (M,µM ) ∈ Fuz(H) we define the free
model FΛ(M,µM ) of Λ generated by (M,µM ) to be rI, Λ[M,µM ]

(
⟨M,µM ⟩TΛ[M,µM ],η̄(M,µM )

)
.

We set TΛ(M,µM ) to be UΛ(FΛ(M,µM )).

Now it is enough to check that the free model just defined actually provides the left adjoint.

▶ Theorem 5.9. For any language L and Λ ∈ Th(L) the functor UΛ : Mod(Λ) → Fuz(L)
has a left adjoint FΛ.

Proof. By construction η̄(M,µM ) factors through η(M,µM ) : (M,µM ) → TΛ(M,µM ) which
sends m to [m]. Let now g : (M,µM ) → UΛ(B) be another arrow in Fuz(H), we can turn B
into a Σ[M,µM ]-algebra Bg setting mBg to be g(m) for any m ∈ M .

Let us show that Bg is a model of Λ[M,µM ]. Surely it is a model of Λ since B is, let
⊢ E(l,m) be a sequent in (M,µM ), then for any assignment ι : V → B:

Bg ⊨ι E(l,m) ⇐⇒ l ≤ µB(mBg,ι)l ≤ µΛ

(
tFΛ(M,µM ),η(M,µM )◦ι

)
⇐⇒ l ≤ µB(g(m))

but g is an arrow of Fuz(H) so µB(g(m)) ≥ µM (m) and we are done.
Now, since Bg is a model of Λ[M,µM ], we can take ḡ to be the image through rI, Λ[M,µM ]

of the unique arrow ⟨M,µM ⟩TΛ[(M,µM )],η̄(M,µM ) → Bg, by construction

ḡ(η(M,µM )(m)) = ḡ([m]) = mBg

= g(m)

so UΛ(ḡ) ◦ η(M,µM ) = g. Uniqueness follows from Proposition 5.7. ◀

▶ Definition 5.10. Given a theory Λ ∈ Th(L), its associated monad TΛ : Fuz(H) → Fuz(H)
is the composite UΛ ◦ FΛ.

▶ Remark 5.11. If Λ is the empty theory (in any language), then, by Proposition 4.6, the
composittion F∅ ◦ ∇ gives us a functor isomorphic to F Set

Σ .

▶ Notation. We will denote by F∅ with FΣ and with TΣ the monad T∅ = UΣ ◦ FΣ.

In this setting we can provide a result similar to Lemma 4.18.

▶ Lemma 5.12. For any language L = (Σ, X) we define the natural assignment ιnat as the
adjoint to the unit ∇(X) → TΛ(∇(X)). Then FΛ(∇(X)) ⊨ιnat

ϕ if and only if ⊢Λ ϕ.
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Proof. The implication from the right to the left follows immediately since FΛ(∇(X)) is
a model for Λ. By adjointness he canonical assignment ιcan induces an arrow ∇(X) →
UΛ[∇(X)]

(
TΛ[∇(X)]

)
, which, in turn, induces a morphism e : FΛ(∇(X)) → TΛ[∇(X)] of Σ-

algebras such that, as function between sets, e ◦ ιnat = ιcan. Recalling that I is the arrow
(Σ, X) → (Σ[∇(X)], X) and using Proposition 4.7, Lemma 4.9 and Lemma 4.18:

FΛ(∇X) ⊨ιnat
ϕ ⇐⇒ rI, Λ[∇(X)]

(
⟨∇(X)⟩TΛ[∇(X)],η̄∇(X)

)
⊨ιnat

ϕ

⇐⇒ rI
(
⟨∇(X)⟩TΛ[∇(X)],η̄∇(X)

)
⊨ιnat ϕ ⇐⇒ ⟨∇(X)⟩TΛ[∇(X)],η̄∇(X) ⊨ιnat ϕ

=⇒ TΛ[∇(X)] ⊨e◦ιnat
ϕ ⇐⇒ TΛ[∇(X)] ⊨ιcan

ϕ ⇐⇒ ⊢Λ[∇(X)] ϕ

Now, by definition ∇(X) is equal to {⊢ E(⊥, x) | x ∈ X}, therefore (Λ[∇(X)])⊢ = Λ⊢ and
we get the thesis. ◀

5.2 Eilenberg-Moore algebras and models
In this section we will compare the category Mod(Λ) of models of some Λ ∈ Th(L) and
Alg(TΛ) of Eilenberg-Moore algebras for the corresponding monad TΛ. First of all we recall
the following classic lemma ([7, Prop. 4.2.1] and [14, Theorem VI.3.1]).

▶ Lemma 5.13. Let L : C → D be a functor with right adjoint R and let T = R ◦ L be
its associated monad, then there exists a comparison functor K : D → Alg(T) such that
UT◦K = R , where UT : Alg(T) → C is the forgetful functor. K sends D in (R (D),R (ϵD)),
where ϵ is the counit of the adjunction.

As a consequence, for any theory Λ we have a functor from Mod(Λ) to Alg(TΛ). We want
to construct an inverse of such functor.

▶ Definition 5.14. Let Λ be in Th(L) and ξ : TΛ(M,µM ) → (M,µM ) an object of Alg(TΛ),
we define its associated algebra H (ξ) =

(
(M,µM ),ΣH (ξ)

)
putting, for every c ∈ C and

f ∈ O:

cH (ξ) := ξ
(
cFΛ(X,µX )

)
fH (ξ) := ξ ◦ fFΛ(X,µX ) ◦ ηar(f)

(M,µM )

▶ Lemma 5.15. For any Eilenberg-Moore algebra ξ : TΛ(M,µM ) → (M,µM ), ξ itself is an
arrow FΛ(X,µX) → H (ξ) of Σ-Alg. In particular, for every term t and assignment ι:

tH (ξ),ι = ξ
(
tFΛ(M,µM ),η(M,µM )◦ι

)
Proof. The proof of the first half is a straightforward calculation. The second half follows
from point 2 of Proposition 4.7 applied to ξ noticing that ι = ξ ◦ η(M,µM ) ◦ ι. ◀

In general H (ξ) is not a model of Λ, but we can restrict to a class of theories such this
holds. As in [4, 15], we consider theories whose sequents’ premises contain only variables.

▶ Definition 5.16. A theory Λ ∈ Th(L) is basic1 if, for any sequent Γ ⊢ ϕ in it, all the
formulae in Γ contain only variables.

▶ Example 5.17. Fuzzy groups, fuzzy normal groups, fuzzy semigroups and left, right,
bilateral ideals (Examples 3.11 and 3.12) are all examples of basic theories.

1 In [3] such theories are called simple.
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▶ Lemma 5.18. H (ξ) is a model of Λ for any basic theory Λ ∈ Th(L) and Eilenberg-Moore
algebra ξ : TΛ(M,µM ) → (M,µM ).

Proof. We start observing that if Γ ⊢ ϕ is in Λ and ι : X → M is an assignment such that
H (ξ) ⊨ι Γ then FΛ(M,µM ) ⊨η(M,µM )◦ι Γ. Indeed, ψ in Γ can be or x ≡ y, and in such case
ι(x) = ι(y) implies the thesis, or ψ is E(l, x), but then we can conclude since the membership
degree of η(M,µM )(ι(x)) in TΛ(M,µM ) is greater than µM (ι(x)). Therefore, we know that
FΛ(M,µM ) ⊨η(M,µM )◦ι ϕ. Let us split again the two cases.

ϕ is t ≡ s. In this case, tFΛ(M,µM ),η(M,µM )◦ι = sFΛ(M,µM ),η(M,µM )◦ι, therefore

tH (ξ),ι = ξ
(
tFΛ(M,µM ),η(M,µM )◦ι

)
= ξ

(
sFΛ(M,µM ),η(M,µM )◦ι

)
= sH (ξ),ι

ϕ is E(l, t). This means that l ≤ µΛ

(
tFΛ(M,µM ),η(M,µM )◦ι

)
, hence, thus:

l ≤ µΛ

(
tFΛ(M,µM ),η(M,µM )◦ι

)
≤ µM

(
ξ
(
tFΛ(M,µM ),η(M,µM )◦ι

))
= µM

(
tH (ξ),ι

)
and we can conclude. ◀

▶ Theorem 5.19. For any basic theory Λ ∈ Th(L), the functor K : Mod(Λ) → Alg(TΛ)
has an inverse H : Alg(TΛ) → Mod(Λ) sending ξ : TΛ(M,µM ) → (M,µM ) to H (ξ).

Proof (sketches). We have already constructed the inverse H on objects. If Λ is basic it can
be extended to a functor Alg(TΛ) → Mod(Λ) defining its action on arrows as the identity.
A straightforward calculation now shows that K ◦H = idAlg(TΛ) and H ◦K = idMod(Λ). ◀

▶ Corollary 5.20. For any basic theory Λ ∈ Th(L), Alg(TΛ) and Mod(Λ) are isomorphic,
and thus equivalent, categories.

6 Equational axiomatizations

In this section we prove two results for our calculus analogous to the classic HSP theorem [5],
using the results by Milius and Urbat [17].

The abstract framework. Let us start recalling the tools introduced in [17], adapted to
our situation. In the following we will fix a tuple2 (

C,
(
E ,M

)
,X

)
where C is a category,(

E ,M
)

is a proper factorization system on C and X is a class of objects of C.

▶ Definition 6.1. An object X of C is projective with respect to an arrow f : A → B if for
any h : X → B there exists a k : X → A such that f ◦ k = h.

We define EX as the class of e ∈ E such that for every X ∈ X , X is projective with
respect to e. A EX -quotient is just an arrow in EX .

In the rest of the section, we assume that
(
C,

(
E ,M

)
,X

)
satisfies the following requirements:

C has all (small) products;
for any X ∈ X , the class X

↠

C of all e ∈ E with domain X is essentially small, i.e. there
is a set J ⊂ X

↠

C such that for any e : X → C ∈ X

↠

C there exists e′ : X → D ∈ J and
an isomorphism ϕ such that ϕ ◦ e = e′;
for every object C of C there exists e : X → C in EX with X ∈ X .

2 In their work Milius and Urbat additionaly require a full subcategory of C and a fixed class of cardinals,
but we will not need this level of generality.
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▶ Definition 6.2. An X -equation is an arrow e ∈ X

↠

C with X ∈ X . We say that an object
A of C satisfies e : X → C, and we write A ⊨X e, if for every h : X → A there exists
q : C → A such that q ◦ e = h. Given a class E of X -equations, we define V(E) as the full
subcategory of C given by objects that satisfy e for every e ∈ E. A full subcategory V is
X -equationally presentable if there exists E such that V = V(E).

▶ Remark 6.3. The definition of equation in [17, Def. 3.3] is given in terms of suitable
subclasses of X

↠

C. However in our setting Milius and Urbat’s definition reduces to ours
(cfr. [17, Remark 3.4]).

▶ Theorem 6.4 ([17, Th. 3.15, 3.16]). A full subcategory V of C is X -equationally presentable
if and only if it is closed under EX -quotients, M -subobjects and (small) products.

Application to fuzzy algebras. In order to apply the results above to Σ-Alg, we need to
define the required inputs, i.e., to specify a factorization system and a class of Σ-algebras.

▶ Lemma 6.5. For any Σ, the classes EΣ := {e map of Σ-Alg | UΣ(e) is epi} and MΣ :=
{m map of Σ-Alg | UΣ(m) is strong mono} form a proper factorization system on Σ-Alg.

▶ Definition 6.6. We define the following two classes of Σ-algebras:

X0 :=
{

F Set
Σ (X) | X ∈ Set

}
XE := {FΣ(X,µX) | (X,µX) ∈ Fuz(H)}

We will use EΣ,X0 (resp., EΣ,XE) for the class of e ∈ E such that every X ∈ X0 (resp. X ∈ XE)
is projective with respect to e.

▶ Remark 6.7. X0 = {FΣ(X,µX) | supp(X,µX) = ∅}.

We have now all the ingredients needed to use the results recalled above.

▶ Lemma 6.8. With the above definitions:
1. EΣ,X0 = EΣ;
2. EΣ,XE = {e ∈ EΣ | UΣ(e) is split};
3. (Σ-Alg, (EΣ,MΣ),X0) and (Σ-Alg, (EΣ,MΣ),XE) satisfy the conditions of our settings.

Proof.
1. Let e : A → B be an arrow in EΣ and let h : F Set

Σ (X) → B be any morphism of
Σ-Alg. By point 2 of Proposition 2.4 e is surjective so for any x ∈ X we can take a
ax ∈ e−1(h(ηX(x))), where η is the unit of the adjunction F Set

Σ ⊣ VΣ of Proposition 4.6,
and define k̄ : X → A mapping x to ax, where A =

(
(A,µA),ΣA)

, this induces k :
F Set

Σ (X) → A and (e ◦ k) ◦ ηX = e ◦ k̄ = h ◦ ηX , thus e ◦ k = h.

VΣ(A)

VΣ(B)VΣ
(
F Set

Σ (X)
)

X

VΣ(e)

η∇(X) VΣ(h)

VΣ(k)

k̄
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2. Let e : A → B be in EΣ such that UΣ(e) is split and let s be a section in Fuz(H),
then, for any h : FΣ(X,µX) → B we can consider the arrow s ◦ h ◦ η(X,µX ), which, by
adjointness provides a k : FΣ(X,µX) → A, moreover:

e ◦ k ◦ η(X,µX ) = e ◦ s ◦ h ◦ η(X,µX ) = (e ◦ s) ◦
(
h ◦ η(X,µX )

)
= h ◦ η(X,µX )

so k is the wanted lifting. On the other hand, if e is in EΣ,X1 we can take the diagram:

UΣ(A)

UΣ(B)UΣ(FΣ(UΣ(B)))UΣ(B)

UΣ(e)
ηUΣ(B) UΣ(ϵB)

UΣ(k)

idUΣ(B)

where ϵB is the component of the counit ϵ : FΣ ◦ UΣ → idΣ-Alg and k its lifting. Taking
UΣ(k) ◦ ηUΣ(B) we get the desired section of UΣ(e).

3. First, notice that Fuz(H) has all products by Lemma 2.6. Moeover, it can be shown that
X

↠

C is essentially small. For any fuzzy set (X,µX) we can consider the identity id(X,µX ) :
(X,µX) → (X,µX) and the counit ϵ(X,µX ) : ∇(X) → (X,µX) of the adjunction ∇ ⊣ U
of Proposition 2.2. They induce arrows e0 : F Set

Σ (X) → (X,µX) and eE : FΣ(X,µX) →
(X,µX) such that UΣ(e0)◦η∇(X) = ϵ(X,µX ) and UΣ(eH)◦η(X,µX ) = id(X,µX ). So UΣ(eH)
is split and, since ϵ(X,µX ) is surjective, point 2 of Proposition 2.4 allows us to conclude
that UΣ(e0) is an epimorphism. ◀

We want now to translate formulae of our sequent calculus into X0- and XE-equations.
To this end, we have to restrict to two classes of theories, which we introduce next.

▶ Definition 6.9. Let L = (Σ, X) be a language, a theory Λ ∈ Th(L) is said to be:
unconditional ([17, App. B.5]) if any sequent in Λ is of the form ⊢ ϕ for some formula ϕ;
of type E if any sequent in Λ is of the form {E(li, xi)}i∈I ⊢ ϕ for some formula ϕ,
{xi}i∈I ⊂ X and {li}i∈I ⊂ H.

▶ Lemma 6.10. For any signature Σ and XE-equation e : FΣ(X,µX) → B there exists a
type E theory Λe such that, for every Σ-algebra A, A ⊨X1 e if and only if A ∈ Mod(Λe).
Moreover |Γ| ≤ |supp(X,µX)| for any Γ ⊢ ϕ ∈ Λe.

Proof. Let Le be (Σ, X). We define ΓX := {E(µX(x), x) | x ∈ supp(X,µX)} and Λe ∈ Th(L)
as Λ1

e ∪ Λ2
e where

Λ1
e := {ΓX ⊢ E(l, t) | l ≤ µB(e([t]))}

Λ2
e := {ΓX ⊢ [s] ≡ [t] | e([t]) = e([s])}

and (B,µB) is UΣ(B). Let us show the two implications.
⇒ Any ι : X → A such that A ⊨ι ΓX defines an arrow ῑ(X,µX) → UΣ(A). By adjointness

we have a homomorphism hι : FΣ(X,µX) → A hence, by hypothesis, there exists
qι : B → A such that qι◦e = hι. Now, notice that (see Theorem 5.9, and Proposition 5.7(4))
hι([t]) = tA,ι. Take a sequent ΓX ⊢ ψ in Λe, we have two cases, depending on ψ.

If ψ = E(l, t) ∈ Λme
e we have

l ≤ µB(e([t])) ≤ µA(qι(e([t]))) = µA(hι([t])) = tA,ι

therefore A ⊨ι ψ.
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If ϕ = [s] ≡ [t] ∈ Λeq
e then

tA,ι = hι([t]) = qι(e([t])) = qι(e([s])) = hι([t]) = sA,ι

and even in this case A ⊨ι ψ.
⇐ Take h : FΣ(X,µX) → A, UΣ(h) ◦ η∇(X) is an arrow (X,µX) → UΣ(A), so forgetting

the fuzzy set structure too gives us an assignment ιh : X → A such that A ⊨ιh
ΓX . As

before h([t]) = tA,ιh for every [t] ∈ FΣ(X,µX). Since A ∈ Mod(Λe) we have
tA,ιh = sA,ιh for all terms t and s such that e([t]) = e([s]);
l ≤ µA(tA,ιh) for all terms t such that l ≤ µB(e([t])).

So, the function q : B → A which sends b ∈ B to h([t]) for some [t] ∈ e−1(b), provides us
with an arrow UΣ(B) → UΣ(A) such that q ◦ e = h and a straightforward computation
shows that it is an arrow of Σ-Alg. ◀

▶ Corollary 6.11. For any signature Σ and X0-equation e : F Set
Σ (X) → B there exists an

unconditional theory Λe such that, for any Σ-algebra A, A ⊨X0 e if and only if A ∈ Mod(Λe).

Finally, from the results above we can easily conclude HSP-like results for Σ-Alg.

▶ Theorem 6.12. Let V be a full subcategory of Σ-Alg, then
1. V is closed under epimorphisms, (small) products and strong monomorphisms if and only

if there exists a class of unconditional theories {Λe}e∈E such that A ∈ V if and only if
A ∈ Mod(Λe) for all e ∈ E.

2. V is closed under split epimorphisms, (small) products and strong monomorphisms if
and only if there exists a class of type E theories {Λe}e∈E such that A ∈ V if and only if
A ∈ Mod(Λe) for all e ∈ E.

Proof. Straightforward in light of Theorem 6.4, Lemma 6.10 and Corollary 6.11. ◀

▶ Remark 6.13. We cannot arrange the collection {Λe}e∈E into a unique theory since in order
to write down all the sequents we need a proper class of variables. A possible way to deal
with this issue is to fix two Grothendieck universes ([25]) U1 ⊂ U2 and allow for a proper
class (i.e., an element of U2) of variables in Definition 3.1. All the proofs of this paper can
be repeated verbatim in this context carefully distinguishing between fuzzy sets (i.e., those
defined on an element of U1) and fuzzy classes (i.e., those defined on an element of U2).
Then the algebras of terms will be a fuzzy class in general but it is possible to show, using
the explicit construction, that TΛ(X,µX) is a fuzzy set if X ∈ U1 and so we can retain all
the results of Section 5.

The issue mentioned in the previous remark can be avoided if the family {Λe}e∈E satisfies
a boundedness property about the premises of the sequents belonging to each Λe.

▶ Definition 6.14. Given a cardinal κ we say that a XE-equation e : FΣ(X,µX) → B is
κ-supported if |supp(X,µX)| < κ.

▶ Proposition 6.15. Let V = V(E) be an XE-equational defined subcategory of Σ-Alg and
suppose every e ∈ E is κ-supported, then there exists a theory Λ ∈ Th(L), where L = (Σ, κ),
such that V = Mod(Λ).

Proof. For any e : FΣ(Xe, µXe
) → Be in E we can fix an injection ie : supp(Xe, µXe

) → κ

and an extension let īe : X → κ of it, fix also morphisms Ie : Le → L given by (idΣ, īe). Let
now {Λe}e∈E be the collection of theories given by Corollary 6.11 and Theorem 6.12, since
each Λe ∈ Form(Le) we can define:

Λ :=
⋃
e∈E

Ie
∗(Λe)
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We have to show that A ∈ V if and only if A ∈ Mod(Λ).
⇒ Let Form(Ie)(ΓXe

) ⊢ Form(Ie)(ψ) be a sequent in Λ and let ι : κ → A an assignment such
that A ⊨ι Form(Ie)(ΓXe

). By point 3 of Lemma 4.9 this implies A ⊨ι◦īe
ΓXe

, therefore
A ⊨ι◦īe

ψ and we conclude applying lemma 4.9 again.
⇐ If UΣ(A) = (∅, !

H), ( !

H being the empty map ∅ → H) then there are no assignment
κ → A and so A is in Mod(Λ). In the other cases let ΓXe ⊢ ψ be in Λe and ι : Xe → A

such that A ⊨ι ΓXe
, since A ̸= ∅ there exists ι̂ : κ → A such that ι̂ ◦ īe = ι as in the

previous point Lemma 4.9 implies A ⊨ι̂ Form(Ie)(ΓXe), so A ⊨ι̂ Form(Ie)(ψ) and again
this is equivalent to A ⊨ι ψ. ◀

▶ Corollary 6.16. V is closed under epimorphisms, (small) products and strong monomorph-
isms if and only if there exists a language L and an unconditional theory Λ ∈ Th(L) such
that V = Mod(Λ).

7 Conclusions and future work

In this paper we have introduced a fuzzy sequent calculus to capture equational aspects
of fuzzy sets. While equalities are captured by usual equations, information contained in
the membership function is captured by membership proposition of the form E(l, t), to be
interpreted as “the membership degree of t is at least l”. We have used a natural concept of
fuzzy algebras to provide a sound and complete semantics for such calculus, in the sense that
a formula is satisfied by all the models of a given theory if and only if it is derivable from it
using the rules of our sequent calculus.

As in the classical and quantitative contexts, there is a notion of free model of a theory
Λ and thus an associated monad TΛ on the category Fuz(H) of fuzzy sets over a frame H.
However, in general Eilenberg-Moore algebras for such monad are not equivalent to models
of Λ, but we have shown that this equivalence holds if Λ is basic. In this direction it would be
interesting to better understand the categorical status of our approach, investigating possible
links between our notion of fuzzy theory and Fuz(H)-Lawvere theories as introduced in full
generality by Nishizawa and Power in [20]. A difference between the two approaches is that
for us arities are simply finite sets, while following [20] a Fuz(H)-Lawvere theory arities
would be given by finite fuzzy sets. A possible underlying concept to both approaches is that
of discrete Lawvere theories [23, 10].

Finally, using the results provided in [17] we have proved that, given a signature Σ, sub-
categories of Σ-Alg which are closed under products, strong monomorphisms and epimorphic
images correspond precisely with categories of models for unconditional theories, i.e. theories
axiomatised by sequents without premises. Moreover, using the same results, we have also
proved that the categories of models of theories of type E, i.e. those whose axioms’ premises
contain only membership propositions involving variables, are exactly those subcategories
closed under products, strong monomorphisms and split epimorphisms.

Our category Fuz(H) of fuzzy sets has crisp arrows and crisp equality: arrows are
ordinary functions between the underlying sets and equalities can be judged to be either
true or false. A way to further “fuzzifying” concepts is to use the topos of H-sets over the
frame H introduced in [9]: this is equivalent to the topos of sheaves over H and contains
Fuz(H) as a (non full) subcategory. By construction, equalities and functions are “fuzzy”. It
would be interesting to study an application of our approach to this context. A promising
feature is that in an H-set the membership degree function is built-in as simply the equality
relation, so it would not be necessary to distinguish between equations and membership
propositions. Even more generally, we can replace H with an arbitrary quantale V and
consider the category of sets endowed with a “V-valued equivalence relation” [6].
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Abstract
There have been investigations into type-theoretic foundations for metaprogramming, notably Davies
and Pfenning’s (2001) treatment in S4 modal logic, where code evaluating to values of type A is
given the modal type Code A (□A in the original paper). Recently Kavvos (2017) extended PCF
with Code A and intensional recursion, understood as the deductive form of the GL (Gödel-Löb)
axiom in provability logic, but the resulting type system is logically inconsistent. Inspired by
staged computation, we observe that a term of type Code A is, in general, code to be evaluated
in a next stage, whereas S4 modal type theory is a special case where code can be evaluated in
the current stage, and the two types of code should be discriminated. Consequently, we use two
separate modalities ⊠ and □ to model S4 and GL respectively in a unified categorical framework
while retaining logical consistency. Following Kavvos’ (2017) novel approach to the semantics of
intensionality, we interpret the two modalities in the P-category of assemblies and trackable maps.
For the GL modality □ in particular, we use guarded type theory to articulate what it means by
a “next” stage and to model intensional recursion by guarded recursion together with Kleene’s
second recursion theorem. Besides validating the S4 and GL axioms, our model better captures the
essence of intensionality by refuting congruence (so that two extensionally equal terms may not be
intensionally equal) and internal quoting (both A → □A and A → ⊠A). Our results are developed
in (guarded) homotopy type theory and formalised in Agda.
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1 Introduction

Metaprogramming is the activity of writing metaprograms that manipulate program code.
Executing a metaprogram can result in another program to be executed, and these successive
executions are abstractly referred to as computation stages. A particular form of metapro-
gramming is staged computation, where fragments of a program are internally marked to
be evaluated in multiple stages, so that the program can be partially evaluated to produce
more efficient code. The stratification of computation stages forms possible worlds and can
be ideally reasoned about by modal logic. Therefore, there have been investigations into
type-theoretic foundations for staged computation with modalities [9, 10, 16, 22], which have
influenced the design of practical implementations [17, 27, 28] to varying degrees.
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Let Code A denote the type of code that evaluates to values of type A in a next stage.
In Davies and Pfenning’s analysis of staged computation [10], Code corresponds to the
modality ⊠ in the intuitionistic modal logic S4. More specifically, the 4 axiom ⊠A → ⊠⊠A

corresponds to the use of code in the stage after the next, so code can be shared across all
stages, a.k.a. cross-stage persistence; the T axiom ⊠A → A corresponds to the evaluation
of code to its value in the same stage. For instance, in λ-calculus, it is well-known [4] that
there are terms encoding the Gödel code of a code and evaluating a code respectively.

Recently, Kavvos proposed intensional recursion [16] for Code to construct a value
recursively from its own code (intension). Logically, intensional recursion amounts to the
Gödel-Löb axiom □(□A → A) → □A for the modal logic GL [5], where □A stands for
“A is provable”. Computationally, the behaviour of the GL axiom mirrors Kleene’s second
recursion theorem. In contrast to general recursion (A → A) → A, which constructs a value
recursively from its value (extension), intensional recursion alone does not lead to logical
inconsistency. Kavvos explored the computational capabilities of a variant of PCF extended
with Code viewed as both S4 and GL modalities. Unfortunately, when Code is designed in
this way, the type system is inconsistent so that it cannot be treated as a logical foundation.

To make S4 and GL coexist in a single system while maintaining logical consistency, our
approach is to keep the two modalities ⊠ and □ separate. Intuitively, while both modalities
model code and appear similar, there are crucial differences: In general, programs are to
be evaluated in a next stage, but S4 is a special case where next stages include the current
one, so the result of evaluating a program can be immediately used in the current stage, as
witnessed by T. On the other hand, a program constructed with GL can recursively refer to
its own code, which must not be evaluated within the same stage or risk non-termination
computationally and inconsistency logically, so stage distinction has to be kept for GL.

To illuminate the difference, we present in this paper a denotational semantics of two
types of code – a type ⊠A of code that can be evaluated in the current stage and a type □A

of code to be evaluated in a next stage. To distinguish between intensions and extensions, we
build upon the previous work using P-categories [8, 15], which have an additional partial
equivalence relation on morphisms that models extensional equality, while the underlying
equality on morphisms models intensional equality. We revisit elements of realisability and
construct a P-category of assemblies on λ-calculus. Roughly speaking, an assembly X on
λ-calculus is a set |X| of extensions associated with at least an intension in the form of a
λ-term (the existence of such an intension is merely a property that holds for the extension),
while trackable maps are pairs of a function and one of its intensions, and can be equipped
with both extensional and intensional equalities (taking only the function part or both
parts into account). The denotations ⊠X and □X of the two types of code both consist of
pairs (M, x) of an extension x and an associated λ-term M whose associated intensions are
λ-terms that are reducible to the Gödel code ⌜M⌝. The choice of using ⌜M⌝ (rather than M

as chosen by Kavvos [15]) as the intensions of (M, x) prevents X → ⊠X from having the
meaning of generic quoting. The difference between ⊠X and □X is what extensions are.

For ⊠X, the extension part x in (M, x) coincides with the values of the set |X|. We can
then validate the S4 axioms, for example ⊠X → X (natural in X) by just projection.
For □X, the extension x does not come from |X| but a different set ▷|X| whose elements
denote values of |X| that are available in a next, or later, stage. This set ▷|X| can be
expressed directly in a guarded type theory which features Nakano’s later modality ▷ and
guarded recursion [21]. By working in guarded type theory, □X → X can no longer be
validated by projection (because x from (M, x) is available later rather than now) and is
actually not possible; also intensional recursion can be modelled by guarded recursion.
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The above constructions do not give rise to P-functors but “exposures” [15] so that congruence
(the preservation of extensional equality) is not required by definition and is actually false.
Hence, by refuting both congruence and generic quoting, which previous work [12, 15] did
not achieve, our denotational semantics is more intensional in the sense that it provides a
finer-grained equality which allows us to distinguish computationally equivalent intensions.

We use homotopy type theory (HoTT) [29] as our metalanguage, but this is only for access
to a small subset of convenient HoTT features, which in particular does not include univalence.
Specifically, our work is built upon the reformulated set theory and logic within HoTT,
which enable us to be precise about notions such as sets and propositions, and existence with
explicit witnesses versus “mere” existence (for example, within HoTT we can easily distinguish
between “pairs of an extension and an intension” and “extensions associated with at least
an intension”). Moreover, implementations of HoTT are readily available, so we are able to
formalise and verify our constructions, for which HoTT provides essential features that some
other type theories lack, notably function extensionality: (∀(x : A). f x =B g x) → f =A→B g.
Indeed, our work has been formalised in Agda [11], which implements HoTT and guarded
type theory respectively in the forms of cubical type theory [7, 32] and ticked cubical type
theory [31] with clock quantification [18]. However, we do not use cubical arguments.

Plan of the paper

After recalling preliminaries on homotopy type theory, untyped λ-calculus, and P-categories
in Section 2, we present the P-category of assemblies on λ-calculus and trackable maps
developed in HoTT in Section 3 and the denotational semantics of ⊠A and □A in Sections 4
and 5 respectively, and discuss related work in Section 6 and future work in Section 7.

2 Preliminaries

Most, if not all, of the materials in this section are standard, so we do not go into details.

2.1 Homotopy type theory
In type theory, between every two inhabitants x and y of a type A, there is a type x =A y

of proofs that x and y are (propositionally) equal; given an equality proof p : x =A y, any
z : B(x) can be converted to transport(p, z) : B(y). Between equality proofs p, q : x =A y

there is again a higher-dimensional equality type p =x=Ay q, and so on. HoTT identifies
this infinite-dimensional structure of equality types as an abstract form of homotopy theory,
where types are interpreted as spaces and equality proofs as paths; in particular, equality
types are path spaces, and paths between paths are homotopies. We do not make use of
the full generality of HoTT but work exclusively with propositions and sets, whose equality
structure degenerates at higher dimensions.

A proposition P is a type whose equality types x =P y, for x and y : P , are all inhabited
– all inhabitants of P are deemed equal, so all we care about P is whether it is inhabited,
not its specific inhabitants. Hence, we will simply write ⋆ when referring to an inhabitant of
any proposition. If P and Q are propositions, then so is their product P × Q. Similarly, if a
family R(x) of types indexed by x : A (where A is any type) are all propositions, then so is
the product

∏
(x:A) R(x). Logically these give us conjunction and universal quantification;

therefore we may write ∀(x : A). R(x) in place of
∏

(x:A) R(x). Function types A → P are a
special case of

∏
, so we have implication too. On the other hand, the disjoint sums P + Q

and
∑

(x:A) R(x) are usually not propositions. This reflects the fact that they are constructive
disjunction and existential quantification. In particular, from a proof of

∑
(x:A) R(x) we can

project a witness x : A and a proof of R(x).

CSL 2022
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For any type A, the propositional truncation of A is a type ∥A∥ for which there is an
introduction rule that wraps any a : A into |a| : ∥A∥, and a higher one that introduces an
inhabitant of |a| =∥A∥ |b| for any a, b : A, equating all inhabitants of ∥A∥ and making ∥A∥
a proposition; its recursion principle maps ∥A∥ to a proposition P provided that A → P .
With truncation, we introduce a propositional version of existential quantification by defining
∃(x : A). R(x) :≡

∥∥∥∑
(x:A) R(x)

∥∥∥, from which we cannot project a witness x and a proof of

R(x) in general, but can only derive another proposition P provided that
(∑

(x:A) R(x)
)

→ P .
Following the HoTT convention, if an existential quantification in an informal statement is
truncated, we will use the words “mere” or “merely” to make it clear.

Sets are types whose equality types are all propositions, so for any two inhabitants of
a set, there is at most one way for them to be equal. It is easy to check that the types we
work with in this paper are sets: types constructed from sets and the type formers ×, +,
→,

∏
, and

∑
are all sets, and Hedberg’s theorem is useful for proving that a base type A is

a set – if A has decidable equality, that is,
∏

(x,y:A)(x =A y) + ¬(x =A y), then A is a set
(which we will write as A : Set for short).

2.2 λ-calculus, Gödel encoding, and the second recursion theorem
For λ-calculus we only fix notations. The details are left to, for example, the classic textbook
by Barendregt [4]. Terms are defined informally by

M :≡ x | M N | λx. M

where variables x’s are in the typewriter font. Λ denotes the type of terms and Λn the type
of terms with at most n free variables. In particular, Λ0 is the type of closed terms. Our
formalisation uses the de Bruijn representation, so the α-equivalence =α coincides with the
equality type =Λ by construction. For the presentation in this paper, the variable with index i

is written xi , and given F : Λn+1 we write F [M ] instead of F [M/x0] for the substitution
for the first free variable x0. The type M −↠β N of reductions from M to N consists of
sequences of reduction rules such as β : (λx. M) N −→β M [N/x]; as a special case, the type
M −↠β M has exactly one inhabitant refl↠M , or just refl↠, which can be understood as
either the empty sequence or (the proof of) the reflexivity of reduction. The types Λ and
M −↠β N have decidable equality, so they are sets by Hedberg’s theorem.

There is a function between λ-terms ⌜·⌝ : Λ → Λ0 such that ⌜M⌝ is normal and M =α N

whenever ⌜M⌝ =α ⌜N⌝. Moreover, there are ap, subst ∈ Λ2 and quote, eval ∈ Λ1 satisfying

ap[ ⌜M⌝ ][ ⌜N⌝ ] −↠β ⌜M N⌝ subst[ ⌜F⌝ ][ ⌜N⌝ ] −↠β ⌜F [N ]⌝
quote[ ⌜M⌝ ] −↠β ⌜⌜M⌝⌝ eval[ ⌜M⌝ ] −↠β M.

This function ⌜·⌝ is called a Gödel encoding. Traditionally, a quoted term ⌜M⌝ is called a
Gödel number since the encoding ⌜·⌝ assigns to every term M a Church numeral c#M . An
encoding needs not be a number at all, however, so we simply call ⌜M⌝ a code of M rather
than a number. For details on the axiomatic characterisation of encoding, see Polonsky [24].

Note that the term quote can only compute the code of a term ⌜M⌝ which is already in
quoted form. Indeed, no term can compute the code of any arbitrary closed term.

▶ Proposition 2.1. There is no Q : Λ1 such that Q[M ] −↠β ⌜M⌝ for all M : Λ0.

Contrary to the well-known first recursion theorem, Kleene’s second recursion theorem
works for code instead of values and will be used to model the GL modality.

▶ Theorem 2.2 (SRT). For every F : Λn there exists M : Λn such that M −↠β F ⌜M⌝.
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2.3 P-Categories and exposures
Instead of ordinary categories, we work with P-categories pioneered by Čubrić et al. [8],
where morphisms are equipped with an additional partial equivalence relation (PER) as
another level of equality between morphisms. Kavvos [15] recently advocated its use and
introduced a construct called exposure, which is similar to a (P-)functor but does not enforce
the preservation of PERs of P-categories, to manifest the essence of intensionality.

▶ Definition 2.3. A partial equivalence relation is a symmetric and transitive relation. A
P-set (X, ∼X) is a set X with a PER ∼X . A P-function from (X, ∼X) to (Y, ∼Y ) is a
function f : X → Y which respects the relation ∼ in the sense that f x ∼Y f y whenever
x ∼X y. An element x ∈ X is well-defined (with respect to ∼) if x ∼ x.

The identity function idX is a P-function, and the composite of P-functions is also a
P-function. Then we recall the notion of P-categories as follows.

▶ Definition 2.4 ([8, Definition 2.4]). A P-category C consists of a class of objects, a P-
set (C(X, Y ), ∼) for each pair of objects X and Y , and an identity morphism idX : X → X

for each object X satisfying the associativity and identity laws up to ∼ in the sense that
(i) idX ∼ idX always,
(ii) g ◦ f ∼ g′ ◦ f ′ whenever g ∼ g′ and f ∼ f ′,
(iii) id ◦ f ∼ f ′ and f ◦ id ∼ f ′ whenever f ∼ f ′,
(iv) h ◦ (g ◦ f) ∼ (h′ ◦ g′) ◦ f ′ whenever h ∼ h′, g ∼ g′, and f ∼ f ′.

A P-category has two kinds of equality for morphisms – the underlying equality = and
the PER ∼, where the former can be used to model the intensional equality and the latter the
extensional equality akin to the structure of multiple judgemental equalities in the modal type
theory by Pfenning [23]. Having two different equalities = and ∼ reflects the fact that, for
example, α-equivalent terms are β-equivalent but not vice versa. For categorical semantics,
where terms are interpreted as morphisms, an interpretation into a P-category is able to
discriminate these two kinds of equality, enabling us to model intensionality. To emphasise
the categorical notions up to the extensional equality ∼, the “P-” prefix are added so that
we have P-functors, P-initiality, etc.

We recall the notion of exposures, which are like P-functors but are intended to “expose”
intensional differences at the extensional level: if an exposure is applied to intensionally
different morphisms (which may or may not be identified extensionally), the resulting
morphisms may be distinguished extensionally. Consequently, exposures are not required
to preserve the extensional equality. Moreover, exposures are only supposed to refine the
extensional equality and do not eliminate existing extensional differences, that is, exposures
are faithful with respect to ∼. Put differently, intensionally equal morphisms, with respect
to an exposure, should be extensionally equal. The precise definition is given as follows.

▶ Definition 2.5. Given P-categories C and D, an exposure Q : C ↬ D consists of (a) a
mapping Q from objects X of C to objects QX of D and (b) from well-defined morphisms
f : X → Y to well-defined morphisms Qf : QX → QY satisfying the following properties:

(i) QidX ∼ idQX ,
(ii) Q(g ◦ f) ∼ Qg ◦ Qf , and
(iii) f ∼ g whenever Qf ∼ Qg for any two well-defined morphisms f, g : X → Y .
The identity exposure I maps every object or morphism to itself. Composing two exposures
in the usual way clearly gives us an exposure.

Similarly, the notion of natural transformations is introduced for exposures, sharing the
same idea with ordinary natural transformations but only up to ∼.

CSL 2022



14:6 Realising Intensional S4 and GL Modalities

▶ Definition 2.6. Given exposures P, Q : C ↬ D, a natural transformation of exposures
t : P → Q is a family of well-defined morphisms tX : PX → QX such that Qf ◦ tX ∼ tY ◦ Pf

for every well-defined morphism f : X → Y .

An evaluator for an endo-exposure Q is a natural transformation from Q to I, modelling
the T axiom ⊠A → A. To model the S4 modality, we may define comonadic exposures
introduced by Kavvos [15] as an endo-exposure equipped with an evaluator and a natural
transformation δ : Q → Q2, modelling the 4 axiom ⊠A → ⊠⊠A, subject to comonad laws.
In the presence of intensionality, however, we observe that the naturality is not always
appropriate as discussed later in Remark 4.5.

3 P-Category of assemblies on λ-calculus

Assemblies are used to accommodate the information of how extensions are realised by
intensions. Accordingly an appropriate notion of morphisms between assemblies is introduced
to form a P-category, laying the technical foundation for Sections 4 and 5.

3.1 Assembly and trackable map
Traditionally, an assembly on natural numbers is a set |X| with a realisability relation
⊩ ⊆ N × |X| such that for every x in |X| there exists some a with a ⊩ x, where a is said
to realise x or a is a realiser of x. The modern notion of assemblies [30] is often defined
on a partial combinatory algebra (A, ·), called PCA for short, where · is a partial binary
operation. For the sake of formalisation and potential applications in programming language
design, we base our definition on λ-calculus subject to α-equivalence, which is more akin to
the one based on an ordered PCA [14].

▶ Definition 3.1. An assembly X on λ-calculus consists of a carrier set |X| : Set and a
family ⊩X of sets indexed by Λ0 and |X| as its realisability relation such that (a) there is
merely a realiser M : Λ0 of every x : |X|, and (b) M ⊩X x whenever M −↠β N and N ⊩X x.
In other words, an assembly is a quadruple (|X|,⊩X , rX , tX) of type

Asm0 :≡
∑

(|X|:Set)

∑
(⊩X :Λ0→|X|→Set)

Respects (⊩X ,↠β) × RightTotal(⊩X)

where

Respects (⊩,↠β) :≡
∏

(MN :Λ0)

∏
(x:|X|)

(M ↠β N) → (N ⊩ x) → (M ⊩ x) (3.1)

RightTotal(⊩) :≡ ∀(x : |X|). ∃(M : Λ0). M ⊩ x (3.2)

Our type-theoretic formulation is almost a direct translation from the set-theoretic
formulation except that the realisability relation ⊩ is not really a relation but an indexed
family of sets. As we would like to account for intensional equality in addition to extensional
equality between terms, computationally equivalent terms should not be identified a priori.
It turns out that formulating the interaction with reduction −↠β as (3.1) in line with the
definition on an ordered PCA suffices to derive familiar properties.

▶ Example 3.2. The type Λ0 of closed terms with −↠β as its realisability relation is
an assembly (Λ0, −↠β , rΛ0 , tΛ0) where rΛ0 and tΛ0 are given by the transitivity and the
reflexivity of −↠β . That is, each term M is realised by those reducible to M .
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Note that the assembly Λ0 does not yet model code. Indeed, in such case, M should be
realised by its code ⌜M⌝ instead. This is exactly the point of forthcoming sections.

▶ Example 3.3. Every natural number n : N is realised by terms reducible to its Church
numeral cn. That is, the type N of natural numbers with M ⊩N n whenever M −↠β cn is
an assembly where rN and tN are given by the transitivity and the reflexivity of −↠β .

A morphism between assemblies on a PCA (A, ·) is defined as a function f merely tracked
by some b ∈ A in the sense that there merely exists some b such that b · a ⊩ f x whenever
a ⊩ x. In this case, b is called the tracker of f . It is noted by Kavvos [15] that to bring out
intensionality the tracker should be considered as part of the structure instead of a property.

▶ Definition 3.4. Given assemblies X and Y , a trackable map f from X to Y consists of a
function |f | : |X| → |Y | and a term F : Λ1 such that F [M ] ⊩ |f | x whenever M ⊩ x. That
is, the type Asm1(X, Y ) of trackable maps is

∑
(|f |:|X|→|Y |)

∑
(F :Λ1) TracksX,Y (F, |f |) where

TracksX,Y (F, |f |) :≡
∏

(M :Λ0)

∏
(x:|X|)

(M ⊩X x) → (F [M ] ⊩Y |f | x) .

A merely trackable map is an inhabitant of
∑

(|f |:|X|→|Y |) ∃(F : Λ1). TracksX,Y (F, |f |).

By definition, a trackable map f ≡ (f, F, f) consists of not only a function |f | between
carriers but also its tracker F and a transformation f of realisability.

▶ Example 3.5. Every assembly X has an identity map idX :≡ (id|X| , x0, pr3) where

pr3 :≡ λM. λx. λr. r :
∏

(M :Λ0)

∏
(x:|X|)

(M ⊩X x) → (M ⊩X x)

since x0[M ] is judgementally equal to M .

Now we proceed with defining the composition of trackable maps. Let f : X → Y

and g : Y → Z be trackable maps. Then, the term substitution (G, F ) 7→ G[F ] can be
thought of as (intensional) function composition, since G[F [M ]] =Λ0 G[F ][M ] holds for
any term M . Given any r : M ⊩X x, the inhabitant g(f r) has type G[F [M ]] and its
transportation along a witness p : G[F [M ]] =Λ0 G[F ][M ] has type G[F ][M ], defining a
function λM x r. transport(p, g(f r)). The above discussion amounts to defining a composition
operation (g, f) 7→ g ◦ f .

3.2 Extensional equality and P-category of assemblies
We define the partial equivalence relation ∼, referred to as the extensional equality, on
trackable maps by f1 ∼ f2 (f1 is extensionally equal to f2) if |f1| = |f2|.

▶ Proposition 3.6. The type Asm0 of assemblies and the family of types Asm1(X, Y ) for any
two assemblies X and Y with the extensional equality form a P-category Asm(Λ).

We now investigate some of its basic properties.

▶ Example 3.7 (P-Terminal object). The unit ⊤ :≡ (1,⊩⊤, r⊤, t⊤) is P-terminal where
(i) 1 is the unit type,
(ii) ⊩⊤ a relation defined by M ⊩⊤ ⋆ :≡ M −↠β I where I :≡ λx. x,
(iii) r⊤ : (M −↠β N) → (N −↠β I) → (M −↠β I) given by the transitivity of −↠β ,
(iv) and t⊤ the fact that the only inhabitant ⋆ : 1 has a realiser I (by reflexivity).

The finality follows from function extensionality.
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The construction of binary P-products is also typical – the carrier of a product is the
cartesian product and a pair (x, y) is realised by M if its Church-encoded projections realise
x and y. It follows that Asm(Λ) has finite P-products.

Every inhabitant of an assembly X corresponds to a merely trackable map to X from
the terminal object ⊤, which are called (global) elements of X, and distinct merely trackable
maps can be separated by elements of X. In Asm(Λ), as trackers are part of trackable maps,
an element has to be constructed with an intension.

▶ Lemma 3.8. Let X be an assembly. Then the following statements hold:
1. Every inhabitant x : |X| corresponds to a merely trackable map from ⊤ to X.
2. Every pair of x : |X| and M : Λ0 with r : M ⊩X x defines a closed element of X, i.e. a

trackable map (λ . x, M, λ . λ . λ . r) from ⊤ to X.

As expected, the P-terminal object ⊤ in Asm(Λ) is a P-separator in the sense that for
any two trackable maps f1 and f2 we have f1 ∼ f2 if f1 ◦ x ∼ f2 ◦ x for every element x of X.
Even further, we can restrict to closed elements.

▶ Proposition 3.9. Two trackable maps f1, f2 : X → Y are extensionally equal if and only if
f1 ◦ x ∼ f2 ◦ x for every closed element x : ⊤ → X. In particular, the P-terminal object ⊤
is a P-separator in Asm(Λ).

Proof sketch. The proof from left to right is trivial. For the proof from right to left, let
f1 and f2 be two trackable maps. By function extensionality, to prove that |f1| = |f2|, we
define for any inhabitant x : |X| a closed element x̂ of X constructed by Lemma 3.8 using
Mx and r : Mx ⊩ x given by the right totality tX . By the recursion principle of propositional
truncation and |Y | being a set, it follows from our assumption that there exists a path
|f1| x = |f2| x independent of the choice of Mx and Mx. ◀

▶ Example 3.10 (Initial object). The empty assembly ⊥ is P-initial consisting of the empty
type 0 and a relation ⊩⊥: Λ0 → 0 → Set given by the elimination rule for the empty type.
The other two components r⊥ and t⊥ are trivial.

In addition, one can show that ⊥ is even a strict P-initial object. That is,

▶ Proposition 3.11. Any trackable map from some assembly X to ⊥ is a P-isomorphism.

From the strictness of the initial object, no morphism from ⊤ to ⊥ could exist.
The construction of P-exponential X ⇒ Y is a bit laborious and, perhaps surprisingly,

X ⇒ Y has the type of merely trackable maps as its carrier.

▶ Example 3.12 (P-Exponential). Given assemblies X and Y , define

|X ⇒ Y | :≡
∑

f :|X|→|Y |

∃(F : Λ1). TracksX,Y (F, f) ≡
∑

f :|X|→|Y |

∥∥∥∥∥∥
∑
F :Λ1

TracksX,Y (F, f)

∥∥∥∥∥∥
with L ⊩X⇒Y (f, ⋆) :≡

∏
(M :Λ0)

∏
(x:|X|) (M ⊩X x) → (L M ⊩Y f x).

It remains to construct rX⇒Y and tX⇒Y : We know that L′ −↠β L implies L′ M −↠β

L M , so L′ realises (f, ⋆) whenever L realises (f, ⋆) and L′ −↠β L by rY . For every
(f, ⋆) : |X ⇒ Y |, there merely exists a tracker of f , say F . We see that L :≡ λx. F realises
(f, ⋆), since (λx. F ) M −→β F [M ] for any M and F [M ] ⊩Y f x whenever M ⊩X x. By
applying the recursion principle of the truncated type

∥∥∥∑
(F :Λ1) TracksX,Y (F, f)

∥∥∥ to the
second component of (f, ⋆), there merely exists a realiser of (f, ⋆) for the right totality.
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The evaluation map (X ⇒ Y ) × X
evX,Y−−−−→ Y natural in X and Y consists of a function

((f, ⋆), x) 7→ f x and its tracker (proj1 x0) (proj2 x0) : Λ1 where x0 is the free variable
(thought of as a pair of realisers for a function and its argument) and proji the projection
function between λ-terms.

The curried map (f∗, F ∗, f∗) of a trackable function (f, F, f) from Z ×X to Y consists of a
function f∗ :≡ λz. ((λx. f (z, x)), ⋆z), where by the recursion principle on the mere existence
of a realiser Lz :≡ tZz there is merely a tracker F [⟨Lz, x0⟩] of λx. f (z, x), and a term
F ∗ :≡ λx0. F [⟨x1, x0⟩] with a witness f∗ of

∏
(L:Λ0)

∏
(z:|Z|) (L ⊩Z z) → (F ∗[L] ⊩X⇒Y f z)

because of the reduction

(λx0. F [⟨L, x0⟩]) M −→β F [⟨L, M⟩]

and that F is indeed a tracker of f : |Z × X| → |Y |. It is routine to verify remaining details.

▶ Corollary 3.13. Asm(Λ) is a cartesian closed P-category with a strict P-initial object.

4 Realisability semantics for the S4 modality

We are now ready to introduce an exposure ⊠ : Asm(Λ) ↬ Asm(Λ) modelling the S4 modality
(validating the K axiom ⊠(A → B) → ⊠A → ⊠B, the 4 axiom A → ⊠⊠A, and the T axiom
⊠A → A) and show that a generic quoting X → ⊠X cannot exist.

4.1 An exposure for the S4 modality
Given an assembly X, which describes a set of extensions merely realised by some intensions
(i.e. terms), we can expose the intensions at the level of extensions by constructing an
assembly ⊠X where an inhabitant (M, x, r) : |⊠X| is an extension x : |X| and a term
M : Λ0 that realises x, witnessed by r : M ⊩X x. This term M becomes the main part of
the extension (with respect to ⊠X) and should be (merely) realised by some intensional
representation of M ; a natural choice of such representation is ⌜M⌝, or indeed any term
β-reducible to ⌜M⌝. In short, the carrier and the realisability relation of ⊠X are defined as

|⊠X| :≡
∑

(M :Λ0)

∑
(x:|X|)

M ⊩X x and (N ⊩⊠X (M, x, r)) :≡ N −↠β ⌜M⌝

respectively. It turns out that ⊠X :≡ (|⊠X|,⊩⊠X , r⊠X , t⊠X) is indeed an assembly where
r⊠X and t⊠X are the transitivity and the reflexivity of −↠β .

To make ⊠ an exposure, we should also define the mapping on morphisms. Consider any
trackable map f from X to Y and define ⊠f :≡ (|f |⊠, F⊠, f⊠) : ⊠X → ⊠Y as follows. First
define a function from |⊠X| to |⊠Y | by

|f |⊠ : (M, x, r) 7→ (F [M ], |f | x, fM x r).

To give a tracker of ⊠f , recall that there is a term subst performing term substitution on
codes (Section 2.2), and then the term F⊠ :≡ subst ⌜F⌝ x tracks |f |⊠ because

subst ⌜F⌝N −↠β subst ⌜F⌝ ⌜M⌝ −↠β ⌜F [M ]⌝ ⊩⊠Y |f |⊠(M, x, r)

completing the definition of f⊠. In short, ⊠f :≡ (|f |⊠, F⊠, f⊠) is a trackable map.

▶ Definition 4.1. By ⋆ : ⊤ → ⊠⊤ we denote a closed element of ⊠⊤ given by Lemma 3.8
with (I, ⋆, refl↠) : |⊠⊤| and its realiser ⌜I⌝.
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▶ Remark 4.2. Given elements a, b of X with a ∼ b but with different trackers, it follows that
by definition ⊠a ◦ ⋆ ̸∼ ⊠b ◦ ⋆ are two extensionally different elements. That is, ⊠ does not
preserve extensional equality.

The assembly ⊠⊤ cannot be P-isomorphic to ⊤, since there are countably many inhabit-
ants of |⊠⊤| while there is exactly one inhabitant of |⊤| ≡ 1. Similarly, there are trackable
maps from ⊠(X × Y ) to ⊠X ×⊠Y and vice versa, but they are not P-isomorphic. It follows
that the exposure ⊠ does not preserve finite P-products.

▶ Theorem 4.3. ⊠ : Asm(Λ) ↬ Asm(Λ) is an exposure of assemblies. Moreover, there is an
evaluator ϵ for ⊠, i.e. a natural transformation ϵ from ⊠ to I.

Proof sketch. It is routine to prove the preservation of identities and composition. For
example, it follows by definition that id⊠

|X|(M, x, r) ≡ (x[M ], x, pr3 M x r) ≡ (M, x, r).
Now we show that ⊠ reflects the extensional equality. Let f and g be trackable maps

from X to Y . By assumptions that ⊠f ∼ ⊠g and that there is merely M : Λ0 with
r : M ⊩X x, we can apply the recursion principle of propositional truncation to derive

⊠f(M, x, r) = (F [M ], |f | x, fM x r) = (G[M ], |g| x, gM x r) = ⊠g(M, x, r)

since the equality type on ⊠Y is a proposition. Therefore, we have
∏

(x:|X|)|f | x =Y |g| x.
By function extensionality it then follows that

(
|f | =|X|→|Y | |g|

)
≡ f ∼ g.

As for the evaluator ϵX : ⊠X → X, recall the term eval which evaluates a code (Sec-
tion 2.2). We simply define |ϵX | by (M, x, r) 7→ x. Then, given N : Λ0 with N −↠β ⌜M⌝,
we have eval[N ] −↠β eval[ ⌜M⌝ ] −↠β M where M ⊩X x is witnessed by r. That is, |ϵX |
is tracked by eval. The naturality of ϵ follows by definition. ◀

Given an element a of X, define its quotation as the element ⊠a ◦ ⋆ of ⊠X. The choice
of ⋆ does not matter if a is closed, since ⊠a ◦ ⋆′ ∼ ⊠a ◦ ⋆ for any element ⋆′ of ⊠⊤. We
say that a trackable map q : X → ⊠X quotes an element a of X whenever q ◦ a ∼ ⊠a ◦ ⋆.
The (4) axiom can be realised by a family of trackable maps which quote closed elements:

▶ Proposition 4.4. There is a family of functions |δX |(M, x, r) :≡ (⌜M⌝, (M, x, r), refl↠)
indexed by objects X from |⊠X| to |⊠⊠X| and tracked by quote, which quote closed elements
of ⊠X.

The fact that δX quotes closed elements justifies the computational meaning categorically.
Yet, δX may fail to quote an element a if a is not closed, since in general the intension part
of ⊠a is applied only verbatim. That is, |⊠a|(I, ⋆, refl↠) is (F [I], (M, x, r), s) where F [I] is
not necessarily α-equivalent to ⌜M⌝. The subtlety goes on:
▶ Remark 4.5. One may expect that (⊠, ϵ, δ) is comonadic in the sense that δ is a natural
transformation up to ∼ satisfying comonad laws, but these maps δX are not natural in X.
In detail, for each trackable map f : X → Y the inhabitant

δY (⊠f(M, x, r)) ≡ (⌜F [M ]⌝, (F [M ], f x, fM x r), refl↠) : ⊠⊠Y

is not equal to

⊠⊠f(δX(M, x, r)) ≡ (subst ⌜F⌝ ⌜M⌝, (F [M ], f x, fM x r), subst↠) : ⊠⊠Y

despite that their extensions are the same, where subst↠ is the witness of the reduction
sequence subst ⌜F⌝ ⌜M⌝ −↠β ⌜F [M ]⌝. Let us define (M, x, r) ≤ (N, y, s) if M −↠β N and
x = y and f ≤ g if |f | x ≤ |g| x for all x. Then we only have |⊠⊠f ◦ δX | ≤ |δY ◦ ⊠f |. In
general, the lax naturality appears more appropriate in the presence of intensionality.
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The normality condition is realised exactly by ap without naturality:

▶ Proposition 4.6. There is a family of trackable maps from ⊠(X ⇒ Y ) to ⊠X ⇒ ⊠Y

tracked by λx0. ap[x1] x0.

On the other hand, it is impossible for the rule A → ⊠A to compute quotations for
arbitrary A, since this is already impossible for the particular case of Λ0 → ⊠Λ0 (where Λ0
was given in Example 3.2).

▶ Theorem 4.7. No trackable map from Λ0 to ⊠Λ0 quotes closed elements of Λ0.

Proof. Assume η : Λ0 → ⊠Λ0 with η ◦ a ∼ ⊠a ◦ ⋆ for any a : ⊤ → Λ0 given by Lemma 3.8.
Every closed term M defines an element M̂ :≡ (λ . M, M, λ . λ . λ . refl↠) of Λ0 and thus∣∣∣⊠M̂

∣∣∣(N, y, s) = (M, M, refl↠) for any (N, y, s) : ⊠⊤ by definition. By assumption

|η| M ≡ |η|
(∣∣∣M̂ ∣∣∣ ⋆

)
=

∣∣∣⊠M̂
∣∣∣ (|⋆| ⋆) = (M, M, refl↠),

so the tracker Q of η should satisfy Q[N ] −↠β ⌜M⌝ whenever N −↠β M . In particular, it
follows that Q[M ] −↠β ⌜M⌝. By Proposition 2.1 such Q cannot exist. ◀

As the choice of ⋆ does not matter for closed elements a, the above theorem shows
that even a very limited form of naturality for any two morphisms ηΛ0 and η⊤ satisfying
ηΛ0 ◦ a ∼ ⊠a ◦ η⊤ for any closed element a remains impossible. It is unclear how to state
“parametricity” for ⊠ so that any family of morphisms from A to ⊠A, satisfying a reasonable
naturality, can be rejected.

5 Realisability semantics for the GL modality

Kavvos [15] advocated that the provability modality □ and the GL axiom □(□A → A) → □A

can also be understood as the type of code of type A and as intensional recursion respectively
from the computational perspective. Since we already have an exposure ⊠ modelling typed
code, a natural approach is to extend ⊠ to model the GL axiom in addition to S4. However,
it is known that the GL axiom is incompatible with the reflection principle □A → A. Indeed,
let A be the falsity ⊥ for both laws. Then, we have □(□⊥ → ⊥) → □⊥ and □⊥ → ⊥. By
the necessitation rule we can derive □(□⊥ → ⊥) and thus by modus ponens we can derive
□⊥ and finally ⊥. Therefore, by Proposition 3.11 and Theorem 4.3, we cannot expect the
exposure ⊠ to model the GL axiom if we want the type system to be logically consistent.

To untie the knot and retain consistency and the understanding of □A as code of type A,
we observe that in general □A and ⊠A are types for different kinds of code and should be
kept separate: code constructed with intensional recursion can only be expanded in stages
(or otherwise may result in non-termination), whereas code supporting S4 is only a special
case where next stages include the current one, so that ϵX : ⊠X → X is allowed. Therefore,
separately from ⊠, we give an exposure □ : Asm(Λ) ↬ Asm(Λ) modelling the GL modality
in a staged setting (Section 5.2). The construction refutes both X → □X (by the same
argument for ⊠) and the reflection principle □X → X. We also derive the GL axiom as well
as its deductive form. To express staged constructions more conveniently (without stage
indexing), we work within guarded type theory.
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5.1 Digression: Clocked cubical type theory
We use a particular version of guarded type theory – clocked cubical type theory [18], CCTT
for short. It extends HoTT with a later modality ▷κ, parametrised by a “clock” κ, and
guarded recursion. Here we only intuitively introduce the constructs and properties of CCTT
that are necessary for the informal presentation of the constructions in Section 5.2, but the
formal details are all checked in Agda in the guarded cubical mode.

CCTT features a new type ▷(α : κ). A of suspended computations that take in a tick α on
a clock κ to produce an inhabitant of A in a next stage. (Clocks will be discussed towards the
end and can be ignored for now.) An inhabitant of ▷(α : κ). A therefore resembles a function
computationally, and can be introduced as a λ-expression λ(α : κ). t, often abbreviated
to λα. t, where t : A, or eliminated by application to a tick, denoted by f [α] : A where
f : ▷(α : κ). A and α : κ. For brevity, ▷(α : κ). A is written as ▷κ A if α is not referred to
in A. For example, the following term implements the normality axiom for ▷κ:

apκ :≡ λf. λx. λα. f [α] (x[α]) : ▷κ(A → B) → ▷κA → ▷κB.

Viewed as a function, apκ takes f : ▷κ(A → B) and x : ▷κA as arguments, both of which are
values that can be used in a next stage, and should produce a result of type ▷κB, that is, a
value of type B in a next stage; this result is constructed by first taking in a tick α – after
which the rest of the term describes a construction in the next stage – and then applying
both f and x to α to produce f [α] : A → B, x[α] : A, and eventually f [α] (x[α]) : B in the
next stage. Another important example is delaying a value to a next stage:

nextκ :≡ λx. λα. x : A → ▷κA.

In contrast to nextκ, there is no term of type ▷κA → A, matching our intuition about a series
of stages happening in order: in the current stage we should not be able to obtain a value
that is only available in the next stage. Also there is no term of type ▷κ▷κA → ▷κA – it
might be tempting to write λx. λα. x[α][α], but the two consecutive applications to α are
prohibited in CCTT.

An important primitive is guarded recursion, also known as Löb induction: every func-
tion f : ▷κA → A has a delayed fixed point dfixκ f : ▷κA with the fixed point equation
(dfixκ f)[α] =A f (dfixκ f) where the right-hand side can be seen as a fixed point of f without
delay.

We now list some properties needed for Section 5.2. The first one helps to assure that we
are still working with propositions and sets even when ▷κ is involved.

▶ Lemma 5.1. If A[α] is a proposition/set for arbitrary α : κ, then so is ▷(α : κ). A[α].

The later modality distributes over a Σ-type.

▶ Lemma 5.2. Let B(x) be a family of types indexed by x : A. Then there are functions
from ▷κ

∑
(x:A) B(x) to

∑
(x:▷κA) ▷(α : κ). B(x[α]) and vice versa. In fact, the two types are

equivalent.

Therefore guarded recursion has a specialised form for Σ-types.

▶ Corollary 5.3. Let B(x) be a family of types indexed by x : A. Then∑
x:▷A

▷(α : κ). B(x[α]) →
∑
x:A

B(x) implies
∑
x:A

B(x).
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The final property states that if two values delayed to a next stage are equal, then they are
equal in the current stage. It may be tempting to formulate the property as nextκ x =▷κA

nextκ y → x =A y, but this is in fact invalid, since (analogously to function extensionality)
the antecedent equality is equivalent to ▷κ(x =A y) rather than x =A y [20]. The correct
formulation is the following, where the antecedent includes a clock quantification “∀κ”.

▶ Lemma 5.4. Let x and y : A. Then x =A y if ∀κ. nextκ x =▷κA nextκ y.

This lemma holds because, with clock quantification, it is possible to write Atkey and
McBride’s [3] operator force : (∀κ. ▷κA) → (∀κ. A), which can then be applied to the equality
∀κ. ▷κ(x =A y) equivalent to the antecedent and yield ∀κ. x =A y, which is equivalent to
x =A y. One way to think about (fully) clock-quantified types is that they are independent of
the choice of clocks and can be viewed as the types of pure, completed descriptions of staged
computation rather than ongoing computations that are taking effect in stages with respect
to a particular clock in scope. We can manipulate such descriptions at will, irrespective
of our current timeline – in particular, it is perfectly fine to take a description of a staged
computation that produces results from the second stage onwards and make it produce the
results right from the first stage instead, which is what force does.

5.2 An exposure for the GL modality
First we adapt the definition of exposures to the setting of CCTT.

▶ Definition 5.5 (Clocked exposure). Given P-categories C and D, a clocked exposure
Q : C ↬ D consists of (a) a mapping Qκ for each clock κ from objects X of C to objects QκX

of D and (b) for each clock κ from well-defined morphisms f : X → Y to well-defined
morphisms Qκf : QκX → QκY satisfying following properties

(i) QκidX ∼ idQX ,
(ii) Qκ(g ◦ f) ∼ Qκg ◦ Qκf , and
(iii) f ∼ g whenever ∀κ. Qκf ∼ Qκg for any two well-defined morphisms f, g : X → Y .
Notably, the faithfulness of a clocked exposure mirrors the form of Lemma 5.4, and is the
main reason that we need CCTT.

Now we introduce the clocked exposure □ : Asm(Λ) → Asm(Λ) modelling GL. For an
assembly X, the carrier |□κX| and the realisability relation ⊩□κX are defined as

|□κX| :≡
∑

(M :Λ0)

∑
(x:▷κ|X|)

▷(α : κ). M ⊩X x[α] and (N ⊩□κX (M, x, r)) :≡ N −↠β ⌜M⌝

where ⊩□κX is defined in the same way as the exposure ⊠. The main difference between
the carriers |⊠X| and |□κX| is that the extension part |X| becomes ▷κ|X|. That is, the
extension x is available in a next stage but not earlier (with respect to the clock κ), but the
intension M remains the same type. Similarly, □κX :≡ (|□κX|,⊩□κX , r□κX , t□κX) is an
assembly where r□κX and t□κX are given by the transitivity and the reflexivity of −↠β .

For any trackable map f from X to Y , also define □κf in the same way as ⊠f except
that a later modality is involved:

|□κf |(M, x, r) :≡ (F [M ], ▷κ|f | x, λα. fM (x[α]) (r[α]))

where ▷κ|f | : ▷κ|X| → ▷κ|Y | is given by the functoriality of the later modality ▷κ. The very
same argument for ⊠f shows that □κf is indeed a trackable map from |□κX| to |□κY |.
▶ Remark. By Lemma 5.2, the carrier of □κX and the type

∑
(M :Λ0) ▷κ

∑
(x:|X|) M ⊩X x

are interchangeable. The latter form is more convenient when using guarded recursion.
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It is straightforward to show that □ is a clocked exposure by Lemma 5.4.

▶ Theorem 5.6. □ : Asm(Λ) ↬ Asm(Λ) is a clocked exposure.

▶ Proposition 5.7. There is a family of trackable maps from □κ(X ⇒ Y ) to □κX ⇒ □κY

tracked by λx0. ap[x1] x0.

Similar to Theorem 4.7, no morphism Λ0 → □κΛ0 can be quoting.

▶ Theorem 5.8. There is no trackable map from Λ0 to □κΛ0 which quotes closed elements.

It is also not possible to have a family of trackable maps ϵX from □κX to X natural in
X, since the extension of (M, x, r) can only be projected in a time step away from now.

▶ Theorem 5.9. There is no function from |□κ⊥| to |⊥|. In particular, there is no natural
transformation from □κ to I for any κ.

Proof. Assume ϵ⊥ : |□κ⊥| → |⊥| exists. We show that there is bang : ▷0 → 0, so by guarded
recursion a contradiction fix bang : 0 is derivable. Let x be an inhabitant of ▷0. We construct
an inhabitant (M, x, r) of □κ⊥ so that the function |ϵ⊥| from |□κ⊥| to |⊥| ≡ 0 can be
applied. Choose an arbitrary closed term M , say λx. x, and apply the recursion principle rec0
of the empty type to x in a time step to get r :≡ λα. rec0 (M ⊩⊥ x[α]) x[α], which is an
inhabitant of ▷(α : κ). M ⊩⊥ x[α], so (M, x, r) is of type |□κ⊥|. ◀

The pay-off for disallowing evaluation is to be able to derive intensional recursion, which
is logically the GL axiom and its deductive form(s).

▶ Theorem 5.10 (Intensional recursion). For every trackable map f : □κX → X, there are
1. an element f† of □κX realised by ⌜fix F⌝ and
2. an element f‡ of X realised by fix F satisfying f‡ ∼ f ◦ □κf‡ ◦ ⋆
where fix F : Λ0 is a term that can be reduced to F [ ⌜fix F⌝ ].

Proof. Let f be a trackable map from □κX to X tracked by F : Λ1. Applying Theorem 2.2
to λx0. F : Λ0, we obtain a term fix F : Λ0 with fix F −↠β (λx0. F ) ⌜fix F⌝ −→β F [ ⌜fix F⌝ ].
Now we construct the first element by Löb induction on a Σ-type (Corollary 5.3): assuming

x : ▷|X| and r : ▷(α : κ). F [ ⌜fix F⌝ ] ⊩ x[α]

we show an inhabitant of type |X| realised by ⌜fix F⌝ as follows.
1. First, ▷(α : κ). (fix F ⊩ x[α]) has an inhabitant, say r′, since fix F reduces to F [ ⌜fix F⌝ ].
2. Then, we derive an inhabitant of type |X| realised by F [ ⌜fix F⌝ ] as witnessed by

f(refl↠⌜fix F⌝) : F [ ⌜fix F⌝ ] ⊩ |f |(fix F, x, r′)

since F tracks |f | and the set ⌜fix F⌝ ⊩□κX (fix F, x, r′) is judgementally equal to
⌜fix F⌝ −↠β ⌜fix F⌝, which is inhabited by refl↠.

3. By Löb induction,
∑

(x:▷|X|) ▷(α : κ). F [ ⌜fix F⌝ ] ⊩ x[α] has an inhabitant (x0, r0).
4. By fix F −↠β F [ ⌜fix F⌝ ], we have (fix F, x0, r′

0) : |□κX| where r′
0 : ▷(α : κ). fix F ⊩ x0[α].

Clearly (fix F, x0, r′
0) is realised by ⌜fix F⌝, and by Lemma 3.8 it gives an element f† of □X.

To construct the second element f‡, we follow the same steps except the third: we
conclude (x0, r0) :

∑
(x:|X|) F [ ⌜fix F⌝ ] ⊩ x[α] without any delay and thus x0 : |X| is realised

by r′
0 : fix F ⊩ x0. The equation f‡ ∼ f ◦ □κ(f‡) ◦ ⋆ follows from the fixed point equation

for guarded recursion. ◀
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From the above proof, we can see that the intensional information available in the trackable
map □κX → X, i.e. the tracker F , does matter, since it is essential for constructing the
fixpoint fix F . To internalise the inductive form as the GL axiom, we also need the intension:

▶ Theorem 5.11. There is a family of trackable maps from □κ(□κX ⇒ X) to □κX.

The reader may wonder whether the strong Löb axiom, interpreted as a map from □κX ⇒ X

to X, can also be realised by the SRT in a similar way, but from □κX ⇒ X, which amounts
to a merely trackable map, we do not get the tracker F explicitly needed by the SRT.

6 Related work

Kavvos introduced a comonadic exposure [15, Theorem 11], which we denote by ⊠K here,
on P-category of assemblies on a PCA (instead of λ-calculus) to model the intensional S4
modality. For an assembly X on a PCA (A, ·), the assembly ⊠KX is defined by

|⊠KX| :≡ { (a, x) | a ⊩ x } and b ⊩⊠K X (a, x) :≡ a = b,

without the use of Gödel encoding. The morphism mapping is similar to ⊠. The difference
between ⊠K and ⊠ mainly comes from the chosen notion of realisability and the use of
Gödel encoding. First, the exposure ⊠K preserves finite products, while ⊠ does not. Some
β-equivalent intensions have to be identified to satisfy equations of PCA. For example ⋆ : |⊤|
has only one realiser I, so |⊠K⊤| has only one element (⋆, I), too. Second, ⊠K is comonadic
by a similar reason, while our δ is not even natural. Third, ⊠K is idempotent, i.e. δK

are isomorphisms, which is impossible for ⊠ because of Gödel encoding. Finally, a generic
quoting for ⊠K can be defined:

▶ Observation 6.1. For the one-element PCA, there exists a natural transformation from
the identity exposure to ⊠K .

Further, assuming the axiom of choice, there is (merely) a function q from |X| to |⊠KX|
because of the right totality of ⊩. It is likely that q could be realised in the sense of Krivine’s
classical realisability [19], which would establish a non-trivial example of generic quoting
for ⊠K or alike. On the other hand, using λ-terms subject to α-equivalence as realisers and
⌜M⌝ as realisers for (M, x, r) allows the exposure ⊠ to distinguish β-equivalent intensions, so
⊠ – being more intensional than ⊠K – lacks well-behaved extensional properties, as expected.

As a reviewer pointed out, Remark 4.5 is reminiscent of categorical simulation studied by
Cockett and Hofstra [6].

Artemov and Beklemishev [2] pointed out that Gödel attempted to use classical S4
modal logic to capture provability for Peano Arithmetic (PA) but realised that Prov(A) :≡
∃x. Proof(x, A) cannot be S4. Löb found the well-known GL axiom and Solovay showed
that GL is complete with respect to PA. On the other hand, Artemov [1] proposed logic
of proofs extending S4 and argued that S4 is for explicit proofs. Goris [13] discussed two
modalities GL and S4 over classical logic by presenting a bi-modal logic and provides a
Kripke semantics for both. We took Goris’ notation for the S4 modality ⊠. Our work is
partly inspired by Shamkanov’s [25, 26] provability semantics for GL using circular proofs.

7 Conclusion

In this paper we follow the principle of modality-as-intension [10] and the P-categorical
semantics [15] to manifest the concepts of denotations, extensions, and intensions. We have
studied the P-category of assemblies on λ-calculus developed and formalised in HoTT as
a semantic foundation for intensionality, on which we modelled S4 and GL modalities.
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Notably, our denotational semantics of the S4 modality ⊠ is more intensional than that of
Kavvos’ ⊠K . For the GL modality □, we have given the first denotational semantics, which
is shown (Theorem 5.10 and Theorem 5.11) to satisfy the Gödel-Löb axiom and its deductive
form – the intensional recursion – using guarded type theory.

As future work, an important issue we have not discussed yet is the connection between
⊠ and □ – for example, it is easy to construct a family of trackable maps from ⊠X to □κX

natural in X by deferring the extension part of (M, x) to a later stage, and Goris’ bi-modal
logic [13] suggests that there are more rules to discover. In the long term, based on the
P-category of assemblies and the denotational semantics of modalities, we intend to design
a type theory with two modes of Code and prove its meta-properties such as consistency,
confluence, and decidability of type checking by interpreting judgements into Asm(Λ).
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Abstract
Monads govern computational side-effects in programming semantics. A collection of monads can
be combined together in a local-to-global way to handle several instances of such effects. Indexed
monads and graded monads do this in a modular way. Here, instead, we start with a single monad
and equip it with a fine-grained structure by using techniques from tensor topology. This provides
an intrinsic theory of local computational effects without needing to know how constituent effects
interact beforehand.

Specifically, any monoidal category decomposes as a sheaf of local categories over a base space.
We identify a notion of localisable monads which characterises when a monad decomposes as a
sheaf of monads. Equivalently, localisable monads are formal monads in an appropriate presheaf
2-category, whose algebras we characterise. Three extended examples demonstrate how localisable
monads can interpret the base space as locations in a computer memory, as sites in a network of
interacting agents acting concurrently, and as time in stochastic processes.
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1 Introduction

The computation of some desired value may influence parts of the environment in which the
computation occurs that are separate from the value itself. Rather than being accidental
byproducts, several modern programming platforms harness such computational side-effects
to structure computations in a modular way [31, 30]. The most well-known use is via
monads [28, 29], which let one analyse a computational effect apart from the rest of the
computation.

A computation may use more than one effect. The corresponding monads can then be
combined using distributive laws into a single monad [17, 3, 38]. This combination uses
the fact that the base category on which the monad lives is highly structured; usually it
is a cartesian category of presheaves. It may involve other formalisms such as Lawvere
theories [33, 32], but we focus on monads here. An especially interesting case is when many
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instances of effects of the same kind are in play [34]. A related use of monads is to have
several layers of granularity to an effect. Indexed monads and graded monads then model for
example different levels of access to a computational effect [12, 26]. Here, as in the previous
case, this is usually conceived of in a local-to-global fashion, where one specifies the behaviour
at each level and then adds interplay between the levels.

In this article we take a dual approach and start with a single monad on a category with
some structure. We then ask when and how that monad is the combination of constituent
monads. This work is a first step towards an intrinsic theory of computational effects, one
that doesn’t need to specify in detail how constituent effects have to interact in advance.
In particular, we do not postulate that the base category consists of presheaves, which is a
consequence rather than an assumption.

To do so, we follow the programme of tensor topology, by observing that any monoidal
category comes equipped with a notion of base space over which the category decomposes [10,
2, 9, 14]. This “spatial” aspect can be cleanly separated: any monoidal category embeds into
a category of global sections of a sheaf of so-called local monoidal categories (see Theorems 10
and 11 below). This is recalled in Section 2.

Our main question is when and how a monad on a monoidal category respects this
decomposition in the sense that it corresponds to a sheaf of monads on the local categories.
The answer is a localisable monad, discussed in Section 3. To connect back to the local-to-
global approach, we then characterise such monads as formal monads [35] in a (pre)sheaf
category in Section 4. This opens a way to analyse the (Kleisli) algebras for localisable
monads, which we do in Section 6. The breadth of this approach is demonstrated in Section 5,
where we work out three extended examples. They show a range of how localisable monads
may interpret the base space: as locations in a computer memory governed by a local state
monad; as sites in a network of interacting agents governed by a monad inspired by the pi
calculus; and as moments in time governed by a monad of stochastic processes. Section 7
concludes. Some proofs can be found in the extended version of this paper [5].

2 Tensor topology

This section summarises necessary notions from tensor topology. We have to be brief, and
for more details we refer the reader to [10, 2, 14, 9]. To save space we will not use the
graphical calculus for monoidal categories [16], but will not be careful in denoting coherence
isomorphisms in this section. The following notions and results hold for arbitrary monoidal
categories, but for simplicity we deal here with the symmetric monoidal case only.

▶ Definition 1. A central idempotent in a symmetric monoidal category is a morphism
u : U → I such that ρU ◦ (U ⊗ u) = λU ◦ (u ⊗ U) : U ⊗ U → U and this map is invertible.
We identify two central idempotents u : U → I and v : V → I when there is an isomorphism
m : U → V satisfying u = v ◦m. Write ZI(C) for the collection of central idempotents of C.

A central idempotent u : U → I is completely determined by its domain U . The central
idempotents always form a (meet-)semilattice. The order is defined by u ≤ v if and only if
u = v ◦m for some morphism m : U → V . The meet is given u∧ v = λI ◦ (u⊗ v) : U ⊗V → I.
The largest central idempotent is the identity 1: I → I.

▶ Example 2. Consider a (meet-)semilattice (L,∧, 1) as a symmetric monoidal category
C: objects of C are elements of L, there is a morphism u → v if and only if u ≤ v, and
u⊗ v = u ∧ v. Then ZI(C) ≃ L. In fact, ZI is a functor that is right adjoint to the inclusion
of the category of semilattices into the category of symmetric monoidal categories.
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▶ Example 3. If C is cartesian – that is, tensor products are in fact categorical products –
then central idempotents are exactly subterminal objects: objects U whose unique morphism
! : U → 1 to the terminal object is monic. In particular, if X is any topological space, the
category of sheaves over X has as central idempotent semilattice the collection of open sets
U ⊆ X under intersection.

▶ Example 4. If X is a locally compact Hausdorff topological space, the category of Hilbert
modules over C0(X) is symmetric monoidal. It is equivalent to the category of fields of
Hilbert spaces over X, and its central idempotents correspond to open subsets U ⊆ X.

Because of the previous examples, we can think of central idempotents as open subsets of
a hidden base space that any symmetric monoidal category comes equipped with. Tensor
topology develops general accompanying notions of locality, restriction, and support. For
example, we can restrict attention to the “part of the category that lives over an open set”,
as follows.

▶ Proposition 5. For every central idempotent u in a symmetric monoidal category C, there
is a symmetric monoidal category C∥u where:

objects are as in C;
morphisms A → B are morphisms A⊗ U → B in C;
composition of f : A⊗U → B and g : B⊗U → C is g◦(f⊗U)◦(A⊗U⊗u)−1 : A⊗U → C;
the identity on A is given by A⊗ u;
tensor product of objects is as in C;
tensor product of morphisms f : A ⊗ U → B and f ′ : A′ ⊗ U → B′ is (f ⊗ f ′) ◦ (A ⊗
σA′,U ⊗ U) ◦ (A⊗A′ ⊗ U ⊗ u)−1 : A⊗A′ ⊗ U → B ⊗B′. ◀

▶ Remark 6. In C∥u, any object A is isomorphic to A⊗ U : the isomorphism and its inverse
are given by the identity A⊗ U → A⊗ U in C and A⊗ u⊗ u : A⊗ U ⊗ U → A.

▶ Example 7. In the category C of sheaves over a topological space X, central idempotents
u correspond to open subsets U ⊆ X as in Example 3. The category C∥u is then equivalent
to the category of sheaves over U .

The intuition of a category C “living over” open subsets is further strengthened by the
following lemma, that says we can pass between the part of a category living over a larger
open subset and the part living over a smaller open subset.

▶ Lemma 8. If u ≤ v are central idempotents in C, with u = v ◦m, there is an adjunction:

C∥u C∥v⊥

C∥u≤v

C∥u≤v

The functor C∥u≤v is given by A 7→ A and f 7→ f ◦ (A ⊗ m) and is strict monoidal. The
functor C∥u≤v is given by A 7→ A⊗ U and f 7→ (f ⊗ U) ◦ (A⊗ u⊗ U)−1 ◦ (A⊗ U ⊗ v) and
is oplax monoidal. The unit of the adjunction is an isomorphism.

Proof. See [2, Lemmas 5.4 and 5.5]. ◀

To make the intuition built up so far completely rigorous, we now summarise a series of
results saying that any symmetric monoidal category may be regarded as a sheaf of monoidal
categories over a base topological space. To state them, we need to introduce mild conditions
on the central idempotents being respected by tensor products.
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▶ Definition 9. A symmetric monoidal category C is called stiff when the diagram on the
left below is a pullback for any object A and central idempotents u and v.

A⊗ U ⊗ V A⊗ V

A⊗ U A

A⊗ v
A⊗ u

A⊗ U ⊗ V A⊗ V

A⊗ U A⊗ (U ∨ V )

We say C has finite universal joins of central idempotents when it has an initial object 0
satisfying A⊗ 0 ≃ 0 for all objects A, and ZI(C) has binary joins such that the diagram on
the right above is a pullback and a pushout for all objects A and central idempotents u and v.

The following theorem says that any stiff monoidal category can be freely completed
with universal finite joins of central idempotents [2, Theorem 12.8]. Finally, Theorem 11 [2,
Theorem 8.6] says that any symmetric monoidal category C with universal finite joins has a
particularly nice form. It considers the semilattice of central idempotents ZI(C) as the basic
opens of a topological space X by taking its Zariski spectrum [2, Section 4].

▶ Theorem 10. Any stiff symmetric monoidal category allows a strict monoidal full embedding
into a symmetric monoidal category with finite universal joins of central idempotents.

▶ Theorem 11. Any symmetric monoidal category C with universal finite joins of central
idempotents is monoidally equivalent to a category of global sections of a sheaf u 7→ C∥u of
local monoidal categories over ZI(C).

Here, a monoidal category C is called local when u ∨ v = 1 implies u = 1 or v = 1 in
ZI(C). When ZI(C) is the opens of a topological space, that means there is a single focal
point that all nets in the topological space converge to – intuitively, C is local when it has
no nontrivial central idempotents. Being a sheaf of local monoidal categories means that the
stalks C∥x = colimx∈u C∥u over points x ∈ X are local monoidal categories.

It follows that any stiff symmetric monoidal category embeds into such a category of global
sections. This makes precise the intuition that a symmetric monoidal category continuously
varies over its base space of central idempotents.

3 Localisable monads

The previous section showed how any symmetric monoidal category C may be regarded as a
sheaf C∥u of local ones. In this section, we work out when a monad on C corresponds to a
sheaf of monads on C∥u. The crucial definition is as follows.

▶ Definition 12. A monad T on a monoidal category C is called localisable when there are
morphisms stA,U : T (A) ⊗U → T (A⊗U) for each object A and central idempotent u : U → I

satisfying:

T (ρA) ◦ stA,I = ρT (A) (1)
T (αA,U,V ) ◦ stA,U⊗V = stA⊗U,V ◦(stA,U ⊗V ) ◦ αT A,U,V (2)

ηA⊗U = stA,U ◦(ηA ⊗ U) (3)
µA⊗U ◦ T (stA,U ) ◦ stT (A),U = stA,U ◦(µA ⊗ U) (4)

stA,V ◦(T (A) ⊗m) = T (A⊗m) ◦ stA,U (5)
stB,U ◦

(
T (f) ⊗ U

)
= T (f ⊗ U) ◦ stA,U (6)

for any morphism f : A → B and central idempotents u : U → I and v : V → I, and where
m : U → V in (5) satisfies u = v ◦m.
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▶ Example 13. Consider a semilattice (L,∧, 1) as a symmetric monoidal category C as
in Example 2. A monad on C then is exactly a closure operator on L, that is, a function
(−) : L → L satisfying u ≤ u = u and u ≤ v =⇒ u ≤ v. This monad is localisable if and
only if u ∧ v ≤ u ∧ v for all u, v ∈ L. This is for example the case when L is the powerset of
a set X, and U is the closure of U ⊆ X in a fixed topology on X.

▶ Example 14. Strong monads [21, 18] are localisable: axioms (1)–(4) are a special case of
the axioms for a strong monad; and axioms (5)–(6) follow from naturality of strength. Hence
a monad T on a symmetric monoidal closed category is localisable if T (U ⊸ A) ≃ T (U) ⊸
T (A), namely with stA,U as follows (where coev denotes the curry of the identity on A⊗ U)

T (A) ⊗ U T
(
U ⊸ (A⊗ U)

)
⊗ T (U)

T (A⊗ U)
(
T (U) ⊸ T (A⊗ U)

)
⊗ T (U)

T (coev)⊗η

ev

▶ Example 15. It follows from Example 14 and [20] that a monad T on a cartesian closed
category is localisable as soon as T (A×B) ≃ T (A) × T (B). In particular, this applies for
any monad on the category of sheaves over a topological space X as in Example 3.

We will work out more examples in Section 5 below. Next we consider the main
consequence of a monad on C being localisable: it restricts to the categories C∥u.

▶ Proposition 16. If T is a localisable monad on C and u a central idempotent, the following
defines a monad T∥u on C∥u:

T∥u(A) = T (A) (η∥u)A = ηA ⊗ u

T∥u

(
f : A⊗ U → B

)
= T (f) ◦ stA,U (µ∥u)A = µA ⊗ u

Proof. This is mainly a matter of unwinding definitions and being careful in which category
compositions are taken. For example, the unit law (µ∥u)A ◦ (η∥u)T ∥u(A) = T (A) in C∥u

comes down to the following diagram commuting in C:

T (A) ⊗ U ⊗ U T 2(A) ⊗ U

T (A) ⊗ U T (A)

ηT A⊗U µA⊗u

ηT A⊗u⊗U

T (A)⊗u

T (A)⊗(u⊗U)−1

Similarly, naturality of η∥u, which is T∥u(f) ◦ (η∥u)A = (η∥u)B ◦ f in C∥u, comes down to
commutativity of the following diagram in C:

A⊗ U ⊗ U T (A) ⊗ U ⊗ I T (A) ⊗ U

A⊗ U ⊗ U T (A⊗ U) ⊗ I T (A⊗ U)

B ⊗ U T (B) ⊗ I T (B)

ηA⊗U⊗u ρT (A)⊗U

stA,U

T (f)

ηB⊗u ρT (B)

stA,U ⊗I

ρT (A⊗U )
f⊗U T (f)⊗I

Here the upper left square follows from (3), the right squares are naturality of unitors, and
the lower left square is naturality of η in C. The other laws are verified similarly. ◀
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▶ Example 17. Consider a closure operator T (u) = u on a semilattice C = L as in Example 13.
Then Tu(a) is simply a. This is a well-defined closure operator on the pre-order C∥u: if
a∧ u ≤ b, then a∧ u ≤ a ∧ u ≤ b because T is localisable. Collapsing the pre-order C∥u to a
partially ordered semilattice as in Remark 6 simply gives the downset ↓u = {a ∈ L | a ≤ u}
of u in L, and Tu just becomes the restriction of the closure operator to ↓u.

Recall that a (lax) monad morphism [35] from a monad (S, ηS , µS) on C to a monad
(T, ηT , µT ) on D consists of a functor F : C → D and a natural transformation φ : T ◦ F ⇒
F ◦ S making the following two diagrams commute:

F T ◦ F

F ◦ S

ηT
F

φF ηS

T 2 ◦ F T ◦ F ◦ S F ◦ S2

T ◦ F F ◦ S

µT
F

φ

F µS

φST φ

(7)

Monads on C and their (lax) morphisms form a category Monad(C). An oplax monad
morphism has ψ : F ◦ S ⇒ T ◦ F that respects units and multiplication instead of φ.

▶ Lemma 18. Let T be a localisable monad on C. If u ≤ v are central idempotents, then the
functor C∥u≤v from Lemma 8 is a (lax) monad morphism T∥v → T∥u with φA = T (A) ⊗ u.

Proof. Here we need to show the naturality of φ and the commutativity of the diagrams (7).
These directly follow from (5), bifunctoriality of the tensor product and a few commuting
diagrams that can be found in the extended version of this paper [5]. ◀

If F : C → D with φ : T ◦ F ⇒ F ◦ S is a (lax) monad morphism between localisable
monads S and T , and F is a (lax) monoidal functor with θA,B : F (A)⊗F (B) → F (A⊗B), we
say (F,φ, θ) is a (lax) morphism of localisable monads when the following diagram commutes:

TF (A) ⊗ F (U) T
(
F (A) ⊗ F (U)

)
TF (A⊗ U)

FS(A) ⊗ F (U) F
(
S(A) ⊗ U

)
FS(A⊗ U)

stF A,F U T (θA,U )

φA,U

θS(A),U

φA⊗F (U)

stA,U

In this sense, the monad morphism T∥v → T∥u of Lemma 18 is localisable.

▶ Corollary 19. If T is a localisable monad on C, and u ≤ v are central idempotents, then
the functor C∥u≤v from Lemma 8 is an oplax monad morphism T∥u → T∥v with ψA = stA,U .

Proof. Applying [35, Theorem 9] to Lemmas 8 and 18, we can compute ψ as follows. By
the adjunction, φA : T∥u(C∥u≤v(C∥u≤v(A))) → C∥u≤v(T∥v(C∥u≤v(A))) corresponds to a
morphism

C∥u≤v(T∥u(C∥u≤v(C∥u≤v(A)))) → T∥v(C∥u≤v(A))

and ψA : C∥u≤v(T∥u(A)) → T∥v(C∥u≤v(A)) is obtained by precomposing this morphism
with the unit A → C∥u≤v(C∥u≤v(A)) of the adjunction. Starting with φA = T (A) ⊗ u, this
gives exactly ψA = stA,U . ◀

▶ Remark 20. If T is a localisable monad on a stiff symmetric monoidal category C, and x is
a point of ZI(C) regarded as a topological space, we can go further and define a monad T∥x

on the stalk C∥x. The stalk C∥x is defined as the colimit of the diagram C∥u≤v : C∥v → C∥u
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ranging over all central idempotents u ≤ v containing the point x, taken in the category
of symmetric monoidal categories. Accordingly, T∥x is the colimit over the same diagram,
but now taken in the category of localisable monads. Using the concrete description in [2,
Definition 7.1] of these stalks, we can compute:

T∥x(A) = T (A) (η∥x)A = [1, ηA ◦ ρA]
T∥x

(
[u, f : A⊗ U → B]

)
= [u, T (f) ◦ stA,U ] (µ∥x)A = [1, µA ◦ ρT 2(A)]

If x ∈ u there is a localisable monad morphism T∥u → T∥x formed by the functor
C∥x∈u : C∥u → C∥x given by C∥x∈u(A) = A and C∥x∈u(f : A → B) = [u, f ] with the
identity natural transformation φ : T∥u ◦ C∥x∈u ⇒ C∥x∈u ◦ T∥x.

The representation of Theorems 10 and 11 is in fact functorial [2, Section 11]: a (lax)
monoidal functor T : C → C corresponds to a family of stalk functors T∥x : C∥x → C∥x that
are continuous in a certain sense. However, this notion of continuity is quite involved, and
we will not pursue it further here.

4 Formal monads, graded monads, and indexed monads

This section characterises localisable monads as formal monads in a certain presheaf category,
and connects to graded monads and indexed monads.

4.1 Formal monads
We will characterise localisable monads as formal monads in the 2-category [ZI(C)op,Cat]
with functors ZI(C)op → Cat as 0-cells, natural transformations as 1-cells, and modifications
as 2-cells [35, 25]. More precisely, we will define a formal monad on the sheaf C : ZI(C)op →
Cat that maps a central idempotent u to the category C∥u and morphisms u ≤ v to the
functors C∥u≤v : C∥v → C∥u of Lemma 8. A formal monad then consists of a natural
transformation T : C ⇒ C and two modifications µ : TT ⇛ T and η : idC ⇛ T satisfying the
usual monad laws. More precisely, the data of this formal monad consists of:

monads (T∥u, µ∥u, η∥u) on C∥u for every central idempotent u in C;
functors C∥u≤v : C∥v → C∥u for central idempotents u ≤ v in C;

such that the following equations hold in C∥u:

C∥u≤v(A) C∥u≤v(T∥v(A))

T∥u(C∥u≤v(A))

C∥u≤v((η∥v)A)

(η∥v)C∥u≤v(A)

T 2
u(C∥u≤v(A)) Tu(C∥u≤v(A))

C∥u≤v(T 2
v (A)) C∥u≤v(Tv(A))

C∥u≤v((µ∥v)A)

(µ∥u)C∥u≤v(A)

(8)

Moreover T is natural, meaning that if u = v ◦m then for any f : A → B in C∥v:

T∥u(C∥u≤vA) = C∥u≤vT∥v(A) (9)
T∥u

(
C∥u≤vf

)
= C∥u≤vT∥v(f). (10)

Given the definition of C∥u≤v, the first equation simply reads T∥u(A) = T∥v(A). The
following two lemmas follow from the definition of the adjoint functors C∥u≤v ⊣ C∥u≤v.

▶ Lemma 21. There is a comonad − ⊗ U on C for any central idempotent u of C. More
generally, there is a comonad − ⊗ U on C∥v for any central idempotents u ≤ v of C.

▶ Lemma 22. The category C∥u is the co-Kleisli category of the comonad − ⊗ U on C∥v.
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It follows from Lemma 22 that there is a canonical adjunction between the co-Kleisli
category C∥u and category C∥v (or the base category C for v = 1) given by adjoint functors
C∥u≤v ⊣ C∥u≤v such that −⊗U = C∥u≤v ◦C∥u≤v. These correspond to the adjoint functors
defined in Lemma 8. Further than Lemma 8, observe the following decomposition.

▶ Lemma 23. If u ≤ v ≤ w are central idempotents in C, the functors of Lemma 8 satisfy:

C∥u≤w = C∥v≤w ◦ C∥u≤v

C∥u≤w = C∥u≤v ◦ C∥v≤w

C∥u≤v = C∥v≤w ◦ C∥u≤w

C∥v

C∥w

C∥u

C∥u≤v

C∥u≤v

C∥v≤w

C∥v≤w

C∥u≤w

C∥u≤w

Proof. This follows directly from the definition of the functors. ◀

▶ Proposition 24. Let C be a stiff category. Let (T , µ, η) be a formal monad in [ZI(C)op
,Cat]

above C and let u ≤ v be central idempotents. Then the monad T∥v is a localisable monad
with the strength stA,U : T∥v(A) ⊗ U → T∥v(A⊗ U) defined as the following composition in
C∥v for any object A in C∥v:

T∥v(A) ⊗ U = C∥u≤vC∥u≤vT∥vA = C∥u≤vT∥uC∥u≤vA

C∥u≤vT∥uC∥u≤vC∥u≤vC∥u≤vA = C∥u≤vC∥u≤vT∥vC∥u≤vC∥u≤vA

T∥vC∥u≤vC∥u≤vA = T∥v(A⊗ U)

ε
u≤v

T ∥vC∥u≤vC∥u≤vA

C∥u≤vT ∥uη
u≤v

C∥u≤vA

(11)

where ηu≤v and εu≤v are the unit and counit of adjunction C∥u≤v ⊣ C∥u≤v.

Proof. We need to prove each of the axioms of Definition 12. This consist of many commut-
ating diagrams. The complete proof can be found in the extended version of this paper [5].
For simplicity, the proof is laid out for the case v = 1, but the same arguments hold for any
T∥v by using the relevant strength. ◀

▶ Proposition 25. A localisable monad T on a stiff category C induces a formal monad
on C in [ZI(C)op,Cat]. The natural transformation T : C ⇒ C has components T∥u, the
modification η : C ⇛ T has components η∥u, and the modification µ : T 2

⇛ T has components
µ∥u as in Proposition 16.

Proof. This proof consist in verifying the naturality of T , in showing that η and µ are
modifications (which follows directly from Lemma 18) and natural, and in proving that η
and µ satisfy the monad laws (which pointwise follows from Proposition 16). The complete
proof is included in the extended version of this paper [5]. ◀

▶ Theorem 26. For a stiff monoidal category C there is a bijective correspondence between
localisable monads on C and formal monads on C in [ZI(C)op,Cat] (via the constructions
of Propositions 24 and 25).

Proof. Start with a localisable monad T and follow Proposition 25 to get a formal monad T .
Then apply Proposition 24 to get a localisable monad T ′ which we claim equals the original
monad T . It is clear that T ′ equals T as a functor. It remains to check that the strength
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obtained this way on T ′ is the same as the original strength on T . To do this, note that the
strength (11) from Proposition 24 can be rewritten as follows, where st denotes the original
strength from the localisable monad:

εT ∥1F GA ◦ FT∥uη
u
GA = (T (A⊗ U) ⊗ u) ◦ (stA,U ⊗U) ⊗ (T (A) ⊗ (U ⊗ u)−1) = stA,U

Here we use the naturality of the strength and the fact that U ⊗ u is an isomorphism. We
prove similarly that using Proposition 25 then Proposition 24 gives us back the unit and the
multiplication of the starting localisable monad. To simplify the notation we used F and G

to denote C∥u≤1 and C∥u≤1.
Now start with a formal monad T , turn it into a localisable monad (T∥1, st), and then

into a formal monad T̃ . Then T̃∥u(A) = T∥u(A) and T̃∥u sends a morphism f : GA → GB

in C∥u given by f : A⊗ U → B to the morphism T∥u(A) → T∥u(B) in C∥u given by:

T∥1(A) ⊗ U
stA,U−−−→ T∥1(A⊗ U) T ∥1(f)−−−−→ T∥1(B)

We have to prove that this equals T∥u(f). To see this, first note that by the properties of the
adjunction, a map f in the coKleisi category C∥u is defined in the base category as ε ◦ F (f),
which we will denote fC. With this notation, and again using F and G to denote C∥u≤1

and C∥u≤1, we get:

T∥1(fC) ◦ stA,U = T∥1εB ◦ T∥1Ff ◦ εT ∥1F GA ◦ FT∥uηGA (12)

= εT ∥1B ◦ FGT∥1εB ◦ FGT∥1Ff ◦ FT∥uηGA (13)

= εT ∥1B ◦ FT∥uGεB ◦ FT∥uGFf ◦ FT∥uηGA (14)

= εT ∥1B ◦ FT∥uGεB ◦ FT∥uηGB ◦ FT∥uf (15)

= εT ∥1B ◦ FT∥uf (16)

= (T∥u(f))C (17)

Line (12) follows from the definition of the strength given in Equation (11) and the definition
of fC. The next three lines follow from naturality of ε used twice, Equation (10), and
naturality of η respectively. Line (16) uses the property of the adjunction and the last line
uses the definition of (T∥u(f))C.

Similarly, using Proposition 24 and then Proposition 25 gives back the unit and the
multiplication of the original formal monad. ◀

4.2 Graded monads and indexed monads
We now connect these notions to the pre-existing notions of E-indexed monads and E-graded
monads for a monoidal category E. Recall that an E-graded monad is a lax monoidal functor
E → [C,C]. It consists of functors Tu : C → C, a natural transformation ηA : A → TI(A),
and a transformation µu,v,A : Tu(Tv(A)) → Tu⊗v(A) natural in u, v, and A, satisfying some
coherence diagrams [12].

On the other hand, an E-indexed monad is a functor E → Monad(C). It also consists of
functors Tu : C → C, but now with transformations ηu,A : A → Tu(A) and transformations
µu,A : T 2

u(A) → Tu(A) natural in u and A, such that each (Tu, ηu, µu) forms a monad. The
formal monads on C as defined in Section 4 are ZI(C)-indexed monads. The next lemma
provides conditions under which indexed monads induce graded monads and vice versa.

Recall that a monoidal category has codiagonals when there is a natural transformation
A⊗A → A that respects the coherence isomorphisms [18].
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▶ Lemma 27. Let E be a monoidal category. If the tensor unit is initial, then an E-indexed
monad induces a E-graded monad. If the tensor product has codiagonals, then an E-graded
monad induces an E-indexed monad. If E is cocartesian, there is a bijective correspondence
between E-graded monads and E-indexed monads.

Proof. Suppose the tensor unit 0 in E is initial. An E-indexed monad (Tu, ηu, µu) then
induces an E-graded monad with the same Tu but ηA = η0,A and µu,v,A given by:

Tu(Tv(A)) Tu⊗0(T0⊗v(A)) T 2
u⊗v(A) Tu⊗v(A)Tu⊗!(T!⊗v(A)) µu⊗v,ATρ−1 (Tλ−1 (A))

Now suppose that E has codiagonals. An E-graded monad (Tu, η, µu,v) then induces an
E-indexed monad with the same Tu but ηu,A = ηA and µu,A given by:

T 2
u(A) Tu⊗u(A) Tu(A)µu,u,A T∇u (A)

If E is cocartesian, these two constructions are each other’s inverse. For example,
µu,A = µu,A because:

Tu+0(T0+u(A)) T 2
u+u(A) Tu+u(A)

T 2
u(A) Tu(A)

T∇u (A)

µu,A

µu+u,A

T 2
∇u

(A)

Tu+!(T!+u(A))

Tρ(Tλ(A))

Also ηA = ηA because ! : 0 → 0 is the identity. The other properties follow from naturality in
u and v. ◀

In particular, it follows that there is no difference between graded monads and indexed
monads over (join-)semilattices.

5 Examples

In this section we discuss three extended examples, showing that localisable monads may
interpret central idempotents as locations in a computer memory (Subsection 5.1), physical
locations in a network of interacting agents (Subsection 5.2), or time in extended processes
(Subsection 5.3). These examples use the following characterisation of central idempotents in
functor categories.

▶ Lemma 28. If C is a category and D is a symmetric monoidal category, then the functor
category [C,D] is again symmetric monoidal under pointwise tensor products. Regarding
ZI(D) as a full subcategory of the slice category D/I, there is an isomorphism of categories:

ZI[C,D] ≃ [C,ZI(D)]

Proof. Let u : U → I be a central idempotent in [C,D]. The functor [C,D] → D that
evaluates at a fixed object C ∈ C is strong monoidal and so preserves central idempotents.
Hence each component uC : U(C) → I represents a central idempotent in D. This is functorial
and gives one direction of the isomorphism.

Conversely, let F : C → ZI(D) be a functor. Define U : C → D by U(C) = dom(F (C))
and u : U ⇒ I by uC = F (C). This is functorial and gives the other direction of the
isomorphism. It is clear that these two assignments are inverses. ◀
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5.1 Quantum buffer
The (global) state monad on Set is a well-known monad that combines the properties of the
reader and writer monads to implement computational side-effect in functional programming.
It is defined as T (−) = S ⊸ (− × S) for a state object S ∈ Set. For example, to store one
bit, take S = {0, 1}. The central idempotents of Set are (represented by) the empty set ∅
and the singleton set 1. It follows that the (global) state monad is trivially localisable. This
example is trivial but can be expanded in several ways:
1. Expanded to the category Setn, whose objects are n-tuples of sets and morphisms are

n-tuples of functions. The state monad on some object A = (A1, . . . , An) in Setn is

T (A1, . . . , An) = (S1, . . . , Sn) ⊸
(
(A1, . . . , An) × (S1, . . . , Sn))

for a chosen state object S = (S1, . . . , Sn) ∈ Setn. For example, to store n bits, take
S1 = · · · = Sn = {0, 1}. It follows from Lemma 28 that ZI(Setn) ≃ 2n. While Setn is
symmetric monoidal closed, the state monad does not satisfy T (A⊸ U) = T (A) ⊸ T (U)
as in Example 14. There is still a strength, by currying the evaluation:

T (A1, . . . , An)×(U1, . . . , Un)×(S1, . . . , Sn) → (S1, . . . , Sn)×(A1, . . . , An)×(U1, . . . , Un)

We have not discussed commutativity yet, but note that this strength is commutative in a
sense made clear in Definition 34 below. Conceptually, this means that the computational
side-effects modelled by a state monad “over” a region (U1, . . . , Un) are independent of
those modelled by (V1, . . . , Vn), assuming that (U1, . . . , Un) × (V1, . . . , Vn) = 0.

2. The localisable state monad of the previous point does not just work for cartesian closed
categories such as Setn, but also for exponentiable objects in a symmetric monoidal
category. For example, we can replicate it in the category Hilb of Hilbert spaces and
completely positive linear maps used in quantum computation [16]. To store one qubit,
take S = C2. The monad then becomes T (−) = S∗ ⊗−⊗S, where S∗ = Hilb(S,C) is the
dual Hilbert space, which is isomorphic to T (A) = A⊗M2, where M2 is the Hilbert space
of complex 2-by-2 matrices. Similarly, to store n qubits, move to Hilbn. We can now see
a phenomenon that didn’t occur for cartesian categories: rather than a quantum memory,
this monad models a quantum buffer of n qubits, because there is no entanglement
between the different qubits. Because ZI(Hilb) = {0,C}, again ZI(Hilbn) ≃ 2n. The
strength map is yet again given by the curry of the evaluation map, which makes T (−) a
commutative localisable monad in the sense of Definition 34 below.

3. We can also promote the (global) state monad on Set in another direction, namely from
n = 1 or finite n to an arbitrary topological space X indexing the bits to be stored.
Consider the category Sh(X) of (Set-valued) sheaves on X, take S to be the constant
sheaf S(U) = {0, 1}, and define T (−) = S ⊸ (− ⊗ S). As in Example 3, the central
idempotents correspond to open subsets U ⊆ X, and this monad is still localisable. Its
stalks (as discussed in Remark 20) are the simple (global) state monads on Set storing a
single bit each.

4. Points 2 and 3 combine to model a quantum buffer over an arbitrary locally compact
Hausdorff topological space X. Consider the category HilbC0(X) of Hilbert modules over
C0(X), take S to be Hilbert module C0(X,C2) of continuous functions X → C2 that
vanish at infinity, and define T (−) = S∗ ⊗ − ⊗ S. As in Example 4, central idempotents
are open subsets U ⊆ X. Again, this monad is localisable, with T∥U = S∗

u ⊗ − ⊗ Su for
Su = C0(U,C2). In fact, this example is related to the one in point 3, as Hilbert modules
over C0(X) correspond to a Hilbert space internal to the topos Sh(X) by Takahashi’s
Theorem [2, 15].
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5.2 Concurrent processes
Suppose M1 is a monoid of actions that some agent 1 can perform, and M2 is a monoid of
actions that an agent 2 can perform. They could, for example, be free monoids over sets
of atomic actions. Then we can form the coproduct M1 + M2 of monoids, and quotient
out a congruence that specifies ab = ba for a ∈ M1 and b ∈ M2 when actions a and b are
independent, to get the monoid M of Mazurkiewicz traces [8, 37]. Now M localises to M1
by projections M → Mi that disregard actions of the other agent.

The following lemma engineers a single category with two central idempotents and a
monoid, that localises to the given ones. The idea is to take a product of categories, but to
add silent actions, that enforce the order in which both agents’ actions occur, as in the pi
calculus [27].

▶ Lemma 29. Let M1 and M2 be monoids in symmetric monoidal categories C1 and C2 that
have an initial object 0 satisfying A⊗ 0 ≃ 0 for all objects A. There is a symmetric monoidal
category C with a monoid M and central idempotents u1, u2, that allows an isomorphism
C∥ui ≃ Ci of monoidal categories under which Mi corresponds with C∥ui≤1(M).

If Ci does not yet have an initial object 0 satisfying A⊗ 0 ≃ 0, we may freely adjoin one to
obtain a well-defined symmetric monoidal category.

Proof. First construct a new category C′. Objects are pairs (A,B) of A ∈ C1 and B ∈ C2.
Morphisms (A,B) → (A′, B′) include pairs (f, g) of f ∈ C1(A,A′) and g ∈ C2(B,B′), to
which we freely adjoin morphisms τA,B : (A,B) → (A,B) for each object (A,B). Thus
morphisms are finite lists

(
(f1, g1), τ1, . . . , τn−1, (fn, gn)

)
where the domain of τn is the

codomain of fn ⊗ gn. Composition concatenates and then contracts:(
(f ′

1, g
′
1), τ ′

1, . . . , (f ′
n, g

′
n)

)
◦

(
(f1, g1), τ1, . . . , (fm, gm)

)
=

(
(f1, g1), τ1, . . . , (f ′

1 ◦ fm, g
′
1 ◦ gm), τ, . . . , (f ′

n, g
′
n)

)
Defining identity to be the trivial list (id[A], id[B]) makes C′ into a well-defined category.

Next, take the free symmetric monoidal category C′′ on C′. Objects of C′′ are finite
lists of objects of C′, and morphisms are pairs (π, h1, . . . , hn) of a permutation π of list
indices and a list of morphisms in C′; see for example [1]. Finally, consider the generalised
equivalence relation [4] on C′′ generated by

(I, 0) ⊗ τA,B ∼ (A, 0)
(0, I) ⊗ τA,B ∼ (0, B)(

π, (f1, g1), (f2, g2)
)

∼ (σ, (f1 ⊗ f2, g1 ⊗ g2))

where π is the bijection 1 7→ 2 and 2 7→ 1 on {1, 2}. This is a symmetric monoidal congruence,
so C = C′′/∼ is a well-defined symmetric monoidal category.

Because 0 is initial and A ⊗ 0 = 0 in Ci, the objects (I, 0) and (0, I) in C′ become
central idempotents u1, u2 in C, and moreover (A,B) 7→ [A]∼ is an isomorphism C∥u1 ≃ C1
and similarly for u2. Finally, M = (M1,M2) is a monoid in C, that localises to Mi by
construction. ◀

In the proof of the previous lemma, we could alternatively have described C as consisting
of formal string diagrams generated by C1 × C2 and the silent actions τA,B [6], or as terms
in a formal syntactic language [19].
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▶ Example 30. Let Mi be monoids in Ci = Set. They induce writer monads Ti(A) = Mi ⊗A
on Ci. Now the monoid M in the category C of the previous lemma induces a writer monad
T on C. The monad T is localisable by Example 14, and T∥i corresponds to Ti under
the isomorphism C∥i ≃ Ci. Thus T tracks the agents’ actions as side effects during a
(distributed) computation.

It seems possible to extend this example to a network where the communicating agents
form the points of an arbitrary topological space.

5.3 Stochastic processes
Write Meas for the category of measurable spaces and measurable functions. This is a
symmetric monoidal category, where the tensor unit is the singleton set with its unique
σ-algebra, and the tensor product of two measurable spaces is the cartesian product of the
sets with the tensor product of the σ-algebras. The monoidal category Meas has only two
central idempotents: the empty set ∅, and the tensor unit 1 itself.

Instead, consider the functor category [N,Meas], where the partially ordered set N is
considered as a category by having a morphism m → n if and only if m ≤ n. Its objects
are sequences X1, X2, X3, . . . of measurable spaces. Lemma 28 shows that this category
has many more central idempotents. It follows that central idempotents u : U ⇒ 1 in
[N,Meas] correspond to upward-closed subsets of N ∪ {∞}, or more succinctly, to elements
of n ∈ N ∪ {∞}, by

U(m) =
{

∅ if m < n

1 if m ≥ n

The Giry monad G : Meas → Meas takes a measurable space to the set of probability
measures on it [13]. It extends to a monad on [N,Meas].

▶ Example 31. The monad Ĝ = G ◦ (−) on [N,Meas] is localisable, where the maps
Ĝ(X) ⊗ U ⇒ Ĝ(X ⊗ U) can simply be taken to be identities (because G(∅) = ∅). The
restricted category [N,Meas]∥n is [{n, n+ 1, . . .},Meas], and the monad Ĝ∥n is simply the
restriction of Ĝ to {n, n+ 1, . . .}.

The adjunction between Meas and the Kleisli category Kl(G) lifts to an adjunction
between [N,Meas] and [N,Kl(G)]. The latter is not equivalent to the Kleisli category of Ĝ
because the functor [N,Meas] → [N,Kl(G)] that turns a sequence of elements of measurable
spaces into a sequence of Dirac measures is not essentially surjective [36, Theorem 9].

The objects of [N,Meas] are stochastic processes [24, 13, 11]. Instead of (N,≤), we could
equally well have taken continuous time (R≥0,≤). In fact, we could also have regarded the
monoid (N,+, 0) or (R≥0,+, 0) as a one-object category. Then [N,Kl(G)] would consist of
stationary processes, but the central idempotents would remain the same by Lemma 28:
ideals of N or R≥0 under + are also upward-closed subsets.

Rather than stochastic (Markov) processes, that depend on the history thus far (one time
step ago only), we could have taken more interesting partially ordered sets than the totally
ordered ones N and R≥0.

6 Algebras

Let C be a symmetric monoidal category. As we have seen in Section 4, a localisable
monad T : C → C is equivalently described as a formal monad T∥− in the 2-category
K = [ZI(C)op,Cat]. What are its formal (Eilenberg-Moore) algebras?
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The general answer is described in [23, 35]. The formal algebra category is an object of K
satisfying the following. For any object X ∈ K, the formal monad T∥− induces a (concrete)
monad K(X,T∥−) on the category K(X,C∥−); this monad sends a natural transformation
β : X ⇒ C∥− to the natural transformation with components T∥u ◦ βu : Xu → C∥u. This
(concrete) monad has a (concrete) Eilenberg-Moore category of algebras. Objects are pairs
of a natural transformation β and a modification θ of type

C∥u

Xu C∥u

βu T ∥u

βu

θu

(18)

satisfying the algebra laws. Morphisms are modifications φ : β ⇛ β′ satisfying:

Xu

C∥u

C∥u

βu

T ∥u

βu β′
u

θu φu =

Xu

C∥u

C∥u

βu

T ∥u

β′
u β′

u

φu

θ′
u

(19)

This defines the object-part of a 2-functor Kop → Cat. Now A ∈ K is the formal algebra
object of the formal monad T∥− when this 2-functor is naturally isomorphic to K(−, A).

▶ Proposition 32. Let T be a localisable monad on a symmetric monoidal category C. The
formal monad T∥− in [ZI(C)op,Cat] has a formal algebra object A∥− where A∥u = Alg(T∥u)
is the category of algebras of T∥u.

Proof. If u ≤ v then the monad morphism C∥u≤v of Lemma 18 induces a functor A∥v → A∥u,
so A is a well-defined object of K = [ZI(C)op,Cat]. Now, for an object X ∈ K, the hom-
category K(X,A) has as objects natural transformations βu : Xu → Alg(T∥u). But the
objects of Alg(T∥u) are themselves morphisms θu : T∥u(B) → B in C∥u, that furthermore
satisfy the algebra laws. These assemble into a modification satisfying (18). It is labour-
intensive but straightforward to verify that the morphisms of Alg(T∥u) similarly match
modifications satisfying (19), and that this in fact gives a 2-natural isomorphism to A∥−.
Thus A∥− is a formal algebra object. ◀

Similarly, a formal Kleisli algebra object of the formal monad T∥− is characterised
in [23, 35] as a formal algebra object in the 2-category [ZI(C)op,Catop], where Catop has
reversed the 1-cells but not the 2-cells of Cat.

▶ Corollary 33. Let T be a localisable monad on a symmetric monoidal category C. The
formal monad T∥− in [ZI(C)op,Cat] has a formal Kleisli object K∥− where K∥u = Kl(T∥u)
is the Kleisli category of T∥u. ◀

A Kleisli category of a commutative monad on a symmetric monoidal category is again
symmetric monoidal [7]. It would be interesting to see if there is a notion that stands to
localisability as commutativity stands to strength, that guarantees that the formal Kleisli
algebra object of the previous corollary is a monoid in K = [ZI(C)op,Cat]. We leave this for
future work, but give a tentative (re)definition now.
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▶ Definition 34. A localisable monad T on a symmetric monoidal category C is commutative
when:

T (A) ⊗ U ⊗ V T (A⊗ U) ⊗ V T (A⊗ U ⊗ V )

T (A) ⊗ V ⊗ U T (A⊗ V ) ⊗ U T (A⊗ V ⊗ U)

T (A)⊗σU,V

stA,V ⊗U stA⊗V,U

T (A⊗σV,U )

stA,U ⊗V stA⊗U,V

(20)

It follows from this definition that if u ∧ v = 0, then the computational side-effects
modeled by Tu and Tv do not influence each other. Intuitively, side-effects Tu and Tv that
act in disjoint areas must be independent of each other.

7 Further work

There are several interesting directions for further research.
We have decomposed a localisable monad into monads on local monoidal categories, but
can a monad on a local monoidal category be decomposed further? For example, the local
state monad [29] is based on the presheaf category [Inj,Set]. Its central idempotents
correspond to natural numbers, topologised by saying that a subset is open when it
is upward-closed under the usual ordering of natural numbers. This topological space
is already local: every net converges to the focal point 0. The “decomposition” using
coends of [29] relies on the base category [Inj,Set] having much more structure rather
than just a monoidal category. The successor function of natural numbers there affords
the possibility to allocate fresh locations. Our example of local states in Section 5.1
completely ignored this possibility. Can this extra structure be axiomatised – using open
sets rather than points – and used for a further decomposition?
Two monads on the same base category can be composed as soon as there is a distributive
law between them [3, 38]. When does a distributive law respect the localisable nature
of the monads, and how does it interact with their decomposition into monads on local
monoidal categories?
More generally than monads, when is a PROP localisable, and how does a localisable
PROP decompose into local ones [22, 33]?
Formal monads form a bridge between localisable monads and the local-to-global approach
to providing a fine-grained structure over monads. Can this relationship be made more
constructive? Given monads Ti on possibly different monoidal base categories Ci, can we
construct a monad T on a monoidal category C with central idempotents i such that
C∥i ≃ Ci and T∥i ≃ Ti? The free construction of Lemma 29 is an initial step in this
direction; can it be given a more elegant concrete description, and extended to arbitrary
topogical spaces?
Is there a notion that stands to localisability as commutativity stands to strength, that
guarantees that the formal Kleisli object of Corollary 33 is a monoid in [ZI(C)op,Cat]?
Does it connect to partial commutativity as in the Mazurkiewicz traces of Section 5.2?
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Programs with a continuous state space or that interact with physical processes often require notions
of equivalence going beyond the standard binary setting in which equivalence either holds or does
not hold. In this paper we explore the idea of equivalence taking values in a quantale V, which
covers the cases of (in)equations and (ultra)metric equations among others.
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1 Introduction

Programs frequently act over a continuous state space or interact with physical processes
like time progression or the movement of a vehicle. Such features naturally call for notions
of approximation and refinement integrated in different aspects of program equivalence.
Our paper falls in this line of research. Specifically, our aim is to integrate notions of
approximation and refinement into the equational system of linear λ-calculus [4, 28, 29].

The core idea that we explore in this paper is to have equations t =q s labelled by
elements q of a quantale V . This covers a wide range of situations, among which the cases of
(in)equations [23, 2] and metric equations [30, 31]. The latter case is perhaps less known: it
consists of equations t =ϵ s labelled by a non-negative rational number ϵ which represents the
‘maximum distance’ that the two terms t and s can be from each other. In order to illustrate
metric equations, consider a programming language with a (ground) type X and a signature
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16:2 An Internal Language for Categories Enriched over Generalised Metric Spaces

of operations Σ = {waitn : X → X | n ∈ N} that model time progression over computations
of type X. Specifically, waitn(x) reads as “add a latency of n seconds to the computation x”.
In this context, the following axioms involving metric equations arise naturally:

wait0(x) =0 x waitn(waitm(x)) =0 waitn+m(x)
ϵ = |m − n|

waitn(x) =ϵ waitm(x) (1)

An equation t =0 s states that the terms t and s are exactly the same and equations t =ϵ s

state that t and s differ by at most ϵ seconds in their execution time.

Contributions. In this paper we introduce an equational deductive system for linear λ-
calculus in which equations are labelled by elements of a quantale V . By using key features of
a quantale’s structure, we show that this deductive system is sound and complete for a class
of enriched symmetric monoidal closed categories (i.e. enriched autonomous categories). In
particular, if we fix V to be the Boolean quantale this class of categories consists of autonomous
categories enriched over partial orders. If we fix V to be the (ultra)metric quantale, this
class of categories consists of autonomous categories enriched over (ultra)metric spaces. The
aforementioned example of wait calls fits in the setting in which V is the metric quantale.
Our result provides this example with a sound and complete metric equational system, where
the models are all those autonomous categories enriched over metric spaces that can soundly
interpret the axioms of wait calls (1).

The next contribution of our paper falls in one of the major topics of categorical logic:
to establish logical descriptions of certain classes of categories. A famous result of this
kind is the correspondence between λ-calculus and Cartesian closed categories which states
that the former is the internal language of the latter [24] – such a correspondence allows to
study Cartesian closed categories by means of logical tools. An analogous result is presented
in [28, 29] for linear λ-calculus and symmetric monoidal closed (i.e. autonomous) categories.
We show that linear λ-calculus equipped with a V-equational system is the internal language
of autonomous categories enriched over ‘generalised metric spaces’.

Outline. Section 2 recalls linear λ-calculus, its equational system, and the famous corres-
pondence to autonomous categories, via soundness, completeness, and internal language
theorems. The contents of this section are slight adaptations of results presented in [28, 4],
the main difference being that we forbid the exchange rule to be explicitly part of linear
λ-calculus (instead it is only admissible). This choice is important to ensure that judgements
in the calculus have unique derivations, which allows us to refer to their interpretations
unambiguously [37]. Section 3 presents the main contributions of this paper. It walks a
path analogous to Section 2, but now in the setting of V-equations (i.e. equations labelled
by elements of a quantale V). As we will see, the semantic counterpart of moving from
equations to V-equations is to move from categories to categories enriched over V-categories.
The latter, often regarded as generalised metric spaces, are central entities in a fruitful area
of enriched category theory that aims to treat uniformly different kinds of “structured sets”,
such as partial orders, fuzzy partial orders, and (ultra)metric spaces [25, 38, 39]. Our results
are applicable to all these examples. Section 4 presents some examples of V-equational
axioms and corresponding models. Specifically, we will revisit the axioms of wait calls (1)
and consider an inequational variant. Then we will study a metric axiom for probabilistic
programs and show that the category of Banach spaces and short linear maps is a model
for the resulting metric theory. We will additionally use this example to illustrate how our
deductive system allows to compute an approximate distance between two probabilistic
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programs easily as opposed to computing an exact distance “semantically” which tends
to involve quite complex operators. Finally, Section 5 establishes a functorial connection
between our results and previous well-known semantics for linear logic [11, 29], and concludes
with a brief exposition of future work. We assume knowledge of λ-calculus and category
theory [28, 29, 24, 27]. Proofs omitted in the text are available in the extended version of
this paper [10].

Related work. Several approaches to incorporating quantitative information to program-
ming languages have been explored in the literature. Closest to this work are various
approaches targeted at λ-calculi. In [7, 8] a notion of distance called context distance is
developed, first for an affine, then for a more general λ-calculus, with probabilistic programs
as the main motivation. [14] considers a notion of quantale-valued applicative (bi)similarity,
an operational coinductive technique used for showing contextual equivalence between two
programs. Recently, [34] presented several Cartesian closed categories of generalised metric
spaces that provide a quantitative semantics to simply-typed λ-calculus based on a general-
isation of logical relations. None of these examples reason about distances in a quantitative
equational system, and in this respect our work is closer to the metric universal algebra
developed in [30, 31].

A different approach consists in encoding quantitative information via a type system.
In particular, graded (modal) types [16, 13, 32] have found applications in e.g. differential
privacy [35] and information flow [1]. This approach is to some extent orthogonal to ours as
it mainly aims to model coeffects, whilst we aim to reason about the intrinsic quantitative
nature of λ-terms acting e.g. on continuous or ordered spaces.

Quantum programs provide an interesting example of intrinsically quantitative programs,
by which we mean that the metric structure on quantum states does not arise from (co)effects.
Recently, [19] showed how the issue of noise in a quantum while-language can be handled
by developing a deductive system to determine how similar a quantum program is from its
idealised, noise-free version; an approach very much in the spirit of this work.

2 An internal language for autonomous categories

In this section we briefly recall linear λ-calculus, which can be regarded as a term assignment
system for the exponential free, multiplicative fragment of intuitionistic linear logic. Then
we recall that it is sound and complete w.r.t. autonomous categories, and also that it is an
internal language for such categories. We mention only what is needed to present our results,
the interested reader will find a more detailed exposition in [28, 4, 29]. Let us start by fixing
a class G of ground types. The grammar of types for linear λ-calculus is given by:

A ::= X ∈ G | I | A ⊗ A | A ⊸ A

We also fix a class Σ of sorted operation symbols f : A1, . . . ,An → A with n ≥ 1. As usual,
we use Greek letters Γ, ∆, E, . . . to denote typing contexts, i.e. lists x1 : A1, . . . , xn : An of
typed variables such that each variable xi occurs at most once in x1, . . . , xn.

We will use the notion of a shuffle for building a linear typing system such that the
exchange rule is admissible and each judgement Γ ▷ v : A (details about these below) has
a unique derivation – this will allow us to refer to a judgement’s denotation JΓ ▷ v : AK
unambiguously. By shuffle we mean a permutation of typed variables in a context sequence
Γ1, . . . , Γn such that for all i ≤ n the relative order of the variables in Γi is preserved [37].
For example, if Γ1 = x : A, y : B and Γ2 = z : C then z : C, x : A, y : B is a shuffle but
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16:4 An Internal Language for Categories Enriched over Generalised Metric Spaces

y : B, x : A, z : C is not, because we changed the order in which x and y appear in Γ1. As
explained in [37] (and also in the proof of Lemma 1), such a restriction on relative orders is
crucial for judgements having unique derivations. We denote by Sf(Γ1; . . . ; Γn) the set of
shuffles on Γ1, . . . , Γn.

The term formation rules of linear λ-calculus are listed in Fig. 1. They correspond to
the natural deduction rules of the exponential free, multiplicative fragment of intuitionistic
linear logic.

▶ Lemma 1. All judgements Γ ▷ v : A have a unique derivation.

Substitution is defined in the expected way, and the following result is standard.

▶ Lemma 2 (Exchange and Substitution). For every judgement Γ, x : A, y : B, ∆ ▷ v : C we
can derive Γ, y : B, x : A, ∆ ▷ v : C. For all judgements Γ, x : A ▷ v : B and ∆ ▷ w : A we
can derive Γ, ∆ ▷ v[w/x] : B.

We now recall the interpretation of judgements Γ ▷ v : A in a symmetric monoidal closed
(autonomous) category C. But before proceeding with this description, let us fix notation
for some of the constructions available in autonomous categories. For all C-objects X, Y, Z,
sw : X ⊗ Y → Y ⊗ X denotes the symmetry morphism, λ : I ⊗ X → X the left unitor,
app : (X ⊸ Y ) ⊗ X → Y the application, and α : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z the left
associator. Moreover for all C-morphisms f : X ⊗ Y → Z we denote the corresponding
curried version (right transpose) by f : X → (Y ⊸ Z).

For all ground types X ∈ G we postulate an interpretation JXK as a C-object. Types are
then interpreted by induction over the type structure of linear λ-calculus, using the tensor
⊗ and exponential ⊸ constructs of autonomous categories. Given a non-empty context
Γ = Γ′, x : A, its interpretation is defined by JΓ′, x : AK = JΓ′K ⊗ JAK if Γ′ is non-empty and
JΓ′, x : AK = JAK otherwise. The empty context − is interpreted as J−K = I where I is the
unit of ⊗ in C. To keep notation simple, given X1, . . . , Xn ∈ C we write X1 ⊗ · · · ⊗ Xn for
the n-tensor (. . . (X1 ⊗ X2) ⊗ . . . ) ⊗ Xn, and similarly for C-morphisms.

We will also need some ‘housekeeping’ morphisms to handle interactions between context
interpretation and the autonomous structure of C. Specifically, given contexts Γ1, . . . , Γn we
denote by spΓ1;...;Γn

: JΓ1, . . . , ΓnK → JΓ1K ⊗ · · · ⊗ JΓnK the morphism that splits JΓ1, . . . , ΓnK
into JΓ1K⊗· · ·⊗JΓnK, and by jnΓ1;...;Γn

the corresponding inverse. Given a context Γ, x : A, y :
B, ∆ we denote by exchΓ,x:A,y:B,∆ : JΓ, x : A, y : B, ∆K → JΓ, y : B, x : A, ∆K the morphism
corresponding to the permutation of the variable x : A with y : B. Whenever convenient we
will drop variable names in the subscripts of sp, jn, and exch. For a context E ∈ Sf(Γ1, . . . , Γn)
the morphism shE : JEK → JΓ1, . . . , ΓnK denotes the corresponding shuffling morphism.

For every operation symbol f : A1, . . . ,An → A in Σ we postulate an interpretation
JfK : JA1K ⊗ · · · ⊗ JAnK → JAK as a C-morphism. The interpretation of judgements is defined
by induction over the structure of judgement derivation according to the rules in Fig. 2.

As detailed in [4, 28, 29], linear λ-calculus comes equipped with a class of equations
(Fig. 3), specifically equations-in-context Γ ▷ v = w : A, that corresponds to the axiomatics
of autonomous categories. As usual, we omit the context and typing information of the
equations in Fig. 3, which can be reconstructed in the usual way.

▶ Theorem 3. The equations presented in Fig. 3 are sound w.r.t. judgement interpretation.
Specifically if Γ ▷ v = w : A is one of the equations in Fig. 3 then JΓ ▷ v : AK = JΓ ▷ w : AK.

▶ Definition 4 (Linear λ-theories). Consider a tuple (G, Σ) consisting of a class G of ground
types and a class Σ of sorted operation symbols. A linear λ-theory ((G, Σ), Ax) is a triple
such that Ax is a class of equations-in-context over linear λ-terms built from (G, Σ).
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Γi ▷ vi : Ai f : A1, . . . ,An → A ∈ Σ E ∈ Sf(Γ1; . . . ; Γn)
E ▷ f(v1, . . . , vn) : A

(ax)
x : A▷ x : A (hyp)

− ▷ ∗ : I (Ii)
Γ ▷ v : I ∆ ▷ w : A E ∈ Sf(Γ; ∆)

E ▷ v to ∗ . w : A (Ie)

Γ ▷ v : A ∆ ▷ w : B E ∈ Sf(Γ; ∆)
E ▷ v ⊗ w : A ⊗ B (⊗i)

Γ ▷ v : A ⊗ B ∆, x : A, y : B▷ w : C E ∈ Sf(Γ; ∆)
E ▷ pm v to x ⊗ y. w : C (⊗e)

Γ, x : A▷ v : B
Γ ▷ λx : A. v : A ⊸ B (⊸i)

Γ ▷ v : A ⊸ B ∆ ▷ w : A E ∈ Sf(Γ; ∆)
E ▷ v w : B (⊸e)

Figure 1 Term formation rules for linear λ-calculus.

JΓi ▷ vi : AiK = mi f : A1, . . . ,An → A ∈ Σ E ∈ Sf(Γ1 . . . Γn)
JE ▷ f(v1, . . . , vn) : AK = JfK · (m1 ⊗ · · · ⊗ mn) · spΓ1;...;Γn

· shE Jx : A▷ x : AK = idJAK

J− ▷ ∗ : IK = idJIK

JΓ ▷ v : IK = m J∆ ▷ w : AK = n E ∈ Sf(Γ; ∆)
JE ▷ v to ∗ . w : AK = n · λ · (m ⊗ id) · spΓ;∆ · shE

JΓ ▷ v : AK = m J∆ ▷ w : BK = n E ∈ Sf(Γ; ∆)
JE ▷ v ⊗ w : A ⊗ BK = (m ⊗ n) · spΓ;∆ · shE

JΓ, x : A▷ v : BK = m

JΓ ▷ λx : A. v : A ⊸ BK = (m · jnΓ;A)

JΓ ▷ v : A ⊗ BK = m J∆, x : A, y : B▷ w : CK = n E ∈ Sf(Γ; ∆)
JE ▷ pm v to x ⊗ y. w : CK = n · jn∆;A;B ·α · sw ·(m ⊗ id) · spΓ;∆ · shE

JΓ ▷ v : A ⊸ BK = m J∆ ▷ w : AK = n E ∈ Sf(Γ; ∆)
JE ▷ v w : BK = app · (m ⊗ n) · spΓ;∆ · shE

Figure 2 Judgement interpretation on an autonomous category C.

pm v ⊗ w to x ⊗ y. u = u[v/x, w/y]
pm v to x ⊗ y. u[x ⊗ y/z] = u[v/z]

∗ to ∗ . v = v

v to ∗ . w[∗/z] = w[v/z]
(a) Monoidal structure.

(λx : A. v) w = v[w/x]
λx : A.(v x) = v

(b) Higher-order structure.
u[v to ∗ . w/z] = v to ∗ . u[w/z]

u[pm v to x ⊗ y. w/z] = pm v to x ⊗ y. u[w/z]
(c) Commuting conversions.

Figure 3 Equations corresponding to the axiomatics of autonomous categories.
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The elements of Ax are called axioms (of the theory). Let Th(Ax) be the smallest congruence
that contains Ax, the equations listed in Fig. 3, and that is closed under the exchange and
substitution rules. We call the elements of Th(Ax) theorems (of the theory).

▶ Definition 5 (Models of linear λ-theories). Consider a linear λ-theory ((G, Σ), Ax) and an
autonomous category C. Suppose that for each X ∈ G we have an interpretation JXK that
is a C-object and analogously for the operation symbols. This interpretation structure is a
model of the theory if all axioms are satisfied by the interpretation.

Next let us turn our attention to the correspondence between linear λ-calculus and
autonomous categories, established via soundness, completeness, and internal language
theorems. Despite the proofs of such theorems already being detailed in [28, 4, 29], we
decided to briefly sketch them below to render the presentation of some of our own results
self-contained.

▶ Theorem 6 (Soundness & Completeness). Consider a linear λ-theory T . An equation
Γ ▷ v = w : A is a theorem of T iff it is satisfied by all models of the theory.

Proof sketch. Soundness follows by induction over the rules that define Th(Ax) (Definition 4)
and by Theorem 3. Completeness is based on the idea of a Lindenbaum-Tarski algebra: it
follows from building the syntactic category Syn(T ) of T (also known as term model), showing
that it possesses an autonomous structure and also that equality JΓ ▷ v : AK = JΓ ▷ w : AK
in the syntactic category is equivalent to provability Γ ▷ v = w : A in the theory.

The syntactic category of T has as objects the types of T and as morphisms A → B the
equivalence classes (w.r.t. provability) of terms v for which we can derive x : A▷ v : B. ◀

Next let us focus on the topic of internal languages, for which the following result is quite
useful.

▶ Theorem 7. Consider a linear λ-theory T and a model of T on an autonomous category
C. The model induces a functor F : Syn(T ) → C that (strictly) preserves the autonomous
structure.

Proof sketch. Consider a model of T on a category C. Then for any judgement x : A▷ v : B,
the induced functor F sends the equivalence class [v] into Jx : A▷ v : BK. ◀

An autonomous category C induces a linear λ-theory Lang(C) whose ground types X ∈ G

are the objects of C and whose signature Σ of operation symbols consists of all the morphisms
in C plus certain isomorphisms that we describe in (2). The axioms of Lang(C) are all the
equations satisfied by the obvious interpretation in C. In order to explicitly distinguish the
autonomous structure of C from the type structure of Lang(C) let us denote the tensor of C
by ⊗̂, the unit by Î, and the exponential by ⊸̂. Consider then the following map on types:

i(I) = Î i(X) = X i(A ⊗ B) = i(A) ⊗̂ i(B) i(A ⊸ B) = i(A) ⊸̂ i(B) (2)

For each type A we add an isomorphism A ≃ i(A) to the theory Lang(C).

▶ Theorem 8 (Internal language). For every autonomous category C there exists an equivalence
of categories Syn(Lang(C)) ≃ C.

Proof sketch. By construction, we have an interpretation of Lang(C) in C which behaves
as the identity for operation symbols and ground types. This interpretation is a model of
Lang(C) on C and by Theorem 7 we obtain a functor Syn(Lang(C)) → C. The functor in the
opposite direction behaves as the identity on objects and sends a C-morphism f into [f(x)].
The equivalence of categories is then shown by using the aforementioned isomorphisms which
connect the type constructors of Lang(C) with the autonomous structure of C. ◀
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3 From equations to V-equations

We now extend the results of the previous section to the setting of V-equations.

3.1 A V-equational deductive system
Let V denote a commutative and unital quantale, ⊗ : V × V → V the corresponding binary
operation, and k the corresponding unit [33]. As mentioned in the introduction, V induces
the notion of a V-equation, i.e. an equation t =q s labelled by an element q of V. This
subsection explores this concept by introducing a V-equational deductive system for linear
λ-calculus and a notion of a linear Vλ-theory.

Let us start by recalling two definitions concerning ordered structures [15, 17] and then
explain their relevance to our work.

▶ Definition 9. Consider a complete lattice L. For every x, y ∈ L we say that y is way-below
x (in symbols, y ≪ x) if for every subset X ⊆ L whenever x ≤

∨
X there exists a finite

subset A ⊆ X such that y ≤
∨

A. The lattice L is called continuous iff for every x ∈ L,

x =
∨

{y | y ∈ L and y ≪ x}

▶ Definition 10. Let L be a complete lattice. A basis B of L is a subset B ⊆ L such that for
every x ∈ L the set B ∩ {y | y ∈ L and y ≪ x} is directed and has x as the least upper bound.

From now on we assume that the underlying lattice of V is continuous and has a basis B

which is closed under finite joins, the multiplication of the quantale ⊗ and contains the
unit k. These assumptions will allow us to work only with a specified subset of V-equations
chosen e.g. for computational reasons, such as the finite representation of values q ∈ V .

▶ Example 11. The Boolean quantale (({0 ≤ 1}, ∨), ⊗ := ∧) is finite and thus continuous [15].
Since it is continuous, {0, 1} itself is a basis for the quantale that satisfies the conditions above.
For the Gödel t-norm [12] (([0, 1], ∨), ⊗ := ∧), the way-below relation is the strictly-less
relation < with the exception that 0 < 0. A basis for the underlying lattice that satisfies
the conditions above is the set Q ∩ [0, 1]. Note that, unlike real numbers, rationals numbers
always have a finite representation. For the metric quantale (also known as Lawvere quantale)
(([0, ∞], ∧), ⊗ := +), the way-below relation corresponds to the strictly greater relation with
∞ > ∞, and a basis for the underlying lattice that satisfies the conditions above is the set of
extended non-negative rational numbers. The latter also serves as basis for the ultrametric
quantale (([0, ∞], ∧), ⊗ := max).

We also assume that V is integral, i.e. that the unit k is the top element of V . This will allow
us to establish a smoother theory of V-equations, whilst still covering e.g. all the examples
above. This assumption is common in quantale theory [39].

Recall the term formation rules of linear λ-calculus from Fig. 1. A V-equation-in-context
is an expression Γ ▷ v =q w : A with q ∈ B (the basis of V), Γ ▷ v : A and Γ ▷ w : A. Let ⊤
be the top element in V. An equation-in-context Γ ▷ v = w : A now denotes the particular
case in which both Γ▷ v =⊤ w : A and Γ▷w =⊤ v : A. For the case of the Boolean quantale,
V-equations are labelled by {0, 1}. We will see that Γ ▷ v =1 w : A can be treated as an
inequation Γ ▷ v ≤ w : A, whilst Γ ▷ v =0 w : A corresponds to a trivial V-equation, i.e. a
V-equation that always holds. For the Gödel t-norm, we can choose Q ∩ [0, 1] as basis and
then obtain what we call fuzzy inequations. For the metric quantale, we can choose the set
of extended non-negative rational numbers as basis and then obtain metric equations in
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the spirit of [30, 31]. Similarly, by choosing the ultrametric quantale (([0, ∞], ∧), ⊗ := max)
with the set of extended non-negative rational numbers as basis we obtain what we call
ultrametric equations.

▶ Definition 12 (Linear Vλ-theories). Consider a tuple (G, Σ) consisting of a class G of
ground types and a class of sorted operation symbols f : A1, . . . ,An → A with n ≥ 1. A
linear Vλ-theory ((G, Σ), Ax) is a tuple such that Ax is a class of V-equations-in-context
over linear λ-terms built from (G, Σ).

v =⊤ v (refl)
v =q w w =r u

v =q⊗r u (trans)
v =q w r ≤ q

v =r w (weak)

∀r ≪ q. v =r w
v =q w (arch)

∀i ≤ n. v =qi w
v =∨qi

w (join)

∀i ≤ n. vi =qi
wi

f(v1, . . . , vn) =⊗qi f(w1, . . . , wn)
v =q w v′ =r w′

v ⊗ v′ =q⊗r w ⊗ w′

v =q w v′ =r w′

pm v to x ⊗ y. v′ =q⊗r pm w to x ⊗ y. w′

v =q w v′ =r w′

v to ∗ . v′ =q⊗r w to ∗ . w′
v =q w

λx : A. v =q λx : A. w

v =q w v′ =r w′

v v′ =q⊗r w w′

Γ ▷ v =q w : A ∆ ∈ perm(Γ)
∆ ▷ v =q w : A

v =q w v′ =r w′

v[v′/x] =q⊗r w[w′/x]

Figure 4 V-congruence rules.

The elements of Ax are the axioms of the theory. Let Th(Ax) be the smallest class that
contains Ax and that is closed under the rules of Fig. 3 and of Fig. 4 (as usual we omit the
context and typing information). The elements of Th(Ax) are the theorems of the theory.

Let us examine the rules in Fig. 4 in more detail. They can be seen as a generalisation of
the notion of a congruence. The rules (refl) and (trans) are a generalisation of equality’s
reflexivity and transitivity. Rule (weak) encodes the principle that the higher the label in
the V-equation, the “tighter” is the relation between the two terms in the V-equation. In
other words, v =r w is subsumed by v =q w, for r ≤ q. This can be seen clearly e.g. with
the metric quantale by reading v =q w as “the terms v and w are at most at distance q from
each other” (recall that in the metric quantale the usual order is reversed, i.e. ≤ := ≥[0,∞]).
(arch) is essentially a generalisation of the Archimedean rule in [30, 31]. It says that if
v =r w for all approximations r of q then it is also the case that v =q w. (join) says that
deductions are closed under finite joins, and in particular it is always the case that v =⊥ w.
All other rules correspond to a generalisation of compatibility to a V-equational setting.

The reader may have noticed that the rules in Fig. 4 do not contain a V-generalisation of
symmetry w.r.t. standard equality. Such a generalisation would be:

v =q w
w =q v

This rule is not present in Fig. 4 because in some quantales V it forces too many V-equations.
For example, in the Boolean quantale the condition v ≤ w would automatically entail w ≤ v
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(due to symmetry); in fact, for this particular case symmetry forces the notion of inequation
to collapse into the classical notion of equation. On the other hand, symmetry is desirable in
the (ultra)metric case because (ultra)metrics need to respect the symmetry equation [17].

▶ Definition 13 (Symmetric linear Vλ-theories). A symmetric linear Vλ-theory is a linear
Vλ-theory whose set of theorems is closed under symmetry.

In the paper’s extended version [10] we further explore how specific families of quantales
are reflected in the V-equational system here introduced, and briefly compare the latter to
metric algebra [30, 31].

3.2 Semantics of V-equations
In this subsection we set the necessary background for presenting a sound and complete
class of models for (symmetric) linear Vλ-theories. We start by recalling basics concepts of
V-categories, which are central in a field initiated by Lawvere in [25] and can be intuitively
seen as generalised metric spaces [38, 18, 39]. As we will see, V-categories provide structure
to suitably interpret V-equations.

▶ Definition 14. A (small) V-category is a pair (X, a) where X is a class (set) and a :
X × X → V is a function that satisfies:

k ≤ a(x, x) and a(x, y) ⊗ a(y, z) ≤ a(x, z) (x, y, z ∈ X)

For two V-categories (X, a) and (Y, b), a V-functor f : (X, a) → (Y, b) is a function f : X → Y

that satisfies the inequality a(x, y) ≤ b(f(x), f(y)) for all x, y ∈ X.

Small V-categories and V-functors form a category which we denote by V-Cat. A V-category
(X, a) is called symmetric if a(x, y) = a(y, x) for all x, y ∈ X. We denote by V-Catsym the
full subcategory of V-Cat whose objects are symmetric. Every V-category carries a natural
order defined by x ≤ y whenever k ≤ a(x, y). A V-category is called separated if its natural
order is anti-symmetric. We denote by V-Catsep the full subcategory of V-Cat whose objects
are separated.

▶ Example 15. For V the Boolean quantale, V-Catsep is the category Pos of partially ordered
sets and monotone maps; V-Catsym,sep is simply the category Set of sets and functions. For
V the metric quantale, V-Catsym,sep is the category Met of extended metric spaces and non-
expansive maps. In what follows we omit the qualifier “extended” in “extended (ultra)metric
spaces”. For V the ultrametric quantale, V-Catsym,sep is the category of ultrametric spaces
and non-expansive maps.

The inclusion functor V-Catsep ↪→ V-Cat has a left adjoint [18]. It is constructed first by
defining the equivalence relation x ∼ y whenever x ≤ y and y ≤ x (for ≤ the natural order
introduced earlier). Then this relation induces the separated V-category (X/∼, ã) where ã

is defined as ã([x], [y]) = a(x, y) for every [x], [y] ∈ X/∼. The left adjoint of the inclusion
functor V-Catsep ↪→ V-Cat sends every V-category (X, a) to (X/∼, ã). This quotienting
construct preserves symmetry, and therefore we automatically obtain the following result.

▶ Theorem 16. The inclusion functor V-Catsym,sep ↪→ V-Catsym has a left adjoint.

Next, we recall notions of enriched category theory [20] instantiated into the setting of
autonomous categories enriched over V-categories. We will use the enriched structure to
give semantics to V-equations between linear λ-terms. First, note that every category V-Cat
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is autonomous with the tensor (X, a) ⊗ (Y, b) := (X × Y, a ⊗ b) where a ⊗ b is defined
as (a ⊗ b)((x, y), (x′, y′)) = a(x, x′) ⊗ b(y, y′) and the set of V-functors V-Cat((X, a), (Y, b))
equipped with the map (f, g) 7→

∧
x∈X b(f(x), g(x)).

▶ Theorem 17. The categories V-Catsym, V-Catsep, and V-Catsym,sep inherit the autonomous
structure of V-Cat whenever V is integral.

Since we assume that V is integral, this last theorem allows us to formally define the notion
of categories enriched over V-categories using [20].

▶ Definition 18. A category C is V-Cat-enriched (or simply, a V-Cat-category) if for all C-
objects X and Y the hom-set C(X, Y ) is a V-category and if the composition of C-morphisms,

( · ) : C(X, Y ) ⊗ C(Y, Z) −→ C(X, Z)

is a V-functor. Given two V-Cat-categories C and D and a functor F : C → D, we call
F a V-Cat-functor if for all C-objects X and Y the map FX,Y : C(X, Y ) → D(FX, F, Y )
is a V-functor. An adjunction C : F ⊣ G : D is called V-Cat-enriched if the underlying
functors F and G are V-Cat-functors and if for all objects X ∈ |C| and Y ∈ |D| there exists
a V-isomorphism D(FX, Y ) ≃ C(X, GY ) natural in X and Y .

If C is a V-Cat-category then C × C is also a V-Cat-category via the tensor operation ⊗ in
V-Cat. We take advantage of this fact in the following definition.

▶ Definition 19. A V-Cat-enriched autonomous category C is an autonomous and V-Cat-
category C such that the bifunctor ⊗ : C × C → C is a V-Cat-functor and the adjunction
(− ⊗ X) ⊣ (X ⊸ −) is a V-Cat-adjunction.

▶ Example 20. Recall that Pos ≃ V-Catsep when V is the Boolean quantale. According to
Theorem 17 the category Pos is autonomous. It follows by general results that the category is
Pos-enriched [6]. It is also easy to see that its tensor is Pos-enriched and that the adjunction
(− ⊗ X) ⊣ (X ⊸ −) is Pos-enriched. Therefore, Pos is an instance of Definition 19. Note also
that Set ≃ V-Catsym,sep for V the Boolean quantale and that Set is an instance of Definition 19.

Recall that Met ≃ V-Catsym,sep when V is the metric quantale. Thus, the category Met is
autonomous (Theorem 17) and Met-enriched [6]. It follows as well from routine calculations
that its tensor is Met-enriched and that the adjunction (− ⊗ X) ⊣ (X ⊸ −) is Met-enriched.
Therefore Met is an instance of Definition 19. An analogous reasoning tells that the category
of ultrametric spaces (enriched over itself) is also an instance of Definition 19.

Finally, recall the interpretation of linear λ-terms on an autonomous category C (Section 2)
and assume that C is V-Cat-enriched. Then we say that a V-equation Γ▷v =q w : A is satisfied
by this interpretation if a(JΓ▷v : AK, JΓ▷w : AK) ≥ q where a : C(JΓK, JAK)×C(JΓK, JAK) → V
is the underlying function of the V-category C(JΓK, JAK).

▶ Theorem 21. The rules listed in Fig. 3 and Fig. 4 are sound for V-Cat-enriched autonomous
categories C. Specifically, if Γ ▷ v =q w : A results from the rules in Fig. 3 and Fig. 4 then
a(JΓ ▷ v : AK, JΓ ▷ w : AK) ≥ q.

Proof. Let us focus first on the equations listed in Fig. 3. Recall that an equation Γ▷v = w : A
abbreviates the V-equations Γ ▷ v =⊤ w : A and Γ ▷ w =⊤ v : A. Moreover, we already
know that the equations listed in Fig. 3 are sound for autonomous categories, specifically if
v = w is an equation of Fig. 3 then JvK = JwK in C (Theorem 3). Thus, by the definition of a
V-category and by the assumption of V being integral (k = ⊤) we obtain a(JvK, JwK) ≥ k = ⊤
and a(JwK, JvK) ≥ k = ⊤.
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Let us now focus on the rules listed in Fig. 4. The first three rules follow from the
definition of a V-category and the transitivity property of ≤. Rule (arch) follows from the
continuity of V, specifically from the fact that q is the least upper bound of all elements r

that are way-below q. Rule (join) follows from the definition of least upper bound. The
remaining rules follow from the definition of the tensor functor ⊗ in V-Cat, the fact that C is
V-Cat-enriched, ⊗ : C × C → C is a V-Cat-functor, and the fact that (− ⊗ X) ⊣ (X ⊸ −) is
a V-Cat-adjunction. For example, for the sixth rule we reason as follows:

a(Jf(v1, . . . , vn)K, Jf(w1, . . . , wn)K)
= a(JfK · (Jv1K ⊗ · · · ⊗ JvnK) · spΓ1;...;Γn

· shE , JfK · (Jw1K ⊗ · · · ⊗ JwnK) · spΓ1;...;Γn
· shE)

≥ a(JfK · (Jv1K ⊗ · · · ⊗ JvnK), JfK · (Jw1K ⊗ · · · ⊗ JwnK))
≥ a(Jv1K ⊗ · · · ⊗ JvnK), (Jw1K ⊗ · · · ⊗ JwnK)
≥ a(Jv1K, Jw1K) ⊗ · · · ⊗ a(JvnK, JwnK)
≥ q1 ⊗ · · · ⊗ qn

where the second step follows from the fact that spΓ1;...;Γn
· shE is a morphism in C and that

C is V-Cat-enriched. The third step follows from an analogous reasoning. The fourth step
follows from the fact that ⊗ : C × C → C is a V-Cat-functor. The last step follows from
the premise of the rule in question. As another example, the proof for the substitution rule
proceeds similarly:

a(Jv[v′/x]K, Jw[w′/x]K)
= a(JvK · jnΓ,A ·(id ⊗Jv′K) · spΓ;∆, JwK · jnΓ,A ·(id ⊗Jw′K) · spΓ;∆)
≥ a(JvK · jnΓ,A ·(id ⊗Jv′K), JwK · jnΓ,A ·(id ⊗Jw′K))
≥ a(id ⊗Jv′K, id ⊗Jw′K) ⊗ a(JvK · jnΓ,A, JwK · jnΓ,A)
≥ a(id ⊗Jv′K, id ⊗Jw′K) ⊗ a(JvK, JwK)
≥ a(id, id) ⊗ a(Jv′K, Jw′K) ⊗ a(JvK, JwK)
= a(Jv′K, Jw′K) ⊗ a(JvK, JwK)
≥ q ⊗ r

The proof for the rule concerning (⊸i) additionally requires the following two facts: if a
V-functor f : (X, a) → (Y, b) is an isomorphism then a(x, x′) = b(f(x), f(x′)) for all x, x′ ∈ X.
For a context Γ, the morphism jnΓ;x:A : JΓK ⊗ JAK → JΓ, x : AK is an isomorphism in C. The
proof for the rule concerning the permutation of variables (exchange) also makes use of the
fact that J∆K → JΓK is an isomorphism. ◀

3.3 Soundness, completeness, and internal language
In this subsection we establish a formal correspondence between linear Vλ-theories and
V-Cat-enriched autonomous categories, via soundness, completeness, and internal language
theorems. A key construct in this correspondence is the quotienting of a V-category into a
separated V-category: we will use it to identify linear λ-terms when generating a syntactic
category (from a linear Vλ-theory) that satisfies the axioms of autonomous categories. This
naturally leads to the following notion of a model for linear Vλ-theories.

▶ Definition 22 (Models of linear Vλ-theories). Consider a linear Vλ-theory ((G, Σ), Ax)
and a V-Catsep-enriched autonomous category C. Suppose that for each X ∈ G we have an
interpretation JXK as a C-object and analogously for the operation symbols. This interpretation
structure is a model of the theory if all axioms in Ax are satisfied by the interpretation.
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Another thing that we need to take into account is the size of categories. In Section 2
we did not assume that autonomous categories should be locally small. In particular
linear λ-theories are able to generate non-(locally small) categories. Now we need to be
stricter because V-Catsep-enriched autonomous categories are always locally small (recall the
definition of V-Catsep). Thus for two types A and B of a Vλ-theory T , consider the class
Values(A,B) of values v such that x : A ▷ v : B. We equip Values(A,B) with the function
a : Values(A,B) × Values(A,B) → V defined by,

a(v, w) =
∨

{q | v =q w is a theorem of T}

It is easy to see that (Values(A,B), a) is a (possibly large) V-category. We then quotient this
V-category into a separated V-category which we suggestively denote by C(A,B) (as detailed
in the proof of the next theorem, C(A,B) will serve as a hom-object of a syntactic category
C generated from a linear Vλ-theory). Following the nomenclature of [26], we call T varietal
if C(A,B) is a small V-category. In the rest of the paper we will only work with varietal
theories and locally small categories.

▶ Theorem 23 (Soundness & Completeness). Consider a varietal Vλ-theory. A V-equation-
in-context Γ ▷ v =q w : A is a theorem iff it holds in all models of the theory.

Proof sketch. Soundness follows by induction over the rules that define the class Th(Ax)
(Definition 12) and by Theorem 21. For completeness, we use a strategy similar to the
proof of Theorem 6, and take advantage of the quotienting of a V-category into a separated
V-category. Recall that we assume that the theory is varietal and therefore can safely take
C(A,B) to be a small V-category. Note that the quotienting process identifies all terms
x : A ▷ v : B and x : A ▷ w : B such that v =⊤ w and w =⊤ v. Such a relation contains
the equations-in-context from Fig. 3 and moreover it is straighforward to show that it is
compatible with the term formation rules of linear λ-calculus (Fig. 1). So, analogously to
Theorem 6 we obtain an autonomous category C whose objects are the types of the language
and whose hom-sets are the underlying sets of the V-categories C(A,B).

Our next step is to show that the category C has a V-Catsep-enriched autonomous structure.
We start by showing that the composition map C(A,B) ⊗ C(B,C) → C(A,C) is a V-functor:

a(([v′], [v]), ([w′], [w])) = a([v], [w]) ⊗ a([v′], [w′])
= a(v, w) ⊗ a(v′, w′)

=
∨

{q | v =q w} ⊗
∨

{r | v′ =r w′}

=
∨

{q ⊗ r | v =q w, v′ =r w′}

≤
∨

{q | v[v′/x] =q w[w′/x]} (A ⊆ B ⇒
∨

A ≤
∨

B)

= a(v[v′/x], w[w′/x])
= a([v[v′/x]], [w[w′/x]])
= a([v] · [v′], [w] · [w′])

The fact that ⊗ : C × C → C is a V-Cat-functor follows by an analogous reasoning. Next,
we need to show that (− ⊗ X) ⊣ (X ⊸ −) is a V-Cat-adjunction. It is straightforward to
show that both functors are V-Cat-functors, and from a similar reasoning it follows that the
isomorphism C(B,A ⊸ C) ≃ C(B ⊗ A,C) is a V-isomorphism.

The final step is to show that if an equation Γ ▷ v =q w : A with q ∈ B is satisfied by C
then it is a theorem of the linear Vλ-theory. By assumption a([v], [w]) = a(v, w) =

∨
{r |

v =r w} ≥ q. It follows from the definition of the way-below relation that for all x ∈ B with
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x ≪ q there exists a finite set A ⊆ {r | v =r w} such that x ≤
∨

A. Then by an application
of rule (join) in Fig. 4 we obtain v =∨

A w, and consequently rule (weak) in Fig. 4 provides
v =x w for all x ≪ q. Finally, by an application of rule (arch) in Fig. 4 we deduce that
v =q w is part of the theory. ◀

Next we establish results that will be key in the proof of the internal language theorem.
Let Syn(T ) be syntactic category of a linear Vλ-theory T , as described in Theorem 23.

▶ Theorem 24. Consider a linear Vλ-theory T and a model of T on a V-Catsep-enriched
autonomous category C. The model induces a V-Catsep-functor Syn(T ) → C that (strictly)
preserves the autonomous structure of Syn(T ).

Proof. Consider a model of T over C. Let a denote the underlying function of the hom-
(V-categories) in Syn(T ) and b the underlying function of the hom-(V-categories) in C.
Then note that if [v] = [w] then, by completeness, the equations v =⊤ w and w =⊤ v

are theorems, which means that JvK = JwK by the definition of a model and separability.
This allows us to define a mapping F : Syn(T ) → C that sends each type A to JAK and
each morphism [v] to JvK. The fact that this mapping is an autonomous functor follows
from an analogous reasoning to the one used in the proof of Theorem 7. We now need
to show that this functor is V-Catsep-enriched. Recall that a([v], [w]) =

∨
{q | v =q w}

and observe that for every v =q w in the previous quantification we have b(JvK, JwK) ≥ q

(by the definition of a model), which establishes, by the definition of a least upper bound,
a([v], [w]) =

∨
{q | v =q w} ≤ b(JvK, JwK). ◀

Consider now a V-Catsep-enriched autonomous category C. It induces a linear Vλ-theory
Lang(C) whose ground types and operations symbols are defined as in the case of linear
λ-theories (recall Section 2). The axioms of Lang(C) are all the V-equations-in-context that
are satisfied by the obvious interpretation on C.

▶ Theorem 25. The linear Vλ-theory Lang(C) is varietal.

In conjunction with the proof of Theorem 23, a consequence of this last theorem is that
Syn(Lang(C)) is a V-Catsep-enriched category. Then we state,

▶ Theorem 26 (Internal language). For every V-Catsep-enriched autonomous category C there
exists a V-Catsep-equivalence of categories Syn(Lang(C)) ≃ C.

Proof. Let a denote the underlying function of the hom-(V-categories) in Syn(Lang(C))
and b the underlying function of the hom-(V-categories) in C. We have, by construction,
a model of Lang(C) on C which acts as the identity in the interpretation of ground types
and operation symbols. We can then appeal to Theorem 24 to establish a V-Catsep-functor
Syn(Lang(C)) → C. Next, the functor working on the inverse direction behaves as the identity
on objects and sends a morphism f into [f(x)]. Let us show that it is V-Catsep-enriched. First,
observe that if q ≪ b(f, g) in C and q ∈ B then f(x) =q g(x) is a theorem of Lang(C), due to
the fact that ≪ entails ≤ and by the definition of Lang(C). Using the definition of a basis, we
thus obtain b(f, g) =

∨
{q ∈ B | q ≪ b(f, g)} ≤

∨
{q ∈ B | f(x) =q g(x)} = a([f(x)], [g(x)]).

The equivalence of categories is then shown as in the proof of Theorem 8. ◀

All the results in this section can be extended straightforwardly to the case of symmetric
linear Vλ-theories and V-Catsym,sep-enriched autonomous categories.
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4 Examples of linear Vλ-theories and their models

▶ Example 27 (Wait calls). We now return to the example of wait calls and the corresponding
metric axioms (1) sketched in the Introduction. Let us build a model over Met for this
theory: fix a metric space A, interpret the ground type X as N⊗ A and the operation symbol
waitn : X → X as the non-expansive map, JwaitnK : N ⊗ A → N ⊗ A , (i, a) 7→ (i + n, a).
Since we already know that Met is enriched over itself (recall Definition 19 and Example 20)
we only need to show that the axioms in (1) are satisfied by the proposed interpretation.
This can be shown via a few routine calculations.

Now, it may be the case that is unnecessary to know the distance between the execution
time of two programs – instead it suffices to know whether a program finishes its execution
before another one. This leads us to linear Vλ-theories where V is the Boolean quantale. We
call such theories linear ordered λ-theories. Recall the language from the Introduction with a
single ground type X and the signature of wait calls Σ = {waitn : X → X | n ∈ N}. Then
we adapt the metric axioms (1) to the case of the Boolean quantale by considering instead:

wait0(x) = x waitn(waitm(x)) = waitn+m(x)
n ≤ m

waitn(x) ≤ waitm(x)

where a classical equation v = w is shorthand for v ≤ w (i.e. v =1 w) and w ≤ v (i.e. w =1 v).
In the resulting theory we can consider for instance (and omitting types for simplicity) the
λ-term that defines the composition of two functions λf. λg. g (f x), which we denote by
v, and show that v (λx. wait1(x)) ≤ v (λx. wait1(wait1(x))). This inequation between
higher-order programs arises from the argument λx. wait1(wait1(x)) being costlier than
the argument λx. wait1(x) – specifically, the former will invoke one more wait call (wait1)
than the latter. Moreover, the inequation entails that for every argument g the execution
time of computation v (λx. wait1(x)) g will always be smaller than that of computation
v (λx. wait1(wait1(x))) g since it invokes one more wait call. Thus in general the inequation
tells that costlier programs fed as input to v will result in longer execution times when
performing the corresponding computation. In order to build a model for the ordered theory
of wait calls, we consider a poset A and define a model over Pos by sending X into N ⊗ A

and waitn : X → X to the monotone map JwaitnK : N ⊗ A → N ⊗ A, (i, a) 7→ (i + n, a).
Since we already know that Pos is enriched over itself (recall Definition 19 and Example 20)
we only need to show that the ordered axioms are satisfied by the proposed interpretation.
But again, this can be shown via a few routine calculations.

▶ Example 28 (Probabilistic programs). We consider ground types Real, Real+, unit and
a signature consisting of {r : I → Real | r ∈ Q} ∪ {r+ : I → Real+ | r ∈ Q≥0} ∪ {ru : I →
unit | r ∈ [0, 1] ∩ Q}, an operation + of type Real, Real → Real, and sampling functions
bernoulli : Real, Real, unit → Real and normal : Real, Real+ → Real. Whenever no
ambiguities arise, we drop the superscripts in ru and r+. Operationally, bernoulli(x, y, p)
generates a sample from the Bernoulli distribution with parameter p on the set {x, y}, whilst
normal(x, y) generates a normal deviate with mean x and standard deviation y. We then
postulate the metric axiom,

p, q ∈ [0, 1] ∩ Q
bernoulli(x1, x2, p(∗)) =|p−q| bernoulli(x1, x2, q(∗)) (3)

We interpret the resulting linear metric λ-theory in the category Ban of Banach spaces and
short operators, i.e. the semantics of [9, 21] without the order structure needed to interpret
while loops. This is the usual representation of Markov chains/kernels as matrices/operators.
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▶ Theorem 29. The category Ban is a Met-enriched autonomous category, and thus an
instance of Definition 19.

In particular, Ban forms a model for the theory of our small probabilistic language via
the following interpretation. We define JRealK = MR, the Banach space of finite Borel
measures on R equipped with the total variation norm, and similarly JReal+K = MR+ and
JunitK = M[0, 1]. We have JIK = R ∋ 1, and for every r ∈ Q we put JrK : R → MR, x 7→ xδr,
where δr is the Dirac delta over r; thus JrK(1) = δr. We define an analogous interpretation
for the operation symbols r+ and ru. For µ, υ ∈ MR we define J+K(µ ⊗ υ) ≜ +∗(µ ⊗ υ) the
pushforward under + of the product measure µ⊗υ (seen as an element of MR⊗MR, see [9]).
For µ, υ, ξ ∈ MR we define JbernoulliK(µ⊗υ⊗ξ) ≜ bern∗(µ⊗υ⊗ξ), the pushforward of the
product measure µ⊗υ ⊗ξ under the Markov kernel bern : R3 → R, (u, v, p) 7→ pδu +(1−p)δv,
and similarly for JnormalK (see [9] for the definition of pushforward by a Markov kernel).

This interpretation is sound (a proof is given in [10]) because the norm on MR is the
total variation norm, and the metric axiom (3) describes the total variation distance between
the corresponding Bernoulli distributions. Consider now the following λ-terms (where we
abbreviate the constants 0(∗), 1(∗), p(∗), q(∗) to 0, 1, p, q, respectively),

walk1 ≜ λx : Real.bernoulli(0, x + normal(0, 1), p)
walk2 ≜ λx : Real.bernoulli(0, x + normal(0, 1), q), p, q ∈ [0, 1] ∩ Q.

As the names suggest, these two terms of type Real ⊸ Real are denoted by random walks
on R. At each call, walk1 (resp. walk2) performs a jump drawn randomly from a standard
normal distribution, or is forced to return to the origin with probability p (resp. q). These are
non-standard random walks whose semantics are concretely given by complicated operators
MR → MR, but the simple quantitative equational system of Fig. 4 and the axiom (3)
allow us to easily derive walk1 =|p−q| walk2 without having to compute the semantics of
these terms. In other words, the soundness of (3) is enough to tightly bound the distance
between two non-trivial random walks represented as higher-order terms in a probabilistic
programming language. Furthermore, the tensor in the λ-calculus allows us to easily scale
up this reasoning to random walks in higher dimensions such as walk1 ⊗ walk2 on R2.

5 Conclusions and future work

We introduced the notion of a V-equation which generalises the well-established notions of
equation, inequation [23, 2], and metric equation [30, 31]. We then presented a sound and
complete V-equational system for linear λ-calculus, illustrated with different examples of
programs containing real-time and probabilistic behaviour.

Functorial connection to previous work. As a concluding note, let us introduce a simple
yet instructive functorial connection between (1) the categorical semantics of linear λ-calculus
with the V-equational system, (2) the categorical semantics of linear λ-calculus with the
equational system of Section 2, and (3) the algebraic semantics of the exponential free,
multiplicative fragment of linear logic. First we need to recall some well-known facts. As
detailed before, typical categorical models of linear λ-calculus and its equational system are
locally small autonomous categories. The latter form a quasicategory Aut whose morphisms
are autonomous functors. The usual algebraic models of the exponential free, multiplicative
fragment of linear logic are the so-called lineales [11]. In a nutshell, a lineale is a poset
(X, ≤) paired with a commutative, monoid operation ⊗ : X × X → X that satisfies certain
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conditions. Lineales are almost quantales: the only difference is that they do not require X to
be cocomplete. The key idea in algebraic semantics is that the order ≤ in the lineale encodes
the logic’s entailment relation. A functorial connection between autonomous categories
and lineales (i.e. between (2) and (3)) is stated in [11] and is based on the following two
observations. First, (possibly large) lineales can be seen as thin autonomous categories,
i.e. as elements of the enriched quasicategory {0, 1}-Aut. Second, the inclusion {0, 1}-Aut
↪→ Aut has a left adjoint which collapses all morphisms of a given autonomous category
C (intuitively, it eliminates the ability of C to differentiate different terms between two
types). This provides an adjoint situation between (2) and (3). We can now expand this
connection to our categorical semantics of linear λ-calculus and corresponding V-equational
system (i.e. (1)) in the following way. The forgetful functor V-Cat → Set has a left adjoint
D : Set → V-Cat which sends a set X to DX = (X, d), with d(x1, x2) = k if x1 = x2
and d(x1, x2) = ⊥ otherwise. This left adjoint is strong monoidal, specifically we have
D(X1 × X2) = DX1 ⊗ DX2 and I = (1, (∗, ∗) 7→ k) = D1. This gives rise to the functors,

(V-Cat)-Aut Aut {0, 1}-Aut
D̂
⊥

c
⊥

where D̂ equips the hom-sets of an autonomous category with the corresponding discrete
V-category and c collapses all morphisms of an autonomous category as described earlier.
The right adjoint of D̂ forgets the V-categorical structure between terms (i.e. morphisms)
and the right adjoint of c is the inclusion functor mentioned earlier. Note that D̂ restricts to
(V-Catsep)-Aut and (V-Catsym,sep)-Aut, and thus we obtain a functorial connection between
the categorical semantics of linear λ-calculus with the V-equational system (i.e. (1)), (2),
and (3). In essence, the connection formalises the fact that our categorical models admit a
richer structure over terms (i.e. morphisms) than the categorical models of linear λ-calculus
and its classical equational system. The latter in turn permits the existence of different
terms between two types as opposed to the algebraic semantics of the exponential free,
multiplicative fragment of linear logic. The connection also shows that models for (2) and (3)
can be mapped into models of our categorical semantics by equipping the respective hom-sets
with a trivial, discrete structure.

Future work. Recall that linear λ-calculus is at the root of different ramifications of λ-
calculus that relax resource-based conditions in different ways. Currently, we are studying
analogous ramifications of linear λ-calculus in the V-equational setting, particularly affine
and Cartesian versions. We are also studying the possibility of adding an exponential
modality in order to obtain a mixed linear-non-linear calculus [3]. We also started to explore
different definitions of a morphism between Vλ-theories and respective categories. This is
the basis to establish a categorical equivalence between a (quasi)category of Vλ-theories and
a (quasi)category of V-Catsep-enriched autonomous categories.

Next, our main examples of Vλ-theories (see Section 4) used either the Boolean or the
metric quantale. We would like to study linear Vλ-theories whose underlying quantales
are neither the Boolean nor the metric one, for example the ultrametric quantale which is
(tacitly) used to interpret Nakano’s guarded λ-calculus [5] and also to interpret a higher-order
language for functional reactive programming [22]. Another interesting quantale is the Gödel
one which is a basis for fuzzy logic [12] and whose V-equations give rise to what we call fuzzy
inequations.
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Finally we plan to further explore the connections between our work and different results
on metric universal algebra [30, 31, 36] and inequational universal algebra [23, 2, 36]. For
example, an interesting connection is that the monad construction presented in [30] crucially
relies on quotienting a pseudometric space into a metric space – this is a particular case of
quotienting a V-category into a separated V-category (which we crucially use in our work).
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Abstract
Seese’s conjecture for finite graphs states that monadic second-order logic (MSO) is undecidable on
all graph classes of unbounded clique-width. We show that to establish this it would suffice to show
that grids of unbounded size can be interpreted in two families of graph classes: minimal hereditary
classes of unbounded clique-width; and antichains of unbounded clique-width under the induced
subgraph relation. We explore all the currently known classes of the former category and establish
that grids of unbounded size can indeed be interpreted in them.
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1 Introduction

The monadic second-order logic (MSO) of graphs has been an object of intensive research
for many years now. It is a logic that is highly expressive and yet very well behaved on
many interesting classes of graphs. It has enabled the extension of many automata-theoretic
and algebraic techniques to the construction of algorithms on graphs (see the comprehensive
treatment in [7]). It has become a reference logic against which many others are compared.
A key area of investigation is determining on which classes of graphs MSO is algorithmically
well-behaved.

The good algorithmic behaviour of MSO on a class C of graphs is usually taken to mean
one of two things: the evaluation (or model-checking) problem for MSO sentences on C is
tractable; or the satisfiability problem of MSO sentences on C is decidable. Usually, these two
are linked. Broadly speaking, the only way we know to show that the MSO theory of a class
C is decidable is to show that C can be obtained by means of an MSO interpretation from
a class of trees, which itself has a decidable theory and this also yields efficient evaluation
algorithms for MSO sentences on C . And the only way we know to show that the MSO theory
of C is undecidable is to show that there is an MSO interpretation that yields arbitrarily
large grids on C and this also yields an obstacle to the tractability of MSO evaluation on C .

Seese [20] formalizes the first of these observations into a conjecture: if the MSO theory
of a class C is decidable, there is an MSO interpretation Ψ and a class T of trees such
that Ψ maps T to C . This remains an open question nearly three decades after it was
first posed despite considerable research effort around it. By a theorem of Courcelle and
Engelfriet [7], it is known that the classes of graphs obtained by MSO interpretations from
trees are exactly those of bounded clique-width. Thus, Seese’s conjecture can be understood
as saying that any class of graphs of unbounded clique-width has an undecidable MSO theory.
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If we similarly formalize the second observation above about grids and combine it with
this, we can formulate the following stronger conjecture, which we refer to below as the
strong Seese conjecture: every class C of graphs of unbounded clique-width admits an MSO
interpretation that defines arbitrarily large grids. Seese’s conjecture is often formulated in
this stronger form as it seems the only reasonable route to proving it. It can be seen as an
interesting analogue of the Robertson-Seymour grid minor theorem to the effect that any
class of graphs of unbounded treewidth admits arbitrarily large grids as minors.

In recent years there has been growing interest in clique-width as a measure of the
complexity of graphs from a structural and algorithmic point of view, quite separate from
questions of logic [10, 4, 18, 11]. In particular, it provides a route for extending algorithmic
methods that have had great success on sparse graph classes [17] to more general classes of
graphs. A class of graphs may be of bounded clique-width while containing dense graphs –
the classic example being the class of cliques.

In the context of the structural study of classes of bounded clique-width, there is particular
interest in hereditary classes, that is, classes of graphs closed under the operation of taking
induced subgraphs. This is because the induced subgraph relation behaves well with respect
to clique-width. If a graph H is a subgraph or a minor of a graph G, the clique-width of H
can be greater than that of G but if H is an induced subgraph of G, then the clique-width
of H is no more than that of G. Hence, the hereditary closure of a class C of bounded
clique-width still has bounded clique-width.

The induced subgraph relation is not as well-behaved as the graph minor relation. By the
Robertson-Seymour graph minor theorem [19], the graph minor relation is a well-quasi-order.
This is not true for the induced subgraph relation. By the same token, the classes of graphs
of unbounded treewidth are well understood in that they are precisely the classes which have
grid minors of unbounded size, the picture for classes of graphs of unbounded clique-width is
somewhat less clear. The relationship between a class having unbounded clique-width and
admitting a well-quasi-order of the induced subgraph relation has been the subject of much
investigation. It is possible to construct as we see below, infinite descending chains, under
inclusion, of hereditary classes of graphs, each of unbounded clique-width.

Lozin [15] identified the first example of a hereditary class C of graphs of unbounded
clique-width that are minimal with this property – that is, no hereditary proper subclass of
C has unbounded clique-width. Since then, many other such classes have been constructed.
Collins et al. [3] show how to obtain an infinite family of such classes. Their construction
has been recently extended by Brignall and Cocks [2] to obtain uncountably many examples.
Atminas et al. [1] construct instances of such classes which are characterized by a finite
collection of forbidden induced subgraphs. Lozin et al. [16] construct a minimal hereditary
class of unbounded clique-width that is well-quasi-ordered under the induced subgraph
relation.

This exploration of novel classes of unbounded clique-width also suggests an approach to
establishing Seese’s conjecture for finite graphs. We establish in Section 3 that a proof of
Seese’s conjecture would follow from the conjunction of the following two statements: (1) every
collection of graphs of unbounded clique-width that forms an infinite anti-chain under the
induced subgraph relation interprets arbitrarily large grids; and (2) every minimal hereditary
class of unbounded clique-width interprets arbitrarily large grids. This suggests a programme
to establish Seese’s conjecture by systematically studying antichains and minimal hereditary
classes of unbounded clique-width. We do not yet know of a complete classification of minimal
hereditary classes of unbounded clique-width, which makes a systematic approach to this
programme challenging. Nevertheless, we examine in Sections 4–5 all known classes satisfying
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these conditions and show that in all cases we can indeed interpret grids of unbounded size.
Thus none of these provides a counterexample to Seese’s conjecture. Our construction shows
a uniform method of proving that these classes have unbounded clique-width. The proof
is often simpler than the ad hoc methods by which this was proved for each class in the
literature.

It is worth mentioning some significant lines of investigation related to Seese’s conjecture.
Courcelle [5] shows that proving Seese’s conjecture for finite graphs is equivalent to proving
the relativized version of the conjecture for particular classes of graphs, two examples being
bipartite graphs and split graphs. He further shows the conjecture to be true when relativized
to uniformly k-sparse graphs and interval graphs. Another line of work addresses variants
of Seese’s conjecture obtained by considering logics other than MSO. One such result by
Seese [20] shows that guarded second-order logic (GSO) is undecidable on any class of
unbounded clique-width. Similarly, Courcelle and Oum [9] show that the extension C2MSO
of MSO obtained by considering modulo 2 counting quantifiers is also undecidable on classes
of unbounded clique-width. In all of these cases, the proof goes via interpreting grids in
unbounded clique-width classes. There has also been interesting progress looking at Seese’s
conjecture for structures other than graphs. A significant paper here is by Hliněný and
Seese [12] who show the conjecture to be true for matroids representable over any finite field.

2 Preliminaries

The graphs we consider in this paper are simple, undirected and loop-free. For a graph G, we
write V (G) for the vertices of G and E(G) for the edges. A graph H is an induced subgraph
of G if V (H) ⊆ V (G) and for any x, y ∈ V (H), {x, y} ∈ E(H) if, and only if, {x, y} ∈ E(G).
We write H ⊆ G to denote that H is an induced subgraph of G. A class of graphs is said to
be hereditary if it is closed under induced subgraphs. For any graph class C , we write C ↓ to
denote the hereditary closure of C – that is, the class of graphs that are induced subgraphs
of the graphs in C . We consider monadic second-order logic (MSO) over vocabularies τ
containing the binary relation E and finitely many unary relation symbols. A τ -structure can
be thought of as an expansion of a graph G = (V,E) with unary relations that interpret the
unary symbols in τ . Such a structure can be thought of as a vertex-coloured graph. An MSO
formula over the vocabulary τ is an expression that is inductively constructed from atomic
MSO formulae using the Boolean connectives ∧,∨, and ¬, and existential quantification over
vertex variables and set variables. Here an atomic MSO formula is an expression of the form
E(x, y) or Q(x) or X(y) or x = y where x, y are vertex variables, the predicates E,Q belong
to τ and X is a set variable. A first order, or FO, formula is an MSO formula that does not
contain any set variable. We often write φ(x̄, X̄) to denote a formula whose free variables
are among x̄ and X̄, the former being a tuple of vertex variables and the latter a tuple of
set variables. Given such a formula, and a graph G along with a tuple ā of vertices that
interprets x̄ and a tuple Ā of unary relations that interprets X̄, we write (G, Ā) |= ϕ[ā] to
denote that the formula ϕ is satisfied in G in this interpretation.

Given a graph G and an MSO formula φ(x̄, X̄) where the length of x̄ is k, we can
think of φ as defining a k-ary relation on an expansion of G with an interpretation Ā of
X̄. Specifically this relation, denoted φ(G,Ā), is given by φ(G,Ā) = {ā | (G, Ā) |= φ[ā]}.
Given a sequence Z̄ of set variables, an MSO graph interpretation with parameters Z̄ is
a pair Ψ(Z̄) = (ψV (x, Z̄), ψE(x, y, Z̄)) of MSO formulas over the vocabulary {E} ∪ {Zi |
Zi is an element of Z̄}. Given a graph G together with unary relations Ā interpreting the
set variables Z̄ in G, the interpretation Ψ(Z̄) defines a possibly directed graph H = Ψ(G, Ā).
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This graph has (i) vertex set ψ(G,Ā)
V , and (ii) edge set ψ(G,Ā)

E . In this paper, we are only
interested in the case where Ψ(Z̄) defines an undirected graph (that is, ψE(x, y, Z̄) defines an
irreflexive and symmetric binary relation). Thus Ψ(Z̄) defines a function from the expansions
of graphs with |Z̄| unary predicates, to graphs, and therefore in general defines a relation on
graphs. Where it causes no confusion, we also refer to the relation defined by an interpretation
as an MSO interpretation. If Z̄ is emplty, we call the interpretation Ψ parameterless, and such
a Ψ defines a function from graphs to graphs. An example of a parameterless interpretation
is Θ = (θV (x), θE(x, y)) where θV (x) := (x = x) and θE(x, y) := ¬E(x, y); the function it
defines maps a graph to its complement. An example of an interpretation with parameters
is Γ(Z) = (γV (x, Z), γE(x, y, Z)) where γV (x, Z) := Z(x) and γE(x, y, Z) := E(x, y). The
function that it defines maps an expansion (G,A) of a graph G to the subgraph of G induced
by A; thus the relation on graphs that Γ(Z) defines maps a graph to all its induced subgraphs.
Given a class C of graphs and an interpretation Ψ with parameters Z̄, we denote by Ψ(C )
the class of graphs given by Ψ(C ) = {Ψ(G, Ā) | G ∈ C and Ā is an interpretation of Z̄ in G}.
For example, for the interpretation Γ above and a class C of graphs, the class Γ(C ) is exactly
the hereditary closure of C . Since they are relations, one can compose interpretations and it
is known that the class of MSO interpretations is closed under composition [13]. We call
MSO interpretations with parameters simply MSO interpretations for ease of readability,
and denote them with the uppercase Greek letters Φ,Γ,Ψ,Θ, etc.

The notion of clique-width is a structural parameter of graphs that was introduced by
Courcelle, Engelfriet and Rozenberg in [8] as a generalization of the well-known notion of
treewidth. We do not give the definitions of clique-width and treewidth here as we need
only specific properties of these for our results that we state below; we point the reader
to [7, 17] for more about the notions and results concerning them. We write cwd(G) and
twd(G) for the clique-width and tree-width of a graph G, respectively. As examples, a clique
has clique-width 1, and a cograph has clique-width 2. It is known for any graph G that
cwd(G) ≤ 4 · 2twd(G)−1 + 1 [10] and for planar G we even have cwd(G) ≤ 6twd(G) − 2 [6]. A
class of graphs is said to have bounded clique-width if for some number k ≥ 1, every graph in
the class has clique-width at most k. Thus, the class of cliques, the class of cographs and all
classes of bounded treewidth have bounded clique-width. A graph class has unbounded clique-
width if it does not have bounded clique-width. Examples of graph classes of unbounded
clique-width include grids, interval graphs, and line graphs [5].

The class of all graphs of clique-width at most k is hereditary since the clique-width of
an induced subgraph of G is never more than the clique-width of G. An antichain under the
induced subgraph relation is a set A of graphs such that if G and H are distinct graphs in
A, then neither of G ⊆ H or H ⊆ G holds. Usually when we say “antichain” without further
qualification, we mean an antichain under the induced subgraph relation. A graph class C is
said to be well-quasi-ordered (WQO) under induced subgraphs if it does not contain any
infinite antichains. For example, the class of all cliques is WQO under induced subgraphs.

The MSO theory of a graph class C is the class of all MSO sentences that are true in
all graphs of C . This theory is decidable if, and only if, the following problem is decidable:
given an MSO sentence ϕ decide if ϕ is true in some graph in C . Seese’s conjecture states
any class whose MSO theory is decidable has bounded clique-width. An m × n grid is
a graph G = (V,E) on m · n vertices with V = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and
E = {{(i, j), (i, j + 1)} | 1 ≤ i ≤ m, 1 ≤ j < n} ∪ {{(i, j), (i+ 1, j)} | 1 ≤ i < m, 1 ≤ j ≤ n}.
The grid is square if m = n. We say a class C of graphs interprets grids via an MSO
interpretation Φ, if Φ(C ) contains graphs isomorphic to arbitrarily large square grids. Any
class of graphs that contains arbitrarily large grids has undecidable MSO theory [7, Thm. 5.6].
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Morover, since MSO decidability is preserved by interpretations [7, Thm. 7.54], any class
of graphs that interprets grids via an MSO interpretation has an undecidable MSO theory.
The strong Seese conjecture is that any class of unbounded clique-width interprets grids via
an MSO interpretation. It is known that if the clique-width of a class C is bounded and Φ
is an MSO interpretation, then the clique-width of Φ(C ) is also bounded [7, Cor. 7.38]. A
simple observation about classes interpreting grids is the following.

▶ Proposition 1. Suppose C is a graph class that interprets grids, and D is a graph class for
which there exists an MSO interpretation Ξ such that the hereditary closure of Ξ(D) contains
C . Then D interprets grids as well.

Specifically, if Θ is the interpretation mapping C to a class containing arbitrarily large
grids, and Γ is the interpretation defined above taking any class to its hereditary closure,
then an interpretation Ω such that Ω(D) contains arbitrarily large square grids, is given by
Ω = Θ ◦ Γ ◦ Ξ (viewing Θ,Γ and Ξ as functions) where ◦ denotes composition.

We say that a class of graphs C is HUCW if it is hereditary and has unbounded clique-
width. An HUCW graph class is said to be minimal if it does not contain a proper subclass
that is HUCW. For example, bipartite permutation graphs and unit interval graphs are two
minimal HUCW graph classes [15]. The existence of countably many minimal HUCW classes
is established in [3], and this has been recently extended to uncountably many minimal
HUCW classes in [2].

3 Minimal Classes and Well-Quasi-Ordering

In this section we lay out an approach to studying Seese’s conjecture that motivates our
study of MSO decidability for minimal HUCW classes. The first observation is that, if C is
a counter-example to Seese’s conjecture, then so is C ↓. Recall that a counter-example to
Seese’s conjecture would be a class C that has unbounded clique-width and a decidable MSO
theory. Clearly if C has unbounded clique-width, then so does C ↓. The following proposition
is folklore. It follows immediately from the fact that MSO decidability is preserved by
interpretations and the existence of the interpretation Γ defined above which takes a class to
its hereditary closure.

▶ Proposition 2. If the MSO theory of C is decidable, then so is the MSO theory of C ↓.

Hence, if there is a counter-example to Seese’s conjecture, we have one that is a hereditary
class of unbounded clique-width, i.e. an HUCW class. In the present section, we establish
some basic facts about the HUCW classes that allow us to structure the search for such a
counter-example, or indeed the attempt to show that there is none.

The relation of being an induced subgraph is not a well-quasi-order as it admits infinite
anti-chains. As an example, let In be the graph on n + 4 vertices e0, e1, e2, e3, c1, . . . , cn

where for each i < n there is an edge between ci and ci+1, and in addition we have edges
e0 − c1, e1 − c1, e2 − cn and e3 − cn. In short, there is a path of length n with two additional
vertices at each end to mark the ends. Then, it is clear the collection (In)n∈N is an antichain
in the induced subgraph order. This particular antichain has bounded clique-width. It is
also possible to construct antichains of unbounded clique-width (which therefore must be
infinite). An example is obtained by taking the collection of n × n grids and adding two
extra vertices at each corner to form a triangle. In what follows, whenever we refer to an
antichain we mean one under the induced subgraph relation.

CSL 2022



17:6 MSO Undecidability for Unbounded Clique-Width Classes

From an antichain of unbounded clique-width, it is possible to construct (as we show
below) an infinite descending chain of classes of graphs (under the inclusion relation) all of
which are HUCW. Thus, it was a significant discovery to find that there are actually HUCW
classes C that are minimal : no proper hereditary subclass of C has unbounded clique-width.
The first such example is due to Lozin [15]. Collins et al. [3] constructed an infinite family of
such classes and Lozin et al. [16] give an example that is itself well-quasi-ordered under the
induced substructure relation. We examine these in some detail in subsequent sections.

If it were the case that every class that is HUCW contains as a subclass a minimal HUCW
class, then showing that every minimal HUCW class interprets grids would suffice to prove
Seese’s conjecture. Indeed, if C interprets grids of unbounded size, so does every class that
contains C . However, Korpelainen has shown [14] that there are HUCW classes that contain
no minimal HUCW subclass. We give a construction of such a class in Section 3.2. This is
linked to the existence of antichains of unbounded clique-width. Specifically, we establish
the following facts.
1. If C is a minimal HUCW class, then it cannot contain an antichain of unbounded

clique-width (Theorem 6 in Section 3.1).
2. If C is an HUCW class that contains no minimal class, it must contain an antichain of

unbounded clique-width (Theorem 7 in Section 3.1).

From these, the theorem below follows, which suggests a programme for proving Seese’s
conjecture.

▶ Theorem 3. The strong Seese conjecture holds if, and only if, both of the following are
true:
1. every antichain of unbounded clique-width interprets grids; and
2. every minimal HUCW class interprets grids.

3.1 Antichains and Minimal Classes
We first establish the relationship between the existence of antichains of unbounded clique-
width and the minimality of HUCW classes. These are established in Theorems 6 and 7.

We say that a sequence (Ci)i∈ω is an infinite strictly descending HUCW-chain if for each
i, Ci is an HUCW class and Ci+1 is a proper subclass of Ci. We say that C contains an
infinite strictly descending HUCW-chain if there is such a chain with Ci ⊆ C for all i.

▶ Lemma 4. The following are equivalent:
1. C contains an infinite strictly descending HUCW-chain whose intersection is a class of

bounded clique-width.
2. C contains an infinite strictly descending HUCW-chain whose intersection is empty.
3. C contains an antichain of unbounded clique-width.

Proof.

3 ⇒ 2. If {G1, G2, . . .} is such an antichain, then let Ci be the hereditary closure of
{Gi, Gi+1, . . .} for i ≥ 1. Then C1 ⊋ C2 ⊋ . . . is an infinite strictly descending HUCW-chain
whose intersection is empty.

2 ⇒ 1. Trivial since the empty class has clique-width 0.

1 ⇒ 3. Let C1 ⊋ C2 ⊋ . . . be such a descending HUCW-chain and Cω =
⋂

i≥1 Ci. Let
Di = Ci\Ci+1 for i ≥ 1. Then for 1 ≤ i < j, we have Di∩Cj = ∅; hence Di∩Dj = Di∩Cω = ∅.
Further, Ci =

( ⊎
i≤k<ω Dk

) ⊎
Cω.
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▷ Claim 5. The following are true:
1. For 1 ≤ i < j, no graph in Di is an induced subgraph of a graph in Dj .
2. For i ≥ 1, for every graph G ∈ Di, there exists a number f(G) > i such that for all

j ≥ f(G), no graph in Cj \ Cω is an induced subgraph of G.

Proof.
1. If G ⊆ H for some G ∈ Di and H ∈ Dj , then since Dj ⊆ Cj and Cj is hereditary, we

would have G ∈ Cj ; but that contradicts the fact that Di ∩ Cj = ∅.
2. Let H1, . . . ,Hr be an enumeration of the induced subgraphs of G that are not in Cω –

clearly r is finite since G is finite. Since Ci =
( ⊎

i≤j<ω Dj

) ⊎
Cω, there exist numbers

j1, . . . , jr ∈ [i, ω) such that Hi ∈ Dji
for i ∈ {1, . . . , r}. It then follows by the properties

of the Di’s above that f(G) = max{ji | 1 ≤ i ≤ r} + 1 is indeed as desired. ◁

We now use the above claim to inductively construct an antichain of C of unbounded
clique-width. Let G0 be a graph in D0. Assume that we have constructed graphs G0, . . . , Gi

for i ≥ 0 such that (i) Gj ∈ Dlj
and lj > lj−1 for 1 ≤ j ≤ i; (ii) {G0, . . . , Gi} is an antichain;

and (iii) the clique-width of Gj is strictly greater than that of Gj−1 for 1 ≤ j ≤ i. Let
k = max{f(Gj) | 1 ≤ j ≤ i} > li where f is as in Claim 5. Consider the class Ck \ Cω – by
Lemma 5, all graphs in this class are incomparable with each of G0, . . . , Gi in the induced
subgraph order. Further, since Ck has unbounded clique-width while Cω has bounded clique
width, we have that Ck \Cω has unbounded clique-width, whereby there exists Gi+1 ∈ Ck \Cω

such that Gi+1 has clique-width greater than that of Gi. Let li+1 ≥ k > li be such that
Gi+1 ∈ Dli+1 . Then we see that Gi+1 is indeed as desired to complete the induction. ◀

We are now ready to prove the two results linking minimality of HUCW classes and the
existence of antichains of unbounded clique-width.

▶ Theorem 6. If C is a minimal HUCW class, then C does not contain an antichain of
unbounded clique-width.

Proof. If C contains an antichain of unbounded clique-width, then by Lemma 4, C contains
an infinite strictly descending HUCW-chain, and hence in particular a proper subclass that
is HUCW. Hence C is not minimal. ◀

▶ Theorem 7. If C is HUCW and does not contain a minimal HUCW class, then there exists
in C an antichain of unbounded clique-width.

Proof. We assume without loss of generality that the vertices of the graphs of C belong to
the set N of natural numbers, so that C is countable. Suppose that C does not contain a
minimal class. Consider the sequence (Cλ)λ≥0 of classes of structures, for ordinals λ, defined
inductively as follows. Let C0 = C and inductively, assume that for all ν < λ, the class Cν

has been defined and that Cν ⊆ C for all ν < λ. If λ is a limit ordinal, define Cλ =
⋂

ν<λ Cν .
If λ is a successor ordinal of say λ−, then define Cλ as follows. If Cλ− is not HUCW, then
Cλ = Cλ− . Otherwise Cλ− is HUCW and Cλ− ⊆ C ; then Cλ− cannot be minimal since by
our premise, C does not contain any minimal HUCW class. Let Cλ be any proper subclass
of Cλ− that is HUCW. This completes the construction of the sequence (Cλ)λ≥0.

Consider now the set P of ordinals defined as P = {λ | Cλ is not HUCW}. This set is
non-empty – since C is a class of finite graphs whose vertices are natural numbers, C is
countable and hence Cλ = ∅ for all uncountable λ. By the definition above, if λ ∈ P, then
all ordinals greater than λ are in P as well. Now since the ordinals are well ordered, P has a
minimum, call it µ∗. We make the following observations about µ∗:
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1. µ∗ must be a limit ordinal. If it is a successor ordinal of say λ, then Cλ must be HUCW
since µ∗ is the minimum ordinal in P. But if Cλ is HUCW, then Cµ∗ must be a HUCW
class by the inductive definitions above. Therefore, Cµ∗ =

⋂
ν<µ∗ Cν where Cν is HUCW

for all ν < µ∗.
2. µ∗ is countable – this is because C is countable.
3. Cµ∗ is a hereditary class of bounded clique-width. Let G ∈ Cµ∗ and H ⊆ G. Then by (1)

above, G ∈ Cν for all ν < µ∗. Since each Cν is hereditary, we have H ∈ Cν for all ν < µ∗.
Then H ∈ Cµ∗ . So Cµ∗ is hereditary. That Cµ∗ has bounded clique-width now follows
from the fact that Cµ∗ is not HUCW.

Now since µ∗ is countable, it has cofinality ω so that there exists an increasing function
f : N → µ∗ (where µ∗ is seen as the set of ordinals less than µ∗) such that if Fi = Cf(i) for
i ∈ N, then

⋂
i∈N Fi = Cµ∗ . We observe that F1 ⊋ F2 ⊋ . . . is an infinite strictly descending

HUCW-chain in C , whose intersection Cµ∗ is a class of bounded clique-width. It now follows
by Lemma 4 that C contains an antichain of unbounded clique-width. ◀

The converse of Theorem 7 does not hold. That is to say, we can construct an HUCW
class that both contains a minimal HUCW class and contains an antichain of unbounded
clique-width. Indeed, if C1 is a minimal HUCW class and C2 the hereditary closure of an
antichain of unbounded clique-width then clearly C = C1 ∪ C2 has this property.

3.2 HUCW Classes which Contain No Minimal Class

Theorem 7 raises the obvious question of whether there exists any class C which is HUCW
but does not contain a minimal HUCW class. The existence of such a class was demonstrated
by Korpelainen [14]. Here we give a similar construction which we arrived at independently.

▶ Theorem 8. There is an HUCW class T that does not contain any minimal HUCW class.

It suffices to show that if C is any hereditary subclass of T of unbounded clique-width, it
contains an antichain of unbounded clique-width.

Towards this, let Gn,n denote the n× n grid. Note that, in Gn,n, every vertex has degree
2, 3 or 4, and there are exactly four vertices (at the corners) of degree 2. For n ≥ 3, we
define Tn as the graph obtained from Gn,n by:
1. removing every vertex v of degree 2 and inserting an edge between the two neighbours of

v; and
2. replacing every vertex v of degree 4 by four new vertices v1, v2, v3, v4 that are connected

in a 4-cycle so that the four edges incident on v are now each incident on one of the four
new vertices.

It is easily seen that Tn is 3-regular, and it is more convenient to work with than grids. The
number of vertices in Tn is less than 4n2.

Recall that a graph H is a subdivision of a graph G if it is obtained from G by replacing
every edge by a simple path. For a positive integer t, we write Gt for the t-subdivision of G:
the graph obtained from G by replacing each edge of G by a path of length t. We make the
following simple observation for later use:

▶ Lemma 9. If H is a subdivision of G and twd(G) = k, then k ≤ twd(H) ≤ max(k, 3).
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Proof. The lower bound on twd(H) follows immediately from the fact that G is a minor of
H so twd(G) ≤ twd(H).

Suppose now that (T, β) is a tree decomposition of G of width k. To obtain a tree
decomposition of H, consider an edge {u, v} of G which is subdivided into a path u =
p0, . . . , pt = v in H. As {u, v} is an edge of G, there must be a node a of T such that
{u, v} ⊆ β(t). We attach a path a1, . . . , at of length t to a and let β(ai) = {u, v, pi, pi+1}.
Doing this for each edge gives us a tree decomposition of H whose width is max(k, 3). ◀

Define the class T = {H | H ⊆ Tn
n for some n > 2}, i.e. the collection of graphs that are

induced subgraphs of the n-subdivision of Tn for some n. We consider the graphs H ∈ T
where every vertex has degree 2 or 3. We call such graphs skeleton graphs and the vertices
of degree 3 the branch vertices. Note that every graph in T is an induced subgraph of a
skeleton graph.

The next two lemmas establish some useful properties of the graphs in T .

▶ Lemma 10. If H ∈ T is a skeleton graph with at most m > 2 branch vertices, then
cwd(H) ≤ 6m− 2.

Proof. Since H has at most m branch vertices, it is the subdivision of some graph G with m
vertices. Hence, by Lemma 9, the treewidth of H is at most m. Note further that all graphs
in T are planar and hence H is planar. For any planar graph H, cwd(H) ≤ 6twd(H) − 2 [6,
Thm 17], and the result follows. ◀

▶ Lemma 11. If H is a subdivision of Tn for n > 2, then the clique-width of H is at least
(n− 1)/6.

Proof. Since Gn−2,n−2 is a minor of Tn and twd(Gk,k = k we have that twd(Tn) ≥ n − 2.
Also, by Lemma 9 we know that twd(H) = twd(Tn). Now, for any planar graph G we have
twd(G) ≤ 6cwd(G) − 1 by [7, Prop. 2.115]. Since H is planar, the result follows. ◀

Proof of Theorem 8. The class T is hereditary by definition and has unbounded clique-
width by Lemma 11. Thus, it remains to show that for every class C ⊆ T , if C has unbounded
clique-width, then C contains an antichain of unbounded clique-width.

So, suppose C ⊆ T has unbounded clique-width. For a graph H ∈ T , write mn(H) for
the length of the shortest path between two branch vertices of H. We define the following
sequence of graphs. First, let G0 be any graph in C containing at least two branch vertices.
Suppose we have defined Gi for i ≥ 0, and let t = max(cwd(Gi),mn(Gi)). We then choose
Gi+1 to be any graph in C with cwd(Gi+1) > 24t2 − 2.

It is clear that the sequence of graphs (Gi : i ∈ ω) is of unbounded clique-width, since
cwd(Gi) < cwd(Gi+1) for all i. We now argue that this is also an antichain. For any
i < j, clearly Gj cannot be an induced subgraph of Gi since cwd(Gi) < cwd(Gj), so it
remains to show that Gi is not an induced subgraph of Gj . Since cwd(Gj) > 24t2 − 2,
where t = max(cwd(Gi),mn(Gi)), it follows by Lemma 10 that Gj has more than 4t2 branch
vertices. Since Tn

n contains fewer than 4n2 branch vertices, it follows that Gj is not an
induced subgraph of Tn

n for any n ≤ t. Hence, mn(Gj) is at least t + 1. However, by the
choice of t, mn(Gi) ≤ t and so Gi contains two branch vertices at distance at most t. We
conclude that Gi is not an induced subgraph of Gj . ◀
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4 Grid-Like Classes

We begin our systematic exploration of all known minimal hereditary classes of unbounded
clique-width. Many such classes are defined in terms of a grid-like structure and this is used
to show that they have unbounded clique-width. The challenge in these cases is to show
how this grid structure can be drawn out through an MSO interpretation. We begin with
a collection of minimal HUCW classes (indeed, an uncountable collection of them) defined
in terms of certain infinite words and show in Section 4.1 that they interpret grids. This is
then extended by reductions in Section 4.2 to a number of other classes.

4.1 Word-defined minimal classes
Our starting point is a construction given by Brignall and Cocks [2] to demonstrate that
there are uncountably many minimal HUCW classes, extending a construction by Collins
et al. [3] showing the existence of infinitely many such classes. They construct a hereditary
class Sα of graphs for each ω-word α ∈ {0, 1, 2, 3}ω and show that as long as α contains
infinitely many non-zero letters, the class Sα has unbounded clique-width. Moreover, for
uncountably many distinct such α, Sα is also minimal. The conditions under which Sα is
minimal need not concern us here. We are able to show that whenever α contains infinitely
many non-zero letters Sα interprets grids via MSO interpretations. In particular, this covers
all minimal classes Sα of unbounded clique-width, including those defined in [3]. Before we
proceed to a proof, we give a precise definition of the classes Sα.

The class Sα is defined as the class of all finite induced subgraphs of a single countably
infinite graph Pα. The set of vertices of Pα is {vi,j | i, j ∈ N}. We think of the set as an
infinite collection of columns Vj = {vi,j | i ∈ N}. All edges are between vertices in adjacent
columns, i.e. there is no edge between vi,j and vi′,j′ unless j′ = j + 1 or j′ = j − 1. The
edges between successive columns are defined by the word α according to the following rules.
1. If αj = 0, then {vi,j , vk,j+1} ∈ E(Pα) if, and only if, i = k.
2. If αj = 1, then {vi,j , vk,j+1} ∈ E(Pα) if, and only if, i ̸= k for i, k ∈ N.
3. If αj = 2, then {vi,j , vk,j+1} ∈ E(Pα) if, and only if, i ≤ k for i, k ∈ N.
4. If αj = 3, then {vi,j , vk,j+1} ∈ E(Pα) if, and only if, i ≥ k for i, k ∈ N.
The class Sα is now given by Sα = {G | G is a finite induced subgraph of Pα}. We show
the following theorem in this section.

▶ Theorem 12. Let α ∈ {0, 1, 2, 3}ω be such that α contains infinitely many non-zero letters.
Then there exists an MSO interpretation Θ such that Θ(Sα) contains the class of all square
grids.

To prove Theorem 12, we show the existence of an MSO interpretation Ψ such that the
hereditary closure of Ψ(Sα) contains the class of all square grids. Proposition 1 ensures that
this indeed suffices. It is clear that graphs in Sα have a built-in grid-like structure with
vertices arranged in rows and columns. The main challenge is to show that a sufficient part
of this structure can be made explicit using an MSO interpretation. We give an outline of
the construction.

What we show is that we can find in Sα a sequence of graphs Gn for n ∈ N within which
we can interpret upper triangular grids. One can think of an upper triangular grid Ut as the
subgraph of the t× t grid induced by the vertices above the main diagonal, i.e. those vertices
in the set {(i, j) | 1 ≤ i, j ≤ t} with i ≤ j. It is clear that Ut has as an induced subgraph an
r × r grid, where r = ⌊ t

2 ⌋.
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Let α ∈ {0, 1, 2, 3}ω be an ω-word containing infinitely many non-zero letters. We write
αi for the ith letter of α. Let p < ω be the least value such that αp ̸= 0. Fix n ≥ 1 and
let l be the length of the shortest contiguous subsequence of α starting at αp that contains
exactly 2n+ 2 elements which are not 0. We write β0 · · ·βl−1 for this sequence, so β0 = αp.

Recall that the vertices of Pα are {vi,j | i, j ∈ N}, and we write Vj for the set {vi,j | i ∈ N}.

We define the graph Gn to be the subgraph of Pα induced by the set C =
i=l−1⋃

i=0
Ci where

Ci ⊆ Vp+i is defined as follows for 0 ≤ i < l.
1. C0 = {v0,p, v1,p, v2,p, v3,p}; and
2. Ci+1 = {v0,p+i+1, v1,p+i+1, . . . , vt−1,p+i+1} where t = |Ci| if βi+1 = 0 and t = |Ci| + 1

otherwise.

0 = Colour0

1 0 1 0 02 23

top

topsucc

prepenult

penult

bottom

1 = Colour1

2 = Colour2

3 = Colour3

3

first

last

Figure 1 The graph H2 for α = (102103023)ω. The unlabeled graph underlying H2 is G2.

It is clear that Gn ∈ Sα. We show that we can interpret upper triangular grids in this
class of graphs. The key challenge in defining the required interpretation is to define the
two binary relations: one that relates vertices that are in the same column and the other
that relates vertices that are in the same row. In constructing the interpretation we make
use of a number of set parameters to obtain a labeled version Hn of Gn as illustrated in
Figure 1. In particular, Hn uses unary predicates for the vertices corresponding to the
possible values of βi, for the first and last column, the top, bottom and penultimate rows, and
the rows immediately succeeding and preceding the top and penultimate rows respectively.
The “diagonal” nature of the bottom row is vital to allowing us to define when two vertices
are in successive columns, which we need in order to define the two relations of being in the
same row and in the same column.

4.2 Composing Interpretations
We now consider the classes of graphs shown to be minimal HUCW in [15, 1], and prove
that these interpret grids using Theorem 12 above. Specifically, we show that for each class
C among them, there is some α ∈ {0, 1, 2, 3}ω and an MSO interpretation Ξ such that the
hereditary closure of Ξ(C ) contains Sα; then C interprets grids by Proposition 1.
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▶ Theorem 13. The following minimal HUCW classes of graphs interpret grids:
1. Bichain graphs
2. Split permutation graphs
3. Bipartite permutation graphs
4. Unit interval graphs

▶ Remark 14. We mention that Theorem 13(4) follows from the results of Courcelle in [5]. It
is shown in [5] that Seese’s conjecture holds for the class of interval graphs. More specifically,
it can be inferred from the results in [5] that any unbounded clique-width subclass of interval
graphs admits MSO interpretability of grids. It follows, in particular, that this is true of the
unit interval graphs. We therefore show parts (1)–(3) of Theorem 13 to complete its proof.

Bichain graphs

We need some terminology to talk about these graphs. Given a graph G, a sequence
v1, . . . , vk of vertices of G is said to be a chain if N(vi) ⊆ N(vj) whenever i ≤ j, where
N(v) := {u | E(u, v)} denotes the neighbourhood of v. A bipartite graph (A∪B,E) is called
a k-chain graph if each of the two parts A and B can be further partitioned into at most k
chains. A bichain graph is a 2-chain graph.

We now describe the bichain graph Zn as defined in [1]. This graph is n-universal in that
all bichain graphs on at most n vertices are induced subgraphs of Zn. The graph has vertex
set {zi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ n} (which can thus be seen as an n × n grid of points), and
{zi,j , zi′,j′} is an edge if, and only if, one of the following holds: (i) j is odd, j′ = j + 1 and
i < i′; (ii) j is even, j′ = j + 1 and i′ ≤ i; or (iii) j is even, j′ is odd and j′ ≥ j + 3. Since
bichain graphs are hereditary, it follows that the class Bichain of all bichain graphs is exactly
the hereditary closure of the class {Zn | n ≥ 1}.

Again, the grid structure is implicit in the graph Zn. What we show is that when Zn is
expanded with unary relations for the bottom row {zn,j | 1 ≤ j ≤ n} and the last column
{zi,n | 1 ≤ i ≤ n}, we can construct an FO interpretation to a class that contains the class
Sα for α = (23)ω in its hereditary closure.

Split permutation graphs

Recall that a split graph is a graph G whose vertex set can be partitioned into two sets C
and I such that C induces a clique in G and I is an independent set in G. A permutation
graph is a graph whose vertices represent the domain of a permutation, and each of whose
edges determines an inversion in the permutation. Following [1], we use the following
characterization of split permutation graphs.

▶ Proposition 15 ([1, Prop. 2.3]). Let G be a split graph given together with a partition of
its vertex set into a clique C and an independent set I. Let H be the bipartite graph obtained
from G by deleting the edges of C. Then G is a split permutation graph if, and only if, H is
a bichain graph.

Let G be a split permutation graph with (C, I) being a partition of its vertex set into a
clique C and an independent set I. Let G∗ be the expansion of G with a unary predicate P
which is interpreted as the set C. Consider the FO interpretation Ψ which removes from G∗

all edges inside P . It is easy to see that Ψ(G∗) is a bichain graph by Proposition 15.
Let Ψ be the FO interpretation as described above and SP be the class of split permutation

graphs. Then Ψ(SP), and hence its hereditary closure, contains the class Bichain. We are
then done by Theorem 13(1) and Proposition 1.



A. Dawar and A. Sankaran 17:13

Bipartite permutation graphs

These graphs are graphs that are bipartite as well as being permutation graphs. For our
purposes, the following characterization is useful. Consider the graph Pn on vertex set
{vi,j | 1 ≤ i, j ≤ n} where the only edges are between vi,j and vi+1,j′ for j′ ≤ j. Then,
the class of bipartite permutation graphs is exactly the hereditary closure of the class
{Pn | n ≥ 1} [15]. Now, it is easily seen that this class is exactly the class Sα as described
in Section 4.1, for α = 2ω, and this has been observed in [3]. Thus, Theorem 13(3) follows
from Theorem 12.

5 Power Graphs

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

2 6 10 14 18 22 26 30 34 38

4 12 20 28 36

40248

16

32

Odd clique

PC 1

PC 2

PC 3

PC 4

PC 5

D41

Figure 2 The power graph D41 with “PC i” denoting the power clique corresponding to i.

In this section, we consider the class of power graphs as defined in [16] in the context of
well-quasi-ordering and clique-width. Most of the classes that we have seen so far can be
shown to not be well-quasi ordered under the induced subgraph relation. In particular, all
word-defined classes, unit interval graphs and bipartite permutation graphs can be seen to
contain the antichain {In | n ≥ 1} described after Proposition 2. We do not know whether
bichain graphs and split permutation graphs are well-quasi ordered, though it has been shown
that their expansion with two labels is not a well-quasi ordered class [1]. In contrast, power
graphs constitute a class of graphs that is HUCW, that is well-quasi ordered [16] and, as we
show, is a minimal HUCW class. It was introduced precisely to demonstrate an HUCW class
that is well-quasi ordered. Minimality follows from arguments contained in [16], but was not
observed there. We now define the class of power graphs. We show that they are minimal
and then in the remainder of the section show that they admit interpretability of grids.

For n ≥ 1, we define the graph Dn as follows. The vertex set of Dn is [n] = {1, . . . , n}.
For each i < n, there is an edge between i and i+ 1 – we call these path edges. Furthermore,
there is an edge between i and j if the largest power of 2 that divides i is the same as the
largest power of 2 that divides j – we call these clique edges. To understand this terminology,
note that we can see Dn as consisting of a simple path of length n, along with, for each k

such that 2k ≤ n, a clique on all vertices j = 2k · (2r + 1) for some r ≥ 0 – we call this the
power clique corresponding to k. In particular, taking k = 0, there is a clique formed by all
the odd elements, which we call the odd clique. Observe that the path edges, which are the
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only edges with endpoints in different power cliques always have one end point in the odd
clique, and one outside it. The class of power graphs, denoted Power-graphs, is now defined
as the hereditary closure of the class {Dn | n ≥ 1}.

5.1 Minimality of Power Graphs
▶ Proposition 16. The class Power-graphs is a minimal hereditary class of unbounded
clique-width.

That Power-graphs is a hereditary class of unbounded clique-width has already been shown
in [16]. Thus, we only need to show that no proper subclass has this property.

Given a graph G ∈ Power-graphs which is a subgraph of Dn, define an interval in G to
be a set S ⊆ [n] of vertices of G such that if i, j ∈ S with i < j and k is a vertex of G with
i < k < j then k ∈ S. We call a subgraph of G induced by an interval a factor of G. We
now recall the following two results proved in [16].

▶ Lemma 17 (Lemma 11, [16]). Let G be a graph in Power-graphs. Then there exists an
integer t = t(G) such that for any n ≥ t, every factor of Dn of length at least t contains G
as an induced subgraph.

▶ Theorem 18 (Theorem 2, [16]). Let G be a graph in Power-graphs such that the length of
the longest factor in G is t. Then the clique-width of G is at most 2(log t+ 4).

Proof of Proposition 16. Consider a proper hereditary subclass S of Power-graphs; then S

excludes a graph G ∈ Power-graphs. Let t = t(G) be as given by Lemma 17. Let S = S1∪S2
where S1 = S ∩ {Dn | n < t}↓ and S2 = S ∩ {Dn | n ≥ t}↓. Observe that S1 has finitely
many graphs up to isomorphism.

We show that for each X ∈ S2, every factor of X has length < t. For otherwise X has a
factor Y of length ≥ t and there is p ≥ 1 such that X ⊆ Dp and so Y is also a factor of Dp.
Hence by Lemma 17, we have G is an induced subgraph of Y , whereby it is also an induced
subgraph of X. Since S is hereditary, G ∈ S which is a contradiction.

By Theorem 18, every X ∈ S2 has clique-width ≤ k = 2(log t+4). Then S2 has bounded
clique-width, and hence so does S since S1 is finite. ◀

5.2 Interpreting grids in Power Graphs
We now establish the main result of this section, showing that power graphs do not provide
a counter-example to Seese’s conjecture.

▶ Theorem 19. There exists an MSO interpretation Θ such that Θ(Power-graphs) contains
all square grids.

We show Theorem 19 by showing that there exists an MSO interpretation Φ such that
the hereditary closure of Φ(Power-graphs) contains all bipartite permutation graphs. We are
then done by Theorem 13 and Proposition 1. Indeed, it suffices to show that we can interpret
grids in a subset of Power-graphs and we do this for the set {Dn | n ∈ N even and n > 9}.

We first show that there exists an FO formula odd(x) such that if x is a number in Dn

with n ≥ 9, then odd(x) is true if, and only if, x is an odd number. The formula asserts that
there exist three elements y, z, w which together with x form a clique except that there is no
edge z − w. It is easy to see that for n ≥ 9, all odd numbers in Dn satisfy odd(x). If x is
odd with x < n− 3, this is witnessed by y = x+ 2, w = x+ 4 and z = x+ 1, otherwise by
y = x− 2, w = x− 4 and z = x− 1.
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To show that the even numbers of Dn do not satisfy odd(x), first observe that in any
power clique other than the odd clique, since the numbers in the clique are of the form
2k · (2r+ 1) for fixed k, the difference between any two numbers in the clique is at least 2k+1,
which is at least 4 since k ≥ 1. Suppose now that x is an even number in Dn and x, y, z form
a 3-clique. We argue that any w that is adjacent to both x and y must also be adjacent to z
showing that odd(x) is not satisfied. Consider the two cases:

The edge between x and y is a clique edge. Then |x− y| ≥ 4. If z is in a different power
clique, then |x− z| = 1 and |z − y| = 1, whereby |x− y| ≤ 2 – a contradiction. Thus z is
in the same power clique as x and y. By the same argument, w is the same power clique
as x and y, so there is a clique edge z − w.
The edge between x and y is a path edge and so |x− y| = 1. Then the edges from z to
x and y cannot both be path edges, as you cannot have a triangle of such edges. So,
one of them is a clique edge. If z is in the same power clique as x, then |x− z| ≥ 4 and
|y − z| = 1, which is a contradiction, so z must be in the same power clique as y. By the
same argument, w is in the same clique as y, so there is a clique edge z − w.

With the formula odd(x), we can distinguish path edges from clique edges. Indeed, an
edge is a path edge if, and only if, it has exactly one end point that is odd. In Dn, the path
edges form a simple path of length n − 1 and, if n is even, then only one of the two end
points satisfies odd(x). This allows us to give this simple path an orientation: for each path
edge (x, x+ 1) we can identify the direction x → x+ 1. The transitive closure of this relation
(which is definable in MSO), gives us a definition of the natural linear order on Dn.

Once we have defined a linear order ≤ on Dn, this induces a linear order on the power
cliques: namely, a clique C is below C ′ if the ≤-minimal element of C is less than the
≤-minimal element of C ′. Indeed, we can also define a successor relation on cliques from
this. From these, we define a relation that relates a pair x and y precisely if y occurs after x
in the linear order ≤ and occurs in the power clique that is successor to the power clique
containing x. It is easy to see that the graph induced by this relation contains arbitrarily
large bipartite permutation graphs Pk as defined on page 13.

6 Conclusion

The study of monadic second-order logic on graphs has attracted great attention in recent
years. An important aspect of work on this logic is to identify classes of graphs on which
MSO is well behaved. Seese’s conjecture is an important focus of this classification effort. In
its stronger form it offers a dichotomy: any class of graphs is either interpretable in trees
and therefore has bounded clique-width and is well-behaved or it interprets arbitrarily large
grids and its MSO theory is then undecidable.

We show that Seese’s conjecture could be established by considering two kinds of graph
classes: minimal hereditary classes of unbounded clique-width and antichains of unbounded
clique-width. Showing that all such classes interpret unbounded grids would suffice. While
we do not have a complete taxonomy of such classes, we investigated all the ones known and
showed that none of them provides a counter-example to Seese’s conjecture.

One could weaken the strong conjecture by requiring only that the classes of unbounded
clique-width admit MSO transductions of grids, rather than interpretations (see [7] for a
discussion of transductions). This would still suffice to establish Seese’s conjecture. In all
the cases we consider, however, we establish the stronger form, i.e. an interpretation of grids.
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It is also worth pointing out that for many of the classes we consider, the original
proofs that they have unbounded clique-width require sophisticated bespoke arguments. The
interpretation of grids in the classes also provides a uniform method of proving that they
have unbounded clique-width.

As a final remark, it is worth noting that there are standard graph operations which allow
us to construct new minimal HUCW graph classes from the ones we have. For example, taking
the graph complement of all graphs in a class C yields a class that is also minimal HUCW
if C is. Since this operation is itself an MSO interpretation, the results about interpreting
arbitrarily large grids apply to the resulting classes as well.
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12 Petr Hliněnỳ and Detlef Seese. Trees, grids, and MSO decidability: From graphs to matroids.
Theoretical computer science, 351(3):372–393, 2006.

13 Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
14 Nicholas Korpelainen. A new graph construction of unbounded clique-width. Electronic Notes

in Discrete Mathematics, 56:31–36, 2016.
15 Vadim V. Lozin. Minimal classes of graphs of unbounded clique-width. Annals of Combinatorics,

15(4):707–722, 2011.
16 Vadim V. Lozin, Igor Razgon, and Viktor Zamaraev. Well-quasi-ordering does not imply

bounded clique-width. In International Workshop on Graph-Theoretic Concepts in Computer
Science, pages 351–359. Springer, 2015.

http://arxiv.org/abs/1503.01628
http://arxiv.org/abs/2104.00412
https://doi.org/10.1016/j.jal.2005.08.004
https://doi.org/10.1016/j.dam.2017.04.040
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/j.jctb.2006.04.003
https://doi.org/10.1016/j.jctb.2006.04.003
https://doi.org/10.4230/LIPIcs.STACS.2011.404


A. Dawar and A. Sankaran 17:17

17 Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures, and algorithms,
volume 28. Springer Science & Business Media, 2012.

18 Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width. Journal of
Combinatorial Theory, Series B, 96(4):514–528, 2006.

19 Neil Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. Special Issue Dedicated to Professor
W.T. Tutte. doi:10.1016/j.jctb.2004.08.001.

20 Detlef Seese. The structure of the models of decidable monadic theories of graphs. Annals of
pure and applied logic, 53(2):169–195, 1991.

CSL 2022

https://doi.org/10.1016/j.jctb.2004.08.001




Constructive Many-One Reduction from the
Halting Problem to Semi-Unification
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Abstract
The undecidability of semi-unification (unification combined with matching) has been proven by
Kfoury, Tiuryn, and Urzyczyn in the 1990s. The original argument is by Turing reduction from
Turing machine immortality (existence of a diverging configuration).

There are several aspects of the existing work which can be improved upon. First, many-one
completeness of semi-unification is not established due to the use of Turing reductions. Second,
existing mechanizations do not cover a comprehensive reduction from Turing machine halting to
semi-unification. Third, reliance on principles such as König’s lemma or the fan theorem does not
support constructivity of the arguments.

Improving upon the above aspects, the present work gives a constructive many-one reduction from
the Turing machine halting problem to semi-unification. This establishes many-one completeness
of semi-unification. Computability of the reduction function, constructivity of the argument, and
correctness of the argument is witnessed by an axiom-free mechanization in the Coq proof assistant.
The mechanization is incorporated into the existing Coq library of undecidability proofs. Notably, the
mechanization relies on a technique invented by Hooper in the 1960s for Turing machine immortality.

An immediate consequence of the present work is an alternative approach to the constructive
many-one equivalence of System F typability and System F type checking, compared to the argument
established in the 1990s by Wells.
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1 Introduction

Semi-unification is the combination of first-order unification and first-order matching. That
is, given a finite set of pairs of first-order terms, is there a valuation φ such that for each
pair (σ, τ ) in the set of first-order terms we have ψ(φ(σ)) = φ(τ) for some valuation ψ? Semi-
unification naturally arises in type inference for functional and logic programs [30, 26, 19]
which allow for polymorphic recursion [34]. Intuitively, the valuation φ establishes global
code invariants, and the individual valuations ψ establish additional local conditions for each
polymorphic function application. While both first-order unification and first-order matching
are decidable problems, the status of semi-unification remained open throughout the 1980s,
until answered negatively by Kfoury, Tiuryn, and Urzyczyn [25, 27]. The undecidability
of semi-unification impacted programming language design and analysis with respect to
polymorphic recursion [31, 21], loop detection [36], and data flow [12]. Another prominent
result based on the undecidability of semi-unification is the undecidability of System F [18, 37]
typability and type checking [39]. Of course, the negative result motivated the complementary
line of work [31] in search for expressive, decidable fragments of semi-unification. A notable
decidable fragment is acyclic semi-unification, used for standard ML typability [28].
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18:2 From Halting to Semi-Unification

Due to the importance of semi-unification in functional programming, it is natural to ask
for surveyable evidence (both locally and globally in the sense of [4]) for its undecidability.
The original undecidability proof [25] is quite sophisticated, and it was recently simplified [10]
and partially mechanized (in the Coq proof assistant). Unfortunately, there are several
aspects that obstruct surveyability of previous work.

First, existing arguments rely on the undecidability of Turing machine immortality, shown
by Hooper [20]. The corresponding construction has received more attention [24], however,
it was never published in full detail. Hooper remarks:

A routine and unimaginative analysis-of-cases proof would point this out more clearly;
but it has remained unwritten since, as a rather tedious insult to the alert, qualified
reader, it would surely remain unread.

While the omissions are justified by accessibility, they hinder verification in full detail. The
existing mechanization [10] of the undecidability of semi-unification does not improve upon
this aspect, as it treats the undecidability of Turing machine immortality axiomatically.

Second, existing arguments use principles such as excluded middle, König’s lemma [25],
or the fan theorem [10] that do not support constructivity of the arguments. As a result,
anti-classical theories, such as synthetic computability theory [5], may be in conflict with
such constructions. The question arises, whether non-constructive principles are inherent to
semi-unification or could be avoided.

Third, existing arguments use Turing reductions and are insufficient to establish many-
one completeness of semi-unification. Hitherto, a many-one reduction from Turing machine
halting to semi-unification is not given.

This work improves upon the above aspects as follows. It provides a comprehensive
chain of many-one reductions from Turing machine halting to semi-unification, replacing
immortality with uniform boundedness. Crucially, each many-one reduction is mechanized
in full detail in the Coq proof assistant [8]. The mechanization witnesses correctness and
constructivity of the argument. Specifically, the notion of a constructive proof is identified
with an axiom-free Coq mechanization (cf. calculus of inductive constructions). It neither
assumes functional extensionality (cf. homotopy type theory), Markov’s principle (cf. Russian
constructivism), nor the fan theorem (cf. Brouwer’s intuitionism). Finally, the mechanization
is integrated into the Coq Library of Undecidability Proofs [17], and contributes a (first of
its kind) mechanized variant of Hooper’s immortality construction [20].

The described improvements allow for an alternative approach to show many-one equiv-
alence of System F typability and System F type checking, compared to the argument
established in the 1990s by Wells [39]. The original argument interreduces type checking and
typability directly, which requires a technically sophisticated argument. Having a constructive
many-one reduction from Turing machine halting to semi-unification at our disposal (together
with recursive enumerability of System F typability and type checking), it suffices (and is
simpler) to reduce semi-unification to type checking and typability individually [11].

Synopsis
The reduction from Turing machine halting to semi-unification is divided into several
reduction steps. Each reduction step is many-one, constructive, and mechanized as part
of the Coq Library of Undecidability Proofs [17]. In particular, a predicate P over the
domain X constructively many-one reduces to a predicate Q over the domain Y , if there
exists a computable function f : X → Y such that for all x ∈ X we constructively have
P (x) ⇐⇒ Q(f(x)).
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Section 2: Turing machine halting is reduced to two-counter machine halting (Lemma 3)
using Minsky’s argument [33, Section 14.1]. This step simplifies the machine model.

Section 3: Two-counter machine halting is reduced to one-counter machine 1-halting
(Lemma 12), adapting Minsky’s observation [33, Section 14.2]. This step prepares
the machine model for nested simulation via two-stack machines without symbol search.

Section 4.1: One-counter machine 1-halting is reduced to deterministic, length-preserving
two-stack machine uniform boundedness (Lemma 26), adapting Hooper’s construction
for Turing machine immortality [20]. This step transitions the machine problem from
halting to uniform boundedness.

Section 4.2: Deterministic, length-preserving two-stack machine uniform boundedness is
reduced to confluent, simple two-stack machine uniform boundedness (Lemma 35),
simplifying machine structure. This step enables reuse of the existing mechanized
reduction from a uniform boundedness problem to semi-unification [10].

Section 5.1: Confluent, simple two-stack machine uniform boundedness is reduced to simple
semi-unification (Lemma 46), strengthening previous work [10]. This step transitions to
an undecidable fragment of semi-unification.

Section 5.2: Simple semi-unification is reduced to right-uniform, two-inequality semi-unifi-
cation (Lemma 50), establishing the main result (Theorem 53).

Section 6: Outline of the mechanization of the above reduction steps.

2 Two-counter Machines

The key insight of recent work [10] establishes a direct correspondence between semi-unification
and a uniform boundedness problem for a machine model. In order to reduce Turing machine
halting to such a problem, in this section we consider two-counter machines as a well-
understood, mechanized [16], and more convenient intermediate model of computation.

Two-counter machines, pioneered by Minsky [33, Section 14.1], are a restricted form of
register machines and constitute a particularly simple, Turing-complete model of computation.
A two-counter machine (Definition 1) stores data in two counters, each containing a natural
number. A program instruction may either increment or decrement a counter value, and
modify the current program index. To avoid partiality, we model halting via a trivial cycle.
The size of a two-counter machine is the length, denoted | · |, of the list of its instructions.

▶ Definition 1 (Two-counter Machine (M)). A two-counter machine M is a list of instructions
of shape either inc0, inc1, dec0 j, or dec1 j, where j ∈ N is a program index.

A configuration of M is of shape (i, (a, b)), where i ∈ N is the current program index
and a, b ∈ N are the current counter values.

The step relation of M on configurations, written (−→M), is given by
if |M| ≤ i, then (i, (a, b)) −→M (i, (a, b)) and we say (i, (a, b)) halts
if inc0 is the i-th instruction of M, then (i, (a, b)) −→M (i+ 1, (a+ 1, b))
if inc1 is the i-th instruction of M, then (i, (a, b)) −→M (i+ 1, (a, b+ 1))
if dec0 j is the i-th instruction of M, then (i, (0, b)) −→M (i+ 1, (0, b))
and (i, (a+ 1, b)) −→M (j, (a, b))
if dec1 j is the i-th instruction of M, then (i, (a, 0)) −→M (i+ 1, (a, 0))
and (i, (a, b+ 1)) −→M (j, (a, b))

The reachability relation of M on configurations, written (−→∗
M), is the reflexive,

transitive closure of (−→M).
A configuration (i, (a, b)) is terminating in M, if we have (i, (a, b)) −→∗

P (i′, (a′, b′)) for
some halting configuration (i′, (a′, b′)).
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Despite its remarkable simplicity, the halting problem for two-counter machines (Prob-
lem 2) is undecidable (Corollary 4).

▶ Problem 2 (Two-counter Machine Halting). Given a two-counter machine M and two
natural numbers a, b ∈ N, is the configuration (0, (a, b)) terminating in M?

▶ Lemma 3. The Turing machine halting problem many-one reduces to the two-counter
machine halting problem (Problem 2).

Proof Sketch. Minsky describes the simulation of Turing machines by machines with four
registers [33, Section 11.2] working on Gödel encodings. Then, machines with four registers
are simulated by two-counter machines [33, Theorem 14.1-1]. ◀

▶ Corollary 4. Two-counter machine halting (Problem 2) is undecidable.

▶ Remark 5. Minsky’s original argument is constructive and is sufficient for our technical
result. However, for mechanization we rely on existing work by Forster et al. [16], which is part
of the Coq Library of Undecidability Proofs [17]. This approach many-one reduces Turing
machine halting via the Post correspondence problem [35, 13] and Conway’s FRACTRAN
halting [7, 29] to two-counter machine halting.

Commonly, two-counter machines are easily simulated by other machine models and
therefore serve a key role in undecidability proofs for machine immortality problems [20, 24].
However, they have one drawback with respect to uniform boundedness. That is, there
is no natural increasing measure on configurations along the step relation, as it allows for
non-trivial cycles (Example 6).

▶ Example 6. Consider M = [inc0, dec0 0]. For any counter values a, b ∈ N the configu-
ration (0, (a, b)) is non-terminating in M because of the non-trivial cycle (0, (a, b)) −→M
(1, (a+ 1, b)) −→M (0, (a, b)).

One could eliminate non-trivial cycles by introducing a third counter, which increases at
every step. While this induces a natural increasing measure (value of the third counter), it
incurs additional bookkeeping. A simulation of such a three-counter machine by an acyclic
two-counter machine is possible [24], however, it again obscures the underlying measure.

We address this drawback of two-counter machines with respect to uniform boundedness
in the following Section 3, building upon Minsky’s notion of machines with one register.

3 One-counter Machines

As Minsky observed [33, Section 14.2], with multiplication and division by constants the
halting problem is undecidable for one-counter machines. Specifically, increase (resp. de-
crease) operations for two values a and b can be simulated by multiplication (resp. division)
by 2 and 3 for one value 2a3b.

In this section, we further develop Minsky’s construction (similarly to [40]) of universal
machines with one counter in pursuit of two goals. First, machine runs should be easy to
simulate in the stack machine model (Remark 16). Second, we need a measure on machine
configurations that increases along the step relation, directly connecting non-termination
and unboundedness (Lemma 10).

A program instruction of a one-counter machine (Definition 7), besides modifying the
program index, conditionally multiplies the current counter value with either 2

1 ,
3
2 ,

4
3 , or 5

4 .
Notably, such a multiplication by d+1

d for d ∈ {1, 2, 3, 4} is both easy to simulate uniformly,
and strictly increases a (positive) counter value.



A. Dudenhefner 18:5

▶ Definition 7 (One-counter Machine (P)). A one-counter machine P is a list of instructions
of shape (j, d), where j ∈ N is a program index and d ∈ {1, 2, 3, 4} is a counter modifier.

A configuration of P is a pair (i, c), where i ∈ N is the current program index and c ∈ N
such that c > 0 is the current counter value.

The step relation of P on configurations, written (−→P), is given by
if |P| ≤ i, then (i, c) −→P (i, c) and we say (i, c) halts
if (j, d) is the i-th instruction of P and d divides c, then (i, c) −→P (j, c · d+1

d )
if (j, d) is the i-th instruction of P and d does not divide c, then (i, c) −→P (i+ 1, c)

The reachability relation of P on configurations, written (−→∗
P), is the reflexive, transitive

closure of (−→P).
A configuration (i, c) is terminating in P, if we have (i, c) −→∗

P (i′, c′) for some halting
configuration (i′, c′).

▶ Example 8. Consider P = [(1, 1), (0, 2)]. The configuration (0, 1) is not terminating in P
because of the infinite configuration chain

(0, 1) −→P (1, 1 · 2
1) −→P (0, 2 · 3

2) −→P (1, 3 · 2
1) −→P (0, 6 · 3

2) −→P (1, 9 · 2
1) −→P · · ·

The step relation for one-counter machines is total (Lemma 9.1), functional (Lemma 9.2),
and forms increasing chains (Lemma 9.3 and Lemma 9.4) up to a halting configuration.

▶ Lemma 9 (One-counter Machine Step Relation Properties).
1. Totality:

For all configurations (i, c) there is a configuration (i′, c′) such that (i, c) −→P (i′, c′).
2. Functionality:

If (i, c) −→P (i′, c′) and (i, c) −→P (i′′, c′′), then (i′, c′) = (i′′, c′′).
3. Increasing Measure:

If (i, c) −→P (i′, c′) and (i, c) is not halting, then |P| · c+ i < |P| · c′ + i′.
4. Monotone Counter:

a. If (i, c) −→P (i′, c′), then c ≤ c′.
b. If (i, c) −→|P|+1

P (i′, c′) and (i′, c′) is not halting, then c < c′.

Proof. Routine case analysis. ◀

The above Lemma 9.3 gives an increasing along (−→P) measure |P| · c+ i on non-halting
configurations (i, c). Therefore, any configuration cycle is trivial, i.e. the corresponding
configuration is halting. Additionally, by Lemma 9.4, the counter value is guaranteed to
increase after |P| + 1 steps, unless a halting configuration is reached. This results in a
characterization of termination via boundedness of reachable counter values (Lemma 10).

▶ Lemma 10. Let P be a one-counter machine. A configuration (i, c) is terminating in P iff
there is a k ∈ N such that for all configurations (i′, c′) with (i, c) −→∗

P (i′, c′) we have c′ < k.

Proof. If from (i, c) the machine P halts after n steps, then k = 1+c·2n bounds the reachable
from (i, c) counter values. Conversely, if k bounds the reachable from (i, c) counter values,
then after at most k · (|P| + 1) steps (i, c) reaches a halting configuration by Lemma 9.4. ◀

The halting problem for one-counter machines (Problem 11) starting from the configura-
tion (0, 1) is undecidable by reduction from the halting problem for two-counter machines
(Lemma 12).

▶ Problem 11 (One-counter Machine 1-Halting). Given a one-counter machine P, is the
configuration (0, 1) terminating in P?
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18:6 From Halting to Semi-Unification

▶ Lemma 12. Two-counter machine halting (Problem 2) many-one reduces to one-counter
machine 1-halting (Problem 11).

Proof. Let M be a two-counter machine and let a0, b0 ∈ N be two values. We represent a
pair (a, b) of counter values of M by the family of counter values 2a3b5m where m ∈ N.

We simulate instructions of M on two counters (a, b) by instructions of P on one counter
c = 2a3b5m as follows. Increase a is simulated by 2a3b5m · 2

1 = 2a+13b5m. Increase b is
simulated by 2a3b5m · 2

1 · 3
2 = 2a3b+15m. Decrease a is simulated by 2a+13b5m · 3

2 · 4
3 · 5

4 =
2a3b5m+1. Decrease b is simulated by 2a3b+15m · 4

3 · 5
4 = 2a3b5m+1. Failed decrease instructions

may rely on a simulation of an unconditional jump instruction via 2a3b5m · 2
1 · 2

1 · 5
4 = 2a3b5m+1.

Initialization of counter values (a0, b0) is simulated via 203050 · ( 2
1 )a0+b0 · ( 3

2 )b0 = 2a03b050.
Overall, the configuration (0, (a0, b0)) is terminating in the two-counter machine M iff the
configuration (0, 1) is terminating in the one-counter machine P. ◀

▶ Corollary 13. One-counter machine 1-halting (Problem 11) is undecidable.

The following Example 14 illustrates the construction in the proof of Lemma 12, simulating
a looping two-counter machine from Example 6.

▶ Example 14. Consider M = [inc0, dec0 0] from Example 6 with the initial counter values
(a0, b0) = (1, 1). Following the proof of Lemma 12, we construct the one-counter machine

P = [(1, 1), (2, 1), (3, 2), (4, 1), (5, 2), (6, 3), (3, 4)]

Starting from the configuration (0, 1) = (0, 203050) a run of P starts with the initialization

(0, 203050) (1,1)−→P (1, 213050) (2,1)−→P (2, 223050) (3,2)−→P (3, 213150) = (3, 2a03b050)

Next, the infinite loop of M is simulated, returning to the program index 3

(3, 213150) (4,1)−→P (4, 223150) (5,2)−→P (5, 213250) (6,3)−→P (6, 233150) (3,4)−→P (3, 213151)

Overall, the configuration (0, 1) = (0, 203050) is non-terminating in P, simulating non-
termination of the configuration (0, (a0, b0)) in M as follows

(0, 203050) −→3
P (3, 213150) −→4

P (3, 213151) −→4
P (3, 213152) −→4

P (3, 213153) −→4
P . . .

Indeed, there is no upper bound on the counter value (cf. Lemma 10).

▶ Remark 15. One-counter machines can be understood as a variant of Conway’s FRAC-
TRAN language [7] with a relaxed program index transition rule, and restricted to the
instruction set ( 2

1 ,
3
2 ,

4
3 ,

5
4 ).

▶ Remark 16. The deliberate choice of counter multiplication by d+1
d for d ∈ {1, 2, 3, 4}

has several benefits. First, instructions are of uniform shape. Therefore, simulation of and
reasoning about such instructions requires less case analysis, also impacting the underlying
mechanization. Second, counter modification is non-decreasing by definition. Third, for a
counter value c = k · d multiplication by d+1

d results in c · d+1
d = c+ k. Therefore, it can be

simulated by rewriting a binary word 0c10k to 0c+k1. This can be performed iteratively (and
uniformly) by shifting the symbol 1 to the right for every consecutive occurrence of 0d in 0c

(cf. proof of Lemma 26).



A. Dudenhefner 18:7

4 Two-stack Machines

In this section, our goal is the simulation of one-counter machines in a stack machine model of
computation without unbounded symbol search. Specifically, given a one-counter machine P ,
we construct a two-stack machine S such that the configuration (0, 1) is terminating in P
iff there is a uniform bound on the number of configurations reachable in S from any
configuration.

The main difficulty, similarly to the undecidability proof for Turing machine immortal-
ity [20], is to simulate symbol search (traverse data, searching for a particular symbol) using
a uniformly bounded machine. Most problematic are unsuccessful searches that may traverse
an arbitrary, i.e. not uniformly bounded, amount of data. The key idea [20, Part IV] (see
also [24, 22]) is to implement unbounded symbol search by nested bounded symbol search.

In the present work, we supplement a high level explanation of the construction (cf. proof
sketch of Lemma 26) with a comprehensive case analysis as a mechanized proof (in the Coq
proof assistant). This approach, arguably worth striving for in general, has three advantages
over existing work. First, the proof idea is not cluttered with mundane technical details,
while the mechanized proof is highly precise. Second, a mechanized proof leaves little doubt
regarding proof correctness and is open to scrutiny, as there is nothing left to imagination.
Third, the Coq proof assistant tracks any non-constructive assumptions which may hide
beneath technical details.

Let us specify the two-stack machine (Definition 17) model of computation, which we use
to simulate one-counter machines. An instruction of such a machine may modify the current
machine state, pop from, and push onto two stacks of binary symbols.

▶ Definition 17 (Two-stack Machine (S)). A two-stack machine S is a list of instructions of
shape ApppB → A′pqpB′, where A,B,A′, B′ ∈ {0, 1}∗ are binary words and p, q ∈ S are states,
where S is countably infinite.

A configuration of S is of shape ApppB where p ∈ S is the current state, A ∈ {0, 1}∗ is
the content of the left stack and B ∈ {0, 1}∗ is the content of the right stack.

The step relation of S on configurations, written (−→S), is given by
if (ApppB → A′pqpB′) ∈ S, then for C,D ∈ {0, 1}∗ we have CApppBD −→S CA′pqpB′D

The reachability relation of S on configurations, written (−→∗
S), is the reflexive, transitive

closure of (−→S).

▶ Remark 18. A two-stack machine can be understood as a restricted semi-Thue system
on the alphabet {0, 1} ∪ S in which each word contains exactly one symbol from S. Such
rewriting systems are employed in the setting of synchronous distributivity [1].
▶ Remark 19. To accommodate for arbitrary large machines, the state space S is not finite.
However, the effective state space of any two-stack machine S is bounded by the finitely
many states occurring in the instructions of S.

The key undecidable property of two-stack machines, used in [10], is whether the number of
distinct, reachable configurations from any configuration is uniformly bounded (Definition 20).

▶ Definition 20 (Uniformly Bounded). A two-stack machine S is uniformly bounded if there
exists an n ∈ N such that for any configuration ApppB we have

|{A′pp′pB′ | ApppB −→∗
S A′pp′pB′}| ≤ n

Notably, uniform boundedness and uniform termination [32] (is every configuration chain
finite?) are orthogonal notions, illustrated by the following Examples 21–22.
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18:8 From Halting to Semi-Unification

▶ Example 21. Consider S = [0pppϵ → ϵppp1]. From the configuration 0mpppϵ, where m ∈ N,
reachable in S configurations are exactly 0m−ippp1i for i = 0 . . .m. Therefore, there is no
uniform bound on the number of reachable configurations. However, the length of every
configuration chain in S is finite (bounded by one plus the length of the left stack). Overall,
S is uniformly terminating but not uniformly bounded.

▶ Example 22. Consider S = [(0pppϵ → ϵpqp1), (ϵpqp1 → 0pppϵ)]. The number of distinct,
reachable in S configurations from any configuration is uniformly bounded by n = 2. However,
there is an infinite configuration chain 0pppϵ −→S ϵpqp1 −→S 0pppϵ −→S ϵpqp1 −→S . . . Overall,
S is uniformly bounded, but not uniformly terminating.

In literature [20, 24], counter machine termination is simulated using uniformly bounded
Turing machines directly rather than by two-stack machines. This is reasonable when
omitting technical details regarding the exact Turing machine construction. However,
for verification in full detail, Turing machines are quite unwieldy, compared to two-stack
machines. Unfortunately, we cannot rely on existing mechanized Turing machine programming
techniques [15], as they establish functional properties, but are incapable to establish uniform
boundedness.

4.1 Deterministic, Length-preserving Two-stack Machines
There are several properties of two-stack machines that are of importance in our construction
in order to reuse existing work [10].

For length-preserving two-stack machines (Definition 23) the sum of lengths of the two
stacks is invariant wrt. reachability. For each configuration, length-preservation bounds (al-
beit, not uniformly) the number of distinct, reachable configurations. Therefore, reachability
is decidable for length-preserving two-stack machines.

▶ Definition 23 (Length-preserving). A two-stack machine S is length-preserving if for all
instructions (ApppB → A′pqpB′) ∈ S we have 0 < |A| + |B| = |A′| + |B′|.

▶ Definition 24 (Deterministic). A two-stack machine S is deterministic if for all configura-
tions ApppB, A′pp′pB′, and A′′pp′′pB′′ such that ApppB −→S A′pp′pB′ and ApppB −→S A′′pp′′pB′′

we have A′pp′pB′ = A′′pp′′pB′′.

For example, two-stack machines in Examples 21–22 are deterministic and length-
preserving.

The key undecidable problem, that in our argument assumes the role of Turing machine
immortality of previous approaches [27, 10], is uniform boundedness of deterministic, length-
preserving two-stack machines (Problem 25). A central insight of the present work is that
using this problem as an intermediate step we neither require Turing reductions, König’s
lemma (cf. [27]), nor the fan theorem (cf. [10]). Additionally, this problem strikes a balance
between ease to reduce to (from counter machine halting) and ease to reduce from (to
semi-unification). This balance is essential for a mechanization of manageable size.

▶ Problem 25 (Deterministic, Length-preserving Two-stack Machine Uniform Boundedness).
Given a deterministic, length-preserving two-stack machine S, is S uniformly bounded?

The original undecidability proof of semi-unification contains a hint [27, Proof of Corol-
lary 6] that Turing machine immortality may be avoided in a comprehensive reduction.
Accordingly, the following Lemma 26 captures the decisive step that avoids Turing machine
immortality.
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▶ Lemma 26. One-counter machine 1-halting (Problem 11) many-one reduces to determin-
istic, length-preserving two-stack machine uniform boundedness (Problem 25).

Proof Sketch. Let P be a one-counter machine. Similarly to [24, Theorem 7], we adapt
Hooper’s argument [20] for symbol search.

A naive simulation of P by a deterministic, length-preserving two-stack machine S is easy.
A P-configuration (i, c) is represented by the S-configuration 1pip0c10m for m ∈ N, where
0m is a large enough supply of zeroes. A P-instruction (j, d) is simulated as follows. First,
the S-instruction ϵpi?p0d −→S 0dpi?pϵ tests for divisibility by d, moving consecutive blocks
of d zeroes from the right to the left stack. The divisibility test fails if the S-instruction
ϵpi?p0k1 −→S ϵpi#p0k1 where 0 < k < d can be applied. In this case, we move the zeroes back
to the right stack, and via the S-instruction 1pi#pϵ −→S 1pi+ 1pϵ we reach the S-configuration
1pi+ 1p0c10m, representing the P-configuration (i+ 1, c). The divisibility test succeeds if the
S-instruction ϵpi?p1 −→S ϵpi!p1 can be applied. In this case, multiplication by d+1

d is simulated
by shifting to the right the symbol 1 on the right stack for each block of consecutive d zeroes
on the left stack (Remark 16). Finally, via the S-instruction 1pi!pϵ −→S 1pjpϵ, we arrive at
the S-configuration 1pjp0

c(d+1)
d 10m− c

d , representing the P-configuration (j, c · d+1
d ).

Inductively, we obtain (i, c) −→∗
P (i′, c′) iff A1pip0c10c′−cB −→∗

S A1pi′p0c′1B for all A,B ∈
{0, 1}∗. Therefore, the configuration (0, 1) is terminating in P iff configurations A1p0p01B
are uniformly bounded in S (the uniform bound is derived from the halting counter value).

Unfortunately, the naive construction fails in general. For example, termination of (0, 1)
in P does not necessarily uniformly bound the configurations 1p0p0m where m ∈ N is arbitrary
large. At fault is a failed symbol search (for the symbol 1 on the right stack) that needs to
traverse an arbitrary amount of data. Observe that in the naive construction any search
for the symbol 1 is expected to succeed. The ingenious idea by Hooper [20, Part IV] is to
uniformly bound symbol search via nested simulation in a sufficiently large uniformly bounded
configuration space (in our case, the space of configurations A1p0p01B for A,B ∈ {0, 1}∗).
That is, to search for the symbol 1 on the right stack, start a nested simulation from the
P-configuration (0, 1) inside the space of consecutive zeros on the right stack. Specifically, use
Appp0k+3B −→S AC1p0p01B to reset the program index p to 0 and retain the binary encoding
of p in C of fixed length k. Let c be the counter value (arbitrarily large by Lemma 9.4) of the
halting configuration in P from the P-configuration (0, 1). For the configuration AC1p0p01B
which represents the P-configuration (0, 1), there are three cases.

First, in case B = 0m1D, where m < c − 1 and D ∈ {0, 1}∗, the number m of zeroes
on the right stack is too small to accommodate for c. Eventually, the nested simulation is
unable to simulate counter increase. In this situation, the initial search for the symbol 1
succeeds, and control is returned to the previous level.

Second, in case B = 0m, where m < c − 1, the size of the right stack is too small to
accommodate for c. Eventually, the nested simulation is unable to apply any instruction,
and halts. In this situation, the initial search for the symbol 1 fails, respecting the uniform
bound derived from c.

Third, in case B = 0c−1D, where D ∈ {0, 1}∗, there is enough space for the nested
simulation to reach a halting state in P from the initial configuration (0, 1), respecting the
uniform bound derived from c. This renders the initial search for the symbol 1 immaterial,
because the simulation already achieved its ultimate purpose.

In each case (using Lemma 9), a uniform bound on the number of configurations for the
nested simulation can be derived from c. Each case may require further nested computation.
However, the nesting depth is at most c because each nesting level uses space inside the
consecutive zeroes that represent the counter value (bounded by c) on the previous level. ◀
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▶ Corollary 27. Deterministic, length-preserving two-stack machine uniform boundedness
(Problem 25) is undecidable.

▶ Remark 28. The exact analysis of the nested simulation in the proof of Lemma 26 requires
a tremendous inductive proof with many corner cases. Arguably, it is unreasonable for a
human without mechanical assistance to write it down in full detail (cf. Hooper’s remark in
Section 1). Additionally, it would require a comparable amount of effort for others to verify
such a massive construction. This is why, in order to guarantee its correctness, a mechanized
proof of Lemma 26 is adequate (cf. Section 6) to establish the result.

4.2 Confluent, Simple Two-stack Machines
In order to build upon existing work [10], we consider two-stack machines with instructions
of simple (Definition 29, cf. [10, Definition 16]) shape. To further streamline the construction,
we relax determinism of two-stack machines to confluence (Definition 32). Overall, confluent,
simple two-stack machine uniform boundedness (Problem 34) is well-suited for reduction to
a fragment of semi-unification (cf. Section 5.1).

▶ Definition 29 (Simple). A two-stack machine S is simple if for all instructions
(ApppB → A′pqpB′) ∈ S we have 1 = |A| + |B| = |A′| + |B′| = |A| + |A′| = |B| + |B′|.

▶ Remark 30. A deterministic, simple two-stack machine is just another way to present a
deterministic Turing machine. The left and right stacks contain the respective tape content
to the left and to the right from the current head. Reading and writing at the head while
moving the head position is easily presented as simple instructions (cf. [10, Remark 19]).
▶ Remark 31. Turing machine immortality is reducible to uniform boundedness of determin-
istic, simple two-stack machines by a bounded Turing reduction [10, Theorem 2]. However,
the argument uses the fan theorem, therefore, it is crucial for the present argument not to
rely on this particular reduction.

▶ Definition 32 (Confluent). A two-stack machine S is confluent if for all configurations
ApppB, A′pp′pB′, and A′′pp′′pB′′ such that ApppB −→∗

S A′pp′pB′ and ApppB −→∗
S A′′pp′′pB′′ there

exists a configuration C pqpD such that A′pp′pB′ −→∗
S C pqpD and A′′pp′′pB′′ −→∗

S C pqpD.

Clearly, any deterministic two-stack machine is confluent (but not necessarily vice versa).

▶ Lemma 33. If a two-stack machine S is deterministic, then S is confluent.

Compared to deterministic machines, confluent machines are quite practical. For example,
a confluent machine may (without additional bookkeeping) “try out” different configuration
chains before choosing the preferable one (cf. proof sketch of Lemma 35).

▶ Problem 34 (Confluent, Simple Two-stack Machine Uniform Boundedness). Given a confluent,
simple two-stack machine S, is S uniformly bounded?

By Lemma 33, the above Problem 34 subsumes deterministic, simple two-stack machine
uniform boundedness [10, Problem 26]. This, in combination with the following Lemma 35,
allows for adaptation of previous work1 in Section 5.1.

1 It is possible to carry out the construction in the original, deterministic scenario without adaptation.
However, this is technically more challenging and provides no tangible benefit.
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▶ Lemma 35. Deterministic, length-preserving two-stack machine uniform boundedness
(Problem 25) many-one reduces to confluent, simple two-stack machine uniform boundedness
(Problem 34).

Proof Sketch. Our objective is to shorten length-preserving instructions, while maintaining
confluence. This is routine, storing local stack information in additional fresh states. For
example, an instruction 00pppϵ −→ 11pqpϵ can be replaced by the simple instructions 0pppϵ −→
ϵpp1p0, 0pp1pϵ −→ ϵpp2p0, ϵpp2p0 −→ 1pp3pϵ, and ϵpp3p0 −→ 1pqpϵ, where p1, p2, p3 are fresh states.
This results in the configuration chain 00pppϵ −→ 0pp1p0 −→ ϵpp2p00 −→ 1pp3p0 −→ 11pqpϵ
which simulates the instruction 00pppϵ −→ 11pqpϵ.

Notably, in the exemplified transformation it is difficult to maintain determinism. However,
in order to maintain confluence it suffices to add reverse instructions from fresh states, i.e.
ϵpp1p0 −→ 0pppϵ, ϵpp2p0 −→ 0pp1pϵ, and 1pp3pϵ −→ ϵpp2p0. Therefore, any failed attempt to read
local stack information is reversible and computation is confluent. ◀

5 Semi-unification

Semi-unification (Problem 38) can be understood as combination of first-order unification
(cf. valuation φ) and first-order matching (cf. valuations ψ). For the undecidability of
semi-unification [26, Theorem 12], it suffices to restrict the syntax of the underlying terms
(Definition 36) to variables together with a binary constructor (→).

In this section, we recapitulate necessary definitions and properties of semi-unification
from existing work [27, 10], in order to complete a constructive many-one reduction from
Turing machine halting to semi-unification (Theorem 53).

▶ Definition 36 (Terms (T)). Let α, β, γ range over a countably infinite set V of variables.
The set of terms T, ranged over by σ, τ , is given by the grammar σ, τ ∈ T ::= α | σ → τ .

▶ Definition 37 (Valuation (φ), (ψ)). A valuation φ : V → T assigns terms to variables, and
is tacitly lifted to terms.

▶ Problem 38 (Semi-unification [27, SUP], [10, Problem 3]).
Given a set I = {σ1 ≤ τ1, . . . , σn ≤ τn} of inequalities, is there a valuation φ such that for
each inequality (σ ≤ τ) ∈ I there exists a valuation ψ : V → T such that ψ(φ(σ)) = φ(τ)?

▶ Remark 39. As given by Definition 37, the set of valuations is not countable. However, in
any semi-unification instance I the number of inequalities (consisting of first-order terms)
is finite. Therefore, restricting valuations to be finite maps (from the relevant variables)
does not change the expressive power of semi-unification. As a result, semi-unification is
recursively enumerable.

The following Examples 40 (resp. Example 41) illustrates a positive (resp. negative)
instance of semi-unification.

▶ Example 40. Consider I = {α ≤ α → α, α ≤ α → α → α}. The semi-unification in-
stance I is solved by the valuation φ such that φ(α) = α.
For the inequality α ≤ α → α there exists a valuation ψ such that ψ(α) = α → α, and
therefore ψ(φ(α)) = φ(α → α). For the inequality α ≤ α → α → α there exists a valuation ψ
such that ψ(α) = α → α → α, and therefore ψ(φ(α)) = φ(α → α → α).

▶ Example 41. Consider I = {α → α ≤ α}. The semi-unification instance I is not solvable.
Assume that there exist valuations φ and ψ such that ψ(φ(α → α)) = φ(α). Therefore,
the size of the syntax tree of φ(α) is twice the size of the syntax tree ψ(φ(α)) which is not
possible for (non-empty, finite) terms.
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Unfortunately, semi-unification does not admit a decision procedure based on an occurs-
check, which is a common approach to both first-order unification and first-order matching [3]
(see also the redex contraction procedure [27, Section 2]). However, it is challenging to
construct an unsolvable example of manageable size, for which the occurs-check fails.

Originally [27, Theorem 12], semi-unification is proven undecidable by Turing reduction
from Turing machine immortality [20]. As intermediate problems, the argument relies on
symmetric intercell Turing machine boundedness, path equation derivability, and termination
of a redex contraction procedure that is custom-tailored for semi-unification. Additionally, the
argument uses König’s lemma and it is not obvious whether it can be presented constructively.

A modern approach [10, Theorem 4] simplifies the traditional argument. It still relies on
a Turing reduction from Turing machine immortality, but uses only deterministic, simple two-
stack machine uniform boundedness to show undecidability of a fragment of semi-unification.
Additionally, it relies on the fan theorem, which is strictly weaker than König’s lemma and
is valid in Brouwer’s intuitionism. The argument is partially mechanized (treating Turing
machine immortality axiomatically) in Coq.

In the remainder of this section we briefly recapitulate and reuse the modern approach [10]
in the more general case of confluent, simple two-stack machines. This allows us to avoid
Turing machine immortality, Turing reductions, and the fan theorem in the overall argument.

5.1 Simple Semi-unification
In this section, we recapitulate the intermediate problem of simple semi-unification (Prob-
lem 44) [10, Problem 15], which connects stack machine computation and semi-unification.
Intuitively, term variables represent machine states, simple constraints (Definition 42) repre-
sent local stack transformations, and the model relation (Definition 43) captures machine
reachability via valuations.

▶ Definition 42 (Simple Constraint [10, Definition 6]). A simple constraint has the shape
apαpϵ .= ϵpβpb, where a, b ∈ {0, 1} are symbols and α, β ∈ V are variables.

▶ Definition 43 (Model Relation [10, Definition 9]). A valuation triple (φ,ψ0, ψ1) models
a simple constraint apαpϵ .= ϵpβpb, written (φ,ψ0, ψ1) |= apαpϵ .= ϵpβpb, if one of the following
conditions holds

b = 0 and ψa(φ(α)) → τ = φ(β) for some term τ ∈ T
b = 1 and σ → ψa(φ(α)) = φ(β) for some term σ ∈ T

▶ Problem 44 (Simple Semi-unification [10, Problem 15]). Given a finite set C of simple
constraints, do there exist valuations φ,ψ0, ψ1 : V → T such that for each simple constraint
(apαpϵ .= ϵpβpb) ∈ C we have (φ,ψ0, ψ1) |= apαpϵ .= ϵpβpb?

The following Example 45 illustrates a model of a set of simple constraints, i.e. a solvable
instance of simple semi-unification.

▶ Example 45. Consider C = {0pαpϵ .= ϵpβp1, 1pαpϵ .= ϵpβp0}. A possible valuation triple
(φ,ψ0, ψ1) which models each simple constraint in C is such that φ(α) = α, φ(β) = β1 → β2,
ψ0(α) = β2, ψ1(α) = β1. Indeed, we have β1 → ψ0(φ(α)) = β1 → β2 = φ(β) and
ψ1(φ(α)) → β2 = β1 → β2 = φ(β).

The pivotal step in previous work [10] is a many-one reduction from deterministic, simple
two-stack machine uniform boundedness to simple semi-unification. This result readily
generalizes to the confluent case (Lemma 46).
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▶ Lemma 46. Confluent, simple two-stack machine uniform boundedness (Problem 34)
many-one reduces to simple semi-unification (Problem 44).

Proof Sketch. We follow exactly the argument structure of [10, Section 4]. Tacitly inject
machine states into variables, i.e. let S ⊆ V. Given a confluent, simple two-stack machine S,
construct the set of simple constraints

C = {apppϵ .= ϵpqpb | (apppϵ → ϵpqpb) ∈ S or (ϵpqpb → apppϵ) ∈ S}

If S is uniformly bounded, then the exact construction of (φ,ψ0, ψ1) [10, Definition 42]
yields a model of each simple constraint in C.

Conversely, if (φ,ψ0, ψ1) models each constraint in C, then by the exact argument of [10,
Lemma 48] the maximal depth of the syntax trees in the range of φ induces a uniform bound
on the number of configurations reachable from any configuration in S. ◀

▶ Remark 47. Although the original construction [10, Lemma 45 and Lemma 48] requires
determinism, only confluence is used in the actual proofs [10, Lemma 30, Lemma 39]. While
tedious to verify by hand, the available mechanization allows for simple replacement of
determinism by confluence, while the proof assistant guarantees correctness of any related
details. This highlights the effectiveness of proof assistants to accommodate for changes in a
complex argument, reevaluating its overall correctness.

5.2 Right-uniform, Two-inequality Semi-unification
In this section, we consider a restriction of semi-unification to only two inequalities with
identical right-hand sides (Problem 48). Such a restriction is a convenient byproduct of the
reduction from simple semi-unification, and may simplify existing undecidability proofs that
rely on the undecidability of semi-unification.

▶ Problem 48 (Right-uniform, Two-inequality Semi-unification). Given two inequalities σ0 ≤ τ

and σ1 ≤ τ with identical right-hand sides, do there exist valuations φ,ψ0, ψ1 such that
ψ0(φ(σ0)) = φ(τ) and ψ1(φ(σ1)) = φ(τ)?

▶ Remark 49. Simply put, the above Problem 48 can be stated as follows: Given three terms
σ0, σ1, τ , are there valuations φ,ψ0, ψ1 such that ψ0(φ(σ0)) = φ(τ) = ψ1(φ(σ1))?

It is an easy exercise to reduce simple semi-unification to (non right-uniform) two-
inequality semi-unification [10, Theorem 1]. We slightly adjust the existing construction to
produce right-uniform inequalities.

▶ Lemma 50. Simple semi-unification (Problem 44) many-one reduces to right-uniform,
two-inequality semi-unification (Problem 48).

Proof. Given constraints C = {aipαipϵ
.= ϵpβipbi | i = 1 . . . n}, define τ = β1 → · · · → βn. Let

γi be fresh variables for i = 1 . . . n and define σj = σj
1 → · · · → σj

n for j ∈ {0, 1} where

σj
i = αi → γi if ai = j and bi = 0 σj

i = γi → αi if ai = j and bi = 1 σj
i = γi else

We show that C is solvable iff the right-uniform inequalities σ0 ≤ τ and σ1 ≤ τ are solvable.
First, assume that the valuation triple (φ,ψ0, ψ1) models each simple constraint in

C. Wlog. φ(γi) = ψ0(γi) = ψ1(γi) = γi for i = 1 . . . n. By routine case analysis, we
may adjust ψ0(γi) and ψ1(γi) for i = 1 . . . n to obtain valuations ψ′

0 and ψ′
1 such that

ψ′
0(φ(σ0)) = φ(τ) = ψ′

1(φ(σ1)).
Second, any solution φ,ψ0, ψ1 of σ0 ≤ τ and σ1 ≤ τ also models each constraint in C. ◀

CSL 2022
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▶ Corollary 51. Simple semi-unification (Problem 44) many-one reduces to semi-unification
(Problem 38).

The following Example 52 illustrates the proof of Lemma 50 on the basis of Example 45.

▶ Example 52. Consider C = {0pαpϵ .= ϵpβp1, 1pαpϵ .= ϵpβp0} from Example 45. Define the terms
σ0 = (γ1 → α) → γ2, σ1 = γ1 → (α → γ2), and τ = β → β. The valuation triple (φ,ψ0, ψ1)
from Example 45 is extended to γ1, γ2 to obtain a solution φ,ψ′

0, ψ
′
1 of the right-uniform

inequalities σ0 ≤ τ and σ1 ≤ τ as follows: ψ′
0(γ1) = β1, ψ′

0(γ2) = β1 → β2, ψ′
1(γ1) = β1 → β2,

and ψ′
1(γ2) = β2. We have (β1 → β2) → (β1 → β2) = φ(τ) = ψ′

0(φ(σ0)) = (ψ′
1(φ(σ1)).

5.3 Main Result
Finally, we compose the previously described reductions into a comprehensive, constructive
many-one reduction from Turing machine halting to semi-unification (Theorem 53). This
constitutes the main result of the present work.

▶ Theorem 53. Turing machine halting constructively many-one reduces to semi-unification
(Problem 38).

Proof. By composition of Lemmas 3, 12, 26, 35, 46, and Corollary 51. Constructivity of the
argument is witnessed by an axiom-free mechanization (cf. Section 6) using the Coq proof
assistant. ◀

Since semi-unification is recursively enumerable (Remark 39), it is many-one complete
(in the sense of [38, Chapter 7.2]).

▶ Corollary 54. Semi-unification (Problem 38) is many-one complete.

6 Mechanization

This section provides an overview over the constructive mechanization, using the Coq proof
assistant [8], of the many-one reduction from Turing machine halting to semi-unification. The
mechanization relies on, and is integrated into the growing Coq Library of Undecidability
Proofs [17]. The reduction is axiom-free and spans approximately 20000 lines of code, of
which 3500 is contributed by the present work.

At the core of the library is the following mechanized notion of many-one reducibility2

Definition reduction {X Y} (f: X -> Y) (P: X -> Prop) (Q: Y -> Prop) :=
forall x, P x <-> Q (f x).

Definition reduces {X Y} (P: X -> Prop) (Q: Y -> Prop) :=
exists f: X -> Y, reduction f P Q.

Notation "P ⪯ Q" := ( reduces P Q).

In the above, a predicate P over the domain X many-one reduces to a predicate Q over
the domain Y, denoted P ⪯ Q, if there exists a function f: X -> Y such that for all x in
the domain X we have P x iff Q (f x). In axiom-free Coq any such function f: X -> Y is
computable, a necessity oftentimes handled with less rigor in traditional (non-mechanized)
proofs. Additionally, in axiom-free Coq, a proof of P x <-> Q (f x) cannot rely on principles
such as functional extensionality, the fan theorem, or the law of excluded middle. Notably,
our main Theorem 53 is mechanized in this setting.

2 cf. theories/Synthetic/Definitions.v

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/Synthetic/Definitions.v
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The key contribution of the present work is consolidated as part of the following conjunc-
tion of many-one reductions3

Theorem HaltTM_1_chain_SemiU :
HaltTM 1 ⪯ iPCPb /\
iPCPb ⪯ BSM_HALTING /\
BSM_HALTING ⪯ MM2_HALTING /\
MM2_HALTING ⪯ CM1_HALT /\
CM1_HALT ⪯ SMNdl_UB /\
SMNdl_UB ⪯ CSSM_UB /\
CSSM_UB ⪯ SSemiU /\
SSemiU ⪯ RU2SemiU /\
RU2SemiU ⪯ SemiU.

The individual problems in the above chain of many-one reductions are as follows.
HaltTM 1 is one-tape Turing machine halting, and native to the library as the initial
undecidable problem, building upon prior work [15, 2] in computability theory
iPCPb is indexed, binary Post correspondence problem, mechanized in [13]
BSM_HALTING is binary stack machine halting, mechanized in [16]
MM2_HALTING is two-counter machine halting (Problem 2), mechanized in [16]
CM1_HALT is one-counter machine 1-halting (Problem 11)
SMNdl_UB is uniform boundedness of deterministic, length-preserving two-stack machines
(Problem 25)
CSSM_UB is uniform boundedness of confluent, simple stack machines (Problem 34)
SSemiU is simple semi-unification (Problem 44), mechanized in [10]
RU2SemiU is right-uniform, two-inequality semi-unification (Problem 48)
SemiU is semi-unification (Problem 38), mechanized in [10]

Correctness of the argument is witnessed by the verification of Theorem HaltTM_1_chain_SemiU in
axiom-free Coq, for which constructivity is certified using the Print Assumptions command [9].

By transitivity of many-one reducibility we obtain Theorem reduction : HaltTM 1 ⪯ SemiU4.
As a result, the statement HaltTM 1 ⪯ SemiU faithfully mechanizes our overall formal

goal of a constructive many-one reduction from Turing machine halting to semi-unification.
In fact, the particular many-one reduction function could be extracted from the proof of
HaltTM 1 ⪯ SemiU as a λ-term (in the call-by-value λ-calculus model of computation) using
existing techniques [14].

The mechanization of CM1_HALT, SMNdl_UB, and CSSM_UB together with corresponding many-
one reductions are contributed to the library as part of the present work. The proof of
CSSM_UB ⪯ SSemiU is an almost verbatim copy of the corresponding DSSM_UB ⪯ SSemiU previous
result [10, Section 5], in which determinism is replaced by confluence.

Notably, CM1_HALT ⪯ SMNdl_UB relies on a variant of Hooper’s argument [20]. The particular
mechanization details span approximately 3500 lines of code, two thirds of which verify
the construction in the proof of Lemma 26. Since the proof structure for uniform bound
verification is mostly by extensive case analysis and basic arithmetic, the mechanization
benefits greatly from proof automation, i.e. Coq’s lia, nia, and eauto tactics [9]. To the best
of the author’s knowledge, the provided mechanization is the first that implements (a variant
of) Hooper’s argument.

3 cf. theories/SemiUnification/Reductions/HaltTM_1_chain_SemiU.v
4 cf. theories/SemiUnification/Reductions/HaltTM_1_to_SemiU.v
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7 Conclusion

This work gives a constructive many-one reduction from Turing machine halting to semi-
unification (Theorem 53). It improves upon existing work [27, 10] in the following aspects.

First, previous approaches use Turing reductions to establish undecidability. Therefore,
such arguments are unable to establish many-one completeness of semi-unification shown in
the present work (Corollary 54).

Second, previous work relies on the undecidability of Turing machine immortality, which
is not recursively enumerable, and obscures the overall picture. In the present work, we avoid
Turing machine immortality by adapting Hooper’s ingenious construction [20] (also adapted
in [24]) to uniform boundedness (Lemma 26). Notably, Hooper’s construction is such that
the resulting machine is either both mortal and uniformly bounded, or neither [27, Proof of
Corollary 6].

Third, correctness of the reduction function is proven constructively (in the sense of
axiom-free Coq), whereas previous work uses the principle of excluded middle, König’s
lemma [27], or the fan theorem [10]. As a result, anti-classical theories, such as synthetic
computability theory [5], may accommodate the presented results.

Fourth, computability of the many-one reduction function from Turing machines to
semi-unification instances is established rigorously by its mechanization in the Coq proof
assistant. Traditionally, this aspect is treated less formally.

Fifth, the reduction is mechanized as part of the Coq Library of Undecidability Proofs [17],
building upon existing infrastructure. Arguably, a comprehensive mechanization is the only
feasible approach to verify a reduction from Turing machine halting to semi-unification with
high confidence in full detail. The provided mechanization integrates existing work [10] into
the Coq Library of Undecidability Proofs, and contributes a (first of its kind) mechanized
variant of Hooper’s construction to avoid symbol search.

While this document provides a high-level overview over the overall argument, sur-
veyability (both local and global in the sense of [4]) is established mechanically. Local
surveyability is supported by the modular nature of the Coq Library of Undecidability
Proofs. That is, the mechanization of each reduction step can be understood and verified
independently. Global surveyability is supported by Theorem HaltTM_1_chain_SemiU and the
statement HaltTM 1 ⪯ SemiU (cf. Section 6). That is, the individually mechanized reduction
steps do compose transitively.

As ultimate proof of feasibility, the provided mechanization shows the maturity of the
Coq proof assistant for mechanical verification of technically challenging proofs. Admittedly,
neither Hooper’s exact immortality construction [20] nor the exact semi-unification construc-
tion by Kfoury, Tiuryn, and Urzyczyn [27] was mechanized. Rather, the overall argument
was revised to be mechanization-friendly. For example, the simplicity and uniformity of
one-counter machines as an intermediate model of computation serves exactly this purpose.

Already, building upon the present work, there is a novel mechanization showing the
undecidability of System F typability and type checking [11]. In addition, we envision
further mechanized results. For one, the undecidability of synchronous distributivity [1]
relies on uniform boundedness of semi-Thue systems that can be described as the presented
(and mechanized) two-stack machines. Further, since the underlying construction is already
implemented, it is reasonable to mechanize a many-one reduction from Turing machine
halting to Turing machine immortality. This would pave the way for further mechanized
results. For example, the undecidability of the finite variant property [6, Section 7] as well
as several tiling problems [23] rely on (variants of) Turing machine immortality.
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Abstract
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative
logics, also referred to as d-logics. Unlike logics based on the topological closure operator, d-logics
have not previously been studied in the framework of dynamical systems, which are pairs (X, f)
consisting of a topological space X equipped with a continuous function f : X → X.

We introduce the logics wK4C, K4C and GLC and show that they all have the finite Kripke
model property and are sound and complete with respect to the d-semantics in this dynamical
setting. In particular, we prove that wK4C is the d-logic of all dynamic topological systems,
K4C is the d-logic of all TD dynamic topological systems, and GLC is the d-logic of all dynamic
topological systems based on a scattered space. We also prove a general result for the case where f

is a homeomorphism, which in particular yields soundness and completeness for the corresponding
systems wK4H, K4H and GLH.

The main contribution of this work is the foundation of a general proof method for finite model
property and completeness of dynamic topological d-logics. Furthermore, our result for GLC
constitutes the first step towards a proof of completeness for the trimodal topo-temporal language
with respect to a finite axiomatisation – something known to be impossible over the class of all
spaces.
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1 Introduction

Dynamic (topological) systems are mathematical models of processes that may be iterated
indefinitely. Formally, they are defined as pairs ⟨X, f⟩ consisting of a topological space
X = ⟨X, τ⟩ and a continuous function f : X → X; the intuition is that points in the space X

“move” along their orbit, x, f(x), f2(x), . . . which usually simulates changes in time. Dynamic
topological logic (DTL) combines modal logic and its topological semantics with linear
temporal logic (see Pnueli [23]) in order to reason about dynamical systems in a decidable
framework.

Due to their rather broad definition, dynamical systems are routinely used in many
pure and applied sciences, including computer science. To cite some recent examples, in
data-driven dynamical systems, data-related problems may be solved through data-oriented
research in dynamical systems as suggested by Brunton and Kutz [4]. Weinan [6] proposes
a dynamic theoretic approach to machine learning where dynamical systems are used to
model nonlinear functions employed in machine learning. Lin and Antsaklis’s [20] hybrid
dynamical systems have been at the centre of research in control theory, artificial intelligence
and computer-aided verification. Mortveit and Reidys’s [22] sequential dynamical systems
generalise aspects of systems such as cellular automata, and also provide a framework through
which we can study dynamical processes in graphs. Another example of dynamical systems
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19:2 Dynamic Cantor Derivative Logic

and computer science can be found in the form of linear dynamical systems, i.e. systems
with dynamics given by a linear transformation. Examples of such systems in computer
science include Markov chains, linear recurrence sequences and linear differential equations.
Moreover, there are known strong connections between dynamical systems and algorithms.
This may be found for example in the work of Hanrot, Pujol and Stehlé [15], and in the work
of Chu [5].

Such applications raise a need for effective formal reasoning about topological dynamics.
Here, we may take a cue from modal logic and its topological semantics. The study of the
latter dates back to McKinsey and Tarski [21], who proved that the modal logic S4 is complete
for a wide class of spaces, including the real line. Artemov, Davoren and Nerode [1] extended
S4 with a “next” operator in the spirit of LTL, producing the logic S4C. They proved that
this logic is sound and complete with respect to the class of all dynamic topological systems.
The system S4C was enriched with the “henceforth” tense by Kremer and Mints, who
dubbed the new logic dynamic topological logic (DTL). Later, Konev et al. [16] showed that
DTL is undecidable, and Fernández-Duque [11] showed that it is not finitely axiomatisable
on the class of all dynamic topological spaces.

The aforementioned work on dynamic topological logic interprets the modal operator ♢
as a closure operator. However, McKinsey and Tarski had already contemplated semantics
that are instead based on the Cantor derivative [21]: the Cantor derivative of a set A, usually
denoted by d(A), is the set of points x such that x is in the closure of A \ {x} (see Section
2). This interpretation is often called d-semantics and the resulting logics are called d-logics.
These logics were first studied in detail by Esakia, who showed that the d-logic wK4 is sound
and complete with respect to the class of all topological spaces [8]. It is well-known that
semantics based on the Cantor derivative are more expressive than semantics based on the
topological closure. For example, consider the property of a space X being dense-in-itself,
meaning that X has no isolated points (see Section 3.2). The property of being dense-in-itself
cannot be expressed in terms of the closure operator, but it can be expressed in topological
d-semantics by the formula ♢⊤.

Logics based on the Cantor derivative appear to be a natural choice for reasoning about
dynamical systems. However, there are no established results of completeness for such
logics in the setting of dynamical systems, i.e. when a topological space is equipped with a
continuous function. Our goal is to prove the finite Kripke model property, completeness
and decidability of logics with the Cantor derivative operator and the “next” operator #
over some prominent classes of dynamical systems: namely, those based on arbitrary spaces,
on TD spaces (spaces validating the 4 axiom □p → □□p) and on scattered spaces (see
Section 3.2 for definitions). The reason for considering scattered spaces is to circumvent the
lack of finite axiomatisability of DTL by restricting to a suitable subclass of all dynamical
systems. In the study of dynamical systems and topological modal logic, one often works
with dense-in-themselves spaces. This is a sensible consideration when modelling physical
spaces, as Euclidean spaces are dense-in-themselves. However, as we will see in Section 3.2,
some technical issues that arise when studying DTL over the class of all spaces disappear
when restricting our attention to scattered spaces, which in contrast have many isolated
points. Further, we consider dynamical systems where f is a homeomorphism, i.e. where f−1

is also a continuous function. Such dynamical systems are called invertible.
The basic dynamic d-logic we consider is wK4C, which consists of wK4 and the temporal

axioms for the continuous function f . In addition, we investigate two extensions of wK4C:
K4C and GLC. As we will see, K4C is the d-logic of all TD dynamical systems, and GLC
is the d-logic of all dynamical systems based on a scattered space. Unlike the generic logic of
the trimodal topo-temporal language L◦∗

♢ , we conjecture that a complete finite axiomatisation
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for GLC, extended with axioms for the “henceforth” operator, will not require changes to the
trimodal language. This logic is of special interest to us as it would allow for the first finite
axiomatisation and completeness results for a logic based on the trimodal topo-temporal
language.

Outline. This paper is structured as follows: in Section 2 we give the required definitions
and notations necessary to understand the paper. In Section 3 we provide some background
on prior work on the topic of dynamic topological logics. Moreover, we motivate our interest
in GLC, the most unusual logic we work with.

In Section 4 we present the canonical model, and in Section 5 we construct a “finitary”
accessibility relation on it. Both are then used in Section 6 in order to develop a proof
technique that, given the right modifications, would work for many d-logics above wK4C. In
particular, we use it to prove the finite model property, soundness and completeness for the
d-logics wK4C, K4C and GLC, with respect to the appropriate classes of Kripke models.

In Section 7 we prove topological d-completeness of K4C, wK4C and GLC with respect
to the appropriate classes of dynamical systems. In Section 8 we present logics for systems
with homeomorphisms and provide a general completeness result which, in particular, applies
to the d-logics wK4H, K4H and GLH. Finally, in Section 9 we provide some concluding
remarks.

2 Preliminaries

In this section we review some basic notions required for understanding this paper. We work
with the general setting of derivative spaces, in order to unify the topological and Kripke
semantics of our logics.

▶ Definition 1 (topological space). A topological space is a pair X = ⟨X, τ⟩, where X is a
set and τ is a subset of ℘(X) that satisfies the following conditions:

X,∅ ∈ τ ;
if U, V ∈ τ , then U ∩ V ∈ τ ;
if U ⊆ τ , then

⋃
U ∈ τ .

The elements of τ are called open sets, and we say that τ forms a topology on X. A
complement of an open set is called a closed set.

The main operation on topological spaces we are interested in is the Cantor derivative.

▶ Definition 2 (Cantor derivative). Let X = ⟨X, τ⟩ be a topological space. Given S ⊆ X, the
Cantor derivative of S is the set d(S) of all limit points of S, i.e. x ∈ d(S) ⇐⇒ ∀U ∈ τ s.t.
x ∈ U, (U ∩ S)\{x} ̸= ∅. We may write d(S) or dS indistinctly.

When working with more than one topological space, we will often denote the Cantor
derivative of the topological space ⟨X, τ⟩ by dτ . Given subsets A,B ⊆ X, it is not difficult
to verify that d = dτ satisfies the following properties:
1. d(∅) = ∅;
2. d(A ∪B) = d(A) ∪ d(B);
3. dd(A) ⊆ A ∪ d(A).
In fact, these conditions lead to a more general notion of derivative spaces:1

1 Derivative spaces are a special case of derivative algebras introduced by Esakia [9], where ℘(X) is
replaced by an arbitrary Boolean algebra.
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▶ Definition 3. A derivative space is a pair ⟨X, ρ⟩, where X is a set and ρ : ℘(X) → ℘(X)
is a map satisfying properties 1-3 (with ρ in place of d).

Accordingly, if X = ⟨X, τ⟩ is a topological space and dτ is the Cantor derivative on X,
then ⟨X, dτ ⟩ is a derivative space. However, there are other examples of derivative spaces.
The standard topological closure may be defined by c(A) = A ∪ dτ (A). Then, ⟨X, c⟩ is
also a derivative space, which satisfies the additional property A ⊆ c(A) (and, a fortiori,
cc(A) = c(A)); we call such derivative spaces closure spaces. For convenience, we denote the
closure of the topological space ⟨X, τ⟩ by cτ .

Another example of derivative spaces comes from weakly transitive Kripke frames. For
the sake of succinctness, we call these frames derivative frames. Below and throughout the
text, we write ∃x = y φ instead of ∃x(y < x ∧ φ), and adopt a similar convention for the
universal quantifier and other relational symbols.

▶ Definition 4. A derivative frame is a pair F = ⟨W,<⟩ where W is a non-empty set and <
is a weakly transitive relation on W , meaning that w < v < u implies that w ⊑ u, where ⊑
is the reflexive closure of <.

We chose the notation < because it is suggestive of a transitive relation, but remains
ambiguous regarding reflexivity, as there may be irreflexive and reflexive points. Note
that < is weakly transitive iff ⊑ is transitive. Given A ⊆ W , we define ↓< as a map
↓< : ℘(W ) → ℘(W ) such that

↓<(A) = {w ∈ W : ∃v = w(v ∈ A)}.

The following is then readily verified:

▶ Lemma 5. If ⟨W,<⟩ is a derivative frame, then ⟨W, ↓<⟩ is a derivative space.

There is a connection between derivative frames and topological spaces. Given a derivative
frame ⟨W,<⟩, we define a topology τ< on W such that U ∈ τ< iff U is upwards closed under
<, in the sense that if w ∈ U and v = w then v ∈ U . Topologies of this form are Aleksandroff
topologies. The following is well known and easily verified.

▶ Lemma 6. Let ⟨W,<⟩ be a derivative frame and τ = τ<. Then, dτ = ↓< iff < is irreflexive
and cτ = ↓< iff < is reflexive.

Dynamical systems consist of a topological space equipped with a continuous function.
Recall that if ⟨X, τ⟩ and ⟨Y, υ⟩ are topological spaces and f : X → Y , then f is continuous if
whenever U ∈ υ, it follows that f−1(U) ∈ τ . The function f is open if f(V ) is open whenever V
is open, and f is a homeomorphism if f is continuous, open and bijective. It is well known (and
not hard to check) that f is continuous iff cτf

−1(A) ⊆ f−1cυ(A) for any A ⊆ Y . By unfolding
the definition of the closure operator, this becomes f−1(A)∪dτf

−1(A) ⊆ f−1(A)∪f−1dυ(A),
or equivalently, dτf

−1(A) ⊆ f−1(A) ∪ f−1dυ(A). We thus arrive at the following definition.

▶ Definition 7. Let ⟨X, ρX⟩ and ⟨Y, ρY ⟩ be derivative spaces. We say that f : X → Y

is continuous if for all A ⊆ Y , ρXf
−1(A) ⊆ f−1(A) ∪ f−1ρY (A). We say that f is a

homeomorphism if it is bijective and ρXf
−1(A) = f−1ρY (A).

It is worth checking that these definitions coincide with their standard topological
counterparts.
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▶ Lemma 8. If ⟨X, τ⟩, ⟨Y, υ⟩ are topological spaces with Cantor derivatives dτ and dυ

respectively, and f : X → Y , then
1. if f is continuous as a function between topological spaces, it is continuous as a function

between derivative spaces, and
2. if f is a homeomorphism as a function between topological spaces, it is a homeomorphism

as a function between derivative spaces.

We are particularly interested in the case where X = Y , which leads to the notion of
dynamic derivative system.

▶ Definition 9. A dynamic derivative system is a triple S = ⟨X, ρ, f⟩, where ⟨X, ρ⟩ is a
derivative space and f : X → X is continuous. If f is a homeomorphism, we say that S is
invertible.

If S = ⟨X, ρ, f⟩ is such that ρ = dτ for some topology τ , we say that S is a dynamic
topological system and identify it with the triple ⟨X, τ, f⟩. If ρ = ↓< for some weakly transitive
relation <, we say that S is a dynamic Kripke frame and identify it with the triple ⟨X,<, f⟩.

It will be convenient to characterise dynamic Kripke frames in terms of the relation <.

▶ Definition 10 (monotonicity and weak monotonicity). Let ⟨W,<⟩ be a derivative frame. A
function f : W → W is monotonic if w < v implies f(w) < f(v), and weakly monotonic if
w < v implies f(w) ⊑ f(v).

The function f is persistent if it is a bijection and for all w, v ∈ W , w < v if and only
if f(w) < f(v). We say that a Kripke frame is invertible if it is equipped with a persistent
function.

▶ Lemma 11. If ⟨W,<⟩ is a derivative frame and f : W → W , then
1. if f is weakly monotonic then it is continuous with respect to ↓<, and
2. if f is persistent then it is a homeomorphism with respect to ↓<.

Our goal is to reason about various classes of dynamic derivative systems using the logical
framework defined in the next section.

3 Dynamic Topological Logics

In this section we discuss dynamic topological logic in the general setting of dynamic derivative
systems. Given a non-empty set PV of propositional variables, the language L◦

♢ is defined
recursively as follows:

φ ::= p | φ ∧ φ | ¬φ | ♢φ | #φ,

where p ∈ PV. It consists of the Boolean connectives ∧ and ¬, the temporal modality #, and
the modality ♢ for the derivative operator with its dual □ := ¬♢¬. The interior modality
may be defined by ⊡φ := φ ∧ □φ.

▶ Definition 12 (semantics). A dynamic derivative model (DDM) is a quadruple M =
⟨X, ρ, f, ν⟩ where ⟨X, ρ, f⟩ is a dynamic derivative system and ν : PV → ℘(X) is a valuation
function assigning a subset of X to each propositional letter in PV. Given φ ∈ L◦

♢, we define
the truth set ∥φ∥ ⊆ X of φ inductively as follows:

∥p∥ = ν(p);
∥¬φ∥ = X \ ∥φ∥;
∥φ ∧ ψ∥ = ∥φ∥ ∩ ∥ψ∥;

∥♢φ∥ = ρ(∥φ∥);
∥#φ∥ = f−1(∥φ∥).

We write M, x |= φ if x ∈ ∥φ∥, and M |= φ if ∥φ∥ = X. We may write ∥ · ∥M or ∥ · ∥ν

instead of ∥ · ∥ when working with more than one model or valuation.

CSL 2022



19:6 Dynamic Cantor Derivative Logic

We define other connectives (e.g. ∨,→) as abbreviations in the usual way. The fragment
of L◦

♢ that includes only ♢ will be denoted by L♢. Since our definition of the semantics
applies to any derivative space and a general operator ρ, we need not differentiate in our
results between d-logics, logics based on closure semantics and logics based on relational
semantics. Instead, we indicate the specific class of derivative spaces to which the result
applies.

In order to keep with the familiar axioms of modal logic, it is convenient to discuss the
semantics of □. Accordingly, we define the dual of the derivative, called the co-derivative.

▶ Definition 13 (co-derivative). Let ⟨X, ρ⟩ be a derivative space. For each S ⊆ X we define
ρ̂(S) := X\ρ(X\S) to be the co-derivative of S.

The co-derivative satisfies the following properties, where A,B ⊆ X:
1. ρ̂(X) = X;
2. A ∩ ρ̂(A) ⊆ ρ̂ρ̂(A);
3. ρ̂(A ∩B) = ρ̂(A) ∩ ρ̂(B).

It can readily be checked that for any dynamic derivative model ⟨X, ρ, f, ν⟩ and any
formula φ, ∥□φ∥ = ρ̂(∥φ∥). The co-derivative can be used to define the standard interior of
a set, given by i(A) = A ∩ ρ̂(A) for each A ⊆ X. This implies that U ⊆ ρ̂(U) for each open
set U , but not necessarily ρ̂(U) ⊆ U . Next, we discuss the systems of axioms that are of
interest to us. Let us list the axiom schemes and rules that we will consider in this paper:

Taut := All propositional tautologies
K := □(φ → ψ) → (□φ → □ψ)
T := □φ → φ

w4 := φ ∧ □φ → □□φ

L := □(□φ → φ) → □φ

4 := □φ → □□φ

Next¬ := ¬#φ ↔ #¬φ

Next∧ := #(φ ∧ ψ) ↔ #φ ∧ #ψ
C := #φ ∧ #□φ → □#φ
H := □#φ ↔ #□φ

MP := φ φ → ψ

ψ

Nec□ := φ

□φ

Nec# := φ

#φ

The “base modal logic” over L♢ is given by

K := Taut + K + MP + Nec□,

but we are mostly interested in proper extensions of K. Let Λ,Λ′ be logics over languages L
and L′. We say that Λ extends Λ′ if L′ ⊆ L and all the axioms and rules of Λ′ are derivable
in Λ. A logic over L♢ is normal if it extends K. If Λ is a logic and φ is a formula, Λ + φ is
the least extension of Λ which contains every substitution instance of φ as an axiom.

We then define wK4 := K + w4, K4 := K + 4, S4 := K4 + T and GL := K4 + L. These
logics are well known and characterise certain classes of topological spaces and Kripke frames
which we review below. In addition, for a logic Λ over L♢, ΛF is the logic over L◦

♢ given by2

ΛF := Λ + Next¬ + Next∧ + Nec#.

This simply adds axioms of linear temporal logic to Λ, which hold whenever # is interpreted
using a function. Finally, we define ΛC := ΛF + C and ΛH := ΛF + H, which as we will see
correspond to derivative spaces with a continuous function or a homeomorphism respectively.
The following is well known and dates back to McKinsey and Tarski [21].

2 Logics of the form ΛF correspond to dynamical systems with a possibly discontinuous function. We will
not discuss discontinuous systems in this paper; see [1] for more information.
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▶ Theorem 14. S4 is the logic of all topological closure spaces, the logic of all transitive,
reflexive derivative frames, and the logic of the real line with the standard closure.

The logic K4 includes the axiom □p → □□p, which is not valid over the class of all
topological spaces. The class of spaces satisfying this axiom is denoted by TD, defined as
the class of spaces in which every singleton is the result of an intersection between an open
set and a closed set. Moreover, Esakia showed that this is the logic of transitive derivative
frames [9].

▶ Theorem 15. K4 is the logic of all TD topological derivative spaces, as well as the logic
of all transitive derivative frames.

Many familiar topological spaces, including Euclidean spaces, satisfy the TD property,
making K4 central in the study of topological modal logic. A somewhat more unusual class
of spaces, which is nevertheless of particular interest to us, is the class of scattered spaces.

▶ Definition 16 (scattered space). A topological space ⟨X, τ⟩ is scattered if for every S ⊆ X,
S ⊆ d(S) implies S = ∅.

This is equivalent to the more common definition of a scattered space where a topological
space is called scattered if every non-empty subset has an isolated point. Scattered spaces
are closely related to converse well-founded relations. Below, recall that ⟨W,<⟩ is converse
well-founded if there is no infinite sequence w0 < w1 < . . . of elements in W .

▶ Lemma 17. If ⟨W,<⟩ is an irreflexive frame, then ⟨W, τ<⟩ is scattered iff < is converse
well-founded.

▶ Theorem 18 (Simmons [24] and Esakia [7]). GL is the logic of all scattered topological
derivative spaces, as well as the logic of all converse well-founded derivative frames and the
logic of all finite, transitive, irreflexive derivative frames.

Aside from its topological interpretation, the logic GL is of particular interest as it is
also the logic of provability in Peano arithmetic, as was shown by Boolos [3]. Meanwhile,
logics with the C and H axioms correspond to classes of dynamical systems.

▶ Lemma 19.
1. If Λ is sound for a class of derivative spaces Ω, then ΛC is sound for the class of dynamic

derivative systems ⟨X, ρ, f⟩, where ⟨X, ρ⟩ ∈ Ω and f is continuous.
2. If Λ is sound for a class of derivative spaces Ω, then ΛH is sound for the class of dynamic

derivative systems ⟨X, ρ, f⟩, where ⟨X, ρ⟩ ∈ Ω and f is a homeomorphism.

The above lemma is easy to verify from the definitions of continuous functions and
homeomorphisms in the context of derivative spaces (Definition 7).

3.1 Prior Work
The study of dynamic topological logic originates with Artemov, Davoren and Nerode, who
observed that it is possible to reason about dynamical systems within modal logic. They
introduced the logic S4C and proved that it is decidable, as well as sound and complete for
the class of all dynamic closure systems (i.e. dynamic derivative systems based on a closure
space). Kremer and Mints [18] considered the logic S4H, and also showed it to be sound
and complete for the class of dynamic closure systems where f is a homeomorphism.

The latter also suggested adding the “henceforth” operator, ∗, from Pnueli’s linear
temporal logic (LTL) [23], leading to the language we denote by L◦∗

♢ . The resulting
trimodal system was named dynamic topological logic (DTL). Kremer and Mints offered
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an axiomatisation for DTL, but Fernández-Duque proved that it is incomplete; in fact,
DTL is not finitely axiomatisable [11]. Fernández-Duque also showed that DTL enjoys a
natural axiomatisation when extended with the tangled closure [13]. In contrast, Konev et
al. established that DTL over the class of dynamical systems with a homeomorphism is
non-axiomatisable [17].

3.2 The tangled closure on scattered spaces
Our interest in considering the class of scattered spaces within dynamic topological logic is
motivated by results of Fernández-Duque [13]. He showed that the set of valid formulas of
L◦∗
♢ over the class of all dynamic closure systems is not finitely axiomatisable. Nevertheless,

he found a natural (yet infinite) axiomatisation by introducing the tangled closure and adding
it to the language of DTL [10]. Here, we use the more general tangled derivative, as defined
by Goldblatt and Hodkinson [14].

▶ Definition 20 (tangled derivative). Let ⟨X, d⟩ be a derivative space and let S ⊆ ℘(X).
Given A ⊆ X, we say that S is tangled in A if for all S ∈ S, A ⊆ d(S ∩A). We define the
tangled derivative of S as

S∗ :=
⋃

{A ⊆ X : S is tangled in A}.

The tangled closure is then the special case of the tangled derivative where d is a closure
operator. Fernández-Duque’s axiomatisation is based on the extended language L◦∗

♢∗ . This
language is obtained by extending L◦∗

♢ with the following operation.

▶ Definition 21 (tangled language). We define L◦∗
♢∗ by extending the recursive definition of

L◦∗
♢ in such a way that if φ1, . . . , φn ∈ L◦∗

♢∗ , then ♢∗{φ1, . . . , φn} ∈ L◦∗
♢∗ . The semantic clauses

are then extended so that on any model M,

∥♢∗{φ1, . . . , φn}∥ = {∥φ1∥, . . . , ∥φn∥}∗.

The logic DGL is an extension of GLC that includes the temporal operator ∗. Unlike
the complete axiomatisation of DTL that requires the tangled operator, in the case of DGL,
we should be able to avoid this and use the original spatial operator ♢ alone. This is due to
the following:

▶ Theorem 22. Let X = ⟨X, τ⟩ be a scattered space and {φ1, . . . , φn} a set of formulas.
Then

♢∗{φ1, . . . , φn} ≡ ⊥.

This leads to the conjecture that the axiomatic system of Kremer and Mints [18], combined
with GL, will lead to a finite axiomatisation for DGL. While such a result requires techniques
beyond the scope of the present work, the completeness proof we present here for GLC is an
important first step. Before proving topological completeness for this and the other logics
we have mentioned, we show that they are complete and have the finite model property for
their respective classes of dynamic derivative frames.

4 The Canonical Model

The first step in our Kripke completeness proof will be a fairly standard canonical model
construction. A maximal Λ-consistent set (Λ-MCS) w is a set of formulas that is Λ-consistent,
i.e. w ̸⊢Λ ⊥, and every set of formulas that properly contains it is Λ-inconsistent.
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Given a logic Λ over L◦
♢, let MΛ

c = ⟨Wc,<c, gc, νc⟩ be the canonical model for Λ, where
1. Wc is the set of all Λ-MCSs;
2. w <c v iff for all formulas φ, if □φ ∈ w, then φ ∈ v;
3. gc(w) = {φ : #φ ∈ w};
4. νc(p) = {w : p ∈ w}.

It can easily be verified that wK4C defines the class of all weakly transitive Kripke
models with a weakly monotonic map. Moreover, K4C defines the class of all transitive
Kripke models with a weakly monotonic map. We call these models wK4C models and
K4C models respectively.

▶ Lemma 23. If Λ extends wK4C, then the canonical model for Λ is a wK4C model. If Λ
extends K4C, then the canonical model of Λ is a K4C model.

It is a well-known fact that the transitivity axiom □p → □□p is derivable in GL (see [25]).
Therefore, GLC extends the system K4C. The proofs of the following two lemmas are
standard and can be found for example in [2].

▶ Lemma 24 (existence lemma). Let Λ be a normal modal logic and let MΛ
c = ⟨Wc,<c, gc, νc⟩.

Then, for every w ∈ Wc and every formula φ in Λ, if ♢φ ∈ w then there exists a point
v ∈ Wc such that w <c v and φ ∈ v.

▶ Lemma 25 (truth lemma). Let Λ be a normal modal logic. For every w ∈ Wc and every
formula φ in Λ,

MΛ
c , w |= φ iff φ ∈ w.

▶ Corollary 26. The logic wK4C is sound and complete with respect to the class of all
weakly monotonic dynamic derivative frames, and K4C is sound and complete with respect
to the class of all weakly monotonic, transitive dynamic derivative frames.

5 A finitary accessibility relation

One key ingredient in our finite model property proof will be the construction of a “finitary”
accessibility relation <Φ on the canonical model. This accessibility relation will have the
property that each point has finitely many successors, yet the existence lemma will hold for
formulas in a prescribed finite set Φ.

We define the <c-cluster C(w) for each point w ∈ Wc as

C(w) = {w} ∪ {v : w <c v <c w}.

▶ Definition 27 (φ-final set). A set w is said to be a φ-final set (or point) if w is an MCS,
φ ∈ w, and whenever w <c v and φ ∈ v, it follows that v ∈ C(w).

Let us write ⊑c for the reflexive closure of <c. It will be convenient to characterise ⊑c in
the canonical model syntactically. Recall that ⊡φ := φ ∧ □φ.

▶ Lemma 28. If Λ extends wK4C and w, v ∈ Wc, then w ⊑c v if and only if whenever
⊡φ ∈ w, it follows that ⊡φ ∈ v.

We are now ready to prove the main result of this section regarding the existence of the
finitary relation <Φ.
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▶ Lemma 29. Let Λ extend wK4C and Φ be a finite set of formulas closed under subformulas.
There is an auxiliary relation <Φ on the canonical model of Λ such that:

(i) <Φ is a subset of <c;
(ii) For each w ∈ W , the set <Φ(w) is finite;
(iii) If ♢φ ∈ w ∩ Φ, then there exists v ∈ W with w <Φ v and φ ∈ v;
(iv) If w <c v <c w then <Φ (w) ⊆ ⊑Φ (v);
(v) <Φ is weakly transitive. Moreover, if Λ extends K4C then <Φ is transitive, and if Λ

extends GLC then <Φ is irreflexive.

6 Stories and Φ-morphisms

In this subsection we show that the logics wK4C, K4C and GLC have the finite model
property by constructing finite models and truth preserving maps from these models to the
canonical model.

If < is a weakly transitive relation on A, ⟨A,<⟩ is tree-like if whenever a ⊑ c and b ⊑ c,
it follows that a ⊑ b or b ⊑ a. We will use labelled tree-like structures called moments to
record the “static” information at a point; that is, the structure involving <, but not f .

▶ Definition 30 (moment). A Λ-moment is a structure m = ⟨|m|,<m, νm, rm⟩, where ⟨|m|,<m⟩
is a finite tree-like Λ frame with a root rm, and νm is a valuation on |m|.

In order to also record “dynamic” information, i.e. information involving the transition
function, we will stack up several moments together to form a “story”. Below,

⊔
denotes a

disjoint union.

▶ Definition 31 (story). A story (with duration I) is a structure S = ⟨|S|,<S, fS, νS, rS⟩
such that there are I < ω, moments Si = ⟨|Si|,<i, νi, ri⟩ for each i ≤ I, and functions
(fi)i<I such that:
1. |S| =

⊔
i≤I |Si|;

2. <S=
⊔

i≤I <i;
3. νS(p) =

⊔
i≤I νi(p) for each variable p;

4. rS = r0;
5. fS = IdI ∪

⊔
i<I fi with fi : |Si| → |Si+1| being a weakly monotonic map such that

fi(ri) = ri+1 for all i < I (we say that fi is root preserving), and IdI is the identity on
|SI |.

r1 r2 rIr0
fS

<
S

Figure 1 An example of a GL-story. The squiggly arrows represent the relation <S while the
straight arrows represent the function fS. Each vertical slice represents a GL-moment. In the case
of other types of stories, we may also have clusters besides singletons.
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We often omit the subindices m or S when this does not lead to confusion. We may also
assign different notations to the components of a moment, so that if we write m = ⟨W,<, ν, x⟩,
it is understood that W = |m|, < = <m, etc.

Recall that a p-morphism between Kripke models is a type of map that preserves validity.
It can be defined in the context of dynamic derivative frames as follows:

▶ Definition 32 (dynamic p-morphism). Let M = ⟨WM,<M, gM⟩ and N = ⟨WN,<N, gN⟩ be
dynamic derivative frames. Let π : WM → WN. We say that π is a dynamic p-morphism if
w <M v implies that π(w) <N π(v), π(w) <N u implies that there is v =M w with π(v) = u,
and π ◦ gM = gN ◦ π.

It is then standard that if π : WM → WN is a surjective, dynamic p-morphism, then any
formula valid on M is also valid on N. However, our relation <Φ will allow us to weaken
these conditions and still obtain maps that preserve the truth of (some) formulas.

▶ Definition 33 (Φ-morphism). Fix a logic Λ and let MΛ
c = ⟨Wc,<c, gc, νc⟩ and S be a story

of duration I. A map π : |S| → Wc is called a dynamic Φ-morphism if for all x ∈ |S| the
following conditions are satisfied:
1. x ∈ νS(p) ⇐⇒ p ∈ π(x);
2. If x ∈ |Si| for some i < I, then gc(π(x)) = π(fS(x));
3. If x <S y then π(x) <c π(y);
4. If π(x) <Φ v for some v ∈ Wc, then there exists y ∈ |S| such that x <S y and v = π(y).
If we drop condition 2, we say that π is a Φ-morphism.

We now show that a dynamic Φ-morphism π preserves the truth of formulas of suitable
#-depth, where the latter is defined as usual in terms of nested occurrences of # in a
formula φ.

▶ Lemma 34 (truth preservation). Let S be a story of duration I and x ∈ |S0|. Let π be a
dynamic Φ-morphism to the canonical model of some normal logic Λ over L◦

♢. Suppose that
φ ∈ Φ is a formula of #-depth at most I. Then φ ∈ π(x) iff x ∈ ∥φ∥S.

We will next demonstrate that for every point w in the canonical model, there exists a
suitable moment m and a Φ-morphism mapping m to w. In order to do this, we define a
procedure for constructing new moments from smaller ones.

▶ Definition 35 (moment construction). Let Λ ∈ {wK4,K4,GL} and C ′ ∪ {x} ⊆ C(x) for
some x in the canonical model MΛ

c . Let a⃗ = ⟨am⟩m<N be a sequence of moments. We define
a structure n =

(
a⃗

C′

)
x

as follows:
1. |n| = C ′ ⊔

⊔
m<N |am|;

2. y <n z if either
y, z ∈ C ′, Λ ̸= GL and y <c z,
y ∈ C ′ and z ∈ |am| for some m, or
y, z ∈ |am| and y <am

z for some m;
3. νn(p) = {x ∈ C ′ : x ∈ νc(p)} ⊔

⊔
m<N νam

(p);
4. rn = x.

▶ Lemma 36. Given Λ ∈ {wK4C,K4C,GLC}, for all w ∈ Wc there exists a Λ-moment
m and a Φ-morphism π : |m| → Wc such that π(rm) = w.
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Proof sketch. We prove the stronger claim that there is a moment m and a map π : |m| → Wc
that is a p-morphism on the structure (Wc,<Φ). We will say that π is a p-morphism with
respect to <Φ. Let <1

Φ be the strict <Φ successor, i.e. w <1
Φ v iff w <Φ v and ¬(v <Φ w).

Since <1
Φ is converse well-founded, we can assume inductively that for each v such that

w <1
Φ v, there is a moment mv and a p-morphism πv : |mv| → Wc with respect to <Φ that

maps the root of mv to v. Accordingly, we define a moment

m =
(

{mv : v =1
Φ w}

CΦ(w)

)
w

.

It is not difficult to verify that m thus defined is a Λ-moment.
Next we define a map π : |m| → Wc as

π(x) =
{
x if x ∈ CΦ(w),
πv(x) if x ∈ |mv|.

The map π can be shown to be a p-morphism for <Φ. Hence m is a Λ-moment and π is a
Φ-morphism such that π(rm) = w, as required. ◀

We next define the notions of pre-Φ-morphism and quotient moment that will be essential
for the rest of the proof.

▶ Definition 37 (pre-Φ-morphism, Λ-bottom). Let m be a moment and π : |m| → Wc. We
say that x ∈ |m| is at the Λ-bottom for Λ ∈ {wK4,K4,GL} if

Λ ̸= GL and π(x) ∈ C(π(rm)), or
Λ = GL and for all y <m x, π(y) = π(x).

We will refer to “Λ-bottom” simply as “bottom” when this does not lead to confusion.
We say that π : |m| → Wc is a pre-Φ-morphism if it fulfils conditions 1 and 4 of a

Φ-morphism (Definition 33), and x <m y implies that either π(x) <c π(y) or x, y are at the
bottom.

▶ Definition 38 (quotient moment). Let Λ ∈ {wK4C,K4C,GLC}. Let m be a Λ-moment
and π : |m| → Wc be a pre-Φ-morphism. We define x ∼ y if either x = y, or x, y are at the
bottom and π(x) = π(y). Given y ∈ |m| we set [y] = {z : z ∼ y}.

The quotient moment m/π of m and its respective map [π] : |m/π| → Wc are defined as
follows, where x, y ∈ |m|:
(a) |m/π| = {[x] : x ∈ |m|};
(b) [x] <m/π [y] iff one of the following conditions is satisfied:

x, y are at the bottom, π(x) <c π(y), and Λ ̸= GLC;
x is at the bottom and y is not at the bottom;
x, y are not at the bottom and x <m y;

(c) νm/π(p) = {[x] : x ∈ νm(p)};
(d) rm/π = [rm];
(e) [π]([x]) = π(x).

The quotient moment and its respective map hold some essential properties for the
derivation of this section’s main result. The idea is that by constructing a Λ-moment m
with an associated pre-Φ-morphism π, we get that m/π is still a Λ-moment, but now [π] is a
proper Φ-morphism. The next few results make this intuition precise.

▶ Lemma 39. For Λ ∈ {wK4,K4,GL}, if m is any Λ-moment and π : |m| → Wc is a
pre-Φ-morphism, then m/π is a Λ-moment and [·] : |m| → |m/π| is weakly monotonic and
root-preserving.
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▶ Proposition 40. If m is a moment and π : |m| → Wc is a pre-Φ-morphism, then the map
[π] is a well-defined Φ-morphism.

Using these properties, we can prove the existence of an appropriate story that maps to
the canonical model. This is based on the following useful lemma:

▶ Lemma 41. Fix Λ ∈ {wK4C,K4C,GLC} and let MΛ
c = ⟨Wc,<c, gc, νc⟩. Let m be a

Λ-moment and suppose that there exists a Φ-morphism π : |m| → Wc. Then, there exists a
moment n, a weakly monotonic map f : |m| → |n|, and a Φ-morphism ρ : |n̂| → Wc such that
gc ◦ π = ρ ◦ f .

Proof. We proceed by induction on the height of m. Let C be the cluster of rm and let
a⃗ = ⟨an⟩n<N be the generated sub-models of the immediate strict successors of rm; note
that each an is itself a moment of smaller height. By the induction hypothesis, there
exist moments ⟨a′

n⟩n<N , root-preserving, weakly monotonic maps fn : |an| → |a′
n|, and Φ-

morphism ρn : |a′
n| → Wc such that gc ◦ πn = ρn ◦ fn. Moreover, for each v =Φ gc(rm), by

Lemma 36 there are bv and a Φ-morphism ρv : |bv| → Wc mapping the root of bv to v. Let
D = gcπ(C) ∪CΦ(gc(x)), and let n̂ =

(
a⃗∗b⃗
D

)
gc(w). It is not difficult to verify that the maps ρv

can be used to define a pre-Φ-morphism ρ̂ from n̂ to Wc. Let

f̂(w) =
{
gc(w) if w ∈ C,

fn(w) if w ∈ |an|.

It is easy to see that f̂ : |m| → |n̂| is weakly monotonic and satisfies gc ◦ π = ρ̂ ◦ f̂ . Setting
n = n̂/ρ̂, f = [f̂ ] and ρ = [ρ̂], Proposition 40 implies that n, f and ρ have the desired
properties. ◀

▶ Proposition 42. Fix Λ ∈ {wK4C,K4C,GLC}. Given I < ω and w ∈ Wc, there is a
story S of duration I and a dynamic Φ-morphism π : |S| → Wc with w = π(rS).

Proof. Proceed by induction on I. For I = 0, this is essentially Lemma 36. Otherwise, by
the induction hypothesis, assume that a story Ŝ of depth I and dynamic p-morphism π̂

exist. By Lemma 41, there is a moment SI+1, map fI : |SI | → |SI+1|, and Φ-morphism
πI+1 : |SI+1| → Wc commuting with fI . We define S by adding SI+1 to Ŝ in order to
obtain the desired story. ◀

It follows that any satisfiable formula is also satisfiable on a finite story, hence satisfiable
on a finite model, yielding the main result of this section.

▶ Theorem 43. The logics wK4C, K4C and GLC are sound and complete for their
respective class of finite dynamic Λ-frames.

7 Topological d-completeness

In this section we establish completeness results for classes of dynamic topological systems
with continuous functions. We begin with the logic GLC, simply because the topological
d-completeness for GLC is almost immediate, given that a GLC model is already a dynamic
derivative model based on a scattered space via the standard up-set topology.

▶ Theorem 44. GLC is the d-logic of all dynamic topological systems based on a scattered
space, and enjoys the finite model property for this class.
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In order to prove topological d-completeness for wK4C, we first provide a definition and
some generalisations of known results. We use similar constructions as in e.g. [9].

▶ Definition 45. Let F = ⟨W,<, g⟩ be a wK4C-frame and let W i and W r be the sets of
irreflexive and reflexive points respectively. We define a new frame F⊕ = ⟨W⊕,<⊕, g⊕⟩,
where
1. W⊕ = (W i × {0}) ∪ (W r × {0, 1});
2. (w, i) <⊕ (v, j) iff w < v and (w, i) ̸= (v, j);
3. g⊕(w, i) = (g(w), 0).

The following is standard [9] and easily verified.

▶ Proposition 46. If F = ⟨W,<, g⟩ is any dynamic derivative frame, then F⊕ is an irreflexive
dynamic derivative frame and π : W⊕ → W given by π(w, i) = w is a surjective, dynamic
p-morphism.

Proposition 46 allows us to obtain topological completeness from Theorem 43, as Lemma 6
tells us that irreflexive Kripke frames are essentially Cantor derivative spaces. We thus
obtain the following:

▶ Theorem 47. wK4C is the d-logic of all dynamic topological systems, and enjoys the
finite model property for this class.

Finally we turn our attention to K4C. Unlike the other two logics, K4C (or even K4)
does not have the topological finite model property, despite having the Kripke finite model
property. In the case of Aleksandroff spaces, the class TD is easy to describe.

▶ Lemma 48. The Aleksandroff space of a K4-frame F = ⟨W,<⟩ is TD if and only if < is
antisymmetric, in the sense that w < v < w implies w = v.

If we moreover want the Kripke and the d-semantics to coincide on F, we need < to be
irreflexive. Thus we wish to “unwind” F to get rid of all non-trivial clusters. The following
construction achieves this.

▶ Definition 49. Let F = ⟨W,<, g⟩ be a dynamic K4 frame. We define a new frame
F⃗ = ⟨W⃗ , <⃗, g⃗⟩, where

W⃗ is the set of all finite sequences (w0, . . . , wn), where wi < wi+1 for all i < n;
w <⃗ v iff w is a strict initial segment of v;
g⃗(w0, . . . , wn) is the subsequence of (g(w0), . . . , g(wn)), obtained by deleting every entry
that is equal to its immediate predecessor.

We moreover define a map π : W⃗ → W , where π(w0, . . . , wn) = wn.

In the definition of g⃗, note that g is only weakly monotonic, so it may be that, for instance,
g(w0) = g(w1); in this case, we include only one copy of g(w0) to ensure that g⃗(w) ∈ W⃗ .

▶ Proposition 50. If F = ⟨W,<, g⟩ is any dynamic K4 frame, then F⃗ is an antisymmetric and
irreflexive dynamic K4 frame. Moreover, π : W⃗ → W is a surjective, dynamic p-morphism.

Similar constructions have already appeared in e.g. [16]. From this we obtain the following:

▶ Theorem 51. K4C is the d-logic of the class of all dynamic topological systems based on
a TD space, as well as the d-logic of the class of all dynamic topological systems based on an
Aleksandroff TD space.
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8 Invertible Systems

Recall that if ⟨X, τ⟩ is a topological space and f : X → X is a function, then f is a
homeomorphism if it is a bijection and both f and f−1 are continuous.

Unlike in the continuous case, for logics with homeomorphisms, every formula is equivalent
to a formula where all occurrences of # are applied to atoms. More formally, we say that
a formula is in #-normal form if it is of the form φ(#k0p0, . . . ,#knpn), where φ(p0, . . . , pn)
does not contain #, the pi’s are variables, and the ki’s are natural numbers. It is readily
observed that the axiom H allows us to “push” all instances of # to the propositional level.
Thus we obtain the following useful representation lemma:

▶ Lemma 52. For every logic Λ and every formula φ, there is a formula φ′ in #-normal
form such that ΛH ⊢ φ ↔ φ′.

As we shall see shortly, ΛH inherits completeness and the finite model property almost
immediately from Λ. If X = ⟨X, ρX⟩ and Y = ⟨Y, ρY ⟩ are derivative spaces, then the
topological sum is defined as X ⊕ Y = (X ⊕ Y, ρX ⊕ ρY ), where X ⊕ Y is the disjoint union
of the two sets, and ρX ⊕ ρY is given by (ρX ⊕ ρY )A = ρX(A ∩ X) ∪ ρY (A ∩ Y ). We say
that a class Ω of derivative spaces is closed under sums if whenever A,B ∈ Ω, it follows that
A ⊕ B ∈ Ω.

Given a derivative space A = ⟨A, ρ⟩, we may write An instead of A⊕A⊕ . . .⊕A (n times),
and if A has domain A, we may identify the domain of An with An = A× {0, . . . , n− 1}. It
should be clear that if A ∈ Ω and Ω is closed under sums, then An ∈ Ω. Let (m)n denote
the remainder of m modulo n. We then define a dynamical structure A(n) = (An, f), where
f : An → An is given by f(w, i) = (w, (i+ 1)n).

▶ Lemma 53. Let Ω be a class of derivative spaces closed under sums. Then, if A ∈ Ω, it
follows that A(n) is an invertible dynamic derivative system based on an element of Ω.

For our proof of completeness, we need the notion of extended valuation.

▶ Definition 54. Let A = ⟨A, ρ⟩ be a derivative space. Let PV# be the set of all expressions
#ip, where i ∈ N and p is a propositional variable. An extended valuation on A is a relation
ν ⊆ PV# ×A.

If ν is an extended valuation on A, we define a valuation on A(n) so that for any variable
p and (w, i) ∈ An, (w, i) ∈ ν(n)(p) if and only if w ∈ ν(#ip).

▶ Lemma 55. Let A = ⟨A, ρ⟩ be any derivative space and ν be any extended valuation on
A. Let w ∈ A, i < n, and φ be any formula in #-normal form which has #-depth less than
n− i. Then, ⟨A(n), ν(n)⟩, (w, i) |= φ if and only if ⟨A, ν⟩, w |= φ.

It then readily follows that φ is consistent if and only if φ′ is consistent, which implies
that φ′ is satisfiable on Ω. This is equivalent to φ being satisfiable on the class of invertible
systems based on Ω. From this, we obtain the following general result.

▶ Theorem 56. Let Λ be complete for a class Ω of derivative spaces. Then, if Ω is closed
under sums, it follows that ΛH is complete for the class of invertible systems based on Ω.

▶ Corollary 57.

1. wK4H is sound and complete for
a. The class of all finite invertible dynamic wK4 frames.
b. The class of all finite invertible dynamic topological systems with Cantor derivative.
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2. K4H is sound and complete for
a. The class of all finite invertible dynamic K4 frames.
b. The class of all invertible, TD dynamic topological systems with Cantor derivative.

3. GLH is sound and complete for
a. The class of all finite invertible dynamic GL frames.
b. The class of all finite invertible, scattered dynamic topological systems with Cantor

derivative.

9 Conclusion

We have recast dynamic topological logic in the more general setting of derivative spaces
and established the seminal results for the {♢,#}-fragment for the variants of the standard
logics with the Cantor derivative in place of the topological closure. Semantics on the Cantor
derivative give rise to a richer family of modal logics than their counterparts based on closure.
This is evident in the distinction between e.g. the logics wKC and K4C, both of which
collapse to S4C when replaced by their closure-based counterparts. This line of research
goes hand in hand with recent trends that consider the Cantor derivative as the basis of
topological semantics [12, 19].

There are many natural problems that remain open. The logic S4C is complete for the
Euclidean plane. In the context of d-semantics, the logic of the Euclidean plane is a strict
extension of K4, given that punctured neighbourhoods are connected in the sense that they
cannot be split into two disjoint, non-empty open sets. Thus one should not expect K4C to
be complete for the plane. This raises the question: what is the dynamic d-logic of Euclidean
spaces in general, and of the plane in particular?

The d-semantics also poses new lines of inquiry with respect to the class of functions
considered. We have discussed continuous functions and homeomorphisms. Artemov et al.
[1] also considered arbitrary functions, and we expect that the techniques used by them
could be modified without much issue for d-semantics. On the other hand, in the setting of
closure-based logics, the logic of spaces with continuous, open maps that are not necessarily
bijective coincides with the logic of spaces with a homeomorphism. This is no longer true in
the d-semantics setting, as the validity of the H axiom requires injectivity. Along these lines,
the d-logic of immersions (i.e. continuous, injective functions) would validate the original
continuity axiom #□p → □#p. Thus there are several classes of dynamical systems whose
closure-based logics coincide, but are split by d-semantics.

Finally, there is the issue of extending our language to the trimodal language with the
“henceforth” operator. It is possible that the d-logic of all dynamic topological systems may
be axiomatised using the tangled derivative, much as the tangled closure was used to provide
an axiomatisation of the closure-based DTL. However, given that the tangled derivative is
made trivial on scattered spaces, we conjecture that the trimodal d-logic based on this class
will enjoy a natural, finite axiomatisation. The work presented here is an important first
step towards proving this.
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Abstract
In the synthesis of distributed systems, we automate the development of distributed programs
and hardware by automatically deriving correct implementations from formal specifications. For
synchronous distributed systems, the synthesis problem is well known to be undecidable. For
asynchronous systems, the boundary between decidable and undecidable synthesis problems is a
long-standing open question. We study the problem in the setting of Petri games, a framework for
distributed systems where asynchronous processes are equipped with causal memory. Petri games
extend Petri nets with a distinction between system places and environment places. The components
of a distributed system are the players of the game, represented as tokens that exchange information
during each synchronization. Previous decidability results for this model are limited to local winning
conditions, i.e., conditions that only refer to individual components.

In this paper, we consider global winning conditions such as mutual exclusion, i.e., conditions
that refer to the state of all components. We provide decidability and undecidability results for
global winning conditions. First, we prove for winning conditions given as bad markings that it is
decidable whether a winning strategy for the system players exists in Petri games with a bounded
number of system players and one environment player. Second, we prove for winning conditions
that refer to both good and bad markings that it is undecidable whether a winning strategy for the
system players exists in Petri games with at least two system players and one environment player.
Our results thus show that, on the one hand, it is indeed possible to use global safety specifications
like mutual exclusion in the synthesis of distributed systems. However, on the other hand, adding
global liveness specifications results in an undecidable synthesis problem for almost all Petri games.
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1 Introduction

The synthesis problem probes whether there exists an implementation for a formal specification
and derives such an implementation if it exists. This approach automates the creation of
systems. Engineers can think on a more abstract level about what a system should achieve
instead of how the system should achieve its goal. The synthesis problem for a system
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consisting of one component interacting with its environment is often encoded as a two-player
game with complete observation between the system player and the environment player (cf.
[24, 4, 2, 7, 29, 25, 23]). The system player tries to satisfy the winning condition of the game
while the environment player tries to violate it. A winning strategy for the system player is
a correct implementation as it encodes the system’s reaction to all environment behaviors.

The synthesis problem for distributed systems aims to derive a correct implementation
for every concurrent component of a distributed system. Each component can interact
with its environment. Distributed systems can be differentiated depending on whether the
components progress synchronously or asynchronously. For synchronous distributed systems,
the synthesis problem is well known to be undecidable, as observed by Pnueli and Rosner [34].
For asynchronous distributed systems with causal memory, the boundary between decidable
and undecidable synthesis problems is a long-standing open question [30, 15]. For the
synthesis of asynchronous distributed systems, the memory model changes compared to the
two-player game and the number of players increases to encode the different components of
the system. In distributed systems, components observe only their local surroundings. This
can be encoded by causal memory [16, 27, 17]: Two players share no information while they
run concurrently; during every synchronization, however, they exchange their entire local
histories, including all of their previous synchronizations with other players.

In this paper, we consider reactive systems, i.e., the components continually interact
with their environment. Control games [17] based on asynchronous automata [39] and Petri
games [15] are formalisms for the synthesis of asynchronous distributed reactive systems with
causal memory. We focus on Petri games. Here, several system players play against several
environment players in a Petri net. Tokens represent players and places either belong to the
system or to the environment, resulting in a distribution of system and environment players.
Deciding the existence of a winning strategy for the system players is EXPTIME-complete
for Petri games with a bounded number of system players, one environment player, and bad
places as local winning condition [15]. This also holds for Petri games with a bounded number
of environment players, one system player, and bad markings as global winning condition [14].
Local winning conditions cannot express global properties like mutual exclusion.

We consider global winning conditions and contribute decidability and undecidability
results regarding the synthesis of asynchronous distributed reactive systems with causal
memory. In the first part of this paper, we prove that it is decidable whether a winning
strategy for the system players exists in Petri games with a bounded number of system
players, one environment player, and bad markings as global winning condition. Bad markings
are a safety winning condition in the sense that they define markings as bad that the system
players have to avoid in order to win the Petri game. Decidability is achieved by a reduction
to a two-player game with complete observation and a Büchi winning condition. In the
two-player game, it is encoded that transitions with the environment player fire as late as
possible, i.e., transitions without the environment player fire before transitions with it. This
order of transitions encodes causal memory [15]. For every sequential play of the two-player
game, we need to check that no bad marking is reached for the different orders of fired
concurrent transitions. The causal history of system players can grow infinitely large. We
show that the finite causal history of each system player until its last synchronization with
the environment player can be stored finitely and suffices to find bad markings.

In the second part of this paper, we investigate whether global winning conditions beyond
bad markings are decidable. We report on two undecidability results to further underline the
significance of our decidability result: We prove that it is undecidable whether a winning
strategy exists for the system players in Petri games with at least two system players, one
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environment player, and good and bad markings as winning condition. For this winning
condition, no bad marking should be reached until a good marking is reached, which can be
expressed in linear-time temporal logic (LTL) [33]. Notice that it is not required to terminate
in a good marking. Good markings can be used to simulate the undecidable synchronous
setting of Pnueli and Rosner [34] in the asynchronous setting of Petri games. This is realized
by identifying executions as good if players deviate too much from the synchronous setting.
Next, we prove that it is undecidable whether a winning strategy exists for the system
players in Petri games with good markings and at least three players, out of which one is
an environment player and each of the other two can change between being a system and
an environment player. Good markings are a liveness winning condition in the sense that
they define markings as good, one of which the system players have to reach in order to
win the Petri game. Here, bad markings from the first undecidability result are encoded by
repeatedly changing all players to environment players. With these results, we obtain an
overview regarding decidability and undecidability for global winning conditions.

Related Work. A formal connection exists between Petri games and control games [17]
based on asynchronous automata [39]: Petri games can be translated into control games
and vice versa, at an exponential blow-up in each direction [1]. This translates decidability
in acyclic communication architectures [17], originally obtained for control games, to Petri
games, and decidability in single-process systems [14], originally obtained for Petri games, to
control games. Further decidability results exist for control games with acyclic communication
architectures [31]. Decidability has also been obtained for restrictions on the dependencies of
actions [16] or on the synchronization behavior [26, 27] and for decomposable games [19].

The decidability result of this paper does not transfer to control games because the
translation in [1] produces Petri games with as many system and environment players as
there are processes in the control game. The undecidability results of this paper transfer to
control games. System players in Petri games correspond to processes with only controllable
actions in control games; environment players correspond to processes with only uncontrollable
actions [1]. Bad markings from the first undecidability result can be simulated by additional
uncontrollable actions for all processes preventing the reaching of good markings afterward.

For Petri games with several system and environment players, bounded synthesis is a
semi-decision procedure to find winning strategies for the system players [8, 22, 21]. Bounded
synthesis and the reduction for bad places are implemented in the tool AdamSYNT [13, 9, 18].

2 Motivating Example

We introduce the intuition behind Petri games and bad markings with the example in Fig. 1.
There, we search for a strategy for two power plants, which should react to the energy
production of renewable sources based on the weather forecast. A Petri game differentiates
the places of a Petri net as system places (depicted in gray) and as environment places
(depicted in white). For example, p is a system place whereas forecast is an environment
place. The players of a Petri game are represented by tokens. The type of the place, where a
token is residing, dictates whether the token represents a system or an environment player.

After transition sunny fires to indicate a sunny forecast, there are two system players in
place p (each representing one power plant) and one environment player in place s. Causal
memory implies that both system players know what the weather forecast predicts. They
do not know whether the actual energy production is high (indicated by sh firing) or low
(indicated by sl firing) producing three or two units of energy in place w. Nevertheless, each
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Figure 1 Two power plants observe if sunny, cloudy, or rainy weather is forecast. Depending
on the actual weather, renewable sources produce up to three units of energy. The power plants
produce one or two units of energy each and have to maintain the total energy production between
four and five units of energy as all final markings with different energy production are bad markings.

power plant has to decide whether to produce two or one unit of energy in place k by ph or pl

firing. The two power plants should produce together with the renewable sources either four
or five units of energy. Therefore, any final marking resulting in a different energy production
is a bad marking, i.e., the set of bad markings is {M : P → N | (M(k) + M(w) < 4 ∨
M(k) + M(w) > 5) ∧ ∃x ∈ {s′, c′, r′} : (M(x) = 1 ∧ ∀y ∈ P \ {x, k, w} : M(y) = 0)}. The
second conjunct ensures the marking being final by requiring that the only environment
player is in one of the three environment places s′, c′, and r′ and the system players are only
in system places k and w. We assume that players always choose one of their successors. In
Sec. 4, the finer notion of strategies being deadlock-avoiding is presented.

A winning strategy for the system players produces one unit of energy at both power plants
for a sunny forecast, two units of energy at one power plant and one unit of energy at the
other for a cloudy forecast, and two units of energy at both power plants for a rainy forecast.
The specification is expressible with the local winning condition of bad places by having
transitions from each bad marking leading to a bad place. This is only so as the example
has no infinite behavior. For Petri games with infinite behavior and one environment player,
the global winning condition of bad markings can specify losing behavior between players
without requiring their synchronization which is impossible for local winning conditions.

3 Petri Nets

A Petri net [32, 37] N = (P, T , F , In) consists of the disjoint finite sets of places P and of
transitions T , the flow relation F as multiset over (P×T )∪(T ×P), and the initial marking In
as multiset over P. For a place p, the precondition is the set pre(p) = {t ∈ T | F(t, p) > 0}
and the postcondition is the set post (p) = {t ∈ T | F(p, t) > 0}. For a transition t, the
precondition is the multiset over P defined by pre(t)(p) = F(p, t) for all p ∈ P and the
postcondition is the multiset over P defined by post (t)(p) = F(t, p) for all p ∈ P. States of
Petri nets are represented by multisets over P, called markings. A marking M puts M(p)
tokens in every place p ∈ P. A transition t is enabled in a marking M if pre(t) ⊆ M . If no
transition is enabled in a marking M , then M is called final. An enabled transition t can fire in
a marking M resulting in the successor marking M ′ = M −pre(t)+post (t) (written M [t⟩M ′).
For markings M and M ′, we write M [t0, . . . , tn−1⟩M ′ if there exist markings M0, . . . , Mn

such that M0 = M , Mn = M ′, and Mi[ti⟩Mi+1 for 0 ≤ i < n. The set of reachable markings
of N is defined as R(N ) = {M | ∃n ∈ N, t0, . . . , tn−1 ∈ T : In[t0, . . . , tn−1⟩M}. A net N ′ is a
subnet of N (written N ′ ⊑ N ) if P ′ ⊆ P , T ′ ⊆ T , In′ = In, and F ′ = F ↾ (P ′×T ′)∪(T ′×P ′).
We enforce In′ = In to maintain all players when later defining strategies for Petri games.
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We call elements in P ∪T nodes. For nodes x and y, we write x⋖y if x ∈ pre(y). With ≤,
we denote the reflexive, transitive closure of ⋖. The causal past of x is past(x) = {y | y ≤ x}.
Nodes x and y are causally related if x ≤ y∨y ≤ x. They are in conflict (written x ♯ y) if, for a
place p ∈ P , there are distinct transitions t1, t2 ∈ post (p) with t1 ≤ x∧t2 ≤ y. Node x is in self-
conflict if x ♯ x. We call x and y concurrent if they are neither causally related nor in conflict.

An occurrence net is a Petri net where the pre- and postcondition of transitions are
sets, the initial marking coincides with places without ingoing transitions, other places have
exactly one ingoing transition, no infinite path starting from any given node and following the
inverse flow relation exists, and no transition is in self-conflict. A homomorphism maps nodes
from N1 to N2 preserving the type of nodes and the pre- and postcondition of transitions.

A branching process [5, 28, 6] describes parts of possible behaviors of a Petri net. We use
the individual token semantics [20]. A branching process of a Petri net N is a pair ι = (N ι, λι)
where N ι is an occurrence net and λι : Pι ∪ T ι → P ∪ T is a homomorphism from N ι to N
that is injective on transitions with the same precondition. Intuitively, whenever a node can
be reached on two distinct paths in a Petri net N , it is split up in the branching process of N .
λι labels the nodes of N ι with the original nodes of N . The injectivity condition avoids
additional unnecessary splits. The unfolding ιU = (N U , λU ) of N is a maximal branching
process: Whenever there is a set of pairwise concurrent places C such that λU [C] = preN (t)
for some transition t ∈ T , then there exists t′ ∈ T U with λU (t′) = t and preU (t′) = C.

4 Petri Games and Büchi Games

A Petri game [15, 14] is a tuple G = (PS , PE , T , F , In, W). The places of the underlying Petri
net N = (P, T , F , In) are partitioned into system places PS and environment places PE . We
call tokens on system places system players and tokens on environment places environment
players. The game is played by firing transitions in N . Players synchronize when a joint
transition fires. Intuitively, a strategy controls the behavior of system players by deciding
which transitions to allow. Environment players are uncontrollable and transitions only
dependent on environment players cannot be restricted. The winning condition is given by W
as the set of bad places PB ⊆ P , bad markings MB ⊆ R(N ), or good markings MG ⊆ R(N )
or the pair of disjoint sets of good and bad markings (MG, MB) ∈ P (R(N ))×P (R(N )). We
depict Petri games as Petri nets and color system places gray and environment places white.
A Petri game has a bounded number of system players and one environment player if, for a
bound k ∈ N, every system place contains at most k tokens for all reachable markings of N
and the sum of tokens in all environment places is exactly one for all reachable markings of N .

A strategy for G is a branching process σ = (N σ, λσ) of N satisfying justified refusal : If
there is a set of pairwise concurrent places C in N σ and a transition t ∈ T with λσ[C] =
preN (t), then there either is a transition t′ ∈ T σ with λσ(t′) = t and C = preσ(t′) or there
is a system place p ∈ C ∩ (λσ)−1[PS ] with t ̸∈ λσ[postσ(p)]. Justified refusal enforces that
only system places can prohibit transitions based on their causal past: From every situation
in the game, a transition possible in the underlying net is either in the strategy or there is a
system place that never allows it. A strategy is a restriction of possible transitions in the
Petri game because it is a branching process which describes subsets of the behavior of a
Petri net. We further require σ to be deterministic: For every reachable marking M of σ

and system place p ∈ M , there is at most one transition from postσ(p) enabled in M . Notice
that postσ(p) can contain more than one transition as long as at most one of them is enabled
in the same reachable marking. This allows that the environment player decides between
different branches of the Petri game and the system player later on reacts to every decision.
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A strategy is deadlock-avoiding if, for every final, reachable marking M in the strategy,
λσ[M ] is final as well. A strategy σ is winning for bad places W = PB if it is deadlock-avoiding
and no reachable marking in σ contains a place corresponding to a bad place. A strategy σ is
winning for bad markings W = MB if it is deadlock-avoiding and no reachable marking in σ

corresponds to a bad marking. One branching process ι1 = (N 1, λ1) is a subprocess of another
ι2 = (N 2, λ2) if N 1 ⊑ N 2 and λ1 = λ2 ↾ (P1 ∪ T 1). A play π = (N π, λπ) is a subprocess of a
strategy σ = (N σ, λσ) with ∀p ∈ Pπ : |post (p)| ≤ 1. It is maximal if, for each set of pairwise
concurrent places C in N π with C = preσ(t) for some t ∈ T σ, a place p ∈ C and a transition
t′ ∈ T π exist with t′ ∈ postπ(p). A complete firing sequence of a play π is a possibly infinite
sequence of fired transitions such that each transition of π occurs. A strategy σ is winning for
good markings W = MG if, for all complete firing sequences t0t1t2 . . . of all maximal plays π

of σ with M0 = Inπ and M0[t0⟩M1[t1⟩M2[t2⟩ . . ., there exists i ≥ 0 with λπ[Mi] ∈ MG. A
strategy σ is winning for good and bad markings W = (MG, MB) if, for all complete firing
sequences t0t1t2 . . . of all maximal plays π of σ with M0 = Inπ ∧ M0[t0⟩M1[t1⟩M2[t2⟩ . . .,
there exists i ≥ 0 with λπ[Mi] ∈ MG ∧ ∀0 ≤ j < i : λπ[Mj ] /∈ MB. Terminating in a final
marking as winning condition is different from reaching a good marking as players are not
required to terminate in a good marking and can reach a bad marking afterward.

A Büchi game has two players: Player 0 represents the system, Player 1 the environment.
Both act on complete information about the game arena and the play so far. To win, Player 0
has to ensure that an accepting state is visited infinitely often. A winning strategy for
Player 0 corresponds to a correct implementation of the encoded synthesis problem. Deciding
the existence of a winning strategy can be done in polynomial time [3].

Formally, a Büchi game G = (V, V0, V1, I, E, F ) consists of the finite set of states V

partitioned into the disjoint sets of states V0 of Player 0 and of states V1 of Player 1, the
initial state I ∈ V , the edge relation E ⊆ V × V , and the set of accepting states F ⊆ V . We
assume that all states in a Büchi game have at least one outgoing edge. A play is a possibly
infinite sequence of states which is constructed by letting Player 0 choose the next state from
the successors in E whenever the game is in a state from V0 and by letting Player 1 choose
otherwise. An initial play is a play that starts from the initial state. A play is winning
for Player 0 if it visits at least one accepting state infinitely often. Otherwise, the play is
winning for Player 1. A strategy for Player 0 is a function f : V ∗ · V0 → V that maps plays
ending in states of Player 0 to one possible successor according to E. A play conforms to a
strategy f if all successors of states in V0 are chosen in accordance with f . A strategy f is
winning for Player 0 if all initial plays that conform to f are winning for Player 0.

5 Decidability in Petri Games with Bad Markings

We present a reduction from Petri games with a bounded number of system players, one
environment player, and bad markings to Büchi games. In the following, we give an intuition
for the main concepts of the reduction, before presenting the structure of the Büchi game in
the remainder of this section. More details are in [12] and a running example is in Fig. 2.

Petri games use unfoldings, which can be of infinite size, to encode the causal memory
of players. By contrast, Büchi games have two players with complete information and a
finite number of states. To overcome these differences when encoding Petri games, states
in the corresponding Büchi games consist of a representation of the current marking and
some additional information. Edges in the Büchi game mostly correspond to a transition
firing in the Petri game. We say that a transition fires in the Büchi game when it fires in the
encoded Petri game. Concurrency between transitions in the Petri game is encoded by having
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most possible interleavings in the Büchi game. Some interleavings are left out to encode
causal memory of the players in Petri games: Causal memory is simulated in Büchi games
by transitions with an environment place in their precondition firing as late as possible at
mcuts [15]. An mcut is a situation in the Petri game where all system players have progressed
maximally, i.e., the environment player can choose between all remaining possible transitions.
Mcuts can only be defined for Petri games with at most one environment player. Player 1 in
the Büchi game makes decisions only at states corresponding to mcuts.

We make two key additions to ensure that the idea of firing transition with the envir-
onment player only at mcuts can be lifted from local winning conditions to global winning
conditions: First, we add backward moves to detect bad markings and nondeterministic
decisions. Intuitively, backward moves allow us to rewind transitions with only system players
participating. They are realized by each system player remembering its history until its last
synchronization with the environment player. In every state of the Büchi game, it is checked
whether the backward moves of all system players allow us to rewind the game in such a way
that a bad marking is reached or a nondeterministic decision is found.

Second, we add the so-called NES-case to handle system players playing infinitely without
synchronizing with the environment player directly in the Büchi game. The abbreviation
NES stands for no more environment synchronization and is necessary when some system
players play infinitely but without synchronization with the environment player. In [15],
this situation is called the type-2 case and can be handled as a preprocessing step, because
only the local winning condition of bad places is considered. This is impossible for the
global winning condition of bad markings considered in this paper. Throughout this paper,
the NES-case can be disregarded by adding the restriction that each system player either
terminates or synchronizes infinitely often with the environment player.

For the NES-case, every system player has a three-valued flag. As long as the system
player will terminate or will synchronize with the environment player in the future, the
flag should be set to negative NES-status. When system players can play infinitely without
synchronizing with the environment player, they should set their flags to positive NES-status.
After the NES-case, participating system players obtain an ended NES-status, which excludes
them from the remaining Büchi game. A positive NES-status triggers the NES-case. Here, the
system players with positive NES-status have to prove that they can play infinitely without
synchronizing with the environment player. Therefore, the usual order of all transitions
without the environment player being possible until reaching an mcut is interrupted. Instead,
only system players with positive NES-status are considered until their proof of playing
infinitely without the environment player is successful. If the system players with positive
NES-status make a mistake in their proof, then Player 0 immediately loses the Büchi game.

5.1 States and Initial State in the Büchi Game
Decision tuples represent players of the Petri game in states in the Büchi game. A decision
tuple for a player consists of an identifier, a position, a NES-status, a decision, and a
representation of the last mcut. The identifier uniquely determines the player. The position
gives the current place of the player. System players with negative NES-status false claim
that they will terminate or fire a transition with an environment place in its precondition and
are not part of the NES-case. In the NES-case, system players go from positive NES-status
true to ended NES-status end as described previously.

The decision is either ⊤ or the set of allowed transitions by the player. For system
players, ⊤ indicates that a decision for a set of allowed transitions is missing and has to
be chosen. The representation of the last mcut encodes the last known position of the
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({(0, forecast, false, {sunny, cloudy, rainy}, 0)}, ∅, []7)
v0 . . .

. . .

({(0, s, false, {sh, sl}, 0),
(1, p, false, ⊤, 1),

(2, p, false, ⊤, 1)}, ∅, []7)

v1
. . .

. . .

. . .
({(0, s, false, {sh, sl}, 0),

(1, p, false, {pl}, 1),
(2, p, false, ∅, 1)}, ∅, []7)

v2

({(0, s, false, {sh, sl}, 0), (1, k, false, ∅, 1),
(2, p, false, ∅, 1)}, ∅, [({(1, p, false, {pl}, 1)},

{(1, k, false, ∅, 1)})], []6)

v3

({(0, s′, false, ∅, 0), (1, k, false, ∅, 1),
(2, p, false, ∅, 1), (3, w, false, ∅, 2),

(4, w, false, ∅, 2), (5, w, false, ∅, 2)}, ∅,
[({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})], []6)

v5

({(0, s′, false, ∅, 0), (1, k, false, ∅, 1), (2, p, false, ∅, 1), (3, w, false, ∅, 2),
(4, w, false, ∅, 2)}, ∅, [({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})], []6)

v4

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, p, false, {pl}, 1)}, ∅, []7)

v6

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, p, false, {ph, pl}, 1)}, ∅, []7)

v7

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, p, false, {ph}, 1)}, ∅, []7)

v8

({(0, s, false, {sh, sl}, 0),
(1, k, false, ∅, 1),

(2, p, false, {pl}, 1)}, ∅,
[({(1, p, false, {pl}, 1)},
{(1, k, false, ∅, 1)})], []6)

v9

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),
(2, k, false, ∅, 1)}, ∅,

[({(2, p, false, {pl}, 1)},
{(2, k, false, ∅, 1)})], []6)

v10

({(0, s, false, {sh, sl}, 0),
(1, k, false, ∅, 1),

(2, p, false, {ph}, 1)}, ∅,
[({(1, p, false, {pl}, 1)},
{(1, k, false, ∅, 1)})], []6)

v11

({(0, s, false, {sh, sl}, 0),
(1, p, false, {pl}, 1),

(2, k, false, ∅, 1), (3, k, false, ∅, 1)}, ∅,
[({(2, p, false, {ph}, 1)},

{(2, k, false, ∅, 1), (3, k, false, ∅, 1)})], []6)

v12

({(0, s, false, {sh, sl}, 0), (1, k, false, ∅, 1), (2, k, false, ∅, 1)},
∅, [({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})],

[({(2, p, false, {pl}, 1)}, {(2, k, false, ∅, 1)})], []5)

v13

({(0, s, false, {sh, sl}, 0), (1, k, false, ∅, 1), (2, k, false, ∅, 1),
(3, k, false, ∅, 1)}, ∅, [({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})],
[({(2, p, false, {ph}, 1)}, {(2, k, false, ∅, 1), (3, k, false, ∅, 1)})], []5)

v14

({(0, s′, false, ∅, 0),
(1, k, false, ∅, 1),
(2, k, false, ∅, 1),
(3, w, false, ∅, 2),
(4, w, false, ∅, 2),
(5, w, false, ∅, 2)},
∅, ⟨BM as in v13⟩)

v15

({(0, s′, false, ∅, 0),
(1, k, false, ∅, 1),
(2, k, false, ∅, 1),
(3, w, false, ∅, 2),
(4, w, false, ∅, 2)},
∅, ⟨BM as in v13⟩)

v16

({((0, s′, false, ∅, 0), (1, k, false, ∅, 1),
(2, k, false, ∅, 1), (3, k, false, ∅, 1),

(4, w, false, ∅, 2), (5, w, false, ∅, 2)},
∅, ⟨BM as in v14⟩)

v17

({(0, s′, false, ∅, 0), (1, k, false, ∅, 1),
(2, k, false, ∅, 1), (3, k, false, ∅, 1),
(4, w, false, ∅, 2), (5, w, false, ∅, 2),

(6, w, false, ∅, 2)},
∅, ⟨BM as in v14⟩)

v18

FN

FB

Figure 2 Part of the Büchi game for the Petri game in Fig. 1 is given. States of Player 0 are gray,
states of Player 1 white. Most states are labeled for identification. Double squares are accepting
states. Changes from previous states are blue for decision tuples and green for backward moves.

environment player. There can be at most as many different such positions as there are
system players. Thus, a number suffices to identify the last known mcut. Let maxS be the
maximal number of system players in the Petri game which are visible at the same time.
The set of system decision tuples is DS = {(id, p, b, T, K) | id, K ∈ {1, . . . , maxS} ∧ p ∈
PS ∧ b ∈ {false, true, end} ∧ (T = ⊤ ∨ T ⊆ post (p))}, the set of environment decision tuples
is DE = {(0, p, false, post (p), 0) | p ∈ PE}, and the set of all decision tuples is D = DS ∪ DE .

▶ Example 1. In Fig. 2, a branch of the Büchi game for the Petri game in Fig. 1 is shown.
States with decision tuples with positive NES-status are omitted because no infinite behavior
occurs. The initial state v0 has one decision tuple for the environment player in place forecast
and empty information for the NES-case and the backward moves. After Player 1 plays the
edge for transition sunny firing, state v1 with three decision tuples is reached. The decision
tuples for the two system players in place p have ⊤ as decision. There are 16 combinations
of decisions by the two system players, out of which four are shown. The first system player
always allows transition pl and the second system player allows no transition in v2, only one
of the two transitions pl and ph in v6 and v8, or both transitions in v7.

Almost all states in the Büchi game contain decision tuples and additional information
for the NES-case and for backward moves. The states in the Büchi game are defined as
V = VBN ∪ D × (PS → {0, . . . , k}) × (B∗)maxS with VBN = {FB , FN }. Finite winning and
losing behavior in the Petri game is represented in the Büchi game by the two unique states
FB and FN in VBN . A decision marking is a set of decision tuples corresponding to a
reachable marking in the Petri game such that each identifier occurs at most once. D is
the set of all such decision markings. The next element stores the underlying multiset over
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e1
s1 q1

e2

s2

q2

e3 s3
q3

t1
t2

t3

t4

C1

C2

C3

(a) The mcuts of the unfolding are C1, C2, and C3.

e1 s1

e2

s3

s2

s7

s6 t4

t3

s4 s5

s8 s9

t1 t2

t5t6 t7

(b) Markings containing s2 and s7 are bad markings.

Figure 3 Two Petri games illustrate mcuts, backward moves, and the NES-case.

system places of the decision marking from the start of the NES-case restricted to system
players with positive NES-status. In the NES-case, repeating this multiset proves that the
system players with positive NES-status can play infinitely without firing a transition with
an environment place in its precondition. This element is the empty multiset if not in the
NES-case. More details are in Sec. 5.5. B : P (DS) × P (DS) is the set of backward moves to
detect states corresponding to a bad marking or a nondeterministic decision. The remaining
elements are maxS sequences of backward moves. Each identifier in a decision tuple maps to
the position of a sequence of backward moves. More details are in Sec. 5.4.

The initial state in the Büchi game has as many decision tuples with unique identifier,
NES-status false, ⊤ as decision, and last mcut 1 as there are tokens in system places in In of
the Petri game and one decision tuple with identifier 0, NES-status false, the postcondition
of pE as decision, and last mcut 0 for the one environment place pE with one token in In.
The other parts are the empty multiset or the empty sequence of backward moves.

5.2 States of Player 0, States of Player 1, and Accepting States
Causal memory in Petri games is encoded in Büchi games by letting Player 0 fix the
decisions of allowed transitions for system players as early as possible and having Player 1
fire transitions with an environment place in their precondition as late as possible at mcuts.
Cuts are markings in unfoldings. An mcut is a cut where all enabled transitions have an
environment place in their precondition, i.e., all system players progressed maximally on
their own. With Fig. 3a, we illustrate mcuts. The initial cut {e1, s1, q1} is not an mcut as the
enabled transition t2 has only the system place q1 in its precondition. After t2 fires, the cut
C1 = {e1, s1, q2} is an mcut as the only enabled transition t1 has environment place e1 in its
precondition. Analog arguments lead to {e2, s2, q2} not being an mcut and C2 = {e2, s3, q2}
being an mcut. The final cut C3 = {e3, s3, q3} is an mcut as there are no enabled transitions.

A decision marking D in the states in the Büchi game corresponds to an mcut when no ⊤
and no positive NES-status are part of D and every transition with only system places in its
precondition is not enabled or not allowed by a participating system player in D. A state in
the Büchi game can correspond to an mcut although the cut in the unfolding of the Petri
game is not an mcut as the decisions of the system players in the Büchi game can disallow
transitions. States of Player 1 are FB , FN , and states corresponding to an mcut. States of
Player 0 are all other states. Accepting states are FB and states corresponding to an mcut.

▶ Example 2. The Petri game from Fig. 1 has {forecast}, {{e, k : i} | e ∈ {s, c, r}∧2 ≤ i ≤ 4},
and {{s′, w : ws′ , k : i}, {c′, w : wc′ , k : i}, {r′, w : wr′ , k : i} | 2 ≤ ws′ ≤ 3 ∧ 1 ≤ wc′ ≤ 2 ∧ 0 ≤
wr′ ≤ 1 ∧ 2 ≤ i ≤ 4} as mcuts, i.e., the initial cut, cuts where the power plants produced
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energy while the energy production by renewable sources was not selected, and all final,
reachable cuts. In the Büchi game in Fig. 2, the eight states v0, v3, and v13 to v18 of Player 1
have decision markings that correspond to an mcut. For states v0, v13, and v14, all enabled
transitions have an environment place in their precondition. For states v15 to v18, each
decision marking corresponds to a final cut. The decision marking of state v3 corresponds to
an mcut as the second system player in p decided to not allow any of its outgoing transitions.

5.3 Edges in the Büchi Game
Edges in the Büchi game mostly connect states V = (D, MT 2, BM 1, . . . , BM maxS

) and
V ′ = (D′, M ′

T 2, BM ′
1, . . . , BM ′

maxS
) where D is a decision marking, MT 2 is a marking, and

BM 1, . . . , BM maxS
are as many sequences of backward moves as the maximum number maxS

of system players in the Petri game. There are five sets of edges TOP, SYS , NES , MCUT ,
and STOP. In the following description of the five sets of edges, not mentioned elements of
the connected states stay the same. The formal definitions can be found in [12].
(1) Edges from TOP occur from states where at least one decision tuple in D has ⊤ as

decision. To obtain D′, Player 0 replaces each ⊤ in the decision tuples of system players
with a set of allowed transitions and can change the NES-status of decision tuples for
system players from false to true. The underlying marking of decision tuples with positive
NES-status true is stored in M ′

T 2 when a NES-status changes.
(2) Edges from SYS occur from states where all decision tuples in D have negative NES-status

and at least one transition with only system places in its precondition is enabled and
allowed by the decision tuples in D. To get D′, Player 0 simulates one such transition t

firing by removing decision tuples Dpre for the precondition of t and adding decision
tuples Dpost for the postcondition of t. For Dpost , the last mcut of all participating
players is the maximum of their previous values and Player 0 picks the decisions and can
change the NES-status as in (1). Marking M ′

T 2 is obtained as in (1). Backward move
(Dpre,Dpost) is added to BM id of all participating players with identifier id to get BM ′

id .
(3) Edges from NES are the NES-case and occur from states where a decision tuple in D

has positive NES-status. To obtain D′, Player 0 fires a transition as in (2) but only from
decision tuples with positive NES-status resulting in new decision tuples with positive
NES-status. This includes the storage of backward moves. The NES-case is successful
if the marking MT 2 is reached again and all players in it moved. Then, decision tuples
with NES-status true are set to NES-status end and M ′

T 2 becomes the empty marking.
(4) Edges from MCUT occur from states where all enabled and allowed transitions have an

environment place in their precondition. To get D′, Player 1 fires one such transition.
Decision tuples for the precondition of the transition are removed, decision tuples for the
postcondition are added. Added decision tuples for system players have NES-status false,
⊤ as decision, an empty sequence of backward moves, and the highest last mcut. As
backward moves store the past of system players until their last mcut, backward moves
for system players that are part of the transition are removed. If backward moves become
never applicable by firing the transition, they are removed from the successor state.

(5) Edges from STOP occur from states with no transition enabled or corresponding to losing
behavior. They replace other outgoing edges for losing behavior. States corresponding
to termination lead to the winning state FB . States corresponding to a deadlock but not
termination lead to the losing state FN . If backward moves detect a bad marking or a
nondeterministic decision, the state leads to FN . In the NES-case, a synchronization
of decision tuples with positive and negative NES-status or a deadlock or vanishing
of decision tuples with positive NES-status leads to FN . Decision tuples with positive
NES-status can vanish when transitions with empty postcondition fire.
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▶ Example 3. In Fig. 2, outgoing edges of state v1 are in TOP. Outgoing edges of
states v2, v6, and v8 to v12 are in SYS . Outgoing edges of states v0, v3, v13, and v14 are in
MCUT . Other edges are in STOP. No edges in NES exist in the depicted part. Outgoing
edges of states v4 and v5 represent the deadlock of the second system player in p disallowing
both outgoing transitions while only they are enabled. The outgoing edge of state v7 encodes
a nondeterministic decision of the second system player, which allows two enabled transitions.
Such a decision is only useful if another player ensures that at most one of the transitions
becomes enabled. Outgoing edges of states v15 to v17 represent termination. The outgoing
edge of state v18 represents a bad marking for six produced units of energy.

When, as in our construction, (I) Player 0 immediately resolves ⊤ to the decisions of
system players, (II) Player 0 decides which transitions with only system places in their
precondition fire following the decisions of system players, and (III) Player 1 decides as late
as possible at mcuts which transitions with an environment place in their precondition fire
following the decisions of system players, then the corresponding Büchi games encode causal
memory [15]. Allowed transitions with only system places in their precondition fire in an
order determined by Player 0 until an mcut is reached. There, Player 1 decides for the
environment player which allowed transition to fire. Afterward, this process repeats itself.

5.4 Backward Moves in the Büchi Game
In the Büchi game, Player 0 can avoid markings by picking the firing order for transitions
with only system places in their precondition. In Fig. 3b, the two system players in s2
and s3 are reached after t1 fires. One can fire t3, the other t4. This results in the firing
sequences t1t3t4 and t1t4t3. If s2 and s7 are in a bad marking, then Player 0 can decide
for edges corresponding to the first firing sequence and the bad marking is missed. We
introduce backward moves to avoid such problems. A backward move is a pair of decision
markings. It stores the change to the decision tuples by edges from SYS and NES . For every
such edge from V = (D, MT 2, BM 1, . . . , BM maxS

) to V ′ = (D′, M ′
T 2, BM ′

1, . . . , BM ′
maxS

), we
obtain Dpre and Dpost with D′ = (D \ Dpre) ∪ Dpost and add backward move (Dpre,Dpost) to
the end of BM id of all participating players with identifier id.

For every state V ′ in the Büchi game, it is checked with backward moves if V ′ is losing due
to a bad marking or a nondeterministic decision. The decision marking D′ and all decision
markings that are reachable via backward moves are checked. Therefore, it is checked whether
backward moves (Dpre,Dpost) are applicable to D′, i.e., whether Dpost ⊆ D′ and (Dpre,Dpost)
is the last backward move of all participating players. In this case, the backward move is
removed from the end of the sequences of backward moves of all participating players and
D = (D′ \ Dpost) ∪ Dpre results from the application of the backward move. The underlying
marking of D is checked to not be a bad marking and D is checked to have only deterministic
decisions. This is repeated recursively from D for all applicable backward moves until no
backward move is applicable. If a decision marking corresponding to a bad marking or a
nondeterministic decision is detected, the current state V ′ only has an edge to FN .

The identifier of players in decision tuples is used to map the decision tuple to the
corresponding sequence of backward moves, i.e., for each system player in the Petri game,
the Büchi game collects a sequence of backward moves. Edges from MCUT empty the
sequence of backward moves of decision tuples when their system place is in the precondition
of the fired transition. This removal can make backward moves not applicable because some
participating players do not have the backward move as their last one anymore.
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The sequence of backward moves can grow infinitely long when system players play
infinitely without the environment player and without the NES-case. This would result in
a Büchi game with infinitely many states. To avoid this, the Büchi game becomes losing
for Player 0 when it plays in a way that corresponds to a strategy with a variant of useless
repetitions [19] for the system players in the Petri game. Our variant of useless repetitions
identifies the repetition of a loop consisting only of transitions without the environment
player in their precondition such that the last mcut of the system players does not change,
i.e., the system players repeat a loop in which they do not exchange any new information
about the environment player. Thus, winning strategies have to avoid playing a useless
repetition more than once between the successor of an mcut and the next mcut. This can be
achieved either by continuing to the next mcut or by setting some players to NES-status
true and completing the NES-case, i.e., playing infinitely without the environment player.

▶ Example 4. In Fig. 2, we include the collection of backward moves. State v13 represents
each power plant producing one unit of energy after a sunny weather forecast. It is reached
from state v6 either via state v9 or v10 depending on which power plant produces energy first.
State v13 has a backward move for each power plant: ({(1, p, false, {pl}, 1)}, {(1, k, false, ∅, 1)})
and ({(2, p, false, {pl}, 1)}, {(2, k, false, ∅, 1)}). Because the three markings {s, k : 2} (under-
lying marking of v13), {s, p, k} (applying one backward move), and {s, p : 2} (applying both
backward moves) are no bad markings and all decisions are deterministic, state v13 continues
with edges for the transitions of the environment place s instead of having an edge to FN .

5.5 Encoding the NES-Case Directly in the Büchi Game
We handle the NES-case where system players play infinitely without firing a transition
with an environment place in its precondition directly in the Büchi game as players in the
NES-case might be in a bad marking. This is in contrast to the reduction for bad places [15].

In the Büchi game, Player 0 has to reach an accepting state infinitely often in order to win
the game. Only FB and states corresponding to an mcut are accepting states. Transitions
with only system places in their precondition are fired between successors of mcuts and the
following mcut. Thus, if the system players can fire transitions with only system places in
their precondition infinitely often, eventually a useless repetition is reached which is losing.
To overcome this, we give Player 0 the possibility to change the NES-status for decision
tuples of system players from negative to positive. The underlying marking of this change
is stored and afterward only transitions from decision tuples with positive NES-status can
be fired. Firing these transitions maintains the positive NES-status for new decision tuples.
Instead of firing infinitely many transitions, the NES-case is ended if the stored marking is
reached again and all players in the marking have moved. In this case, the NES-status of all
decision tuples with positive NES-status is changed to ended NES-status and the Büchi game
continues with the remaining decision tuples with negative NES-status. The requirement
to move is necessary as otherwise too many players could get ended NES-status. Decision
tuples with ended NES-status are maintained as backward moves can be applicable to them,
i.e., backward moves store the NES-status and allow us to reverse it in search for a bad
marking. We can thus ensure that continuing with the case where all decision tuples have
negative NES-status avoids bad markings that span the NES-case.

Player 0 has to disclose decision tuples with positive NES-status if system players fire
infinitely many transitions with only system places in their precondition. Otherwise, they lose
the game as no accepting state is reached infinitely often. It is losing if system players with
positive and negative NES-status synchronize, if players with positive NES-status deadlock,
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if one such player is not moved and the marking from the start of the NES-case is repeated, if
all such players vanish, or if another marking is repeated. Notice that at most one NES-case
is necessary per branch in the strategy tree of the Büchi game. For a safety winning condition,
possible NES-cases after the first successful one can simply terminate.

▶ Example 5. A Petri game with necessary NES-case in the encoding Büchi game is shown in
Fig. 3b. After Player 0 allows transition t2 and Player 1 fires it, a state is reached where the
decision tuples for s4 and s5 can be set to positive NES-status by Player 0. After transitions
t5, t6, and t7 fire, the marking {s4, s5} is repeated and the NES-case is successful, proving
that t5, t6, and t7 can fire infinitely often.

5.6 Decidability Result
We analyze the properties of the constructed Büchi game. Detailed proofs are in [12].

▶ Lemma 6 (From Büchi game to Petri game strategies). If Player 0 has a winning strategy
in the Büchi game, then there is a winning strategy for the system players in the Petri game.

Proof Sketch. From the tree Tf representing the winning strategy f for Player 0 in the
Büchi game, we inductively build a winning strategy σ for the system players in the Petri
game. Each cut in σ is associated with a node in Tf , transitions are added following the edges
in Tf , and the associated cut is updated if needed. This strategy σ for the system players in
the Petri game is winning as it visits equivalent cuts to the reachable states in f . ◀

▶ Lemma 7 (From Petri game to Büchi game strategies). If the system players have a winning
strategy in the Petri game, then there is a winning strategy for Player 0 in the Büchi game.

Proof Sketch. We skip unnecessary NES-cases and useless repetitions in the winning
strategy σ for the system players in the Petri game. We replace ⊤ based on the post-
condition of system places, disclose necessary NES-cases, fire enabled transitions with only
system places in their precondition in an arbitrary but fixed order between states after an
mcut and the next mcut, and add all options at mcuts. This strategy for Player 0 in the
Büchi game is winning as it visits equivalent states to the reachable cuts in σ. ◀

▶ Theorem 8 (Game solving). For Petri games with a bounded number of system players,
one environment player, and bad markings, the question of whether the system players have
a winning strategy is decidable in 2-EXPTIME. If a winning strategy for the system players
exists, it can be constructed in exponential time.

Proof Sketch. The complexity is based on the double exponential number of states in the
Büchi game and polynomial solving of Büchi games. There are exponentially many states in
the size of the Petri game to represent decision tuples and each of these states has to store
sequences of backward moves of at most exponential length in the size of the Petri game.
This transfers to the size of the winning strategy because it can be represented finitely. ◀

▶ Remark 9. In the presented construction, Player 0 in the Büchi game decides both the
decisions of the system players in the Petri game and the order in which concurrent transitions
with only system places in their precondition are fired. The question might arise whether
it is possible that Player 1 representing the environment determines the order in which
concurrent transitions with only system places in their precondition are fired. This is not
possible because the system players can make different decisions depending on the order of
transitions decided by the environment player. We present a detailed counterexample where
this change would result in a different winner of a Petri game in the full version [12].
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6 Undecidability in Petri Games with Good Markings

We prove that it is undecidable if a winning strategy exists for the system players in Petri
games with at least two system and one environment player and good and bad markings by
enforcing an undecidable synchronous setting in Petri games. For this winning condition, no
bad marking should be reached until a good marking is reached, which can be expressed
in LTL. Notice also that, after a good marking has been reached, it is allowed to reach a
bad marking. Afterward, we prove that it is undecidable if a winning strategy exists for the
system players in Petri games with only good markings and at least three players, out of
which one is an environment player and each of the other two changes between system and
environment player. Bad markings from the previous result are encoded by system players
repeatedly changing to environment players and back. More details can be found in [12].
The underlying main idea of the first construction is also used in other settings [26, 34, 36].

6.1 Petri Game for the Post Correspondence Problem
We recall that a strategy σ is winning for good and bad markings W = (MG, MB) if,
for all complete firing sequences t0t1t2 . . . of all maximal plays π of σ with M0 = Inπ ∧
M0[t0⟩M1[t1⟩M2[t2⟩ . . ., there exists i ≥ 0 with λπ[Mi] ∈ MG ∧ ∀0 ≤ j < i : λπ[Mj ] /∈ MB.
The undecidability proof uses the Post correspondence problem [35]. The Post correspondence
problem (PCP) is to determine, for a finite alphabet Σ and two finite lists r0, r1, . . . , rn and
v0, v1, . . . , vn of non-empty words over Σ, if there exists a non-empty sequence i1, i2, . . . , il ∈
{0, 1, . . . , n} such that ri1ri2 . . . ril

= vi1vi2 . . . vil
. This problem is undecidable.

To simulate the PCP in a Petri game, we use one environment and two system players.
The three players are independent as they cannot communicate with each other. Each system
player outputs a solution to the PCP. By firing a transition, a player outputs the label of the
transition. The output of the first system player is i1ri1τi2ri2τ . . . ilril

τ#1 and the output
of the second one is j1vj1τj2vj2τ . . . jmvjm

τ#2 for i1, . . . , il, j1, . . . , jm ∈ {0, 1, . . . n}. Both
system players output indices followed by the word from the index position of the respective
list and τ , and end symbol #1 or #2 at the end of the sequence. Words ri for i ∈ {i1, . . . , il}
and vj for j ∈ {j1, . . . , jm} are output letter-by-letter. A correct solution to the PCP fulfills
l > 0, m > 0, l = m, i1 = j1, i2 = j2, . . . , il = jm, and ri1ri2 . . . ril

= vj1vj2 . . . vjm
.

We ensure that strategies for the two system players can only win by outputting the
same sequence of indices at both players. This permits to decide for these strategies if a
good marking is reached where both system players have output a correct solution. Using
the independence of the three players and depending on a choice by the environment player,
we either check the equality of the output sequences of indices or of the letter-by-letter
output sequences of words. Therefore, the strategy for the system players has to behave as if
both is tested. With good markings, we restrict the asynchronous setting of Petri games to
turn-taking firing sequences on the output indices or letters. Thus, we consider equivalent
firing sequences to the synchronous setting and can check the conditions for a correct solution
to the PCP after both system players have output the end symbol. With bad markings, we
identify when output indices or output letters do not match. System players can only output
the end symbol after outputting at least one index and word to ensure non-empty solutions.

6.2 Linear Firing Sequences via Good Markings
We use MOD-3 counters to restrict the asynchronous setting of Petri games to firing sequences
equivalent to the synchronous setting of Pnueli and Rosner [34, 38]. The main idea is that
we are just interested in runs where the first system player is only zero or one step ahead of
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Figure 4 The reachability graph for the two system players is depicted when only considering
either the values of their MOD-3 index counters or of their MOD-3 letter counters and differentiating
markings depending on if a good marking is reached before. Good markings are colored green. All
behavior after a good marking (including reaching a bad marking) is winning by definition. To
compare output indices or letters, only the specific firing sequence in white has to be considered.

the second system player. When the second system player is ahead of the first one or the
first system player is two or more steps ahead of the second one, then a good marking is
reached and the possible reaching of bad markings afterwards does not matter. Hence, bad
markings are only checked for runs where the first system player is zero or one step ahead of
the second system player until they reach a good marking for giving an answer to the PCP.

Formally, for each system player, we introduce two MOD-3 counters to count the number
of output indices and of output letters modulo three. When a player outputs an index, the
respective index counter is increased by one, and accordingly for output letters and the
letter counter. If a counter would reach value three, it is reset to zero. We define good
markings based on the two MOD-3 index counters and the two MOD-3 letter counters. In a
linear firing sequence for indices (letters), the two system players output the indices (letters)
alternately with the first system player preceding the second one at each turn. We ensure
that the environment player first decides that either the output indices or letters are checked
for equality. Afterward, a good marking is reached when a firing sequence is not a linear
firing sequence for indices or letters, depending on the decision by the environment player.

In Fig. 4, we visualize the reachability graph for the two system players when only
considering either the values of their MOD-3 counters for indices or letters. Markings are
differentiated in the reachability graph depending on if a good marking is reached before,
e.g., position (0 ∥ 1) does not lead to position (1 ∥ 1) as the path to (1 ∥ 1) does not include
a good marking. With linear firing sequences, we only consider firing sequences where the
first system player outputs the first index or letter before the second system player as the
opposite cases are good markings. For firing sequences not reaching a good marking, equality
of output indices or letters is checked at positions (0 ∥ 0), (1 ∥ 1), and (2 ∥ 2). Thereby,
equality of output indices or letters at the same position can be checked without storing all
outputs and it is ensured that solutions have the same length.

Notice that linear firing sequences for indices do not restrict the order in which the two
system players output letters between two indices, and vice versa. Also, we at least need
a MOD-3 counter. For a MOD-2 counter, the good marking (2 ∥ 0) is replaced by (0 ∥ 0),
implying that all firing sequences contain a good marking. A MOD-3 counter prevents that
one player overtakes the other. Thus, indices or letters at different positions are not compared,
i.e., output indices or letters at position (0 ∥ 3) (not modulo three) can be different.

6.3 Preventing Untruthful Termination
The good markings to only consider linear firing sequences introduce new possibilities for the
system players to be winning. These possibilities arise when the system players can enforce
all firing sequences to reach a good marking. They occur when a system player terminates
without the end symbol (#1 or #2) and are called untruthful termination. Untruthful
termination is prevented by letting the environment player decide which system player it
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believes to not terminate with the end symbol or that everything is okay. This decision
happens together with the initial choice of the environment player between checking equality
of indices or letters. Due to the independence of the players, each system player has to
behave as if the environment player is anticipating it to untruthfully terminate and has to
output the end symbol to avoid this. Therefore, no untruthful termination can occur.

6.4 Undecidability Results

A winning strategy exists in the Petri game iff there exists a solution to the instance of the
PCP. The only strategy with a chance to be winning for the two system players is to output
the same solution to the PCP and we can translate solutions between both cases. We obtain:

▶ Theorem 10. For Petri games with good and bad markings and at least two system and one
environment player, the question if the system players have a winning strategy is undecidable.

Bad markings can be encoded by system players repeatedly changing to environment players
and back. Players commit to transitions and then system players become environment players.
Environment players either follow the committed transition and fire a transition returning to
the respective system and environment players or fire a transition with all other environment
players after which no good markings are reachable to encode a bad marking. We obtain:

▶ Theorem 11. For Petri games with good markings and at least three players, out of
which one is an environment player and each of the other two changes between system and
environment player, the question if the system players have a winning strategy is undecidable.

7 Conclusion

We have investigated global winning conditions for the synthesis of asynchronous distributed
reactive systems with causal memory. The general decidability or undecidability of the
synthesis problem for these systems is a long-standing open question [30, 15]. We encode
the synthesis problem for these systems by Petri games. For global winning conditions, we
achieve a clear picture regarding decidability and undecidability.

From our decidability result and previous work [14], we obtain for bad markings as global
winning condition that the question of whether the system players have a winning strategy is
decidable for Petri games where the number of system players or the number of environment
players is at most one and the number of players of the converse type can be bounded by
some arbitrary number. For bad markings as global winning condition, this leaves the case
of Petri games with two or more system players and two or more environment players open.

From our undecidability results, we obtain for good markings as global winning condition
that the question of whether the system players have a winning strategy is undecidable for
Petri games with two or more system players and three or more environment players. For
good markings as global winning condition, this only leaves the corner case of Petri games
with at most one system player and at most two environment players open.

Thus, for the synthesis of asynchronous distributed reactive systems with causal memory,
global safety winning conditions are decidable for a large class of such systems, whereas
global liveness winning conditions are undecidable for almost all classes of such systems. In
the future, we plan to combine the decidability results for bad markings as global safety
winning condition with local liveness specifications per player as in Flow-LTL [10, 11].
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learnability of SFAs in this paradigm, from which we obtain the first negative result. The main focus
of our work lies in the learnability of SFAs under the paradigm of identification in the limit using
polynomial time and data. We provide a necessary condition and a sufficient condition for efficient
learnability of SFAs in this paradigm, from which we derive a positive and a negative result.
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1 Introduction

Symbolic finite state automata, SFAs for short, are an automata model in which transitions
between states correspond to predicates over a domain of concrete alphabet letters. Their
purpose is to cope with situations where the domain of concrete alphabet letters is large or
infinite. As an example for automata over finite large alphabets consider automata over the
alphabet 2AP where AP is a set of atomic propositions; these are used in model checking [21].
Another example, used in string sanitizer algorithms [32], are automata over predicates on
the Unicode alphabet which consists of over a million symbols. An infinite alphabet is used
for example in event recording automata, a determinizable class of timed automata [2] in
which an alphabet letter consists of both a symbol from a finite alphabet, and a non-negative
real number. Formally, the transition predicates in an SFA are defined wrt. an effective
Boolean algebra as defined in §2.

SFAs have proven useful in many applications [23, 44, 10, 34, 45, 39] and consequently
have been studied as a theoretical model of automata. Many algorithms for natural operations
and decision problems regarding these automata already exist in the literature, in particular,
Boolean operations, determinization, and emptiness [49]; minimization [22]; and language
inclusion [35]. Recently the subject of learning automata in verification has also attracted
attention, as it has been shown useful in many applications, see Vaandrager’s survey [48].
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21:2 Inferring Symbolic Automata

There already exists substantial literature on learning restricted forms of SFAs [31, 36, 11,
37, 19], as well as general SFAs [25, 9], and even non-deterministic residual SFAs [20]. For
other types of automata over infinite alphabets, [33] suggests learning abstractions, and [47]
presents a learning algorithm for deterministic variable automata. All these works consider
the query learning paradigm, and provide extensions to Angluin’s L∗ algorithm for learning
DFAs using membership and equivalence queries [4]. Unique to these works is the work [9]
which studies the learnability of SFAs taking as a parameter the learnability of the underlying
algebras, providing positive results regarding specific Boolean algebras.

While Argyros and D’Antoni’s work [9] is a major advancement towards a systematic
way for obtaining results on learnability of SFAs, as it examines the learnability of the
underlying algebra, the obtained result allows inferring only positive results, as it relies on a
specific query learning algorithm, and does not provide means for obtaining a negative result
regarding query learning of SFAs over certain algebras. We provide a necessary condition for
efficient learnability of SFAs in the query learning paradigm. From this result we obtain a
negative result regarding query learning of SFAs over the propositional algebra. This is, to
the best of our knowledge, the first negative result on learning SFAs with membership and
equivalence queries and thus gives useful insights into the limitations of the L∗ framework in
this context.

The main focus of our work lies on the learning paradigm of identification in the limit
using polynomial time and data, or its strengthened version efficient identifiability. We
provide a necessary condition a class of SFAs M should meet in order to be identified in the
limit using polynomial time and data, and a sufficient condition a class of SFAs M should
meet in order to be efficiently identifiable. These conditions are expressed in terms of the
existence of certain efficiently computable functions, which we call GeneralizeM, ConcretizeM,
and DecontaminateM. We then provide positive and negative results regarding the learnability
of specific classes of SFAs in this paradigm. In particular, we show that the class of SFAs
over any monotonic algebras is efficiently identifiable.

2 Preliminaries

2.1 Effective Boolean Algebra
A Boolean Algebra A can be represented as a tuple (D,P, J·K,⊥,⊤,∨, ∧,¬) where D is a set
of domain elements; P is a set of predicates closed under the Boolean connectives, where
⊥,⊤ ∈ P; the component J·K : P → 2D is the so-called semantics function. It satisfies
the following three requirements: (i) J⊥K = ∅, (ii) J⊤K = D, and (iii) for all φ,ψ ∈ P,
Jφ ∨ ψK = JφK ∪ JψK, Jφ ∧ ψK = JφK ∩ JψK, and J¬φK = D \ JψK. A Boolean Algebra is
effective if all the operations above, as well as satisfiability, are decidable. Henceforth, we
implicitly assume Boolean algebras to be effective.

One way to define a Boolean algebra is by defining a set P0 of atomic formulas that
includes ⊤ and ⊥ and obtaining P by closing P0 for conjunction, disjunction and negation.
For a predicate ψ ∈ P we say that ψ is atomic if ψ ∈ P0. We say that ψ is basic if ψ is a
conjunction of atomic formulas.

We now introduce two Boolean algebras that are discussed extensively in the paper.

The Interval Algebra is the Boolean algebra in which the domain D is the set Z∪{−∞,∞}
of integers augmented with two special symbols with their standard semantics, and the set
of atomic formulas P0 consists of intervals of the form [a, b) where a, b ∈ D and a ≤ b. The
semantics associated with intervals is the natural one: J[a, b)K = {z ∈ D | a ≤ z and z < b}.
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Figure 1 The SFA M over AN.

The Propositional Algebra is defined wrt. a set AP = {p1, p2, . . . , pk} of atomic proposi-
tions. The set of atomic predicates P0 consists of the atomic propositions and their negations
as well as ⊤ and ⊥. The domain D consists of all the possible valuations for these propositions,
thus it is Bk where B= {0, 1}. The semantics of an atomic predicate p is given by JpiK =
{v ∈ Bk | v[i] = 1}, and similarly J¬piK = {v ∈ Bk | v[i] = 0}.1

2.2 Symbolic Automata
A symbolic finite automaton (SFA) is a tuple M = (A, Q, qι, F,∆) where A is a Boolean
algebra, Q is a finite set of states, qι ∈ Q is the initial state, F ⊆ Q is the set of final states,
and ∆ ⊆ Q× PA ×Q is a finite set of transitions, where PA is the set of predicates of A.

We use the term letters for elements of D where D is the domain of A and the term
words for elements of D∗. A run of M on a word a1a2 . . . an is a sequence of transitions
⟨q0, ψ1, q1⟩⟨q1, ψ2, q2⟩ . . . ⟨qn−1, ψn, qn⟩ satisfying that ai ∈ JψiK, that ⟨qi, ψi+1, qi+1⟩ ∈ ∆ and
that q0 = qι. Such a run is said to be accepting if qn ∈ F . A word w = a1a2 . . . an is said to be
accepted by M if there exists an accepting run of M on w. The set of words accepted by an SFA
M is denoted L(M). We use L̂(M) for the set {⟨w, 1⟩ | w ∈ L(M)} ∪ {⟨w, 0⟩ | w /∈ L(M)}.

An SFA is said to be deterministic if for every state q ∈ Q and every letter a ∈ D we have
that |{⟨q, ψ, q′⟩ ∈ ∆ | a ∈ JψK}| ≤ 1, namely from every state and every concrete letter there
exists at most one transition. It is said to be complete if |{⟨q, ψ, q′⟩ ∈ ∆ | a ∈ JψK}| ≥ 1 for
every q ∈ Q and a ∈ D, namely from every state and every concrete letter there exists at least
one transition. It is not hard to see that, as is the case for finite automata (over concrete
alphabets), non-determinism does not add expressive power but does add succinctness. When
A is deterministic we use ∆(q, w) to denote the state A reaches on reading word w from
state q. If ∆(qι, w) = q then w is termed an access word to state q.

▶ Example 1. Consider the SFA M given in Fig.1. It is defined over the algebra AN which
is the interval algebra restricted to the domain D = N ∪ {∞}. The language of M is the set
of all words over D of the form w1 · d · w2 where w1 is some word over the domain D, the
letter d satisfies 0 ≤ d < 100 and all letters of the word w2 are numbers smaller than 200.

3 Learning SFAs

In grammatical inference, loosely speaking, we are interested in learning a class of languages
L over an alphabet Σ, from examples which are words over Σ. Examples for classes of
languages can be the set of regular languages, the set of context-free languages, etc. A
learning algorithm, aka a learner, is expected to output some concise representation of the
language from a class of representations R for the class C. For instance, in learning the
class Lreg of regular languages one might consider the class Rdfa of DFAs, or the class

1 In this case a basic formula is a monomial.
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21:4 Inferring Symbolic Automata

Rlin of right linear grammars, since both are capable of expressing all regular languages.2
We often say that a class of representations R is learnable (or not) when we mean that a
class of languages L is learneable (or not) via the class of representations R. Complexity of
learning an unknown language L ∈ L via R is typically measured wrt. the size of the smallest
representation RL ∈ R for L. For instance, when learning Lreg via Rdfa a learner is expected
to output a DFA for an unknown language in time that is polynomial in the number of states
of the minimal DFA for L.

In our setting we are interested in learning regular languages using as a representation
classes of SFAs over a certain algebra. To measure complexity we must agree on how to
measure the size of an SFA. For DFAs, the number of states is a common measure of size,
since the DFA can be fully described by a representation of size polynomial in the number of
states. In the case of SFA the situation is different, as the size of the predicates labeling the
transitions can vary greatly. In fact, if we measure the size of a predicate by the number of
nodes in its parse DAG, then the size of a formula can grow unboundedly. The size and
structure of the predicates influence the complexity of their satisfiability check, and thus the
complexity of the corresponding algorithms. Another thing to note is that there might be a
trade-off between the size of the transition predicates and the number of transitions; e.g. a
predicate of the form ψ1 ∨ ψ2 . . . ∨ ψk can be replaced by k transitions, each one labeled by
one ψi for 1 ≤ i ≤ k.

The literature defines an SFA as normalized if for every two states q and q′ there exists
at most one transition from q to q′. This definition prefers fewer transitions over potentially
complicated predicates. By contrast, preferring simple transitions at the cost of increasing
the number of transitions, leads to neat SFAs. An SFA is termed neat if all transition
predicates are basic predicates. In [27] we proposed to measure the size of an SFA by three
parameters: the number of states (n), the maximal out-degree of a state (m) and the size of
the most complex predicate (l); we then analyzed the complexity of the standard operations
on SFAs, with particular attention to the mentioned special forms. Another important factor
regarding size and canonical forms of SFAs, is the underlying algebra, specifically, whether it
is monotonic or not.

Monotonicity. A Boolean algebra A over domain D is said to be monotonic if there exists a
total order < on the elements of D, there exist two elements d−∞, d∞ such that d−∞ ≤ d and
d ≤ d∞ for all d ∈ D, and an atomic predicate ψ ∈ P0 can be associated with two concrete
values a and b such that JψK = {d ∈ D | a ≤ d < b}. The interval algebra (given in §2.1) is
clearly monotonic, as is the similar algebra obtained using R (the real numbers) instead of Z
(the integers). On the other hand, the propositional algebra is clearly non-monotonic.

Learning Paradigms. The exact definition regarding learnability of a class depends on the
learning paradigm. In this work we consider two widely studied paradigms: learning with
membership and equivalence queries, and identification in the limit using polynomial time
and data. Their definitions are provided in the respective sections.

Non-Trivial Classes of SFAs. In the sequel we would like to prove results regarding non-
trvial classes of SFAs, which are defined as follows.

2 The class of regular languages was shown learnable via various representations including DFAs [4],
NFAs [16], and AFAs (alternating finite automata) [7].
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▶ Definition 2. A class of SFAs M over a Boolean Algebra A with a set of predicates P is
termed non-trivial if for every predicate φ ∈ P the SFA Mφ = (A, {qι, qac, qrj}, qι, {qac},∆)
where ∆ = {⟨qι, φ, qac⟩, ⟨qι,¬φ, qrj⟩, ⟨qrj ,⊤, qrj⟩, ⟨qac,⊤, qrj⟩} is in M. Note that Mφ accepts
only words of length one consisting of a concrete letter satisfying φ, and it is minimal among
all complete deterministic SFAs accepting this language (minimal in both number of states
and number of transitions).

4 Efficient Identifiability

While in active learning (e.g. query learning) the learner can select any word and query
about its membership in the unknown language, in passive learning the learner is given a set
of words, and for each word w in the set, a label bw indicating whether w is in the unknown
language or not. Formally, a sample for a language L is a finite set S consisting of labeled
examples, that is, pairs of the form ⟨w, bw⟩ where w is a word and bw ∈ {0, 1} is its label,
satisfying that bw = 1 if and only if w ∈ L. The words that are labeled 1 are termed positive
words, and those that are labeled 0 are termed negative words. Note that if L is recognized
by M, we have that S ⊆ L̂(M) (as defined in §.2.2). If S is a sample for L we often say
that S agrees with L. Given two words w,w′, we say that w and w′ are not equivalent wrt.
S, denoted w ̸∼S w′, iff there exists z such that ⟨wz, b⟩, ⟨w′z, b′⟩ ∈ S and b ̸= b′. Otherwise
we say that w and w′ are equivalent wrt. S, and write w ∼S w′.

Given a sample S for a language L over a concrete domain D, it is possible to construct a
DFA that agrees with S in polynomial time. Indeed one can create the prefix-tree automaton,
a simple automaton that accepts all and only the positively labeled words in the sample.
Clearly the constructed automaton may not be the minimal automaton that agrees with
S. There are several algorithms, in particular the popular RPNI [42], that minimize the
prefix-tree automaton, and due to state merging may accept an infinite language. Obviously
though, this procedure is not guaranteed to return an automaton for the unknown language,
as the sample may not provide sufficient information. For instance if L = aL1 ∪ bL2 and
the sample contains only words starting with a, there is no way for the learner to infer L2
and hence also L correctly. One may thus ask, given a language L, what should a sample
contain in order for a passive learning algorithm to infer L correctly, and can such sample be
of polynomial size with respect to a minimal representation (e.g., a DFA) for the language.

One approach to answer these questions is captured in the paradigm of identification in
the limit using polynomial time and data. This model was proposed by Gold [28], who also
showed that it admits learning of regular languages represented by DFAs. We follow de la
Higuera’s more general definition [24].3 This definition requires that for any language L in a
class of languages L represented by R, there exists a sample SL of size polynomial in the
size of the smallest representation R ∈ R of L (e.g., the smallest DFA for L), such that a
valid learner can infer the unknown language L from the information contained in SL. The
set SL is then termed a characteristic sample.4 Here, a valid learner is an algorithm that
learns the target language exactly and efficiently. In particular, a valid learner produces in
polynomial time a representation that agrees with the provided sample. The learner also has

3 This paradigm may seem related to conformance testing. The relation between conformance testing for
Mealy machines and automata learning of DFAs has been explored in [14].

4 De la Higuera’s notion of characteristic sample is a core concept in grammatical inference, for various
reasons. Firstly, it addresses shortcomings of several other attempts to formulate polynomial-time
learning in the limit [5, 43]. Secondly, this notion has inspired the design of popular algorithms for
learning formal languages such as, for example, the RPNI algorithm [42]. Thirdly, it was shown to bear
strong relations to a classical notion of machine teaching [30]; models of the latter kind are currently
experiencing increased attention in the machine learning community [50].
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21:6 Inferring Symbolic Automata

to correctly learn the unknown language L when given the characteristic sample SL as input.
Moreover, if the input sample S subsumes SL yet is still consistent with L, the additional
information in the sample should not “confuse” the learner; the latter still has to output
a correct representation for L. (Intuitively, this requirement precludes situations in which
the sample consists of some smart encoding of the representation that the learner simply
deciphers. In particular, the learner will not be confused if an adversary “contaminates” the
characteristic sample by adding labeled examples for the target language.) We provide the
formal definition after the following informal example.

▶ Example 3. For the class of DFAs, let us consider the regular language L = a∗ over the
alphabet {a, b}. Further, consider a sample set S = {⟨ϵ, 1⟩, ⟨a, 1⟩, ⟨b, 0⟩, ⟨bb, 0⟩, ⟨ba, 0⟩} for L.
There is a valid learner for the class of all DFAs that uses the sample S as a characteristic
sample for L. By definition, such a learner has to output a DFA for L when fed with S, but
also has to output equivalent DFAs whenever given any superset of S as input, as long as this
superset agrees with L. Naturally, the sample S is also consistent with the regular language
L′ = {ϵ, a}. However, this does not pose any problem, since the same learner can use a
characteristic sample for L′ that disagrees with L, for example, S ′ = {⟨ϵ, 1⟩, ⟨a, 1⟩, ⟨aa, 0⟩}.
When defining a system of characteristic samples like that, the core requirement is that the
size of a sample be bounded from above by a function that is polynomial in the size of the
smallest DFA for the respective target language.

▶ Definition 4 (identification in the limit using polynomial time and data). A class of languages
L is said to be identified in the limit using polynomial time and data via representations in
a class R if there exists a learning algorithm A such that the following requirements are met.
1. Given a finite sample S of labeled examples, A returns a hypothesis R ∈ R that agrees

with S in polynomial time.
2. For every language L ∈ L, there exists a sample SL, termed a characteristic sample, of

size polynomial in the minimal representation R ∈ R for L such that the algorithm A
returns a correct hypothesis when run on any sample S for L that subsumes SL.

Note that the first condition ensures polynomial time and the second polynomial data.
However, the latter is not a worst-case measure; the algorithm may fail to return a correct
hypothesis on arbitrarily large finite samples (if they do not subsume a characteristic set).

Note also that the definition does not require the existence of an efficient algorithm that
constructs a characteristic sample for each language in the underlying class. When such
an algorithm is also available we say that the class is efficiently identifiable. In the full
version of the paper we provide an example of a class of languages that possesses polynomial-
size characteristic sets, yet without the ability to construct such sets effectively. Since we
are concerned with learning classes of automata we formulate the definition of efficient
identification directly over classes of automata.

▶ Definition 5 (efficient identification). A class of automata M over an alphabet Σ is said to
be efficiently identified if the following two requirements are met.
1. There exists a polynomial time learning algorithm Infer : 2(Σ∗×{0,1}) → M such that, for

any sample S, we have S ⊆ L̂(Infer(S)).
2. There exists a polynomial time algorithm Char : M → 2(Σ∗×{0,1}) such that, for every

M ∈ M and every sample S satisfying Char(M) ⊆ S ⊆ L̂(M), the automaton Infer(S)
recognizes the same language as M.

When we apply this definition for a class of SFAs over a Boolean algebra A with domain
D and predicates P, the characteristic sample is defined over the concrete set of letters D
rather than the set of predicates P because this is the alphabet of the words accepted by
an SFA (inferring an SFA from a set of words labeled by predicates can be done using the
methods for inferring DFAs, by considering the alphabet to be the set of predicates).
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Throughout this section we study whether a class of SFAs M is efficiently identifiable.
That is, we are interested in the existence of algorithms InferM and CharM satisfying the
requirements of Def.5. In §4.1 we provide a necessary condition for a non-trivial class of SFAs
to be identified in the limit using polynomial time and data. In §4.2 we provide a sufficient
condition for a non-trivial class of SFAs to be efficiently identifiable. On the positive side,
we show in §4.3 that the class of SFAs over the interval algebra is efficiently identifiable. On
the negative side, we show in §4.4 that SFAs over the general propositional algebra cannot
be identified in the limit using polynomial time and data.

Efficient Identification of DFAs
Before investigating efficient identification of SFAs, it is worth noting that DFAs are efficiently
identifiable. We state a result that provides more details about the nature of these algorithms,
since we need it later, in §.4.3, to provide our positive result. Intuitively, it says that there
exists a valid learner such that if D is a minimal DFA recognizing a certain language L then
the learner can infer L from a characteristic sample consisting of access words to each state of
D and their extensions with distinguishing words (words showing each pair of states cannot
be merged) as well as one letter extensions of the access words that are required to retrieve
the transition relation.

▶ Theorem 6 ([42]). I. The class of DFAs is efficiently identifiable via procedures CharDFA
and InferDFA. II. Furthermore, these procedures satisfy that if D is a minimal and complete
DFA and CharDFA(D) = SD then the following holds:
1. SD contains a prefix-closed set A of access words. Moreover, A can be chosen to contain

only lex-access words, i.e., only the lexicographically smallest access word for each state.
2. For every u1, u2 ∈ A it holds that u1 ̸∼SD u2.
3. For every u, v ∈ A and σ ∈ Σ, if ∆(qι, uσ) ̸= ∆(qι, v) then uσ ̸∼SD v.

We briefly describe CharDFA and InferDFA.
The algorithm CharDFA works as follows. It first creates a prefix-closed set of access

words to states. This can be done by considering the graph of the automaton and running an
algorithm for finding a spanning tree from the initial state. Choosing one of the letters on each
edge, the access word for a state is obtained by concatenating the labels on the unique path
of the obtained tree that reaches that state. If we wish to work with lex-access words, we can
use a depth-first search algorithm that spans branches according to the order of letters in Σ,
starting from the smallest. The labels on the paths of the spanning tree constructed this way
will form the set of lex-access words. Let S be the set of access words (or lex-access words).
Next the algorithm turns to find a distinguishing word vi,j for every pair of state si, sj ∈ S

(where si ̸= sj). It holds that any pair of states of the minimal DFA has a distinguishing
word of size quadratic in the size of the DFA. Let E be the set of all such distinguishing
words. Then the algorithm returns the set SD = {⟨w,D(w)⟩ | w ∈ (S ·E) ∪ (S · Σ ·E)} where
D(w) is the label D gives w (i.e. 1 if it is accepted, and 0 otherwise). It is easy to see that
SD satisfies the properties of Thm.6.

The algorithm InferDFA, given a sample of words S, infers from it in polynomial time
a DFA that agrees with S. Moreover, if S subsumes the characteristic set SD of a DFA D
then InferDFA returns a DFA that recognizes D. Let W be the set of words in the given
sample S (without their labels). Let R be the set of prefixes of W and C the set of suffixes
of W . Note that ϵ ∈ R and ϵ ∈ C. Let r0, r1, . . . be some enumeration of R and c0, c1, . . .

some enumeration of C where r0 = c0 = ϵ. The algorithm builds a matrix M of size |R| × |C|
whose entries take values in {0, 1, ?}, and sets the value of entry (i, j) as follows. If ricj is

CSL 2022



21:8 Inferring Symbolic Automata

not in W , it is set to ?. Otherwise it is set to 1 iff the word ricj is labeled 1 in S. We get
that ri ∼S rj iff for every k such that both M(i, k) and M(j, k) are different than ? we have
that M(i, k) = M(j, k). The algorithm sets R0 = {ϵ}. Once Ri is constructed, the algorithm
tries to establish whether for r ∈ Ri and σ ∈ Σ, rσ is distinguished from all words in Ri. It
does so by considering all other words r′ ∈ Ri and checking whether r ∼S r′. If rσ is found
to be distinct from all words in Ri, then Ri+1 is set to Ri ∪ {rσ}. The algorithm proceeds
until no new words are distinguished. Let k be the iteration of convergence. If not all words
in Rk are in W (that is M(i, 0) =? for some ri ∈ Rk), the algorithm returns the prefix-tree
automaton. Otherwise, the states of the constructed DFA are set to be the words in Rk. The
initial state is ϵ and a state ri is classified as accepting iff M(i, 0) = 1 (recall that the entry
M(i, 0) stands for the value of ri · ϵ in S). To determine the transitions, for every r ∈ Rk
and σ ∈ Σ, recall that there exists at least one state r′ ∈ R that cannot be distinguished
from rσ. The algorithm then adds a transition from r on σ to r′.

4.1 Necessary Condition
We make use of the following definitions. A sequence ⟨Γ1, . . . ,Γm⟩ consisting of sets of concrete
letters Γi ⊆ D is termed a concrete partition of D if the sets are pairwise disjoint (namely
Γi ∩ Γj = ∅ for every i ̸= j). Note that we do not require that in addition

⋃
1≤i≤k Γi = D.

We use Πconc(D,m) to define the set of all concrete partitions of size m over D. A sequence
of predicates ⟨ψ1, . . . , ψm⟩ over a Boolean algebra A on a domain D is termed a predicate
partition if JψiK ∩ JψjK = ∅ for every i ≠ j, and in addition

⋃
≤i≤kJψiK = D. That is, here we

do require the assignments to the predicates cover the domain. We use Πpred(P,m) to define
the set of all predicate partitions of size m over P.

▶ Definition 7.
A function fg from a concrete partition to a predicate partition is termed generalizing if
fg(⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψk⟩ implies k = m and JψiK ⊇ Γi for all 1 ≤ i ≤ m.
A function fc from a predicate partition to a concrete partition is termed concretizing if
fc(⟨ψ1, . . . , ψm⟩) = ⟨Γ1, . . . ,Γk⟩ implies k = m and Γi ⊆ JψiK for all 1 ≤ i ≤ m.

Note that fg and fc are variadic functions (i.e. can take any number of parameters). We
can define their k-adic versions as those that work only on partitions of size k. In particular,
their dyadic versions work only on partitions of size 2.

We say that fg (resp. fc) is efficient if it can be computed in polynomial time. Note that
if fc is efficient then the sets Γi in the constructed concrete partition are of polynomial size.

We are now ready to provide a necessary condition for identifiability in the limit using
polynomial time and data.

▶ Theorem 8. A necessary condition for a non-trivial class of SFAs MA over a Boolean
algebra A to be identified in the limit using polynomial time and data is that there exist
efficient dyadic concretizing and generalizing functions, ConcretizeA : Πpred(P, 2) → Πconc(D, 2)
and GeneralizeA : Πconc(D, 2) → Πpred(P, 2), satisfying that

if ConcretizeA(⟨ψ1, ψ2⟩) = ⟨Γ1,Γ2⟩
and GeneralizeA(⟨Γ′

1,Γ′
2⟩) = ⟨φ1, φ2⟩

where Γi ⊆ Γ′
i for every 1 ≤ i ≤ 2

then JφiK = JψiK for every 1 ≤ i ≤ 2.

Proof. Assume that MA is identified in the limit using polynomial time and data. That
is, there exist two algorithms CharSFA : MA → 2D∗×{0,1} and InferSFA : 2D∗×{0,1} →
MA satisfying the requirements of Def.4. We show that efficient dyadic concretizing and
generalizing functions do exist.
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We start with the definition of ConcretizeA . Let ⟨φ1, φ2⟩ be the argument of ConcretizeA .
Note that φ2 = ¬φ1 by the definition of a predicate partition. The implementation of
ConcretizeA invokes CharSFA on the SFA Mφ1 accepting all words of length one consisting
of a concrete letter satisfying φ1, as defined in Def.2. Let S be the returned sample. Let Γ1
be the set of positively labeled words in the sample. Note that all such words are of size one,
namely they are letters. Let Γ2 be the set of letters that are first letters in a negative word
in the sample. Then ConcretizeA returns ⟨Γ1,Γ2⟩.

We turn to the definition of GeneralizeA . Given ⟨Γ1,Γ2⟩ the implementation of GeneralizeA

invokes InferSFA on sample S = {⟨γ, 1⟩ | γ ∈ Γ1}∪{⟨γ, 0⟩ | γ ∈ Γ2}∪{⟨γγ′, 0⟩ | γ, γ′ ∈ Γ1∪Γ2}.
That is, all one-letter words satisfying Γ1 are positively labeled, all one-letter words satisfying
Γ2 are negatively labeled, and all words of length 2 using some of the given concrete letters,
are negatively labeled. Let M be the returned SFA when given S ′ ⊇ S as an input. Let Ψ1
be the set of all predicates labeling some edge from the initial state to an accepting state,
and let Ψ2 be the set of all predicates labeling some edge from the initial state to a rejecting
state. Let φ = (

∨
ψ∈Ψ1

ψ) ∧ (
∧
ψ∈Ψ2

¬ψ). Then GeneralizeA returns ⟨φ,¬φ⟩.
It is not hard to verify that the constructed methods GeneralizeA and ConcretizeA satisfy

the requirements of the theorem. ◀

The following example shows that for some Boolean algebras, such functions exist, even
for a generalization of the requirement for variadic versions of Concretize and Generalize.

▶ Example 9. Consider the class MAN of SFAs over the algebra AN of Ex.1 and consider the
functions ConcretizeAN(⟨[d1, d

′
1), [d2, d

′
2), . . . , [dm, d′

m)⟩) = ⟨{d1}, . . . , {dm}⟩ and GeneralizeAN

(⟨Γ1, . . . ,Γm⟩) = ⟨[min Γπ(1),min Γπ(2)), [min Γπ(2),min Γπ(3)), . . . , [min Γπ(m),∞)⟩ where π
is the permutation on (1, . . . ,m) satisfying max Γπ(i) < min Γπ(i+1) for every 1 ≤ i < m.
Then, ConcretizeAN and GeneralizeAN satisfy the variadic generalization of the conditions of
Thm.8.

We would like to relate the necessary condition on the learnability of a class of SFAs
over a Boolean algebra A to the learnability of the Boolean algebra A itself. For this
we need to first define efficient identifiability of a Boolean algebra A. Since to learn an
unknown predicate we need to supply two sets: one of negative examples and one of positive
examples, it makes sense to say that a Boolean algebra A with predicates P over domain D
is efficiently identifiable if there exist efficient dyadic concretizing and generalizing functions,
ConcretizeA : Πpred(P, 2) → Πconc(D, 2) and GeneralizeA : Πconc(D, 2) → Πpred(P, 2) satisfying
the criteria of Theorem 8. Using this terminology we can state the following corollary.

▶ Corollary 10. Efficient identifiability of the Boolean algebra A is a necessary condition for
identification in the limit using polynomial time and data of any non-trivial class of SFAs
over A.

4.2 Sufficient Condition
We turn to discuss a sufficient condition for the efficient identifiability of a class of SFAs MA

over a Boolean algebra A. To prove that MA is efficiently identifiable, we need to supply
two algorithms CharSFAMA and InferSFAMA as required in Def.5. The idea is to reduce
the problem to efficient identifiablity of DFAs, namely to use the algorithms CharDFA
and InferDFA provided in Thm.6. The implementation of CharSFA, given an SFA M
will transform it into a DFA DM by applying ConcretizeA on the partitions induced by the
states of the DFA. The resulting DFA DM will not be equivalent to the given SFA M, but
it may be used to create a sample of words SM that is a characteristic set for M, see Fig.2.
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Figure 2 A schematic description of algorithms CharSFA and InferSFA.

Algorithm 1 ConcretizeMA (M).

XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA
Output: a DFA DM
1 function ConcretizeMA (M = ÈA, Q, qÿ, F,�Í)
2 �M :=

t
qœQ ConcretizeA(fiq)

3 �D := ÿ
4 for all q, qÕ œ Q,Â œ fiq, d œ �M do

5 if Èq,Â, qÕÍ œ � and d œ JÂK then

6 �D := �D fi Èq, d, qÕÍ
7 return DM := È�M, Q, qÿ, F,�DÍ

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA
Output: An SFA M
1 function GeneralizeMA (D = È�, Q, qÿ, F,�DÍ)
2 �M := ÿ
3 for all q œ Q do

4 for all qi œ Q do �i := {“ | Èq, “, qiÍ œ �D}
5 ÈÂ1, . . . ,ÂnÍ := GeneralizeA(È�1, . . . ,�nÍ)
6 for all qi œ Q do �M := �M fi Èq,Âi, qiÍ
7 return M := ÈA, Q, qÿ, F,�MÍ

Algorithm 2 GeneralizeMA (M).

XX:

Algorithm 1 ConcretizeMA (M)

Input: An SFA M, function ConcretizeA
Output: a DFA DM
1 function ConcretizeMA (M = ÈA, Q, qÿ, F,�Í)
2 �M :=

t
qœQ ConcretizeA(fiq)

3 �D := ÿ
4 for all q, qÕ œ Q,Â œ fiq, d œ �M do

5 if Èq,Â, qÕÍ œ � and d œ JÂK then

6 �D := �D fi Èq, d, qÕÍ
7 return DM := È�M, Q, qÿ, F,�DÍ

Algorithm 2 GeneralizeMA (M)

Input: A DFA D, function GeneralizeA
Output: An SFA M
1 function GeneralizeMA (D = È�, Q, qÿ, F,�DÍ)
2 �M := ÿ
3 for all q œ Q do

4 for all qi œ Q do �i := {“ | Èq, “, qiÍ œ �D}
5 ÈÂ1, . . . ,ÂnÍ := GeneralizeA(È�1, . . . ,�nÍ)
6 for all qi œ Q do �M := �M fi Èq,Âi, qiÍ
7 return M := ÈA, Q, qÿ, F,�MÍ

To implement InferSFA we would like to use InferDFA to obtain, as a first step, a DFA
from the given sample, then at the second step, apply GeneralizeA on the concrete-partitions
induced by the DFA states. A subtle issue that we need to cope with is that inference should
succeed also on samples subsuming the characteristic sample. The fact that this holds for
inference of the DFA does not suffice, since we are guaranteed that the inference of the DFA
will not be confused if the sample contains more labeled words, as long as the new words
are over the same alphabet. In our case the alphabet of the sample can be a strict subset
of the concrete letters D (and if D is infinite, this surely will be the case).5 So we need an
additional step to remove words from the given sample if they are not over the alphabet of
the characteristic sample. We call a method implementing this DecontaminateMA .

Formally, we first define the extension of ConcretizeA and GeneralizeA to automata instead
of partitions, which we term ConcretizeMA and GeneralizeMA (with M in the subscript).

The formal definition of ConcretizeMA is given in Alg.1. Let M = (A, Q, qι, F,∆) be an SFA.
Then ConcretizeMA (M) is the DFA DM = (Σ, Q, qι, F,∆D) where ∆D is defined as follows.
For each state q ∈ Q let πq = ⟨ψ1, . . . , ψm⟩ be the predicate partition consisting of all
predicates labeling a transition exiting q in M. Intuitively, in D, the outgoing transitions
of each state q correspond to ConcretizeA(πq). That is, let ConcretizeA(πq) = ⟨Γ1, . . . ,Γm⟩.
Then, if ⟨q, ψi, q′⟩ ∈ ∆, then ⟨q, γ, q′⟩ ∈ ∆D for every γ ∈ Γi.
The formal definition of GeneralizeMA is given in Alg.2. Let D = (Σ, Q, qι, F,∆D) be a
DFA. We define GeneralizeMA (D) wrt. an algebra A as follows. Let M = (A, Q, qι, F,∆M)
where ∆M is defined as follows. For each state q ∈ Q let ⟨Γ1, . . . ,Γm⟩ be the concrete
partition consisting of letters labeling outgoing transitions from q. Note that ⟨Γ1, . . . ,Γm⟩
is a concrete partition, since D is a DFA. Let GeneralizeA(⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψm⟩.
Then, ⟨q, ψi, q′⟩ ∈ ∆M if Γi is the set of letters labeling transitions from q to q′ in D.

5 In the full version of this paper we provide an example illustrating this problem for the class of SFAs
over a monotonic algebra Am , for which respective methods ConcretizeAm and GeneralizeAm exist.
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We are now ready to define the conditions the decontaminating function has to satisfy.

▶ Definition 11. A function fd : 2(D∗×{0,1}) → 2(D∗×{0,1}) is called decontaminating for a
class of SFAs M and a respective ConcretizeM function if the following holds. Let M ∈ M be
an SFA, and D = ConcretizeM(M). Let SD = CharDFA(D). Then, for every S ′ ⊇ SD s.t.
S ′ agrees with M, it holds that SD ⊆ fd(S ′) ⊆ (S ′ ∩ ΓD), where ΓD is the alphabet of SD.

As before we say that fd is efficient if it can be computed in polynomial time. We can
now provide the sufficient condition.

▶ Theorem 12. Let MA be a class of SFAs over a Boolean algebra A. If there exist efficient
functions ConcretizeA and GeneralizeA satisfying that

if ConcretizeA(⟨ψ1, . . . , ψm⟩) = ⟨Γ1, . . . ,Γm⟩
and GeneralizeA(⟨Γ′

1, . . . ,Γ′
m⟩) = ⟨φ1, . . . , φm⟩

where Γi ⊆ Γ′
i for every 1 ≤ i ≤ m

then JφiK = JψiK for every 1 ≤ i ≤ m

and in addition there exists an efficient decontaminating function DecontaminateMA , then the
class MA is efficiently identifiable.

Given functions ConcretizeA , GeneralizeA and DecontaminateMA for a class MA of SFAs
over a Boolean algebra A meeting the criteria of Thm.12, we show that MA can be efficiently
identified by providing two algorithms CharSFA and InferSFA, described bellow. These
algorithms make use of the respective algorithms CharDFA and InferDFA guaranteed in
Thm.6.I., as well as the methods provided by the theorem.

We briefly describe these two algorithms, and then turn to prove Thm.12. The algorithm
CharSFA receives an SFA M ∈ M, and returns a characteristic sample for it. It does so by
applying ConcretizeMA (M) (Alg.1) to construct a DFA DM and generating the sample SM
using the algorithm CharDFA applied on the DFA DM.

Algorithm InferSFA, given a sample set S, if S subsumes a characteristic set of an SFA
M, returns an equivalent SFA. Otherwise it suffices with returning an SFA that agrees with
the sample. First, it applies DecontaminateMA to find a subset S ′ ⊆ S over the alphabet
of the subsumed characteristic sample, if such a subsumed sample exists. Then it uses S ′

to construct a DFA by applying the inference algorithm InferDFA on S ′. From this DFA
it constructs an SFA, MS , by applying GeneralizeMA (Alg.2). If the resulting automaton
disagrees with the given sample it resorts to returning the prefix-tree automaton. In brief,

CharSFA(M) = CharDFA(ConcretizeMA (M))

InferSFA(S)=
{

MS :=GeneralizeMA (InferDFA(DecontaminateMA (S))) if S ⊆L̂(MS)
The prefix-tree automaton of S otherwise

In §4.3 we provide methods ConcretizeA , GeneralizeA and DecontaminateMA for SFAs over
monotonic algebras, deriving their identification in the limit result. We now prove Thm.12.

Proof of Thm.12. Given functions ConcretizeA , GeneralizeA , and DecontaminateMA , we show
that the algorithms CharSFA and InferSFA satisfy the requirements of Def.5.

For the first condition, given that CharDFA, DecontaminateMA and GeneralizeA run in
polynomial time, and that the prefix-tree automaton can be constructed in polynomial
time, it is clear that so does InferSFA. In addition, the test performed in the definition of
InferSFA ensures the output agrees with the sample.

For the second condition, note that the sample generated by CharSFA is polynomial in
the size of DM, from the correctness of CharDFA. In addition, since ConcretizeA is efficient,
DM is polynomial in the size of M, and thus SM generated by CharSFA is polynomial in
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M as well. It is left to show that given SM is the concrete sample produced by CharSFA
when running on an SFA M, then when InferSFA runs on any sample S ⊇ SM it returns
an SFA for L(M). Since DecontaminateMA is a decontaminating function, and S ⊇ SM, the
set S ′ = DecontaminateMA (S) satisfies S ′ ⊇ SM and is only over the alphabet ΓM, which is
the alphabet of the DFA DM generated in Alg.1.

From the correctness of InferDFA, given S ′ ⊇ SM, applying InferDFA on the output S ′

of DecontaminateMA results in a DFA D that is equivalent to DM constructed in Alg.1. Since
DM is complete wrt. its alphabet ΓM, for state q of D, the concrete partition ⟨Γ1, . . . ,Γn⟩
generated in Alg.2 line 4, covers ΓM and subsumes the output of ConcretizeMA on πq (Alg.1,
line 2). Thus, since GeneralizeA and ConcretizeA satisfy the criteria of Thm.12, it holds that
the constructed predicates agree with the original predicates. In addition, since S, and
therefore S ′, agrees with M, the test performed in the definition of InferSFA fails and the
returned SFA is equivalent to M. ◀

4.3 Positive Result
We present the following positive result regarding monotonic algebras.

▶ Theorem 13. Let MAm be the set of SFAs over a monotonic Boolean algebra Am . Then
MAm is efficiently identifiable.

In order to prove Thm.13, we show that the sufficient condition holds for the case of
monotonic algebras. In the full version we provide an example that demonstrates how to
apply CharSFA and InferSFA in order to learn an SFA over the algebra AN.

▶ Proposition 14. There exist functions ConcretizeAm and GeneralizeAm for a monotonic
Boolean algebra Am , satisfying the criteria of Thm.12.

Proof. Let D be the domain of Am . We provide the functions ConcretizeAm and GeneralizeAm

and prove that the criteria of Thm.12 hold for them. For ease of presentation, for the function
Concretize we consider basic predicates. Note that for monotonic algebras, basic predicates
are in fact intervals, as a conjunction of intervals is an interval. We can assume all predicates
are basic since, as we show in [27, Lemma 3], for monotonic algebras the transformation
from a general formula to a DNF formula of basic predicates is linear. Then, each basic
predicate in the formula corresponds to a different predicate in the predicate partition. The
definitions of ConcretizeAm and GeneralizeAm are generalizations of the functions ConcretizeAN

and GeneralizeAN given in Ex.9. We define ConcretizeAm (⟨ψ1, . . . ψm⟩) = ⟨Γ1, . . . ,Γm⟩ where
we set Γi = { min{d ∈ D | d ∈ JψiK}} for 1 ≤ i ≤ m. Since Am is monotonic, Γi is well defined
and contains a single element, thus ConcretizeAm is an efficient concretizing function.

We define GeneralizeAm (⟨Γ1, . . . ,Γm⟩) = ⟨ψ1, . . . , ψm⟩, where ψi is defined as follows. Let
Γ =

⋃
1≤i≤m Γi. First, for all 1 ≤ i ≤ m we set ψi = ⊥. Then, we iteratively look for the

minimal element γ ∈ Γ. Let i be such that γ ∈ Γi, and let γ′ be the minimal element in Γ
satisfying γ′ /∈ Γi. We then set ψi = ψi ∨ [γ, γ′), and remove all elements γ ≤ γ′′ < γ′ from
Γ. We repeat the process until for the found γ ∈ Γj , there is no γ′ > γ such that γ′ /∈ Γj . In
that case, we define ψj = ψj ∨ [γ, d∞). Then, Γi ⊆ JψiK and the predicates are disjoint, thus
GeneralizeAm is an efficient generalizing function.

Now, let ⟨Γ1, . . . ,Γm⟩ be the concrete partition obtained from ConcretizeAm when ap-
plied on the predicate partition ⟨ψ1, . . . , ψm⟩. Assume further that the predicate partition
⟨Γ′

1, . . . ,Γ′
m⟩ satisfies Γi ⊆ Γ′

i ⊆ JψiK for 1 ≤ i ≤ m. In particular, min(Γ′
i) = min(Γi), since

Γi contains the minimal elements in JψiK, and Γi ⊆ Γ′
i ⊆ JψiK. Thus applying GeneralizeAm

will result in the same interval, satisfying the criterion of Thm.12. ◀
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Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample.

XX:

Algorithm 3 DecontaminateMAm
– finding the necessary letters for a characteristic sample

Input: set S over alphabet �
Output: set S Õ over alphabet �Õ

1 function DecontaminateMAm
(S)

2 Aw := {‘}, �Õ := {dinf}, ‡max := dinf
3 repeat

4 for all u œ Aw, by lexicographic order do
5 for all ‡ œ �, by lexicographic order do
6 if ‡ > ‡max and u‡ ”≥S u‡max then

7 if ’‡Õ. ‡max < ‡Õ < ‡ : u‡Õ ≥S u‡max then

8 �Õ := �Õ fi {‡}
9 if ’uÕ œ Aw. u‡ ”≥S uÕ

then Aw := Aw fi {u‡}
10 ‡max := ‡

11 ‡max := dinf
12 until �Õ is remained unchanged
13 return S Õ := S fl �Õú

▶ Example 15. Let Γ1 = {0, 100, 400, 500} and Γ2 = {150, 200} over the algebra AN with
domain N ∪ {∞}. Then, GeneralizeAN sets Γ = {0, 100, 150, 200, 400, 500}, and finds the
minimal element in γ which is 0. Since 0 ∈ Γ1, it then looks for the minimal element γ ∈ Γ
such that γ /∈ Γ1, and finds 150 ∈ Γ2. Therefore ψ1 = [0, 150) and Γ is updated to be
Γ = {150, 200, 400, 500}. Next, it finds the minimal element, which is 150 and is in Γ2, and
the minimal element that is not in Γ2 is 400. Then, ψ2 is set to be ψ2 = [150, 400) and
Γ = {400, 500}. Last, ψ1 = [0, 150) ∨ [400,∞) since 400 ∈ Γ1 and there is no greater element
that is not in Γ1.

To show that any class of SFAs MAm over a monotonic algebra Am is efficiently iden-
tifiable, we define in Alg.3 an algorithm that implements a decontaminating function
DecontaminateMAm

, fulfilling the requirements of Thm.12. Loosely speaking, the idea of
the algorithm is to simultaneously collect elements into two sets Aw and Σ′ s.t. Aw will
consist of the minimal representative according to the lexicographic order of each equivalence
class in ∼S and Σ′ will consist of minimal letters aiding to distinguishing these words. When
this process terminates the algorithm returns the subset of words in the sample that consist
of only letters in Σ′.

▶ Lemma 16. Assume the input to DecontaminateMAm
is S with S ⊇ SM for some M ∈ MAm

s.t. SM = CharDFA(ConcretizeMAm
(M)), and DM = ConcretizeMAm

(M) is over alphabet
ΓM. Then for Σ′ constructed by DecontaminateMAm

(Alg.3) it holds that Σ′ =ΓM.

Proof sketch. Let M = (A, Q, qι, F,∆M), DM = ConcretizeMAm
(M) where DM = (ΓM, Q,

qι, F,∆D), and SM = CharDFA(DM). We inductively show that for DecontaminateMAm

given in Alg.3, if its input S satisfies S ⊇ SM then the set Aw is exactly the set of all
lex-access words of states in DM and that Σ′ = ΓM (where ΓM is the alphabet of DM).

First, we show that every u ∈ Aw is a lex-access word and that Σ′ ⊆ ΓM. For the base
case, we have Aw = {ϵ} and Σ′ = {d−∞}. Since ϵ is the minimal element in the lexicographic
order, it holds that ϵ ∈ Aw is indeed a lex-access word (of the state qι). For d−∞ ∈ Σ′, since
ConcretizeAm returns the minimal element of each interval, it holds that d−∞ ∈ ΓM.
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For the induction step, assume that Aw contains only lex-access words and that the
current Σ′ is a subset of ΓM. Then, when considering u ∈ Aw in line 4, it holds that u is a
lex-access word of some state q. Then, if σ is added to Σ′ it must be a minimal element of
some interval labeling an outgoing transition from q, thus it is in ΓM, and hence Σ′ ⊆ ΓM.
Let uσ be a word added to Aw in line 9. Thus, for all u′ ∈ Aw it holds that uσ ̸∼S u′.

▷ Claim. In this setting, uσ ̸∼S u′ implies uσ ̸∼SM u′.

See the full version for a detailed proof of the lemma, and in particular, a proof of this claim.
Then, for all u′ ∈ Aw we have ∆D(qι, uσ) ̸= ∆D(qι, u′) where ∆D is the transition relation

of DM. Since u is a lex-access word and σ is minimal, uσ is a lex-access word for ∆D(qι, uσ).
This concludes the first direction.

For the second direction, we show that every lex-access word is in Aw and that ΓM ⊆ Σ′.
The lex-access word ϵ is in Aw. Let uσ be a lex-access word. For all lex-access words u′

found in previous iterations it holds that uσ ̸∼SM u′ from item 2 of Thm.6.II, and thus
uσ ̸∼S u′ since SM ⊆ S. Thus, uσ satisfies the condition of line 9 in Alg.3 and is added to
Aw. For ΓM ⊆ Σ′, let σ ∈ ΓM. From the construction of ConcretizeAm it holds that σ is the
left endpoint of some interval that is an outgoing transition from qι. Then, indeed σ is found
in the first iteration of line 4. Inductively, since Aw contains all lex-access words, for every
state q, the outgoing transitions of q will be considered in some following iteration. Thus, all
minimal letters indicating new intervals are added to Σ′ and we have that ΓM ⊆ Σ′. ◀

▶ Proposition 17. The sufficient condition of Thm.12 holds for the class MAm of SFAs over
a monotonic Boolean algebra Am .

Proof. In Prop.14 we have shown that there exist functions ConcretizeAm and GeneralizeAm

for a monotonic Boolean algebra Am , satisfying the criteria of Thm.12. It is left to show
that DecontaminateMAm

is an efficient decontaminating function. Assume that S ⊇ SM
where SM = CharDFA(ConcretizeMAm

(M)), and ConcretizeMAm
(M) is over alphabet ΓM. In

Lemma 16 we showed that under these assumptions it holds that the alphabet Σ′ of the
returned sample S ′ is ΓM. Then, for the set S ′ returned in line 13 (Alg.3) it holds that
S ′ = S ∩ Γ∗

M. Since S ⊇ SM and Γ∗
M ⊇ SM, it holds that S ′ ⊇ SM and S ′ is defined over

the alphabet ΓM. Therefore, DecontaminateMAm
is a decontaminating function. In addition,

it runs in time polynomial in the size of S, thus the conditions of Thm.12 are met. ◀

4.4 Negative Result
The result of Thm.13 does not extend to the non-monotonic case, as stated in Thm.18
regarding SFAs over the general propositional algebra. Let DB = {Bk}k∈N. Let PB =
{PBk

}k∈N where PBk
is the set of predicates over at most k variables. Let AB be the Boolean

algebra defined over the discrete domain DB and the set of predicates PB, and the usual
operators ∨, ∧ and ¬. Let MAB be the class of SFAs over the Boolean algebra AB. We show
that unless P = NP , this class of SFAs is not efficiently identifiable.

▶ Theorem 18. The class MAB is not efficiently identifiable unless P = NP .

Proof. We show that there is no pair of efficient concretizing and generalizing functions
fc : Πpred(PB, 2) → Πconc(DB, 2) and fg : Πconc(DB, 2) → Πpred(PB, 2) unless P = NP . From
Thm.8 it follows that MB is not efficiently identifiable unless P = NP .

Assume towards contradiction that such a pair of functions exist. We provide a polynomial
time algorithm ASAT for SAT. On predicate φ, the algorithm ASAT invokes fc(⟨φ,¬φ⟩).
Suppose the returned concrete partition is ⟨Γ1,Γ2⟩. Then ASAT returns “true” if and only
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if Γ1 ̸= ∅. Correctness follows from the fact that if there exists a system of characteristic
samples for PB then the set of positive examples associated with a satisfiable predicate φ
must be non-empty, as otherwise fg cannot distinguish φ from ⊥. ◀

5 Query Learning

The paradigm of query learning stipulates that the learner can interact with an oracle
(teacher) by asking it several types of allowed queries. Angluin showed, on the negative
side, that regular languages cannot be learned (in the exact model) from only membership
queries (mq) [3] or only equivalence queries (eq) [6]. On the positive side, she showed that
regular languages, represented as DFAs, can be learned using both mq and eq [4]. The
celebrated algorithm, termed L∗, was extended to learning many other classes of languages
and representations, e.g. [46, 15, 1, 16, 7, 38, 8, 41], see the survey [26] for more references.

In particular, an extension of L∗, termed MAT∗, to learn SFAs was provided in [9] which
proved that SFAs over an algebra A can be efficiently learned using MAT∗ if and only if the
underlying algebra is efficiently learnable, and the size of disjunctions of k predicates doesn’t
grow exponentially in k.6 From this it was concluded that SFAs over the following underlying
algebras are efficiently learnable: Boolean algebras over finite domains, equality algebra, tree
automata algebra, and SFAs algebra. Efficient learning of SFAs over a monotonic algebra
using mq and eq was established in [19], which improved the results of [36, 37] by using a
binary search instead of a helpful teacher.

The result of [9] provides means to establish new positive results on learning classes of
SFAs using mq and eq, but it does not provide means for obtaining negative results for query
learning of SFAs using mq and eq. We strengthen this result by providing a learnability
result that is independent of the use of a specific learning algorithm. In particular, we show
that efficient learnability of a Boolean algebra A using mq and eq is a necessary condition
for the learnability of the class of SFAs over A, as we state in Thm. 19.

▶ Theorem 19. A non-trivial class of SFAs M over a Boolean algebra A is polynomially
learnable using mq and eq, only if A is polynomially learnable using mq and eq.

Proof. Assume that M is polynomially learnable using mq and eq, using an algorithm QM.
We show that there exists a polynomial learning algorithm QA for the algebra A using mq and
eq. The algorithm QA uses QM as a subroutine, and behaves as a teacher for QM. Whenever
QM asks a M-mq on word γ1 . . . γk, if k > 1 then QA answers “no”. If k=1 then the M-mq
is essentially an A-mq, thus QA issues this query and passes the answer to QM. Whenever
QM asks a M-eq on SFA M, if M is of the form Mψ for some ψ (as defined in Def.2) then
QA answers “no” to the M-eq and returns some word w ∈ L(M) s.t. |w| > 1 and w was not
provided before, as a counterexample. Otherwise (if the SFA is of the form Mψ for some
ψ) QA asks an A-eq on ψ. If the answer is “yes” then QA terminates and returns ψ as the
result of the learning algorithm; if the answer to the A-eq on ψ is “no”, then the provided
counterexample ⟨γ, bγ⟩ is passed back to QM together with the answer “no” to the M-eq. It
is easy to verify that QA terminates correctly in polynomial time. ◀

From Thm. 19 we derive what we believe to be the first negative result on learning SFAs
from mq and eq, as we show that SFAs over the propositional algebra over k variables ABk

are not polynomially learnable using mq and eq. Polynomiality is measured with respect

6 As is the case, for instance, in the OBDD (Ordered Binary Decisions Diagrams) algebra [17].
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to the parameters ⟨n,m, l⟩ representing the size of the SFA and the number k of atomic
propositions. Note that the algebra ABk

is a restriction of the algebra AB considered in §.4.4
and therefore implies a negative result also with regard to the algebra AB considered there.

We achieve this by showing that no learning algorithm A for the propositional algebra
using mq and eq can do better than asking 2k mq/eq, where k is the number of atomic
propositions.7 We assume the learning algorithm is sound, that is, if S+

i and S−
i are the sets

of positive and negative examples observed by the algorithm up to stage i, then at stage
i+ 1 the algorithm will not ask a mq for a word in S+

i ∪ S−
i or an eq for an automaton that

rejects a word in S+
i or accepts a word in S−

i .

▶ Proposition 20. Let A be a sound learning algorithm for the propositional algebra over
Bk. There exists a target predicate ψ of size k, for which A will be forced to ask at least
2k − 1 queries (either mq or eq).

Proof. Since A is sound, at stage i+ 1 we have S+
i+1 ⊇ S+

i and S−
i+1 ⊇ S−

i and at least one
inclusion is strict. Since the size of the concrete alphabet is 2k, for every round i < 2k, an
adversarial teacher can answer both mq and eq negatively. In the case of eq there must be an
element in Bk \ (S−

i ∪ S+
i ) with which the provided automaton disagrees. The adversary will

return one such element as a counterexample. This forces A to ask at least 2k−1 queries. Note
that for any element v in Bk there exists a predicate φv of size k such that JφvK = {v}. ◀

▶ Corollary 21. SFAs over the propositional algebra ABk
with k propositions cannot be learned

in poly(k) time using mq and eq.

The propositional algebra ABk
is a special case of the n-dimensional boxes algebra.

Learning n-dimensional boxes was studied using mq and eq [29, 18, 12], as well as in the
PAC setting [13]. The algorithms presented in [29, 18, 12, 13] are mostly exponential in n.
Alternatively, [29, 18] suggest algorithms that are exponential in the number of boxes in the
union. In [12] a linear query learning algorithm for unions of disjoint boxes is presented. Since
n-dimensional boxes subsume the propositional algebra, Corollary 21 implies the following.

▶ Corollary 22. The class of SFAs over the n-dimensional boxes algebra cannot be learned in
poly(n) time using mq and eq.

6 Discussion

We examine the question of learnability of a class of SFAs over certain algebras where
the main focus of our study is on passive learning. We provide a necessary condition for
identification of SFAs in the limit using polynomial time and data, as well as a necessary
condition for efficient learning of SFAs using mq and eq. We note that a positive result
on learning SFAs using mq and eq implies a positive result for identification of SFAs in
the limit using polynomial time and data. The latter follows because a systematic set of
characteristic samples {SL}L∈L for a class of languages L may be obtained by collecting
the words observed by the query learner when learning L. However, it does not imply a
positive result regarding the stronger notion of efficient identifiability, as the latter requires
the set to be also constructed efficiently. We thus provide a sufficient condition for efficient
identification of a class of SFAs, and show that the class of SFAs over any monotonic algebra
satisfies these conditions.

7 In [40] Boolean formulas represented using OBDDs are claimed to be polynomially learnable with mq
and eq. However, [40] measures the size of an OBDD by its number of nodes, which can be exponential
in the number of propositions.
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We hope that these sufficient or necessary conditions will help to obtain more positive
and negative results for learning of SFAs, and spark an interest in investigating characteristic
samples in other automata models used in verification.
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Abstract
We introduce differential games for FO logic of graphs, a variant of Ehrenfeucht-Fraïssé games in
which the game is played on only one graph and the moves of both players are restricted. We prove
that these games are strong enough to capture essential information about graphs from graph classes
which are interpretable in nowhere dense graph classes. This, together with the newly introduced
notion of differential locality and the fact that the restriction of possible moves by the players makes
it easy to decide the winner of the game in some cases, leads to a new approach to the FO model
checking problem which can be used on various graph classes interpretable in classes of sparse graphs.
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1 Introduction

The first-order (FO) model checking problem asks, given a graph G and a sentence φ as
input, whether G |= φ. It is known that this problem is PSPACE-complete in general [26, 27],
but one can obtain efficient parameterised algorithms on many structurally restricted classes
of graphs. Here by efficient parameterised algorithms we mean algorithms with runtime
f(|φ|) · nO(1); these are known as fpt algorithms.

There has been a long line of research studying this problem on sparse graphs and the
existence of fpt algorithms was established for graphs of bounded degree [25], graphs with
locally bounded treewidth [13], graphs with a locally excluded minor [6], bounded expansion
graph classes [7] and nowhere dense graph classes [19]. The positive results on non-sparse
graphs fall into two categories. The first category are formed by somewhat isolated results
such as [18, 15, 21, 10] and the recent important and general result of [1]. The second
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category are positive results about graph classes which can be obtained from sparse graph
classes by means of interpretations [16, 17] (although [10] can also be put into this category).

One of the reasons why the research into the FO model checking has been so successful is
that Gaifman’s theorem [14] – an important result which essentially states that FO logic
is local – is particularly useful in the case of sparse graphs. Informally, Gaifman’s theorem
allows us to reduce the problem of determining whether a given FO formula φ holds on a
given graph G to the problem of evaluating a formula ψ(x) in the r-neighbourhood of each
vertex of G. In case G is a graph in which each vertex has a simple neighbourhood, one can
evaluate φ on G efficiently. This idea leads to efficient algorithms for evaluating FO formulas
on classes of graphs of bounded degree, planar graphs, and graphs with locally bounded
treewidth.

One shortcoming of using Gaifman’s theorem for evaluating FO formulas is that if a
graph has an (almost) universal vertex, then for r ≥ 2 the r-neighbourhood of any vertex is
(almost) the whole graph, and therefore evaluating formulas locally on the r-neighbourhoods
is essentially the same as evaluating them on the whole graph. Even worse, on complements
of bounded degree graphs, it holds for every vertex v that almost the whole graph is in the
1-neighbourhood of v. In such cases, one cannot use the locality-based approach directly,
but has to complement the input graph G to get the graph Ḡ first, use the locality of Ḡ, and
then translate the results back to G. In many cases when dealing with non-sparse graphs,
there seems to be no good way of using Gaifman’s theorem at all, and either one uses a
notion of locality tailor-made to the given situation (such as in [15] or [1]) or does not use
locality at all (for example the dynamic programming algorithm for FO (and even MSO)
logic on graph classes of bounded treewidth).

In this paper we initiate a relativised approach to FO model checking, which is aimed to
work on graph classes interpretable in nowhere dense graph classes and which avoids some
of the issues mentioned above. Instead of focusing on the absolute question “What is the
r-local q-type of a vertex v?” (which is essentially what we do when we apply Gaifman’s
theorem to obtain algorithmic results), our approach is based on the relative question that,
for a pair u, v of vertices, asks “Is the q-type of u and v the same?”. It is not difficult to show
that being able to answer this question efficiently leads to an efficient algorithm for the FO
model checking problem.

The advantage of the relativised approach stems from the fact that one may be able to
determine whether q-types of u and v are the same or not without actually determining their
q-types themselves – for example if u and v are twins, then they necessarily will have the
same q-type, and if one of them has two neighbours and the other has three neighbours,
then they cannot have the same q-type (for q ≥ 3). Moreover, as the examples just given
suggest, it is true that if the q-types of u and v are different, then it is possible to exhibit
some difference between them in D(u, v) – the symmetric difference of neighbourhoods of u
and v. To make this precise, we introduce the differential game, a newly defined version of
Ehrenfeucht-Fraïssé game, which is played between two vertices u, v of a graph G (the whole
game is played on one graph only) and in which the moves of the players are restricted – the
first move takes place in D(u, v), the second move in D(u, v) ∪D(u1, v1) (here u1 and v1 are
the vertices played in the first move) and so on. The potential algorithmic advantage offered
by our relativized approach comes from the fact that the set D(u, v) can be significantly
smaller than sets N(u) and N(v) – for example in complements of graphs of degree at most
d, the set D(u, v) has size at most 2d+ 2 while N(u) and N(v) are large.

Our contributions can be briefly summarised as follows:
1. We show that FO model checking can be reduced to deciding whether two vertices u, v

of a graph G have the same q-type, i.e. whether u ≡q v. Note that this is not entirely
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trivial – even if we have access to the q-equivalence relation on V (G), it is not clear which
equivalence class corresponds to which q-type.

2. We introduce differential games which are aimed at distinguishing vertices of different
q-types. We prove that for every q there exists r such that the relation u ∼=D

r v defined by
“Duplicator wins the r-round differential game between u and v” suitably approximates
≡q on graph classes interpretable in nowhere dense graph classes. This leads to the
following theorem:
▶ Theorem 6.3. Let C be a class of labelled graphs interpretable in a nowhere dense
class of graphs such that we can decide the winner of the r-round differential game in fpt
runtime with respect to the parameter r. Then the FO model checking problem is solvable
in fpt runtime on C.

3. As a simple application of our methods, we reprove the result that FO model checking
is in FPT for graph classes interpretable in classes of graphs of bounded degree. The
important aspect of our new proof is that our algorithm does not involve computing any
decomposition of the input graph (in particular, it does not rely on computing a sparse
pre-image of the input graph).

4. We define the differential r-neighborhood DNr(u, v) of two vertices, which is an extension
of D(u, v) to a “larger radius” and which has the property that the whole r-round
differential game played between u and v is played in DNr(u, v). We use differential
neighborhoods to define differentially simple graph classes, which are graph classes on
which it is possible to decide the winner of the r-round differential game efficiently.

Our results do not immediately lead to new strong FO model checking results – at this
point our main contribution is mainly conceptual. We believe that the tools and ideas
presented here may lead to new insights and algorithms for graph classes interpretable in
classes of sparse graphs. In particular, the idea of performing model checking directly on the
input graph, without computing any decomposition or sparsification, seems interesting and
probably deserves further attention.

Organization. We give an overview of our ideas in the next section. Section 4 is devoted
to relativized model checking, and Sections 5 and 6 are devoted to differential games.
Applications are discussed in sections 7 and 8.

2 Overview of our approach

As mentioned in the introduction, our relativised approach to FO model checking is based
on determining whether two vertices u, v of G differ from each other – i.e. whether u ̸≡q v,
which is the case whenever there is a formula ψ(x) of quantifier rank q such that G |= ψ(u)
but G ̸|= ψ(v). In Section 4, we show that if we can solve this problem efficiently, then we
can solve the FO model checking problem efficiently as well. To be more precise, we show
that if we can efficiently compute a relation ∼q on V (G) such that the transitive closure
of ∼q refines ≡q and does not have too many classes, then we can construct an evaluation
tree of size bounded in terms of q. This evaluation tree then allows us to determine whether
G |= φ for every sentence φ in prenex normal form with q quantifiers.

From this point on, we focus on efficiently determining whether two vertices u, v differ.
Our approach relies on the intuition that if they differ, then there should be a way to
exhibit the difference through D(u, v). To capture this intuition formally, we introduce semi-
differential games in Section 5, which are a variant of the well-known Ehrenfeucht-Fraïssé
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(EF) games. The semi-differential game is played in one graph only and if we are given
two vertices a0, b0 as a starting position, we play the game with the Spoiler’s moves being
restricted in the following way: In his first move the Spoiler plays a vertex in D(a0, b0) and
declares the picked vertex to be either a1 or b1. The Duplicator picks her reply anywhere
in G and the picked vertex becomes b1 or a1 – the “opposite” of the Spoiler’s choice. More
generally, in the i-th move, after the vertices a1, . . . , ai−1 and b1, . . . , bi−1 have been played,
the Spoiler picks j ∈ {0, . . . , i− 1} and a vertex in D(aj , bj) and calls it ai or bi. Again, the
Duplicator replies by picking a vertex anywhere in G. The winner of the game is decided as in
the usual EF game, by comparing the graphs induced by (a0, a1, . . . , am) and (b0, b1, . . . , bm).

As our first crucial result, we show (Lemma 5.2) that there exists a function l : N → N
such that if the Spoiler wins the standard r-round Ehrenfeucht-Fraïssé game on a graph G

starting from a0 and b0, then he wins the l(r)-round semi-differential game starting from
the same position. This is the aforementioned formalization of the fact that the difference
between two vertices can be exhibited through D(u, v). If we denote by u ∼=SD

r v the relation
“Duplicator wins the r-round semi-differential game starting from u and v”, then the above
result also tells us that ∼=SD

l(q) refines ≡q, and so we can use ∼=SD
l(q) as the relation ∼q from the

first paragraph of this section (it is not difficult to show that the transitive closure of ∼=SD
l(q)

has bounded number of classes, see Lemma 5.3).
While the relation ∼=SD

l(q) could serve as a suitable refinement ∼q of ≡q, the fact that the
Duplicator’s moves are not restricted in any way makes it hard to use it algorithmically. To
alleviate this, we introduce differential games in Section 6 in which the Duplicator’s moves
are restricted to D(aj , bj) as well. For every graph G and every r we define the relation on
V (G) by setting u ∼=D

r v if and only if Duplicator wins the r-round differential game starting
from u and v. Note that ∼=D

r is a subset of ∼=SD
r , because whenever Duplicator wins the

differential game, she also wins the semi-differential game. This means that the relation ∼=D
l(q)

also refines ≡q, as required. Unfortunately, the transitive closure of relation ∼=D
r does not

have bounded number of classes, in terms of r, in general. An example of this are ladders
– bipartite graphs on vertex set {v1, . . . , v2n} where the two parts are formed by even and
odd numbered vertices and in which there is an edge between vi and vj where i is odd and
j is even if i < j. The reason is that each side in a ladder contains n vertices with nested
neighbourhoods, and for any u, v with N(u) ⊊ N(v) the Spoiler wins the 1-round differential
game. There are, however, very rich classes of graphs which exclude arbitrarily large ladders
in a very strong sense – such classes of graphs (and more general structures) are known in
model theory as stable classes of graphs (structures). A prominent example are nowhere
dense graph classes introduced by Nešetřil and Ossona de Mendez [22, 23]. On these classes
of graphs we can show that the graph of the relation ∼=D

m has a bounded number of connected
components. Moreover, we can also show this for graph classes interpretable in nowhere
dense graph classes (Theorem 6.2). This leads us to the conclusion that if we can decide the
winner of the r-round differential game on any class of graphs which is interpretable in a
nowhere dense graph class, then we can perform FO model checking efficiently.

We now turn our attention to classes of graphs on which the winner of the differential
game can be found efficiently. First we describe the main idea behind the notion of differential
r-neighbourhood. In its simplest form it is defined as follows: DN1(u, v) is just D(u, v) and for
any i > 1, the differential i-neighbourhood DNi(u, v) is DNi−1(u, v) together with the union
of all D(a, b), with a, b ∈ DNi−1(u, v). It is easy to see that the whole r-round differential
game starting from u, v takes place in DNr(u, v). If the subgraph of G induced by DNr(u, v)
is simple (say, it has small treewidth), we can decide the winner of differential game efficiently
– one can just write a formula ξr(x, y) saying “Duplicator wins the r-round differential game
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between x and y” and evaluate it on DNr(u, v) using Courcelle’s theorem in our example.
This is the essential idea behind differentially simple graph classes, in which for all graphs G
and all pairs of vertices u, v it holds that DNr(u, v) induces a subgraph of G which is simple
(comes from a class of graphs with efficient FO model checking algorithm). It is easily seen
that the “usual suspects” – graphs of bounded degree and of locally bounded treewidth are
differentially simple, and so are the classes of complements of these graphs.

We remark that the actual definition of differential neighbourhoods given in Section 8
is slightly more involved and uses colourings. On one hand this makes the notion more
general (interpretations of classes of locally bounded treewidth are differentially simple, see
Lemma 8.4), on the other hand computing the required colourings may be difficult – we
were unable to find a polynomial-time algorithm which computes them. This is similar to
the results of [17] and [1], in which the existence of a model checking algorithm is proven,
provided that a suitable decomposition of the input graph is given.

3 Preliminaries

We use standard notation from graph theory. All graphs in this paper are finite, undirected,
simple, and without loops. The depth of a rooted tree T is the largest number of edges on
any leaf-to-root path in T and we say that a node p is at depth i in T if the distance of p
from the root of T is i.

By A∆B we denote the symmetric difference of two sets A and B defined by A∆B =
(A \B) ∪ (B \A).

3.1 Logic
We assume familiarity with FO logic. We refer to [8] or any standard logic textbook for
precise definitions. Since in the paper we only work with finite, simple, undirected graphs, to
simplify the exposition we define the notions from logic and model theory for the vocabulary
σ = {E, {La}a∈Lab} of labelled graphs. Here E is a binary relation symbol, Lab is a finite
set of labels and each La is a unary predicate symbol.

We say that two graphs G and H are m-equivalent, denoted by G ≡m H, if they satisfy
the same FO sentences of quantifier rank m. It is well known that for every m the relation
≡m is an equivalence with finitely many classes.

The FO q-type of a tuple of vertices ā = (a1, . . . , ak) ∈ V (G)k, for a given (labelled)
graph G, is defined as the set of formulas tpGq (ā) := {ψ(x1, . . . , xk) ∈ FO[σ] | G |=
ψ(a1, . . . , ak) and ψ has quantifier rank q}, where σ = {E}, or σ = {E, {La}a∈Lab}, if G is
labelled with elements of Lab.

Using the notion of q-types, we can more generally define, for the tuples v̄ := (v1, . . . , vk)
and ū := (u1, . . . , uk), consisting of vertices from G, and respectively from H , that (G, v̄) ≡k

q

(H, ū) if and only if tpGq (v̄) = tpHq (ū). We will mostly be interested in the case when G = H ;
whenever we write v̄ ≡k

q ū, it is understood that v̄ and ū come from the same graph G,
which is clear from the context and should we want to refer to the relation itself and need to
note the graph it is based upon, we will add the graph as an index, as in ≡k,G

q . Note that
up to equivalence there exist only a finite number of formulas with a given quantifier rank
and number of free variables. Therefore there also only exist a finite number of q-types for
any given number of free variables. Thus the graph of the relation ≡k,G

q has a number of
components (cliques) bounded by a number depending only on q and k.

For a graph G and a tuple v̄ = (v1, . . . , vk) of vertices of G, we define the relation ≡v̄
q on

V (G) by setting u ≡v̄
q w if and only if (v1, . . . , vk, u) ≡q (v1, . . . , vk, w).
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3.2 Games
Let G and H be two graphs, and m ∈ N. The m-round Ehrenfeucht-Fraïssé game [11, 12, 9]
(or EF game for short), denoted by Gm(G,H), is played by two players called the Spoiler
and the Duplicator. Each player has to make m moves in the course of play. The players
take turns, with the Spoiler going first in each round. In his i-th move, the Spoiler first
selects a graph, G or H, and a vertex in this graph. If the Spoiler chooses vi in G then
the Duplicator in her i-th move must choose an element ui in H. If the Spoiler chooses ui
in H then Duplicator in her i-th move must choose an element vi in G. The Duplicator
wins if ι(vi) = ui is a label preserving isomorphism from G[{v1, . . . , vm}] to H [{u1, . . . , um}].
Otherwise the Spoiler wins. We say that a player has a winning strategy, or in short that they
win Gm(G,H), if it is possible for them to win each play regardless of the choices made by
their opponent. We denote the fact that the Duplicator wins the m-round EF game between
graphs G and H by G ∼=m H. The relation ∼=m is an equivalence with finitely many classes
for every m. The following theorem connects EF games and m-equivalence.

▶ Theorem 3.1 (Corollary 2.2.9 in [8]). Let G and H be graphs and m ∈ N. Then G ≡m H

if and only if G ∼=m H.

A position in Gm(G,H) is a tuple ((v1, . . . , vk), (u1, . . . , uk′)), where each vi is from V (G),
each ui is from V (H), and it holds that k, k′ ≤ m and |k − k′| ≤ 1. If |k − k′| = 0, then it is
the Spoiler’s move, otherwise it is the Duplicator’s move.

Let G and H be graphs, (v1, . . . , vk) a tuple of vertices of G and (u1, . . . , uk) a tuple
of vertices of H. For every m we can play the m-round EF game between (v1, . . . , vk) and
(u1, . . . , uk), denoted as Gm((G, v1, . . . , vk), (H,u1, . . . , uk)), by considering the (k+m)-round
EF game between G and H in which the position ((v1, . . . , vk), (u1, . . . , uk)) has been reached
and starting the play from this position. If the Duplicator wins the m-round game between
(v1, . . . , vk) and (u1, . . . , uk), we denote this by (G, v1, . . . , vk) ∼=k

m (H,u1, . . . , uk). The
following more general version of Theorem 3.1 connects relations ≡k

m and ∼=k
m.

▶ Theorem 3.2 (Theorem 2.2.8 in [8]). Let G and H be graphs, (v1, . . . , vk) a tuple of
vertices of G, (u1, . . . , uk) a tuple of vertices of H, and m a non-negative integer. Then
(G, v1, . . . , vk) ≡k

m (H,u1, . . . , uk) if and only if (G, v1, . . . , vk) ∼=k
m (H,u1, . . . , uk).

Again we will be mostly interested in the case when G = H; whenever we write
(v1, . . . , vk) ∼=k

m (u1, . . . , uk) it is understood that (v1, . . . , vk) and (u1, . . . , uk) come from
the same graph G which is clear from the context. When comparing two concrete tuples, we
will write ∼=m instead of ∼=k

m, since k can be inferred from the context and we will apply the
same rationale to ≡k

m as well.

3.3 Interpretations
Let ψ(x, y) be an FO formula with two free variables over the language of (possibly labelled)
graphs such that for any graph and any u, v it holds that G |= ψ(u, v) ⇔ G |= ψ(v, u) and
G ̸|= ψ(u, u), i.e. the relation on V (G) defined by the formula is symmetric and irreflexive.
From now on we will assume that formulas with two free variables are symmetric and
irreflexive (which can easily be enforced). Given a graph G, the formula ψ(x, y) maps G to a
graph H = Iψ(G) defined by V (H) = V (G) and E(H) = {{u, v} | G |= ψ(u, v)}. We then
say that the graph H is interpreted in G.

In case G is labelled, H inherits labels from G. This way, whenever we need graph H to
be labelled, it is enough to consider appropriately labelled G. In case we do not need certain
labels from G in H we can simply ignore or drop them when necessary.
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The notion of interpretation can be extended to graph classes as well. To a graph class C
the formula ψ(x, y) assigns the graph class D = Iψ(C) = {H | H = Iψ(G), G ∈ C}. We say
that a graph class D is interpretable in a graph class C if there exists formula ψ(x, y) such
that D ⊆ Iψ(C). Note that we do not require D = Iψ(C), as we just want every graph from
D to have a preimage in C.

3.4 Gaifman’s theorem
An FO formula φ(x1, . . . , xl) is r-local if for every graph G and all v1, . . . , vl ∈ V (G) it holds
that G |= φ(v1, . . . , vl) ⇐⇒

⋃
1≤i≤lN

G
r (vi) |= φ(v1, . . . , vl), where NG

r (v) is the subgraph of
G induced by v and all vertices of distance at most r from v.

▶ Theorem 3.3 (Gaifman’s theorem, [14]). Every first-order formula with free variables
x1, . . . , xl is equivalent to a Boolean combination of the following:

Local formulas ϕ(r)(x1, . . . , xl) around x1, . . . , xl, and
Basic local sentences, i.e. sentences of the form

∃x1 . . . ∃xk

 ∧
1≤i<j≤k

dist(xi, xj) > 2r ∧
∧

1≤i≤k

ϕ(r)(xi)


where each ϕ(r)(xi) is a r-local formula

We will need the following simple corollary of Gaifman’s theorem, in which we denote by
tprq(v) the r-local q-type of v, i.e. the set of all r-local formulas ψ(x) of quantifier rank q

such that G |= ψ(v).

▶ Corollary 3.4. For every formula ψ(x, y) there exist numbers r and q such that for every
graph G the following holds: If u and v are two vertices of G such that the distance between
them is more than 2r, then whether G |= ψ(u, v) depends only on tprq(u) and tprq(v).

3.5 Graph classes
We assume familiarity with the notions of treewidth and of clique-width. We will need the
following results about the latter concept.

▶ Theorem 3.5 ([2]). Let C be a class of graphs which is interpretable in a graph class of
bounded treewidth. Then C is of bounded clique-width.

▶ Theorem 3.6 ([2]). The FO model checking problem is solvable in fpt runtime on classes
of graphs of bounded clique-width.

We remark that Theorem 3.6 assumes that a clique-width decomposition of the input graph
G is provided together with G and it is not known how to efficiently compute an optimal
clique-width decomposition. However, one can approximate clique-width using the notion of
rankwidth [24], and rankwidth decompositions can be efficiently computed [20].

Nowhere dense graph classes were introduced by Nešetřil and Ossona de Mendez [23].
Instead of working with the original definition, we will be working with an equivalent notion of
uniform quasi-wideness. Informally, the definition says that we can obtain a large r-scattered
set in any sufficiently large set A ⊆ V (G) by removing a few vertices from G.

▶ Definition 3.7 (Uniform quasi-wideness [4, 5]). A class C of graphs is uniformly quasi-wide
if for each r ∈ N there is a function N : N → N and a constant s ∈ N such that for every
k ∈ N, graph G ∈ C and subset A of V (G) with |A| ≥ N(k), there is a set S of size |S| ≤ s

such that in A \ S there are at least k vertices with pairwise distance more than r in G \ S.
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▶ Theorem 3.8 ([22]). A class C of graphs is uniformly quasi-wide if and only if C is nowhere
dense.

3.6 Parameterized complexity
We refer to [3] for an indepth introduction to parameterized complexity and only briefly
recall the concepts from parameterized complexity needed below. A parameterized problem P

is essentially a classical problem but in addition to the normal input instance w we are given
an integer k, the so-called parameter. The problem P is called fixed-parameter tractable, or
in the complexity class FPT, if there is a computable function f and a constant c such that
the problem can be solved by an algorithm whose running time on input (w, k) is bounded
by f(k) · |w|c. The class FPT can be seen as the parameterized equivalent to the classical
complexity class P as abstraction of efficiently solvable problems.

4 Differential model checking

In this section, we show that in order to efficiently decide whether G |= φ, it is enough to
efficiently solve the following problem: Given a labelled graph G, two of its vertices u and v,
and a number q, decide whether there exists a formula ψ(x) with quantifier rank q such that
G |= ψ(u) and G ̸|= ψ(u), i.e. whether u ≡1

q v. Moreover, it is enough to compute a relation
∼ (not necessarily an equivalence) such that the transitive closure of ∼ is a refinement of ≡1

q

with the number of classes bounded in terms of q.
Due to the space restrictions, we only sketch the idea behind the main result of this

section and refer to the full version for details.
First note that, if we can decide for two vertices u, v of G whether u ≡1

q v efficiently,
then we can compute the whole relation ≡1

q on V (G) with quadratic overhead and pick
a representative for each class of ≡1

q. Let φ = Q1x1Q2x2 . . . , Qqxqψ(x1, x2 . . . , xq) be
a sentence in prenex normal form and let v1, . . . , vm be representatives of all classes of
≡1
q−1 on V (G). Then the following is true in case Q1 = ∃ we have: G |= φ if and only

if among v1, . . . , vm there is a v such that G |= Q2x2 . . . , Qqxqψ(v, x2 . . . , xq). In case
Q1 = ∀ the following holds: G |= φ if and only if for every v among v1, . . . , vm we have
G |= Q2x2 . . . , Qqxqψ(v, x2 . . . , xq). Thus, instead of going through every v ∈ V (G) and
evaluating Q2x2 . . . , Qqxqψ(v, x2 . . . , xq) on G (the naive evaluation algorithm), we only
need to evaluate Q2x2 . . . , Qqxqψ(v, x2 . . . , xq) on every vertex v from v1, . . . , vm, and m

is bounded in terms of q. To evaluate Q2x2 . . . , Qqxqψ(v, x2 . . . , xq) for any fixed v from
v1, . . . , vm, we proceed as follows: Mark v in G by label l1 and all its neighbours by label
l′1 to obtain graph G′. A simple argument shows that we can transform ψ(x1, x2, . . . , xq)
into ψ′(x2, . . . , xq) such that it holds that G |= Q2x2 . . . , Qqxqψ(v, x2 . . . , xq) if and only if
G′ |= Q2x2 . . . , Qqxqψ

′(x2 . . . , xq). Thus, we are again left with a problem of evaluating a
sentence φ′ = Q2x2 . . . , Qqxqψ

′(x2 . . . , xq) on G′, but this time the sentence has one less
quantifier and the graph is labelled. If we can find representatives of all classes of ≡′

q−2,
where ≡′

q−2 is taken over the original vocabulary extended by the two labels l1 and l′1, we can
continue in this fashion until we eliminate all quantifiers and evaluate the original sentence
φ on G.

It is easily seen that the above approach also works if we can just compute a subrelation
∼q of ≡1

q , provided that the graph of ∼q has bounded number of connected components (in
terms of q). Finally, if the graph of ∼q has bounded independence number, one can greedily
compute the representatives of classes in the transitive closure of ∼q with linear overhead
instead of quadratic one. This leads to the following corollary.
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▶ Corollary 4.1. Let C be a class of graphs with a function p such that for every t, every
G ∈ C with at most t labels and every q there is a symmetric and reflexive relation ∼q,t on
V (G) such that
1. Every class of ≡1,G

q (over the vocabulary extended with t labels) is a union of connected
components of the graph of ∼q,t (in other words the transitive closure of ∼q,t is a refinement
of ≡1,G

q ),
2. The maximum size of any independent set in the graph of ∼q,t is bounded by p(q, t), and
3. We can decide whether u ∼q,t v in time |V (G)|c · h(q, t) for some function h.

Then one can perform model checking on C for any sentence φ in prenex normal form, with
quantifier rank q, in time |V (G)|c+1 · g(q) for some function g.

In Section 6, we show that for graph classes interpretable in nowhere dense graph classes
it makes sense to consider as ∼q the relation “Duplicator wins the l(q)-round differential
game between vertices u and v of G”, for some function l, as this relation satisfies items 1
and 2 above. The situations when it also satisfies item 3 are discussed in sections 7 and 8.

5 Semi-differential EF game

Based on the results from Section 4, to perform model checking efficiently it is enough to
be able to determine whether two vertices u and v of a graph G are of the same q-type.
To this end we introduce semi-differential EF games (this section) and differential EF
games (next section). The main differences compared to the standard EF game are that the
(semi-)differential game is played only on one graph and the moves of the Spoiler (and also
the Duplicator in the differential game) are restricted.

For two vertices u, v of a graph G we denote by D(u, v) the symmetric difference of their
neighbourhoods, which we will call their differential neighbourhood, i.e.

D(u, v) := N(u)∆N(v).

If the graph G in which we want to take the differential neighbourhood is not clear from the
context, we will add the relevant graph as an index, as in DG(u, v).

▶ Definition 5.1. The semi-differential EF game GSDm (G, a1, . . . , ak, b1, . . . , bk) with m ∈ N
rounds is defined in the same way as the standard EF game with the following differences:
1. The game is played only on one graph G and a1, . . . , ak, b1, . . . , bk all stem from V (G).1
2. The starting position is ((a1, . . . , ak), (b1, . . . , bk)).
3. In the j-th round the Spoiler is only allowed to make a move on a vertex v ∈ D(ai, bi) for

some i < j + k. The Spoiler decides whether this move defines aj or bj, i.e. whether the
position after his move is ((a1, . . . , ak, v), (b1, . . . , bk)) or ((a1, . . . , ak), (b1, . . . , bk, v)). In
case no such v exists, the Duplicator wins.

4. Duplicator’s moves are unrestricted and her reply becomes bj, if Spoiler decided that the
vertex he chose becomes aj, or aj, otherwise.

If GSDm (G, a1, . . . , ak, b1, . . . , bk) is won by the Duplicator, we write a1, . . . , ak ∼=k,SD
m

b1, . . . , bk. We apply the same notational conventions to ∼=k,SD
m as we did to ∼=k

m. If a vertex
is played to append the tuple (a1, . . . , ak), we call it an a-move, otherwise we call it a b-move.

1 One can also think of the game being played on two copies G1 and G2 of graph G, with a1, . . . , ak ∈ V (G1)
and b1, . . . , bk ∈ V (G2). However, we need to be able to refer to D(ai, bi), and this is more convenient
if both ai and bi are in the same graph.
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We will from now on refer to the semi-differential EF game as the semi-differential game.
Let ∼=SD

m,G denote the relation “Duplicator wins the m round differential game between u and
v on the graph G”. As usual, we will drop the index G if the graph is clear from the context.

We note that, due to the distinction between a-moves and b-moves, it is also possible
that the subgraphs induced by these tuples are not connected. Consider for example a
semi-differential game on P4, with V (P4) = [4] and E(P4) = {{i, i+ 1} | i ∈ [3]}, starting on
the position ((a1 = 1), (b1 = 4)). The Spoiler can now play a2 = 3, since D(a1, b1) = {2, 3},
and the graph P4[{a1, a2}] is not connected.

a)

a0 b0

b)

a0 b0

a1

c)

a0 b0

d)

a0 b0

a1 b1

e)

a0 b0

a1
a2

b1

f)

a0 b0

a1

b1

Figure 1 Pictures a) and b): A regular EF game on one graph. The starting position is depicted
in a), and the position after Spoiler’s first move in b). No matter where the Duplicator replies, she
will lose in at most two more moves. Pictures c) - f): The semi-differential EF game. The starting
position is depicted in c); all vertices into which the Spoiler can move are marked in red. In this
case the Spoiler cannot play the same first move as in the regular EF game. However, he can still
play this vertex in two moves (example play in d) and e)) and win from there. The Duplicator can
prevent this by playing b1 as in f) (her moves are unrestricted.), but this loses immediately, since
a0a1 ∈ E but b0b1 ̸∈ E.

Semi-differential games have a direct relation to regular EF games. The rest of the section
is devoted to proving that, at the cost of playing more moves, we can play a semi-differential
game instead of a regular EF-game to distinguish two vertices. The proof idea is also partially
illustrated in Figure 1.

▶ Lemma 5.2. For every m ∈ N there exists l = l(m) ∈ N such that for every graph G it
holds that if ā ̸∼=m b̄, then ā ̸∼=SD

l(m) b̄.

Proof. We set l(0) := 0 and l(i + 1) := 2l(i) + 1 and prove the claim by induction on
m. For m = 0 there is nothing to prove. For the induction step, we assume that the
claim holds for m and prove it for m + 1. Let ā = (a1, . . . , ak) and b̄ = (b1, . . . , bk) be
the starting position. Since by our assumptions the Spoiler has a winning strategy, there
exists v ∈ V (G) such that for every u ∈ V (G) the Spoiler has a winning strategy in the
m-round EF game from position ((ā, v), (b̄, u)). In particular, there exists a winning strategy
for the Spoiler if v = u. By our induction hypothesis, the Spoiler wins the l(m)-round
semi-differential game starting from ((ā, v), (b̄, v)). We fix the Spoiler’s winning strategy S
for this semi-differential game and apply it to the position (ā, b̄). This is possible because
D(v, v) = ∅. Let ((ā, ak+1, . . . , ak+l(m)), (b̄, bk+1, . . . , bk+l(m))) be the position after l(m)
rounds. If the subgraphs of G induced by (ā, ak+1, . . . , ak+l(m)) and (ā, bk+1, . . . , bk+l(m))
are not isomorphic, then the Spoiler has already won. If they are isomorphic, then it has
to hold that v ∈ D(ai, bi), for some i ∈ {k + 1, . . . , k + l(m)}, as otherwise the Duplicator’s
moves would beat the Spoiler’s strategy S in the m-round semi-differential game starting
from the position ((ā, v), (b̄, v)).

Since v ∈ D(ai, bi), for some i ∈ {k + 1, . . . , k + l(m)}, the Spoiler can play v in the next
round. Let u be the Duplicator’s reply. By our assumptions, the Spoiler wins the m-round
EF game from the position ((ā, v), (b̄, u)). Therefore, according to the induction hypothesis,
there exists a winning strategy for the Spoiler in the semi-differential game with l(m) rounds
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from the position ((ā, v), (b̄, u)); let S′ be this strategy. Since we only restrict the Spoiler’s
moves in the semi-differential game, applying S′ to the position ((ā, ak+1, . . . , ak+l(m), v),
(b̄, bk+1, . . . , bk+l(m), u)) will not change the outcome and thus the Spoiler wins. ◀

Even though we are not able to establish that the relation ∼=SD
m,G is an equivalence, we

get the following.

▶ Lemma 5.3. For every m ∈ N and every graph G, the number of connected components of
the graph of the relation ∼=SD

l(m) is bounded by a function of m, and each equivalence class of
∼=m is a union of connected components of the graph of ∼=SD

l(m).

6 Differential game

In the semi-differential game we restrict Spoilers moves to D(ai, bi) but the Duplicator’s
moves are unrestricted. For the application we have in mind, we will restrict Duplicators
moves to D(ai, bi) as well, using the same i picked by the Spoiler, and call the resulting game
the differential game. For every graph G, we define the relation ∼=D

m on V (G) by setting
u ∼=D

m v if and only if Duplicator wins the m-round differential game starting from u and v.
We extend this notation to tuples of vertices in the same way as we did with the previous
two game definitions.

a0 b0

a)

a0 b1

b0

a2

a1
b)

Figure 2 Example positions/plays of the differential game. Notice that in a) from the starting
position no vertex of the upper middle triangle can be played by either player. Meanwhile in b),
we started from a0 and b0, then played a1, forcing the Duplicator’s choice of b1. Subsequently, the
choice of a2 produces an independent set of size three, which the Duplicator cannot replicate. It can
therefore be useful to play a sequence of disconnected vertices even in the differential game.

We summarize the basic properties of differential games used in this section in the
following lemma. We refer to the full version for the proof.

▶ Lemma 6.1 (Properties of differential games). Let l be the function from Lemma 5.2.
1. Every class of ∼=m is a union of connected components of the graph of ∼=D

l(m).
2. Let u and v be two vertices of a graph G such that u ∼=m v and the distance between u

and v is more than 2m. Then the Duplicator wins the m round differential game between
u and v.

3. For every m ∈ N and every graph G, if ā ̸∼=m b̄, then ā ̸∼=D
l(m) b̄.

4. Let G be a graph and let ā := a1, . . . , ak, b̄ := b1, . . . , bk and w be vertices of G such that
āw ̸∼=m b̄w. Then the Spoiler has a strategy in GDl(m)+1(G, ā, b̄) such that he can play w at
some point or he wins GDl(m)+1(G, ā, b̄).

5. Let ψ(x, y) be an interpretation formula of quantifier rank q and let G and H be graphs
such that H = Iψ(G). Let a and b be two vertices of G such that a ∼=D

(m+1)(l(q)+1) b in G.
Then a ∼=D

m b in H.
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We now show that for any first order interpretation ψ(x, y) and any nowhere dense
(uniformly quasi-wide) class C of graphs the number of components of ∼=D

m in any G ∈ Iψ(C)
is bounded.

▶ Theorem 6.2. Let C be a uniformly quasi-wide class of labelled graphs and let ψ(x, y)
be a first order interpretation formula. Then for each m there exists p such that for every
H ∈ Iψ(C) the maximum size of any independent set in the graph of ∼=D,H

m is at most p.

Proof. Suppose that there exists an m such that for every p there is a graph H ∈ Iψ(C) for
which there is an independent set of size more than p in the graph of ∼=D,H

m .
In what follows we assume that the graph H we work with is as large as necessary and

the maximum size of an independent set in the graph of ∼=D
m is as large as we need in our

argumentation. We set A to be an independent set of maximum size in the graph of ∼=D
m.

We therefore have |A| > p, and since we can choose p to be arbitrarily large, we can ensure
that |A| is as large as we want.

Let q be the quantifier rank of ψ and set d := (m+ 1)(l(q) + 1), where l is the function
from Lemma 5.2. Since H ∈ Iψ(C), there exists at least one G ∈ C such that Iψ(G) = H.
Because C is uniformly quasi-wide, we know (by applying the definition to r = 2d+ 1) that
there exists a constant s and a function M such that for any number k and any set A of
size at least M(k), it is possible to remove s vertices from G such that there are k vertices
v1, . . . , vk at pairwise distance at least r in G \ S. We create the graph G′ from G \ S by
putting the vertices from S back (but without any edges) and labelling them each with a
different colour from [s]. Additionally, we label the neighbourhood in G of each vertex with
colour i with the label li. In G′ the vertices v1, . . . , vk remain pairwise at distance more than
2m. We can recover G from G′ with a quantifier-free interpretation δ(x, y). By concatenating
δ and ψ, we obtain an interpretation formula ψ′(x, y), with quantifier rank q, such that
H = Iψ′(G′).

We choose A to be large enough so that among v1, . . . , vk there exists a pair of distinct
vertices va and vb with va ∼=G′

d vb. Note that k only has to be larger than the number of
classes of relation ∼=1

r with respect to the vocabulary of C enriched by 2s labels, and so k does
not depend on the particular graph G. Since va and vb lie at distance r in G′ and r > 2d,
we can use part 2 of Lemma 6.1 to conclude that va ∼=D,G′

d vb is true as well. We can now
use part 5 of Lemma 6.1 to conclude that va ∼=D,H

m vb, which contradicts our assumptions
because va and vb come from an independent set of the graph of ∼=D,H

m . ◀

Combining part 1 of Lemma 6.1 and Theorem 6.2 with Corollary 4.1 we get the following
theorem.

▶ Theorem 6.3. Let C be a class of labelled graphs interpretable in a nowhere dense class of
graphs such that we can decide the winner of the m-round differential game in fpt runtime
with respect to the parameter m. Then the FO model checking problem is solvable in fpt
runtime on C.

Proof. Let C be a class of graphs with labels from the set {1, . . . , t} and properties assumed
in the statement of the theorem. From part 1 of Lemma 6.1 it follows that for every G ∈ C it
holds that the closure of ∼=D,G

l(q) refines ∼=1,G
q and by Theorem 3.2 the relation ∼=1

q is the same
as ≡1

q. It follows that the closure of ∼=D,G
l(q) refines ≡1,G

q . By Theorem 6.2 we know that the
maximum size of and independent set in the graph of ≡D,G

l(q) is bounded in terms of l(q). It
follows that we can use ∼=D,G

l(q) as ∼q,t in Corollary 4.1. ◀
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7 Applications

Theorem 6.3 from the previous section immediately implies the well-known result that FO
model checking can be solved in fpt runtime on classes of graphs of bounded degree. In
fact, one can easily use it to establish the (already known) existence of FO model checking
algorithms for locally simple graph classes, such as graph classes of locally bounded treewidth
– in this case the whole m-round game between any two vertices u, v will take place in
Nm(u)∪Nm(v), and G[Nm(u)∪Nm(v)] has bounded treewidth, so one can decide the winner
there efficiently. The more complicated case of graph classes interpretable in graphs with
locally bounded treewidth is analysed in Section 8.

Returning to the case of graphs of bounded degree, the following theorem was proven
in [16].

▶ Theorem 7.1. Let C be a class of graphs of maximum degree d, ψ an interpretation formula
and D = Iψ(C). Then we can perform FO model checking on D in fpt runtime.

The idea behind the proof of Theorem 7.1 in [16] was to compute an approximate “reversal”
of the interpretation: Given H ∈ D, one computes in fpt runtime a graph G of degree d′ and
formula ψ′(x, y) such that H = Iψ′(G) and such that both d′ and ψ′ depend only on d and
ψ. From this one can then establish Theorem 7.1 by standard considerations.

One can consider a more general version of the approximate interpretation reversal
mentioned above. Let D be a class of graphs interpretable in a nowhere dense class of
graphs C using formula ψ(x, y). The task is to find a nowhere dense class C′ of graphs and
a polynomial time algorithm which, given H ∈ D as input, computes in a graph G ∈ C′

and formula ψ′(x, y) such that H = Iψ′(G) and such that ψ′ depends only on ψ. A general
solution to this problem would imply that there is an fpt FO model checking algorithm
for every class of graphs interpretable in a nowhere dense graph class. Unfortunately, the
problem of efficiently computing interpretation reversals seems to be currently out of reach,
and only small progress has been made so far.

Our techniques suggest that in some cases it may be possible to avoid computing
approximate interpretation reversals and efficiently model check formulas directly on the
class of graphs interpreted in a class of sparse graphs. To illustrate this, we now reprove
Theorem 7.1 in this fashion. We will need the following definition.

▶ Definition 7.2. A pair u, v of vertices of a graph G is (m, k)-good if the Duplicator has a
winning strategy in the m-round differential game starting from a0 := u, b0 := v such that,
for any pair ai, bi played in the course of the game, it holds that |D(ai, bi)| ≤ k

Intuitively, the notion of (m, k)-goodness captures the situation when the Duplicator
can win the m-round Differential game between u and v in such a way that the “arena”
of admissible moves never gets too big. This is useful because one can easily check in fpt
runtime whether two vertices are (m, k)-good by playing the differential game by brute-force
and whenever for some ai, bi it holds that |D(ai, bi)| > k, declare the current branch as lost
for Duplicator.

▶ Proposition 7.3. Given two vertices u, v of a graph G, one can check in time f(m, k) ·
|V (G)|2 whether they are (m, k)-good.

With the notion of (m, k)-goodness one can prove Theorem 7.1 easily by showing that
the relation ≃m,k defined by “u ≃m,k v if and only if u and v are (m, k)-good” can be taken
as ∼q,t in Corollary 4.1 for suitable values of m and k (depending on q, t, ψ, d). We refer to
the full version for details.
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8 Differentially simple graph classes

Based on the results from the previous sections, in order to evaluate FO sentences in prenex
normal form on a graph class C interpretable in a nowhere dense graph class, it is enough
to be able to determine the winner of the differential game on pairs of vertices of a graph
from C. This can, however, be too difficult – for example consider the case in which C is
an interpretation of planar graphs. In this case for many pairs of vertices u, v of G from
C it can happen that D(u, v) contains most of, or even the entire, graph. We can sidestep
this problem by giving such vertices u and v different labels. This essentially means that
whenever the Duplicator would play u as a reply to v (or vice versa), she would already have
lost from that point on, and so D(u, v) would be irrelevant. Extending these ideas to more
than one round leads to the following definitions.

▶ Definition 8.1 (Differential neighbourhoods). Let G be a coloured graph and let c(a) denote
the colour of a vertex a of G.

The differential 1-neighbourhood DN1(u, v) of vertices u, v with c(u) = c(v) is the set
D(u, v).
For r ∈ N with r > 1,

DNr(u, v) :=
⋃

a,b∈DNr−1(u,v)
c(a)=c(b)

D(a, b) ∪DNr−1(u, v).

For r ∈ N, the closed differential r-neighbourhood is defined as DNr[u, v] := DNr(u, v) ∪
{u, v}.

▶ Definition 8.2. We say that class C is differentially simple if for every r there exists
mr ∈ N and a graph class Dr with an efficient FO model checking algorithm such that it is
possible to colour every G ∈ C with mr colours such that for every pair u, v of vertices of the
same colour it holds that G[DNr[u, v]] is a graph from Dr.

Note that if C is interpretable in a nowhere dense class of graphs, then adding at most m
labels to each graph from C does not change the fact that the maximum size of an independent
set in the graph of ∼=D

r for each G from C is bounded, because Theorem 6.2 works with
labelled graphs. We can thus focus on determining the winner of the differential game on
G[DNr[u, v]], which is from Dr, instead of on G which is from C. In case Dr is a class of
graphs with efficient model checking algorithm, we can use this to determine the winner of
the game. We will use the FO formula ξr(x, y), which expresses that Duplicator wins the
r-round differential game between x and y (it is easy to construct such formula for each r),
and evaluate it on G[DNr[u, v]] using the model checking algorithm for Dr. The following
theorem summarises this.

▶ Theorem 8.3. Let C be a differentially simple class of graphs such that
C is interpretable in a nowhere dense class of graphs, and
There exists an fpt algorithm (with respect to the parameter r) which computes the
colouring from Definition 8.2 for every G ∈ C.

Then the FO model checking problem is in FPT on C.

To show that differentially simple graph classes can be useful, we prove that classes of
graphs interpretable in graph classes with locally bounded treewidth are differentially simple,
where each graph class Dr is a class of graphs of bounded clique-width. We note that in
this case there is one m-colouring which works for every value of r and which satisfies the
requirements of Definition 8.2.
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▶ Lemma 8.4. Let C be a class of graphs which is interpretable in a class of graphs of locally
bounded treewidth. Then C is differentially simple.

Proof. Let E be a class of graphs of locally bounded treewidth and ψ(x, y) an interpretation
formula such that C = Iψ(E). From Gaifman’s theorem applied to ψ(x, y) it follows (by
Corollary 3.4) that there exist d and q such that the following holds for any G ∈ E and
H ∈ C such that H = Iψ(G). If u, v are two vertices of the same d-local q-type in G ∈ E
and the vertex w is at distance more than 2d from both u and v in G, then G |= ψ(u,w) iff
G |= ψ(v, w), which in turn means that uw ∈ E(H) iff vw ∈ E(H). It follows that if u, v are
two vertices of H such that in G these vertices have the same d-local q-types, then every
vertex in DH(u, v) has to be in the 2d-neighbourhood of u or v in G.

We define the colouring of any H ∈ C as follows. Let G ∈ E be such that H = Iψ(G). We
colour every vertex v of H by its d-local q-type in G. By the above considerations for any
two vertices u, v ∈ V (H) of the same colour it has to hold that every vertex in DH(u, v) has
to come from NG

2d(u) ∪NG
2d(v). If we consider any two vertices u′, v′ ∈ DH(u, v) of the same

colour, the same argumentation applies – every vertex w in DH(u′, v′) has to come from
NG

2d(u′) ∪NG
2d(v′) and thus has to be at distance at most 2d from u or v in G, which means

w ∈ NG
2d(u) ∪NG

2d(v). It follows by an easy inductive argument that DNH
r (u, v) in H is a

subset of NG
2dr(u) ∪NG

2dr(v) for any positive integer r. Since E is a class of graphs of locally
bounded treewidth, the subgraph of G induced by NG

(r+1)2d[u] ∪NG
(r+1)2d[v] has treewidth

bounded in terms of (r+ 1)2d and an easy argument shows that H [DNH
r [u, v]] is an induced

subgraph of Iψ(G[NG
(r+1)2d[u] ∪NG

(r+1)2d[v]]) which has bounded clique-width. ◀

Lemma 8.4 implies that if we are able to efficiently compute the colourings from Defin-
ition 8.2, then we obtain an efficient FO model checking algorithm for classes of graphs
interpretable in graph classes of locally bounded treewidth by means of Theorem 8.3. However,
the existence of such a colouring algorithm is unknown.

9 Discussion and open problems

We have introduced the notions of differential games and differential locality, which can
lead to efficient model checking algorithms and which seem to be more “interpretation
friendly” than Gaifman’s theorem. We believe that the ideas outlined in this paper can lead
to improved understanding of the structure of graphs interpretable in sparse graphs, and
perhaps also lead to some insights into stable graphs (if Theorem 6.2 gets strengthened to
stable graph classes).

9.1 Complement-simple graph classes
Regarding our application to the model checking problem for graph classes interpretable
in classes of graphs with locally bounded treewidth, it has to be noted that there exists a
simpler approach based on colourings and on Gaifman’s theorem, which avoids differential
techniques altogether.

▶ Definition 9.1. We say that a class C of graphs is complement-simple if for every r there
exists mr and graph class Dr with efficient FO model checking algorithm such that every
G ∈ C has a mr-colouring such that complementing edges between some pairs of colours
results in a graph G′ in which for every v ∈ V (G′) it holds that NG

r [v] ∈ Dr.
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If C is a complement-simple graph class such that we can compute colourings from
Definition 9.1 efficiently, then we can perform FO model checking on graphs from C efficiently.
To do this, note that we can interpret G in G′ and that we can solve the model checking
problem on G′ efficiently by using Gaifman’s theorem.

Coming back to graph classes interpretable in graph classes with locally bounded treewidth,
using the colouring used in the proof of Lemma 8.4 one can show that every such graph class
C is complement-simple and again one can use the same colouring for all values of r.

▶ Proposition 9.2. Let C be a class of graphs which is interpretable in a class of graphs of
locally bounded treewidth. Then C is complement-simple.

Proof sketch. We will use the same colouring as was used in the proof of Lemma 8.4 and
show that complementing the edges in G between some pairs of colours in this colouring
leads to a graph G′ with locally bounded clique-width. Let H ∈ C and let G be such
that H = Iψ(G) and colour each vertex of H by its d-local q-type, where d and q come
from Gaifman’s theorem applied to ψ(x, y). We say that an edge uv in E(H) is long if
distG(u, v) > 2d. Let t1 := tpdq(u) and t2 := tpdq(v). By Corollary 3.4, if there is a long edge
in H between any two vertices of types t1 and t2, then there exists an edge between all pairs
of vertices of type t1 and t2 which are at distance more than 2d in G. In this case we say
that types t1 and t2 induce long edges. By complementing the edges between any pair of
types (colours) in H which induce long edges we remove all long edges in H and obtain
graph H ′. It is easily shown that H ′ is interpretable in G (equipped with colours) by an
interpretation which acts only locally and thus H ′ has locally bounded clique-width. ◀

9.2 Open problems

We conclude with several open problems and possible directions for future research.
1. Is it true that for any stable class C of graphs and any q there exists p such that every

independent set in the graph of the relation ∼=D
q has size at most p?

2. Is it possible to extend the ideas from the proof of Theorem 7.1 from Section 7 to more
general graph classes? In particular, is it possible to use an approach based on differential
games to design efficient algorithms on interpretations of sparse graphs that do not rely
on computing approximate reversals of interpretations?

3. Let C be a class of graphs interpretable in graph classes of locally bounded treewidth.
Is there a polynomial time algorithm that, for every G ∈ C, computes a colouring such
that for every r and every u, v ∈ V (G) the graph G[DNr[u, v]] has small clique-width
(depending on r)? If not, is there an fpt algorithm which computes such a colouring for
every r?

4. Is it possible to use an approach based on differential games to give simpler/different
algorithms for the FO model checking problem on graph classes of bounded expansion
or nowhere dense graph classes than the algorithms presented in [7] and [19]? If yes, is
it possible to use it to extend these results to interpretations of nowhere dense graph
classes?

5. More generally, if the answer to Question 1 is yes, is it possible to use our methods to
attack the FO model checking problem on stable graph classes?

6. Is there a useful normal form for FO formulas (say, similar to Gaifman normal form)
based on differential neighbourhoods and the formulas ξr?
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Abstract
We introduce a cyclic proof system for proving inclusions of transfinite expressions, describing
languages of words of ordinal length. We show that recognising valid cyclic proofs is decidable,
that our system is sound and complete, and well-behaved with respect to cuts. Moreover, cyclic
proofs can be effectively computed from expressions inclusions. We show how to use this to obtain a
Pspace algorithm for transfinite expression inclusion.
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1 Introduction

Language inclusion. Deciding inclusion of regular languages is a fundamental problem in
verification. For instance if a program and a specification are modelled by regular languages
P and S respectively, the correctness of the program is expressed by the inclusion P ⊆ S.

The most standard approach to deciding regular language inclusion is via automata, and
this field of research is still active, see for instance [4] for well-performing non-deterministic
automata inclusion algorithms using coinduction techniques. Language inclusion is especially
important in the framework of infinite words. Indeed, the standard way to model possible
behaviours of a system is via ω-regular languages. For instance, Linear Temporal Logic
(LTL), which is a practical way to describe some ω-regular languages, is heavily used for
expressing specifications. Inclusion of ω-regular languages is still being investigated, with
recent works giving refined algorithms [1]. Finally, generalising further, some models of
automata and expressions defining languages of transfinite words (i.e. words of ordinal length)
were studied in [8, 3]. Transfinite expressions allow any nesting of Kleene star and ω-power.
Such expressions define languages of transfinite words, for instance the expression (a+bω)ω

describes a language of words of length ω2. This more general setting of transfinite words
can be used for instance to model phenomena with Zeno-type behaviours, such as a ball
bouncing at smaller and smaller heights, and after infinitely many bounces it is considered
stabilised and can perform some other action.

Proofs systems. The above algorithms give only a yes/no answer, but in some cases the
user is interested in having a certificate witnessing inclusion, that he can check independently.
This justifies the use of formal proof systems, where proofs can be easily communicated. On
finite words, the seminal work [17] gives a complete axiomatic system for regular expression
inclusion. Complete axiomatisations for ω-regular expressions were given as well [10].
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Cyclic proofs systems. A proof is usually a finite tree with axioms as leaves, built using
certain logical rules, and having the conclusion to prove as root. However, under certain
conditions, we can consider that infinite trees form valid proofs. Such proofs are called
non-well-founded, and can naturally express for instance reasoning by infinite descent. Many
proof systems based on non-well-founded proofs were shown to be sound and complete
in various frameworks, so these special proofs should be considered as a perfectly valid
way of establishing a result. Such proof systems often require a validity condition on their
infinite proofs, for instance of the form “on any infinite branch, such a rule must be used
infinitely many times”. Such a validity condition is often necessary to impose some kind of
progress along the branches of the proof, in order to avoid proving false formulas by circular
reasoning. These non-well-founded proofs have been studied in several contexts, such as
arithmetic [20], first-order logic [5], modal µ-calculus [13, 2, 15], LTL formulas [16], and
others. Non-well-founded proofs are especially suited to reason about objects defined via
fixed points. Since a non-well-founded proof is a priori an infinite object, it is often relevant
to consider the special case of cyclic (or regular) proofs: those are the proofs obtained as the
unfolding of finite graphs, so they are finitely describable.

One of the main advantages of moving to non-well-founded proofs is that in many cases
it removes the need to guess invariants (or auxiliary lemmas). See for instance [6], where a
cut-free completeness result is proved for a non-well-founded proof system. This makes the
system more amenable to proof search: in most non-well-founded systems, we can prove any
true formula φ using only formulas that are (in some sense) sub-formulas of φ. In a context
where automated proof assistants such as Coq are becoming standard tools, this motivates
the current growing interest in cyclic proofs.

Cyclic proofs for regular languages. Here, we aim at exploring the problem of language
inclusion in the framework of cyclic proofs. Notice that the Kleene star is a least fixed
point operator, and the ω power is a greatest fixed point, so we expect cyclic proofs to be
well-suited to deal with regular expressions using these operators.

Das and Pous [12] explored this question in the context of finite words, with standard
regular expressions whose only fixed point operator is the Kleene star. They exhibit a cyclic
proof system for regular expression inclusion, that they prove sound and complete, even
in its cut-free variant. To our knowledge, the cyclic proof approach to inclusion of regular
expressions was not explored in the case of infinite and transfinite words, and this is the
purpose of the present work.

Contributions. We design a non-well-founded proof system for the inclusion of transfinite
expressions. The notion of proof tree is replaced by a proof forest, whose branches can be of
ordinal length. We show that our system is sound (in its most general version) and complete
(even for cut-free cyclic proofs). We also show that the validity criterion for cyclic proofs is
decidable. In the case of infinite words, our system is similar to systems for linear µ-calculus
as introduced in [13], except that we use hypersequents as in [12].

The main new difficulty when jumping from finite to infinite or transfinite words is the
explosion in the number of non-deterministic choices one is faced with when trying to match
a word to an expression. This explains the use of hypersequents, and leads to a slightly more
intricate system than [12]. In the transfinite case, the branches of the proof tree become
transfinite as well, thereby requiring additional care in the study of the system.
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In order to prove the completeness of our system, we show that cyclic proofs can be
effectively built from the expressions for which we want to prove inclusion. To show that the
resulting proofs are correct, we use a model of automata (close to the one from [8]) recognising
these transfinite languages. This allows us to show that cut-free, finitely representable proofs
are enough to prove any true inclusion, and that these proofs can be computed.

The cyclic cut-free completeness of our system allows us to obtain a Pspace algorithm
for inclusion of transfinite expressions. This matches the known lower bound: inclusion of
regular expressions is Pspace-hard already for finite words. Pspace membership is folklore
for inclusion of ω-regular expressions as well, but to our knowledge, this upper bound is a
new result for transfinite expressions. Let us note however that since automata models were
already defined for transfinite expressions [8, 3], it is plausible, that a Pspace algorithm can
also be obtained more directly through these models. This Pspace-completeness result can
be compared with the result from [14], stating Pspace-completeness of LTL satisfiability on
transfinite words.

Related works. In addition to related works that were already mentioned, let us comment
on the link between our results and the recent paper [9], which studies cyclic proofs for
first-order logic extended with least and greatest fixed points. The validity criterion in [9] is
very similar to ours, and as they note, their general framework allows to embed reasonings
on infinite words as a special case. One advantage of our system for ω-regular expressions is
that although it is less general, it is much more convenient to manipulate ω-regular languages.
Moreover, the use of hypersequents allows us to obtain cut-free regular completeness, which
is not the case in [9]. On the other hand, our work on transfinite expressions is orthogonal
to [9], as in such expressions, the ω operator is no longer a greatest fixed point.

Outline. We will start by describing the system for infinite words in Section 2, and first
prove our results in this restricted case. We then show in Section 3 how the system can be
modified to accommodate transfinite words, and how the results can be lifted to this setting.

2 The case of ω-regular expressions

In this part, we do not yet look at truly transfinite expressions such as (a+bω)ω, but only at
ω-regular ones, which are the ones describing languages of words of length at most ω.More
formally, these expressions can be described by the following grammar.

Regular expressions: e, f ::= a | e + f | e · f | e+

ω-regular expressions: g, h ::= e | eω | e · g | g + h, where e ranges over regular expressions.

To associate a language L(g) of finite or infinite words to an ω-regular expression g, it
suffices to interpret each constructor on languages in the standard way:

L(0) = ∅ L(e + f) = L(e) ∪ L(f) L(e · f) = L(e) · L(f) = {uv | u ∈ L(e), v ∈ L(f)}
L(a) = {a} L(e+) =

⋃
n>0 L(e)n L(eω) = L(e)ω = {u1u2 · · · | ∀i, ui ∈ L(e)}

We avoid the use of ε, and we use e+ instead of e∗, to guarantee that an expression eω

only accepts infinite words.
We design a proof system Sω that will provide a certificate for any inclusion between the

languages of two such expressions. Starting with the special case of ω-regular expressions
allows us to introduce most proof techniques, while staying in a more familiar framework.
We also claim that already in this case, such a proof system can bring new insights, as it can
offer interesting trade-offs compared to automata models (see Conclusion).

CSL 2022
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2.1 The proof system Sω

The proof system described in this section is strongly inspired from [11], the novelty being
the introduction of ω.

2.1.1 Rules for building preproofs
We will first describe the sequents of the system Sω, i.e. the shape of any label of a node in
a proof tree. These are identical to the ones we use later, in the proof system for generalised
expressions.

▶ Definition 1 (Sequent). We call sequent a pair (Γ, B), noted Γ → B, where Γ is a list
of expressions and B is a nonempty finite set of such lists. In the rest of the paper, upper
case Greek letters will be used for lists of expressions, and upper case Latin letters for sets of
lists. Γ will be called the left side of the sequent and B its right side. Their contents will be
denoted as follows, with brackets isolating each list in B:

Γ = e1, . . . , en B = ⟨f1
1 , . . . , fk1

1 ⟩; . . . ; ⟨f1
m, . . . , fkm

m ⟩

Languages are associated to such lists and sets of lists in the following way:
L(Γ) = L(e1 · . . . · en) L(B) = L(f1

1 ·. . .·fk1
1 +. . .+f1

m ·. . .·fkm
m )

The sequent Γ → B is called sound if the inclusion L(Γ) ⊆ L(B) holds.

To describe our proof system, we now need to define the notion of proof tree. These are
usually finite objects, but in our setting we allow infinite trees.

A tree is a non-empty, prefix-closed subset of {0, 1}∗. We typically represent it with the
root ε at the bottom, and the sons v0 and v1 of a node v (if they exist) are represented
above v, respectively on the left and on the right.

A branch of a tree T ⊆ {0, 1}∗ is a prefix-closed subset of T that do not contain two
words of the same length, i.e. two nodes at the same depth of the tree. A branch of T is
maximal if it is not strictly contained in another branch of T .

A preproof is given by a tree and a labelling π of its nodes by sequents in such a way that for

any node v with children v1, . . . , vn (with n ∈ {0, 1, 2}), the expression
π(v1) · · · π(vn)

π(v)
is an instance of a rule from Figure 1.

A preproof is called cyclic or regular if it has finitely many distinct subtrees. Such a
proof can be represented using a finite tree, where each leaf x not closed with an id rule is
equipped with a pointer to a node y below x, indicating that the infinite trees rooted in x

and y are identical. Examples of this representation can be found in Figure 2.

2.1.2 Threads and validity condition
Some preproofs satisfying the conditions described above actually prove wrong inclusions,
meaning that we can build such a tree with an unsound sequent at its root. An example of
such a preproof can be found in Figure 2. This illustrates the need for a validity condition
that will rule out such unsound preproofs. We need a few more definitions before we can
state this validity condition.

Occurrences. When talking about “expression” in a preproof, we will actually be talking
about particular occurrences of an expression in the preproof, see the long version for details
on this. If S is a sequent, we will note pos(S) the set of expression positions in S.
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id
→ ⟨⟩

e, Γ → B f, Γ → B
+-l

e + f, Γ → B

Γ → ⟨e, Λ⟩; ⟨f, Λ⟩; B
+-r

Γ → ⟨e + f, Λ⟩; B

Γ → B wkn
Γ → B; C

Γ, e, f, Λ → B
·-l

Γ, e · f, Λ → B

Γ → ⟨Λ, e, f, Θ⟩; B
·-r

Γ → ⟨Λ, e · f, Θ⟩; B

Λ → ⟨Θ1⟩; . . . ; ⟨Θn⟩
match

Γ, Λ → ⟨Γ, Θ1⟩; . . . ; ⟨Γ, Θn⟩
e, Γ → B e, e+, Γ → B

∗-l
e+, Γ → B

Γ → ⟨e, Λ⟩; ⟨e, e+, Λ⟩; B
∗-r

Γ → ⟨e+, Λ⟩; B(
Λ → ⟨e⟩ Γ, e, Θ → B

cut
Γ, Λ, Θ → B

)
e, eω → B

ω-l
eω → B

Γ → ⟨e, eω⟩; B
ω-r

Γ → ⟨eω⟩; B

Figure 1 The rules of the system Sω for ω-regular expressions.
Γ, Λ, Θ are lists of expressions; B, C are sets of such lists; e, f are ω-regular expressions.
Rules wkn, match, cut will sometimes be abbreviated w, m, c.

Principal expression. In a sequent of a preproof where a rule r is applied, an expression is
called principal for r if it is the one corresponding to the lower case expression in the lower
side of the rule r from Figure 1. Note that there is no principal expression when the rule is
id, wkn, cut or match, since these rules do not contain lower case letters in the lower sequent.

Ancestors. Given an expression e in the lower part of a rule, its immediate ancestors are:
if e is principal: the lower case expressions in the upper sequents of the rule
if e is in a list Γ or a set of list B: its copies in the same position in each copy of Γ (resp.
B) on the upper sequents.

Note that an expression can have between 0 (expression in C in the wkn rule) and 3 (e+ in
any ∗ rule) immediate ancestors.

Threads. A thread is a path in the graph of immediate ancestry (also called the logical flow
graph [7]). We say that a thread witnesses a v-unfolding if the current expression is principal
for either a ∗-l rule or an ω-r rule. As in Figure 2, threads will be represented by colored
lines, with bullets to mark v-unfoldings.

Note that we purposely talk about the “graph” of immediate ancestry, and not the “tree”.
Since the right part of a sequent is a set, it does not keep track of multiplicity, and two threads

can merge when going upwards. For instance, if we apply the rule
Γ → ⟨e, eω⟩

ω-r
Γ → ⟨eω⟩; ⟨e, eω⟩

• ,

the red and blue threads are merged. We need to allow that phenomenon in order to be able
to build finitely representable proofs.

We can now define the validity condition, that makes a preproof into an actual proof.

▶ Definition 2 (Validity condition). A thread is validating if it witnesses infinitely many
v-unfoldings. A preproof is valid, and is then called a proof, if all its infinite branches
contain a validating thread.

We will call ∗-l thread (resp. ω-r thread) a validating thread on the left side (resp. right
side) of sequents, as it witnesses infinitely many ∗-l (resp. ω-r) rules.

Let us give an intuition for this validity condition. A proof has to guarantee that any
word generated by the left side expression can be parsed in the right side one. Branches with
a ∗-l thread do not correspond to a word on the left side, so there is nothing to verify and
the branch can be accepted. On the other hand, when a legitimate infinite word from the left
side has to be parsed on the right side, it must involve an expression eω where e is matched
to infinitely many factors. This corresponds to an ω-r thread.

CSL 2022
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...
aω → ⟨a+, bω⟩

m
a, aω → ⟨a, a+, bω⟩

w
a, aω → ⟨a, bω⟩; ⟨a, a+, bω⟩

∗-r
a, aω → ⟨a+, bω⟩

ω-l
aω → ⟨a+, bω⟩

·-r
aω → ⟨a+bω⟩

...
bω → ⟨bω⟩

+-r
b, bω → ⟨b, bω⟩

ω-r
b, bω → ⟨bω⟩

ω-l
bω → ⟨bω⟩

m
a, bω → ⟨a, bω⟩

w
a, bω → ⟨a, bω⟩; ⟨a, a+, bω⟩

∗-r
a, bω → ⟨a+, bω⟩

...
a+, bω → ⟨a+, bω⟩

m
a, a+, bω → ⟨a, a+, bω⟩

∗-r
a, a+, bω → ⟨a+, bω⟩

∗-l
a+, bω → ⟨a+, bω⟩

·-l, ·-r
a+bω → ⟨a+bω⟩

•

•

•

Figure 2 An invalid preproof (left) and a valid one (right).

We give two examples of preproofs in Figure 2. The left one is an invalid preproof of a
wrong inclusion. The validity condition is not satisfied, since there are no ∗-l or ω-r rules.

The right one is an actual proof. It is comb-shaped, with a “main” branch always going
to the right. We can get a validating thread for any branch of that preproof, by taking the
red thread on the rightmost branch, and a blue thread on all other branches.

For an example of a non-trivial inclusion, see the long version for a cyclic proof showing
that L((a + b)ω) ⊆ L((b∗a)ω + (a + b)∗bω), i.e. any infinite word on alphabet {a, b} has either
infinitely or finitely many a’s.

▶ Definition 3 (Soundness and completeness). A proof system is sound if the conclusions of
all of its valid proofs are sound. It is complete if for any sound sequent Γ → B, there is a
proof with conclusion Γ → B.

2.2 Soundness of the system Sω

In this part, we want to prove that any proof (i.e. any valid preproof) derives a sound sequent.
We will do that without any assumption of regularity, since we want every proof from the
Sω system to be correct, and not just the regular fragment. We will show soundness of the
system with cuts, since this is more general and it allows to write proofs more conveniently.
Notice that incorporating the cuts significantly increases the difficulty: unlike what happens
in a finitary proof system, it is not enough here to prove that the cut rule is locally sound.
Since the cuts can be used infinitely many times along a branch, it calls for a careful argument.
Missing details and proofs can be found in the long version. The following first result is an
easy consequence of the local soundness of our rules:

▶ Lemma 4. Any finite preproof derives a sound sequent.

To prove the general case, we take any valid proof tree P in Sω, with a root sequent
Γ0 → B0. We take an arbitrary w ∈ L(Γ0), and we show that w ∈ L(B0).

We create a tree P (w) that will be a subtree of the original one, with additional information
labelling its nodes. The purpose of the tree P (w) is to prove the membership of w in L(B0).

The sequents of P (w) are similar to the ones of a preproof, but we additionally label each
expression e on the left side of sequents with a word u. Given a list of expressions Γ, we will
denote Γ′ a labelling of its expressions with words, represented as a list of pairs (expression,
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word). If Γ′ = (e1, u1), . . . , (ek, uk), we say that (the labelling of) Γ′ is correct if for each
i ∈ [1, k], we have ui ∈ L(ei). We define concat(Γ′) as the word u1 . . . uk. We additionally
say that a sequent Γ′ → B is label-sound if concat(Γ′) ∈ L(B).

We will build P (w) by transforming the initial proof by induction from the root. First
we take a correct labelling Γ′

0 of Γ0 such that concat(Γ′
0) = w. Then we move upwards

while replacing each rule by the corresponding one in the table below, while satisfying the
condition specified in the table (if possible). This tree will be a subtree of the initial one
since we only keep one successor at rules +-l and ∗-l.

Rule New rule Condition
Γ, e, f, Λ → B

·-l
Γ, e · f, Λ → B

Γ′, (e, u), (f, v), Λ′ → B
·-l

Γ′, (e · f, uv), Λ′ → B
(u, v) ∈ L(e) × L(f)

Γ, e1, Λ → B Γ, e2, Λ → B
+-l

Γ, e1 + e2, Λ → B

Γ′, (ei, u), Λ′ → B
+-l

Γ′, (e1 + e2, u), Λ′ → B
u ∈ L(ei)

e, Γ → B e, e+, Γ → B
∗-l

e+, Γ → B

(e, u), Γ → B
∗-l

(e+, u), Γ → B
u ∈ L(e)

e, Γ → B e, e+, Γ → B
∗-l

e+, Γ → B

(e, u), (e+, v), Γ′ → B
∗-l

(e+, uv), Γ′ → B
(u, v) ∈ L(e) × L(e+)

Γ, e, eω → B
ω-l

Γ, eω → B

Γ′, (e, u), (eω, v) → B
∗-l

Γ′, (eω, uv) → B
(u, v) ∈ L(e) × L(eω)

Λ → ⟨e⟩ Γ, e, Θ → B
c

Γ, Λ, Θ → B

Λ′ → ⟨e⟩ Γ′, (e, u), Θ′ → B
c

Γ′, Λ′, Θ′ → B
u = concat(Λ′)

Notice that if the labelling of the bottom sequent is correct, this guarantees us that we can
choose a correct labelling for the upper sequent as well, while satisfying the condition in
the table. It is only because of the cut rule that we cannot simply propagate correctness of
labellings from the root. Moreover, all these rules are label-sound, in the sense that their
lower sequents are label-sound whenever the upper ones are.

If at some point the condition cannot be met, we stop there and call the current node a
dead leaf. This is only important for the sake of a complete definition, since we will prove
that this actually never occurs if the initial preproof is valid (Lemma 8).

We deal with the remaining rules (right rules, wkn and match) by simply copying the
pairs (expression, word) from bottom to top on the left side.

▶ Lemma 5. In P (w), any infinite branch has an ω-r thread.

Proof. This follows from the fact that any expression e+ on the left of a sequent in P (w) is
associated with a finite word, and therefore can only be principal for finitely many ∗-l rules,
each one decreasing the size of that word (notice that we use an infinite descent argument
here). The validity condition then ensures the result. ◀

▶ Lemma 6. In P (w), no branch goes infinitely many times to the left at cut rules.

Proof. Let us consider an infinite branch β of P (w). By Lemma 5, the branch β has an ω-r
thread. Since the right side of a sequent is not preserved when going to the left at a cut rule,
it can only happen finitely many times in β. ◀

If β1, β2 are maximal branches, we note β1 ≤ β2 if β1 is to the left of β2. The following
Lemma is proved in the long version.

▶ Lemma 7. The maximal branches of P (w) are well-ordered by ≤.

CSL 2022
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The main Lemma for the soundness proof is Lemma 8, which also ensures that there is
no dead leaf in P (w).

▶ Lemma 8. In P (w), all labellings are correct and all sequents are label-sound.

Proof. (Sketch) We just give the main idea here, a detailed proof can be found in the
long version. We proceed by well-founded induction on the maximal branches, using the
left-to-right order from Lemma 7. The only interesting case it when dealing with cuts.

When encountering a cut rule of the form
Λ′ → ⟨e⟩ Γ′, (e, u), Θ′ → B

cut
Γ′, Λ′, Θ′ → B

, we need

to show that the label (e, u) is correct, i.e. provided u ∈ L(Λ′), we have u ∈ L(e). This will
be obtained thanks to the induction hypothesis, guaranteeing that the sequent Λ′ → ⟨e⟩ on
the left of the cut rule is label-sound. ◀

▶ Theorem 9. Any valid proof from Sω is sound.

Proof. For any word w in L(Γ0), there is a way to correctly label Γ0 into a Γ′
0 with

concat(Γ′
0) = w. By Lemma 8, this correct labelling can be propagated through P (w), and

we obtain that the root sequent Γ′
0 → B0 is label-sound, so w ∈ L(B0). Thus we have indeed

L(Γ0) ⊆ L(B0), showing that any valid proof is sound. ◀

▶ Remark 10. This result is similar to the soundness in [13], but the shape of the sequents
differs, and the transfinite case that follows uses an extension of our proof.

2.3 Cut-free regular completeness of the system Sω

In order to prove the completeness of the system, we want to show that any sound sequent
can be derived. Moreover, if we want this system to be interesting from a computational
point of view, we need to obtain finitely representable proofs. The following lemma will help
us do that by ensuring a finite number of different sequents in a proof. Then we will build a
regular proof via a deterministic saturation process.

▶ Lemma 11. In a preproof without cut, there can only be finitely many different sequents.

Proof. Let us call expr(Γ) the expression formed by concatenating the expressions in Γ,
and similarly expr(B) is the expression

⋃
Γ∈B expr(Γ). We can verify that for every rule

except cut, if Γ0 → B0 is the conclusion sequent and if Γ1 → B1 is a premise sequent, then
expr(Γ1) is in the (Fischer-Ladner) closure of expr(Γ0). Roughly speaking, the closure of an
expression e is the set of expressions that can be obtained from e by taking sub-expressions,
and unfolding f∗ or fω to the left, if this factor was at the beginning of the expression.
See the long version for a precise definition of closure suited to our framework. Similarly,
expr(B1) is in the closure of expr(B0). We can also note that given an expression, there are
only finitely many ways to subdivide it into a list or into a set of lists, which gives us finitely
many possible sequents. Notice that we rely here on the fact that we allow unfolding of ·+
and ·ω only at the beginning of a list, thereby preventing multiple consecutive unfoldings of
the same expression. ◀

We will now take a sound sequent, and build a preproof using only invertible instances of
our rules, i.e. rules that are locally sound in both directions: the premises are true if and
only if the conclusion is true. We proceed by induction on the outermost operation of the
first expression of a list.



E. Hazard and D. Kuperberg 23:9

Outermost operation Left side Right side

+
e, Γ → B f, Γ → B

+-l
e + f, Γ → B

a, Γ → ⟨e, Λ⟩; ⟨f, Λ⟩; B
+-r

a, Γ → ⟨e + f, Λ⟩; B

·
e, f, Γ → B

·-l
e · f, Γ → B

a, Γ → ⟨e, f, Λ⟩; B
·-r

a, Γ → ⟨e · f, Λ⟩; B

·+
e, Γ → B e, e+, Γ → B

∗-l
e+, Γ → B

a, Γ → ⟨e, Λ⟩; ⟨e, e+, Λ⟩; B
∗-r

a, Γ → ⟨e+, Λ⟩; B

·ω e, eω → B
ω-l

eω → B

a, Γ → ⟨f, fω⟩; B
ω-r

a, Γ → ⟨fω⟩; B

Figure 3 Invertible rules of the system, without the match rule.

We first apply greedily the invertible rules from Figure 3. Notice that at each step, the
first expression of the list becomes a (strict) subexpression of the previous one. Since the
subexpression relation is well-founded, we must at some point obtain a finite tree with leaves
of the form a, Γ → ⟨a1, Γ1⟩; . . . ; ⟨an, Γn⟩ (with a and ai letters). Moreover, each of those
leaves are sound sequents, since all the rules we applied were invertible. For each leaf of
this form, we can now remove each ⟨ai, Γi⟩ with ai ̸= a using the wkn rule, then match the
remaining as follows.

...
Γ → ⟨Γi1⟩; . . . ; ⟨Γik

⟩
match

a, Γ → ⟨a, Γi1⟩; . . . ; ⟨a, Γik
⟩

wkn
a, Γ → ⟨a1, Γ1⟩; . . . ; ⟨an, Γn⟩

...

Since the bottom sequent is sound, we know that the top one is too (we only removed useless
options). We can therefore repeat the process to get an infinite tree with only identity rules
at the leaves. Any sequent in this tree is sound by a straightforward induction. We now need
to check that this is a valid tree.

First note that, as this process will always reach a match rule in a finite number of
steps, any infinite branch passes through infinitely many match rules, therefore processing an
ω-word (every match rule corresponds to a new letter in the word). In other words, to each
infinite branch β of the preproof, we can associate an infinite word word(β) corresponding to
the sequence of match rules performed along β.

▶ Lemma 12. If β is an infinite branch starting in the root sequent Γ0 → B0, then either β

contains a ∗-l thread, or word(β) ∈ L(Γ0).

Proof. Let us assume β does not contain a ∗-l thread. Since the match rule strictly decreases
the size of the list on the left, we know that β contains infinitely many ∗-l rules or ω-l rules,
because these are the only rules that can increase the size of the list (if we call size the
number of characters in the list).

The intuition is then that as soon as no ∗-l expression is unfolded infinitely many times,
the unfoldings of both kinds of fixed points (·+ and ·ω) of Γ respect their semantics. It is
then natural that the word obtained via such unfoldings, together with arbitrary choices for
disjunctions, is in L(Γ). See the long version for a detailed proof. ◀
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▶ Theorem 13. The regular and cut-free fragment of Sω is complete for ω-regular expressions.

Proof. Given a sound sequent Γ0 → B0, we consider the preproof defined above, and we
prove its validity.

Let us consider an infinite branch β without ∗-l thread. Let w = word(β), by Lemma 12
we have w ∈ L(Γ0). Since Γ0 → B0 is sound, we have w ∈ L(B0). We will use this to build an
ω-r thread validating the branch β. To do so, the intuition is that at each disjunctive choice
in the right-hand side, we choose according to a parsing witnessing w ∈ L(B0). However we
cannot do that in a greedy manner, see the long version for an example showing why.

Let us describe how we build a validating thread for our branch. We start with a list from
B0 that contains our word w, and take the last expression of this list (the one containing ·ω)
to begin our thread. We then build it going upwards and always staying on an expression
containing ·ω.

The only choices we have to make when building this thread upwards are when we meet

the rule
Γ → ⟨e, Σ⟩; ⟨e, e+, Σ⟩; B

∗-r
Γ → ⟨e+, Σ⟩; B

or the rule
a, Γ → ⟨e, Λ⟩; ⟨f, Λ⟩; B

+-r
a, Γ → ⟨e + f, Λ⟩; B

. In the first

case (∗-r rule), there is a smallest integer n such that e+ can be replaced with en in the lower
sequent while preserving the fact that the current remainder of w is in the language of the
list. We will then continue while treating e+ as en, and at every ∗-r rule on that thread we
either go to e if n = 1 or e, en−1 otherwise. This replacement is purely “virtual”: we simply
keep it in mind as a guide to pick a thread.

In the second case (+-r rule), there is at least one side containing our word (without the
prefix we already read), so we simply choose it. Virtual replacements of some e+ by en are
still taken into consideration here, as can be seen in the example of the long version.

We will necessarily unfold infinitely many times the ·ω expression chosen at the beginning,
since we match all letters of w while keeping the invariant that it belongs to the chosen list.

In the end, we get a valid proof for any sound sequent, which proves the completeness of
our system, using only regular proofs thanks to Lemma 11. Note that we could settle here
for a weaker match rule, that would only match the first letter. ◀

2.4 Deciding the validity criterion
Given a preproof in our system, we want to decide whether it satisfies the validity criterion.

This section is dedicated to proving the following theorem:

▶ Theorem 14. It is decidable in Pspace whether a given cyclic preproof of Sω is valid.

The arguments are similar to those in e.g. [18, 13]. We summarise here the main ideas,
we will build on them in the next section and for the transfinite case in Section 3.5.

We start by introducing an auxiliary notion:

▶ Definition 15 (Sequent transition). Given two sequents S1, S2, a transition from S1 to
S2 is a function φ : pos(S1) × pos(S2) → { , , •}. It encodes a way of linking S1 to S2 by
threads: the value φ(p1, p2) will be equal to

if there is no thread from p1 to p2,
if there is a thread with no v-unfolding from p1 to p2,

• if there is a thread with v-unfolding from p1 to p2.

We only represent here non-trivial transitions, i.e. we consider only threads of length at
least 1. Notice that here S1 and S2 are sequents in the finite representation of the proof tree,
so they might represent an infinite set of sequents in the unfolded proof tree. Therefore, there
might be several different ways of linking them by threads, yielding different transitions φ.
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Composing transitions. We define an order on { , , •} by setting < < •, and a
product law · by setting as absorbing and as neutral.

If we have transitions φ from S1 to S2, and φ′ from S2 to S3, they can be composed
to yield a transition φ′′ = φ ⊙ φ′ from S1 to S3. This composed transition is defined by
φ′′(p1, p3) = maxp2∈pos(S2) φ(p1, p2) ·φ(p2, p3). This gives to the set of transitions a structure
of finite monoid.

Guessing a bad transition. A self-transition on a sequent S is a transition from S to S. A
self-transition φ is called idempotent if φ ⊙ φ = φ. An idempotent transition on S is called
bad if for all p ∈ pos(S), we have φ(p, p) ̸= •.

The validity algorithm is based on the following observation:

▶ Lemma 16. A regular proof is invalid if and only if it contains a bad idempotent transition.

Proof. This is a standard application of Ramsey’s Theorem, see e.g. [13, Thm 4]. ◀

We can finally design a nondeterministic algorithm, which will guess such a bad idempotent
transition. It amounts to guessing a branch and a segment along this branch witnessing the
idempotent bad transition. The transition φ is computed on-the-fly on this segment. Since
keeping a transition φ in memory only takes polynomial space, and NPspace =Pspace, we
end up with a Pspace algorithm.
▶ Remark 17. If the size of sequents is logarithmic in the size of the proof, this algorithm is
actually in Logspace. This is put to use in the next section.

2.5 Pspace inclusion algorithm via proof search
We will now combine the above algorithm with our completeness result, in order to obtain a
Pspace algorithm for inclusion of ω-regular expression. This matches the known complexity
of expression inclusion, which is Pspace-complete even in the case of finite words.

We are now given only the sequent we aim to prove, and we will non-deterministically
explore its proof as built in Section 2.3. Notice that this proof can be exponential in the size
of the root sequent, but this is not a problem, since the algorithm only guesses a branch and
follows it on-the-fly. We only have to ensure that each sequent, and therefore each transition
φ, is polynomial in the size of the root sequent. This might however not be the case, because
a list ⟨e+, Λ⟩ can be unfolded into ⟨e, Λ⟩; ⟨e, e+, Λ⟩, thereby duplicating an arbitrary sequent
Λ. Iterating this could lead to sets of exponential size.

This is solved by adding some syntactic sugar in our system: the sequent ⟨e+, Λ⟩ will be
unfolded into ⟨e, e+?, Λ⟩. More precisely, we perform the following rule replacement:

Γ → ⟨e, Λ⟩; ⟨e, e+, Λ⟩; B
∗-r

Γ → ⟨e+, Λ⟩; B
⇝

Γ → ⟨e, e+?, Λ⟩; B
∗-r

Γ → ⟨e+, Λ⟩; B

The notation e? means that e optional. This is expressed by adding the following pseudo-rule:

Γ → ⟨Λ⟩; ⟨e, Λ⟩; B
?

Γ → ⟨e?, Λ⟩; B
.

This does not change the behaviour of the system, but guarantees that all sequents stay
polynomial in the size of the root sequent, see the long version. If the size of sequents is
bounded by M , the size of any transition is in O(M2), so a bad idempotent transition, if
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it exists, can be computed on-the-fly using polynomial space. Since the rules used in the
preproof described in Section 2.3 follow deterministically from the root sequent, we can
indeed use nondeterminism to guess a bad branch.

Thus we obtain a nondeterministic Pspace algorithm for inclusion of ω-regular expressions,
via proof search in the system Sω.

3 The transfinite proof system

The goal is now to adapt the system in order to deal with transfinite expressions, recognising
language of transfinite words.

3.1 Ordinals and transfinite words

Ordinals. Let us recall that ordinals are closed under taking successors and limits, and that
besides the ordinal 0, every ordinal is either a successor ordinal (i.e. of the form α + 1), or a
limit ordinal, such as ω which is the smallest limit ordinal. If β is a limit ordinal and (xi)i<β

is a sequence of length β, a subsequence (xij )j<ω of length ω is said cofinal if for all i < β,
there exists j ∈ ω such that i < ij .

Transfinite words. If α is an ordinal, a transfinite word of length α on alphabet Σ is a
function α → Σ. See the long version for formal definitions and properties of transfinite
words.

In this work, we will restrict the length α to be strictly smaller than ωω, i.e. α will be
smaller than ωk for some k ∈ N. These ordinals describe the length of words obtained with
expressions that are allowed to nest the ω-power finitely many times.

Transfinite expressions. They are similar to ω-regular expressions, except that the ω

operators can now be used freely: they do not need to appear once at the end, but can appear
anywhere and be nested. That is, transfinite expressions are generated by the grammar:
e, f := a ∈ Σ | e · f | e + f | e+ | eω with no restriction.

The language L(e) of a transfinite expression e is defined as expected, the formal definitions
at the beginning of section 2 for semantics of ω-regular expressions can be used in the
transfinite case as well. For instance, the word (aωb)ω is in the language L((aω + b+)ω).

3.2 Adapting the proof system

The new proof system. To build a proof system dealing with transfinite expressions, we
will basically keep the same rules as in Sω, except that ω operators are not required to appear
at the end of lists anymore. This gives rise to the following relaxed rules for ω:

e, eω, Γ → B
ω-l

eω, Γ → B

Γ → ⟨f, fω, Λ⟩; B
ω-r

Γ → ⟨fω, Λ⟩; B

Another difference will be that a preproof will not be a tree anymore, but a forest, i.e.
a set of trees with distinct roots. This will allow us to consider branches of ordinal length:
after taking ω steps in a tree, a branch can “jump” to the root of another tree via a limit
condition, analogous to the validity condition of the previous section.
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Branches, threads and limit sequents. We define inductively these notions as follows.
These definitions are mutually recursive, but well-founded: the notions are defined together
for a fixed ordinal length, before going to the next one or the limit.

A transfinite (resp. limit) branch is a transfinite sequence of sequent positions in the
forest (resp. of limit length), starting at the main root sequent of the proof. The successor
of a sequent must be just above it in the forest, and any non successor sequent must be
the limit sequent of the limit branch before, as defined below.
A transfinite (resp. limit) thread is a transfinite sequence of expression occurrences
following a transfinite (resp. limit) branch, while respecting immediate ancestry for
successor sequents, and going to the corresponding expression of the limit sequent when
jumping to the limit sequent, as defined below.
A limit thread with a cofinal sequence of expressions that are principal for a rule r is
called a r thread.
The limit sequent of a limit branch, when it exists, is a root sequent from some tree in the
proof forest, possibly the tree containing this limit branch. We define it by considering
the ω-l and ω-r limit threads following the branch cofinally. On the left side, there must
be an ω-l thread, that is principal infinitely often on the same sequent of the form eω, Γ,
such that no rule is applied on Γ after some point. The corresponding limit sequent will
have Γ as left-hand side.
We proceed similarly to get the lists on the right side of the limit sequent. Given an ω-r
limit thread principal infinitely often on some list ⟨eω, Γ⟩, with Γ untouched after some
point, we will have a list ⟨Γ⟩ on the right-hand side of the limit sequent. Any list on the
right that cannot meet these conditions is discarded in the limit sequent. In both cases
(left and right of the sequent), we call eω the frontier expression of that list.
The threads are prolonged to that limit sequent the natural way, by taking the limit of
an inactive thread on the right of a frontier expression as the corresponding expression in
the limit sequent.

These definitions are illustrated in the long version, with an example of a proof.
A visualisation of a limit branch of length ω2 is given in Figure 4. Such a branch goes

through ω trees, not necessarily distinct.

Figure 4 Example of a limit branch of length ω2.

Validity condition. A proof forest is valid if any limit branch either contains a cofinal ∗-l
thread, or has its limit sequent appearing as the root of a tree in the proof forest.

A proof forest is called cyclic (or regular) if it is the unfolding of a finite graph (not
necessarily connected), or equivalently if it contains finitely many non-isomorphic subtrees.

Let us call St this proof system for inclusion of transfinite expressions.
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3.3 Soundness
The soundness of St is shown in a similar way to the one of Sω. We first note that as the
rules are locally sound, Lemma 4 still holds for St, meaning that any finite proof is sound.

Given a valid proof P in St, with root sequent Γ0 → B0, and a word w ∈ L(Γ0), we can
still build a labelled proof P (w) to witness w ∈ L(B0). This is done in the same way as
before, but we also add the limit sequents for every new limit branch that appears, while
preserving the labelling in the natural way.

Note that this process can lead to a bigger forest, since a single root sequent in the initial
proof P can lead to several ones with different labellings in this proof. We can still build the
forest using transfinite recursion, knowing that there are less than ωω trees.

We will reuse the concept of correct labelling and label-soundness of a sequent Γ′ → B,
meaning that the word concat(Γ′) is in L(Γ′) (and is correctly split if Γ′ is a list) and L(B)
respectively.

▶ Lemma 18. In P (w), any limit branch can be extended (i.e. has a limit sequent).

Proof. This is simply a consequence of the fact that we build P (w) according to a parsing of
w in Γ0. Therefore we cannot unfold infinitely many times a same expression e+. Since the
validity condition asks for either a ∗-l thread or a limit sequent, we must be in the second
case on all limit branches of P (w). ◀

▶ Lemma 19. In P (w), there is no transfinite branch that goes infinitely many times on the
left at a cut rule.

Proof. Suppose that there is a transfinite branch that does go infinitely many times on the
left. Let us take the smallest prefix of that branch that still respects that condition (possible
by well-foundedness). This is a limit branch (otherwise it can be made even smaller), which
goes to the left premise of a cut rule cofinally, which cuts any ω-r thread. Since Lemma 18
ensures a limit sequent for that branch, there has to be an ω-r thread (the right side of a
sequent is nonempty), hence the contradiction. ◀

As before, the maximal transfinite branches in P (w) can be ordered from left-to-right, by
comparing them at the first cut rule where they take a different direction (which exists by
well-order property). We denote that order by <.

▶ Lemma 20. The order < over the maximal transfinite branches of P (w) is well-founded.

Proof. The proof is similar to the one of Lemma 7, the only notable change being that the
word over {0, 1} associated to a branch is now transfinite. ◀

▶ Lemma 21. In P (w), all lists on the left side are correctly labelled, and all sequents are
label-sound.

Proof. As in Lemma 8, we prove this by a transfinite induction on the left-to-right order <

on branches, which is well-founded by Lemma 20.
Let us call C the set of maximal transfinite branches from P (w). Assume that, for some

branch β ∈ C, every β′ < β verifies the property.
The first thing we want to prove is the correct labelling in β. This part is done as for Sω,

by induction on the branch. We need to add the limit case since the branch is transfinite.
Since limit sequents are untouched in the limiting process, the limit case of the induction is
straightforward i.e. limit sequents are correctly labelled.
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We now want to prove the second part of the induction. Let us call v the vertex just
above the last left cut of β. We want to prove the label-soundness of the proof rooted in
v. We call βv the part of β above v. We know that in βv, a sequent is label-sound if its
successor in the branch is. We want to prove by transfinite induction on the length of βv

that the sequent at v is label-sound if the last sequent of the branch is (recall that in St, all
branches have a last sequent).

What we need for that is to prove that if the limit sequent of a limit branch is label-sound,
then so is (at least) one sequent in that branch.

Let us consider such a limit branch, with limit sequent Γ′ → B. The word concat(Γ′) is
in the language of some list Λ ∈ B. We can now use the exact same process as for Sω (see
long version) to prove that there is a label-sound sequent Π′, Γ′ → ⟨fω, ∆⟩; D in the branch
before. The only difference is that transfinite branches can be hidden between two ω-r rules,
but they are dealt with using the induction hypothesis for shorter branches.

This completes the inductive proof for the label-soundness of βv. Using the global
induction on the well-order < on branches, we get the final result. ◀

▶ Theorem 22. Any valid proof in St is sound.

Proof. By Lemma 21, the root sequent of P (w) is label-sound, and this is true for any
w ∈ L(Γ0). This means that for any w ∈ L(Γ0), we have w ∈ L(B0), thus any valid proof
has a sound root sequent. ◀

3.4 Cut-free regular completeness of St

We start with the following observation, a straightforward generalisation of Lemma 11:

▶ Lemma 23. In a proof forest without cut and without useless trees (that can be removed
while preserving the validity), there can only be finitely many different sequents.

▶ Theorem 24 (Completeness). Given two expressions e and f such that L(e) ⊆ L(f), there
exists a cut-free cyclic proof forest for e → ⟨f⟩. Moreover, the construction is effective.

Proof. Due to space constraints, we only sketch the proof here, details can be found in the
long version. As before, we build the proof using a straightforward deterministic bottom-up
process, which can be done algorithmically. This time however, in order to show that the
obtained proof satisfies the validity condition, we use a model of transfinite automata that
helps us to exhibit a validating thread or a limit sequent for each limit branch.

The idea of the proof is to follow the runs of automata Ae and Af canonically associated
to e and f , and to build a proof whose nodes are labelled by states of these automata. A
state will be associated to each list of expressions, so for each sequent, we will have one
state on the left side and possibly several on the right side. Notice that this intuitively
corresponds to building a run in a product automaton Ae ×P(Af ), where P(Af ) is a powerset
automaton obtained from Af . Since the structure of automata closely follow the structure of
expressions, we can always keep the wanted invariants. Limit nodes are built by looking at
all the infinite threads in limit branches, and are labelled by the set of states seen cofinally
in the corresponding runs. We thereby ensure that the resulting proof is valid. ◀
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3.5 Decidability and Complexity
We generalise here the decidability and complexity results obtained in Sections 2.4 and 2.5:

▶ Theorem 25.
Given a cyclic preproof in St, there is a Pspace algorithm deciding whether it is valid.
Given a sequent Γ → B, there is a Pspace algorithm deciding whether there is a valid
proof of St with root Γ → B.

As before, the second item is deduced from the first together with Theorem 24.
Given a regular preproof that can be explored (or built) on-the-fly, we will again use the

formalism of transitions: if S1 and S2 are sequents in the finite representation of a proof,
we will use a function φ : pos(S1) × pos(S2) → { , , •} to sum up the information about
threads from S1 to S2 in a particular path of the unfolded proof. We also mark the unfoldings
of ω on the left, since we need those to compute limit sequents.

Limit processes

We have to account for the fact that a transition may now represent a path containing (nested)
passages to the limit. We verify that such passages to the limit can be effectively computed,
and incorporated in our saturation procedure. Remark that the information stored in a
transition is enough to identify a frontier expression in an idempotent sequent. By another
application of Ramsey’s theorem, this will allow us to compute limit sequents, and build
transitions corresponding to branches of any length (by keeping only threads to the right
of frontier expressions). Now, according to the transfinite validity criterion, an idempotent
transition is bad if it does not have a ∗-l thread or a limit sequent. As before, our goal is to
guess a bad idempotent transition corresponding to a transfinite branch, if any exists. Notice
that guessing such a transition involves guessing a starting point, and that starting points
at different levels of ω nesting may differ. This means that our nondeterministic algorithm
has to store a current prefix of guessed transition for each level, in order to build the final
bad idempotent transition. An example of a run of this algorithm can be found in the long
version.

Compact notation

When building the proof on-the-fly according to the construction of Section 3.4, we also
need to ensure that transitions stay of polynomial size. To this end, as in Section 2.5, we
will use the compact notation e? to avoid an exponential blow-up of sequent size. Note
that this simplified representation allows passage to the limit sequent, in the sense that the
computation of the limit sequent of a branch using compact notation will yield a compact
notation of the correct sequent. As before, this compact notation allows us to obtain a bound
on the size of sequents which is polynomial with respect to the size of the root sequent, see
the long version for details.

Thus, we obtain the following corollary, which is a new result to the best of our knowledge.

▶ Corollary 26. Deciding the inclusion of transfinite expressions is in Pspace.

Conclusion
In our completeness proof, the sets of lists on the right sides of sequents perform some
kind of powerset construction. Doing so, we avoid an intricate determinisation procedure
such as the Safra construction [19]. We believe it can be considered that this complexity
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of determinisation is “hidden” in the validity condition, following various infinite threads
simultaneously. This has the advantage of modularity: we separate the pure powerset
construction, located in the sequents of the proof, from the complexity of dealing with
the acceptance condition, located in the validity condition of the proof. Whereas when
determinising Büchi automata, these two causes for state-blowup are merged in the states
of the resulting deterministic Rabin automaton. A more detailed investigation of this
phenomenon and its advantages can be the subject of a future work.

Contrarily to what happens on ω words, the transfinite system St cannot be seen as an
instance of a proof system for linear µ-calculus, as ·ω is no longer a fixed point operator in
the transfinite setting. This manifests concretely by the loss of symmetry between ·+ and ·ω
in the validity condition when going from Sω to St.
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1 Introduction

It has been known for some time that, for certain infinite words c = c0c1c2 · · · over a finite
alphabet Σ, the first-order logical theory FO(N, <,+, 0, 1, n 7→ cn) is decidable. In the
case where c is a k-automatic sequence for k ≥ 2, this is due to Büchi [5], although his
original proof was flawed. The correct statement appears, for example, in Bruyère et al. [4].
Although the worst-case running time of the decision procedure is truly formidable (and
non-elementary), it turns out that an implementation can, in many cases, decide the truth of
interesting and nontrivial first-order statements about automatic sequences in a reasonable
length of time. Thus, one can easily reprove known results, and obtain new ones, merely by
translating the desired result into the appropriate first-order statement φ and running the
decision procedure on φ. For an example of the kinds of things that can be proved, see, for
example, Goč, Henshall, and Shallit [6].
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More generally, the same ideas can be used for other kinds of sequences defined in terms
of some numeration system for the natural numbers. Such a numeration system provides a
unique (up to leading zeros) representation for n as a sum of terms of some other sequence
(sn)n≥1. If the sequence c = c0c1c2 · · · can be computed by a finite automaton taking the
representation of n as input, and if further, the addition of represented integers is computable
by another finite automaton, then once again the first-order theory FO(N, <,+, 0, 1, n 7→ cn)
is decidable. This is the case, for example, for the so-called Fibonacci-automatic sequences
in Mousavi, Schaeffer, and Shallit [14] and the Pell-automatic sequences in Baranwal and
Shallit [3].

More generally, the same kinds of ideas can handle Sturmian words. For quadratic
numbers, this was first observed by Hieronymi and Terry [9]. In this paper we extend
those results to all Sturmian characteristic words. Thus, the first-order theory of Sturmian
characteristic words is decidable. As a result, many classical theorems about Sturmian words,
which previously required intricate proofs, can be proved automatically by a theorem-prover
in a few seconds. As examples, in Section 7 we reprove basic results such as the balanced
property and the subword complexity of these words.

Let α, ρ ∈ R be such that α is irrational. The Sturmian word with slope α and
intercept ρ is the infinite {0, 1}-word cα,ρ = cα,ρ(1)cα,ρ(2) · · · such that for all n ∈ N

cα,ρ(n) = ⌊α(n+ 1) + ρ⌋ − ⌊αn+ ρ⌋ − ⌊α⌋.

When ρ = 0, we call cα,0 the characteristic word of slope α. Sturmian words and their
combinatorical properties have been studied extensively. We refer the reader to the survey
by Berstel and Séébold [12, Chapter 2]. Note that cα,ρ can be understood as a function from
N to {0, 1}. Let L be the signature1 of the first-order logical theory FO(N, <,+, 0, 1) and let
Lc denote the signature obtained by adding a single unary function symbol c to L. Now let
Nα,ρ be the Lc-structure (N, <,+, 0, 1, n 7→ cα,ρ(n)), where we expand Presburger arithmetic
by a Sturmian word interpreted as a unary function. The main result of this paper is the
decidability of the theory of the collection of such expansions. Set Irr := (0, 1) \ Q. Let
Ksturmian := {Nα,ρ : α ∈ Irr, ρ ∈ R}, and let Kchar := {Nα,0 : α ∈ Irr}.

▶ Theorem A. The first-order logical theories2 FO(Ksturmian) and FO(Kchar) are decidable.

So far, decidability was only known for individual FO(Nα,ρ), and only for very particular
α. By [9] the logical theory FO(Nα,0) is decidable when α is a quadratic irrational3. Moreover,
if the continued fraction of α is not computable, it can be seen rather easily that FO(Nα,0)
is undecidable.

Theorem A is rather powerful, as it allows to automatically decide combinatorial state-
ments about all Sturmian words. Consider the Lc-sentence φ

∀p (p > 0) →
(

∀i ∃j j > i ∧ c(j) ̸= c(j + p)
)
.

We observe that Nα,ρ |= φ if and only if cα,ρ is not eventually periodic. Thus the decision
procedure from Theorem A allows us to check that no Sturmian word is eventually periodic.
Of course, it is well-known that no Sturmian word is eventually periodic, but this example
indicates potential applications of Theorem A. We outline some of these in Section 7.

1 In model theory this is usually called (or identified with) the language of the theory. However, here this
conflicts with the convention of calling an arbitrary set of words a language.

2 Given a signature L0 and a class K of L0-structures, the first-order logical theory of K is defined as the
set of all L0-sentences that are true in all structures in K. This theory is denoted by FO(K).

3 A real number is quadratic if it is the root of a quadratic equation with integer coefficients.
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We not only prove Theorem A, but instead establish a vastly more general theorem of
which Theorem A is an immediate corollary. To state this general result, let Lm be the
signature of FO(R, <,+,Z), and let Lm,a be the extension of Lm by a unary predicate. For
α ∈ R>0, we let Rα denote Lm,a-structure (R, <,+,Z, αZ). When α ∈ Q, it has long been
known that FO(Rα) is decidable (arguably due to Skolem [19]). Recently this result was
extended to quadratic numbers.

▶ Fact 1 (Hieronymi [7, Theorem A]). Let α be a quadratic irrational. Then FO(Rα) is
decidable.

See also Hieronymi, Nguyen and Pak [8] for a computational complexity analysis of
this decision procedure. The proof of Fact 1 establishes that if α is quadratic, then Rα is
an ω-automatic structure; that is it can be represented by Büchi automata. Since every
ω-automatic structure has a decidable first-order theory, so does Rα. See Khoussainov
and Minnes [10] for a survey on ω-automatic structures. The key insight needed to prove
ω-automaticity of Rα is that addition in the Ostrowski-numeration system based on α is
recognizable by a Büchi automaton when α is quadratic. See Section 2 for a definition of
Ostrowski numeration systems.

As observed in [7], there are examples of non-quadratic irrationals α such that Rα has
an undecidable theory and hence is not ω-automatic. However, in this paper we show
that the common theory of the Rα is decidable. Let K denote the class of Lm,a-structures
{Rα : α ∈ Irr}.

▶ Theorem B. The theory FO(K) is decidable.

Indeed, we will even prove a substantial generalization of Theorem B. For each Lm,a-
sentence φ, we set Mφ := {α ∈ Irr : Rα |= φ}. Let Irrquad be the set of all quadratic
irrational real numbers in Irr. Define M = (Irr, <, (Mφ)φ, (q)q∈Irrquad) to be the expansion
of the dense linear order (Irr, <) by predicates for Mφ for each Lm,a-sentence φ, and constant
symbols for each quadratic irrational real number in Irr.

▶ Theorem C. The theory FO(M) is decidable.

Observe that Fact 1 and Theorem B follow immediately from Theorem C. We outline how
Theorem B implies Theorem A. Note that for every irrational α, the structure Rα defines
the usual floor function ⌊·⌋ : R → Z, the singleton {α} and the successor function on αZ.
Hence Rα also defines the set {(ρ, αn, cα,ρ(n)) : ρ ∈ R, n ∈ N}. From the definability of
{α}, we have that the function from αN to {0, α} given by αn 7→ αcα,ρ(n) is definable in
Rα. Thus the Lc-structure (αN, <,+, 0, α, αn 7→ αcα,ρ(n)) can be defined in Rα, and this
definition is uniform in α. Since the former structure is Lc-isomorphic to Nα,ρ, we have that
for every Lc-sentence φ there is an Lm,a-formula ψ(x) such that

φ ∈ FO(Ksturmian) if and only if ∀x ψ(x) ∈ FO(K) and
φ ∈ FO(Kchar) if and only if ψ(0) ∈ FO(K).

Even Theorem C is not the most general result we prove. Its statement is more technical and
we postpone it until Section 6. However, we want to point out that we can add predicates for
interesting subsets of Irr to M without changing the decidability of the theory. Examples of
such subsets are the set of all α ∈ Irr such that the terms in the continued fraction expansion
of α are powers of 2, or the set of all α ∈ Irr such that the terms in the continued fraction
expansion of α are not in some fixed finite set. This means we can not only automatically
prove theorems about all characteristic Sturmian words, but also prove theorems about
all characteristic Sturmian words whose slope is one of these sets. There is a limit to this
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technique. If we add a predicate for the set of all α ∈ Irr such that the terms of continued
fraction expansion of α are bounded, or add a predicate for the set of elements in Irr whose
continued fractions have strictly increasing terms, then our method is unable to conclude
whether the resulting structure has a decidable theory. See Section 6 for a more precise
statement about what kind of predicates can be added.

The proof of Theorem C follows closely the proof from [7] of the ω-automaticity of Rα

for fixed quadratic α. Here we show that the construction of the Büchi automata needed
to represent Rα is actually uniform in α. See Abu Zaid, Grädel, and Reinhardt [20] for a
systematic study of uniformly automatic classes of structures. Deduction of Theorem C from
this result is then rather straightforward. The key ingredient to establish the ω-automaticity
of Rα is an automaton that can perform addition in Ostrowski-numeration systems. By
[9] there is an automaton that recognizes the addition relation for α-Ostrowski numeration
systems for fixed quadratic α. So for a fixed quadratic number, there exists a 3-input
automaton that accepts the α-Ostrowski representations of all triples of natural numbers
x, y, z with x + y = z. In order to prove Theorem C, we need a uniform version of such
an adder. This general adder is described in Baranwal, Schaeffer, and Shallit [2]. There a
4-input automaton is constructed that accepts 4-tuples consisting of an encoding of a real
number α and three α-Ostrowski representations of natural numbers x, y, z with x+ y = z.
See Section 4 for details.

As mentioned above, an implementation of the decision algorithm provided by Theorem
A can be used to study Sturmian words. We created a software program called Pecan [15]
that includes such an implementation. Pecan is inspired by Walnut [13] by Mousavi, an
automated theorem-prover for deciding properties of automatic words. The main difference is
that Walnut is based on finite automata, while Pecan uses Büchi automata. In our setting it
is more convenient to work with Büchi automata instead of finite automata, since the infinite
families of words we want to consider – like Sturmian words – are indexed by real numbers.
Section 7 provides more information about Pecan and contains further examples how Pecan
is used prove statements about Sturmian words. Pecan’s implementation is discussed in more
detail in [16].

2 Preliminaries

Throughout, i, j, k, ℓ,m, n are used for natural numbers. Let X,Y be two sets and Z ⊆ X×Y .
For x ∈ X, we let Zx denote the set {y ∈ Y : (x, y) ∈ Z}. Similarly, given a function
f : X × Y → W and x ∈ X, we write fx for the function fx : Y → W that maps y ∈ Y to
f(x, y).

Given a (possibly infinite word) w over an alphabet Σ, we write wi for the i-th letter of
w, and w|n for w1 · · ·wn. We write |w| for the length of w. We denote the set of infinite
words over Σ by Σω. If Σ is totally ordered by an ≺, we let ≺lex denote the corresponding
lexicographic order on Σω. Letting u, v ∈ Σω, we also write u ≺colex v if there is a maximal i
such that ui ̸= vi, and ui < vi for this i. Note that while ≺lex is a total order on Σω, the
order ≺colex is only a partial order. However, for a given σ ∈ Σ, the order ≺colex is a total
order on the set of all words v ∈ Σω such that vj is eventually equal to σ.

A Büchi automaton (over an alphabet Σ) is a quintuple A = (Q,Σ,∆, I, F ) where
Q is a finite set of states, Σ is a finite alphabet, ∆ ⊆ Q × Σ × Q is a transition relation,
I ⊆ Q is a set of initial states, and F ⊆ Q is a set of accept states.

Let A = (Q,Σ,∆, I, F ) be a Büchi automaton. Let σ ∈ Σω. A run of σ from p is an
infinite sequence s of states in Q such that s0 = p, (sn, σn, sn+1) ∈ ∆ for all n < |σ|. If p ∈ I,
we say s is a run of σ. Then σ is accepted by A if there is a run s0s1 · · · of σ such that



P. Hieronymi, D. Ma, R. Oei, L. Schaeffer, C. Schulz, and J. Shallit 24:5

{n : sn ∈ F} is infinite. We call this run an accepting run. We let L(A) be the set of words
accepted by A. There are other types of ω-automata with different acceptance conditions,
but in this paper we only consider Büchi automata.

Let Σ be a finite alphabet. We say a subset X ⊆ Σω is ω-regular if it is recognized by
some Büchi automaton. Let u1, . . . , un ∈ Σω. We define the convolution c(u1, . . . , un) of
u1, . . . , un as the element of (Σn)ω whose value at position i is the n-tuple consisting of the
values of u1, . . . , un at position i. We say that X ⊆ (Σω)n is ω-regular if c(X) is ω-regular.

▶ Fact 2. The collection of ω-regular sets is closed under union, intersection, complementa-
tion and projection.

Closure under complementation is due to Büchi [5]. We refer the reader to Khoussainov
and Nerode [11] for more information and a proof of Fact 2. As consequence of Fact 2, we have
that for every ω-regular subset W ⊆ (Σω)m+n the set {s ∈ (Σω)m : ∀t ∈ (Σω)n (s, t) ∈ W}
is also ω-regular.

2.1 ω-regular structures
Let U = (U ;R1, . . . , Rm) be a structure, where U is a non-empty set and R1, . . . , Rm are
relations on U . We say U is ω-regular if its domain and its relations are ω-regular.

Büchi’s theorem [5] on the decidability of monadic second-order theory of one successor
immediately gives the following well-known fact.

▶ Fact 3. Let U be an ω-regular structure. Then the theory FO(U) is decidable.

In this paper, we will consider families of ω-regular structures that are uniform in the
following sense. Fix m ∈ N and a map ar : {1, . . . ,m} → N. Let Z be a set and for z ∈ Z

let Uz be a structure (Uz;R1,z, . . . , Rm,z) such that Ri,z ⊆ U
ar(i)
z . We say that (Uz)z∈Z is a

uniform family of ω-regular structures if
{(z, y) : y ∈ Uz} is ω-regular,
{(z, y1, . . . , yar(i)) : (y1, . . . , yar(i)) ∈ Ri,z} is ω-regular for each i ∈ {1, . . . ,m}.

From Büchi’s theorem, we immediately obtain the following.

▶ Fact 4. Let (Uz)z∈Z be a uniform family of ω-regular structures, and let φ be a formula
in the signature of these structures. Then the set {(z, u) : z ∈ Z, u ∈ Uz, Uz |= φ(u)} is
ω-regular, and the theory FO({Uz : z ∈ Z}) is decidable.

Proof. When φ is an atomic formula, the statement follows immediately from the definition
of a uniform family of ω-regular structures and the ω-regularity of equality. By Fact 2, the
statement holds for all formulas. ◀

2.2 Binary representations
For k ∈ N>1 and b = b0b1b2 · · · bn ∈ {0, 1}∗, we define [b]k :=

∑n
i=0 bik

i. For N ∈ N we say
b ∈ {0, 1}∗ is a binary representation of N if [b]2 = N .

Throughout this paper, we will often consider infinite words over the (infinite) alphabet
{0, 1}∗. Let [·]2 : ({0, 1}∗)ω → Nω be the function that maps u = u1u2 · · · ∈ ({0, 1}∗)ω to
[u1]2[u2]2[u3]2 · · · We will consider the following different relations on ({0, 1}∗)ω.
Let u, v ∈ ({0, 1}∗)ω. We write u <lex,2 v if [u]2 is lexicographically smaller than [v]2. We
write u <colex,2 v if there is a maximal i such that [ui]2 ̸= [vi]2, and [ui]2 < [vi]2. Note that
while <lex,2 is a total order on ({0, 1}∗)ω, the order <colex,2 is only a partial order. However,
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24:6 Decidability for Sturmian Words

<colex,2 is a total order on the set of all words v ∈ ({0, 1}∗)ω such that [v]j is eventually 0.
Let u = u1u2 · · · , v = v1v2 · · · ∈ ({0, 1}∗)ω. Let k be minimal such that [uk]2 ≠ [vk]2. We
write u <alex,2 v if either k is even and [uk]2 < [vk]2, or k is odd and [uk]2 > [vk]2.

2.3 Ostrowski representations
We now introduce Ostrowski representations based on the continued fraction expansions of
real numbers. We refer the reader to Allouche and Shallit [1] and Rockett and Szüsz [18] for
more details. A finite continued fraction expansion [a0; a1, . . . , ak] is an expression of
the form

a0 + 1

a1 + 1

a2 + 1
. . . + 1

ak

For a real number α, we say [a0; a1, . . . , ak, . . . ] is the continued fraction expansion of
α if α = limk→∞[a0; a1, . . . , ak] and a0 ∈ Z, ai ∈ N>0 for i > 0. In this situation, we write
α = [a0; a1, . . . ]. Every irrational number has precisely one continued fraction expansion. We
recall the following well-known fact about continued fractions.

▶ Fact 5. Let α = [a0; a1, . . . ], α′ = [a′
0; a′

1, . . . ] ∈ R be irrational. Let k ∈ N be minimal
such that ak ̸= a′

k. Then α < α′ if and only if
k is even and ak < a′

k, or
k is odd and ak > a′

k.

For the rest of this subsection, fix a positive irrational real number α ∈ (0, 1) and let
[a0; a1, a2, . . . ] be the continued fraction expansion of α. Let k ≥ 1. A quotient pk/qk ∈ Q is
the k-th convergent of α if pk ∈ N, qk ∈ Z, gcd(pk, qk) = 1 and pk

qk
= [a0; a1, . . . , ak]. Set

p−1 := 1, q−1 := 0 and p0 := a0, q0 := 1. The convergents satisfy the following equations for
n ≥ 1:

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

The k-th difference βk of α is defined as βk := qkα− pk. We use the following facts
about k-th differences: for all n ∈ N
1. βn > 0 if and only if n is even,
2. β0 > −β1 > β2 > −β3 > β4 > . . . , and
3. −βn = an+2βn+1 + an+4βn+3 + an+6βn+5 + . . . .

We now recall a numeration system due to Ostrowski [17].

▶ Fact 6 ([18, Ch. II-§4]). Let X ∈ N. Then X can be written uniquely as

X =
N∑

n=0
bn+1qn (1)

where 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 and bn = 0 whenever bn+1 = an+1.

For X ∈ N satisfying (1) we write X = [b1b2 · · · bnbn+1]α and call the word b1b2 · · · bn+1
an α-Ostrowski representation of X. This representation is unique up to trailing zeros. Let
X,Y ∈ N and let b1b2 · · · bn+1 and c1c2 · · · cn+1 be α-Ostrowski representations of X and



P. Hieronymi, D. Ma, R. Oei, L. Schaeffer, C. Schulz, and J. Shallit 24:7

Y respectively. Since Ostrowski representations are obtained by a greedy algorithm, one
can see easily that X < Y if and only if b1b2 · · · bn+1 is co-lexicographically smaller than
c1c2 · · · cn+1.

We now introduce a similar way to represent real numbers, also due to Ostrowski [17].
Let Iα be the interval

[
⌊α⌋ − α, 1 + ⌊α⌋ − α

)
.

▶ Fact 7 (cp. [18, Ch. II.6 Theorem 1]). Let x ∈ Iα. Then x can be written uniquely as

∞∑
k=0

bk+1βk, (2)

where bk ∈ Z with 0 ≤ bk ≤ ak, and bk−1 = 0 whenever bk = ak,(in particular, b1 ̸= a1), and
bk ̸= ak for infinitely many odd k.

For x ∈ Iα satisfying (2) we write x = [b1b2 · · · ]α and call the infinite word b1b2 · · ·
the α-Ostrowski representation of x. This is closely connected to the integer Ostrowski
representation. Note that for every real number there a unique element of Iα such that that
their difference is an integer. We define fα : R → Iα to be the function that maps x to x− u,
where u is the unique integer such that x− u ∈ Iα.

▶ Fact 8 ([7, Lemma 3.4]). Let X ∈ N be such that
∑N

k=0 bk+1qk is the α-Ostrowski
representation of X. Then fα(αX) =

∑∞
k=0 bk+1βk is the α-Ostrowski representation of

fα(αX), where bk+1 = 0 for k > N .

Since βk > 0 if and only if k is even, the order of two elements in Iα can be determined
by the Ostrowski representation as follows.

▶ Fact 9 ([7, Fact 2.13]). Let x, y ∈ Iα with x ̸= y and let [b1b2 · · · ]α and [c1c2 · · · ]α be the
α-Ostrowski representations of x and y. Let k ∈ N be minimal such that bk ̸= ck. Then
x < y if and only if

(i) bk+1 < ck+1 if k is even;
(ii) bk+1 > ck+1 if k is odd.

3 #-binary coding

In this section, we introduce #-binary coding. Fix the alphabet Σ# := {0, 1,#}. Let H∞
denote the set of all infinite Σ#-words in which # appears infinitely many times. Clearly
H∞ is ω-regular.

Let C# : ({0, 1}∗)ω → H∞ map an infinite word b = b1b2b3 · · · over {0, 1}∗ to the infinite
Σ#-word #b1#b2#b3# · · · We note that the map C# is a bijection. Let u = u1u2u3 · · · , v =
v1v2v3 · · · ∈ Σω

#. We say u and v are aligned if for all i ∈ N ui = # if and only if vi = #.
This defines an ω-regular equivalence relation on Σω

#. We denote this equivalence relation by
∼#. The following fact follows easily.

▶ Fact 10. The following sets are ω-regular:
{(u, v) ∈ H2

∞ : u ∼# v and C−1
# (u) <lex,2 C

−1
# (v)},

{(u, v) ∈ H2
∞ : u ∼# v and C−1

# (u) <colex,2 C
−1
# (v)},

{(u, v) ∈ H2
∞ : u ∼# v and C−1

# (u) <alex,2 C
−1
# (v)}.
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3.1 #-binary coding of continued fractions

We now code the continued fraction expansions of real numbers as infinite Σ#-words.

▶ Definition 11. Let α ∈ (0, 1) be irrational such that [0; a1, a2, . . . ] is the continued fraction
expansion of α. Let u = u1u2 · · · ∈ ({0, 1}∗)ω such that ui ∈ {0, 1}∗ is a binary representation
of ai for each i ∈ Z≥0. We say that C#(u) is a #-binary coding of the continued fraction
of α.

Let R be the set of elements of Σω
# of the form (#(0|1)∗1(0|1)∗)ω. Obviously, R is

ω-regular.

▶ Lemma 12. Let w ∈ R. Then there is a unique irrational number α ∈ [0, 1] such that w is
a #-binary coding of the continued fraction of α.

The proof of Lemma 12 is in Appendix A. For w ∈ R, let α(w) be the real number given
by Lemma 12. When v = (v1, . . . , vn) ∈ Rn, we write α(v) for (α(v1), . . . , α(vn)).

Even though continued fractions are unique, their #-binary codings are not, because
binary representations can have trailing zeroes. This ambiguity is required in order to
properly recognize relationships between multiple numbers, as one of the numbers involved
may require more bits in a coefficient than the other(s). Occasionally we need to ensure
that all possible representations of a given tuple of numbers are contained in a set. For this
reason, we introduce the zero-closure of subsets of Rn.

▶ Definition 13. Let X ⊆ Rn. The zero-closure of X is {u ∈ Rn : ∃v ∈ X α(u) = α(v)}.

▶ Lemma 14. Let X ⊆ Rn be ω-regular. Then the zero-closure of X is also ω-regular.

The essence of the proof is that trailing zeroes are the only way that #-binary codings
of the same number can differ. The details of proof are technical and can be found in
Appendix A.

▶ Lemma 15. The set {(w1, w2) ∈ R2 : w1 ∼# w2 and α(w1) < α(w2)} is ω-regular.

Proof. Let w1, w2 ∈ R be such that w1 ∼# w2. By Fact 5 we have that α(w1) < α(w2) if
only C−1

# (w1) <alex,2 C
−1
# (w2). Thus ω-regularity follows from Fact 10. ◀

▶ Lemma 16. Let a ∈ [0, 1) be a quadratic irrational. Then {w ∈ R : α(w) = a} is
ω-regular.

Proof. The continued fraction expansion of a is eventually periodic. Thus there is an
eventually periodic u ∈ ({0, 1}∗)ω such that C#(u) is a #-binary coding of the continued
fraction of a. The singleton set containing an eventually periodic string is ω-regular. It
remains to expand this set to contain all representations via Lemma 14. ◀

▶ Lemma 17. The set {w ∈ R : α(w) < 1
2 } is ω-regular.

Proof. Let α(w) = [0; a1, a2, . . . ]. It is easy to see that α(w) < 1
2 if and only if a1 > 1. Thus

we need only check that a1 ≠ 1. The set of w ∈ R for which this true is just R \ Y , where
Y ⊆ Σω

# is given by the regular expression #10∗(#(0 ∪ 1)∗)ω. ◀
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3.2 #-Ostrowski-representations
We now extend the #-binary coding to Ostrowski representations.

▶ Definition 18. Let v, w ∈ (Σ#)ω, let x = x1x2x3 · · · ∈ Nω and let b = b1b2b3 · · · ∈
({0, 1}∗)ω be such that w = C#(b) and [bi]2 = xi for each i.

For N ∈ N, we say that w is a #-v-Ostrowski representation of X if v and w are
aligned and x is an α(v)-Ostrowski representation of N .
For c ∈ Iα(v), we say that w is a #-v-Ostrowski representation of c if v and w are
aligned and x is an α(v)-Ostrowski representation of c.

We let Av denote the set of all words w ∈ Σω
# such that w is a #-v-Ostrowski representation

of some c ∈ Iα(v), and similarly, by Afin
v the set of all words w ∈ Σω

# such that w is a
#-v-Ostrowski representation of some N ∈ N.

▶ Lemma 19. The sets

Afin := {(v, w) : v ∈ R,w ∈ Afin
v }, and A := {(v, w) : v ∈ R,w ∈ Av}.

are ω-regular. Moreover, Afin ⊆ A.

The straightforward proof is in Appendix A.

▶ Definition 20. Let v ∈ R. We define Zv : Afin
v → N to be the function that maps w to the

natural number whose #-v-Ostrowski representation is w.
Similarly, we define Ov : Av → Iα(v) to be the function that maps w to the real number whose
#-v-Ostrowski representation is w.

▶ Lemma 21. Let v ∈ R. Then Zv : Afin
v → N and Ov : Av → Iα(v) are bijective.

The proof is in Appendix A.

▶ Definition 22. Let v ∈ R. We write 0v for Z−1
v (0), and 1v for Z−1

v (1).

▶ Lemma 23. The relations 0∗ = {(v,0v) : v ∈ R} and 1∗ = {(v,1v) : v ∈ R} are
ω-regular.

▶ Lemma 24. Let s ∈ Afin
v . Then α(v)Zv(s) −Ov(s) ∈ Z and

Ov(1v) =
{
α(v) if α(v) < 1

2 ;
α(v) − 1 otherwise.

Again, proofs of these lemmas are in Appendix A.

▶ Lemma 25. The sets

≺fin := {(v, s, t) ∈ Σ3
# : s, t ∈ Afin

v ∧ Zv(s) < Zv(t)},
≺ := {(v, s, t) ∈ Σ3

# : s, t ∈ Av ∧Ov(s) < Ov(t)}

are ω-regular.

Proof of Lemma 25. For ≺fin, first recall that for X,Y ∈ N and α irrational, we have
X < Y if and only if the α-Ostrowski representation of X is co-lexicographically smaller than
the α-Ostrowski representation of Y . Therefore, we need only recognize co-lexicographic
ordering on the list of coefficients, with each coefficient ordered according to binary. This
follows immediately from Fact 10.

For ≺, note that by Fact 9 the usual order on real numbers corresponds to the alternating
lexicographic ordering on real Ostrowski representations. Therefore, we need only recognize
the alternating lexicographic ordering on the list of coefficients, with each coefficient ordered
according to binary. This follows immediately from Fact 10. ◀
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We consider Rn as a topological space using the usual order topology. For X ⊆ Rn, we
denote its topological closure by X.

▶ Corollary 26. Let W ⊆ (Σn+1
# )∗ ω-regular be such that W ⊆ {(v, s1, . . . , sn) ∈ (Σn+1

# )∗ :
s1, . . . , sn ∈ Av}. Then the following set is also ω-regular:

W := {(v, s1, . . . , sn) ∈ (Σn+1
# )∗ : s1, . . . , sn ∈ Av ∧ (Ov(s1), . . . , Ov(sn)) ∈ O(Wv)}.

Proof. Let (v, s1, . . . , sn) ∈ (Σn+1
# )∗ be such that s1, . . . , sn ∈ Av. Let Xi = Ov(si). By the

definition of the topological closure, we have that (X1, . . . , Xn) ∈ O(Wv) if and only if for all
Y1, . . . Yn, Z1, . . . , Zn ∈ R with Yi < Xi < Zi for i = 1, . . . , n there are X ′ = (X ′

1, . . . , X
′
n) ∈

O(Wv) such that Yi < X ′
i < Zi for i = 1, . . . , n. Thus by Lemma 25, (v, s1, . . . , sn) ∈ W if

and only if for all t1, . . . tn, u1, . . . , un ∈ Av with ti ≺ si ≺ ui, there are s′ = (s′
1, . . . , s

′
n) ∈ Wv

such that ti ≺ s′
i ≺ Zi for i = 1, . . . , n. The latter condition is ω-regular by Fact 2. ◀

4 Recognizing addition in Ostrowski numeration systems

The key to the rest of this paper is a general automaton for recognizing addition of Ostrowski
representations uniformly. We will prove the following.

▶ Theorem 27. The set ⊕fin := {(v, s1, s2, s3) : s1, s2, s3 ∈ Afin
v ∧Zv(s1)+Zv(s2) = Zv(s3)}

is ω-regular.

Proof. In [2, Section 3] the authors generate an automaton A over the alphabet N4 such
that a finite word (d1, x1, y1, z1)(d2, x2, y2, z2) · · · (dm, xm, ym, zm) ∈ (N4)∗ is accepted by A
if and only if there are dm+1, . . . ∈ N and x, y, z ∈ N such that for α = [0; d1, d2, . . . ] we have
[x1x2 . . . xm]α = x, [y1y2 . . . ym]α = y, [z1z2 . . . zm]α = z, and x+ y = z.

We now describe how to adjust the the automaton A for our purposes. The input
alphabet will be Σ4

# instead of N4. The new automaton will take four inputs w, s1, s2, s3,
where s1, s2, s3 ∈ Afin

w . We can construct this automaton as follows:
1. Begin with the automaton A from [2].
2. Add an initial state that transitions to the original start state on (#,#,#,#). This will

ensure that the first character in each string is #.
3. Replace each transition in the automaton with a sub-automaton that recognizes the

corresponding relationship between w, s1, s2, s3 in binary. As an example, one of the
transitions in Figure 3 of [2] is given as “−di + 1,” meaning that it represents all
cases where, letting wi, s1i, s2i, si3 be the ith letter of w, s1, s2, s3 respectively, we have
s3i − s1i − s2i = −wi + 1. This is an affine and hence an automatic relation. Thus it can
be recognized by a sub-automaton.

4. The accept states in the resulting automaton are precisely the accept states from the
original automaton.

The resulting automaton recognizes ⊕fin. ◀

The automaton constructed above has 82 states. Using our software Pecan, we can
formally check that this automaton recognizes the set in Theorem 27. Following a strategy
already used in Mousavi, Schaeffer, and Shallit [14, Remark 2.1] we check that our adder
satisfies the standard recursive definition of addition on the natural numbers; that is for all
x, y ∈ N

0 + y = y

s(x) + y = s(x+ y)
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where x, y ∈ N and s(x) denotes the successor of x in N. The successor function on N can be
defined using only < as follows:

s(x) = y if and only if (x < y) ∧ (∀z (z ≤ x) ∨ (z ≥ y)).

Thus in Pecan we define bco_succ(a,x,y) as
bco_succ (a,x,y) := bco_valid (a,x) ∧ bco_valid (a,y) ∧ bco_leq (x,y)
∧ ¬bco_eq (x,y) ∧ ∀z. bco_valid (a,z) => ( bco_leq (z,x) ∨ bco_leq (y,z))

where bco_eq recognizes {(x, y) : x = y}, bco_leq recognizes {(x, y) : x ≤colex y}, and
bco_valid recognizes Afin. We now confirm that our adder satisfies the above equations using
the following Pecan code:
Let x,y,z be ostrowski (a).
Theorem (" Addition base case (0 + y = y).", {

∀a. ∀x,y,z. bco_zero (x) => ( bco_adder (a,x,y,z) ⇔ bco_eq (y,z))
}).
Theorem (" Addition inductive case (s(x) + y = s(x + y)).", {

∀a. ∀x,y,z,u,v. ( bco_succ (a,u,x) ∧ bco_succ (a,v,z))
=> ( bco_adder (a,x,y,z) ⇔ bco_adder (a,u,y,v))

}).

In the above code bco_adder recognizes ⊕fin, bco_zero recognizes 0∗, and bco_succ recognizes
{(v, x, y) : x, y ∈ Afin

v , Zv(x) + 1 = Zv(y)}. Pecan confirms both statements are true. This
proves Theorem 27 modulo correctness of Pecan and the correctness of the implementations
of the automata for bco_eq, bco_leq, bco_valid and bco_zero. For more details about Pecan,
see Section 7.

Using Corollary 26 we can extend the automaton in Theorem 27 to an automaton for
addition modulo 1 on Iα. The details are in Appendix B.

▶ Lemma 28. The set ⊕ := {(v, s1, s2, s3) : s1, s2, s3 ∈ Av ∧ Ov(s1) + Ov(s2) ≡
Ov(s3) (mod 1)} is ω-regular. Moreover, ⊕fin ⊆ ⊕.

5 The uniform ω-regularity of Rα

In this section, we turn to the question of the decidability of the logical first-order theory
of Rα. Recall that Rα := (R, <,+,Z, αZ) for α ∈ R. The main result of this section is the
following:

▶ Theorem 29. There is a uniform family of ω-regular structures (Dv)v∈R such that Dv ≃
Rα(v) for each v ∈ R.

Theorem 29 then hinges on the following lemma.

▶ Lemma 30. There is a uniform family of ω-regular structures (Ca)a∈R such that Ca ≃
([−α(a),∞), <,+,N, α(a)N) for each a ∈ R.

The proof of Lemma 30 is a uniform version of the argument given in [7] that also fixes
some minor errors of the original proof. By Lemma 10 and Theorem 27, we already know
that Zv : (Afin

v ,≺fin
v ,⊕fin

v ) → (N, <,+) is an isomorphism for every v ∈ R. As our eventual
goal also requires us to define the set αN, it turns out to be much more natural to instead
use the isomorphism α(v)Zv : (Afin

v ,≺fin
v ,⊕fin

v ) → (α(v)N, <,+) and recover Z. We do so by
following the argument in [7]. The full proof is availabe in Appendix C.

Proof of Theorem 29. We just observe that ([−α,∞), <,+,N, αN) defines (in a matter
uniform in α) an isomorphic copy of Rα. Now apply Lemma 30. ◀
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6 Decidability results

We are now ready to prove the results listed in the introduction. We first recall some
notation. Let Lm be the signature of the first-order structure (R, <,+,Z), and let Lm,a be
the extension of Lm by a unary predicate. For α ∈ R>0, let Rα denote the Lm,a-structure
(R, <,+,Z, αZ). For each Lm,a-sentence φ, we set Rφ := {v ∈ R : Rα(v) |= φ}.

▶ Theorem 31. Let φ be an Lm,a-sentence. Then Rφ is ω-regular.

Proof. By Theorem 29 there is a uniform family of ω-regular structures (Dv)v∈R such that
such that Dv ≃ Rα(v) for each v ∈ R. Then Rφ = {v ∈ R : Dv |= φ}. This set is ω-regular
by Fact 4. ◀

Let N = (R; (Rφ)φ, (X)X⊆Rn ω-regular) be the relational structure on R with the relations
Rφ for every L-sentences φ and X ⊆ Rn ω-regular. Because N is an ω-regular structure,
the theory of N is decidable.

We now proceed towards the proof of Theorem C. Recall that Irr := (0, 1) \ Q.

▶ Definition 32. Let X ⊆ Irrn. Let XR be defined by

XR := {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) ∈ X}

We say X is recognizable modulo ∼# if XR is ω-regular.

▶ Lemma 33. The collection of sets recognizable modulo ∼# is closed under Boolean
operations and coordinate projections.

Proof. Let X,Y ⊆ Irr be recognizable modulo ∼#. It is clear that (X ∩ Y )R = XR ∩ YR.
Thus X ∩ Y is recognizable modulo ∼#. Let Xc be Irrn \ X, the complement of X. For ease
of notation, set E := {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn}. Then

(Xc)R = {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) /∈ X}
= E ∩ {(v1, . . . , vn) ∈ Rn : (α(v1), . . . , α(vn)) /∈ X}
= E ∩ {(v1, . . . , vn) ∈ Rn : (α(v1), . . . , α(vn)) /∈ X ∨ ¬(v1 ∼# v2 ∼# · · · ∼# vn)}
= E ∩ (Rn \XR).

This set is ω-regular, and hence Xc is recognizable modulo ∼#.
For coordinate projections, it is enough to consider projections onto the first n−1 coordin-

ates. Let n > 0 and let π be the coordinate projection onto first n− 1 coordinates. Observe
that π(X) = {(α1, . . . , αn−1) ∈ Rn−1 : ∃αn ∈ R (α1, . . . , αn−1, αn) ∈ X}. Thus π(X)R is
equal to {(v1, . . . , vn−1) ∈ Rn−1 : v1 ∼# · · · ∼# vn−1 ∧ ∃αn : (α(v1), . . . , α(vn−1), αn) ∈ X}.
Note that v 7→ α(v) is a surjection R↠ (0, 1) \ Q. Thus π(X)R is also equal to:

{(v1, . . . , vn−1) ∈ Rn−1 : v1 ∼# · · · ∼# vn−1 ∧ ∃vn : (α(v1), . . . , α(vn)) ∈ X}.

Unfortunately, this set is not necessarily equal to π(XR). There might be tuples
(v1, . . . , vn−1) such that no vn can be found, because it would require more bits in one
of its coefficients than v1, . . . , vn−1 have for that coefficient. But π(XR) always contains
some representation of α(v1), . . . , α(vn−1) with the appropriate number of digits. We need
only ensure that removal of trailing zeroes does not affect membership in the language. Thus
π(X)R is just the zero-closure of π(XR). Thus π(X)R is ω-regular by Lemma 14. ◀
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▶ Theorem 34. Let X1, . . . , Xn be recognizable modulo ∼# by Büchi automata A1, . . . ,An,
and let Q be the structure (Irr; X1, . . . ,Xn). Then the theory of Q is decidable.

Proof. By Lemma 33 every set definable in Q is recognizable modulo ∼#. Moreover, for
each definable set Y the automaton that recognizes Y modulo ∼#, can be computed from the
automata A∞, . . . ,A\. Let ψ be a sentence in the signature of Q. Without loss of generality,
we can assume that ψ is of the form ∃x χ(x). Set Z := {a ∈ Irrn : Q |= χ(a)}. Observe
that Q |= ψ if and only if Z is non-empty. Note for every a ∈ Irrn there are v1, . . . , vn ∈ R

such that v1 ∼# v2 ∼# · · · ∼# vn and (α(v1), . . . , α(vn)) = a. Thus Z is non-empty if and
only if {(v1, . . . , vn) ∈ Rn : v1 ∼# v2 ∼# · · · ∼# vn ∧ (α(v1), . . . , α(vn)) ∈ Z} is non-empty.
Thus to decide whether Q |= ψ, we first compute the automaton B that recognizes Z modulo
∼#, and then check whether the automaton accepts any word. ◀

We are now ready to prove Theorem C; that is decidability of the theory of the structure
M = (Irr, <, (Mφ)φ, (q)q∈Irrquad), where Mφ is defined for each Lm,a-formula as Mφ :=
{α ∈ Irr : Rα |= φ}.

Proof of Theorem C. We just need to check that the relations we are adding are all recog-
nizable modulo ∼#. By Lemma 15 the ordering < is recognizable modulo ∼#. By Lemma
16, the singleton {q} is is recognizable modulo ∼# for every q ∈ Irrquad. Since Mφ = α(Rφ),
recognizability of Mφ modulo ∼# follows from Theorem 31. ◀

We can add to M a predicate for every subset of Irrn that is recognizable modulo ∼#,
and preserve the decidability of the theory. The reader can check that examples of subsets of
Irr recognizable modulo ∼# are the set of all α ∈ Irr such that the terms in the continued
fraction expansion of α are powers of 2, the set of all α ∈ Irr such that the terms in the
continued fraction expansion of α are in (or are not in) some fixed finite set, and the set of
all α ∈ Irr such that all even (or odd) terms in their continued fraction expansion are 1.

7 Automatically Proving Theorems about Sturmian Words

We have created an automatic theorem-prover based on the ideas and the decision algorithms
outlined above, called Pecan [15]. We use Pecan to provide proofs of known and unknown
results about characteristic Sturmian words. We begin by giving automated proofs for
several classical result result about Sturmian words. We refer the reader to [12] for more
information and traditional proofs of these results.

In the following, we assume that a ∈ R and i, j, k, n,m, p, s are a-Ostrowski representations.
This can be expressed in Pecan as

Let a ∈ bco_standard .
Let i,j,k,n,m,p,s ∈ ostrowski (a).

We write ca,0(i) as $C[i] in Pecan.

▶ Theorem 35. Characteristic Sturmian words are balanced and aperiodic.

Proof of Theorem 35. To show that a characteristic Sturmian word cα,0 is balanced, note
that it is sufficient to show that there is no palindrome w in cα,0 such that 0w0 and
1w1 are in cα,0 (see [12, Proposition 2.1.3]). We encode this in Pecan as follows. The
predicate palindrome(a,i,n) is true when ca,0[i..i + n] = ca,0[i..i + n]R. The predicate
factor_len(a,i,n,j) is true when ca,0[i..i+ n] = ca,0[j..j + n].
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Theorem (" Balanced ", {
∀a. ¬(∃i,n. palindrome (a,i,n) ∧

(∃j. factor_len (a,i,n,j) ∧ $C[j-1] = 0 ∧ $C[j+n] = 0) ∧
(∃k. factor_len (a,i,n,k) ∧ $C[k-1] = 1 ∧ $C[k+n] = 1))

}).

Pecan takes 321.73 seconds to prove the theorem.
Encoding the property that a word is eventually periodic is straightforward:

eventually_periodic (a, p) :=
p > 0 ∧ ∃n. ∀i. if i > n then $C[i] = $C[i+p]

The resulting automaton has 4941 states and 35776 edges, and takes 117.78 seconds to
build. We then state the theorem in Pecan, which confirms the theorem is true.

Theorem (" Aperiodic ", {
∀a. ∀p. if p > 0 then ¬eventually_periodic (a, p)

}) .

◀

Let w ∈ {0, 1}∗. We let w denote the {0, 1}-word obtained by replacing each 1 in w

by 0 and each 0 in w by 1. A word w ∈ {0, 1}∗ is an antisquare if w = vv for some
v ∈ {0, 1}∗. We define AO : (0, 1) \ Q → N ∪ {∞} to map an irrational α to the maximum
order of any antisquare in cα,0 if such a maximum exists, and to ∞ otherwise. We let
AL : (0, 1) \ Q → N ∪ {∞} map α to the maximum length of any antisquare in cα,0 if such a
maximum exists and ∞ otherwise. Note that AL(α) = 2AO(α).

We let wR denote the reversal of a word w. We say a word w is a palindrome if w = wR.
A word w ∈ {0, 1}∗ is an antipalindrome if w = wR. We set AP : (0, 1) \ Q → N ∪ {∞}
to be the map that takes an irrational α to the maximum length of any antipalindrome in
cα,0 if such a maximum, and to ∞ otherwise. We will use Pecan to prove that AO(α), AL(α)
and AP (α) are finite for every α. While the quantities AO(α), AP (α) and AL(α) can be
arbitrarily large, we prove the new results that the length of the Ostrowski representations
of these quantities is bounded, independent of α.

Let α ∈ (0, 1) be irrational and N ∈ N. Let |N |α denote the length of the α-Ostrowski
representation of N , that is the index of the last nonzero digit of α-Ostrowski representation
of N , or 0 otherwise.

▶ Theorem 36. For every irrational α ∈ (0, 1),

|AO(α)|α ≤ 4, |AP (α)|α ≤ 4, |AL(α)|α ≤ 6, AO(α) ≤ AP (α) ≤ AL(α) = 2AO(α).

There are irrational numbers α, β ∈ (0, 1) such that AO(α) = AP (α) and AP (β) = AL(β).

Proof. Using Pecan, we create automata which compute AO, AP , and AL:

AO(α, n) := has_antisquare(α, n) ∧ ∀m.has_antisquare(α,m) =⇒ m ≤ n

AP (α, n) := has_antipalindrome(α, n) ∧ ∀m.has_antipalindrome(α,m) =⇒ m ≤ n

AL(α, n) := has_antisquare_len(α, n) ∧ ∀m.has_antisquare_len(α,m) =⇒ m ≤ n

We build automata recognizing α-Ostrowski representations of at most 4 and 6 nonzero
digits, called has_4_digits(n) and has_6_digits(n). Then we use Pecan to prove all the
parts of the theorem by checking the following statement.



P. Hieronymi, D. Ma, R. Oei, L. Schaeffer, C. Schulz, and J. Shallit 24:15

Theorem ("(i), (ii), (iii), and (iv)", {
∀a. has_4_digits (max_antisquare(a)) ∧

has_4_digits ( max_antipalindrome (a)) ∧
has_6_digits (max_antisquare_len(a)) ∧
max_antisquare(a) <= max_antipalindrome (a) ∧
max_antipalindrome (a) <= max_antisquare_len(a)

}).

We also use Pecan to find examples of the equality: when α = [0; 3, 3, 1], we have AO(α) =
AP (α) = 2, and when α = [0; 4, 2, 1], we have AP (α) = AL(α) = 2. ◀

▶ Theorem 37. For every irrational α ∈ (0, 1), all antisquares and antipalindromes in cα,0
are either of the form (01)∗ or of the form (10)∗.

Proof. We begin by creating a predicate called is_all_01 stating that a subword cα,0[i..i+n]
is of the form (01)∗ or (10)∗. We do this simply stating that cα,0[k] ̸= cα,0[k + 1] for all k
with i ≤ k < i+ n− 1.

is_all_01(a,i,n) :=
∀k. if i <= k ∧ k < i+n-1 then $C[k] ̸= $C[k+1]

We can now directly state both parts of the theorem; Pecan proves both in 76.1 seconds.

Theorem ("All antisquares are of the form (01)^* or (10)^* ", {
∀a. ∀i,n. if antisquare(a,i,n) then is_all_01(a,i,n)
}).

Theorem ("All antipalindromes are of the form (01)^* or (10)^* ", {
∀a. ∀i,n. if antipalindrome(a,i,n) then is_all_01(a,i,n)
}).

◀

References
1 Jean-Paul Allouche and Jeffrey Shallit. Automatic Sequences: Theory, Applications, General-

izations. Cambridge University Press, 2003. doi:10.1017/CBO9780511546563.
2 Aseem Baranwal, Luke Schaeffer, and Jeffrey Shallit. Ostrowski-automatic sequences: Theory

and applications. Theor. Comput. Sci., 858:122–142, 2021.
3 Aseem R. Baranwal and Jeffrey Shallit. Critical exponent of infinite balanced words via the

Pell number system. In Combinatorics on words, volume 11682 of Lecture Notes in Comput.
Sci., pages 80–92. Springer, Cham, 2019. doi:10.1007/978-3-030-28796-2.

4 Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic and p-
recognizable sets of integers. Bull. Belg. Math. Soc. Simon Stevin, 1(2):191–238, 1994. Journées
Montoises (Mons, 1992). URL: http://projecteuclid.org.proxy2.library.illinois.edu/
euclid.bbms/1103408547.

5 J. Richard Büchi. On a decision method in restricted second order arithmetic. In Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pages 1–11. Stanford
Univ. Press, Stanford, Calif., 1962.

6 Daniel Goč, Dane Henshall, and Jeffrey Shallit. Automatic theorem-proving in combin-
atorics on words. Internat. J. Found. Comput. Sci., 24(6):781–798, 2013. doi:10.1142/
S0129054113400182.

7 Philipp Hieronymi. Expansions of the ordered additive group of real numbers by two discrete
subgroups. J. Symb. Log., 81(3):1007–1027, 2016. doi:10.1017/jsl.2015.34.

CSL 2022

https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1007/978-3-030-28796-2
http://projecteuclid.org.proxy2.library.illinois.edu/euclid.bbms/1103408547
http://projecteuclid.org.proxy2.library.illinois.edu/euclid.bbms/1103408547
https://doi.org/10.1142/S0129054113400182
https://doi.org/10.1142/S0129054113400182
https://doi.org/10.1017/jsl.2015.34


24:16 Decidability for Sturmian Words

8 Philipp Hieronymi, Danny Nguyen, and Igor Pak. Presburger arithmetic with algebraic scalar
multiplications. arXiv:1805.03624, 2018. arXiv:1805.03624.

9 Philipp Hieronymi and Alonza Terry Jr. Ostrowski numeration systems, addition, and
finite automata. Notre Dame J. Form. Log., 59:215–232, July 2014. doi:10.1215/
00294527-2017-0027.

10 Bakhadyr Khoussainov and Mia Minnes. Three lectures on automatic structures. In Logic
Colloquium 2007, volume 35 of Lect. Notes Log., pages 132–176. Assoc. Symbol. Logic, La
Jolla, CA, 2010.

11 Bakhadyr Khoussainov and Anil Nerode. Automata Theory and Its Applications. Birkhauser
Boston, Inc., Secaucus, NJ, USA, 2001.

12 M. Lothaire. Algebraic combinatorics on words., volume 90. Cambridge: Cambridge University
Press, 2002.

13 Hamoon Mousavi. Automatic Theorem Proving in Walnut. CoRR, abs/1603.06017, 2016.
arXiv:1603.06017.

14 Hamoon Mousavi, Luke Schaeffer, and Jeffrey Shallit. Decision algorithms for Fibonacci-
automatic words, I: Basic results. RAIRO Theor. Inform. Appl., 50(1):39–66, 2016. doi:
10.1051/ita/2016010.

15 Reed Oei, Eric Ma, Christian Schulz, and Philipp Hieronymi. Pecan. available at https:
//github.com/ReedOei/Pecan, 2020.

16 Reed Oei, Eric Ma, Christian Schulz, and Philipp Hieronymi. Pecan: An Automated Theorem
Prover for Automatic Sequences using Büchi automata. arXiv, 2021. arXiv:2102.01727.

17 Alexander Ostrowski. Bemerkungen zur Theorie der Diophantischen Approximationen. Abh.
Math. Semin. Univ. Hambg., 1(1):77–98, 250–251, Reprinted in Collected Mathematical Papers,
Vol. 3, pp. 57–80., December 1922. doi:10.1007/BF02940581.

18 Andrew M. Rockett and Peter Szüsz. Continued fractions. World Scientific Publishing Co.,
Inc., River Edge, NJ, 1992. doi:10.1142/1725.

19 Thoralf Skolem. Über einige Satzfunktionen in der Arithmetik. Skr. Norske Vidensk. Akad.,
Oslo, Math.-naturwiss. Kl., 7:1–28, 1931.

20 Faried Abu Zaid, Erich Grädel, and Frederic Reinhardt. Advice Automatic Structures and
Uniformly Automatic Classes. In Valentin Goranko and Mads Dam, editors, 26th EACSL
Annual Conference on Computer Science Logic (CSL 2017), volume 82 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 35:1–35:20, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2017.35.

A Proofs from Section 2

Proof of Lemma 12. By the definition of R, there is w1w2 · · · ∈ ((0|1)∗1(0|1)∗)ω such that
w = #w1#w2# · · · . Since wi ∈ (0|1)∗1(0|1)∗, we have that wi is a {0, 1}-word containing at
least one 1. Let ai be the natural number that ai = [wi]2. Because wi contains a 1, we must
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(Step 3) For every pair p, q of states of A for which p has a run to q on a word of the form
(0, . . . , 0)m(#, . . . ,#) for some m, we add a transition from state p to a new state ν(p, q)
on (#, . . . ,#), and for every transition out of state q, we create a copy of the transition
that starts at state ν(p, q) instead. If any original run from state p to state q passes
through a final state, we make ν(p, q) a final state.

(Step 4) Denote the resulting automaton by A′ and its set of states by Q′.

We now show that L(A′) is the zero-closure of X. We first show that the zero-closure is
contained in L(A′). Let v ∈ X and w ∈ R be such that α(v) = α(w). Let b = b1b2 · · · , c =
c1c2 ∈ ({0, 1}∗)ω such that C#(b) = v and C#(c) = w. Since α(v) = α(w), we have that
[bi]2 = [ci]2 for i ∈ N. Therefore, for each i ∈ N, the words bi and ci only differ by trailing
zeroes. Let s = s1s2 · · · ∈ Qω be an accepting run of v on A. We now transfer this run into
an accepting run s′ = s′

1s
′
2 · · · of w on A′. For i ∈ N, let y(i) be the position of the i-th

(#, . . . ,#) in v and let z(i) be the position of the i-th (#, . . . ,#) in w. For each i ∈ N, we
define a sequence s′

z(i)+1 · · · s′
z(i+1) of states of A′ as follows:

1. If |ci| = |bi|, then ci = bi. We set

s′
z(i)+1 · · · s′

z(i+1) := sy(i)+1 · · · sy(i+1).

2. If |ci| > |bi|, then ci = bi(0, . . . , 0)|ci|−|bi|. We set

s′
z(i)+1 · · · s′

z(i+1)

:= sy(i)+1 · · · sy(i+1)−1 µ(sy(i+1)−1, sy(i+1)) · · ·µ(sy(i+1)−1, sy(i+1)︸ ︷︷ ︸
(|ci|−|bi|)-times

sy(i+1)

Thus the new run follows the old run up to sy(i+1)−1 and then transitions to one of the
newly added states in the Step 2. It loops on (0, . . . , 0) for |ci| − |bi| − 1-times before
moving to sy(i+1).

3. If |ci| < |bi|, then bi = ci(0, . . . , 0)|bi|−|ci|. We set

s′
z(i)+1 · · · s′

z(i+1) := sy(i)+1 · · · sy(i)+|ci|ν(sy(i)+|ci|, sy(i+1))

The new run utilizes one of the newly added (#, . . . ,#) transitions and corresponding
states added in Step 3.

The reader can now easily check that s′ is an accepting run of w on A′.
We now show that L(A′) is contained in the zero-closure of X. We prove that the only

accepting runs on A′ are based on accepting runs on A with trailing zeroes either added or
removed. Let w = w1w2 · · · ∈ L(A′) and let c = c1c2 · · · ∈ ({0, 1}∗)ω be such that C#(c) = w.
Let s′ = s′

1s
′
2 · · · ∈ Q′ω be an accepting run of w on A′. We construct v ∈ X and a run

s = s1s2 · · · ∈ Qω of w2 on A such that α(v) = α(w) and s is an accepting run of v. We
start by setting v := w1w2 · · · and s := s′

1s
′
2 · · · . For each i ∈ N, we replace wi in v and s′

i

in s as follows:
1. If s′

i ∈ Q, then we make no changes to s′
i and wi.

2. If s′
i = µ(p, q) for some p, q ∈ Q, we delete the s′

i in s and delete wi in v.
3. If si = ν(p, q) for some p, q ∈ Q, then we replace

(a) s′
i by a run t = t1 · · · tn+1 of (0, . . . , 0)n(#, ...,#) from p to q, and

(b) wi by (0, . . . , 0)n(#, ...,#).
If ν(p, q) is a final state of A′, we choose t such that it passed through a final state of A.

It is clear that the resulting s is in Qω. The reader can check s is an accepting run of v on
A and that α(v) = α(w). Thus w is in the zero-closure of X. ◀
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Proof of Lemma 19. The statement that Afin ⊆ A, follows immediately from the definitions
of Afin and A and Fact 8. It is left to establish the ω-regularity of the two sets.

For (1): Let B ⊇ Afin be the set of all pairs (v, w) such that v ∈ R and v ∼# w. Note
that B is ω-regular. Let (v, w) ∈ B. Since v and w have infinitely many # characters and
are aligned, there are unique a = a1a2 · · · , b = b1b2 · · · ∈ ({0, 1}∗)ω such that C#(a) = v,
C#(b) = w and |ai| = |bi| for each i ∈ N. Then by Fact 6, (v, w) ∈ Afin if and only if
(a) b has finitely many 1 characters;
(b) b1 <colex a1;
(c) bi ≤colex ai for all i > 1;
(d) if bi = ai, then bi−1 = 0.

It is easy to check that all four conditions are ω-regular.
For (2): As above, let (v, w) ∈ B. Since v and w have infinitely many # characters and

are aligned, there are unique a = a1a2 · · · , b = b1b2 · · · ∈ ({0, 1}∗)ω such that C#(a) = v,
C#(b) = w and |ai| = |bi| for each i ∈ N. Then by Fact 7, (v, w) ∈ A if and only if
(e) b1 <colex a1;
(f) bi ≤colex ai for all i > 1;
(g) if bi = ai, then bi−1 = 0;
(h) bi ̸= ai for infinitely many odd i.

Again, it is easy to see that all for conditions are ω-regular. ◀

Proof of Lemma 21. We first consider injectivity. By Fact 6 and Fact 7 a number in N or
in Iα(v) only has one α(v)-Ostrowski representation. So we need only explain why such a
representation will only have one encoding in Afin

v (respectively Av). This follows from the
uniqueness of binary representations up to the length of the representation, and from the
fact that the requirement of having the # characters aligned with v determines the length of
each binary-encoded coefficient.

For surjectivity we need only explain why an α(v)-Ostrowski representation can always
be encoded into a string in Afin

v (respectively Av). It suffices to show that the requirement of
having the # characters aligned with v will never result in needing to fit the binary encoding
of a number into too few characters, i.e. that it will never result in having to encode a natural
number n in binary in fewer than 1 + ⌊log2 n⌋ characters. Since the function 1 + ⌊log2 n⌋ is
monotone increasing, we can encode any natural number below n in k characters if we can
encode n in binary in k characters. However, by Fact 6 and Fact 7, the coefficients in an
α(v)-Ostrowski representation never exceed the corresponding coefficients in the continued
fraction for α(v), i.e. bn ≤ an. ◀

Proof of Lemma 23. Recognizing 0∗ is trivial, as the Ostrowski representations of 0 are of
the form 0 · · · 0 for all irrational α. Thus 0∗ is just the relation

{(v, w) : v ∈ R,w is v with all 1 bits replaced by 0 bits}.

This is clearly ω-regular.
We now consider 1∗. Let α = [0; a1, a2, . . . ] be an irrational number. If a1 > 1, the

α-Ostrowski representations of 1 are of the form 10 · · · 0. If a1 = 1, the α-Ostrowski
representations of 1 are of the form 010 · · · 0. Thus, in order to recognize 1∗, we only need
to be able to recognize if a number in binary representation is 0, 1, or greater than 1. Of
course, this is easily done on a Büchi automaton. ◀
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Proof of Lemma 24. By Fact 8, Ov(s) = fα(α(v)Zv(s)). Thus

α(v)Zv(s) −Ov(s) = α(v)Zv(s) − fα(α(v)Zv(s)),

which is an integer by the definition of f . By the definition of 1v and by Fact 8, we
know Ov(1v) = fα(α) is the unique element of Iα(v) that differs from α(v) by an integer.
If 0 < α(v) < 1

2 , then −α(v) < α(v) < 1 − α(v). Thus in this case, α(v) ∈ Iα(v) and
Ov(1v) = α(v). When 1

2 < α(v) < 1, then −α < α− 1 < 1 − α. Therefore α(v) − 1 ∈ Iα(v)
and Ov(1v) = α(v) − 1. ◀

B Proofs from Section 3

Proof of Lemma 28. First, let v, s1, s2, s3 be such that s1, s2, s3 ∈ Afin
v . We claim that on

this domain, (s1, s2, s3) ∈ ⊕v if and only if (s1, s2, s3) ∈ ⊕fin
v . By Fact 8 we know that for all

s ∈ Afin
v

α(v)Zv(s) −Ov(s) ≡ 0 (mod 1). (3)

Let (s1, s2, s3) ∈ ⊕fin
v . Then by (3)

Ov(s3) ≡ α(v)Zv(s3) (mod 1)
= α(v)Zv(s1) + α(v)Zv(s2)
≡ Ov(s1) +Ov(s2) (mod 1).

Thus (s1, s2, s3) ∈ ⊕v.
Now suppose that (s1, s2, s3) ∈ ⊕v. Then by (3) and the definition of ⊕, we obtain that

α(v)Z(s1) + α(v)Z(s2) ≡ α(v)Z(s3) (mod 1). However, then α(v)(Z(s1) +Z(s2) −Z(s3)) ≡
0 (mod 1). Since α is irrational, we obtain Z(s1)+Z(s2)−Z(s3) = 0. Thus (s1, s2, s3) ∈ ⊕fin

v .

Thus for each v ∈ R, we have ⊕v ∩ (Afin
v )3 = ⊕fin

v . Let v ∈ R. We observe that the set
Ov(Afin

v ) is dense in Ov(Av). Since addition is continuous, it follows that Ov(⊕fin
v ) is dense

in Ov(⊕v). Since the graph of a continuous function is closed, the topological closure of
Ov(⊕fin

v ) is Ov(⊕v). Thus ⊕ is ω-regular by Corollary 26. ◀

C Proofs from Section 4

In this section we present the proof of Lemma 30. We first state and prove three lemmas
used in the proof.

▶ Lemma 38. Let v ∈ R, and let t1, t2, t3 ∈ Av be such that t1 ⊕v t2 = t3. Then

Ov(t1) +Ov(t2) =


Ov(t3) + 1 if 0v ≺v t1 and t3 ≺v t2;
Ov(t3) − 1 if t1 ≺v 0v and t2 ≺v t3;
Ov(t3) otherwise.

Proof. For ease of notation, let α = α(v), and set xi = Ov(ti) for i = 1, 2, 3. By definition
of ⊕v, we have that x1, x2, x3 ∈ Iα(v) with x1 + x2 ≡ x3 (mod 1). Note that ti ≺v tj if and
only if xi < xj .

We first consider the case that 0 < x1 and x3 < x2. Thus x1 + x2 > 1 − α. Note that

−α = 1 − α− 1 < x1 + x2 − 1 < (1 − α) + (1 − α) − 1 = 1 − 2α < 1 − α.

Thus x1 + x2 − 1 ∈ Iα and x3 = x1 + x2 − 1.
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Now assume that x1 < 0 and x2 < x3. Then x1 + x2 < −α, and therefore

1 − α > x1 + x2 + 1 ≥ (−α) + (−α) + 1 = (1 − α) − α > −α.

Thus x1 + x2 + 1 ∈ Iα and hence x3 = x1 + x2 + 1.
Finally consider that 0, x1 are ordered the same way as x2, x3. Since x1 + x2 ≡ x3

(mod 1), we know that |x1 −0| and |x3 −x2| differ by an integer k. If k > 0, would imply that
one of these differences is at least 1, which is impossible within the interval Iα. Therefore
x1 − 0 = x3 − x2 and hence x3 = x1 + x2. ◀

For i ∈ N, set iv := 1v ⊕ · · · ⊕ 1v︸ ︷︷ ︸
i times

.

▶ Lemma 39. The set F := {(v, s) ∈ Afin : Zv(s)α(v) < 1} is ω-regular, and for each
(v, s) ∈ F

Ov(s) =
{
α(v)Zv(s) if (α(v) + 1)Zv(s) < 1;
α(v)Zv(s) − 1 otherwise.

Proof. By Lemma 17, we can first consider the case that α(v) > 1
2 . In this situation, Fv is

just the set {0v,1v}, and hence obviously ω-regular.
Now assume that α(v) < 1

2 . Let w be the ≺fin
v -minimal element of Afin

v with w ≺v 0v.
We will show that

Fv = {s ∈ Afin
v : s ⪯fin

v w}.

Then ω-regularity of F follows then immediately.
Let n ∈ N be maximal such that nα(v) < 1. It is enough to show that Zv(w) = n. By

Lemma 24, Ov(1v) = α(v). Hence 1α(v), 2α(v), . . . , (n−1)α(v) ∈ Iα(v), but nα(v) > 1−α(v).
Then for i = 1, . . . , n− 1

Ov(iv) = iα(v), Ov(nv) = nα(v) − 1 < 0.

So iv ⪰ 0v for i = 1, . . . , n, but nv ≺ 0v. Thus nv = w and Zv(w) = n. ◀

▶ Lemma 40. Let v ∈ R and t ∈ Afin
v . Then there is an s ∈ Fv and t′ ∈ Afin

v such that
t′ ⪯v 0 and t = t′ ⊕v s. In particular, Afin

v = {t ∈ Afin
v : t ⪯v 0v} ⊕v Fv.

Proof of Lemma 40. Let n ∈ N be maximal such that nα < 1. Let t ∈ Afin
v . We need to

find s ∈ Afin
v and u ∈ Fv such that t = s⊕fin

v v. We can easily reduce to the case that t ≻ 0v

and Zv(t) > n.
Let i ∈ {0, . . . , n} be such that 0 ≥ Ov(t) − iα > −α. Then let s ∈ Afin

v be such that
Zv(s) = Zv(t) − i. Note t = s⊕fin

v iv. Thus we only need to show that s ⪯ 0v.
To see this, observe that by Lemma 39

Ov(s) + αi ≡ Ov(s) +Ov(iv) ≡ Ov(t) (mod 1).

Since Ov(t) − iα(v) ∈ Iα(v), we know that Ov(s) = Ov(t) − iα(v) ≤ 0. Therefore Ov(s) ⪯
0v. ◀

Proof of Lemma 30. Define B ⊆ Afin to be {(v, s) ∈ Afin : s ⪯v 0v}. Clearly, B is
ω-regular. We now define ≺B and ⊕B such that for each v ∈ R, the structure (Bv,≺B

v ,⊕B
v )

is isomorphic to (N, <,+) under the map gv defined as gv(s) = α(v)Zv(s) −Ov(s).
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We define ≺B to be the restriction of ≺fin to B. That is, for (v, s1), (v, s2) ∈ B we have

(v, s1) ≺B (v, s2) if and only if (v, s1) ≺fin (v, s2).

It is immediate that ≺B is ω-regular, since both B and ≺fin are ω-regular.
We define ⊕B as follows:

(v, s1) ⊕B (v, s2) =
{

(v, s1 ⊕v s2) if s1 ⊕fin
v s2 ⪯v 0v;

(v, s1 ⊕v s2 ⊕v 1v) otherwise.

We now show that gv(s1 ⊕B
v s2) = gv(s1) + gv(s2) for every s1, s2 ∈ Bv.

Let (v, s1), (v, s2) ∈ B. We first consider the case that s1 ⊕v s2 ⪯v 0v. By Lemma 38,
Ov(s1 ⊕v s2) = Ov(s1) +Ov(s2). Thus

gv(s1 ⊕B
v s2) = gv(s1 ⊕v s2)

= α(v)Zv(s1 ⊕v s2) −Ov(s1 ⊕v s2)
= αZv(s1) + αZv(s2) −Ov(s1) −Ov(s2)
= gv(s1) + gv(s2).

Now suppose that s1 ⊕v s2 ≻v 0v. Since −α(v) ≤ Ov(s1), Ov(s2) ≤ 0, we get that

1 − α(v) > Ov(s1) +Ov(s2) + α(v) ≥ −α(v).

Thus by Lemma 24,

Ov(s1 ⊕v s2 ⊕v 1v) = Ov(s1) +Ov(s2) + α(v).

We obtain

gv(s1 ⊕B
v s2) = gv(s1 ⊕v s2 ⊕v 1v)

= αZv(s1 ⊕v s2 ⊕v 1v) −Ov(s1 ⊕v s2 ⊕v 1v)
= α(v)

(
Zv(s1) + Zv(s2)

)
+ α(v) −Ov(s1) −Ov(s2) − α(v)

= gv(s1) + gv(s2).

Since s1 ≺v s2 if and only if Zv(s1) < Zv(s2), we get that gv is an isomorphism between
(Bv,≺B

v ,⊕B
v ) and (N, <,+).

Let C be defined by

{(v, s, t) ∈ (Σω
#)3 : (v, s) ∈ B ∧ (v, t) ∈ A}.

Clearly C is ω-regular. Let Tv : Cv → [−α(v),∞) ⊆ R map (s, t) 7→ gv(s) +Ov(t).
Note that Tv is bijective for each v ∈ R, since every real number decomposes uniquely

into a sum n+ y, where n ∈ Z and y ∈ Iv.
We define an ordering ≺C

v on Cv lexicographically: (s1, t1) ≺C
v (s2, t2) if either

Table 1 Definitions of sets used in the proof.

Name Definition
A {(v, w) : v ∈ R, w is a #-v-Ostrowski representation}

Afin {(v, w) : v ∈ R, w is a #-v-Ostrowski representation and eventually 0}
B {(v, s) ∈ Afin : s ⪯v 0v}
C {(v, s, t) : (v, s) ∈ B ∧ (v, t) ∈ A}
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s1 ≺B
v s2, or

s1 = s2 and t1 ≺v t2.
The set

{(v, s1, t1, s2, t2) : (s1, t1), (s2, t2) ∈ Cv ∧ (s1, t1) ≺C
v (s2, t2)}

is ω-regular. We can easily check that (s1, t1) ≺C
v (s2, t2) if and only if Tv(s1, t1) < Tv(s2, t2).

Let 0B be g−1
v (0) and 1B be g−1

v (1). Let ⊖B be the (partial) inverse of ⊕B . We define
⊕C for (s1, t1), (s2, t2) ∈ C as follows:

(s1, t1) ⊕C
v (s2, t2) =


(s1 ⊕B

v s2 ⊖B 1B , t1 ⊕v t2) if t1 ≺ 0v ∧ t2 ≺v t1 ⊕v t2;
(s1 ⊕B

v s2 ⊕B
v 1B , t1 ⊕v t2) if 0v ≺ t1 ∧ t1 ⊕v t2 ≺v t2;

(s1 ⊕B
v s2, t1 ⊕v t2) otherwise.

(Note that ⊕C is only a partial function, as the case where s1 = s2 = 0B and t1 ≺ 0v ∧ t2 ≺v

t1 ⊕v t2 is outside of the domain of ⊖B .) It is easy to check that ⊕C is ω-regular. It follows
directly from Lemma 38 that

Tv((s1, t1) ⊕C
v (s2, t2)) = Tv((s1, t1)) + Tv((s2, t2)).

Thus for each v ∈ R, the function Tv is an isomorphism between (Cv,≺C
v ,⊕C

v ) and
([−α(v),∞), <,+). To finish the proof, it is left to establish the ω-regularity of the fol-
lowing two sets:
1. {(v, s, t) ∈ C : Tv(s, t) ∈ N},
2. {(v, s, t) ∈ C : Tv(s, t) ∈ α(u)N}.

For (1), observe that the set T−1
v (N) is just the set {(s, t) ∈ Cv : t = 0v}.

For (2), consider the following two sets:
U1 = {(v, s, t) ∈ C : s = t},
U2 = {(v,0v, t) ∈ C : t ∈ Fv}.

Let 1C
v be T−1

v (1). Set

U := {(v, (s1, t1) ⊕c
v (0v, t2)) : (v, s1, t1) ∈ U1, (v,0v, t2) ∈ U2, t2 ⪰ 0}

∪ {(v, (s1, t1) ⊕c
v (0v, t2) ⊕ 1C

v ) : (v, s1, t1) ∈ U1, (v,0v, t2) ∈ U2, t2 ≺ 0}

The set U is clearly ω-regular, since both U1 and U2 are ω-regular. We now show that
Tv(U) = α(v)N.

Let (v, s, s) ∈ U1 and (v,0v, t) ∈ U2. If t ⪰ 0v, then by Lemma 39

Tv((s, s) ⊕C (0v, t)) = Tv(s, s) + Tv(0v, t)
= α(v)Zv(s) −Ov(s) +Ov(s) +Ov(t)
= α(v)Zv(s) + α(v)Zv(t) = α(v)Zv(s⊕v t).

Table 2 A list of the maps and their domains and codomains.

Map Domain Codomain
α R Irr

Ov Av Iα(v)

Zv Afin
v N

gv := α(v)Zv − Ov Bv N
Tv := gv + Ov Cv [−α(v), ∞) ⊆ R
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If t ≺ 0v, then by Lemma 39

Tv((s, s) ⊕C
v (0v, t) ⊕C

v 1C
v ) = Tv(s, s) + Tv(0v, t) + 1

= α(v)Zv(s) −Ov(s) +Ov(s) +Ov(t) + 1
= α(v)Zv(s) + α(v)Zv(t) = α(v)Zv(s⊕v t).

Thus Tv(U) ⊆ α(v)N. By Lemma 40, Tv(U) = α(v)N. ◀
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Abstract
We establish a tight connection between two models of the λ-calculus, namely Milner’s encoding
into the π-calculus (precisely, the Internal π-calculus), and operational game semantics (OGS). We
first investigate the operational correspondence between the behaviours of the encoding provided by
π and OGS.

We do so for various LTSs: the standard LTS for π and a new “concurrent” LTS for OGS; an
“output-prioritised” LTS for π and the standard alternating LTS for OGS. We then show that the
equivalences induced on λ-terms by all these LTSs (for π and OGS) coincide.

These connections allow us to transfer results and techniques between π and OGS. In particular
we import up-to techniques from π onto OGS and we derive congruence and compositionality
results for OGS from those of π. The study is illustrated for call-by-value; similar results hold for
call-by-name.
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1 Introduction

The topic of the paper is the comparison between Operational Game semantics (OGS) and
the π-calculus, as generic models or frameworks for the semantics of higher-order languages.

Game semantics [4, 20] provides intentional models of higher-order languages, where the
denotation of a program brings up its possible interactions with the surrounding context.
Distinct points of game semantics are the rich categorical structure and the emphasis on
compositionality. Game semantics provides a modular characterization of higher-order
languages with computational effects like control operators [25], mutable store [3, 5] or
concurrency [15, 27]. This gives rise to the “Semantic Cube” [2], a characterization of the
absence of such computational effects in terms of appropriate restrictions on the interactions,
with conditions like alternation, well-bracketing, visibility or innocence. For instance, well-
bracketing corresponds to the absence of control operators like call/cc.

Game semantics has spurred Operational Game Semantics (OGS) [16,23, 24, 28, 30], as a
way to describe the interactions of a program with its environment by embedding programs
into appropriate configurations and then defining rules that turn such configurations into
an LTS. Besides minor differences on the representation of causality between actions, the
main distinction with “standard” game semantics is in the way in which the denotation
of programs is obtained: via an LTS, rather than, compositionally, by induction on the
structure of the programs (or their types). It is nonetheless possible to establish a formal
correspondence between these two representations [30].
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OGS is particularly effective on higher-order programs. To avoid being too intensional,
functional values exchanged between the program and its environment are represented as
atoms, seen as free variables. Therefore OGS configurations include open terms. The basic
actions in the LTS produced by OGS represent the calls and returns of functions between a
program and its environment. The OGS semantics has been shown fully-abstract, that is, to
characterize observational equivalence, for a wide class of programming languages, including
effectful subsets of ML [22,28], fragments of Java [24], aspect-oriented programs [23]. The
conditions in the above-mentioned Semantic Cube (alternation, well-bracketing, etc.) equally
apply to OGS.

In this paper, we consider forms of OGS for the pure untyped call-by-value λ-calculus,
which enforce some of such conditions. Specifically we consider: an Alternating OGS, where
only one term can be run at a time, and the control on the interactions alternates between
the term and the environment; and a Concurrent OGS, where multiple terms can be run in
parallel.

The π-calculus is the paradigmatical name-passing calculus, that is, a calculus where
names (a synonym for “channels”) may be passed around. In the literature about the
π-calculus, and more generally in Programming Language theory, Milner’s work on functions
as processes [33], which shows how the evaluation strategies of call-by-name λ-calculus and
call-by-value λ-calculus [1, 35] can be faithfully mimicked, is generally considered a landmark.
The work promotes the π-calculus to be a model for higher-order programs, and provides
the means to study λ-terms in contexts other than the purely sequential ones and with the
instruments available to reason about processes. In the paper, π-calculus is actually meant to
be the Internal π-calculus (Iπ), a subset of the original π-calculus in which only fresh names
may be exchanged among processes [41]. The use of Iπ avoids a few shortcomings of Milner’s
encodings, notably for call-by-value; e.g., the failure of the βv rule (i.e., the encodings of
(λx. M)V and M{V/x} may be behaviourally distinguishable in π).

Further investigations into Milner’s encodings [11,42] have revealed what is the equivalence
induced on λ-terms by the encodings, whereby two λ-terms are equal if their encodings are
behaviourally equivalent (i.e., bisimilar) Iπ terms. In call-by-value, this equivalence is eager
normal-form bisimilarity [29], a tree structure proposed by Lassen (and indeed sometimes
referred to as “Lassen’s trees”) as the call-by-value counterpart of Böhm Trees (or Lévy-Longo
Trees).

In a nutshell, when used to give semantics to a language, major strengths of the π-calculus
are its algebraic structure and the related algebraic properties and proof techniques; major
strengths of OGS are its proximity to the source language – the configurations of OGS are
built directly from the terms of the source language, as opposed to an encoding as in the
π-calculus – and its flexibility – the semantics can be tuned to account for specific features
of the source language like control operators or references.

The general goal of this paper is to show that there is a tight and precise correspond-
ence between OGS and π-calculus as models of programming languages and that such a
correspondence may be profitably used to take advantage of the strengths of the two models.
We carry out the above program in the specific case of (untyped) call-by-value λ-calculus,
ΛV, which is richer and (as partly suggested above) with some more subtle aspects than
call-by-name. However similar results also hold for call-by-name; see [21] for the technical
details for more comments on it. Analogies and similarities between game semantics and
π-calculus have been pointed out in various papers in the literature (e.g., [6,19]; see Section 9),
and used to, e.g., explain game semantics using π-like processes, and enhance type systems
for π-terms. In this paper, in contrast, we carry out a direct comparison between the two
models, on their interpretation of functions.
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We take the (arguably) canonical representations of ΛV into Iπ and OGS. The latter
representation is Milner’s encoding, rewritten in Iπ. We consider two variant behaviours for
the Iπ terms, respectively produced by the ordinary LTS of Iπ, and by an “output-prioritised”
LTS, opLTS, in which input actions may be observed only in the absence of outputs and
internal actions. Intuitively, the opLTS is intended to respect sequentiality constraints in the
Iπ terms: an output action stands for an ongoing computation (for instance, returning the
result of a previous request) whereas an input action starts a new computation (for instance,
a request of a certain service); therefore, in a sequential system, an output action should
have priority over input actions. For OGS, the ΛV representation is the straightforward
adaptation of the OGS representations of typed λ-calculi in the literature, e.g., [28].

We then develop a thorough comparison between the behaviours of the OGS and Iπ
representations. For this we define a mapping from OGS configurations to Iπ processes.
We also exploit the fact that, syntactically, the actions in the OGS and Iπ LTSs are the
same. We derive a tight correspondence between the two models, which allows us to transfer
techniques and to switch freely between the two models in the analysis of the OGS and Iπ
representations of ΛV, so to establish new results or obtain new proofs. On these aspects,
our main results are the following:

1. We show that the representation of ΛV in the Alternating OGS is behaviourally the same
as the representation in Iπ assuming the opLTS. Thus the semantics on λ-terms induced
by the OGS and Iπ representations coincide. The same results are obtained between the
Concurrent OGS and Iπ under its ordinary LTS.

2. We transfer “bisimulation up-to techniques” for Iπ, notably a form of “up-to context”,
onto (Concurrent) OGS. The result is a powerful technique, called “up-to composition”
that allows us to split an OGS configuration into more elementary configurations during
the bisimulation game.

3. We show that the semantics induced on ΛV by the Alternating and by the Concurrent
OGS are the same, both when the equality in OGS is based on traces and when it is based
on bisimulation. In other words, all the OGS views of ΛV (Alternating or Concurrent,
traced-based or bisimulation-based) coincide. Moreover, we show that such induced
semantics is the equality of Lassen’s trees. We derive the result in two ways: one in which
we directly import it from Iπ; the other in which we lift eager normal-form bisimulations
into OGS bisimulations via the up-to-composition technique.

4. We derive congruence and compositionality properties for the OGS semantics, as well as
a notion of tensor product over configurations that computes interleavings of traces.

The results about OGS in (2-4) are obtained exploitingthe mapping into Iπ and its
algebraic properties and proof techniques, as well as the up-to-composition technique for
OGS imported from Iπ.

Structure of the paper. Sections 2 to 5 contain background material: general notations,
Iπ, ΛV, the representations of ΛV in the Alternating OGS (A-OGS) and in Iπ. The following
sections contain the new material. In Section 6 we study the relationship between the two
ΛV representations, in Iπ using the output-prioritised LTS. In Section 7 we establish a similar
relationship between a new Concurrent OGS (C-OGS) and Iπ using its ordinary LTS. We
also transport up-to techniques onto OGS, and prove that all the semantics of ΛV examined
(OGS, Iπ, traces, bisimulations) coincide. We import compositionality results for OGS from
Iπ in Section 8.
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2 Notations

In the paper, we use various LTSs and behavioural relations for them, both for OGS and for
the π-calculus. In this section, we introduce or summarise common notations.

We use a tilde, like in ã, for (possibly empty) tuples of objects (usually names). Let
K

µ−→g K ′ be a generic LTS (for OGS or Iπ; the grammar for actions in the LTSs for OGS
and Iπ will be the same). Actions, ranged over by µ, can be of the form a(̃b), a(̃b), τ , and (ã),
where τ , called silent or (invisible) action, represents an internal step in K, that is, an action
that does not require interaction with the outside, and (ã) is a special action performed by
abstractions in Iπ and initial configurations in OGS. If µ ̸= τ then µ is a visible action; we
use ℓ to range over them. We sometimes abbreviate τ−→g as −→g. We write =⇒g for the
reflexive and transitive closure of τ−→g. We also write K

µ=⇒g K ′ if K =⇒g
µ−→g=⇒g K ′

(the composition of the three relations. Then µ̂=⇒g is µ=⇒g if µ ̸= τ , and =⇒g if µ = τ .
Traces, ranged over by s, are finite (and possibly empty) sequences of visible actions.

If s = ℓ1, . . . , ℓn (n ≥ 0), then K
s=⇒g K ′ holds if there are K0, . . . , Kn with K0 = K,

Kn = K ′, and Ki
ℓi+1=⇒g Ki+1 for 0 ≤ i < n; and K

s=⇒g if there is K ′ with K
s=⇒g K ′.

Two states K1, K2 of the LTS are trace equivalent, written K1 ≏g K2, if (K1
s=⇒g iff

K2
s=⇒g), for all s.

Similarly, bisimilarity, written ≈g, is the largest symmetric relation on the state of the

LTS such that whenever K1 ≈g K2 then K1
µ=⇒g K ′

1 implies there is K ′
2 with K2

µ̂=⇒g K ′
2

and K ′
1 ≈g K ′

2. For instance, in the Iπ LTS µ−→π of Section 3.1, P ≏π Q means that the Iπ
processes P and Q are trace equivalent, and P ≈π Q means that they are bisimilar.

▶ Remark 1 (bound names). In an action a(̃b) or a(̃b) or (̃b), name a is free whereas b̃ are
bound; the free and bound names of a trace are defined accordingly. Throughout the paper,
in any statement (concerning OGS or Iπ), the bound names of an action or of a trace that
appears in the statement are supposed to be all fresh; i.e., all distinct from each other and
from the free names of the objects in the statement.

3 Background

3.1 The Internal π-calculus
The Internal π-calculus, Iπ, is, intuitively, a subset of the π-calculus in which all outputs
are bound. This is syntactically enforced by having outputs written as a(̃b) (which in the
π-calculus would be an abbreviation for ν b̃ a⟨̃b⟩). All tuples of names in Iπ are made of
pairwise distinct components. Abstractions are used to write name-parametrised processes,
for instance, when writing recursive process definitions. The instantiation of the parameters
of an abstraction B is done via the application construct B⟨ã⟩. Processes and abstractions
form the set of agents, ranged over by T . Lowercase letters a, b, . . . , x, y, . . . range over the
infinite set of names. The grammar of Iπ is thus:

P ≜ 0 | a(̃b). P | a(̃b). P | νa P | P1 | P2 | !a(̃b). P | B⟨ã⟩ (processes)
B ≜ (ã) P | K (abstractions)

The operators have the usual meaning; we omit the standard definition of free names, bound
names, and names of an agent, respectively indicated with fn(−), bn(−), and n(−).
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In the grammar, K is a constant, used to write recursive definitions. Each constant K has
a defining equation of the form K ≜ (x̃) P , where (x̃) P is name-closed (that is, without free
names); x̃ are the formal parameters of the constant. Replication could be avoided in the
syntax since it can be encoded with recursion. However, its semantics is simple, and it is
useful in encodings.

An application redex ((x̃)P )⟨ã⟩ can be normalised as P{ã/x̃}. An agent is normalised if
all such application redexes have been contracted. In the remainder of the paper we identify
an agent with its normalised expression.

Since the calculus is polyadic, we assume a sorting system [32] to avoid disagreements in
the arities of the tuples of names Being not essential, it will not be presented here.

Operational semantics and behavioural relations

In the LTS for Iπ, recalled in [21] transitions are of the form T
µ−→π T ′, where the bound

names of µ are fresh, i.e., they do not appear free in T .
Trace equivalence (≏π) and bisimilarity (≈π) have been defined in Section 2. We refer

to [21] for the standard definition of expansion, written ≲π. (The expansion relation ≲π is
an asymmetric variant of ≈π in which, intuitively, P ≲π Q holds if P ≈π Q but also Q has
at least as many τ -moves as P .) All behavioural relations are extended to abstractions by
requiring ground instantiation of the parameters; this is expressed by means of a transition;
e.g., the action (x̃) P

(x̃)−→π P .

The “up-to” techniques

The “up-to” techniques allow us to reduce the size of a relation R to exhibit for proving
bisimilarities. Our main up-to technique will be up-to context and expansion [40], which
admits the use of contexts and of behavioural equivalences such as expansion to achieve the
closure of a relation in the bisimulation game. So the bisimulation clause becomes:

if P R Q and P
µ−→ P ′′ then there are a static context Cctx and processes P ′ and Q′ s.t.

P ′′
π≳ Cctx[P ′], Q

µ̂=⇒ π≳ Cctx[Q′] and P ′ R Q′ (∗)
where a static context is a context of the form ν c̃ (R | [·]).

We will also employ: bisimulation up-to ≈π [31], whereby bisimilarity itself is employed
to achieve the closure of the candidate relation during the bisimulation game; a variant
of bisimulation up-to context and expansion, called bisimulation up-to context and up-to
(π≳, ≈π), in which, in (∗), when µ is a visible action, expansion is replaced by the coarser
bisimilarity, at the price of imposing that the static context Cctx cannot interact with the
processes P or Q. (This technique, as far as we know, does not appear in the literature.)
Details on these techniques may be found in [21].

3.2 The Call-By-Value λ-calculus
The grammar of the untyped call-by-value λ-calculus, ΛV, has values V , terms M , evaluation
contexts E, and general contexts C:

Vals V ≜ x | λx. M

Terms M, N ≜ V | MN

ECtxs E ≜ [·] | V E | EM

Ctxs C ≜ [·] | λx. C | MC | CM

where [·] stands for the hole of a context. The call-by-value reduction →v has two rules:

(λx. M)V →v M{V/x}
M →v N

E[M ] →v E[N ]
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In the following, we write M ⇓ M ′ to indicate that M ⇒v M ′ with M ′ an eager normal
form, that is, either a value or a stuck call E[xV ].

4 Operational Game Semantics

We introduce the representation of ΛV in OGS. The LTS produced by the embedding of a
term intends to capture the possible interactions between this term and its environment.
Values exchanged between the term and the environment are represented by names, akin to
free variables, called variable names and ranged over by x, y, z. Continuations (i.e., evaluation
contexts) are also represented by names, called continuation names and ranged over by p, q, r.

Actions µ have been introduced in Section 2. In OGS, we have five kinds of (visible)
actions:

Player Answers (PA), p̄(x), and Opponent Answers (OA), p(x), that exchange a variable
x through a continuation name p;
Player Questions (PQ), x̄(y, p), and Opponent Questions (OQ), x(y, p), that exchange a
variable y and a continuation name p through a variable x;
Initial Opponent Questions (IOQ), (p), that introduce the initial continuation name p.

▶ Remark 2. The denotation of terms is usually represented in game semantics using the
notion of pointer structure rather than traces. A pointer structure is defined as a sequence of
moves, together with a pointer from each move (but the initial one) to a previous move that
“justifies” it. Taking a trace s, one can reconstruct this pointer structure in the following way:
an action µ is justified by an action µ′ if the free name of µ is bound by µ′ in s (here we are
taking advantage of the “freshness” convention on the bound names of traces, Remark 1).

Environments, ranged over by γ, maintain the association from names to values and
evaluations contexts, and are partial maps. A single mapping is either of the form [x 7→ V ]
(the variable x is mapped onto the value V ), or [p 7→ (E, q)] (the continuation name p is
mapped onto the pair of the evaluation context E and the continuation q).

There are two main kinds of configurations F : active configurations ⟨M, p, γ, ϕ⟩ and
passive configurations ⟨γ, ϕ⟩, where M is a term, p a continuation name, γ an environment
and ϕ a set of names called its name-support. Names in dom(γ) are called P-names, and
those in ϕ\dom(γ) are called O-names. So we obtain a polarity function polF associated to
F , defined as the partial maps from ϕ to {O, P } mapping names to their polarity. In the
following, we only consider valid configurations, for which:

dom(γ) ⊆ ϕ

fv(M), p are O-names;
for all a ∈ dom(γ), the names appearing in γ(a) are O-names.

The LTS is introduced in Figure 1. It is called Alternating, since, forgetting the Pτ

transition, it is bipartite between active configurations that perform Player actions and
passive configurations that perform Opponent actions. Accordingly, we call Alternating the
resulting OGS, abbreviated A-OGS. In the OA rule, E is “garbage-collected” from γ, a
behavior corresponding to linear continuations.

The term of an active configuration determines the next transition performed. First,
the term needs to be reduced, using the rule (Pτ). When the term is a value V , a Player
Answer (PA) is performed, providing a fresh variable x to Opponent, while V is stored in γ

at position x. Freshness is enforced using the disjoint union ⊎. When the term is a callback
E[xV ], with p the current continuation name, a Player Question (PQ) at x is performed,
providing two fresh names y, q to Opponent, while storing V at y and (E, p) at q in γ.
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(Pτ) ⟨M, p, γ, ϕ⟩ τ−→a ⟨N, p, γ, ϕ⟩ when M →v N

(PA) ⟨V, p, γ, ϕ⟩ p̄(x)−→a ⟨γ · [x 7→ V ], ϕ ⊎ {x}⟩
(PQ) ⟨E[xV ], p, γ, ϕ⟩ x̄(y,q)−→ a ⟨γ · [y 7→ V ] · [q 7→ (E, p)], ϕ ⊎ {y, q}⟩
(OA) ⟨γ · [q 7→ (E, p)], ϕ⟩ q(x)−→a ⟨E[x], p, γ, ϕ ⊎ {x}⟩
(OQ) ⟨γ, ϕ⟩ x(y,p)−→ a ⟨V y, p, γ, ϕ ⊎ {y, p}⟩ when γ(x) = V

(IOQ) ⟨[? 7→ M ], ϕ⟩ (p)−→a ⟨M, p, ε, ϕ ⊎ {p}⟩

Figure 1 The LTS for the Alternating OGS (A-OGS).

V[[V ]] ≜ (p) p(y). V∗[[V ]]⟨y⟩ V∗[[λx. M ]] ≜ (y) !y(x, q). V[[M ]]⟨q⟩ V∗[[x]] ≜ (y) y ▷ x

V[[MN ]] ≜ (p) νq
(
V[[M ]]⟨q⟩ | q(y). νr

(
V[[N ]]⟨r⟩ | r(w). y(w′, p′). (w′ ▷ w | p′ ▷ p)

))
Figure 2 The encoding of call-by-value λ-calculus into Iπ.

On passive configurations, Opponent has the choice to perform different actions. It can
perform an Opponent Answer (OA) by interrogating an evaluation context E stored in γ.
For this, Opponent provides a fresh variable x that is plugged into the hole of E, while
the continuation name q associated to E in γ is restored. Opponent may also perform
an Opponent Question (OQ), by interrogating a value V stored in γ. For this, Opponent
provides a fresh variable y as an argument to V .

To build the denotation of a term M , we introduce an initial configuration associated
with it, written ⟨[? 7→ M ], ϕ⟩, with ϕ the set of free variables we start with. When this set is
taken to be the free variables of M , we simply write it as ⟨M⟩. In the initial configuration,
the choice of the continuation name p is made by performing an Initial Opponent question
(IOQ). (Formally, initial configurations should be considered as passive configurations.)

5 The encoding of call-by-value λ-calculus into the π-calculus

We recall here Milner’s encoding of call-by-value λ-calculus, transplanted into Iπ. The core of
any encoding of the λ-calculus into a process calculus is the translation of function application.
This becomes a particular form of parallel combination of two processes, the function, and
its argument; β-reduction is then modelled as a process interaction.

As in OGS, so in Iπ the encoding uses continuation names p, q, r, . . . , and variable names
x, y, v, w . . . . Figure 2 presents the encoding. Process a ▷ b represents a link (sometimes
called forwarder; for readability we have adopted the infix notation a ▷ b for the constant ▷).
It transforms all outputs at a into outputs at b thus the body of a ▷ b is replicated, unless a

and b are continuation names:

▷ ≜

{
(p, q). p(x). q(y). y ▷ x if p, q are continuation names
(x, y). !x(z, p). y(w, q). (q ▷ p | w ▷ z) if x, y are variable names

The equivalence induced on call-by-value λ-terms by their encoding into Iπ coincides with
Lassen’s eager normal-form (enf) bisimilarity [29]. That is, V[[M ]] ≈π V[[N ]] iff M and N

are enf-bisimilar [11]. In proofs about the behaviour of the Iπ representation of λ-terms we
sometimes follow [11] and use an optimisation of Milner’s encoding, reported in [21].
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Encoding of environments: Encoding of configurations:
V[[[y 7→ V ] · γ′]] ≜ V∗[[V ]]⟨y⟩ | V[[γ′]]

V[[[q 7→ (E, p)] · γ′]] ≜ q(x). V[[E[x]]]⟨p⟩ | V[[γ′]]
V[[ε]] ≜ 0

V[[⟨M, p, γ, ϕ⟩]] ≜ V[[M ]]⟨p⟩ | V[[γ]]
V[[⟨γ, ϕ⟩]] ≜ V[[γ]]

V[[⟨[? 7→ M ], ϕ⟩]] ≜ V[[M ]]

Figure 3 From OGS environments and configurations to Iπ.

6 Relationship between Iπ and A-OGS

To compare the A-OGS and Iπ representations of the (call-by-value) λ-calculus, we set a
mapping from A-OGS configurations and environments to Iπ processes. The mapping is
reported in Figure 3. It is an extension of Milner’s encoding of the λ-calculus and is therefore
indicated with the same symbol V . The mapping uses a representation of environments γ as
associative lists.

▶ Remark 3. The encoding of a configuration F with name-support ϕ does not depend
on ϕ. This name-support ϕ is used in OGS both to enforce freshness of names, and to
deduce the polarity of names, as represented by the function pol. And indeed, the process
V[[F ]] has its set of free names included in ϕ, and uses P -names in outputs and O-names in
inputs. The polarity property could be stated in π-calculus using i/o-sorting [34]. Indeed, a
correspondence between arenas of game semantics (used to enforce polarities of moves) and
sorting has been explored [18,19].

6.1 Operational correspondence

The following theorems establish the operational correspondence between the A-OGS and
Iπ representations. In Theorem 4, as well as in following theorems such as Theorems 5, 7,
and 13, the appearance of the expansion relation π≳ (in place of the coarser ≈π), in the
statement about silent actions, is essential, both to derive the statement in the theorems
about visible actions and to use the theorems in up-to techniques for Iπ (more generally, in
applications of the theorems in which one reasons about the number of steps performed).

▶ Theorem 4.
1. If F =⇒a F ′, then V[[F ]] =⇒π π≳ V[[F ′]];

2. If F
ℓ=⇒a F ′, then V[[F ]] ℓ=⇒π ≈π V[[F ′]].

▶ Theorem 5.
1. If V[[F ]] =⇒π P then there is F ′ such that F =⇒a F ′ and P π≳ V[[F ′]] ;

2. If V [[F ]] ℓ=⇒π P and ℓ is an output, then there is F ′ such that F
ℓ=⇒a F ′ and P π≳ V [[F ′]];

3. If F is passive and V [[F ]] ℓ=⇒π P , then there is F ′ such that F
ℓ=⇒a F ′ and P ≈π V [[F ′]].

In Theorem 5, a clause is missing for input actions from V [[F ]] when F active. Indeed such
actions are possible in Iπ, stemming from the (encoding of the) environment of F , whereas
they are not possible in A-OGS. This is rectified in Section 6.2, introducing a constrained
LTS for Iπ, and in Section 7, considering a concurrent OGS.

▶ Corollary 6. If F
s=⇒a then also V[[F ]] s=⇒π.
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6.2 An output-prioritised Transition System
We define an LTS for Iπ in which input actions are visible only if no output can be consumed,
either as a visible action or through an internal action (i.e., syntactically the process has
no unguarded output). The new LTS, called output-prioritised and indicated as opLTS, is
defined on the top of the ordinary one by means of the two rules below. A process P is input
reactive if whenever P

µ−→π P ′, for some µ, P ′ then µ is an input action.

P
µ−→π P ′ P input reactive

P
µ−→oπ P ′

P
µ−→π P ′

P
µ−→oπ P ′

µ is an output or τ action

The opLTS captures an aspect of sequentiality in π-calculi: a free input prefix is to be
thought of as a service offered to the external environment; in a sequential system such a
service is available only if there is no ongoing computations due to previous interrogations
of the server. An ongoing computation is represented by a τ -action, indicating a step of
computation internal to the server, or an output, indicating either an answer to a client
or a request to an external server. The constraint imposed by the new LTS could also be
formalised compositionally, see [21].

Under the opLTS, the analogous of Theorem 4 continue to hold: in A-OGS configurations,
input transitions only occur in passive configurations, and the encodings of passive configura-
tions are input-reactive processes. However, now we have the full converse of Theorem 5 and,
as a consequence, we can also establish the converse direction of Corollary 6.

▶ Theorem 7.
1. If V[[F ]] τ=⇒oπ P then there is F ′ such that F =⇒a F ′ and P π≳ V[[F ′]] ;
2. If V[[F ]] ℓ=⇒oπ P then there is F ′ such that F

ℓ=⇒a F ′ and P ≈π V[[F ′]].

▶ Corollary 8. For any configuration F and trace s, we have F
s=⇒a iff V[[F ]] s=⇒oπ.

▶ Remark 9. We recall that, following Remark 1 on the usage of bound names, in Corollary 8
the bound names in s are fresh; thus they do not appear in F . (Similarly, in Theorems 5
and 7 for the bound names in ℓ).

For both results we first establish a correspondence result on strong transitions. See [21]
for details.
▶ Remark 10. Corollary 8 relies on Theorems 4 and 7. The corollary talks about the opLTS
of Iπ; however the theorems make use of the ordinary expansion relation ≲π, that is defined
on the ordinary LTS. Such uses of expansion can be replaced by expansion on the opLTS
(defined as ordinary expansion but on the opLTS). For more details on this, see [21].

As a consequence of Corollary 8, trace equivalence is the same, on A-OGS configurations
and on the encoding Iπ terms. Moreover, from Theorem 7 the same result holds under a
bisimulation semantics. Further, since the LTS produced by A-OGS is deterministic, its trace
semantics coincides with its bisimulation semantics. We can thus conclude as in Corollary 11.
We recall that ≏oπ and ≈oπ are, respectively, trace equivalence and bisimilarity between Iπ
processes in the opLTS; similarly for ≏a and ≈a between A-OGS terms.

▶ Corollary 11. For any F, F ′ we have: F ≏a F ′ iff V[[F ]] ≏oπ V[[F ′]] iff F ≈a F ′ iff
V[[F ]] ≈oπ V[[F ′]].

Corollary 11 holds in particular when F is the initial configuration for a λ-term. That is,
the equality induced on call-by-value λ-terms by their representation in A-OGS and in Iπ
(under the opLTS) is the same, both employing traces and employing bisimulation to handle
the observables for the two models.
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(Pτ) ⟨A · [p 7→ M ], γ, ϕ⟩ τ−→c ⟨A · [p 7→ N ], γ, ϕ⟩ when M →v N

(PA) ⟨A · [p 7→ V ], γ, ϕ⟩ p̄(x)−→c ⟨A, γ · [x 7→ V ], ϕ ⊎ {x}⟩
(PQ) ⟨A · [p 7→ E[xV ]], γ, ϕ⟩ x̄(y,q)−→ c ⟨A, γ · [y 7→ V ] · [q 7→ (E, p)], ϕ ⊎ {y, q}⟩
(OA) ⟨A, γ · [p 7→ (E, q)], ϕ⟩ p(x)−→c ⟨A · [q 7→ E[x]], γ, ϕ ⊎ {x}⟩
(OQ) ⟨A, γ, ϕ⟩ x(y,p)−→ c ⟨A · [p 7→ V y], γ, ϕ ⊎ {y, p}⟩ when γ(x) = V

(IOQ) ⟨[? 7→ M ], ϕ⟩ (p)−→c ⟨[p 7→ M ], ε, ϕ ⊎ {p}⟩

Figure 4 The LTS for the Concurrent OGS.

▶ Corollary 12. For any λ-terms M, N , we have:
⟨M⟩ ≏a ⟨N⟩ iff ⟨M⟩ ≈a ⟨N⟩ iff V[[M ]] ≏oπ V[[N ]] iff V[[M ]] ≈oπ V[[N ]].

From Theorem 5 and Corollary 8, it also follows that F and V[[F ]] are weakly bisimilar,
on the union of the respective LTSs.

7 Concurrent Operational Game Semantics

In this section, we explore another way to derive an exact correspondence between OGS and
Iπ, by relaxing the Alternating LTS for OGS so to allow multiple terms in configurations to
run concurrently. We refer to the resulting OGS as the Concurrent OGS, briefly C-OGS (we
recall that A-OGS refers to the Alternating OGS of Section 4).

We introduce running terms, ranged over by A, B, as finite mappings from continuation
names to λ-terms. A concurrent configuration is a triple ⟨A, γ, ϕ⟩ of a running term A, an
environment γ, and a set of names ϕ. Moreover, the domains of A and γ must be disjoint.
We extend the definition of the polarity function, considering names in the domain of both
A and γ as Player names.

Passive and active configurations can be seen as special case of C-OGS configurations
with zero and one running term, respectively. For this reason we still use F, G to range
over C-OGS configurations. Moreover we freely take A-OGS configurations to be C-OGS
configurations, and conversely for C-OGS configurations with zero and one running term,
omitting the obvious syntactic coercions. Both the running term and the environment may
be empty.

We present the rules of C-OGS in Figure 4. Since there is no more distinction between
passive and active configurations, a given configuration can perform both Player and Opponent
actions. Notice that only Opponent can add a new term to the running term A. A singleton
is a configuration F whose P-support has only one element (that is, in C-OGS, F is either of
the form ⟨[p 7→ M ], ε, ϕ⟩, or ⟨ε, [x 7→ V ], ϕ⟩, or ⟨ε, [p 7→ (E, q)], ϕ⟩).

In this and in the following section F, G ranges over C-OGS configurations, as reminded
by the index “c” in the symbols for LTS and behavioural equivalence with which F, G appear
(e.g., ≏c).

7.1 Comparison between C-OGS and Iπ
The encoding of C-OGS into Iπ is a simple adaptation of that for A-OGS. We only have
to consider the new or modified syntactic elements of C-OGS, namely running terms and
configurations; the encoding remains otherwise the same. The encoding of running term is:

V[[[p 7→ M ] · A]] def= V[[M ]]⟨p⟩ | V [[A]] V[[ε]] def= 0
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The encoding of configurations is then defined as: V[[⟨A, γ, ϕ⟩]] def= V[[A]] | V [[γ]].
The results about operational correspondence between C-OGS and Iπ are as those between

A-OGS and Iπ under the opLTS.

▶ Theorem 13.
1. If F =⇒c F ′ then V[[F ]] =⇒ππ≳ V[[F ′]];
2. if F

ℓ=⇒c F ′ then V[[F ]] ℓ=⇒π≈π V[[F ′]];
3. the converse of (1), i.e. if V[[F ]] =⇒π P then there is F ′ such that F =⇒c F ′ and

P π≳ V[[F ′]].
4. the converse of (2), i.e. if V[[F ]] ℓ=⇒π P then there is F ′ such that F

ℓ=⇒c F ′ and
P ≈π V[[F ′]].

▶ Corollary 14. For any C-OGS configuration F and trace s, we have F
s=⇒c iff V [[F ]] s=⇒π.

From Corollary 14 and Theorem 13, we derive:

▶ Lemma 15. For any F, F ′ we have:
1. F1 ≏c F2 iff V[[F1]] ≏π V[[F2]];
2. F1 ≈c F2 iff V[[F1]] ≈π V[[F2]].

To derive the full analogous of Corollary 12, we now show that, on the Iπ representation
of λ-terms, trace equivalence is the same as bisimilarity. This result needs a little care: it is
known that on deterministic LTSs bisimilarity coincides with trace equivalence. However,
the behaviour of the Iπ representation of a C-OGS configuration need not be deterministic,
because there could be multiple silent transitions as well as multiple output transitions (for
instance, in C-OGS rule OQ may be applicable to different terms).

▶ Lemma 16. For any M, N we have: V[[M ]] ≏π V[[N ]] iff V[[M ]] ≈π V[[N ]].

The proof uses the “bisimulation up-to context and up-to (π≳, ≈π)” technique. We can
finally combine Lemmas 16 and 15 to derive that the C-OGS and Iπ semantics of λ-calculus
coincide, both for traces and for bisimilarity.

▶ Corollary 17. For all M, N we have: ⟨M⟩ ≏c ⟨N⟩ iff ⟨M⟩ ≈c ⟨N⟩ iff V[[M ]] ≏π V[[N ]] iff
V[[M ]] ≈π V[[N ]].

More details on proofs may be found in [21].

7.2 Tensor Product
We now introduce a way of combining configurations, which corresponds to the notion of
tensor product of arenas and strategies in (denotational) game semantics.

▶ Definition 18. Two concurrent configurations F, G are said to be compatible if their
polarity functions polF , polG are compatible – that is, for all a ∈ dom(polF ) ∩ dom(polG),
we have polF (a) = polG(a).

▶ Definition 19. For compatible configurations F = ⟨A, γ, ϕ⟩ and G = ⟨B, δ, ϕ′⟩, the tensor
product F ⊗ G is defined as F ⊗ G ≜ ⟨A · B, γ · δ, ϕ ∪ ϕ′⟩

The polarity function of F ⊗G is then equal to polF ∪polG, and V [[F1⊗F2]] ≡ V [[F1]] | V [[F2]],
where ≡ is the standard structural congruence of π-calculi. In the following, we write
inter(s1, s2) for the set of traces obtained from an interleaving of the elements in the
sequences s1 and s2.
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▶ Lemma 20. Suppose F1, F2 are compatible concurrent configurations. The set of traces
generated by F1 ⊗ F2 is the union of the sets of interleaving inter(s1, s2), for F1

s1=⇒c and
F2

s2=⇒c.

The tensor product of A-OGS configurations is defined similarly, with the additional
hypothesis that at most one of the two configurations is active, in order for their tensor
product to be a valid A-OGS configuration. The details can be found in [21].

7.3 Up-to techniques for games
We introduce up-to techniques for C-OGS, which allow, in bisimulation proofs, to split two
C-OGS configurations into separate components and then to reason separately on these.
These up-to techniques are directly imported from Iπ. Abstract settings for up-to techniques
have been developed, see [36, 37]; but we cannot derive the OGS techniques from them
because these settings are specific to first-order LTS (i.e., CCS-like, without binders within
actions).

The new techniques are then used to prove that C-OGS and A-OGS yield the same
semantics on λ-terms; a further application is in Section 7.5, discussing eager normal-form
bisimilarity.

A relation R on configuration is well-formed if it relates configurations with the same
polarity function. Below, all relations on configurations are meant to be well formed. Given
a well-formed relation R we write:

R| for the relation {(F1, F2) : ∃ G s.t. Fi = F ′
i ⊗ G (i = 1, 2) and F ′

1 R F ′
2}.

R|⋆ for the reflexive and transitive closure of R|. Thus from F1 R G1 and F2 R G2 we
obtain (F1 ⊗ F2) R|⋆ (G1 ⊗ F2) R|⋆ G1 ⊗ G2.
⇒c R|⋆

c⇐ for the closure of R|⋆ under reductions. That is, F1 ⇒c R|⋆
c⇐ F2 holds if

there are F ′
i , i = 1, 2 with Fi =⇒c F ′

i and F ′
1 R|⋆ F ′

2. (As =⇒c is reflexive, we may have
Fi = F ′

i .)

▶ Definition 21. A relation R on configurations is a bisimulation up-to reduction and
composition if whenever F1 R F2:

1. if F1
µ−→c F ′

1 then there is F ′
2 such that F2

µ̂=⇒c F ′
2 and F ′

1 ⇒c R|⋆
c⇐ F ′

2 ;
2. the converse, on the transitions from F2.

A variant of the technique in Definition 21, where the bisimulation game is played only
on visible actions at the price of being defined on singleton configurations is presented in [21]
and used in Section 7.5 to lift any eager normal form bisimulation to an OGS “bisimulation
up-to”.

▶ Theorem 22. If R is bisimulation up-to reduction and composition then R ⊆ ≈c.

The theorem is proved by showing that the Iπ image of R is a bisimulation up-to context
and up-to (π≳, ≈π), and appealing to Lemma 15(2). See [21] for details.

▶ Remark 23. Results such as Corollary 17 and Theorem 22 might suggest that the equality
between two configurations implies the equality of all their singleton components. That is, if
F ≏c G, with [p 7→ M ] part of F and [p 7→ N ] part of G, then also ⟨[p 7→ M ]⟩ ≏c ⟨[p 7→ N ]⟩.
A counterexample is given by the configurations

F1
def= ⟨[p1 7→ M ] · [p2 7→ Ω]⟩ where M

def= (λz. Ω)(xλy. Ω)
F2

def= ⟨[p1 7→ Ω] · [p2 7→ M ]⟩
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Intuitively the reason why F1 ≏c F2 is that M can produce an output (along the variable x),
but an observer will never obtain access to the name at which M is located (p1 or p2). That
is, the term M can interrogate x, but it will never answer, neither at p1 nor at p2.

7.4 Relationship between Concurrent and Alternating OGS
In Section 6 we have proved that the trace-based and bisimulation-based semantics produced
by A-OGS and by Iπ under the opLTS coincide. In Section 7.1 we have obtained the same
result for C-OGS and Iπ under the ordinary LTS. In this section, we develop these results
so to conclude that all such equivalences for λ-terms actually coincide. In other words,
the equivalence induced on λ-terms by their representations in OGS and Iπ is the same,
regardless of whether we adopt the alternating or concurrent flavour for OGS, the opLTS or
the ordinary LTS in Iπ, a trace or a bisimulation semantics. For this, in one direction, we
show that the trace semantics induced by C-OGS implies that induced by A-OGS. In the
opposite direction, we lift a bisimulation over the alternating LTS on singleton configurations
into a bisimulation up-to composition over the concurrent LTS.

▶ Lemma 24. If F1, F2 are A-OGS singleton configurations and F1 ≈a F2, then also
F1 ≈c F2.

Details may be found in [21].

▶ Corollary 25. For any λ-terms M, N , the following statements are the same: ⟨M⟩ ≏a ⟨N⟩;
⟨M⟩ ≈a ⟨N⟩; ⟨M⟩ ≏c ⟨N⟩; ⟨M⟩ ≈c ⟨N⟩; V[[M ]] ≏oπ V[[N ]]; V[[M ]] ≈oπ V[[N ]]; V[[M ]] ≏π

V[[N ]]; V[[M ]] ≈π V[[N ]].

7.5 Eager Normal Form Bisimulations
We recall Lassen’s eager normal-form (enf) bisimilarity [29].

▶ Definition 26. An enf-bisimulation is a triple of relation on terms RM, values RV , and
evaluation contexts RK that satisfies:

M1 RM M2 if either:
both M1, M2 diverge;
M1 ⇓ E1[xV1] and M2 ⇓ E2[xV2] for some x, values V1, V2, and evaluation contexts
E1, E2 with V1 RV V2 and K1 RK K2;
M1 ⇓ V1 and M2 ⇓ V2 for some values V1, V2 with V1 RV V2.

V1 RV V2 if V1x RM V2x for some fresh x;
K1 RV K2 if K1[x] RM K2[x] for some fresh x.

The largest enf-bisimulation is called enf-bisimilarity.

From Corollary 25 and existing results in the π-calculus [11] we can immediately conclude
that the semantics on λ-terms induced by OGS (Alternating or Concurrent) coincides with
enf-bisimilarity (i.e., Lassen’s trees).

In this section, we show a direct proof of the result, for C-OGS bisimilarity, as an example
of application of the up-to composition technique for C-OGS.

Terms, Values, and Evaluations contexts can be directly lifted to singleton concurrent
configurations, meaning that we can transform a relation on terms, values, and contexts R
into a relation R̂ on singleton concurrent configurations in the following way:
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If (M1, M2) ∈ R then (⟨[p 7→ M1], ε, ϕ⟩, ⟨[p 7→ M2], ε, ϕ⟩) ∈ R̂, with ϕ = fv(M1, M2)⊎{p}
If (V1, V2) ∈ R then (⟨[x 7→ V1], ϕ⟩, ⟨[x 7→ V2], ϕ⟩) ∈ R̂, with ϕ = fv(V1, V2) ⊎ {x};
If (E1, E2) ∈ R then (⟨[p 7→ (E1, q)], ϕ⟩, ⟨[p 7→ (E2, q)], ϕ⟩) ∈ R̂, with ϕ = fv(E1, E2) ⊎
{p, q}.

▶ Theorem 27. Taking (RM, RV , RK) an enf-bisimulation, then (R̂M ∪ R̂V ∪ R̂K) is a
singleton bisimulation up-to composition in C-OGS (as defined in [21]).

Proof. Taking F1, F2 two singleton configurations s.t. (F1, F2) ∈ R̂M, then we can write
Fi as ⟨[p 7→ Mi], ϕ⟩ for i = 1, 2, such that (M1, M2) ∈ R. suppose that F1 =⇒c

ℓ−→c F ′
1,

with ℓ a Player action. We only present the Player Question case, which is where “up-to
composition” is useful. So writing ℓ as x̄(y, q), F ′

1 can be written as ⟨[y 7→ V1] · [q 7→ (E1, p)]⟩,
so that M1 →∗

v E1[xV1].
As (M1, M2) ∈ R, there are E2, V2 s.t. M2 →∗

v E2[xV2], (V1, V2) ∈ R and (E1, E2) ∈ R.
Hence F2 =⇒c

ℓ−→c F ′
2 with F ′

2 = ⟨[y 7→ V2] · [q 7→ (E2, p)]⟩.
Finally, (⟨[y 7→ V1]⟩, ⟨[y 7→ V2]⟩) ∈ R̂ and (⟨[q 7→ (E1, p)]⟩, ⟨[q 7→ (E2, p)]⟩) ∈ R̂, so that

(F ′
1, F ′

2) ∈ R̂|⋆.
The case of passive singleton configurations is proved in a similar way. ◀

8 Compositionality of OGS via Iπ

We now present some compositionality results about C-OGS and A-OGS, that can be proved
via the correspondence between OGS and Iπ.

Compositionality of OGS amounts to compute the set of traces generated by ⟨M{V/x}⟩
from the set of traces generated by ⟨M⟩ and ⟨[x 7→ V ]]⟩. This is the cornerstone of
(denotational) game semantics, where the combination of ⟨M⟩ and ⟨[x 7→ V ]⟩ is represented
via the so-called “parallel composition plus hiding”. This notion of parallel composition of two
processes P, Q plus hiding over a name x is directly expressible in Iπ as the process νx(P | Q).
Precisely, suppose F, G are two configurations that agree on their polarity functions, but on
a name x; then we write

νx(F | G) (*)

for the Iπ process νx(V[[F ]] | V[[G]]), the parallel composition plus hiding over x. To define
this operation directly at the level of OGS, we would have to generalize its LTS, allowing
internal interactions over a name x used both in input and in output.

As the translation V from OGS configurations into Iπ validates the βv rule, we can prove
that the behaviour of ⟨M{V/x}⟩ (e.g., its set of traces) is the same as that of the parallel
composition plus hiding over x of ⟨M⟩ and ⟨[x 7→ V ]⟩). We use the notation (∗) above to
express the following two results.

▶ Theorem 28. For ▷◁ ∈ {≈oπ, ≈π,≏oπ,≏π}, we have
V[[⟨[p 7→ M{V/x}], γ, ϕ ∪ ϕ′⟩]] ▷◁ νx(⟨[p 7→ M ], ε, ϕ ⊎ {x}⟩ | ⟨γ · [x 7→ V ], ϕ′ ⊎ {x}⟩)

▶ Corollary 29. For any trace s:
1. ⟨M{V/x}, p, γ, ϕ ∪ ϕ′⟩ s=⇒a iff νx(⟨M, p, ε, ϕ ⊎ {x}⟩ | ⟨γ · [x 7→ V ], ϕ′ ⊎ {x}⟩) s=⇒oπ

2. ⟨[p 7→ M{V/x}], γ, ϕ ∪ ϕ′⟩ s=⇒c iff νx(⟨[p 7→ M ], ε, ϕ ⊎ {x}⟩ | ⟨γ · [x 7→ V ], ϕ′ ⊎ {x}⟩) s=⇒π

Other important properties that we can import in OGS from Iπ are the congruence
properties for the A-OGS and C-OGS semantics. We report the result for ≏a; the same
result holds for ≈a,≏c, ≈c.

▶ Theorem 30. If ⟨M⟩ ≏a ⟨N⟩ then for any ΛV context C, ⟨C[M ]⟩ ≏a ⟨C[N ]⟩.
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The result is obtained from the congruence properties of Iπ, Corollary 25, and the
compositionality of the encoding V.

9 Related and Future Work

Analogies between game semantics and π-calculus, as semantic frameworks in which names
are central, have been pointed out from the very beginning of game semantics. In the
pioneering work [19], the authors obtain a translation of PCF terms into the π-calculus
from a game model of PCF by representing strategies (the denotation of PCF terms in the
game model) as processes of the π-calculus. The encoding bears similarities with Milner’s,
though they are syntactically rather different (“it is clear that the two are conceptually quite
unrelated”, [19]). The connection has been developed in various papers, e.g., [8, 14,17,18,46].
Milner’s encodings into the π-calculus have sometimes been a source of inspiration in the
definition of the game semantics models (e.g., transporting the work [19], in call-by-name,
onto call-by-value [18]). In [46], a typed variant of π-calculus, influenced by differential linear
logic [13], is introduced as a metalanguage to represent game models. In [9], games are
defined using algebraic operations on sets of traces, and used to prove type soundness of a
simply-typed call-by-value λ-calculus with effects. Although the calculus of traces employed
is not a π-calculus (e.g., being defined from operators and relations over trace sets rather
than from syntactic process constructs), there are similarities, which would be interesting to
investigate.

Usually in the above papers the source language is a form of λ-calculus, that is interpreted
into game semantics, and the π-calculus (or dialects of it) is used to represent the resulting
strategies and games. Another goal has been to shed light into typing disciplines for π-calculus
processes, by transplanting conditions on strategies such as well-bracketing and innocence
into appropriate typings for the π-calculus (see, e.g., [6, 45]).

The results in this paper (e.g., operational correspondence and transfer of techniques)
are not derivable from the above works, where analogies between game semantics and π-
calculus are rather used to better understand one of the two models (i.e., explaining game
semantics in terms of process interactions, or enhancing type systems for processes following
structures in game semantics). Indeed, in the present paper we have carried out a direct
comparison between the two models (precisely OGS and Iπ). For this we have started from
the (arguably natural) representations of the λ-calculus into OGS and Iπ (the latter being
Milner’s encodings). Our goal was understanding the relation between the behaviours of the
terms in the two models, and transferring techniques and results between them.

Technically, our work builds on [10, 11], where a detailed analysis of the behaviour of
Milner’s call-by-value encoding is carried out using proof techniques for π-calculus based
on unique-solution of equations. Various results in [10, 11] are essential to our own (the
observation that Milner’s encodings should be interpreted in Iπ rather than the full π-calculus
is also from [10,11]).

Bisimulations over OGS terms, and tensor products of configurations, were introduced
in [30], in order to provide a framework to study compositionality properties of OGS. In
our case, the compositionality result of OGS is derived from the correspondence with the
π-calculus. In [39], a correspondence between an i/o typed asynchronous π-calculus and
a computational λ-calculus with channel communication is established, using a common
categorical model (a compact closed Freyd category). It would be interesting to see if our
concurrent operational game model could be equipped with this categorical semantics.

CSL 2022
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Normal form (or open) bisimulations [29, 43], as game semantics, manipulate open terms,
and sometimes make use of environments or stacks of evaluation contexts (see, e.g., the
recent work [7], where a fully abstract normal-form bisimulation for a λ-calculus with store
is obtained).

There are also works that build game models directly for the π-calculus, i.e., [12,26,27,38]
A correspondence between a synchronous π-calculus with session types and concurrent game
semantics [44] is given in [8], relating games (represented as arenas) to session types, and
strategies (defined as coincident event structures) to processes. We have exploited the full
abstraction results between OGS and Iπ to transport a few up-to techniques for bisimulation
from Iπ onto OGS. However, in Iπ, there are various other such techniques, even a theory of
bisimulation enhancements. We would like to see which other techniques could be useful in
OGS, possibly transporting the theory of enhancements itself.
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Abstract
We extend the Soft Linear Logic of Lafont with a new kind of modality, called parallel. Contractions
on parallel modalities are only allowed in the cut and the left ⊸ rules, in a controlled, uniformly
distributive way. We show that SLL, extended with this parallel modality, is sound and complete
for PSPACE. We propose a corresponding typing discipline for the λ-calculus, extending the STA
typing system of Gaboardi and Ronchi, and establish its PSPACE soundness and completeness. The
use of the parallel modality in the cut-rule drives a polynomial-time, parallel call-by-value evaluation
strategy of the terms.
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Introduction

Implicit Complexity aims at providing purely syntactical, machine independent criteria on
programs, in order to ensure they respect some complexity bounds upon execution. In
the context of functional programming, the use of tailored proof systems, and subsequent
type systems for λ-calculus, has been very successful: using subsystems of Linear Logic [8],
several proof systems have been proposed, where cut-elimination has a bounded complexity.
Consequently, under the Curry-Howard isomorphism, type systems for λ-calculus based on
these logics have been proposed, where β-normalization of the typed terms follows the same
complexity bounds. Such results include, among many others, Bounded Linear Logic [10, 14]
and Light Linear Logic [9, 2] for polynomial time computation, and Stratified Bounded Affine
Logic [17, 15] for logarithmic space computations. Our interest in this paper lies in the
Soft Linear Logic of Lafont [13], which proposes a simple and elegant approach for ensuring
polynomial time bounds by controlling contractions on exponential formulas, and in the
subsequent type systems for polynomial time λ-calculus [1, 7, 5].

At this point, it is relevant to note that the complexity classes captured thus far are all
sequential, deterministic in essence. While Soft Linear Logic type systems have been extended
to express the classes NP and PSPACE [6], it is important to note that the construction relies
on Soft Type Assignment (STA), a deterministic, sequential polynomial time type system, by
extending the λ-calculus with an additional construct (if then else), for which an ad hoc,
alternating polynomial time evaluation strategy is imposed - the core of the language retaining
its sequential polynomial time evaluation. While being indeed extensionally complete for
PSPACE, this approach lacks intensionality: many natural algorithms, that are easily
computable in parallel, are hardly expressible in this setting. Let us take as simple example
the numerical evaluation of a balanced, arithmetic expression on bounded integer values. In
order to compute it in alternating polynomial time with the (if then else) defined in [6],
one would need to express the value of all bits of the result as boolean expressions on the bits
of the input numbers, and use the alternating evaluation of the (if then else) construct
to speed up the parallel computation time - not quite a practical method. Furthermore,
this approach is no longer doable in real world functional programming languages, where
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integers are given as a base type, and arithmetical operations as unitary functions of the
language. Our approach, on the other hand, extends very naturally to such programs: indeed,
our complexity bounds still hold in this context, and the encodings used in Lemma 27 and
Theorem 28 can seamlessly be used to encode uniform families of algebraic formulae, or
algebraic circuits, of polynomial depth, provided the base type for numbers (be they integers
or floating numbers, or even real or complex numbers) and for the algebraic basic operations
are given in the typing context.

A reason why these approaches are all essentially sequential, deterministic is that they
use the typing discipline to control the amount of resources the calculus uses (e.g. by
controlling contractions on exponentials), not the way these resources are distributed along
the computation. In order to truly denote parallel computation in a functional programming
language, our proposal here is to use a parallel, call-by-value evaluation strategy for the
λ-calculus: in an application, both terms can be normalized in parallel, before the substitution
of the redex takes place. If both terms share the same normalization time bound, the parallel
evaluation strategy is efficient. Note that in first order functional programming, this is already
the approach used by Leivant and Marion [16] with their safe recursion with substitutions:
using sequential resource bounds from Ptime Safe Recursion [3], and a parallel call-by-
value evaluation strategy, the authors characterize the class FPAR (Parallel polynomial
time), which coincides with PSPACE. This approach has also been later on extended to
sub-polynomial complexity classes [12, 4, 11]. For higher order functional programming, we
rely on the Curry-Howard isomorphism: ensuring an homogeneous computation time on
the parallel evaluation of both arguments of an application amounts to ensuring that both
premises of a cut-rule share a homogeneous bound on the resource usage in the corresponding
type system.

In order to achieve this, we can no longer rely on the usual linear cut-rule. We propose
therefore a modification of the linear cut-rule, that internalizes a controlled number of
contractions on some formulas, that are uniformly distributed among the premises. These
formulas are decorated with a dedicated modality, called parallel modality. This approach is
applied here on the Soft Type Assignment (STA) of Gaboardi and Ronchi [7], in order to
propose a sound and complete type system for PSPACE, with a truly parallel evaluation
strategy.

Of course, breaking linearity in the cut-rule comes with a price: while proof nets for this
logic are still definable, the additional bureaucracy needed to deal with the side condition of
the cut-rule makes them much less meaningful than those for simpler logical systems such as
MLL or SLL.

The paper is organized as follows. Section 1 recalls the Soft Linear Logic rules, introduces
the parallel modality �, and the modified, parallel (cut) rules, yielding the system PSLL.
Cut-elimination for PSLL is also shown. Section 2 provides a parallel, polynomial time
normalization bound. Section 3 extends STA with the rules of PSLL, yielding PSTA. A
parallel polynomial time call-by-value strategy for PSTA is described. FPAR completeness
of PSTA is proven in Section 4.

1 Parallel Soft Linear Logic

1.1 Soft Linear Logic

Let us recall the SLL rules of Lafont [13], in its intuitionistic fashion. In the following, !Γ
stands for a multiset of formulae of the form !F , and (A)n stands for n copies of a formula A.
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(Id)
U ⊢ U

Γ ⊢ U ∆, U ⊢ V (cut)Γ, ∆ ⊢ V

Γ, U ⊢ V (⊸ R)Γ ⊢ U ⊸ V

Γ ⊢ U V, ∆ ⊢ Z (⊸ L)Γ, U ⊸ V, ∆ ⊢ Z
Γ ⊢ A Γ ⊢ B (&R)Γ ⊢ A&B

Γ, A ⊢ V (&L1)Γ, A&B ⊢ V

Γ, B ⊢ V (&L2)Γ, A&B ⊢ V
Γ ⊢ U (∀R)Γ ⊢ ∀αU

Γ, U [V/α] ⊢ Z
(∀L)Γ, ∀αU ⊢ Z

Γ ⊢ U (sp)!Γ ⊢!U
Γ, (U)n ⊢ V n ≥ 0

(m), of rank nΓ, !U ⊢ V

where, in the (∀R)-rule, there is no free occurrence of α in Γ. SLL proofs (of a given degree)
normalize in polynomial time. Let the rank of a proof be the maximal rank of its (m) rules,
and its degree the maximal nesting of its (sp) rules:

▶ Theorem 1 ([13]). A SLL proof of rank n and degree d normalizes in nd steps.

SLL is also complete for the class FP: inputs of size n are encoded with proofs of rank n,
degree 1, and programs running in time O(nd) by proofs of degree d. Applying a program
on an input amounts to performing a (cut) of the two proof derivations.

1.2 Parallel Modalities
PSLL is built upon SLL. An additional modality, called the parallel modality �, is introduced,
with corresponding elimination rules. Finally, the (sp), and the (cut) and (⊸ L)-rules are
modified to accommodate this new modality, implementing the controlled contractions and
homogeneous distribution of � formulas on the premises of the cut, as follows.

Polarities

Let us define as usual inductively the polarity of a sub-formula in an intuitionistic sequent
Γ ⊢ V . Polarities are either positive or negative, one being the opposite of the other.

1. in Γ ⊢ V , every occurrence of a formula F in Γ is negative, and V is positive.
2. If F is ∀αA, !A or �A, the polarity of A is the polarity of F .
3. If F is ANB, the polarity of A and the polarity of B are the polarity of F .
4. If F is A ⊸ B, the polarity of A is the opposite of the polarity of F , and the polarity of

B is the polarity of F .

In the sequel we only admit �A sub-formulas with negative polarities in a sequent. An
immediate consequence is that no � modality can appear in a cut formula, since a cut-formula
has both a positive and a negative occurrence in a proof tree.

Rules for Parallel Modalities

(�W ) (weakening) and (�D) (dereliction) rules eliminate the � modality, (�sp) (soft pro-
motion for the ! modality) and (�ax) replace the linear (sp) and (Id) rules. Contraction
for the � modality is not dealt with a dedicated rule, but is instead internalized in the side
condition of the modified (cut) rule, as detailed in the next section.

Γ ⊢ B (�W )
Γ, �A ⊢ B

Γ, A ⊢ B (�D)
Γ, �A ⊢ B

�∆, Γ, ⊢ U
(�sp)

�∆, !Γ ⊢!U
(�ax)

�Γ, A ⊢ A

where (�ax), is derivable from (Id) and (�W ), and used for convenience only.
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1.2.1 (�Cut) and (� ⊸) Rules
Contraction for parallel formulas is internalized into the PSLL (�cut)-rule and (� ⊸ L)-rule,
in a controlled fashion. As for the usual (cut) and (⊸ L)-rules in linear logic, linear and
exponential formulas are linearly distributed among the two premises. Denote by ⊊ the strict
inclusion relation on multisets. The (binary) (�cut) and (� ⊸ L) rules are the following.

�∆1, Γ1 ⊢ A1 �∆2, Γ2, A1 ⊢ A2 (�cut)
�∆, Γ1, Γ2 ⊢ A2

�∆1, Γ1 ⊢ A1 �∆2, Γ2, A2 ⊢ A3 (� ⊸ L)
�∆, Γ1, A1 ⊸ A2, Γ2 ⊢ A3

These two rules hold under the side condition SP : (�∆1 ⊊ �∆, �∆2 ⊊ �∆). The
(�cut)- rule has the principal cut-formula A1 and the cut-pair of premises the pair (�∆1, Γ1 ⊢
A1) → (�∆2, Γ2, A1 ⊢ A2). The (� ⊸ L) rule has the principal ⊸-formula A1 ⊸ A2 and
the ⊸-pair of premises the pair (�∆1, Γ1 ⊢ A1) → (�∆2, Γ2, A2 ⊢ A3).

In a proof tree consisting only in (n − 1) binary linear (cut)-rules, these (cut)-rules can
be freely permuted, and a generalized, n-ary linear (cut)-rule can be derived. The non-linear
distribution of parallel modalities in PSLL breaks this isomorphism: permuting two binary
(�cut)-rules may come in conflict with the side condition �∆i ⊊ �∆. A similar remark can
be made for ⊸ L rules as well. Since we want a uniform bound on the parallel normalization
of the premises, we define a n-ary parallel (cut)-rule, exemplified in Example 5, as a parallel
extension of the linear one, where the side condition for � modalities is adapted accordingly.

▶ Definition 2 (n-ary (cut/ ⊸ L) rule). We define the following n-ary (cut/ ⊸ L)-rule,
together with its cut-pairs and ⊸-pairs, and principal formulae. To each cut-pair (respectively
⊸-pair) corresponds one principal cut-formula (resp. ⊸-formula).

The following rule Γ1 ⊢ A1 Γ2 ⊢ A2 · · · Γd ⊢ Ad R : (cut/ ⊸ L)Γ, Λ ⊢ Ad
is either a bin-

ary (⊸ L) or a binary (cut)-rule, or a n-ary rule obtained by several of the following proof
tree (cut/ ⊸ L)-merge rewriting steps:

T1 · · ·
T2 · · · Tn R1Tt · · · Tm R2Γ, Λ ⊢ Ad

→
T1 · · · T2 · · · Tn · · · Tm

RΓ, Λ ⊢ Ad

provided the ⊸ principal formulae of R1 are not sub-formulae of any principal formulae of
R2 corresponding Tt.

The multiset of ⊸ (respectively (cut)) principal formulae of R is then the union of those
of R1 and R2.

The cut - and ⊸-pairs of R are obtained from the union of those of R1 and R2 with the
following update procedure: whenever Tt belongs to a ⊸ or cut-pair of premises Tt → Tw

( respectively Tw → Tt) of R2, with corresponding principal formula F belonging to one of
the premises Tv of R1, the pair Tt → Tw (resp. Tw → Tt) is replaced by Tv → Tw (resp.
Tw → Tv), with the same corresponding principal formula.

We derive from this linear n-ary (cut/ ⊸ L) rule its parallel version (�,⊸ cut) as follows.

▶ Definition 3 (n-ary (�,⊸ cut) rule). A n-ary (�,⊸ cut) rule is

�∆1, Γ1 ⊢ A1 �∆2, Γ2 ⊢ A2 · · · �∆d, Γd ⊢ Ad (�,⊸ cut)
�∆, Γ, Λ ⊢ Ad

where the side condition SP : ∀i = 1, · · · , d, �∆i ⊊ �∆ holds, and the linear rule instance

Γ1 ⊢ A1 Γ2 ⊢ A2 · · · Γd ⊢ Ad (cut/ ⊸ L)Λ, Γ ⊢ Ad

holds as per Definition 2, with corresponding pairs of premises and principal formulae.
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The following Lemma follows from the intuitionistic nature of the PSLL sequents, and
will play a role in our elimination strategy.

▶ Lemma 4. The cut-pairing relation on the premises of a (�, cut/ ⊸ L) rule R defines a
forest structure F (R), called the pairing forest of the (�, cut/ ⊸ L), on the premises of R;
the edges of the pairing forest are the cut-pairs of the rule.

▶ Example 5. A tree of linear (⊸ L) and (cut) rules is

Γ1 ⊢ A1

Γ2 ⊢ A2 Γ3, A2 ⊢ U (cut)Γ2, Γ3 ⊢ U

Γ4 ⊢ A3 Γ5, A1, A3, V ⊢ W (cut)Γ4, Γ5, A1, V ⊢ W (⊸ L)Γ2, Γ3, Γ4, Γ5, U ⊸ V, A1 ⊢ W (cut)Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W

The corresponding 5-ary linear (cut/ ⊸ L) rule is

Γ1 ⊢ A1 Γ2 ⊢ A2 Γ3, A2 ⊢ U Γ4 ⊢ A3 Γ5, A1, A3, V ⊢ W (cut,⊸ L)Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W

A corresponding 5-ary (�,⊸ cut) rule, with �-formulae satisfying the side condition, is

�F, Γ1 ⊢ A1 �G, Γ2 ⊢ A2 Γ3, A2 ⊢ U �G, Γ4 ⊢ A3 �F, Γ5, A1, A3, V ⊢ W

�F, �G, Γ1, Γ2, Γ3, Γ4, Γ5, U ⊸ V ⊢ W

The cut-pairs are
(�F, Γ1 ⊢ A1) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula A1,
(�G, Γ2 ⊢ A2) → (Γ3, A2 ⊢ U) with principal formula A2, and
(�G, Γ4 ⊢ A3) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula A3,

which defines the pairing forest, with two roots (�F, Γ5, A1, A3, V ⊢ W ) and (Γ3, A2 ⊢ U).
The ⊸-pair is (Γ3, A2 ⊢ U) → (�F, Γ5, A1, A3, V ⊢ W ) with principal formula U ⊸ V .

We now define PSLL by the rules (�ax), (⊸ R), (∀R), (∀L), (&R), (&Li), (m) (�sp),
(�W ), (�D) and (�,⊸ cut).

A PSLL proof Π is said to be in normal form if it contains no cut: more precisely,
no (�,⊸ cut)-rule in Π admits any cut-pair of premises. Cut-elimination in this context
amounts to rewrite the proof into a new equivalent proof in normal form. The cut-elimination
procedure stems on the usual one for SLL, with some refinements.

1.3 Parallel Cut Elimination
▶ Lemma 6. Sequent calculus rules preserve the polarities of subformulae.

The proof is straightforward. This allows us to state the following rule commutation result.

▶ Lemma 7.
1. A (�,⊸ cut) rule (R1), with premise Γ ⊢ V commutes with any non (�,⊸ cut), non

(�W ), non (�D), non (�sp) rule (R2) with conclusion Γ ⊢ V , provided the principal
formula of (R2) is not a sub-formula of any principal formula of (R1) with respect to the
premise Γ ⊢ V .

2. A (�W ) or a (�D) rule (R1), with premise Γ ⊢ V commutes with any non (�ax) rule
(R2) with conclusion Γ ⊢ V , provided the principal formula of (R2) is not a subformula
of the principal formula of (R1).
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3. A non (�,⊸ cut), non (�sp) rule (R1) with premise Γ ⊢ V commutes with any non
(�,⊸ cut), non (�sp) rule (R2) with conclusion Γ ⊢ V , provided the principal formula of
(R2) is not a sub-formula of the principal formula of (R1).

▶ Proposition 8. PSLL enjoys cut elimination.

Proof. Let Π be a PSLL proof and R be a (�,⊸ cut) rule in Π with cut-pair (S = Γ ⊢
A, T = Λ, A ⊢ V ). Since the cut formula A may not contain any � modality, the commutation
rules of Lemma 7 allow us to rewrite Π into an equivalent proof Π′, where S is conclusion of
a right rule with principal formula A, and T conclusion of a left rule with principal formula
A. The cut-elimination cases are then the following, where, for all cases but (�Sp), (m),
the other premises of the rule are left unchanged, and omitted. Side conditions as well are
omitted, but it is straightforward to see that they are preserved. The modification induced
by each of the elimination cases below on the pairing forest is also detailed.

Rules (⊸ L),(⊸ R)
�∆1, Γ, B ⊢ C

(⊸ R)
�∆1, Γ ⊢ B ⊸ C

�∆3, Φ ⊢ B �∆4, Λ, C ⊢ V
(� ⊸ L)

�∆2, Φ, Λ, B ⊸ C ⊢ V
(�,⊸ cut)

�∆, Γ, Φ, Λ ⊢ V

reduces to �∆1, Γ, B ⊢ C �∆3, Φ ⊢ B �∆4, Λ, C ⊢ V
(�,⊸ cut)

�∆, Γ, Φ, Λ ⊢ V
.

In the pairing forest, the premise �∆1, Γ ⊢ B ⊸ C is replaced by �∆1, Γ, B ⊢ C,
the premise �∆2, Φ, Λ, B ⊸ C ⊢ V by �∆4, Λ, C ⊢ V , and a cut-pair (�∆3, Φ ⊢ B) →
(�∆1, Γ, B ⊢ C) is added.

Rule (�ax)
(�ax)

�∆1, B ⊢ B �∆2, Γ, B ⊢ V
(�,⊸ cut)

�∆, Γ, B ⊢ V

when no other premise exists, reduces to �∆2, Γ, B ⊢ V
(�W ∗),

�∆, Γ, B ⊢ V
, Where (�W )∗ stands

for several applications of the (�W ) rule.
Similarly,

Π1 · · ·
(�ax)

�∆1, B ⊢ B Πt · · · � ∆2, Γ, B ⊢ V · · · Πn (�,⊸ cut)
�∆, Γ, B ⊢ V

reduces to Π1 · · · Πt · · · �∆2, Γ, B ⊢ V · · · Πn (�,⊸ cut)
�∆, Γ, B ⊢ V

.

In the pairing forest, the premise �∆1, B ⊢ B is removed, and the paths in the forest are
shortened accordingly, if necessary.

Rules (�sp), (m)

S1, · · · , Sk

�∆1, Γ ⊢ B
(�sp)

�∆1, !Γ ⊢!B
�∆2, Λ, Bn ⊢ V

(m)
�∆2, Λ, !B ⊢ V

(�,⊸ cut)
�∆, !Γ, Λ ⊢ V

reduces to
Sn

1 , · · · , Sn
k � ∆1, Γ ⊢ B · · · �∆1, Γ ⊢ B �∆2, Λ, Bn ⊢ V

(�,⊸ cut)
�∆, Γn, Λ, ⊢ V

(m)∗
�∆, !Γ, Λ ⊢ V



P. Jacobé de Naurois 26:7

Where S1, · · · , Sk are the premises of the (�,⊸ cut) belonging to the pairing tree rooted in
�∆1, !Γ ⊢!B, and Sn

1 , · · · , Sn
k are n copies of these premises. Then, in the pairing forest, the

tree rooted in�∆1, !Γ ⊢!B is copied n times, and the pair (�∆1, !Γ ⊢!B) → (�∆2, Λ, !B ⊢ V )
is replaced by n pairs (�∆1, Γ ⊢ B) → (�∆2, Λ, Bn ⊢ V ), one connected to each of the copies
above.

Rules (∀L), (∀R)
�∆1, Γ ⊢ U

(∀R)
�∆1, Γ ⊢ ∀αU

�∆2, Λ, U [V/α] ⊢ V
(∀L)

�∆2, Λ, ∀αU ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V

reduces to �∆1, Γ ⊢ U [V/α] �∆2, Λ, U [V/α] ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V
.

Rules (&L), (&R)
�∆1, Γ ⊢ A �∆1Γ ⊢ B

(&R)
�∆1, Γ ⊢ A&B

�∆2, Λ, A ⊢ V
(&L1)

�∆2, Λ, A&B ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V

reduces to �∆1, Γ ⊢ A �∆2, Λ, A ⊢ V
(�,⊸ cut)

�∆, Γ, Λ ⊢ V
, and, of course, the cut elimina-

tion rule for (&L2), (&R) follows a similar pattern.
In each of the cases above, for each path in the pairing forest modified by the elimination

case, the sum of the sizes of the sequents labelling the vertices along that path decreases
strictly. As a consequence, the procedure terminates in a finite number of steps. ◀

2 Complexity Bounds

Let us now show that the contraction discipline ensures that PSLL admits cut-elimination in
parallel polynomial time. The bounds are actually more straightforward than for SLL.

▶ Definition 9. Let Π be a PSLL proof, with conclusion sequent S = Γ ⊢ V . We define
The size |S| of S is the number of connectives in S.
The size |Π| of Π is the number of nodes in the proof-tree.
The depth of a node R in Π is the length of the path from S to R in Π; the depth d(Π) of
Π is the maximal depth of its nodes.
The rank r(Π) of Π is the maximal rank of its (m) rules.
The degree d(f) of a formula f is the maximal nesting of its ! modalities. The degree d(S)
of a sequent S is the maximal degree of its formulas. The degree d(Π) of a proof is the
maximal degree of its sequents.

PSLL proofs have bounded depth, and bounded number of (cut)-rules.

▶ Lemma 10. Let Π be a PSLL cut-free proof, of rank n, with conclusion sequent S of degree
d. The depth of Π is then bounded by O(|S|.nd).

▶ Lemma 11. Let Π be a PSLL proof, of rank n, with conclusion sequent S of degree d.
Then, on any path from S to an axiom in Π, there are at most O(|S|.nd) (�,⊸ cut)-rules
with cut-pairs of premises.

Combining these two lemmas, we obtain a bound on the depth of PSLL proofs.
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▶ Lemma 12. Let Π be a PSLL proof, of rank n and degree d, with conclusion sequent S.Let
M be the maximal size of its cut-formulas. Then, the depth of Π is O(M.|S|.n2d).

▶ Lemma 13. Let R be a (�,⊸ cut) rule with cut-pairs (S1 = Γ1 ⊢ A1) → S, · · · , (St =
Γt ⊢ At) → S and cut-formulae A1, · · · , At. Assume moreover that

each of the proof trees with conclusion Si, for i = 1, · · · , t, ends with the PSLL rule with
right principal formula Ai, and
the proof tree with conclusion S ends with the t PSLL rules with left principal formula
Ai, for i = 1, · · · , t.

Then, the cut-elimination steps of Proposition 8 for the cut-pairs (S1, S), · · · , (St, S) can be
performed in parallel.

Proof. The cut-elimination steps of Proposition 8 act on distinct left sub-formulae of S, and
distinct premises (other than S) of the (�,⊸ cut) rule R. ◀

▶ Definition 14 (Parallel elimination of an innermost cut). Le Π be a PSLL proof. A (�,⊸ cut)
rule R with cut-pairs is innermost in Π if there is no other (�,⊸ cut) rule with cut-pairs
along any path from R to the axioms of Π.

Let R be an innermost (�,⊸ cut) rule in Π, and F (R) be the pairing forest. The parallel
elimination of R is then the following procedure:
1. For any premise S = Λ ⊢ B of R root in F (R), with cut-pairs (S1 = Γ1 ⊢ A1, S), · · · , (St =

Γt ⊢ At, S), perform the rule permutations of Lemma 7 such that S is conclusion of a
proof tree with deep most rules the left rules with principal formulae A1, · · · , At, and

2. perform the rule permutations of Lemma 7 such that, for i = 1, · · · , t, Si is conclusion of
a proof tree ending with a right rule with principal formula Ai.

3. perform in parallel the cut-elimination steps of Lemma 13 for all cut-pairs (Si, S) for all
roots S in F (R).

4. if R has at least one cut-pair left, go to step 1.

▶ Definition 15 (Innermost parallel cut-elimination). Let Π be a PSLL proof. The Innermost
parallel cut-elimination procedure consists in applying in parallel, for all its innermost cuts,
their parallel elimination, until no (�,⊸ cut) rule with cut-pairs remains.

The innermost parallel cut-elimination procedure ensures that the blow-up of the (�,⊸
cut) rules remains under control:

▶ Lemma 16. Let Π be a PSLL proof with conclusion S, degree d, and rank n. Let M be
the maximal size of its cut-formulae and w the maximal indegree of its pairing forests. Then,
the maximal indegree of the pairing forests of any proof Π′ derived from Π by an innermost
parallel partial evaluation is bounded by O(w.nd + M).

▶ Lemma 17. Let Π be a PSLL proof with conclusion S, degree d, and rank n. Let M be
the maximal size of its cut-formulae, and h the maximal height of its pairing forests. The
parallel elimination of an innermost cut takes at most O(M.h) parallel steps.

Proof. For each of the elimination steps of Proposition 8, for each path in the pairing forest
containing the cut-pair eliminated by this step, the sum of the sizes of the cut-formulae along
the path strictly decreases, hence the result. ◀

We now have a parallel, polynomial time cut-elimination procedure:

▶ Theorem 18. Let Π be a PSLL proof, of rank n and degree d, with conclusion sequent
S. Let M be the maximal size of its cut-formulae, and h the maximal height of its pairing
forests. Then, an innermost parallel cut-elimination strategy takes O(|S|.M.h.n2d) steps.
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Proof. By Lemma 12, the depth of the proof-tree is at most O(M.|S|.n2d): this bounds
applies therefore for the overall parallel time needed to parse the proof-tree and reach all
innermost (�,⊸ cut)-rules. These innermost (�,⊸ cut) rules belong to different branches
of the proof tree: they can therefore be eliminated safely in parallel. Each of these parallel
elimination steps takes at most O(M.h) steps.

By Lemma 11, the number of (�,⊸ cut)-rules with cut-pairs on any path in the proof
tree is bounded by O(|S|.nd): this bounds the number of times one needs to fully eliminate
the innermost (�,⊸ cut)-rules, hence the overall bound. ◀

Note that, in Theorem 18, we have only counted the number of parallel cut-elimination
steps. Lemma 16 ensures moreover that, for each of these cut-elimination steps, the number
of rule permutations needed to compute it is also polynomially bounded.

▶ Example 19. Let us consider the following derivation proof, corresponding to the application
of a function to two arguments, of types A and B respectively, in a curryfied fashion, with
atomic resulting type C. Since the strategy is innermost, the four premises in the tree are
conclusions of (cut)-free derivation trees.

�∆1, Γ, A, B ⊢ C
(⊸ R)

�∆1, Γ, A ⊢ B ⊸ C
(⊸ R)

�∆1, Γ ⊢ A ⊸ B ⊸ C

�∆3, Φ ⊢ A

�∆5, Λ ⊢ B �∆6, Θ, C ⊢ C
(� ⊸ L)

�∆4, Λ, Θ, B ⊸ C ⊢ C
(� ⊸ L)

�∆2, Φ, Λ, Θ, A ⊸ B ⊸ C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

One parallel (�cut) elimination step exhibits the application of the first argument, of type A,

�∆1, Γ, A, B ⊢ C
(⊸ R)

�∆1, Γ, A ⊢ B ⊸ C �∆3, Φ ⊢ A

�∆5, Λ ⊢ B �∆6, Θ, C ⊢ C
(� ⊸ L)

�∆4, Λ, Θ, B ⊸ C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

And a second one exhibits the application of the second argument, of type B.

�∆1, Γ, A, B ⊢ C �∆3, Φ ⊢ A �∆5, Λ ⊢ B � ∆6, Θ, C ⊢ C
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

The premise �∆6, Θ, C ⊢ C is the root of the pairing forest, and the atomic type C is
eliminated first.

�∆1, Γ, A, B ⊢ C �∆3, Φ ⊢ A �∆5, Λ ⊢ B
(�cut)

�∆, Γ, Φ, Λ, Θ ⊢ C

Finally, the two arguments types A and B are then eliminated in parallel, with elimination
steps corresponding to the substitution of the corresponding values in the function term in
the Curry-Howard isomorphism, as detailed in the next section.

3 A Parallel Polynomial Time Type Assignment for λ-calculus

3.1 Parallel Soft Types
We take insipiration from the STA type assignment of Gaboardi and Ronchi [7]. We add the
parallel modalities in a restricted way, as follows.
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▶ Definition 20 (Parallel Soft types (PSTA)). In the following, α, β, etc stand for base type
variables, A, B, C, etc stand for types with linear output, and σ, τ , etc stand for PSTA
types. PSTA types are given by the following grammar:

A, B, C := α | σ ⊸ A | ∀αA | A&B

σ, τ, ρ, µ, ν := A | !σ | � σ

A PSTA Typing context is a set of type assignments x : σ, where x is a variable and σ a
PSTA type. A PSTA Typing judgment is Γ ⊢ M : σ, where Γ is a PSTA Typing context, M

is a λ-term, and σ is a PSTA type.

3.2 Typing Rules
Our PSTA typing rules are the following.

(�Id)
�∆, x : A ⊢ x : A

�∆, Γ ⊢ M : σ
(�Sp)

�∆, !Γ ⊢ M : !σ
Γ ⊢ M : A (∀R)Γ ⊢ M : ∀αA

Γ, x0 : τ, · · · , xn : τ ⊢ M : σ (m)
Γ, x : !τ ⊢ M [x/x0, · · · , x/xn] : σ

Γ ⊢ M : σ1 Γ ⊢ M : σ2 (NR)Γ ⊢ M : σ1Nσ2

Γ, x : A[B/α] ⊢ M : σ
(∀L)Γ, x : ∀αA ⊢ M : σ

Γ, x1 : τ ⊢ M : σ (�D)
Γ, x : �τ ⊢ M [x/x1] : σ

Γ, x1 : τ1 ⊢ M : σ (NL1)
Γ, x : τ1Nτ2 ⊢ M [x/x1] : σ

Γ, x2 : τ2 ⊢ M : σ (NL2)
Γ, x : τ1Nτ2 ⊢ M [x/x2] : σ

Γ, x : σ ⊢ M : A (⊸ R)Γ ⊢ λx.M : σ ⊸ A

�∆1, Γ ⊢ M : τ �∆2, Λ, x : τ ⊢ N : σ
(�cut)

�∆, Γ, Λ, ⊢ N [M/x] : σ

Γ ⊢ M : σ (�W )
Γ, x : �τ ⊢ M : σ

�∆1, Γ ⊢ M : τ �∆2, Λ, x : A ⊢ N : σ
(� ⊸ L)

�∆, Γ, Λ, y : τ ⊸ A ⊢ N [yM/x] : σ

As exemplified in the subject reduction property, typing an application term (MN) is
done with the (� ⊸ L) rule. In the typing rules above, we also add the following side
conditions:

Parallel types occur only with negative polarity in the typing judgments,
In rules (�cut) and (� ⊸ L), the domain of contexts Γ and Λ are disjoint, and finally
In rules (�cut) and (� ⊸ L), the side condition SP : �∆1 ⊊ �∆, �∆2 ⊊ �∆ holds.

Moreover, we also define a generalized (�,⊸ cut) rule similar to that of PSLL, with the
appropriate nesting of substitutions for all (cut) and ⊸ pairs of terms.

These rules being literal translations of that of PSLL, the rule permutations, and (cut)-
elimination steps of PSLL apply to PSTA.

The grammar of our types, and the typing rules, together with the side conditions above,
ensure that sharing does not occur in our typing system. More precisely, we have

▶ Proposition 21. Let Π be a typing derivation with conclusion Γ ⊢ M : !σ. Then, the
context Γ is �∆, !Λ.

A corollary of Proposition 21 is

▶ Corollary 22. Any typing derivation with conclusion �∆, !Γ ⊢ M : !σ ends with a (�Sp),
(m), (�D), (�W ) or a (�cut). Moreover, in this context, the rules (m), (�D), and (�W )
can be commuted to the top (since the premise needs to have a modal context as well), and
the derivation can w.l.o.g. be considered to end with a (�Sp) or a (�cut)-rule.
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From the absence of sharing, we derive

▶ Proposition 23. PSTA enjoys the subject reduction property: if Γ ⊢ M : σ and M →β M ′,
then Γ ⊢ M ′.

Proof. By structural induction on the cut-type σ of the term λy.P in the redex (λy.P Q).
The terms M and M ′ can be written as M = N [(x Q)/z][λy.P/x] and M ′ = N [P [Q/y]/z].
Two cases arise:
1. σ = τ → A. The derivation is

�∆1, Γ1, y : τ ⊢ P : A

�∆1, Γ1 ⊢ λy.P : τ → A

�∆3, Γ2, ⊢ Q : τ �∆4, Γ3, z : A ⊢ N : σ
(� ⊸ L)

�∆2, Γ2, Γ3, x : τ → A ⊢ N [(x Q)/z] : σ
(�cut)

�∆, Γ1, Γ2, Γ3 ⊢ N [(x Q)/z][λy.P/x] : σ

Cut elimination yields then the following derivation tree

�∆1, Γ1, y : τ ⊢ P : A �∆3, Γ2, ⊢ Q : τ �∆4, Γ3, z : A ⊢ N : σ
(�cut)

�∆, Γ1, Γ2, Γ3 ⊢ N [P [Q/y]/z] : σ

which proves the subject reduction property. If σ = ∀ατ or σ = τNτ ′, the cut-elimination
steps eventually reduce to the case above.

2. σ =!τ . By Proposition 21, and modulo rule permutations the derivation is

�∆1, Γ1 ⊢ λy.P : τ
(�Sp)

�∆1, !Γ1 ⊢ λy.P : !τ
�∆2, Γ2, · · · xi : τ · · · ⊢ N [· · · (xi Q)/zi · · · ] : σ

(m)
�∆2, Γ2, x : !τ ⊢ N [(x Q)/z1, · · · , (x Q)/zn] : σ

(�cut)
�∆, !Γ1,; Γ2 ⊢ N [(x Q)/z1, · · · , (x Q)/zn][λy.P/x] : σ

Cut elimination yields then the following derivation tree

n copies︷ ︸︸ ︷
· · · � ∆1, Γ′

i ⊢ λy.Pi : τ · · · �∆2, Γ2, · · · xi : τ · · · ⊢ N [· · · (xi Q)/zi · · · ] : σ
(�cut)

�∆, Γ′
1, · · · , Γ′

n, Γ2 ⊢ N [(x1Q)/z1, · · · , (xnQ)/zn][λy.P1/x1, · · · , λy.Pn/xn] : σ
(m)

�∆, !Γ1, Γ2 ⊢ N [(x1 Q)/z1, · · · , (xn Q)/zn][λy.P1/x1, · · · , λy.Pn/xn] : σ

and the induction hypothesis applies to the n cut-types τ . ◀

3.3 A Parallel, Polynomial Time Evaluation Strategy
▶ Theorem 24. Let T be a λ-term, typable in PSTA.Then, T normalizes in polynomial
parallel time.

Proof. The proof follows from Theorem 18: cut-elimination in parallel polynomial time, and
subject-reduction, induce a parallel polynomial number of β-reduction steps for the term.
The overall complexity bound is however a bit more subtle: while PSTA type derivations
have exponential size and polynomial depth, the corresponding right-hand side λ-terms may
have syntactic trees of exponential depth as well. Performing the substitutions for each
β-reduction step in parallel polynomial time requires then to use an appropriate, polynomial
space representation of the terms: the explicit representation is clearly unsuitable.

Let us first introduce some definitions and observations.
Let T be a λ-term. Its Böhm-like tree B(T ) is defined as follows:

1. If T is a variable x, B(T ) is a single vertex labelled with x.
2. If T is an abstraction λx.U , B(T ) is obtained adding B(U) as a leftmost child of a root

labelled with λx.
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3. If T is an application UV , B(T ) is obtained by adding B(V ) as a new rightmost child of
the root of B(U).

Clearly, a Böhm-like tree B(T ) uniquely defines a term T . Therefore, in the sequel we identify
the two notions, and focus on the computation of the Böhm-like tree of the normal-form of a
given term.

Let T be a λ-term, typable in PSTA with a typing derivation Π. We define the pseudo-
derivation D(Π) associated to Π as the tree obtained from Π by removing all right-hand side
λ-terms (while keeping the corresponding type).

Then, the following observations hold.
1. In each typing judgment in Π (and therefore in D(Π)), the typing context contains type

assignments for variable terms only.
2. Erasing the variable names in the contexts of D(Π) (while keeping the corresponding

types) yields a PSLL proof L(Π), with types as formulae,
3. All right-hand side λ-terms in Π are uniquely determined by D(Π), and finally,
4. The variable type assignments in D(Π) are preserved by the subject-reduction property:

If T1 is a λ-term with PSTA type derivation Π1 , T1 →β T2, and Π2 is the type derivation
of T2 obtained by the subject reduction steps of Proposition 23, then the variable type
assignments in D(Π1) and D(Π2) coincide.

As a consequence, the following reduction strategy holds: from a λ-term T with PSTA
typing derivation Π, perform the innermost parallel cut-elimination strategy on L(Π), while
keeping the variable type assignments given by D(Π). The observations above ensure that
the pseudo derivation D(Π′) thus obtained is that of the typing derivation Π′ of the normal
form T ′ of T . The additional information stored in the contexts of D(Π′) (the variable
names) takes polynomial space (polynomially many variable names among an exponential
number of possible names), and the reduction can be performed in parallel polynomial time.
It remains to show how to compute the normal form T ′ from its pseudo-derivation D(Π′), in
parallel polynomial time. We do this by actually computing a succinct representation of its
Böhm-like tree B(T ′).

Let D(Π) be the pseudo-derivation of a PSTA derivation Π, with corresponding term
T with Böhm-like tree B(T ). A first observation is the following: For any typing judgment
Γ ⊢ t : σ in Π, if the explicit substitution [M/x] (respectively [yM/x]) occurs in t, then there
exists a judgment Γ′ ⊢ M : σ′ above in Π. Since Π has polynomial depth, and polynomial
indegree by Lemma 16, the substitution term M can then be described in polynomial space
by the path from the conclusion of Π to this typing judgment Γ′ ⊢ M : σ′.

For each typing judgment Γ ⊢ t : σ in Π, we associate to the right-hand term the following:
1. the path p from the conclusion of Π to this judgment, and
2. the list s(p) of explicit substitutions occurring along p, computed as follows:

assume p chooses the rightmost premise N in a (�,⊸ cut) rule R (i.e. the premise p′

s.t. R has no (cut) or ⊸-pair p′ → p′′): this cut-rule introduces a polynomial number
of substitutions [Mi/xi] (or [yiMi/xi]) in its conclusion term. Then, we add to s(p)
the pairs (pi, xi) (or (yipi, xi)), where pi is the path to the corresponding premise with
right hand term Mi.
assume p passes through a (m) (�D) or (NLi). Then, we add to s(p) the pairs (x, xi).

Clearly, for a path p, the list s(p) has polynomial size, and can be computed in polynomial
time. Now, for a given path p, the computation of the corresponding vertex v(p) in B(T )
proceeds co-recursively on D(Π) as follows:

if p is conclusion of a (�ax) rule, v(p) is a leaf in B(T ), with label x.



P. Jacobé de Naurois 26:13

if p is conclusion of a (�Sp), (∀R), (∀L), (�W ) or (NR) rule, with premise p′, then v(p)
is v(p′).
if p is conclusion of a (m), (�D) or (NLi) rule with premise p′, two cases arise:

1. v(p′) is labelled xi: then, (x/xi) belongs to s(p). In that case v(p) is labelled x, and
its successors are those of v(p′).

2. otherwise, v(p) is v(p′).
if p is conclusion of a (⊸ R) rule with premise p′, v(p) is an inner node labelled λx, with
left successor node p′.
if p is conclusion of a (�,⊸ cut)-rule R: let p′ be its rightmost premise. Then, three
cases arise:

1. v(p′) is labelled x, (p′′, x) belongs to s(p′): then, v(p) is obtained from v(p′′) by adding
to its root the successor vertices of v(p′).

2. v(p′) is labelled x, (yp′′, x) belongs to s(p′): then, v(p) is a vertex labelled y, with
right successor v(p′′).

3. otherwise, v(p) is v(p′).
Performing the procedure above in parallel for all paths in D(Π) provides then a succinct
description of B(T ) in parallel polynomial time. ◀

4 Completeness of PSTA

We now prove that PSTA is complete for the class FPAR of functions computable in parallel,
polynomial time. In order to do so, we first encode parallel, polynomial time recursive
functions with substitutions, à la Leivant and Marion [16], and then use them to simulate
the computation of a P-uniform family of boolean circuits of polynomial depth. Extending
these encodings to the setting of algebraic complexity amounts then simply to replace the
base type B by a base type for the underlying algebraic structure (e.g. real numbers), and
to provide the type of the algebraic constants and operations in the typing context.

First, PSTA captures (obviously) STA.

▶ Lemma 25. Let Π be a SLL proof of degree d and rank n, with conclusion Γ ⊢ A of size s.
Let WΠ be its weight, as defined in [13]. Then, any path in from the conclusion of Π to an
axiom contains at most s + WΠ(1) (⊸ L) rules, and at most WΠ(1).nd (cut) rules.

▶ Corollary 26. Let Π be a SLL proof of degree d and rank n, with conclusion Γ ⊢ A of size
s. Then, there exists a PSLL proof Π′ with conclusion ∆, Γ ⊢ A, of degree d and rank n.

Proof. Take ∆ =!d � A1, . . . , !d � Ak, with k = WΠ(1) + s, for any A1, · · · , Ak. ◀

An immediate consequence is that all λ-terms typable in STA are also typable in PSTA,
with the same rank and degree. As a consequence, following [7], Theorem 19, we immediately
have that PSTA is complete for FPTIME. This allows us to prove its FPAR completeness
more easily. Denote by B the STA (hence PSTA) type for booleans, L the STA type for
binary strings, and N the STA type for Church Integers.

The following lemma allows us to encode some sort of polynomial recursion with substi-
tutions a la Leivant and Marion [16] in PSTA.

▶ Lemma 27. Assume we have the following sequential, polynomial time functions, with
PSTA type derivations:

op with derivation Πop with conclusion Γop ⊢ op : L ⊸ L ⊸ L ⊸ L.
s1 and s2 with derivation Πi, for i ∈ {1, 2}, with conclusion Γi ⊢ si : L ⊸ L.
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and, for any univariate polynomial P of degree d, a function P , encoding the church
integer P (|L|) for a binary list L, with derivation ΠP with conclusion ΓP ⊢ P :!dL ⊸ N.

We now consider the following recursive function with substitutions, on binary lists: f(v) =
op(v, f(s1(v)), f(s2(v))). Moreover, we assume that on any input v, the recursive computation
of f reaches a fixed point after P (|v|) steps. Then, f(v) is PSTA definable with degree d.

Proof. Following a similar encoding in [6], each recursion step in the computation of f is
encoded by the following function Step = λh.λv.op v (h (s1 v)) (h (s2 v)). Let L2 = (L ⊸
L) ⊸ L ⊸ L, and Γ = Γop, Γ1, Γ2, (X : �A)2, h : �(L ⊸ L), v : �L Then, Step admits a
PSTA proof derivation ΠStep with conclusion Γ ⊢ Step : L2.

Indeed, ΠStep is

Aop A1 A2 As1 As2 AV1 AV2 Astep (�cut)
Γ, h : L ⊸ L, v : L ⊢ op v (h (s1 v)) (h (s2 v)) : L

(⊸ R)2
Γ ⊢ Step : L2

where Aop is Πop

Γop ⊢ op : L ⊸ L ⊸ L ⊸ L
, Ai is Πi

Γi ⊢ si : L ⊸ L
,

Asi is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, ti : L ⊸ L, v : L ⊢ ti v : L
(�D)

X : �A, ti : L ⊸ L, v : �L ⊢ ti v : L
,

AV1 is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, h : L ⊸ L, v : L ⊢ h v : L
(�D)2

X : �A, h : �L ⊸ L, v : �L ⊢ h v : L
,

AV2 is
(�Id)

v : L ⊢ v : L (�Id)
x : L ⊢ x : L (� ⊸ L)

X : �A, h : L ⊸ L, v : L ⊢ h v : L
,

and Astep is

(�Id)
V1 : L ⊢ V1 : L (�Id) · · ·

x1 : L ⊢ x1 : L (�Id)
x3 : L ⊢ x3 : L (�,⊸ cut)

X : �A, V1 : L, V2 : L, V3 : L, op : L ⊸ L ⊸ L ⊸ L ⊢ op V1 V2 V3 : L

The value f(v) is reached after P (|v|) recursion steps. It is given by Value v, where
Value = λv.((P v) Step λy.y) v). Let Γ′ = Γop, Γ1, Γ2, (X : �A)5, h : �(L ⊸ L), v :
�L, ΓP , v :!dL. Then, Value admits a PSTA proof derivation ΠValue with conclusion Γ′ ⊢
Value : L ⊸ L. Indeed, let L3 = (!L2 ⊸ L2). Recall that N = ∀α!(α ⊸ α) ⊸ α ⊸ α and
consider the following proof derivations.

ΠP v:
ΠP

ΓP ⊢ P :!dL ⊸ N

(�Id)
v :!dL ⊢ v :!dL

(�Id)
x :!dL ⊢ x :!dL (� ⊸ L)

x : �A, P :!dL ⊸ N, v :!dL ⊢ P v : N
(�cut)

(x : �A)2, ΓP , v :!dL ⊢ P v : N
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Πs:

ΠP v !ΠStep

!Step :!L2 ⊢!Step :!L2 x :!L2 ⊢ x :!L2
(� ⊸ L)

X : �A, (P v) : L3, !Step :!L2 ⊢ P v Step : L2
(∀L)

X : �A, (P v) : N, !Step :!L2 ⊢ P v Step : L2
(�cut)

Γop, Γ1, Γ2, (X : �A)3, h : �(L ⊸ L), v : �L, ΓP , v :!dL ⊢ P v Step : L2

Πsl:

Πs

λy.y : L ⊸ L ⊢ λy.y : L ⊸ L f : L ⊸ L ⊢ f : L ⊸ L (� ⊸ L)
X : �A, P v Step : L2 ⊢ P v Step λy.y : L ⊸ L

(�cut)
Γop, Γ1, Γ2, (X : �A)4, h : �(L ⊸ L), v : �L, ΓP , v :!dL ⊢ P v Step λy.y : L ⊸ L

and finally ΠValue:

Πsl

v : L ⊢ v : L z : L ⊢ z : L (� ⊸ L)
X : �A, P v Step λy.y : L ⊸ L, v : L ⊢ (P v Step λy.y)v : L

(�cut)
Γ′, v : L ⊢ (P v Step λy.y)v : L

(⊸ R)
Γ′ ⊢ Value : L ⊸ L

◀

▶ Theorem 28. PSTA is complete for FPAR.

Proof. Using the usual encodings for binary strings, booleans, integers and pairs, we use
Lemma 27 to prove our completeness result. Let g be a function computed in FPAR. For
the sake of simplicity let us assume that g outputs a single boolean. Then, there exists a
P -uniform family C of succinctly described boolean circuits, of polynomial depth, computing
g. More precisely, there exist a univariate polynomial p, and polynomial time functions and,
or, node, input, s1 and s2 such that:

On any input x = x1, · · · , xn of size n, g(x1, · · · , xn) is computed by a boolean circuit
Cn of depth p(n), with output node t.
For each node s in Cn, there exists a binary list ns, encoding a path from t to s in Cn, of
length less than p(n). Each node will be identified by these paths (there may be several
paths for a given node).
and(x, y) (respectively or(x, y), resp. not(x, y)) is true if the path y encodes a and (resp.
or, resp. not) node of C|x|, and false otherwise.
input(x, y) is (xi, true) if y encodes the ith input node of C|x|, and (0, false) otherwise.
s1(y) = 0.y encodes a path to the left parent of the node encoded by y, if it exists.
s2(y) = 1.y encodes a path to the right parent of the node encoded by y, if it exists.

Define now f(x, y) = op(x, y, f(x, s1(y)), f(x, s1(y))), where y denotes a path in C|x|, and
op(x, y, v1, v2) computes, using the functions defined above, the boolean value of the node y

in C|x|, provided v1 and v2 are the boolean values of its two parents nodes. Then, Lemma 27
applies: f is definable in PSTA, and recursively computes the value of all nodes in C|x|. The
output g(x) is then given by f(x, ϵ), where ϵ is the empty binary list. ◀

5 Concluding Remarks

In this paper we have only investigated one of the many possible choices for the way the
parallel (�,⊸ cut) rule allows contraction on � formulas, and allows its distribution among
the premises of the cut, and we have applied this approach to one example (STA) of linear
typing system. Among the questions now worth investigating are the following: Is it possible
to tune differently the side condition of the (�,⊸ cut)-rule to capture other complexity
classes? Such obvious candidates are the classes NCi, which we could hope to capture
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by taking a fully linear (�,⊸ cut)-rule (for ensuring sequential polynomial time), with an
additional side condition ensuring parallel polylogarithmic time cut-elimination. Is it also
possible to use this approach on type systems capturing other sequential complexity classes,
for instance Logspace [17, 15], and to obtain other interesting results?
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Abstract
This paper explores how the intersection type theories of call-by-name (CBN) and call-by-value
(CBV) can be unified in a more general framework provided by call-by-push-value (CBPV). Indeed,
we propose tight type systems for CBN and CBV that can be both encoded in a unique tight type
system for CBPV. All such systems are quantitative, i.e. they provide exact information about
the length of normalization sequences to normal form as well as the size of these normal forms.
Moreover, the length of reduction sequences are discriminated according to their multiplicative and
exponential nature, a concept inherited from linear logic. Last but not least, it is possible to extract
quantitative measures for CBN and CBV from their corresponding encodings in CBPV.
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1 Introduction

Every programming language implements a particular evaluation strategy which specifies
when and how parameters are evaluated during function calls. For example, in call-by-value
(CBV), the argument is evaluated before being passed to the function, while in call-by-
name (CBN) the argument is substituted directly into the function body, so that the
argument may never be evaluated, or may be re-evaluated several times. CBN and CBV have
always been studied independently, by developing different techniques for one and the other,
until the remarkable observation that they are two different instances of a more general
framework introduced by Girard’s Linear Logic (LL). Their (logical) duality (“CBN is
dual to CBV”) was understood later [18, 17]. And their rewriting semantics were finally
unified by the call-by-push-value (CBPV) paradigm – introduced by P.B. Levy [41, 42] –
a formalism being able to capture different functional languages/evaluation strategies.

A typical aspect that one wants to compare between two different evaluation strategies is
the number of steps that are necessary to get a result. Such numbers are extracted from
different models of computation and should be then measured by compatible instruments,
either by means of common quantitative tools, or by a precise transformation between them1.
Thus, we provide a uniform tool to measure quantitative information extracted from the
evaluation of programs in different programming languages (namely CBN and CBV).

1 Think for example about cm and inches.
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More concretely, we introduce typing systems capturing qualitative and quantitative
information of programs. From a qualitative point of view, the typing systems characterize
termination of programs, i.e. a program p is typable if and only if p terminates. From a
quantitative point of view, the typing systems provide exact/tight information about the
number of steps needed to get a result, as well as the size of this result. All these questions
are addressed in the general framework of CBPV, being able to encode CBN and CBV, both
from a static and a dynamic point of view. Dynamically, CBN and CBV evaluation strategies
are known to be encodable by the rewriting semantics of CBPV. Statically, we define tight
typing systems providing quantitative information for CBN and CBV, that can be seen as
particular cases of the tight quantitative typing system behind the unified framework of
CBPV. We now explain all these concepts in more detail.

Quantitative Types. Quantitative typing systems are often specified by non-idempotent
intersection types inspired by the relational semantics of LL [30, 11], as pioneered by [28].
This connection makes non-idempotent types not only a qualitative typing tool to reason
about programming languages, but mainly a quantitative one, being able to specify properties
related to the consumption of resources, a remarkable investigation pioneered by the seminal
de Carvalho’s PhD thesis [19] (see also [21]). Thus, qualitatively, a non-idempotent typing
system is able to fully characterise normalisation, in the sense that a term t is typable if and
only if t is normalising. More interestingly, quantitative typing systems also provide upper
bounds, in the sense that the length of any reduction sequence from t to normal form plus the
size of this normal form is bounded by the size of the type derivation of t. Therefore, typability
characterises normalisation in a qualitative as well as in a quantitative way, but only provides
upper bounds. Several papers explore bounded measures of non-idempotent types for different
higher order languages. Some references are [24, 31, 4, 3, 35, 14, 20, 33, 23, 22, 13, 44].

In this satisfactory enough? A major observation concerning β-reduction in λ-calculus is
that the size of normal forms can be exponentially bigger than the number of steps needed
to reach these normal forms. This means that bounding the sum of these two integers at the
same time is too rough, and not very relevant from a quantitative point of view. Fortunately,
it is possible to extract better (i.e. independent and exact) measures from a non-idempotent
intersection type system. A crucial point to obtain exact measures, instead of upper
bounds, is to consider minimal type derivations [19, 9, 23]. Therefore, upper bounds for time
plus size can be refined into independent exact measures for time and size [1]. More precisely,
the quantitative typing systems are now equipped with constants and counters, together
with an appropriate notion of tightness, which encodes minimality of type derivations. For
any tight type derivation Φ of a term t ending with (independent) counters (b, s), it is now
possible to show that t is normalisable in b steps and its normal form has size s, so that the
type system is able to guess the number of steps to normal form as well as the size of this
normal form. The opposite direction also holds: if t normalises in b steps to a normal form
size s, then it is possible to tightly type t by using (independent) counters (b, s).

In this paper we design tight quantitative type systems that are also capable to discriminate
between multiplicative and exponential evaluation steps to normal form, two conceptual
notions coming from LL: multiplicative steps are essentially those that (linearly) reconfigure
proofs/terms/programs, while exponential steps are the only ones that are potentially able to
erase/duplicate other objects. As a consequence, for any tight type derivation Φ of t ending
with (independent) counters (m, e, s), the term t is normalisable in m multiplicative and e
exponential steps to a normal form having size s. The opposite direction also holds.
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Call-by-push-value. CBPV extends the λ-calculus with two primitives thunk and force
distinguishing between values and computations: the former freezes the execution of a term
(i.e. turns a computation into a value) while the latter fires again a frozen term (i.e. turns a
value into a computation). These primitives allow to capture the duality between CBN and
CBV by conveniently labelling a λ-term with thunk/force to pause/resume the evaluation
of a subterm. Thus, CBPV provides a unique and general formalism capturing different
functional strategies, and allowing to uniformly study operational and denotational semantics
of different programming languages through a single tool.

In this paper we model the CBPV paradigm by using the λ!-calculus [12], based on
the bang calculus introduced in [26], which in turn extends ideas by T. Ehrhard [25]. The
granularity of the λ!-calculus, expressed with both explicit substitutions and reduction
at a distance (details in Sec. 5), clearly allows to differentiate between multiplicative and
exponential steps, as in LL. The corresponding CBN and CBV strategies also follow this
pattern: it is possible to distinguish the multiplicative steps that only reconfigure pieces of
syntax, from the exponential steps used to implement erasure and duplication of terms.

Contributions. We first define deterministic strategies for CBN and CBV that are able to
discriminate between multiplicative and exponential steps (Sec. 2).

We then formulate tight typing systems for both CBN (Sec. 3) and CBV (Sec. 4), called
respectively N and V . System N is a direct extension of Gardner’s system [28], while system
V is completely new, and constitutes one of the major contributions of this paper. A key
feature of system V is its ability to distinguish between the two different roles that variables
may play in CBV depending on the context where they are placed, i.e. to be a placeholder
for a value or the head of a neutral term. We show that both systems implement independent
measures for time and size, and that they are quantitatively sound and complete. More
precisely, we show that tight (i.e. minimal) typing derivations in such systems (exactly)
quantitatively characterise normalisation, i.e. if Φ is a tight type derivation of t in system N
(resp. V), ending with counters (m, e, s), then there exists a CBN (resp. CBV) normal form
p of size s such that t reduces to p by using exactly m multiplicative steps and e exponential
steps. The converse, giving quantitative completeness of the approach, also holds.

Sec. 5 recalls the bang calculus at a distance λ! and Sec. 6 presents its associated tight type
system B, together with their respective quantitative sound and complete properties. The
untyped CBN/CBV translations into λ! are recalled in Sec. 7, while the typed translations
are defined and discussed in Sec. 8, the other major contribution of this work. Through these
typed encodings, the counters of the source and target derivations are related. This makes it
possible to give the precise cost of our typed translations, as well as to extract quantitative
measures for CBN and CBV from their corresponding encodings in CBPV.

Detailed proofs can be found in [37].

Related Work. For CBN, non-idempotent types were introduced by [28], their quantitative
power was extensively studied in [19, 20], and their tight extensions in [9, 1]. For CBV,
non-idempotent types were introduced in [24], and extensively studied, e.g. [31, 3]. A tight
extension being able to count reduction steps was recently defined in [4, 40] for a special
version of (closed) CBV, but it is not clear how this could be encoded in a linear logic based
CBPV framework. Another non-idempotent type system was also recently introduced for
CBV [43, 34], it is not tight and does not translate to CBPV.

A (non-tight) quantitative type system for the bang calculus, based on a relational
model, can be found in [32]. Another relational model that can be seen as a non-tight
system for CBPV was introduced by [16]. Following ideas in [19, 9, 1], a type system E was
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proposed in [12] to fully exploit tight quantitative aspects of the λ!-calculus: independent
exact measures for time and size are guessed by the types system. However, no relation
between tightness for CBN/CBV and tightness for the λ!-calculus are studied in op.cite.
This papers fills this gap.

The discrimination between multiplicative and exponential steps by means of tight
quantitative types can be found e.g. in CBN [1], call-by-need [4], and languages with
pattern-matching primitives [7].

2 Call-by-Name and Call-by-Value

This section introduces the CBN and CBV specifications being able to distinguish between
multiplicative and exponential steps, as in linear logic. Given a countably infinite set X of
variables x, y, z, . . ., we consider the following grammars for terms (Tλ), values and contexts:

(Terms) t, u, r ::= v | t u | t[x\u]
(Values) v ::= x ∈ X | λx.t

(Contexts) C ::= L | N | V
(List Contexts) L ::= □ | L[x\t]

(CBN Contexts) N ::= □ | N t | λx.N | N[x\u]
(CBV Contexts) V ::= □ | V t | t V | V[x\u] | t[x\V]

A terms of the form t[x\u] is a closure, and [x\u] an explicit substitution (ES). Special
terms are I = λz.z, K = λx.λy.x, ∆ = λx.x x, and Ω = ∆ ∆. We use C⟨t⟩ for the term
obtained by replacing the hole □ of C by t. Free and bound variables, as well as α-conversion,
are defined as expected. In particular, fv(t[x\u]) def= fv(t)\{x}∪fv(u), fv(λx.t) def= fv(t)\{x},
bv(t[x\u]) def= bv(t)∪{x}∪bv(u) and bv(λx.t) def= bv(t)∪{x}. The notation t {x\u} is used for
the (capture-free) meta-level substitution operation, defined, as usual, modulo α-conversion.
Special predicates are used to distinguish different kinds of terms surrounded by ES: abs(t)
iff t = L⟨λx.u⟩, app(t) iff t = L⟨r u⟩ and var(t) iff t = L⟨x⟩. Finally, val(t) iff abs(t) or var(t).

As mentioned in the introduction, our aim is to count the reduction steps by distinguishing
their multiplicative and exponential nature. To achieve this, the standard specifications of
CBN/CBV are not adequate, so we need to consider alternative appropriate definitions [6]
making use of the following three different rewriting rules:

(distant Beta) L⟨λx.t⟩ u 7→dB L⟨t[x\u]⟩
(substitute term) t[x\u] 7→sn t {x\u}
(substitute value) t[x\L⟨v⟩] 7→sv L⟨t {x\v}⟩

Rule dB fires β-reduction at a distance by combining the two more elementary rules:
(λx.t) u 7→ t[x\u] and L⟨t⟩ u 7→ L⟨t u⟩, where the second one is a structural/permutation
rule pushing out ES that may block β-redexes. Rule sn implements standard substitution,
while sv restricts substitution to values and acts at a distance by combining the two more
elementary rules: t[x\v] 7→ t {x\v} and t[x\L⟨v⟩] 7→ L⟨t[x\v]⟩. The call-by-name reduction
relation →n is the closure by contexts N of the rules dB and sn, while the call-by-value
reduction relation →v is the closure by contexts V of the rules dB and sv. Equivalently,

→n := N( 7→dB ∪ 7→sn) and →v := V( 7→dB ∪ 7→sv)

The resulting CBN/CBV formulations are now based on distinguished multiplicative (cf. dB)
and exponential (cf. sn and sv) steps, called resp. m-steps and e-steps, thus inheriting
the nature of cut elimination rules in LL. Notice that the number of m and e-steps in a
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normalization sequence is not always the same: e.g. x[x\y] →n y has only one e-step, and
(λx.x) (z I) →v x[x\z I] has only one m-step. We write t ̸→n (resp. t ̸→v), and call t an
n-normal form (resp. v-normal form), if t cannot be reduced by means of →n (resp. →v).
Both CBN and CBV are non-deterministic: t →n u and t →n s does not necessarily implies
u = s. But both calculi enjoy confluence, notably because their rules are orthogonal [39, 38].
Moreover, in each calculus, it is easy to show that any two different reduction paths to
normal form have the same number of multiplicative and exponential steps.

CBN is to be understood as head reduction [8], i.e. reduction does not take place in
arguments of applications, while CBV corresponds to open CBV reduction [6, 2], i.e. reduction
does not take place inside abstractions. The sets of n/v-normal forms can be alternatively
characterised by the following grammars [12]:

(CBN Neutral) nen ::= x ∈ X | nen t

(CBN Normal) non ::= λx.non | nen

(CBV Variable) vrv ::= x ∈ X | vrv[x\nev]
(CBV Neutral) nev ::= vrv nov | nev nov | nev[x\nev]
(CBV Normal) nov ::= λx.t | vrv | nev | nov[x\nev]

In contrast to CBN, variables are left out of the definition of neutral terms for the CBV
case, since they are now considered as values. However, even if CBV variables are not neutral
terms, neutral terms are necessarily headed by a variable, so that variables play a double role
which is difficult to be distinguished by means of an intersection type system. We will come
back to this point in Sec. 4. Excluding variables from the set of values brings a remarkable
speed up in implementations of CBV [40], but goes beyond the logical Girard’s translation
of CBV into LL, which is the main topic of this paper. Our chosen approach allows both
CBN and CBV neutral terms to translate to neutral terms of the λ!-calculus (cf. Sec. 5).

Deterministic Strategies for CBN and CBV. As a technical tool, in order to count the
reduction steps of CBN/CBV we first fix a deterministic version for them. The reduction
relation →dn is a deterministic version of →n defined as:

L⟨λx.t⟩ u →dn L⟨t[x\u]⟩ t[x\u] →dn t {x\u}
t →dn s and ¬abs(t)

t u →dn s u

t →dn s

λx.t →dn λx.u

Similarly, the reduction relation →dv is a deterministic version of →v defined as:

L⟨λx.t⟩ u →dv L⟨t[x\u]⟩ t[x\L⟨v⟩] →dv L⟨t {x\v}⟩
t →dv s ¬abs(t)

t u →dv s u

t →dv s u ∈ nev ∪ vrv

u t →dv u s

t →dv s ¬val(t)
u[x\t] →dv u[x\s]

t →dv s u ∈ nev

t[x\u] →dv s[x\u]

As a matter of notation, for X ∈ {dn, dv}, we write t ↠(m,e)
X u if t ↠X u using m

multiplicative steps and e exponential steps.
The normal forms of the non-deterministic and the deterministic versions of CBN/CBV

are the same, in turn characterised by the grammars non/nov [12].

▶ Proposition 1. Let t ∈ Tλ. Then, t ̸→n iff t ̸→dn iff t ∈ non and t ̸→v iff t ̸→dv iff t ∈ nov.

(Head) CBN ignores reduction inside arguments of applications, while (Open) CBV
ignores reduction inside abstractions, then CBN (resp. CBV) normal forms are measured by
the following n-size (resp. v-size) function:

|x|n := 0 |λx.t|n := |t|n + 1 |t u|n := |t|n + 1 |t[x\u]|n := |t|n
|x|v := 0 |λx.t|v := 0 |t u|v := |t|v + |u|v + 1 |t[x\u]|v := |t|v + |u|v
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3 Tight Call-by-Name

We now introduce a tight type system N for CBN which captures independent exact measures
for →n-reduction sequences. This result is not surprising, since it extends the one in [1]
from the pure λ-calculus to our CBN calculus. However, we revisit the op.cit. approach by
appropriately splitting reduction into multiplicative and exponential steps, a reformulation
necessary to establish a precise correspondence with the tight type system for the λ!-calculus.
In particular, our counting mechanism slightly differs from [1] (details below).

In system N there are two base types: a types terms whose normal form is an abstraction,
and n types terms whose normal form is CBN neutral. The grammar of types is given by:

(Tight Types) tt ::= n | a
(Types) σ, τ ::= tt | M | M → σ

(Multitypes) M, N ::= [σi]i∈I where I is a finite set

Multitypes are multisets of types. The empty multitype is denoted by [ ], ⊔ denotes
multitype union, and ⊑ multitype inclusion. Also, |M| denotes the size of the multitype,
thus if M = [σi]i∈I then |M| = #(I). Notice that the grammar for types slightly differs
from [1], in particular types are now allowed to be just multitypes. The main reason to adopt
this change is that this (unique) grammar is used for our three formalisms CBN, CBV, and
CBPV, changing only the definition of tight types for each case2.

Typing contexts (or just contexts), written Γ, ∆, are functions from variables to
multitypes, assigning the empty multitype to all but a finite set of variables. The domain of Γ
is given by dom(Γ) def= {x | Γ(x) ̸= [ ]}. The union of contexts, written Γ + ∆, is defined by
(Γ + ∆)(x) def= Γ(x) ⊔ ∆(x). An example is (x : [σ], y : [τ ]) + (x : [σ], z : [τ ]) = (x : [σ, σ], y :
[τ ], z : [τ ]). This notion is extended to several contexts as expected, so that +i∈I Γi denotes
a finite union of contexts (particularly the empty context when I = ∅). We write Γ \\ x for
the context (Γ \\ x)(x) = [ ] and (Γ \\ x)(y) = Γ(y) if y ̸= x.

Type judgements have the form Γ ⊢(m,e,s) t : σ, where Γ is a typing context, t is a term,
σ is a type, and the counters (m, e, s) are expected to provide the following information: m
(resp. e) indicates the number of multiplicative m-steps (resp. exponential e-steps) to normal
form, while s indicates the n-size of this normal form. It is worth noticing that the λ-calculus
hides both multiplicative and exponential steps in one single β-reduction rule [1], so that
only two counters suffice, one for the number of β-reduction steps, and another for the size of
normal forms. Here we want to discriminate between multiplicative/exponential steps, in the
sense that the execution of an ES generates an exponential step, but not a multiplicative one.
This becomes possible due to the CBN/CBV alternative specifications with ES that we have
adopted, and that is why we need three independent counters, in contrast to the λ-calculus.

The type system N for CBN is given in Fig. 1 (persistent rules) and 2 (consuming
rules). A constructor is consuming (resp. persistent) if it is consumed (resp. not consumed)
during n-reduction. For instance, in K I Ω the two abstractions of K are consuming, while
the abstraction of I is persistent, and all the other constructors are also consuming, except
those of Ω that turns out to be an untyped subterm. The persistent rules (Fig. 1) are those
typing persistent constructors, so that none of them increases the first two counters, but only
possibly the third one, which contributes to the size of the normal form. The consuming
rules (Fig. 2), in contrast, type consuming constructors, so that they may increase the first

2 In the intersection type literature CBN and CBV do always adopt different grammars.
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two counters, contributing to the length of the normalisation sequence. Notice in particular
that there are only two rules contributing to the multiplicative/exponential counting:
(1) rule (appN

c ) types a consuming application, meaning that its left-hand side subterm
reduces to an abstraction, then causing a multiplicative step (rule dB) 3 followed later by
an exponential step; while

(2) rule (esN
c ) types a consuming substitution causing an exponential step. In both cases, it

is the constructor application/substitution which is considered to be consumed, without
any further hypothesis on the form of the subterm that appears inside this consuming
constructor (recall that any term can be substituted in CBN). This phenomenon facilitates
in particular the identification of exponential steps in CBN, in contrast to CBV and
CBPV.

Γ ⊢(m,e,s) t : n
(appN

p )
Γ ⊢(m,e,s+1) t u : n

Γ ⊢(m,e,s) t : tt tight(Γ(x))
(absp)

Γ \\ x ⊢(m,e,s+1) λx.t : a

Figure 1 System N for the Call-by-Name Calculus: Persistent Typing Rules.

(varc)
x : [σ] ⊢(0,0,0) x : σ

Γ ⊢(m,e,s) t : τ
(absc)

Γ \\ x ⊢(m,e,s) λx.t : Γ(x) → τ

Γ ⊢(m,e,s) t : [σi]i∈I → τ (∆i ⊢(mi,ei,si) u : σi)i∈I
(appN

c )
Γ + ∆ ⊢(1+m+i∈I mi,1+e+i∈I ei,s+i∈I si) t u : τ

Γ; x : [σi]i∈I ⊢(m,e,s) t : τ (∆i ⊢(mi,ei,si) u : σi)i∈I
(esN

c )
(Γ \\ x) +i∈I ∆i ⊢(m+i∈I mi,1+e+i∈I ei,s+i∈I si) t[x\u] : τ

Figure 2 System N for the Call-by-Name Calculus: Consuming Typing Rules.

This dichotomy between consuming/persistent constructors has been first used in [36] for
the λ and λµ-calculi, and adapted here for our distant versions of CBN/CBV as well as for
the λ!-calculus. We write ▷N Γ ⊢(m,e,s) t : σ if there is a (tree) type derivation of the
judgement Γ ⊢(m,e,s) t : σ in system N . The term t is typable in system N , or N -typable,
iff there is a context Γ, a type σ and counters (m, e, s) such that ▷N Γ ⊢(m,e,s) t : σ. We
use the capital Greek letters Φ, Ψ, . . . to name type derivations, by writing for example
Φ ▷N Γ ⊢(m,e,s) t : σ. As (local) counters of judgements in a given derivation Φ contribute
to the global counters of the derivation itself, there is an alternative way to define counters
associated to a derivation Φ: the first counter mΦ is given by the number of rules (appN

c ) in
Φ, the second counter eΦ is the number of rules (esN

c ) in Φ and finally the third counter sΦ
is the number of rules (appN

p ) and (absp) in Φ. We prefer however to systematically write
counters in judgements to easy the understanding of the examples and proofs.

A multitype [σi]i∈I is tight, written tight([σi]i∈I), if σi ∈ tt for all i ∈ I. A context
Γ is said to be tight if it assigns tight multitypes to all variables. A type derivation
Φ ▷B Γ ⊢(m,e,s) t : σ is tight if Γ is tight and σ ∈ tt.

The proofs of soundness and completeness related to our CBN type system are respectively
based on subject reduction and expansion properties, and they are very similar to those in [1].
The most important point to be mentioned is that system N is now counting separately the
multiplicative and exponential steps of →n-reductions to normal-form.

3 In both [1] and [36], it is the consuming abstraction which contributes to the multiplicative steps.
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▶ Theorem 2 (Soundness and Completeness).
If Φ ▷N Γ ⊢(m,e,s) t : σ is tight, then there exists p such that p ∈ non and t ↠(m,e)

n p with
m m-steps, e e-steps, and |p|n = s.
If t ↠(m,e)

n p with p ∈ non, then there exists a tight type derivation Φ▷N Γ ⊢(m,e,|p|n) t : σ.

Notice that the previous theorem is stated by using the general notion of reduction →n,
but the proofs are done using the deterministic reduction →dn. The equivalence holds because
any two different reduction paths to normal form have the same number of multiplicative
and exponential steps, as already remarked.

▶ Example 3. Consider t0 = K (z I) (I I) that →n-reduces in 2 m-steps and 2 e-steps to the
term z I ∈ non, whose n-size is 1:

t0 = K (z I) (I I) →dB (λy.x)[x\z I] (I I) →dB x[y\I I][x\z I] →sn (z I)[y\I I] →sn z I

System N admits a tight type derivation for t0 with the expected final counter (2, 2, 1):

(varc)
x : [n] ⊢(0,0,0) x : n

(absc)
x : [n] ⊢(0,0,0) λy.x : [ ] → n

(absc)
⊢(0,0,0) K : [n] → [ ] → n

(varc)
z : [n] ⊢(0,0,0) z : n

(appN
p )

z : [n] ⊢(0,0,1) z I : n
(appN

c )
z : [n] ⊢(1,1,1) K (z I) : [ ] → n

(appN
c )

z : [n] ⊢(2,2,1) K (z I) (I I) : n

4 Tight Call-by-Value

In this section we introduce a tight system V for CBV which captures exact measures for
→v-reduction sequences. Here we do not only distinguish length of reduction sequences from
size of normal forms, but also discriminate multiplicative from exponential steps. Moreover,
we establish a precise relation between the counters in CBV and their counterparts in the
λ!-calculus (cf. Sec. 8). This constitutes one of the main contributions of the present work.

The grammar of types of system V is given by:

(Tight Types) tt ::= n | vl | vr
(Types) σ, τ ::= tt | M | M → σ

(Multitypes) M, N ::= [σi]i∈I where I is a finite set

Indeed, apart from the constant n also used in CBN, we now introduce constants vl and
vr, typing respectively, terms reducing to values; and terms reducing to persistent variables
that are not acting as values (i.e. they are applied to some argument to produce neutral
terms). Notice that we remove the base type a from CBN, since abstractions are in particular
values, so they will be typed with vl. The notions of tightness for multitypes, contexts and
derivations are exactly the same we used for CBN.

A type system for CBV must type variables without knowing yet the future role they are
going to play (head of neutral term or value). This is one of the main difficulties behind the
definition of such a system. Besides that, the system must also be able to count multiplicative
and exponential steps independently. The resulting type system V for CBV is given by the
typing rules in Fig. 3 and 4, distinguishing between persistent and consuming rules resp. As
a matter of notation, given a tight type tt0 we write tt0 to denote a tight type different
from tt0. Thus for instance, vr ∈ {vl, n}.
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(varp)
x : [vr] ⊢(0,0,0) x : vr

(valp)
⊢(0,0,0) x : vl

(absV
p )

⊢(0,0,0) λx.t : vl

Γ ⊢(m,e,s) t : vl ∆ ⊢(m′,e′,s′) u : vr
(appV

p )
Γ + ∆ ⊢(m+m′,e+e′,s+s′+1) t u : n

Γ ⊢(m,e,s) t : τ ∆ ⊢(m′,e′,s′) u : n tight(Γ(x))
(esp)

(Γ \\ x) + ∆ ⊢(m+m′,e+e′,s+s′) t[x\u] : τ

Figure 3 System V for the Call-by-Value Calculus: Persistent Typing Rules.

(varV
c )

x : M ⊢(0,1,0) x : M
Γ ⊢(m,e,s) t : [M → τ ] ∆ ⊢(m′,e′,s′) u : M

(appV
c )

Γ + ∆ ⊢(m+m′+1,e+e′−1,s+s′) t u : τ

Γ ⊢(m,e,s) t : [M → τ ] ∆ ⊢(m′,e′,s′) u : n tight(M)
(apptV

c )
Γ + ∆ ⊢(m+m′+1,e+e′−1,s+s′) t u : τ

(Γi ⊢(mi,ei,si) t : τi)i∈I
(absV

c )
+i∈I Γi \\ x ⊢(+i∈I mi,1+i∈I ei,+i∈I si) λx.t : [Γi(x) → τi]i∈I

Γ ⊢(m,e,s) t : σ ∆ ⊢(m′,e′,s′) u : Γ(x)
(esc)

(Γ \\ x) + ∆ ⊢(m+m′,e+e′,s+s′) t[x\u] : σ

Figure 4 System V for the Call-by-Value Calculus: Consuming Typing Rules.

Some rules deserve a comment. A difficult property to be statically captured by the
counters is that an exponential step can only be generated by the meeting of a substitution
constructor with an appropriate value argument. This remark leads to the introduction of
different rules for typing variables, depending on the role they play (to be a value or not).
Indeed, there are three axioms for variables: (varp) typing variables that will persist as
the head of a neutral term; (valp) typing variable values that may be substituted by other
values, i.e. they are placeholders for future persistent values; and (varV

c ) typing variable
values that, in particular, may be consumed as arguments. Consuming values are always
typed with multitypes. Rule (appV

p ) types neutral applications, i.e. the left premise has type
vr or n. Rule (absV

c ) increases the second counter, just like (varV
c ), typing a value that is

consumed as an argument. Rules (appV
c ) and (apptV

c ) increment the first counter because the
(consuming) application will be used to perform a dB-step, while they decrement the second
counter to compensate for the left-hand-side value that is not being consumed after all. In
other words, consuming values are systematically typed by incrementing their exponential
counter by one (rules (varV

c ) and (absV
c )), but they can finally act as computations instead

as values, notably when they are placed in a head position, so that their exponential counter
needs to be adjusted correctly (cf. Ex. 11). The decrement of the exponential counters in
rules (appV

c ) and (apptV
c ) can also be understood by means of the subtle translation from

CBV to the λ!-calculus that we introduce in Sec. 7. Rule (apptV
c ) is particularly useful to

type dB-redexes whose reduction does not create an exponential redex, because the argument
of the substitution created by the dB-step does not reduce to a value.

In spite of the decrements in rules (appV
c ) and (apptV

c ), the counters are positive.
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▶ Lemma 4. If Φ ▷V Γ ⊢(m,e,s) t : σ then e ≥ 0. Moreover, if σ is a multitype then e > 0.

Soundness. The soundness property is based on a series of auxiliary results that enables to
reason about tight type derivations, we only state here the more important ones.

▶ Lemma 5 (Tight Spreading). Let Φ ▷V Γ ⊢(m,e,s) t : σ such that Γ is tight.
1. If t ∈ nev or m = e = 0, then σ ∈ tt.
2. If σ = [M → τ ], then t /∈ vrv.

▶ Lemma 6 (Exact Subject Reduction). Let Φ ▷V Γ ⊢(m,e,s) t : σ be a tight derivation. If
t →dv t′, then there is Φ′ ▷V Γ ⊢(m′,e′,s) t′ : σ such that
(1) m′ = m − 1 and e′ = e if t →dv t′ is an m-step;
(2) e′ = e − 1 and m′ = m if t →dv t′ is an e-step.

An interesting remark is that types of subterms in tight derivations may change during
CBV reduction, unlike other approaches [1, 40]. To illustrate this phenomenon, consider the
following reduction x[x\I] →dv I. The terms on the left and right hand side can be resp.
tightly typed by the following derivations (we omit the counters):

(valp)
⊢ x : vl

(absV
c )

⊢ I : [ ]
(esc)

⊢ x[x\I] : vl
(absV

p )
⊢ I : vl

Notice that the identity function I is typed differently in each derivation: the substitution
introduced by rule (esc) is a consuming constructor, which disappears when sv-reduction
consumes its value argument, a phenomenon that is captured by means of a multitype for
the argument of the substitution. Indeed, I on the left-hand side derivation is typed with the
multitype [ ]. This value I substitutes a variable x typed with vl, which is just a placeholder
for a persistent value. Thus, once the substitution is performed, the identity I becomes
persistent on the right-hand side, a phenomenon which is naturally captured by the tight
type vl. This observation also applies to the tight typing system of CBPV in Sec. 6.

▶ Theorem 7 (Soundness). If Φ ▷V Γ ⊢(m,e,s) t : σ is tight, then there exists p such that
p ∈ nov and t ↠(m,e)

v p with m m-steps, e e-steps, and |p|v = s.

As in CBN, the previous theorem is stated by using the general notion of reduction →v,
but the proofs (notably Lem. 6) are done using the deterministic reduction →dv. Similar
comment applies to the forthcoming Thm. 10.

Completeness. The completeness result is also based on intermediate lemmas, we only
state here the so-called tight typing of normal forms and subject expansion properties.

▶ Lemma 8 (Tight Typing of Normal Forms). If t ∈ nov, then there is a tight derivation
Φ ▷V Γ ⊢(0,0,|t|v) t : σ.

▶ Lemma 9 (Exact Subject Expansion). Let Φ′ ▷V Γ ⊢(m′,e′,s) t′ : σ be a tight derivation. If
t →dv t′, then there is Φ ▷V Γ ⊢(m,e,s) t : σ such that
(1) m′ = m − 1 and e′ = e if t →dv t′ is an m-step;
(2) e′ = e − 1 and m′ = m if t →dv t′ is an e-step.

Notice that tight derivations properly counts, separately, m-steps and e-steps. As a
consequence, completeness follows.
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▶ Theorem 10 (Completeness). If t ↠(m,e)
v p with p ∈ nov, then there exists a tight type

derivation Φ ▷V Γ ⊢(m,e,|p|v) t : σ.

▶ Example 11. Consider t0 = K (z I) (I I) from Ex. 3 but now in the CBV setting. It
→v-reduces in 3 m-steps and 2 e-steps to x[x\z I] ∈ nov, whose v-size is 1, as follows:

t0 = K (z I) (I I) →dB (λy.x)[x\z I] (I I) →dB x[y\I I][x\z I]
→dB x[y\w[w\I]][x\z I] →sv x[w\I][x\z I] →sv x[x\z I]

The reader may check that system V indeed admits a proper tight type derivation for t0 with
final counters (3, 2, 1), as expected.

5 The λ!-Calculus

This section briefly presents the bang calculus at a distance [12], called λ!-calculus. It is
a (conservative) extension of the original bang calculus [25, 26], it uses ES operators and
reduction at a distance [5], thus integrating commutative conversions without jeopardising
confluence (see [12] for a discussion). Indeed, T. Ehrhard [25] studies the CBPV from a Linear
Logic (LL) point of view by extending the λ-calculus with two new unary constructors bang
(!) and dereliction (der), playing the role of the CBPV primitives thunk/force respectively.
His calculus suffers from the absence of commutative conversions [45, 15], making some
redexes to be syntactically blocked when open terms are considered. As a consequence, some
normal forms are semantically equivalent to non-terminating programs, a situation which is
clearly unsound. The bang calculus [26] adds commutative conversions specified by means
of σ-reduction rules, which are crucial to unveil hidden (blocked) redexes. This approach,
however, presents a major drawback since the resulting combined reduction relation is not
confluent. The λ!-calculus [12] fixes these two problems at the same time. Indeed, the
syntax of the bang calculus is enriched with explicit substitutions (ES), and σ-equivalence is
integrated in the primary reduction system by using the distance paradigm [5], without any
need to unveil hidden redexes by means of an independent relation.

We consider the following grammar for terms (denoted by T ) and contexts:

(Terms) t, u ::= x ∈ X | t u | λx.t | ! t | der t | t[x\u]
(List contexts) L ::= □ | L[x\t]

(Surface contexts) S ::= □ | S t | t S | λx.S | der S | S[x\u] | t[x\S]

Special terms are ∆! = λx.x ! x, and Ω! = ∆! ! ∆! . Surface contexts do not allow the symbol
□ to occur inside the bang constructor ! . This is similar to weak contexts in λ-calculus,
where □ cannot occur inside λ-abstractions. As we will see in Sec. 7, surface reduction in the
λ!-calculus is perfectly sufficient to capture head reduction in CBN, disallowing reduction
inside arguments, as well as open CBV, disallowing reduction inside abstractions. Finally,
we define the f-size of terms as follows:

|x|f := 0 |der t|f := |t|f |t[x\u]|f := |t|f + |u|f
|! t|f := 0 |λx.t|f := 1 + |t|f |t u|f := 1 + |t|f + |u|f

The λ!-calculus is given by the set of terms T and the (surface) reduction relation →f,
which is defined as the union of →dB, →s! (substitute bang) and →d! (distant bang), defined
respectively as the closure by contexts S of the following three rewriting rules:

L⟨λx.t⟩ u 7→dB L⟨t[x\u]⟩
t[x\L⟨! u⟩] 7→s! L⟨t {x\u}⟩
der (L⟨! t⟩) 7→d! L⟨t⟩
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The rules are defined at a distance, as in CBN/CBV, in the sense that the list context L
allows the main constructors involved in the rules to be separated by an arbitrary finite list
of substitutions. This new formulation integrates commutative conversions inside the main
(logical) reduction rules of the calculus, thus inheriting the benefits enumerated in Sec. 1.
Indeed, rule s! can be decomposed in two different rules t[x\! u] 7→ t {x\u} and t[x\L⟨! u⟩] 7→
L⟨t[x\! u]⟩, while d! can be decomposed in der (! t) 7→ t and der (L⟨! t⟩) 7→ L⟨der ! t⟩. We write
↠f for the reflexive-transitive closure of →f. Given the translation of the bang calculus into
LL proof-nets [25], we refer to dB-steps as multiplicative and s!/d!-steps as exponential
steps. We write t ↠(m,e)

f u if t ↠f u using m m-steps and e e-steps.

▶ Example 12. Consider the following reduction sequence from t′
0 = K (! (z ! I)) (! (I ! I)):

t′
0 = K (! (z ! I)) (! (I ! I)) →dB (λy.x)[x\! (z ! I)] (! (I ! I)) →dB x[y\! (I ! I)][x\! (z ! I)]

→s! (z ! I)[y\! (I ! I)] →s! z ! I

Notice that the second dB-step uses action at a distance, where L is □[x\! (z ! I)].

The relation →f enjoys a weak diamond property, i.e. one-step divergence can be closed in
one step if the diverging terms are different. This property has two important consequences.

▶ Theorem 13 (Confluence [12]). The reduction relation →f is confluent. Moreover, any
two different →f-reduction paths to normal form have the same length.

The second point relies essentially on the fact that reductions are disallowed under bangs.
An important consequence is that we can focus on any particular deterministic strategy for
the λ!-calculus, without changing the number of steps to f-normal form.

Neutral, Normal, and Clash-Free Terms. A term is said to be f-normal if there is no t′

such that t →f t′, in which case we write t ̸→f. However, some ill-formed f-normal terms are
not still the ones that represent a desired result for a computation, they are called clashes
(meta-variable c), and take one of the following forms: L⟨! t⟩ u, t[y\L⟨λx.u⟩], der (L⟨λx.u⟩), or
t (L⟨λx.u⟩). Remark that in the three first kind of clashes, replacing λx. by !, and inversely,
creates a (root) redex, namely (L⟨λx.t⟩) u, t[x\L⟨! t⟩] and der (L⟨! t⟩), respectively.

A term is clash free if it does not reduce to a term containing a clash, it is surface
clash free, written scf, if it does not reduce to a term containing a clash outside the scope
of any constructor !. Thus, t is not scf if and only if there exist a surface context S and a
clash c such that t ↠f S⟨c⟩. Surface clash free normal terms can be characterised as follows:

(Neutral scf) nescf ::= x ∈ X | nescf nascf | der (nescf) | nescf[x\nescf]
(Neutral-Abs scf) nascf ::= ! t | nescf | nascf[x\nescf]

(Neutral-Bang scf) nbscf ::= nescf | λx.noscf | nbscf[x\nescf]
(Normal scf) noscf ::= nascf | nbscf

▶ Proposition 14 (Clash-Free Normal Terms [12]). Let t ∈ T . Then t is a surface clash free
f-normal term iff t ∈ noscf.

6 A Tight Type System for the λ!-Calculus

The methodology used to define the type system B for the λ!-calculus is based on [12],
inspired in turn from [19, 9, 1], which defines non-idempotent intersection type systems to
count reduction lengths for different evaluation strategies in the λ-calculus. In the case of the
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λ!-calculus, however, Thm. 13 guarantees that all reduction paths to normal form have the
same length, so that it is not necessary to reason w.r.t. any particular evaluation strategy.

The grammar of types of system B is given by:

(Tight Types) tt ::= n | a | vl
(Types) σ, τ ::= tt | M | M → σ

(Multitype) M, N ::= [σi]i∈I where I is a finite set

The constant a (resp. vl) types terms whose normal form has the shape L⟨λx.t⟩ (resp. L⟨! t⟩,
i.e. values in the λ!-calculus sense), and the constant n types terms whose normal form is a
neutral scf. As before, the notions of tightness for multitypes, contexts and derivations
are exactly the same used for CBN. Typing rules are split in two groups: the persistent rules
(Fig. 5) and the consuming ones (Fig. 6).

Γ ⊢(m,e,s) t : n ∆ ⊢(m′,e′,s′) u : a
(appp)

Γ + ∆ ⊢(m+m′,e+e′,s+s′+1) t u : n

Γ ⊢(m,e,s) t : tt tight(Γ(x))
(absp)

Γ \\ x ⊢(m,e,s+1) λx.t : a

(bgp)
⊢(0,0,0) ! t : vl

Γ ⊢(m,e,s) t : n
(drp)

Γ ⊢(m,e,s) der t : n

Γ ⊢(m,e,s) t : τ ∆ ⊢(m′,e′,s′) u : n tight(Γ(x))
(esp)

(Γ \\ x) + ∆ ⊢(m+m′,e+e′,s+s′) t[x\u] : τ

Figure 5 System B for the λ!-Calculus: Persistent Typing Rules.

(varc)
x : [σ] ⊢(0,0,0) x : σ

Γ ⊢(m,e,s) t : M → τ ∆ ⊢(m′,e′,s′) u : M
(appc)

Γ + ∆ ⊢(m+m′+1,e+e′,s+s′) t u : τ

Γ ⊢(m,e,s) t : M → τ ∆ ⊢(m′,e′,s′) u : n tight(M)
(apptc)

Γ + ∆ ⊢(m+m′+1,e+e′,s+s′) t u : τ

Γ ⊢(m,e,s) t : τ
(absc)

Γ \\ x ⊢(m,e,s) λx.t : Γ(x) → τ

(Γi ⊢(mi,ei,si) t : σi)i∈I
(bgc)

+i∈I Γi ⊢(+i∈I mi,1+i∈I ei,+i∈I si) ! t : [σi]i∈I

Γ ⊢(m,e,s) t : [σ]
(drc)

Γ ⊢(m,e,s) der t : σ

Γ ⊢(m,e,s) t : σ ∆ ⊢(m′,e′,s′) u : Γ(x)
(esc)

(Γ \\ x) + ∆ ⊢(m+m′,e+e′,s+s′) t[x\u] : σ

Figure 6 System B for the λ!-Calculus: Consuming Typing Rules.

As in CBV, the s! exponential steps do not only depend on a (consuming) substitution
constructor, but on the (bang) form of its argument. This makes the exponential counting
more subtle. Notice also that rule (drp) does not count der constructors, according to the
definition of |_|f given in Sec. 5 and in contrast to [12]. This is to keep a more intuitive
relation with the CBN/CBV translations (Sec. 2), where der plays a silent role.

As in [12], system B is quantitatively sound and complete. More precisely,

▶ Theorem 15 (Soundness and Completeness).
1. If Φ ▷B Γ ⊢(m,e,s) t : σ is tight, then there exists p such that p ∈ noscf and t ↠(m,e)

f p

with m m-steps, e e-steps, and |p|f = s.
2. If t ↠(m,e)

f p with p ∈ noscf, then there exists a tight type derivation Φ▷B Γ ⊢(m,e,|p|f) t : σ.
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▶ Example 16. Consider t′
0 = K (! (z ! I)) (! (I ! I)) from Ex. 12, which normalises in 2 m-steps

and 2 e-steps to z ! I ∈ noscf of f-size 1. A tight derivation for t′
0 with appropriate final

counters (2, 2, 1) is given below.

(varc)
x : [n] ⊢(0,0,0) x : n

(absc)
x : [n] ⊢(0,0,0) λy.x : [ ] → n

(absc)
⊢(0,0,0) K : [n] → [ ] → n

(varc)
z : [n] ⊢(0,0,0) z : n

(bgp)
⊢(0,0,0) ! I : vl

(appp)
z : [n] ⊢(0,0,1) z ! I : n

(bgc)
z : [n] ⊢(0,1,1) ! (z ! I) : [n]

(appc)
z : [n] ⊢(1,1,1) K (! (z ! I)) : [ ] → n

(bgc)
⊢(0,1,0) ! (I ! I) : [ ]

(appc)
z : [n] ⊢(2,2,1) K (! (z ! I)) (! (I ! I)) : n

Notice that the only persistent rules are (bgp) and (appp), used to type z ! I. Indeed, z ! I is
the f-normal form of t′

0.

7 Untyped Translations

CBN/CBV (untyped) encodings into the bang calculus [32], inspired from Girard’s encodings,
establish two translations cbn and cbv, such that when t reduces to u in CBN (resp. CBV),
cbn(t) reduces to cbn(u) (resp. cbv(t) reduces to cbv(u)) in the bang calculus. These two
encodings are dual: CBN forbids reduction inside arguments, which are translated to bang
terms, while CBV forbids reduction under λ-abstractions, also translated to bang terms.

In this paper we use alternative encodings. For CBN, we slightly adapt to explicit
substitutions Girard’s translation into LL [29]. The resulting encoding preserves normal
forms and is sound and complete with respect to the standard (quantitative) type system
in [28]. For CBV, we discard the original encoding in [32] for two reasons: CBV normal forms
are not necessarily translated to normal forms in the bang calculus (see [32]), and levels of
terms (the level of t is the number of ! surrounding t) are not preserved either (see [27]). We
thus adopt the CBV encoding in [12] which preserves normal forms as well as levels.

The CBN and CBV embedding into the λ!-calculus, written _n and _v resp., are
inductively defined as:

xn def= x

(λx.t)n def= λx.tn

(t u)n def= tn ! un

(t[x\u])n def= tn[x\! un]

xv def= ! x

(λx.t)v def= ! λx.tv

(t u)v def=
{

L⟨s⟩ uv if tv = L⟨! s⟩
der (tv) uv otherwise

(t[x\u])v def= tv[x\uv]

Both translations extend to list contexts L as expected. Remark that there are no two
consecutive ! constructors in the image of the translation. The CBN embedding extends
Girard’s translation to ES, while the CBV one is different. Indeed, the translation of
an application t u is usually defined as der (tv) uv (see e.g. [26]). This definition does not
preserve normal forms, i.e. x y is a v-normal form but its translated version der (! x) ! y is
not a f-normal form. We restore this fundamental property by using the well-known notion
of superdevelopment [10], so that d!-reductions are applied by the translation on the fly.
Moreover, simulation of CBN/CBV in the λ!-calculus also holds.

▶ Lemma 17 (Simulation [12]). Let t ∈ Tλ.
1. t ̸→n implies tn ̸→f, and t →n s implies tn →f sn.
2. t ̸→v implies tv ̸→f, and t →v s implies tv ↠f sv.
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▶ Example 18. Consider again t0 = K (z I) (I I). To illustrate the CBN case (Lem. 17:1),
notice that the reduction sequence t0 ↠cbn z I = s0 given in Ex. 3 is translated to the
sequence t0

n = K (! (z ! I)) (! (I ! I)) = t′
0 ↠f z ! I = s0

n given in Ex. 12.
To illustrate the CBV case (Lem. 17:2), consider the sequence t0 ↠cbv x[x\z I] = s1 in

Ex. 11. Then for I′ = λw.! w we have:
t0

v = der ((λx.! λy.! x) (z ! I′)) (I′ ! I′) →dB der ((! λy.! x)[x\z ! I′]) (I′ ! I′)
→d! (λy.! x)[x\z ! I′] (I′ ! I′) →dB (! x)[y\I′ ! I′][x\z ! I′]
→dB (! x)[y\(! w)[w\! I′]][x\z ! I′] →s! (! x)[w\! I′][x\z ! I′]
→s! (! x)[x\z ! I′] = s1

v

Notice how this sequence requires extra reduction steps with respect to the one given in
Ex. 11. Indeed, the e-step →d! in the λ!-calculus has no counterpart in CBV.

8 Typed Translations

Call-by-Name. We study the correspondence between derivations in CBN and their encod-
ings in the λ!-calculus. First we inject the set of types for N (generated by the base types
n and a) into the set of types of B (generated also by the base type vl) by means of the
function: nn def= n, an def= a, (M → σ)n def= Mn → σn and [σi]i∈I

n def= [σi
n]i∈I . Then we translate

terms, using the function _n from Sec. 7. Translation of contexts is defined as expected:
Γn = {xi : Mi

n}i∈I . Another notion is needed to restrict B derivations to those that come
from the translation of some N derivation. Indeed, a B derivation Φ is n-relevant if all the
contexts and types involved in Φ are in the image of the translation _n. We then obtain:

▶ Theorem 19. Φ ▷N Γ ⊢(m,e,s) t : σ if and only if Φ′ ▷B Γn ⊢(m,e,s) tn : σn is n-relevant.

This result is illustrated by the tight type derivations in Ex. 3 and 16 for the terms t0
and t′

0 resp. Moreover, tightness is preserved by the translation of contexts and types, hence:

▶ Corollary 20. If Φ ▷N Γ ⊢(m,e,s) t : σ is tight, then there exists p ∈ noscf such that
tn ↠(m,e)

f p with m m-steps, e e-steps, and |p|f = s. Conversely, if Φ′ ▷B Γn ⊢(m,e,s) tn : σn is
tight and n-relevant, then there exists p ∈ non such that t ↠(m,e)

n p with m m-steps, e e-steps,
and |p|n = s.

This result shows that not only from the tight type system N it is possible to extract
exact measures for the image of the CBN in the λ!-calculus, but more interestingly, also that
from the tight type system B for the λ!-calculus it is possible to extract exact measures for
CBN. In this sense, the goal of encoding tight typing in a unified framework is achieved.

Call-by-Value. In contrast with the CBN case, the set of type for system V is not a subset of
that for B, and we need to properly translate types. To that end, we introduce two mutually
dependent translations _v and _v:

ttv def= tt if tt ̸= vr
vrv def= n

(M → σ)v def= Mv → σv

([σ]i∈I)v def= [σi
v]i∈I

ttv def= tt if tt ̸= vr
vrv def= [n]

(M → σ)v def= Mv → σv

([σ]i∈I)v def= [σi
v]i∈I

Remark that Mv = Mv for every multitype M. Translation _v for a context Γ is defined
as expected: Γv = {xi : Mi

v}i∈I . To translate terms, we resort to the function _v defined
in Sec. 7. We also restrict B derivations to those that come from the translation of some V
derivation. Indeed, a B derivation Φ is v-relevant if:
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(1) all the contexts and types involved in Φ are in the image of the translations _v and _v

respectively; and
(2) rule (drc) is only applied to terms having a type of the form [M → τ ].
To state the preservation of typing derivations between systems V and B we define measures
over type derivations in both systems to conveniently capture the relationship between the
exponential steps in the source and the target derivation. The intuition is that we need to
compensate for those d!-redexes of the λ!-calculus that might be introduced when translating.
For all the typing rules with two premises, we write Φt and Φu for the first and second
premise respectively. The first measure for system V is given by induction on Φ as follows:
(1) for (varp), e(Φ) def= 1;
(2) for (valp), (absV

p ) and (varV
c ), e(Φ) def= 0;

(3) for (appV
p ), e(Φ) def= e(Φt) + e(Φu) − 1 if val(t);

(4) for (appV
c ) and (apptV

c ), e(Φ) def= e(Φt) + e(Φu) + 1 if ¬val(t); and
(5) in any other case e(Φ) is defined as the sum of the recursive calls over all premises.
The second measure for system B is also defined by induction on Φ as follows:
(1) for (bgp) and (varc), ê(Φ) def= 0;
(2) for (appp), ê(Φ) def= ê(Φt) + ê(Φu) − 1 if val(t);
(3) for (appc) and (apptc), ê(Φ) def= ê(Φt) + ê(Φu) + 1 if ¬val(t); and
(4) in any other case ê(Φ) is defined as the sum of the recursive calls over all premises.
Then, we obtain:

▶ Theorem 21.
1. If Φ ▷V Γ ⊢(m,e,s) t : σ, then Φ′ ▷B Γv ⊢(m,e′,s) tv : σv is v-relevant with e′ = e + e(Φ).
2. If Φ′ ▷B Γv ⊢(m,e′,s) tv : σv is v-relevant, then Φ ▷V Γ ⊢(m,e,s) t : σ with e = e′ − ê(Φ′).

As an example, consider the CBV term (λx.x) y (whose derivation Φ is on the left) and
its translation (λx.! x) ! y into the λ!-calculus (whose derivation Φ′ is on the right):

x : [vr] ⊢(0,0,0) x : vr

⊢(0,1,0) λx.x : [[vr] → vr] y : [vr] ⊢(0,1,0) y : [vr]

y : [vr] ⊢(1,1,0) (λx.x) y : vr

x : [n] ⊢(0,0,0) x : n

x : [n] ⊢(0,1,0) ! x : [n]

⊢(0,1,0) λx.! x : [n] → [n]

y : [n] ⊢(0,0,0) y : n

y : [n] ⊢(0,1,0) ! y : [n]

y : [n] ⊢(1,2,0) (λx.! x) ! y : [n]

Notice that tight(Γ) if and only if tight(Γv). Unfortunately, this is not sufficient to translate a
tight derivation in V into a tight derivation in B. Indeed, the variable x of type vr translates
to ! x of type [n]. However, this only happens if the derived type is vr, which is an auxiliary
type of system V used to identify variables that are not used as values because they will
be applied to some argument. In the case of f-relevant V derivations, defined as not
deriving type vr, tightness is indeed preserved. As a consequence, as for CBN, is it possible
to study CBV in the unified framework of the λ!-calculus and extract exact measures for it
by resorting to relevant tight derivations:

▶ Corollary 22. If Φ ▷V Γ ⊢(m,e,s) t : σ is tight and f-relevant, then there exists p ∈ noscf

such that tv ↠(m,e)
f p with m m-steps, e + e(Φ) e-steps, and |p|f = s. Conversely, if

Φ′ ▷B Γv ⊢(m,e′,s) tv : σv is tight and v-relevant, then there exists p ∈ nov such that t ↠(m,e)
v p

with m m-steps, e′ − ê(Φ′) e-steps, and |p|v = s.
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9 Conclusion

Following recent works exploring the power of CBPV, we develop a technique for deriving
tight type systems for CBN/CBV as special cases of a single tight type system for the
λ!-calculus, a subcalculus of CBPV inspired by Linear Logic.

The idea to study semantical and operational properties in a CBPV framework in order to
transfer them to CBN/CBV has so far be exploited in different works [42, 25, 26, 32, 16, 12, 46].
Moreover, relational models for CBN/CBV can be derived from the relational model for
CBPV, resulting in non-idempotent intersection type systems for them, that provide upper
bounds for the length of normalization sequences [12]. However, the challenging quest
of a (tight) quantitative type system for CBV, giving exact measures for the length of
normalization sequences instead of upper bounds, and being at the same time encodable in
CBPV, has been open. None of the existing proposals [3, 40] could be defined/explained
within such an approach. In particular, the tight type systems that we propose for CBN/CBV
give independent exact measures for the length of multiplicative and exponential reduction
to normal form, as well as the size of these normal forms.

Different topics deserve future attention. One of them is the study of strong reduction
for the λ!-calculus, which allows to reduce terms under all the constructors, including bang.
Appropriate encodings of strong CBN and strong CBV should follow. Linear (head) reduction,
as well as other more sophisticated semantics like GOI also deserve some attention.The tight
systems presented in this work could also be used to understand bounded computation.
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Abstract
In type theories, universe hierarchies are commonly used to increase the expressive power of the
theory while avoiding inconsistencies arising from size issues. There are numerous ways to specify
universe hierarchies, and theories may differ in details of cumulativity, choice of universe levels,
specification of type formers and eliminators, and available internal operations on levels. In the
current work, we aim to provide a framework which covers a large part of the design space. First, we
develop syntax and semantics for cumulative universe hierarchies, where levels may come from any set
equipped with a transitive well-founded ordering. In the semantics, we show that induction-recursion
can be used to model transfinite hierarchies, and also support lifting operations on type codes which
strictly preserve type formers. Then, we consider a setup where universe levels are first-class types
and subject to arbitrary internal reasoning. This generalizes the bounded polymorphism features of
Coq and at the same time the internal level computations in Agda.
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1 Introduction

Users of type theories often view universe levels as a bureaucratic detail, a necessary annoyance
in service of boosting expressive power while retaining logical consistency. However, universe
hierarchies are not going away any time soon in practical implementations of type theory. In
recent developments of systems, we are getting more universes and more adjacent features:

Agda recently added a limited cumulativity as an optional feature for universes [9], and
the upcoming 2.6.2 version will extend the ω + 1 universe hierarchy to ω ∗ 2.
Coq added support for cumulative inductive types [26] and a form of bounded universe
polymorphism [30].

At this point, there is a veritable zoo of universe features in existing implementations. We
have perhaps even more design choices when considering the formal metatheory of type
theories. Do type formers stay in the same universe, or take the ⊔ of universes of constituent
types? Can eliminators target any universe, or do we instead use lifting operators to cross
levels? What kind of universe polymorphism do we have, can we quantify over level bounds?
Is there a type of levels, or are levels in a separate syntactic layer?

The aim of the current work is to develop semantics which covers as much as possible
from the range of sensible universe features. This way, theorists and language implementors
can grab a desired bag of features, and be able to show consistency of their system by a
straightforward translation to one of the systems in this paper.
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28:2 Generalized Universe Hierarchies and First-Class Universe Levels

Contributions

1. In Section 3 we describe models of type theories where universe levels may come from
any set with a well-founded transitive ordering relation. We specify models as categories
equipped with level-indexed diagrams of families, as a variation on categories with families.
Each morphism of levels is mapped to a lifting operation on terms and types. By varying
the preservation properties of lifting operations, we can describe a range of stratification
features, from two-level type theory to cumulative universes.

2. In Section 4 we use induction-recursion to model the mentioned theories. We model
the strongest formulations for lifting and universes, namely cumulative universes with
Russell-style type decoding.

3. In Section 5 we describe type theories with internal types for levels and level morphisms,
and extend the previous inductive-recursive semantics to cover these as well. Here, we can
additionally represent various universe polymorphism features and level computations.

We provide an Agda formalization of the contents of the paper at https://github.com/
AndrasKovacs/universes/tree/master/agda. The formalization is not complete, as we
skip proofs involving an excessive number of equality coercions (which are more suited to
informal reasoning, using equality reflection), and instead focus on the key points.

2 Metatheory

We work in a Martin-Löf type theory which has the following features.
Two universes named Set0 and Set1, where Set0 supports inductive-recursive types (IR)
as specified by Dybjer and Setzer [12]. We may omit the universe indices if they can be
inferred or if we work over arbitrary indices.
Function extensionality and uniqueness of identity proofs (UIP). Additionally, we assume
equality reflection in this paper, thus working in extensional type theory, to avoid noise
from equality transports.
We write function types as (x : A) → B with λ x. t inhabitants. We may group multiple
arguments with the same type, as in (x y : A) → B. We have Σ-types as (x : A) × B,
with pairing as (t, u). We have ⊤ as the unit type with inhabitant tt, ⊥ as the empty
type, and Bool with true and false inhabitants. Propositional identity is written as t = u

(coinciding with definitional equality).
We occasionally use {x : A} → B for an Agda-like notation for function types with
implicit arguments. We usually omit implicit applications but may explicitly write them
as t {u}. We may omit implicit function types altogether if it is clear where certain
variables are quantified.

3 Generalized Universe Hierarchies

In this section, we first describe notions of models for type theories with generalized universes,
and discuss several variations of universes and lifting operations. Then, we pick a concrete
variant (the strongest, in a sense) and construct a model for it in the metatheory.

For the basic structure of typing contexts and substitutions, let us review categories with
families.

https://github.com/AndrasKovacs/universes/tree/master/agda
https://github.com/AndrasKovacs/universes/tree/master/agda


A. Kovács 28:3

3.1 Categories with Families
▶ Definition 1. A category with family (cwf) [11] consists of the following data:

A category with a terminal object. We denote the set of objects as Con : Set and
use capital Greek letters starting from Γ to refer to objects. The set of morphisms is
Sub : Con → Con → Set, and we use σ, δ and so on to refer to morphisms. The terminal
object is • with unique morphism ϵ : Sub Γ •. In initial models (that is, syntaxes) of type
theories, objects correspond to typing contexts, morphisms to parallel substitutions and
the terminal object to the empty context; this informs the naming scheme.
A family structure, containing Ty : Con → Set and Tm : (Γ : Con) → Ty Γ → Set,
where Ty is a presheaf over the category of contexts and Tm is a presheaf over the
category of elements of Ty. This means that both types (Ty) and terms (Tm) can be
substituted, and substitution has functorial action. We use A, B, C to refer to types
and t, u, v to refer to terms, and use A[σ] and t[σ] for substituting types and terms.
Additionally, a family structure has context comprehension which consists of a context
extension operation – ▷ – : (Γ : Con) → Ty Γ → Con together with an isomorphism
Sub Γ (∆ ▷ A) ≃ ((σ : Sub Γ ∆) × Tm Γ (A[σ])) which is natural in Γ.

From the comprehension structure, we recover the following notions:
By going right-to-left along the isomorphism, we recover substitution extension – , – : (σ :
Sub Γ ∆) → Tm Γ (A[σ]) → Sub Γ (∆ ▷ A). This means that starting from ϵ or the identity
substitution id, we can iterate – , – to build substitutions as lists of terms.
By going left-to-right, and starting from id : Sub (Γ ▷ A) (Γ ▷ A), we recover the weakening
substitution p : Sub (Γ ▷ A) Γ and the zero variable q : Tm (Γ ▷ A) (A[p]).
By weakening q, we recover a notion of variables as De Bruijn indices. In general, the
n-th De Bruijn index is defined as q[pn], where pn denotes n-fold composition.

There are other ways for presenting the basic categorical structure of models, which are
nonetheless equivalent to cwfs, including natural models [3] and categories with attributes [6].
We use the cwf presentation for its immediately algebraic character and closeness to con-
ventional explicit substitutions. We consider the syntax of a type theory to be its initial
model.

▶ Notation 1. As De Bruijn indices are hard to read, we will mostly use nameful notation
for binders. For example, assuming Nat : {Γ : Con} → Ty Γ and Id : {Γ : Con}(A : Ty Γ) →
Tm Γ A → Tm Γ A → Ty Γ, we may write • ▷ (n : Nat) ▷ (p : Id Nat n n) for a typing context,
instead of using numbered variables or cwf combinators as in • ▷ Nat ▷ Id Nat q q.

▶ Notation 2. In the following, we will denote families by (Ty,Tm) pairs and overload context
extension – ▷ – for different families.

A family structure may be closed under certain type formers. For example, we may close
a family over function types by assuming Π : (A : Ty Γ) → Ty (Γ ▷ A) → Ty Γ together with
abstraction, application, βη-rules, and equations for the action of substitution on type and
term formers.

In the following, whenever we introduce a type or term former, we always assume that it
is natural with respect to substitution, i.e. all type and term formers have a corresponding
substitution rule. This convention could be made precise by working in a framework for
higher-order abstract syntax, where all specified structure is automatically stable under
substitution [25, 27, 5]. While this can be effective at reducing formal clutter, this paper only
presents models which are technically straightforward, so we choose not to use higher-order
signatures, in order to make the presentation more direct.
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3.2 Morphisms and Inclusions of Families
In the rest of the paper we make use of categories equipped with possibly multiple family
structures, which serves as basis for specifying universe hierarchies. However, it is not very
useful to simply have multiple copies of family structures together with their type formers.
In that case, every constructor and eliminator of every type former stays in the same family,
and there is no interaction between families, and the most we can do is to mix them together
in typing contexts. In this subsection we describe several ways of crossing between families.

▶ Definition 2. A family morphism F between (Ty0, Tm0) and (Ty1, Tm1) families consists
of natural transformations mapping types to types and terms to terms, which preserves
context extensions up to context isomorphism, i.e. we have that (Γ ▷ F A) ≃ (Γ ▷ A), where
≃ denotes existence of an invertible context morphism.

Family morphisms are restrictions of so-called weak morphisms [4] (or pseudomorphisms
[18]) of cwfs: a weak morphism which has the identity action on the base category is exactly
a family morphism.

▶ Lemma 1. Every family morphism has invertible action on terms, i.e. there is an F −1 :
Tm Γ (F A) → Tm Γ A.

Proof. From the ▷-preservation isomorphism and the defining isomorphisms of comprehension,
we get q′ : Tm (Γ ▷ F A) (A[p]) such that F q′ = q and q′[p, F q] = q. Now, for t : Tm Γ (F A),
we define F −1 t as q′[id, t] : Tm Γ A. We get the following:

F (F −1 t) = F (q′[id, t]) = (F q′)[id, t] = q[id, t] = t

F −1(F t) = q′[id, F t] = q′[id, (F q)[id, t]] = q′[p, F q][id, t] = q[id, t] = t

More concisely, F is invertible on the generic term q, which implies invertibility on any
term. ◀

▶ Notation 3. In the following, we will write Lift : Ty0 Γ → Ty1 Γ for the action of some
morphism on types, ↑ : Tm0 Γ A → Tm1 Γ (Lift A) for the action on terms, and ↓ for the
inverse action on terms. We will also call the action on types type lifting and the action on
terms term lifting.

We may think about the relation between modalities and morphisms. The main difference
is that morphisms impose no structural restrictions on variables and contexts. More concretely,
every Lift is dependent right adjoint [4] to the identity functor on the base category, as we
have Tm (Id Γ) A ≃ Tm Γ (Lift A). Hence, every morphism can be viewed as a degenerate
modality.

Assume family structures (Ty0, Tm0) and (Ty1, Tm1) and a morphism between them. This
corresponds to a basic version of two-level type theory [2]. This theory has an interpretation
in presheaves over the category of contexts of some chosen model of a type theory, where
(Ty0, Tm0) is modeled using structure in the chosen model, and (Ty1, Tm1) is modeled
using presheaf constructions. More illustratively, this means interpreting (Ty1, Tm1) as a
metaprogramming layer which can generate object-level constructions in the (Ty0, Tm0)
layer. Lifted types correspond to types of object-level terms; for example, Bool0 : Ty0 Γ is
the object-level type of Booleans, while Lift Bool0 is the meta-level type of Bool0-terms, and
Bool1 : Ty1 Γ is the type of meta-level Booleans. It is possible to compute a Bool0 from a
Bool1. Given b : Tm1 Γ Bool1, we can construct ↓(if b then ↑true0 else ↑false0) : Tm0 Γ Bool0.
But there is no way to compute a Bool1 from a Bool0: we can try to lift the input, but there
is no elimination rule for Lift Bool0 in Ty1.
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Hence, plain family morphisms can model a metaprogramming hierarchy, but currently
we are aiming for “sizing” hierarchies instead. This means that we want to eliminate from
any family to any other family which is connected by a morphism.

▶ Definition 3. A family inclusion is a family morphism which preserves all type and term
formers. This assumes that every type former which is contained in the source family, is also
contained in the target family.

Some examples for preservation equations for type and term formers:

Lift (Π (x : A)B) = Π (x : Lift A)(Lift (B[x 7→ ↓x]))
↑(λ (x : A). t) = λ (x : Lift A). ↑(t[x 7→ ↓x])
Lift Bool0 = Bool1
↑true0 = true1

In general, we can skip specifying preservation for ↓, since it follows from ↑ preservation
equations.

Assume an inclusion from (Ty0, Tm0) to (Ty1, Tm1). Now, we can eliminate from
Bool0 to Bool1. If we have some b : Tm0 Γ Bool0, we also have ↑b : Tm1 Γ (Lift Bool0),
hence ↑b : Tm1 Γ Bool1. Then, we can use Bool1 elimination, as in if ↑b then true1 else false1 :
Tm1 Γ Bool1. The ↑ computation ensures that the eliminator computes appropriately on
canonical terms: if b is true0, we get ↑true0 = true1 as the if-then-else scrutinee.

A family inclusion corresponds to a cumulative hierarchy consisting of two families: every
type former of the smaller family is included in the larger family, with the same elimination
rules.

▶ Definition 4. A strict family inclusion between (Ty0, Tm0) and (Ty1, Tm1) is a family
inclusion (Lift, ↑, ↓) for which the following equations hold:

(Γ ▷ Lift A) = (Γ ▷ A) (1)
Tm1 Γ (Lift A) = Tm0 Γ A (2)
↑t = t (3)

A strict inclusion corresponds to Sterling’s algebraic cumulativity [24]. The additional
equations are a matter of convenience: they allow us to omit term liftings in informal syntax1.
Most of the time we can also omit level annotations on term formers. For example, we have
true0 : Tm0 Γ Bool0, but also true0 : Tm0 Γ (Lift Bool0), hence true0 : Tm0 Γ Bool1. Moreover,
true0 is definitionally equal to true1, since true0 = ↑true0 = true1. Thus, using simply true is
fine whenever the family is clear from context.

The definitional equality of true0 and true1 is important; without it canonicity would
fail, since true0, false0, true1 and false1 would be four definitionally distinct inhabitants of
Bool1. See Luo [19] for a discussion of related issues with cumulativity. It is not sufficient
to specify a strict inclusion just by equations 1 and 2 in Definition 4. We need ↑ together
with equation 3 to identify term formers in different families. The other direction ↓t = t is
immediately derivable.

1 In a proof assistant, often we would still have to explicitly transport along the strict inclusion equations.
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3.3 Level Structures

We would like to describe a range of setups with multiple families and morphisms between
them. In this subsection we describe the indexing structures for such family diagrams. First,
we specify a notion of well-foundedness, which will be used to preclude size paradoxes in
universe hierarchies.

▶ Definition 5. The accessibility predicate on relations is defined by the following inductive
rules:

Acc : {A : Set} → (R : A → A → Set) → A → Set
acc : {a : A} → ((a′ : A) → R a′ a → Acc R a′) → Acc R a

See [1] and [28, Section 10.3] for further exposition. An inhabitant of Acc R a proves that
starting from a : A, all descending R-chains must be finite. This is ensured by the universal
property of the inductive definition.

▶ Lemma 2. All inhabitants of Acc R a are equal [28, Lemma 10.3.4]. In other words,
accessibility is proof-irrelevant.

▶ Definition 6. A relation R : A → A → Set is well-founded if (a : A) → Acc R a.

▶ Definition 7. A level structure consists of the following components:

Lvl : Set0

– < – : Lvl → Lvl → Set0

<prop : (p q : i < j) → p = q

– ◦ – : j < k → i < j → i < k

<wf : (i : Lvl) → Acc < i

We overload Lvl to refer to a given level structure and also its underlying set. In short, a
level structure is a set together with a transitive well-founded relation.

▶ Definition 8. A family diagram over Lvl maps each i : Lvl to a family structure (Tyi, Tmi),
and each p : i < j to a family inclusion (Liftj

i p, ↑j
i p, ↓j

i p) between (Tyi, Tmi) and (Tyj , Tmj).
Moreover, the mapping is functorial, so Liftk

i (p ◦ q) A = Liftk
j p (Liftj

i q A), and similarly for
↑j

i p and ↓j
i p. A strict family diagram is a family diagram where each inclusion is strict.

▶ Notation 4. Sometimes we omit some of the i, j, p annotations from type and term liftings,
if they are clear from context.

Our choice of level structures and diagrams is motivated by the following. First, we do not
need identity morphisms in levels, because they would be mapped to trivial liftings, which are
not interesting in our setting. Second, we do not need proof-relevant level morphisms, since
any parallel pair of morphisms gives rise to isomorphic types. Concretely, given p : i < j and
q : i < j such that p ̸= q, we have Tmj Γ (Lift p A) ≃ Tmi Γ A ≃ Tmj Γ (Lift q A), and since
Lift p A and Lift q A are in the same family, we can internally prove them isomorphic using
function types and identity types. That said, every construction in this paper would still
work with direct categories as level structures.
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3.4 Universes
At this point, we can talk about family diagrams, but no previously seen type former depends
on levels in an interesting way. For example, Booli has the same inhabitants as Boolj , for
any i and j. Universes introduce dependency on levels, by serving as classifiers for smaller
families internally to larger families.

▶ Definition 9. A family diagram supports universe formation if it supports the following:

U : (i j : Lvl) → i < j → Tyj Γ

LiftU : Liftk
j p (U i j q) = U i k (p ◦ q)

We also need a way to pin down universes as classifiers. We consider two variants.

▶ Definition 10. A family diagram has Coquand universes [8] if it has universe formation
and additionally supports El : Tmj Γ (U i j p) → Tyi Γ, and its inverse Code : Tyi Γ →
Tmj Γ (U i j p).

▶ Definition 11. A family diagram has Russell universes if it has Coquand universes and
additionally satisfies Tmj Γ (U i j p) = Tyi Γ and El t = t.

The move from Coquand to Russell universes is fairly similar to the move from inclu-
sions to strict inclusions. The Russell variant makes it possible to informally omit El and
Code. Likewise, the El t = t condition ensures appropriate naturality. If we only assumed
Tmj Γ (U i j p) = Tyi Γ but not Coquand universes, we would not be able to prove that a
t : Tmj Γ (U i j p) substituted as a term is the same thing as t substituted as a type. Both
would be written as t[σ] in our notation, but they involve different – [– ] operations.

Unlike every other type or term former, there is no lifting computation rule for El and
Code. Intuitively, the issue is that we would need to relate type lifting and term lifting,
but while term lifting is invertible, type lifting is not. Lift sends a Tyi Γ to a Tyj Γ, and
Tyj Γ is not isomorphic to Tyi Γ, because it contains more universes. So, for example, lifting
Bool0 : Ty0 Γ as a type to Ty1 Γ yields Bool1, but lifting Bool0 as a term yields Bool0.

Assuming Coquand or Russell universes and p : i < j, we can recover polymorphic
functions, for example, we may have id : Π(A : U i j p)(Lift p (El A) → Lift p (El A)) for the
polymorphic identity function. Here, we quantify over terms of U, and since every type
former stays on the same level (including Π), we have to Lift the types in the codomain to
match the level of the domain. We can also recover large elimination, for example as in

(λ (b : Boolj). if b then Code ⊤i else Code ⊥i) : Tmj Γ (Boolj → U i j p).

4 Semantics

In this section we give a model for a type theory with generalized universes. Let us make the
notion of model concrete first.

▶ Definition 12 (Notion of model for a type theory with generalized universes (TTGU)). Fix a
Lvl structure. A model for TTGU consists of
1. A base category (Con, Sub) with a terminal object •.
2. A strict family diagram (Tyi, Tmi) over Lvl, supporting Russell universes, and each family

structure is closed under the same basic type formers.
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The choice of available basic type formers is up to personal taste, and it will not
significantly affect the following model construction.

Both in families and universes we choose the stricter formulation, since if we give a model
which proves the strict syntax consistent, we immediately get a model which proves the weak
syntax consistent2.

4.1 Inductive-Recursive Codes
The task is to interpret the Lvl-many universes of TTGU using an assumed metatheoretic
feature. For this, we need to define a Lvl-indexed type of type codes. Since Lvl and – < –
can be arbitrary, we effectively need to define transfinite hierarchies of codes. We use an
inductive-recursive [12] definition for the following reasons.

First, induction-recursion is already supported in the Agda proof assistant, and it is very
useful to be able to sketch out ideas in a machine-checked setting. It would be much harder
to do the same when developing semantics in set theory.

Second, could we use type-theoretic features with simpler specifications than induction-
recursion, such as super universes [22] or Mahlo universes [23]? These are sufficient to model
transfinite hierarchies. However, using these it is not clear how to additionally support the
strict type former preservation property of Lift3.

Therefore, we give a custom definition using induction-recursion, which corresponds more
directly to TTGU structure. Our definition is essentially the same as McBride’s redundancy-
free hierarchy in [21, Section 6.3.1], but we generalize levels from natural numbers to arbitrary
level structures.

▶ Definition 13 (Codes for the universe). Assume i : Lvl and f : (j : Lvl) → j < i → Set0.
We define UIR and ElIR by induction-recursion:

UIR : Set0 ElIR : UIR → Set0

U′ : (j : Lvl) → j < i → UIR ElIR (U′ j p) = f j p

Π′ : (A : UIR) → (ElIR A → UIR) → UIR ElIR (Π′ A B) = (a : ElIR A) → ElIR (B a)
⊥′ : UIR ElIR ⊥′ = ⊥
Bool′ : UIR ElIR Bool′ = Bool

We use the prime accents (′) to disambiguate inductive-recursive codes from type formers in
TTGU or the metatheory. For basic type formers, we only include codes for function types,
the empty type, and Bool. Other type formers are straightforward to add (and we do have
more in the Agda formalization).
▶ Notation 5. We may write UIR

i f and ElIRi f in order to make parameters explicit.
(UIR, ElIR) can be viewed as a universe operator : given semantics for an initial segment

of Lvl (given by i and f), we create a new universe which is closed under basic type formers,
and also closed under all sets in f by the way of U′. Most importantly, this operation can be
transfinitely iterated. We first define universes for initial segments of Lvl, by induction on
the accessibility of levels:

U< : (i : Lvl){p : Acc (– < –) i} → (j : Lvl) → j < i → Set0

U< i {acc f} j p = UIR
j (U< j {f j p})

2 We always get initial and terminal models automatically, because of the algebraic character of the
theories in this paper. We also get a freely generated strict model from a weak model, from the left
adjoint of the functor which forgets the strictness equations. But none of these tricks can be used to
automatically get a consistency proof.

3 Palmgren calls this property as having recursive sub-universes [22].
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▶ Definition 14 (Semantic universe). Since every level is accessible, we can define the full
semantic hierarchy and its decoding function.

U : Lvl → Set0 El : {i : Lvl} → U i → Set0

U i = UIR
i (U< i {<wf i}) El {i} = ElIRi (U< i {<wf i})

▶ Lemma 3. Assuming p : i < j, we have the computation rule U< j p = U j. Proof: we may
assume that any witness for Acc (– < –) i is of the form acc f for some f . Then the equation
becomes UIR

j (U< j {f j p}) = UIR
j (U< j {<wf j}), but by Lemma 2 the f j p and <wf j witnesses

are equal. ◀

▶ Definition 15 (Semantic Lift). We define by induction on UIR a function with type
(p : i < j) → (A : U i) → (A′ : U j) × (El A′ = El A). However, for the sake of clarity, we
present this here as two (mutual) functions:

Lift : (p : i < j) → U i → U j

ElLift : (p : i < j) → (A : U i) → El (Lift A) = El A

Let us look at Lift first:

Lift p (U′ k q) = U′ k (p ◦ q)
Lift p (Π′ A B) = Π′ (Lift p A) (λ a. Lift p (B a))
Lift p ⊥′ = ⊥′

Lift p Bool′ = Bool′

Above, the Π′ definition is well-typed by ElLift p A. For the proof of ElLift, the only interesting
case is U′. Here, we need to show U< j k (p ◦ q) = U< i k q, but by Lemma 3 both sides are
U k.

▶ Lemma 4. Properties of Lift:
1. Lift preserves all basic type formers; this is immediate from the definition.
2. Lift is functorial, i.e. Lift (p ◦ q) A = Lift p (Lift q A). This follows by induction on A, and

we make use of the irrelevance of – < – in the U′ case. ◀

4.2 Inductive-Recursive Model of TTGU
We give a model of TTGU in this section.
▶ Notation 6. To avoid name clashing between components of the model and metatheoretic
definitions, we use bold font to refer to TTGU components.

▶ Definition 16 (Base category). The base category is simply the category of sets and
functions in Set0, i.e. Con = Set0, Sub Γ ∆ = Γ → ∆, and the terminal object is ⊤.

▶ Definition 17 (Family diagram). We map i : Lvl to a family structure as follows.

Tyi Γ = Γ → U i Tmi Γ A = (γ : Γ) → El (A γ)

Type and term substitution are given by composition with some function σ : Γ → ∆.
Comprehension structure is given by Γ ▷ A = (γ : Γ) × El (A γ). Type lifting along p : i < j

is as follows:

Liftj
i p : Tyi Γ → Tyj Γ

Liftj
i p A = λ γ. Liftj

i p (A γ)
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Now, two of the strict inclusion equations follow from ElLift, namely (Γ ▷ Liftj
i p A) = (Γ ▷ A)

and Tmj Γ (Liftj
i p A) = Tmi Γ A. Thus, we can just define term lifting as ↑j

ip t = t and
↓j

ip t = t. Basic type formers are as follows.

Π A B = λ γ. Π′ (A γ) (λ α. B (γ, α)) ⊥i = λ γ. ⊥′ Booli = λ γ. Bool′

Liftj
i p preserves type formers by Lemma 4. We define basic term formers and eliminators

using metatheoretic features, e.g. truei = λ γ. true and (λi x. t) = λ γ α. t (γ, α). Note that
since semantic term formers are just external constructors, they do not depend on levels,
so e.g. truei is the same at all i. This implies that ↑j

ip preserves term formers as well, so
(Liftj

i p, ↑j
ip, ↓j

ip) is a strict family inclusion.
We define universes as U i j p = λ γ. U′

i j p. With this, Liftk
j p (U i j q) = U i k (p◦q) follows

by the definition of semantic Lift. The Russell universe equation Tmj Γ (U i j p) = Tyi Γ
follows from Lemma 3, so we can define El and Code as identity functions.

▶ Theorem 1 (Consistency of TTGU). There is no closed syntactic term of ⊥i for any i.

Proof. Assuming a syntactic t : Tmi • ⊥i, we can interpret it in the previously given model,
which yields an inhabitant of the metatheoretic ⊥, hence a contradiction. ◀

5 First-Class Universe Levels

In the following, we specify and model type theories where levels and their morphisms are
represented by internal types.

However, it would be awkward to pick a particular structure for levels, and specify a type
theory which internalizes that structure; for example internalizing levels as natural numbers.
We do not want to repeat the specification and semantics for each choice of level structure;
instead, we aim to have a more generic solution.
1. We first give a specification of type theory with dependent levels, or TTDL, where levels

and level morphisms may depend on typing contexts. Here, liftings, universes and type
formers are specified, but the internal structure of levels is not yet pinned down.

2. We show that we can extend TTDL with level reflection rules, which identify levels with
particular internal types, thereby getting type theories with first-class levels, or TTFL.

This decreases the amount of work that we have to do, in order to get semantics for different
level setups. We only need to pick an external level structure such that it can be also
represented using TTDL type formers.

▶ Definition 18. A model of TTDL consists of the following.
1. A base category (Con, Sub) with terminal object •.
2. A “dependent” level structure on the base category:

Lvl : Con → Set
– < – : {Γ : Con} → Lvl Γ → Lvl Γ → Set
<prop : (p q : i < j) → p = q

– ◦ – : j < k → i < j → i < k

Additionally, Lvl and – < – are natural in the base category, so they support substitution
operations. Remark: at this point, we do not require well-foundedness for – < –, as it
has no bearing on basic lifting and universe rules, and well-foundedness will be usually
internally provable when we add level reflection rules.
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3. A “bootstrapping” assumption on levels. This can be any non-empty collection of levels
and morphisms. It will be used shortly in Section 5.1, where we specify first-class levels
using the syntax (i.e. the initial model) of TTDL. Without bootstrapping, the syntax
is trivial and has no closed types. Of course, models of TTDL in general make sense
without the bootstrapping assumption.
We pick the assumption that l0, l1 : Lvl Γ exist together with l01 : l0 < l1. This allows
large eliminations on type formers, so it provides a fair amount of power for specifying
internal levels.

4. A family structure:

Ty : (Γ : Con) → Lvl Γ → Set
Tm : (Γ : Con){i : Lvl Γ} → Ty Γ i → Set
– ▷ – : (Γ : Con){i : Lvl Γ} → Ty Γ i → Con

We have type and term substitution, which depends on level substitution. For instance,
we have:

– [– ] : Ty ∆ i → (σ : Sub Γ ∆) → Ty Γ (i[σ])

We also have a comprehension isomorphism Sub Γ (∆ ▷ A) ≃ (σ : Sub Γ ∆) × Tm Γ (A[σ]),
which is natural in Γ.

5. A lifting structure with

Lift : {Γ : Con}{i j : Lvl Γ} → i < j → Ty Γ i → Ty Γ j

↑ : {Γ : Con}{i j : Lvl Γ}(p : i < j) → Tm Γ A → Tm Γ (Lift p A)

Such that
a. Lift preserves all basic type formers and has functorial action on p ◦ q.
b. ↑ has an inverse ↓, preserves all basic term formers and has functorial action on p ◦ q.
c. (Γ ▷ A) = (Γ ▷ Lift p A), and Tm Γ A = Tm Γ (Lift p A) and ↑ t = t.
Above we mention basic type formers, although we have not yet specified those. The way
this should be understood, is that any basic type former introduced from now on should
come equipped with preservation equations for lifting. This is similar to how we mandate
that any introduced type former must be natural with respect to substitution.

6. A universe structure

U : {Γ : Con}(i j : Lvl Γ) → i < j → Ty Γ j El : Tm Γ (U i j p) → Ty Γ i

such that Lift p (U i j q) = U i k (p ◦ q), El has inverse Code, Tm Γ (U i j p) = Ty Γ i and
El t = t.

7. Basic type formers.

▶ Definition 19 (Inductive-recursive model of TTDL). Assume an external Lvl structure
that supports l0, l1 : Lvl and l01 : l0 < l1 (the bootstrapping assumption). We again use
the universe constructions from Section 4.1, instantiated to the assumed Lvl structure. We
describe components of the model in order. Again, we write components of the model in
bold font.
1. The base category remains unchanged from the TTGU model.
2. For the level structure, we define Lvl Γ = Γ → Lvl and i < j = (γ : Γ) → i γ < j γ.

Subsitution for internal levels and morphisms is given by function composition with
σ : Γ → ∆. Internal composition and <prop follow from the external counterparts.
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3. The internal bootstrapping assumption is modeled with the external counterpart.
4. We define Ty Γ i = (γ : Γ) → U (i γ) and Tm Γ A = (γ : Γ) → El (A γ). Substitution is

again function composition, and we have Γ ▷ A = (γ : Γ) × El (A γ).
5. Type lifting is given by Lift p A = λ γ. Lift (p γ) (A γ). Similarly as in the TTGU model,

Tm Γ A = Tm Γ (Lift p A) and Γ ▷ A = Γ ▷ (Lift p A) follow from the ElLift equality, and
term lifting is the identity function.

6. We define U i j p = λ γ. U′ (i γ) (p γ). Again, we have Tm Γ (U i j p) = Ty Γ i by Lemma 3,
and El and Code are identity functions.

7. Basic type formers are interpreted using UIR codes. Preservation of type and term formers
by lifting follows by the definition of Lift and El.

To summarize, the only interesting change compared to the TTGU model is that levels and
level morphisms gain potential dependency on contexts. However, in the inductive-recursive
model this is simply the addition of an extra semantic function parameter.

5.1 Level Reflection
▶ Definition 20 (Level reflection rules). Assume that we have definitions for internal levels in
the syntax of TTDL, i.e. all of the following are defined:

LvlI : Ty Γ l0

lI
0, lI

1 : Tm Γ LvlI

– <I – : Tm Γ LvlI → Tm Γ LvlI → Ty Γ l0

lI
01 : Tm Γ (lI

0 <I lI
1)

A reflection rule for the above consists of
1. mkLvl : Tm Γ LvlI → Lvl Γ with its inverse unLvl, such that mkLvl l

I
0 = l0 and mkLvl l

I
1 = l1.

2. mk< : Tm Γ (i <I j) → mkLvl i < mkLvl i with its inverse un<.

For any definition of internal levels, we may extend the specification of TTDL with the
corresponding reflection rule, thereby getting an algebraic signature for a type theory with
first-class levels (TTFL). We can easily get a TTFL with an inductive-recursive model in the
following way. First, we pick an external Lvl structure which a) satisfies the bootstrapping
assumption b) has sets of levels and morphisms which can be represented with syntactic
TTDL types.

For example, if Lvl = (Nat, – < –), with l0 = 0 and l1 = 1, and TTDL supports natural
numbers, then we can define LvlI as the internal Natl0 , and define – <I – as the usual
ordering of numbers, using TTDL type formers and large elimination (which is available from
l0 < l1). Then it follows that the model in Definition 19, instantiated to the current level
structure, satisfies level reflection. The model even supports the stricter Tm Γ Natl0 = Lvl Γ
equation, but in general it is easier to set up models if only an isomorphism is required.

5.2 Universe Features in TTFL
We describe some of the features expressible in TTFL.
Bounded universe polymorphism is realized by quantifying over levels and morphisms with

the usual Π types. For example, if levels strictly correspond to internal natural numbers,
we may have
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idUpTo3 : Π(l : Nat3)(p : Lift3
0(l <I 3))(A : U l 3 (mk< p)) → Lift (mk< p) A → Lift (mk< p) A

idUpTo3 = λ l p A a. a

Here, we make sure that all types are on the same level, by appropriate lifting. We assume
that internal levels are in Nat0, but we can bind an l : Nat3, because by cumulativity l is
also a term of Nat0. Likewise, the p variable is a term of Lift3

0(l <I 3) and l <I 3 as well.
Transfinite hierarchies are naturally supported. For example, Lvl can be identified with

Maybe Nat0, where Nothing defines ω and Just n is a finite level. Then, by the definition
of morphisms, we have <ω : Π(n : Nat0) → Just n <I ω. We can use this to quantify over
finite levels, as in the following type:

Π(n : Natω)(A : U n ω (mk< (<ω n))) → Lift (mk< (<ω n)) A → Lift (mk< (<ω n)) A

This type is in Ty Γ ω, but it is not in any universe, since ω is the greatest level.
Induction on levels and level morphisms. In Agda 2.6.1, there is an internal type of finite

levels, and while construction rules and some built-in operations on levels are exposed,
there is no general elimination rule on levels. Thus, there is a Nat → Lvl conversion
function but it has no inverse. In contrast, TTFL supports arbitrary elimination on levels
and morphisms.

Type formers returning in least upper bounds of levels. It is common in type theories to
allow type formers to have parameter types in different universe levels, say i and j, and
return in level i ⊔ j. In TTFL, whenever levels are trichotomous, meaning that the
ordering and equality of levels is internally decidable, i ⊔ j can be defined as the greater
of i and j, and the “heterogeneous” type formers are derivable4.

Coercive cumulative subtyping. TTFL as specified does not directly support cumulative
subtyping. However, it is compatible with coercive subtyping. Consider the following
rules:

– ≤ – : Ty Γ i → Ty Γ j → Set
coerce : A ≤ B → Tm Γ A → Tm Γ B

≤ refl : A ≤ A

U≤ : i < i′ → U i j p ≤ U i′ k q

Π≤ : (p : A′ ≤ A) → ((a′ : Tm Γ A′) → B[x 7→ coerce p a′] ≤ B′[x 7→ a′])
→ Π(x : A)B ≤ Π(x : A′)B′

Any model of TTFL can support the above rules: we can define – ≤ – and coerce by
indexed induction-recursion [13], where we define coercion along U≤ by type lifting, and
coercion along Π≤ by backwards-forwards coercion. It is possible to extend the subtyping
relation with rules for other basic type formers.

Note that Π is contravariant in the domain. This is easily supported with our inductive-
recursive semantics, unlike in the set-theoretic model of cumulativity for Coq [26], where
function domains are invariant.

4 A level structure which is trichotonomous and supports extensionality, i.e. (∀i. (i < j) ⇐⇒ (i < k)) →
j = k, is a type-theoretic ordinal. Assuming excluded middle, type-theoretic ordinals are equivalent to
classical ordinals [28, Section 10.3].
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5.3 Effects of Choice of Level Structure
TTFL features clearly vary depending on level structures. We make some basic observations.

We did not mandate that the level of LvlI is the least level, i.e. that l0 < i for every i ̸= l0.
If this holds, then it is possible to have level polymorphism at every level: at l0 we can
just bind a LvlI , and at every other level, we can lift LvlI to that level. However, levels
are not necessarily totally ordered, and l0 does not have to be the least. This means that
universe polymorphism is prohibited in levels which are not connected to l0.
If levels are given by a limit ordinal, then every TTFL type is contained in a universe.
If levels form a successor ordinal, then this is not the case. For example, Agda 2.6.1
has ω + 1 levels (externally), where Setω is the topmost universe, but Setω is not in any
universe.
While it is possible to quantify over all levels (using plain Π types), it is not possible
to have level polymorphism over all levels. We may try to type an identity function
for all levels, as Π(i : Lift ? LvlI)(A : U (mkLvl i) ? ?) → Lift ? A → Lift ? A. The issue is in
U (mkLvl i) ? ?, where we would have to find a level which is larger than every level. The
solution to this issue is to simply add more levels. For example, for polymorphism over
finite levels, we may pick ω + ω as the first limit ordinal which can internalize finite level
polymorphism; this is what Agda 2.6.2 does.

6 Related Work

Predicative hierarchies originate from Russell’s ramified type theories [29]. In the more
modern formulations of type theory, Martin-Löf proposed a countable predicative hierarchy
[20], as a way to remedy the inconsistency of the previous version of the theory (which assumed
type-in-type). Harper and Pollack described universe inference with level assignments and
also a form of level polymorphism [17]. Sterling [24] gave an algebraic specification much
like ours for a type theory with countable cumulative universes, and proved canonicity for it.

There have been proposals for strengthening universes with various closure principles and
universe operators. Palmgren’s super universes and higher-order universes [22] and Setzer’s
Mahlo universes [23] are examples for this. These are sufficient to model transfinite hierarchies,
but as we noted in Section 4.1, we do not know how to model strict inclusions with them.
Variants of induction-recursion [12, 13, 14] are particularly flexible and powerful extensions
to universes. McBride gave an inductive-recursion definition of cumulative universes that we
adapted in this work [21].

It is worth to summarize here the universe features in the current type theory implement-
ations.

Agda 2.6.1 has ω + 1-many non-cumulative predicative universes as Seti, with optional
cumulative subtyping only for universes [9]. It also has an internal type Level : Set0 for
finite levels (hence, exluding ω), which supports constructors and some built-in operations,
but no general elimination rule. There is also a countable parallel hierarchy Propi for
strict propositions [15]. Agda 2.6.2 will extend the Seti hierarchy to ω ∗ 2.

Coq 8.13 has ω-many cumulative predicative universes with cumulative subtyping for all
type formers [26]. It supports bounded universe polymorphism, but it has no internal
type for levels, and universe polymorphic definitions are not internally typeable. It also
has an impredicative Prop universe and optionally impredicative bottom Set universe.
Version 8.13 added experimental support for a parallel countable cumulative hierarchy
for strict propositions.
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Lean 3.3 has countable non-cumulative predicative Typei universes with universe polymorph-
ism, and no internal type of levels [10]. It also has strict impredicative Prop.

Idris 1 has countable cumulative predicative universes with cumulative subtyping only for
universes, typical-ambiguity-style level inference and no universe polymorphism [7].

Of the above features, what TTFL does not support is a) impredicativity b) the interaction
of Prop and Type universes, i.e. the restrictions on Prop elimination.

7 Conclusion and Future Work

In the current work, we developed a framework for modeling a variety of universe features in
type theories. At this point, we may ask the question: if induction-recursion is sufficient to
model every feature, why not simply support it in a practical implementation, and drop the
menagerie of universe features?

The answer is that induction-recursion provides a deep embedding of universe features,
which is usually less convenient to use than native features. For example, both Coq and
Agda have powerful automatic solving for filling out implicit universe levels. We also do
not have to invoke El or the U< computation rule explicitly, and in Coq we can use implicit
syntax for subtyping instead of explicit coercions.

This trade-off between convenience and formal minimalism is similar to the situation
with inductive types. Formally, W-types and identity types are easier to handle than general
inductive families, but the latter are far more convenient to actually use. Ideally, we would
like to justify complicated convenience features by reduction to minimal features. With the
current paper, we hope to have made progress in this manner.

Future Work

Several related topics are not discussed in this paper and could be subject to future work.
First, besides consistency, we are often interested in canonicity, normalization or other

metatheoretical properties. The current work focuses on consistency and leaves other
properties to future work. We did keep canonicity in mind when specifying the systems in
this paper. Hopefully the usual proof method of gluing (in other words, proof-relevant logical
predicates) [8, 18, 24] can be adapted to the theories in this paper.

Second, we only focus on using universes as size-based classifiers for types. Stratification
features are also present in two-level type theory [2], modal type theories [16] or as h-levels
in homotopy type theory [28]. It would be interesting to port universe features in this paper
to two-level type theory, as they would hopefully model a form of stage polymorphism in
multi-stage compilation. We could try representing Prop universes in TTFL as well. This is
closely related to h-level based stratification.

Third, we do not discuss implementation strategies and ergonomics of universe features.
Which universe hierarchies support good proof automation? What kind of impact do first-
class levels have on elaboration algorithms? Hopefully the current work can aid answering
these questions, by at least giving a way to quickly check if some features are logically
consistent.

Lastly, we do not handle impredicative universes. The main reason for this is that we do
not know the consistency of having induction-recursion and impredicative function space
together in the same universe, and modeling impredicativity seems to require this assumption
in the metatheory. This could be investigated as well in future work.
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Abstract
Many algorithmic results on the modal mu-calculus use representations of formulas such as alternating
tree automata or hierarchical equation systems. At closer inspection, these results are not always
optimal, since the exact relation between the formula and its representation is not clearly understood.
In particular, there has been confusion about the definition of the fundamental notion of the size of
a mu-calculus formula.

We propose the notion of a parity formula as a natural way of representing a mu-calculus formula,
and as a yardstick for measuring its complexity. We discuss the close connection of this concept
with alternating tree automata, hierarchical equation systems and parity games. We show that
well-known size measures for mu-calculus formulas correspond to a parity formula representation of
the formula using its syntax tree, subformula graph or closure graph, respectively. Building on work
by Bruse, Friedmann & Lange we argue that for optimal complexity results one needs to work with
the closure graph, and thus define the size of a formula in terms of its Fischer-Ladner closure. As a
new observation, we show that the common assumption of a formula being clean, that is, with every
variable bound in at most one subformula, incurs an exponential blow-up of the size of the closure.

To realise the optimal upper complexity bound of model checking for all formulas, our main
result is to provide a construction of a parity formula that (a) is based on the closure graph of a
given formula, (b) preserves the alternation-depth but (c) does not assume the input formula to be
clean.
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1 Introduction

The modal µ-calculus, introduced by Kozen [14] and surveyed in for instance [2, 12, 4, 9],
is a logic for describing properties of processes that are modelled by labelled transition
systems. It extends the expressive power of propositional modal logic by means of least and
greatest fixpoint operators. This addition permits the expression of all bisimulation-invariant
monadic second order properties of such processes [13]. As a logic, µML has many desirable
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properties, such as a natural complete axiomatisation [14, 19], uniform interpolation and
other interesting model-theoretical properties [8, 11], and a complete cut-free proof system [1].
Here we will be interested in some of its computational properties.

The µ-calculus is generally regarded as a universal specification language for reactive
systems, since it embeds most other logics that are used for this purpose, such as ltl, ctl,
ctl∗ and pdl. Given this status, the computational complexity of its model checking and
satisfiability problems is of central importance. While the satisfiability problem has been
shown to be exptime-complete [10] already thirty years ago, the precise complexity of
its model checking problem turned out to be a challenging problem. A breakthrough was
obtained by Calude et alii [7] who gave a quasi-polynomial algorithm for deciding parity
games; since model checking for the modal µ-calculus can be determined by such games, this
indicates a quasi-polynomial upper bound of the complexity of the model checking problem.

Generally, to determine the complexity of a proposed algorithm operating on µ-calculus
formulas, one needs sensible measures of the complexity of the formula that is (part of)
the input to the algorithm; the most important of these concern size and alternation depth.
Different notions of size have been used, depending on how precisely formulas are represented
in the input. Standard size measures include: (1) length, corresponding to a representation of
the formula as a string or syntax tree; (2) subformula size, corresponding to a representation of
the formula as the directed acyclic graph of its subformulas; and (3) closure size, corresponding
to a similar representation of a formula via its (Fischer-Ladner) closure.

The choice between these representations is non-trivial because the subformula size
of a formula may be exponentially smaller than its length, and, as was shown by Bruse,
Friedmann & Lange [6], its closure size may be exponentially smaller than its subformula size.
Consequently, complexity results about the µ-calculus may be suboptimal when expressed
in terms of subformula size, in the sense that a stronger version of the result holds when
formulated in terms of closure size. In other words, it is desirable to design algorithms that
operate on a representation of a formula that is based on its closure.

At closer inspection it turns out that generally, the literature on algorithmic aspects of the
µ-calculus is crystal clear in terms of the structures on which the algorithms operate, but less
so on the precise way in which these structures represent formulas. As a consequence, when
formulated in terms of the actual formulas, complexity results as given may be suboptimal or
somewhat fuzzy. Our long-term goal is to study the representation of µ-calculus formulas in
more detail, and to develop a framework in which various approaches can easily be compared,
and in which complexity results can be formulated and proved optimally and unambiguously.

As a starting point, we note that in the literature different frameworks are used to
represent µ-calculus formulas. The parity games that feature in model checking algorithms
are usually based on an arena which is some kind of Cartesian product of a graph that
represents the formula with the model where this formula is evaluated. Other prominent ways
to represent formulas are (alternating) tree automata and (hierarchical) equation systems; as
we shall see further on, in these cases we can think of the structures that represent formulas
in graph-theoretic terms as well. In all cases then, the mathematically fundamental structure
representing a formula is a graph, whose nodes are labelled with logical connectives or
atomic formulas, and with priorities that are used to determine some winning or acceptance
condition. The graph itself can be based on the syntax tree, the subformula dag or the
closure graph of the formula that it represents.
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We make this fundamental labelled graph structure explicit and call the resulting concept
a parity formula.1 Intuitively, parity formulas generalise standard formulas by dropping the
requirement that the underlying graph structure of the formula is a tree with back edges,
and adding an explicit parity acceptance condition. A good way to think about a parity
formula is as the formula component of a model checking game. As we shall see below,
parity formulas are closely related to alternating tree automata and hierarchical equation
systems. Compared to these however, parity formulas have a very simple mathematical
structure, which allows for a straightforward and unambiguous definition of its size and its
index (alternation depth).

The explicit introduction of this notion is not a goal in itself. We intend to use it as a
tool to analyse some underexposed sides of the theory of the modal µ-calculus. In this paper
we discuss some key constructions turning standard formulas into parity formulas and vice
versa. Along the way we make two observations that we consider the key contributions of
this paper:
1) A common assumption in the literature on the µ-calculus is that one may assume, without

loss of generality, that formulas are clean or well-named, in the sense that bound variables
are disjoint from free variables, and each bound variable determines a unique subformula.
In Proposition 10 we show that this assumption may lead to an exponential blow-up in
terms of closure-size. This means that, if one is interested in optimal complexity results,
one should not assume the input formula to be clean.

2) To the best of our knowledge, all representations of µ-calculus formulas known from the
literature, are suboptimal in one way or another: they are based on the subformula dag,
they presuppose cleanness, or they use a priority function which yields an unnecessarily
big index. The main result of our paper, Theorem 12, concerns a construction that
provides, for every µ-calculus formula, an equivalent parity formula that is based on its
closure graph, and has an index that matches its alternation depth. The fact that we do
not assume the input formula to be clean makes our proof non-trivial.2

Because of Proposition 10, Theorem 12 has an impact on the quasi-polynomial time
complexity of the model checking problem for the modal µ-calculus. If one wants to formulate
an optimal version of this complexity result, by the observations of Bruse, Friedmann &
Lange [6] one needs to measure the formula in terms of closure-size; but then Theorem 12 is
needed to ensure that the result applies to all formulas, not just to the ones that are clean.

2 Preliminaries

In this section we briefly review the syntax and semantics of the modal µ-calculus.

Syntax. It will be convenient to assume that µ-calculus formulas are in negation normal
form. That is, the formulas of the modal µ-calculus µML are given by the following grammar:

µML ∋ φ ::= p | p | ⊥ | ⊤ | (φ ∨ φ) | (φ ∧ φ) | ✸φ | ✷φ | µxφ | νxφ,

where p, x are variables, and the formation of the formulas µxφ and νxφ is subject to the
constraint that φ is positive in x, i.e., there are no occurrences of x in φ. Elements of µML
will be called µ-calculus formulas or standard formulas. Formulas of the form µx.φ or νx.φ

1 Parity formulas are almost the same structures as the alternating binary tree automata of Emerson &
Jutla [10] and as the version of Wilke’s alternating tree automata where the transition conditions are
basic formulas, i.e., contain at most one logical connective [20, 12].

2 Proof details, which we could not include here for lack of space, can be found in the technical report [15].
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will be called fixpoint formulas. We define Lit(Q) := {p, p | p ∈ Q} as the set of literals over
Q, and At(Q) := {⊥,⊤} ∪ Lit(Q) as the set of atomic formulas over Q. We will associate µ
and ν with the odd and even numbers, respectively, and for η ∈ {µ, ν} define η by putting
µ := ν and ν := µ. The notion of subformula is defined as usual; we write φ P ψ if φ is a
subformula of ψ, and define Sfor(ψ) as the set of subformulas of ψ.

We use standard terminology related to the binding of variables. We write BV (ξ) and
FV (ξ) for, respectively, the set of bound and free variables of a formula ξ. A formula ξ is
tidy3 if FV (ξ) ∩ BV (ξ) = ∅. We fix a set Q of proposition letters and let µML(Q) denote
the set of formulas ξ with FV (ξ) ⊆ Q. We let φ[ψ/x] denote the formula φ, with every
free occurrence of x replaced by the formula ψ; we will make sure that we only apply this
substitution operation if ψ is free for x in φ (meaning that no free variable of ψ gets bound
after substituting). This saves us from involving alphabetical variants when substituting.
The unfolding of a formula ηx.χ is the formula χ[ηx.χ/x]; this formula is tidy if χ is so.

Semantics. The modal µ-calculus is interpreted over Kripke structures. A (Kripke) model is
a triple S = (S,R, V ) where S is the set of states or points of S, R ⊆ S × S is its accessibility
relation, and V : Q → P(S) its valuation. A pointed model is a pair (S, s) where s is a
designated state of S. Inductively we define the meaning [[φ]]S ⊆ S of a formula φ ∈ µML(Q)
in a model S as follows:

[[p]]S := V (p) [[p]]S := S \ V (p)
[[⊥]]S := ∅ [[⊤]]S := S

[[φ ∨ ψ]]S := [[φ]]S ∪ [[ψ]]S [[φ ∧ ψ]]S := [[φ]]S ∩ [[ψ]]S
[[✸φ]]S := {s ∈ S | R[s] ∩ [[φ]]S ̸= ∅} [[✷φ]]S := {s ∈ S | R[s] ⊆ [[φ]]S}
[[µx.φ]]S :=

⋂
{U ⊆ S | [[φ]]S[x 7→U ] ⊆ U} [[νx.φ]]S :=

⋃
{U ⊆ S | [[φ]]S[x 7→U ] ⊇ U}.

Here S[x 7→ U ] := (S,R, V [x 7→ U ] where V [x 7→ U ] is the Q ∪ {x}-valuation mapping x to
U and any p ̸= x to V (p). If a state s ∈ S belongs to the set [[φ]]S, we write S, s ⊩ φ, and say
that s satisfies φ.

Complexity measures. The size of a formula ξ ∈ µML can be measured in at least three
different ways. First, its length |ξ|ℓ is defined as the number of symbols that occur in ξ.
Second, we define its subformula size |ξ|s := |Sfor(ξ)| as the number of distinct subformulas
of ξ.

Third, we can measure the size of ξ by counting the number of formulas in its (Fischer-
Ladner) closure. We need some notation and terminology here, where we assume that ξ is
tidy. The set Clos0(ξ) is defined by the following case distinction:

Clos0(φ) := ∅ if φ ∈ At(Q)
Clos0(φ0 ⊙ φ1) := {φ0, φ1} where ⊙ ∈ {∧,∨}
Clos0(♡φ) := {φ} where ♡ ∈ {✸,✷}
Clos0(ηx.φ) := {φ[ηx.φ/x]} where η ∈ {µ, ν}.

We write ξ →C φ if φ ∈ Clos0(ξ) and call →C the trace relation on µML. We let ↠C

denote the reflexive and transitive closure of →C , and define the closure of ξ as the set
Clos(ξ) := {φ | ξ ↠C φ}. The closure graph of ξ is the directed graph (Clos(ξ),→C). The
closure size |ξ|c of ξ is given as |ξ|c := |Clos(ξ)|.

3 In the literature, some authors make a distinction between proposition letters (which can only occur
freely in a formula), and propositional variables, which can be bound. Our tidy formulas correspond to
sentences in this approach, that is, formulas without free variables.
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Next to its size, the most important complexity measure of a µ-calculus formula is its
alternation depth. We shall work with the definition originating with Niwiński [16]. By
natural induction we first define classes Θµ

n,Θν
n ⊆ µML (corresponding to, respectively, the

sets Πn+1 and Σn+1 in [16]). Intuitively, Θη
n consists of those µ-calculus formulas where

n bounds the length of any alternating nesting of fixpoint operators of which the most
significant formula is an η-formula. For the definition, we set, for η, λ ∈ {µ, ν}:
1. all atomic formulas belong to Θη

0 ;
2. if φ0, φ1 ∈ Θη

n, then φ0 ∨ φ1, φ0 ∧ φ1,✸φ0,✷φ0 ∈ Θη
n;

3. if φ ∈ Θη
n then ηx.φ ∈ Θη

n (where we recall that µ = ν and ν = µ);
4. if φ(x), ψ ∈ Θη

n, then φ[ψ/x] ∈ Θη
n, provided that ψ is free for x in φ;

5. all formulas in Θλ
n belong to Θη

n+1.
The alternation depth ad(ξ) of a formula ξ is the least n such that ξ ∈ Θµ

n ∩ Θν
n. It measures

the maximal number of alternations between least and greatest fixpoint operators in ξ.

3 Representations of µ-calculus formulas

In this section we discuss two of the most widely used representations for formulas of the
modal µ-calculus that one may find in the literature: alternating tree automata (atas) and
hierarchical equation systems (hess). Both of these come in many different shapes, and in
some of these shapes the two notions are actually very similar to one another. For lack of
space we cannot give a proper survey here, and so we focus on a perspective, in which these
similarities come out most clearly.4 In this perspective, both kinds of representation can be
defined using the syntactic notion of a transition condition. Recall that we have fixed a set Q
of proposition letters; in addition to this we need a set A of objects that we shall call states
in the setting of atas and variables in that of hess. Now consider the following definitions
of, respectively, the sets of basic, standard and extended transition conditions over Q and A.

BTC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | ✸a | ✷a | a ∧ a | a ∨ a,

STC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | ✸a | ✷a | β ∧ β | β ∨ β,

ETC(Q, A) ∋ β ::= ⊥ | ⊤ | p | p | a | ✸β | ✷β | β ∧ β | β ∨ β,

where p ∈ Q and a ∈ A.

▶ Definition 1. An alternating tree automaton or ata is a quadruple A = (A,∆,Ω, aI)
where A is a non-empty finite set of states, of which aI ∈ A is the initial state, Ω : A → ω

is the priority map, and ∆ : A → STC(Q, A) is the transition map. An ata will be called
basic if the range of its transition map consists of basic transition conditions.

Before we move on to the definition of the semantics of atas, we make two comments.
First and foremost, the atas that were introduced by Wilke [20] are in fact what we call
basic; as we shall see in the next section, these are the ones that are in close correspondence
with our parity formulas. In the subsequent literature however, it seems to have become
quite common to allow for the more complex conditions that we here call “standard”, and
that may feature nesting of boolean connectives in transition conditions, (possibly restricted
to disjunctive normal form).

Second, if we think of the powerset P(Q) as an alphabet, then tree-based Kripke models
correspond to P(Q)-labelled trees. In such a setting it is common to consider tree automata
with a transition map of the form ∆ : A × P(Q) → TC(∅, A) for some set of transition

4 This means in particular that we only consider amorphous tree automata here, i.e., we disregard
automata operating on trees where the children of a node are given by a bounded number of functions.
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conditions in which the proposition letters in Q may not occur. That is, the proposition
letters in Q move from the co-domain of the transition map to its domain. It is in fact quite
easy to transform automata of the one kind into devices of the other kind, but for lack of
space we cannot go into detail here.

The semantics of alternating tree automata is usually given in terms of run trees, but we
may also use parity games [12, ch. 9]. A simple version is the acceptance game A(A, S) for an
ata A and a model S = (S,R, V ); it takes positions in the set VA × S, where VA is given as

VA := {aI} ∪
⋃
a∈A

Sfor(∆(a)).

For each of these positions Table 1 below lists the set of possible moves and the player that is
to move. (We need not assign a player to positions that admit a single move only.) As usual
in parity games finite matches are lost by the player who gets stuck (i.e., needs to pick an
element from the empty set) and infinite matches are won by ∃ iff the maximal priority Ω(a)
of all positions (a, s) ∈ A× S that occur infinitely often in the match is even. The starting
position is (aI , s), with (S, s) the pointed model for which we want to check acceptance.

Table 1 The acceptance game A(A, S).

Position Player Admissible moves
(⊥, s) ∃ ∅
(⊤, s) ∀ ∅
(p, s) for s ∈ V (p) ∀ ∅
(p, s) for s ̸∈ V (p) ∃ ∅
(p, s) for s ∈ V (p) ∃ ∅
(p, s) for s ̸∈ V (p) ∀ ∅
(a, s) for a ∈ A - {(∆(a), s)}
(α0 ∨ α1, s) ∃ {(α0, s), (α1, s)}
(α0 ∧ α1, s) ∀ {(α0, s), (α1, s)}
(✸a, s) ∃ {(a, t) | sRt}
(✷a, s) ∀ {(a, t) | sRt}

As a second way of representing µ-calculus formulas we now discuss hierarchical equation
systems [18, 6]. As with alternating tree automata there are multiple definitions of hierarchical
equation systems in the literature. Here we recall the definition from [9] (where they are
called modal equation systems).

▶ Definition 2. A hierarchical equation system or hes consists of a finite set of variables
A = {X1, . . . , Xn}, together with a set

E = {X1 =p1 β1, . . . , Xn =pn
βn}.

of prioritised modal equations. That is, for each i, the number pi ∈ ω denotes the priority of
the i-th equation, and βi is an expression in the set ETC(Q, A).

By convention the first variable X1 is the entry point of the equation system, which
functions similarly to the initial state of an ata. In [18, 6] the semantics of hierarchical
equation systems is defined on the basis of the Knaster-Tarski fixpoint theorem, as in the
compositional semantics of standard formulas defined in Section 2. It is however also possible
to give a semantics in terms of parity games, completely analogous to the game semantics
for atas mentioned above. We leave the details to the reader.
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It is clear that there is a close correspondence between hierarchical equation systems and
alternating tree automata. In fact one might view an hes as a generalised version of an ata
in which modalities can be nested inside of the transition conditions – such a generalised
notion of ata has been used for example in [5]. With this in mind, in the sequel we will take
this generalised perspective on atas, so that we include hess when we refer to atas.

It is not entirely obvious what is the right measure for the size of an alternating tree
automaton A = (A,∆,Ω, aI). One might simply consider the number of states in A, but since
any actual representation of the automaton needs to encode the arbitrarily large transition
conditions a more adequate measure of the size of A should take these into account as well.
Moreover, since the acceptance game A(A, S) is based on the set VA × S, it makes sense to
define |A| := |VA|, but also, to consider a representation of A that is more directly based on
this set VA. This is what we will do in the next section.

4 Parity formulas

As the backbone of our framework we introduce the notion of a parity formula. These are
like ordinary (modal) formulas, with the difference that (i) the underlying structure of a
parity formula is a directed graph, possibly with cycles, rather than a tree; and (ii) one adds
a priority labelling to this syntax graph, to ensure a well-defined game-theoretical semantics
in terms of parity games.

▶ Definition 3. A parity formula over Q is a quintuple G = (V,E,L,Ω, vI), where
(V,E) is a finite, directed graph, with |E[v]| ≤ 2 for every vertex v;
L : V → At(Q) ∪ {∧,∨,✸,✷, ϵ} is a labelling function;
Ω : V ◦→ ω is a partial map, the priority map of G; and
vI is a vertex in V , referred to as the initial node of G;

such that (with E[v] := {u ∈ V | Evu}):
1. |E[v]| = 0 if L(v) ∈ At(Q), and |E[v]| = 1 if L(v) ∈ {✸,✷} ∪ {ϵ};
2. every cycle of (V,E) contains at least one node in Dom(Ω).
A node v ∈ V is called silent if L(v) = ϵ, constant if L(v) ∈ {⊤,⊥}, literal if L(v) ∈ Lit(Q),
atomic if it is either constant or literal, boolean if L(v) ∈ {∧,∨}, and modal if L(v) ∈ {✸,✷}.
The elements of Dom(Ω) will be called states.

The semantics of parity formulas is given in terms of a model checking game, which is
defined as the following parity game between ∃ and ∀.

▶ Definition 4. Let S = (S,R, V ) be a model, and let G = (V,E, L,Ω, vI) be a parity formula.
We define the model checking game E(G, S) as the parity game (G,E,Ω′) of which the board
(or arena) consists of the set V × S, the priority map Ω′ : V × S → ω is given by putting
Ω′(v, s) := Ω(v) if v ∈ Dom(Ω) and Ω′(v, s) := 0 otherwise. and the game graph is given in
Table 2. G holds at or is satisfied by the pointed model (S, s), notation: S, s ⊩ G, if the pair
(vI , s) is a winning position for ∃ in E(G, S).

Equivalence of parity formulas, and between parity formulas and standard formulas (or
atas or hess), is defined in the obvious way.

▶ Example 5. Figure 1 to the right displays an example of a parity formula that is based on
the standard µ-calculus formula ξ = µx.(p ∨ ✸x) ∨ νy.(q ∧ ✷(x ∨ y)), by adding back edges
to the subformula dag of ξ. Nodes in the domain of the priority map are indicated by the
notation ·|n, where n is the priority. The initial node is ϵ|1.
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Table 2 The model checking game E(G, S).

Position Player Admissible moves
(v, s) with L(v) = p and s ∈ V (p) ∀ ∅
(v, s) with L(v) = p and s /∈ V (p) ∃ ∅
(v, s) with L(v) = p and s ∈ V (p) ∃ ∅
(v, s) with L(v) = p and s /∈ V (p) ∀ ∅
(v, s) with L(v) = ϵ - E[v] × {s}
(v, s) with L(v) = ∨ ∃ E[v] × {s}
(v, s) with L(v) = ∧ ∀ E[v] × {s}
(v, s) with L(v) = ✸ ∃ E[v] × R[s]
(v, s) with L(v) = ✷ ∀ E[v] × R[s]

ϵ|1

∨

ϵ|0

∧

✷

∨

yx

q

∨

✸p

Figure 1 Example of a parity formula.

▶ Example 6. One can also build a parity formula from the closure graph of some standard µ-
calculus formula. As an example we consider the formula ξ2 from our proof of Proposition 10
in Section 5:

ξ2 := µx0.γ2 ∧ (γ1 ∧ x0),

where

γ1 := µx1.x1 ∧ (µx0.γ2 ∧ x1 ∧ x0), and
γ2 := µx2.x2 ∧

(
(µx1.x1 ∧ (µx0.x2 ∧ x1 ∧ x0))

∧ (µx0.x2 ∧ (µx1.x1 ∧ (µx0.x2 ∧ x1 ∧ x0)) ∧ x0)
)
.

A picture of the closure graph (Clos(ξ2),→C) of ξ2 is on the left in Figure 2 below (where
γ2 is represented by γ0). This closure graph gives rise to a parity formula whose vertices
are the elements of Clos(ξ2) and edges are given by the trace relation →C . The labelling is
obvious and the initial node is the node ξ2 = γ0. The priority map Ω can be defined such
that Ω(γ0) = Ω(γ1) = Ω(γ2) = 1 and Ω is undefined on all other vertices.

We impose a bound on the outdegree of vertices in parity formulas, so that the size of any
reasonable encoding of a parity formula is linear in the number of vertices. This facilitates
the following simple definition of size:
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▶ Definition 7. The size of a parity formula G = (V,E, L,Ω, vI) is defined as its number of
nodes: |G| := |V |.

The second fundamental complexity measure for a parity formula is its index, which
corresponds to the alternation depth of standard formulas. The most straightforward
definition of this notion would be to take the size of the range of the priority map; a slightly
more sophisticated approach5 involves the notions of an alternating Ω-chain and of a cluster
(or maximal strongly connected component) of G

▶ Definition 8. Let G = (V,E, L,Ω, vI) be a parity formula.
A set C ⊆ V is a cluster in G if C is a maximal set such that E∗uv and E∗vu for all

u, v ∈ C. Clusters are partially ordered by placing one cluster C higher than another cluster
C ′ if E∗uu′ for all u ∈ C and u′ ∈ C ′. A cluster C in G is degenerate if C = {v} is a
singleton and we do not have Evv; otherwise, C is called nondegenerate.

An alternating Ω-chain of length k in G is a finite sequence v1 · · · vk of states that
all belong to the same cluster, and satisfy, for all i < k, that Ω(vi) < Ω(vi+1) while vi
and vi+1 have different parity. Such a chain is called an µ-chain (ν-chain) if Ω(vk) is
odd (even, respectively). Given a cluster C of G and η ∈ {µ, ν} we define indη(C), the
η-index of C, as the maximal length of an alternating η-chain in C, and the index of C as
indG(C) := max

(
indµ(C), indν(C)

)
. Finally, we define

ind(G) := max{indG(C) | C ∈ Clus(G)}.

Note that if G has cycles then Dom(Ω) ̸= ∅, so that G has alternating chains. If G is
cycle-free then we can assume that Dom(Ω) is empty, in which case ind(G) = 0.

Parity formulas, alternating tree automata and hierarchical equation systems

It should be clear from the definitions that parity formulas are very similar to both alternating
tree automata and hierarchical equation systems. To transform a given ata A = (A,∆,Ω, aI)
into an equivalent parity formula GA = (V,E, L,Ω′, vI), one just builds a graph on the
set VA in the obvious way, and defines Ω′ := Ω (with the understanding that Ω′ is now a
partial map on V ), and vI := aI . Finally, one defines L(a) := ϵ if a ∈ A, whereas L(α)
for α ∈ STC(Q, A) \ A is given as L(α) := α in case α is atomic, and L(α) is the main
connective of α otherwise. It is then straightforward to show that A ≡ GA, whereas GA
obviously has the same size as A. In the opposite direction, it is as straightforward to define,
for an arbitrary parity formula G, an equivalent basic ata A of the same size and index.

Parity formulas, then, can be seen as a definitional variation of atas or hess. We prefer
the graph-based format of parity formulas, since this shows more clearly how to generalise
standard formulas, and allows for very perspicuous definitions of complexity measures. What
matters most, however, is that the results that we prove in the next two sections apply to
atas and hess, in the same way as to parity formulas, see for instance Remark 11 where we
make this point explicit.

5 Size issues

It follows from our observations in the previous paragraphs that we may solve the model
checking problem for the modal µ-calculus by transforming an arbitrary formula ξ ∈ µML into
an equivalent parity formula G, and then use the model checking game for parity formulas,

5 Note that these two definitions almost coincide, since we may shift the priorities of any cluster to either
0, . . . , d or 1, . . . , d + 1.
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together with an algorithm for solving parity games.6 While the complexity of solving
parity games is still not exactly understood, there is no doubt that the key parameters that
determine this complexity are the size and the index of the game. Thus, given the definition
of the model checking game for parity formulas, it is of crucial importance to find, for an
arbitrary µ-calculus formula ξ, an equivalent parity formula G of minimal size and index.
While Kozen [14] already showed that the closure set Clos(ξ) of a clean µ-calculus formula ξ
never exceeds the number of subformulas of ξ, Bruse, Friedmann & Lange [6] revealed that
Clos(ξ) can in fact be exponentially smaller than Sfor(ξ) of its subformulas. This difference
in size indicates that for optimal complexity results, rather than building a parity formula
for ξ on the set Sfor(ξ), one should work with the closure graph of ξ.

In the next section we will give a concrete definition of such a parity formula. Here we
point out a complication in this definition that seems to have gone unnoticed until now; it
concerns the notion of a formula being clean or well-named.

▶ Definition 9. A tidy µ-calculus formula ξ is clean or well-named if we may associate
with each x ∈ BV (ξ) a unique subformula of the form ηx.δ. This unique subformula will be
denoted as ηxx.δx, and we call x a µ-variable if ηx = µ, and a ν-variable if ηx = ν.

It is generally very convenient to work with clean formulas, since the bound variables of
a clean formula are in 1-1 correspondence with its fixpoint subformulas.7 For this reason
one often sees in the literature that authors assume that the formulas they work with are
clean. It is easy to rewrite a µ-calculus formula into an equivalent clean variant, by a suitable
renaming of bound variables. The problem, however, is that such a renaming comes at a
high cost, as is stated by the following proposition.

▶ Proposition 10. There exists a family ξ1, ξ2, . . . of formulas in µML such that |ξn|c ≤ 2n+2,
but |ψn|c ≥ 2n for every clean alphabetic variant ψn of ξn.

Proof. Fix a number n. The formula ξn is defined in terms of simpler families of formulas
βi, γi for all i ∈ {0, . . . , n} and αi,j for all i, j ∈ {0, . . . , n} with j ≤ i. First we define βi by
an induction on i ≤ n:

β0 := µx0.xn ∧ · · · ∧ x0
βi := µxi.αi,i ∧ · · · ∧ αi,0,

where αi,j for j ≤ i is defined by an inner downwards induction such that αi,i := xi and for
all j with 0 ≤ j < i we set

αi,j := βj [αi,i/xi] · · · [αi,j+1/xj+1].
Note that FV (βi) ⊆ {xn, . . . , xi+1} and FV (αi,j) ⊆ {xn, . . . , xi} for all j ≤ i. In the
definition of βi and the remainder of this section we assume that conjunction associates to
the right. We then define γi with a downwards induction on i such that

γi := βi[γn/xn] · · · [γi+1/xi+1].

Finally, we set ξn := γ0. Figure 2 depicts the closure graphs for ξ2 and ξ3. The formula ξ2 is
given in Example 6. The formula ξ3 is already too large to be written out.

6 Because the correspondence between parity formulas and atas and hess, this is the standard way of
approaching model checking for µML.

7 In some situations it is even necessary to work with clean formulas. Suppose, for instance, that for a
formula ξ ∈ µML one wants to base an equivalent ata Aξ on the set of subformulas of ξ. If we cannot
associate a unique subformula of ξ with some bound variable x of ξ, then there is no sensible way to
define the value of the transition map for this x.
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γ0

γ1 γ2

γ1 ∧ γ0 γ2 ∧ (γ1 ∧ γ0)

γ0

γ1 γ2 γ3

γ1 ∧ γ0 γ2 ∧ (γ1 ∧ γ0) γ3 ∧ (γ2 ∧ (γ1 ∧ γ0))

Figure 2 Structure of the closure graphs for ξ2 (represented by γ0 in the left graph) and for ξ3

(represented by γ0 in the right graph).

To show that |ξn|c ≤ 2n+ 2 one needs to verify that

Clos(ξn) = {γ0, . . . , γn, γ1 ∧ γ0, γ2 ∧ (γ1 ∧ γ0), . . . , γn ∧ · · · ∧ γ0}.

The crucial observation behind this result is that for all j ≤ i it holds that

αi,j [γn/xn] · · · [γi+1/xi+1][γi/xi] = γj .

This equation can be proved by a downward induction over j ∈ {i, . . . , 0} for every fixed i.
To prove the result on the closure size of clean renamings of ξn we use the notion of fixpoint

depth. Inductively we define fd(φ) := 0 if φ is atomic, fd(φ0 ⊙ φ1) := max(fd(φ0), fd(φ1)),
fd(♡φ) := fd(φ), and fd(ηx.φ) := 1 + fd(φ). As we sketch below one can then show that

fd(ξn) ≥ 2n. (1)

To see how the claim about clean alphabetic variants follows from (1) let ψn be some clean
alphabetical variant of ξn; it is not hard to see that we have fd(ψn) ≥ 2n as well. The claim
then follows by the observation that

every clean µ-calculus formula χ satisfies |χ|c ≥ fd(χ). (2)

For a proof of this statement, first observe that for any subformula ηx.φ P χ, the closure of
χ contains a formula of the form ηx.φ′. This implies that |χ|c = |Clos(χ)| ≥ |BV (χ)|. But if
χ is a formula of fixpoint depth k, then there is a chain of subformulas η1x1.φ1 P η2x2.φ2 P
· · · P ηkxk.φk, and if χ is clean, then all these variables xi must be distinct. This shows that
|BV (χ)| ≥ fd(χ). Combining these observations, we see that |χ|c ≥ fd(χ) indeed.

To prove (1) we need the auxiliary notion of the fixpoint depth of a variable in a
formula. Given a formula φ and variable x, we let fd(x, φ), the fixpoint depth of x in φ,
denote the maximum number of fixpoint operators that one may meet on a path from
the root of the syntax tree of φ to a free occurrence of x in φ, with fd(x, φ) = −∞
if no such occurrence exists. Formally, we set fd(x, x) := 0, fd(x, y) := −∞ if x ̸= y,
fd(x, φ0 ⊙ φ1) := max

(
fd(x, φ0), fd(x, φ1)

)
, fd(x,♡φ) := fd(x, φ), fd(x, ηx.φ) := −∞, and

fd(x, ηy.φ) = 1 + fd(x, φ) if x ̸= y. Without proof we mention that, provided x ̸= y and ψ is
free for y in φ:

fd(x, φ[ψ/y]) = max
(
fd(x, φ), fd(y, φ) + fd(x, ψ)

)
.

From this we immediately infer that

fd(x, φ[ψ/y]) ≥ fd(y, φ) + fd(x, ψ), (3)
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which shows that every substitution doubles the fixpoint depth of a variable and leads to the
exponential bound in (1). More concretely one can show that for all k and i such that k > i

it holds that

fd(xk, βi) ≥ 2i (4)

From this (1) follows because βn is a subformula of ξn. The statement (4) is shown by
an induction over i, where in the inductive step one proves with an inner induction over
j ∈ {i− 1, . . . , 0} that fd(xk, αi,j) ≥ 2i−1 + · · · + 2j . We leave the details to the reader. ◀

6 Standard formulas and parity formulas

In this section we show how to move back and forth between standard µ-calculus formulas
and parity formulas, in such a way that the closure-size of the standard formula corresponds
linearly to the size of the parity formula and the alternation depth is preserved.

From standard formulas to parity formulas

Our main theorem states that for an arbitrary tidy formula, we can find an equivalent parity
formula that is based on the formula’s closure graph, and has an index which is bounded by
the alternation depth of the formula.

▶ Remark 11. To stress our point that our results apply to atas and hess too, suppose that
we want to base an ata Aξ on the closure set of a formula ξ, or, for the sake of a perspicuous
definition, on the set A := {φ̂ | φ ∈ Clos(ξ)}. It is clear how to define the transition map ∆:
we simply put ∆(φ̂) := φ if φ is atomic, ∆(φ̂⊙ ψ) := φ̂⊙ ψ̂ (for ⊙ ∈ {∧,∨}), ∆(♡̂φ) := ♡φ̂
(for ♡ ∈ {✸,✷}), and ∆(η̂x.φ) := ̂φ[ηx.φ/x] (for η ∈ {µ, ν}). What is not obvious, however,
is how to define the priority map on the set A (unless ξ is clean); this is exactly the issue we
address here.

▶ Theorem 12. There is a construction transforming an arbitrary tidy formula ξ ∈ µML into
an equivalent parity formula Gξ, which is based on the closure graph of ξ, so that |Gξ| = |ξ|c
and ind(Gξ) ≤ ad(ξ).

The formula Gξ = (V,E,L,Ω, vI) is defined such that (V,E) is the closure graph of ξ, vI = ξ

and L is the labelling that maps a literal to itself, a boolean or modal formula to its main
connective and a fixpoint formula to ϵ. Clearly this guarantees |Gξ| = |ξ|c. The main
difficulty is in defining the priority map Ω on Clos(ξ) such that Gξ is equivalent to ξ and
ind(Gξ) ≤ ad(ξ), without assuming that ξ is clean.

The definition of Ω is such that it assigns priorities to the fixpoint formulas in the closure
of ξ. Because every cycle in the trace relation needs to pass over at least one fixpoint formula
this makes sure that condition 2) of Definition 3 is satisfied by Gξ. In fact we can take Ω to
be the restriction of a global priority map Ωg, which uniformly assigns a priority to every
tidy fixpoint formula in µML. The function Ωg itself is defined cluster-wise from a strict
partial ordering ❁C over the set of all tidy fixpoint formulas. To define ❁C we make use of
the following notion of a free subformula.

▶ Definition 13. Let φ and ψ be µ-calculus formulas. We say that φ is a free subformula of
ψ, notation: φ Pf ψ, if ψ = ψ′[φ/x] for some formula ψ′ such that x ∈ FV (ψ′) and φ is
free for x in ψ′.
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The following is a useful characterisation of the free subformula relation (see [15] for a proof):

φ Pf ψ iff φ ∈ Sfor(ψ) ∩ Clos(ψ).

▶ Definition 14. We let ≡C denote the equivalence relation generated by the relation →C ,
in the sense that: φ ≡C ψ if φ↠C ψ and ψ ↠C φ. We will refer to the equivalence classes
of ≡C as (closure) clusters, and denote the cluster of a formula φ as C(φ).

We define the closure priority relation ⊑C on fixpoint formulas by putting φ ⊑C ψ

precisely if ψ ↠ψ
C φ, where ↠ψ

C is the relation given by ρ ↠ψ
C σ if there is a trace ρ =

χ0 →C χ1 →C · · · →C χn = σ such that ψ Pf χi, for every i ∈ [0, .., n]. We write φ ❁C ψ

if φ ⊑C ψ and ψ ̸⊑C φ.

Using ❁C we can define the priority of a fixpoint formula as follows:

▶ Definition 15. An alternating ❁C -chain of length n is a sequence (ηixi.χi)i∈[1,..,n] of tidy
fixpoint formulas such that ηixi.χi ❁C ηi+1xi+1.χi+1 and ηi+1 = ηi for all i ∈ [0, .., n − 1].
We say that such a chain starts at η1x1.χ1 and leads up to ηnxn.χn.

Given a tidy fixpoint formula ξ, we let h↑(ξ) and h↓(ξ) denote the maximal length of any
alternating ❁C-chain starting at, respectively leading up to, ξ. Given a closure cluster D, we
let cd(D) denote the maximal length of an alternating ❁C-chain in D.

The global priority function Ωg : µMLt → ω is defined cluster-wise, as follows. Take an
arbitrary tidy fixpoint formula ηy.φ, and define

Ωg(ηy.φ) :=
{

cd(C(ψ)) − h↑(ψ)) if cd(C(ψ) − h↑(ψ)) has parity η(
cd(C(ψ)) − h↑(ψ)

)
+ 1 if cd(C(ψ)) − h↑(ψ)) has parity η,

where we recall that we associate µ and ν with odd and even parity, respectively. If ψ is not
of the form ηy.φ, we leave Ωg(ψ) undefined.

Finally we define the priority function Ω of the parity formula Gξ to be Ω := Ωg ↾Clos(ξ) .

▶ Remark 16. The definition of the priority map Ωg and of the priority order ❁C on which
it is based, may look overly complicated. In fact, simpler definitions would suffice if we are
only after the equivalence of ξ with Gξ and we do not need an exact match of index and
alternation depth.

In particular, we could have introduced an alternative priority order ❁′
C by putting

φ ❁′
C ψ if φ ≡C ψ and ψ ◁f φ. This definition of ❁′

C is similar to the definition of a valid
thread in [3]. If we would base a priority map Ω′

g on ❁′
C instead of on ❁C , then we could

prove the equivalence of any tidy formula ξ with the associated parity formula G′
ξ that is

just like G but uses Ω′
g as its priority map. However, we would not be able to prove that the

index of G′
ξ is bounded by the alternation depth of ξ.

To see this, consider the following formula:

αx := νx.
(
(µy.x ∧ y) ∨ νz.(z ∧ µy.x ∧ y)

)
.

We leave it for the reader to verify that this formula has alternation depth two, and that its
closure graph looks as in the picture to the right (where we only indicate the main connective
of the formulas):
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νx

∨

νz

∧

µy

∧

Let αy and αz be the other two fixpoint formulas in the cluster of αx, that is, let
αy := µy.αx ∧ y and αz := νz.z ∧ αy. These formulas correspond to the nodes in the graph
that are labelled µy and νz, respectively. Now observe that we have αx ◁f αy ◁f αz, so that
this cluster has an alternating ❁′

C-chain of length three: αz ❁′
C αy ❁′

C αx. Note however,
that any trace from αy to αz must pass through αx, the ❁C -maximal element of the cluster.
In particular, we do not have αz ❁C αy, so that there is no ❁C -chain of length three in the
cluster.

A different kind of simplification of the global priority map would be to define

Ω′′
g (ψ) :=

{
h↓(ψ) if h↓(ψ) has parity η
h↓(ψ) − 1 if h↓(ψ) has parity η. (5)

Using this definition for a priority map Ω′′
g , we would again obtain the equivalence of ξ and

the resulting parity formula G′′
ξ := (Cξ,Ω′′

g ↾Clos(ξ) ). In addition, we would achieve that the
index of the parity formula G′′

ξ satisfies ind(G′′
ξ ) ≤ ad(ξ) + 1. However, the above formula

αx would be an example of a formula ξ where ind(G′′
ξ ) exceeds ad(ξ): We leave it for the

reader to verify that we would get Ω′′
g (αz) = 0, Ω′′

g (αy) = 1 and Ω′′
g (αx) = 2, implying that

ind(G′′
ξ ) = 3.

With our definition of the priority map Ωg, we find the same values for αy and αx as
with Ω′′

g , but we obtain Ωg(αz) = 2, implying that ind(Gx) = 2 = ad(ξ) as required.
In our technical report [15] we prove in detail that Gξ is in fact equivalent to ξ and

that ind(Gξ) ≤ ad(ξ). The proof of the equivalence proceeds by induction on the length
of ξ, where we use the strengthened inductive hypothesis that each formula φ ∈ Clos(ξ) is
equivalent to Gξ⟨φ⟩ (that is, the version of G where we take φ as the initial state). In the
crucial case of the inductive step we have ξ = ηx.χ and because of our strengthened inductive
hypothesis we can assume that ξ /∈ Clos(χ). We then apply the inductive hypothesis to the
tidy variant χ[x′/x] of χ. The claim follows from a comparison of the evaluation games for
Gξ with the evaluation games for Gχ[x′/x]. For this we need the following proposition:

▶ Proposition 17. Let ξ = ηx.χ be a tidy fixpoint formula such that x ∈ FV (χ) and
ξ /∈ Clos(χ). Let χ′ := χ[x′/x] for some fresh variable x′. Then χ′ is tidy and we have:
1. the substitution ξ/x′ is a bijection between Clos(χ′) and Clos(ξ).
Let φ,ψ ∈ Clos(χ′). Then we have
2. if φ ̸= x′, then φ →C ψ iff φ[ξ/x′] →C ψ[ξ/x′] and LC(φ) = LC(φ[ξ/x′]);
3. if x′ ∈ FV (φ) then φ Pf ψ iff φ[ξ/x′] Pf ψ[ξ/x′];
4. if φ and ψ are fixpoint formulas then ψ ⊑C φ iff ψ[ξ/x′] ⊑C φ[ξ/x′];
5. if (φn)n∈ω is an infinite trace through Clos(χ′), then (φn)n∈ω has the same winner as

(φn[ξ/x′])n∈ω.
The crucial step in proving that ind(Gξ) ≤ ad(ξ) is to establish a link between the

alternation depth of ξ and the length of alternating ❁C-chains in the closure graph of
ξ. This is done by the following proposition, which can be seen as giving an alternative
characterisation of the alternation depth of a formula. With η ∈ {µ, ν}, we let cdη(ξ) denote
the maximal length of an alternating ❁C-chain in Clos(ξ) that leads up to an η-formula.
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▶ Proposition 18. For any tidy formula ξ and η ∈ {µ, ν}, we have

cdη(ξ) ≤ n iff ξ ∈ Θη
n. (6)

Hence the alternation depth of ξ is equal to the length of its longest alternating ❁C-chain.
The main challenge in proving Proposition 18 is the direction from right to left, and more

specifically the case of the definition of alternation depth that concerns the closure of Θη
n

under substitutions. Here we carefully analyse how the alternating ❁C-chains in C(ψ[ξ/x])
relate to the ones in C(ψ). For the details, which are fairly complex, we refer to our technical
report [15]. Here we just state the crucial proposition that establishes this relation.

▶ Proposition 19. Let ξ and χ be formulas such that ξ is free for x in χ, ξ ̸Pf χ, and
x ̸∈ FV (ξ). Furthermore, let ψ ∈ Clos(χ) be such that ψ[ξ/x] /∈ Clos(χ) ∪ Clos(ξ). Then
1. the substitution ξ/x : C(ψ) → C(ψ[ξ/x]) is a bijection between C(ψ) and C(ψ[ξ/x]).
Let φ0, φ1 ∈ C(ψ). Then we have
2. φ0 →C φ1 iff φ0[ξ/x] →C φ1[ξ/x] and LC(φ0) = LC(φ0[ξ/x]);
3. φ0 Pf φ1 iff φ0[ξ/x] Pf φ1[ξ/x];
4. h↓(φ0) = h↓(φ0[ξ/x]), if φ0 is a fixpoint formula.

From parity formulas to standard formulas

The construction of an equivalent µ-calculus formula from a parity formula is well known,
see for instance [17, 20]. The following theorem provides an analysis on how it behaves in
terms of closure size and alternation depth. Given a parity formula G, we let G⟨v⟩ denote
its variant that takes v as its initial state.

▶ Theorem 20. For any parity formula G = (V,E,L,Ω, vI) there is a map trG : V → µML
such that, for every v ∈ V :
1. G⟨v⟩ ≡ trG(v);
2. |trG(v)|c ≤ 2 · |G|;
3. ad(trG(v)) ≤ ind(G).

The details of the definition of trG and the proofs of items 1–3 can be found in our
technical report [15]. Here, we illustrate the basic idea behind the construction by considering
the simplified case where the priority map Ω is injective.8 The definition of trG proceeds by
an induction on the lexicographic order over the pairs of numbers (|Dom(Ω)|, |G|), and we
allow ourselves to be sloppy in considering structures consisting of parity formulas without
initial vertex. Let T be a top cluster of G, that is, the states in T are not reachable from
any state outside T . We make the following case distinction:
Case 1: T is degenerate. In this case we have T = {v} for some v ̸∈ Ran(E). Let G′ be

the structure we obtain from G by removing v from V . We may apply the induction
hypothesis to G′ because it is strictly smaller than G, while having no more elements in
the domain of the priority map. We define trG(u) := trG⟨u⟩(u) for u ̸= v, while for v
we set define trG(v) by connecting the formulas trG⟨u⟩(u) for u ∈ E(v) with L(v) in the
obvious way.

Case 2: T is non-degenerate. In this case we have T ∩Dom(Ω) ̸= ∅; let m ∈ T be the state
in T of maximal priority, which is unique because of our assumption that Ω is injective.

8 In fact, it is not hard to see that by shifting priorities we can reduce the general case to this.
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For the induction we then consider a fresh propositional variable pm and define G− =
(V −, E−, L−,Ω−, vI) as the parity formula over Q ∪ {pm}, given by

V − := V ∪ {m∗}
E− := {(v, x) | (v, x) ∈ E, x ̸= m} ∪ {(v,m∗) | (v,m) ∈ E}
Ω− := Ω↾V \{m} ,

while its labelling L− is defined by putting

L−(v) :=
{
L(v) if v ∈ V

pm if v = m∗.

Since |Dom(Ω−)| < |Dom(Ω)|, inductively we have a map trG− : V − → µML(Q ∪ {pm}).
Let η be the parity of m and define trG as

trG(m) := ηpm.trG−(m)
trG(v) := trG−(v)[trG(m)/pm] for v ∈ V.

The key claim that entails item 2 of Theorem 20 is that

|Clos(G)| ≤ |G| + |Dom(Ω)|,

where Clos(G) :=
⋃ {

Clos(trG(v)) | v ∈ V
}

. This claim can be proved by the same
induction as is used in the definition of trG: The point is to treat the closures of all the
translations for vertices in G in parallel. The inductive case for non-degenerate clusters
then follows with the observation that Clos(G) ⊆ {φ[trG(m)/pm] | φ ∈ Clos(G−)}.

7 Conclusion

This paper contributes to the theory of the modal µ-calculus by studying in detail some
representations that are commonly used in order to prove complexity-theoretic results on
problems such as model checking or satisfiability. We introduced the notion of a parity
formula as a natural graph-based structure for representing formulas, and, building on work by
Bruse, Friedmann & Lange [6] we focused on defining succinct parity formula representation
on the closure graph of a standard formula. We showed in Proposition 10 that the renaming
of bound variables can cause an exponential blow-up if the target formula is required to be
clean. To realise the optimal upper complexity bound of model checking for all µ-calculus
formulas, as our main contribution, Theorem 12 provides a construction of a parity formula
that is based on the closure graph of a given formula, preserves its alternation-depth but
does not assume the input formula to be clean.

There is a lot more to say about parity formulas as graph-based representations of
µ-calculus formulas, but here we confine ourselves to the following.

Our example in Section 5 shows that closure size is not invariant under alphabetical
equivalence. This matter could be investigated more thoroughly – here are some pertinent
questions. Can we compute alphabetical variants of minimal closure size? If we make the
reasonable assumption that alphabetical variants should be identified, then we should define
the size of a formula as the size of its closure, up to alpha-equivalence; but can we base a
parity formula on the quotient of the closure set under α-equivalence? Some answers to these
questions can be found in our technical report [15].

Second, we used parity formulas here as a means to understand complexity-theoretic
results pertaining to the modal µ-calculus, but it could be interesting to study these structures
in their own right. A natural first question is to find a good notion of a morphism or an
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equivalence between parity formulas. One might then for instance investigate whether Kozen’s
expansion map [14] is a morphism from the parity formula based on the subformula dag to the
parity formula on the closure. Furthermore, because parity formulas are representations of
µ-calculus formulas one might also take a more logical perspective, and develop, for instance,
their model theory or proof theory.
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Abstract
We study a (first-order) spatial logic based on graphs of conjunctive queries for expressing (hyper-
)graph languages. In this logic, each primitive positive (resp. existential positive) formula plays a role
of an expression of a graph (resp. a finite language of graphs) modulo graph isomorphism. First, this
paper presents a sound- and complete axiomatization for the equational theory of primitive/existential
positive formulas under this spatial semantics. Second, we show Kleene theorems between this logic
and hyperedge replacement grammars (HRGs), namely that over graphs, the class of existential
positive first-order (resp. least fixpoint, transitive closure) formulas has the same expressive power
as that of non-recursive (resp. all, linear) HRGs.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases Existential positive logic, spatial logic, Kleene theorem

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.30

Related Version Full Version: https://yoshikinakamura.bitbucket.io/papers/ep_for_graph

Funding This work was supported by JSPS KAKENHI Grant Number JP21K13828.

Acknowledgements We would like to thank the anonymous reviewers for their useful comments.

1 Introduction

Existential positive (EP) formulas are first-order formulas that are built up from atomic
predicates, equality (=), top (tt), bottom (ff), conjunction (∧), disjunction (∨), and existential
quantifier (∃). In particular, primitive positive (PP) formulas are EP formulas without ff
nor ∨. PP formulas are semantically equivalent to conjunctive queries [1], which are at
the core of query languages in database theory. In this paper, we focus on the (hyper-
)graphs of conjunctive queries (a.k.a. natural models of conjunctive queries) [11][12, Fig.
1], which were introduced to characterize the semantical equivalence of conjunctive queries
[11, Lemma 13][28] as follows: two PP formulas are semantically equivalent if and only if
their graphs are homomorphically equivalent. For example, the graph of the PP formula
∃z.a(x, z)∧ a(z, y)∧b(x, z, y) is the following:

a a

b
1 2 1 2

1 2 3
x y . This characterization

can be generalized to EP formulas by using finite sets of graphs (see, e.g., [40, Sect. 2.6]).
In this paper, turning our attention to the correspondence between primitive positive

logics and (hyper-)graphs, we study PP/EP formulas as graph/graph-language expressions.
To this end, we introduce a spatial semantics (like that of graph logic [10] or separation
logic [35, 38]), which is based on graphs of conjunctive queries, called GI-semantics. The
semantics enables us to study graphs and graph languages through logical formulas in a
natural way. The remarkable difference from classical semantics is the following (cf. the
above): two PP formulas are equivalent under GI-semantics if and only if their graphs are
(graph-)isomorphically equivalent. While the equational theory of PP/EP formulas under
GI-semantics is subclassical, some formula transformations under classical semantics, in logic
and database theory, still work under GI-semantics.
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Our first contribution is to present a sound- and complete axiomatization of the equational
theory of PP/EP formulas under GI-semantics. Furthermore, we extend EP with the least-
fixpoint operator and the transitive closure operator (see, e.g., [20, Sect. 8]), denoted by
EP(LFP) and EP(TC), respectively. They can express possibly infinite graph languages. Our
second contribution is to show that each of the logics above has the same expressive power
as some class of hyperedge replacement grammar (HRG) [25, 36] (see also [19]), which is a
generalization of context-free word grammar from words to graphs, as follows.

▶ Theorem 1. Under GI-semantics, for every graph language G (closed under isomorphism):
(1) Some EP formula recognizes G iff some non-recursive HRG recognizes G (i.e., G is finite

up to isomorphism). In particular, some PP formula recognizes G iff some deterministic
and non-recursive HRG recognizes G (i.e., G is a singleton up to isomorphism).

(2) Some EP(LFP) formula recognizes G iff some HRG recognizes G.
(3) Some EP(TC) formula recognizes G iff some linear HRG recognizes G.
This theorem is an analogy of Kleene theorem [27], that over words, for every language L:
some regular word grammar (or equivalently, non-deterministic finite automaton) recognizes L
if and only if some regular expression recognizes L. Such an equivalence between expressions
and grammars/automata like Kleene theorem has also been widely studied for many other
language classes (e.g., context-free word languages [29], ω-regular word languages [31], regular
tree languages [13, Theorem 2.2.8], language classes over some specific graph classes [30, 6, 5]).
To our knowledge, the Kleene theorem for HRGs and linear HRGs (namely, some syntax
having the same expressive power) has not yet been investigated, whereas logical or algebraic
characterizations are known, e.g., [3, 15].

Related work. This paper uses PP formulas as graph expressions and uses EP(LFP) formulas
as graph language expressions. There also are some expressions for (bounded treewidth)
graphs (or relational structures), e.g., HR-algebra [3, 16], SP-terms [34], 2p-algebra [14, 18],
graphical (string diagrammatic) conjunctive queries [4]. As for the completeness result
of PP (Theorem 19), Bauderon and Courcelle [3] have already presented a syntax and a
complete axiomatization for graphs modulo isomorphism. However, our completeness proof
(essentially [3] also) would have a sufficiently simple strategy relying on the transformation
for obtaining conjunctive-queries from primitive positive formulas (under classical semantics);
this is a reason that our expressions are based on logical formulas.

As for characterizing language classes by classical logics, it dates back to Büchi-Elgot-
Trakhtenbrot Theorem [8, 9, 21, 43] (see also [23]), which states that over words, monadic
second-order logic has the same expressive power as the class of regular expressions. See [16,
Theorem 7.51][15] for a logical characterization of HRGs, by using monadic second-order
logic as a graph transducer. However, the characterization presented in this paper uses
logical formulas as graph-language expressions.

Also, the number of variables in formulas has a deep connection with the treewidth [39, 26]
of (hyper-)graphs (or relational structures), which is a parameter indicating how much a
graph is similar to a tree. It was mentioned in [28, Remark 5.3] that under the classical
semantics, for every relational structure of treewidth k, its conjunctive query is semantically
equivalent to an PP(k+1)(0) formula. Here, PPk(l) denotes the set of PP formulas using at
most k variables and at most l free variables. In particular, it is shown in [32] that under the
classical semantics, PP3(2) has the same expressive power as the primitive positive calculus
of relations, which is a fragment of Tarski’s calculus of relations [41]. In [14, 18], a sound-
and complete axiomatization is presented for 2p-algebra, which is intuitively the primitive
positive calculus of relations under GI-semantics. In connection with them, it would be
interesting to present a sound- and complete axiomatization of the equational theory of
PPk(l) formulas under GI-semantics, but it still remains open.
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Outline. Section 2 presents preliminaries. Section 3 introduces GI-semantics. Section 4
presents an axiomatization of the equational theory under GI-semantics for PP/EP formulas.
Section 5 (and 3) shows Kleene theorems between spatial existential positive logic and HRGs
(Theorem 1(1)–(3)). Section 6 concludes this paper.

2 Preliminaries

We write N (resp. N+) for the set of all non-negative (resp. positive) integers. For l, r ∈ N, we
write [l, r] for the set {i ∈ N | l ≤ i ≤ r}. In particular, we write [n] for [1, n]. The cardinality
of a set A is denoted by #(A). For an equivalence relation ∼ on a set X, the quotient set of
X by ∼ is denoted by X/∼ and the equivalence class of an element x w.r.t. ∼ is denoted by
[x]∼. For sets X1 and X2, the disjoint union X1 ⊎X2 is defined by {⟨i, a⟩ | i ∈ [2], a ∈ Xi}.
We denote by a⃗ = ⟨a1, . . . , an⟩ (also denoted by a1 . . . an or ⟨ai⟩ni=1) a finite sequence. The
length |⃗a| of a⃗ is n. We denote by Occ(⃗a) the set {a1, . . . , an}. We say that a sequence a⃗
is a permutation of a set A if Occ(⃗a) = A and the elements of a⃗ are pairwise distinct. We
denote by Perm(A) the set of all permutations of a set A. We denote by A∗ (resp. Ak) the
set of all finite sequences (resp. sequences of length k) over a set A. Also, we denote by ιn
(or just by ι if n is obvious) the sequence ⟨1, 2, . . . , n⟩. An alphabet A is a possibly infinite
set. A (finite-set-)typed alphabet A is an alphabet with a function tyA (or written ty for
simplicity) from A to finite sets. In particular we say that a symbol a in A is ordinal-typed if
tyA(a) = [k] for some k ∈ N. The arity of a in A is k, denoted by arA(a) (or just by ar(a)).

Graphs. In the following, we define graphs (with ports) and graph languages.
▶ Definition 2 (graph). Given a typed alphabet A and a finite set τ , an A-labelled graph
G of type τ is a tuple ⟨V G, EG, labG, vertG, portG⟩, where V G is a finite set of vertices,
EG is a finite set of (hyper-)edges, labG : EG → A is a function denoting the label of
each edge, vertG(e) : tyG(e) → V G is a function denoting the vertices of each edge, and
portG : ty(G) → V G is a function denoting the ports of G. Here, ty(G) ≜ τ and tyG ≜
tyA ◦labG.
▶ Example 3. Let A = {a,b, c} with type tyA = {a 7→ [2],b 7→ [3], c 7→ [2]}. Let
G = ⟨{v1, v2, v3}, {e1, e2}, {e1 7→ a, e2 7→ b}, {e1 7→ λi ∈ [2].vi, e2 7→ {1 7→ v1, 2 7→ v1, 3 7→
v3}}, λi ∈ [3].vi⟩ and let H = ⟨{v1, v2}, {e}, {e 7→ c}, {e 7→ {1 7→ v2, 2 7→ v1}}, λi ∈ [2].vi⟩
be A-labelled graphs (of type [3] and of type [2], respectively), where v1, v2, v3, e1, e2 are
pairwise distinct. Their graphical representations are in Figure 1a and 1b, respectively.

a

a

b

1 2
12

3

1 2

3

(a) G.
a
c

12
1 2

(b) H.

a

b

c
1 2

12
3

12
1 2

3

(c) G⊗H.
a
c

2 1
1

3
2

(d) H[3 := v1]. a

a
a
c

12
4

(e) H[f4/12].

a
c

b

2 1

12
3

1 2

3

(f) G[H/e1].

a a
c

b

1 2
12

3

2 1
1 2

3

(g) G⊙2,1 H. a

Figure 1 Examples of graphs and operations on graphs.

Later (e.g., in Example 12), for binary edges and ports, we often use a to denote
a1 2 for symbols a of the type [2] and use to denote 1 2. Also, for unlabelled

non-hyper graphs, let AE ≜ {E} with tyAE = {E 7→ [2]} and we use to denote E .
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We denote by GRτA the set of all A-labelled graphs of type τ . An (A-labelled) graph
language G (of type τ) is a subset of GRτA. Given a system S (e.g., HRGs, EP formulas, . . . )
over A (that defines a graph language G(E) for every E in S), we say that G is recognized
by S if there exists some element E in S such that G = G(E).

▶ Definition 4 (homomorphism, isomorphism). Let G,H ∈ GRτA be graphs. A pair h =
⟨hV, hE⟩ of hV : V G → V H and hE : EG → EH is a homomorphism from G to H if (1)
labG = labH ◦ hE, (2) vertH(hE(e))(x) = hV(vertG(e)(x)), and (3) portH = hV ◦ portG. In
particular, h is an isomorphism if both hV and hE are bijective. We say that G and H are
isomorphic, written G ∼= H if there exists an isomorphism between G and H.

In this paper, we will only focus on ∼=-closed (i.e., if G ∈ G and G ∼= H, then H ∈ G) graph
languages. We denote by G∼= the minimal ∼=-closed graph language including G.

Some operations on graphs. In the following, we present some primitive operations on
graphs. See Figure 1c-1g for graphical examples of Definition 5-8. In GI-semantics, ∗ uses
glueing, ∃ uses forgetting, LFP uses hyperedge replacing, TC uses concatenating.

▶ Definition 5 (glueing). Let G1 ∈ GRτA and G2 ∈ GRυA. Let G1 ⊗G2 ∈ GRτ∪υ
A be the graph

such that V G1⊗G2 = (V G1 ⊎ V G2)/≃, EG1⊗G2 = EG1 ⊎ EG2 , labG1⊗G2(⟨k, e⟩) = labGk(e),
vertG1⊗G2(⟨k, e⟩)(x) = [vertGk(e)(x)]≃, and portG1⊗G2(x) = [portGk(x)]≃. Here, ≃ is the
minimal equivalence relation such that for every x ∈ τ ∩ υ, ⟨1, portG1(x)⟩ ≃ ⟨2, portG2(x)⟩.

▶ Definition 6 (labelling/forgetting/renaming). Let G ∈ GRτA. For a vertex v ∈ V G, a variable
z ̸∈ τ , and a variable x ∈ τ , we define the graphs G[z := v] ∈ GRτ∪{z}

A , G[f/x] ∈ GRτ\{x}
A ,

G[z/x] ∈ GR(τ\{x})∪{z}
A by G[z := v] ≜ ⟨V G, EG, labG, vertG, portG ∪{z 7→ v}⟩, G[f/x] ≜

⟨V G, EG, labG, vertG, portG \{x 7→ portG(x)}⟩, G[z/x] ≜ G[f/x][z := portG(x)].

We write G[y1 . . . yn/x1 . . . xn] for G[z1/x1] . . . [zn/xn][y1/z1] . . . [yn/zn], where z1 . . . zn is a
sequence of fresh variables. For a sequence z1 . . . zn of pairwise distinct variables, we write
G[z1 . . . zn := v1 . . . vn] for G[z1 := v1] . . . [zn := vn].

▶ Definition 7 (hyperedge replacing). Let G ∈ GRτA. For an edge e ∈ EG and a graph
H ∈ GRtyG(e)

A , let G[H/e] ∈ GRτA be the graph ((G \ e)[z⃗ := vertG(e)(x1) . . . vertG(e)(xn)]⊗
H[z⃗/x1 . . . xn])[f . . . f/z⃗], where G \ e denotes the graph G in which the edge e has been
removed. Here, x1 . . . xn ∈ Perm(ty(H)), and z⃗ is a sequence of fresh variables.

We write G[H1 . . . Hn/e1 . . . en] for G[H1/e1][H2 . . . Hn/⟨1, e2⟩ . . . ⟨1, en⟩] if n ≥ 1, and G if
n = 0.

▶ Definition 8 (concatenating). Let G ∈ GRτA and H ∈ GRυA. Let x⃗ ∈ ty(G)k and y⃗ ∈
ty(H)k be sequences of pairwise distinct elements, where k ≥ 1. Then, let G ⊙x⃗y⃗ H ∈
GR(τ\Occ(x⃗))∪(υ\Occ(y⃗))

A be the graph (G[z⃗/x⃗] ⊗ H[z⃗/y⃗])[f . . . f/z⃗], where z⃗ is a sequence of
fresh variables.

Finally, we list some basic equations in the following.

▶ Proposition 9. (1) G1 ⊗ (G2 ⊗ G3) ∼= (G1 ⊗ G2) ⊗ G3; (2) G ⊗ H ∼= H ⊗ G; (3)
(H1 ⊗ H2)[G/⟨1, e⟩] ∼= H1[G/e] ⊗ H2; (4) G[z/x][H/e] ∼= G[H/e][z/x]; (5) G[z/x] ⊗ H ∼=
(G⊗H)[z/x] if x ̸∈ ty(H).
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Hyperedge Replacement Grammars. In the following, we present the definition of hyperedge
replacement grammars (HRGs).

▶ Definition 10 (e.g., [19]). A hyperedge replacement grammar (HRG) H over a typed
alphabet A is a tuple ⟨XH ,RH , SH ⟩, where XH is a finite typed alphabet disjoint with A for
(non-terminal) labels, RH is a finite set of pairs r = ⟨X,G⟩ (written X ← G) of X ∈ XH

and G ∈ GRty(X)
A∪X H for rewriting rules, and SH ∈ XH denotes the source label.

We also define the graph languages of HRGs as follows.

▶ Definition 11 (cf. [19, Sect. 2.3.2]). For an HRG H = ⟨X ,R, S⟩ over a typed alphabet A,
the binary relation ⊢H ⊆

⋃
X∈X GRty(X)

A ×{X} is defined as the least ∼=-closed (i.e., if G ∼= H

and G ⊢H X, then H ⊢H X) relation closed under the following rule: If X ← G ∈ R, then
H1 ⊢H labG(e1) . . . Hn ⊢H labG(en)

G[H1 . . . Hn/e1 . . . en] ⊢H X
. The graph language is defined by: G(H ) ≜ {G ∈ GRty(S)

A |

G ⊢H S}.

For an HRG H , we say that H is linear [36, Definition 3] if for every rule X ← G ∈ RH , the
number of non-terminal labels occurring in G is at most one. We say that H is (n-)recursive
if there exist rules X0 ← G0, . . . , Xn ← Gn ∈ RH such that Xi occurs in Gi−1 for i ∈ [0, n]
where n ∈ N and G−1 denotes Gn.

▶ Example 12. Let H be the HRG over AE, defined by tyX H = {S 7→ [0], X 7→ [2]},
RH = {(S), (E), (s), (p)}, and SH = S, where each rule in RH is as follows:

(S) S ← X (E) X ← (s) X ← X X (p) X ← X

X

Then, G(H ) is the set of all (directed) series-parallel graphs [24], e.g., ∈ G(H ) is

shown by:
(E)

⊢H X

(E)
⊢H X

(E)
⊢H X (s)

⊢H X (p)
⊢H X

(S)
⊢H S

.

3 Existential Positive Logics under GI-Semantics

In this section, we introduce the syntax and a spatial semantics of our existential positive
logics. Let A be an ordinal-typed alphabet, V1 be a countably infinite set of first-order
variables, and V2 be an ordinal-typed set of second-order variables, where for every k ∈ N+,
the number of second-order variables of arity k is countably infinite. Here, A, V1, and V2 are
disjoint. For τ ⊆ V1 and X ⊆ A ∪ V2, we define FmlτX as the least set closed under the rules
as follows.1

⊤ ∈ Fml∅X x = y ∈ Fml{x,y}
X

†1
Xx⃗ ∈ FmlOcc(x⃗)

X

φ ∈ FmlτX ψ ∈ FmlυX
φ ∗ ψ ∈ Fmlτ∪υ

X

φ ∈ Fmlτ∪{x}
X †2

∃x.φ ∈ FmlτX

ff ∈ FmlτX

φ ∈ FmlτX ψ ∈ FmlτX
φ ∨ ψ ∈ FmlτX

φ ∈ FmlOcc(x⃗)
X ∪{X}

†3
[LFPx⃗,Xφ]y⃗ ∈ FmlOcc(y⃗)

X

φ ∈ FmlOcc(x⃗y⃗)
X †4

[φ]+x⃗y⃗u⃗w⃗ ∈ FmlOcc(u⃗w⃗)
X

†1: X ∈ X and arX (X) = |x⃗|. †2: x ̸∈ τ . †3: ar(X) = |x⃗| = |y⃗| ≥ 1. x⃗ and y⃗ are sequences of pairwise
distinct variables. †4: |x⃗| = |y⃗| = |u⃗| = |w⃗| ≥ 1. x⃗y⃗ and u⃗w⃗ are sequences of pairwise distinct variables.

1 We adopt the spatial conjunction symbol ∗ instead of ∧.
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We often use parentheses in ambiguous situations. We say that φ is a formula over
A of type τ if φ ∈ FmlτA. Note that, for a technical reason, ff has any type τ . We use
FV1(φ)/FV2(φ) (resp. BV1(φ)/BV2(φ)) to denote the set of first-/second-order free (resp.
bound) variables of φ, and use Vl(φ) to denote the set FVl(φ) ∪ BVl(φ) for l = 1, 2. The set
PPτA (resp. EPτA, EP(LFP)τA, EP(TC)τA) is defined as the set of all φ ∈ FmlτA such that φ is
generated from the rules for ⊤, =, Xx⃗, ∗, and ∃. (resp. the rules for PP with ff and ∨, the
rules for EP with LFP, the rules for EP with TC). Note that some syntax restrictions exist,
e.g., ⊤∨Xx ̸∈ FmlτX for any X and τ . They are for simplifying the definition of GI-semantics.

For notational simplicity, we denote by ∗ni=1 φi (similarly for
∨n
i=1 φi) the formula

(∗n−1
i=1 φi) ∗ φn if n ≥ 1 and the formula ⊤ if n = 0, by x1 . . . xn = y1 . . . yn the formula
∗ni=1 xi = yi, by ∃x1 . . . xn.φ the formula ∃x1.∃x2. . . . ∃xn.φ, and by φ[y1 . . . yn/x1 . . . xn]
the formula φ in which each free variable xi occurring in φ has been replaced with yi where
i ∈ [n]. A formula φ is atomic if φ forms ⊤, x = y, or Xx⃗. Explicitly, we may use φ̃ to
denote an atomic formula. We use atomic formulas to denote atomic graphs as follows.

▶ Definition 13. For a finite set τ , let Gτ
⊤ ≜ ⟨τ, ∅, ∅, ∅, λx ∈ τ .x⟩. For an atomic formula

φ̃, we define the graph Gφ̃ by: G⊤ ≜ G∅
⊤, Gx=y ≜ ⟨{v}, ∅, ∅, ∅, λz ∈ {x, y}.v⟩, and GXx⃗ ≜

⟨Occ(x⃗), {e}, {e 7→ X}, {e 7→ λi ∈ ty(X).xi}, λy ∈ Occ(x⃗).y⟩.

For example, G[3]
⊤ , Gx=y, and GXxxy are as follows, where x ̸= y:

a G[3]
⊤ = 1 2 3 Gx=y = x y GXxxy = X1

2 3x y a

In the following, we define a spatial semantics for graph languages, called GI-semantics.2
Note that for every φ, if G |=GI φ, then ty(G) is determined to FV1(φ).

▶ Definition 14 (GI-semantics). The binary relation |=GI ⊆
⋃
τ⊆V1; X ⊆A∪V2

GRτX × FmlτX is
defined as the least ∼=-closed relation closed under the rules in Figure 2.

(At)
Gφ̃ |=GI φ̃

G |=GI φ H |=GI ψ
(∗)

G⊗H |=GI φ ∗ ψ

⟨Gi |=GI φ⟩ni=1 (TC) †1
(G1 ⊙y⃗x⃗ · · · ⊙y⃗x⃗ Gn)[u⃗w⃗/x⃗y⃗] |=GI [φ]+x⃗y⃗u⃗w⃗

G |=GI φ
(∃)

G[f/x] |=GI ∃x.φ
G |=GI φi

(∨) †2
G |=GI φ1 ∨ φ2

H |=GI φ ⟨Gi |=GI [LFPx⃗,Xφ]ι⟩ni=1 (LFP) †3
H[G1 . . . Gn/e⃗

H
X ][y⃗/x⃗] |=GI [LFPx⃗,Xφ]y⃗

†1: n ∈ N+. †2: i ∈ [2]. †3: n ∈ N and e⃗HX denotes a permutation of all the X-labelled edges in H.

Figure 2 Definition of GI-semantics.

The graph language of φ is defined by G(φ) ≜ {G | G |=GI φ}. We say that φ and ψ are
graph-isomorphically equivalent (GI-equivalent), written φ ∼=GI ψ if G(φ) = G(ψ).

▶ Example 15. Let G ≜ x y and φ ≜ x = y ∗ ∃z.Exz ∗ Ezy. Then, G |=GI φ is shown by:

(At)
x y |=GI x = y

(At)
x z |=GI Exz

(At)
yz |=GI Ezy

(∗)
x yz |=GI Exz ∗ Ezy

(∃)
x y |=GI ∃z.Exz ∗ Ezy

(∗)
x y |=GI x = y ∗ ∃z.Exz ∗ Ezy

.

We will generalize this example in Definition 16, for expressing any graphs by PP formulas.

2 See [33, Appendix A] for an alternative definition. Here, we adopt this style for extending to Definition 27.
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3.1 PP/EP formulas as graph/finite-graph-language expressions
In this subsection, we show that PP (resp. EP) formulas under GI-semantics play a role as
graph expressions (resp. finite graph language expressions).

▶ Definition 16. Let G be a graph, x⃗ = x1 . . . xk ∈ Perm(ty(G)), v⃗ = v1 . . . vn ∈ Perm(V G),
and e⃗ = e1 . . . em ∈ Perm(EG). Let φx⃗,v⃗,e⃗G (or written φG if they are not important) be the
following PP formula, where zv1 , . . . , zvn are fresh variables:

∃zv1 . . . zvn .(
k∗
i=1

zportG(xi) = xi) ∗ (
m∗
i=1

labG(ei) zvertG(ei)(1) . . . zvertG(ei)(arG(ei))).

Also, for a finite sequence G⃗ = G1 . . . Gn of graphs, let φG⃗ be the EP formula
∨n
i=1 φGi .

Then, G(φG) = {G}∼= and G(φG⃗) = Occ(G⃗)∼=. By using them, the following holds.

▶ Proposition 17 (Theorem 1(1)). For every graph language G closed under isomorphism:
(1): G is singleton up to isomorphism iff some PP formula recognizes G. (2): G is finite up
to isomorphism iff some EP formula recognizes G.

Proof. (1)(2)(⇒): By using φG and φG⃗, respectively. (1)(2)(⇐): By a straightforward
induction on the structure of PP (resp. EP) formulas. ◀

▶ Remark 18. Indeed, GI-semantics characterizes the graphs of PP formulas [11] (see also
[12, Figure 1]), namely, for every PP formula φ, G |=GI φ iff G is isomorphic to the graph of
φ. Thus, two PP formulas are GI-equivalent iff their graphs are isomorphically equivalent.

4 An Axiomatization of the Equational Theory of PP/EP

This section presents an axiomatization of the equational theory under GI-semantics (i.e.,
the binary relation ∼=GI) of PP/EP formulas. Given an ordinal-typed alphabet A, we define
the binary relation ≃ ⊆

⋃
τ⊆V1

EPτA × EPτA as the minimal relation closed under the rules
in Figure 3.3 Inference rules consist of the rules for equivalence relation and the rules for
“α-equivalence” (see, e.g., [37, Sect. 4.1.] for λ-calculus).

Inference rules:

φ ≃ φ
φ ≃ ψ
ψ ≃ φ

φ ≃ ψ ψ ≃ ρ
φ ≃ ρ

φ ≃ φ′ ψ ≃ ψ′

φ ∗ ψ ≃ φ′ ∗ ψ′

φ[z/x] ≃ ψ[z/y]
†1

∃x.φ ≃ ∃y.ψ
φ ≃ φ′ ψ ≃ ψ′

φ ∨ ψ ≃ φ′ ∨ ψ′

Axioms:
(=1) x = y ≃ y = x (=2) x = x ∗ φ ≃ φ (=3) x = y ∗ φ[x/z] ≃ x = y ∗ φ[y/z] (=4) ∃x.x = y ≃ y = y

(∗1) φ ∗ (ψ ∗ ρ) ≃ (φ ∗ ψ) ∗ ρ (∗2) φ ∗ ψ ≃ ψ ∗ φ (∗3) φ ∗ ⊤ ≃ φ (∃1) ∃x.∃y.φ ≃ ∃y.∃x.φ
(∃2) (∃x.φ) ∗ ψ ≃ ∃x.φ ∗ ψ (∨1) φ ∨ (ψ ∨ ρ) ≃ (φ ∨ ψ) ∨ ρ (∨2) φ ∨ ψ ≃ ψ ∨ φ (∨3) φ ∨ ff ≃ φ

(∨4) φ ∨ φ ≃ φ (∨5) ∃x.φ ∨ ψ ≃ (∃x.φ) ∨ (∃x.ψ) (∨6) φ ∗ (ψ ∨ ρ) ≃ (φ ∗ ψ) ∨ (φ ∗ ρ) (ff) ff ∗ φ ≃ ff
†1 : z is a fresh variable.

Figure 3 An axiomatization of the equational theory under GI-semantics of PP/EP formulas.

3 We assume that the left- and right-hand side formulas have an identical type. This restriction implicitly
implies the following: when their graph languages are not empty, x ̸∈ FV1(ψ) in (∃2), x ∈ FV1(φ) in
(=2), and y ̸= x in (=4), respectively. Also, note that we can use (ff) even if ty(φ) ̸= ∅, because ff has
any type.

CSL 2022



30:8 Spatial Existential Positive Logics for Hyperedge Replacement Grammars

▶ Theorem 19. The system in Figure 3 is sound and complete for the equational theory
under GI-semantics of PP/EP formulas, that is, for every φ,ψ ∈ EPτA, φ ≃ ψ iff φ ∼=GI ψ.

In the next subsection, we prove this theorem. The following is a proof sketch.

Proof Sketch of Theorem 19. The soundness is straightforward. For completeness, we show
by using the rules in Figure 3 that we can transform each formula into a normal form in
two steps: (1) transform each EP formula into a disjunctive normal form of PP formulas; (2)
transform each PP formula into a formula of the form φG in Definition 16.

4.1 Proof of Theorem 19

▶ Proposition 20. (1): φx⃗1,v⃗1,e⃗1
G ≃ φx⃗2,v⃗2,e⃗2

G . (2): If there is an isomorphism h from G

to H, then φx1...xk,v1...vn,e1...em
G ≃ φx1...xk,h

V(v1)...hV(vn),hE(e1)...hE(em)
H . (3): If G ∼= H, then

φx⃗1,v⃗1,e⃗1
G ≃ φx⃗2,v⃗2,e⃗2

H .

Proof. (1): By permutating names using (∗1)(∗2) for x⃗1 and x⃗2, (∃1) for v⃗1 and v⃗2, (∗1)(∗2)
for e⃗1 and e⃗2, respectively. (2): Since they are the same up to variable names. (3): By
(2)(1). ◀

Hereafter in this section, relying on this proposition, we write φx⃗,v⃗,e⃗G as φG, for simplicity.

▶ Lemma 21. For every PP formula φ: (1): Let x ∈ FV1(φ) and y ≠ x. Then, ∃x.x = y∗φ ≃
φ[y/x]. (2): Let z1 . . . zn ∈ Perm(FV1(φ)), k ∈ N, and f, g : [k]→ [n] be maps. Let ∼ be the
minimal equivalence relation on [n] such that for every i ∈ [k], f(i) ∼ g(i) and let I1 . . . Im be
a permutation of all the quotient classes of [n] w.r.t. ∼. Then, ∃z1 . . . zn.(∗ki=1 zf(i) = zg(i))∗
φ ≃ ∃zI1 . . . zIm .φ[z[1]∼ . . . z[n]∼/z1 . . . zn]. Here, zI1 , . . . , zIm are pairwise distinct variables.

Proof. (1): ∃x.x = y ∗ φ ≃(=3) ∃x.x = y ∗ φ[y/x] ≃(∃2) (∃x.x = y) ∗ φ[y/x] ≃(∃5) y =
y ∗ φ[y/x] ≃(=2) φ[y/x]. (2): By induction on k. Case k = 0. ∃z1 . . . zn.⊤ ∗ φ ≃(∗2)(∗3)
∃z1 . . . zn.φ ≃ ∃z{1} . . . z{n}.φ[z{1} . . . z{n}/z1 . . . zn]. Case k ≥ 1. Then,

∃z1 . . . zn.(
k∗
i=1

zf(i) = zg(i)) ∗ φ ≃(∗1) ∃z1 . . . zn.(
k−1∗
i=1

zf(i) = zg(i)) ∗ (zf(k) = zg(k) ∗ φ)

≃ ∃zI′
1
. . . zI′

m′
.z[f(k)]∼′ = z[g(k)]∼′ ∗ φ[z[1]∼′ . . . z[n]∼′/z1 . . . zn]

(∼′ and I ′
1 . . . I

′
m′ are the ones obtained by I.H. w.r.t. k − 1.)

(Here, we assume without loss of generality by (∃1) that zI′
m′

= z[f(k)]∼′ .)

≃ ∃zI′
1
. . . zI′

m
.φ[z[1]∼′ . . . z[n]∼′/z1 . . . zn][z[g(k)]∼′/z[f(k)]∼′ ]

(Apply (=2) if [f(k)]∼′ = [g(k)]∼′ and (1) if [f(k)]∼′ ̸= [g(k)]∼′ .)
(Here, m = m′ for (=2) and m = m′ − 1 for (1).)

≃ ∃zI1 . . . zIm .φ[z[1]∼ . . . z[n]∼/z1 . . . zn].
(They are the same up to variable names.) ◀

▶ Lemma 22. For every PP formula φ, if G |=GI φ, then φ ≃ φG.
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Proof. By induction on the structure of PP formulas. Case φ ≡ ⊤. By φG⊤ ≡ ⊤∗⊤ ≃(∗3) ⊤.
Case φ ≡ x = x. By φGx=x ≃(∗3) ∃z.z = x ≃(=4) x = x. Case φ ≡ x = y where x ̸= y.
By φGx=y ≃(∗3) ∃z.z = x ∗ z = y ≃Lemma 21(1) x = y. Case φ ≡ a(xf(1), . . . , xf(n)) where
f : [n]→ [k] is a surjective map for some k. Then,

φGa(xf(1),...,xf(n)) ≡ ∃zk . . . z1.(
k∗
i=1

zi = xi) ∗ a(zf(1), . . . , zf(n))

≃Lemma 21(1) . . . ≃Lemma 21(1) a(zf(1), . . . , zf(n))[x1 . . . xk/z1 . . . zk] ≡ φ.

Case φ ≡ φ1 ∗φ2. Let G1 and G2 be such that G ∼= G1⊗G2, G1 |=GI φ1, G2 |=GI φ2. By I.H.,
φ1 ≃ φG1 and φ2 ≃ φG2 . We denote them by φG1 ≡ ∃z1 . . . zn′ .∗k′

i=1 zg1(i) = xi ∗∗m′

i=1 φ̃i

and φG2 ≡ ∃zn′+1 . . . zn.∗ki=1 zg2(i) = xi ∗ ∗mi=m′+1 φ̃i, respectively. Here, g1 : [k′] → [n′]
and g2 : [k]→ [n] are some maps. We assume, without loss of generality that z1, . . . , zn are
pairwise distinct and k′ ≤ k (by swapping G1 and G2 appropriately using (∗2)). Then,

φ ≃I.H. φG1 ⊗ φG2

≃(∃1)(∃2)(∗1)(∗2) ∃z1 . . . zn.(
k′∗
i=1

zg1(i) = xi) ∗ (
k∗
i=1

zg2(i) = xi) ∗ (
m∗
i=1

φ̃i)

≃(∗1)(∗2)(=3) ∃z1 . . . zn.(
k′∗
i=1

zg1(i) = zg2(i)) ∗ (
k∗
i=1

zg2(i) = xi) ∗ (
m∗
i=1

φ̃i)

≃Lem. 21(2) ∃zI1 . . . zIm .(
k∗
i=1

z[g2(i)]∼ = xi) ∗ (
m∗
i=1

φ̃i[[z1]∼ . . . [zn]∼/z1 . . . zn]) ≃ φG1⊗G2

Here, ∼ and I1 . . . Im the ones obtained from Lemma 21(2). Case φ ≡ ∃y.φ1. Let G1
be such that G ∼= G1[f/y] and G1 |= φ1. By I.H., φ1 ≃ φG1 . We denote it by φG1 ≡
∃z1 . . . zn.∗ki=1 zg(i) = xi ∗∗mi=1 φ̃i. Here, g : [k]→ [n] is a map, and we assume, without
loss of generality that y, z1, . . . , zn are pairwise distinct. Then, y = xl for some l ∈ [k]
(note y ∈ FV1(φ1)). We assume, without loss of generality by (∗1)(∗2) that y = xk. Then,
φ ≃I.H. ∃y.φG1 ≃(∃1)(=1) Lem. 21(1) ∃z1 . . . zn.(∗k−1

i=1 zg(i) = xi) ∗ (∗mi=1 φ̃i) ≃ φG. ◀

Proof of Theorem 19 for PP formulas. Assume ψ ∼=GI ρ. By Proposition 17(1), G(ψ) =
G(ρ) = {G}∼= for some G. Then, ψ ≃Lemma 22 φG ≃Lemma 22 ρ. ◀

In the following, we consider EP formulas.

▶ Lemma 23. If {G1, . . . , Gn}
∼= = {H1, . . . ,Hm}

∼=, then φ⟨Gi⟩ni=1
≃ φ⟨Hi⟩mi=1

.

Proof. By the assumption, let f : [n]→ [m] be a map such that Gi ∼= Hf(i) for every i ∈ [n].
Then, φ⟨Gi⟩ni=1

≡
∨n
i=1 φGi ≃Prop. 20

∨n
i=1 φHf(i) ≃(∨1)(∨2)(∨4)

∨m
i=1 φHi ≡ φ⟨Hi⟩mi=1

. ◀

▶ Lemma 24. For all φ ∈ EPτA, there exists some ⟨φi⟩ni=1 ∈ (PPτA)∗ such that φ ≃
∨n
i=1 φi.

Proof. By induction on the structure of φ. Case φ ≡ ff. By letting n = 0. Case φ ≡ φ̃. By
letting n = 1. Case φ ≡ φ(1) ∗φ(2). For l ∈ [2], let ⟨φ(l)

i ⟩
nl
i=1 be the one obtained by I.H. w.r.t.

φ(l). If n1 = 0 or n2 = 0, then φ ≃(∗2)(ff) ff. Otherwise, φ ≃(∨1)(∨2)(∨6)
∨n1
i=1

∨n2
j=1(φ(1)

i ∗φ
(2)
j )

(and apply (∨1)(∨2)). Case φ ≡ φ(1) ∨φ(2). Let ⟨φi⟩n
′

i=1 and ⟨φi⟩ni=n′+1 be the ones obtained
by I.H. w.r.t. φ(1) and φ(2), respectively. Then, φ ≃(∨1)(∨2)(∨3)

∨n
i=1 φi. Case φ ≡ ∃x.φ(1).

Let ⟨φ(1)
i ⟩ni=1 be the one obtained by I.H. w.r.t. φ(1). If n = 0, then φ ≡ ∃x.ff ≃(ff)

∃x.ff ∗ ff ≃(∃2) (∃x.ff) ∗ ff ≃(∗2)(ff) ff. Otherwise, φ ≡ ∃x.
∨n
i=1 φ

(1)
i ≃(∨5)

∨n
i=1 ∃x.φ

(1)
i . ◀
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▶ Lemma 25. For every EP formula φ and finite sequence G⃗ s.t. G(φ) = Occ(G⃗)∼=, φ ≃ φG⃗.

Proof. By φ ≃Lemma 24
∨n
i=1 φi ≃Lemma 22

∨n
i=1 φGi ≃Lemma 23 φG⃗. Here, for each i ∈ [n],

φi is a PP formula and Gi is a graph such that Gi |=GI φi. ◀

Proof of Theorem 19 for EP formulas. Assume ψ ∼=GI ρ. Let G⃗ be a finite sequence such
that G(ψ) = G(ρ) = Occ(G⃗)∼=. Then, ψ ≃Lemma 25 φG⃗ ≃Lemma 25 ρ. ◀

5 Kleene Theorems Between EPs and HRGs

In this section, we show that EP(LFP) (resp. EP(TC)) has the same expressive power as
the class of HRGs (resp. linear HRGs). To this end, we introduce term (formula) rewriting
systems [2] (FRSs) and show the equivalence above via FRSs. Intuitively, FRSs play the
same role as finite automata with transitions labelled by regular expressions [7] (so-called
extended finite automata) in translating finite automata into regular expressions.4

5.1 Formula Rewriting Systems (FRSs)
▶ Definition 26. A formula rewriting system (FRS[C ]) F over an ordinal-typed alphabet A
is a tuple ⟨XF ,RF , sF ⟩, where XF is an ordinal-typed alphabet disjoint with A for denoting
(non-terminal) labels, RF is a finite set of pairs r = ⟨Xx⃗, φ⟩ (written Xx⃗← φ) of a strictly
atomic XF -formula Xx⃗ and a C

Occ(x⃗)
A∪X F -formula φ for denoting rewriting rules, and sF is

a strictly atomic XF -formula for denoting the source formula. Here, for an ordinal-typed
alphabet X , we say that φ is a strictly atomic X -formula if φ is of the form Xx⃗, where
X ∈ X and the elements of x⃗ are pairwise distinct.

▶ Definition 27. For an FRS[C ] F = ⟨X ,R, s⟩ over an ordinal-typed alphabet A, the binary
relation |=GI

F ⊆
⋃
τ⊆V1; X ⊆A∪V2

GRτX × FmlτX is defined as the least ∼=-closed relation closed
under all the rules of |=GI (in Definition 14) and the following rule: If Xx⃗ ← φ ∈ R,
then G |=GI

F φ[y⃗/x⃗]
G |=GI

F Xy⃗
. We write G |=GI F for G |=GI

F s. The graph language of F is defined by

G(F) ≜ {G | G |=GI F}.

▶ Example 28 (cf. Example 12). Let F be the FRS[PP] over AE, defined by tyX F = {S 7→
[0], X 7→ [2]}, RF = {(S), (E), (s), (p)}, sF = S, where each rule in RF is as follows:

(S) S← ∃xy.Xxy (E) Xxy ← Exy (s) Xxy ← ∃z.Xxz ∗Xzy (p) Xxy ← Xxy ∗Xxy

Then, G(F) is the set of all series-parallel graphs. For example, |=GI F is shown by:5

(At)
x y |=GI

F Exy
(E)

x y |=GI
F Xxy

(go to the lower right)
x y |=GI

F Xxy
(∗)

x y |=GI
F Xxy ∗Xxy

(p)
x y |=GI

F Xxy
(S)

|=GI
F S

(At)
x z |=GI

F Exz
(E)

x z |=GI
F Xxz

(At)
z y |=GI

F Ezy
(E)

z y |=GI
F Xzy

x y |=GI
F ∃z.Xxz ∗Xzy (s)

x y |=GI
F Xxy

.

In general, the following proposition is immediate from the translations between graphs and
PP formulas in Proposition 17(1). Also, we use linear/(n-)recursive for FRS[PP]s in the
same manner as for HRGs.

4 FRS[C ] is essentially the same as positive Datalog [20, Section 9] if C is the class of conjunctive queries.
5 Double line denotes that 0 or more rules are applied in the place.
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▶ Proposition 29. For every G, some HRG (resp. linear HRG) recognizes G iff some FRS[PP]
(resp. linear FRS[PP]) recognizes G.

An FRS F is deterministic if for every X ∈ XF , the number of rules of the form Xx⃗← φ is
at most one. In Example 28, we can put together the three rules for X as follows in FRS[EP]:

(S) S ← ∃xy.Xxy (X) Xxy ← (Exy) ∨ (Xxy ∗Xxy) ∨ (∃z.Xxz ∗Xzy).

▶ Proposition 30. For every G, (i) some FRS[PP] recognizes G iff (ii) some deterministic
FRS[EP] recognizes G iff (iii) some FRS[EP] recognizes G.

Proof. (i) ⇒ (ii): By the same argument as above. (ii) ⇒ (iii): Trivial. (iii) ⇒ (i): By
replacing each rule Xx⃗← φ with Xx⃗← ψ1, . . . , Xx⃗← ψn. Here, ψ1, . . . ψn are PP formulas
such that φ ∼=GI

∨n
i=1 ψi (Lemma 24). ◀

The following are useful properties of hyperedge replacing and glueing.

▶ Proposition 31. For every FRS[EP(LFP)] F : (1): If there is a derivation tree that shows
G |=GI

F φ from the assumptions ⟨Hi |=GI
F ψi⟩ni=1 and H1, . . . ,Hn don’t contain any FV2(φ)-

labelled edges and have an ordinal type, then there exist some G′ and e1 . . . en such that
G ∼= G′[H1 . . . Hn/e1 . . . en]. (2): If there is a derivation tree that shows G[H1 . . . Hn/e⃗] |=GI

F
φ from the assumptions ⟨Hi |=GI

F ψi⟩ni=1 and H1, . . . ,Hn, H
′
1, . . . ,H

′
n don’t contain any

FV2(φ)-labelled edges and have an ordinal type, then there is a derivation tree that shows
G[H ′

1 . . . H
′
n/e⃗] |=GI

F φ from the assumptions ⟨H ′
i |=GI

F ψi⟩ni=1. For every FRS[EP(TC)] F :
(3): If there is a derivation tree that shows G |=GI

F φ from H |=GI
F ψ and ty(H)∩BV1(φ) = ∅,

then there exist some G′ such that G ∼= G′ ⊗ H. (4): If there is a derivation tree that
shows G ⊗H |=GI

F φ from G′ ⊗H |=GI
F ψ, ty(H) ∩ BV1(φ) = ∅, ty(H ′) ∩ BV1(φ) = ∅, and

ty(H) = ty(H ′), then there is a derivation tree that shows G⊗H ′ |=GI
F φ from G′⊗H ′ |=GI

F ψ.

Proof Sketch. By a straightforward induction on the structure of the derivation tree using
Proposition 9. See [33, Appendix B] for more details. ◀

5.2 Equivalence of EP(LFP) formulas and HRGs (Theorem 1(2))
In the following, by using Proposition 29 and 30, we show that EP(LFP) has the same
expressive power as (deterministic) FRS[EP].

From EP(LFP) formulas to FRS[EP]s. We say that an EP(LFP) formula φ is simple if (a)
all the second-order variables X occurring in the form [LFPx⃗,X(φ)]y⃗ are pairwise distinct, (b)
x⃗ = y⃗ = ι for each subformula of the form [LFPx⃗,X(φ)]y⃗, and (c) x⃗ = ι for each subformula
of the form Xx⃗. This restriction simplifies the translation and the proof.

▶ Lemma 32. Every EP(LFP) formula φ has a GI-equivalent simple EP(LFP) formula.

Proof Sketch. For (a), rename variables appropriately. For (b)(c), use the following transla-
tions, respectively: [LFPx⃗,X(φ)]y⃗ ⇝ ∃z⃗.z⃗ = y⃗ ∗ ∃ι.ι = z⃗ ∗ [LFPι,X(∃z⃗.z⃗ = ι ∗ ∃x⃗.x⃗ = z⃗ ∗ φ)]ι
and Xx⃗⇝ ∃z⃗.z⃗ = x⃗ ∗ ∃ι.ι = z⃗ ∗Xι. Here, z⃗ is a sequence of fresh variables. ◀

Let z⃗• be a map from each EP(LFP) formula φ to a permutation z⃗φ of FV1(φ). Figure 4
gives a translation from a simple EP(LFP) formula φ into an FRS[EP] Fφ = ⟨Xφ,Rφ, sφ⟩.6

6 This translation is essentially the same as the translation from existential fixpoint logic to Datalog, see,
e.g., [20, Theorem 9.1.4]. The only difference is the semantics.
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Fφ̃ ≜ ⟨{Sφ}, {sφ ← φ̃}, Sφz⃗φ⟩ F∃x.ψ ≜ ⟨{Sφ} ∪ Xψ, {sφ ← ∃x.sψ} ∪ Rψ, Sφz⃗φ⟩
Fψ•ρ ≜ ⟨{Sφ} ∪ Xψ ∪ Xρ, {sφ ← sψ • sρ} ∪ Rψ ∪Rρ, Sφz⃗φ⟩ (• ∈ {∗,∨})
F[LFPι,X(ψ)]ι ≜ ⟨{Sφ, X} ∪ Xψ, {sφ ← Xι, Xι← sψ} ∪ Rψ, Sφz⃗φ⟩

Figure 4 A translation from EP(LFP) formulas into (deterministic) FRS[EP]s.

▶ Lemma 33. For every simple EP(LFP) formula φ, G(φ) = G(Fφ).

Proof. G |=GI φ⇒ G |=GI
Fφ sφ: By induction on the size of the derivation tree of G |=GI φ.

The only nontrivial case is when the last derivation rule is (LFP). Let φ = [LFPι,X(ψ)]ι (by
the condition (b)) and let G ∼= H[G1 . . . Gn/e1 . . . en] be such that H |=GI ψ and Gi |=GI φ

for i ∈ [n]. By I.H., H |=GI
Fψ sψ. Its derivation tree forms the left-hand side in the following

(by the condition (c)). Also for i ∈ [n], by I.H., Gi |=GI
Fφ sφ, so by the construction of Fφ,

(♡-i) Gi |=GI
Fφ Xι. Then, G |=GI

Fφ sφ is shown by the right-hand side tree (Proposition 31(2)).

GXι |=GI
Fψ Xι . . . GXι |=GI

Fψ Xι

..... (♠)

H |=GI
Fψ sψ

⇝

..... (♡-1)

GXι[G1/e] |=GI
Fφ Xι . . .

..... (♡-n)

GXι[Gn/e] |=GI
Fφ Xι

..... (♠)

H[G1 . . . Gn/e1 . . . en] |=GI
Fφ sψ

(sφ ← Xι)(Xι← sψ)
H[G1 . . . Gn/e1 . . . en] |=GI

Fφ sφ

.

G |=GI
Fφ sφ ⇒ G |=GI φ: By induction on the size of the derivation tree of G |=GI

Fφ sφ. We
do a case analysis on the structure of φ. The only nontrivial case is when φ = [LFPι,X(ψ)]ι.
The derivation tree of G |=GI

Fφ sφ should form the right-hand side above, where the rule
for X is not applied in (♠). Note that G ∼= H[G1 . . . Gn/e1 . . . en] for some H and e1 . . . en
(Proposition 31(1)). Then, from the derivation tree, we can obtain the derivation tree of the
form on the left-hand side above (Proposition 31(2)). Thus by I.H., H |=GI ψ. Also by using
(♡-i), Gi |=GI

Fφ sφ, and thus by I.H., Gi |=GI φ. Hence, G |=GI φ. ◀

Proof of Theorem 1(2)⇒. By Lemma 32 and 33 (with Proposition 29 and 30). ◀

From FRS[EP]s to EP(LFP) formulas. This part is shown by folding non-terminal labels
for a given deterministic FRS[EP] as follows: for non-0-recursive labels X, replace each
occurrence of X with the formula corresponding to X in the rule; for 0-recursive labels, use
the LFP. Note that by Proposition 30, from an FRS[EP], we can obtain a deterministic one.

▶ Lemma 34. Every deterministic FRS[EP(LFP)] has a GI-equivalent EP(LFP) formula.

Proof. Let F = ⟨X ,R, Sz⃗⟩. Let #n(F) ≜ #(X \ {S}) and #r(F) be the number of 0-
recursive labels in F . We prove by induction on the pair ⟨#n(F),#r(F)⟩. Case #n(F) =
#r(F) = 0. Let R = {Sx⃗← ψ}. Then, G(F) = G(ψ[z⃗/x⃗]). Case #n(F) > #r(F). Then,
there exists a non-0-recursive label X0 ∈ X \ {S}. Let X0x⃗0 ← ψ0 ∈ R. Let F ′ ≜ ⟨X \
{X0}, {Xx⃗← ψ[ψ0[−/x⃗0]/X0−] | Xx⃗← ψ ∈ R, X ̸= X0}, Sz⃗⟩, where ψ[ψ0[−/x⃗0]/X0−]
denotes the formula ψ in which each X0y⃗ has been replaced with ψ0[y⃗/x⃗0]. Then, G(F) =
G(F ′) because there is a trivial transformation between derivation trees of F and those
of F ′. Also by I.H., there exists an EP(LFP) formula φ such that G(F ′) = G(φ). Hence,
G(F) = G(φ). For the other case (i.e., #r(F) ≥ 1), there exists a 0-recursive label X0 ∈ X . Let
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X0x⃗0 ← ψ0 ∈ R. Let F ′ ≜ ⟨X , {Xx⃗← ψ ∈ R | X ̸= X0}∪{X0x⃗0 ← [LFPx⃗0,X0(ψ0)]x⃗0}, Sz⃗⟩.
Then, G(F) = G(F ′) because there exists a transformation between derivation trees of F ′

and those of F in the same manner as the proof of Lemma 33. Also by I.H., there exists an
EP(LFP) formula φ such that G(F ′) = G(φ). Hence, G(F) = G(φ). ◀

Proof of Theorem 1(2)⇐. By Lemma 34 (with Proposition 29 and 30). ◀

5.3 Equivalence of EP(TC) formulas and linear HRGs (Theorem 1(3)).
In the following, by using Proposition 29 and 30, we show that EP(TC) has the same
expressive power as the class of linear FRS[PP].

From EP(TC) formulas to linear FRS[PP]s. We say that an EP(TC) formula φ is simple
if all the variables x occurring in the form ∃x.ψ, the variables in x⃗y⃗u⃗w⃗ occurring in the form
[φ]+x⃗y⃗u⃗w⃗, and the free variables in φ are pairwise distinct. As with Lemma 32, from a given
EP(TC) formula, we can obtain a GI-equivalent simple one by renaming variables and using
the following translation: [φ]+x⃗y⃗u⃗w⃗ ⇝ ∃z⃗.z⃗ = u⃗w⃗ ∗ [φ[z⃗′/x⃗y⃗]]+z⃗′ z⃗. Here, elements of z⃗ and z⃗′

are fresh variables. Furthermore, the following holds.

▶ Lemma 35. Every EP(TC) formula φ has a GI-equivalent simple EP(TC) formula of the
form ∃z0.φ0 or ⊤ ∨ ∃z0.φ0.

Proof. If FV1(φ) ̸= ∅, then φ ∼=GI ∃z0.z0 = x ∗ φ, where x ∈ FV1(φ) and z0 is a fresh
variable. Otherwise, let

∨n
i=1 φi be a disjunctive normal form of φ, where each φi is a

prenex normal form EP(TC) formula. Let ρi ≡ ∃z0.ψi if φi is of the form ∃x.ψi and ρi ≡ ⊤
otherwise (note that then φi ≡ ⊤ should because FV1(φi) = ∅). Note that φi ∼=GI ρi. Let
l1 . . . lm be the subsequence of ιn such that for each i ∈ [n], i ∈ {l1, . . . , lm} iff ρi ̸≡ ⊤. If
m < n, then φ ∼=GI ⊤∨

∨m
j=1 ∃z0.ψlj (∼=GI ⊤∨ ∃z0.

∨m
j=1 ψlj ). Otherwise, φ ∼=GI

∨n
i=1 ∃z0.ψi

(∼=GI ∃z0.
∨n
i=1 ψi). Hence, it has been proved. ◀

Let z⃗ be a sequence of pairwise distinct variables. For a simple EP(TC) formula φ such that
V1(φ) ⊆ Occ(z⃗), we define the linear FRS[PP] Ḟφ = ⟨Xφ,Rφ, sφ⟩ (we may explicitly write
Ḟ z⃗φ = ⟨X z⃗φ,Rz⃗φ, sz⃗φ⟩) in Figure 5. Our construction is based on Thompson’s construction [42]
and the product construction (in translating regular expressions into finite automata), but is
generalized for first-order variables.

Ḟφ̃ ≜ ⟨{Sφ, Tφ}, {Sφz⃗ ← φ̃ ∗ Tφz⃗}, Sφz⃗⟩

Ḟ∃x.ψ ≜ ⟨{Sφ, Tφ} ∪ Xψ, {Sφz⃗ ← x = x ∗ ∃x.Sψ z⃗, Tψ z⃗ ← Tφz⃗} ∪ Rψ, Sφz⃗⟩

Ḟψ∗ρ ≜ ⟨{Sφ, Tφ} ∪ (Xψ ×Xρ), {Sφz⃗ ← ⟨Sψ, Sρ⟩z⃗, ⟨Tψ, Tρ⟩z⃗ ← Tφz⃗} ∪

{r[⟨−, Y ⟩/−] | r ∈ Rψ, Y ∈ Xρ} ∪ {r[⟨X,−⟩/−] | r ∈ Rρ, X ∈ Xψ}, Sφz⃗⟩†1

Ḟψ∨ρ ≜ ⟨{Sφ, Tφ} ∪ Xψ ∪ Xρ, {Sφz⃗ ← Sψ z⃗, Sφz⃗ ← Sρz⃗, Tψ z⃗ ← Tφz⃗, Tρz⃗ ← Tφz⃗} ∪ Rψ ∪Rρ, Sφz⃗⟩

Ḟ[ψ]+
x⃗y⃗
u⃗w⃗ ≜ ⟨{Sφ, Tφ} ∪ Xψ, {Sφz⃗ ← x⃗y⃗ = x⃗y⃗ ∗ ∃x⃗.x⃗ = u⃗ ∗ ∃y⃗.Sψ z⃗} ∪

{Tψ z⃗ ← x⃗y⃗ = x⃗y⃗ ∗ ∃x⃗.x⃗ = y⃗ ∗ ∃y⃗.Sψ z⃗, Tψ z⃗ ← y⃗ = w⃗ ∗ Tφz⃗} ∪ Rψ, Sφz⃗⟩

†1: r[⟨−, Y ⟩/−] (resp. r[⟨X,−⟩/−]) is the rule r in which each X (resp. Y ) has been replaced with ⟨X,Y ⟩.

Figure 5 Definition of linear FRS[PP] Ḟφ.

CSL 2022
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▶ Lemma 36. For every simple EP(TC) formula φ and every G ∈ GRτA (where φ ∈ FmlτA),
G |=GI φ iff there is a derivation tree that shows G⊗GOcc(z⃗)

⊤ |=GI
Ḟ z⃗
φ

Sφz⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tφz⃗.

Proof. ⇒: By induction on the structure of φ. The essential case is when φ = [ψ]+x⃗y⃗u⃗w⃗.
Let G ∼= (G1 ⊙y⃗x⃗ . . . ⊙y⃗x⃗ Gn)[u⃗w⃗/x⃗y⃗] be such that Gi |=GI ψ for i ∈ [n]. For notational
simplicity, let G[i,n] ≜ Gi ⊙y⃗x⃗ . . . ⊙y⃗x⃗ Gn[w⃗/y⃗] for i ∈ [n]. Note that G ∼= G[1,n][u⃗/x⃗] and
G[i,n] ∼= (Gi ⊗ G[i+1,n][y⃗/x⃗])[f . . . f/y⃗]. For each i ∈ [n], by I.H., there is a derivation tree
(♣-i) that shows Gi⊗GOcc(z⃗)

⊤ |=GI
Ḟ z⃗
ψ

Sψ z⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
ψ

Tψ z⃗. Then, we obtain a derivation

tree that shows G⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sφz⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tφz⃗ by concatenating (♣-1)-(♣-n)
using Proposition 31(4) as follows.

(go to the lower right)

G[2,n][y⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗

..... (♣-1)

G1 ⊗G[2,n][y⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sψ z⃗

G[1,n][u⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sφz⃗

. . .

(go to the lower right)

Gy⃗=w⃗ ⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗

..... (♣-n)

Gn ⊗Gy⃗=w⃗ ⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Sψ z⃗

G[n,n][y⃗/x⃗]⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗

GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tφz⃗

Gy⃗=w⃗ ⊗GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
φ

Tψ z⃗
.

⇐: By induction on the structure of φ. We do case analysis on the structure of φ. The
essential case is when φ = [ψ]+x⃗y⃗u⃗w⃗. Then, the derivation tree should be of the form like the
above (by using Proposition 31(3)), where the rules for Tψ are not applied in each (♣-i). Then
by Proposition 31(4), each (♣-i) also shows Gi ⊗GOcc(z⃗)

⊤ |=GI
Ḟ z⃗
ψ

Sψ z⃗ from GOcc(z⃗)
⊤ |=GI

Ḟ z⃗
ψ

Tψ z⃗.
By I.H., Gi |=GI ψ. Thus, G |=GI φ. ◀

▶ Lemma 37. Every simple EP(TC) formula of the form ∃z0.φ0 or ⊤ ∨ ∃z0.φ0 has a
GI-equivalent linear FRS[PP].

Proof. We only write the case of ∃z0.φ0 (the case of ⊤∨∃z0.φ0 is shown in the same way). Let
us recall the linear FRS[PP] Ḟ z⃗φ0

= ⟨X z⃗φ0
,Rz⃗φ0

, sz⃗φ0
⟩ in Figure 5, where z⃗′z0 ∈ Perm(FV1(φ0)),

z⃗′′ ∈ Perm(BV1(φ0)), and z⃗ = z⃗′z0z⃗
′′. Let F̄ be the linear FRS[PP] ⟨{S} ∪ X z⃗φ0

, {Sz⃗′ ←
∃z0.Sφ0 z⃗

′z0 . . . z0, Tφ0 z⃗ ← z⃗ = z⃗} ∪ Rz⃗φ0
, Sz⃗′⟩. Then, G[f/z0] |=GI ∃z0.φ0 iff G |=GI φ0 iff

there exists a derivation tree that shows G⊗Gz⃗
⊤ |=GI

Ḟ z⃗
φ0

Sφ0 z⃗ from Gz⃗
⊤ |=GI

Ḟ z⃗
φ0

Tφ0 z⃗ (Lemma

36) iff there exists a derivation tree that shows G |=GI
Ḟ z⃗
φ0

Sφ0 z⃗
′z0 . . . z0 from Gz⃗

⊤ |=GI
Ḟ z⃗
φ0

Tφ0 z⃗

(because the name differences in the part z⃗′′ do not affect to the construction of the derivation
tree by z⃗′′ ∈ Perm(BV1(φ0))) iff G[f/z0] |=GI

F̄ Sz⃗′. Hence, G(F̄) = G(∃z0.φ0). ◀

Proof of Theorem 1(3)⇒. By Lemma 35 and 37 (with Proposition 29 and 30). ◀

From linear FRS[PP]s to EP(TC) formulas. This part is shown by generalizing the state
elimination method in finite automata theory for linear FRS[PP]s. To this end, we introduce
the following class based on transitions in finite automata. We say that an FRS[EP(TC)] F
is FA-linear if (a) there is a non-terminal label T (denoted by TF ) not equivalent to SF such
that the label T has the single rule Tx⃗ ← x⃗ = x⃗; and (b) for every pair of X ∈ XF \ {T}
and Y ∈ XF , there is exactly one rule of the form Xx⃗ ← ∃y⃗.ψ ∗ Y y⃗ (we denote this ψ
by φF

X,Y x⃗y⃗; note that ψ does not have non-terminal labels), where the elements of x⃗y⃗ are
pairwise distinct.

▶ Lemma 38. Every linear FRS[PP] has a GI-equivalent FA-linear FRS[EP].
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Proof. For the condition (a), we introduce a fresh non-terminal label T and introduce
the rule Tx⃗ ← x⃗ = x⃗. For the condition (b), for each rule Xx⃗ ← φ, if φ does not have
non-terminal labels, then we replace the rule with Xx⃗ ← ∃z⃗.(z⃗ = x⃗ ∗ φ) ∗ Tz⃗, where z⃗ is
a sequence of fresh variables. Otherwise, let Y be the non-terminal label and transform
the PP formula φ into a GI-equivalent formula of the form ∃z⃗.φ′ ∗ Y u⃗ by taking its prenex
normal form and reordering the inner formulas appropriately. Then, transform it into the
following formula: ∃y⃗.(∃z⃗.y⃗ = u⃗ ∗ φ′) ∗ Y y⃗, where y⃗ is a sequence of fresh variables. Next,
for each pair ⟨X,Y ⟩, let ⟨Xx⃗i ← ∃y⃗i.ψi ∗ Y y⃗i⟩ni=1 be a permutation of all the rules of the
form Xx⃗← ∃y⃗.ψ ∗ Y y⃗. Without loss of generality, we can assume that x⃗1y⃗1 = · · · = x⃗ny⃗n
(so we denote it by x⃗y⃗) by renaming variables. Then, replace these rules with the single rule
Xx⃗← ∃y⃗.(

∨n
i=1 ψi) ∗ Y y⃗. ◀

Finally, we present a translation from FA-linear FRS[EP]s into EP(TC) formulas.

▶ Lemma 39. Every FA-linear FRS[EP(TC)] F has a GI-equivalent EP(TC) formula.

Proof. By induction on #(XF ). If XF = {SF , TF}, then F is denoted by ⟨{SF , TF}, {SF z⃗ ←
∃x⃗.φ ∗ TF x⃗, TF x⃗ ← x⃗ = x⃗}, sF ⟩. Thus, F is GI-equivalent to the EP(TC) formula ∃x⃗.φ ∗
x⃗ = x⃗ (∼=GI ∃x⃗.φ). Otherwise, there exists Y0 ∈ XF \ {SF , TF}. We define F ′ ≜ ⟨XF \
{Y0}, {Xx⃗ ← ∃z⃗.(φF

X,Z x⃗z⃗ ∨ ∃y⃗.φF
X,Y0

x⃗y⃗ ∗ ∃y⃗′.[φF
Y0,Y0

y⃗y⃗′]∗y⃗y⃗′ y⃗y⃗′ ∗ φF
Y0,Z

y⃗′z⃗) ∗ Zz⃗ | X,Z ∈
XF \ {Y0}, X ̸= TF} ∪ {TF x⃗← x⃗ = x⃗}, sF ⟩, where elements of x⃗z⃗y⃗y⃗′ are pairwise distinct.
Here, [φ]∗x⃗y⃗u⃗w⃗ abbreviates the formula u⃗ = w⃗ ∨ [φ]+x⃗y⃗u⃗w⃗. Then, the FA-linear FRS[EP(TC)]
F ′ is GI-equivalent to F because there are transformations between derivation trees of F
and those of F ′ in the same manner as the proof of Lemma 36. By I.H., F ′ has some
GI-equivalent EP(TC) formula φ. Thus by using this φ, it has been proved. ◀

Proof of Theorem 1(3)⇐. By Lemma 38 and 39 (with Proposition 29 and 30). ◀

6 Conclusion

We have presented a perspective on graph languages via logical formulas by introducing
GI-semantics. We have presented an axiomatization of the equational theory of PP/EP
formulas under GI-semantics, and we have shown that several classes of existential positive
logic formulas under GI-semantics have the same expressive power as those of HRGs. One
future work is to find some axiomatization or some proof system of the (in)equational theory
of EP(TC), or EP(LFP). Another possible future work is to study some classes of (bounded
treewidth) graph languages by considering syntactic fragments, e.g., for finding decidable (or
tractable) fragments of graph language problems. It would also be interesting to extend this
logic to higher-order fixpoint logic (for a graph extension of higher-order grammars [17, 22]).
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Abstract
Logical transductions provide a very useful tool to encode classes of structures inside other classes
of structures. In this paper we study first-order (FO) transductions and the quasiorder they induce
on infinite classes of finite graphs. Surprisingly, this quasiorder is very complex, though shaped
by the locality properties of first-order logic. This contrasts with the conjectured simplicity of
the monadic second order (MSO) transduction quasiorder. We first establish a local normal form
for FO transductions, which is of independent interest. Then we prove that the quotient partial
order is a bounded distributive join-semilattice, and that the subposet of additive classes is also
a bounded distributive join-semilattice. The FO transduction quasiorder has a great expressive
power, and many well studied class properties can be defined using it. We apply these structural
properties to prove, among other results, that FO transductions of the class of paths are exactly
perturbations of classes with bounded bandwidth, that the local variants of monadic stability and
monadic dependence are equivalent to their (standard) non-local versions, and that the classes with
pathwidth at most k, for k ≥ 1 form a strict hierarchy in the FO transduction quasiorder.
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1 Introduction and statement of results

Transductions provide a model theoretical tool to encode relational structures (or classes of
relational structures) inside other (classes of) relational structures. Transductions naturally
induce a quasiorder, that is, a reflexive and transitive binary relation, on classes of relational
structures. We study here the first-order (FO) and monadic second-order (MSO) transduction
quasiorders ⊑FO and ⊑MSO on infinite classes of finite graphs. These quasiorders are very
different and both have a sound combinatorial and model theoretic relevance, as we will
outline below. To foster the further discussion, let us (slightly informally) introduce the
concept of transductions. Formal definitions will be given in Section 2.
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31:2 Structural Properties of the First-Order Transduction Quasiorder

A transduction T (on graphs) is the composition of a copying operation, a coloring
operation, and a simple interpretation. The copying operation Ck maps a graph G to the
graph Ck(G) obtained by taking k disjoint copies of G and making all the copies of a single
vertex adjacent; the coloring operation maps a graph G to the set Γ(G) of all possible
colorings of G; a simple interpretation I maps a colored graph G+ to a graph H, whose
vertex set (resp. edge set) is a definable subset of V (G+) (resp. of V (G+) × V (G+)). In
this way, the transduction T maps a graph G to a set T(G) of graphs defined as T(G) :=
I ◦ Γ ◦ Ck(G) = {I(H+) : H+ ∈ Γ(Ck(G))}. This naturally extends to a graph class1 C by
T(C ) :=

⋃
G∈C T(G).

We say that a class C is a transduction of a class D if there exists a transduction T
with C ⊆ T(D), and we denote this by C ⊑ D . We write C ≡ D for C ⊑ D and D ⊑ C ,
C ⊏ D for C ⊑ D and C ̸≡ D , and C ◁ D for the property that (C ,D) is a cover, that is,
that C ⊏ D and there is no class F with C ⊏ F ⊏ D . For a logic L we write C ⊑L D to
stress that the simple interpretation of the transduction uses L-formulas.

For most commonly studied logics L transductions compose and in this case ⊑L is a
quasiorder. We study here mainly the first-order (FO) and monadic second-order (MSO)
transduction quasiorders ⊑FO and ⊑MSO. As with the colorings all vertex subsets become
definable, it follows that we can restrict our attention to infinite hereditary classes, that is,
infinite classes that are closed under taking induced subgraphs.

MSO transductions are basically understood. Let us write E for the class of edgeless graphs,
Tn for the class of forests of depth n (where the depth of a (rooted) tree is the maximum number
of vertices on a root-leaf path, hence T1 = E), P for the class of all paths, T for the class of
all trees and G for the class of all graphs. The MSO transduction quasiorder is conjectured to
be simply the chain E ◁MSO T2 ◁MSO . . . ◁MSO Tn ◁MSO . . . ⊑MSO P ◁MSO T ◁MSO G [2].

In a combinatorial setting this hierarchy has a very concrete meaning and it was in-
vestigated using the following notions: a class C has bounded shrubdepth if C ⊑MSO Tn
for some n; C has bounded linear cliquewidth if C ⊑MSO P; C has bounded cliquewidth
if C ⊑MSO T . These definitions very nicely illustrate the treelike structure of graphs from
the above mentioned classes from a logical point of view, which is combinatorially captured
by the existence of treelike decompositions with certain properties. It is still open whether
the MSO transduction quasiorder is as shown above [2, Open Problem 9.3], though the
initial fragment E ◁MSO T2 ◁MSO T3 ◁MSO . . . ◁MSO Tn has been proved to be as stated
in [8]. Thus we are essentially left with the following three questions: Does C ⊏MSO P imply
(∃n) C ⊑MSO Tn? This is equivalent to the question whether one can transduce with MSO
arbitrary long paths from any class of unbounded shrubdepth (see [11] for a proof of the
CMSO version). Is the pair (P, T ) a cover? Is the pair (T ,G) a cover? This last question is
related to a famous conjecture of Seese [18] and the CMSO version has been proved in [4].

As in the MSO case, the FO transduction quasiorder allows to draw important algorithmic
and structural dividing lines. For instance MSO collapses to FO on classes of bounded shrub-
depth [8]. Classes of bounded shrubdepth are also characterized as being FO transductions of
classes of trees of bounded depth [9]. FO transductions give alternative characterizations of
other graph class properties mentioned above: a class C has bounded linear cliquewidth if and
only if C ⊑FO H, where H denotes the class of half-graphs (bipartite graphs with vertex set
{a1, . . . , an} ∪ {b1, . . . , bn} and edge set {aibj : 1 ≤ i ≤ j ≤ n} for some n) [3], and bounded
cliquewidth if and only if C ⊑FO T P , where T P denotes the class of trivially perfect graphs
(comparability graphs of rooted forests) [3]. Also, it follows from [1] that FO transductions

1 By a class we always mean a set of finite graphs, where we identify isomorphic graphs.
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Figure 1 Partial outline of the FO transduction quasiorder. The special subdivided binary trees
are those subdivisions of binary trees that are subgraphs of the grid. Dashed boxes correspond to
families of not necessarily transduction equivalent graph classes sharing a common property. Fat
lines correspond to covers, normal lines correspond to strict containment ⊏, dotted lines correspond
to containment (with a possible collapse). Some parts of Figure 1 will be refined in Figure 2.

allow to give an alternative characterizations of classical model theoretical properties: A
class C is monadically stable if C ̸⊒FO H and monadically dependent if C ̸⊒FO G. We
further call a class C monadically straight if C ̸⊒FO T P . To the best of our knowledge this
property has not been studied in the literature but seems to play a key role in the study of
FO transductions.

The FO transduction quasiorder has not been studied in detail previously and it turns out
that it is much more complicated than the MSO transduction quasiorder. This is outlined in
Figure 1, and it is the goal of this paper to explore this quasiorder.

We are motivated by three aspects of the ⊑FO quasiorder that have been specifically
considered in the past and appeared to be highly non-trivial. The first aspect is the conjectured
property that every class that cannot FO transduce paths has bounded shrubdepth (hence
is an FO transduction of a class of bounded height trees). The second aspect that was
studied in detail concerns the chain formed by classes with bounded pathwidth, which is
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eventually covered by the class of half-graphs. This is related to the fact that in the FO
transduction quasiorder there is no class between the classes with bounded pathwidth and the
class H of half-graphs [15, 16]. The third aspect concerns the chain of classes with bounded
treewidth, which is eventually covered by the class of trivially perfect graphs. This is related
to the fact that if H ̸⊑FO C ⊑FO T P (that is, C is a monadically stable class with bounded
cliquewidth), then C ⊑FO T Wn for some n, where T Wn denotes the class of graphs with
treewidth at most n [14].

In this paper, we establish the three kinds of results and show that despite its complexity
the FO transduction quasiorder is strongly structured.

A local normal form for transductions

In Section 3.1 we introduce a normal form for FO transductions that captures the local
character of first-order logic, by proving that every FO transduction can be written as the
composition of a copying operation, a transduction that connects only vertices at a bounded
distance, and a perturbation, which is a sequence of subset complementations (Theorem 2). In
Section 4 we give two applications of this normal form. We first characterize the equivalence
class of the class of paths in the FO transduction quasiorder (Theorem 8). Then, we prove
that the local versions of monadic stability, monadic straightness, and monadic dependence
are equivalent to the non-local versions (Theorem 9). This result is of independent interest
and may be relevant e.g. for locality based FO model-checking on these classes.

Structural properties of the transduction quasiorder

In Section 5 we prove that the partial orders obtained as the quotient of the transduction
quasiorder and the non-copying transduction quasiorder are bounded distributive join-
semilattices (Theorem 14) and discuss some of their properties. In particular we prove that
every class closed under disjoint union is join-irreducible. Recall that a partial order (X,≤)
is a join semi-lattice if for all x, y ∈ X there exists a least upper bound x∨ y of {x, y}, called
the join of x and y. It is distributive if, for all a, b, x ∈ X with x ≤ a ∨ b there exist x1 ≤ a,
x2 ≤ b, with x = x1 ∨ x2. An element x ∈ X is join-irreducible if x is not the join of two
incomparable elements. Then we consider the subposets induced by additive classes, which
are the classes equivalent to the class of disjoint unions of pairs of graphs in the class. We
prove that these subposets are also bounded distributive join-semilattices (Theorem 23),
but with a different join. We discuss some properties of these subposets and in particular
prove that every class closed under disjoint union and equivalent to its subclass of connected
graphs is join-irreducible.

The transduction quasiorder on some classes

In Section 6 we focus on the transduction quasiorders on the class of paths, the class of
trees, classes of bounded height trees, classes with bounded pathwidth, classes with bounded
treewidth, and derivatives. In particular we prove that classes with bounded pathwidth form
a strict hierarchy (Theorem 30). This result was the main motivation for this study, and we
conjecture that a similar statement holds with treewidth. This would be a consequence of
the conjecture that the class of all graphs with treewidth at most n is incomparable with the
class of all graphs with pathwidth at most n+ 1, for every positive integer n.
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2 Preliminaries and basic properties of transductions

We assume familiarity with first-order logic and graph theory and refer e.g. to [5, 10] for
background and for all undefined notation. The vertex set of a graph G is denoted as V (G)
and its edge set E(G). All graphs considered in this paper are finite. The complement
of a graph G is the graph G with the same vertex set, in which two vertices are adjacent
if they are not adjacent in G. The disjoint union of two graphs G and H is denoted
as G∪H, and their complete join G∪H as G+H. We denote by Kt the complete graph
on t vertices. Hence, G+K1 is obtained from G by adding a new vertex, called an apex,
that is connected to all vertices of G. For a class C of graphs we denote by C +K1 the
class obtained from C by adding an apex to each graph of C . The lexicographic product
G • H of two graphs G and H is the graph with vertex set V (G) × V (H), in which (u, v)
is adjacent to (u′, v′) if either u is adjacent to u′ in G or u = u′ and v is adjacent to v′

in H. The pathwidth pw(G) of a graph G is equal to one less than the smallest clique
number of an interval graph that contains G as a subgraph, that is, pw(G) = min{ω(H) − 1 :
for an interval graph H with H ⊇ G}. The treewidth tw(G) of a graph G is equal to one
less than the smallest clique number of a chordal graph that contains G as a subgraph, that
is, tw(G) = min{ω(H) − 1 : for a chordal graph H with H ⊇ G}. We write Gk for the k-th
power of G (which has the same vertex set as G and two vertices are connected if their distance
is at most k in G). The bandwidth of a graph G is bw(G) = min{ℓ : for P ∈ P with P ℓ ⊇ G, }.

In this paper we consider either graphs or Σ-expanded graphs, that is, graphs with
additional unary relations in Σ (for a set Σ of unary relation symbols). We usually denote
graphs by G,H, . . . and Σ-expanded graphs by G+, H+, G∗, H∗, . . ., but sometimes we will
use G,H, . . . for Σ-expanded graphs as well. We shall often use the term “colored graph”
instead of Σ-expanded graph. In formulas, the adjacency relation will be denoted as E(x, y).
For each non-negative integer r we can write a formula δ≤r(x, y) such that for every graph G
and all u, v ∈ V (G) we have G |= δ≤r(u, v) if and only if the distance between u and v

in G is at most r. For improved readability we write dist(x, y) ≤ r for δ≤r(x, y). The
open neighborhood NG(v) of a vertex v is the set of neighbors of v. For U ⊆ V (G) we
write BGr (U) for the subgraph of G induced by the vertices at distance at most r from
some vertex of U . For the sake of simplicity we use for balls of radius r the notation BGr (v)
instead of BGr ({v}) and, if G is clear from the context, we drop the superscript G. For a
class C and an integer r, we denote by BC

r the class of all the balls of radius r of graphs
in C : BC

r = {BGr (v) | G ∈ C and v ∈ V (G)}. For a formula φ(x1, . . . , xk) and a graph (or a
Σ-expanded graph) G we define

φ(G) := {(v1, . . . , vk) ∈ V (G)k : G |= φ(v1, . . . , vk)}.

For a positive integer k, the k-copy operation Ck maps a graph G to the graph Ck(G)
consisting of k copies of G where the copies of each vertex are made adjacent (that is, the
copies of each vertex induce a clique and there are no other edges between the copies of G).
Note that for k = 1, Ck maps each graph G to itself. (Thus C1 is the identity mapping.)

For a set Σ of unary relations, the coloring operation ΓΣ maps a graph G to the set ΓΣ(G)
of all its Σ-expansions.

A simple interpretation I of graphs in Σ-expanded graphs is a pair (ν(x), η(x, y)) consisting
of two formulas (in the first-order language of Σ-expanded graphs), where η is symmetric and
anti-reflexive (i.e. |= η(x, y) ↔ η(y, x) and |= η(x, y) → ¬(x = y)). If G+ is a Σ-expanded
graph, then H = I(G+) is the graph with vertex set V (H) = ν(G+) and edge set E(H) =
η(G) ∩ ν(G)2.
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31:6 Structural Properties of the First-Order Transduction Quasiorder

A transduction T is the composition I ◦ ΓΣ ◦ Ck of a copy operation Ck, a coloring
operation ΓΣ, and a simple interpretation I of graphs in Σ-expanded graphs. In other
words, for every graph G we have T(G) = {I(H+) : H ∈ ΓΣ(Ck(G))}. A transduction T
is non-copying if it is the composition of a coloring operation and a simple interpretation,
that is if it can written as I ◦ ΓΣ ◦ C1 (= I ◦ ΓΣ). We say that a transduction T′ subsumes
a transduction T if for every graph G we have T′(G) ⊇ T(G). We denote by T′ ≥ T the
property that T′ subsumes T.

For a class D and a transduction T we define T(D) =
⋃
G∈D T(G) and we say that a

class C is a T-transduction of D if C ⊆ T(D). We also say that T encodes C in D . A class C

of graphs is a (non-copying) transduction of a class D of graphs if it is a T-transduction
of D for some (non-copying) transduction T. We denote by C ⊑FO D (resp. C ⊑◦

FO D) the
property that the class C is an FO transduction (resp. a non-copying FO transduction) of
the class D . It is easily checked that the composition of two (non-copying) transductions
is a (non-copying) transduction (see, for instance [7]). Thus the relations C ⊑FO D and
C ⊑◦

FO D are quasiorders on classes of graphs Intuitively, if C ⊑FO D , then C is at most as
complex as D . Equivalences for ⊑FO and ⊑0

FO are defined naturally.
We say that a class C does not need copying if for every integer k the class Ck(C ) is a

non-copying transduction of C . For example, as a matching cannot be transduced from an
edgeless graph without copying, the class of edgeless graphs needs copying. To the opposite,
the reader can easily check that the class of paths does not need copying.

We take time for some observations.

▶ Observation 1. If C does not need copying and C ≡FO D , then D does not need copying.

Proof. This follows from the fact that every class C is a non-copying transduction of Ck(C ).
◀

▶ Observation 2. A class C does not need copying if and only if C2(C ) ≡◦
FO C .

Proof. It is easily checked that for every positive integer k there is a non-copying transduc-
tion Tk such that Tk ◦ Ck ◦ C2 subsumes C2k. Assume C2(C ) ≡◦

FO C . Then if Ck(C ) ⊑◦
FO C

we deduce from C2(C ) ⊑◦
FO C that C2k(C ) ⊑◦

FO C . By induction we get Ck(C ) ≡◦
FO C for

every positive integer k. ◀

▶ Observation 3. A class D does not need copying if and only if for every class C we have
C ⊑FO D if and only if C ⊑◦

FO D .

▶ Observation 4. If a class C is closed under adding pendant vertices (that is, if G ∈ C

and v ∈ V (G), then G′, which is obtained from G by adding a new vertex adjacent only to v,
is also in C ) then C does not need copying.

A subset complementation transduction is defined by the quantifier-free interpretation
on a Σ-expansion (with Σ = {M}) by η(x, y) := (x ̸= y) ∧ ¬

(
E(x, y) ↔ (M(x) ∧M(y)

)
. In

other words, the subset complementation transduction complements the adjacency inside
the subset of the vertex set defined by M . We denote by ⊕M the subset complementation
defined by the unary relation M . A perturbation is a composition of (a bounded number of)
subset complementations. Let r be a non-negative integer. A formula φ(x1, . . . , xk) is r-local
if for every (Σ-expanded) graph G and all v1, . . . , vk ∈ V (G) we have G |= φ(v1, . . . , vk) ⇐⇒
BGr ({v1, . . . , vk}) |= φ(v1, . . . , vk). An r-local formula φ(x1, . . . , xk) is strongly r-local if
|= φ(x1, . . . , xk) → dist(xi, xj) ≤ r for all 1 ≤ i < j ≤ k (see [13]).
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▶ Lemma 1 (Gaifman’s Locality Theorem [6]). Every formula φ(x1, . . . , xm) is equivalent to
a Boolean combination of t-local formulas and so-called basic local sentences of the form

∃x1 . . . ∃xk
( ∧

1≤i≤k

χ(xi) ∧
∧

1≤i<j≤k

dist(xi, xj) > 2r
)

(where χ is r-local).

Furthermore, if the quantifier-rank of φ is q, then r ≤ 7q−1, t ≤ 7q−1/2, and k ≤ q +m.

We call a transduction T immersive if it is non-copying and the formulas in the interpret-
ation associated to T are strongly local.

3 Local properties of FO transductions

3.1 A local normal form
We now establish a normal form for first-order transductions that captures the local character
of first-order logic and further study the properties of immersive transductions. The normal
form is based on Gaifman’s Locality Theorem and uses only strongly local formulas, while
the basic-local sentences are handled by subset complementations. This normal form will be
one of the main tools to establish results in the paper.

▶ Theorem 2. Every non-copying transduction T is subsumed by the composition of an
immersive transduction Timm and a perturbation P, that is T ≤ P ◦ Timm.

Consequently, every transduction T is subsumed by the composition of a copying opera-
tion C, an immersive transduction Timm and a perturbation P, that is T ≤ P ◦ Timm ◦ C.

Proof. Let T = IT ◦ ΓΣT be a non-copying transduction. Without loss of generality, we may
assume that the interpretation IT defines the domain directly from the ΣT-expansion. Then
the only non-trivial part of the interpretation is the adjacency relation, which is defined by
a symmetric and anti-reflexive formula η(x, y). We shall prove that the transduction T is
subsumed by the composition of an immersive transduction Tψ and a perturbation P.

We define ΣTψ as the disjoint union of ΣT and a set Σψ = {Ti | 1 ≤ i ≤ n1} for some
integer n1 we shall specify later and let ΣP = {Zj | 1 ≤ j ≤ n2} for some integer n2 we
shall also specify later. Let q be the quantifier rank of η(x, y). According to Lemma 1, η is
logically equivalent to a formula in Gaifman normal form, that is, to a Boolean combination
of t-local formulas and basic-local sentences θ1, . . . , θn1 . To each θi we associate a unary
predicate Ti ∈ Σψ. We consider the formula η̃(x, y) obtained from the Gaifman normal form
of η(x, y) by replacing the sentence θi by the atomic formula Ti(x). Note that η̃ is t-local.

Under the assumption that dist(x, y) > 2t every t-local formula χ(x, y) is equivalent to
χ1(x) ∧ χ2(y) for t-local formulas χ1(x) and χ2(y). Furthermore, t-local formulas are closed
under boolean combinations. By bringing η̃ into disjunctive normal form and grouping
conjuncts appropriately, it follows that under the assumption dist(x, y) > 2t the formula η̃ is
equivalent to a formula φ̃(x, y) of the form

∨
(i,j)∈F ζi(x) ∧ ζj(y), where F ⊆ [n2] × [n2] for

some integer n2 and the formulas ζi (1 ≤ i ≤ n2) are t-local. By considering appropriate
boolean combinations (or, for those familiar with model theory, by assuming that the ζi
define local types) we may assume that |= ∀x

∧
i̸=j ¬(ζi(x) ∧ ζj(x)), that is, every element of

a graph satisfies at most one of the ζi. Note also that F is symmetric as η (hence η̃ and φ̃)
are symmetric.

We define ψ(x, y) := ¬(η̃(x, y) ↔ φ̃(x, y)) ∧ (dist(x, y) ≤ 2t), which is 2t-strongly local,
and we define ITψ as the interpretation of graphs in ΣTψ -structures by using the same
definitions as in IT for the domain, then defining the adjacency relation by ψ(x, y). To
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each formula ζi we associate a unary predicate Zi ∈ ΣP. We define the perturbation P as
the sequence of subset complementations ⊕Zi (for (i, i) ∈ F) and of ⊕Zi ⊕Zj ⊕(Zi ∪ Zj)
(for (i, j) ∈ F and i < j). Denote by φ(x, y) the formula defining the edges in the interpreta-
tion IP. Note that when the Zi are pairwise disjoint, then P complements exactly the edges
of Zi or between Zi and Zj , respectively. The operation ⊕(Zi ∪ Zj) complements all edges
between Zi and Zj , but also inside Zi and Zj , which is undone by ⊕Zj and ⊕Zi.

Now assume that a graph H is a T-transduction of a graph G, and let G+ be a
ΣT-expansion of G such that H = IT(G+). We define the Σψ-expansion G∗ of G+ (which is
thus a ΣTψ -expansion of G) by defining, for each i ∈ [n1], Ti(G∗) = V (G) if G+ |= θi and
Ti(G∗) = ∅ otherwise. Let K = ITψ (G∗). We define the ΣP-expansion K+ of K by defining,
for each j ∈ [n2], Zj(K+) = ζj(G+). By the assumption that |= ∀x

∧
i̸=j ¬(ζi(x) ∧ ζj(x))

the Zj are pairwise disjoint. Now, when dist(x, y) > 2t there is no edge between x and y

in K, hence φ on K+ is equivalent to φ̃ on G∗, which in turn in this case is equivalent
to η̃(x, y) on G∗. On the other hand, when dist(x, y) ≤ 2t, then the perturbation is applied
to the edges defined by ¬(η̃(x, y) ↔ φ̃(x, y), which yields exactly the edges defined by η̃

on G∗. Thus we have η(G+) = η̃(G∗) = φ(K+), hence IP(K+) = H.
It follows that the transduction T is subsumed by the composition of the immersive

transduction Tψ and a sequence of subset complementations, the perturbation P. ◀

▶ Corollary 3. For every immersive transduction T and every perturbation P, there exist
immersive transduction T′ and a perturbation P′, such that P′ ◦ T′ subsumes T ◦ P.

3.2 Immersive transductions
Intuitively, copying operations and perturbations are simple operations. The main complexity
of a transduction is captured by its immersive part. The strongly local character of immersive
transductions is the key tool in our further analysis. It will be very useful to give another
(seemingly) weaker property for the existence of an immersive transduction in another class,
which is the existence of a transduction that does not shrink the distances too much, as we
prove now.

▶ Lemma 4. Assume there is a non-copying transduction T encoding C in D with associated
interpretation I and an ϵ > 0 with the property that for every H ∈ C and G ∈ D with
H ∈ T(G) we have distH(u, v) ≥ ϵ distG(u, v) (for all u, v ∈ V (H)). Then there exists an
immersive transduction encoding C in D that subsumes T.

Proof. Let T = I ◦ ΓΣ with I = (ν(x), η(x, y)). By Gaifman’s locality theorem, there is a set
Σ′ ⊇ Σ of unary relations and a formula φ(x, y), such that for every Σ-expanded graph G+

there is a Σ′-expansion G∗ of G+ with G∗ |= φ(x, y) if and only if G+ |= η(x, y), where φ is
t-local for some t (as in the proof of Theorem 2). We further define a new mark M and let
I′ = (M(x), φ(x, y) ∧ dist(x, y) ≤ 1/ϵ). The transduction T′ = I′ ◦ ΓΣ′∪{M} is immersive and
subsumes the transduction T. ◀

Recall that G+K1 is obtained from G by adding a new vertex, called an apex, that is
connected to all vertices of G. Of course, by adding an apex we shrink all distances in G.
The next lemma shows that when we can transduce C +K1 in a class F with an immersive
transduction, then we can in fact transduce C in the local balls of F .

▶ Lemma 5. Let C ,F be graph classes, and let T be an immersive transduction encoding
a class D in F with D ⊇ {G+K1 | G ∈ C }. Then there exists an integer r such that
C ⊑◦

FO BF
r .
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Proof. Let T = I ◦ ΓΣ be an immersive transduction encoding D in F . For every graph
G ∈ C there exists a graph F ∈ F such that G+K1 = I(F+), where F+ is a Σ-expansion
of F . Let v be the apex of G+K1. By the strong locality of I we get I(F+) = I(BF+

r (v))
for some fixed r depending only on T. Let U be a transduction allowing to take an induced
subgraph, then G can be encoded in the class BC

r by the non-copying transduction U ◦ T. ◀

Finally, we show that when transducing an additive class C in a class D , then we do not
need perturbations at all.

▶ Lemma 6. Let C be an additive class with C ⊑◦
FO D . Then there exists an immersive

transduction encoding C in D .

Proof. According to Theorem 2, the transduction of C in D is subsumed by the composition
of an immersive transduction T (with associated interpretation I = (ν, η)) and a perturbation
(with associated interpretation IP ). As η is strongly local there exists r such that for all
G ∈ D and ΣT-expansions G+ and all u, v ∈ I(G+) we have distI(G+)(u, v) ≥ distG(u, v)/r.
Let c be the number of unary relations used in the perturbation. Let H be a graph in C ,
let n > 3 · c|H| and let K = nH (n disjoint copies of H). By assumption there exists an
expansion G+ of a graph G in D with K = IP ◦ I(G+). By the choice of n, at least 3 copies
H1, H2, and H3 of H in K satisfy the same unary predicates at the same vertices. For
a ∈ {1, 2, 3} and v ∈ V (H1), we denote by τa(v) the vertex of Ha corresponding to the
vertex v of H1 (τ1(v) being the vertex v itself). Let u, v be adjacent vertices of H1. Assume
that u and v have distance greater than r in G. Then u and v are made adjacent in K

by the perturbation P (the edge cannot have been created by η as it is strongly r-local).
As τa(u) is not adjacent with τb(v) for b ̸= a there must be paths of length at most r
linking τa(u) with τb(v) in G for a ̸= b (the interpretation I must have introduced an edge
that the perturbation removed again). This however implies that there is a path of length
at most 3r between u and v in G (going from u to τ2(v) to τ3(u) to v). It follows that for
all u, v ∈ V (K) we have distK(u, v) ≥ distG(u, v)/(3r). Hence the transduction obtained by
composing T with the extraction of the induced subgraph H1 implies the existence of an
immersive transduction of C in D , according to Lemma 4. ◀

▶ Corollary 7 (Elimination of the perturbation). Let C be an additive class with C ⊑FO D .
Then there exists a copy operation C and an immersive transduction Timm such that Timm ◦ C
is a transduction encoding C in D .

4 Some applications of the local normal form

4.1 Transductions in paths
▶ Theorem 8. A class C is FO transduction equivalent to the class of paths if and only if it
is a perturbation of a class with bounded bandwidth that contains graphs with arbitrarily large
connected components.

Proof. Assume T is a transduction of C in P . According to Theorem 2, T ≤ P ◦ Timm ◦ Ck,
where k ≥ 1, Timm is immersive, and P is a perturbation. Observe first that Ck(P) is
included in the class of all subgraphs of the (k + 1)-power of paths. By the strong locality
property of immersive transductions, every class obtained from P by the composition of a
copy operation and an immersive transduction has its image included in the class of all the
subgraphs of the ℓ-power of paths, for some integer ℓ depending only on the transduction,
hence, in a class of bounded bandwidth. Conversely, assume that C is a perturbation of a
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class D containing graphs with bandwidth at most ℓ that contains graphs with arbitrarily
large connected components. Then D is a subclass of the monotone closure (containing
all subgraphs of the class) of the class Pℓ of ℓ-powers of paths, which has bounded star
chromatic number. We show in the full version of this paper [17] that we can obtain the
monotone closure of a class with bounded star chromatic number as a transduction. By this
result and the observation that taking the ℓ-power is obviously a transduction, we get that
C ⊑FO P . To see that vice versa P ⊑FO C observe that we can first undo the perturbation
by carrying out the edge complementations in reverse order. Then we have arbitrarily large
connected components, which in a graph of bounded bandwidth have unbounded diameter.
From this we can transduce arbitrarily long paths by extracting an induced subgraph. ◀

4.2 Local monadically stable, straight, and dependent classes

A class C is locally monadically dependent if, for every integer r, the class BC
r is monadically

dependent; a class C is locally monadically stable if, for every integer r, the class BC
r is

monadically stable; a class C is locally monadically straight if, for every integer r, the class BC
r

is monadically straight.

▶ Theorem 9. For a class C of graphs we have the following equivalences:
1. C is locally monadically dependent if and only if C is monadically dependent;
2. C is locally monadically straight if and only if C is monadically straight;
3. C is locally monadically stable if and only if C is monadically stable.

Proof. The proof will follow from the following claim.

▷ Claim 10. Let C be a class such that the class C ′ = {n(G+K1) | n ∈ N, G ∈ C } is a
transduction of C . Then, for every class D we have C ⊑FO D if and only if there exists
some integer r with C ⊑FO BD

r .

Proof. Obviously, if there exists some integer r with C ⊑FO BD
r , then C ⊑FO D . Now

assume C ⊑FO D . As C ′ ≡FO C we prove as in Lemma 6 that there is a transduction of C ′

in D that is the composition of a copy operation C and an immersive transduction T. Let
D ′ = C(D). According to Lemma 5, there is an integer r such that C ⊑◦

FO BD′

r thus, as
BD′

r = C(BD
r ), we have C ⊑FO BD

r . ◁

The class {n(G+K1) | n ∈ N, G ∈ G} is obviously a transduction of G. Hence, according
to Claim 10, a class C is locally monadically dependent if and only if it is monadically
dependent. The class {n(G+K1) | n ∈ N, G ∈ T P} is a transduction of T P. Hence,
according to Claim 10, a class C is locally monadically straight if and only if it is monadically
straight. The class {n(G+K1) | n ∈ N, G ∈ H} is a transduction of H. Hence, according to
Claim 10, a class C is locally monadically stable if and only if it is monadically stable. ◀

▶ Example 11. Although the class of unit interval graphs has unbounded clique-width, every
proper hereditary subclass of unit interval graphs has bounded clique-width [12]. This is in
particular the case for the class of unit interval graphs with bounded radius. As classes with
bounded clique-width are monadically dependent, the class of unit interval graphs is locally
monadically dependent, hence monadically dependent.
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5 Structural properties of the transduction quasiorders

Many properties will be similar when considering ⊑FO and ⊑◦
FO. To avoid unnecessary

repetitions of the statements and arguments, we shall use the notations ⊑,⊏,≡ to denote
either ⊑◦

FO,⊏
◦
FO,≡◦

FO or ⊑FO,⊏FO,≡FO.
For two classes C1 and C2 define C1 + C2 = {G1 ∪ G2 : G1 ∈ C1, G2 ∈ C2}. A class C

is additive if C + C ≡ C . For instance, every class closed under disjoint union is additive,
while the class of all stars and all paths is not additive. Note that if C1 and C2 are additive
then C1 + C2 is also additive. We further say that a class C is essentially connected if it is
equivalent to the subclass Conn(C ) of all its connected graphs.

In this section we will consider the quasiorders ⊑◦
FO and ⊑FO, as well as their restrictions

to additive classes of graphs. Let C be the collection of all graph classes, and let A be the
collection of all additive graph classes. While speaking about these quasiorders, we will
implicitly consider their quotient by the equivalence relation ≡, which are partial orders. For
instance, when we say that (C,⊑) is a join-semilattice, we mean that (C / ≡,⊑) is a join
semilattice. The symbol ◁ will always been used with reference to (C,⊑), C ◁ D expressing
that there exist no class F with C ⊏ F ⊏ D . When we shall consider covers in (A,⊑) we
will say explicitly that (C ,D) is a cover in (A,⊑), expressing that there exists no additive
class F with C ⊏ F ⊏ D .

5.1 The transduction semilattices (C, ⊑◦
FO) and (C, ⊑FO)

The aim of this section is to prove that (C,⊑◦
FO) and (C,⊑FO) are distributive join-semilattices

and to state some of their properties.

▶ Lemma 12. If D ⊑ C1 ∪ C2, then there is a partition D1 ∪ D2 of D with D1 ⊑ C1 and
D2 ⊑ C2. If D is additive, then D ⊑ C1 ∪ C2 ⇐⇒ D ⊑ C1 or D ⊑ C2.

Proof. The first statement is straightforward. We now prove the second statement. For an
integer n, let Gn be the disjoint union of all the graphs in D with at most n vertices.

Assume D is additive and D ⊑ C1∪C2. According to the first statement, there exists a par-
tition D1,D2 of D with D1 ⊑ C1 and D2 ⊑ C2. For G ∈ D define S (G) = {H ∪G : H ∈ D}.
Note that S (G) ⊆ D + D . Let D ′ = D + D . As D ′ ⊑ D1 ∪ D2 there exists a partition
D ′

1,D
′
2 of D ′ with D ′

1 ⊑ D1 and D ′
2 ⊑ D2. If, for every G ∈ D we have S (G) ∩ D ′

1 ̸= ∅ then
D ⊑ D ′

1 (by the generic transduction extracting an induced subgraph) thus D ≡ D1 ⊑ C1.
Similarly, if for every G ∈ C we have S (G) ∩D ′

2 ̸= ∅ then D ⊑ C2. Assume for contradiction
that there exist G1, G2 ∈ D with S (Gi) ∩ D ′

i = ∅. Then G1 ∪G2 belongs neither to D ′
1 nor

to D ′
2, contradicting the assumption that D ′

1,D
′
2 is a partition of D ′ = D + D . ◀

▶ Lemma 13. If C1 and C2 are incomparable, then C1 ∪ C2 is not equivalent to an additive
class. In particular, C1 ∪ C2 ̸≡ C1 + C2.

Proof. We prove by contradiction that C1 ∪C2 is not equivalent to an additive class. Assume
that we have D ⊑ C1 ∪ C2, where D is additive. According to Lemma 12 we have D ⊑ C1 or
D ⊑ C2 thus if C1 ∪ C2 ⊑ D , then C2 ⊑ C1 or C1 ⊑ C2, contradicting the hypothesis that C1
and C2 are incomparable. ◀

▶ Theorem 14. The quasiorder (C,⊑) is a distributive join-semilattice, where the join of C1
and C2 is C1 ∪ C2. In this quasiorder, additive classes are join-irreducible. This quasiorder
has a minimum E and a maximum G.
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Proof. Of course we have C1 ⊑ C1∪C2 and C2 ⊑ C1∪C2. Now assume D is such that C1 ⊑ D

and C2 ⊑ D . Let T1 and T2 be transductions encoding C1 and C2 in D , with associated
interpretations I1 = (ν1, η1) and I2 = (ν1, η1). By relabeling the colors, we can assume that
the set Σ1 of unary relations used by I1 is disjoint from the set Σ2 of unary relations used
by I2. Without loss of generality, we have T1 = I1 ◦ ΓΣ1 ◦ C and T2 = I2 ◦ ΓΣ2 ◦ C, where C is
a copying operation if ⊑ is ⊑FO, or the identity mapping if ⊑ is ⊑◦

FO. Let M be a new unary
relation. We define the interpretation I = (ν, η) by ν :=

(
(∃v M(v))∧ν1

)
∨

(
¬(∃v M(v))∧ν2

)
and η :=

(
(∃v M(v)) ∧ η1

)
∨

(
¬(∃v M(v)) ∧ η2

)
. Let G ∈ C1 ∪ C2. If G ∈ C1, then there

exists a coloring H+ of H ∈ C(D) with G = I1(H+). We define H∗ as the expansion of H+

where all vertices also belong to the unary relation M . Then G = I(H∗). Otherwise, if
G ∈ C2, then there exists a coloring H+ of H ∈ C(D) with G = I2(H+) thus G = I(H+).
As we did not introduce new copying transductions we deduce C1 ∪ C2 ⊑ D . It follows
that (C,⊑) is a join semi-lattice, which is distributive according to Lemma 12.

That additive classes are join-irreducible follows from Lemma 13. ◀

We now state an easy lemma on covers in distributive join-semilattices.

▶ Lemma 15. Let (X,≤) be a distributive join-semilattice (with join ∨). If a ◁ b and
b ̸≤ a ∨ c, then a ∨ c ◁ b ∨ c.

Proof. Assume a∨ c ≤ x ≤ b∨ c. As (X,≤) is distributive there exist b′ ≤ b and c′ ≤ c with
x = b′ ∨ c′. Thus a ≤ a ∨ b′ ≤ b. As a ◁ b, either a = a ∨ b′ (thus b′ ≤ a) and thus x = a ∨ c,
or a ∨ b′ = b and then b ∨ c ≤ a ∨ b′ ∨ c ≤ a ∨ x ∨ c = x ≤ b ∨ c thus x = b ∨ c. Hence either
a ∨ c = b ∨ c (which would contradict b ̸≤ a ∨ c), or a ∨ c ◁ b ∨ c. ◀

▶ Corollary 16. If C1 ◁ C2 and C2 ̸⊑ C1 ∪ D , then C1 ∪ D ◁ C2 ∪ D .

▶ Corollary 17. If C1 ◁ C2, C1 ⊑ D , and C2 and D are incomparable, then D ◁ D ∪ C2.

Proof. As C2 ̸⊑ D and C1 ⊑ D we have C2 ̸⊑ D ∪ C1. ◀

▶ Corollary 18. If C1 ◁ C2, C2 and D are incomparable and C2 is additive, then C1 ∪ D ◁
C2 ∪ D .

5.2 The transduction semilattices (A, ⊑◦
FO) and (A, ⊑FO)

The aim of this section is to prove that (A,⊑◦
FO) and (A,⊑FO) are distributive join-semilattices

and to state some of their properties.

▶ Lemma 19. If C1 and C2 are incomparable, then C1 + C2 is not essentially connected.

Proof. We prove by contradiction that C1 + C2 is not essentially connected. It is immediate
that Conn(C1 + C2) ⊆ C1 ∪ C2. So if C1 + C2 is essentially connected, then C1 ∪ C2 and
C1 + C2 are equivalent, contradicting Lemma 13. ◀

▶ Lemma 20. A class D is additive if and only if for all classes C1,C2 we have

C1 + C2 ⊑ D ⇐⇒ C1 ⊑ D and C2 ⊑ D .

Proof. Assume D is additive. If C1 + C2 ⊑ D , then C1 ∪ C2 ⊑ D thus C1 ⊑ D and C2 ⊑ D .
Conversely, assume C1 ⊑ D and C2 ⊑ D . Then C1 ∪ C2 ⊑ D . Let T = I ◦ ΓΣ ◦ C be a
transduction such that C1 ∪ C2 ⊆ T(D), where I = (M(x), φ(x, y)) with M ∈ Σ, and where C
is either a copying operation if ⊑ is ⊑FO, or the identity mapping if ⊑ is ⊑◦

FO. Let Σ′ be
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the signature obtained from Σ by adding two unary predicates A(x) and B(x). We define
φA(x, y) (resp. φB(x, y)) by replacing in φ(x, y) the predicate M by the predicate A (resp.
by the predicate B). Let φ′(x, y) =

(
A(x) ∧ A(y) ∧ φA(x, y)

)
∨

(
B(x) ∧ B(y) ∧ φB(x, y)

)
,

let I′ = (A(x) ∨ B(x), φ′(x, y)), and let T = I′ ◦ ΓΣ′ ◦ C. Then it is easily checked that
C1 + C2 ⊆ T′(D). Conversely, assume that for all classes C1,C2 we have C1 + C2 ⊑ D ⇐⇒
C1 ⊑ D and C2 ⊑ D . Then (by choosing C1 = C2 = D) we deduce D + D ≡ D . ◀

▶ Lemma 21. Assume D is additive and C1 and C2 are incomparable. If D ⊑ C1 + C2, then
there exist classes D1 and D2 such that D ≡ D1 + D2, D1 ⊑ C1 and D2 ⊑ C2. Moreover,
if C1 and C2 are additive we can require that D1 and D2 are additive.

Proof. According to Corollary 7 there exists a copy operation C (which reduces to the
identity if ⊑ is ⊑◦

FO) and an immersive transduction Timm such that D ⊆ Timm ◦ C(C1 + C2).
Let I be the interpretation part of Timm. Let G ∈ D and let H+ be a coloring of H = C(K),
with K ∈ C1 + C2 and G = I(H+). As Timm is immersive, each connected component of G
comes from a connected component of H+ hence from a connected component of K. By
grouping the connected components used in K by their origin (C1 or C2) we get that G is the
disjoint union of G1 ∈ Timm ◦ C(K1) and G2 ∈ Timm ◦ C(K2), where K1 ∈ C1 and K2 ∈ C2.
So D ⊑ D1 + D2, where D1 ⊑ C1 and D2 ⊑ C2. Moreover, as obviously D1 ⊑ D and D2 ⊑ D

we derive from Lemma 20 that we have D1 + D2 ⊑ D . Hence D ≡ D1 + D2. For i = 1, 2,
if Ci is additive, then we can assume that Di is also additive. ◀

▶ Corollary 22. If D is additive and essentially connected, then

D ⊑ C1 + C2 ⇐⇒ D ⊑ C1 or D ⊑ C2.

Proof. According to Lemma 21 there exist D1,D2 with D ≡ D1 +D2, D1 ⊑ C1 and D2 ⊑ C2.
However, as D is essentially connected, D1 and D2 cannot be incomparable. Thus D ⊑ C1
or D ⊑ C2. ◀

▶ Theorem 23. The quasiorder (A,⊑) is a distributive join-semilattice, where the join
of C1 and C2 is C1 + C2. In this quasiorder, essentially connected (additive) classes are
join-irreducible. This quasiorder has a minimum E and a maximum G.

Proof. That (A,⊑) is a join-semilattice follows from Lemma 20; that it is distributive follows
from Lemma 21. The last statement follows from Lemma 19. ◀

▶ Corollary 24. Assume that C1 and C2 are incomparable and additive, D is additive and
essentially connected, C1 ⊑ D , and C2 ⊑ D . Then we have

C1 ∪ C2 ⊏ C1 + C2 ⊏ D .

▶ Corollary 25. Assume that C1 and C2 are incomparable and additive, D is additive and
essentially connected, D is incomparable with C1 and C2 ⊏ D . Then C1 + C2 is incomparable
with D .

Proof. Assume for contradiction that C1 + C2 ⊑ D . According to Theorem 23, we have
C1 ⊑ D , contradicting the assumption that D is incomparable with C1.

Assume for contradiction that D ⊑ C1 + C2. According to Theorem 23 there exists (by
distributivity) classes D1 and D2 with D1 ⊑ C1, D2 ⊑ C2, and D = D1 + D2. As D is
essentially connected, according to Theorem 23 it is join-irreducible. Thus D1 and D2 are
comparable. Thus D ⊆ C1 or D ⊆ C2. The first case does not hold as D is incomparable
with C1, and the second case does not hold as C2 ⊏ D . ◀
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Using the distributive join-semillatice structure of (A,⊑), the following corollaries follow
from Lemma 15.

▶ Corollary 26. In the poset (A,⊑), if (C1,C2) is a cover and C2 ̸⊑ C1 + D then (C1 + D ,
C2 + D) is a cover.

▶ Corollary 27. If (C1,C2) is a cover of (A,⊑), C1 ⊑ D , and C2 and D are incomparable,
then (D ,D + C2) is a cover of (A,⊑).

▶ Corollary 28. If (C1,C2) is a cover of (A,⊑), C2 and D are incomparable, and C2 is
essentially connected, then (D ,D + C2) is a cover of (A,⊑).

6 The transduction quasiorder on some classes

In this section we consider the poset (C,⊑FO). We focus on the structure of the partial
order in the region of classes with bounded tree-width. A schematic view of the structure of
(C,⊑FO) on classes with tree-width at most 2 is shown Figure 2

Recall that since MSO collapses to FO on colored trees of bounded depth we have the
following chain of covers E ◁FO T2 ◁FO T3 ◁FO . . .. We first prove that parallel to this chain
we have a chain of covers E ◁FO P ◁FO P ∪ T2 ◁FO P ∪ T3 ◁FO . . . and for all n ≥ 1 we
have Tn ◁FO P ∪ Tn.

▶ Theorem 29 (see [17] for the proof). We have E ◁FO P and, for every n ≥ 1, the chain of
covers

(P + Tn) ◁FO (P + Tn) ∪ Tn+1 ◁FO (P + Tn) ∪ Tn+2 ◁FO . . .

In particular, for n = 1 we get P ◁FO P ∪ T2 ◁FO P ∪ T3 ◁FO . . .

Moreover, for all n ≥ 1 we have Tn ◁FO P ∪ Tn.

The difficult part of the next theorem is to prove that Tn+2 ̸⊑FO PWn. We use that
the class Tn+2 is additive, which by Corollary 7 implies that we can eliminate perturbations
and focus on immersive transductions. This allows us to consider host graphs in PWn that
have bounded radius, where we can find a small set of vertices whose removal decreases the
pathwidth. We encode the adjacency to these vertices by colors and proceed by induction.

▶ Theorem 30 (see [17] for the proof). For n ≥ 1 we have Tn+1 ⊏FO PWn but
Tn+2 ̸⊑FO PWn. Consequently, for m > n ≥ 1 we have

Tm + PWn ◁FO (Tm + PWn) ∪ Tm+1 ◁FO (Tm + PWn) ∪ Tm+2 ◁FO . . .

Tm + PWn ◁FO (Tm + PWn) ∪ Tm+1 ⊏FO Tm+1 + PWn.

In particular, fixing m = n+ 1 we get that for n ≥ 1 we have

PWn ◁FO PWn ∪ Tn+2 ◁FO PWn ∪ Tn+3 ◁FO · · · ⊏FO PWn ∪ T

PWn ◁FO PWn ∪ Tn+2 ⊏FO Tn+2 + PWn ⊏FO PWn+1.

▶ Theorem 31 (see [17] for the proof). For m > n ≥ 2 , Tm + PWn is incomparable with T .
Consequently, we have

T ⊏FO T ∪ PW2 ⊏FO T ∪ (T4 + PW2) ⊏FO · · · ⊏FO T + PW2 ⊏FO T W2.

With the above results in hand we obtain for (C,⊑FO) and (A,⊑FO) the structures
sketched in Figure 2.
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Figure 2 A fragment of (C, ⊑FO) (top) and a fragment of (A, ⊑FO) (bottom). Thick edges are
covers.
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Abstract
BV and pomset logic are two logics that both conservatively extend unit-free multiplicative linear
logic by a third binary connective, which (i) is non-commutative, (ii) is self-dual, and (iii) lies
between the “par” and the “tensor”. It was conjectured early on (more than 20 years ago), that these
two logics, that share the same language, that both admit cut elimination, and whose connectives
have essentially the same properties, are in fact the same. In this paper we show that this is not the
case. We present a formula that is provable in pomset logic but not in BV.
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1 Introduction

Pomset logic has been discovered by Christian Retoré [21] through the study of coherence
spaces which form a semantics of proofs for linear logic. Retoré observed that next to the two
operations � (tensor or multiplicative conjunction) and O (par or multiplicative disjunction)
there are two other operations ◁ and ▷, which are non-commutative, obey A ◁ B = B ▷ A,
and are self-dual, i.e., ⟨A ◁ B⟩⊥ = A⊥ ◁ B⊥.1 From this semantic observation, Retoré derived
a proof net syntax together with a correctness criterion and a cut elimination theorem.
However, he could not provide a sound and complete cut-free sequent calculus for this
logic [20]. Nonetheless, pomset logic has found applications in linguistics, as basis of a new
categorial grammar [17], similar to the ones based on the Lambek calculus [16].

System BV was found by Alessio Guglielmi [10] through a syntactic investigation of
the connectives of pomset logic and a graph theoretic study of series-parallel orders and
cographs. The difficulty of presenting this combination of commutative and non-commutative
connectives in the sequent calculus triggered the development of the calculus of structures [11],
the first proper deep inference proof formalism2. The mixture of commutative and non-
commutative connectives in BV immediately found applications in computer science, in
particular, Bruscoli [3] established a strict correspondence between the proof-search space of
BV and the computations in a fragment of CCS. This work was later extended by quantifiers
to capture private names and to establish a correspondence of implication in (first-order) BV
and a form of weak bisimulation in the π-calculus [12, 13].

1 Observe that the order is not inverted, as it is the case with other non-commutative variants of linear
logic [29] (see also [9, Section II.9.]).

2 The basic idea of such a rewriting system goes back to Retoré [22] (see also [4]), but not as a proof
system admitting cut-elimination.
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This leads to the strange situation that we have two logics, pomset logic and BV, which
are both conservative extensions of unit-free multiplicative linear logic with mix (MLL0) [8, 7]
with a non-commutative connective ◁ such that A � B ⊸ A ◁ B ⊸ A O B, which both obey a
cut elimination result, and which both have found applications that lie outside of pure proof
theory.

The only difference between the two logics is that pomset logic naturally extends the
proof net correctness criterion of MLL0 to the new non-commutative connective, but has no
deductive proof system, whereas BV naturally extends a deductive system for MLL0 with the
new non-commutative connective, but has no proof nets. This naturally led to the conjecture
that both logics ought to be the same [28]. In fact, most researchers working in this area
(including the second author of this paper) believed that the two logics comprise the same
set of theorems.

In this paper we show that this is not the case. More precisely, we show that the theorems
of BV form a proper subset of the theorems of pomset logic. It has already been observed
before [22, 28, 26] that every theorem in BV is also a theorem of pomset logic. However, the
converse is not true, and we give an example of a formula that is a theorem of pomset logic
but not provable in BV.

Organisation of this paper

In the next two sections we give some preliminaries on pomset logic (Section 2) and BV
(Section 3). Then, in Section 4 we show that BV is contained in pomset logic. Even though
this has been known since more than 20 years [22, 28], there has been no complete proof
published so far. The proof we present here is a simplification of the one suggested in [28].
Next, in Section 5, we give our counterexample showing that the converse is not true, i.e.,
we present a formula that is a theorem of pomset logic but not provable in BV. Finally, in
the conclusion (Section 6), we discuss some complexity results and give some intuition on
how the counterexample has been found and why it took so long to find it.

2 Preliminaries on Pomset Logic

The formulas of pomset logic and BV are in this paper denoted by capital Latin letters
A, B, C, . . . and are generated from a countable set V = {a, b, c, . . .} of propositional variables
and the unit I via the three binary connectives tensor �, par O, and seq ◁, according to
the grammar

A, B ::= I | a | a⊥ | (A � B) | [A O B] | ⟨A ◁ B⟩ (1)

An atom is either a propositional variable or its dual. For a formula A, we define its size |A|
to be the number of atom occurrences in A. For better readability of large formulas, we
use here different kinds of parentheses for the different connectives.3 In the following, we
omit outermost parentheses for better readability. The unit I behaves as unit for all three
connectives. We define the relation ≡ on formulas to be the smallest congruence generated
by associativity of �, O, ◁, commutativity of �, O, and the unit equations:

A � (B � C) ≡ (A � B) � C

A O [B O C] ≡ [A O B] O C

A ◁ ⟨B ◁ C⟩ ≡ ⟨A ◁ B⟩ ◁ C

A � B ≡ B � A

A O B ≡ B O A

I � A ≡ A

I O A ≡ A

I ◁ A ≡ A ≡ A ◁ I
(2)

3 Note that this is redundant and carries no additional meaning. The only purpose is better readability.
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The involutive (linear) negation (−)⊥ is extended from propositional variables to general
formulas by taking De Morgan’s laws as its inductive definition, i.e., we define (a⊥)⊥ = a for
all propositional variables a, and

I⊥ = I (A � B)⊥ = A⊥ O B⊥ [A O B]⊥ = A⊥ � B⊥ ⟨A ◁ B⟩⊥ = A⊥ ◁ B⊥

The last equality is what we mean when we say that seq is self-dual. Note that the right-hand
side is indeed A⊥ ◁ B⊥ and not B⊥ ◁ A⊥.4

We will also need the notion of sequent, which has to be generalized from multisets of
formulas to series-parallel orders of formulas.5 We denote a sequent in pomset logic by capital
Greek letters Γ, ∆, . . . and they are generated as follows: Γ, ∆ ::= ∅ | A | [Γ, ∆] | ⟨Γ; ∆⟩, where
∅ stands for the empty sequent. We consider sequents equal modulo commutativity of [·, ·]
and associativity of [·, ·] and ⟨·; ·⟩, and the unit-laws for the empty sequent. In the remainder
of this paper we will always omit redundant brackets.

The operations [·, ·] and ⟨·; ·⟩ serve as counterparts on sequents to the connectives O and ◁

on formulas (just as the sequent ⊢ A, B, C morally means A O B O C in linear logic).
▶ Remark 2.1. Pomset logic is not the only system that features “non-flat” sequents with two
distinct connectives. Another famous example is the logic BI of bunched implications [19].

In [21], Retoré presents proof nets for pomset logic as RB-digraphs, that is, directed
graphs equipped with perfect matchings, extending his reformulation of MLL0 proof nets as
undirected RB-graphs [23]. We recall these notions below.

▶ Definition 2.2. A digraph G = (VG , EG) consists of a finite set of vertices VG and a set
of edges EG ⊆ V 2

G \ {(u, u) | u ∈ VG}. A digraph G is labeled if there is a map ℓ : VG → L
assigning each vertex v of VG a label ℓ(v) ∈ L in the label set L. If L is the set V ∪ V⊥ of
atoms, we speak of an atom-labeled digraph.

In the remainder of this paper, all digraphs are atom-labelled, and for two digraphs G
and H, we write G = H iff there is a label-preserving isomophism between them. Also, we
often write uv ∈ EG for (u, v) ∈ EG , and for a digraph G = (VG , EG), we define the sets
E�

G = {(u, v) | (u, v) ∈ EG and (v, u) ∈ EG} and E◁

G = {(u, v) | (u, v) ∈ EG and (v, u) /∈ EG},
allowing us to treat (VG , E�

G ) as undirected graph.

▶ Definition 2.3. Let G = (VG , EG) and H = (VH, EH) be disjoint digraphs. We can define
the following operations:

G O H = (VG ∪ VH, EG ∪ EH)

G ◁ H = (VG ∪ VH, EG ∪ EH ∪ {(u, v) | u ∈ VG and v ∈ VH})

G � H = (VG ∪ VH, EG ∪ EH ∪ {(u, v), (v, u) | u ∈ VG and v ∈ VH})

This allows us to define a mapping J·K from formulas to digraphs as follows:

JIK = ∅ JaK = •a Ja⊥K = •a⊥

JA O BK = JAK O JBK JA ◁ BK = JAK ◁ JBK JA � BK = JAK � JBK

where ∅ is the empty graph, and •a (respectively •a⊥) is a single vertex graph whose vertex
is labeled by a (respectively a⊥).

4 In that respect, pomset logic and BV are different from other non-commutative variants of linear logic
where � and O are non-commutative with (A � B)⊥ = B⊥ O A⊥ [29, 1].

5 We follow here mainly the presentation of [24].
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▶ Proposition 2.4 ([22]). For all formulas A and B, we have JAK = JBK iff A ≡ B.

This can be shown by a straightforward induction on the formulas. An immediate
consequence of this proposition is that the extension of the mapping J·K to sequents is
well-defined, i.e., we have JΓ, ∆K = JΓK O J∆K and JΓ; ∆K = JΓK ◁ J∆K.

▶ Definition 2.5. Let G = (VG , EG) be a digraph and let VH ⊆ VG. The subdigraph of G
induced by VH is H = (VH, EH), where EH = {(u, v) | (u, v) ∈ EG and u ∈ VH and v ∈
VH}. In this case we also say that H is an induced subgraph of G and denote that by
H ⊑ G. If additionally VH ⊂ VG then we write H ⊏ G.

▶ Definition 2.6. An undirected graph is P4-free if it does not contain a P4 (shown on the
left below) as induced subgraph, and a directed graph is N-free if it does not contain an N
(shown on the right below) as induced subgraph.

P4 : N : (3)

▶ Definition 2.7. A dicograph is a digraph G = (VG , EG), such that
1. the undirected graph (VG , E�

G ) is P4-free,
2. the directed graph (VG , E◁

G) is N-free, and
3. the relation EG is weakly transitive:

if (u, v) ∈ E◁

G and (v, w) ∈ EG then (u, w) ∈ EG, and
if (u, v) ∈ EG and (v, w) ∈ E◁

G then (u, w) ∈ EG.

▶ Proposition 2.8 ([4]). G is a dicograph iff there is a formula A with G = JAK.

▶ Proposition 2.9. Let G = (VG , EG) be a dicograph. Then any induced subdigraph of G is
also a dicograph.

▶ Definition 2.10. Let G = (VG , EG) be a digraph. A perfect matching B of G is a subset
of edges such that:
1. any vertex has exactly one outgoing edge in B and exactly one incoming edge in B, i.e.,

for every u ∈ VG there is exactly one pair (v, w) ∈ VG × VG such that uv ∈ B and wu ∈ B,
and

2. for all u, v ∈ VG, we have that uv ∈ B iff vu ∈ B.
Item 2 means that B consists of bidirectional edges. In particular, this means that v = w in
Item 1. An RB-digraph G = (VG , RG , BG) is a triple where (VG , RG ⊎ BG) is a digraph and
BG is a perfect matching in it. Finally, an RB-digraph G = (VG , RG , BG) is an RB-dicograph
iff (VG , RG) is a dicograph.6

In all figures representing RB-digraphs, we will (following [22]) draw the edges belonging
to the matching (the set B) bold and blue, and the other edges (the set R) regular and red.

▶ Example 2.11. Below we show 7 examples of RB-digraphs. The first 5 are RB-dicographs,
the last 2 are not.

(4)

6 Note that the perfect matching BG is not part of the dicograph. In particular, we allow that two vertices
in VG can be connected by an edge in RG and in BG .
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TRB(I) TRB(a) TRB(A � B) TRB(A O B) TRB(A ◁ B)

I

TRB(A) TRB(B)

A � B

TRB(A) TRB(B)

A O B

TRB(A) TRB(B)

A ◁ B

Figure 1 Inductive definition of RB-trees (which are not quite trees in the sense of graph theory,
though they resemble the syntax trees of formulas). The root vertex is at the bottom.

▶ Definition 2.12. An elementary cycle of length n in a digraph (VG , EG) is a Z/nZ-
indexed sequence of vertices u0, . . . , un−1 ∈ VG without repetitions such that for all i ∈
Z/nZ, uiui+1 ∈ EG. An alternating elementary cycle (or æ-cycle) in an RB-digraph
(VG , RG , BG) is an elementary cycle u0, . . . , un−1 in (VG , RG ⊎BG), such that for all i ∈ Z/nZ,
exactly one of ui−1ui and uiui+1 is in BG (so that the other one is in RG). Note that this
forces the length n of an æ-cycle to be even. A chord in an æ-cycle is an edge vw ∈ RG such
that v, w ∈ {u0, . . . , un−1} but neither vw nor wv are in the æ-cycle. We say an æ-cycle is
chordless if it does not admit any chord in G. We say that an RB-digraph (VG , RG , BG) is
an æ-cycle (resp. chordless æ-cycle) if all vertices of VG participate in the cycle. Finally, an
RB-digraph is æ-acyclic if it does not contain a chordless æ-cycle as induced subgraph.

▶ Example 2.13. To continue Example 2.11, the first two RB-digraphs in (4) are chordless
æ-cycles. The other five are æ-acyclic.

We are now ready to define pomset logic proof nets, which are in fact æ-acyclic RB-
dicographs.

A pomset logic pre-proof of a sequent Γ is an involution ℓ on its set of atom occurrences
such that an atom is always mapped to its dual. This involutive mapping on the atom
occurrences is called the axiom linking.

In order to define which pre-proofs are proofs, Retoré [21, 22] gave two equivalent
correctness criteria, which are in fact two ways of translating the sequent Γ and the linking ℓ

into an RB-dicograph.
Let us call the first the relational RB-prenet, denoted by ρ(Γ, ℓ), which is the RB-

dicograph G = (VG , RG , BG) where (VG , RG) = JΓK, and we have xy ∈ BG iff the atoms in Γ
that correspond to x and y are mapped to each other by the axiom linking ℓ.

▶ Example 2.14. The first five RB-graphs in (4) are in fact relational RB-prenets for
the formulas ⟨a⊥ ◁ b⊥⟩ O (a � b), ⟨a⊥ ◁ b⊥⟩ O ⟨b ◁ a⟩, and ⟨a⊥ ◁ b⊥⟩ O ⟨a ◁ b⟩, [a O a⊥] � [b O b⊥],
a O (a⊥ � [b O b⊥]), respectively (with the obvious unique linking).

The second way of translating a sequent Γ and a linking ℓ into an RB-dicograph is based
on the formula tree structure. We define inductively for each formula C in Γ its RB-tree,
denoted as TRB(C), as shown in Figure 1.7

7 Technically speaking, this not a tree in the graph-theoretical sense, but we use the name as it carries
the structure of the formula tree.
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I
ai↓

a O a⊥

[A O C] � B
s
(A � B) O C

[A O C] ◁ [B O D]
q↓

⟨A ◁ B⟩ O ⟨C ◁ D⟩
A

≡ (provided A≡B)
B

Figure 2 System BV.

If we have a sequent Γ, then TRB(Γ) is obtained from the RB-trees of the formulas in
Γ which are connected at the roots via the edges corresponding to the series-parallel order
of the sequent structure. In order to obtain an RB-digraph, we need to add the B-edges
corresponding to the linking ℓ. We denote this RB-digraph, which is in fact an RB-dicograph,
by τ(Γ, ℓ) and call it the tree-like RB-prenet of Γ and ℓ.

▶ Definition 2.15. A relational RB-prenet (resp. tree-like RB-prenet) is correct if it does
not contain any chordless æ-cycle. A correct relational RB-prenet (resp. correct tree-like
RB-prenet) is also called a relational RB-net (resp. tree-like RB-net). In both cases we
also speak of (pomset logic) proof nets. A sequent Γ is provable in pomset logic of there
is a linking ℓ, such that ρ(Γ, ℓ) or τ(Γ, ℓ) is a proof net.

The above definition makes sense because of the following theorem by Retoré:

▶ Theorem 2.16 ([22, Theorem 7]). For every sequent Γ and linking ℓ, we have that ρ(Γ, ℓ)
is correct if and only if τ(Γ, ℓ) is correct.

▶ Example 2.17. The three RB-graphs in the middle of (4) are pomset logic proof nets.

3 Preliminaries on System BV

In [10] Guglielmi introduces system BV, which is a deductive system for formulas defined
in (1). It is defined in the formalism called the calculus of structures, and it works similar to
a rewriting system, modulo the equational theory defined in (2).

The inference rules of system BV are shown in Figure 2. These rules have to be read as
rewriting rule schemes, meaning that (i) the variable a can be substituted by any atom, and
the variables A, B, C, D can be substituted by any formula, and that (ii) the rules can be
applied inside any (positive) context.

A (proof) system is a set of inference rules. We write
A

S δ

B
, or more concisely A ⊢δ

S B, if

there is a derivation from A to B using only rules from the system S, and that derivation is

named δ. If in that situation A = I, then we write it as S δ

B
or simply as ⊢δ

S B and call δ a

proof of B. In this case we say that B is provable S.

▶ Example 3.1. Here are three proofs in BV, corresponding to the three proof nets in the
middle of (4):

I
ai↓

b⊥ O b
≡
I ◁ [b⊥ O b]

ai↓
[a⊥ O a] ◁ [b⊥ O b]

q↓
⟨a⊥

◁ b⊥⟩ O ⟨a ◁ b⟩

I
≡
I � I

ai↓
I � [b O b⊥]

ai↓
[a O a⊥] � [b O b⊥]

I
ai↓

a O a⊥

≡
a O (a⊥ � I)

ai↓
a O (a⊥ � [b O b⊥])

(5)
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ai◦↓
a O a⊥

B
ai�↓

[a O a⊥] � B

B
ai◁L↓

[a O a⊥] ◁ B

B
ai◁R↓

B ◁ [a O a⊥]
[A O C] ◁ B

qL
3↓

⟨A ◁ B⟩ O C

A ◁ [B O C]
qR

3 ↓
⟨A ◁ B⟩ O C

[A O C] ◁ [B O D]
q4↓

⟨A ◁ B⟩ O ⟨C ◁ D⟩
A ◁ B

q2↓
A O B

A
≡′ (provided A ≡′ B)

B

[A O C] � B
s3

(A � B) O C

A � B
s2

A O B

Figure 3 System BVu.

An inference rule r is derivable in a system S iff for every instance
A

r
B

there is a

derivation A ⊢S B. An inference rule r is admissible for a system S iff for every proof
⊢S∪{r} A there is a proof ⊢S B.

▶ Definition 3.2. Two system S1 and S2 are equivalent if they prove the same formulas.

To simplify the proofs of our main results, we need a unit-free version of BV. We use
here a variant of the one proposed by Kahramanoğulları in [14] in order to reduce the
non-determinism in proof search in BV.

The system is called BVu, and its formulas are the same as defined in (1), except that we
do not allow any occurrence of the unit I. This means that we have to restrict the equivalence
≡ defined in (2) to the unit-free formulas. We define the relation ≡′ to be the smallest
congruence generated by

A � (B � C) ≡′ (A � B) � C

A O [B O C] ≡′ [A O B] O C

A ◁ ⟨B ◁ C⟩ ≡′ ⟨A ◁ B⟩ ◁ C

A � B ≡′ B � A

A O B ≡′ B O A (6)

The inference rules for BVu are then shown in Figure 3.8 Note that the rule ai◦↓ has no
premise. It is an axiom that is used exactly once in a proof which is a derivation without
premise (as the unit I is not present and cannot take this role).

▶ Proposition 3.3 ([14]). The systems BVu and BV are equivalent.

Proof. First, if we have a proof ⊢BVu A then we can simply replace the top instance of ai◦↓
by ai↓ and have a proof of BV. Conversely, assume we have a proof ⊢δ

BV B. Then, in δ, the
unit I can occur. Let δ′ be obtained from δ by deleting the unit I everywhere (which means
that the topmost ai↓ is replaced by ai◦↓). Then every instance of the rule ≡ becomes an
instance of ≡′; every instance of q↓ becomes an instance of q2↓ or qL

3↓ or qR
3 ↓ or q4↓ or trivial

(i.e., premise and conclusion of the rule instance become equal); and similarly for s. However,
an instance of ai↓ can become an instance of ai�↓ or ai◁L↓ or ai◁R↓ (which are in BVu), or aiO↓
which is shown below.

B
aiO↓

a O a⊥ O B
(7)

This rule is not in BVu, but can be derived with {ai�↓, s2}. ◀

8 The rules in the bottom two rows of Figure 3 have have already been studied by Retoré in [22], as part
of a rewrite system on digraphs to generate theorems of pomset logic.
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▶ Remark 3.4. Our version of BVu is slightly different from the one by Kahramanoğulları [14].
In [14] the rule s2 is absent, and instead the rule aiO↓ shown in (7) is part of the system. It
is easy to see that the two variants of BVu are equivalent: first, as we have mentioned above,
the rule aiO↓ is derivable in {ai�↓, s2}, and second, the rule s2 is admissible if aiO↓ is present.
This can be seen by an easy induction on the size of the derivation. However, note that the
same trick does not work for the rule q2↓. This rule cannot be shown admissible, as the
formula ⟨a ◁ [b O c]⟩ O ⟨[a⊥ O b⊥] ◁ c⊥⟩ is not provable in BVu without q2↓.

We will also need a variant of BVu that we call BVû and that is obtained from BVu by
restricting rules q2↓ and s2 to cases where neither A nor B has a O as main connective, i.e.,
we replace q2↓ and s2 by q̂2↓ and ŝ2, respectively:

A ◁ B
q̂2↓

A O B

A � B
ŝ2

A O B

where A ̸≡′ C O D and B ̸≡′ C O D for
any formulas C and D. (8)

and similarly, by restricting the rules qL
3↓, qR

3 ↓, and s3 to cases where C does not have a O as
main connective, i.e., these three rules are replaced by q̂L

3↓, q̂R
3 ↓, and ŝ3, respectively:

[A O C] ◁ B
q̂L

3↓
⟨A ◁ B⟩ O C

A ◁ [B O C]
q̂R

3 ↓
⟨A ◁ B⟩ O C

[A O C] � B
ŝ3

(A � B) O C

where C ̸≡′ D O E for
any formulas D and E. (9)

▶ Proposition 3.5. The systems BVu and BVû are equivalent.

Proof. Any derivation in BVû is also a derivation in BVu. Conversely, the rules q2↓ and
s2 and s3 are derivable with {q̂2↓, q̂L

3↓, q̂R
3 ↓, ≡′} and {ŝ2, ŝ3, ≡′} and {ŝ3, ≡′}, respectively, as

shown below:
[A′ O A′′] ◁ [B′ O B′′]

q̂R
3 ↓

⟨[A′ O A′′] ◁ B′⟩ O B′′

q̂L
3↓

⟨A′
◁ B′⟩ O A′′ O B′′

q̂2↓
A′ O B′ O A′′ O B′′

≡′

[A′ O A′′] O [B′ O B′′]

[A′ O A′′] � [B′ O B′′]
≡′,̂s3,≡′

([A′ O A′′] � B′) O B′′

ŝ3
(A′ � B′) O A′′ O B′′

ŝ2
A′ O B′ O A′′ O B′′

≡′

[A′ O A′′] O [B′ O B′′]

[A O [C′ O C′′]] � B
≡′

[[A O C′] O C′′] � B
ŝ3

([A O C′] � B) O C′′

ŝ3
[(A � B) O C′] O C′′

≡′

(A � B) O [C′ O C′′]

and similarly, the rules qL
3↓ and qR

3 ↓ are derivable in {q̂L
3↓, ≡′} and {q̂R

3 ↓, ≡′}, respectively. ◀

4 BV is Contained in Pomset Logic

In this section we do not only show that every theorem of BV is also a theorem of pomset
logic, but also that every proof in BV uniquely determines a pomset logic proof net with the
same conclusion.

We have already seen in Section 2 that every formula uniquely determines a dicograph.
Furthermore, by inspecting the rules of BV in Figure 2, one can see that the rule ≡ does not
change that dicograph, and that the rules s and q↓ only change the set of edges but not the
set of vertices of the corresponding dicograph. Additionally, every instance of ai↓ removes
one pair of dual atoms, and in a proof of BV, every atom occurring in the conclusion has to
be removed by exactly one instance of ai↓ in the proof.

This means that every BV proof δ uniquely determines an axiom linking ℓ(δ) for its
conclusion, and hence, by definition a pomset logic pre-proof and also a relational RB-prenet.

We are now going to show that every relational RB-prenet that is obtained from a BV
proof in such a way is indeed correct, and therefore every theorem of BV is also a theorem of
pomset logic. The proof of the main lemma is based on the construction from [28], but the
complete proof has never been published.
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To begin, let δ be a BV proof of a formula A. We denote by (JδK) = ρ(A, ℓ(δ)) the relational
RB-prenet generated from δ as described in Section 2. Then the main result of this section
is the following.

▶ Theorem 4.1. For every BV proof δ, the relational RB-prenet (JδK) is correct.

▶ Example 4.2. The three correct relational RB-prenets in the middle of (4) are obtained
from the three BV-proofs in Example 3.1.

In order to prove Theorem 4.1, we first introduce an additional definition.

▶ Definition 4.3. A formula is balanced if every propositional variable that occurs in A

occurs exactly once positive and exactly once negative. A balanced formula A uniquely
determines an axiom linking on A, that we denote by ℓ(A). Then we write (JAK) for the
relational RB-prenet ρ(A, ℓ(A)), i.e., (JAK) = (VA, RA, BA), where (VA, RA) = JAK and BA
is the matching associated to ℓ(A).

Conversely, every RB-dicograph uniquely determines a balanced formula, up to renaming
of variables and equivalence under ≡. This gives us immediately the following proposition.

▶ Proposition 4.4. Let δ be a proof in BV. Then there is a balanced formula A, that is
provable in BV and such that (JAK) and (JδK) are isomorphic.

Proof. Let B be the conclusion of δ. Then A is obtained from B by renaming all variable
occurrences such that the result is balanced and the linking is preserved. ◀

▶ Definition 4.5. Let A be a formula. A formula B is a pseudo-subformula of A, written
as B ⊑ A, if it is equivalent under ≡ to some A′ that can be obtained from A by replacing
some atom occurrences in A by I. If B ⊑ A and B ̸≡ A, then we say that B is a proper
pseudo-subformula of A, and write it as B ⊏ A.

▶ Example 4.6. We have that ⟨(a � b) ◁ d ◁ e⟩ O (b � [(e � f) O ⟨a ◁ b⟩]) has ⟨a ◁ d⟩ O (b � b) as
pseudo-subformula which is equivalent to ⟨(a � I) ◁ d ◁ I⟩ O (b � [(I � I) O ⟨I ◁ b⟩]).

The following proposition explains our choice to denote both pseudo-subformulas and
induced subgraphs (Definition 2.5) by ⊑.

▶ Proposition 4.7. We have B ⊑ A iff JBK ⊑ JAK and B ⊏ A iff JBK ⊏ JAK.

Proof. This follows directly from the definitions of J·K and ⊑ and Proposition 2.4. ◀

▶ Lemma 4.8. Let A be a balanced formula and B be a balanced pseudo-subformula of A. If
A is provable in BV, then so is B.

Proof. Let δ be the proof of A in BV, and let δ′ be obtained by replacing all atoms that do
not occur in B in every line of δ by I. Then δ′ is a valid derivation of B in BV. ◀

▶ Definition 4.9. A balanced cycle is a balanced formula H such that (JHK) is an æ-cycle.

▶ Proposition 4.10. A formula H is a balanced cycle if and only if there are pairwise distinct
atoms a1, . . . , an for some n ≥ 1, such that H ≡ L1 O L2 O · · · O Ln, where L1 = a⊥

n � a1 or
L1 = a⊥

n ◁ a1, and for every i ∈ {2, . . . , n} we have Li = a⊥
i−1 � ai or Li = a⊥

i−1 ◁ ai.

Proof. This follows immediately from the definitions. ◀
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▶ Definition 4.11. We say that a balanced formula A contains a cycle if it has a pseudo-
subformula B ⊑ A that is a balanced cycle (or, equivalently if (JAK) contains a chordless
æ-cycle).

We are now ready to state and prove the central lemma to this section.

▶ Lemma 4.12. Let
Q

r
P

be an instance of an inference rule in BVû. If P is a balanced cycle

then Q contains a cycle. If r ̸= ≡′ then the size of the cycle in Q is strictly smaller than |P |.

Proof. By Proposition 4.10 we have that P ≡′ L1 O L2 O . . . O Ln, where L1 = a⊥
n � a1 or

L1 = a⊥
n ◁ a1, and for every i ∈ {2, . . . , n} we have Li = a⊥

i−1 � ai or Li = a⊥
i−1 ◁ ai, with all

ai being pairwise distinct. We proceed by case analysis on the rule r. First observe that by
Proposition 4.10 the rules ai�↓, ai◁L↓, ai◁R↓ cannot be applied to P (seen bottom up), and if
r = ≡′, then Q trivially contains a cycle, whose size is equal to |P |. Now assume r is

[A O C] ◁ [B O D]
q4↓

⟨A ◁ B⟩ O ⟨C ◁ D⟩
: Without loss of generality, assume that A = a⊥

n and B = a1 and

C = a⊥
i−1 and D = ai for some i ∈ {2, . . . , n}. Then

Q ≡′ ⟨[a⊥
n O a⊥

i−1] ◁ [a1 O ai]⟩ O L2 O · · · O Li−1 O Li+1 O · · · O Ln

which contains the cycle ⟨a⊥
n ◁ ai⟩ O Li+1 O · · · O Ln.

[A O C] ◁ B
q̂L

3↓
⟨A ◁ B⟩ O C

: Without loss of generality, we assume that A = a⊥
n and B = a1 and

C = Li for some i ∈ {2, . . . , n}. Then

Q ≡′ ⟨[a⊥
n O Li] ◁ a1⟩ O L2 O · · · O Li−1 O Li+1 O · · · O Ln

which contains the cycle ⟨a⊥
i−1 ◁ a1⟩ O L2 O · · · O Li−1.

A ◁ [B O C]
q̂R

3 ↓
⟨A ◁ B⟩ O C

: As before, without loss of generality, we assume that A = a⊥
n and B = a1

and C = Li for some i ∈ {2, . . . , n}. Then

Q ≡′ ⟨a⊥
n ◁ [a1 O Li]⟩ O L2 O · · · O Li−1 O Li+1 O · · · O Ln

which contains the cycle ⟨a⊥
n ◁ ai⟩ O Li+1 O · · · O Ln.

A ◁ B
q̂2↓

A O B
: We can assume that A = Li and B = Lj for some i, j ∈ {1, . . . , n}. There are

two subcases:
i < j : Then Q = ⟨Li ◁ Lj⟩ O L1 O · · · O Li−1 O Li+1 O · · · O Lj−1 O Lj+1 O . . . O Ln

which contains the cycle L1 O · · · O Li−1 O ⟨a⊥
i−1 ◁ aj⟩ O Lj+1 O . . . O Ln.

j < i : Then Q = ⟨Li ◁ Lj⟩ O L1 O · · · O Lj−1 O Lj+1 O · · · O Li−1 O Li+1 O . . . O Ln

which contains the cycle ⟨a⊥
i−1 ◁ aj⟩ O Lj+1 O . . . O Li−1.

[A O C] � B
ŝ3

(A � B) O C
: This case is analogous to the case q̂L

3↓ above.

A � B
ŝ2

A O B
: This case is analogous to the case q̂2↓ above.

In all cases the size of the cycle in Q is strictly smaller than |Q| = |P |. ◀

▶ Lemma 4.13. Let P be a balanced formula that contains a cycle. Then P is not provable
in BV.
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Proof. Let H be the cycle in P , and let n = |H| be its size. We proceed by induction on n.
Note that n has to be even. For n = 2, we have that H ≡ a⊥ ◁ a or H ≡ a⊥ � a for some
atom a. By way of contradiction, assume P is provable in BV. By Lemma 4.8, H is also
provable in BV, which is impossible. For the inductive case let now n > 2. As before, we
have by Lemma 4.8 that H is provable in BV. By Proposition 3.3 and Proposition 3.5, H is
provable in BVû. Let δ be that proof in BVû. Let now Q be the premise of the bottommost
rule instance r of δ that is not a ≡′ (i.e., the conclusion of r is H ′ ≡′ H and Q ̸≡′ H). By
Lemma 4.12, Q contains a cycle whose size is smaller than n. By induction hypothesis Q is
not provable in BV, and therefore also not provable in BVû, which is a contradiction to the
existence to δ. ◀

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let δ be a proof in BV. By Proposition 4.4, there is a balanced
formula P , such that (JP K) is isomorphic to (JδK), and such that P is provable in BV. Now
assume, by way of contradiction, that (JδK) is incorrect. That means that (JδK) contains a
chordless æ-cycle, or equivalently, that P contains a cycle. By Lemma 4.13, P is not provable
in BV. Contradiction. ◀

5 Pomset Logic is not Contained in BV

In this section we present a formula that is provable in pomset logic, i.e., has a correct pomset
logic proof net, but that is not provable in BV. From what has been said in the previous
section, it follows that if such a formula exists then there is also a balanced such formula.
The formula we discuss in this section is the formula Q shown below:

Q = (⟨a ◁ b⟩ � ⟨c ◁ d⟩) O (⟨e ◁ f⟩ � ⟨g ◁ h⟩) O ⟨a⊥ ◁ h⊥⟩ O ⟨e⊥ ◁ b⊥⟩ O ⟨g⊥ ◁ d⊥⟩ O ⟨c⊥ ◁ f⊥⟩ (10)

or equivalently, the sequent

ΓQ = [⟨a ◁ b⟩ � ⟨c ◁ d⟩, ⟨e ◁ f⟩ � ⟨g ◁ h⟩, a⊥ ◁ h⊥, e⊥ ◁ b⊥, g⊥ ◁ d⊥, c⊥ ◁ f⊥] (11)

Since the formula Q (resp. the sequent ΓQ) is balanced, there is a unique axiom linking
and therefore a unique relational RB-prenet and a unique tree-like RB-prenet. In Figure 4,
we show the tree-like RB prenet for ΓQ, and on the left of Figure 5 we show the relational
RB-prenet, which is the same for Q and ΓQ.

To see that these are provable in pomset logic, we have to show that the RB-prenets
do not contain chordless æ-cycles. For this we focus on the tree-like RB-prenet, because in
tree-like RB-prenets all æ-paths (and therefore also all æ-cycles) are chordless. Hence, it
suffices to show that there are no æ-cycles.

Observe that the B-edges corresponding to the roots of the formulas in ΓQ cannot
participate in an æ-cycle because they have no adjacent R-edge at the bottom. We can
therefore remove each of these B-edges, together with the two adjacent R-edges at the top.
The resulting graph is shown on the right of Figure 5.

Another simplification we can do without affecting the æ-cycles in the graph is replacing
the two B-edges labeled a ◁ b and c ◁ d, together with the connecting R-edge by a single
B-edge, and similarly for the two B-edges g ◁ h and e ◁ f . The result is shown on the left of
Figure 6.
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a ◁ b c ◁ d

⟨a ◁ b⟩ � ⟨c ◁ d⟩

e ◁ f g ◁ h

⟨e ◁ f⟩ � ⟨g ◁ h⟩

c⊥
◁ f⊥

e⊥
◁ b⊥g⊥

◁ d⊥

a⊥
◁ h⊥

a

b

d

c

f
e

g

h

Figure 4 The tree-like RB-preenet for the sequent ΓQ in Equation (11).

a

b

d

c

h

g

e

f

a

b

d

c

a ◁ b

c ◁ d

h

g

e

f

e ◁ f

g ◁ h

Figure 5 Left: The relational RB-prenet for Q in (10) and ΓQ in (11).
Right: A simplification of the tree-like RB-prenet in Figure 4.

Finally, observe that there is no æ-cycle that passes trough the two B-edges labeled b and
a. The reason is that the directed R-edge between them has the opposite direction of the
two adjacent R-edges on the other endpoints of these B-edges. Thus, we can collapse these
two edges (and the adjacent “triangle”) to a single vertex. The same can be done for the
pairs c/d and g/h and e/f . The result of this operation is shown on the right of Figure 6.

▶ Proposition 5.1. The formula Q and the sequent ΓQ shown in Equation (10) and Equa-
tion (11) above are provable in pomset logic.

Proof. In the paragraphs above, we have argued that the tree-like RB-prenet in Figure 4 has
an æ-cycle if and only if the RB-digraph on the right of Figure 6 has an æ-cycle. Now it is
easy to see that this graph has no æ-cycle. Hence, tree-like RB-prenet for ΓQ is correct. ◀

Let us now show that the formula Q is not provable in BV. To do so we will show that
whenever a BV inference has as conclusion Q then its premise defines an incorrect RB-prenet
in pomset logic, and is therefore not provable in pomset logic. Since by Theorem 4.1 all
BV proofs induce correct pomset proof nets, we can conclude that those premises are not
BV-provable, therefore there is no way to build a BV-proof of Q.

The main difficulty here is to make sure that we do not overlook any case when checking
all possible inferences that have Q as conclusion. Since the unit I can make these kind of
arguments difficult to check, we use here BVû. Now observe that Q has no subformula of the
form x O x⊥. This means we only have to consider the non-axiom rules of BVû.
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a

b

d

c

h

g

e

f

a/b

e/fc/d

g/h

Figure 6 Two further simplifications of the graph on the right of Figure 5.

To cut down the number of cases to consider, we take advantage of the symmetries of Q.
Let us first look at the automorphisms, i.e., permutations of the variables that results in a
formula Q′ with Q′ ≡ Q, which means (JQ′K) = (JQK). The following are automorphisms:

(α) a ↔ c, b ↔ d, e ↔ g, f ↔ h

(β) a 7→ e, b 7→ f , c 7→ g, d 7→ h, e 7→ c, f 7→ d, g 7→ a, h 7→ b

The action of these automorphisms on the subformulas of Q of the form x⊥ ◁ y⊥ is transitive:
α(a⊥ ◁ h⊥) = c⊥ ◁ f⊥, β(a⊥ ◁ h⊥) = e⊥ ◁ b⊥ and α ◦ β(a⊥ ◁ h⊥) = g⊥ ◁ d⊥.

Another useful symmetry is not quite an automorphism: it is the following anti-
automorphism:
(γ) a ↔ h, b ↔ g, c ↔ f, d ↔ e

that sends Q to its “conjugate” Q† defined inductively as follows:

x† = x when x is an atom (B ⊙ C)† = C† ⊙ B† for ⊙ ∈ {O, �, ◁}

Note that the reversal of the arguments only matters for the non-commutative connective ◁,
and (JQ†K) is the same as (JQK), except that all directed R-edges have the opposite direction.
Thus, conjugacy preserves provability both in pomset logic (reversing the direction of all
cycles in the correctness criterion) and in system BVû (the inference rules are closed under
conjugacy, with q̂L

3↓ and q̂R
3 ↓ being swapped).

We will now go through all the rules of BVû and check all possible applications. Using a
similar argument as in the proof of Lemma 4.12, we will see that in each case there is a cycle
in the resulting premise.

[A O C] ◁ [B O D]
q4↓

⟨A ◁ B⟩ O ⟨C ◁ D⟩
: Because of the action of the automorphisms α/β, we can without

loss of generality assume that A = a⊥ and B = h⊥. There are three subcases:
C = e⊥ and D = b⊥. We get the cycle (e � h) O ⟨e⊥ ◁ h⊥⟩ in the premise of the
q4↓-application.
C = g⊥ and D = d⊥. We get the cycle (a � d) O ⟨a⊥ ◁ d⊥⟩ in the premise of the
q4↓-application.
C = c⊥ and D = f⊥. We get the cycle (b � c) O (e � h) O ⟨c⊥ ◁ h⊥⟩ O ⟨e⊥ ◁ b⊥⟩ in the
premise of the q4↓-application.
[A O C] ◁ B

q̂L
3↓

⟨A ◁ B⟩ O C
: As before, because of the symmetries of Q, we only need to consider

the case where A = a⊥ and B = h⊥. There are now five subcases of how to match C:
C = ⟨a ◁ b⟩ � ⟨c ◁ d⟩. We get the cycle (e � h) O ⟨b ◁ h⊥⟩ O ⟨e⊥ ◁ b⊥⟩ in the premise of
the q̂L

3↓-application.
C = ⟨e ◁ f⟩ � ⟨g ◁ h⟩. We get the cycle h ◁ h⊥ in the premise of the q̂L

3↓-application.
C = e⊥ ◁ b⊥. We get the cycle (e � h) O ⟨e⊥ ◁ h⊥⟩ in the premise of the q̂L

3↓-application.
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C = g⊥ ◁ d⊥. We get the cycle (b � d) O (e � h) O ⟨d⊥ ◁ h⊥⟩ O ⟨e⊥ ◁ b⊥⟩ in the premise
of the q̂L

3↓-application.
C = c⊥ ◁ f⊥. We get the cycle (f � h) O ⟨f⊥ ◁ h⊥⟩ in the premise of the q̂L

3↓-application.
A ◁ [B O C]

q̂R
3 ↓

⟨A ◁ B⟩ O C
: Similar to q̂L

3↓, by conjugacy.

A ◁ B
q̂2↓

A O B
: The possible values for the ordered pair (A, B) are all pairs of distinct

formulas in the sequent ΓQ in Equation (11). We first look at the case A = ⟨a ◁ b⟩ � ⟨c ◁ d⟩
and B = ⟨e ◁ f⟩ � ⟨g ◁ h⟩. Here we get the cycle ⟨d ◁ g⟩ O ⟨g⊥ ◁ d⊥⟩ in the premise. The
case A = ⟨e ◁ f⟩ � ⟨g ◁ h⟩ and B = ⟨a ◁ b⟩ � ⟨c ◁ d⟩ is symmetric to the this one via the
automorphism β. Otherwise, either A or B (or both) have the form x⊥ ◁ y⊥. It suffices
to treat all the cases R = x⊥ ◁ y⊥. This is because conjugation exchanges the roles of A

and B in the q2↓-rule, and Q is equal to its own conjugate up to the variable renaming
performed by γ. We may also without loss of generality assume that A = a⊥ ◁ h⊥; as
before, this relies on the transitive action of the automorphisms of Q on the x⊥ ◁ y⊥ that
it contains. There are now five cases for B:

B = ⟨a ◁ b⟩ � ⟨c ◁ d⟩. We get the cycle a⊥ ◁ a in the premise.
B = ⟨e ◁ f⟩ � ⟨g ◁ h⟩. We get the cycle h⊥ ◁ h in the premise.
B = e⊥ ◁ b⊥. We get the cycle (e � h) O ⟨h⊥ ◁ e⊥⟩ in the premise.
B = g⊥ ◁ d⊥. We get the cycle (a � d) O ⟨a⊥ ◁ d⊥⟩ in the premise.
B = c⊥ ◁ f⊥. We get the cycle (f � h) O ⟨h⊥ ◁ f⊥⟩ in the premise.
[A O C] � B

ŝ3
(A � B) O C

: There are two possibilities to match A � B: either with ⟨a ◁ b⟩ � ⟨c ◁ d⟩

or with ⟨e ◁ f⟩ � ⟨g ◁ h⟩. Due to the commutativity of �, we have four possibilities to
match A and B. Due to the symmetries discussed above, we only need to consider the
case where A = a ◁ b and B = c ◁ d. There are now five cases how to match C:

C = ⟨e ◁ f⟩ � ⟨g ◁ h⟩. We get the cycle (f � c) O ⟨c⊥ ◁ f⊥⟩ in the premise.
C = a⊥ ◁ h⊥. We get the cycle (h⊥ � c) O ⟨c⊥ ◁ f⊥⟩ O (f � h) in the premise.
C = e⊥ ◁ b⊥. We get the cycle (e⊥ � d) O ⟨g⊥ ◁ d⊥⟩ O (e � g) in the premise.
C = g⊥ ◁ d⊥. We get the cycle d⊥ � d in the premise.
C = c⊥ ◁ f⊥. We get the cycle c⊥ � c in the premise.

A � B
ŝ2

A O B
: This case is already subsumed by the case for q̂2↓.

In this way, we have completed the proof of the following proposition.

▶ Proposition 5.2. The formula Q shown in Equation (10) is not provable in BV.

▶ Theorem 5.3. The theorems of BV form a proper subset of the theorems of pomset logic.

Proof. This follows immediately from Propositions 5.1 and 5.2. ◀

6 Conclusion

Let us end this paper by giving some historical perspective and some explanation how the
formula Q has been found. The main reason that it took more than 20 year to find this
(rather simple) formula was that everyone (including the second author) was looking into
the wrong direction, trying to prove that BV and pomset logic are the same. This changed
only after the first author (not being aware of the pomset logic vs. BV problem) observed
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a O b d O c

[a O b] � [d O c]

c⊥ O b⊥ d⊥ O a⊥

[c⊥ O b⊥] � [d⊥ O a⊥]

a

b
c

d

(a) A tree-like RB-prenet for a linear version of the medial
rule of system SKS. Note that it does not satisfy the
MLL0 correctness criterion, and therefore also not the
pomset criterion.

a b d c

a O b d O c

[a O b] � [d O c]

f e g h

f O e g O h

[f O e] � [g O h]

(b) A variation of the prenet on the left. The undirected
R-edges on the top correspond to the addition of a⊥ �

h⊥, b⊥ � e⊥, d⊥ � g⊥, c⊥ � f⊥. Note that the prenet is
still not correct.

a b d c

a O b d O c

[a O b] � [d O c]

f e g h

f O e g O h

[f O e] � [g O h]

(c) The R-edges on top are now directed, corresponding
to a⊥ ◁ h⊥, b⊥ ▷ e⊥, d⊥ ▷ g⊥, c⊥ ◁ f⊥. This modification
validates the pomset logic correctness criterion, but the
resulting sequent is not provable in BV.

a b d c

a ◁ b d ▷ c

[a ◁ b] � [d ▷ c]

f e g h

f ▷ e g ◁ h

[f ▷ e] � [g ◁ h]

(d) Adding more R-edges does preserve provability in
pomset logic, but showing that the resulting sequent is
not provable in BV is easier now, as every possible rule
application breaks pomset correctness.

Figure 7 From the medial of SKS to our counterexample.

that checking pomset logic correctness is coNP-complete [18]. Since it had been observed
before that BV is NP-complete [15], this immediately entailed that either NP = coNP or
BV ̸= pomset logic.

Unfolding and dissecting the proof of coNP-completeness of pomset logic correctness
led to a relation to classical logic provability. The details of this are subject of ongoing
research and would go beyond the scope of this paper. But the outcome let us to the
study of linear inferences [5, 6] which are a special case of balanced tautologies [27]. We
were looking at linear inferences that are tautologies in classical logic but not provable
in linear logic. The simplest such inference is (A ∧ D) ∨ (B ∧ C) ⇒ [A ∨ B] ∧ [D ∨ C], which
corresponds to the medial rule of system SKS [2], a formulation of classical logic in the
calculus of structures. Its linear version (A � D) O (B � C) ⊸ [A O B] � [D O C] is, of course,
not a theorem of MLL0. This can be immediately seen by inspecting the RB-prenet for the
formula (a � d) O (b � c) ⊸ [a O b] � [c O d], which is shown in Figure 7a, and which contains
several (chordless) æ-cycles. Then, on the right of that “medial RB-prenet”, in Figure 7b,
we replace the B-edges corresponding to the atoms by a pair of B-edges connected by an
(undirected) R-edge. This does not affect provability, as no æ-cycles are added or removed.
Then, in Figure 7c, we give these new R-edges a direction. By choosing the “right” direction,
we can break all æ-cycles, which means the result becomes correct with respect to the pomset
logic correctness criterion. But the resulting formula (or sequent) remains unprovable in
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BV. To simplify the proof of non-provability in BV, we added further R-edges, as shown in
Figure 7d, that do not break provability in pomset logic. The result is an intermediate step
between the RB-prenets in Figure 4 and Figure 5.

The knowledge that BV and pomset logic are different, leads to four immediate open
problems: (i) can we find a proof net correctness criterion for BV, (ii) can we find a deductive
proof system for pomset logic that is independent from the prenets9, (iii) which of the two
logics is better, and (iv) are these two the only ones, or are there more logics having these
three connectives and being conservative over MLL0?
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Abstract
We study the synthesis problem for one-counter automata with parameters. One-counter automata
are obtained by extending classical finite-state automata with a counter whose value can range over
non-negative integers and be tested for zero. The updates and tests applicable to the counter can
further be made parametric by introducing a set of integer-valued variables called parameters. The
synthesis problem for such automata asks whether there exists a valuation of the parameters such
that all infinite runs of the automaton satisfy some ω-regular property. Lechner showed that (the
complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger
arithmetic with divisibility. In this work (i) we argue that said fragment, called ∀∃RPAD+, is
unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable
restriction of ∀∃RPAD+, (ii) we prove that the synthesis problem is decidable in general and in
2NEXP for several fixed ω-regular properties. Finally, (iii) we give polynomial-space algorithms for
the special cases of the problem where parameters can only be used in counter tests.
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1 Introduction

Our interest in one-counter automata (OCA) with parameters stems from their usefulness as
models of the behaviour of programs whose control flow is determined by counter variables.

1 def funprint (x):
2 i = 0
3 i += x
4 while i >= 0:
5 if i == 0:
6 print (" Hello ")
7 if i == 1:
8 print (" world ")
9 if i >= 2:

10 assert ( False)
11 i -= 1
12 # end program
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Indeed, the executions of such a program can be over-approximated by its control-flow graph
(CFG) [1]. The CFG can be leveraged to get a conservative response to interesting questions
about the program, such as: “is there a value of x such that the false assertion is avoided?”
The CFG abstracts away all variables and their values (see Figure 1) and this introduces
non-determinism. Hence, the question becomes: “is it the case that all paths from the initial
vertex avoid the one labelled with 10?” In this particular example, the abstraction is too
coarse and thus we obtain a false negative. In such cases, the abstraction of the program
should be refined [9]. A natural refinement of the CFG in this context is obtained by tracking
the value of i (cf. program graphs in [2]). The result is an OCA with parameters such that:
For x ∈ {0, 1} it has no run that reaches the state labelled with 10. This is an instance of a
safety (parameter) synthesis problem for which the answer is positive.

1–2

3 4 5

6

7

8

9 11

10
assertion

12
end

1–2

3 4 5

6

7

8

9 11

10
assertion

12
end

+x

≥ 0

= 0 = 1 ≥ 2

−1

Figure 1 On the left, the CFG with vertex labels corresponding to source code line numbers; on
the right, the CFG extended by tracking the value of i.

In this work, we focus on the parameter synthesis problems for given OCA with parameters
and do not consider the problem of obtaining such an OCA from a program (cf. [10]).

Counter automata [29] are a classical model that extend finite-state automata with integer-
valued counters. These have been shown to be useful in modelling complex systems, such as
programs with lists and XML query evaluation algorithms [5, 8]. Despite their usefulness as
a modelling formalism, it is known that two counters suffice for counter automata to become
Turing powerful. In particular, this means that most interesting questions about them are
undecidable [29]. To circumvent this, several restrictions of the model have been studied
in the literature, e.g. reversal-bounded counter automata [18] and automata with a single
counter. In this work we focus on an extension of the latter: OCA with parametric updates
and parametric tests.

An existential version of the synthesis problems for OCA with parameters was considered
by Göller et al. [12] and Bollig et al. [4]. They ask whether there exist a valuation of the
parameters and a run of the automaton which satisfies a given ω-regular property. This is in
contrast to the present problem where we quantify runs universally. (This is required for
the conservative-approximation use case described in the example above.) We note that, of
those two works, only [12] considers OCA with parameters allowed in both counter updates
and counter tests while [4] studies OCA with parametric tests only. In this paper, unless
explicitly stated otherwise, we focus on OCA with parametric tests and updates like in [12].
Further note that the model we study has an asymmetric set of tests that can be applied to
the counter: lower-bound tests, and equality tests (both parametric and non-parametric).
The primary reason for this is that adding upper-bound tests results in a model for which
even the decidability of the (arguably simpler) existential reachability synthesis problem is a
long-standing open problem [7]. Namely, the resulting model corresponds to Ibarra’s simple
programs [17].

In both [12] and [4], the synthesis problems for OCA with parameters were stated as open.
Later, Lechner [21] gave an encoding for the complement of the synthesis problems into a
one-alternation fragment of Presburger arithmetic with divisibility (PAD). Her encoding relies
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BIL ∀∃RPAD+ ∀∃RPAD Π1-PAD

Known undecidable [6, 30]UndecidableDecidable

⊂ ⊂ ⊂

Figure 2 Syntactical fragments of PAD ordered w.r.t. their language (of sentences).

Table 1 Known and new complexity bounds for parameter synthesis problems.

Lower bound Upper bound
LTL PSPACE-hard [32] in 3NEXP (Cor. 17)
Reachability coNP-hard (Prop. 23) in 2NEXP (Thm. 10)Safety, Büchi, coBüchi NPNP-hard [21, 22]

on work by Haase et al. [16], which shows how to compute a linear-arithmetic representation
of the reachability relation of OCA (see [24] for an implementation). In the same work, Haase
et al. show that the same can be achieved for OCA with parameters using the divisibility
predicate. In [21], Lechner goes on to consider the complexity of (validity of sentences in)
the language corresponding to the one-alternation fragment her encoding targets. An earlier
paper [6] by Bozga and Iosif argues that the fragment is decidable and Lechner carefully
repeats their argument while leveraging bounds on the bitsize of solutions of existential
PAD formulas [23] to argue the complexity of the fragment is co2NEXP. For ω-regular
properties given as a linear temporal logic (LTL) formula, her encoding is exponential in the
formula and thus it follows that the LTL synthesis problem is decidable and in 3NEXP.

Problems in the literature. Presburger arithmetic is the first-order theory of ⟨Z, 0, 1,+, <⟩.
Presburger arithmetic with divisibility (PAD) is the extension of PA obtained when we
add a binary divisibility predicate. The resulting language is undecidable [30]. In fact, a
single quantifier alternation already allows to encode general multiplication, thus becoming
undecidable [27]. However, the purely existential (Σ0) and purely universal (Π0) fragments
have been shown to be decidable [3, 26].

The target of Lechner’s encoding is ∀∃RPAD+, a subset of all sentences in the Π1-
fragment of PAD. Such sentences look as follows: ∀x∃y

∨
i∈I

∧
j∈Ji

fj(x) | gj(x,y) ∧φi(x,y)
where φ is a quantifier-free PAD formula without divisibility. Note that all divisibility
constraints appear in positive form (hence the +) and that, within divisibility constraints,
the existentially-quantified variables yi appear only on the right-hand side (hence the ∃R).
In [6], the authors give a quantifier-elimination procedure for sentences in a further restricted
fragment we call the Bozga-Iosif-Lechner fragment (BIL) that is based on “symbolically
applying” the generalized Chinese remainder theorem (CRT) [20]. Their procedure does not
eliminate all quantifiers but rather yields a sentence in the Π0-fragment of PAD. (Decidability
of the BIL language would then follow from the result of Lipshitz [26].) Then, they briefly
argue how the algorithm generalizes to ∀∃RPAD+. There are two crucial problems in the
argument from [6] that we have summarized here (and which were reproduced in Lechner’s
work): First, the quantifier-elimination procedure of Bozga and Iosif does not directly work
for BIL. Indeed, not all BIL sentences satisfy the conditions required for the CRT to be
applicable as used in their algorithm. Second, there is no way to generalize their algorithm
to ∀∃RPAD+ since the language is undecidable. Interestingly, undecidability follows directly
from other results in [6, 21]. In Lechner’s thesis [22], the result from [6] was stated as being
under review. Correspondingly, the decidability of the synthesis problems for OCA with
parameters was only stated conditionally on ∀∃RPAD+ being decidable.
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Our contribution. In Section 2, using developments from [6, 21], we argue that ∀∃RPAD+

is undecidable (Theorem 2). Then, in the same section, we “fix” the definition of the BIL
fragment by adding to it a necessary constraint so that the quantifier-elimination procedure
from [6] works correctly. For completeness, and to clarify earlier mistakes in the literature, we
recall Lechner’s analysis of the algorithm and conclude, just as she did, that the complexity
of BIL is in co2NEXP [21] (Theorem 4). After some preliminaries regarding OCA with
parameters in Section 3, we re-establish decidability of various synthesis problems in Section 4
(Theorem 10 and Corollary 17, see Table 1 for a summary). To do so, we follow Lechner’s
original idea from [21] to encode them into ∀∃RPAD+ sentences. However, to ensure we
obtain a BIL sentence, several parts of her encoding have to be adapted. Finally, in Section 5
we make small modifications to the work of Bollig et al. [4] to give more efficient algorithms
that are applicable when only tests have parameters (Theorem 18 and Corollary 19).

2 Presburger Arithmetic with divisibility

Presburger arithmetic (PA) is the first-order theory over ⟨Z, 0, 1,+, <⟩ where + and < are
the standard addition and ordering of integers. Presburger arithmetic with divisibility (PAD)
is the extension of PA obtained when we add the binary divisibility predicate |, where
for all a, b ∈ Z we have a | b ⇐⇒ ∃c ∈ Z : b = ac. Let X be a finite set of first-order
variables. A linear polynomial over x = (x1, . . . , xn) ∈ Xn is given by the syntax rule:
p(x) ::=

∑
1≤i≤n aixi + b, where the ai, b and the first-order variables from x range over Z.

In general, quantifier-free PAD formulas have the grammar: φ ::= φ1 ∧φ2 | ¬φ | f(x) P g(x),
where P can be the order predicate < or the divisibility predicate |, and f, g are linear
polynomials. We define the standard Boolean abbreviation φ1 ∨ φ2 ⇐⇒ ¬(¬φ1 ∧ ¬φ2).
Moreover we introduce the abbreviations f(x) ≤ g(x) ⇐⇒ f(x) < g(x) + 1 and f(x) =
g(x) ⇐⇒ f(x) ≤ g(x) ∧ g(x) ≤ f(x).

The size |φ| of a PAD formula φ is defined by structural induction over |φ|: For a linear
polynomial p(x) we define |p(x)| as the number of symbols required to write it if the coefficients
are given in binary. Then, we define |φ1 ∧ φ2| def= |φ1| + |φ2| + 1, |¬φ| def= |∃x.φ| def= |φ| + 1,
|f(x) P g(x)| def= |f(x)| + |g(x)| + 1.

2.1 Allowing one restricted alternation

We define the language ∀∃RPAD of all PAD sentences allowing a universal quantification
over some variables, followed by an existential quantification over variables that may not
appear on the left-hand side of divisibility constraints. Formally, ∀∃RPAD is the set of all
PAD sentences of the form: ∀x1 . . . ∀xn∃y1 . . . ∃ymφ(x,y) where φ is a quantifier-free PAD
formula and all its divisibility constraints are of the form f(x) | g(x,y).

Positive-divisibility fragment. We denote by ∀∃RPAD+ the subset of ∀∃RPAD sentences φ
where the negation operator can only be applied to the order predicate < and the only other
Boolean operators allowed are conjunction and disjunction. In other words, ∀∃RPAD+ is a
restricted negation normal form in which divisibility predicates cannot be negated. Lechner
showed in [21] that all ∀∃RPAD sentences can be translated into ∀∃RPAD+ sentences.

▶ Proposition 1 (Lechner’s trick [21]). For all φ1 in ∀∃RPAD one can compute φ2 in
∀∃RPAD+ such that φ1 is true if and only if φ2 is true.
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2.2 Undecidability of both one-alternation fragments
We will now prove that the language ∀∃RPAD+ is undecidable, that is, to determine whether
a given sentence from ∀∃RPAD+ is true is an undecidable problem.

▶ Theorem 2. The language ∀∃RPAD+ is undecidable.

From Proposition 1 it follows that arguing ∀∃RPAD is undecidable suffices to prove the
theorem. The latter was proven in [6]. More precisely, they show the complementary language
is undecidable. Their argument consists in defining the least-common-multiple predicate, the
squaring predicate, and subsequently integer multiplication. Undecidability thus follows from
the MRDP theorem [28] which states that satisfiability for such equations (i.e. Hilbert’s 10th
problem) is undecidable. Hence, Theorem 2 is a direct consequence of the following result.

▶ Proposition 3 (From [6]). The language ∀∃RPAD is undecidable.

2.3 The Bozga-Iosif-Lechner fragment
The Bozga-Iosif-Lechner (BIL) fragment is the set of all ∀∃RPAD+ sentences of the form:

∀x1 . . . ∀xn∃y1 . . . ∃ym(x < 0) ∨
∨
i∈I

∧
j∈Ji

(fj(x) | gj(x,y) ∧ fj(x) > 0) ∧ φi(x) ∧ y ≥ 0

where I, Ji ⊆ N are all finite index sets, the fj and gj are linear polynomials and the φi(x)
are quantifier-free PA formulas over the variables x. Note that, compared to ∀∃RPAD+, BIL
sentences only constraint non-negative values of x. (This technicality is necessary due to
our second constraint below.) For readability, henceforth, we omit (x < 0) and just assume
the x take non-negative integer values, i.e. from N. Additionally, it introduces the following
three important constraints:
1. The y variables may only appear on the right-hand side of divisibility constraints.
2. All divisibility constraints fj(x) | gj(x,y) are conjoined with fj(x) > 0.
3. The y variables are only allowed to take non-negative values.
It should be clear that the first constraint is necessary to avoid undecidability. Indeed, if the
y variables were allowed in the PA formulas φi(x) then we could circumvent the restrictions
of where they appear in divisibilities by using equality constraints. The second constraint is
similar in spirit. Note that if a = 0 then a | b holds if and only if b = 0 so if the left-hand side
of divisibility constraints is allowed to be 0 then we can encode PA formulas on x and y as
before. Also, the latter (which was missing in [6, 21]) will streamline the application of the
generalized Chinese remainder theorem in the algorithm described in the sequel. While the
third constraint is not required for decidability, it is convenient to include it for Section 4,
where we encode instances of the synthesis problem into the BIL fragment.

In the rest of this section, we recall the decidability proof by Bozga and Iosif [6] and
refine Lechner’s analysis [21] to obtain the following complexity bound.

▶ Theorem 4. The BIL-fragment language is decidable in co2NEXP.

The idea of the proof is as follows: We start from a BIL sentence. First, we use the
generalized Chinese remainder theorem (CRT, for short) to replace all of the existentially
quantified variables in it with a single universally quantified variable. We thus obtain a
sentence in ∀PAD (i.e. the Π0-fragment of PAD) and argue that the desired result follows
from the bounds on the bitsize of satisfying assignments for existential PAD formulas [23].
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▶ Theorem 5 (Generalized Chinese remainder theorem [20]). Let mi ∈ N>0, ai, ri ∈ Z for
1 ≤ i ≤ n. Then, there exists x ∈ Z such that

∧n
i=1 mi | (aix− ri) if and only if:

∧
1≤i,j≤n

gcd(aimj , ajmi) | (airj − ajri) ∧
n∧

i=1
gcd(ai,mi) | ri.

The solution for x is unique modulo lcm(m′
1, . . . ,m

′
n), where m′

i = mi/gcd(ai,mi).

From a BIL sentence, we apply the CRT to the rightmost existentially quantified variable
and get a sentence with one less existentially quantified variable and with gcd-expressions.
Observe that the second restriction we highlighted for the BIL fragment (the conjunction
with fj(x) > 0) is necessary for the correct application of the CRT. We will later argue that
we can remove the gcd expressions to obtain a sentence in ∀PAD.

▶ Example 6. Consider the sentence:

∀x∃y1∃y2
∨
i∈I

∧
j∈Ji

(fj(x) | gj(x,y) ∧ fj(x) > 0) ∧ φi(x) ∧ y ≥ 0.

Let αj denote the coefficient of y2 in gj(x,y) and rj(x, y1) def= −(gj(x,y) − αjy2). We can
rewrite the above sentence as ∀x∃y1

∨
i∈I ψi(x, y1) ∧ φ′

i(x) ∧ y1 ≥ 0 where:

ψi(x, y1) = ∃y2
∧

j∈Ji

(fj(x) | (αjy2 − rj(x, y1))) ∧ y2 ≥ 0, and

φ′
i(x) = φi(x) ∧

∧
j∈Ji

fj(x) > 0.

Applying the CRT, ψi(x, y1) can equivalently be written as follows:∧
j,k∈Ji

gcd(αkfj(x), αjfk(x)) | (αjrk(x, y1) − αkrj(x, y1)) ∧
∧

j∈Ji

gcd(αj , fj(x)) | rj(x, y1).

Note that we have dropped the y2 ≥ 0 constraint without loss of generality since the CRT
states that the set of solutions forms an arithmetic progression containing infinitely many
positive (and negative) integers. This means the constraint will be trivially satisfied for any
valuation of x and y1 which satisfies ψi(x, y1) ∧ φi(x) ∧ y1 ≥ 0 for some i ∈ I. Observe that
y1 only appears in polynomials on the right-hand side of divisibilities.

The process sketched in the example can be applied in general to BIL sentences sequentially
starting from the rightmost quantified yi. At each step, the size of the formula is at most
squared. In what follows, it will be convenient to deal with a single polyadic gcd instead of
nested binary ones. Thus, using associativity of gcd and pushing coefficients inwards – i.e.
using the equivalence a · gcd(x, y) ≡ gcd(ax, ay) for a ∈ N – we finally obtain a sentence:

∀x1 . . . ∀xn

∨
i∈I

∧
j∈Li

(gcd({f ′
j,k(x)}Kj

k=1) | g′
j(x)) ∧ φ′

i(x) (1)

where |Li|, |Kj |, and the coefficients may all be doubly-exponential in the number m of
removed variables, due to iterated squaring.
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Eliminating the gcd operator. In this next step, our goal is to obtain an ∀PAD sentence
from Equation (1). Recall that ∀PAD “natively” allows for negated divisibility constraints.
(That is, without having to encode them using Lechner’s trick.) Hence, to remove expressions
in terms of gcd from Equation (1), we can use the following identity:

gcd(f1(x), . . . , fn(x)) | g(x) ⇐⇒ ∀d

(
n∧

i=1
d | fi(x)

)
→ d | g(x).

This substitution results in a constant blowup of the size of the sentence. The above
method gives us a sentence ∀x∀dψ(x, d), where ψ(x, d) is a quantifier-free PAD formula. To
summarize:

▶ Lemma 7. For any BIL sentence φ = ∀x1 . . . ∀xn∃y1 . . . ∃ym

∨
i∈I φi(x,y) we can construct

an ∀PAD sentence ψ = ∀x1 . . . ∀xn∀d
∨

i∈I ψi(x, d) such that: φ is true if and only if ψ is
true and for all i ∈ I, |ψi| ≤ |φi|2

m . The construction is realizable in time O(|φ|2m).

To prove Theorem 4, the following small-model results for purely existential PAD formulas
and BIL will be useful.

▶ Theorem 8 ([23, Theorem 14]). Let φ(x1, . . . , xn) be a ∃PAD formula. If φ has a solution
then it has a solution (a1, . . . , an) ∈ Zn with the bitsize of each ai bounded by |φ|poly(n).

▶ Corollary 9. Let ∀x1 . . . ∀xnφ(x1, . . . , xn) be a BIL sentence. If ¬φ has a solution then it
has a solution (a1, . . . , an) ∈ Zn with the bitsize of each ai bounded by |φ|2mpoly(n+1).

Proof. Using Lemma 7, we translate the BIL sentence to ∀x1 . . . ∀xn∀dψ(x, d), where the
latter is an ∀PAD sentence. Then, using Theorem 8, we get that the ∃PAD formula ¬ψ(x, d)
admits a solution if and only if it has one with bitsize bounded by |ψ|poly(n+1). Now, from
Lemma 7 we have that |ψ| is bounded by |φ|2m . Hence, we get that the bitsize of a solution
is bounded by: |φ|2mpoly(n+1). ◀

We are now ready to prove the theorem.

Proof of Theorem 4. As in the proof of Corollary 9, we translate the BIL sentence to
∀x1 . . . ∀xn∀dψ(x, d). Note that our algorithm thus far runs in time: O

(
|φ|2m). By Co-

rollary 9, if ¬ψ(x, d) has a solution then it has one encodable in binary using a doubly
exponential amount of bits with respect to the size of the input BIL sentence. The naive
guess-and-check decision procedure applied to ¬ψ(x, d) gives us a co2NEXP algorithm for
BIL sentences. Indeed, after computing ψ(x, d) and guessing a valuation, checking it satisfies
¬ψ takes polynomial time in the bitsize of the valuation and |ψ|, hence doubly exponential
time in |φ|. ◀

3 Succinct One-Counter Automata with Parameters

We now define OCA with parameters and recall some basic properties. The concepts and
observations we introduce here are largely taken from [16] and the exposition in [22].

A succinct parametric one-counter automaton (SOCAP) is a tuple A = (Q,T, δ,X),
where Q is a finite set of states, X is a finite set of parameters, T ⊆ Q×Q is a finite set of
transitions and δ : T → Op is a function that associates an operation to every transition.
The set Op = CU ⊎ PU ⊎ ZT ⊎ PT is the union of: Constant Updates CU def= {+a : a ∈ Z},
Parametric Updates PU def= {Sx : S ∈ {+1,−1}, x ∈ X}, Zero Tests ZT def= {= 0}, and
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Parametric Tests PT def= {= x,≥ x : x ∈ X}. We denote by “= 0” or “= x” an equality
test between the value of the counter and zero or the value of x respectively; by “≥ x”, a
lower-bound test between the values of the counter and x. A valuation V : X → N assigns to
every parameter a natural number. We assume CU are encoded in binary, hence the S in
SOCAP. We omit “parametric” if X = ∅ and often write q op−→ q′ to denote δ(q, q′) = op.

A configuration is a pair (q, c) where q ∈ Q and c ∈ N is the counter value. Given
a valuation V : X → N and a configuration (q0, c0), a V -run from (q0, c0) is a sequence
ρ = (q0, c0)(q1, c1) . . . such that for all i ≥ 0 the following hold: qi

opi+1−−−→ qi+1; ci = 0,
ci = V (x), and ci ≥ V (x), if δ(qi, qi+1) is “= 0”, “= x”, and “≥ x”, respectively; and ci+1 is
obtained from ci based on the counter operations. That is, ci+1 is ci if δ(qi, qi+1) ∈ (ZT ∪ PT );
ci + a if δ(qi, qi+1) = +a; ci + S · V (x) if δ(qi, qi+1) = Sx. We say ρ reaches a state qf ∈ Q if
there exists j ∈ N, such that qj = qf . Also, ρ reaches or visits a set of states F ⊆ Q iff ρ

reaches a state qf ∈ F . If V is clear from the context we just write run instead of V -run.
The underlying (directed) graph of A is GA = (Q,T ). A V -run ρ = (q0, c0)(q1, c1) . . . in A

induces a path π = q0q1 . . . in GA. We assign weights to GA as follows: For t ∈ T , weight(t) is
0 if δ(t) ∈ ZT ∪ PT ; a if δ(t) = +a; and S ·V (x) if δ(t) = Sx. We extend the weight function
to finite paths in the natural way. Namely, we set weight(q0 . . . qn) def=

∑n−1
i=0 weight(qi, qi+1).

Synthesis problems. The synthesis problem asks, given a SOCAP A, a state q and an
ω-regular property p, whether there exists a valuation V such that all infinite V -runs from
(q, 0) satisfy p. We focus on the following classes of ω-regular properties. Given a set of
target states F ⊆ Q and an infinite run ρ = (q0, c0)(q1, c1) . . . we say ρ satisfies:

the reachability condition if qi ∈ F for some i ∈ N;
the Büchi condition if qi ∈ F for infinitely many i ∈ N;
the coBüchi condition if qi ∈ F for finitely many i ∈ N only;
the safety condition if qi ̸∈ F for all i ∈ N;
the linear temporal logic (LTL) formula φ over a set of atomic propositions P – and with
respect to a labelling function f : Q → 2P – if f(q0)f(q1) . . . |= φ.1

We will decompose the synthesis problems into reachability sub-problems. It will thus be
useful to recall the following connection between reachability (witnesses) and graph flows.

Flows. For a directed graph G = (V,E), we denote the set of immediate successors of
v ∈ V by vE := {w ∈ V | (v, w) ∈ E} and the immediate predecessors of v by Ev,
defined analogously. An s–t flow is a mapping f : E → N that satisfies flow conservation:
∀v ∈ V \ {s, t} :

∑
u∈Ev f(u, v) =

∑
u∈vE f(v, u). That is, the total incoming flow equals

the total outgoing flow for all but the source and the target vertices. We then define the
value of a flow f as: |f | def=

∑
v∈sE f(s, v) −

∑
u∈Es f(u, s). We denote by support(f) the set

{e ∈ E | f(e) > 0} of edges with non-zero flow. A cycle in a flow f is a cycle in the sub-graph
induced by support(f). For weighted graphs, we define weight(f) def=

∑
e∈E f(e)weight(e).

Path flows. Consider a path π = v0v1 . . . in G. We denote by fπ its Parikh image, i.e. fπ

maps each edge e to the number of times e occurs in π. A flow f is called a path flow if there
exists a path π such that f = fπ. Finally, we observe that an s–t path flow f in G induces a
t–s path flow f ′ with f ′(u, v) = f(v, u), for all (u, v) ∈ E, in the skew transpose of G.

1 See, e.g., [2] for the classical semantics of LTL.
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4 Encoding Synthesis Problems into the BIL Fragment

In this section, we prove that all our synthesis problems are decidable. More precisely, we
establish the following complexity upper bounds.

▶ Theorem 10. The reachability, Büchi, coBüchi, and safety synthesis problems for succinct
one-counter automata with parameters are all decidable in 2NEXP.

The idea is as follows: we focus on the coBüchi synthesis problem and reduce its complement to
the truth value of a BIL sentence. To do so, we follow Lechner’s encoding of the complement
of the Büchi synthesis problem into ∀∃RPAD+ [21]. The encoding heavily relies on an
encoding for (existential) reachability from [16]. We take extra care to obtain a BIL sentence
instead of an ∀∃RPAD+ one as Lechner originally does.

It can be shown that the other synthesis problems reduce to the coBüchi one in polynomial
time. The corresponding bounds thus follow from the one for coBüchi synthesis. The proof
of the following lemma is given in the long version of the paper.

▶ Lemma 11. The reachability, safety and the Büchi synthesis problems can be reduced to
the coBüchi synthesis problem in polynomial time.

Now the cornerstone of our reduction from the complement of the coBüchi synthesis
problem to the truth value of a BIL sentence is an encoding of reachability certificates into
∀∃RPAD formulas which are “almost” in BIL. In the following subsections we will focus on a
SOCAP A = (Q,T, δ,X) with X = {x1, . . . , xn} and often write x for (x1, . . . , xn). We will
prove that the existence of a V -run from (q, c) to (q′, c′) can be reduced to the satisfiability
problem for such a formula.

▶ Proposition 12. Given states q, q′, one can construct in deterministic exponential time
in |A| a PAD formula: φ

(q,q′)
reach (x, a, b) = ∃y

∨
i∈I φi(x,y) ∧ ψi(y, a, b) ∧ y ≥ 0 such that

∀x∃y
∨

i∈I φi(x,y) ∧ y ≥ 0 is a BIL sentence, the ψi(y, a, b) are quantifier-free PA formulas,
and additionally:

a valuation V of X∪{a, b} satisfies φ(q,q′)
reach iff there is a V -run from (q, V (a)) to (q′, V (b));

the bitsize of constants in φ
(q,q′)
reach is of polynomial size in |A|;

|φ(q,q′)
reach | is at most exponential with respect to |A|; and

the number of y variables is polynomial with respect to |A|.
Below, we make use of this proposition to prove Theorem 10. Then, we prove some auxiliary
results in Section 4.1 and, in Section 4.2, we present a sketch of our proof of Proposition 12.

We will argue that ∀x∃a∃bφ(q,q′)
reach (x, a, b) can be transformed into an equivalent BIL

sentence. Note that for this to be the case it suffices to remove the ψi(y, a, b) subformulas.
Intuitively, since these are quantifier-free PA formulas, their set of satisfying valuations is
semi-linear (see, for instance, [15]). Our intention is to remove the ψi(y, a, b) and replace
the occurrences of y, a, b in the rest of φ(q,q′)

reach (x, a, b) with linear polynomials “generating”
their set of solutions. This is formalized below.

Affine change of variables. Let A ∈ Zm×n be an integer matrix of size m× n of rank r,
and b ∈ Zm. Let C ∈ Zp×n be an integer matrix of size p × n such that ( A

C ) has rank s,
and d ∈ Zp. We write µ for the maximum absolute value of an (s − 1) × (s − 1) or s × s

sub-determinant of the matrix
(

A b
C d

)
that incorporates at least r rows from

(
A b

)
.

▶ Theorem 13 (From [33]). Given integer matrices A ∈ Zm×n and C ∈ Zp×n, integer vectors
b ∈ Zm and d ∈ Zp, and µ defined as above, there exists a finite set I, a collection of n×(n−r)
matrices E(i), and n× 1 vectors u(i), indexed by i ∈ I, all with integer entries bounded by
(n+ 1)µ such that: {x ∈ Zn : Ax = b ∧ Cx ≥ d} =

⋃
i∈I{E(i)y + u(i) : y ∈ Zn−r,y ≥ 0}.
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We are now ready to prove Theorem 10.

Proof of Theorem 10. We will first prove that the complement of the coBüchi synthesis
problem can be encoded into a BIL sentence. Recall that the complement of the coBüchi
synthesis problem asks: given a SOCAP A with parameters X, for all valuations does there
exist an infinite run from a given configuration (q, 0), that visits the target set F infinitely
many times. Without loss of generality, we assume that the automaton has no parametric
tests as they can be simulated using parametric updates and zero tests.

The idea is to check if there exists a reachable “pumpable cycle” containing one of the
target states. Formally, given the starting configuration (q, 0), we want to check if we can
reach a configuration (qf , k), where qf ∈ F and k ≥ 0 and then we want to reach qf again via
a pumpable cycle. This means that starting from (qf , k) we reach the configuration (qf , k)
again or we reach a configuration (qf , k

′) with k′ ≥ k without using zero-test transitions.
Note that reachability while avoiding zero tests is the same as reachability in the sub-
automaton obtained after deleting all the zero-test transitions. We write φreach−nt for
the φreach formula constructed for that sub-automaton as per Proposition 12. The above
constraints can be encoded as a formula φBüchi(x) = ∃k∃k′∨

qf ∈F ζ(x, k, k′) where the

subformula ζ is: (k ≤ k′) ∧ φ
(q,qf )
reach (x, 0, k) ∧

(
φ

(qf ,qf )
reach−nt(x, k, k′) ∨ φ

(qf ,qf )
reach (x, k, k)

)
. Finally,

the formula φBüchi(x) will look as follows:

∃y∃k∃k′
∨
i∈I

∧
j∈Ji

(fj(x) | gj(x,y)) ∧ φi(x) ∧ ψi(y, k, k′) ∧ y ≥ 0

where, by Proposition 12, the φi(x) are quantifier-free PA formulas over x constructed by
grouping all the quantifier-free PA formulas over x. Similarly, we can construct ψi(y, k, k′)
by grouping all the quantifier free formulas over y, k and k′. Now, we use the affine change
of variables to remove the formulas ψi(y, k, k′). Technically, the free variables from the
subformulas ψi will be replaced in all other subformulas by linear polynomials on newly
introduced variables z. Hence, the final formula φBüchi(x) becomes:

∃z
∨
i∈I′

∧
j∈Ji

(fj(x) | gj(x, z)) ∧ φi(x) ∧ z ≥ 0.

Note that, after using the affine change of variables, the number of z variables is bounded
by the number of old existentially quantified variables (y, k, k′). However, we have introduced
exponentially many new disjuncts.2

By construction, for a valuation V there is an infinite V -run in A from (q, 0) that visits the
target states infinitely often iff φBüchi(V (x)) is true. Hence, ∀x(x < 0 ∨ φBüchi(x)) precisely
encodes the complement of the coBüchi synthesis problem. Also, note that it is a BIL
sentence since the subformulas (and in particular the divisibility constraints) come from our
usage of Proposition 12. Now, the number of z variables, say m, is bounded by the number
of y variables before the affine change of variables which is polynomial with respect to |A|
from Proposition 12. Also, the bitsize of the constants in φBüchi is polynomial in |A| though
the size of the formula is exponential in |A|. Now, using Lemma 7, we construct an ∀PAD
sentence ∀x∀dψ(x, d) from ∀x(x < 0 ∨ φBüchi(x)). By Corollary 9, ¬ψ admits a solution of
bitsize bounded by: exp(ln(|φBüchi|)2mpoly(n+ 1)) = exp(|A| · 2poly(|A|)poly(n+ 1)), which
is doubly exponential in the size of |A|. As in the proof of Theorem 4, a guess-and-check
algorithm for ¬ψ gives us the desired 2NEXP complexity result for the coBüchi synthesis
problem. By Lemma 11, the other synthesis problems have the same complexity. ◀

2 Indeed, because of the bounds on the entries of the matrices and vectors, the cardinality of the set I is
exponentially bounded.
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In the sequel we sketch our proof of Proposition 12.

4.1 Reachability certificates
We presently recall the notion of reachability certificates from [16]. Fix a SOCAP A and a
valuation V . A flow f in GA is a reachability certificate for two configurations (q, c), (q′, c′)
in A if there is a V -run from (q, c) to (q′, c′) that induces a path π such that f = fπ and
one of the following holds: (type 1) f has no positive-weight cycles, (type 2) f has no
negative-weight cycles, or (type 3) f has a positive-weight cycle that can be taken from (q, c)
and a negative-weight cycle that can be taken to (q′, c′).

In the sequel, we will encode the conditions from the following result into a PAD formula
so as to accommodate parameters. Intuitively, the proposition states that there is a run from
(q, c) to (q′, c′) if and only if there is one of a special form: a decreasing prefix (type 1), a
positive cycle leading to a plateau followed by a negative cycle (type 3), and an increasing
suffix (type 2). Each one of the three sub-runs could in fact be an empty run.

▶ Proposition 14 ([13, Lemma 4.1.14]). If (q′, c′) is reachable from (q, c) in a SOCAP with
X = ∅ and without zero tests then there is a run ρ = ρ1ρ2ρ3 from (q, c) to (q′, c′), where ρ1,
ρ2, ρ3, each have a polynomial-size reachability certificate of type 1, 3 and 2, respectively.

Encoding the certificates. Now, we recall the encoding for the reachability certificates
proposed by Lechner [21, 22]. Then, we highlight the changes necessary to obtain the required
type of formula. We begin with type-1 and type-3 certificates.

▶ Lemma 15 (From [22, Lem. 33 and Prop. 36]). Suppose A has no zero tests and let
t ∈ {1, 2, 3}. Given states q, q′, one can construct in deterministic exponential time the
existential PAD formula Φ(q,q′)

t (x, a, b). Moreover, a valuation V of X ∪ {a, b} satisfies
Φ(q,q′)

t (x, a, b) iff there is a V -run from (q, V (a)) to (q′, V (b)) that induces a path π with fπ

a type-t reachability certificate.

The formulas Φ(q,q′)
t from the result above look as follows:∨

i∈I

∃z
∧

j∈Ji

mj(x) | zj ∧ (mj(x) > 0 ↔ zj > 0) ∧ φi(x) ∧ ψi(z, a, b) ∧ z ≥ 0

where |I| and the size of each disjunct are exponential.3 Further, all the φi and ψi are
quantifier-free PA formulas and the mj(x) are all either x, −x, or n ∈ N>0.

We observe that the constraint (mj(x) > 0 ↔ zj > 0) regarding when the variables can
be 0, can be pushed into a further disjunction over which subset of X is set to 0. In one
case the corresponding mj(x)’s and zj ’s are replaced by 0, in the remaining case we add
to φi and ψi the constraints zj > 0 and mj(x) > 0 respectively. We thus obtain formulas
Ψ(q,q′)

t (x, a, b) with the following properties.

▶ Lemma 16. Suppose A has no zero tests and let t ∈ {1, 2, 3}. Given states q, q′, one can con-
struct in deterministic exponential time a PAD formula Ψ(q,q′)

t (x, a, b) = ∃y
∨

i∈I φi(x,y) ∧
ψi(y, a, b) ∧ y ≥ 0 s.t. ∀x∃y

∨
i∈I φi(x,y) ∧ y ≥ 0 is a BIL sentence, the ψi(y, a, b) are

quantifier-free PA formulas, and additionally:

3 Lechner [21] actually employs a symbolic encoding of the Bellman-Ford algorithm to get polynomial
disjuncts in her formula. However, a naïve encoding – while exponential – yields the formula we present
here and streamlines its eventual transformation to BIL.
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a valuation V of X ∪ {a, b} satisfies Ψ(q,q′)
t iff there is a V -run from (q, V (a)) to (q′, V (b))

that induces a path π such that fπ is a type-t reachability certificate,
the bitsize of constants in Ψ(q,q′)

t is of polynomial size in |A|,
|Ψ(q,q′)

t | is at most exponential with respect to |A|, and
the number of y variables is polynomial with respect to |A|.

4.2 Putting everything together
In this section, we combine the results from the previous subsection to construct φreach for
Proposition 12. The construction, in full detail, and a formal proof that φreach enjoys the
claimed properties are given in the long version of this paper. First, using Proposition 14 and
the lemmas above, we define a formula φ(q,q′)

reach−nt(x, a, b) that is satisfied by a valuation V of
X ∪ {a, b} iff there is a V -run from (q, V (a)) to (q′, V (b)) without any zero-test transitions.
To do so, we use formulas for the sub-automaton obtained by removing from A all zero-test
transitions. Then, the formula φ(q,q′)

reach (x, a, b) expressing general reachability can be defined by
taking a disjunction over all orderings on the zero tests. In other words, for each enumeration
of zero-test transitions we take the conjunction of the intermediate φreach−nt formulas as well
as φreach−nt formulas from the initial configuration and to the final one.

Recall that for any LTL formula φ we can construct a universal coBüchi automaton of
exponential size in |φ| [2, 19]. (A universal coBüchi automaton accepts a word w if all of
its infinite runs on w visit F only finitely often. Technically, one can construct such an
automaton for φ by constructing a Büchi automaton for ¬φ and “syntactically complementing”
its acceptance condition.) By considering the product of this universal coBüchi automaton
and the given SOCAP, the LTL synthesis problem reduces to coBüchi synthesis.

▶ Corollary 17. The LTL synthesis problem for succinct one-counter automata with para-
meters is decidable in 3NEXP.

5 One-Counter Automata with Parametric Tests

In this section, we introduce a subclass of SOCAP where only the tests are parametric.
The updates are non-parametric and assumed to be given in unary. Formally, OCA with
parametric tests (OCAPT) allow for constant updates of the form {+a : a ∈ {−1, 0, 1}} and
zero and parametric tests. However, PU = ∅.

We consider the synthesis problems for OCAPT. Our main result in this section are
better complexity upper bounds than for general SOCAP. Lemma 11 states that all the
synthesis problems reduce to the coBüchi synthesis problem for SOCAP. Importantly, in the
construction used to prove Lemma 11, we do not introduce parametric updates. Hence, the
reduction also holds for OCAPT. This allows us to focus on the coBüchi synthesis problem –
the upper bounds for the other synthesis problems follow.

▶ Theorem 18. The coBüchi, Büchi and safety synthesis problems for OCAPT are in
PSPACE; the reachability synthesis problem, in NPcoNP = NPNP.

To prove the theorem, we follow an idea from [4] to encode parameter valuations of OCAPT
into words accepted by an alternating two-way automaton. Below, we give the proof of the
theorem assuming some auxiliary results that will be established in the following subsections.

Proof. In Proposition 21, we reduce the coBüchi synthesis problem to the non-emptiness
problem for alternating two-way automata. Hence, we get the PSPACE upper bound. Since
the Büchi and the safety synthesis problems reduce to the coBüchi one (using Lemma 11) in
polynomial time, these are also in PSPACE.



G. A. Pérez and R. Raha 33:13

Next, we improve the complexity upper bound for the reachability synthesis problem
from PSPACE to NPNP. In Lemma 22 we will prove that if there is a valuation V of the
parameters such that all infinite V -runs reach F then we can assume that V assigns to each
x ∈ X a value at most exponential. Hence, we can guess their binary encoding and store
it using a polynomial number of bits. Once we have guessed V and replaced all the xi by
V (xi), we obtain a non-parametric one counter automata A′ with X = ∅ and we ask whether
all infinite runs reach F . We will see in Proposition 23 that this problem is in coNP. The
claimed complexity upper bound for the reachability synthesis problem follows. ◀

Using a similar idea to Corollary 17, we reduce the LTL synthesis problem to the coBüchi
one and we obtain the following.

▶ Corollary 19. The LTL synthesis problem for OCAPT is in EXPSPACE.

5.1 Alternating two-way automata
Given a finite set Y , we denote by B+(Y ) the set of positive Boolean formulas over Y ,
including true and false. A subset Y ′ ⊆ Y satisfies β ∈ B+(Y ), written Y ′ |= β, if β is
evaluated to true when substituting true for every element in Y ′, and false for every element
in Y \ Y ′. In particular, we have ∅ |= true.

We can now define an alternating two-way automaton (A2A, for short) as a tuple T =
(S,Σ, sin,∆, Sf ), where S is a finite set of states, Σ is a finite alphabet, sin ∈ S is the initial
state, Sf ⊆ S is the set of accepting states, and ∆ ⊆ S× (Σ ∪ {first?}) ×B+(S× {+1, 0,−1})
is the finite transition relation. The +1 intuitively means that the head moves to the right;
−1, that the head moves to the left; 0, that it stays at the current position. Furthermore,
transitions are labelled by Boolean formulas over successors which determine whether the
current run branches off in a non-deterministic or a universal fashion.

A run (tree) γ of T on an infinite word w = a0a1 · · · ∈ Σw from n ∈ N is a (possibly
infinite) rooted tree whose vertices are labelled with elements in S × N and such that it
satisfies the following properties. The root of γ is labelled by (sin, n). Moreover, for every
vertex labelled by (s,m) with k ∈ N children labelled by (s1, n1), . . . , (sk, nk), there is a
transition (s, σ, β) ∈ ∆ such that, the set {(s1, n1 −m), . . . , (sk, nk −m)} ⊆ S × {+1, 0,−1}
satisfies β. Further σ = first? implies m = 0, and σ ∈ Σ implies am = σ.

A run is accepting if all of its infinite branches contain infinitely many labels from
Sf × N. The language of T is L(T ) def= {w ∈ Σω | ∃ an accepting run of T on w from 0}.
The non-emptiness problem for A2As asks, given an A2A T and n ∈ N, whether L(T ) ̸= ∅.

▶ Proposition 20 (From [31]). Language emptiness for A2As is in PSPACE.

In what follows, from a given OCAPT A we will build an A2A T such that T accepts
precisely those words which correspond to a valuation V of X under which all infinite runs
satisfy the coBüchi condition. Hence, the corresponding synthesis problem for A reduces to
checking non-emptiness of T .

5.2 Transformation to alternating two-way automata
Following [4], we encode a valuation V : X → N as an infinite parameter word w = a0a1a2 . . .

over the alphabet Σ = X ∪ {□} such that a0 = □ and, for every x ∈ X, there is exactly one
position i ∈ N such that ai = x. We write w(i) to denote its prefix a0a1 . . . ai up to the letter
ai. By |w(i)|□, we denote the number of occurrences of □ in a1 . . . ai. (Note that we ignore
a0.) Then, a parameter word w determines a valuation Vw : x 7→ |w(i)|□ where ai = x. We
denote the set of all parameter words over X by WX .
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From a given OCAPT A = (Q,T, δ,X), a starting configuration (q0, 0) and a set of target
states F , we will now construct an A2A T = (S,Σ, sin,∆, Sf ) that accepts words w ∈ WX

such that, under the valuation V = Vw, all infinite runs from (q0, 0) visit F only finitely
many times.

▶ Proposition 21. For all OCAPT A there is an A2A T with |T | = |A|O(1) and w ∈ L(T )
if and only if all infinite Vw-runs of A starting from (q0, 0) visit F only finitely many times.

The construction is based on the A2A built in [4], although we make more extensive use of
the alternating semantics of the automaton. To capture the coBüchi condition, we simulate
a safety copy with the target states as “non-accepting sink” (states having a self-loop and no
other outgoing transitions) inside T . Simulated accepting runs of A can “choose” to enter
said safety copy once they are sure to never visit F again. Hence, for every state q in A, we
have two copies of the state in T : q′ ∈ S representing q normally and q′′ ∈ S representing
q from the safety copy. Now the idea is to encode runs of A as branches of run trees of
T on parameter words w by letting sub-trees t whose root is labelled with (q′, i) or (q′′, i)
correspond to the configuration (q, |w(i)|□) of A. If t is accepting, it will serve as a witness
that all infinite runs of A from (q, |w(i)|□) satisfy the coBüchi condition.

We present the overview of the construction below with some intuitions. A detailed proof
of Proposition 21 is given in the long version of the paper.

The constructed A2A T for the given A is such that for every q ∈ Q, there are two copies
q′, q′′ ∈ S as mentioned earlier. We also introduce new states in T as required.
The A2A includes a sub-A2A that verifies that the input word is a valid parameter word.
For every xi, a branch checks that it appears precisely once in the parameter word.
From a run sub-tree whose root is labelled with (q′, i) or (q′′, i), the A2A verifies that all
runs of A from (q, |w(i)|□) visit F only finitely many times. To do this, for all transitions
δ of the form q

op−→ r in A, we create a sub-A2A T δ
sub using copies of sub-A2As. For each

such transition, one of two cases should hold: either the transition cannot be simulated
(because of a zero test or a decrement from zero), or the transition can indeed be simulated.
For the former, we add a violation branch to check that it is indeed the case; for the
latter, a validation branch checks the transition can be simulated and a simulation branch
reaches the next vertex with the updated counter value. Now if the root vertex is of
the form (q′, i) then the simulation branch could reach a vertex labelled with r′ or with
r′′ – with the idea being that T can choose to move to the safety copy or to stay in the
“normal” copy of A. If the root vertex is of the form (q′′, i), the simulation branch can
only reach the vertex labelled with r′′ with the updated counter value.
We obtain the global A2A T by connecting sub-A2As. To ensure that all runs of A
are simulated, we have the global transition relation ∆ be a conjunction of that of the
sub-A2As which start at the same state q ∈ {p′, p′′} for some p ∈ Q. For instance, let
δ1 = (q, op1, q1) and δ2 = (q, op2, q2) be transitions of A. The constructed sub-A2As
T δ1

sub, T
δ2

sub will contain transitions (q,□, β1) ∈ ∆1, (q,□, β2) ∈ ∆2 respectively. In T , we
instead have (q,□, β1 ∧ β2) ∈ ∆.
Finally, the accepting states are chosen as follows: For every q ∈ Q \ F , we set q′′ as
accepting in T . The idea is that if a run in A satisfies the coBüchi condition then, after
some point, it stops visiting target states. In T , the simulated run can choose to move
to the safety copy at that point and loop inside it forever thus becoming an accepting
branch. On the other hand, if a run does not satisfy the condition, its simulated version
cannot stay within the safety copy. (Rather, it will reach the non-accepting sink states.)
Also, the violation and the validation branches ensure that the operations along the runs
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have been simulated properly inside T . It follows that T accepts precisely those words
whose run-tree contains a simulation branch where states from F have been visited only
finitely many times.

5.3 An upper bound for reachability synthesis of OCAPT
Following [4], we now sketch a guess-and-check procedure using the fact that Proposition 21
implies a sufficient bound on valuations satisfying the reachability synthesis problem. Recall
that, the reachability synthesis problem asks whether all infinite runs reach a target state.

▶ Lemma 22 (Adapted from [4, Lemma 3.5]). If there is a valuation V such that all infinite
V -runs of A reach F , there is a valuation V ′ such that V ′(x) = exp(|A|O(1)) for all x ∈ X

and all infinite V ′-runs of A reach F .

It remains to give an algorithm to verify that in the resulting non-parametric OCA (after
substituting parameters with their values), all infinite runs from (q0, 0) reach F .

▶ Proposition 23. Checking whether all infinite runs from (q0, 0) reach a target state in a
non-parametric one-counter automata is coNP-complete.

Before proving the claim above, we first recall a useful lemma from [21].
A path π = q0q1 . . . qn in GA is a cycle if q0 = qn. We say the cycle is simple if no state

(besides q0) is repeated. A cycle starts from a zero test if δ(q0, q1) is “= 0”. A zero-test-free
cycle is a cycle where no δ(qi, qi+1) is a zero test. We define a pumpable cycle as being a
zero-test-free cycle such that for all runs ρ = (q0, c0) . . . (qn, cn) lifted from π we have cn ≥ c0,
i.e., the effect of the cycle is non-negative.

▶ Lemma 24 (From [21]). Let A be a SOCA with an infinite run that does not reach F .
Then, there is an infinite run of A which does not reach F such that it induces a path π0 · πω

1 ,
where π1 either starts from a zero test or it is a simple pumpable cycle.

Sketch of proof of Proposition 23. We want to check whether all infinite runs starting from
(q0, 0) reach F . Lemma 24 shows two conditions, one of which must hold if there is an infinite
run that does not reach F . Note that both conditions are in fact reachability properties: a
path to a cycle that starts from a zero test or to a simple pumpable cycle.

For the first condition, making the reachability-query instances concrete requires con-
figuration a (q, 0) and a state q′ such that δ(q, q′) is a zero test. Both can be guessed and
stored in polynomial time and space. For the other condition, we can assume that π0 does
not have any simple pumpable cycle. It follows that every cycle in π0 has a zero test or has a
negative effect. Let Wmax be the sum of all the positive updates in A. Note that the counter
value cannot exceed Wmax along any run lifted from π0 starting from (q0, 0). Further, since
π1 is a simple cycle the same holds for 2Wmax for runs lifted from π0π1. Hence, we can guess
and store in polynomial time and space the two configurations (q, c) and (q, c′) required to
make the reachability-query instances concrete.

Since the reachability problem for non-parametric SOCAP is in NP [16], we can guess
which condition will hold and guess the polynomial-time verifiable certificates. This implies
the problem is in coNP.

For the lower bound, one can easily give a reduction from the complement of the
SubsetSum problem, which is NP-complete [11]. The idea is similar to reductions used in
the literature to prove NP-hardness for reachability in SOCAP. In the long version of the
paper, the reduction is given in full detail. ◀
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6 Conclusion

We have clarified the decidability status of synthesis problems for OCA with parameters and
shown that, for several fixed ω-regular properties, they are in 2NEXP. If the parameters
only appear on tests, then we further showed that those synthesis problems are in PSPACE.
Whether our new upper bounds are tight remains an open problem: neither our coNP-
hardness result for the reachability synthesis problem nor the PSPACE and NPNP hardness
results known [32, 21, 22] for other synthesis problems (see Table 1) match them.

We believe the BIL fragment will find uses beyond the synthesis problems for OCA
with parameters: e.g. it might imply decidability of the software-verification problems that
motivated the study of ∀∃RPAD+ in [6], or larger classes of quadratic string equations
than the ones solvable by reduction to ∃PAD [25]. While we have shown BIL is decidable
in 2NEXP, the best known lower bound is the trivial coNP-hardness that follows from
encoding the complement of the SubsetSum problem. (Note that BIL does not syntactically
include the Π1-fragment of PA so it does not inherit hardness from the results in [14].)
Additionally, it would be interesting to reduce validity of BIL sentences to a synthesis
problem. Following [16], one can easily establish a reduction to this effect for sentences of
the form: ∀x∃y

∨
i∈I fi(x) | g(x,y) ∧ fi(x) > 0 ∧ φi(x) ∧ y ≥ 0 but full BIL still evades us.
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Abstract
First-order logic (FO) can express many algorithmic problems on graphs, such as the independent
set and dominating set problem parameterized by solution size. On the other hand, FO cannot
express the very simple algorithmic question whether two vertices are connected. We enrich FO with
connectivity predicates that are tailored to express algorithmic graph properties that are commonly
studied in parameterized algorithmics. By adding the atomic predicates connk(x, y, z1, . . . , zk) that
hold true in a graph if there exists a path between (the valuations of) x and y after (the valuations of)
z1, . . . , zk have been deleted, we obtain separator logic FO + conn. We show that separator logic can
express many interesting problems such as the feedback vertex set problem and elimination distance
problems to first-order definable classes. Denote by FO + connk the fragment of separator logic that
is restricted to connectivity predicates with at most k + 2 variables (that is, at most k deletions).
We show that FO + connk+1 is strictly more expressive than FO + connk for all k ≥ 0. We then
study the limitations of separator logic and prove that it cannot express planarity, and, in particular,
not the disjoint paths problem. We obtain the stronger disjoint-paths logic FO + DP by adding the
atomic predicates disjoint-pathsk[(x1, y1), . . . , (xk, yk)] that evaluate to true if there are internally
vertex-disjoint paths between (the valuations of) xi and yi for all 1 ≤ i ≤ k. Disjoint-paths logic can
express the disjoint paths problem, the problem of (topological) minor containment, the problem of
hitting (topological) minors, and many more. Again we show that the fragments FO + DPk that
use predicates for at most k disjoint paths form a strict hierarchy of expressiveness. Finally, we
compare the expressive power of the new logics with that of transitive-closure logics and monadic
second-order logic.
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34:2 First-Order Logic with Connectivity Operators

a complexity class and initiated the field of descriptive complexity theory. Many other
complexity classes were later characterized by logics in this theory. Today it remains one of
the major open problems whether there exists a logic capturing PTime.

In 1990 Courcelle proved that every graph property definable in monadic second-order
logic (MSO) can be decided in linear time on graphs of bounded treewidth [7]. This theorem
has a much more algorithmic (rather than a complexity-theoretic) flavor, in the sense that,
from a logical description of a problem, it derives an algorithmic approach on how to
solve it on certain graph classes. Grohe in his seminal survey coined the term algorithmic
meta-theorem for such theorems that provide general conditions on a problem and on the
input instances that, when satisfied, imply the existence of an efficient algorithm for the
problem [17]. Courcelle’s theorem for MSO was extended to graph classes with bounded
cliquewidth [8] and it is known that these are essentially the most general graph classes on
which efficient MSO model-checking [15, 21] is possible. MSO is a powerful logic that can
express many important algorithmic properties on graphs. With quantification over edges, we
can for example express the existence of a Hamiltonian path, the existence of a fixed minor or
topological minor, the disjoint paths problem, and many deletion problems. For a property Π,
the task in the Π-deletion problem is to find in a given graph G a minimum-size subset S
of V (G) such that the graph G − S obtained from G by removing S has the property Π.
Important examples of Π-deletion problems are the feedback vertex set problem, the odd
cycle transversal problem, or the problem of hitting all minors or topological minors from a
given list F . Also, many elimination distance problems recently studied [5] in parameterized
algorithmics can be expressed in MSO. However, as we have seen, this expressiveness comes
at the price of algorithmic intractability already on very restricted graph classes. This cannot
be a surprise as e.g. the Hamiltonian path problem is NP-complete already on planar graphs
of maximum degree 3 [6].

First-order logic (FO) is much weaker than MSO and consequently, the model-checking
problem can be solved efficiently on much more general graph classes. FO model-checking is
fixed-parameter tractable on a subgraph-closed class C if and only if C is nowhere dense [18]
and a recent breakthrough result showed that it is fixed-parameter tractable on a class C of
ordered graphs if and only if C has bounded twin-width [3]. FO is weaker than MSO but it can
still express many important problems such as the independent set problem and dominating
set problem parameterized by solution size, the Steiner tree problem parameterized by the
number of Steiner vertices, and many more problems. On the other hand, first-order logic
cannot even express the algorithmically extremely simple problem of whether a graph is
connected. Also, the other algorithmic problems mentioned before are not expressible in FO,
even though some of them are fixed-parameter tractable on general graphs. For example,
we can efficiently test for a fixed minor or topological minor and solve the disjoint paths
problem [26]. Many Π-deletion problems are fixed-parameter tractable, see e.g. [9, 14, 25],
as well as many elimination distance problems [1, 12].

The fact that first-order logic can only express local properties is classically addressed by
adding transitive-closure or fixed-point operators, see e.g. [10, 16, 22]. Unfortunately, this
again comes at the price of intractable model-checking for very restricted graph classes. For
example, even the model-checking problem for the very restricted monadic transitive-closure
logic TC1 studied by Grohe [17], is AW[⋆]-hard on planar graphs of maximum degree at
most 3 [17, Theorem 7.3]. Also, these logics fall short of being able to express all of the
above mentioned algorithmic graph problems studied in recent parameterized algorithmics.

This motivates our present work in which we enrich first-order logic with basic connectivity
predicates. The extensions are tailored to express algorithmic graph properties that are
studied in recent parameterized algorithmics. We can add the atomic predicate conn0(x, y)
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that evaluates to true on a graph G if (the valuations of) x and y are connected in G. This
predicate easily generalizes to directed graphs but for simplicity, we work with undirected
graphs only. Of course, with this predicate we can express connectivity of graphs, however,
it falls short of expressing other interesting properties, e.g. it cannot express that a graph is
acyclic. We hence introduce more general predicates connk(x, y, z1, . . . , zk), parameterized by
a number k, that evaluate to true on a graph G if (the valuations of) x and y are connected
in G once (the valuations of) z1, . . . , zk have been deleted. The interplay of these predicates
with the usual nesting of first-order quantification makes the new logic FO + conn already
quite powerful. For example, we can express simple properties such as 2-connectivity by
∀z∀x∀y

(
x ̸= z ∧ y ≠ z → conn1(x, y, z)

)
. We can also express many deletion problems, such

as the feedback vertex set problem, and the elimination distance to bounded degree, and
more generally, elimination distance to any fixed first-order property.

We also point to the work of Mikołaj Bojańczyk [2], who independently introduced
FO + conn and proposed the name separator logic. He studied a variant of star-free expressions
for graphs and showed that these expressions exactly correspond to separator logic. We
follow his suggestion and thank Mikołaj for the discussion on separator logic.

In Section 3 we study the expressive power of separator logic. We give examples on
properties expressible with separator logic as well as proofs that certain properties, such
as planarity and in particular the disjoint paths problem, are not expressible in separator
logic. We show that (k + 2)-connectivity of a graph cannot be expressed with only connk

predicates and conclude that the restricted use of these predicates induces a natural hierarchy
of expressiveness.

Using the notion of block decompositions together with known model-checking results, one
can show that model-checking for formulas using only conn1 predicates is fixed-parameter
tractable on nowhere dense classes of graphs. Hence, we can evaluate very simple connectivity
queries in formulas without an increase in the complexity of the model-checking problem
on subgraph-closed graph classes. On the other hand, when we allow conn2 predicates,
there are some simple graph classes that do not exclude a topological minor, and on which
model-checking becomes AW[⋆]-hard. In this paper, we do not go into the details of model-
checking, but in a companion paper [24], we prove that in fact model-checking for FO + conn
is fixed-parameter tractable on graph classes that exclude a topological minor.

The fact that planarity and the disjoint paths problem cannot be expressed in separator
logic motivates us to define an even stronger logic that can express these properties. The
atomic predicate disjoint-pathsk[(x1, y1), . . . , (xk, yk)] evaluates to true if and only if there
are internally vertex-disjoint paths between (the valuations of) xi and yi for all 1 ≤ i ≤ k.
Connectivity of x and y can be tested by disjoint-paths1[(x, y)]. More generally, the so
obtained disjoint-paths logic FO + DP strictly extends separator logic. With this more
powerful logic, we can test if a graph contains a fixed minor or topological minor, and in
particular, test for planarity. In combination with first-order quantification, we can also
express many Π-deletion problems such as the problem of hitting all minors or topological
minors from a given list F . On the other hand, we cannot express the odd cycle transversal
problem, as we cannot even express bipartiteness of a graph. We study the expressive power
of FO + DP in Section 4. Among other results, we prove that again an increase in the number
of disjoint paths in the predicates leads to an increase in expressive power.

Note that while it would be desirable to be able to express bipartiteness, which is
equivalent to 2-colorability, it is not desirable to express general colorability problems, as
we aim for logics that are tractable on planar graphs and beyond, while the 3-colorability
problem is NP-complete on planar graphs. This example shows again that it is a delicate
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balance between expressiveness and tractability and it will be a challenging and highly
interesting problem in future work to find the right set of predicates to express even more
algorithmic graph properties while at the same time having tractable model-checking. Until
now the complexity of the model-checking problem for FO + DP has remained elusive and
will be a very interesting problem in future work.

We conclude the paper in Section 5 with a comparison between the newly introduced
logics and more established ones, like MSO and transitive-closure logics.

2 Preliminaries

Graphs. In this paper we deal with finite and simple undirected graphs. Let G be a graph.
We write V (G) for the vertex set of G and E(G) for its edge set. For a set X ⊆ V (G) we
write G[X] for the subgraph of G induced by X and G − X for the subgraph induced by
V (G) \X. For a singleton set {v} we write G− v instead of G− {v}. A path P in G is a
subgraph on distinct vertices v1, . . . , vt with {vi, vi+1} ∈ E(P ) for all 1 ≤ i < t and a path P
is said to connect its endpoints v1 and vt. Two paths are internally vertex-disjoint if and
only if every vertex that appears in both paths is an end point of both paths. The graph G

is connected if every two of its vertices are connected by a path. It is k-connected if G has
more than k vertices and G − X is connected for every subset X ⊆ V (G) of size strictly
smaller than k. A cycle C in G is a subgraph on distinct vertices v1, . . . , vt, t ≥ 3, with
{vt, v1} ∈ E(C) and {vi, vi+1} ∈ E(C) for all 1 ≤ i < t. An acyclic graph is a forest and a
connected acyclic graph is a tree.

A graph H is a minor of G, denoted H ≼ G, if for all v ∈ V (H) there are pairwise
vertex-disjoint connected subgraphs Gv of G such that whenever {u, v} ∈ E(H), then there
are x ∈ V (Gu) and y ∈ V (Gv) with {x, y} ∈ E(G). The graph H is a topological minor
of G, denoted H ≼top G, if for all v ∈ V (H) there is a distinct vertex xv in G and for all
{u, v} ∈ E(H) there are internally vertex-disjoint paths Puv in G with endpoints xu and xv.
A graph is planar if and only if it does not contain K5, the complete graph on 5 vertices,
and K3,3, the complete bipartite graph with two partitions of size 3, as a minor.

Logic. In this work we deal with structures over purely relational signatures. A (purely
relational) signature is a collection of relation symbols, each with an associated arity. Let σ
be a signature. A σ-structure A consists of a non-empty set A, the universe of A, together
with an interpretation of each k-ary relation symbol R ∈ σ as a k-ary relation RA ⊆ Ak. For
a subset X ⊆ A we write A[X] for the substructure induced by X. A partial isomorphism
between σ-structures A and B is an isomorphism between A[X] and B[Y ] for some subset
X ⊆ A of the universe A of A and some subset Y ⊆ B of the universe B of B.

We assume an infinite supply Var of variables. First-order formulas are built from the
atomic formulas x = y, where x and y are variables, and R(x1, . . . , xk), where R ∈ σ is a
k-ary relation symbol and x1, . . . , xk are variables, by closing under the Boolean connec-
tives ¬, ∧ and ∨, and by existential and universal quantification ∃x and ∀x. A variable x not
in the scope of a quantifier is a free variable. A formula without free variables is a sentence.
The quantifier rank qr(φ) of a formula φ is the maximum nesting depth of quantifiers in φ.
We write FOσ[q] for the set of all FO σ-formulas of quantifier rank at most q, or simply FO[q]
if σ is clear from the context. A formula without quantifiers is called quantifier-free.
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If A is a σ-structure with universe A, then an assignment of the variables in A is a
mapping ā : Var → A. We use the standard notation (A, ā) |= φ(x̄) or A |= φ(ā) to indicate
that φ is satisfied in A when the free variables x̄ of φ have been assigned by ā. We refer e.g.
to the textbook [22] for more background on first-order logic.

3 Separator logic

In this section, we study the expressive power of separator logic FO + conn. Formally,
we assume that σ is a signature that does not contain any of the relation symbols connk

for all k ≥ 0, and that it does contain a binary relation symbol E, representing an edge
relation. We assume that E is always interpreted as an irreflexive and symmetric relation
and connectivity will always refer to this relation. We let σ + conn := σ ∪ {connk : k ≥ 0},
where each connk is a (k + 2)-ary relation symbol.

▶ Definition 3.1. The formulas of (FO + conn)[σ] are the formulas of FO[σ + conn]. We
usually simply write FO + conn, when σ is understood from the context.

For a σ-structure A, an assignment ā and an FO + conn formula φ(x̄), we define
the satisfaction relation (A, ā) |= φ(x̄) as for first-order logic, where an atomic predic-
ate connk(x, y, z1, . . . , zk) is evaluated as follows. Assume that the universe of A is A

and let G = (A,EA) be the graph on vertex set A and edge set EA. Then (A, ā) models
connk(x, y, z1, . . . , zk) if and only if ā(x) and ā(y) are connected in G− {ā(z1), . . . , ā(zk)}.

Note in particular that if ā(x) = ā(zi) or ā(y) = ā(zi) for some i ≤ k, then
(A, ā) ̸|= connk(x, y, z1, . . . , zk).

We write FO + connk for the fragment of FO + conn that uses only connℓ predicates
for ℓ ≤ k. The quantifier rank of an FO + conn formula is defined as for plain first-order
logic. For structures A with universe A and ā ∈ Am and B with universe B and b̄ ∈ Bm,
we write (A, ā) ≡conn (B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + conn formulas, that
is, for all φ(x̄) we have A |= φ(ā) ⇔ B |= φ(b̄). Similarly, we write (A, ā) ≡connk

(B, b̄) and
(A, ā) ≡connk,q

(B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + connk formulas and the same
FO + connk formulas of quantifier rank at most q, respectively.

3.1 Expressive power of separator logic

We now give examples of properties that are expressible with separator logic.

▶ Example 3.2. Connectivity is expressible in FO + conn0 by the formula

∀x∀y
(
conn0(x, y)

)
.

More generally, for every non-negative integer k, (k+ 1)-connectivity can be expressed by
the formula

∀x∀y∀z1 . . . ∀zk

( ∧
1≤i≤k

(x ̸= zi ∧ y ̸= zi) → connk(x, y, z1, . . . , zk)
)
.
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▶ Example 3.3. We can express that there exists a cycle by

∃x∃y
(
E(x, y) ∧ ∃z

(
conn1(z, x, y) ∧ conn1(z, y, x)

))
,

hence, that a graph is acyclic by the negation of that formula. We write ψacyclic for that
formula. We can express that a graph is a tree by stating that it is connected and acyclic.

We can conveniently express deletion problems by relativizing formulas as follows. For
a formula φ that does not contain z as a free variable write del(z)[φ] for the formula
obtained from φ by recursively replacing every subformula ∃xψ by ∃x(x ̸= z ∧ ψ), every
subformula ∀xψ by ∀x(x ̸= z → ψ) and every atomic formula connk(x, y, z1, . . . , zk) by
connk+1(x, y, z1, . . . , zk, z). Then (A, ā) |= del(z)[φ] if and only if (A − ā(z), ā) |= φ, where
A − ā(z) denotes the substructure induced on the universe of A without ā(z).

▶ Example 3.4. We can state the existence of a feedback vertex set of size k by

∃z1del(z1)[· · · [∃zkdel(zk)[ψacyclic] . . .].

We can of course use the same principle to express any Π-deletion problem that is
FO + conn expressible.

We can also, much more generally, express many elimination distance problems.

▶ Example 3.5. The elimination distance to a class C of graphs measures the number
of recursive deletions of vertices needed for a graph G to become a member of C . More
precisely, a graph G has elimination distance 0 to C if G ∈ C , and otherwise elimination
distance at most k + 1 if in every connected component of G we can delete a vertex such
that the resulting graph has elimination distance at most k to C . Elimination distance was
introduced by Bulian and Dawar [5] in their study of the parameterized complexity of the
graph isomorphism problem and has recently obtained much attention in the literature, see
e.g. [1, 4, 13, 19, 20, 23].

Again, we define auxiliary notation. We write comp(x) for the connected component of
(the valuation of) x. For a formula φ we write φ[comp(x)] for the formula obtained from φ by
recursively replacing all subformulas ∃yψ by ∃y(conn0(x, y) ∧ ψ) and all subformulas ∀yψ by
∀y(conn0(x, y) → ψ). Then (A, ā) |= φ[comp(x)] if and only if (A[comp(ā(x))], ā) |= φ, where
A[comp(ā(x))] denotes the substructure induced on the connected component of ā(x).

Now assume C is a first-order definable class, say defined by a formula ψC . Then
elimination distance 0 to C is defined by ed0 = ψC . If edk has been defined, then we can
express elimination distance k + 1 to C by the formula

edk+1 := edk ∨ ∀x
(
∃y del(y)[edk]

)[comp(x)]
.

Our final example concerns the expressive power of separator logic on finite words
and finite trees. By the classical result of Büchi, a language on words is regular if and
only if it is definable in MSO. Here, words are represented as finite structures over the
vocabulary of the successor relation and unary predicates representing the letters of the
alphabet. When considering first-order logic on strings, it makes a big difference whether
one considers word structures over the successor relation or over its transitive closure, the
order relation. Languages definable by FO over the order relation are exactly the star-free
languages (see e.g. [22, Theorem 7.26]), while languages definable by FO over the successor
relation are exactly the locally threshold testable languages [27, Theorem 4.8]. Similarly,
MSO on trees can define exactly the tree regular languages (defined via tree automata,
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see [22, Theorem 7.30]), while FO can only define a proper subclass of the regular tree
languages when the ancestor-descendant or even only the parent-child relation is present.
This background was also the motivation of Bojańczyk, who studied a variant of star-free
expressions for graphs and showed that these expressions exactly correspond to separator
logic [2]. In our example, we show that separator logic on rooted trees has exactly the
same expressive power as first-order logic in the presence of the ancestor-descendant relation.
Let us write FO[<] for the latter logic. On the other hand, we treat a rooted tree as a
graph-theoretic tree with an additional unary predicate marking the root. In the degenerate
case, we treat a word as a path, where one of the endpoints is marked by a unary predicate
as the smallest vertex (the beginning of the word).

▶ Example 3.6. On rooted trees (and similarly on words) FO + conn collapses to FO + conn1
and has exactly the same expressive power as FO[<] over trees with the ancestor-descendant
relation. We show first that connk(x, y, z1, . . . , zk) can be expressed in FO[<]. For this,
we need to ensure that x and y are not equal to any zi and that no zi lies on the
unique path between x and y in the tree. We can define the vertices on the unique path
between x and y by first defining the least common ancestor of x and y by the formula
lca(x, y, z) = z ≤ x∧z ≤ y∧¬∃z′(z < z′ ∧z′ ≤ x∧z′ ≤ y). If z is the least common ancestor
of x and y, it remains to state that none of the zi lies either between x and z or between y

and z, which is done by the formula ∃z
(
lca(x, y, z) ∧

∧
1≤i≤k ¬(z ≤ zi ≤ x ∨ z ≤ zi ≤ y)

)
.

Conversely, we show that we can define with FO + conn1 the ancestor-descendant relation
in rooted trees. Assume the root is marked by the unary symbol R. Then x < y is equivalent
to ∃r

(
R(r) ∧ conn1(x, r, y) ∧ ¬conn1(y, r, x)

)
.

3.2 The limits of separator logic
We now study the limits of separator logic and show that planarity cannot be expressed in
FO + conn. Slightly abusing notation let us also write FO + connk for the properties that
are expressible in FO + connk. We show that there is a strict hierarchy of expressiveness:
FO + conn0 ⊊ FO + conn1 ⊊ FO + conn2 ⊊ . . . These results are based on an adaptation of
the standard Ehrenfeucht-Fraïssé game (EF game), which is commonly used in the study of
the expressive power of first-order logic.

Ehrenfeucht-Fraïssé Games. The Ehrenfeucht-Fraïssé game is played by two players called
Spoiler and Duplicator. Given two structures A and B, Spoiler’s aim is to show that the
structures can be distinguished by first-order logic (with formulas of a given quantifier rank),
while Duplicator wants to prove the opposite. The q-round EF game proceeds in q rounds,
where each round consists of the following two steps.
1. Spoiler picks an element a ∈ A or an element b ∈ B.
2. Duplicator responds by picking an element of the other structure, that is, she picks a

b ∈ B if Spoiler chose a ∈ A, and she picks an a ∈ A if Spoiler chose b ∈ B.

After q rounds, the game stops. Assume the players have chosen ā = a1, . . . , aq and
b̄ = b1, . . . , bq. Then Duplicator wins if the mapping ai 7→ bi for all 1 ≤ i ≤ q is a partial
isomorphism of A and B. We write for short ā 7→ b̄ for this mapping. Otherwise, Spoiler
wins. We say that Duplicator wins the q-round EF game on A and B if she can force a win
no matter how Spoiler plays. We then write A ≃q B.

▶ Theorem 3.7 (Ehrenfeucht-Fraïssé, see e.g. [22, Theorem 3.18]). Let A and B be two
σ-structures where σ is purely relational. Then A ≡q B if and only if A ≃q B.
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The EF game for FO naturally extends to separator logic. The (connk,q)-game is played
just as the q-round EF game, but the winning condition is changed as follows. If in q rounds
the players have chosen ā = a1, . . . , aq and b̄ = b1, . . . , bq, then Duplicator wins if
1. the mapping ā 7→ b̄ is a partial isomorphism of A and B, and
2. for every ℓ ≤ k and every sequence (i1, . . . , iℓ+2) of numbers in {1, . . . , q} we have

A |= connℓ(ai1 , . . . , aiℓ+2) ⇐⇒ B |= connℓ(bi1 , . . . , biℓ+2).

Otherwise, Spoiler wins. We say that Duplicator wins the (connk,q)-game on A and B if
she can force a win no matter how Spoiler plays. We then write A ≃connk,q

B.
By following the lines of the proof of the classical Ehrenfeucht-Fraïssé Theorem we can

prove the following theorem.

▶ Theorem 3.8. Let A and B be two σ-structures where σ is purely rational (and contains a
binary relation symbol E that is interpreted on both structures as an irreflexive and symmetric
relation). Then A ≡connk,q

B if and only if A ≃connk,q
B.

The next theorem exemplifies the use of the (connk,q)-game.

▶ Theorem 3.9. Planarity is not expressible in FO + conn.

v1,1 v2,1

v1,2 v2,2

v1,n v2,n

g−3 g−2

g−1 g0

(a) Gq

v′
1,1 v′

2,1

v′
1,2 v′

2,2

v′
1,n v′

2,n

h−3 h−2

h−1h0

(b) Hq

Figure 1 Planarity is not expressible in FO + conn.

Proof. Assume planarity is expressible by a sentence φ of FO + connk of quantifier rank q.
Without loss of generality, we may assume that k ≤ q, as otherwise, we have repetitions in
the connk predicates that can be avoided by using connℓ predicates for ℓ < k. Let Gq and Hq

be defined as shown in Figure 1, where n = 2q+1. Then, Gq is planar but Hq embeds only in
a surface of genus one (into the Möbius strip, which cannot be embedded into the plane).
We show that Gq ≃connk,q

Hq, contradicting the assumption that φ must distinguish Gq

and Hq. In fact, we prove an even stronger statement by giving Spoiler four free moves
g−3 = v1,1, g−2 = v2,1, g−1 = v1,n and g0 = v2,n in Gq and forcing Duplicator to respond
with the vertices h−3 = v′

1,1, h−2 = v′
2,1, h−1 = v′

2,n and h0 = v′
1,n in Hq. Note the twist in

the last two vertices. These extra moves are helpful to define Duplicator’s winning strategy.
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We define the x-distance of two nodes vi,j and vk,ℓ as dx(vi,j , vk,ℓ) = |i − k| and the
y-distance as dy(vi,j , vk,ℓ) = |j − ℓ|. Note that the y-distance is not the distance in the
graphs, e.g. dy(g−3, g−1) = 2q+1 − 1, even though g−3 and g−1 are adjacent in Gq.

Assume now that the first i moves have been made in the game and the players have
selected the vertices ḡ = (g−3, . . . , g0, g1, . . . , gi) in Gq (where g1, . . . , gi were freely chosen
by the players), and h̄ = (h−3, . . . , h0, h1, . . . , hi) in Hq (where h1, . . . , hi were freely chosen
by the players). We prove by induction that Duplicator can play in such a way that after
round i of the (connk,q)-game the following conditions hold for all −3 ≤ j, ℓ ≤ i:
1. if gj = vx,y, then hj = v′

x′,y, that is, corresponding pebbles are in the same row, and in
particular dy(gj , gℓ) = dy(hj , hℓ), and

2. if dy(gj , gℓ) ≤ 2q−i, then dx(gj , gℓ) = dx(hj , hℓ).

These conditions together with the first four extra moves imply that the mapping ḡ 7→ h̄

is a partial isomorphism of Gq and Hq. Let us show that also for every 0 ≤ ℓ ≤ k and every
sequence (i1, . . . , iℓ+2) of numbers in {−3, . . . , i} we have Gq |= connℓ(gi1 , . . . , giℓ+2) if and
only if Hq |= connℓ(hi1 , . . . , hiℓ+2). Assume Gq |= connℓ(gi1 , . . . , giℓ+2), that is, gi1 and gi2

are connected after the deletion of gi3 , . . . , giℓ+2 , say by a path P = vx1,y1 . . . vxm,ym , where
vx1,y1 = gi1 and vxm,ym

= gi2 . Then there are no gij1
= vx,y and gij2

= vx′,y′ (for j1, j2 ≥ 3)
with y = y′ = yi and x ̸= x′ for some 2 ≤ i ≤ m − 1 (this would block a row along which
the path goes, which is not possible) and no gij1

= vx,y and gij2
= vx′,y′ (for j1, j2 ≥ 3)

with yi = y = y′ − 1 = yi+1 − 1 and x ̸= x′ for some 2 ≤ i ≤ m − 1 (this would block a
“diagonal” of which the path contains at least one vertex, which is not possible). By the
first condition of the invariant there are no hij1

= vx,y and hij2
= vx′,y′ (for j1, j2 ≥ 3) with

y = y′ = yi and x ̸= x′ for some 2 ≤ i ≤ m− 1 and by the second condition of the invariant
there are no hij1

= vx,y and hij2
= vx′,y′ (for j1, j2 ≥ 3) with yi = y = y′ − 1 = yi+1 − 1 and

x ̸= x′ for some 2 ≤ i ≤ m− 1. Now, if P ′ = v′
x1,y1

. . . v′
xm,ym

is not a path from hi1 to hi2

after the deletion of hi3 , . . . , giℓ+2 , it is possible to reroute the path by switching the row
appropriately, as the hij

never block a complete row or a diagonal, as shown above. The
case Hq |= connℓ(hi1 , . . . , hiℓ+2) is symmetrical.

We now show that Duplicator can maintain this invariant throughout the game. For
the initial configuration i = 0, the conditions are obviously fulfilled for −3 ≤ j, ℓ ≤ 0.
Corresponding pebbles are in the same row and note that dy(gj , gℓ) = 2q+1 − 1, for
j ∈ {−3,−2} and ℓ ∈ {−1, 0} and analogously for hj and hℓ.

For the induction step, suppose that the conditions are fulfilled so far and that Spoiler is
making his (i+ 1)-move in Gq (the case of Hq is symmetrical). We may assume that Spoiler
does not choose a vertex that was chosen before, say Spoiler picks gi+1 = v_,a. Duplicator
must choose hi+1 = v′

_,a with the same y-coordinate. We have to make sure that she can
choose the vertex with that y-coordinate satisfying the second condition. Let gj = v_,b and
gℓ = v_,c with −3 ≤ j, ℓ ≤ i be such that b ≤ a ≤ c and there is no other gk = v_,d with
b < d < c. Intuitively, gj is the lowest pebble that was placed above (or in the same row
as) gi+1, while gk is the highest pebble that was placed below (or in the same row as) gi+1.
There are two cases:
1. dy(gj , gℓ) ≤ 2q−i: Then by hypothesis, dx(hj , hℓ) = dx(gj , gℓ) and dy(hj , hℓ) = dx(gj , gℓ).

Here, Duplicator chooses the unique hi+1 = v′
_,a such that dx(hj , hi+1) = dx(gj , gi+1),

and we have dx(hℓ, hi+1) = dx(gℓ, gi+1).
2. dy(gj , gℓ) > 2q−i: Then dy(hj , hℓ) > 2q−i and there are three possibilities:

dy(gj , gi+1) ≤ 2q−(i+1): Then dy(gℓ, gi+1) > 2q−(i+1), and Duplicator chooses
hi+1 = v′

_,a such that dx(hj , hi+1) = dx(gj , gi+1). Hence, dy(hℓ, hi+1) > 2q−(i+1).
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dy(gℓ, gi+1) ≤ 2q−(i+1): Then dy(gj , gi+1) > 2q−(i+1). Similarly to the previous case,
Duplicator chooses hi+1 = v′

_,a such that dx(hℓ, hi+1) = dx(gℓ, gi+1). Consequently,
dy(hj , hi+1) > 2q−(i+1).
dy(gj , gi+1) > 2q−(i+1) and dy(gℓ, gi+1) > 2q−(i+1): Here, Duplicator can choose
hi+1 = v′

1,a or hi+1 = v′
2,a as she wants. We get that dy(hj , hi+1) ≥ 2q−(i+1) and

dy(hℓ, hi+1) ≥ 2q−(i+1).

Thus, in all cases, the conditions are fulfilled and Duplicator wins the (connk,q)-game on
Gq and Hq. Hence, planarity is not definable in FO + conn. ◀

As a graph is planar if and only if it excludes K5 and K3,3 as (topological) minors and
we will show that this can be expressed using disjoint paths predicates, we conclude that the
disjoint paths predicate cannot be expressed with FO + conn.

▶ Corollary 3.10. The disjoint paths problem cannot be expressed in FO + conn.

The proof of the next theorem is deferred to the next section, as it is a consequence of
the fact that the even stronger logic FO + DP cannot express bipartiteness (Theorem 4.7).

▶ Theorem 3.11. Bipartiteness cannot be expressed in FO + conn.

Finally, we show that the FO+connk hierarchy is strict by proving that (k+2)-connectivity
cannot be expressed by FO+connk. On the other hand, (k+2)-connectivity can be expressed
by FO + connk+1 (Example 3.2).

▶ Theorem 3.12. (k + 2)-connectivity cannot be expressed by FO + connk. In particular,
the FO + connk hierarchy is strict, that is, FO + conn0 ⊊ FO + conn1 ⊊ . . .

Proof. Let k be an integer. For every integer q, we choose two graphs Gq and Hq such that:
Gq is connected,
Hq is not connected, and
Gq ≃q Hq.

This is possible, as connectivity is not first-order definable and ≃q has only finitely many
equivalence classes.

Then, we define the graph Gk
q (resp. Hk

q ) as the disjoint union of Gq (resp. Hq) and Kk+1,
a clique of size k+ 1, and connect the vertices of the clique with all vertices of Gq (resp. Hq),
that is, we add the additional edges such that (x, y) ∈ E(Gk

q ) (resp. (x, y) ∈ E(Hk
q )) if

x ∈ Gq (resp. x ∈ Hq) and y ∈ Kk+1. Obviously, Gk
q is (k + 2)-connected (the deletion of

any k + 1 vertices cannot disconnect Gk
q ), while Hk

q is not (k + 2)-connected (the deletion of
the copy of Kk+1 disconnects Hk

q ).
The same argument shows that every connk(x, y, z1, . . . , zk) can be expressed by an

atomic plain first-order formula: in both graphs (the valuations of) x and y are not connected
after the deletion of (the valuations of) z1, . . . , zk if and only if x or y is equal to one of the zi.
Hence, to prove Gk

q ≃connk,q
Hk

q it suffices to prove Gk
q ≃q H

k
q , and this finishes the proof.

▷ Claim 3.13. For all integers q, k we have Gk
q ≃q H

k
q .

Proof. The following is obviously a winning strategy for Duplicator in the q-round EF game
on Gk

q and Hk
q . If Spoiler plays a pebble in the subgraph Gq or Hq, Duplicator can respond

by a pebble in the subgraph Hq or Gq according to the winning strategy of Duplicator in
the EF game on Gq and Hq. Otherwise, if Spoiler picks a pebble in the subgraph Kk+1 of
Gk

q or Hk
q , Duplicator can respond by a pebble in the subgraph Kk+1 of the other graph Hk

q

or Gk
q . ◁

This concludes the proof of Theorem 3.12. ◀
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4 Disjoint-paths logic

In this section, we study the expressive power of disjoint-paths logic FO + DP. We again
fix a signature σ that does not contain the symbol disjoint-pathsk for any k ≥ 1 and that
does contain a binary (edge) relation symbol E. The disjoint paths predicates will always
refer to this relation. We let σ + disjoint-paths := σ ∪ {disjoint-pathsk : k ≥ 1}, where each
disjoint-pathsk is a 2k-ary relation symbol.

▶ Definition 4.1. The formulas of (FO + DP)[σ] are the formulas of FO[σ + disjoint-paths].
We usually simply write FO + DP, when σ is understood from the context.

For a σ-structure A, an assignment ā and an FO + DP formula φ(x̄), we define the
satisfaction relation (A, ā) |= φ(x̄) as for first-order logic, where an atomic predicate
disjoint-pathsk[(x1, y1), . . . (xk, yk)] is evaluated as follows. Assume that the universe of A
is A and let G = (A,EA) be the graph on vertex set A and edge set EA. Then (A, ā) models
disjoint-pathsk[(x1, y1), . . . , (xk, yk)] if and only if in G there exist k internally vertex-disjoint
paths P1, . . . , Pk, where Pi connects ā(xi) and ā(yi).

As previously mentioned, it is natural to consider these predicates for both undirected
and directed graphs. We will, however, in this work only study the undirected case.

We write FO + DPk for the fragment of FO + DP that uses only disjoint-pathsℓ predicates
for ℓ ≤ k. The quantifier rank of an FO + DP formula is defined as for plain first-order
logic. For structures A with universe A and ā ∈ Am and B with universe B and b̄ ∈ Bm,
we write (A, ā) ≡DP (B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + DP formulas, that is,
for all φ(x̄) we have A |= φ(ā) ⇔ B |= φ(b̄). Similarly, we write (A, ā) ≡DPk

(B, b̄) and
(A, ā) ≡DPk,q

(B, b̄) if (A, ā) and (B, b̄) satisfy the same FO + DPk formulas and the same
FO + DPk formulas of quantifier rank at most q, respectively.

4.1 Expressive power of disjoint-paths logic
We now study the expressive power of disjoint-paths logic.

▶ Observation 4.2. FO + conn ⊆ FO + DP because connk(x, y, z1, . . . , zk) is equivalent to
disjoint-pathsk+1[(x, y), (z1, z1), . . . , (zk, zk)] ∧

∧
i≤k

(zi ̸= x ∧ zi ̸= y).

Moreover, the inclusion is strict because planarity is not expressible in FO + conn as seen
in Corollary 3.10. We show that planarity and in fact the property that a graph contains a
fixed (topological) minor can be expressed in FO + DP.

▶ Example 4.3. For every fixed graph H, there is an FO + DP formula φtop
H such that

G |= φtop
H if and only if H ≼top G.

Let n,m, ℓ respectively be the number of vertices, edges, and isolated vertices in H. Let
x1, . . . xn be n variables. Let e1, . . . , em be the list of edges of H, and let vjs

and vjt
be the

two endpoints of ej . Finally, let vi1 , . . . , viℓ
be the isolated vertices of H. Then,

φtop
H := ∃x1, . . . xn

( ∧
i̸=j

xi ̸= xj ∧

disjoint-paths[(xe1s
, xe1t

), . . . (xems
, xemt

), (xi1 , xi1), . . . (xiℓ
, xiℓ

)]
)
.

▶ Example 4.4. For every fixed graph H, there is an FO + DP formula φH such that
G |= φH if and only if H ≼ G. This is because, for every graph H , there exists a finite family
of graphs H1, . . . ,Hℓ such that H ≼ G if and only if there is an i ≤ ℓ such that Hi ≼top G.
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This family can be obtained by considering all possibilities of replacing every branch set
representing a vertex of H of degree d ≥ 3 with a tree with at most d leaves and hardcoding
their shapes by disjoint paths.

▶ Example 4.5. Planarity can be expressed in FO + DP. This is a corollary of the previous
example, using the formula φplanar := ¬φK5 ∧ ¬φK3,3 .

4.2 The limits of disjoint-paths logic
We now study the limits of disjoint-paths logic and show that bipartiteness cannot be
expressed in FO + DP. We also show that the hierarchy on (FO + DPk)k≥1 is strict. These
results are based again on an adaptation of the standard Ehrenfeucht-Fraïssé game.

The (DPk,q)-game is played just as the q-round EF game, but the winning condition is
changed as follows. If in q rounds the players have chosen ā = a1, . . . , aq and b̄ = b1, . . . , bq,
then Duplicator wins if

1. the mapping ā 7→ b̄ is a partial isomorphism of A and B, and
2. for every ℓ ≤ k and every sequence (i1, . . . , i2ℓ) of numbers in {1, . . . , q} we have

A |= disjoint-paths[(ai1 , ai2), . . . , (ai2ℓ−1 , ai2ℓ
)]

⇐⇒ B |= disjoint-paths[(bi1 , bi2), . . . , (bi2ℓ−1 , bi2ℓ
)].

Otherwise, Spoiler wins. We say that Duplicator wins the (DPk,q)-game on A and B if
she can force a win no matter how Spoiler plays. We then write A ≃DPk,q

B.
By following the lines of the proof of the classical Ehrenfeucht-Fraïssé Theorem we can

prove the following theorem.

▶ Theorem 4.6. Let A and B be two σ-structures where σ is purely rational (and contains a
binary relation symbol E that is interpreted on both structures as an irreflexive and symmetric
relation). Then A ≡DPk,q

B if and only if A ≃DPk,q
B.

▶ Theorem 4.7. Bipartiteness is not definable in FO + DP.

Proof. Let q be an integer, and let G be a cycle graph with 2q vertices and H a cycle graph
with 2q + 1 vertices. Then, G is bipartite because it has an even number of vertices, and H

is not bipartite because it has an odd number of vertices. We want to show that G ≃DPk,q
H

by induction over q.
We define the distance d(x, y) of two vertices x and y as the length of the shortest path

between x and y.
Let ḡ = (g1, . . . , gi) be the first i moves in G and similarly h̄ = (h1, . . . , hi) the first i

moves in H. We can prove by induction that Duplicator can play in such a way that after
round i of the (DPk,q)-game the following conditions hold for all j, ℓ ≤ i:
1. If d(gj , gℓ) < 2q−i+1, then d(gj , gℓ) = d(hj , hℓ).
2. If d(gj , gℓ) ≥ 2q−i+1, then d(hj , hℓ) ≥ 2q−i+1.
3. The pebbles are placed in G and H with the same “circular order”.
By the first two conditions, the partial isomorphism ḡ 7→ h̄ can be ensured. Furthermore,
the third condition implies that the second condition for Duplicator’s win is also satisfied.

The base case i = 1 of the induction is trivial because d(g1, g1) = d(h1, h1) = 0.
For the induction step, suppose that G ≃DPk,i

H holds and Spoiler is making his (i+1)-st
move in G. The case of H is equivalent.

If Spoiler picks gj for some j ≤ i, a pebble that was already played before, Duplicator can
choose hj , and the conditions are fulfilled by the induction hypothesis. Otherwise, Spoiler
picks a pebble gi+1 that wasn’t played before. Now we have to differentiate two cases:
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Figure 2 FO + DP hierarchy is strict.

1. There is only one other pebble that was already played, gj = g1, j ≤ i. Then, we can find
hi+1 such that d(h1, hi+1) = d(g1, gi+1).

2. gi+1 lies on the shortest path of gj and gℓ with j, ℓ ≤ i such that there is no other gn, n ≤ i

that lies on this path. Then, there are two possibilities:
d(gj , gℓ) < 2q−i+1: Then d(hj , hℓ) < 2q−i+1 and we can find hi+1 on the shortest path
of hj and hℓ such that d(hj , hi+1) = d(gj , gi+1) and d(hi+1, hℓ) = d(gi+1, gℓ).
d(gj , gℓ) ≥ 2q−i+1: Then d(hj , hℓ) ≥ 2q−i+1 and there are three cases:

a. d(gj , gi+1) < 2q−i: Then d(gi+1, gℓ) ≥ 2q−i and we can choose hi+1 on the shortest
path of hj and hℓ such that d(hj , hi+1) = d(gj , gi+1) and d(hi+1, hℓ) ≥ 2q−i.

b. d(gi+1, gℓ) < 2q−i: This case is similar to the previous one.
c. d(gj , gi+1) ≥ 2q−i and d(gi+1, gℓ) ≥ 2q−i: Since d(hj , hℓ) ≥ 2q−i+1, we can find hi+1

with d(hj , hi+1) ≥ 2q−i and d(hi+1, hℓ) ≥ 2q−i in the middle of the shortest path of
hj , and hℓ.

Thus, in all cases, the conditions are fulfilled. This completes the inductive proof. ◀

We now show that the hierarchy on (FO + DPk)k≥1 is strict.

▶ Lemma 4.8. For all integers k ≥ 1, 2k-connectivity is not expressible in FO + DPk.

Proof. Let k be an integer. For every integer q, we define two graphs Gq and Hq such that:
Gq is 2-connected,
Hq is 1-connected but not 2-connected, and
Gq ≃q Hq

For example, take Gq the cycle with 2q+1 many elements, together with an apex vertex,
while Hq is the disjoint union of two cycles with 2q many elements each, together with an
apex vertex (see Figure 2).

We then define Gk
q (resp. Hk

q ) as the lexicographical product of Gq (resp. Hq) with K2k,
the clique with 2k elements. More precisely, if Gq = (V,E), where V = {1, . . . , n}, then
Gk

q := (V ′, E′) where:
V ′ := {v1,1, . . . , v1,2k, . . . , vn,1, . . . , vn,2k}
E′ := {{vi,j , vi′,j′} : i = i′ ∨ (i, i′) ∈ E}.

One can view Gk
q as 2k copies of Gq on top of each other. Vertices are replaced by 2k-cliques,

and edges are replaced by (2k, 2k)-bicliques. A direct consequence of the definition is the
following equivalence.

▷ Claim 4.9. For all integers q, k, we have that Gk
q ≃q H

k
q .
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Proof. Duplicator’s strategy follows the one derived from Gq ≃q Hq. If Spoiler picks a vertex
vi,j ∈ Gk

q , then Duplicator can respond by choosing the vertex vi′,j ∈ Hk
q where vi′ ∈ Hq is

Duplicator’s respond to vi ∈ Gq. ◁

We then show that over Gk
q and Hk

q , the predicate disjoint-pathsk[ ] is always true and
therefore that, for these structures, (FO + DPk)[q] collapses to FO[q].

▷ Claim 4.10. For every integers q, k, for every k-tuples ā, b̄, we have that Gk
q and Hk

q both
model disjoint-pathsk[(a1, b1), . . . , (ak, bk)].

Proof. The proofs for Gk
q and Hk

q are identical, so we only do it for Gk
q . Remember that n is

the number of vertices in Gq. The idea is that each of the k paths uses at most two “copies”
of each vertex of Gq, hence 2k “copies” is enough for all paths to exists. For every i ≤ n, let
Bi := {vi,j : j ≤ 2k}, and Fi := {vi,j : j ≤ 2k ∧ vi,j ̸∈ ā ∧ vi,j ̸∈ b̄}. We call Bi the set
of vertices in position i, and Fi the free vertices in position i. We then compute each path,
starting with (a1, b1).

Let i, j, i′, j′ such that a1 = vi,j and b1 = vi′,j′ . If i = i′, then there is nothing to do as
a1 and b1 are neighbors. Otherwise, note that for every i′′ ≤ n, Fi′′ ̸= ∅, because there are
only 2k − 2 elements among a2, . . . , ak, b2, . . . , bk. Since Gq is a connected graph, there is
a path from i to i′. For every inner node i′′ of this path, we can select a vertex v ∈ Fi′′ .
We can therefore create a path in Gk

q from a1 to b1 where all inner vertices are free vertices.
We then remove these vertices from the sets of free vertices.

Let now 1 < ℓ ≤ k, and let i, j, i′, j′ such that aℓ = vi,j and bℓ = vi′,j′ . We assume that
the first ℓ− 1 paths have already been computed. Observe that here again, if i = i′ there is
nothing to do. Otherwise, we again have that for every i′′, Fi′′ is not empty. This is because
for every s ≤ k, the path from as to bs intersects Bi′′ at most twice (at most once for the inner
vertices, and twice when the two endpoints are both in position i′′). Therefore, we can select a
path in Gq from i to i′ and for each i′′ in this path, pick a vertex v ∈ Fi′′ . ◁

With Claim 4.10, we can replace formulas of (FO + DPk)[q] by formulas of FO[q]. Thanks
to Claim 4.9, Gk

q ≃q H
k
q , we conclude that Gk

q ≃DPk,q
Hk

q . So FO + DPk cannot express
2k-connectivity. Note that this bound is tight for these structures i.e. Gk

q ̸≃DPk+1,q
Hk

q . ◀

▶ Lemma 4.11. The FO + DPk hierarchy is strict, that is, FO + DP1 ⊊ FO + DP2 ⊊ . . .

Proof. Consider the structures in the proof of Lemma 4.8, which are indistinguishable in
FO + DPk. The following sentence of FO + DPk+1 distinguishes Gk

q and Hk
q :

∃a1 . . . ∃bk+1 ¬disjoint-pathsk+1[(a1, b1), . . . , (ak+1, bk+1)]

In Hk
q , pick i such that Hq \ i is not connected (i′ and i′′ two disconnected vertices). Then

pick aj = vi,j if j ≤ k, bj = vi,k+j if j ≤ k, and finally ak+1 = vi′,1, bk+1 = vi′′,1. Intuitively,
this means that the vertices vi,j are “blocked” for every j ≤ 2k by the first k paths and can
therefore not be used for the (k + 1)-st path such that this disjoint path does not exist.

Gk
q does not satisfy the formula because even if we “block” such a clique, there is still a

disjoint path connecting every pair of vertices because Gq is 2-connected. ◀

5 Connection to other logics

In this section, we compare the expressive power of the separator logic and the disjoint-paths
logic with monadic second-order logic and transitive-closure logic. Figure 3 depicts the
connections between these logics.
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5.1 Monadic second-order logic
Monadic second-order logic (MSO1) allows quantification over sets of vertices in addition to
the first-order quantifiers. It has a higher expressive power than first-order logic because for
example connectivity is expressible in MSO1 and every first-order formula can be expressed
with the first-order quantifiers. Connectivity is expressible by

∀R
((

∃xR(x) ∧ ∃x¬R(x)
)

→ ∃x∃y
(
R(x) ∧ ¬R(y) ∧ E(x, y)

))
By an extension of this formula, we can say that a given set S is connected:

conn-set(S) := ∀R
((
R ⊆ S ∧ ∃x R(x) ∧ ∃x (S(x) ∧ ¬R(x))

)
→ ∃x∃y

(
R(x) ∧ ¬R(y) ∧ S(y) ∧ E(x, y)

))
Furthermore, we can express the connectivity operators in MSO1. The connectivity

operator conn0(x, y) can be expressed by:

conn0(x, y) := ∀R
(
R(x) ∧ ∀v∀w

(
(R(v) ∧ E(v, w)) → R(w)

)
→ R(y)

)
and connk(x, y, z1, . . . , zk) using conn-set(S) by:

connk(x, y, z1, . . . , zk) := ∃S
(
conn-set(S) ∧ S(x) ∧ S(y) ∧

∧
i≤k

¬S(zi)
)
.

We can express the disjoint paths predicates disjoint-pathsk[(x1, y1), . . . , (xk, yk)] by:

∃S1, . . . , Sk

( ∧
i≤k

(
Si(xi) ∧ Si(yi) ∧ conn-set(Si)

)
∧

∧
i<j≤k

∀z
((
Si(z) ∧ Sj(z)

)
→

(
(z = xi ∨ z = yi) ∧ (z = xj ∨ z = yj)

)))
Since the disjoint paths operators are expressible in MSO1, FO + DP is included in MSO1.

This inclusion is strict because it is well-known that bipartiteness is expressible in MSO1:

∃R1∃R2

(
∀x

(
R1(x) ↔ ¬R2(x)

)
∧

∧
i≤2

∀x∀y
(
(Ri(x) ∧Ri(y)) → ¬E(x, y)

))
but we showed in Theorem 4.7 that bipartiteness is not expressible in FO + DP.

5.2 Transitive-closure logic
Transitive-closure logic TCi

j is the enrichment of first-order logic with the transitive-closure
operator [TCx̄,ȳφ(x̄, ȳ)] where x̄ and ȳ are tuples of length i and φ is a formula with at
most j free variables other than x̄ and ȳ.

Every FO + connk formula can be expressed in TC1
k because the connk operator can be

expressed with the help of the transitive-closure operator:

connk(x, y, z1, . . . , zk) = [TCv,wE(v, w)∧v ̸= z1 ∧ . . .∧v ̸= zk ∧w ̸= z1 ∧ . . .∧w ̸= zk](x, y)

In fact, TC1
k is more expressible than FO + connk, as it can express bipartiteness [17,

Example 7.2]. On the other hand, 2-connectivity can naturally be expressed in FO + conn1,
but presumably not in TC1

0.

▶ Conjecture 5.1. 2-connectivity cannot be expressed in TC1
0.
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Figure 3 Connections between the logics.

6 Conclusion

We studied first-order logic enriched with connectivity predicates tailored to express al-
gorithmic graph properties that are commonly studied in contemporary parameterized
algorithmics. This yielded separator logic, which can query connectivity after the deletion of
a bounded number of elements, and disjoint-paths logic, which can express the disjoint-paths
problem. We demonstrated a rich expressiveness that arises from the interplay of these
predicates with the nested quantification of first-order logic. We also studied the limits of
expressiveness of these new logics.

In a companion paper, we studied the model-checking problem for separator logic and
proved that it is fixed-parameter tractable parameterized by formula size on classes of graphs
that exclude a fixed topological minor [24]. This yields a powerful algorithmic meta-theorem
for separator logic. On the other hand, while the disjoint-paths problem is fixed-parameter
tractable on general graphs [26], it is not clear that the model-checking problem for disjoint-
paths logic is fixed-parameter tractable beyond graphs of bounded treewidth. This remains
a challenging question for future work.

It will also be interesting to study other extensions of first-order logic that can express
further interesting algorithmic graph problems, such as reachability with regular paths queries.
This would, in the simplest case, allow to express bipartiteness and the odd cycle transversal
problem. On the other hand, it is very likely that with general regular paths queries, we will
get intractability beyond bounded treewidth graphs.
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Abstract
We introduce a class of applicative structures called bi-BDI-algebras. Bi-BDI-algebras are generaliza-
tions of partial combinatory algebras and BCI-algebras, and feature two sorts of applications (left
and right applications). Applying the categorical realizability construction to bi-BDI-algebras, we
obtain monoidal bi-closed categories of assemblies (as well as of modest sets). We further investigate
two kinds of comonadic applicative morphisms on bi-BDI-algebras as non-symmetric analogues
of linear combinatory algebras, which induce models of exponential and exchange modalities on
non-symmetric linear logics.
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1 Introduction

Categorical realizability gives us a useful method to construct categorical models of various
logics and programming languages from simple structures called applicative structures. The
most well known is the case of partial combinatory algebras (PCAs), which are an important
class of applicative structures. From a PCA A, we can construct Cartesian closed categories
(CCCs) Asm(A) and Mod(A) and a realizability topos RT(A) [11].

The structures of such categories obtained by realizability depend on the structures of
applicative structures. Thus, assuming other conditions to applicative structures than being
PCAs, we can obtain other categorical structures and use them to model other kinds of
languages. A well known case is a class of applicative structure called BCI-algebras, which
induces a symmetric monoidal closed structure on Asm(A) and Mod(A) [1, 2]. While
PCAs correspond to the untyped lambda calculus by the combinatory completeness property,
BCI-algebras correspond to the untyped linear lambda calculus.

These two cases for PCAs and BCI-algebras are useful to give various models based
on CCCs and symmetric monoidal closed categories (SMCCs). On the other hand, the
categorical realizability giving rise to non-symmetric categorical structures has not been
investigated much. In our previous work [14], several classes of applicative structures that
induce certain non-symmetric categorical structures were introduced. The BI(−)•-algebra
is one of such classes. A BI(−)•-algebra A induces the structure of closed multicategories
on Asm(A) and Mod(A), and corresponds to the untyped planar lambda calculus by
combinatory completeness. Here, the planar lambda calculus is the restricted linear lambda
calculus that consists of linear lambda terms whose orders of bound variables can not be freely
exchanged. The name “planar” comes from the fact that planar lambda terms correspond to
graphically planar maps [16, 15].
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The (non-symmetric) closed multicategories obtained from BI(−)•-algebras can be used for
modeling non-symmetric implicational linear logic. However, to model richer non-symmetric
logics, we additionally want to express non-symmetric tensor products and it is natural
to try to get non-symmetric monoidal closed categories by categorical realizability. Unlike
the symmetric case, it is a quite subtle problem to realize non-symmetric tensor products.
When we try to realize tensor products by BI(−)•-algebras in the same way as PCAs and
BCI-algebras, we notice that realizers for unitors and associators induces the C-combinator
and the tensor products inevitably become symmetric (and the BI(−)•-algebra is forced to
be a BCI-algebra).

This difficulty can be understood by polymorphic encoding. In Asm(A) for a BCI-algebra
A = (|A|, ·), realizers for an element x1 ⊗ x2 of X1 ⊗ X2 are λ∗z.(z · a1 · a2), where ai are
realizers of xi respectively. The form of the realizer corresponds to that X1 ⊗ X2 is expressed
as ∀T.(X1 ⊸ X2 ⊸ T ) ⊸ T for symmetric cases. Whereas, for non-symmetric cases,
X1 ⊗ X2 is expressed as ∀T.(T ⊸X2 ⊸X1) ⊸ T and we need to distinguish two kinds of
implications ⊸ and ⊸. In an applicative structure like a BI(−)•-algebra, elements acting
as functions always receive elements acting as arguments from the right side and thus the
corresponding types may express only one of ⊸ and ⊸.

Conversely, if elements acting as functions can receive elements acting as arguments
from both left and right side, we may construct realizers for non-symmetric tensor products.
In this paper, we introduce a new structure called bi-BDI-algebra, which has two kinds of
applications. These two applications correspond to ⊸ and ⊸respectively and we can realize
non-symmetric monoidal structures in Asm(A) and Mod(A) on a bi-BDI-algebra A.

Two applications of a bi-BDI-algebra are closely related to each other via its components
⃗D, D⃗, (−)◁ and (−)▷, which are introduced in order to let bi-BDI-algebras have certain

combinatory completeness property. Thanks to these constructs, for a bi-BDI-algebra A,
Asm(A) and Mod(A) consequently become monoidal bi-closed categories. Recall that
monoidal bi-closed categories are monoidal categories with two kinds of adjunctions
(X ⊗ −) ⊣ (X ⊸ −) and (− ⊗ Y ) ⊣ (− ⊸Y ). Natural transformations relating these
adjunctions indeed have realizers. In particular, the natural isomorphism
X ⊸ (Y ⊸Z) ∼= (X ⊸ Y ) ⊸Z is realized by ⃗D and D⃗.

Furthermore, by the relationship between two applications of bi-BDI-algebras, bi-BDI-
algebras can be seen as a non-symmetric generalization of BCI-algebras even though bi-
BDI-algebras have additional applications that BCI-algebras do not have. We can reduce a
bi-BDI-algebra to a BCI-algebra by assuming certain element expressing symmetry.

In this paper, we further investigate two sorts of modalities on non-symmetric linear
logics using bi-BDI-algebras. The linear exponential modality ! allows linear logics to copy
and discard arguments [5]. Categorical realizability for the !-modality was introduced
in [1], which uses an endomorphism on a BCI-algebra with several extra elements. In
[8], the endomorphisms are generalized to total relations with certain conditions, which
are generalizations of adjoint pairs between BCI-algebras and PCAs. The generalized
endomorphisms give rise to comonads on categories of assemblies (or modest sets), and
the comonads model !-modalities. While originally linear exponential comonads are models
of !-modalities on linear logics with symmetric tensor products, later, linear exponential
comonads for non-symmetric linear logics were also investigated [7]. Just as for the symmetric
case, we can obtain comonads modeling !-modalities on non-symmetric linear logics by certain
endomorphisms on bi-BDI-algebras. The endomorphisms are generalizations of adjoint pairs
between bi-BDI-algebras and PCAs.

The exchange modality introduced in [9] allows non-symmetric linear logics to exchange
arguments. A categorical model for the logic with the exchange modality is given by a
monoidal adjunction between a monoidal bi-closed category and an SMCC, called a Lambek
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adjoint model. We obtain such an adjunction as a co-Kleisli adjunction on categories of
assemblies (or modest sets) by the similar way for !-modalities. An adjoint pair between a
bi-BDI-algebra and a BCI-algebra gives rise to an endomorphism inducing a Lambek adjoint
model.

The rest of this paper is structured as follows. In Section 2, we recall some basic
notions and results in categorical realizability. Also we recall three classes of applicative
structures: PCAs, BCI-algebras and BI(−)•-algebras, which induce CCCs, SMCCs and
closed multicategories respectively. In Section 3, we introduce bi-BDI-algebras and the
corresponding lambda calculus. We show that bi-BDI-algebras can be seen as a generalization
of BCI-algebras and that bi-BDI-algebras induce monoidal bi-closed categories. In Section 4,
we construct models of linear exponential modalities and exchange modalities by categorical
realizability. In Section 5, we discuss related work. Finally, in Section 6, we summarize
contents of this paper.

Basic knowledge of category theory and the lambda calculus is assumed.

2 Background

2.1 Applicative structures and categories of assemblies
First we recall some basic concepts of the categorical realizability. Notations and definitions
in this subsection are from [11].

▶ Definition 1. A partial applicative structure A is a pair of a set |A| and a partial binary
operation (x, y) 7→ x · y on |A|. When the binary operation of A is total, we say A is a total
applicative structure.

Application associates to the left, and we often omit · and write it as juxtaposition. For
instance, xz(yz) denotes (x · z) · (y · z). In the sequel, we use two notations ↓ and ≃. The
down arrow means “defined.” For instance, for a partial applicative structure (|A|, ·), xy ↓
means that x · y is defined. “≃” denotes the Kleene equality, which means that if the one
side of the equation is defined then the other side is also defined and they are equal.

▶ Definition 2. Let A be a partial applicative structure.
(i) An assembly on A is a pair X := (|X|, ∥-∥X), where |X| is a set and ∥-∥X is a function

sending x ∈ |X| to a non-empty subset ∥x∥X of |A|.
(ii) For assemblies X and Y , a map of assemblies f : X → Y is a function f : |X| → |Y |

such that there exists an element r ∈ |A| realizing f . Here “r realizes f” or “r is a
realizer of f” means that ∀x ∈ |X|, ∀a ∈ ∥x∥X , ra ↓ and ra ∈ ∥f(x)∥Y .

If we assume two extra conditions on a partial applicative structure, we can construct
two kinds of categories from assemblies and maps of assemblies.

▶ Definition 3. Let A be a partial applicative structure satisfying that:
1. |A| has an element I such that for any x ∈ |A|, Ix ↓ and Ix = x;
2. for any r1, r2 ∈ |A|, there exists r1,2 ∈ |A| such that for any x ∈ |A|, r1,2x ≃ r1(r2x).

Then we construct categories as follows:
(i) The category Asm(A) of assemblies on A consists of assemblies on A as its objects

and maps of assemblies as its maps. Identity maps and composition maps are the same
as those of Sets.

(ii) When an assembly X satisfies ∀x, y ∈ |X|, x ≠ y ⇒ ∥x∥X ∩ ∥y∥X = ∅, we say that X is
a modest set on A. The category Mod(A) of modest sets on A is the full subcategory
of Asm(A) whose objects are modest sets on A.
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35:4 Planar Realizability via Left and Right Applications

Asm(A) and Mod(A) are indeed categories. For any assembly (|X|, ∥-∥) on A, the
identity function on |X| is realized by I . Given two maps of assemblies X

f−→ Y
g−→ Z realized

by r2 and r1 respectively, the composition function g ◦ f : |X| → |Z| is realized by r1,2.
The categorical structure of Asm(A) and Mod(A) depends on A. When we assume some

conditions on A, Asm(A) and Mod(A) have certain corresponding categorical structures.
In the following three subsections, we introduce three classes of applicative structures:
PCAs, BCI-algebras and BI(−)•-algebras, which induce Cartesian closed categories (CCCs),
symmetric monoidal closed categories (SMCCs) and closed multicategories respectively.

2.2 PCAs and Cartesian closed categories
In this subsection, we recall a well-known class of partial applicative structures called partial
combinatory algebras (PCAs). PCAs correspond to the lambda calculus and assemblies on a
PCA form a CCC. These results are from [11].

▶ Definition 4. A PCA is a partial applicative structure A which contains two elements S
and K satisfying:

∀x, y ∈ |A|, Kx ↓, Kxy ↓ and Kxy = x;
∀x, y, z ∈ |A|, Sx ↓, Sxy ↓ and Sxyz ≃ xz(yz).

▶ Example 5. Suppose infinite supply of variables x, y, z, . . . . Untyped lambda terms are
terms constructed from the following six rules:

(identity)
x ⊢ x

Γ ⊢ M ∆ ⊢ N (application)
Γ, ∆ ⊢ MN

Γ, x ⊢ M
(abstraction)

Γ ⊢ λx.M

Γ, x, y, ∆ ⊢ M
(exchange)

Γ, y, x, ∆ ⊢ M

Γ, x, y ⊢ M
(contraction)

Γ, x ⊢ M [x/y]
Γ ⊢ M (weakening)

Γ, x ⊢ M

Here, in the application rule, Γ and ∆ are sequences of distinct variables and contain no
common variables. In the contraction rule, M [x/y] denotes the term obtained by substituting
x for all free y in M . In the weakening rule, x is a variable not contained in Γ.

Note that abstraction rules are only applied to the rightmost variables. In order to apply
the abstraction rule to a variable in a different position, we need to use exchange rules and
move the variable to the rightmost place.

We define β-equivalence relation =β on lambda terms as the congruence of the relation
(λx.M)N ∼ M [N/x]. Untyped lambda terms modulo =β form a PCA. The underlying set
of the PCA consists of β-equivalence classes of untyped closed lambda terms (i.e., lambda
terms with no free variables) and the application is defined as that of lambda terms. In this
example, λxyz.xz(yz) is the representative of S and λxy.x is the representative of K.

PCAs are closely related to the untyped lambda calculus through the property called
combinatory completeness as in Proposition 7.

▶ Definition 6. Let A be a partial applicative structure. A polynominal over A is a syntactic
expression generated by variables, elements of |A| and applications. For polynominals M and
N over A, M ≃ N means that M [a1/x1, ..., an/xn] ≃ N [a1/x1, ..., an/xn] holds in A for any
a1, ..., an ∈ |A|, where {x1, ..., xn} contains all the variables of M and N .

▶ Proposition 7 (combinatory completeness for PCAs). Let A be a PCA and M be a polynom-
inal over |A|. For any variable x, there exists a polynominal M ′ such that the free variables
of M ′ are the free variables of M excluding x and M ′a ≃ M [a/x] for all a ∈ |A|. We write
λ∗x.M for such M ′.
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Proof. We define λ∗x.M by induction on the structure of M as follows: λ∗x.x := SKK;
λ∗x.y := Ky (when x ̸= y); λ∗x.MN := S(λ∗x.M)(λ∗x.N). ◀

For the special case of the above proposition, any closed lambda term is β-equivalent to
some term constructed from λxyz.xz(yz) and λxy.x only using applications.

Although conditions of PCAs are simple, categorical structures induced by PCAs are
quite strong and useful.

▶ Proposition 8. Let A be a PCA. Then Asm(A) and Mod(A) are Cartesian closed and
regular.

The detailed proof is in [11]. What is important here is how to realize products and
exponents by PCAs. Cartesian closed structures in Asm(A) and Mod(A) are defined as
follows. The terminal object is ({∗}, ∥-∥1), where ∥∗∥1 := |A|. For objects X and Y , the
product is (|X| × |Y |, ∥-∥X×Y ), where ∥(x, y)∥X×Y := {λ∗z.zaa′ | a ∈ ∥x∥X , a′ ∈ ∥y∥Y }.
Projection maps are realized by K and λ∗xy.y. For objects X and Y , the exponent is defined
as (HomAsm(A)(X, Y ), ∥-∥Y X ), where ∥f∥Y X := {r | r realizes f}. The evaluation map
ev : X × Y X → Y is realized by λ∗z.z(λ∗uv.vu).

2.3 BCI-algebras and symmetric monoidal closed categories
In this subsection we recall another class of applicative structures called BCI-algebra. BCI-
algebras are related to linear structures whereas PCAs are not. The results given below are
from [2, 8].

▶ Definition 9. A BCI-algebra is a total applicative structure A which contains three elements
B, C and I such that for any x, y, z ∈ |A|, Bxyz = x(yz), Cxyz = xzy and Ix = x.

▶ Example 10. Untyped linear lambda terms are untyped lambda terms constructed without
using weakening and contraction rules, i.e., untyped lambda terms whose each variable
appears just once. Untyped linear lambda terms modulo =β form a BCI-algebra. Here
λxyz.x(yz), λxyz.xzy and λx.x are the representatives of B, C and I respectively.

▶ Proposition 11 (combinatory completeness for BCI-algebras). Let A be a BCI-algebra and
M be a polynominal over |A|. For any variable x appearing exactly once in M , there exists
a polynominal λ∗x.M such that the free variables of λ∗x.M are the free variables of M

excluding x and (λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λ∗x.M by induction on the structure of M as follows:
λ∗x.x := I

λ∗x.MN :=
{

C(λ∗x.M)N (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))

◀

For the special case of the above proposition, any closed linear lambda term is β-equivalent
to some term constructed from λxyz.x(yz), λxyz.xzy and λx.x only using applications.

Since BCI-algebras are related to the linear lambda calculus, categorical structures of
assemblies on BCI-algebras are also linear ones.

▶ Proposition 12. Let A be a BCI-algebra. Then Asm(A) and Mod(A) are SMCCs.

The monoidal structure in Asm(A) are defined as follows: The unit object is ({∗}, ∥-∥I),
where ∥∗∥I := { I}. For objects X and Y , the tensor product is defined as (|X|×|Y |, ∥-∥X⊗Y ),
where ∥(x, y)∥X⊗Y := {λ∗z.zaa′ | a ∈ ∥x∥X , a′ ∈ ∥y∥Y }. Realizers for natural isomorphisms
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35:6 Planar Realizability via Left and Right Applications

follows by the combinatory completeness. For instance, the associator a : (X ⊗Y )⊗Z → X ⊗
(Y ⊗ Z) is realized by λ∗w.w(λ∗w′r.w′(λ∗pq.(λ∗u.up(λ∗v.vqr)))). The monoidal structures
of Mod(A) are not the same as Asm(A), since X ⊗ Y may not be a modest set even if
X and Y are modest. We can define the monoidal structures of Mod(A) by the monoidal
adjunction associated with Mod(A) being a reflective fullsubcategory of Asm(A). (See
Section 3 in [8].)

2.4 BI(−)•-algebras and closed multicategories
In this subsection we give another class of applicative structure called BI(−)•-algebras. They
are generalizations of BCI-algebras by excluding C that expresses exchanging arguments.
BI(−)•-algebras are related to non-symmetric linear structures. These results are from [14].

▶ Definition 13. We say that a total applicative structure A is a BI(−)•-algebra iff it contains
B, I and a• for each a ∈ |A|, where a• is an element of |A| such that a•x = xa for all x ∈ |A|.

Like PCAs and BCI-algebras, BI(−)•-algebras are related to a part of the untyped lambda
calculus, which is called the planar lambda calculus.

▶ Example 14. Untyped planar lambda terms are untyped lambda terms constructed without
using weakening, contraction nor exchange rules. Untyped closed planar lambda terms
modulo =β form a BI(−)•-algebra. Here λxyz.x(yz) and λx.x are the representatives of
B and I . Given a representative M of a, λx.xM is also a closed planar term and is the
representative of a•.

▶ Proposition 15 (combinatory completeness for BI(−)•-algebras). Let A be a BI(−)•-algebra
and M be a polynominal over |A|. For the rightmost variable x, which has to appear exactly
once in M , there exists a polynominal λ∗x.M such that the free variables of λ∗x.M are the
free variables of M in the same order excluding x and (λ∗x.M)a = M [a/x] for all a ∈ |A|.

Proof. We define λ∗x.M by induction on the structure of M as follows:
λ∗x.x := I

λ∗x.MN :=
{

BN•(λ∗x.M) (x ∈ FV (M))
BM(λ∗x.N) (x ∈ FV (N))

Note that for λ∗x.MN , x is the rightmost free variable in MN . Therefore, if x is in FV (M),
N has no free variables and N• can be defined. ◀

For the special case of the above proposition, any closed planar lambda term is β-
equivalent to some term constructed from λxyz.x(yz) and λx.x using applications and the
unary operation (−)• : M 7→ λx.xM .

BI(−)•-algebras are related to the planar lambda calculus, that is, a fragment of the
linear lambda calculus without symmetry. Therefore, categorical structures of assemblies on
BI(−)•-algebras also are non-symmetric and linear.

▶ Proposition 16. For a BI(−)•-algebra A, Asm(A) and Mod(A) are closed multicategories.

Here closed multicategories are one of generalizations of categories with objects expressing
internal hom [12]. What we need to refer here is that closed multicategories are generalization
of monoidal closed categories and they not generally have tensors. When we try to construct
realizers for tensor products in Asm(A) as we did in Proposition 8 and Proposition 12
(∥x ⊗ y∥ := {λ∗z.zaa′ | a ∈ ∥x∥, a′ ∈ ∥y∥}), we notice that realizers for associators and
unitors do not generally exist. Even if we assume these realizers in a BI(−)•-algebra, we can



H. Tomita 35:7

construct an element acting as C from these realizers. Take an assembly X as |X| := |A|
and ∥a∥X := {a}. Assuming that the unitor X → I ⊗ X has a realizer r, rxz = zIx holds
for any x and z. Let C ′ := λ∗xz.rx(Bz) and C := λ∗xy.C ′x(B(C ′y)). Then C satisfies the
axiom of the C-combinator and thus A inevitably becomes a BCI-algebra.

2.5 Applicative morphisms
In this subsection, we recall the notion of applicative morphisms from [11]. In [11], applicative
morphisms are defined not for arbitrary applicative structures but only for PCAs. However,
the same definition makes sense for a large class of applicative structures including PCAs,
BCI-algebras and BI(−)•-algebras.

In this subsection, let A and B range over PCAs and BI(−)•-algebras.

▶ Definition 17. An applicative morphism γ : A → B is a total relation from |A| to
|B| such that there is a realizer rγ ∈ |B| of γ satisfying that for any x, x′ ∈ |A|, y ∈ γx
and y′ ∈ γx′, rγyy′ ∈ γ(xx′) holds whenever xx′ ↓. (We often write such a condition as
rγ(γx)(γx′) ⊆ γ(xx′)).

▶ Definition 18. For two applicative morphisms γ, δ : A → B, γ ⪯ δ iff there exists an
element r ∈ |B| called realizer of γ ⪯ δ such that ry ∈ δx for any x ∈ |A| and y ∈ γx.

By the preorder ⪯, we can define adjunctions and comonads on applicative structures.

▶ Definition 19. For applicative morphisms γ : A → B and δ : B → A, γ is a right adjoint
of δ iff δ ◦ γ ⪯ idA and idB ⪯ γ ◦ δ. We often write these settings as (δ ⊣ γ) : A → B.

▶ Definition 20. We say an applicative morphism γ : A → A is a comonadic applicative
morphism when A has two element e and d such that e(γx) ⊆ {x} and d(γx) ⊆ γ(γx) for
any x ∈ |A|.

Given an adjoint pair of applicative morphisms (δ ⊣ γ) : A → B, we obtain a comonadic
applicative morphism (δ ◦ γ) : A → A. e is given as a realizer of δ ◦ γ ⪯ idA and d is given
as rδ(δr), where rδ is a realizer of δ and r is a realizer of idB ⪯ γ ◦ δ.

Any applicative morphism γ : A → B gives rise to a functor γ∗ : Asm(A) → Asm(B).
Furthermore, any adjoint pair (δ ⊣ γ) : A → B gives rise to an adjunction δ∗ ⊣ γ∗.

▶ Definition 21. For an applicative morphism γ : A → B, γ∗ : Asm(A) → Asm(B) is the
functor sending an object (|X|, ∥-∥X) to (|X|, γ∥-∥X) and sending a map f : X → Y to the
same function.

The realizer of γ∗f exists in rγ(γrf ), where rγ and rf are realizers of γ and f respectively.

▶ Proposition 22. An adjoint pair of applicative morphisms (δ ⊣ γ) : A → B gives rise to
an adjunction δ∗ ⊣ γ∗ : Asm(A) → Asm(B).

The unit and counit are realized by the realizers of idB ⪯ γ ◦δ and δ ◦γ ⪯ idA respectively.
For a comonadic applicative morphism γ : A → A, γ∗ is a comonad on Asm(A). The

counit is realized by e and the comultiplication is realized by d.
This subsection can be summarized as follows. PCAs and BI(−)•-algebras form a preorder

enriched category and Asm(−) extends to a 2-functor from this 2-category to the 2-category
of categories of assemblies (on PCAs and BI(−)•-algebras). Details for the 2-functor Asm(−)
(for PCAs) are in Section 2.2 of [11].
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▶ Remark 23. Given an applicative morphism γ : A → B, we can not generally obtain a functor
γ∗ : Mod(A) → Mod(B) as the same for categories of assemblies, since ∥x∥X ∩ ∥x′∥X = ∅
does not imply γ(∥x∥X) ∩ γ(∥x′∥X) = ∅ and γ∗X may not be in Mod(B). However, for
a comocadic applicative morphism γ : A → A, γ∗ can be restricted to an endofunctor on
Mod(A). Indeed, for a modest set X, if a ∈ (γ∥x∥X) ∩ (γ∥x′∥X) then ea ∈ ∥x∥X ∩ ∥x′∥X

and thus x = x′. Just like for Asm(A), the γ∗ is a comonad on Mod(A).

3 Bi-BDI-algebras and monoidal bi-closed categories

As we said in Section 2.4, it is difficult to construct non-symmetric monoidal structure on
Asm(A) by BI(−)•-algebras in the same way as BCI-algebras and PCAs. We need some
major modification on the definition of realizers of tensor products in Asm(A).

Here we introduce a new class of applicative structures called bi-BDI-algebras, which are
very different from classes of applicative structures we have seen so far since bi-BDI-algebras
contain two sorts of applications. We use the two applications to realize tensor products
while avoiding intrusion of C-combinators.

3.1 Bi-BDI-algebras and the bi-planar lambda calculus
First we introduce a variant of the lambda calculus that we call the bi-planar lambda calculus
here, which contains two sides of applications and abstractions1.

▶ Definition 24. Bi-planar lambda terms are constructed by the following rules:

(identity)
x ⊢ x

Γ, x ⊢ M
(right abstraction)

Γ ⊢ (M 7→x)
x, Γ ⊢ M

(left abstraction)
Γ ⊢ (x 7→M)

Γ ⊢ M ∆ ⊢ N (right application)
Γ, ∆ ⊢ M @⃗N

Γ ⊢ M ∆ ⊢ N (left application)
Γ, ∆ ⊢ M @⃗N

Here is none of weakening, contraction nor exchange rules.

Although bi-planar lambda terms seem very different from ordinary lambda terms, when
we construct terms only using identity, right application and right abstraction rules, they are
planar lambda terms. In this case M @⃗N denotes MN and (M 7→x) denotes λx.M .

For the sake of clarity, we classify right and left by red and blue. That is, we write each
of them as M @⃗N , (M 7→x), N @⃗M and (x 7→M).

▶ Definition 25. We define a relation →β on bi-planar lambda terms as the congruence of
the following relations:

(right β-reduction) (M 7→x) @⃗N →β M [N/x]
(left β-reduction) N @⃗(x 7→M) →β M [N/x]

The bi-planar lambda calculus consists of bi-planar lambda terms and the reflexive,
symmetric and transitive closure of →β as the equational relation =β.

Basic properties about →β , such as the confluence and the strongly normalizing property,
can be shown in the same way as the proof for the linear lambda calculus.

1 The terminology left and right abstractions corresponds to left and right closed structures of monoidal
categories: (X ⊗ −) ⊣ (X ⊸ −) and (− ⊗ Y ) ⊣ (− ⊸Y ).
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▶ Remark 26. The bi-planar lambda calculus is essentially not a new concept, since it often
appears as the Curry-Howard corresponding calculus with the Lambek calculus (cf. [9]).
However, note that unlike the calculus corresponding to the Lambek calculus, the bi-planar
lambda calculus is based on untyped setting. The reason why we use a less-standard notation
is to shorten the length of the realizers and to make them easier to read.

Next we introduce the notion of bi-BDI-algebra, which corresponds to the bi-planar
lambda calculus. In order to express the bi-planar lambda calculus by an algebraic structure,
the structure is not enough to have two sides of applications, but also need some conditions
for relating these two applications. In bi-BDI-algebras, ⃗D, D⃗, (−)◁ and (−)▷ express such
conditions.

▶ Definition 27. We say a total applicative structure A = (|A|, @⃗) is a bi-BDI-algebra
when there is an additional total binary operation @⃗ on |A| and |A| contains several special
elements:

⃗B ∈ |A| such that (( ⃗B @⃗x) @⃗y) @⃗z = x @⃗(y @⃗z) for any x, y, z ∈ |A|.
B⃗ ∈ |A| such that z@⃗(y@⃗(x @⃗ B⃗)) = (z@⃗y)@⃗x for any x, y, z ∈ |A|.

⃗D ∈ |A| such that x @⃗(( ⃗D @⃗y) @⃗z) = (x @⃗y) @⃗z for any x, y, z ∈ |A|.
D⃗ ∈ |A| such that (z@⃗(y@⃗D⃗)) @⃗x = z@⃗(y @⃗x) for any x, y, z ∈ |A|.

⃗I ∈ |A| such that ⃗I @⃗x = x for any x ∈ |A|.
I⃗ ∈ |A| such that x @⃗ I⃗ = x for any x ∈ |A|.
For each a ∈ |A|, a◁ ∈ |A| such that (a◁) @⃗x = x @⃗a for any x ∈ |A|.
For each a ∈ |A|, a▷ ∈ |A| such that x @⃗(a▷) = a @⃗x for any x ∈ |A|.

We call @⃗and @⃗ as right application and left application respectively. In the sequel, we
use @⃗as a left-associative operation and often omit unnecessary parentheses, while we do
not omit parentheses for @⃗ .

As can be seen from the definition, though the left application is an extra component in
a bi-BDI-algebra, the conditions required for left and right applications are dual. We often
write A = (|A|, @⃗, @⃗) as a bi-BDI-algebra A = (|A|, @⃗) with the left application @⃗.

▶ Remark 28. Here we deal with bi-BDI-algebras only as total applicative structures while we
can define partial bi-BDI-algebras. Given a partial bi-BDI-algebra A, we always can extend
A to a total bi-BDI-algebra A′ by adding an extra element expressing “undefined.” Then
Asm(A) is a full subcategory of Asm(A′). The same discussion for partial BCI-algebras is
in Remark 1 of [8].

▶ Example 29. Closed bi-planar lambda terms modulo =β form a bi-BDI-algebra. For
instance, (((x @⃗(y @⃗z) 7→z) 7→y) 7→x), (((x 7→(x@⃗y) @⃗z) 7→z) 7→y) and (x 7→M @⃗x) are the rep-
resentative of ⃗B, ⃗D and M▷.

Combinatory completeness holds for bi-BDI-algebras and the bi-planar lambda calculus.

▶ Proposition 30 (Combinatory completeness for bi-BDI-algebras). Let A be a bi-BDI-algebra.
We define a polynominal over A as a syntactic expression generated by variables, elements of
|A| and left and right applications of A. Suppose a polynominal M over A and the rightmost
variable x appears only once in M . There exists a polynominal M ′ such that the free variables
of M ′ are the free variables of M excluding x and M ′ @⃗a = M ′[a/x] for any a ∈ |A|. We
write (M 7→x) for such M ′. Also, if the leftmost variable x appears only once in M , there
exists a polynominal M ′′ such that the free variables of M ′′ are the free variables of M

excluding x and a@⃗M ′′ = M ′′[a/x] for any a ∈ |A|. We write (x7→M) for such M ′′.
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Proof. We define (x 7→M) by induction on the structure of M .
(x 7→x) := I⃗

(x 7→(N @⃗M)) :=
{

(x 7→M)@⃗((N @⃗( ⃗I @⃗D⃗))
▷
@⃗ B⃗) (x ∈ FV (M))

(x 7→N)@⃗(M @⃗ B⃗) (x ∈ FV (N))
For the case x ∈ FV (M), x is the leftmost free variable of N @⃗M . Hence N contains no
variables and (N @⃗( ⃗I @⃗D⃗))

▷
can be defined.

(x 7→(M @⃗N)) :=
{

( ⃗D @⃗(x 7→M)) @⃗N (x ∈ FV (M))
(x 7→N)@⃗((M▷)@⃗ B⃗) (x ∈ FV (N))

For the case x ∈ FV (N), x is the leftmost free variable of M @⃗N . Hence M contains no
variables and M▷ can be defined.

The case of the right abstractions (M 7→x) is given in the same way, with all the left and
right constructs exchanged. ◀

It immediately follows that for any bi-BDI-algebra (|A|, @⃗, @⃗), the applicative structure
(|A|, @⃗) is a BI(−)•-algebra since a• can be defined as (x @⃗a 7→x).

We can show that the left application of a bi-BDI-algebra is unique up to isomorphism.

▶ Proposition 31. Suppose that A1 = (|A|, @⃗, @⃗1) and A2 = (|A|, @⃗, @⃗2) are bi-BDI-algebras.
Then (|A|, @⃗1) and (|A|, @⃗2) are isomorphic as applicative structures, where x @⃗i y := y @⃗i x.

To the end of this subsection, we additionally give an example of a bi-BDI-algebra.

▶ Example 32. Take an ordered group (G, ·, e, ≤). Let T be the set of terms t constructed
as follows:

t ::= g | t ⊸t | t ⊸ t (g ∈ G).

We define a function |-| : T → G by induction: |g| := g, |t1 ⊸t2| := |t1| · |t2|−1 and
|t2 ⊸ t1| := |t2|−1 · |t1|.

Let T be the powerset of {t ∈ T | e ≤ |t|}. Then T forms a bi-BDI-algebra.
For M, N ∈ T , M @⃗N := {t1 | ∃t2 ∈ N, (t1 ⊸t2) ∈ M}.
For M, N ∈ T , N @⃗M := {t1 | ∃t2 ∈ N, (t2 ⊸ t1) ∈ M}.

⃗B := {((t1 ⊸t3) ⊸(t2 ⊸t3)) ⊸(t1 ⊸t2) | t1, t2, t3 ∈ T}, dual for B⃗.
⃗D := {((t1 ⊸ t2) ⊸t3) ⊸(t1 ⊸ (t2 ⊸t3)) | t1, t2, t3 ∈ T}, dual for D⃗.
⃗I := {t1 ⊸ t1 | t1 ∈ T}, same for I⃗ .

For M ∈ T , M◁ := {t1 ⊸t2 | (t2 ⊸ t1) ∈ M}, same for M▷.

The construction of this example is the same one as that for a BI(−)•-algebra in Section 6
of [14], which is based on a reflexive object of a pivotal category Comod(G) introduced in [6].

3.2 Bi-BDI-algebras and BCI-algebras
In this subsection, we show that bi-BDI-algebras can be seen as non-commutative gener-
alizations of BCI-algebras. First, we show that the BCI-algebra is a special case of the
bi-BDI-algebra.

▶ Proposition 33. Let B = (|B|, ·) be a BCI-algebra. When we take two binary operations @⃗
and @⃗by y @⃗x = x @⃗y := x · y, (|B|, @⃗, @⃗) is a bi-BDI-algebra.

Proof. B satisfies axioms for B⃗ and ⃗B. I satisfies axioms for I⃗ and ⃗I . C satisfies axioms for
⃗D and D⃗. x satisfies axioms for x▷ and x◁. ◀
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Conversely, not all bi-BDI-algebras are BCI-algebras. Indeed, the bi-planar lambda
calculus is not a BCI-algebra. Here we show that when one of the left/right applicative
structures of a bi-BDI-algebra is a BCI-algebra, so is the other applicative structure and
moreover they coincide.

▶ Proposition 34. Let A = (|A|, @⃗, @⃗) be a bi-BDI-algebra. Take an applicative structures
A′ = (|A|, @⃗′) by x @⃗′ y := y@⃗x. Then A is a BCI-algebra iff A′ is a BCI-algebra. Moreover,
in such a case, these BCI-algebras are isomorphic as applicative structures.

3.3 Bi-BDI-algebras and monoidal bi-closed categories
Now we show the main result that bi-BDI-algebras induce monoidal bi-closed categories. For
a bi-BDI-algebra A = (|A|, @⃗, @⃗), Asm(A) is constructed by considering A as an applicative
structure (|A|, @⃗).

▶ Proposition 35. For a bi-BDI-algebra A, Asm(A) is a monoidal bi-closed category.

Proof. (Sketch)
For objects X and Y , the underlying set of X ⊗ Y is |X| × |Y |. Realizers are defined as
∥x ⊗ y∥ := {(z 7→z @⃗a @⃗a′) | a ∈ ∥x∥X , a′ ∈ ∥y∥Y }.
For f : X → X ′ and g : Y → Y ′, the map f ⊗ g is a function sending x ⊗ y to f(x) ⊗ g(y).
The realizer for f ⊗ g is ((((z 7→z @⃗(rf @⃗p) @⃗(rg @⃗q)) 7→q) 7→p)@⃗w 7→w).
The underlying set of the unit object I is a singleton {∗}. The realizer is ∥∗∥I := { ⃗I}.
The left unitor l : I ⊗ X → X sends ∗ ⊗ x to x, whose realizer is ( ⃗I @⃗w 7→w). The realizer
of l−1 is ((z 7→z @⃗⃗I @⃗x) 7→x).
For objects X and Y , the underlying set of X ⊸ Y is the set of maps from X to Y .
∥f∥ := {r ∈ |A| | a@⃗r ∈ ∥f(x)∥Y for any x ∈ |X| and a ∈ ∥x∥X}. This set is not empty
since (rf )▷ is in the set for a realizer rf of f .
For f : X ′ → X and g : Y → Y ′, f ⊸ g is a function sending a map h : X → Y to a map
g ◦ h ◦ f : X ′ → Y ′. The realizer for f ⊸ g is ((x 7→rg @⃗((rf @⃗x)@⃗w)) 7→w).
The evaluation map ev : X ⊗ (X ⊸ Y ) → Y sends x ⊗ f to f(x). The realizer is
(((x@⃗v 7→v) 7→x)@⃗w 7→w).
For any map f : X ⊗ Z → Y , there exists a unique map g : Z → X ⊸ Y which satisfies
ev ◦ (idX ⊗ g) = f . This g is given as a function sending z to a function x 7→ f(x ⊗ z).
The realizer of g is ((x 7→rf @⃗(t7→t @⃗x @⃗z)) 7→z).
For objects X and Y , the underlying set of Y ⊸X is the set of maps from X to Y .
∥f∥ := {r | r is a realizer of f}. ◀

Here what important is the way to take realizers of tensor products. We take the realizers
as ∥x ⊗ y∥ := {(z 7→z @⃗a @⃗a′) | a ∈ ∥x∥X , a′ ∈ ∥y∥Y }, while we would take (z @⃗a @⃗a′ 7→z) if
we define in the same way as Proposition 8 and Proposition 12.

▶ Remark 36. Take an object A := (|A|, ∥-∥), where ∥a∥ := {a}. If we assume Asm(A) is an
SMCC and the natural transformation for the symmetry sends x ⊗ y to y ⊗ x, then there is a
realizer r for the symmetry A ⊗ A → A ⊗ A, which satisfies r @⃗(z 7→z @⃗a @⃗a′) = (z 7→z @⃗a′ @⃗a)
for arbitrary a, a′ ∈ |A|. Then we have ⃗C′ := (( ⃗I @⃗(r @⃗(z 7→z @⃗x @⃗y)) 7→y) 7→x), which make
A a BCI-algebra. Hence, when A is a bi-BDI-algebra and not a BCI-algebra, Asm(A) is not
an SMCC (as long as we try to take the symmetry map in the natural way).

In the above proposition, we choose @⃗to give Asm(A). However, it does not matter
even if we choose @⃗.
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▶ Proposition 37. Let A = (|A|, @⃗, @⃗) be a bi-BDI-algebra. If we take an applicative
structures A′ := (|A|, @⃗′) for x @⃗′ y := y @⃗x, then Asm(A) and Asm(A′) are isomorphic
as categories. Moreover, Asm(A) is monoidally isomorphic to Asm(A′) with the reversed
tensor products.

We can also show Mod(A) is a monoidal bi-closed category for a bi-BDI-algebra A.
However, we cannot take tensor product as Asm(A) since X ⊗ Y in Asm(A) may not be a
modest set even if X and Y are modest. We use a functor T that is the left adjoint of the
inclusion functor i : Mod(A) ↪→ Asm(A). T sends an assembly (|X|, ∥-∥X) to a modest set
(|Z|, ∥-∥Z). Here |Z| := |X|/ ≈, where the relation ≈ is the transitive closure of ∼ defined as
x ∼ x′ :⇔ ∥x∥X ∩ ∥x′∥X ≠ ∅. The realizers of |Z| are ∥z∥Z :=

⋃
x∈z ∥x∥X . T sends a map

f of Asm(A) to the canonical one of Mod(A), whose realizers are those of f . We define
the tensor product ⊠ in Mod(A) as X ⊠ Y := T (iX ⊗ iY ). By using the same realizers in
the proof of Proposition 35, we can prove that this ⊠ makes Mod(A) a monoidal bi-closed
category. The same discussion for BCI-algebras is in [8] and the more general discussion
about monoidal structures of reflective subcategories (for symmetric cases) is in [3].

▶ Proposition 38. Mod(A) is a monoidal bi-closed category for a bi-BDI-algebra A.

To end of this subsection, we give a property about morphisms between bi-BDI-algebras.

▶ Proposition 39. For bi-BDI-algebras (|A1|, @⃗1, @⃗1) and (|A2|, @⃗2, @⃗2) and an applicative
morphism γ : (|A1|, @⃗1) → (|A2|, @⃗2), γ∗ : Asm(A1) → Asm(A2) is a lax monoidal functor.

▶ Remark 40. γ∗ is not generally oplax monoidal since neither realizers for γ∗I1 → I2 nor
γ∗(X ⊗1 Y ) → γ∗(X) ⊗2 γ∗(Y ) exist.

4 Realizability models for modalities

In this section we relate our non-symmetric categorical realizability to the standard real-
izability based on BCI-algebras and PCAs. Our approach is similar to the case of linear
combinatory algebras (LCAs) which relate BCI-algebras and PCAs. An LCA consists of a
BCI-algebra A, an endofunction ! : |A| → |A| and several kinds of elements, such that the
functor !∗ on Asm(A) (or Mod(A)) becomes a linear exponential comonad on the SMCC [1].
While ! in an LCA is a function, in [8], ! is generalized to a total relation and the generalized
LCAs are called relational linear combinatory algebras (rLCAs). We can obtain an rLCA
from an adjoint pair between a BCI-algebra and a PCA.

The same construction can be applied to bi-BDI-algebras. That is, we can reformulate
rLCAs for bi-BDI-algebras (Here we call exp-rPLCAs), and adjoint pairs between bi-BDI-
algebras and PCAs induce exp-rPLCAs. Using exp-rPLCAs, we get models of !-modalities
on non-symmetric multiplicative intuitionistic linear logic (MILL).

Also, we can obtain models for exchange modalities relating non-symmetric linear logics
and symmetric MILL. A model of the logic with the exchange modality is given as a monoidal
adjunction between an SMCC and a monoidal bi-closed category [9]. We can construct the
model from a comonadic applicative morphism with certain conditions (Here we call an
exch-rPLCA), and an adjoint pair between a bi-BDI-algebra and a BCI-algebra induces an
exch-rPLCA.

4.1 Realizability models for !-modalities on non-symmetric linear logics
Linear exponential comonads on non-symmetric monoidal categories are investigated in [7],
which model !-modalities on non-symmetric MILL.
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▶ Definition 41. A linear exponential comonad ! on a (non-symmetric) monoidal category
C is a monoidal comonad on C such that the induced monoidal structure of the category of
Eilenberg-Moore coalgebras is Cartesian.

The above characterization is by Theorem 5 of [7]. However, originally linear exponential
comonads are defined explicitly in [7] as tuples which consists of a monoidal comonad ! on C
and monoidal natural transformations eX :!X → I and dX :!X →!X⊗!X satisfying several
conditions.

In this subsection, we generalize rLCAs to the non-symmetric case and show they give
rise to linear exponential comonads.

▶ Definition 42. An exponential relational planar linear combinatory algebra (exp-rPLCA)
consists of a bi-BDI-algebra A = (|A|, @⃗, @⃗) and a comonadic applicative morphism (!, e, d)
on (|A|, @⃗) which satisfies the following.

There is k ∈ |A| such that k @⃗x @⃗(!y) ⊆ {x} for any x, y ∈ |A|.
There is w ∈ |A| such that w @⃗x @⃗(!y) ⊆ x @⃗(!y) @⃗(!y) for any x, y ∈ |A|.

▶ Proposition 43. For an exp-rPLCA (A, !), !∗ is a linear exponential comonad on Asm(A).

This proposition is proven by giving realizers for natural transformations associated
with a linear exponential comonad. eX : !∗X → I sending x to ∗ has a realizer k @⃗⃗I .
dX : !∗X → !∗X ⊗ !∗X sending x to x ⊗ x has a realizer w @⃗(((z 7→z @⃗x @⃗y) 7→y) 7→x).

Although now we get a linear exponential comonad !∗ on Asm(A), at this point it has
not been concluded that we get linear-non-linear models (i.e., monoidal adjunctions between
monoidal closed categories and CCCs) by categorical realizability since we have not shown
that the co-Kleisli adjunction between Asm(A) and Asm(A)!∗

is monoidal. In order to
show that the co-Kleisli adjunction is indeed monoidal, it is enough to show that Asm(A)
has Cartesian products. (It follows from Proposition 3 in [7].)

▶ Proposition 44. For an exp-rPLCA (A, !), Asm(A) has Cartesian products, and thus the
co-Kleisli adjunction between Asm(A) and a CCC Asm(A)!∗

is monoidal.

The proof is almost the same as the proof of Proposition 12 of [8]. For instance, we
take ∥(x, y)∥ := {(z 7→z @⃗(w 7→w @⃗u @⃗v) @⃗a) | ∃p, ∃q, u ∈ !p, v ∈ !q, p @⃗a ∈ ∥x∥X and
q @⃗a ∈ ∥y∥Y } as realizers for Cartesian product. Here note that the Cartesian product
X × Y is a modest set when X and Y are modest. Hence the above proposition for Asm(A)
can be shown similarly for Mod(A). (See Remark 23 for restricting !∗ to Mod(A).)

▶ Proposition 45. For an exp-rPLCA (A, !), !∗ is a linear exponential comonad on Mod(A).
Furthermore, Mod(A) has Cartesian products and thus the co-Kleisli adjunction between
Mod(A) and Mod(A)!∗

is monoidal.

Next, we show that an adjoint pair between a bi-BDI-algebra and a PCA gives rise to an
exp-rPLCA. First, note that it does not matter which application we choose when we take
an adjoint pair, as shown in the next proposition.

▶ Proposition 46. Let A = (|A|, @⃗, @⃗) be a bi-BDI-algebra and B = (|B|, ·) be a BCI-algebra.
Given an adjoint pair (δ ⊣ γ) : (|A|, @⃗) → B, there is an adjoint pair (δ′ ⊣ γ′) : (|A|, @⃗′) → B
for x @⃗′ y := y @⃗x, such that γ = γ′ and δ = δ′ as total relations.

▶ Proposition 47. Let A = (|A|, @⃗, @⃗) be a bi-BDI-algebra and B = (|B|, ·) be a PCA. For
an adjoint pair (δ ⊣ γ) : A → B, (δ ◦ γ) forms an exp-rPLCA.
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Proof. Let e and d be realizers associated with δ ◦γ being a comonadic applicative morphism.
k ∈ ((x@⃗(e @⃗(rδ @⃗δM @⃗y)) 7→y) 7→x), where M ∈ λ∗z.(γ I⃗).
w ∈ ((x@⃗(e @⃗(rδ @⃗δM @⃗(d @⃗y))) 7→y) 7→x), where M := λ∗z.rγ · (rγ · γN · z) · z and
N := (((t7→t @⃗u @⃗v) 7→v) 7→u). ◀

Next, we give an example of an adjoint pair between a bi-BDI-algebra and a PCA. This
example is a planar variant of the untyped linear lambda calculus with ! [13].

▶ Example 48. Suppose infinite supply of variables x, y, z, . . . . Terms are defined grammat-
ically as follows:

M ::= x | M @⃗M ′ | M @⃗M ′ | (M 7→x) | (x 7→M) | !M | λ!x.M

Here x of (M 7→x) (or (x 7→M)) is the rightmost (or leftmost) free variable of M , appears
exactly once in M and not in any scope of !. Take an equational relation on the terms as the
congruence of the three equational axioms (M 7→x) @⃗N = M [N/x], N @⃗(x 7→M) = M [N/x]
and (λ!x.M) @⃗(!N) = M [N/x]. Let Λ be a set of equivalence classes of closed terms.

Then we obtain a bi-BDI-algebra A := (Λ, @⃗, @⃗) and a PCA B := (Λ, ·), where
M · N := M @⃗!N . Here K and S exist in B as λ!x.λ!y.x and λ!x.λ!y.λ!z.x @⃗!z @⃗!(y @⃗!z).

Take an applicative morphism γ : A → B as the identity whose realizer is λ!x.λ!y.x @⃗y.
Take δ : B → A sending M to !M whose realizer is λ!x.λ!y.!(x @⃗!y). Then δ ⊣ γ.

4.2 Realizability models for exchange modalities
The Lambek calculus with the exchange modality and its categorical models are introduced
in [9]. Here by “Lambek calculus” we mean the non-symmetric MILL with left and right
implications. Its extension with the exchange modality is the commutative/non-commutative
(CNC) logic, which is a sequent calculus composed of two (commutative and non-commutative)
logics. Categorical models of CNC logics are given as monoidal adjunctions between monoidal
bi-closed categories and SMCCs, and are called Lambek adjoint models. As well as exp-
rPLCAs, we can define comonadic applicative morphisms giving rise to Lambek adjoint
models.

▶ Definition 49. An exchange relational planar linear combinatory algebra (exch-rPLCA)
consists of a bi-BDI-algebra A = (|A|, @⃗, @⃗) and a comonadic applicative morphism (ξ, e, d)
on A with ⃗c ∈ |A| satisfying ⃗c @⃗x @⃗(ξy) @⃗(ξz) ⊆ x @⃗(ξz) @⃗(ξy) for any x, y, z ∈ |A|.

▶ Proposition 50. For an exch-rPLCA (A, ξ), the co-Kleisli category Asm(A)ξ∗ is an SMCC
and the co-Kleisli adjunction is monoidal.

Proof (Sketch).
We define tensor products in Asm(A)ξ∗ as X ⊗′ Y := (|X| × |Y |, ∥-∥), where ∥x ⊗′ y∥ :=
{(z 7→z @⃗a @⃗a′) | a ∈ ξ∥x∥X and a′ ∈ ξ∥y∥Y }.
For f : X → X ′ and g : Y → Y ′ in Asm(A)ξ∗ , f ⊗′ g sends (x, y)
to (f(x), g(y)). The realizer for f ⊗′ g is (M @⃗(e @⃗w) 7→w), where M ∈
(((z 7→z @⃗(rξ @⃗(ξrf ) @⃗(d @⃗x)) @⃗(rξ @⃗(ξrg) @⃗(d @⃗y))) 7→y) 7→x).
We define the unit object J in Asm(A)ξ∗ as ({∗}, ∥-∥), where ∥∗∥ := { ⃗I}.
The symmetry σ : X ⊗′ Y → Y ⊗′ X sends x ⊗′ y to y ⊗′ x. The realizers for σ and σ−1

are (M @⃗(e @⃗w) 7→w), where M := ⃗c @⃗(((z 7→z @⃗y @⃗x) 7→x) 7→y).
For objects X and Y , the underlying set of the linear exponent Y ⊸X is
HomAsm(A)(ξ∗X, Y ). ∥f∥ := {r ∈ |A| | r is the realizer of f}.
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For f : X ′ → X and g : Y → Y ′ in Asm(A)ξ∗ , g ⊸f sends a map h : ξ∗X → Y in
Asm(A) to a map g ◦ (ξ∗h) ◦ dX ◦ (ξ∗f) ◦ dX′ from ξ∗X ′ to Y ′ in Asm(A) (that is, a
map from X ′ to Y ′ in Asm(A)ξ∗), where dX : ξ∗X → ξ∗ξ∗X is the comultiplication of
ξ∗. The realizer for g ⊸f is ((rg @⃗(rξ @⃗w @⃗(d @⃗(rξ @⃗(ξrf ) @⃗(d @⃗v)))) 7→v) 7→w).
For any map f : Z ⊗′ X → Y in Asm(A)ξ∗ , there exists a unique
map g : Z → Y ⊸X in Asm(A)ξ∗ , which sends z to x 7→ f(z ⊗ x).
The realizer of g is ((rf @⃗(rξ @⃗(rξ @⃗(ξM) @⃗(d @⃗z)) @⃗(d @⃗x)) 7→x) 7→z), where M :=
(((w 7→w @⃗z @⃗x) 7→x) 7→z).
The co-Kleisli functor ξ∗ : Asm(A)ξ∗ → Asm(A) is strong monoidal. Real-
izers for ξ∗J → I and ξ∗(X ⊗′ Y ) → ξ∗X ⊗ ξ∗Y in Asm(A) are e. A
realizer for I → ξ∗J is in (w @⃗(ξ ⃗I) 7→w). A realizer for ξ∗X ⊗ ξ∗Y →
ξ∗(X ⊗′ Y ) is in (((rξ @⃗(rξ @⃗ξM @⃗(d @⃗x)) @⃗(d @⃗y) 7→y) 7→x)@⃗w 7→w), where M :=
(((z 7→z @⃗x @⃗y) 7→y) 7→x). ◀

When we consider ξ∗ on Mod(A), we can not use the same definition of the tensor
product ⊗′ as Asm(A)ξ∗ since X ⊗′ Y may not be a modest set. We again use the functor
T that is the left adjoint of the inclusion functor i : Mod(A) ↪→ Asm(A) and define the
tensor product X ⊠ Y in Mod(A)ξ∗ as T (iX ⊗′ iY ). Then we can prove that Mod(A)ξ∗

becomes an SMCC with ⊠ in the same way as Proposition 50.

▶ Proposition 51. For an exch-rPLCA (A, ξ), the co-Kleisli category Mod(A)ξ∗ is an
SMCC and the co-Kleisli adjunction is monoidal.

Similar to exp-rPLCAs, we can obtain an exch-rPLCA from an adjoint pair.

▶ Proposition 52. Let A = (|A|, @⃗, @⃗) be a bi-BDI-algebra and B = (|B|, ·) be a BCI-algebra.
For an adjoint pair (δ ⊣ γ) : A → B, (δ ◦ γ) forms an exch-rPLCA.

Proof. Let e and d be realizers associated with δ ◦γ being a comonadic applicative morphism.
⃗c ∈ (((x@⃗(e @⃗(rδ @⃗(rδ @⃗δM @⃗(d @⃗y)) @⃗(d @⃗z))) 7→z) 7→y) 7→x), where M ∈ λ∗y.λ∗z.rγ · (rγ ·

γN · z) · y and N := (((x 7→x @⃗z @⃗y) 7→y) 7→z). ◀

▶ Example 53. Take an ordered group (G, ·, e, ≤). Let T be the same set as in Example 32.
We get a BCI-algebra T ′ as the powerset of {t ∈ T | e = |t|}, where the application is the
same as the right application of T and C := {((t1 ⊸t2) ⊸t3) ⊸((t1 ⊸t3) ⊸t2) | |ti| = e}.

In Example 32, we get a bi-BDI-algebra T . We obtain two applicative morphisms
γ : T → T ′ as a function M 7→ {(t ⊸t) | t ∈ M} and δ : T ′ → T as the identity function.
Here the realizer for γ is {((t1 ⊸t1) ⊸(t2 ⊸t2)) ⊸((t1 ⊸t2) ⊸(t1 ⊸t2)) | t1, t2 ∈ T} and the
realizer for δ is {t ⊸t | t ∈ T}. γ and δ form an adjoint pair, where the realizer for id ⪯ γ ◦ δ

is {t ⊸(t ⊸t) | e ≤ |t|} and the realizer for δ ◦γ ⪯ id is {((t ⊸t) ⊸(t ⊸t)) ⊸(t ⊸t) | t ∈ T}.

▶ Remark 54. The above construction can not be applied to exp-rPLCAs. No matter how we
take a powerset T0, since M @⃗N @⃗∅ = ∅ for any M, N ∈ T0, T0 does not contain the element
acting as the K-combinator and thus cannot be a PCA.

5 Related work

In [15], the relationships between the planar lambda calculus and planar maps are investigated.
It is shown that we can generate rooted planar maps with orientations by combining a few
kinds of “imploid moves”, that corresponds to the combinatory completeness of BI(−)•-
algebras and the planar lambda calculus. We may apply the correspondence between planar
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lambda terms and rooted planar maps to our bi-planar lambda terms. Here the corresponding
rooted maps have two kinds of vertexes with two inputs and one output (or, two outputs
and one input) while rooted maps for planar lambda terms have one kind.

Although we use the word “Lambek calculus” as a variant of non-symmetric MILL with
left and right implications in this paper, the word “Lambek calculus” has various meanings
as logics. The basics about the Lambek calculus is in [10]. Our treatment in this paper is
from [9].

Conditions of bi-BDI-algebras may look like “dual combinators” introduced in [4]. In
both of them, elements acting as functions can act to an argument from both left and right
sides. However, a dual combinatory logic has only one sort of application and the reductions
does not satisfy the confluence, whereas bi-BDI-algebras have two sorts of applications and
the confluence for the bi-planar lambda calculus holds.

Realizability for (symmetric) linear exponentials are introduced in [1] as LCAs and
generalized to rLCAs in [8]. Section 4.1 of this paper is the reformulations of some contents
of [8] to the planar case. The original definition of rLCA is described using not k and w but
⪯. We can also define exp-rPLCAs without using k nor w, however, we are not sure whether
we can define exch-rPLCAs without using ⃗c.

6 Conclusion

In this paper, we presented a new class of applicative structures called bi-BDI-algebras.
Bi-BDI-algebras lie between BI(−)•-algebras and BCI-algebras and correspond to the bi-
planar lambda calculus. Given a bi-BDI-algebra A, we obtain monoidal bi-closed categories
Asm(A) and Mod(A). We also introduced exp-rPLCAs and exch-rPLCAs which induce
categorical models for !-modalities and exchange modalities on non-symmetric logics. We can
get exp-rPLCAs from adjoint pairs between bi-BDI-algebras and PCAs, and exch-rPLCAs
from adjoint pairs between bi-BDI-algebras and BCI-algebras.

We conclude this paper by describing three issues for future work. First, while we have
shown that a bi-BDI-algebra A induces a monoidal bi-closed category Asm(A), it is not
clear whether being Asm(A) a monoidal bi-closed category leads that A is a bi-BDI-algebra.
For some other classes, we can show such a proposition. For instance, being Asm(A) a
CCC/SMCC/closed multicategory leads that A is a PCA/BCI-algebra/BI(−)•-algebra under
some natural conditions. (See Proposition 19 of [14] for the case of BI(−)•-algebras.)

Second, there are a few points that exp-rPLCA and exch-rPLCA do not behave in the
same way, and we would like to clarify them. As we said in the previous section, while
exp-rPLCA can be defined without using k nor w, we are not sure that exch-rPLCA can be
defined in such a style. Also, while an adjoint pair between a bi-BDI-algebra A and a PCA
B induce a monoidal adjunction between Asm(A) and Asm(B), the adjunction between
Asm(A′) and Asm(B′) induced from an adjoint pair between a bi-BDI-algebra A′ and a
BCI-algebra B′ is not generally monoidal.

Finally, we are yet to find more interesting concrete examples of bi-BDI-algebras and
adjoint pairs, which should be useful for investing non-commutative logics and their models
in a systematic way.

References
1 Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. Geometry of interaction and linear

combinatory algebras. Mathematical Structures in Computer Science, 12(5):625–665, 2002.
2 Samson Abramsky and Marina Lenisa. Linear realizability and full completeness for typed

lambda-calculi. Annals of Pure and Applied Logic, 134(2-3):122–168, 2005.



H. Tomita 35:17

3 Brian Day. A reflection theorem for closed categories. Journal of pure and applied algebra,
2(1):1–11, 1972.

4 J Michael Dunn and Robert K Meyer. Combinators and structurally free logic. Logic Journal
of IGPL, 5(4):505–537, 1997.

5 Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.
6 Masahito Hasegawa. A quantum double construction in Rel. Mathematical Structures in

Computer Science, 22(4):618–650, 2012.
7 Masahito Hasegawa. Linear exponential comonads without symmetry. Electronic Proceedings

in Theoretical Computer Science, 238:54–63, 2016.
8 Naohiko Hoshino. Linear realizability. In International Workshop on Computer Science Logic,

pages 420–434. Springer, 2007.
9 Jiaming Jiang, Harley Eades III, and Valeria de Paiva. On the lambek calculus with an exchange

modality. In Thomas Ehrhard, Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora
de Falco, editors, Proceedings Joint International Workshop on Linearity & Trends in Linear
Logic and Applications, Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018, volume 292
of EPTCS, pages 43–89, 2018.

10 Joachim Lambek. Deductive systems and categories II. standard constructions and closed
categories. In Category theory, homology theory and their applications I, pages 76–122. Springer,
1969.

11 John R Longley. Realizability toposes and language semantics. PhD thesis, University of
Edinburgh, 1995.

12 Oleksandr Manzyuk. Closed categories vs. closed multicategories. Theory and Applications of
Categories, 26(5):132–175, 2012.

13 Alex Simpson. Reduction in a linear lambda-calculus with applications to operational semantics.
In International Conference on Rewriting Techniques and Applications, pages 219–234. Springer,
2005.

14 Haruka Tomita. Realizability Without Symmetry. In 29th EACSL Annual Conference on
Computer Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 38:1–38:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2021.

15 Noam Zeilberger. A theory of linear typings as flows on 3-valent graphs. In Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 919–928. ACM,
2018.

16 Noam Zeilberger and Alain Giorgetti. A correspondence between rooted planar maps and
normal planar lambda terms. Log. Methods Comput. Sci., 11, 2015.

CSL 2022





Number of Variables for Graph Differentiation and
the Resolution of GI Formulas
Jacobo Torán # Ñ

Universität Ulm, Germany

Florian Wörz # Ñ

Universität Ulm, Germany

Abstract
We show that the number of variables and the quantifier depth needed to distinguish a pair of
graphs by first-order logic sentences exactly match the complexity measures of clause width and
positive depth needed to refute the corresponding graph isomorphism formula in propositional
narrow resolution.

Using this connection, we obtain upper and lower bounds for refuting graph isomorphism
formulas in (normal) resolution. In particular, we show that if k is the number of variables needed
to distinguish two graphs with n vertices each, then there is an nO(k) resolution refutation size
upper bound for the corresponding isomorphism formula, as well as lower bounds of 2k−1 and k for
the tree-like resolution size and resolution clause space for this formula. We also show a (normal)
resolution size lower bound of exp

(
Ω(k2/n)

)
for the case of colored graphs with constant color

class sizes.
Applying these results, we prove the first exponential lower bound for graph isomorphism

formulas in the proof system SRC-1, a system that extends resolution with a global symmetry rule,
thereby answering an open question posed by Schweitzer and Seebach.
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1 Introduction

In an attempt to give a logical characterization of polynomial-time decidable graph properties,
as well as a description of general classes of graph canonization algorithms, Immerman
identified certain fragments of first-order logic suitable for expressing graph properties [21, 22].
In this setting, for such a language L of first-order logic sentences, two graphs G and H are
L-equivalent, denoted by G ≡L H , if for all sentences ψ ∈ L it holds that G ⊨ ψ ⇐⇒ H ⊨ ψ.
Immerman noticed that the number of variables needed for expressing a property is a good
complexity measure and defined the k-variable fragment of first-order logic Lk as the set of
first-order logic formulas with the edge and equality relations that use at most k different
variables (possibly re-quantifying them). He also defined the stronger class Ck by adding
counting quantifiers to the class Lk and defined two pebble games for proving (non)equivalence
of structures in these classes.
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It was shown in [8] that two graphs are Ck-equivalent if and only if they cannot be
distinguished with the (k−1)-dimensional Weisfeiler–Leman algorithm, a well-known method
for testing graph isomorphism. Roughly speaking, the 1-dimensional Weisfeiler–Leman (WL)
algorithm [41, 40], or color refinement algorithm, identifies non-isomorphic colored graphs by
updating in a series of steps the original vertex colors according to the multiset of colors
of their neighbors. This basic step is applied repeatedly until the coloring stabilizes. This
procedure can be generalized to the k-dimensional Weisfeiler–Leman algorithm (k-WL) by
partitioning the set of k-tuples of vertices into automorphism-invariant equivalence classes
(see e. g., [8, 23, 24] for excellent overviews of the powers and limits of this procedure).

The graph isomorphism problem (GraphIso), deciding whether two given graphs are
isomorphic, has been intensively studied, as it is one of the few problems in NP that is not
known to be complete for this class nor to be in P. Also unknown is whether the problem
is in co-NP. It had been conjectured that GraphIso is solvable using the k-dimensional
Weisfeiler–Leman algorithm, with k being sublinear in the number of vertices of the graphs.
However, this was shown to be false in the seminal work of Cai, Fürer, and Immerman [8],
using the Ck pebble game as a central tool. The Weisfeiler–Leman method still plays a central
role in the algorithmic research on GraphIso; for example, Babai’s celebrated algorithm for
GraphIso [4] uses the k-WL method as a subroutine, with k being polylogarithmic in the
number of vertices.

The field of proof complexity provides a different approach for studying the complexity of
the GraphIso problem. Roughly speaking, in this setting, one tries to find out the smallest
size of a proof in a concrete system of the fact that two graphs are non-isomorphic. It holds
that GraphIso is in co-NP if and only if there is a concrete proof system with polynomial-size
proofs of non-isomorphism. Similar to the Cook–Reckhow program [10] for the unsatisfiability
problem UNSAT, this defines a clear line of research trying to provide superpolynomial size
lower bounds for refuting graph (non)isomorphism formulas in stronger and stronger proof
systems. The situation is even more interesting here than in the SAT case, since it would not
be too surprising if GraphIso ∈ co-NP, and this would imply the existence of polynomial-size
proofs for the problem in some system. In fact, GraphIso is in co-AM [5], a randomized
version of co-NP.

A first example of such a lower bound was given in [36], where it was shown that a family
of unsatisfiable formulas encoding pairs of non-isomorphic graphs in a natural way requires
exponential-size resolution refutations. These graphs are based on the CFI construction
from [8]. The lower bound can be explained as an “encoding” of the Tseitin tautologies [38] into
graph isomorphism instances. This result has been extended to stronger proof systems: In [7],
the authors proved linear degree lower bounds for the algebraic systems Polynomial Calculus
and Positivstellensatz by studying graphs arising from Tseitin tautologies. They furthermore
characterized the power of the Weisfeiler–Leman algorithm in terms of an algebraic proof
system lying between degree-k Nullstellensatz and degree-k Polynomial Calculus. Moreover,
it has been shown in [3, 28, 18] that the expressive power of k-WL lies between the k-th and
(k + 1)-st level of the canonical Sherali–Adams LP hierarchy [34]. By the construction in [8],
no sublinear level of Sherali–Adams suffices to decide GraphIso. Again, building on the work
of [8], it was shown in [30] that there exist pairs of non-isomorphic n-vertex graphs such that
any Sum-of-Squares proof of non-isomorphism must have degree Ω(n). In related work [9], it
was shown that no sublinear level of the Lasserre hierarchy suffices to decide GraphIso.

Very recently, a different view was considered by Schweitzer and Seebach in [33] by
introducing symmetry rules into the picture. The authors proved that resolution extended
with the well-known symmetry rule SRC-2 from Krishnamurthy [26] has polynomial-size
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refutations for all the instances of the graph isomorphism problem for which exponential size
lower bounds for (normal) resolution are known. They pointed to the search for hard instances
of graph isomorphism for resolution extended with the existing symmetry rules that define
the proof systems SRC-1, SRC-2, and SRC-3, a hierarchy of systems with more and more
powerful symmetry rules [1, 35]. They pose the question of whether graph non-isomorphism
formulas have superpolynomial resolution complexity in any of these proof systems. These
are very interesting questions since finding symmetries in a formula in order to be able to
apply Krishnamurthy’s rules is closely related to graph isomorphism. Finding lower bounds
for non-isomorphism in a system with symmetry rules can be seen as finding lower bounds
for proving non-isomorphism with the help of an “isomorphism subroutine”.

1.1 Our Results
We show a strong connection between the Lk fragment of first-order logic and the propositional
resolution proof system. This is done by proving that the number of variables and the
quantifier depth simultaneously needed to distinguish two graphs G and H in first-order
logic exactly corresponds to the width and positive depth of a narrow resolution refutation
of the unsatisfiable formula ISO(G,H) stating that the graphs are isomorphic (Theorem 17).
Narrow resolution [17] is a slight variation of (normal) resolution that allows a distinction by
cases rule, allowing to deal with the inconveniences of having long clauses in the formula. As
in the case of the clause width measure [6], narrow width allows, in our case, to derive upper
and lower bounds for the size of the resolution refutations of non-isomorphism. Furthermore,
we show that narrow width also provides a lower bound for the clause space needed in
resolution, as it is the case for the standard width measure. In particular, we prove that for
any pair of non-isomorphic graphs (G,H) with n vertices each and k ∈ N:

If G ̸≡Lk
H, then there is a (normal) resolution refutation of ISO(G,H) of size nO(k);

if G ≡Lk
H, then every tree-like resolution refutation of ISO(G,H) has size ≥ 2k;

if G ≡Lk
H, then every (normal) resolution refutation of ISO(G,H) has clause space

≥ k + 1; and
for a pair of graph colorings (λ, µ) with (G,λ) ≡Lk

(H,µ), every (normal) resolution
refutation of ISO(G,H) has size exp

(
Ω(k2/m2)

)
, where m :=

∑
v∈G |color-class(v)|.

The last result allows to directly derive resolution size lower bounds from Immerman’s pebble
game for Lk. We use this result to prove that a version of the multipede graphs defined
in [11] has exponential resolution size lower bounds. We also observe that Krishnamurthy’s
SRC-1 symmetry rule cannot be applied to the isomorphism formulas for asymmetric graphs
and conclude that the resolution size lower bound for the multipede graphs also holds for
the SRC-1 system. This provides the first example of a class of graphs whose isomorphism
formulas have exponential size lower bounds for the size of resolution refutations with one of
the symmetry rules, thus solving a question from [33].

1.2 Organization of This Paper
The rest of this paper is organized as follows. In Section 2, we introduce resolution complexity
measures, narrow resolution, and Krishnamurthy’s symmetry rules, as well as the graph
isomorphism formulas and Immerman’s pebble game. Then, in Section 3, we prove the
connection between narrow resolution width and Lk. This yields the upper bounds on
resolution size and the lower bounds on tree-like resolution size for refuting ISO(G,H). The
exponential lower bound for the size of SRC-1 graph isomorphism formula refutations is
shown in Section 4. Finally, in Section 5, clause space lower bounds for proving graph
non-isomorphism in resolution are shown.

CSL 2022
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Due to space reasons some proofs have been omitted from this version. They can be
found in the full-length version of the paper [37].

2 Preliminaries

We let N denote the set of positive integers. For n ∈ N, we let [n] := {k ∈ N | 1 ≤ k ≤ n}.
A literal ℓ over a Boolean variable x is either x itself or its negation x := ¬x. For a literal ℓ,

we put ℓ := ¬x if ℓ = x, and ℓ := x if ℓ = ¬x; and call ℓ and ℓ complementary literals. A
clause C = (ℓ1 ∨ · · · ∨ ℓk) is a (possibly empty) disjunction of literals ℓi. We let the symbol �
denote the contradictory empty clause (the clause without any literals). A CNF formula
F = C1 ∧ · · · ∧Cm is a conjunction of clauses. It is often advantageous to think of clauses as
sets of literals and CNF formulas as sets of clauses (i. e., sets of sets). The set of variables
occurring in a clause C will be denoted by Vars(C). The notion of the set of variables in
a clause is extended to CNF formulas by taking unions. An assignment/restriction α for
a CNF formula F is a function that maps some subset of Vars(F ), denoted by Dom(α), to
{0, 1}. We will consider the graph of this function and call this set also an assignment. We
let |α| := | Dom(α)| be the size of α. We denote the empty assignment with ε. By naturally
extending α by the definition α(x) := α(x), we can define the result of applying α to C,
which we denote by C|α: one deletes all occurrences of literals ℓ from C, where α(ℓ) = 0;
if there is a literal ℓ ∈ C with α(ℓ) = 1, then C|α = 1. The notation F |α denotes the
formula, where all clauses containing a literal ℓ with α(ℓ) = 1 are deleted and each remaining
clause C is replaced by C|α. If ℓ is a literal that is not assigned by α, and a ∈ {0, 1}, then
α{ℓ = a} denotes the extension of α with

(
α{ℓ = a}

)
(x) := α(x) for all x ̸∈ {ℓ, ℓ} and(

α{ℓ = a}
)
(ℓ) = a as well as

(
α{ℓ = a}

)
(ℓ) = 1 − a.

2.1 Resolution and Complexity Measures
If B ∨ x and C ∨ x are clauses, then the resolution rule allows the derivation of the clause
R := (B ∨C). In the resolution rule, we call B ∨x and C ∨x the parents and R the resolvent.

▶ Definition 1. A resolution derivation of a clause D from a CNF formula F (denoted by
π : F ⊢D) is an ordered sequence of clauses π = (C1, . . . , Ct) such that Ct = D, and each
clause Ci, for i ∈ [t], is
(1) either an axiom clause Ci ∈ F ,
(2) or a weakening of a clause Cj with j < i, i. e., Ci ⊇ Cj,
(3) or is derived from clauses Cj and Ck with j < k < i by the resolution rule.
A derivation of the empty clause from an unsatisfiable CNF formula F is called refutation.

To every refutation π, we can associate a refutation DAG Gπ: The clauses of the
refutations label the vertices of the DAG; for every application of the resolution rule we
include edges from the parents to the resolvent; and for each application of the weakening
rule we include edges from the original to the weakened clauses. We say that a resolution
refutation π is tree-like if Gπ is a tree.

▶ Definition 2. The size of a resolution refutation π, denoted Size(π), is defined to be the
number of vertices in the underlying refutation DAG Gπ.

The width of a clause C is defined by Width(C) := |C|, whereas the width of a formula F is
given by Width(F ) := maxC∈F Width(C). Similarly, we put Width(π) := maxi∈[t] Width(Ci)
for a refutation π = (C1, . . . , Ct).

The depth Depth(π) of a refutation π is the length of a longest path in the underlying
refutation DAG Gπ.
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In the following, we will consider the one-sided version of depth, called positive depth,
that was recently introduced in [31].

▶ Definition 3. If C and R are clauses with C \ R = {ℓ}, we say that the literal ℓ is
introduced from R to C. The positive depth of a clause C in a resolution refutation π,
denoted PosDepth(C), is the minimal number of negative literals introduced (while also
counting re-introductions) along any (inverse) path in Gπ from the empty clause to C. The
positive depth of a refutation π is defined by PosDepth(π) := maxC∈π PosDepth(C).

We will also refer to the clause space measure for resolution. Intuitively, the clause space
of a refutation π, CS(π), is the maximum number of clauses that need to be kept in memory
simultaneously when verifying the proof π. A more formal definition can be found in [14].

2.1.1 Narrow Resolution and Narrow Width
The standard definition of width is not well suited for proving size lower bounds of formulas
having large width themselves (cf. [6]), like the isomorphism formulas (cf. Section 2.2). A
more natural way to deal with the width concept in such formulas was introduced by Galesi
and Thapen in [17] together with the concept of narrow resolution that does not take into
account the width of the axioms.

▶ Definition 4. A narrow resolution derivation of a clause D from a CNF formula F is
an ordered sequence of clauses π = (C1, . . . , Ct) such that Ct = D, and for each i ∈ [t], the
clause Ci is obtained by rule (1), (2), or (3) of a (normal) resolution derivation (Definition 1)
or by the following distinction by cases step:
(4) If (B∨x1 ∨· · ·∨xm) ∈ F , and if there are clauses Cj1 = (A1 ∨x1), . . . , Cjm

= (Am ∨xm)
with j1 < · · · < jm < i, then we can derive Ci := (B ∨A1 ∨ · · · ∨ Am) in one step.

We write N-Width(π) ≤ k if π is a narrow resolution derivation and Width(Ci) ≤ k for all
i ∈ [t] with Ci ̸∈ F .

The definition here is a slight generalization of the original one in [17] since, in rule (4),
we do not require all the Aj clauses to coincide, and we allow for a subclause B to be present
in the axiom clause (note, however, that the width of each Aj and B will be counted).
This modification also allows an exact characterization of the number of pebbles needed
in Immerman’s game in terms of the width measure in narrow resolution, as shown in
Theorem 17.

▶ Definition 5. For a measure C ∈ {Size,Width,Depth,PosDepth,CS,N-Width}, by taking
the minimum over all refutations π of an unsatisfiable formula F , we define C(F ⊢�) :=
minπ:F ⊢ � C(π) as the size, width, depth, positive depth, clause space, and narrow width of
refuting F in resolution, respectively.

2.1.2 Krishnamurthy’s Symmetry Rules
Krishnamurthy [26] observed that symmetries arise naturally in proofs of combinatorial
principles and suggested some rules to simplify such proofs.

▶ Definition 6. Let L be a finite set of complementary literals. Then, a bijective mapping
f : L → L is called a renaming if for every ℓ ∈ L we have f(ℓ) = f(ℓ). For a clause C ⊆ L

and a renaming f , we set f(C) := {f(ℓ) | ℓ ∈ C}. For a formula F with
⋃

C∈F C ⊆ L we
put f(F ) := {f(C) | C ∈ F}.

CSL 2022



36:6 Graph Differentiation and the Resolution for GI Formulas

▶ Definition 7 (The symmetry rules, [26, 39]). Let F be a CNF formula and C a clause
that can be derived by a proof π : F ′ ⊢C from a subformula F ′ ⊆ F . If there exists a
renaming f : Lits(F ) → Lits(F ) with f(F ′) ⊆ F , then the local symmetry rule with comple-
mentation allows the derivation of f(C) from C in one step in the extended proof system.
If we have the additional restriction F ′ = F , we speak of the global symmetry rule with
complementation. Adding the global or local rule, respectively, to the proof system resolution
(i. e., we consider proofs in which each clause is inferred by resolution from two clauses listed
earlier in the proof, or by the respective symmetry rule from one clause earlier in the proof)
yields the proof systems SRC-1 and SRC-2.

Allowing also to use so-called dynamic symmetries, i. e., symmetries in the clauses already
resolved, and not restricting ourselves to symmetries in the original axioms, one can define
the proof system SRC-3 . We refer to [35].

2.2 Graph Isomorphism and GI Formulas
An (undirected) graph is a tuple G =

(
VG, EG

)
, where VG is a finite set of vertices and

EG ⊆
(

VG

2
)

is the set of edges. A colored graph (G,λ) is a graph G together with a function
λ : V → C, called coloring, where C is some set of colors. We treat every uncolored graph as
a monochromatic graph.

▶ Definition 8. Two colored graphs (G,λ) and (H,µ) are isomorphic, denoted by (G,λ) ∼=
(H,µ), if there is a color- and edge-respecting bijection φ : V (G) → V (H), called (color-
preserving) isomorphism from G to H, i. e., {u, v} ∈ EG ⇐⇒

{
φ(u), φ(v)

}
∈ EH and

λ(v) = µ
(
φ(v)

)
holds for all u, v ∈ VG. An automorphism of a colored graph (G,λ) is

an isomorphism from (G,λ) to (G,λ). We denote by Iso(G,H) the set of isomorphisms
between G and H and by Aut(G) the set of automorphisms of G.

Every coloring λ : VG → C of a graph G induces a partition of VG: for a color c ∈ Im(λ),
we call λ−1(c) ⊆ V (G) a color class of G. The color class size of G is the cardinality of its
largest color class. It is known that the GraphIso problem can be solved in polynomial time
when the color classes have constant size [16].

We encode instances of the GraphIso problem as Boolean formulas. As explained below,
the formulas used here are a slight modification of those in [36]. Throughout the paper, we
will consider only isomorphism formulas corresponding to pairs of graphs having the same
number of vertices.

▶ Definition 9. Let G = (VG, EG) and H = (VH , EH) be two graphs with VG = {v1, . . . , vn}
and VH = {w1, . . . , wn}. The formula ISO(G,H) is defined by the following clauses:
Type 1 clauses: for every i ∈ [n] the clause (xi,1 ∨xi,2 ∨· · ·∨xi,n) indicating that vertex vi ∈

VG is mapped to some vertex in VH ; and for every j ∈ [n] the clause (x1,j ∨x2,j ∨· · ·∨xn,j)
indicating that vertex wj ∈ VH is the image of some vertex in VG.

Type 2 clauses: for every i, j, k ∈ [n] with i ̸= j the clause (xi,k ∨ xj,k) indicating that not
two different vertices are mapped to the same one; and for every i, j, k ∈ [n] with j ̸= k

the clause (xi,j ∨ xi,k) indicating that the variables encode a function.
Type 3 clauses: for every i, j, k, ℓ ∈ [n] with i < j and k ̸= ℓ with {vi, vj} ∈ EG ⇔ {vk, vℓ} ̸∈

EH , the clause (xi,k ∨ xj,ℓ) expressing the adjacency relation (an edge cannot be mapped
to a non-edge and vice-versa).

The formula ISO(G,H) has n2 variables and O(n4) clauses. The clauses of Type 2 and
Type 3 have width 2, while the clauses of Type 1 have width n.
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Clearly, these formulas are satisfiable if the corresponding graphs are isomorphic. In the
original definition of the ISO(G,H) formulas [36], the second possibility of Type 1 and Type 2
clauses was not considered. The formulas with and without these clauses are equivalent
under satisfiability. We include these clauses here in order to obtain an exact characterization
of Immerman’s pebble game. Including these clauses can only make the lower bounds for
the resolution of these formulas for non-isomorphic graphs stronger. The situation is similar
to that for other principles, like the Pigeon-Hole-Principle, where the formulas with the
additional Type 1 and Type 2 clauses are called onto-functional-PHP formulas (see, e. g., [32]).
We remark that PHPn+1

n has exponential-size resolution proofs [20], but as noticed in [26, 39],
polynomial-size proofs in SRC-1.

An advantage of the isomorphism formulas is that one can express colorings of the involved
graphs G and H as partial assignments of the variables:

▶ Definition 10. Let G,H be as in Definition 9 and let λ : VG → C and µ : VH → C be two
graph colorings. Set ρ :=

{
xi,j = 0

∣∣ i, j ∈ [n] with λ(i) ̸= µ(j)
}
. Define the ISO-formula for

the colored graphs as ISOλ, µ(G,H) := ISO(G,H)|ρ.

Observe that while every coloring can be represented by a restriction, a restriction is just
a partial assignment and it does not always encode a coloring. A coloring can drastically
reduce the number of variables in the isomorphism formula. We will later make use of this
fact. It is not hard to see that we have ISOλ, µ(G,H) ∈ UNSAT ⇐⇒ (G,λ) ̸∼= (H,µ).
▶ Remark 11. Since every pair of colorings (λ, µ) of a pair of graphs (G,H) can be encoded
as a restriction ρ of the formula ISO(G,H) as explained, a lower bound on the size of a
resolution refutation of the ISOλ, µ-formula for colored graphs also holds for the ISO-formula
of the corresponding monochromatic graphs.

It is illustrative to contrast the ISOλ, µ-formulas with the ListIso problem which asks,
given two graphs G and H, where each vertex v ∈ VG is equipped with a list L(v) ⊆ VH ,
if there exists an isomorphism φ : VG → VH such that φ(v) ∈ L(v) for all v ∈ VG. This
problem can also be easily expressed as a satisfiability problem by restricting the first kind
of Type 1 clauses to contain only the possibilities for each vertex (and doing analogously
with the second kind of Type 1 clauses). However, this restriction would not encode a graph
coloring in general. Moreover, ListIso might be harder than GraphIso as it was shown in [27]
(see also [25]) that this problem is NP-complete.

2.3 Immerman’s Pebble Game
▶ Definition 12 ([21, 22]). For a given language L (of first-order logic sentences), we say
that two graphs G and H are L-equivalent, denoted by G ≡L H if for all sentences ψ ∈ L it
holds that G ⊨ ψ ⇐⇒ H ⊨ ψ.

▶ Definition 13 (k-variable fragment of first-order logic). The k-variable fragment of first-order
logic Lk is the set of first-order logic formulas that use at most k different variables (possibly
re-quantifying them). Furthermore, Lk,m is the subclass of Lk where the quantifier depth in
the formulas is restricted to m.

By allowing counting quantifiers, we can extend Lk to the more expressive fragment Ck.
For a graph G, we say that it has Weisfeiler–Leman dimension at most k if and only if
G ̸≡Ck+1 H for all graphs H non-isomorphic to G.

We next describe a pebble game that is equivalent to testing Lk,m-equivalence (or Lk-
equivalence for the unrestricted game) and is a variant of an Ehrenfeucht-Fraïssé game [15, 12].
We borrow the notation from [23].
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▶ Definition 14 (Immerman’s pebble game, [21]). Let m, k ∈ N. For graphs G = (VG, EG)
and H = (VH , EH) with an equal number of vertices, we define the m-move k-pebble game
of Immerman as follows: The game is played by two players called Player I and Player II on
the graphs G and H with k pairs of pebbles. The game proceeds in rounds, each of which is
associated with a position consisting of pebble placements. The position after move r ∈ [m]
of the game is denotes by (v⃗r, w⃗r) ∈ V ℓ

G × V ℓ
H with 0 ≤ ℓ ≤ k. The initial position is the pair(

(), ()
)

of empty tuples. We now describe a round of the game. Suppose the current position
of the game is (v⃗r, w⃗r) =

(
(v1, . . . , vℓ), (w1, . . . , wℓ)

)
.

First, Player I chooses whether he wants to remove a pebble pair (only possible if ℓ > 0)
or to place a new pair of pebbles (only possible if ℓ < k).

If he wants to remove a pair of pebbles, he chooses some i ∈ [ℓ] and the position of
the game changes to

(
(v1, . . . , vi−1, vi+1, . . . , vℓ), (w1, . . . , wi−1, wi+1, . . . , wℓ)

)
and the

next round begins.
Otherwise, he picks a graph K ∈ {G,H} and a vertex v ∈ VK .

Player II then picks a vertex w ∈ VK̂ , where K̂ := {G,H} \ {K} is the graph not chosen
by Player I. The position of the game changes to

(v⃗r+1, w⃗r+1) :=
{ (

(v1, . . . , vℓ, v), (w1, . . . , wℓ, w)
)

if K = G,(
(v1, . . . , vℓ, w), (w1, . . . , wℓ, v)

)
otherwise,

and the next round begins.

We say that Player II survives round r of the game if and only if G[v⃗r] ∼= H[w⃗r], i. e.,
the map vi 7→ wi (for i ∈ [ℓ]) is an isomorphism of the subgraphs induced by the pebbled
vertices. If any difference between the induced ordered subgraphs is exposed within at most m
rounds, then we say that Player I wins the m-move game. This is precisely the case when
there are i, j ∈ [ℓ] such that vi = vj ⇎ wi = wj or {vi, vj} ∈ EG ⇎ {wi, wj} ∈ EH or there
is an i ∈ [ℓ] such that the colors of vi and wi are different.

If there is no restriction on the number of rounds m being played, Player I wins the game
if he wins some round, while Player II survives the game if she can survive forever.

The interpretation of a configuration
(
(v1, . . . , vℓ), (w1, . . . , wℓ)

)
is that the i-th pebble

pair is placed on the vertices vi and wi (for i ∈ [ℓ]).

3 Connection Between Narrow Resolution Width and Lk

Immerman’s pebble game can be directly translated as a Spoiler–Duplicator type game played
on the ISO(G,H) formulas. This kind of game has often been used in proof complexity
arguments. The game defined here is a version of the game for the characterization of
resolution width from [2] except that now Spoiler cannot choose variables but clauses, and
Duplicator has to satisfy some literal in the chosen clause. Very similar games have already
been defined in [13] and [17]. The only difference is that in our game, Spoiler can only
choose Type 1 clauses (instead of any clause as in [13] or even variables as in [17]). For
some of our proofs, we need to define the witnessing games also on restricted isomorphism
formulas ISO(G,H)|γ for some restriction γ. In this case, we say that the Type of an
axiom C|γ in ISO(G,H)|γ (1, 2, or 3) is the same as that of the original axiom C.

▶ Definition 15 (k-witnessing game). For k ∈ N and a restriction γ, Spoiler and Duplicator
construct in rounds a partial assignment for the formula ISO(G,H)|γ. Initially, α0 = ε.
At the beginning of round i, Spoiler chooses a subset of αi−1 of size at most k − 1 and a
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Type 1 clause C|γ in ISO(G,H)|γ . Then, Duplicator extends the chosen subset to one literal
in C|γ (we call the obtained assignment αi), satisfying this clause and not falsifying any
clause in ISO(G,H)|γ . If this is not possible, Duplicator loses the game.

▶ Observation 16. G ̸≡Lk
H if and only if Spoiler wins the k-witnessing game on ISO(G,H).

Proof. The moves of Player I in Immerman’s game, placing a pebble on a vertex vi ∈ VG (or
a vertex wj ∈ VH), correspond to Spoiler choosing a Type 1 clause of the kind (xi,1 ∨· · ·∨xi,n)
(respectively one of the kind (x1,j ∨ · · · ∨ xn,j)). Player II’s answer corresponds to the literal
in these clauses satisfied by Duplicator. Since Duplicator only assigns variables with 1, only
Type 2 or Type 3 clauses can be falsified. Player I wins Immerman’s game when two pebbles
on different vertices in one graph are answered with two pebbles on the same vertex in the
other graph, corresponding to a Type 2 clause being falsified, or when the pebbles contradict
the local isomorphism condition, and this corresponds to a Type 3 clause being falsified in
the witnessing game. ◀

Using this game, we can show an equivalence between the number of variables needed to
distinguish two graphs and the width measure in narrow resolution. We also notice that the
number of rounds in both games matches. Since our witnessing game is a restriction of the
game in [17], the proof of the result in one direction follows similar arguments as in the result
for general formulas from the mentioned paper, but the bound we obtain is slightly better.

▶ Theorem 17. For k ∈ N, G ̸≡Lk,m
H if and only if there is a narrow width resolution

refutation π of ISO(G,H) with N-Width(π) ≤ k − 1 and PosDepth(π) ≤ m simultaneously.

Proof. For the direction from left to right, suppose G ̸≡Lk,m
H. By Observation 16, there

is a winning strategy for Spoiler in the k-witnessing game on ISO(G,H) in m moves. This
strategy has to be able to decide for each reachable partial assignment α in the game what
variables can be deleted from the assignment, and what Type 1 clause C to query next. Such
a strategy can be represented as a graph whose vertices store the information (α,C) with
|α| ≤ k − 1. From such a vertex and for every literal ℓ ∈ C, there is a directed edge pointing
to the vertex (α′

ℓ, Cℓ). Here, α′
ℓ is the assignment obtained from α by setting ℓ = 1 and

maybe deleting some values (according to the strategy of Spoiler after knowing the answer of
Duplicator for C). Furthermore, Cℓ is the Type 1 clause queried next or a clause falsified
by α′

ℓ. In this last case, (α′
ℓ, Cℓ) is a winning position for Spoiler and a sink in the strategy

graph. The only source of the graph is the initial vertex (α0, C0), where α0 = ε and C0 is
the first Type 1 clause queried by Spoiler. Observe that since we have supposed that Spoiler
has a winning strategy, this graph is acyclic. It is not necessarily a tree.

We can construct a resolution refutation DAG of ISO(G,H) by following the strategy
backwards, i. e., by inverting the strategy graph. For this, we associate with each vertex (α,C)
the clause Cα, defined as the set of literals falsified by α. With an inductive argument,
starting at the sinks, we show that Cα can be resolved by narrow resolution from the clauses
associated with the successor vertices of (α,C). For the sink vertices (α,C), by the way
the strategy graph and the witness game are defined, C is an axiom of width 2 falsified
by α. Since C is an axiom, it does not count for the narrow width. Using weakening, we
can identify Cα with this vertex. For an interior vertex (α,C) with C = (ℓ1 ∨ · · · ∨ ℓn) and
with successor vertices (β1, C1), . . . , (βn, Cn), we can suppose by induction that there are
clauses Cβ1 , . . . Cβn

associated with the successor vertices. Each assignment βi has the form
βi = αi ∪{ℓi = 1} with αi ⊆ α and |βi| ≤ k−1. Because of this, C and each Cβi

have exactly
the pair of complementary literals (ℓi, ℓi) and can be resolved. Using a narrow resolution
step, we can resolve all these clauses with C in one step, obtaining a clause Cα′ with α′ ⊆ α,
and with weakening, we obtain Cα.
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Since the clause mapped to the source vertex has to be falsified by the empty assignment,
this is the empty clause, and the process defines a correct narrow resolution of ISO(G,H).
Notice that all the clauses in the refutation have width at most k − 1.

The depth of the strategy graph for Spoiler in the k-witnessing game is the maximum
number of rounds m needed for Spoiler to defeat Duplicator in Immerman’s Lk-game.
Following a path from the empty clause towards a clause Cα being derived by a narrow
resolution step from (ℓ1 ∨ · · · ∨ ℓn) and Cβ1 , . . . , Cβn , one can notice that this step increases
the positive depth measure by one when continuing the path towards the clauses Cβ1 , . . . , Cβn

(the measure stays the same when continuing towards the axiom (ℓ1 ∨ · · · ∨ ℓn)). The positive
depth measure also increases by at most one in any ordinary resolution step. Any weakening
step does not increase the positive depth. By the correspondence between the game positions
(βi, Ci) and the clauses Cβi

of the proof π constructed above, this shows that we have
N-Width(π) ≤ k − 1 and PosDepth(π) ≤ m simultaneously.

For the other direction, consider a narrow resolution refutation π for ISO(G,H) of
width k− 1. We describe a strategy for Spoiler to win the k-witnessing game. Starting at the
empty clause, Spoiler queries Type 1 clauses, and with the literals satisfied by Duplicator, he
keeps a set S of at most k variables xi,j assigned with value 1 by Duplicator. For a clause
C ∈ π and such a set S, we say that S contradicts C if the following conditions happen:
1. For every negated variable xi,j in C, xi,j ∈ S, and
2. for every positive variable xi,j in C, xi,j ̸∈ S and ∃k ∈ [n] such that (xi,k ∈ S or xk,j ∈ S).
Starting at the empty clause and with the set S = ∅, S determines the predecessor clause in
the refutation π where Spoiler moves to. At each step, Spoiler makes a query, updates S,
and always moves to the predecessor clause contradicted by the current S. Let C be Spoiler’s
clause at a certain stage and S the corresponding set of variables.

If C is the (normal) resolvent of two clauses on variable xi,j , in case one of these clauses
is a Type 1 axiom, Spoiler queries it. Otherwise, Spoiler queries any of the two Type 1
clauses in ISO(G,H) containing xi,j . If Duplicator assigns value 1 to this variable, Spoiler
moves to the parent clause in which this variable is negated and adds xi,j to S. If some other
variable is given value 1 by Duplicator, Spoiler adds it to S and moves to the contradicted
parent clause. In both cases, Spoiler deletes from S all the variables that are not needed for
contradicting the new clause.

If C is the result of a narrow resolution step involving a Type 1 axiom D, Spoiler queries
this clause. Duplicator’s answer must satisfy some variable xi,j ∈ D. The set S together with
this variable contradicts a predecessor clause C ′, and this clause cannot be D unless some
Type 2 axiom is falsified (see the claim below). Spoiler moves to C ′, and he then deletes
from S all the variables that are not necessary in S for contradicting the new clause. This
means keeping one variable for each negated literal in C ′ and at most one variable for each
positive literal in C ′. Because the clauses in π have narrow width at most k − 1, Spoiler
needs to keep at most k variables in S at any moment.

If C comes from a weakening step, Spoiler just needs to forget some of the variables in S.
After each new variable set by Duplicator, if some Type 2 or Type 3 axiom of ISO(G,H)

is falsified, Spoiler wins the game. We claim that if, at some point, S contradicts some
Type 1 axiom, then S falsifies some Type 2 axiom. Suppose that S contradicts the Type 1
clause (xi,1 ∨ · · · ∨ xi,n). By definition, this means that xi,1, . . . , xi,n ̸∈ S, and thus, again,
by definition, there is a set of n indices {k1, . . . , kn} ⊆ [n] such that xk1,1, . . . , xkn,n ∈ S.
In case that {k1, . . . , kn} = [n], there exists a j ∈ [n] with kj = i. Thus, xkj ,j = xi,j ∈ S.
But then S does not contradict the clause (xi,1 ∨ · · · ∨ xi,n), a contradiction. In case not all
kj ’s are different, there are j, j′ ∈ [n] such that j ̸= j′ but still kj = kj′ . Since xkj ,j ∈ S
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as well as xkj′ ,j′ = xkj ,j′ ∈ S, the functionality axiom (xkj ,j ∨ xkj ,j′) is falsified by S. The
case in which S contradicts a Type 1 clause of the form (x1,i ∨ · · · ∨ xn,i) can be treated
symmetrically.

Eventually, some axiom is reached. This axiom is contradicted by the current S. If it is a
Type 2 or 3 axiom, S falsifies it (these axioms have only negated literals), and Spoiler wins.
As observed, if this is a Type 1 axiom, then some Type 2 axiom is falsified, and Spoiler wins.

In the described construction of a winning strategy, Spoiler always moves to the con-
tradicted predecessor of the clause he is currently standing on. Such a move increases the
positive depth of his position. Thus he needs at most m moves to win the Immerman game,
where m is the positive depth of the refutation. ◀

Not surprisingly, the result above holds also for colored graphs, that is, the number of
pebbles and rounds in Immerman’s game on colored graphs correspond exactly to narrow
width and positive depth in resolution of the isomorphism formula under the restriction
encoding the coloring. We need, in fact, a version of the result for general restrictions, not
only for colorings, and therefore we have to make use of the witnessing game, which is also
well defined for restrictions. The proof follows the same steps as that for the result above.
We state the part of the result that we will need for our results.

▶ Observation 18. For k ∈ N, and for every restriction γ, Spoiler has a winning strategy for
the k-witnessing game on ISO(G,H)|γ if and only if N-Width

(
ISO(G,H)|γ ⊢�

)
≤ k − 1.

The equivalence between the number of variables for graph differentiation and narrow
width allows us to give upper and lower bounds for the size of resolution proofs for isomorphism
formulas.

▶ Theorem 19. Let k ∈ N, and G and H be two graphs with n vertices each. If G ̸≡Lk
H,

then there is a (normal) resolution refutation of ISO(G,H) of size nO(k).

Proof. By the above result, if G ̸≡Lk
H, then the narrow resolution width of ISO(G,H) is

at most k − 1. Since there are n2 variables in this formula, there are at most
∑k−1

i=0
(

n2

i

)
2i ≤

2k−1( en2

k−1
)k−1 clauses that can appear in a (k−1)-narrow resolution refutation of the formula.

But a narrow resolution refutation is just like a normal one in which the distinction by
cases is made in just one step. This can be simulated by at most n steps (with at most
n− 1 intermediate clauses that might be wider than k) in normal resolution. Using an upper
bound for the partial sum of binomial coefficients, the total number of different clauses in
the refutation is thus bounded by nO(k), and it is polynomial for constant k. ◀

Observe that this result suggests a way to automatically generate short proofs for (non)-
isomorphism formulas, following the same ideas as those in the algorithm proposed in [6]
and [17] for general formulas. The algorithm would generate in stages all clauses that can be
derived by narrow resolution of width 1, 2, 3, . . . , until the empty clause is derived. By the
above result, the running time of this algorithm is nO(k).

Lower bounds for narrow width also imply lower bounds on the size of a resolution
refutation for ISO(G,H), in the same way that width lower bounds imply size lower bounds
in normal resolution, as shown by Ben-Sasson and Wigderson [6]. For this, we follow the
same steps as in the mentioned paper, adapted to narrow width. The general fact that
narrow width provides lower bounds for resolution size has also been proved in [17]. By
concentrating on the isomorphism formulas, we obtain tighter results. The next lemma is the
basis for our lower bounds. It is a version in our context of [6, Lemma 3.2] or [17, Lemma 6].

CSL 2022



36:12 Graph Differentiation and the Resolution for GI Formulas

▶ Lemma 20. Let γ be a restriction and let ℓ be any literal in ISO(G,H)|γ . If Spoiler has a
winning strategy for the k-witnessing game on ISO(G,H)|γ{ℓ=1} as well as for the (k − 1)-
witnessing game on ISO(G,H)|γ{ℓ=0}, then he wins the k-witnessing game on ISO(G,H)|γ .

Proof. We distinguish two cases depending on whether literal ℓ is positive or negative:
Case 1: ℓ = xi,j. The formula ISO(G,H)|γ{xi,j=1} is like ISO(G,H)|γ without the two

Type 1 clauses containing literal xi,j and without all occurrences of the literal xi,j . If Spoiler
selects in the game on ISO(G,H)|γ the same sequence of Type 1 clauses as in the game
on ISO(G,H)|γ{xi,j=1}, Duplicator either loses the game or sets a literal xa,b to 1 for a
clause C = (xa,b ∨ xi,j) ∈ ISO(G,H)|γ . When this happens, Spoiler restricts the assignment
to γ{xa,b = 0}, and then simulates the strategy for ISO(G,H)|γ{xi,j=0} on ISO(G,H)|γ . If
Duplicator does not assign xi,j = 1, she loses the game eventually by the assumption. If she
does, then the clause C is falsified, and she also loses. Spoiler needs to keep an assignment
of size at most k at any moment.

Case 2: ℓ = xi,j. In this case, Spoiler simulates the strategy for ISO(G,H)|γ{xi,j=0} on
the formula ISO(G,H)|γ , either winning the game or forcing Duplicator to assign xi,j = 1
(by a Type 1 clause that contains xi,j and which was falsified in the ISO(G,H)|γ{xi,j=0}-
game). Restricting then the assignment to this literal, Spoiler now plays the strategy for
ISO(G,H)|γ{xi,j=1} and Duplicator loses. ◀

From this result, lower bounds as in [6] follow directly. The advantage here is that the
width of the axioms of ISO(G,H) is not subtracted from the exponent of the lower bound
results, as it is done in [6, Corollary 3.4].

▶ Theorem 21. Let k ∈ N, and G,H be two non-isomorphic graphs with n vertices each. If
G ≡Lk

H, then the size of a tree-like resolution refutation of ISO(G,H) is at least 2k.

Lower bounds on narrow width also imply, as noted in [17], lower bounds on general
resolution size. Using (a version for narrow width) from [6, Theorem 3.5], one can show
that if G and H are two non-isomorphic graphs with n vertices each with G ≡Lk

H, then
the size of a resolution refutation of ISO(G,H) is at least exp

(
Ω(k2/n2)

)
. However, since

the maximum number k of variables needed for distinguishing G and H is at most the
number of vertices n, this only provides trivial lower bounds. A way to avoid this problem
is to consider graph colorings under which the number k is still large, but the number of
variables in ISO(G,H) is smaller. Since such a coloring can be expressed as a restriction ρ

applied to Vars
(
ISO(G,H)

)
, and using the fact that for every restriction ρ, the size of a

resolution refutation of ISO(G,H) is at least the size of the refutation of the formula under
the restriction, ISO(G,H)|ρ, we obtain Theorem 23 below.

▶ Definition 22. Let (G,λ) and (H,µ) be two colored graphs. For a vertex v ∈ VG, we set
color-class(v) := µ−1(λ(v)

)
, i. e., the set of vertices in VH that have the same color as v.

If (G,λ) and (H,µ) are two colored graphs in n vertices each, m :=
∑

v∈VG
|color-class(v)|

is between n and n2.

▶ Theorem 23. Let G = (VG, EG) and H = (VH , EH) be two non-isomorphic graphs with
n vertices each, for which there is a k ∈ N and two colorings λ, µ such that (G,λ) ≡Lk

(H,µ).
Then, the size of every resolution refutation of ISO(G,H) is at least exp

(
Ω(k2/m)

)
, where

m :=
∑

v∈VG
|color-class(v)| is the sum of the sizes of the color classes.
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Proof Sketch. Let ρ :=
{
xi,j = 0

∣∣ i, j ∈ [n] with λ(i) ̸= µ(j)
}

, and consider the unsatisfi-
able formula ISO(G,H)|ρ. The set of variables of this formula is

{
xi,j

∣∣ i, j ∈ [n] with λ(i) =
µ(j)

}
and contains exactly m =

∑
v∈VG

|color-class(v)| variables. Since (G,λ) ≡Lk
(H,µ), by

Observation 18, N-Width
(
ISO(G,H)|ρ ⊢�

)
≥ k. We following the same steps of that of [6,

Theorem 3.5], with the modifications needed to deal with restrictions as done in Theorem 21.
For simplicity, let us denote ISO(G,H)|ρ by F and let π be a (normal) resolution refutation

of minimal size s of F . We define d and a to be d := ⌈
√

2m ln s⌉ and a := (1− d
2m )−1. A clause

in π is called fat if it contains more than d literals. Let π∗ be the set of fat clauses in π. We
prove by induction on m that N-Width(F ⊢�) ≤ d+ loga(|π∗|). The result follows from this
implication since |π∗| ≤ s and therefore by the way a and d are defined, loga(|π∗|) is bounded
by c

√
2m ln s for some constant c. The base case m = 0 holds trivially. For the induction

case, observe that F contains at most 2m literals and therefore one literal ℓ appears in
at least d

2m |π∗| fat clauses. We consider the two refutations of the formulas F |ℓ=1 and F |ℓ=0
obtained from π by setting ℓ to 1 and to 0, respectively. Setting ℓ = 1 removes all the clauses
including literal ℓ and leaves a refutation of F |ℓ=1 with at most (1 − d

2m )|π∗| = a−1|π∗|
fat clauses. By induction hypothesis we have N-Width(F |ℓ=1 ⊢�) ≤ d + loga(a−1|π∗|) =
d+ loga(|π∗|) − 1. Setting ℓ = 0 produces a refutation of the formula F |ℓ=0 with less than
m variables, and again by induction on m it holds N-Width(F |ℓ=0 ⊢�) ≤ d+ loga(|π∗|). By
applying Lemma 20 we obtain:

N-Width
(
F ⊢�

)
≤ d+ loga(|π∗|) ∈ O

(√
m · ln

(
Size

(
F ⊢�

)))
.

Observe that since we are dealing with narrow resolution, we do not need the width of
the axioms in ISO(G,H)|ρ as an additional term, as in the result from [6]. It follows that
Size

(
ISO(G,H)|ρ ⊢�

)
= exp

(
Ω(k2/m)

)
. The last fact needed is that for every restriction ρ,

Size
(
ISO(G,H) ⊢�

)
≥ Size

(
ISO(G,H)|ρ ⊢�

)
. ◀

This result can then be automatically applied to graphs in which the maximum size of a
color class is small.

▶ Corollary 24. Let G and H be two graphs with n vertices each, and let k ∈ N and λ, µ be
colorings with constant size color classes such that (G,λ) ≡Lk

(H,µ). Then, any resolution
refutation of ISO(G,H) has size at least exp

(
Ω(k2/n)

)
.

Such constant size color classes are the case for the CFI graphs [8, 36] and the variant of
the multipede graphs from [11]. In both examples, the maximum size of a color class is 4,
while the number of variables needed to distinguish the graphs is linear in n. Thus, for both
examples, the above result gives a resolution size lower bound of exp

(
Ω(n)

)
. One can also

imagine this result being useful for proving resolution size lower bounds in cases in which
not all color classes of the graphs have constant size, but the sum of the class sizes is still
smaller than the number of variables needed to distinguish the graphs.

4 An Exponential Lower Bound for the Size of SRC-1 proofs for
Graph (Non)Isomorphism

In this section, we show that there is a family of non-isomorphic graph pairs (Gn, Hn)
that has only exponentially-long proofs of ISO(Gn, Hn) in the SRC-1 system. Exponential
size lower bounds in SRC-1 are known [39], but not for graph isomorphism formulas. Our
result is proven by observing that the global symmetry rule cannot be applied to formulas
corresponding to graphs having only trivial automorphisms and restricting ourselves to such
graphs.
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▶ Definition 25. A colored graph (G,λ) is called asymmetric if Aut(G) = {id}.

To characterize the possible symmetries in an isomorphism formula, we need the notions
of graph anti-automorphism and anti-isomorphism.

▶ Definition 26. Let G = (VG, EG) and H = (VH , EH) be two graphs. An anti-isomorphism σ

from G to H is a bijection between the vertices of G and H exchanging edges and non-edges,
i. e., for all u, v ∈ VG: {u, v} ∈ EG ⇐⇒

{
σ(u), σ(v)

}
̸∈ EH . An anti-automorphism of

a graph G is an anti-isomorphism from G to G. We denote by A-Iso(G,H) the set of
anti-isomorphisms between G and H and by A-Aut(G) the set of anti-automorphisms of G.

We will also need the following simple observation.

▶ Observation 27. Asymmetric graphs do not have any anti-automorphisms.

Szeider observed in [35, Lemma 10] that if a formula is asymmetric, then the size of a
resolution refutation and of an SRC-1 refutation of the formula are equal. The next lemma
shows that if two graphs are asymmetric, then the corresponding ISO formula is asymmetric.

▶ Lemma 28. Let G and H be two graphs with |VG| = |VH | =: n ≥ 3, and let F := ISO(G,H).
Further, let f : Lits(F ) → Lits(F ) be a renaming of the literals in F . Then f(F ) ⊆ F if and
only if one of the following two cases hold:
1. There are two permutations σ, γ ∈ Sn such that for every (i, j) ∈ [n] × [n], f(xi,j) =

xσ(i),γ(j) and (σ, γ) ∈ Aut(G) × Aut(H) or (σ, γ) ∈ A-Aut(G) × A-Aut(H); or
2. there are two permutations σ, γ ∈ Sn such that for every (i, j) ∈ [n]×[n], f(xi,j) = xγ(j),σ(i)

and (σ, γ−1) ∈ Iso(G,H) × Iso(G,H) or (σ, γ−1) ∈ A-Iso(G,H) × A-Iso(G,H).

Notice that if the graphs G and H are non-isomorphic and f(F ) ⊆ F , then we can only
be dealing with Case 1 in the lemma. Moreover, by Observation 27, if the graphs G and H

do not have any non-trivial automorphisms, they cannot have anti-automorphisms either. In
this case, a renaming f with f(F ) ⊆ F cannot exist, and therefore the global symmetry rule
cannot be applied. This implies that size lower bounds for the resolution of (non)isomorphism
formulas for asymmetric graphs coincide with their size lower bounds for the system SRC-1.

The Cai–Fürer–Immerman construction [8] gave graphs with a large Weisfeiler–Leman
dimension, more precisely with a linear lower bound on the WL-dimension. A related
construction of graphs satisfying this property, known as multipedes, was given in [19].
However, the resulting graphs are very large in terms of the WL-dimension. Neuen and
Schweitzer improved in [29] the multipede construction combining it with size reduction
techniques. Using a different construction, Dawar and Khan [11] showed how to obtain
graphs whose Weisfeiler–Leman dimension is linear in the number of their vertices (as with
the CFI graphs) and without any non-trivial automorphisms.

▶ Theorem 29 ([11]). For k ∈ N, there is (a random process that produces with high
probability) a family of asymmetric pairs of non-isomorphic graphs (Gk, Hk) with O(k)
vertices, color classes of size 4, and Weisfeiler–Leman dimension k.

In [11], it was furthermore demonstrated by conducting experiments that the resulting
graphs provide hard examples for graph isomorphism solvers, matching the hardest-known
benchmarks for graph isomorphism. The following result can be seen as a theoretical insight
into this phenomenon.

Corollary 24 implies that the isomorphism formulas for the pairs (Gk, Hk) of non-
isomorphic graphs from the above-mentioned construction have resolution refutations of
size exp

(
Ω(n)

)
, where n is the number of vertices in the graphs (linear in the WL-dimension k).

Since these graphs are asymmetric, from Lemma 28, we conclude:
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▶ Theorem 30. There is a (non-constructive) family of non-isomorphic graph pairs (Gn, Hn)
with O(n) vertices each, such that any refutation of ISO(Gn, Hn) requires size exp

(
Ω(n)

)
in

the SRC-1 proof system.

5 Lower Bounds on Clause Space for Proving Non-Isomorphism

Atserias and Dalmau [2] gave a combinatorial characterization of resolution width and used
it to show the relation CS(F ⊢�) ≥ Width(F ⊢�) − Width(F ) + 1 for any F ∈ UNSAT.
We will show in this section that this also holds for narrow width, with the advantage that,
again, in this case, we do not have to worry about the width of the axioms. From this result,
we obtain clause space lower bounds for the (normal) resolution of isomorphism formulas.

▶ Definition 31 (w-NW Family). Given an unsatisfiable CNF formula F and a natural
number w ∈ N, we say that a family of assignments F for F is a w-NW family if all of the
following properties hold:
(1) F ̸= ∅,
(2) ∀α ∈ F and ∀C ∈ F : C|α ̸= �,
(3) ∀α ∈ F: | Dom(α)| ≤ w,
(4) ∀α ∈ F and ∀β ⊆ α: β ∈ F,
(5) ∀α ∈ F with Dom(α) ≤ w − 1 and ∀C ∈ F |α: ∃ℓ ∈ C such that α{ℓ = 1} ∈ F.

▶ Theorem 32. If F is an unsatisfiable CNF formula with N-Width(F ⊢�) > w, then there
exists a (w + 1)-NW family for F .

▶ Theorem 33. If there is a (w + 1)-NW family for an unsatisfiable CNF formula F , then
CS(F ⊢�) ≥ w + 2.

Proof Sketch. This follows from an adaptation of [2, Lemma 5], by noticing that the original
constant for Width(F ) vanishes by modifying point (5) of the definition of an Atserias–
Dalmau family as we did. Playing the so-called Spoiler–Duplicator game on F , as in the
proof of [2, Lemma 5], Duplicator has an answer to satisfy the queried clause in one round,
making it not necessary for Spoiler to query the variables in a clause until he gets a satisfying
assignment. ◀

▶ Corollary 34. For every F ∈ UNSAT we have CS(F ⊢�) ≥ N-Width(F ⊢�) + 1.

Using Theorem 17, we obtain:

▶ Theorem 35. Let k ∈ N and let G and H be two non-isomorphic graphs with G ≡Lk
H.

Then CS
(
ISO(G,H) ⊢�

)
≥ k + 1.

By the CFI construction [8], for every n ∈ N, there is a pair of non-isomorphic
graphs (Gn, Hn) such that Gn and Hn have O(n) vertices but Gn ≡Cn Hn (and therefore also
Gn ≡Ln

Hn). Hence, for these graphs, CS
(
ISO(Gn, Hn) ⊢�

)
≥
∣∣Vars

(
ISO(Gn, Hn)

)∣∣1/2 + 1.

6 Conclusions

We have given an exact characterization for the number of variables needed to distinguish
two graphs in first-order logic in terms of the narrow resolution width needed for refuting
the corresponding isomorphism formulas. This fact allowed us to obtain upper and lower
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bounds for the size and space of (normal) resolution refutation of such formulas. The size
upper bound justifies a clause length increasing algorithm for the resolution (and solving) of
isomorphism formulas of the kind proposed in [6] for general formulas.

The lower bounds techniques provide a simplified method to obtain resolution size lower
bounds directly from the structure of the graphs, using the Lk-logic, and without having to
deal with the isomorphism formulas directly. All the known resolution size lower bounds for
isomorphism formulas can be easily derived from this result. Moreover, we have been able to
use the method to obtain exponential lower bounds for isomorphism formulas in the stronger
system of SRC-1, which includes a global symmetry rule, answering a question posed in [33].

The obvious open question is to prove superpolynomial size lower bounds for isomorphism
formulas in the stronger systems SRC-2 and SRC-3. However, one would need different ideas
for this, since, as shown recently in [33], the families of graphs based on the CFI construction,
like the ones used in all known lower bounds, have polynomial-size SRC-2 refutations.
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Abstract
Anti-unification in logic programming refers to the process of capturing common syntactic structure
among given goals, computing a single new goal that is more general called a generalization of the
given goals. Finding an arbitrary common generalization for two goals is trivial, but looking for those
common generalizations that are either as large as possible (called largest common generalizations)
or as specific as possible (called most specific generalizations) is a non-trivial optimization problem,
in particular when goals are considered to be unordered sets of atoms. In this work we provide an
in-depth study of the problem by defining two different generalization relations. We formulate a
characterization of what constitutes a most specific generalization in both settings. While these
generalizations can be computed in polynomial time, we show that when the number of variables in
the generalization needs to be minimized, the problem becomes NP-hard. We subsequently revisit an
abstraction of the largest common generalization when anti-unification is based on injective variable
renamings, and prove that it can be computed in polynomially bounded time.
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1 Motivation and Objectives

Anti-unification refers to the process of generalizing two (or more) program objects S into a
single, more general, program object that captures some of the structure that is common to
all the objects in S. In a classical logic programming context, the atom p(X, Y ) can thus be
seen as a generalization of both the atoms p(f(A), U) and p(f(g(B)), h(C)), thanks to the
variables X and Y .

Anti-unification constitutes a useful tool in various contexts ranging from program
analysis techniques (including partial evaluation, refactoring, automatic theorem proving,
program transformation, formal verification and test-case generation [5, 24, 11, 22, 15])
to automated reasoning [20, 21] or analogy making [18], supercompilation [27] and even
plagiarism detection [28]. Many of these static techniques are executed on programs written
in the form of (constraint) Horn clauses, a formalism that has been praised for its ability to
capture a program’s essence in a quite universal and straightforward manner [14].

In the introductive example above, the presence of variables X and Y conceptually allows
concrete instances (i.e. less general objects) to harbor any value at the positions corresponding
to the variable positions. The generalization process is indeed usually achieved by “forgetting”
parts of the objects to generalize (either by replacing sub-objects with variables or by dropping
them altogether): the less syntactic information in an object, the more general it is. Most
anti-unification methods are thus steered by a variabilization algorithm determining how
to “forget” object parts when necessary while keeping (common) parts in the generalization.
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Therefore, in general one is typically interested in computing what is often called a most
specific generalization (or synonymously least general generalization), that is a generalization
that captures a maximal amount of shared structure. With the atoms of the example above,
the common generalization p(f(X), Y ) is in that regard a better anti-unification result than
p(X, Y ), as it exhibits more common structure (namely the use of functor f). As this
example hints, “better” results are often obtained at the cost of more complex anti-unification
algorithms. In that regard, computing more specific generalizations often boils down to
performing some kind of optimization in the variabilization process.

In a classical approach where goals are ordered sequences of atoms, a goal G is more
general than some other goal G′ if G′ can be obtained by applying on G some substitution
θ, being a mapping from variables to values. G then typically harbors more variables than
G′, making it a less instantiated, thus more general, version of G′. In that case, G and G′

are related by the θ-subsumption relation from [25], often considered to be a foundation
of Inductive Logic Programming where anti-unification is used as a way to learn a general
hypothesis from specific examples [20]. As the name may suggest, looking for a generalization
that is common to a group of program artefacts (be it terms, atoms, goals or even predicates
as a whole) is referred to as anti-unification due to it being the dual operation of unification.
Both can, in fact, be applied in similar contexts. Such applications of (anti-)unification include
program transformation techniques for partial deduction [13, 11], fold/unfold routines [23],
invariant generation [17] and reuse of proofs [3, 24].

The study of anti-unification so far has mainly been focused on such ordered goals.
However, many applications require goals to be defined as (unordered) sets of atoms. It is
the case, for instance, when considering the most declarative semantics of logic programs [12,
16, 14]. Having a clear overview of anti-unification operators computing most specific
generalizations for unordered goals (sometimes called linear generalizations) in logic programs
is necessary for generalization-driven semantic clone detection with programs composed of
constraint Horn clauses [28, 19]. Indeed, generalization operators allow to quantify a certain
amount of structural similarity between different predicate definitions by highlighting what
parts these have in common. In [28], this quantitative similarity measurement is used as
an indication of which semantic-preserving program transformation should be applied next
in order to ultimately assess whether two programs (or predicates) are semantic clones. A
quite similar approach has already been taken in the case of ordered goals in [5], an obvious
application of this being plagiarism detection.

Directing our interest towards unordered goals also has the advantage of broadening the
traditional anti-unification theories usually rooted in a setting where logic programming
is based on operational semantics, by extending the theories to the more general area of
Constraint Logic Programming (CLP), unordered goals being a crucial ingredient of the
CLP(X) framework. The fixpoint semantics of CLP programs are indeed typically defined
with no regard to the order of appearance of the atoms in a clause’s body [16]. While CLP is
interesting in its own right, it is also considered a serious candidate for representing abstract
algorithmic knowledge, rather than mere computations, in a quite universal manner [14]. In
that regard, focusing on unordered goals could pave the way for performing anti-unification
at the algorithmic level rather than at the level of language-specific operations.

The topic of anti-unification in the case of unordered goals has ocasionally come up in
studies focussed on related fields such as equational anti-unification, encompassing theories
specified by commutativity or associative-commutativity axioms. The topic has been treated
for first-order theories [1] as well as higher-order variants [9]. The latter work applies to the
first-order case as well and provides polynomial algorithms for variants of anti-unification
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for unordered input. A grammar-based approach to equational anti-unification including
commutative theories, called E-generalization, was introduced in [6] and refined with a
working implementation in [7]. The authors of [3] elaborate a rigid anti-unification algorithm
that can apply to unordered (and so-called unranked) theories by instantiating a parameter
called rigidity function, a direct application of which being the computation of longest
common substrings. The algorithms described in all of these works can be used to compute
what we will call ⊑-common generalizations below in the present paper. Although none
of these works develop a general (non-equational) taxonomy allowing to extend the results
beyond that simple setting, nor discusses variable- or injectivity-based variants of anti-
unification operators, their usages do point out other interesting (and recent) applications of
anti-unification when focused on unordered goals, namely detection of recursion schemes in
functional programs (as explained in [2]) and techniques for learning bugfixes from software
code repositories (an example being [26]).

Anti-unification techniques that are adapted for CLP(X) have been defined in [29], but
its focus is set on a polynomial abstraction procedure for a specific case where terms cannot
be generalized (only variables can) and where generalization has to be carried out through
injective substitutions. While [29] provides useful insights and results, it lacks a more general
and in-depth study of the used generalization operator. In this work we broaden, generalize
and complete the latter work by providing a detailed and systematic study of generalization
operators and their characteristics in the context of CLP.

The main contributions of the present work are the following. In Section 2 we define
relations close to the well-known θ-subsumption in an effort of adapting this notion to
the case of unordered goals. As will be illustrated throughout the paper, our adaption of
anti-unification to unordered goals makes the usual subsumption techniques unusable. In
Section 3 we reframe the problem of looking for a most general/largest generalization as
an optimization problem, parametrized by the generalization operator (or anti-unification
strategy) and variabilization function (responsible for introducing variables in the resulting
generalization) at hand. We will see that given two unordered goals as input, searching
for such generalizations can be done in polynomial time. The algorithms, as well as their
worst-case time complexities, are detailed throughout the development of our anti-unification
framework. In Section 4 we provide an in-depth examination of several key variations of
the anti-unification problem, namely variable generalization (where no terms are allowed
to be generalized), injective generalization (where the generalizing substitutions need to be
injective) and dataflow optimization (where the number of generalizing variables needs to be
minimized) – the latter of which is proved to make the anti-unification statement NP-hard.
Finally, addressing this last problem more in depth in Section 5 we revisit a tractable
abstraction that was introduced in [29] but we provide for the first time a formal proof of
its worst-case complexity, showing that the approximation can effectively be computed in
polynomially bounded time. With the exception of this last result, the proofs of propositions,
lemmas and theorems are provided in the Appendices.

2 Preliminaries

In the following, we introduce concepts and notations that will be used throughout the paper.
We suppose a language of Horn clauses defined over a context, which is a 4-tuple ⟨X,V,F ,Q⟩,
where X is a non-empty set of constant values, V is a set of variable names, F a set of function
names andQ a set of predicate symbols. The sets X,V,F andQ are all supposed to be disjoint
sets. Symbols from F and Q have an associated arity (i.e. its number of arguments) and
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we write f/n to represent a symbol f having arity n. Given a context C = ⟨X,V,F ,Q⟩, we
define the set of terms over it as TC = X ∪V ∪{f(t1, t2, . . . , tn)|f/n ∈ F ∧∀i ∈ 1..n : ti ∈ TC}.
Terms are thus ground domain constants, variables and functor-based expressions over
other terms. In what follows we will use uppercase symbols to represent variables whereas
lowercase symbols will be used for function and predicate symbols. The set of atoms over
C is defined as AC = {p(t1, . . . , tn) | p/n ∈ Q ∧ ∀i ∈ 1..n : ti ∈ TC}. An atom p(t1, . . . , tn) is
understood as representing an atomic formula involving the predicate p over n arguments,
the arguments being represented by terms. A goal G is a set of atoms, representing an
(unordered) conjunction, thus G ⊆ AC .

▶ Example 1. Let us consider a numerical context (e.g. X = Z and F is the set of usual
functions over integers composed of addition (+), substraction (−), integer division (/),
multiplication (∗) and modulo (%)). Supposing X and Y to represent variables, then the
following are terms: 3, X, +(3, X), +(4, ∗(X, %(Y, 2))). Given predicates p/1, q/1, r/2 and
c/2, the following are atoms: p(3), q(X), r(+(2, 4), +(3, X))

In what follows we will often leave the underlying context implicit and simply talk about
variables, function and predicate symbols. A substitution is a mapping from variables to
terms and will be denoted by a Greek letter. For any substitution σ : V 7→ TC , dom(σ)
represents its domain, img(σ) its image, and for a program expression e (be it a term, an
atom or a goal) and a substitution σ, we write eσ to represent the result of substitution
application, i.e. simultaneously replacing in e those variables V that are in dom(σ) by
σ(V ). A renaming is a special kind of substitution, mapping variables to variables only.
Thus for any renaming ρ we have that img(ρ) ⊆ V. We can now define what constitutes a
generalization relation ⊑, which essentially defines a goal as more general than another if
the latter is a potentially larger and potentially more instantiated goal than the former.

▶ Definition 2. Let G and G′ be goals. G is a generalization of G′ if and only if there exists
θ, a substitution such that Gθ ⊆ G′. We denote this fact by G ⊑ G′ (or sometimes G ⊑θ G′

if we want to emphasize the substitution θ in question).

▶ Example 3. {p(X, Y, Z)}, {q(a(X))} and {p(t(1), Y, u(Z)), q(W )} are generalizations of
{p(t(1), t(2), u(+(4, X))), q(a(t(u(1))))}.

In some applications (e.g. for some usual computation domains in Constraint Logic
Programming), it makes sense to use a more restricted generalization relation, in which
variables are substituted by other variables rather than terms. As such, when the substitution
θ in Definition 2 is a renaming, we say that G is a variable generalization of G′, which
we denote by G ⪯ G′ (or sometimes G ⪯θ G′ to emphasize the renaming θ in question).
When considering the relation ⪯, only variables are generalized and the function symbols
are considered as being a part of the language structure itself (i.e. they are not subject to
generalization). This can be advantageous, for instance in applications working with a small
finite domain such as Booleans, where considering G = {=(A, B)} to be a generalization of
both {=(X, true)} and {=(Y, false)} can feel like ignoring too much of the goal’s semantics.

Our generalization relations are variations of the classical θ-subsumption [25], adapted to
goals being sets rather than ordered sequences of atoms. They share the following property
with θ-subsumption.

▶ Proposition 4. Relations ⊑ and ⪯ are quasi-orders.

We will now turn our attention towards the basic concept in anti-unification, namely that
of a goal being a common generalization of some given goals [25]. In the following, we restrict
ourselves to common generalizations of two goals, but the concept can straightforwardly be
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extended to any number of goals. As for notation, when a result or definition holds for both
our relations ⪯ and ⊑, for the sake of simplicity we will sometimes use ⩽ to denote both
relations at once.

▶ Definition 5. Let G1, . . . , Gn be goals and ⩽ a generalization relation. Then G is a
⩽-common generalization of {G1, . . . , Gn} if and only if ∀i ∈ 1..n : G ⩽ Gi.

The definition essentially states that each Gi(1 ≤ i ≤ n) can be generalized by G through
its own substitution. Formally there exist θ1, . . . , θn such that ∀i ∈ 1..n : G ⊑θi Gi. A
common generalization of goals is thus, in essence, a part of their shared atomic structure,
with a possible introduction of variables in certain places – the liberality of which depends
on the underlying relation. Note that renamings being (restricted) substitutions, for any
two goals G and G′ it holds that G ⪯θ G′ ⇒ G ⊑θ G′ so that if a goal is a ⪯-common
generalization of a set of goals it is also a ⊑-common generalization of said goals.

▶ Example 6. Let G1 = {p(t(X), Y ), q(3, f(X))} and G2 = {p(5, Z), q(3, f(Z))}. The
following is a (non-exhaustive) list of ⊑-common generalizations of G1 and G2: ∅, {p(V1, V2)},
{q(3, f(V1))}, {p(V1, V2), q(V3, V4)}, {p(V1, V2), q(3, V3)}. The following are ⪯-common gener-
alizations of G1 and G2 as well: ∅, {q(3, f(V1))}.

As a slight lexical abuse, given atoms {A1, ,̇An} we will say that an atom A is a ⩽-common
generalization of {A1, ,̇An} iff {A} is a ⩽-common generalization of {A1, ,̇An}. Note that no
matter the relation and no matter the goals G1 and G2, at least one common generalization
will always exist: the empty goal ∅. Obviously, wherever possible we are interested in more
detailed representations of the common structure found in goals.

For an expression e, we use vars(e) to represent the set of variables that appear in e

and τ(e) to denote the multiset of all atoms and non-variable terms occurring in e. We will
sometimes refer to the cardinality of τ(e) as the τ -value of e. The multiset of all atoms and
terms, variables included, is denoted by ter(e).

▶ Example 7. Let G be the goal {p(f(x, Y )), q(Y, X)}. The multiset τ(G) is equal to
{p(f(x, Y )), f(x, Y ), x, q(Y, X)}. G’s τ -value is 4, vars(G) = {X, Y } and ter(G) is the
multiset {p(f(x, Y )), f(x, Y ), x, Y, q(Y, X), Y, X}.

One is typically interested in those common generalizations that are the most specific, i.e.
that capture as much common structure as possible amongst G1 and G2 [25].

▶ Definition 8. Given goals G1, . . . , Gn and G such that G is a ⩽-common generalization
of {G1, . . . , Gn}, we say that G is a ⩽-most specific generalization (⩽-msg) of {G1, . . . , Gn}
if ∄G′, another ⩽-common generalization of {G1, . . . , Gn}, such that |τ(G′)| > |τ(G)|.

▶ Example 9. Consider again the goals G1 and G2 from Example 6. It is easy to see that
G = {p(V1, V2), q(3, f(V3))} has a higher τ -value than all the other common generalizations
listed in the example; G is in fact a ⊑-msg of G1 and G2, and in this case, all other msg’s of
G1 and G2 differ from G only in a renaming of the variables V1, V2 and V3. As for relation
⪯, the goal {q(3, f(V1))} as well as its variants with V1 renamed are ⪯-msg’s of G1 and G2.

A weaker yet useful measure for comparing common generalizations is the number of
atoms (i.e. the cardinality) of the common generalization G.

▶ Definition 10. Given goals G1, . . . , Gn and G such that G is a ⩽-common generalization of
{G1, . . . , Gn}, we say that G is a ⩽-largest common generalization (⩽-lcg) of {G1, . . . , Gn}
if ∄G′, another ⩽-common generalization of {G1, . . . , Gn}, such that |G′| > |G|.
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▶ Example 11. Let us again take a look at the goals from Example 6. Each goal of size 2
(such as {p(V1, V2), q(V3, V4)}) is a ⊑-lcg, seeing that no larger ⊑-common generalization can
exist as |G1| = |G2| = 2. Regarding the ⪯ relation, common generalizations of size 1 (e.g.
{q(3, f(V1))}) are the largest that exist in the example since the atoms involving p/2 have
no ⪯-common generalization because of the structural difference in their first argument.

Before we can dive into the process of computing common generalizations, a few more
preliminary observations need to be assessed regarding relations ⊑ and ⪯. First, we state
that there is no other way for a common generalization to be most-specific than to harbor as
many atoms as possible.

▶ Proposition 12. Any ⩽-msg is a ⩽-lcg and any ⪯-lcg is a ⪯-msg.

▶ Example 13. Let us consider G1 = {a(Y, Z), a(t(1), X)} and G2 = {a(t(1), E)} as well as
G = {a(t(1), V1)}. It is easy to see that G (and all its variations with V1 renamed) is the
only ⪯-lcg (thus ⪯-msg), as G2’s atom can only be anti-unified with the atom in G1 that
has the same structure – and so the same τ -value. Here, G is also a ⊑-msg (thus a ⊑-lcg).

Regarding ⊑, the converse of the above proposition (“any ⊑-lcg is a ⊑-msg”) is not
true, as shown by the following example. Let us consider G1 = {a(Y, Z), a(t(1), X)} and
G2 = {a(t(1), E)} as well as the following ⊑-lcg’s: G = {a(V1, V2))} and G′ = {a(t(1), V1)}.
Obviously |τ(G′)| = 3 > |τ(G)| = 1. In fact, G′ is a ⊑-msg for this example.

For a set of goals {G1, . . . , Gn}, we have defined most specific and largest generalizations
using the plural. In fact, by the definitions above and as appears clearly in our examples,
G1, . . . , Gn can have more than one ⪯-lcg (and equivalently ⪯-msg), but all are equivalent
modulo a variable renaming. The same does not necessarily hold with the relation ⊑: there
might exist more than one sensibly different ⊑-lcg’s, depending on the degree at which
the different terms are abstracted away through the generalizations process. The following
example shows that a similar observation holds for ⊑-msg’s.

▶ Example 14. Consider the goals G1 = {p(t, u)} and G2 = {p(t, X), p(X, u)}. There are
two possible structures of ⊑-msg’s, namely {p(t, V1)} and {p(V1, u)}. There is one more
possible structure of ⊑-lcg, namely {p(V1, V2)}

For the sake of clarity, in the results and discussions that follow we will simplify and
consider common generalizations of two goals, but the ideas are straightforwardly applicable
to groups of more than two goals. Furthermore, when discussing the generalization process
of two goals we will suppose that the goals in question share no common variable name.
This hypothesis is by no means a loss of generality as renaming all variables from one goal
into fresh, unused variable names can ensure this property while not altering the goal’s
semantics.

3 Large and Specific Generalizations

In this section we prove that msg’s and lcg’s as defined above can be computed with
polynomial-time algorithms. First, we need the concept of a variabilization which is basically
a function mapping couples of terms to new variables.

▶ Definition 15. Given a context ⟨X,V,F ,Q⟩, let V ⊂ V denote a set of variables. A
function ΦV : T 2 7→ V ∪X is called a variabilization function if, for any (t1, t2) ∈ T 2 it holds
that if ΦV (t1, t2) = v, then (1) v /∈ V, (2) ∄(t′

1, t′
2) ∈ T 2 : (t′

1, t′
2) ̸= (t1, t2) ∧ ΦV (t′

1, t′
2) =

v, (3) v ∈ X ⇔ t1 = t2 ∈ X and in that case, v = t1 = t2.



G. Yernaux and W. Vanhoof 37:7

Note that a variabilization function ΦV introduces a new variable (not present in V ) for
any couple of terms, except when the terms are the same constant. It can thus be seen as a
way to introduce new variable names when going through the process of anti-unifying two
goals. In what follows, when manipulating goals G1 and G2, we will use Φvars(G1∪G2) to
represent an arbitrary variabilization function. If the goals at hand are clearly identified
from the context, we will abbreviate the notation to Φ. In most upcoming examples we will
use applications of Φ (e.g. Φ(X, Y ), Φ(t(X), 5), . . . ) rather than coined variable names (e.g.
V1, V2, . . . ) when an anti-unification operator is – ostensibly or not – at work.

Algorithm 1 shows the intuitive solution for computing a lcg with two goals G1 and G2
(where we suppose |G1| ≤ |G2|) as input. In the algorithm, au⩽(A1, A2) denotes the use of a
function that outputs a ⩽-common generalization on the atomic level for atoms A1 and A2
with respect to relation ⩽. In our development we will call such functions anti-unification
operators. As stated in the following observation, such operators exist for our relations.

Algorithm 1 Computing a lcg G for goals G1 and G2 with generalization relation ⩽.

G = {}, R = {}
for each (A1 ∈ G1) do

for each (A2 ∈ G2 \R) do
A′

1 = au⩽(A1, A2)
if A′

1 ̸= ⊥ then
G← G ∪A′

1
R← R ∪A2
break out of the inner loop

return G

▶ Lemma 16. There exist polynomial anti-unification operators to compute the ⩽-lcg and/or
the ⩽-msg of two atoms. In particular for two atoms A1 and A2, there exist (1) an operator
au⊑(A1, A2) computing a ⊑-lcg for A1 and A2 in O(n) with n the arity of A1; (2) an
operator au⪯(A1, A2) computing a ⪯-lcg in O(m) with m the maximum number of function
applications in the argument terms of the atom A1; (3) an operator dau⊑(A1, A2) computing
a ⊑-msg with a complexity that is linear in the number of terms appearing in A1.

Algorithm 1 merely applies a given anti-unification operator to pairs of atoms and keeps
the results (if not ⊥) in the generalization under construction, leading to the conclusion:

▶ Theorem 17. Given two goals G1 and G2, Algorithm 1 can compute (1) a ⊑-lcg in
O(|G1| · |G2| ·N) with N the maximum arity of the predicate symbols occurring in G1 and
G2; (2) a ⪯-lcg in O(|G1| · |G2| ·N) with M = max

A∈G1
{|ter(A)|}.

Note that although Algorithm 1 is able to find a ⊑-lcg for two goals G1 and G2, it
can produce different lcg’s depending on the order in which the atoms of G1 and G2 are
considered. Although the ⪯-lcg computed by Algorithm 1 is necessarily a ⪯-msg (according
to Proposition 12), the same observation does not hold when the underlying relation is ⊑
and the anti-unification operator is adapted accordingly. The fact that Algorithm 1 can
miss out on a ⊑-msg is due to the algorithm itself not trying to match those pairs of atoms
(A1, A2) that share as much structure as possible. Therefore, finding a ⊑-lcg with maximal
τ -value (i.e. a ⊑-msg) can be seen as an optimization problem.

Indeed, applying Algorithm 1 as-is does not guarantee that the matched atoms from
G1 and G2 are chosen in a way that optimizes the output’s τ -value. The algorithm should
be adapted in such a way that first, the anti-unification of A1 and A2 is computed for all
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p(X, t(4))

r(u(5, s(Y )), 8)

r(u(8, Z), 5)

p(A)

r(u(8, s(3)), 5)

G1 G2
−1

−1

−1
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−1
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Figure 1 The bipartite graph for the assignment problem from Example 18.

A1 ∈ G1 and A2 ∈ G2; then, there must be a selection of pairs of atoms so that the resulting
generalization has a maximized τ -value. This is similar to the well-known assignment problem,
and can consequently be solved by existing maximization matching algorithms [8]. Indeed,
with G1 and G2 the goals at hand, our problem can be characterized by drawing a weighted
bipartite graph with as left vertexes the atoms of G1 and as right vertexes the atoms of G2.
When considering as granted an operator dau1

⊑ computing a ⊑-msg for two atoms, an edge
between two vertexes A1 and A2 has an associated weight w indicating the potential benefit
(in number of terms and predicate symbols) of anti-unifying A1 and A2, formally defined as

w(A1, A2) =
{
−1 if dau⊑(A1, A2) = ⊥
|τ(dau⊑(A1, A2))| otherwise.

Since all edges are labeled by a measurement of their τ -value, the maximum weight
matching (MWM) in the bipartite graph will give the selection of pairs of atoms that, once
properly anti-unified, keep the maximal structure in the generalization. Observe that by
giving negative scores to atom couples that do not anti-unify, we prevent these couples from
playing any part in the computed generalization.

▶ Example 18. Let us consider the goals G1 = {p(X, t(4)), r(u(5, s(Y )), 8), r(u(8, Z), 5)} and
G2 = {p(A), r(u(8, s(3)), 5)}. The corresponding assignment problem is shown in Figure 1.
The MWM consists of the sole edge (r(u(8, Z), 5), r(u(8, s(3)), 5), so that the resulting
generalization for this simple example is G = {r(u(8, Φ(Z, s(3))), 5)}.

▶ Theorem 19. Let G1 and G2 be goals and N = max
A∈G1

{|ter(A)|}. Then a ⊑-msg of G1 and

G2 can be computed in O
(
|G1| · |G2| ·N + max(|G1|, |G2|)3).

Note that the process described above finds a ⊑-msg but there is no guarantee regarding
which ⊑-msg is found: as previously observed, the maximal τ -value can sometimes be reached
through different atomic structures. Another inconstant parameter from one msg to the
other is the number of different variables that are introduced in the generalization process.
In fact, both aspects can sometimes be related, for example when minimizing the number
of variables leads to the choice of a certain msg structure over another. A ⊑-most specific
generalization that has as few different variables as possible is often seen as an even more
specific generalization; the computation of such a msg is the main topic of the following
section.

1 For deep anti-unification.
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4 Dataflow Optimization

Relations ⊑ and ⪯ are defined over substitutions that do not necessarily need to be injective.
Indeed, a single term occurring multiple times in one of the goals can potentially be generalized
by two (or more) different variables. Therefore, some most specific generalizations may contain
more different variables than others depending on the underlying variabilization process.
Among two common generalizations of the same pair of goals, the common generalization
that has more variables than the other can be considered less specific as some information –
namely the fact that two or more values, possibly in different atoms, are equal – has been
abstracted by introducing different variables. In what follows, we will call the search of a
common generalization with as few different variables as possible dataflow optimization. The
following example illustrates the concept over the finite domain from [10].

▶ Example 20. Consider the domain of Booleans B = {true, false} as well as the fol-
lowing goals: G1 = {= (X, or(Y, Z)), = (V, and(Y, Z))} and G2 = {= (B, or(C, D)), =
(A, and(C, D)), =(E, and(F, G))}. Note that in G1 the or and and operations are eval-
uated on the same values, represented by the multiple occurrences of the variables Y and Z.
In G2 the or and the and operation from the second atom exhibit this very same behavior
(represented by the variables C and D), whereas the third atom represent an and operation
on different values. Computing a ⪯-msg (and in this example, a ⊑-msg) for G1 and G2 can
lead to two different generalizations, namely

G = {=(Φ(X, B), or(Φ(Y, C), Φ(Z, D))), =(Φ(V, E), and(Φ(Y, F ), Φ(Z, G)))}
G′ = {=(Φ(X, B), or(Φ(Y, C), Φ(Z, D))), =(Φ(V, A), and(Φ(Y, C), Φ(Z, D)))}.

Clearly, both generalizations are correct msg’s, but the fact that all the variables in G only
occur once merely denotes that there exist six variables that together can make G true. The
repetition of Y and Z in G1 as well as their connection with C and D is a lost information,
abstracted by the anti-unification process. On the other hand, G′ by harboring less different
variables introduces less variable abstraction, effectively depicting some dataflow logic that is
common to G1 and G2, through the occurrence of Φ(Y, C) and Φ(Z, D) in both its atoms.
On that level, G′ can be considered less general than G.

Dataflow optimization thus formally boils down to finding, among a group of common
generalizations for two goals G1 and G2, a goal G such that |vars(G)| is minimal. In
Example 20, we were interested in finding, among all possible msg’s of G1 and G2, one that
harbors a minimal number of variables; it makes sense, since abstracting one Boolean value
with two different variables can be too liberal, depending on the applications. In that case of
dataflow optimization, where the target goal must be a msg (i.e. when both structure and
dataflow must be optimized), the dataflow problem is NP-complete. The same is true for
lcg’s. In order to show this formally, we consider a formulation in terms of decision problems.

▶ Theorem 21. Let MSG-MIN (resp. LCG-MIN) denote the following decision problem:
“Given goals G1, G2 and a constant p ∈ N0, does there exist a ⩽-msg (resp. ⩽-lcg) of G1 and
G2 that has less than p different variables?” MSG-MIN and LCG-MIN are NP-complete.

Now instead of looking to minimize the number of different variables in the computed
generalization G, one could be interested in forcing to preserve all the dataflow implied
in the generalized goals, not allowing to abstract away the links that appear in the goals’
terms. Intuitively, this can be done by forbidding any term from one of the input goals
to have more than one “corresponding term” in the other input goal. In other words, the
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dataflow is considered entirely preserved if the underlying variabilization function Φ doesn’t
associate any term with two or more different terms at the same time. Formally, this amounts
to using an injective version of our generalization relations. We say that a generalization
relation is injective if its definition only holds for injective substitutions. For a common
generalization G of goals G1 and G2 and for some function Φ associating fresh variable
names to couples of variables, this implies when using an anti-unification algorithm (e.g.
Algorithm 1) that for any two different variables Φ(T1, T2) and Φ(T3, T4) appearing in G, it
holds that T1 ̸= T3 ̸= T2 ̸= T4 ̸= T1. We will denote by ⊑ι (resp. ⪯ι) the versions of ⊑ (resp.
⪯) that exhibit this property.

▶ Example 22. Consider the injective relation ⪯ι as well as the goals G1 =
{and(A, B), or(B, C), xor(C, A)} and G2 = {and(X, Z), or(Y, X), xor(Z, Y )}. The only
common generalizations are ∅, {and(Φ(A, X), Φ(B, Z))}, {or(Φ(B, Y ), Φ(C, X))} and
{xor(Φ(C, Z), Φ(A, Y ))}. No common generalization of size larger than 1 exists, since
(at least) one of the matching substitutions is not injective. For example, the goal
G = {and(Φ(A, X), Φ(B, Z)), or(Φ(B, Y ), Φ(C, X))} is not a common generalization of
G1 and G2, since (at least) one of the substitutions mapping this goal to G1 or G2 is not in-
jective. Indeed, the substitution [Φ(A, X) 7→ A, Φ(B, Z) 7→ B, Φ(B, Y ) 7→ B, Φ(C, X) 7→ C]
maps both Φ(B, Z) and Φ(B, Y ) to B; this is sufficient to reach the conclusion that G is
not an injective generalization of G1 and G2. Note that in this case, the other potential
substitution, i.e. the one mapping G on G2, is not injective either.

The two following observations immediately result from the injective relations being more
constrained versions of their non-injective counterparts.

▶ Proposition 23. Relations ⊑ι and ⪯ι are quasi-orders.

▶ Proposition 24. Let G1 and G2 be goals. If G1 ⊑ι
θ G2, then G1 ⊑θ G2. If G1 ⪯ι

θ G2, then
G1 ⪯θ G2 and G1 ⊑ι

θ G2.

With an injective generalization relation, the computing of a msg is fundamentally
dissociated from that of an lcg, as an msg is not necessarily a lcg due to the injectivity
constraint. However, both situations are intractable. In order to show this formally, we
define the following decision problem variant.

▶ Theorem 25. Let INJ denote the following decision problem: “Given an injective general-
ization relation ⩽ι along with goals G1 and G2 such that |G1| ≤ |G2|, verify whether there
exists an ad hoc injective substitution θ such that G1θ ⊆ G2.” INJ is NP-complete.

INJ is basically the verification of whether a goal G1 can be adequately mapped onto (a
subset of) another goal G2. If there exists a substitution θ (resp. a renaming ρ) making this
possible, then G1 is a ⊑ι- (resp. ⪯ι-)largest and most specific generalization of G1 and G2,
since no larger nor structurally more specific goal than G1 can exist for this specific situation.

Due to the inherent intractability of injective relations, it is sometimes preferable to make
use of tractable abstractions rather than exact brute-force algorithms, especially if a quick
and approximate (though entirely dataflow-preserving) anti-unification result suffices for the
application at hand. In the next section, we give such an efficient – yet highly accurate –
abstraction for the computation of ⪯ι-lcg’s.

5 The k-swap Stability Abstraction

In what follows, we introduce an abstraction for the largest common generalization with
respect to ⪯ι that can be computed in polynomial time. The abstraction was already
introduced in [29] but no formal proof of its complexity was given. The abstraction is based
on the k-swap stability property, which is in turn defined in terms of pairing generalizations.
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▶ Definition 26. Let G1 and G2 be two renamed apart goals and G be a ⪯ι-common
generalization of G1 and G2 such that G ⊆ G1. Let ρ be any renaming such that Gρ ⊆ G2.
The pairing generalization of G, denoted π(G), is the set of pairs (A1, A2) ∈ G1 ×G2 such
that ∀(A1, A2) ∈ π(G) : A1ρ = A2.

▶ Example 27. Considering the goals G1 = {p(A), p(B), q(A)} and G2 = {p(X), q(Y )}, it is
easy to see that G = {p(Φ(B, X)), q(Φ(A, Y ))} is a ⪯ι-common generalization of them. The
corresponding pairing generalization is π(G) = {(p(B), p(X)), (q(A), q(Y ))}.

The notion of a pairing generalization renders thus explicit the corresponding atoms from
the generalized goals that contribute to the generalization. As a slight abuse of language,
given a pairing generalization π of some generalization G for goals G1 and G2, we will simply
say that π is a pairing for G1 and G2. Pairings can be used to express a notion of goal
stability in the following sense.

▶ Definition 28. Let G1 and G2 be two renamed apart goals and G be a ⪯ι-common
generalization of G1 and G2 such that G ⊆ G1. G is k-swap stable if and only if there does
not exist some generalizations Ĝ and G′ of G1 and G2 such that Ĝ ⊃ G′ and |π(G)∩π(G′)| ≥
|π(G)| − k for some k ∈ N.

Intuitively, a generalization G is k-swap stable if it is impossible to transform G into a
larger generalization Ĝ in spite of “swapping” at most k pairs in π(G). This stability notion
gives a characterization of the quality of a computed generalization. If a generalization
is 0-swap stable (the weakest characterization), it cannot be extended by adding another
atom but this guarantees in no way that a larger generalization could not be found. If a
generalization G is k-swap stable (for k > 0), it means that even if we exchange up to k pairs
in π(G) by others, the generalization cannot be extended into a larger one. Consequently, if
a generalization is k-swap stable for k the number of atoms in the smallest of the two goals
(denoted by ∞-swap stable), it means that the computed generalization is a largest common
generalization. Operationally, when naively searching for a lcg by backtracking, the fact that
a computed generalization is k-swap stable means that one should backtrack by more than k

choice points in order have a chance of finding a larger generalization.

▶ Example 29. Consider the goals G1 = {add(X, Y, Z), even(X), odd(Z), p(Z)} and G2 =
{add(A, B, C), add(C, B, A), even(C), odd(A), p(C)}. π1 = {(add(X, Y, Z), add(A, B, C))}
is not 0-swap stable. Indeed, we can enlarge π1 by adding (p(Z), p(C)), in order to
obtain π2 = {(add(X, Y, Z), add(A, B, C)), (p(Z), p(C))}. Note that π2 is 0-swap stable,
it is impossible to add another pair to π2 and still obtain a common generalization.
It is also 1-swap stable, seeing that replacing (or removing) one of the pairs doesn’t
lead to a pairing readily extensible to a pairing of size strictly greater than 2. How-
ever, π2 is not 2-swap stable. Indeed, replacing the pair (add(X, Y, Z), add(A, B, C))
by the pair (add(X, Y, Z), add(C, B, A)) in π2 and removing the now incompatible pair
(prime(Z), prime(C)) (i.e. choosing the renaming [X 7→ C, Y 7→ B, Z 7→ A] instead of
[X 7→ A, Y 7→ B, Z 7→ C]) gives rise to π′

2 = {(add(X, Y, Z), add(C, B, A)), which can readily
be extended into π3 = {(add(X, Y, Z), add(C, B, A)), (even(X), even(C)), (odd(Z), odd(A))}
which is a pairing of size 3. The latter being ∞-swap stable, it represents a ⪯ι-lcg, namely
Ĝ = {add(Φ(X, C), Φ(Y, B), Φ(Z, A)), even(Φ(X, C)), odd(Φ(Z, A))}

An algorithm has been introduced in [29] that builds up a k-swap stable generalization using
the process suggested in Example 29. Its practical performance has been assessed on different
test cases. The tests indicate that the k-swap stability property represents a well-suited
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approximation of the concept of ⪯ι-lcg. Indeed, in all test cases the size of the k-swap
stable generalization was at least 90% of the size of an lcg for the same anti-unification
problem, while the computational time was radically reduced – especially as the size of
the input goals grows2. However, in [29] only pragmatical aspects have been explored;
the theoretical foundations of the k-swap technique were not detailed, and no actual time
complexity upper bound has been demonstrated. We fill this gap in the remainder of this
section. First, we introduce the algorithm, then we formally prove that its time complexity
is polynomially bounded. Before introducing the algorithm, which is essentially composed of
two sub-algorithms, we give some notations that will facilitate their formulation. First, we
define an operator that allows to combine two pairings into a single pairing.

▶ Definition 30. Let G1 and G2 be two renamed apart goals. The enforcement operator is
defined as the function ◁ : (G1 ×G2)2 7→ (G1 ×G2) such that for two pairing generalizations
π and π′ for G1 and G2, π ◁ π′ = π′ ∪M where M is the largest subset of π such that π′ ∪M

represents a ⪯ι-common generalization of G1 and G2.

In other words, π ◁ π′ is the mapping obtained from π ∪ π′ by eliminating those pairs
of atoms (A, A′) from π that are incompatible with some (B, B′) ∈ π′ either because they
concern the same atom(s) or because the involved renamings cannot be combined into a
single injective renaming.

▶ Example 31. Consider π = {(p(X, Y ), p(A, B)), (q(X), q(A))} as a pairing for two goals
G1 and G2. Suppose π′ = {(r(Y ), r(C))} is also a pairing for G1 and G2. Enforcing π′

into π gives π ◁ π′ = {(q(X), q(A)), (r(Y ), r(C))}. Indeed, this can be seen as forcing Y

to be mapped on C; therefore the resulting pairing generalization can no longer contain
(p(X, Y ), p(A, B)) as the latter maps Y on B.

For π1 and π2 pairings we will also denote by compπ1
(π2) the subset of π2 of which each

element can be added to π1 such that the result is a pairing (i.e. there is no injectivity conflict
in the associated renaming). Finally, we use gen(G1, G2) to represent those atoms from
G1 and G2 that are variants of each other, formally gen(G1, G2) = {(A, A′) | A ∈ G1, A′ ∈
G2 and Aρ = A′ for some renaming ρ}. The first algorithm is depicted in Algorithm 2. The
algorithm represents the construction of a k-swap stable generalization of goals G1 and G2.
At each round, the process tries to transform the current generalization π (which initially is
empty) into a larger generalization by forcing a new pair of atoms (A, A′) from gen(G1, G2)
in π, which is only accepted if doing so requires to swap no more than k elements in π. More
precisely, the algorithm selects a subset of π (namely πs) that can be swapped with a subset
πc of the remaining mappings from gen(G1, G2) \ π such that the result of replacing πs by
πc in π and adding (A, A′) constitutes a pairing. Note how condition 1 in the algorithm
expresses that πs must include at least those elements from π that are not compatible with
(A, A′). The search continues until no such (A, A′) can be added.

The main operation of Algorithm 2, namely the selection of πs and πc, is detailed in
Algorithm 3 which aims to select the parts of the pairings to be swapped in order to enlarge
the resulting pairing under construction (π) by the couple (A, A′). To that purpose πs is
initialized with the part of π that is incompatible with the pair of atoms (A, A′) that we

2 For example, with k fixed to 4, anti-unifying goals harboring 15 to 22 atoms, each of arity between 1
and 3, comes on average down from more than 7 minutes (using bruteforce) to 272 milliseconds (using
the algorithms presented in this section), while the size of the computed generalization is on average
95% of the size of a lcg. More detailed test results are exposed in [29].
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Algorithm 2 Computing a k-swap stable generalization G for goals G1 and G2.

π ← ∅
repeat

found← false

for all (A, A′) in gen(G1, G2) \ π do
select πs ⊆ π and πc ⊆ gen(G1, G2) \ (π ∪ {(A, A′)}) such that:

(1) πs ⊇ π \ π ◁ {(A, A′)}
(2) |πs| ≤ k

(3) |πc| = |πs|
(4) π \ πs ∪ πc ∪ {A, A′} is a pairing generalization of G1 and G2

if such πc and πs are found then
π ← π \ πs ∪ πc ∪ {(A, A′)}
found← true

break out of the for loop
until ¬found

G← dom(π)

wish to enforce into the generalization. Its replacement mapping πc is initially empty and
the algorithm subsequently searches to construct a sufficiently large πc (the inner while loop).
During this search, S represents the set of candidates, i.e. couples from gen(G1, G2) that
are not (yet) associated to the generalization. In order to explore different possibilities with
backtracking, the while loop manipulates a stack GS that records alternatives for πc with
the corresponding set S for further exploration.

If the search for πc was without a satisfying result (i.e. no πc is found equal in size to πs),
the algorithm continues by removing another couple from π (thereby effectively enlarging πs).
The rationale behind this action is that there might be a couple in π that is “blocking” the
couples in S from addition to π. In order to achieve the removal of such potentially blocking
couples, an arbitrary couple from π \ πs is selected, and alternatives are recorded in a queue
(BS). Note the use of a queue (and its associated operations enter and exit) as opposed to
the stack GS. The process is repeated until either |πc| = |πs| in what case we have found a
suitable k-swap, or until |πs| > k in what case we have not, and the algorithm returns ⊥.

While the algorithms have been proven to correctly compute a k-swap stable generaliza-
tion [29], no result on their complexity has yet been formally established.

▶ Theorem 32. For a given and constant value of k, the combination of Algorithms 2 and 3
computes a k-swap stable common generalization of input goals G1 and G2 in polynomial
time O((αM)k+1), with 0 ≤M ≤ |gen(G1, G2)| and 0 ≤ α ≤ min(|G1|, |G2|).

Proof. In order to search for a suited πc to be swapped with a certain πs, Algorithm 3 must
try to add |πs| couples to π \ πs among the couples in S that are compatible with it. To
simplify notation, let i = |πs| and n = |compπ\πs∪πc

(S)|. Note that at any moment i ≤ k.
The attempt of Algorithm 3 to find πc is essentially a search of a combination of i couples
among n; that is

(
n
i

)
possibilities to explore. We have

(
n
i

)
= n!

i!(n−i)! which reduces to a
polynomial of degree ni:

n!
i!(n−i)! = n·(n−1)····(n−(i+1)·(n−i)·(n−(i−1))·····1

i!·(n−i)·(n−(i−1))·····1 = n·(n−1)····(n−(i+1))
i! ≈ O(ni)

If no suiting πc is found during such a search, then πs gets enlarged, having its size
m increased by (at least) one unit. In the worst case, the size i of πs is, at the start of
Algorithm 3, equal to 1. It then gets incremented by one, until it reaches k (each time more
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Algorithm 3 Selecting πs and πc for a given (A, A′).

GS ← {}, BS ← {}, πc ← {}
πs ← π \ π ◁ {(A, A′)}
S ← gen(G1, G2) \ π ◁ {(A, A′)}
while |πc| < |πs| and |πs| ≤ k do

while |πc| < |πs| and ¬(compπ\πs∪πc
(S) = {} and GS = {}) do

for all p in compπ\πs∪πc
(S) do

push(GS, (πc ∪ p, S \ {p}))
(πc, S)← pop(GS)

if |πc| < |πs| then
for all p in π \ πs do

enter(BS, πs ∪ {p})
if BS ̸= {} then

πs ← exit(BS)
πc ← {}
S ← gen(G1, G2) \ (π ∪ {(A, A′)})

else
return ⊥

if |πc| = |πs| then
return πs, πc

rreturn ⊥

atoms from π being considered to be part of πs). Let p denote the size of the pairing π under

construction, that is p = |π|. As k is constant, if backtracking is exhaustive there are
k∑

i=1

(
p
i

)
possibilities for πs pairings that are explored this way. Each of these πs pairings leads to the
search for a corresponding πc pairing. As such, the overall search carried out by Algorithm 3
takes a number of iterations that is in the worst case represented by

k∑
i=1

(
p
i

)
·
(

n
i

)
≈

k∑
i=1
O(pi) · O(ni) ≈ O((p · n)k)

Given that n is bound by the number of compatible couples of atoms from G1 ×G2, we will
denote the worst-case time complexity of Algorithm 3 by O((p ·M)k) with M ≤ |gen(G1, G2)|
and p the length of the pairing under construction π.

Turning our attention to Algorithm 2 it is clear that the size of pairing π is incremented
by 1 in each iteration of the repeat-loop, since found must be true for a new iteration to
occur. As such, in the worst-case scenario there can be as many iterations as there are atoms
in the smallest goal amongst G1 and G2, seeing that a generalization size cannot exceed
that of the goals it generalizes. We will denote this number by α = min(|G1|, |G2|). As for
the inner loop of Algorithm 2, it can browse through up to |gen(G1, G2)| − p candidates for
choosing the couple (A, A′) that will be enforced in the pairing π. This gives us at most

α∑
p=1

(|gen(G1, G2)| − p) ≈
α∑

p=1
O(M − p) iterations of Algorithm 2.

Algorithm 3 being called at each inner loop iteration of Algorithm 2, we can repres-
ent the time complexity of the combined algorithms by

α∑
p=1
O(M − p) · O((p · M)k) ≈

α∑
p=1

(
(M − p) · pk ·Mk

)
which can be rewritten as Mk+1 ·

(
α∑

p=1
pk

)
−Mk ·

(
α∑

p=1
pk+1

)
.
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Since
α∑

p=1
pk ≈ O(αk+1) and

α∑
p=1

pk+1 ≈ O(αk+2), we can conclude the total complexity

to be of the order O((α ·M)k+1)−O(αk+2 ·Mk) which proves the result. ◀

Whenever there is a need to compute numerous anti-unifications of unordered goals
with limited time resources, the k-swap stability abstraction allows to keep the search space
tractable while outputting goals that are, on average, close in size to that of a lcg. Such
situations can e.g. arise in static analysis techniques for large Horn clause programs, such as
the assessment of structural similarity between algorithms expressed in CLP [28].

6 Conclusions and Future Work

In this work, we have systematically studied different key notions and results concerning anti-
unification of unordered goals, i.e. sets of atoms. We have defined different anti-unification
operators and we have studied several desirable characteristics for a common generalization,
namely optimal cardinality (lcg), highest τ -value (msg) and variable dataflow optimizations.
For each case we have provided detailed worst-case time complexity results and proofs. An
interesting case arises when one wants to minimize the number of generalization variables or
constrain the generalization relations so as they are built on injective substitutions. In both
cases, computing a relevant generalization becomes an NP-complete problem, results that
we have formally established. In addition, we have proven that an interesting abstraction
– namely k-swap stability which was introduced in earlier work – can be computed in
polynomially bounded time, a result that was only conjectured in earlier work.

Our discussion of dataflow optimization in Section 4 essentially corresponds to a reframing
of what authors of related work sometimes call the merging operation in rule-based anti-
unification approaches as in [4]. Indeed, if the “store” manipulated by these approaches
contains two anti-unification problems with variables generalizing the same terms, then one
can “merge” the two variables to produce their most specific generalization. If the merging
is exhaustive, this technique results in a generalization with as few different variables as
possible. In this work we isolated dataflow optimization from that specific use case and
discussed it as an anti-unification problem in its own right.

While anti-unification of goals in logic programming is not in itself a new subject, to the
best of our knowledge our work is the first systematic treatment of the problem in the case
where the goals are not sequences but unordered sets. Our work is motivated by the need
for a practical (i.e. tractable) generalization algorithm in this context. The current work
provides the theoretical basis behind these abstractions, and our concept of k-swap stability
is a first attempt that is worth exploring in work on clone detection such as [28].

Other topics for further work include adapting the k-swap stable abstraction from the ⪯ι

relation to dealing with the ⊑ι relation. A different yet related topic in need of further research
is the question about what anti-unification relation is best suited for what applications. For
example, in our own work centered around clone detection in Constraint Logic Programming,
anti-unification is seen as a way to measure the distance amongst predicates in order to
guide successive syntactic transformations. Which generalization relation is best suited to be
applied at a given moment and whether this depends on the underlying constraint context
remain open questions that we plan to investigate in the future.
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