
Optimal Strategies in Concurrent Reachability
Games
Benjamin Bordais
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Patricia Bouyer
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Stéphane Le Roux
Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, 91190 Gif-sur-Yvette, France

Abstract
We study two-player reachability games on finite graphs. At each state the interaction between
the players is concurrent and there is a stochastic Nature. Players also play stochastically. The
literature tells us that 1) Player B, who wants to avoid the target state, has a positional strategy
that maximizes the probability to win (uniformly from every state) and 2) from every state, for every
ε > 0, Player A has a strategy that maximizes up to ε the probability to win. Our work is two-fold.

First, we present a double-fixed-point procedure that says from which state Player A has a
strategy that maximizes (exactly) the probability to win. This is computable if Nature’s probability
distributions are rational. We call these states maximizable. Moreover, we show that for every ε > 0,
Player A has a positional strategy that maximizes the probability to win, exactly from maximizable
states and up to ε from sub-maximizable states.

Second, we consider three-state games with one main state, one target, and one bin. We
characterize the local interactions at the main state that guarantee the existence of an optimal
Player A strategy. In this case there is a positional one. It turns out that in many-state games,
these local interactions also guarantee the existence of a uniform optimal Player A strategy. In a
way, these games are well-behaved by design of their elementary bricks, the local interactions. It is
decidable whether a local interaction has this desirable property.
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1 Introduction

Stochastic concurrent games. Games on graphs are an intensively studied mathematical
tool, with wide applicability in verification and in particular for the controller synthesis
problem, see for instance [16, 1]. We consider two-player stochastic concurrent games played
on finite graphs. For simplicity (but this is with no restriction), such a game is played over
a finite bipartite graph called an arena: some states belong to Nature while others belong
to the players. Nature is stochastic, and therefore assigns a probabilistic distribution over
the players’ states. In each players’ state, a local interaction between the two players (called
Player A and Player B) happens, specified by a two-dimensional table. Such an interaction
is resolved as follows: Player A selects a probability distribution over the rows of the table
while Player B selects a probability distribution over the columns of the table; this results
into a distribution over the cells of the table, each one pointing to a Nature state of the
graph. An example of game arena is given in Figure 1: circle states are players’ while square
states are Nature’s; note that dashed arrows assign only probability 1 to a next state in this
example (but in general could give probabilities to several states).
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Figure 1 The game starts in q0 with two actions available
for each player. Player A wins if the state ⊤ is reached.
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Figure 2 The local interaction at

q0 up to a renaming of the outcomes.

Globally, the game proceeds as follows: starting at an initial state q0, the two players
play the local interaction of the current state, and the joint choice determines (stochastically)
the next Nature state of the game, itself moving randomly to players’ states; the game
then proceeds subsequently from the new players’ state. The way players make choices is
given by strategies, which, given the sequence of states visited so far (the so-called history),
assign local strategies for the local interaction of the state the game is in. For application in
controller synthesis, strategies will correspond to controllers, hence it is desirable to have
strategies simple to implement. We will be in particular interested in strategies which are
positional, that is, strategies which only depend on the current state of the game, not on
the whole history. When each player has fixed a strategy (say sA for Player A and sB for
Player B), this defines a probability distribution Pq0

sA,sB
over infinite sequences of states of

the game. The objectives of the two players are opposite (we assume a zero-sum setting):
together with the game, a measurable set W of infinite sequences of states is fixed; the
objective of Player A is then to maximize the probability of W while the objective of Player B
is to minimize this probability.

Back to the example of Figure 1, assume Player A (resp. B) plays the first row (resp.
column) with probability pA (resp. pB), then the probability to move to ⊤ is pA + pB − 2pApB.
If Player A repeatedly plays the same strategy at q0 with pA < 1, then the probability to
reach ⊤ will lie between pA and 1, depending on Player B; however, if she plays pA = 1, then
by playing pB = 1, Player B enforces staying in q0, hence reaching ⊤ with probability 0.

Values and (almost-)optimal strategies. As mentioned above, Player A wants to maximize
the probability of W , while Player B wants to minimize this probability. Formally, given
a strategy sA for Player A, its value is measured by infsB Pq0

sA,sB
(W ), and Player A wants to

maximize that value. Dually, given a strategy sB for Player B, its value is measured by
supsA

Pq0
sA,sB

(W ), and Player B wants to minimize that value. Following Martin’s determinacy
theorem for Blackwell games [13], it actually holds that when W is Borel, then the game has
a value given by

χq0
= sup

sA

inf
sB

Pq0
sA,sB

(W ) = inf
sB

sup
sA

Pq0
sA,sB

(W )

While this ensures the existence of almost-optimal strategies (that is, ε-optimal strategies
for every ε > 0) for both players, it says nothing about the existence of optimal strategies,
which are strategies achieving χq0

. In general, as already mentioned in [8], optimal strategies
may not exist. Indeed assuming a reachability objective with target ⊤, the game in Figure 1
is such that χq0

= 1, however Player A can only achieve 1 − ε for every ε > 0 by playing
repeatedly at q0 the first row of the table with probability 1 − ε and the second row with
probability ε, but Player A cannot achieve 1.
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Our setting. In this paper we focus on reachability games, that is, W is a reachability
condition. They are a special case of recursive games (where targets are assigned payoffs),
as studied in [8]. As such, they enjoy several nice properties: (i) Player A has positional
almost-optimal strategies; (ii) Player B has positional optimal strategies [7]. These properties
are specific to reachability games (or slight generalizations thereof), and this is for instance
not the case of Büchi games, see [7, Thm. 2].

Our goal is to study maximizable and sub-maximizable states in (reachability) games:
maximizable (resp. sub-maximizable) states are states from which optimal strategies exist
(resp. no optimal strategies exist). Our contributions are then mostly twofolds:

1. We characterize via a double-fixed-point procedure maximizable and sub-maximizable
states. This characterization cautiously analyzes when and why no optimal strategies will
exist. Back to the example of Figure 1, we realize that no optimal strategy exists since
at the limit of ε-optimal strategies, i.e. when Player A plays the first row almost-surely,
Player B can enforce cycling back to q0, hence disabling state ⊤.This simple analysis
close to the target has to be propagated carefully in the game, in which some strategies
which are designated as risky (since they ultimately lead to such a situation) have to be
avoided.
As a byproduct of our construction, we have Theorem 28, which establishes that one can
build almost-optimal positional strategies, which are actually optimal where they can be.
This refines the result of [8] which did not ensure optimality where it could.
A consequence of that construction is that maximizable and sub-maximizable states can
be computed under slight assumptions, and that witness positional strategies can be
computed as well. For these results we rely on Tarski’s decidability result of the theory
of the reals [15].
We also show that our result cannot be extended to games with countably many states
by exhibiting such a game in which an optimal strategy exists, but there is no optimal
positional strategy.

2. Local interactions played by the players are abstracted into game forms, where cells of
the matrix are now seen as variables (some of them being equal). For instance, the game
form associated with state q0 in the running example has three outcomes: x, y and z, and
it is given in Figure 2. Game forms can be seen as elementary bricks that can be used
to build games on graphs. We can embed such a brick into various three-states games
with one main state, one target, and one bin (as is done in Figure 1 for the interaction of
Figure 2). We characterize the local interactions at the main state that guarantee the
existence of an optimal Player A strategy. In this case there is a positional one. It turns
out that in many-state games, these local interactions also guarantee the existence of a
uniform optimal Player A strategy. In a way, these games are well-behaved by design of
their elementary bricks, the local interactions. It is decidable whether a local interaction
has this desirable property.
Importantly we exhibit a simple condition on game forms which ensures the above:
determined game forms as studied in [2] do satisfy the condition. The latter game forms
generalize turn-based local interactions (where each players’ state is controlled by a unique
player – that is, the matrix defining the local interaction has a single row or a single
column). We therefore recover the fact that stochastic turn-based reachability games
admit optimal positional strategies, which was shown in [14, 4, 19].

Additional details and complete proofs are available in the arXiv version of this paper [3].

CSL 2022
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Related work. In [6], the authors characterize using fixed points as well states with
value 1: sure-winning states (all generated plays satisfy the reachability condition – as if no
probabilities were involved), almost-sure winning states (that is, maximizable states with
value 1) and limit-sure winning states (that is, sub-maximizable states with value 1). Our
work generalizes this result with states with arbitrary values.

There are many works dedicated to the study of stochastic turn-based games. These
games enjoy more properties. Indeed, in parity stochastic turn-based games, Player A always
has an optimal pure positional strategy [14, 4, 19]. These results do not extend in general to
infinite (turn-based) arenas (even when they are finitely-branching): optimal strategies may
not exist, and when they exist, they may require infinite memory [12].

2 Preliminaries

Consider a non-empty set Q. The support Supp(µ) of a function µ : Q → [0, 1] corresponds
to set of non-0s of the function: Supp(µ) = {q ∈ Q | µ(q) ∈ ]0, 1]}. A discrete probabilistic
distribution over a non-empty set Q is a function µ : Q → [0, 1] such that its support Supp(µ)
is countable and

∑
x∈Q µ(x) = 1. The set of all distributions over the set Q is denoted D(Q).

We also consider the product order on vectors ⪯ : Rn × Rn defined for any n ∈ N by, for all
v, v′ ∈ Rn, we have v ⪯ v′ ⇔ ∀i ∈ J1, nK, v(i) ≤ v′(i). For v ∈ Rn and x ∈ R, the notation
v + x refers to the vector v′ ∈ Rn such that, for all i ∈ J1, nK, we have v′(i) = v(i) + x.

3 Game Forms

We recall the definition of game forms which informally are 2-dim. tables with variables.

▶ Definition 1 (Game form and game in normal form). A game form is a tuple F =
⟨StA, StB, O, ϱ⟩ where StA (resp. StB) is the non-empty set of (pure) strategies available
to Player A (resp. B), O is a non-empty set of possible outcomes, and ϱ : StA × StB → O is a
function that associates an outcome to each pair of strategies. When the set of outcomes O
is equal to [0, 1], we say that F is a game in normal form. For a valuation v ∈ [0, 1]O of the
outcomes, the notation Fv refers to the game in normal form ⟨StA, StB, [0, 1], v ◦ ϱ⟩. A game
form F = ⟨StA, StB, O, ϱ⟩ is finite if the set of pure strategies StA ∪ StB is finite.

In the following, the game form F will always refer to the tuple ⟨StA, StB, O, ϱ⟩ unless
otherwise stated. Furthermore, we will be interested in valuations of the outcomes in the
interval [0, 1]. Informally, Player A (the rows) tries to maximize the outcome, whereas Player
B (the columns) tries to minimize it.

▶ Definition 2 (Outcome of a game in normal form). Consider a game in normal form
F = ⟨StA, StB, [0, 1], ϱ⟩. The set D(StA) corresponds to the set of mixed strategies available
to Player A, and analogously for Player B. For a pair of mixed strategies (σA, σB) ∈
D(StA) × D(StB), the outcome outF (σA, σB) in F of the strategies (σA, σB) is defined as:
outF (σA, σB) :=

∑
a∈StA

∑
b∈StB

σA(a) · σB(b) · ϱ(a, b) ∈ [0, 1].

The definition of the value of a game in normal form follows:

▶ Definition 3 (Value of a game in normal form and optimal strategies). Consider a game
in normal form F = ⟨StA, StB, [0, 1], ϱ⟩ and a strategy σA ∈ D(StA) for Player A. The
value of strategy σA, denoted valF (σA) is equal to: valF (σA) := infσB∈D(StB) outF (σA, σB),
and analogously for Player B, with a sup instead of an inf. When supσA∈D(StA) valF (σA) =
infσB∈D(StB) valF (σB), it defines the value of the game F , denoted valF .
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Note that von Neuman’s minimax theorem [18] ensures it does as soon as the game F is
finite. A strategy σA ∈ D(StA) ensuring valF = valF (σA) is called optimal. The set of all
optimal strategies for Player A is denoted OptA(F) ⊆ D(StA), and analogously for Player B.
Von Neuman’s minimax theorem ensures the existence of optimal strategies (for both players).

As it will be useful in Section 7, we define a least fixed point operator in a game form
given a partial valuation of the outcomes.

▶ Definition 4 (Total valuation induced by a partial valuation). For a game form F and a
partial valuation α : O \ E → [0, 1] for some E ⊆ O, we define the map fF

α : [0, 1] → [0, 1]
by, for all y ∈ [0, 1]: fF

α (y) := valFα[y] where α[y] : O → [0, 1] is such that α[y][E] = {y} and
α[y]|O\E = α. The map fα has a least fixed point (by monotonocity), denoted vα ∈ [0, 1].
The valuation α̃ ∈ [0, 1]O induced by the partial valuation α is then equal to α̃ = α[vα].

4 Concurrent stochastic games

In this section, we define the formalism we use throughout this paper for concurrent graph
games, strategies and values.

▶ Definition 5 (Stochastic concurrent games). A finite stochastic concurrent arena C is a
tuple ⟨A, B, Q, D, δ, dist⟩ where A (resp. B) is the non-empty finite set of actions of Player A
(resp. B), Q is the non-empty finite set of states, D is the non-empty set of Nature states,
δ : Q × A × B → D is the transition function, dist : D → D(Q) is the distribution function. A
concurrent reachability game is a pair ⟨C, ⊤⟩ where ⊤ ∈ Q is a target state (for Player A). It
is supposed to be a self-looping sink: for all a ∈ A and b ∈ B, we have Supp(δ(⊤, a, b)) = {⊤}.

In the following, the arena C will always refer to the tuple ⟨A, B, Q, D, δ, dist⟩ unless
otherwise stated, and ⊤ to the target in the game ⟨C, ⊤⟩, that we assume fixed in the rest of
the definitions. Let us now consider a crucial tool in our study: the notion of local interaction.
These are game forms induced by the transition function δ in states of the game.

▶ Definition 6 (Local interaction). The local interaction at state q ∈ Q is the game form
Fq := ⟨A, B, D, δ(q, ·, ·)⟩. That is, the strategies available for Player A (resp. B) are the
actions in A (resp. B) and the outcomes are the Nature states.

Local interactions also allow us to define the probability transition to go from one state
to another, given two local strategies.

▶ Definition 7 (Probability transition). Consider a state q ∈ Q and two local strategies
(σA, σB) ∈ D(A) × D(B) in the game form Fq. Let q′ ∈ Q. The probability pq,q′(σA, σB) to
go from q to q′ if the players opt for strategies σA and σB is equal to the outcome of the game
form Fq with the value of a Nature state d ∈ D equal to the probability to go from d to q′, i.e.
it is given by the valuation dist(·)(q′) ∈ [0, 1]D. That is: pq,q′(σA, σB) := outFdist(·)(q′)

q
(σA, σB).

Let us now look at the strategies we consider in such concurrent games.

▶ Definition 8 (Strategies). A Player A strategy is a map sA : Q+ → D(A). It is said to be
positional if, for all π = ρ · q ∈ Q+, we have sA(π) = sA(q): the strategy only depends on
the current state. We denote by SA

C and PSA
C the set of all strategies and positional strategies

respectively in arena C for Player A. The definitions are analogous for Player B.

A pair of strategies then induces a probability measure over paths.

CSL 2022
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▶ Definition 9 (Probability measure of paths given two strategies). For a pair of strategies
(sA, sB) ∈ SA

C × SB
C , we denote by sπ

A : Q+ → D(A) the Player A residual strategy after π ∈ Q+

is seen: for all π′ ∈ Q+, sπ
A(π′) = sA(π · π′). The residual strategy sπ

B is defined analogously.
Then, the probability of occurrence of a finite path π ∈ Q+ is defined inductively. For all
starting states q0 ∈ Q, for all q · π ∈ Q+, if q ̸= q0, we set Pq0

sA,sB
(q) := 0. Furthermore,

Pq0
sA,sB

(q0) := 1 and for all q · π ∈ Q+, we set:

Pq0
sA,sB

(q0 · q · π) := pq0,q(sA(q0), sB(q0)) · Pq

sq0
A ,sq0

B
(q · π)

A probability measure Pq0
sA,sB

is thus defined over the σ-algebra generated by cylinders (which
are continuations of finite paths). Standardly (see e.g. [17]), infinite sequences of states
visiting some subset Q′ ⊆ Q is measurable, and we note Pq0

sA,sB
(Q′) (resp. Pq0

sA,sB
(n, Q′)) the

probability to reach Q′ (resp. in at most n steps) from state q0.

Finally, we can define what is the value of strategies (for both players) and of the game.

▶ Definition 10 (Value of strategies and of the game). The value χC
sA

(q) of a Player A strategy
sA from a state q ∈ Q is equal to χC

sA
(q) := infsB∈SB

C
Pq

sA,sB
(⊤). The value χC

A(q) of the game
for Player A from q is: χC

A(q) := supsA∈SA
C

χC
sA

(q). It is analogous for Player B, by inverting
the inf and sup. When equality of these two values holds, it defines the value at state q,
denoted χC(q): χC(q) := χC

A(q) = χC
B(q) ∈ [0, 1]. The value of the game is then given by the

valuation χC ∈ [0, 1]Q. Since the game is finite, [13] gives that this equality is always ensured.
A strategy sA ∈ SA

C such that χC
sA

(q) = χC
A(q) (resp. χC

sA
(q) ≥ χC

A(q) − ε for some ε > 0) is
called a Player A optimal strategy (resp. ε-optimal) from state q. If χC

sA
= χC

A, the strategy sA
is uniformly optimal. This is defined analogously for Player B. For a valuation v ∈ [0, 1]Q of
the states, a Player A strategy sA ∈ SA

C such that v ⪯ χC
sA

is said to guarantee the valuation v.

Value of the game and least fixed point. In the context of a reachability game, the value
of the game is the least fixed point (lfp) of an operator on valuations on states. We define
this operator here.

▶ Definition 11 (Valuation of the Nature states and operator on values). For v ∈ [0, 1]Q,
we define the valuation µv ∈ [0, 1]D of the Nature states by µv(d) :=

∑
q∈Q dist(d)(q) · v(q)

for all d ∈ D. For the operator ∆ : [0, 1]Q → [0, 1]Q, for all valuations v ∈ [0, 1]Q, we set
∆(v)(⊤) := 1 and, for all q ̸= ⊤ ∈ Q, we set ∆(v)(q) := valFµv

q
.

As the operator ∆ is monotonous, it has an lfp for the product order ⪯. This lfp gives the
value of the game. Furthermore, Player B has an optimal positional strategy:

▶ Theorem 12 ([8, 9]). Let m denote the lfp of the operator ∆. Then: χC = m. Furthermore,
there exists a positional strategy sB ∈ PSC

B for Player B ensuring χC
sB

= χC = m.

Markov decision process induced by a positional strategy. Once a Player A positional
strategy is fixed, we obtain a Markov decision process, which, informally, is a game where
only one player (here, Player B) plays (against probabilistic transitions).

▶ Definition 13 (Induced Markov decision process). Consider a Player A positional strategy
sA ∈ PSA

C . The Markov decision process Γ (MDP for short) induced by the strategy sA is the
triplet Γ := ⟨Q, B, ι⟩ where Q is the set of states, B is the set of actions and ι : Q×B → D(Q)
is a map associating to a state and an action a distribution over the states. For all q ∈ Q,
b ∈ B and q′ ∈ Q, we set ι(q, b)(q′) := pq,q′(sA(q), b).
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Note that the set of Player B strategies in an induced MDP Γ is the same as in the concurrent
game C. Furthermore, the useful objects in MDPs are the end components [5]: informally,
sub-MDPs that are strongly connected.

▶ Definition 14 (End component). Consider a Player A positional strategy sA ∈ PSA
C and

consider the MDP Γ induced by that strategy. An end component (EC for short) H in Γ is a
pair (QH , β) such that QH ⊆ Q is a subset of states and β : QH → P(B) \ ∅ associates to
each state a non-empty set of actions compatible with the EC H such that:

for all q ∈ QH and b ∈ β(q), we have Supp(ι(q, b)) ⊆ QH ;
the underlying graph (QH , E) is strongly connected where (q, q′) ∈ E iff q′ ∈
Supp(ι(q, β(q))).

We denote by DH ⊆ D the set of Nature states compatible with the EC H: DH = {d ∈ D |
Supp(d) ⊆ QH}. Note that, for all q ∈ QH and b ∈ β(q), we have δ(q, Supp(sA(q)), b) ⊆ DH .

The interest of ECs lies in the proposition below: in the MDP induced by a Player A
strategy, for all Player B (positional) strategies (thus inducing a Markov chain), from all
states, there is a non-zero probability to reach an EC from which it is impossible to exit.

▶ Proposition 15. Consider a Player A positional strategy sA ∈ PSA
C . Let H denote the set

of all ECs in the MDP induced by the strategy sA. For all Player B strategies sB ∈ PSB
C , there

exists a subset of end components HsB ⊆ H called bottom strongly conneted components
(BSCC for short): for all H = (QH , β) ∈ HsB and q ∈ QH , we have Pq

sA,sB
(Q \ QH) = 0.

Furthermore, if q ∈ Q, we have: Pq
sA,sB

(n, ∪H∈HsB
H) > 0 where n = |Q|.

5 Crucial proposition

We fix a concurrent reachability game ⟨C, T ⟩ and a valuation v ∈ [0, 1]Q of the states that
Player A wants to guarantee. That is, she seeks a strategy sA ensuring that for all q ∈ Q, it
holds χC

sA
(q) ≥ v(q). In particular, when v = m, such a strategy sA would be optimal. We

state a sufficient condition for Player A positional strategies to ensure such a property.
Consider a Player A positional strategy sA ∈ PSC

A. The probability distribution chosen by
this strategy only depends on the current state. In fact, this strategy is built with one (local)
strategy per local interaction: for all state q ∈ Q, sA(q) ∈ D(A) is a strategy in the game form
Fq. As Player A wants to guarantee the valuation v, the valuation of interest of the outcomes
of the game form Fq = ⟨A, B, D, δ(q, ·, ·)⟩ is µv ∈ [0, 1]D – lifting the valuation v to the
Nature states. To ensure that χC

sA
(q) ≥ v(q), one may think that it suffices to choose sA(q) so

that its value in the game in normal form Fµv
q is at least v(q), that is: valFµv

q
(sA(q)) ≥ v(q).

In that case, the strategy sA is said to locally dominate the valuation v:

▶ Definition 16 (Strategy locally dominating a valuation). A Player A positional strategy
sA ∈ PSA

C locally dominates the valuation v if, for all q ∈ Q, we have: valFµv
q

(sA(q)) ≥ v(q).

However, this is not sufficient in the general case, as examplified in Figure 1. For the
valuation v = χC such that v(q0) = v(⊤) = 1 and v(⊥) = 0, a Player A positional strategy sA
that plays the first row in Fq0 with probability 1 ensures that valFµv

q0
(sA(q0)) = 1 ≥ v(q0).

However, we have seen that it does not ensure that χC
sA

(q0) = 1 since, if Player B always
plays the first column, the game indefinitely loops in q0. The issue is that, in the MDP
induced by the strategy sA, the trivial end component {q0} is a trap, as it does not intersect
the target set ⊤ – and therefore, the probability to reach ⊤ from q0 is equal to 0 – whereas
χC(q0) > 0. In fact, as soon as this issue is avoided, if the strategy sA locally dominates the
valuation v, the desired property on sA holds. Indeed:

CSL 2022
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▶ Proposition 17. Consider a Player A positional strategy sA ∈ PSA
C locally dominating v,

and assume that v ⪯ m. Assume that for all end components H = (QH , β) in the MDP
induced by the strategy sA, if QH ≠ {⊤}, for all qH ∈ QH , we have χC(qH) = 0 (in other
words, for all q ∈ Q, if χC

sA
(q) = 0 then χC(q) = 0). In that case, for all q ∈ Q, we have

χC
sA

(q) ≥ v(q) (i.e. the strategy sA guarantees the valuation v).

Proof Sketch. Consider some ε > 0 and, for x ∈ {ε, ε/2}, the valuations vx = v −x ∈ [0, 1]Q.
We show that sA guarantees vε. As this holds for all ε > 0, it follows that sA guarantees v.
Consider an arbitrary positional strategy sB for Player B. Let κA be a Player A strategy
guaranteeing vε/2 in n ≥ 0 steps from every state (which exists since vε/2 ≺ m) and a strategy
κB for Player B optimal against κA. So Pq

κA,κB
(n, ⊤) ≥ vε/2(q) for all q ∈ Q. Now, for all

l ≥ 0, we consider the strategy sl
A that plays sA l times and then plays κA (and similarly for

a strategy sl
B for Player B). As sA locally dominates v, it also locally dominates vε/2 which is

obtained from v by translation. Therefore, for any state q ∈ Q, if the local strategy sA(q)
is played in q, then the convex combination of the values of the successors of q w.r.t. the
valuation vε/2 is at least vε/2(q). In other words, the probability to reach ⊤ from q in 1 + n

steps if the strategy s1
A is played is at least vε/2(q): Pq

s1
A,s1

B
(1 + n, ⊤) ≥ vε/2(q). In fact, by

induction, this holds for all l ≥ 0: Pq

sl
A,sl

B
(l + n, ⊤) ≥ vε/2(q). Now, with strategies sl

A and sl
B,

consider the state of the game after l steps: either it is in a BSCC (w.r.t. sA and sB) or it is
not. For a sufficiently large l, the probability not to have reached a BSCC is as close to 0 as we
want. Furthermore, for a state qH in a BSCC H that is not {⊤}, by assumption, we have that
χC(qH) = 0, hence PqH

κA,κB
(⊤) = 0. In addition, if the state is in the trivial BSCC {⊤}, then

⊤ is reached. Hence, for l large enough, the two probabilities Pq

sl
A,sl

B
(l + n, ⊤) and Pq

sl
A,sl

B
(l, ⊤)

are as close to one another as we want. Finally, note that the strategies sl
A, sl

B behave exactly
like the strategies sA, sB in the first l steps. That is, for l large enough, and q ∈ Q, we have
Pq

sA,sB
(⊤) ≥ Pq

sA,sB
(l, ⊤) = Pq

sl
A,sl

B
(l, ⊤) ≥ Pq

sl
A,sl

B
(l + n, ⊤) − ε/2 ≥ vε/2(q) − ε/2 = vε(q). ◀

Fix a Player A positional strategy sA locally dominating the valuation v and let Γ be the
MDP induced by sA. For sA to guarantee the valuation v, it suffices to ensure that any EC
in Γ that is not the trivial EC {⊤} has all its states of value 0. It does not necessarily hold
for sA (recall the explanations before Proposition 17). However, we do have the following:
fix an EC H in Γ. Then, all the states H have the same value w.r.t. the valuation v. It is
stated in the proposition below.

▶ Proposition 18. Consider a Player A positional strategy sA ∈ PSA
C locally dominating a

valuation v ∈ [0, 1]Q. For all EC H = (QH , β) in the MDP induced by the strategy sA, there
exists vH ∈ [0, 1] such that, for all q ∈ QH , we have v(q) = vH . Furthermore, for all q ∈ QH ,
we have valFµv

q
(sA(q)) = v(q).

6 Positional optimal and ε-optimal strategies

The aim of this section is, given a concurrent reachability game, to determine exactly from
which states Player A has an optimal strategy. This, in turn, will give that whenever she has
an optimal strategy, she has one that is positional which therefore extends Everett [8] (the
existence of positional ε-optimal strategies). We fix a concurrent reachability game ⟨C, ⊤⟩
for the rest of this section. Let us first introduce some terminology.

▶ Definition 19 (Maximizable and sub-maximizable states). A state q ∈ Q from which Player A
has (resp. does not have) an optimal strategy is called maximizable (resp. sub-maximizable).
The set of such states is denoted MaxQA (resp. SubMaxQA).
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The value of that game is given by the vector m ∈ [0, 1]Q (from Definition 11). We want
to build an optimal (and positional) strategy for Player A when possible. To be optimal,
a Player A positional strategy sA has to play optimally at each local interaction Fq (for
q ∈ Q) with regard to the valuation µm ∈ [0, 1]D (lifting the valuation m to Nature states).
However, it is not sufficient in general: in the snow-ball game of Figure 1, when Player A
plays optimally in Fq0 w.r.t. the valuation µm (that is, plays the first line with probability 1),
Player B can enforce the play never to leave the state q0 ̸= ⊤. Hence, locally, we want to
have strategies that not only play optimally but, regardless of the choice of Player B, have a
non-zero probability to get closer to the target ⊤. Such strategies will be called progressive
strategies. To properly define them, we introduce the following notation.

▶ Definition 20 (Optimal action). Let q ∈ Q be a state of the game. Consider the game in
normal form Fµm

q . For all strategies σA ∈ D(StA), we define the set BσA of optimal actions
w.r.t. the strategy σA by BσA := {b ∈ B | outFµm

q
(σA, b) = valFµm

q
(σA)}.

In Figure 3, the set BσA of optimal actions w.r.t. the strategy σA are represented in bold
purple: the weighted values of these actions is the value of the strategy: 1/2.

We can now define the set of progressive strategies.

▶ Definition 21 (Progressive strategies). Consider a state q ∈ Q and a set of states Gd ⊆ Q

that Player A wants to reach. The set of Nature states GdD ⊆ D corresponds to the Nature
states with a non-zero probability to reach the set Gd: GdD := {d ∈ D | Supp(dist(d)) ∩ Gd ̸=
∅}. Then, the set of progressive strategies Progq(Gd) at state q w.r.t. Gd is defined by
Progq(Gd) := {σA ∈ OptA(Fµm

q ) | ∀b ∈ BσA , δ(q, Supp(σA), b) ∩ GdD ̸= ∅}.

In Figure 3, the Nature states in GdD are arbitrarily chosen for the example and circled
in green. The depicted strategy is progressive as, for all bold purple actions, there is a
green-circled state in the support of the strategy (the circled 3/4).

However, in an arbitrary game, some states may be sub-maximizable. In that case,
playing optimally implies avoiding these states. Given a set Bd ⊆ Q of states to avoid, an
optimal strategy that has a non-zero probability to reach that set of states Bd is called risky.

▶ Definition 22 (Risky strategies). Let q ∈ Q be a state of the game and Bd ⊆ Q be a set of
sub-maximizable states. The corresponding set of Nature states BdD ⊆ D is defined similarly
to GdD in Definition 21: BdD := {d ∈ D | Supp(dist(d)) ∩ Bd ̸= ∅}. Then, the set of risky
strategies Riskq(Bd) at state q w.r.t. Bd is defined by Riskq(Bd) := {σA ∈ OptA(Fµm

q ) | ∃b ∈
BσA , δ(q, Supp(σA), b) ∩ BdD ̸= ∅}.

In Figure 3, the set of Nature states BdD are also arbitrarily chosen for the example and circled
in red. The strategy σA is not risky since no red-squared state appears in the intersection of
the support of σA and the purple actions in BσA

.
In fact, we want for local strategies to be efficient, that is both progressive and not risky.

▶ Definition 23 (Efficient strategies). Let q ∈ Q be a state of the game and Gd, Bd ⊆ Q

be sets of states. The set of efficient strategies Effq(Gd, Bd) at state q w.r.t. Gd and Bd is
defined by Effq(Gd, Bd) := Progq(Gd) \ Riskq(Bd).

In Figure 3, the strategy σA is efficient as it is both progressive and not risky.
We can now compute inductively the set of maximizable and sub-maximizable states.

First, given a set of sub-maximizable states Bd, we define iteratively below a set of secure
states w.r.t. Bd, there are the states with a non-zero probability to get closer to the target
⊤ while avoiding the set Bd. The construction is illustrated in Figure 4.

CSL 2022
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Figure 3 A game in normal form with an

optimal strategy depicted in brown on the left.
Its value is 1/2 = 1/2 · 3/4 + 1/2 · 1/4.

⊤

Sec1(Bd)

··
·

Secn(Bd)

m−1[0]

Q \ Sec(Bd)

Bd

Figure 4 The construction of Definition 24
of the set of states Sec(Bd): it is the reunion of
the blue and green vertical stripe areas.

▶ Definition 24 (Secure states). Consider a set of states Bd ⊆ Q. We set Sec0(Bd) := {⊤}
and, for all i ≥ 0, Seci+1(Bd) := Seci(Bd) ∪ {q ∈ Q \ Bd | Effq(Seci(Bd), Bd) ̸= ∅}. The set
Sec(Bd) of states secure w.r.t. Bd is: Sec(Bd) := ∪n∈NSecn(Bd) ∪ m−1[0].

Note that, as the game C is finite, this procedure ends in at most n = |Q| steps.
Furthermore, the states of value 0 are added since any state of value 0 is maximizable. The
interest of this construction lies in the lemma below: if all states in Bd are sub-maximizable,
then all states in Q \ Sec(Bd) also are.

▶ Lemma 25. Assume that a set of states Bd is such that Bd ⊆ SubMaxQA. Then, the set
of states Q \ Sec(Bd) is such that Q \ Sec(Bd) ⊆ SubMaxQA (these correspond to the red
horizontal stripe areas in Figure 4).

Proof Sketch. For an arbitrary Player A strategy sA ∈ SA
C to be optimal, it roughly needs,

on all relevant paths, to be optimal. More precisely, on any finite path π = π′ · q ∈ Q+ with a
non-zero probability to occur if Player B plays (locally) optimal actions against the strategy
sA (called a relevant path), the strategy sA needs to play an optimal (local) strategy in the
local interaction Fq and it1 has to be optimal from q in the reachability game. Therefore, on
all relevant paths, the strategy sA, locally, has to play optimal strategies that are not risky.
However, in any local interaction of a state q ∈ Q \ Sec(Bd), there is no efficient strategies
available to Player A. Therefore, if the game starts from a state q ∈ Q \ Sec(Bd) an optimal
strategy sA for Player A (which therefore is locally optimal but not progressive) would allow
Player B to ensure staying in the set Q \ Sec(Bd) while playing optimal actions. In that case,
the game never leaves the set Q\Sec(Bd), which induces a value of 0, whereas χC(q) > 0 since
q /∈ Sec(Bd). Thus, there is no optimal strategy for Player A from a state in Q \ Sec(Bd). ◀

We define inductively the set of bad states (which, in turn, will correspond to the set of
sub-maximizable states) below.

▶ Definition 26 (Set of sub-maximizable states). Let Bad0 := ∅ and, for all i ≥ 0, Badi+1 :=
Q \ Sec(Badi). Then, the set Bad of bad states is equal to Bad := ∪n∈NBadn for n = |Q|.

Note that, as in the case of the set of secure states, since the game C is finite, this procedure
ends in at most n = |Q| steps. Lemma 25 ensures that the set of states Bad is included in
SubMaxQA. In addition, we have that there exists a Player A positional strategy optimal
from all states q in its complement Sec(Bad) = Q \ Bad, as stated in the lemma below.

1 In fact, the residual strategy sπ′

A .
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⊤
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v = m

1
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]
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[
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]v1
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[
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v3 0

]
v2

+

+

[
0 1
1 0

]v4 =

[
v3 v2
v4 1

]
v3

=

+

=

Sec1(Bad)

·
·
·

Secn(Bad)

m−1[0]

Bad = Q \ Sec(Bad)

Figure 5 An illustration of the proof of Lemma 27 on the MDP induced by the strategy sA.
Labels v1, . . . , v4 is the value of the corresponding states given by the valuation v.

▶ Lemma 27. For all ε > 0, there exists a positional strategy sA ∈ PSC
A s.t.:

for all q ∈ Sec(Bad), we have χC
sA

(q) = m(q);
for all q ∈ Bad, we have χC

sA
(q) ≥ m(q) − ε.

In particular, it follows that Sec(Bad) ⊆ MaxQA.

Proof Sketch. To prove this lemma, we define a Player A positional strategy sA ∈ PSA
C ,

a valuation v ∈ [0, 1]Q of the states, prove that the strategy sA locally dominates that
valuation and prove that the only EC compatible with sA that is not the target has value
0. This will show that is guarantees the valuation v by applying Proposition 17. As we
want the strategy sA to be optimal from all secure states, we consider a partial valuation
v such that v|Sec(Bad) := m|Sec(Bad) (we will define it later on Bad). Then, on all secure
states q ∈ Seci(Bad), we set sA(q) to be an efficient strategy w.r.t. Seci−1(Bad) and Bad, i.e.
sA(q) ∈ Effq(Seci−1(Bad), Bad). In particular, sA(q) is optimal in the game form Fq w.r.t. the
valuation µm. However, we know that no strategy can be optimal from states in Bad. Hence,
we consider a valuation v that is ε-close to the valuation m on states in Bad for a well-chosen
ε > 0. This ε is chosen so that the value of the local strategy sA(q) for q ∈ Sec(Bad) is at
least v(q) w.r.t. the valuation µv

2. We can now define the valuation v and the strategy sA on
Bad such that the value of sA(q) in Fq w.r.t. µv is greater than v(q): valFµv

q
(sA(q)) > v(q)

(this requires a careful use the fact that the operator ∆ from Section 4 is 1-Lipschitz). The
valuation v and the strategy sA are now completely defined on Q. By definition, the strategy
sA locally dominates the valuation v.

The MDP induced by the strategy sA is schematically depicted in Figure 5. The different
split arrows appearing in the figure correspond to the actions (or columns in the local
interactions) available to Player B. Black +-labeled-split arrows correspond to the actions of
Player B that increase the value of v (i.e. in a state q, such that the convex combination –

2 Specifically, ε has to be chosen smaller than the smallest difference between the values of an optimal
actions b ∈ BsA(q) and a non-optimal action b ∈ BsA(q).
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Figure 6 An infinite concurrent reachability game C (the Nature states are omitted). The
probabilities pk are such that, for all i ≥ 1, the value of the state si is χC(si) = Πi

k=1pk = (1/2+1/2i).

w.r.t. to the probabilities chosen by the strategy sA – of the values w.r.t. v of the successor
states of q is greater than v(q)). For instance, we have v2 < p · v4 + (1 − p) · 0, where the
probability p ∈ [0, 1] is set by the strategy sA. On the other hand, purple =-labeled-split
arrows correspond to the actions whose values do not increase the value of the state. For
instance v4 = (1 − p′) · 0 + p′ · 1. We can see that the only split arrows exiting states in
Bad (the red horizontal stripe area) are black (since valFµv

q
(sA(q)) > v(q) for all q ∈ Bad).

However, from a secure state q ∈ Sec(Bad) (the green and blue vertical stripe areas) there are
also purple split arrows. Note that, in these secure states q ∈ Sec(Bad), purple split arrows
correspond to the optimal actions BsA(q) at the local interaction Fq. Furthermore, these split
arrows cannot exit the set of secure states Sec(Bad) since the local strategy sA(q) is not risky.

We can then prove that the strategy sA guarantees the valuation v by applying Propos-
ition 17: since sA locally dominates the valuation v, it remains to show that all the ECs
different from {⊤} have only states of value 0. In the figure, this corresponds to having
ECs only in the blue upper circle and dark green bottom right inner circle areas. In fact,
Proposition 18 gives that any state q in an EC ensures valFµv

q
(sA(q)) = v(q), which implies

that no state in Bad can be in an EC. This can be seen in the figure between the states
of value v1 and v2: because of the black arrow from v1 to v2, we necessarily have v1 < v2.
Then, v2 cannot loop (with probability one) to v1 since this would imply v2 < v1. As all
the split arrows are black for states in Bad, no EC can appear in this region. Furthermore,
the optimal actions in the secure states always have a non-zero probability to get closer to
the target ⊤. In the figure, this corresponds to the fact that there is always one tip of a
purple split arrow that goes down in the (Seci(Bad))i∈N hierarchy (since the strategy sA(q)
is progressive): in the example, from v3 to v4 and from v4 to the target ⊤. Therefore, the
only loop (with probability one) that can occur in the set (Seci(Bad))i∈N is at the target ⊤.
We conclude by applying Proposition 17. ◀

Overall, we obtain the theorem below summarizing the results proved in this section.

▶ Theorem 28. In a concurrent reachability game ⟨C, ⊤⟩, we have Bad = SubMaxQA and
Sec(Bad) = MaxQA. Furthermore, for all ε > 0, there is a Player A positional strategy sA
optimal from all states in MaxQA and ε-optimal from all states in SubMaxQA.

Infinite arenas. In this paper, we only consider finite arenas and the constructions we have
exhibited and results we have shown hold in that setting. Note that Theorem 28 does not
hold on infinite arenas (i.e. with an infinite number of states): Figure 6 depicts an infinite
concurrent reachability game where the state q0 is maximizable but, from q0, Player A does
not have any positional optimal strategy. Indeed, in state s is plugged the game of Figure 1,
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whose value is 1 but Player A does not have an optimal strategy. Then, for all i ≥ 0, the
probability to reach s from si is equal to vi = (1/2 + 1/2i) > 1/2. Hence, if Player A plays
an 0 < εi-optimal strategy in s such that (1 − εi) · qi > 1/2, then the value of the state si is
greater than 1/2. In that case, in the states ci, Player B plays the second columns obtaining
the value 1/2. This induces that the value in all states qi is 1/2. However, this is only possible
if Player A has (infinite) memory, since the greater the index i considered, the smaller the
value of εi needs to be to ensure (1 − εi) · qi ≥ 1/2 while still ensuring εi > 0 (since Player A
does not have an optimal strategy from s). In particular, for any Player A positional strategy
sA from q0 that is 0 < ε-optimal in s, the value – w.r.t. the strategy sA – of all states si for
indexes i such that (1 − ε) · qi < 1/2 is smaller than 1/2. In which case, Player B plays the
first column in ci, thus obtaining a value smaller than 1/2. It follows that the value of all
states (qn)n≥0 – w.r.t. the strategy sA – is smaller than 1/2. Hence, any Player A positional
strategy is not optimal from q0. Note that, when considering MDPs instead of two-player
games, optimal strategies need not exist but when they do there necessarily are positional
ones (see for instance [10]).

Computing the set of maximizable states. Finally, consider the problem, given a finite con-
current reachability game, to effectively compute the set of maximizable and sub-maximizable
states (assuming the probability distribution of the Nature states are rational). In fact, this
can be done by using the theory of the reals.

▶ Definition 29 (First-order theory of the reals). The first-order theory of the reals (denoted
FO-R) corresponds to the well-formed sentences of first-order logic (i.e. with universal and
existential quandtificators), also involving logical combinations of equalities and inequalities
of real polynomials, with integer coefficients.

The first-order theory of the reals is decidable [15], i.e. determining if a given formula
belonging to that theory is true is decidable. Now, let us consider a finite concurrent
reachability game C and a state q ∈ Q. It is possible to encode, with an FO-R formula, that
the state q is maximizable, i.e. q ∈ MaxQA. First, note that, given two positional strategies
sA and sB for both players, it is possible to compute the value of the game with the theory
of reals: it amounts to finding the least fixed point of the operator ∆ with the strategies
of both players fixed. Then, q being maximizable, denoting u := χC(q) ∈ [0, 1] its value, is
equivalent to having a Player A positional strategy ensuring at least u (against all Player B
positional strategies) and no Player A positional strategy ensures more than u (as ε-optimal
positional strategies always exists for Player A [8]). This can be expressed in FO-R. The
theorem below follows.

▶ Theorem 30. In a finite concurrent reachability game with rational distributions, the set
of maximizable states is computable.

7 Maximizable states and game forms

In the previous section, we were given a concurrent reachability game and we considered
a construction to compute exactly the sets of maximizable and sub-maximizable states. It
is rather cumbersome as it requires two nested fixed point procedures. Now, we would like
to have a structural condition ensuring that if a game is built correctly (i.e. built from
reach-maximizable local interactions), then all states are maximizable. More specifically, in
this section, we characterize exactly the reach-maximizable game forms, that is the game
forms such that every reachability game built with these game forms as local interactions
have only maximizable states.
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Figure 7 The three-state reachability game ⟨C(F,α), ⊤⟩
built from the game form F for some partial valuation
α : O \ E → [0, 1] with E = {x}.
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
Figure 8 The game form that

constitutes the local interaction in
the state q0.

First, let us characterize a necessary condition for game forms to be reach-maximizable.
We want for reach-maximizable game forms to behave properly when used individually. That
is, from a game form F and a partial valuation α : O \ E → [0, 1] of the outcomes, we define
a three-state reachability game ⟨C(F,α), ⊤⟩. Note that such games were previously studied
in [11]. We illustrate this construction on an example.

▶ Example 31. In Figure 7, a three-state reachability game ⟨C(F,α), ⊤⟩ is built from a game
form F = ⟨StA, StB, {x, y, z}, ϱ⟩ – with ϱ depicted in Figure 8 – and a partial valuation
α : {y, z} → [0, 1]. We have a one-to-one correspondence between the outcomes of the
game form F and the Nature states of the reachability game ⟨C(F,α), ⊤⟩ via the bijection
g : {x, y, z} → D such that g(x) = dloop and for u ∈ {y, z}, g(u) = du. Furthermore, in the
reachability game ⟨C(F,α), ⊤⟩, we have m(⊤) = 1 and m(⊥) = 0. Therefore, for u ∈ {y, z},
we have µm ◦ g(u) = α(u). In fact, this game is built so that vα = m(q0) and µm = α̃ ◦ g−1

(recall that α̃ is the (total) valuation induced by the partial valuation α from Definition 4).
Let us now determine at which condition on the pair (F , α) is the starting state q0

maximizable in C(F,α). If we have vα = m(q0) = 0, the state q0 is maximizable in any case.
Now, assume that vα = m(q0) > 0. Recall the construction of the previous section, specifically
the set of secure states w.r.t. a set of bad states (Definition 24). Initially, Bad0 = ∅, so we
want for the state q0 to be in Sec(∅), i.e. we want (and need) an efficient strategy in the state
q0 where the set of good states Gd is the target Gd = {⊤} and the set of bad states is empty. In
that case, the set of efficient strategies coincide with the set of progressive strategies. Thus, q0
is maximizable if and only if Progq0({⊤}) ̸= ∅. We assume for simplicity that α(y), α(z) > 0,
hence the set Nature states GdD with a non-zero probability to reach ⊤ is {g(y), g(z)} ⊆ D.
By definition of Prog (Definition 21), Progq0({⊤}) ̸= ∅ amounts to have an optimal strategy
σA in Fµm

q0
such that, for all b ∈ BσA : δ(q0, Supp(σA), b) ∩ {g(y), g(z)} ≠ ∅ or, equivalently,

δ(q0, Supp(σA), b) ̸⊆ {g(x)}. In terms of F and α, the state q0 is maximizable if and only if
there is an optimal strategy σA in F α̃ such that, for all b ∈ BσA : ϱ(Supp(σA), b) ̸⊆ {x} = E

if the partial valuation α is defined as α : O \ E → [0, 1] for O = {x, y, z} and E = {x}.

This suggests the definition below of reach-maximizable game form w.r.t. a partial
valuation.

▶ Definition 32 (Reach-maximizable game forms w.r.t. a partial valuation). Consider a game
form F and a partial valuation of the outcomes α : O \ E → [0, 1]. The game form F is
reach-maximizable w.r.t. the partial valuation α if vα = 0 or there exists an optimal strategy
σA ∈ OptA(F α̃) such that for all b ∈ BσA , we have ϱ(Supp(σA), b) ̸⊆ E. Such strategies are
said to be reach-maximizing w.r.t. α.

This definition was chosen to ensure the lemma below.
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▶ Lemma 33. Consider a game form F and a partial valuation of the outcomes α : O \ E →
[0, 1]. The initial state (and thus all states) in the three-state reachability game C(F,α) is
maximizable if and only if the game form F is reach-maximizable w.r.t. the partial valuation α.

The definition of reach-maximizable game form is then obtained via a universal quantific-
ation over the partial valuations considered.

▶ Definition 34 (Reach-maximizable game form). Consider a game form F = ⟨StA, StB, O, ϱ⟩.
It is a reach-maximizable (RM for short) game form if it is reach-maximizable w.r.t. all
partial valuations α : O \ E → [0, 1].

Lemma 33 gives that RM game forms behave properly when used individually, such as in
three-state reachability games. Let us now look at how such game forms behave collectively,
that is we consider concurrent reachability games where all local interactions are RM. In
fact, in such a setting, all states are maximizable. This is stated in the lemma below.

▶ Lemma 35. Consider a concurrent reachability game ⟨C, ⊤⟩ and assume that all local
interactions are RM game forms. Then, all states are maximizable: Q = MaxQA.

Proof Sketch. We show that Q = MaxQA by showing that Bad = ∅, which is equivalent since,
by Theorem 28, we have Bad = SubMaxQA = Q \ MaxQA. That is, we consider the iterative
construction of the set of sub-maximizable states of the previous section and we show that
Bad1 = Q \ (Sec(Bad0)) = ∅ = Bad0 (see Definition 26), which induces that Bad = ∅. Let us
assume towards a contradiction that Q\(Secn(∅)∪m−1[0]) ̸= ∅ for n = |Q|. Since Riskq(∅) = ∅
for all q ∈ q, any efficient strategy in a state q w.r.t. to the sets Secn(∅) and ∅ is in fact a
progressive strategy w.r.t. the set Secn(∅). Hence, the goal is to exhibit such a progressive
strategy in a state q ∈ Q \ Sec(∅), thus showing a contradiction with the fact that q /∈ Sec(∅).
We consider the states with the greatest value – w.r.t. m – as we can hope that they are
the more likely to have progressive strategies. That is, for x := maxq∈Q\Secn(∅) m(q) > 0 the
maximum of m, we set Qx := m−1[x] \ Secn(∅) ̸= ∅ the set of states realizing that maximum.
We want to use the assumption that all local interactions are RM. That is, we need to define
a partial valuation on the outcomes of the local interactions, i.e. on Nature states. First, let
us define its domain. We can find intuition in the example of the three-state reachability
game in Figure 7: the outcome that is not valued by the partial valuation considered is
the Nature state looping on the state q0. Note that its value w.r.t. µm is the same as the
value of the state q0 w.r.t. m. In our case, we consider the set of Nature states Dx realizing
this value x that cannot reach the set Secn(∅), that is Dx := µ−1

m [x] \ Secn(∅)D. Then, we
define the partial valuation of the Nature states α : D \ Dx → [0, 1] by α := µm|D\Dx

. Now,
we can show that there exists a state q ∈ Qx such that α̃ = µm in the game form Fq. By
maximality of x, we can prove that any local strategy σA in Fq that is reach-maximizing
w.r.t. the partial valuation α of the outcomes of Fq is a progressive strategy w.r.t. Secn(∅)
in Fq. Equivalently, σA is efficient w.r.t. Secn(∅) and ∅. Hence the contradiction with the
fact that q /∈ Sec(∅). ◀

Overall, we obtain the theorem below.

▶ Theorem 36. For a set of game forms G, all states in all concurrent reachability games
with local interactions in G are maximizable if and only if all game forms in G are RM.

Deciding if game forms are RM. Consider the following decision problem RMGF: given a
game form, decide if it is a RM game form. We proved Theorem 30 by showing that the
fact that a state is maximizable in a concurrent reachability game can be encoded in the
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theory of the reals (FO-R). Since Lemma 33 ensures that a game form F is RM w.r.t. a
partial valuation α if and only if the initial state in the three-state reachability game C(F,α)
is maximizable, it follows that, via a universal quantification over partial valuations, the fact
that a game form is RM can be encoded in the theory of the reals. Note that it can also be
encoded directly from the definition of RM game form. We obtain the theorem below.

▶ Proposition 37. The problem RMGF is decidable.

Determined game forms and RM game forms. In [2], the authors have studied a problem
similar to the one we considered in this section: determining the game forms ensuring
that, when used as local interaction in a concurrent game (with an arbitrary Borel winning
condition), the game is determined (i.e. either of the players has a winning strategy). The
authors have shown that these game forms exactly correspond to determined game forms.
These roughly correspond to game forms where, for all subsets of outcomes E ⊆ O, there is
either of line of outcomes in E or a column of outcomes in O \ E, as formally defined below.

▶ Definition 38 (Determined game forms). Consider a game form F = ⟨StA, StB, O, ϱ⟩. It is
determined if, for all subsets of outcomes E ⊆ O, either there exists some a ∈ StA such that
ϱ(a, StB) ⊆ E or there exists some b ∈ StB such that ϱ(StA, b) ⊆ O \ E.

In fact, they proved an equivalence between turn-based games and concurrent games using
determined game forms as local interactions, which holds also when the game is stochastic.
In fact, positional optimal strategies exists for both players in turn-based reachability games
[4], it is also the case in concurrent reachability games with determined local interactions.
This result, combined with Theorem 36 gives immediately that determined game forms are
RM. Interestingly, determined game forms can also be characterized with the least fixed
point operator as in the proposition below.

▶ Proposition 39. A game form F is determined if and only if, for all partial valuations
α : O \ E → [0, 1] of the outcomes, we have vα = fF

α (0). In particular, this implies that all
determined game forms are RM.

8 Future Work

In this paper we give a double-fixed-point procedure to compute maximizable and sub-
maximizable states in a stochastic concurrent reachability (finite) game. Our procedure
yields de facto positional witnesses for the strategies. As further natural work, we seek
studying more general objectives. It is however interesting to notice that, as mentioned in
the introduction, it will not be so easy since even Büchi games do not enjoy positional almost
optimal strategies [7, Theorem 2].

We also plan to better grasp RM game forms, and understand what are RM game forms
for the two players, or analyze the complexity of the RMGF problem.

References
1 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Handbook of Model Checking,

chapter Graph games and reactive synthesis, pages 921–962. Springer, 2018.
2 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. From local to global determinacy in

concurrent graph games. Technical Report abs/2107.04081, CoRR, 2021. arXiv:2107.04081.
3 Benjamin Bordais, Patricia Bouyer, and Stéphane Le Roux. Optimal strategies in concurrent

reachability games. CoRR, abs/2110.14724, 2021. arXiv:2110.14724.

http://arxiv.org/abs/2107.04081
http://arxiv.org/abs/2110.14724


B. Bordais, P. Bouyer, and S. Le Roux 7:17

4 Krishnendu Chatterjee, Marcin Jurdziński, and Thomas A. Henzinger. Quantitative stochastic
parity games. In Proc. of 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’04), pages 121–130. SIAM, 2004.

5 Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford University,
1997.

6 Luca de Alfaro, Thomas Henzinger, and Orna Kupferman. Concurrent reachability games.
Theoretical Computer Science, 386(3):188–217, 2007.

7 Luca de Alfaro and Rupak Majumdar. Quantitative solution of omega-regular games. Journal
of Computer and System Sciences, 68:374–397, 2004.

8 Hugh Everett. Recursive games. Annals of Mathematics Studies – Contributions to the Theory
of Games, 3:67–78, 1957.

9 Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer Science &
Business Media, 2012.

10 Stefan Kiefer, Richard Mayr, Mahsa Shirmohammadi, and Patrick Totzke. Strategy complexity
of parity objectives in countable mdps. In Proc. 31st International Conference on Concurrency
Theory (CONCUR’20), volume 171 of LIPIcs, pages 39:1–39:17. Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CONCUR.2020.39.

11 Elon Kohlberg. Repeated games with absorbing states. The Annals of Statistics, pages 724–738,
1974.

12 Antonín Kučera. Lectures in Game Theory for Computer Scientists, chapter Turn-Based
Stochastic Games, pages 146–184. Cambridge University Press, 2011.

13 Donald A. Martin. The determinacy of blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

14 Annabelle McIver and Carroll Morgan. Games, probability and the quantitative µ-calculus
qmµ. In Proc. 9th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’02), volume 2514 of Lecture Notes in Computer Science, pages 292–310.
Springer, 2002.

15 James Renegar. On the computational complexity and geometry of the first-order theory of
the reals. part iii: Quantifier elimination. Journal of Symbolic Computation, 13(3):329–352,
1992. doi:10.1016/S0747-7171(10)80005-7.

16 Wolfgang Thomas. Infinite games and verification. In Proc. 14th International Conference on
Computer Aided Verification (CAV’02), volume 2404 of Lecture Notes in Computer Science,
pages 58–64. Springer, 2002. Invited Tutorial.

17 Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
Proc. 26th Annual Symposium on Foundations of Computer Science (FOCS’85), pages 327–338.
IEEE Computer Society Press, 1985.

18 John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior.
Princeton Univ. Press, Princeton, 1944.

19 Wiesław Zielonka. Perfect-information stochastic parity games. In Proc. 7th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS’04),
volume 2987 of Lecture Notes in Computer Science, pages 499–513. Springer, 2004.

CSL 2022

https://doi.org/10.4230/LIPIcs.CONCUR.2020.39
https://doi.org/10.1016/S0747-7171(10)80005-7

	1 Introduction
	2 Preliminaries
	3 Game Forms
	4 Concurrent stochastic games
	5 Crucial proposition
	6 Positional optimal and epsilon-optimal strategies
	7 Maximizable states and game forms
	8 Future Work

