Report from Dagstuhl Seminar 21372

Behavioural Types: Bridging Theory and Practice

Edited by

Mariangiola Dezani!, Roland Kuhn?, Sam Lindley3, and
Alceste Scalas*

University of Turin, IT, dezani@di.unito.it

Actyx AG — Miinchen, DE, roland@actyx.io

University of Edinburgh, GB, sam.lindley@ed.ac.uk

Technical University of Denmark — Lyngby, DK, alcsc@dtu.dk

W N =

—— Abstract

Behavioural types specify the way in which software components interact with one another. Unlike

data types (which describe the structure of data), behavioural types describe communication
protocols, and their verification ensures that programs do not violate such protocols. The
behavioural types research community has developed a flourishing literature on communication-
centric programming, exploring many directions. One of the most studied behavioural type
systems are session types, introduced by Honda et al. in the ‘90s, and awarded with prizes for
their influence in the past 20 and 10 years (by the ESOP and POPL conferences, respectively).
Other varieties of behavioural types include typestate systems, choreographies, and behavioural
contracts; research on verification techniques covers the spectrum from fully static verification at
compile-time to fully dynamic verification at run-time.

In the last decade, research on behavioural types has shifted emphasis towards practical
applications, using both novel and existing programming languages (e.g., Java, Python, Go,
C, Haskell, OCaml, Erlang, Scala, Rust). An earlier Dagstuhl Seminar, 17051 “Theory and
Applications of Behavioural Types” (January 29-February 3, 2017), played an important role in
coordinating this effort. Yet, despite the vibrant community and the stream of new results, the
use of behavioural types for mainstream software development and verification remains limited.

This limitation is largely down to the rapid pace at which mainstream industrial practice
for the design and development of concurrent and distributed systems evolves, often resulting
in substantial divergence from academic research. In the absence of established tools to express
communication protocols, widely used implementations concentrate solely on scalability and
reliability. The flip side is that these systems are either overly loose, supporting any conceivable
communication structure (via brokers), or overly restricted, supporting only simple request-
response protocols (like HTTP or RPC).

In this seminar, experts from academia and industry explored together how best to bridge
the gap between theory and mainstream practice. They tackled challenges that are fundamental
in practical systems development, but are rarely or only partially addressed in the behavioural
types literature — in particular, failure handling, asynchronous communication, and dynamic
reconfiguration. Moreover they explored how the tools of behavioural types and programming
languages theory (such as linearity, gradual types, and dependent types) can help to address these
challenges.

Seminar September 12-17, 2021 — http://www.dagstuhl.de/21372

2012 ACM Subject Classification Theory of computation — Models of computation; Theory of
computation — Process calculi; Theory of computation — Type structures

Keywords and phrases behavioural types, concurrency, programming languages, session types

Digital Object Identifier 10.4230/DagRep.11.8.52

Edited in cooperation with Jakobsen, Mathias

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 4.0 International license
Behavioural Types: Bridging Theory and Practice, Dagstuhl Reports, Vol. 11, Issue 08, pp. 52-75
Editors: Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21372
https://doi.org/10.4230/DagRep.11.8.52
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

1 Executive Summary

Mariangiola Dezani (University of Turin, IT)

Roland Kuhn (Actyr AG — Minchen, DE)

Sam Lindley (University of Edinburgh, GB)

Alceste Scalas (Technical University of Denmark — Lyngby, DK)

License @ Creative Commons BY 4.0 International license
© Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

This seminar followed the earlier Dagstuhl Seminar 17051 “Theory and Applications of
Behavioural Types”. Whereas Seminar 17051 was quite broad, encompassing both theory
and practice across a wide range of areas relating to behavioural types, this seminar was
much more focused, concentrating on how best to enable the use of behavioural types for
practical programming.

Initial preparations

We gathered initial lists of proposed talks and breakout topics prior to the start of the
seminar via an online form. We added to these throughout the week. We scheduled talks
and breakout groups daily depending on audience interest and participant availability. The
first part of the week was primarily talks, with ample time for stimulating discussions; the
second part included more time for breakout sessions.

Hybrid seminar logistics

Due to the SARS-CoV-2 pandemic, the seminar was organised in hybrid format, with both
in-person and remote participants. As the virtual participants came from a wide range
of time zones (from central US to Japan) we gave special consideration to the time slot
2pm—4pm CEST during which everyone could attend. Those in Europe and Japan were able
to attend morning sessions and those in Europe and America to attend further afternoon
sessions (and a special evening session on Monday).

In order to run a successful hybrid Dagstuhl seminar, we made essential use of the
dedicated equipment available at Dagstuhl: a Zoom-based streaming setup, with multiple
cameras and ceiling microphones in the seminar room. All talks were live-streamed to both
virtual and in-person participants. Talks were recorded so that virtual participants from
incompatible time zones could catch up, then deleted at the end of the week. Larger hybrid
breakout sessions were held in the main seminar room, and smaller ones elsewhere using a
more ad hoc setup.

Moreover, all participants (local and virtual) were invited to use Zulip (a chat application)
to exchange messages and files, pose questions during presentations, and remain informed on
the upcoming events, group activities, and schedule updates.

Activities and outcomes

Throughout the seminar, the participants gathered in focused breakout groups: the findings
of the breakout groups are described in more detail elsewhere in the report. Here is a brief
summary:

Typing non-channel-based models allowed researchers with a wide range of perspectives
and backgrounds to exchange their views. A key observation was that modern concurrent
systems that coordinate via streams of events are difficult to analyse and verify with
using existing approaches, and new formalisms are needed.

53

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

54

21372 — Behavioural Types: Bridging Theory and Practice

Logic-based approaches reviewed the state of the art, and discussed new directions. One
of the conclusions is that more research is needed to relate concurrent and distributed
systems to a broader range of logics beyond classical and intuitionistic linear logic (which
are the focus of most current publications).

Type-informed recovery strategies explored failure handling at different levels (from net-
work to application), and summarised several open questions not addressed in existing
work.

Session types with untrusted counter-parties focused on how to ensure that different pro-
cesses interact under compatible protocols, establishing the beginning of new work on
monitoring and adaptation.

Join patterns / synchronisation — the next generation collected a survey of various at-
tempts to integrate join patterns in programming languages, and discussed why they
have not yet become mainstream. The discussion highlighted the need for exploring the
connections between join patterns and linear logic, and the use of the join calculus as a
reference for new implementation attempts.

The participants of several breakout groups have agreed to continue their work and collabor-

ation after the seminar.

In addition to these more structured breakout sessions there were further lively improvised
meetings and discussions (especially after dinner) which are not summarised in the report.
Overall, we believe that the seminar activities were a success. Unfortunately the hybrid
format did pose a barrier for remote participants, especially those in different time zones.

But on the positive side, for many participants this was their first Dagstuhl seminar, and for

the in-person participants it was their first in-person scientific gathering after many months

of virtual events due to the SARS-CoV-2 pandemic: their feedback has been enthusiastic.
At the end of the seminar the participants agreed to remain in contact to continue the

discussions, and foster new collaborations. There was strong enthusiasm for organising a

follow-up Dagstuhl seminar in the future, perhaps taking place in about two years time. To

enable future collaborations the participants:

1. created a GitHub organisation where all seminar participants (and other researchers
invited later) can exchange references and materials;

2. agreed to use the seminar’s Zulip chat (mentioned above) as a starting point to set up a
more permanent solution for continuing the interactions and exchanges (e.g., a mailing
list);

3. nominated four people who will propose a new seminar, building upon the results of this
one.

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

2 Table of Contents

Executive Summary
Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

Overview of Talks

Session Logical Relations for Noninterference
Stephanie Balzer e

Session Types for Runtime Verification
Christian Bartolo Burld e

A Model of Actors and Grey Failures
Laura Bocchi and Laura Voinea 0 e e e

Quantitative Types in Idris 2
Edwin Brady e e e

Global Types and Event Structure Semantics for Asynchronous Multiparty Sessions
llaria Castellani, Mariangiola Dezani, and Paola Giannini.

An Overview of Explicit Cancellation
Stmon Fowler e

The STARDUST project: Session Types for Reliable Distributed Systems
Stmon Gay e e

A Multiparty Session Typing Discipline for Fault-Tolerant Event-Driven Distributed
Programming
Raymond Hu o e

Papaya: Global Typestate Analysis of Aliased Objects
Mathias Jakobsen and Ornela Dardha

Session Types as Program Logics
Eduard Kamburjan e

Priorities as a Graded Monad
Wen Kokke and Ornela Dardha

Asymmetric Replicated State Machines
Roland Kuhn, Herndn Melgratti, and Emilio Tuosto

Choreographic Programming in Choral

Fabrizio Montesi e e
Effpi: verified message-passing programs in Scala 3

Alceste Scalas

Algebraic Session Types
Peter Thiemann and Vasco T. Vasconcelos

Polymorphic Context-free Session Types
Peter Thiemann and Vasco T. Vasconcelos

A Joyful Empirical Study on Session Types
Nobuko Yoshida e

55

21372

56 21372 — Behavioural Types: Bridging Theory and Practice

Monitoring Protocol Conformance with Multiparty Session Types and OpenTele-
metry
Fangyi Zhou and Nobuko Yoshida 66

Statically Verified Refinements for Multiparty Protocols
Fangyi Zhou, Raymond Hu, Rumyana Neykova, Nobuko Yoshida 67

Working groups

Breakout Group: Typing Non-Channel-Based Models
Gul Agha, Mariangiola Dezani, Simon Fowler, Philipp Haller, Raymond Hu, Eduard
Kamburjan, Roland Kuhn, Herndn Melgratti, Alceste Scalas, and Peter Thiemann 67

Breakout Group: Logic-based approaches

Marco Carbone, Stephanie Balzer, Ornela Dardha, Wen Kokke, Sam Lindley,
Fabrizio Montesi, J. Garrett Morris, Jorge A. Pérez, Bernardo Toninho, and Philip
Wadler e e e e 69

Breakout Group: Type-Informed Recovery Strategies

Fabrizio Montesi, Laura Bocchi, Marco Carbone, Ornela Dardha, Mariangiola
Dezani, Philipp Haller, Mathias Jakobsen, Sam Lindley, J. Garrett Morris, Philip
Munksgaard, Laura Voinea, Philip Wadler, and Fangyi Zhow 70

Breakout Group: Session types with untrusted counter-parties

Philip Munksgaard, Christian Bartolo Burlé, Marco Carbone, Mariangiola Dezani,
Sitmon Fowler, Mathias Jakobsen, Roland Kuhn, Fabrizio Montesi, Alceste Scalas,
Peter Thiemann, Emilio Tuosto, and Fangyi Zhou 71

Breakout Group: Join Patterns / Synchronization — The Next Generation
Claudio Russo, Gul Agha, Philipp Haller, Eduard Kamburjan, Emilio Tuosto, Laura
Voinea, and Philip Wadler e 72

Participants 74

Remote Participants oo 74

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

3 Overview of Talks

3.1 Session Logical Relations for Noninterference

Stephanie Balzer (Carnegie Mellon University — Pittsburgh, US)

License @ Creative Commons BY 4.0 International license
© Stephanie Balzer
Joint work of Stephanie Balzer, Farzaneh, Derakhshan, Limin Jia

In this talk I introduce the audience to linear session types through the lens of noninterference.
Session types, as the types of message-passing concurrency, naturally capture what information
is learned by the exchange of messages, facilitating the development of a flow-senstive
information flow control (IFC) type system guaranteeing noninterference. Noninterference
ensures that an observer (adversary) cannot infer any secrets from made observations. I
will explain the key ideas underlying the development of the IFC type system as well as the
construction of the logical relation conceived to prove noninterference. The type system is
based on intuitionistic linear logic and enriched with possible worlds to impose invariants
on run-time configurations of processes, leading to a stratification in line with the security
lattice. The logical relation generalizes existing developments for session-typed languages to
open configuration to allow for a more subtle statement of program equivalence.

3.2 Session Types for Runtime Verification
Christian Bartolo Burlé (Gran Sasso Science Institute, IT)

License) Creative Commons BY 4.0 International license
© Christian Bartolo Burld
Joint work of Christian Bartolo Burl6, Adrian Francalanza, Alceste Scalas, Catia Trubiani, Emilio Tuosto

Main reference Christian Bartolo Burlo, Adrian Francalanza, Alceste Scalas: “On the Monitorability of Session
Types, in Theory and Practice”, in Proc. of the 35th European Conference on Object-Oriented
Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference), LIPIcs,
Vol. 194, pp. 20:1-20:30, Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2021.

URL https://doi.org/10.4230/LIPIcs. ECOOP.2021.20

Communication is central to present day computation. The expected communication protocols
between parties can be formalised as session types, serving as specifications which systems
can be verified against. We present our work on the runtime verification of communicating
systems using session types, where we investigate their monitorability qualities in [1] and
augment them with probabilities in [2].

From the work in [1], we show that it is impossible to achieve both sound (i.e., only flag
ill-typed processes) and complete (i.e., flag all ill-typed processes) monitors for verifying the
interaction between black-box components. Correspondingly, we prove that our autogenerated
session monitors are sound and weakly-complete: i.e., the monitors get stuck upon certain
violations to the session type. On the practical side, we present a Scala toolkit, STMonitor
[3], for the automatic generation of session monitors following our formal model. These
executable monitors can be used as proxies to instrument communication across black-box
processes written in any programming language. We also present the results of a series of
benchmarks, showing that the synthesised monitors only introduce limited overheads.

Finally, we present a tool-based methodology from [2] that extends STMonitor by syn-
thesising monitors from probabilistic session types. These types have each choice point
augmented with a probability distribution describing how often each choice should be taken.

57

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20

58

21372 — Behavioural Types: Bridging Theory and Practice

The synthesised monitors infer the probabilistic behaviour of a system at runtime, and based
solely on the evidence observed up to the current point of execution, issue warnings when
the observed behaviour deviates from the one specified by the type.

References

1 Christian Bartolo Burlo, Adrian Francalanza, and Alceste Scalas. On the Monitorability
of Session Types, in Theory and Practice. ECOOP, LIPIcs, vol. 194, Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2021, pp. 20:1-20:30.

2 Christian Bartolo Burlo, Adrian Francalanza, Alceste Scalas, Catia Trubiani, and Emilio
Tuosto. Towards Probabilistic Session-Type Monitoring. COORDINATION, Lecture Notes
in Computer Science, vol. 12717, Springer, 2021, pp. 106-120.

3 Christian Bartolo Burlo, Adrian Francalanza, and Alceste Scalas. On the Monitorability of
Session Types, in Theory and Practice (Artifact). Dagstuhl Artifacts Ser. 7 (2021), no. 2,
02:1-02:3.

3.3 A Model of Actors and Grey Failures

Laura Bocchi (University of Kent — Canterbury, GB) and Laura Voinea (University of Kent -
Canterbury, GB)

License) Creative Commons BY 4.0 International license
© Laura Bocchi and Laura Voinea
Joint work of Laura Bocchi, Laura VoineaJulien Lange, Simon Thompson

We report on ongoing work on defining a model of failures for distributed systems, as a first
step towards better detection and recovery. Looking at failures along an unpredictability axis,
at the two extremes of the spectrum we find fail-stop (a component either works correctly
or stops, and this latter case can be recognised and thus dealt with) and byzantine failure
(a component behaves arbitrarily). In practice, systems can experience behaviours that lie
somewhere between these two extremes, and this is often called grey failure: the system
appears to be functional, but its overall performance is degraded in some way that may
anticipate the full, fail-stop, failure of the system or some of its components.

In the last decade, several kinds of grey failures have been studied, such as transient failures
(e.g., a component is down at periodic intervals), partial failures (only some subcomponents
are affected), and slowdowns [2].

The symptoms of a grey failure tend to be subtle and ambiguous, involve any layer of the
stack, and be signalled by different parts of the system having different perceptions of the
health of some component, i.e., differential observation [1].

We present a model of grey failures for actor-based systems. Our model of failures consists
of three inter-dependent models: (1) an (actor-based) systems model based on a process
calculus, (2) a “curse” model of injected failures, and (3) a model awareness that components
of the system have of each other, based on monitoring.

In (2) each curse is analogous to a trace or test of the system. Interesting developments
include:

establishing links to probabilistic functions (e.g., modelling patterns of failure distributions

in real systems) as well as generalising to symbolic notions of curse to make model checking

more tractable.

appropriate definition of quality of a diagnosis, such as soundness, completeness, and

timeliness, with respect to the injected failures.

appropriate definition of recovery.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

References

1 Huang et al. Gray Failure: The Achilles’ Heel of Cloud-Scale Systems. In Proc. HotOS.
Association for Computing Machinery, Whistler, BC, Canada, 2017

2 Gunawi et al. Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large
Production Systems. ACM Trans. Storage, vol. 14, no. 3, 2018

3.4 Quantitative Types in Idris 2
Edwin Brady (University of St Andrews, GB)

License @ Creative Commons BY 4.0 International license
© Edwin Brady
Main reference Edwin C. Brady: “Idris 2: Quantitative Type Theory in Practice”, in Proc. of the 35th European
Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark
(Virtual Conference), LIPIcs, Vol. 194, pp. 9:1-9:26, Schloss Dagstuhl — Leibniz-Zentrum fir
Informatik, 2021.
URL https://doi.org/10.4230/LIPIcs. ECOOP.2021.9

Dependent types allow us to express precisely what a function is intended to do. Recent
work on Quantitative Type Theory (QTT) extends dependent type systems with linearity,
also allowing precision in expressing when a function can run. This is promising, because it
suggests the ability to design and reason about resource usage protocols, such as we might
find in distributed and concurrent programming, where the state of a communication channel
changes throughout program execution. As yet, however, there has not been a full-scale
programming language with which to experiment with these ideas. Idris 2 is a new version of
the dependently typed language Idris, with a new core language based on QTT, supporting
linear and dependent types. This talk described Idris 2, and how QTT has influenced its
design. I gave examples of the benefits of QTT in practice including: expressing which data
is erased at run time, at the type level; and, resource tracking in the type system leading to
type-safe concurrent programming with session types.

3.5 Global Types and Event Structure Semantics for Asynchronous
Multiparty Sessions

Ilaria Castellani (INRIA — Sophia Antipolis, FR), Mariangiola Dezani (University of Turin,
IT), and Paola Giannini

License @ Creative Commons BY 4.0 International license
© TIlaria Castellani, Mariangiola Dezani, and Paola Giannini
Main reference Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini: “Global types and event structure
semantics for asynchronous multiparty sessions”, CoRR, Vol. abs/2102.00865, 2021.
URL https://arxiv.org/abs/2102.00865

We propose an interpretation of asynchronous multiparty sessions as Flow Event Structures.

We also introduce a new notion of type for asynchronous multiparty sessions, ensuring the
expected properties for sessions, including progress.

Our types, which reflect asynchrony more directly than standard global types and are
more permissive, are themselves interpreted as Prime Event Structures.

The main result is that the Event Structure interpretation of a session is equivalent, when
the session is typable, to the Event Structure interpretation of its type.

59

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2102.00865
https://arxiv.org/abs/2102.00865
https://arxiv.org/abs/2102.00865

60

21372 — Behavioural Types: Bridging Theory and Practice

3.6 An Overview of Explicit Cancellation
Simon Fowler (University of Glasgow, GB)

License @ Creative Commons BY 4.0 International license
© Simon Fowler
Main reference Simon Fowler, Sam Lindley, J. Garrett Morris, Sdra Decova: “Exceptional asynchronous session
types: session types without tiers”, Proc. ACM Program. Lang., Vol. 3(POPL), pp. 28:1-28:29, 2019.
URL https://doi.org/10.1145/3290341

Safely implementing behavioural types typically requires some form of linearity, typically in
the form of a linear type system, in order to rule out errors such as using an endpoint more
than once or failing to complete a set of actions.

Unfortunately, linear type systems are difficult to integrate with exceptions or failures,
which are inevitable in real-world applications. This talk gives an overview of explicit
cancellation as introduced by Mostrous & Vasconcelos in 2014, and how the idea has since
been applied to support exception handling in functional languages with applications in web
programming, graphical user interfaces, and actor systems.

3.7 The STARDUST project: Session Types for Reliable Distributed
Systems

Simon Gay (University of Glasgow, GB)

License) Creative Commons BY 4.0 International license
© Simon Gay
Joint work of Simon Gay, Phil Trinder, Simon Fowler, Nobuko Yoshida, Laura Bocchi, Simon Thompson, Laura
Voinea
URL https://epsrc-stardust.github.io

The STARDUST project (Session Types for Reliable Distributed Systems) is funded by
the UK EPSRC (grants EP/T014512/1, EP/T014628/1, EP/T014709/1) from 1st October
2020 to 30th September 2024. It is a collaboration between the University of Glasgow,
the University of Kent and Imperial College London. The key objective is to combine the
communication-structuring mechanism of session types with the scalability and fault-tolerance
of actor-based software architectures. The result will be a well-founded theory of reliable
actor programming, supported by a collection of libraries and tools, and validated on a range
of case studies. Key aims are to deliver tools that provide lightweight support for developers
— e.g. warning of potential issues — and to allow developers to continue to use established
idioms. By doing so we aim to deliver a step change in the engineering of reliable distributed
software systems.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://epsrc-stardust.github.io

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

3.8 A Multiparty Session Typing Discipline for Fault-Tolerant
Event-Driven Distributed Programming

Raymond Hu (Queen Mary University of London, GB)

License @@ Creative Commons BY 4.0 International license
© Raymond Hu
Joint work of Malte Viering, Raymond Hu, Patrick Eugster, Lukasz Ziarek
Main reference Malte Viering, Raymond Hu, Patrick Eugster, Lukasz Ziarek: “A multiparty session typing discipline
for fault-tolerant event-driven distributed programming”, Proc. ACM Program. Lang.,
Vol. 5(0O0PSLA), pp. 1-30, 2021.
URL https://doi.org/10.1145/3485501

This paper presents a formulation of multiparty session types (MPSTS) for practical fault-
tolerant distributed programming. We tackle the challenges faced by session types in the
context of distributed systems involving asynchronous and concurrent partial failures — such
as supporting dynamic replacement of failed parties and retrying failed protocol segments
in an ongoing multiparty session — in the presence of unreliable failure detection. Key to
our approach is that we develop a novel model of event-driven concurrency for multiparty
sessions. Inspired by real-world practices, it enables us to unify the session-typed handling of
regular I/O events with failure handling and the combination of features needed to express
practical fault-tolerant protocols. Moreover, the characteristics of our model allow us to
prove a global progress property for well-typed processes engaged in multiple concurrent
sessions, which does not hold in traditional MPST systems.

To demonstrate its practicality, we implement our framework as a toolchain and runtime for
Scala, and use it to specify and implement a session-typed version of the cluster management
system of the industrial-strength Apache Spark data analytics framework. Our session-typed
cluster manager composes with other vanilla Spark components to give a functioning Spark
runtime; e.g., it can execute existing third-party Spark applications without code modification.
A performance evaluation using the TPC-H benchmark shows our prototype implementation
incurs an average overhead below 10%.

3.9 Papaya: Global Typestate Analysis of Aliased Objects

Mathias Jakobsen (University of Glasgow, GB) and Ornela Dardha (University of Glasgow,
GB)
License @ Creative Commons BY 4.0 International license
© Mathias Jakobsen and Ornela Dardha
Joint work of Mathias Jakobsen, Alice Ravier, Ornela Dardha
Main reference Mathias Jakobsen, Alice Ravier, Ornela Dardha: “Papaya: Global Typestate Analysis of Aliased
Objects”, in Proc. of the PPDP 2021: 23rd International Symposium on Principles and Practice of

Declarative Programming, Tallinn, Estonia, September 6-8, 2021, pp. 19:1-19:13, ACM, 2021.
URL https://doi.org/10.1145/3479394.3479414

Typestates are state machines used in object-oriented programming to specify and verify
correct order of method calls on an object. To avoid inconsistent object states, typestates
systems often enforce linear typing, which eliminates — or at best limits — aliasing. However,
aliasing is an important feature in programming, and the state-of-the-art on typestates is
too restrictive if we want typestates to be adopted in real-world software systems.

In this talk, we present a type system for an object-oriented language with typestate
annotations, which allows for unrestricted aliasing, and as opposed to previous approaches it
does not require linearity constraints. The typestate analysis is global and tracks objects
throughout the entire program graph, which ensures that well-typed programs conform to
and complete the declared protocols.

61

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485501
https://doi.org/10.1145/3485501
https://doi.org/10.1145/3485501
https://doi.org/10.1145/3485501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414
https://doi.org/10.1145/3479394.3479414

62

21372 — Behavioural Types: Bridging Theory and Practice

3.10 Session Types as Program Logics
Eduard Kamburjan (University of Oslo, NO)

License @ Creative Commons BY 4.0 International license
© Eduard Kamburjan
Main reference Eduard Kamburjan: “Behavioral Program Logic”, in Proc. of the Automated Reasoning with
Analytic Tableaux and Related Methods — 28th International Conference, TABLEAUX 2019,
London, UK, September 3-5, 2019, Proceedings, Lecture Notes in Computer Science, Vol. 11714,
pp- 391-408, Springer, 2019.
URL https://doi.org/10.1007/978-3-030-29026-9_ 22

This talk was based on a conference presentation at TABLEAUX 2019. We present Behavioral
Program Logic (BPL), a dynamic logic for trace properties that incorporates concepts from
behavioral types and allows reasoning about nonfunctional properties within a sequent calcu-
lus. BPL uses behavioral modalities, to verify statements against behavioral specifications.
Behavioral specifications generalize both postconditions and behavioral types. They can be
used to specify other static analyses, e.g., data flow analyses. This enables deductive reason-
ing about the results of multiple analyses on the same program, potentially implemented in
different formalisms. Our calculus for BPL verifies the behavioral specification gradually, as
common for behavioral types. This vastly simplifies specification, calculus and composition
of local results. We present a sequent calculus for object-oriented actors with futures that
integrates a pointer analysis and bridges the gap between behavioral types and deductive
verification.

3.11 Priorities as a Graded Monad
Wen Kokke (University of Edinburgh, GB) and Ornela Dardha (University of Glasgow, GB)

License) Creative Commons BY 4.0 International license
© Wen Kokke and Ornela Dardha
Main reference Wen Kokke, Ornela Dardha: “Prioritise the Best Variation”, in Proc. of the Formal Techniques for
Distributed Objects, Components, and Systems — 41st IFIP WG 6.1 International Conference,
FORTE 2021, Held as Part of the 16th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, Lecture
Notes in Computer Science, Vol. 12719, pp. 100-119, Springer, 2021.
URL https://doi.org/10.1007/978-3-030-78089-0_6

In this talk, I will present PGV, a variant of Wadler’'s GV which decouples channel creation
from thread spawning, and restores deadlock freedom by adding priorities. Notably, I
will show how PGV embeds deadlock free communication and concurrency primitives with
priorities in a standard linear functional language using a graded monad.

References

1 Kokke W., Dardha O. (2021) Prioritise the Best Variation. In: Peters K., Willemse T.A.C.
(eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2021.
Lecture Notes in Computer Science, vol 12719. Springer, Cham. https://doi.org/10.
1007/978-3-030-78089-0_6

2 Wen Kokke and Ornela Dardha. 2021. Deadlock-free session types in linear Haskell. Pro-
ceedings of the 14th ACM SIGPLAN International Symposium on Haskell. Association
for Computing Machinery, New York, NY, USA, 1-13. DOL:https://doi.org/10.1145/
3471874 .3472979

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-030-29026-9_22
https://doi.org/10.1007/978-3-030-29026-9_22
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1145/3471874.3472979

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

3.12 Asymmetric Replicated State Machines

Roland Kuhn (Actyxr AG — Minchen, DE), Herndn Melgratti (University of Buenos Aires,
AR), and Emilio Tuosto (Gran Sasso Science Institute, IT)
License @ Creative Commons BY 4.0 International license

© Roland Kuhn, Hernan Melgratti, and Emilio Tuosto
Joint work of Roland Kuhn, Daniela Marottoli, Herndn Melgratti, and Emilio Tuosto

A factory hall is a place where many humans and machines work together to turn input
materials into finished goods. The efficiency of this collaboration — structured into many
loosely coupled cells — is of vital importance to the business, hence our system favours
availability and local progress over (global) correctness. Conflicts are allowed and can be
recognised and compensated.

We present a formal model for machines emitting events to their local logs, where
communication occurs eventually by shipping log prefixes between machines. A global type
governs the desired protocol and can — if well-formed — be projected to local Mealy machines
who will then faithfully realise the protocol.

3.13 Choreographic Programming in Choral
Fabrizio Montesi (University of Southern Denmark — Odense, DK)

License @ Creative Commons BY 4.0 International license
© Fabrizio Montesi

This talk is an introduction to Choral (https://www.choral-lang.org), the first language
for programming choreographies (multiparty protocols) based on mainstream programming
abstractions: in Choral, choreographies are objects [2].

Choral’s interpretation of choreographies is made possible by new types that enhance
standard object types with a notion of locality. Every object is located at some roles (Alice,
Bob, etc.), which denotes that the object is implemented collaboratively by them. Thus,
objects become choreographic.

Choral is a choreographic programming language [1]: given a choreography that defines
interactions among some roles, an implementation for each role in the choreography is
automatically generated by a compiler. These implementations are libraries in pure Java,
which developers can modularly compose in their own programs to participate correctly in
choreographies. Crucially, Choral gives back to the programmer control over the APIs exposed
to the users of the generated libraries. For the first time in the application of choreographic
languages, this feature enables the generation of libraries that support information hiding, in
the sense that the generated libraries hide the communication behaviour that they enact. An
important consequence is that updates to the communication behaviour of a choreography
might not alter the APIs of the generated libraries, avoiding the need for updating the client
code that uses the (code generated from the) choreography.

Leveraging the interpretation of choreographies as objects, Choral brings higher-order
composition to choreographic programming. The key novelty is that Choral allows for higher-
order composition without the need for global synchronisations or central coordination,
which is required by other current models. Choral’s foundations have been recently modelled
as an extension of the A-calculus, ChorA [3]. Chor\ has new reduction and rewriting
rules that formalise the principles that underpin decentralised higher-order composition of
choreographies.

63

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.choral-lang.org

64

21372 — Behavioural Types: Bridging Theory and Practice

References

1 Fabrizio Montesi. Choreographic Programming. PhD Thesis, IT University of Copenhagen,
2013.

2 Saverio Giallorenzo and Fabrizio Montesi and Marco Peressotti. Choreographies as Objects.
CoRR abs/2005.09520, 2020.

3 Luis Cruz-Filipe and Eva Graversen and Lovro Lugovi¢ and Fabrizio Montesi and Marco

Peressotti. Choreographies as Functions. CoRR abs/2111.03701, 2022.

3.14 Effpi: verified message-passing programs in Scala 3
Alceste Scalas (Technical University of Denmark — Lyngby, DK)

License) Creative Commons BY 4.0 International license
© Alceste Scalas
Joint work of Alceste Scalas, Nobuko Yoshida, Elias Benussi

Main reference Alceste Scalas, Nobuko Yoshida, Elias Benussi: “Verifying message-passing programs with dependent
behavioural types”, in Proc. of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pp. 502-516, ACM,
2019.

URL https://doi.org/10.1145/3314221.3322484

I will talk about Effpi: an experimental toolkit for strongly-typed concurrent and distributed
programming in Scala 3.

Effpi addresses a main challenge in the development of concurrent programs: errors
like protocol violations, deadlocks, and livelocks are often spotted late, at run-time, when
applications are tested or (worse) deployed. Effpi aims at finding such errors early, when
code is written and compiled.

Effpi provides: (1) a set of Scala classes for describing communication protocols as types;
(2) an embedded DSL for concurrent programming (reminiscent of Akka actors); (3) a Scala
compiler plugin to verify whether protocols and programs enjoy desirable properties, such as
deadlock-freedom; and (4) an efficient run-time system for executing Effpi programs.

The combination of (1) and (2) allows the Scala 3 compiler to check whether an Effpi
program implements a desired protocol/type; and this, together with (3), means that many
concurrent programming errors are found and reported at compile-time. Further, (4) allows
for running highly concurrent Effpi programs with millions of interacting processes/actors,
by scheduling them on a limited number of CPU cores.

In this talk, I will give an overview of Effpi, illustrate its design and main features, and
explain how it leverages the capabilities of Scala 3. I will also discuss ongoing and future
work.

References

1 Scalas, A., Yoshida, N., & Benussi, E. (2019). Verifying Message-Passing Programs with
Dependent Behavioural Types. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (pp. 502-516). Association for
Computing Machinery. https://doi.org/10.1145/3314221.3322484

2 Scalas, A., Yoshida, N., & Benussi, E. (2019). Effpi: Verified Message-Passing Programs
in Dotty. In Proceedings of the Tenth ACM SIGPLAN Symposium on Scala (pp. 27-31).
Association for Computing Machinery. https://doi.org/10.1145/3337932.3338812

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3337932.3338812

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

3.15 Algebraic Session Types

Peter Thiemann (Universitit Freiburg, DE) and Vasco T. Vasconcelos (University of Lisbon,
PT)

License @ Creative Commons BY 4.0 International license
© Peter Thiemann and Vasco T. Vasconcelos
Joint work of Peter Thiemann, Bernardo Almeida, Andreia Mordido, Janek Spaderna, and Vasco T. Vasconcelos

Current session type systems rely on recursive types to model recursive protocols. This
approach requires nontrivial algorithms for checking type equivalence. For traditional
recursive session types, type equivalence can be reduced to equivalence of finite automata. For
context-free session types, it amounts to equivalence of deterministic context-free languages.

The system of algebraic session types overcomes these problems while keeping the
expressivity of context-free session types. By modeling recursive protocols as an extension of
recursive algebraic datatypes, we can replace a structural approach to recursive types by a
nominal one. This shift in perspective avoids the expensive algorithms for type equivalence
and replaces them with a linear-time test in the size of the type.

We demonstrate with examples that algebraic session types enable new ways of paramet-
erizing protocols, which were difficult to achieve with previous systems.

3.16 Polymorphic Context-free Session Types

Peter Thiemann (Universitat Freiburg, DE) and Vasco T. Vasconcelos (University of Lisbon,
PT)

License @ Creative Commons BY 4.0 International license
© Peter Thiemann and Vasco T. Vasconcelos
Joint work of Bernardo Almeida, Andreia Mordido, Peter Thiemann, Vasco T. Vasconcelos
Main reference Bernardo Almeida, Andreia Mordido, Peter Thiemann, Vasco T. Vasconcelos: “Polymorphic
Context-free Session Types”, CoRR, Vol. abs/2106.06658, 2021.
URL https://arxiv.org/abs/2106.06658

Context-free session types provide a typing discipline for recursive structured communication
protocols on bidirectional channels. They overcome the restriction of regular session type
systems to tail recursive protocols. This extension enables us to implement serialisation
and deserialisation of tree structures in a fully type-safe manner. We present the theory
underlying the language FreeST 2, which features context-free session types in an extension
of System F with linear types and a kind system to distinguish message types and channel
types. The system presents some metatheoretical challenges, which we address, contractivity
in the presence of polymorphism, a non-trivial equational theory on types, and decidability
of type equivalence. We also establish standard results on type preservation, progress, and a
characterisation of erroneous processes.

65

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2106.06658
https://arxiv.org/abs/2106.06658
https://arxiv.org/abs/2106.06658

66

21372 — Behavioural Types: Bridging Theory and Practice

3.17 A Joyful Empirical Study on Session Types
Nobuko Yoshida (Imperial College London, GB)

License @ Creative Commons BY 4.0 International license
© Nobuko Yoshida

Rust is a modern systems language focused on performance and reliability. Complementing
Rust’s promise to provide “fearless concurrency”, asynchronous message passing is widely
used thanks to its efficient and intuitive communication model—although it is also vulnerable
to many concurrency errors such as deadlocks. Particularly, developers frequently exploit
asynchronous message reordering, where sends and receives are reordered to maximise
computation-communication overlap. Unfortunately, these kinds of optimisations open up a
Pandora’s box of further subtle concurrency bugs.

To guarantee deadlock-freedom by construction, we present rumpsteak: a new Rust
framework based on session types. Previous session type implementations in Rust are
either (1) built upon synchronous and blocking communication, which incurs a substantial
performance cost; and/or (2) limited to two-party interactions, which risks introducing
deadlocks. Crucially, none of these implementations can support the safe message reordering
we seek.

rumpsteak instead uses multiparty session types and targets asynchronous applications
using async/await code. Its unique feature is the ability to practically offer asynchronous
message reordering while preserving deadlock-freedom. For this, rumpsteak incorporates
two recent advanced session type theories: (1) k-multiparty compatibility (k-MC), which
globally verifies safety properties for a set of participants and (2) asynchronous multiparty
session subtyping, which locally verifies optimisations in the context of a single participant.
Specifically, we propose a novel algorithm for asynchronous subtyping that is both sound
and decidable.

3.18 Monitoring Protocol Conformance with Multiparty Session Types
and OpenTelemetry

Fangyi Zhou (Imperial College London, GB) and Nobuko Yoshida (Imperial College London,
GB)
License @ Creative Commons BY 4.0 International license

© Fangyi Zhou and Nobuko Yoshida
Joint work of Fangyi Zhou, Francisco Ferreira, and Nobuko Yoshida

In this talk, we demonstrate our ongoing work of monitoring protocol conformance using
multiparty session types and OpenTelemetry. OpenTelemetry is a new observability frame-
work for distributed cloud software, and we utilise its distributed tracing functionality to
validate traces against a prescribed global type.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

3.19 Statically Verified Refinements for Multiparty Protocols

Fangyi Zhou (Imperial College London, GB), Francisco Ferreira, Raymond Hu (Queen Mary
University of London, GB), Rumyana Neykova (Brunel University — Uzbridge, GB), and
Nobuko Yoshida (Imperial College London, GB)

License @ Creative Commons BY 4.0 International license
© Fangyi Zhou, Raymond Hu, Rumyana Neykova, Nobuko Yoshida
Joint work of Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida
Main reference Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, Nobuko Yoshida: “Statically
verified refinements for multiparty protocols”, Proc. ACM Program. Lang., Vol. 4(OOPSLA),
pp. 148:1-148:30, 2020.
URL https://doi.org/10.1145/3428216

With distributed computing becoming ubiquitous in the modern era, safe distributed pro-
gramming is an open challenge. To address this, multiparty session types (MPST) provide
a typing discipline for message-passing concurrency, guaranteeing communication safety
properties such as deadlock freedom.

While originally MPST focus on the communication aspects, and employ a simple typing
system for communication payloads, communication protocols in the real world usually
contain constraints on the payload. We introduce refined multiparty session types (RMPST),
an extension of MPST, that express data dependent protocols via refinement types on the
data types.

We provide an implementation of RMPST, in a toolchain called Session*, using Scribble, a
multiparty protocol description toolchain, and targeting F*, a verification-oriented functional
programming language. Users can describe a protocol in Scribble and implement the endpoints
in F* using refinement-typed APIs generated from the protocol. The F* compiler can then
statically verify the refinements. Moreover, we use a novel approach of callback-styled API
generation, providing static linearity guarantees with the inversion of control. We evaluate
our approach with real world examples and show that it has little overhead compared to a
naive implementation, while guaranteeing safety properties from the underlying theory.

4 Working groups

4.1 Breakout Group: Typing Non-Channel-Based Models

Gul Agha (University of Illinois — Urbana-Champaign, US), Mariangiola Dezani (University
of Turin, IT), Simon Fowler (University of Glasgow, GB), Philipp Haller (KTH Royal
Institute of Technology — Kista, SE), Raymond Hu (Queen Mary University of London, GB),
Eduard Kamburjan (University of Oslo, NO), Roland Kuhn (Actyr AG — Minchen, DE),
Herndn Melgratti (University of Buenos Aires, AR), Alceste Scalas (Technical University of
Denmark — Lyngby, DK), and Peter Thiemann (Universitit Freiburg, DE)

License @) Creative Commons BY 4.0 International license
© Gul Agha, Mariangiola Dezani, Simon Fowler, Philipp Haller, Raymond Hu, Eduard Kamburjan,
Roland Kuhn, Herndn Melgratti, Alceste Scalas, and Peter Thiemann

We started with the talk by Eduard Kamburjan (see materials), which describes a typing
discipline and implementation for active objects based on asynchronous remote invocations.
Thereafter, we briefly introduced the execution model later presented by Roland Kuhn and
Emilio Tuosto in the plenary session on Thursday, namely evaluating state machines over

an eventually consistent global log that is merged from locally produced append-only logs.

67

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

68

21372 — Behavioural Types: Bridging Theory and Practice

In such a system we have no channels to which session types can be attached. Instead, we
need to characterise the event traces produced by the execution of a global protocol, where
additional difficulty arises from the fact that the local behaviour can produce a greater
variety of event traces due to local state machines having only a partial view of the global
log — event dissemination is the mechanism by which non-determinism is introduced in this
model.

The resulting “event soup” prompted the question of whether join calculus is a suitable
model to tame such a system. The issue with this is that the setting is meant to guarantee
100% availability while join calculus treats messages as linear values that can only be
consumed once; implementing this implies a consensus protocol between different participants
that would ruin availability during network partitions. Events in the Actyx system have
quantity omega, so join calculus is too strict.

The Actyx implementation currently has no mechanism for preventing conflicts (a
consensus-based facility could be added in an opt-in fashion to coordinate important de-
cisions). Instead, it allows conflicts to be detected since they are clearly visible in the event
traces. This is okay for all cases where compensating actions can adequately fix the situation.

At this point we concluded that the discussed system is clearly distinct from the known
body of previous work, so it is hard to transfer existing models or mechanisms to this setting.

We then switched to Actors as the other non-channel system that is widely used. Imme-
diately after Eduard’s talk we had already briefly discussed that removing the response (and
thus the usage of Futures) from that Active Objects model would result in a very similar
setting to the Actor model. We then looked at the join calculus again but moved on to the
question of whether to type the behaviour of the processes or the contents of the mailbox.

There are two approaches: either use local types to govern the actions performed by the
actor (which is done by Neykova and Yoshida’s work on Multiparty Session Actors, and by
Harvey et al’s work on EnsembleS, for example); or to type the contents of the mailbox.
The naive way of implementing the latter, namely typing a sequence of types to be received,
is too restrictive to use in practice. Instead, work by de’Liguoro and Padovani considers a
mailbox type system, where mailboxes are given a type described by a commutative regular
expression (unordered sequencing, replication, and choice), which can rule out errors such as
unhandled messages and deadlocks.

Gul Agha pointed out that in the absence of a typed channel it is more difficult to figure
out failure cases because it is less obvious what happens when a given message does not
arrive. This might require some dynamic (i.e. symbolic) analysis in addition to the static
typing judgement, i.e. finding an undesirable configuration and working one’s way backwards
to find how this configuration could arise. Another issue is that the absence of a message
cannot be clearly attributed to a single role, so the static analysis will need to model for
example whether there can be at least one participant of a given role in a state that allows
the needed interaction. Symbolic reasoning can then be used to figure out whether such state
is actually realised.

Roland Kuhn pointed out that completeness of such a system is not required and
will probably not even lead to the most useful system, because an application-dependent
unhandled failure rate is acceptable in systems where humans can be called upon to fix
things — which includes most systems today.

Since also such systems cannot statically prevent all conflicts, it is important to keep
track of the local knowledge at the time a decision was made (like a causality trace) to be
able to figure out the correct compensating actions. While this has a cost and is therefore

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

usually not done in real-world systems, the cost can be kept at a minimum for only tracking
a single bit for each message that is expected within a given session (i.e. a version vector
where each counter is 0 or 1).

One important message from Gul Agha was that we have nice means to separate

how (which is the private implementation)

what (which is the method, function signature, message, ... that selects the operation)

when (which is governed by a session type)

who (which can be pub-sub, static, assignment from a pool, etc.)
By keeping these well separated we get higher modularity and reuse, e.g. just needing to
change a session type and reusing all methods and implementations.

4.2 Breakout Group: Logic-based approaches

Marco Carbone (IT University of Copenhagen, DK), Stephanie Balzer (Carnegie Mellon
University — Pittsburgh, US), Ornela Dardha (University of Glasgow, GB), Wen Kokke
(University of Edinburgh, GB), Sam Lindley (University of Edinburgh, GB), Fabrizio Montesi
(University of Southern Denmark — Odense, DK), J. Garrett Morris (University of Towa —
Towa City, US), Jorge A. Pérez (University of Groningen, NL), Bernardo Toninho (NOVA
School of Science and Technology — Lisbon, PT), and Philip Wadler (University of Edinburgh,
GB)
License @@ Creative Commons BY 4.0 International license

© Marco Carbone, Stephanie Balzer, Ornela Dardha, Wen Kokke, Sam Lindley, Fabrizio Montesi, J.
Garrett Morris, Jorge A. Pérez, Bernardo Toninho, and Philip Wadler

In the last decade, behavioural types, in particular Session Types, have been connected
to Linear Logic. Back in 2010, Caires and Pfenning [1] proposed a proposition-as-types
connection between intuitionistic linear logic and a session-typed variant of the pi calculus.
Later, Wadler [2] used the same idea to draw a connection to classical linear logic. The two
results have laid the basis for a stream of contributions in the area aiming at tightening the
connection between behavioural type systems and linear logic. Thanks to this approach, it
has been possible to represent some problems in behavioural types logically, solve them, and
then map them back.

The goal of this breakout-group was not only to discuss the current state of the art, but
also the directions for future research on the topic. Such directions can be summarised as
follows:

The community is interested in further exploiting the proposition-as-types approach for

better understanding session/behavioural types.

Different results are present in the literature: it is time that we also try to relate them

formally so that we can transfer strengths from one approach to another.

We should not restrict to Classical/Intuitionistic Linear Logic, but explore the relationship

with other logics. This discussion has spawned a further discussion on what the minimum

requirements are for a system to be a logic. An explicit and clear answer to “what is a

logic?” can be found in Henry De Young’s thesis [3], specifically on pag. 37, section 3.2.

In order to address the points above, people present at the meeting proposed to:

Set up an online reading group in order to discuss relationships between single approaches
Set up a sharing platform where results can actually be shared, and new collaborations
can be started.

69

21372

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

70

21372 — Behavioural Types: Bridging Theory and Practice

References

1 Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: CONCUR.
pp. 222-236 (2010)

2 Wadler, P.: Propositions as sessions. In: ICFP. pp. 273-286 (2012)

3 Henry De Young. Session Typed Ordered Logical Specifications. PhD Thesis, 2020. https:
//www.cs.cmu.edu/~hdeyoung/assets/papers/thesis20.pdf

4.3 Breakout Group: Type-Informed Recovery Strategies

Fabrizio Montesi (University of Southern Denmark — Odense, DK), Laura Bocchi (University
of Kent — Canterbury, GB), Marco Carbone (IT University of Copenhagen, DK), Ornela
Dardha (University of Glasgow, GB), Mariangiola Dezani (University of Turin, IT), Philipp
Haller (KTH Royal Institute of Technology — Kista, SE), Mathias Jakobsen (University of
Glasgow, GB), Sam Lindley (University of Edinburgh, GB), J. Garrett Morris (University of
Towa — Iowa City, US), Philip Munksgaard (University of Copenhagen, DK), Laura Voinea
(University of Kent — Canterbury, GB), Philip Wadler (University of Edinburgh, GB), and
Fangyi Zhou (Imperial College London, GB)

License) Creative Commons BY 4.0 International license
© Fabrizio Montesi, Laura Bocchi, Marco Carbone, Ornela Dardha, Mariangiola Dezani, Philipp
Haller, Mathias Jakobsen, Sam Lindley, J. Garrett Morris, Philip Munksgaard, Laura Voinea, Philip
Wadler, and Fangyi Zhou

Managing failures is important in distributed systems, but related research on behavioural
types is still in the early stages. We are particularly interested in how types could help in
the programming of strategies for recovering from failures.

The problem of failure recovery is multifaceted, because there are different categories
of failures that can be encountered at runtime. These include crashes, message losses, and
wrong ordering of messages or actions. Furthermore, depending on the level that software
operates at (recall, for example, the layers of the OSI model), assumptions and focus might
change.

For example, if we wish to write a low-level protocol like Ethernet or a distributed
agreement protocol, then it might be desirable to use a fine-grained model that (a) exposes
failures in detail, like single failures in the communication of each network packet, “alive”
timeouts, etc., and (b) allows for programming recovery strategies to handle such failures,
e.g., retransmission.

Differently, if we are reasoning about code designed for the application level, it is typical
to make stronger reliability assumptions. For example, we might assume that network
transmissions are reliable, delegating to the lower levels to deal with relevant failures there.
A failure raised from the lower levels would then be managed using more abstract constructs
on the application level, leading to more coarse recovery strategies (e.g., restart of the entire
protocol or reconnection).

The multifaceted and multilevel nature of failure recovery is reflected by past and current
research, including: types for managing fallible interactions and message loss in choreo-
graphic languages [3]; work on ensuring that data to be communicated can be meaningfully
marshalled [4]; and exceptions for session types, where a reliable network is assumed [2, 1].

There are several open questions related to the principles of recovery strategies, including:

How can we model the principles (for failure recovery) used in real-world software on

different levels? How should we then interface lower-level models (with weak reliability

assumptions) with higher-level models (with stronger reliability assumptions)?

https://www.cs.cmu.edu/~hdeyoung/assets/papers/thesis20.pdf
https://www.cs.cmu.edu/~hdeyoung/assets/papers/thesis20.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

Can we modularly encode recovery strategies in high-level languages into lower-level
languages that make weaker reliability assumptions?

Can we extend session types to reason usefully about failures of different kinds?

Can we make a fundamental calculus of failures? Is there a useful link to ongoing research
on effect handlers (e.g., [5])?

References

1 Paul Harvey and Simon Fowler and Ornela Dardha and Simon J. Gay. Multiparty Session
Types for Safe Runtime Adaptation in an Actor Language. In 35th European Conference on
Object-Oriented Programming, ECOOP 2021, LIPIcs Vol. 194, 10:1-10:30, 2021.

2 Marco Carbone and Kohei Honda and Nobuko Yoshida. Structured Interactional Exceptions
in Session Types. In CONCUR 2008 — Concurrency Theory, 19th International Conference,
Lecture Notes in Computer Science, Vol. 5201, pp. 402-417, Springer, 2008.

3 Fabrizio Montesi and Marco Peressotti. Choreographies meet Communication Failures.
CoRR abs/1712.05465, 2018.

4 Heather Miller and Philipp Haller and Martin Odersky. Spores: A Type-Based Foundation
for Closures in the Age of Concurrency and Distribution. In 28th European Conference
on Object-Oriented Programming, ECOOP 2014, Lecture Notes in Computer Science, Vol.
8586, pp. 308-333, Springer, 2014.

5 Sam Lindley. Handler calculus. Draft, 2021. https://homepages.inf.ed.ac.uk/slindley/
papers/handler-calculus-draft-may2021.pdf

4.4 Breakout Group: Session types with untrusted counter-parties

Philip Munksgaard (University of Copenhagen, DK), Christian Bartolo Burlé (Gran Sasso
Science Institute, IT), Marco Carbone (IT University of Copenhagen, DK), Mariangiola Dez-
ani (University of Turin, IT), Simon Fowler (University of Glasgow, GB), Mathias Jakobsen
(University of Glasgow, GB), Roland Kuhn (Actyz AG — Miinchen, DE), Fabrizio Montesi
(University of Southern Denmark — Odense, DK), Alceste Scalas (Technical University of
Denmark — Lyngby, DK), Peter Thiemann (Universitat Freiburg, DE), Emilio Tuosto (Gran
Sasso Science Institute, IT), and Fangyi Zhou (Imperial College London, GB)
License) Creative Commons BY 4.0 International license
© Philip Munksgaard, Christian Bartolo Burlé, Marco Carbone, Mariangiola Dezani, Simon Fowler,

Mathias Jakobsen, Roland Kuhn, Fabrizio Montesi, Alceste Scalas, Peter Thiemann, Emilio Tuosto,
and Fangyi Zhou

There is no question that session types and behavioral types are useful in situations where
you control all the nodes in the network. In practice, however, that is not always the case,
eg. in peer-to-peer networks or on the internet in general. Still, it would be helpful to be
able to use session types to model the communication protocols in such cases.

Attempting to do so presents a range of problems, including:

How do we know what protocol the counterparty is using?

Can we trust that the counterparty will adhere to that protocol?

How should we handle failures, both in the protocol and in the transport layer?

Starting from the end, exhaustive work has been performed in the area of monitors. Given
a session type, a monitor sits between the user and an untrusted counterparty, mediating

and making sure that the user only sees messages that adhere to the specified protocol.

Depending on the particular implementation, it can handle timeouts, protocol errors, dropped
connections and so on. With such a monitor, we can safely implement our side of the session
type, without having to think about these problems.

71

21372

https://homepages.inf.ed.ac.uk/slindley/papers/handler-calculus-draft-may2021.pdf
https://homepages.inf.ed.ac.uk/slindley/papers/handler-calculus-draft-may2021.pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

72

21372 — Behavioural Types: Bridging Theory and Practice

However, what about a well-meaning counterparty whose protocol differs slightly from
ours? A simple example would be a login server that accepts two strings, a username and
a password (in that order), while your client expects to send a password and a username.
Without additional information from the server, you would not be able to correctly interface
with the server, even with a monitor.

For such a case to work, we would need to have some sort of meta-protocol for talking
about the session type. In essence, each party should be able to tell the other what session
type it expects to be using, and we should have a way of handling discrepancies in the
protocol. This line of reasoning lead to some interesting debates at the seminar, and a stated
intention from several attendees to continue work after the seminar.

4.5 Breakout Group: Join Patterns / Synchronization — The Next
Generation

Claudio Russo (Dfinity — Cambridge, GB), Gul Agha (University of Illinois — Urbana-
Champaign, US), Philipp Haller (KTH Royal Institute of Technology — Kista, SE), Eduard
Kamburjan (University of Oslo, NO), Emilio Tuosto (Gran Sasso Science Institute, IT),
Laura Voinea (University of Kent — Canterbury, GB), and Philip Wadler (University of
Edinburgh, GB)

License) Creative Commons BY 4.0 International license

© Claudio Russo, Gul Agha, Philipp Haller, Eduard Kamburjan, Emilio Tuosto, Laura Voinea, and
Philip Wadler

Intro

The attendees were a mixture of people with considerable experience of join patterns and
the join calculus and those curious to hear learn more about them.
We kicked off with an introduction to join patterns as:
a mechanism for pattern matching over the empty/non-empty state of co-located, (asyn-
chronous) message queues.
a special case of more general Logic Programming constructs with arbitrary predicates
on channel contents from Concurrent Prolog.

Some stressed that the main advantage of joins is expressing synchronization & coordin-
ation, not necessarily pattern matching over the content of queues enabled by Concurrent
Prolog.

We then re-iterated some of the history of join patterns — which have come in several
guises from language extensions to libraries, for niche and mainstream languages. A (by
no-means exhaustive) list includes the Join Calculus, JoCaml, Funnel (the precursor to
Scala), Polyphonic C#, JErlang, JoinJava, Comega, the C# Joins library, Concurrent Basic,
Scalable Joins, Scala, Akka, and Sharpie.

The different presentations of join patterns typical adopt one of :

recursive function declarations with alternatives of conjoined function headers (JoCaml)

and selective “return”s to different functions within the same body.

object methods with alternatives of conjoined method headers (Polyphonic C#) and

single returns.

separate channels declarations with patterns over them (Joins library, Concurrent Basic)

designs disguised as (library) extensions of pattern matching (Scala)

various degrees of support for synchronous channels in patterns (on, sometimes several).

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas

Limits to Adoption

Despite the plethora of implementations and designs, join patterns have never made into the
mainstream the way, say, lambda abstraction and garbage collection have. Eisenbach has
expressed similar difficulties [5]. We came up with following potential reasons:
The early presentation of joins were all asynchronous, sometimes continuation based, and
thus less approachable.
Alternatives such as actors and futures are easier to explain, though likely less expressive
(e.g. n-ary synchronization is difficult to achieve with usual primitives).

Features such as lambdas and GC took several decades to gain wide-spread adoption.

Perhaps join patterns just need more time.

Typing

We then briefly turned to discussing the typing aspects of join patterns. Phil Wadler asked
“Is there a Curry-Howard isomorphism” for the join calculus as there is for linear types and
process-calculi, citing Frank Pfenning’s work on linear logic for typing processes. Since the
inspiration for join patterns comes from chemistry (a restriction of the chemical abstract

machine), not logic, uncovering a Curry-Howard isomorphism might prove challenging.

Nevertheless, the atomic consumption of linear resources inherent to joins suggests a strong
connection to linear typing: [1] applies separation logic to verify some join based programs,
while the more recent work [2, 3, 4] on linear typing of joins might shed further light.

Expressivity

Discussion briefly turned to the question of expressivity: how do join patterns compare to
say, pi-calculus or actors? Cedric Fournet’s thesis gave a translation between pi and joins
but we could not recall if it was modular or whole-program. Regardless of expressivity, there
is strong reason to believe that join-calculus is easier to implement than, say, pi-calculus,
especially in a distributed setting. The reason for this is that the scheduling decisions needed
to be made in joins can be resolved locally, at a receiver, while typical implementations of
the pi-calculus rely on reaching agreement between distributed parties and are thus more
obviously suited to shared-memory, non-distributed implementations.

References

1 Kasper Svendsen, Modular specification and verification for higher-order languages with
state, PhD thesis, https://cs.au.dk/~birke/phd-students/SvendsenS-thesis.pdf.

2 Silvia Crafa, Luca Padovani, The Chemical Approach to Typestate-Oriented Programming,
ACM Transactions on Programming Languages and Systems, vol. 39(3), pages 13:1-13:45,
2017.

3 Luca Padovani, A Type Checking Algorithm for Concurrent Object Protocols, Journal of
Logical and Algebraic Methods in Programming, vol. 100, pages 16-35, 2018.

4 Luca Padovani, Deadlock-Free Typestate-Oriented Programming, Programming Journal,
vol. 2(3), pages article 15, 2018.
5 Susan Eisenbach, personnel communication with Russo, Microsoft Research, 2018.

73

21372

https://cs.au.dk/~birke/phd-students/SvendsenS-thesis.pdf

74

21372 — Behavioural Types: Bridging Theory and Practice

Participants

= Marco Carbone

IT University of
Copenhagen, DK

= Simon Fowler
University of Glasgow, GB
= Philipp Haller

KTH Royal Institute of
Technology — Kista, SE

= Mathias Jakobsen
University of Glasgow, GB

= Eduard Kamburjan
University of Oslo, NO

= Roland Kuhn
Actyx AG — Miinchen, DE

= Sam Lindley
University of Edinburgh, GB

= Fabrizio Montesi
University of Southern Denmark —
Odense, DK

= Philip Munksgaard
University of Copenhagen, DK

= Alceste Scalas
Technical University of Denmark
— Lyngby, DK

= Peter Thiemann
Universitdt Freiburg, DE

= Emilio Tuosto
Gran Sasso Science Institute, I'T

Remote Participants

= Gul Agha
University of Illinois —
Urbana-Champaign, US

- Stephanie Balzer
Carnegie Mellon University —
Pittsburgh, US

= Christian Bartolo Burlé
Gran Sasso Science Institute, IT

= Laura Bocchi
University of Kent —
Canterbury, GB

= Edwin Brady
University of St Andrews, GB

= Ilaria Castellani
INRIA — Sophia Antipolis, FR

= Tzu-Chun Chen
Evonik Industries — Hanau, DE

= Ornela Dardha
University of Glasgow, GB

= Mariangiola Dezani
University of Turin, IT

= Simon Gay
University of Glasgow, GB

= Raymond Hu
Queen Mary University of
London, GB

= Atsushi Igarashi
Kyoto University, JP

= Jules Jacobs
Radboud University
Nijmegen, NL

= Wen Kokke
University of Edinburgh, GB

= Dimitrios Kouzapas
University of Cyprus —
Nicosia, CY

= Hernan Melgratti
University of Buenos Aires, AR

- J. Garrett Morris
University of Iowa —
Towa City, US

Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas 75

= Rumyana Neykova
Brunel University —
Uxbridge, GB

= Marco Peressotti
University of Southern Denmark —
Odense, DK

- Jorge A. Pérez
University of Groningen, NL

= Claudio Russo

Dfinity — Cambridge, GB
= Guido Salvaneschi
Universitdt St. Gallen, CH

= Bernardo Toninho
NOVA School of Science and
Technology — Lisbon, PT

= Vasco T. Vasconcelos
University of Lisbon, PT

= Laura Voinea
University of Kent —
Canterbury, GB

= Philip Wadler

University of Edinburgh, GB
= Nobuko Yoshida

Imperial College London, GB

- Fangyi Zhou
Imperial College London, GB

21372

	Executive Summary Mariangiola Dezani, Roland Kuhn, Sam Lindley, and Alceste Scalas
	Table of Contents
	Overview of Talks
	Session Logical Relations for Noninterference Stephanie Balzer
	Session Types for Runtime Verification Christian Bartolo Burló
	A Model of Actors and Grey Failures Laura Bocchi and Laura Voinea
	Quantitative Types in Idris 2 Edwin Brady
	Global Types and Event Structure Semantics for Asynchronous Multiparty Sessions Ilaria Castellani, Mariangiola Dezani, and Paola Giannini
	An Overview of Explicit Cancellation Simon Fowler
	The STARDUST project: Session Types for Reliable Distributed Systems Simon Gay
	A Multiparty Session Typing Discipline for Fault-Tolerant Event-Driven Distributed Programming Raymond Hu
	Papaya: Global Typestate Analysis of Aliased Objects Mathias Jakobsen and Ornela Dardha
	Session Types as Program Logics Eduard Kamburjan
	Priorities as a Graded Monad Wen Kokke and Ornela Dardha
	Asymmetric Replicated State Machines Roland Kuhn, Hernán Melgratti, and Emilio Tuosto
	Choreographic Programming in Choral Fabrizio Montesi
	Effpi: verified message-passing programs in Scala 3 Alceste Scalas
	Algebraic Session Types Peter Thiemann and Vasco T. Vasconcelos
	Polymorphic Context-free Session Types Peter Thiemann and Vasco T. Vasconcelos
	A Joyful Empirical Study on Session Types Nobuko Yoshida
	Monitoring Protocol Conformance with Multiparty Session Types and OpenTelemetry Fangyi Zhou and Nobuko Yoshida
	Statically Verified Refinements for Multiparty Protocols Fangyi Zhou, Raymond Hu, Rumyana Neykova, Nobuko Yoshida

	Working groups
	Breakout Group: Typing Non-Channel-Based Models Gul Agha, Mariangiola Dezani, Simon Fowler, Philipp Haller, Raymond Hu, Eduard Kamburjan, Roland Kuhn, Hernán Melgratti, Alceste Scalas, and Peter Thiemann
	Breakout Group: Logic-based approaches Marco Carbone, Stephanie Balzer, Ornela Dardha, Wen Kokke, Sam Lindley, Fabrizio Montesi, J. Garrett Morris, Jorge A. Pérez, Bernardo Toninho, and Philip Wadler
	Breakout Group: Type-Informed Recovery Strategies Fabrizio Montesi, Laura Bocchi, Marco Carbone, Ornela Dardha, Mariangiola Dezani, Philipp Haller, Mathias Jakobsen, Sam Lindley, J. Garrett Morris, Philip Munksgaard, Laura Voinea, Philip Wadler, and Fangyi Zhou
	Breakout Group: Session types with untrusted counter-parties Philip Munksgaard, Christian Bartolo Burló, Marco Carbone, Mariangiola Dezani, Simon Fowler, Mathias Jakobsen, Roland Kuhn, Fabrizio Montesi, Alceste Scalas, Peter Thiemann, Emilio Tuosto, and Fangyi Zhou
	Breakout Group: Join Patterns / Synchronization – The Next Generation Claudio Russo, Gul Agha, Philipp Haller, Eduard Kamburjan, Emilio Tuosto, Laura Voinea, and Philip Wadler

	Participants
	Remote Participants

