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Abstract
Arbitrary Pattern Formation is a fundamental problem in autonomous mobile robot systems.
The problem asks to design a distributed algorithm that moves a team of autonomous, anonymous
and identical mobile robots to form any arbitrary pattern F given as input. In this paper, we study
the problem for robots whose movements can be inaccurate. Our movement model assumes errors
in both direction and extent of the intended movement. Forming the given pattern exactly is not
possible in this setting. So we require that the robots must form a configuration which is close to the
given pattern F . We call this the Approximate Arbitrary Pattern Formation problem. With
no agreement in coordinate system, the problem is unsolvable, even by fully synchronous robots, if
the initial configuration 1) has rotational symmetry and there is no robot at the center of rotation
or 2) has reflectional symmetry and there is no robot on the reflection axis. From all other initial
configurations, we solve the problem by 1) oblivious, silent and semi-synchronous robots and 2)
oblivious, asynchronous robots that can communicate using externally visible lights.
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1 Introduction

A robot swarm is a distributed system of autonomous mobile robots that collaboratively
execute some complex tasks. Distributed coordination of robot swarms has attracted
considerable research interest. Early investigations of these problems were experimental in
nature with the main emphasis being on designing good heuristics. However, the last two
decades have seen a series of theoretical studies on the computability and complexity issues
related to distributed computing by robot swarms. These studies are aimed at providing
provably correct algorithmic solutions to fundamental coordination problems. The robots
are assumed to be anonymous (they have no unique identifiers that they can use in a

1 This work was done when the author was at Jadavpur University, Kolkata, India.
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10:2 Pattern Formation by Robots with Inaccurate Movements

computation), homogeneous (they execute the same distributed algorithm) and identical
(they are indistinguishable by their appearance). The robots do not have access to any global
coordinate system. They have either no memory or very little memory available to remember
past observations and calculations. Also, they either have no means of direct communication
or have some very weak communication mechanism (e.g., an externally visible light that
can assume a small number of predefined colors). The model assumes robots with such
weak features because the theoretical studies usually intend to find the minimum capabilities
necessary for the robots to solve a given problem. The objective of this approach is to obtain a
clear picture of the relationship between different features and capabilities of the robots (such
as memory, communication, sensing, synchronization, agreement among local coordinate
systems etc.) and their exact role in solvability of fundamental problems. Adopting such
restrictive model also makes sense from a practical perspective since the individual units
of robot swarms are low-cost generic robots with limited capabilities. Although certain
assumptions, such as obliviousness (having no memory of past observations and calculations),
may seem to be overly restrictive even for such weak robots, there are specific motivations for
these assumptions. For example, the assumption of oblivious robots ensures self-stabilization.
This is because any algorithm that works correctly for oblivious robots is inherently self-
stabilizing as it tolerates errors that alter the local states of the robots. While the robots
are assumed to be very weak with respect to memory, communication etc., certain aspects
of the model are overly strong. In particular, the assumed mobility features of the robots
are very strong. Two standard models regarding the movement of the robots are Rigid and
Non-Rigid. In Rigid, if a robot x wants to go to any point y, then it can move to exactly
that point in one step. This means that the robots are assumed to be able to execute error-free
movements in any direction and by any amount. Certain studies also permit the robots to
move along curved trajectories. The algorithms in this model rely on the accurate execution of
the movements and are not robust to movement errors that real life robots are susceptible to.
Furthermore, the error-free movements of the robots have surprising theoretical consequences
as shown in the remarkable results obtained in [11]. A “positional encoding” technique was
developed in [11] that allows a robot, that has very limited or no memory to store data,
to implicitly store unbounded amount of information by encoding the data in the binary
representation of its distance from another robot or some other object, e.g., the walls of
the room inside which it is deployed. Exact movements allow the robots to preserve and
update the data. This gives the robots remarkable computational power that allows them to
solve complex problems which appear to be unsolvable by robots with limited or no memory,
e.g., constructing a map of a complex art gallery by an oblivious robot. Obviously these
techniques are impossible to implement in practice. Also, for problems that we expect to
be unsolvable by real life robots with certain restrictions in memory, communication etc.,
it may become difficult or impossible to theoretically establish a hardness or impossibility
result due to the strong model. The Non-Rigid model assumes that a robot may stop before
reaching its intended destination. However, ∃ a constant δ > 0 such that if the destination
is at most δ apart, the robot will reach it; otherwise, it will move towards the destination
by at least δ. Notice that in the Non-Rigid model, 1) the movement is still error-free if
the destination is close enough, i.e., within δ, and 2) there is no error whatsoever in the
direction of the movement even if the destination is far away. In [1], it was shown that these
two properties allow robots to implement positional encoding even in the Non-Rigid model.
This motivates us to consider a new movement model allowing inaccurate movements.

We consider a movement model that assumes errors in both direction and extent of the
intended movement. Also, the errors can occur no matter what the extent of the attempted
movement is. In this model, we study the Arbitrary Pattern Formation problem.
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Arbitrary Pattern Formation is a fundamental robot coordination problem that has
been extensively studied in the literature [12, 14, 9, 8, 6, 13, 5, 10, 15, 2, 4]. The objective
of the problem is to design a distributed algorithm that allows the robots to form any
pattern F given as input. This problem is well-studied in the literature in the Rigid and
Non-Rigid model. However, the techniques used in these algorithms are not readily portable
in our setting. For example, in most of these algorithms, the minimum enclosing circle
of the configuration plays an important role. The center of the minimum enclosing circle
is set as the origin of the coordinate system with respect to which the pattern is to be
formed. So the minimum enclosing circle is kept invariant throughout the algorithm. The
robots inside the minimum enclosing circle move to form the part of the pattern inside
the circle, without disturbing it. For the pattern points on the minimum enclosing circle,
robots from the inside may have to move on to the circle. Also, the robots on the minimum
enclosing circle, in order to reposition themselves in accordance with the pattern to be
formed, will move along the circumference so that the minimum enclosing circle does not
change. Notice that while moving along the circle, an error prone robot might skid off the
circle. Also, when a robot from the inside attempts to move exactly on to the circle, it may
move out of the circle due to the error in movement. In both cases, the minimum enclosing
circle will change and the progress made by the algorithm will be lost. In fact, we face
difficulty at a more fundamental level: exactly forming an arbitrary pattern is impossible by
robots with inaccurate movements. Therefore, we consider a relaxed version of the problem
called Approximate Arbitrary Pattern Formation where the robots are required
to form an approximation of the input pattern F . We show that with no agreement in
coordinate system, the problem is unsolvable, even by fully synchronous robots, if the initial
configuration 1) has rotational symmetry and there is no robot at the center of rotation, or 2)
has reflectional symmetry and there is no robot on the reflection axis. From all other initial
configurations, we solve the problem in OBLOT + SSYN C (the robots are oblivious, silent
and semi-synchronous) and FCOM + ASYN C (the robots are oblivious, asynchronous and
can communicate using externally visible lights).

Movement error was previously considered in [7], but in the context of the Convergence
problem which requires the robots to converge towards a single point. The error model
in [7] also considers errors in both direction and extent of the intended movement. However,
there is some difference between the error model of [7] and the one introduced in this paper.
In particular, the maximum possible error in direction is independent of the extent of the
intended movement in [7]. In our model, the maximum possible error in both direction
and extent, depend upon the extent of the intended movement. We believe that this is a
reasonable assumption as the error is expected to be less if the destination of the intended
movement is not far away.

2 Robot Model

A set of n mobile computational entities, called robots, are initially positioned at distinct
points in the plane. The robots are anonymous, identical, autonomous and homogeneous.
The robots are modeled as dimensionless points in the plane. They do not have access to
any global coordinate system. Each robot has its own local coordinate system centered at its
current position. There is no consistency among the local coordinate systems of the robots
except for a common unit of distance. We call this the standard unit of distance. Based on
the memory and communication capabilities, we consider two standard models: OBLOT
and FCOM. In OBLOT , the robots are silent (they have no means of communication) and
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oblivious (they have no memory of past observations and computations). In FCOM, each
robot is equipped with a light which can assume a constant number of colors and is only
visible to other robots. The lights serve as a weak communication mechanism. The robots,
when active, operate according to the so-called Look-Compute-Move cycles. In each cycle,
a previously idle or inactive robot wakes up and executes the following steps. In the Look
phase, the robot takes the snapshot of the positions (and their lights in case of FCOM) of
the robots. Based on the perceived configuration, the robot performs computations according
to a deterministic algorithm to decide a destination point (and a color in case of FCOM).
Based on the outcome of the algorithm, the robot (sets its light to the computed color in case
of FCOM, and ) either remains stationary or attempts to move to the computed destination.
Based on the activation and timing of the robots, there are three types of schedulers. In
FSYN C or fully synchronous, time can be logically divided into global rounds. In each
round, all the robots are activated and they perform their actions at the same time. SSYN C
or semi-synchronous coincides with FSYN C, with the only difference that not all robots are
necessarily activated in each round. The most general model is ASYN C or asynchronous
where there are no synchronicity assumptions.

We now describe our movement model. There are known constants 0 < λ < 1, 0 < ∆ < 1,
such that if a robot at x attempts to move to y, then it will reach a point z where d(z, y) <

µ(x, y)d(x, y) where µ(x, y) = min{∆, λd(x, y)}. Here d(x, y) denotes (the numerical value
of) the distance between the points x and y measured in the standard unit of distance. The
movement of the robot will be along the straight line joining x and z. We denote by Z(x, y)
the set of all points where a robot may reach if it attempts to move from x to y. So Z(x, y)
is the open disk {z ∈ R2 | d(z, y) < µ(x, y)d(x, y)} (see Fig. 1a). We denote by errord(x, y)
and errora(x, y) the supremums of the possible distance errors (i.e., the deviation from the
intended amount of distance to be traveled) and angle errors (i.e., the angular deviation from
the intended trajectory) respectively when a robot intends to travel from x to y. Notice that
errord(x, y) is equal to the radius of Z(x, y) and errora(x, y) is equal to the angle between
line(x, y) and a tangent on Z(x, y) passing through x. Hence, errord(x, y) = µ(x, y)d(x, y)
and errora(x, y) = sin−1(µ(x,y)d(x,y)

d(x,y) ) = sin−1(µ(x, y)). Also notice that 1) errord(x, y)
increases with d(x, y), and 2) errora(x, y) increases with d(x, y) only up to a certain value,
i.e., sin−1(∆) and then remains constant (see Fig. 1b). So, errora(x, y) ≤ sin−1(∆), for any
x, y.

x

y

z

Z(x, y)

(a)

x y3y2y1

(b)

Figure 1 a) If a robot attempts to move from x to y, then it will reach at some point z in the shaded
region Z(x, y). b) If a robot attempts to move from x to yi, then it will reach at some point in Z(x, yi)
which is the shaded region around yi. Observe that errord(x, y1) < errord(x, y2) < errord(x, y3),
but errora(x, y1) < errora(x, y2) = errora(x, y3).
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3 Definitions and Notations

We denote the configuration of robots by R = {r1, r2, . . . , rn} where each ri denotes a
robot as well as the point in the plane where it is situated. The input pattern given
to the robots will be denoted by F = {f1, f2, . . . fn} where each fi is an element from
R2. Given two points x and y in the Euclidean plane, let d(x, y) denote the distance
between the points x and y measured in the standard unit of distance. We denote by
line(x, y) the straight line passing through x and y. By seg(x, y) (seg(x, y)) we denote
the line segment joining x and y excluding (resp. including) the end points. If ℓ1 and
ℓ2 are two parallel lines, then S(ℓ1, ℓ2) denotes the open region between these two lines.
For any point c in the Euclidean plane and a length l, C(c, l) = {z ∈ R2 | d(c, z) = l},
B(c, l) = {z ∈ R2 | d(c, z) < l} and B(c, l) = {z ∈ R2 | d(c, z) ≤ l} = B(c, l) ∪ C(c, l). If C is
a circle then encl(C) and encl(C) respectively denote the open and closed region enclosed by
C. Also, ext(C) = R2 \ encl(C) and ext(C) = R2 \ encl(C). Hence, encl(C) = encl(C) ∪ C

and ext(C) = ext(C) ∪ C. Let x, y be two points in the plane and d(x, y) > l. Suppose
that the tangents from x to C(y, l) touches C(y, l) at a and b. The Cone(x, B(y, l)) is
the open region enclosed by B(y, l), seg(x, a) and seg(x, b), as shown in Fig. 2. Also,
∠Cone(x, B(y, l)) = ∠axb. We denote by F(x, y) the family of circles passing through x and
y. The center of all the circles lie on the perpendicular bisector of seg(x, y). If C1, C2 ∈ F(x, y)
and c1, c2 be their centers respectively, then (C1, C2)F(x,y) and [C1, C2]F(x,y) will denote
respectively the family of circles {C ∈ F(x, y) | c ∈ seg(c1, c2), where c is the center of C}
and {C ∈ F(x, y) | c ∈ seg(c1, c2), where c is the center of C}.

x

a

b

y

Figure 2 Cone(x, B(y, l)) is defined as the shaded open region enclosed by B(y, l), seg(x, a) and
seg(x, b).

For a set P of points in the plane, C(P ) and c(P ) will respectively denote the minimum
enclosing circle of P (i.e., the smallest circle C such that P ⊂ encl(C)) and its center. The
smallest enclosing circle C(P ) is unique and can be computed in linear time. For P , with
2 ≤ |P | ≤ 3, CC(P ) denotes the circumcircle of P defined as the following. If P = {p1, p2},
CC(P ) is the circle having seg(p1, p2) as the diameter and if P = {p1, p2, p3} and the three
points are not collinear, CC(P ) is the unique circle passing through p1, p2 and p3.

▶ Property 1. If P ′ ⊆ P such that 1) P ′ consists of two points or P ′ consists of three
points that form an acute angled triangle, and 2) P ⊂ encl(CC(P ′)), then C(P ) = CC(P ′).
Conversely, for any P , ∃P ′ ⊆ P so that 1) P ′ consists of two points or P ′ consists of three
points that form an acute angled triangle and 2) C(P ) = CC(P ′).

From Property 1 it follows that C(P ) passes either through two points of P that are on
the same diameter (antipodal points), or through at least three points so that some three of
them form an acute angled or right angled triangle. A point p ∈ P is said to be critical if
C(P ) ̸= C(P \ {p}). Note that p ∈ P is critical only if p ∈ C(P ).

▶ Property 2. If |P ∩ C(P )| ≥ 4 then there exists at least one point from P ∩ C(P ) which is
not critical.

OPODIS 2021



10:6 Pattern Formation by Robots with Inaccurate Movements

Consider all concentric circles that are centered at c(P ) and passes through at least one
point of P . Let Ci

↓(P ) (Ci
↑(P )) denote the ith (i ≥ 1) of these circles so that Ci+1

↓ (P ) ⊂
encl(Ci

↓(P )) (resp. Ci
↑(P ) ⊂ encl(Ci+1

↑ (P ))). We shall denote c(P ) by C0
↑(P ). So we have

C1
↓(P ) = C(P ) and if there is a point at c(P ), then C1

↑(P ) = c(P ) = C0
↑(P ). We say that a

configuration of robots R is symmetry safe if one of the following three conditions hold (see
Fig. 3).
1. i) there is some non-critical robot on C(R), hence |R ∩ C(R)| ≥ 3, ii) there is no

robot at c(R), iii) |R ∩ C1
↑(R)| = 1 and |R ∩ C2

↑(R)| = 1, iv) if R ∩ C1
↑(R) = {r1} and

R ∩ C2
↑(R) = {r2}, then r1, r2, c(R) are not collinear.

2. i) all robots on C(R) are critical and R ∩ C(R) = {r1, r2, r3}, ii) ∆r1r2r3 is scalene, i.e.,
all three sides have different lengths.

3. i) all robots on C(R) are critical and R ∩ C(R) = {r1, r2}, ii) |R ∩ C1
↑(R)| = 1, iii) if

R ∩ C1
↑(R) = {r}, r /∈ line(r1, r2) ∪ ℓ, where ℓ is the line passing through c(R) and

perpendicular to line(r1, r2).

r1
r2

(a)

r1

r3

r2

(b)

r

r1 r2

(c)

Figure 3 Illustrations of symmetry safe configurations.

We shall say that a configuration R of robots has an unbreakable symmetry if one of the
following is true: i) R has rotational symmetry with no robot at c(R), ii) R has reflectional
symmetry with respect to a line ℓ with no robot on ℓ.

4 Approximate Arbitrary Pattern Formation

The Arbitrary Pattern Formation problem in its standard form is the following. Each
robot of a team of n robots is given a pattern F as input which is a list of n distinct
elements from R2. The given input F is exactly same for each robot. The problem asks
for a distributed algorithm that guides the robots to a configuration that is similar to F

with respect to translation, reflection, rotation and uniform scaling. We refer to this version
of the problem as the Exact Arbitrary Pattern Formation problem, highlighting
the fact that the configuration of the robots is required to be exactly similar to the input
pattern. However, it is not difficult to see that Exact Arbitrary Pattern Formation is
unsolvable in our model where the robot movements are inaccurate.

▶ Theorem 1. Exact Arbitrary Pattern Formation is unsolvable by robots with
inaccurate movements.

Therefore, we introduce a relaxed version of the problem called the Approximate
Arbitrary Pattern Formation. Intuitively, we want the robots to form a pattern that
is close to the given pattern, but may not be exactly similar to it. Formally, the robots
are given as input a pattern F and a number 0 < ϵ < 1. The number ϵ is small enough so
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that the distance between no two pattern points is less than 2ϵD where D is the diameter
of C(F ). Given the input (F, ϵ), the problem requires the robots to a form a configuration
R = {r1, . . . , rn} such that there exists an embedding (subject to translation, reflection,
rotation and uniform scaling) of the pattern F on the plane, say P = {p1, . . . , pn}, such that
d(pi, ri) ≤ ϵD for all i = 1, . . . , n, where D is the diameter of C(P ). In this case, we say
that the configuration R is ϵ-close to the pattern F . Recall that the number ϵ is such that
the disks B(fi, ϵD) are disjoint. Since P is similar to F , disks B(pi, ϵD) are also disjoint.
The problem requires that exactly one robot is placed inside each disk. Furthermore, the
movements should be collisionless.

It is well known that Arbitrary Pattern Formation is unsolvable if the initial
configuration has an unbreakable symmetry. It can be shown that this also holds for
Approximate Arbitrary Pattern Formation (See Appendix A for proof).

▶ Theorem 2. Approximate Arbitrary Pattern Formation is deterministically un-
solvable, even with Rigid movements, if the initial configuration has unbreakable symmetries.

5 The Algorithm for Semi-Synchronous Robots

In this section, we present an algorithm that solves Approximate Arbitrary Pattern
Formation in OBLOT + SSYN C from any initial configuration that does not have any
unbreakable symmetries. The algorithm works in three phases which we shall describe in the
next three subsections. For each phase, we shall first present the idea behind the approach
and then give a brief description of the algorithm. More detailed description along with
formal proofs can be found in the full version [3] of the paper.

5.1 Phase 1
Motive and Overview

The goal of Phase 1 is to create a configuration which is asymmetric and in which all
robots on its minimum enclosing circle are critical. Phase 1 consists of three subphases,
namely Subphase 1.1, Subphase 1.2 and Subphase 1.3. If the configuration is symmetric,
our first step would be to get rid of the symmetry. Since the initial configuration cannot
have any unbreakable symmetries, it will be possible to choose some unique robot from the
configuration. We can remove the symmetry by appropriately moving this robot. This is
done in Subphase 1.1. Once we have an asymmetric configuration, the next objective is
to bring inside some non-critical robots from the minimum enclosing circle so that all the
remaining robots on the minimum enclosing circle are critical. However, we have to make
sure that these moves do not create new symmetries in the configuration. For this, we first
make the configuration symmetry safe, i.e., have unique robots r1 and r2 respectively closest
and second closest from the center of the minimum enclosing circle such that r1 and r2 are
not on the same diameter. This is done in Subphase 1.2. After this, in Subphase 1.3, we
start bringing inside the robots from the circumference. The movements of the robots should
be such that r1 and r2 remain the unique closest and second closest robot from the center.
This ensures that these movements do not create any symmetries. The two properties that
we achieved in Phase 1, namely, having an asymmetric configuration and not having any
non-critical robot on the minimum enclosing circle, will play crucial role in our approach
and hence, will be preserved during the rest of the algorithm. This will be the case even if
the target pattern F is symmetric or has non-critical robots on its minimum enclosing circle.
This is not a problem as we are not required to exactly form the pattern F . Any pattern F

can be approximated by a pattern that is asymmetric and has no non-critical points on its
minimum enclosing circle.

OPODIS 2021
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Brief Description of the Algorithm

We shall now briefly describe the algorithm. The algorithm is in Phase 1 if ¬u ∧ (¬a ∨ ¬c)
holds, where a = “R is an asymmetric configuration”, u = “R has an unbreakable symmetry”,
c = “all robots on C(R) are critical”. The objective is to create a configuration with a ∧ c.
The algorithm is in Subphase 1.1 if ¬u ∧ ¬a holds, in Subphase 1.2 if a ∧ ¬s ∧ ¬c holds
(s = “R is symmetry safe”) and in Subphase 1.3 if s ∧ ¬c holds.

First we describe Subphase 1.1. We have ¬u∧¬a. Our objective is to create an asymmetric
configuration, i.e., have a. As mentioned earlier, we will remove the symmetry by moving
exactly one robot of the configuration, while all other robots will remain stationary. The
fact that we have ¬u, will allow us to select one such robot from the configuration. To
describe the algorithm, we have to consider the following four cases. Case 1 consists of the
configurations in Subphase 1.1 where there is a robot at c(R). Now consider the cases where
there is no robot at c(R). Notice that in this case, R cannot have a rotational symmetry
because ¬u holds. So R has a reflectional symmetry with respect to a unique line ℓ as
reflectional symmetry with respect to two different lines imply rotational symmetry. Since
¬u holds, there are robots on ℓ. If there is a non-critical robot on ℓ then we call it Case 2.
For the remaining cases where there is no non-critical robot on ℓ, we call it Case 3 if there
are more than 2 robots on C(R) and Case 4 if there are exactly 2 robots on C(R).

In Case 1, we have a robot r at x = c(R). In this case, r will move away from the center
and all other robots will remain static. The destination y chosen by the robot r should
satisfy the following conditions: (1) Z(x, y) ⊂ encl(C2

↑(R)) \ {c(R)}, (2) Z(x, y) ∩ ℓ = ∅ for
any reflection axis ℓ of R \ {r}. It is easy to see that such an y exists. Furthermore, r can
easily compute such an y.

In Case 2, there is no robot at c(R), R has reflectional symmetry with respect to a
unique line ℓ and there is at least one non-critical robot on ℓ. If there are more than one
non-critical robots on ℓ, we can single out one of them using the concept of view of a robot
(see Appendix A for details). In particular, all robots on ℓ will have distinct views (because
otherwise R will have rotational symmetry) and hence we have a unique non-critical robot
r with minimum view. Only r will move in this case. Suppose that r is at point x. The
destination y chosen by r should satisfy the following conditions: (1) if x ∈ Ci

↑(R), then
Cone(x, Z(x, y)) ⊂ encl(Ci

↑(R)) \ encl(Ci−1
↑ (R)), (2) Z(x, y) ∩ ℓ′ = ∅ for any reflection axis

ℓ′ of R \ {r}. Such points clearly exist and r can easily compute one.
In Case 3, we have no robot at c(R), R has reflectional symmetry with respect to a

unique line ℓ, there is no non-critical robot on ℓ and C(R) has at least 3 robots on it. In
this case, it can be shown that there is exactly one robot on ℓ and it is on C(R). Call
this robot r. Let x denote its position. Let r1, r2 be the two robots (specular with respect
to ℓ) on C(R) such that ∠rc(R)r1 = ∠rc(R)r2 = max{∠rc(R)r′′ | r′′ ∈ R ∩ C(R)}. It
can be shown that π

2 < ∠rc(R)r1 = ∠rc(R)r2 < π. Only r will move in this case and
the rest will remain static. Here the robot will move outside of the current minimum
enclosing circle. The chosen destination y should satisfy the following conditions: (1)
Z(x, y) ∩ ℓ = ∅, (2) Cone(x, Z(x, y)) ⊂ ext(C(R)) ∩ encl(C ′) ∩ H where C ′ is the largest
circle from {C ∈ F(r1, r2) | R ⊂ encl(C)} and H is the open half-plane delimited by
line(r1, r2) that contains x, (3) Z(x, y) ∩ Ci = ∅, where Ci = C(ri, d(r1, r2)), i = 1, 2, (4)
Z(x, y) ⊂ S(L1, L2), where Li is the line parallel to ℓ and passing through ri, i = 1, 2. Again,
it is staightforward to see that such an y should exist and r can easily compute one.

In Case 4, we have no robot at c(R), R has reflectional symmetry with respect to a
unique line ℓ, there is no non-critical robot on ℓ and C(R) has exactly 2 robots on it. In
this case, it can be shown that there is no robot on ℓ ∩ encl(C(R)) and there are two
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antipodal robots on ℓ, say r and r′. Also, the views of r and r′ must be different. So
let r be the robot with minimum view. Only r will move in this case. Let ℓ′ be the line
perpendicular to ℓ and passing through r. For each r′′ ∈ R \ {r, r′}, consider the line passing
through r′′ and perpendicular to seg(r′′, r′). Consider the points of intersection of these
lines with ℓ′. Let P1, P2 (specular with respect to ℓ) be the two of these points that are
closest to ℓ. Let L1, L2 be the lines parallel to ℓ and passing through P1, P2 respectively.
Assuming that r is at point x, the destination y chosen by r should satisfy the following
conditions: (1) Cone(x, Z(x, y)) ⊂ ext(C(R)), (2) Z(x, y) ∩ ℓ = ∅, (3) Z(x, y) ⊂ S(L1, L2),
(4) Z(x, y) ∩ C(c, d(c, r′)) = ∅, where c = c(R \ {r, r′}).

It can be shown that the movements described for Subphase 1.1 will lead to an asymmetric
configuration. The algorithm will be in Subphase 1.2 if a∧¬s∧¬c holds. Then our goal would
be to make the configuration symmetry safe. This can be easily done. When s ∧ ¬c holds,
we are in Subphase 1.3 . Then our objective would be to have a ∧ c. As the configuration is
asymmetric (as s =⇒ a), there is a robot with minimum view among all the non-critical
robots lying on C(R). This robot will move inside. Continuing in this manner, non-critical
robots on C(R) will sequentially move inside until we obtain a ∧ c.

5.2 Phase 2

Motive and Overview

Phase 1 was a preprocessing step where a configuration was prepared in which there is no
symmetry and all robots on the minimum enclosing circle are critical. Actual formation of
the pattern will be done in two steps, in Phase 2 and Phase 3. In Phase 2, the robots on the
minimum enclosing circle will reposition themselves according to the target pattern and then
in Phase 3, the robots inside the minimum enclosing circle will move to complete the pattern.
The standard approach to solve the Arbitrary Pattern Formation problem, however, is
exactly the opposite. Usually, the part of the pattern inside the minimum enclosing circle
is first formed and then the pattern points on the minimum enclosing circle are occupied
by robots. In this approach, the minimum enclosing circle is kept invariant throughout the
algorithm. Keeping the minimum enclosing circle fixed is important because it helps to fix
the coordinate system with respect to which the pattern is formed. During the second step,
a robot on the minimum enclosing circle may have to move to another point on the circle.
In order to keep the minimum enclosing circle unchanged, it has to move exactly along the
circumference. However, it is not possible to execute such movement in our model. An error
in movement in this step will change the minimum enclosing circle and the progress made
by the algorithm will be lost. Placing the robots at the correct positions on the minimum
enclosing circle is a difficult issue in our model. In fact, it can be proved that it is impossible
to deterministically obtain a configuration with ≥ 4 robots on the minimum enclosing circle
if the initial configuration has < 4 robots on the minimum enclosing circle. For this reason,
we shall work with 2 or 3 (critical) robots on the minimum enclosing circle as obtained
from Phase 1 (or may be from the beginning). So in Phase 2, we start with an asymmetric
configuration where all robots on the minimum enclosing circle are critical. The objective of
this phase is to move these critical robots so that their relative positions on the minimum
enclosing circle is consistent with the target pattern. For this, we shall choose a set of two or
three pattern points from the minimum enclosing circle of the target pattern. We shall call
this set the bounding structure of the target pattern. Essentially, the objective of Phase 2 is
to approximate this structure by the critical robots.
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10:10 Pattern Formation by Robots with Inaccurate Movements

The Bounding Structure

If Algorithm 1 is applied on the target pattern F , then we obtain a set BF ⊆ C(F ) ∩ F of
pattern points such that BF is a minimal set of points of C(F )∩F such that CC(BF ) = C(F ).
By minimal set we mean that no proper subset of BF has this property. By Property 1, BF

either consists of two antipodal points or three points that form an acute angled triangle.
We call BF the bounding structure of F (see Fig. 4a). Recall that each robot computes the
same bounding structure since the input F = {f1, f2, . . . fn} is same for all robots. We say
that the bounding structure of F is formed by the robots if one of the following holds.

1. BF has exactly two points, C(R) has exactly two robots on it and R is symmetry safe.
2. BF has exactly three points and C(R) has exactly three robots on it (see Fig. 4). Let

BF = {fi1 , fi2 , fi3} and C(R) ∩ R = {r1, r2, r3}. R is symmetry safe (i.e. ∆r1r2r3 is
scalene) and furthermore, if seg(r1, r2) is the largest side of the triangle formed by r1, r2, r3
and seg(fi1 , fi2) is a largest side of the triangle formed by fi1 , fi2 , fi3 , then ∃ an embedding
fi 7→ Pi of F on the plane identifying seg(fi1 , fi2) with seg(r1, r2) so that i) r3 ∈
B(Pi3 , ϵD), (D = diameter of C(P1, . . . , Pn)) and ii) B(Pi, ϵD) ∩ encl(CC(r1, r2, r3)) ̸= ∅
for all i ∈ {1, . . . , n}

Algorithm 1 Algorithm producing the bounding structure of a pattern.
Input : A pattern F = {f1, . . . , fn}

1 Let C(F ) ∩ F = {fj1 , . . . , fjk}, where j1 < . . . < jk

2 BF ← {fj1 , . . . , fjk}
3 for l ∈ 1, . . . , k do
4 if fjl is non-critical in F then
5 F ← F \ {fjl}
6 BF ← BF \ {fjl}

7 Return BF

Brief Description of the Algorithm

The algorithm is in Phase 2 if a ∧ c ∧ ¬b holds (b = “the bounding structure is formed”).
The objective is to have b. We describe the algorithm for the following cases: C(R) has three
robots and the bounding structure also has three points (Case 1), C(R) has three robots
and the bounding structure has two points (Case 2), C(R) has two robots and the bounding
structure has three points (Case 3) and C(R) has two robots and the bounding structure
also has two points (Case 4).

First consider Case 1. Here the goal is to transform the triangle of the robots on C(R)
so that the bounding structure of F is formed. Let C(R) ∩ R = {r1, r2, r3}. If ∆r1r2r3 is
not scalene, then we shall make it so by using similar techniques from Subphase 1.1, Case 3.
So now assume that ∆r1r2r3 is scalene. Let seg(r1, r2) be the largest side of ∆r1r2r3. In
that case, r3 will be called the transformer robot. This robot will move to form the bounding
structure of F . Let L be the perpendicular bisector of seg(r1, r2). Since no two sides of
the triangle are of equal length, r3 /∈ L. Let H be the open half-plane delimited by L that
contains r3. Without loss of generality, assume that r1 ∈ H. Let L1 be the line parallel to L

and passing through r1. Let H′ be the open half-plane delimited by L1 that contains L. Since
∆r1r2r3 is acute angled, r3 ∈ H′. Let H′′ be the open half-plane delimited by line(r1, r2) that
contains r3. Let C1 = C(r1, d(r1, r2)) and C2 = C(r2, d(r2, r1)). Since seg(r1, r2) is (strictly)
the largest side of ∆r1r2r3, r3 ∈ encl(C1) ∩ encl(C2). If C3 = CC(r1, r2), then r3 ∈ ext(C3)
as ∆r1r2r3 is acute angled. Now take the largest side of the bounding structure BF . In
case of a tie, use the ordering of the points in the input F to choose one of them. Embed
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(a) (b)

(c) (d)

Figure 4 a) The input pattern F . The bounding structure bF consists of the blue pattern points.
b)-c) The bounding structure is formed by the robots. d) To obtain a final configuration, each
shaded region must have a robot inside it.

the bounding structure BF on the plane identifying this side with seg(r1, r2) so that the
third point of the bounding structure is mapped to a point P ∈ H ∩ H′′. Since the bounding
structure is acute angled, P ∈ H′. Also, P ∈ ext(C3) for the same reason. Furthermore, since
a largest side of the bounding structure is identified with seg(r1, r2), P ∈ encl(C1)∩encl(C2).
So we have r3 ∈ H ∩ H′ ∩ H′′ ∩ encl(C1) ∩ encl(C2) ∩ ext(C3) = Ublue (the blue open region
in Fig. 5a) and P ∈ H ∩H′ ∩H′′ ∩encl(C1)∩encl(C2)∩ext(C3) = U ′

blue. Notice that U ′
blue

consists of the open region Ublue and some parts of its boundary. Our objective is to move
the robot r3 to a point near P . The entire trajectory of the movement should lie inside the
region Ublue. However, before this movement, we have to make sure that the configuration
satisfies some desirable properties described in the following. Let C4 be the circle passing
through r1, r2 and the point in H′′ where C1 and C2 intersect each other. We shall say that
the transformer robot is eligible to move if R ∩ encl(C(R)) ⊂ encl(C3) ∩ encl(C4) = Ured

(the red region in Fig. 5b). The transformer robot will not move until it becomes eligible.
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r2r1

(a)

r2r1

(b)

r2r1

r3

(c)

r2r1

r

(d)

Figure 5 a)-b)Illustrations for Phase 2, Case 1. c) Illustrations for Phase 2, Case 2. d) Illustrations
for Phase 2, Case 3.

So the robots in encl(C(R)) that are not in Ured, should sequentially move inside this
region first. Notice that during these movements, the configuration remains asymmetric
(as ∆r1r2r3 remains scalene) and also r3 remains the transformer robot. So when we have
R ∩ encl(C(R)) ⊂ Ured, r3 will become eligible to move. Now it has to move inside the
region B(P, ϵD) ∩ Ublue. However, it is important that its trajectory lies inside Ublue. This is
because it can be shown that as long as r3 stays inside the “safe region” Ublue, it remains as
the transformer robot. This can be done by a movement scheme described in Appendix B
that allows a robot to move close to a destination point through a safe region.

In Case 2, C(R) has exactly three robots and the bounding structure has exactly two
points. Let C(R) ∩ R = {r1, r2, r3}. As before, ∆r1r2r3 will be made scalene. Let seg(r1, r2)
be the largest side. Then r3 is the transformer robot. The plan is to move r3 inward so that
it is no longer on the minimum enclosing circle. Let C1, C2, C3, H, H′, H′′ denote the same
as in Case 1. As before, we have r3 ∈ H ∩ H′ ∩ H′′ ∩ encl(C1) ∩ encl(C2) ∩ ext(C3) = Ublue

(blue region in Fig. 5c). We shall say that the transformer robot is eligible to move if 1)
R∩encl(C(R)) ⊂ encl(C3)∩encl(C(R)) (red region in Fig. 5c) and 2) R\{r3} is a symmetry
safe configuration. The robots in encl(C(R)) that are not already in encl(C3) will move
inside it. Then we have C(R \ {r3}) = C3 and it passes through only r1 and r2. So R \ {r3}
will be symmetry safe if there is a unique robot closest to O, the midpoint of seg(r1, r2), and
it is not on seg(r1, r2) or its perpendicular bisector. This can be achieved easily. When r3
becomes eligible to move, it will move inside encl(C3). During its movement, when it has not
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entered encl(C3), its trajectory should remain inside Ublue. Also, when it enters encl(C3), it
should remain in ext(C) where C = C1

↑(R \ {r3}). So its entire trajectory should be inside
the region H ∩ H′ ∩ H′′ ∩ encl(C1) ∩ encl(C2) ∩ ext(C) and it should not collide with any
robot upon entering encl(C3). This can be done by the scheme from Appendix B.

In Case 3, C(R) has exactly two robots and the bounding structure consists of exactly
three points. Let C(R)∩R = {r1, r2}. Here the strategy is to move outward one of the robots
from encl(C(R)), say r, so that the minimum enclosing circle becomes the circumcircle of r, r1
and r2. We shall call r the transformer robot. The robot farthest from c(R) will be chosen as
the transformer robot. In case of a tie, it is broken using the asymmetry of the configuration.
Let H be the open half plane delimited by line(r1, r2) that contains r. Let L1 and L2 be the
lines perpendicular to line(r1, r2) and passing through respectively r1 and r2. Let L be the
perpendicular bisector of seg(r1, r2). Without loss of generality, assume that r ∈ S(L1, L)∪L.
Let C1 = C(r1, d(r1, r2)), C2 = C(r2, d(r2, r1)) and C3 = CC(r1, r2). Let C4 be the
largest circle from the family {C ∈ F(r1, r2) | center of C lies in H and R ⊂ encl(C)}. The
algorithm asks r to move into the region encl(C1)∩encl(C2)∩ext(C3)∩encl(C4)∩H∩S(L1, L)
(the blue region in Fig. 5d). Again, this can be done by the scheme described in Appendix B.

In Case 4, C(R) has two exactly robots and the bounding structure also has exactly two
points. The only time ¬b may hold is when the configuration is not symmetry safe. So we
have to make the configuration symmetry safe by previously discussed techniques.

5.3 Phase 3
Motive and Overview

The algorithm is in Phase 3 if b holds. The objective of this phase is to form the pattern
approximately. Notice that when b holds, the configuration is symmetry safe and hence
asymmetric. This will allow the robots to agree on a coordinate system in which the target
will be formed (approximately). During this process, b has to be preserved because otherwise
the agreement in coordinate system will be lost.

The termination condition of the algorithm is that both b holds (i.e., it is a Phase 3
configuration) and the configuration is ϵ-close to F . Therefore, even if the initial configuration
is ϵ-close to F (i.e., the pattern F is already formed approximately), the algorithm will still
go through the earlier phases to have b and then approximately form the pattern while
preserving b. The reason why we take this approach is because in general, even if the
configuration is ϵ-close to F , the robots may not be able to efficiently identify this. This is a
basic difficultly of the problem. However, when b holds there is a way to fix a particular
embedding of F in the plane and then the only thing to check is whether there are robots
close to each point of the embedding. For Phase 3, there are two cases to consider: BF has
exactly two points (Case 1) and BF has exactly three points (Case 2).

Brief Description of the Algorithm

We shall only discuss Case 1 because its techniques can be used to solve Case 2 as well.
Case 2 and all the omitted details of Case 1 can be found in the full version [3] of the
paper. So for Case 1, let us first describe how we shall fix a common coordinate system.
Let {r1, r2} = C(R) ∩ R. Let ℓ = line(r1, r2) and ℓ′ be the line passing through c(R) and
perpendicular to ℓ. Let rl be the unique robot closest to c(R). Also it is in encl(C(R))\(ℓ∪ℓ′).
Such a robot exists because b holds. We set a global coordinate system whose center is
at c(R), X axis along ℓ, Y axis along ℓ′. The positive directions of X and Y axis are
such that rl lies in the positive quadrant. Now we choose an embedding of the pattern F

that will be approximated. Perform a coordinate transformation (rotation) on the target

OPODIS 2021



10:14 Pattern Formation by Robots with Inaccurate Movements

pattern F so that the bounding structure is along the X axis. Let F ′ denote the input
after this transformation. Consider the pattern points on C1

↑(F ′) except the points of the
bounding structure (notice that C1

↑(F ′) may have points from the bounding structure when
C1

↑(F ′) = C1
↓(F ′)). Reflect the pattern with respect to X axis or Y axis or both, if required,

so that at least one of them is in the closed positive quadrant (X ≥ 0, Y ≥ 0). Let F ′′ denote
the pattern thus obtained. Therefore, if {fi, fj} be the bounding structure, then we have
1) fi, fj on the X axis and 2) at least one point from C1

↑(F ′′) ∩ (F ′′ \ {fi, fj}) in the closed
positive quadrant. Each robot applies coordinate transformations on F and obtains the same
pattern F ′′. Let fl denote the first pattern point from C1

↑(F ′′) ∩ (F ′′ \ {fi, fj}) that is in the
closed positive quadrant. The pattern F ′′ is mapped in the plane in the global coordinate
system and scaled so that the bounding structure is mapped onto seg(r1, r2). These points
are called the target points. T denotes the set of target points. Notice that the robot rl,
being the unique robot on C1

↑(R) and also being in an open quadrant (defined by ℓ ∪ ℓ′),
plays crucial role in fixing the common coordinate system. This will be preserved throughout
the algorithm. In particular, rl will remain in such a position even in the final configuration.
The target point that rl will approximate in the final configuration will be the target point
corresponding to fl. Let us call it tl. Now tl is on C1

↑(T ) and in the closed positive quadrant.
As rl is in the open quadrant, it does not need to move out of it to approximate tl. Now as
rl needs to remain the closest robot from the center, we will define a circle Cl, that depends
only on the position of tl, and require that in the final configuration we have rl inside this
circle and all robots are outside the circle. If D is the diameter of C(T ), i.e., D = d(r1, r2),
then define the circle Cl as (see Fig. 6) i) if tl ∈ C1

↑(T ) = c(T ), then Cl = C(c(T ), ϵD), ii) if
tl ∈ C1

↑(T ) = C(T ), then Cl = C(c(T ), (1 − ϵ) D
2 ), iii) otherwise, Cl = C1

↑(T ).
We shall say that a target point t ̸= tl is realized by a robot r, if r is the unique closest

robot to t and r ∈ B(t, ϵD) ∩ ext(Cl) ∩ encl(C(R)). We shall say that tl is realized by a robot
r if all target points t ̸= tl are realized, r is the robot closest to tl and r ∈ B(t, ϵD) ∩ encl(Cl).
Hence, if tl is realized then it implies that all target points are realized, i.e., the given pattern
is formed. We call this the final configuration (see also Fig. 6). Now the objective is to realize
all the target points. This will be done in the following way. First the robot rl moves inside
encl(Cl), if not already there. The movement should be such that s remains true. Then the
robots from R \ {rl} will sequentially realize all the target points of T \ {tl} preserving s.
These movements are complicated and are described in the full version [3]. When the target
points of T \ {tl} are realized, the robot rl will then realize tl. Again, s should remain true
and rl should remain as the unique robot closest to c(R).

5.4 The Main Result
Recall that a configuration with ¬u ∧ (¬a ∨ ¬c) is in Phase 1, a configuration with a ∧ c ∧ ¬b
is in Phase 2, and a configuration with b is in Phase 3. It is easy to see that any configuration
with ¬u belongs to one of the three phases. Phase 1 terminates with a ∧ c which is either a
Phase 2 or Phase 3 configuration. Phase 2 terminates with b which is a Phase 3 configuration.
A final configuration is formed in Phase 3. Hence the algorithm solves the problem in
OBLOT + SSYN C from any configuration which is ¬u.

6 The Algorithm for Asynchronous Robots

Let us denote the algorithm presented in Section 5 as A. It works in OBLOT + SSYN C.
Notice that a feature of this algorithm is that it is sequential in the following sense. At
any round during the execution of the algorithm, at most one robot decides to move.
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(a) (b)

(c) (d)

(e) (f)

Figure 6 Illustrations for Phase 3, Case 1. In each row, the input pattern F is shown on the
left and a final configuration approximating F is shown on the right. In each case, points of the
bounding structure are shown in blue, tl is shown in black and the green circle represents Cl.
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This immediately gives an algorithm that works in FCOM + ASYN C using two colors
{busy, idle}. The algorithm A can be seen as a function that maps the snapshot taken by
a robot to a movement instruction. We now construct an algorithm A′ from A with two
colors {busy, idle} in the following way. Initially the colors of all robots are set to idle. If
any robot finds some robot with light set to busy, then it does nothing. Otherwise, it applies
A on its snapshot (ignoring colors). If A returns a non-null move, it sets its light to busy
and moves accordingly. If A returns a null move, it sets its light to idle (recall that it does
not know what its present color is) and does not make any move. It is easy to see that A′

solves the problem in FCOM + ASYN C.

7 Concluding Remarks

We have introduced a model for robots with inaccurate movements. In this model, we have pre-
sented algorithms for Approximate Arbitrary Pattern Formation in OBLOT + SSYN C
and FCOM + ASYN C. Solving the problem in OBLOT + ASYN C is an interesting open
problem. The main difficulty of the ASYN C setting is that a robot can see another robot
while the later is moving. How will a robot identify whether a robot in its snapshot is static
or moving? In FCOM, a robot used the color busy to inform others that it is moving. But
this is not possible in OBLOT . Usually such difficulties are handled in a different way in
OBLOT + ASYN C. Suppose that a robot r has to move to a point P . Other robots also
know this and conclude that r has completed its movement by simply observing that r has
moved to P . But notice that in our case, moving exactly to P is impossible with erroneous
movements. Even when r is close to P , it can not be decided whether it is still moving or
not. Consider a particular situation in our algorithm where r is moving outside the smallest
enclosing circle (as in Phase 1 and Phase 2), i.e., the smallest enclosing circle is changing as
r is moving. If we cannot ascertain if r is moving or not, then we cannot ascertain if the
smallest enclosing circle is stable or changing. Recall that the center of the smallest enclosing
circle is the origin of the coordinate system with respect to which the pattern will be formed.
So with a changing smallest enclosing circle, the coordinate system is also changing. So
it is crucial to distinguish between moving and static robots. A possible approach in this
setting could be that the robots may predict a bound on how much the coordinate system
can perturb and act accordingly.

We did not consider multiplicities (points with multiple robots) in the input pattern.
Since two robots cannot be brought to the same point in our model, a multiplicity can
be interpreted in this case as multiple robots very close to each other. Our algorithm can
be adapted to handle inputs with multiplicities. In this work, we modeled the robots as
dimensionless points. Another interesting direction for future research would be to consider
robots with physical extent.
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A Symmetries and Basic Impossibilities

We first present the concept of view (defined similarly as in [6]) of a point in a pattern or a
robot in a configuration. The view of a point/robot can be used to determine whether the
pattern/configuration is symmetric or asymmetric. Let R = {r1, . . . , rn} be a configuration of
robots or a pattern of points. A map φ : R → R is called an isometry or distance preserving
if d(φ(ri), φ(rj)) = d(ri, rj) for any ri, rj ∈ R. R is said to be asymmetric if R admits only
the identity isometry, and otherwise it is called symmetric. The possible symmetries that
a symmetric pattern/configuration can admit are reflections and rotations. For any r ∈ R,
its clockwise view, denoted by V⟳(r), is a string of n + 1 elements from R2 defined as the
following. For r ̸= c(R), consider the polar coordinates of the points/robots in the coordinate
system with origin at c(R),

−−−→
c(R)r as the reference axis and the angles measured in clockwise
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direction. The first element of the string V⟳(r) is the coordinates of r and next n elements
are the coordinates of the n points/robots ordered lexicographically. For r = c(R), all n + 1
elements are taken (0, 0). The counterclockwise view V⟲(r) is defined analogously. Among
V⟳(r) and V⟲(r), the one that is lexicographically smaller is called the view of r and is
denoted as V(r). In a configuration, each robot can compute its view as well as the views
of all other robots. Hence, the following properties can be used by the robots to detect
whether the configuration is symmetric or not [6]: 1) R admits a reflectional symmetry if
and only if there exist two points ri, rj ∈ R, ri, rj ̸= c(R), not necessarily distinct, such that
V⟳(ri) = V⟲(rj), 2) R admits a rotational symmetry if and only if there exist two points
ri, rj ∈ R, ri ̸= rj , ri, rj ̸= c(R), such that V⟳(ri) = V⟳(rj).

A problem that is closely related is the Leader Election problem where a unique
robot from the team is to be elected as the leader. It is a well-known result [6] that Leader
Election is deterministically solvable if and only if the initial configuration R does not
have i) rotational symmetry with no robot at c(R) or ii) reflectional symmetry with respect
to a line ℓ with no robot on ℓ. We call the symmetries i) and ii) unbreakable symmetries.
If a configuration does not have such symmetries, then it can be shown that the robots
can use the views to elect a unique leader. It is well-known [6] that Exact Arbitrary
Pattern Formation is deterministically unsolvable, even with Rigid movements, if the
initial configuration has unbreakable symmetries. The same result holds for Approximate
Arbitrary Pattern Formation as stated in Theorem 2

Proof of Theorem 2

Proof. For any configuration of robots R, define γ(r) for any r ∈ R as γ(r) = Σr′∈R\{r}d(r, r′).
Let R0 be an initial configuration of n robots that has an unbreakable symmetry. For the sake
of contradiction, assume that there is a distributed algorithm A that solves Approximate
Arbitrary Pattern Formation for any input (F, ϵ) from this configuration, i.e., it forms
a configuration that is ϵ-close to F . Consider the following input pattern F = {f1, f2, . . . , fn},
where f1, f2, f3 form an isosceles triangle with d(f1, f2) = d(f1, f3) > d(f2, f3) and f4, . . . , fn

are arranged on the smaller side of the triangle. If d(f1, f2) = d(f1, f3) is sufficiently large
compared to d(f2, f3) and ϵ is sufficiently small, then for any configuration R′ of robots that
is ϵ-close to F , we have γ(r1) > γ(r) for all r ∈ R′ \{r1}, where r1 is the robot approximating
f1. This property can be used to elect r1 as the leader. Hence, Approximate Arbitrary
Pattern Formation can be used to solve Leader Election from the initial configuration
R0. This is a contradiction to the fact that Leader Election is deterministically unsolvable
from a configuration with unbreakable symmetries [6]. ◀

B Moving Through Safe Zone

In this section, we present some movement strategies that will be used several times in the
main algorithm. Suppose that a robot needs to move to or close to some point in the plane.
If the point is far away from the robot and it attempts to reach it in one step, the error
would be very large and it will miss the target by a large distance. As a result, it may reach
a point which causes the configuration to loose some desired property. Also, due to the
large deviation from the intended trajectory, it may collide with other robots. So the robot
needs to move towards its target in multiple steps and move through a “safe” region where it
does not collide with any robot and the desired properties of the configuration are preserved.
We first discuss the following problem. Let x0 and y be two points in the plane so that
d(x0, y) > l. Suppose that a robot r is initially at x0 and the objective is that it has to move
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Figure 7 Some variants of Algorithm 2. a) Starting from x0, the robot has to move inside the
shaded region. b) Starting from x0, the robot has to move inside B(y, l) avoiding point obstacles.
There are no obstacles on the line segment joining x0 and y. c) Starting from x0, the robot has
to move inside B(y, l) avoiding disk shaped obstacles. The line segment joining x0 and y does not
intersect any obstacle. d) Starting from x0, the robot has to move inside B(y, l) avoiding point
obstacles. There are some obstacles on the line segment joining x0 and y.

to a point inside B(y, l) via a trajectory which lies inside Cone(x0, B(y, l)). A pseudocode
description of an algorithm that solves the problem is presented in Algorithm 2. Proof of
correctness of the algorithm can be found in the full version [3] of the paper.

Algorithm 2 Algorithm for moving through a safe zone.
Input : A point y on the plane and a distance l

1 r ← myself
2 if d(r, y) ≥ l then
3 if d(r, y) = l or l

d(r,y) ≥ sin(errora(r, y)) then
4 Move to y
5 else
6 p← point on seg(r, y) so that l

d(r,y) = sin(errora(r, p))
7 Move to p

We now discuss some variants of the problem. They can be solved using the movement
strategy of Algorithm 2 subject to some modifications.

OPODIS 2021
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1. Suppose that the robot r is required to move inside some region other than a disk. Assume
that the region is enclosed by some line segments and circular arcs. We can easily solve
this problem using the same movement strategy, e.g., by fixing some disk B(y, l) inside
the region and following Algorithm 2. See Fig. 7a.

2. Now consider the situation where the robot r, starting from x0, have to get inside a disk
B(y, l), but there are some point obstacles that it needs to avoid. Let O ⊂ R2 be the set
of obstacles. However, there are no obstacles on seg(x0, y). Again a similar approach will
work. Instead of B(y, l), the robot r just needs to consider B(y, l′) where l′ ∈ (0, l] is the
largest possible length such that Cone(r, B(y, l′)) ∩ O = ∅. See Fig. 7b.

3. Instead of point obstacles, now consider disk shaped obstacles. Assume that none of the
obstacles intersect seg(x0, y). The same approach as in the previous problem would work
here too. See Fig. 7c.

4. Now again consider point obstacles, but this time there might be some obstacles lying on
seg(x0, y). Let O′ = O ∩seg(x0, y). The robot will move to a point x′ ∈ Cone(x0, B(y, l))
so that there is no obstacle on seg(x′, y). For this, it will move so that it reaches a point
in Cone(x0, B(y, l′)) \ seg(x0, y) where l′ ∈ (0, l] is the largest possible length such that
Cone(x0, B(y, l′)) ∩ (O \ O′) = ∅. See Fig. 7d.
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