
Near-Shortest Path Routing in Hybrid
Communication Networks
Sam Coy !

University of Warwick, Coventry, UK
Artur Czumaj !

University of Warwick, Coventry, UK

Michael Feldmann !

Paderborn University, Germany
Kristian Hinnenthal !

Paderborn University, Germany

Fabian Kuhn !

University of Freiburg, Germany
Christian Scheideler !

Paderborn University, Germany

Philipp Schneider !

University of Freiburg, Germany
Martijn Struijs !

TU Eindhoven, The Netherlands

Abstract
Hybrid networks, i.e., networks that leverage different means of communication, become ever more
widespread. To allow theoretical study of such networks, [Augustine et al., SODA’20] introduced
the HYBRID model, which is based on the concept of synchronous message passing and uses two
fundamentally different principles of communication: a local mode, which allows every node to
exchange one message per round with each neighbor in a local communication graph; and a global
mode where any pair of nodes can exchange messages, but only few such exchanges can take place
per round. A sizable portion of the previous research for the HYBRID model revolves around basic
communication primitives and computing distances or shortest paths in networks. In this paper,
we extend this study to a related fundamental problem of computing compact routing schemes for
near-shortest paths in the local communication graph. We demonstrate that, for the case where the
local communication graph is a unit-disc graph with n nodes that is realized in the plane and has no
radio holes, we can deterministically compute a routing scheme that has constant stretch and uses
labels and local routing tables of size O(log n) bits in only O(log n) rounds.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Hybrid networks, overlay networks

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.11

Related Version Full Version: https://arxiv.org/abs/2202.08008

Funding Sam Coy: Supported by the Centre for Discrete Mathematics and its Applications (DIMAP)
and by an EPSRC studentship.
Artur Czumaj: Supported by the Centre for Discrete Mathematics and its Applications (DIMAP),
by EPSRC award EP/V01305X/1, and by an IBM Award.
Christian Scheideler : Supported by the German Research Foundation (DFG) within the Collaborative
Research Center 901 “On-The-Fly Computing” under the project number 160364472-SFB901.

1 Introduction

Humans naturally communicate in a hybrid fashion by making use of broadcast services,
emails, phones, or simply face-to-face communication. Thus, it seems natural to study hybrid
communication also in distributed systems. But fundamental research in this area is still in
its infancy, even though there are several examples where hybrid communication is already
exploited in practice. For instance, in modern data centers, wired communication networks
are combined with high-speed wireless communication to reduce wire length or increase
bandwidth without adding congestion to the wired network [12]. This paper focuses on
hybrid wireless networks: networks that combine ad-hoc, WLAN-based connections (the

© Sam Coy, Artur Czumaj, Michael Feldmann, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler,
Philipp Schneider, and Martijn Struijs;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:S.Coy@warwick.ac.uk
mailto:A.Czumaj@warwick.ac.uk
mailto:michael.feldmann@upb.de
mailto:krijan@mail.upb.de
mailto:kuhn@cs.uni-freiburg.de
mailto:scheideler@upb.de
mailto:philipp.schneider@cs.uni-freiburg.de
mailto:m.a.c.struijs@tue.nl
https://doi.org/10.4230/LIPIcs.OPODIS.2021.11
https://arxiv.org/abs/2202.08008
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Near-Shortest Path Routing in Hybrid Communication Networks

local network) with connections via a cellular or satellite infrastructure (the global network).
These can be realized, for instance, by smartphones, since they support both communication
modes and solutions for smartphone ad hoc networks have been around for almost a decade.
Connections in the local network can transfer large amounts of data cheaply, but have limited
range, while global connections can transmit data between any pair of devices, but typically
with bandwidth restrictions and additional costs. So ideally, global communication should be
reserved for exchanging control messages while the data should be sent via the local edges,
which necessitates the computation of a routing scheme for the local network.

The simplest solution to compute a routing scheme would be to use the global mode
to collect all local device connections and/or positions in a centralized server and do the
computation there. However, a centralized solution would represent a bottleneck and single
point of failure, or it would not be for free when making use of a cloud service. We avoid
these problems by only relying on the devices themselves. Interestingly, even without any
central service, we vastly improve the results over what is possible with just the local network.
More specifically, we demonstrate that with a hybrid wireless network one can significantly
speed up the computation of compact routing schemes under certain natural circumstances,
thereby opening up a new research direction for wireless networks.

1.1 Model and Problem Definition
We assume a set V of n nodes with unique IDs. Each node is associated with a fixed, distinct
point in the 2-dimensional Euclidean plane, (i.e., V ⊆ R2), and every node v ∈ V knows
the global coordinates of its point. We assume the standard synchronous message passing
model: time proceeds in synchronous time slots called rounds. In each round, every node can
perform an arbitrary amount of local computation and then communicate with other nodes.

In the HYBRID model, communication occurs in one of two modes: the local mode and
the global mode. The connections for the local mode are given by a fixed graph. In our case,
this graph is represented by a unit-disk graph UDG(V): for any v, w ∈ V , {v, w} ∈ UDG(V)
if and only if v and w are at distance at most 1. For the local mode, we use the CONGEST
model for simplicity: in each round, for all edges {v, w} ∈ UDG(V), node v can send a
message of O(log n) bits to node w. However, our algorithms still work if instead the more
restrictive (and more natural) Broadcast-CONGEST model is used (see the full version). We
assume that each message can carry a constant number of node locations (this is analogous
to the Real RAM model, a standard model of sequential computation).

For the global mode, we are using a variant of the node-capacitated clique (NCC) model
called NCC0 [2] that captures key aspects of overlay networks. In this model, any node u

can send messages to any other node v ∈ V provided u knows v’s ID. Initially, the set of
IDs known to each node is just limited to its neighbors in UDG(V). Each node is limited to
sending O(log n) messages of O(log n) bits via the global mode in each round. W.l.o.g., we
assume that whenever a node v knows the ID of some node w, it also knows w’s location
(since this can be sent together with its ID).

Model Motivation. The assumption that the nodes know their global coordinates is
motivated by the fact that smartphones can nowadays accurately determine their location
using GPS or wireless access point or base station information. However, it would also
be sufficient if the nodes can determine the distance and relative angles to their neighbors
in the UDG (this can be obtained via kown localization methods [18]), though with some
precision loss.

S. Coy et al. 11:3

The use of the NCC0 model in the global communication mode is motivated by the fact
that nodes can communicate with any other node in the world via the cellular infrastructure
given its ID (e.g., its phone number). Note that NCC0 is weaker than NCC, which assumes
a clique from the start, but it is known that once the right topology has been set up in
NCC0 (which can be done in O(log n) rounds [16]), any communication round in NCC can
be simulated by O(log n) communication rounds in NCC0 [25].

Problem Definition. Our goal is to compute a compact routing scheme for UDG(V), in
hybrid networks where UDG(V) is connected and does not contain radio holes. UDG(V) is
said to contain a radio hole if, roughly speaking, there is an internal cycle in UDG(V) that
cannot be triangulated. A precise definition will be given in Section 2.

Let G be a class of graphs. A stateless1 routing scheme R for G is a family of labeling
functions ℓG : V (G)→ {0, 1}+ for each G ∈ G, which assigns a bit string to every node v in
G. The label ℓG(v) serves as the address of v for routing in G: it contains the identifier of v,
and may also contain information about the topology of G.

While the identifier is given as part of the input, the label is determined in the preprocessing.
Additionally, the preprocessing has to set up a routing function ρG : V (G)×{0, 1}+ → V (G)
for the given graph G that, given the current node of a message and the label of the
destination, determines the neighbor of v in G to forward the message to2. A routing scheme
must satisfy various properties.

First of all, it must be correct, i.e., for every source-destination pair (s, t), ρG determines
a path in G leading from s to t. Second, it must be local, in a sense that every node v can
evaluate ρG(v, ℓ) locally. Third, the routing should be efficient, i.e., the ratio of the length
of the routing path and the shortest path – also known as the stretch factor – should be
as close to 1 as possible. In our case, the length of a routing path is simply determined by
the number of edges used by it. Note that whenever we have a constant stretch w.r.t. the
number of edges in UDG(V), we also have a constant stretch w.r.t. the sum of the Euclidean
lengths of its edges, so we achieve a constant stretch for both types of metrics (see Section 2).
Finally, the routing scheme should be compact, i.e., the labels ℓG(v) of the nodes v and the
amount of space needed at each node v to evaluate ρG(v, ℓ) should be as small as possible.

Problem Motivation. There are various reasons for developing fast distributed algorithms
for compact routing schemes in hybrid wireless networks. First of all, computing routing
schemes for the local ad-hoc network is useful even in the presence of a cellular infrastructure
since ad-hoc connections are comparatively cheap to use and typically offer a much larger
bandwidth. Also, the ability to quickly compute compact routing schemes allows for frequent
adaption in case of topological changes in the wireless ad-hoc network with low overhead.

1.2 Our Contributions
In Appendix A we show that it is impossible to set up a compact routing scheme with
constant stretch in time o(

√
n) when just relying on the UDG for communication even if the

geometric location of all nodes is known and the UDG is hole-free. This poses the question
of whether limited global communication can overcome this. We answer this question by

1 In a stateless routing scheme a packet can not accumulate information along the routing path and is
thus oblivious to the routing path that the packet took so far (as opposed to stateful routing).

2 More general definitions of routing functions exist, but we do not require the additional power afforded
by stateful routing (for instance), to compute near-constant routing schemes in logarithmic time.

OPODIS 2021

11:4 Near-Shortest Path Routing in Hybrid Communication Networks

showing the following result, which demonstrates the impact that a modest amount of global
communication has when applied to problems which are challenging to solve locally.

▶ Theorem 1. For a HYBRID network with a hole-free UDG(V), a compact, stateless routing
scheme can be deterministically computed for UDG(V) in O(log n) rounds. The scheme uses
node labels of O(log n) bits and a mapping ρ that (i) can be evaluated locally with O(log n)
bits of information in each node and (ii) such that for every source-destination pair s, t ∈ V ,
ρ determines a routing path of constant stretch from s to t in UDG(V).

Technical novelties of this work include a grid graph abstraction of any UDG which serves
to sparsify the UDG while preserving its geometric structure. Computations on the grid
graph can be simulated efficiently in UDG(V). Furthermore, we can transform a routing
scheme on the grid graph to one in the UDG, increasing the stretch only by a constant.

We show how to construct this abstraction in a distributed setting based entirely on local
communication. This could potentially make it of interest when studying routing or distance
approximation problems on UDGs in the CONGEST or Broadcast-CONGEST models or for
simplification of existing algorithms. We also believe that the grid graph abstraction and its
properties will be useful for future work in the HYBRID setting, making it a springboard for
the case of UDGs with radio-holes.

1.3 Overview

The first step is the computation of a simple, yet surprisingly useful abstract graph structure
on UDG(V), which we call a grid graph Γ. The vertices of Γ are the centers of the cells of a
regular square grid which intersect with an edge of UDG(V). Two vertices of Γ share an edge
iff their cells are vertically or horizontally adjacent (see Section 2.2, Figure 1). Subsequently,
in Section 2.3, we tie the graphs UDG(V) and Γ together by defining a representative in V

for each vertex of Γ that fulfills two main properties. First, two representatives of adjacent
grid vertices are connected with a path of at most 3 hops in UDG(V) (see Figure 2). Second,
each node in V has such a representative within 1 hop in UDG(V).

We then turn to the algorithmic aspects of Γ. In Section 2.4 we define the representation
R of Γ, where grid vertices correspond to their aforementioned representatives and grid edges
correspond to paths of 3 hops in UDG(V), and we show that R can be efficiently computed in
UDG(V). Furthermore, the representation R can be used to efficiently simulate the HYBRID
model on Γ, which is summarized in Theorem 8. In Section 3, we show that an optimal path
in Γ implies a path in R with a constant approximation ratio (Theorem 10).

The final step of the first part is to construct a constant stretch routing scheme R for
UDG(V) assuming that we have an optimal one for Γ (Section 3.2), which is encapsulated
by Theorem 16. Since we can efficiently simulate the HYBRID model on Γ (Theorem 8),
the second part can be considered in isolation from the first part. Note that so far we did
not exploit the fact that UDG(V) is hole-free. In fact, the construction, simulation, and
properties of Γ hold without that assumption, which is only needed for the second part.

Requiring the UDG to be hole-free is a strong assumption. However, we believe that at
least bounding the number of holes is necessary in order to compute a compact, constant-
stretch labelling scheme in O(log n) rounds. Doing this in time and space polylogarithmic
in n that also scales well in the number of radio holes in the UDG seems to be highly non-
trivial, as these holes may intertwine in arbitrary ways, while there are exponentially many

S. Coy et al. 11:5

possibilities of navigating around them.3 While in our setting there still can be exponentially
many simple paths between two points, we are able to exploit the lack of large holes between
them to deal with arbitrarily complex boundaries of UDGs in a hybrid network setting.

To compute the routing scheme RΓ on Γ, the first step (Section 4) is to arrange the
grid nodes into maximal vertical lines, called portals (see Figure 3a). All portals with two
horizontally adjacent nodes will add one such edge, resulting in a portal-tree TΓ, which is
cycle-free because UDG(V) is hole-free (see Figure 3b). In order to compute a labelling
scheme we first perform a distributed depth-first traversal on TΓ (where the root is the node
with min ID). This allows us to compute intervals Iv for each node v of TΓ that fulfill the
parenthesis theorem: it is Iw ⊃ Iv (Iw ⊂ Iv) for each ancestor (descendant) node w of v in
TΓ, or else Iw ∩ Iv = ∅ when v, w are in different branches of TΓ (see Figure 3d). Then all
nodes of a portal will agree on interval Ir of node r that is closest to the root as their portal
label. The challenge here is to carefully line up techniques for the more restrictive NCC0
model to obtain such a labelling in O(log n) rounds.

Finally, in Section 5, we use TΓ to route a packet from source s to target node t in TΓ.
Since the shortest path in TΓ may not necessarily follow the tree, we have to define a routing
strategy that jumps over branches when needed, for which we can use the “tree information”
encoded in the labels. We use the portal labels to prioritize jumping horizontally as soon
as the next portal on a path is reachable via any edge in Γ. Vertical routing within portals
is done as a second priority for which node labels Iv are used. We prove that this strategy
yields an exact routing scheme RΓ for Γ formalized in Theorem 23. Consequently, Theorem
1 is a corollary from the fact that we can emulate Γ on UDG(V) (Theorem 8) and that RΓ
can be transformed into a constant stretch routing scheme R for UDG(V) (Theorem 16).

1.4 Related Work
An early effort to formalize hybrid communication networks by [1], combined the LOCAL
model with a global communication mode that essentially allows a single node to broadcast
a message to all others per round. Note that this conception of the global network is
fundamentally different to ours, which manifests in the fact that solving a aggregations
problem (e.g., computing the sum of inputs of each node) can take Ω(n) rounds (by contrast,
it takes O(log n) rounds in the NCC model).

Recently, shortest path problems in general hybrid networks have been studied by
various authors [3, 9, 21, 11], which provide approximate and exact solutions for the all-pairs
shortest paths problem (APSP) and the single-source shortest paths problem (SSSP). These
solutions all require O(nε) rounds (for constant ε > 0) to achieve a constant approximation
ratio, and this is tight in the case of APSP. O(log n)-time algorithms to solve SSSP for some
classes of sparse graphs (not including UDGs) are given in [11]. Shortest path problems have
also been studied for hybrid wireless networks [8]. They show that for a bounded-degree
UDG(V) with a convex outer boundary, where the bounding boxes of the radio holes do
not overlap, one can compute an abstraction of UDG(V) in O(log2 n) time so that paths of
constant stretch between all source-destination pairs outside of the bounding boxes can be
found (a simple extension of their approach to outer boundaries of arbitrary shape seems
unlikely).

Numerous online routing strategies have been proposed for general UDGs, including
FACE-I, FACE-II, AFR, OAFR, GOAFR and GOAFR+ [5, 24, 22, 23]. In [24, 22] it is
proven that GOAFR and GOAFR+ are asymptotically optimal w.r.t. path length compared

3 The number of simple st-paths that cannot be continuously deformed into each other without crossing a
hole (i.e., non-homotopic paths) is 2h, where h is the number of radio holes.

OPODIS 2021

11:6 Near-Shortest Path Routing in Hybrid Communication Networks

to any geometric routing strategy. However, the achieved stretch is linear in the length of a
shortest path. When a UDG contains the Delaunay graph of its nodes, one can exploit the
fact that the Delaunay graph is a 2-spanner of the Euclidean metric [29], and MixedChordArc
has been shown to be a constant-competitive routing strategy for Delaunay graphs [4]. This
is only applicable in UDGs where the line segment connecting two nodes of the UDG does
not intersect a boundary, which is the case if it has a convex outer boundary and is hole-free.

Centralized constructions4 for compact routing schemes have been heavily investigated
for general graphs (see, e.g., [28]) as well as UDGs. Here, we just focus on UDGs. Bruck
et al. [6] present a medial axis based naming and routing protocol that does not require
geographical locations, makes routing decisions locally, and achieves good load balancing.
The routing paths seem near-optimal in simulations, but no rigorous results are given. Gao
and Goswami [13] propose a routing algorithm that achieves a constant approximation ratio
for load balanced routing in a UDG of arbitrary shape, but the question of near-optimal
routing paths is not addressed. Based on work by Gupta et al. [17] for planar graphs, Yan
et al. [30] show how to assign a label of O(log2 n) bits to each node of the graph such that
given the labels of a source s and of a target t, one can locally compute a path from s to t

with constant stretch. Using the well-separated pair decomposition (WSPD) for UDGs [14],
Kaplan et al. [19] present a local routing scheme with stretch 1+ε with node labels, routing
tables and headers of size polynomial in log n, log D, and 1/ε, where D is the diameter of
UDG(V). Later, [26] shows how to achieve a stretch of 1+ε without using dynamic headers.

Our routing scheme for the grid graph abstraction extends the routing scheme proposed
by Santoro and Khatib [27], who presented a labelling along with an optimal routing scheme
for trees by computing a minimum-distance spanning tree and labelling of that tree via a
depth-first search.5 In our scheme, we provide optimal paths between any source-target pair
in the grid graph, because we allow using edges that are not part of the spanning tree for
routing in order to jump between the branches of the spanning tree.

Our study is also related to routing problems in sparse graphs in parallel models [20, 10].
For example, the algorithm of Kavvadias et al. [20] can be used to compute routing tables
in planar graphs in time Õ(1) and work Õ(n). Together with the simulation framework of
Feldmann et al. [11], the algorithm could in principle be used to solve our problem. However,
for the simulation to work, one would need to construct a suitable global network, sparsify
the graph, and, together with the simulation overhead, one would obtain a polylogarithmic
runtime much higher than O(log n). Further, the size of the routing tables may be Θ(n2).

2 Grid Graph

Let G := UDG(V). The goal of this section is to construct a grid abstraction of G which
makes finding routing protocols in the subsequent section manageable. In particular (but
still suppressing some details), we want to simulate a bounded degree grid graph on G such
that shortest paths in the grid graph represents only a constant factor detour in G. The way
we obtain such a grid representation of G in a distributed fashion is by simulating grid nodes

4 Note that in this paper, we allow ourselves just O(log n) rounds for pre-computation and each node can
learn only polylog n bits per round given that it has small (polylog n) degree, which can be true for
every node. The local network has size Ω(n), meaning no single node can learn it completely. This
inhibits solving the problem locally at some node, i.e., by direct use of some centralized algorithm.

5 While the routing scheme in [27] guarantees a 2-approximation for general graphs regarding the worst-
case optimal cost when routing over all possible source-target-pairs, their scheme does not guarantee
constant stretch when routing a message between two specific nodes s, t in the grid graph.

S. Coy et al. 11:7

with real nodes of V that are close by, where edges between grid nodes correspond to paths
of constant length in G. We start by introducing some notations we require in the following.

2.1 Preliminaries
Graphs and Polygons in R2. Since each node in V is associated with a point in R2, we can
associate each edge {u, v} ∈ UDG(V) with the line segment with endpoints u and v, i.e., the
set {x · u + (1−x) · v | x ∈ [0, 1]}. We use the names of vertices and edges to refer to their
associated subsets of R2 when no ambiguity arises.

A polygonal chain is a finite sequence of points where consecutive points are connected by
segments. A polygonal chain is closed if the first point in the sequence is equal to the last. A
polygon is a closed, connected, and bounded region in R2 where the boundary consists of a
finite number of (not necessarily disjoint) closed polygonal chains (this implies the edges in
these polygonal chains have no proper intersections).

A hole of a polygon P is an open region in R2 that is a maximal bounded and connected
component of R2 \ P . Note that the boundary of each hole of P is equal to one of the
polygonal chains bounding P . A polygon is simple if it has no holes.

Distance Metrics. We use the notation ∥ · ∥ for the Euclidean metric on R2. Consequently,
for p, q ∈ R2, ∥p−q∥ denotes the Euclidean distance from p to q. For sets of points A, B ⊆ R2

we define the distance between those sets as dist(A, B) := mina∈A,b∈B ∥a−b∥.
Let P ⊆ R2 be a polygon in the Euclidean plane and let p, q ∈ P . We define the geometric

distance between p and q in P , distP (p, q), to be the length of the shortest path between p, q

in P . Note that because P is a polygon, there is a polygonal chain Π = (v1, . . . , vk) from p

to q inside P such that distP (p, q) =
∑k−1

i=1 ∥vi+1−vi∥.
Let G = (V, E) be an embedded graph. Let Π ⊆ E be a path, i.e., a sequence of incident

edges of G. Then we define distG(Π) =
∑

(u,v)∈Π ∥u−v∥. Let |Π| be the number of edges
(or hops) of a path Π in G. The hop-distance between two nodes u, v ∈ V is defined as
hopG(u, v) :=minu-v-path Π |Π|.

2.2 Grid Graph Definition
We first give some definitions to formalize the notion of an UDG having radio-holes. A
triangle of UDG(V) is a region in R2 that is bounded by the edges of a 3-cycle in UDG(V)
(including both the boundary and interior of the triangle). We define the contour polygon P

of UDG(V) as the union of all triangles and edges of UDG(V). Since UDG(V) is connected,
P is indeed a polygon. We call the holes in P radio-holes of UDG(V). We say an UDG has
no radio-holes if the contour polygon of that UDG has no holes, i.e., the polygon P is simple.

Next we partition the plane into an axis-parallel square grid with side-length c = 1
10
√

15
and a fixed origin corresponding to origin of the coordinate system. Note that due to
knowledge of coordinates, all nodes are aware of their position relative to the grid.

Define a square grid-cell to be active if it has a non-empty intersection with P . Based
on this grid, we define the grid graph Γ = (VΓ, EΓ), where VΓ has a node positioned at the
center of each active cell in our grid, and we have an edge in EΓ between every pair of nodes
of VΓ that lie in adjacent cells in the grid (i.e., the square cells share an edge). The grid graph
Γ will be simulated in the routing protocol. We will also define the cell graph Γ′ = (VΓ′ , EΓ′)
in the analysis of our protocol, but do not simulate it. We call a vertex of the grid loose if it
is a corner of exactly 2 active cells that are not adjacent. Γ′ is composed of the boundaries
of the square grid, with VΓ′ the set of all corners of each active grid-cell that are not loose,
with a pair of vertices in VΓ′ having an edge in EΓ′ if they are ends of an edge of a grid-cell.
To define the cell polygon P ′, first take the union of all active grid-cells. Then, for every

OPODIS 2021

11:8 Near-Shortest Path Routing in Hybrid Communication Networks

(a)

v

(b)

v

Figure 1 (a): G := UDG(V) (black), polygon P (red), and cell polygon P ′ (blue). (b): grid graph
Γ (orange), active grid-cells and cell graph Γ′ (blue). The grid vertex v is loose. Note that G and Γ
have a hole. Our routing algorithm on Γ would not work for this UDG, but we can still construct Γ.

loose vertex v in the grid, remove a triangle from P ′ at every active grid-cell incident to v

that is small enough to be disjoint from P , such that P ′ no longer contains v. Note that
since a loose vertex does not lie in P (otherwise, all 4 cells incident to it would have been
active), such a triangle exists. See Figure 1 for an example of these definitions. Next, we
define a representative r for each grid node g ∈ VΓ, which simulates g throughout the rest of
the protocol. We apply one of the following rules to assign a grid node to a node u ∈ V .

▶ Definition 2. Let g ∈ VΓ, and let C be the grid cell of which g is the center. We define
C1(g) as the set of vertices of all triangles of UDG(V) that contain the point g. We define
C2(g) as the set of vertices incident to an edge that intersects C.

We define the set of candidate representatives C(g) as C1(g) ∪ C2(g).
The representative of g is defined as r = arg minv∈C1(g) ∥v − g∥ if C1(g) is non-empty,

and r = arg minv∈C2(g) ∥v − g∥ otherwise. In either case, we break ties by smallest node ID.

2.3 Properties of the Grid Graph
The next step is to show that the grid abstraction introduced in Definition 2 represents the
UDG well. In this section we prove several properties to this effect: we show that nodes are
adjacent to the representative of the cell which they are in (Lemma 3); that representatives
for adjacent grid cells are close (Lemma 4); and that the cell polygon P ′ is simple (Lemma 5).

For brevity, all proofs in this section are delegated to the full version .

▶ Lemma 3. Let u, r ∈ V . If r is the representative of the cell C containing u, then
hopG(u, r) ≤ 1

Intuitively, this is true because u must be close to the centre of C, as must r: even if
these nodes are different they cannot be too far apart.

▶ Lemma 4. Let (g1, g2) ∈ EΓ be an edge in Γ. Let u, v ∈ V be representatives of g1, g2
respectively. Then hopG(u, v)≤3.

We show that the edges which define C(g1) and C(g2) are at most the diagonal of a
2× 1 block of grid cells apart. We conclude that this distance is small enough that an edge
connects an endpoint of one edge with an endpoint from the other, and so the representatives
of adjacent cells have distance at most 3 from each other.

S. Coy et al. 11:9

g1 g2

r2

r1

Figure 2 Representatives r1, r2 of adjacent grid nodes g1, g2 are connected by a path of 3 hops.

Finally, we show that P ′ is simple, i.e., it has no holes. We show this by observing that if
there is a hole in P ′, there is a cycle of active cells with an inactive cell in its interior. We
show this cycle of cells contains a cycle of G, which implies G contains a radio-hole.

▶ Lemma 5. If G has no holes, then P ′ is simple.

2.4 Grid Graph Representation, Computation and Simulation

Building on the previous subsections, we show that we can efficiently simulate the grid graph
Γ with a sub-graph R = (VR, ER) of the UDG G which we call a representation of Γ in G

which closely approximates the structure of Γ. In a nutshell: the set of nodes VR contains
the set of representatives of all grid nodes VΓ. On top of that, for each grid edge in EΓ, we
add a path in the UDG G to R between two representatives of the corresponding grid nodes
(see example in Figure 2). Note that in the previous subsection we have shown the existence
of such paths that have at most 3 hops.

The first goal of this subsection is to thoroughly define R and to show that we can
compute R in G according to that definition in O(1) rounds. The second goal is to give
an interfacing theorem for later sections that purely work with Γ, showing that a round
of HYBRID in the grid graph Γ can be simulated in O(1) rounds by the nodes in R (the
proof is also given in the full version). By simulation, we mean that one round of local
communication between adjacent grid nodes in Γ can be performed using O(1) rounds of
local communication in G to route messages between the representatives of adjacent grid
nodes. An analogous property holds for the global communication.

▶ Definition 6. Let Γ = (VΓ, EΓ) be the grid graph as defined in Section 2. A representation
R = (VR, ER) of Γ in G is a sub-graph of G defined as follows. For every grid node g ∈ VΓ
with representative r ∈ V we define: r ∈ VR. For each edge {g1, g2} ∈ EΓ let r1, r2 ∈ V be
the corresponding representatives. Then R contains all nodes and edges of one r1-r2-path
Πr1,r2 in G such that |Πr1,r2 | ≤ 3. We call Πr1,r2 the representation of the edge {g1, g2}.
Note that such a path always exists due to Lemma 4.

▶ Lemma 7. A representation R = (VR, ER) of Γ can be computed in O(1) rounds.

▶ Theorem 8. A round of the HYBRID model in Γ can be simulated in O(1) rounds.

3 Constant Stretch Routing Scheme for the UDG

It remains to show how to leverage the grid graph constructed in the previous section for the
computation of routing schemes for the UDG assuming that an exact routing scheme for the
grid graph is known. We start with the analysis of the approximation factor.

OPODIS 2021

11:10 Near-Shortest Path Routing in Hybrid Communication Networks

3.1 From Shortest Paths in Γ to Approximate Paths in G

The goal of this subsection is to show that shortest paths in the simulated grid graph Γ
represent good paths in the UDG G. In particular, paths in G that are obtained via the
representation R of Γ are constant approximations of optimal paths in G, both in terms of
hop-length and Euclidean distance. We start by defining a representative path.

▶ Definition 9. Let s, t ∈ V . Let gs, gt ∈ VΓ be the two grid nodes which are located in the
same grid cell as s, t respectively. Let rs, rt be the representatives of gs and gt. Note that
{s, rs}, {rt, t} ∈ EG due to Lemma 3. Consider an optimal gs-gt-path Π∗. For e ∈ Π∗ let Πe

be the representation of the grid edge e ∈ EΓ (see Definition 6). Let Πrs,rt :=
⋃

e∈Π∗ Πe. We
define the representative s-t-path as Πs,t := {{s, rs}} ∪Πrs,rt

∪ {{rt, t}}.

We will show that our routing scheme routes packets from s to t along the representative
path s-t-path Πs,t. First, we show that these paths achieve constant stretch in G.

▶ Theorem 10. Let s, t ∈ V . Let Πs,t be the s-t-path given in Def. 9. If {s, t} /∈ EG Then
dist(Πs,t) ≤ |Πs,t| ≤ 36 · distG(s, t).

Note that if {s, t} ∈ EG then we can send the packet directly along this edge and the
distance and number of hops is guaranteed to be optimal. If {s, t} ̸∈ EG then distG(s, t) > 1,
a fact which we use in the proof of Theorem 10. We prove this theorem in stages represented
by the subsequent lemmas. In the first stage we upper bound the number of hops of the
representative path Πs,t with the distance of a corresponding gs, gt-path in Γ.

▶ Lemma 11. Let s, t ∈ V . Then |Πs,t| ≤ 3
c · distΓ(gs, gt) + 2.

Proof. We exploit the fact that edges in Γ have distance at least c and that Πs,t = {{s, rs}}∪
Πrs,rt

∪{{rt, t}} is constructed from an optimal path in Γ (see Definition 9). We combine this

with Lemmas 3, 4 to obtain the following |Πs,t|
Lem. 3
≤ |Πrs,rt

|+ 2
Lem. 4
≤ 3 · hopΓ(gs, gt) + 2 ≤

3
c distΓ(gs, gt) + 2. ◀

Since the cell-polygon P ′ completely covers P (the smallest polygon containing all edges
of Γ does not, in general), we relate paths in the grid graph Γ to paths in the cell-graph Γ′.
This allows us to relate paths in P to Γ. Note that comparisons of hop-distance in Γ and Γ′

correspond to equal comparisons of distances, since both graphs have the same granularity c.

▶ Lemma 12. Let g1, g2 ∈ VΓ be located in cells C1, C2, respectively. There exist nodes
g′

1, g′
2 ∈ VΓ′ that are corners of C1, C2 respectively, such that distΓ(g1, g2) ≤ 2 · distΓ′(g′

1, g′
2).

Proof. Choose g′
1, g′

2 such that hopG(g′
1, g′

2) ≥ 1. Let Π′ be a shortest g′
1g′

2-path in Γ′. Since
all edges and vertices of Γ′ are part of the boundary of an active grid cell and Γ′ contains no
loose vertices, there is a sequence A of active grid-cells from C1 to C2, where consecutive
cells share a side and each cell has an edge or vertex of Π′ on its boundary. There are two
kinds of cells in A: the first kind has an edge of Π′ on its boundary, the second kind does not
have an edge of Π′ on its boundary, but has a vertex of Π′ on its boundary. The number of
cells of the first kind is at most |Π′|, because each edge in Π′ is adjacent to at most one cell
of A. The number of cells of the second kind is at most |Π′|+ 1, because each vertex of Π′ is
adjacent to at most one cell of this type (since Π′ has at least one edge.). So, |A| ≤ 2|Π′|+ 1.

We obtain a g1g2-path Π of length |A|−1 in Γ from the chain A by taking the vertex
centered at each cell in A. So, we have hopΓ(g1, g2) ≤ |Π| ≤ |A|−1 ≤ 2|Π′| = 2 hopΓ′(g′

1, g′
2).

Since all edges in Γ and Γ′ have length c, we have distΓ(g1, g2) ≤ 2 distΓ′(g′
1, g′

2). ◀

S. Coy et al. 11:11

We follow up on the previous stage, and bound the distance of an optimal path in
the graph Γ′ with that of an optimal geometric path in the polygon P ′. The resulting
approximation factor of

√
2 stems from a segment-wise comparison of Euclidean distance of

a shortest polygonal chain in P ′ to the Manhattan distance in the graph Γ′.

▶ Lemma 13. Let g1, g2 ∈ VΓ′ . Then distΓ′(g1, g2) ≤
√

2 · distP ′(g1, g2).

Proof. Let Π be the shortest geometric path from g1 to g2 in P ′. Since P ′ is a polygon, Π is
a polygonal chain connecting vertices g1 =: v1, . . . , vn := g2, where vi are reflex vertices (i.e.,
vertices with an internal angle of at least π) of P ′. Note that by construction of P ′, all reflex
vertices of P ′ are vertices of Γ′, so we have v1, . . . , vn ∈ VΓ′ .

Consider one such segment si. Each point of si lies in some gridcell belonging to P ′,
because the path Π lies in P ′. Therefore, there is a monotone chain of gridcells connecting vi

and vi+1. Consider the axis aligned bounding rectangle Ri defined by the two opposite corners
vi, vi+1 ∈ VΓ′ . The width and length of Ri sum up to ∥vi − vi+1∥1 (where ∥(x, y)∥1 = x + y

for some (x, y) ∈ R2 denotes the L1-norm).
Traversing the boundary of the monotone chain of gridcells between vi and vi+1 in

the shortest possible way represents a shortest path between vi and vi+1 in Γ′. On one
hand, the length of this path equals the sum of side-lengths of Ri, i.e., distΓ′(vi, vi+1) =
∥vi − vi+1∥1. On the other hand the geometric distance equals the length of si which is
distP ′(vi, vi+1) = ∥vi − vi+1∥. We have

distΓ′(vi, vi+1) = ∥vi − vi+1∥1 ≤
√

2 · ∥vi − vi+1∥2 =
√

2 · distP ′(vi, vi+1),

using the equivalence property of L1 and L2-norms: ∥x∥1 ≤
√

2∥x∥2 for any x ∈ R2. So,
for each segment Si of Π, there exists a path in Γ′ with stretch at most

√
2 connecting the

endpoints. Concatenating these paths gives the required g1-g2-path in Γ′. ◀

Next we observe that an optimal path between two nodes in the UDG G can not be any
shorter than a corresponding shortest geometric path in P ′.

▶ Lemma 14. Let s, t ∈ V . Then distP ′(s, t) ≤ distG(s, t).

Proof. Let Π be a shortest st-path in G. By definition, each cell that is intersected by an
edge of Π is active and therefore this edge lies in P ′. So, Π is an st-path in P ′. ◀

We now use the inequalities proven in the lemmas above to prove Theorem 10.

Proof of Theorem 10. Let s, t ∈ V and let gs, gt ∈ Γ be their cell representatives. Let
g′

s, g′
t ∈ VΓ′ be two corner-nodes of gs, gt for which Lemma 12 holds. Then we get

|Πs,t| ≤ 3
c · distΓ(gs, gt) + 2 Lemma 11

≤ 6
c · distΓ′(g′

s, g′
t) + 2 Lemma 12

≤ 6
√

2
c · distP ′(g′

s, g′
t) + 2 Lemma 13

≤ 6
√

2
c ·

(
distP ′(g′

s, s) + distP ′(s, t) + distP ′(t, g′
t)

)
+ 2 triangle ineq.

= 6
√

2
c ·

(
∥g′

s−s∥+ distP ′(s, t) + ∥g′
t−t∥

)
+ 2 sg′

s and tg′
t in same cell

≤ 6
√

2
c ·

(
∥g′

s−s∥+ distG(s, t) + ∥g′
t−t∥

)
+ 2 Lemma 14

= 6
√

2
c ·

(
distG(s, t) +

√
2 · c

)
+ 2 = 6

√
2

c · distG(s, t) + 14

In the equality in the fourth step we use that the segments sg′
s and tg′

t are both contained
in a single grid cell, hence the distance in the cell-polygon equals the Euclidean distance.

OPODIS 2021

11:12 Near-Shortest Path Routing in Hybrid Communication Networks

Since a grid cell has side length c, we have ∥g′
s−s∥, ∥g′

t−t∥ ≤ 1
2
√

2 · c in the second last step.
As Πs,t is a path in a UDG each edge has distance at most 1, thus

distG(Πs,t) ≤ |Πs,t| ≤ 6
√

2
c · distG(s, t) + 14 ≤ 22 · distG(s, t) + 14.

Since we have a direct edge to targets with distance at most 1, the additive error can
be accounted for by increasing the multiplicative stretch by the additive error for targets at
distance more than 1. Consequentially, we obtain dist(Πs,t) ≤ |Πs,t| ≤ 36 · distG(s, t). ◀

3.2 Transforming Routing Schemes for the Grid Graph to the UDG
We provide an interface to transform a routing scheme RΓ for the grid graph Γ (for which an
exact routing scheme is provided in the subsequent section) into a routing scheme R for the
UDG G with constant stretch. The idea is to construct R from RΓ using the representation
R of Γ (see Definition 6). Theorem 16 provides approximation guarantees by leveraging
the insights on representative paths from the previous subsection (for a proof see the full
version).

▶ Definition 15 (UDG Routing Scheme). Let RΓ be an exact routing scheme for Γ consisting
of ℓΓ : VΓ → {0, 1}+ and ρΓ : VΓ × {0, 1}+ → VΓ. Let R = (VR, ER) be the representation of
Γ (see Def. 6). The routing scheme R for G is defined on the basis of grid cells. Let C be a
cell with grid node g ∈ VΓ and let r ∈ VR be the representative of g. For each v ∈ C we set
ℓG(v) := ℓΓ(g) ◦ ID(v) (where “◦” represents the concatenation of bit strings). The routing
function ρG is defined as follows. Let v ∈ VG be the current node and let ℓt := ℓΓ,t ◦ ID(t)
be the label of the target node t ∈ V , where ℓΓ,t is the label of the representative in t’s cell
w.r.t. RΓ. We assume t ̸= v, as otherwise the packet has already arrived.
1. If {v, t} ∈ EG, then we can directly deliver to t: ρG(v, ℓt) := t.
2. Else, if v ∈ C \VR is the source we directly route to the representative of C: ρG(v, ℓ) := r.
3. Else, if v = r is the representative of this grid cell C, let g′ := ρΓ(g, ℓΓ,t) be the next grid

node suggested by RΓ. Let u be the first node on the path Π{g,g′} ⊆ ER that represents
the edge {g, g′} ∈ EΓ. Then ρG(v, ℓt) := u.

4. Else, if v ∈ VR but v is not the representative of C, then v must be a “transitional node”
on Π{g,g′} ∈ ER that represents {g, g′} ∈ EΓ. W.l.o.g. let g′ := ρΓ(g, ℓΓ,t) be the next grid
node suggested by RΓ and u be the next node on Π{g,g′} towards g′. Then ρG(v, ℓt) := u.

▶ Theorem 16. Let RΓ be a local, correct, exact routing scheme for Γ with labels and local
routing information of O(log n) bits. Then the routing scheme R from Definition 15 is local,
correct, has constant stretch, labels and local routing information of size O(log n) bits and
can be computed in O(1) rounds.

4 Computing a Labelling for the Grid Graph

This section is dedicated to computing the labelling ℓΓ : VΓ → {0, 1}+ for the grid graph
by first constructing a particular tree structure TΓ and then computing a labelling on it
in O(log n) rounds leveraging various HYBRID (and in particular NCC0) model techniques.
For the tree-labelling we use a similar approach as presented in [27], but slightly adapt
the labelling which later allows jumping over branches of our specifically constructed tree,
facilitating an optimal routing scheme in grid graphs. Afterwards, Section 5 will deal with
computing the routing function ρΓ : VΓ × {0, 1}+ → VΓ leading to the routing scheme RΓ.

We assume the HYBRID model on the grid graph Γ that represents the network which we
constructed and simulated in the previous sections (Theorem 8). The goal is to divide the

S. Coy et al. 11:13

grid nodes into sets of vertically connected grid nodes called portals. Connecting neighboring
portals with a single edge gives us a spanning tree of Γ, which we call portal tree. We then
root the portal tree at the node with minimum identifier and compute a label for each grid
node, leading to a well-defined labelling function ℓΓ. Note that we require that the cell
polygon P ′ does not contain holes (Lemma 5), as otherwise there be a cycle after connecting
neighboring portals.

OPODIS 2021

11:14 Near-Shortest Path Routing in Hybrid Communication Networks

(a) Initial grid graph Γ. (b) Portal tree TΓ
(blue).

1

2

3

4

5

6

9

10

11

14

12

13

7

8

(c) Rooted portal tree,
values ℓv.

[1,14]

[2,5]

[3,5]

[4,5]

[5,5]

[6,14]

[9,14]

[7,8]

[12,13]

[11,14]

[10,14]

[14,14] [13,13]

[8,8]

(d) Label [lv,rv], portal
label red.

Figure 3 Example for creation and labelling of the portal tree.

We first define the set of portals as follows:

▶ Definition 17 (Portals). Let Γ = (VΓ, EΓ) be the grid graph as constructed in the last
section. The set of portals are the connected components of (VΓ, Evert), where Evert ⊂ EΓ
are the vertical edges of the grid graph.

For convenience, assume that the grid nodes v1, . . . , vk within a portal P are sorted by
their y-coordinates in descending order, i.e., v1 is the northernmost node.

To construct the portal tree TΓ of the grid graph Γ we connect neighboring portals via a
single edge. Each grid node v checks whether it has an edge to the left and communicates
this to its northern and southern neighbors vN and vS . Assume that v has an edge {v, vW }
to the left. Then v checks if vS also has a horizontal edge to the left. If that is not the case,
v adds the edge {v, vW } to the portal tree. We refer to Figures 3a and 3b for an example.
This gives us the following lemma, the proof of which is delegated to Appendix C.1:

▶ Lemma 18. The portal tree TΓ of a grid graph Γ can be computed in O(1) rounds.

Given the portal tree TΓ, we want to compute a unique label for each grid node that
reflects its structure as portal tree. First, we root TΓ at the grid node r whose representative
is the UDG node u with minimal identifier, using pointer jumping (Appendix C.2) on the
cycle of all grid nodes that corresponds to an Euler tour (Appendix C.3).

Now we compute the labelling for the (rooted) portal tree. For each grid node v in TΓ,
we aim to assign an interval Iv = [lv, rv] ∈ N2 to v, such that Iv ⊃ Iw for any child node
w of v in TΓ. To obtain the left interval border lv for each grid node v in the portal tree,
we perform a depth-first traversal (DFS) on TΓ in O(log n) rounds, using Lemma 28 (see
Appendix C.4). The value lv is then the preorder number of v according to the DFS. Note
that lv < lu for any node u lying in the subtree of v. We then compute the number rv,
corresponding to the maximum left interval border among all nodes in v’s subtree. In a
nutshell, we first let all nodes compute some value d ∈ O(log n), d ≥ log D(TΓ), where D(TΓ)
is the depth of the portal tree. Then we generate additional edges in TΓ for d iterations, by
performing pointer-jumping on the paths from the leaf nodes of TΓ to the root. We perform
the pointer-jumping technique in a condensed way to ensure that the node degrees do not
exceed O(log n). With the help of these additional edges, we let each node v ∈ TΓ compute
the value rv as an aggregate of the lu-values of all nodes u that are contained in the subtree
TΓ(v) of TΓ with root v. We elaborate on this approach in Appendix C.5 (see Lemma 29).

After the algorithm has terminated, each node v knows the correct value rv and thus its
interval Iv = [lv, rv]. Observe that grid nodes which are in different branches of the portal
tree have incomparable labels. We obtain the following lemma:

S. Coy et al. 11:15

▶ Lemma 19. Given a rooted portal tree TΓ, each node v ∈ TΓ can compute an interval
Iv = [lv, rv] in O(log n) rounds, such that Iv ⊃ Iw for any child node w of v in TΓ.

Now that each grid node v knows its interval in TΓ we need to perform one final step. In
addition to its own (unique) interval, a grid node v needs to know the interval that has been
assigned to the node vi which is closest to the root within its own portal. We call this label
the portal label of v. The node on a portal which is closest to the root can determine this
locally. Each portal label can then be broadcasted to all nodes within the respective portal in
O(log |P|) rounds (see Lemma 26), so we obtain the following lemma (cf. Figures 3c and 3d).

▶ Lemma 20. After O(log n) rounds, each grid node v in the portal P = (v1, . . . , vk) knows
the interval Ivi

of the node i ∈ P closest to the root of the portal tree.

Observe that, the way we defined the portal labels we obtain the property that for portal
labels of two neighboring portals, one portal’s label is always a subset of the other. Combining
Lemma 19 and Lemma 20 yields the main result of this section.

▶ Theorem 21. Computing the labelling ℓΓ : VΓ → {0, 1}+ for the grid graph Γ as part of
the routing scheme RΓ can be done within O(log n) rounds.

5 Compact Routing Scheme for the Grid Graph

Finally, we explain our routing strategy for transmitting a packet between two nodes s, t ∈ VΓ
in the grid graph, leading to the routing function ρΓ : VΓ×{0, 1}+ → VΓ. At the start of the
routing protocol, the node s generates a message m that contains the identifier of the target
node t, as well as t’s label and portal label. The goal of our routing strategy is to route m to
t along grid edges via an optimal path in the grid graph. To do so, each grid node receiving
the message m has to decide which of its grid neighbors to forward m to, using only the
information stored in m, and the information stored in its own local memory. Briefly, the
strategy works as follows. While we are not at the portal containing t, we always try going
left (west) or right (east) first by going to a portal whose label is closest to the portal label
of the target node t. If going east or west is not possible, we go up (north) or down (south)
instead by comparing g’s own label with the actual label of the target node t. Once we are at
the portal that contains the target node, we only consider going up or down until we reach t.

Detailed Description. We describe the routing strategy in more detail now (see the full
version for pseudocode). Assume we are at a grid node g and want to route a message m to
a grid node t. We introduce the following notation for the information known to g. Note
that grid nodes obtain this information in one communication round with their neighbors.

▶ Definition 22. The information required to be stored by a grid node g ∈ VΓ are denoted by
the following variables.

(i) g.L ∈ N2: g’s own interval given to it by labelling of the portal tree.
(ii) g.P ∈ N2: The portal label of the portal containing g.
(iii) gN , gS , gE , gW ∈ VΓ ∪ {⊥}: g’s grid neighbors in north, south, east and west direction

(⊥ denotes that there is no such neighbor). For each of these grid neighbors g also
knows the label of the grid node and the portal label of the grid node.

Additionally, we store the label t.L of t and the portal label t.P of t in the message m, so
g knows these as well upon receipt of m. Note that storing this information at g requires only
O(log n) bits. Assuming that g ̸= t, g must decide which of its grid neighbors gW , gE , gN , gS

OPODIS 2021

11:16 Near-Shortest Path Routing in Hybrid Communication Networks

to forward m to. Node g first checks if it is in the same portal as t by comparing g.P and
t.P . Assume that this is not the case. Then g has to consider the following cases. We use
the notation a≁ b to denote that label a is incomparable to label b, i.e., a ̸⊆ b ∧ b ̸⊆ a.

We start by explaining how a message m is routed in horizontal direction.
(i) g.P ⊂ t.P or g.P ⊃ t.P . In case g.P ⊂ t.P then g checks if either g.P ⊂ gW .P ⊂ t.P

or g.P ⊂ gE .P ⊂ t.P holds (only one of these conditions can be true). In the first case,
g forwards m to gW , in the second case g forwards m to gE . If none of the conditions
hold (for example, if gW =⊥ or gE =⊥), then g routes m vertically (see the description
below). The case g.P ⊃ t.P works analogously.

(ii) g.P ≁ t.P . In this case g tries to forward m horizontally to a node, whose portal label is
a superset of g.P . By doing so, m eventually reaches a node g′ whose portal label is also
a superset of t.P (at the closest “common ancestor portal”), and case (i) is considered.
If neither gW nor gE satisfies this condition or does not exist, g routes vertically.

We now explain how m is routed in vertical direction. We do this if g has not been able to
route m horizontally (either because its horizontal neighbors are not appropriate, or because
they do not exist) or if it is already contained in the same portal as the target node t. Again,
g considers the following cases, this time for its own label g.L instead for g.P and for the
actual label t.L instead of the portal label t.P .

(i) g.L ⊂ t.L or g.L ⊃ t.L. In the case g.L ⊂ t.L node g checks if either g.L ⊂ gN .L ⊂ t.L

or g.L ⊂ gS .L ⊂ t.L holds. In the first case, g forwards m to gN , in the second case g

forwards m to gS . The case g.L ⊃ t.L works analogously.
(ii) g.L≁ t.L. If the labels g.L and t.L are incomparable, g tries to forward m vertically to

a node, whose label is a superset of g.L. This is the case for either gN or gS , depending
on the location of the root of the labeled tree.

Analysis of the Routing Strategy. We show that our routing strategy is local, efficient,
and correct, so it fulfills all requirements for a routing scheme. Our routing strategy is local,
as each node v can determine the next node to forward the message m to based solely on the
O(log n) bits of local information, and the labels t.L and t.P given to v upon receipt of m.

Regarding efficiency of our routing strategy, we prove in the full version that it is optimal.
The idea is to show that in case the message is routed in a specific direction, there exists at
least one optimal path that moves in the same direction. We conclude the following theorem.

▶ Theorem 23. A local, correct and exact routing scheme RΓ for Γ using node labels and
local space of O(log n) bits can be computed in O(log n) rounds in the HYBRID model.

6 Conclusion

We showed that for any HYBRID network with a hole-free UDG(V), a compact routing scheme
can be computed for UDG(V) in just O(log n) rounds. There are various interesting directions
for follow-up research. For example, we suspect that our approach can be generalized to 3
dimensions (potentially more) where the corresponding “unit ball graph” implies a polyhedron
of genus 0. In particular, some approach akin to multidimensional range trees might work:
define Γ analogously in a three dimensional grid; dissect Γ along 2d-hyperplanes to obtain
2d-portals in Γ – if one then comes up with a routing scheme to find the correct 2d-portal,
then this can be applied alongside the 2d-routing algorithm presented here to find the correct
node in that 2d-portal. There are unresolved issues, however. Another interesting direction
is to efficiently compute compact routing schemes for arbitrary connected UDGs, or ideally,

S. Coy et al. 11:17

to find efficient solutions for arbitrary planar graphs. This seems to be a daunting task; a
simpler setting might be to consider UDGs with a small number of holes where our grid
construction could be of help. Finally, it would be interesting to think about adaptations of
our routing scheme to also minimize congestion, which should be possible in the special case
of hole-free UDGs (see for example the case where the contour polygon is a square [7]).

References
1 Yehuda Afek, Gad M. Landau, Baruch Schieber, and Moti Yung. The power of multimedia:

Combining point-to-point and multiaccess networks. Information and Computation, 84(1):97–
118, January 1990. doi:10.1016/0890-5401(90)90035-G.

2 John Augustine, Keerti Choudhary, Avi Cohen, David Peleg, Sumathi Sivasubramaniam,
and Suman Sourav. Distributed graph realizations. In Proc. of the 34th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2020), pages 158–167, 2020. doi:
10.1109/IPDPS47924.2020.00026.

3 John Augustine, Kristian Hinnenthal, Fabian Kuhn, Christian Scheideler, and Philipp Schnei-
der. Shortest paths in a hybrid network model. In Proc. of the 31st ACM-SIAM Symposium on
Discrete Algorithms (SODA 2020), pages 1280–1299, 2020. doi:10.1137/1.9781611975994.
78.

4 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and
Michiel H. M. Smid. Improved routing on the Delaunay triangulation. In Proc. of the
26th Annual European Symposium on Algorithms (ESA 2018), pages 22:1–22:13, 2018. doi:
10.4230/LIPIcs.ESA.2018.22.

5 Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing with guaranteed
delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001. doi:10.1023/A:
1012319418150.

6 Jehoshua Bruck, Jie Gao, and Anxiao Jiang. MAP: medial axis based geometric routing in
sensor networks. Wireless Networks, 13(6):835–853, 2007. doi:10.1007/s11276-006-9857-z.

7 Antonio Carzaniga, Koorosh Khazaei, and Fabian Kuhn. Oblivious low-congestion multicast
routing in wireless networks. In Proc. of the 13th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc 2012), pages 155–164, 2012. doi:10.1145/
2248371.2248395.

8 Jannik Castenow, Christina Kolb, and Christian Scheideler. A bounding box overlay for
competitive routing in hybrid communication networks. In Proc. of the 21st International
Conference on Distributed Computing and Networking (ICDCN 2020), pages 14:1–14:10, 2020.
doi:10.1145/3369740.3369777.

9 Keren Censor-Hillel, Dean Leitersdorf, and Volodymyr Polosukhin. Distance computations
in the hybrid network model via oracle simulations. CoRR, abs/2010.13831, 2020. arXiv:
2010.13831.

10 Hristo N. Djidjev, Grammati E. Pantziou, and Christos D. Zaroliagis. Computing shortest
paths and distances in planar graphs. In Proc. of the 18th International Colloquium on
Automata, Languages and Programming (ICALP 1991), pages 327–338, 1991. doi:10.1007/
3-540-54233-7_145.

11 Michael Feldmann, Kristian Hinnenthal, and Christian Scheideler. Fast hybrid network
algorithms for shortest paths in sparse graphs. In Proc. of the 24th International Conference
on Principles of Distributed Systems (OPODIS 2020), pages 31:1–31:16, 2020. doi:10.4230/
LIPIcs.OPODIS.2020.31.

12 Klaus-Tycho Foerster and Stefan Schmid. Survey of reconfigurable data center networks:
Enablers, algorithms, complexity. SIGACT News, 50(2):62–79, 2019. doi:10.1145/3351452.
3351464.

13 Jie Gao and Mayank Goswami. Medial axis based routing has constant load balancing factor.
In Proc. of the 23rd Annual European Symposium on Algorithms (ESA 2015), pages 557–569,
2015. doi:10.1007/978-3-662-48350-3_47.

OPODIS 2021

https://doi.org/10.1016/0890-5401(90)90035-G
https://doi.org/10.1109/IPDPS47924.2020.00026
https://doi.org/10.1109/IPDPS47924.2020.00026
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.1137/1.9781611975994.78
https://doi.org/10.4230/LIPIcs.ESA.2018.22
https://doi.org/10.4230/LIPIcs.ESA.2018.22
https://doi.org/10.1023/A:1012319418150
https://doi.org/10.1023/A:1012319418150
https://doi.org/10.1007/s11276-006-9857-z
https://doi.org/10.1145/2248371.2248395
https://doi.org/10.1145/2248371.2248395
https://doi.org/10.1145/3369740.3369777
http://arxiv.org/abs/2010.13831
http://arxiv.org/abs/2010.13831
https://doi.org/10.1007/3-540-54233-7_145
https://doi.org/10.1007/3-540-54233-7_145
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.4230/LIPIcs.OPODIS.2020.31
https://doi.org/10.1145/3351452.3351464
https://doi.org/10.1145/3351452.3351464
https://doi.org/10.1007/978-3-662-48350-3_47

11:18 Near-Shortest Path Routing in Hybrid Communication Networks

14 Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric
and its applications. SIAM Journal on Computing, 35(1):151–169, 2005. doi:10.1137/
S0097539703436357.

15 Robert Gmyr, Kristian Hinnenthal, Christian Scheideler, and Christian Sohler. Distributed
monitoring of network properties: The power of hybrid networks. In Proc. of the 44th
International Colloquium on Automata, Languages and Programming (ICALP 2017), pages
137:1–137:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.137.

16 Thorsten Götte, Kristian Hinnenthal, Christian Scheideler, and Julian Werthmann. Time-
optimal construction of overlay networks. CoRR, abs/2009.03987, 2020. arXiv:2009.03987.

17 Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Traveling with a pez dispenser (or,
routing issues in MPLS). SIAM Journal on Computing, 34(2):453–474, 2004. doi:10.1137/
S0097539702409927.

18 Fabian Höflinger, Joan Bordoy, Rui Zhang, Amir Bannoura, Nikolas Simon, Leonhard M.
Reindl, and Christian Schindelhauer. Localization system based on ultra low-power radio
landmarks. In Proc. of the 7th International Conference on Sensor Networks (SENSORNETS
2018), pages 51–59, 2018. doi:10.5220/0006608800510059.

19 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in unit disk graphs.
Algorithmica, 80(3):830–848, 2018. doi:10.1007/s00453-017-0308-2.

20 Dimitris J Kavvadias, Grammati E Pantziou, Paul G Spirakis, and Christos D Zaroliagis.
Hammock-on-ears decomposition: A technique for the efficient parallel solution of shortest
paths and other problems. Theoretical Computer Science, 168(1):121–154, 1996. doi:10.1016/
S0304-3975(96)00065-5.

21 Fabian Kuhn and Philipp Schneider. Computing shortest paths and diameter in the hybrid
network model. In Proc. of the 39th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2020), pages 109–118, 2020. doi:10.1145/3382734.3405719.

22 Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron Zollinger. Geometric ad-hoc routing:
of theory and practice. In Proc. of the 22nd ACM Symposium on Principles of Distributed
Computing (PODC 2003), pages 63–72, 2003. doi:10.1145/872035.872044.

23 Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymptotically optimal geometric
mobile ad-hoc routing. In Proc. of the 6th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communications (DIAL-M 2002), pages 24–33, 2002.
doi:10.1145/570810.570814.

24 Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case optimal and average-
case efficient geometric ad-hoc routing. In Proc. of the 4th ACM Interational Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc 2003), pages 267–278, 2003. doi:
10.1145/778415.778447.

25 Frank Thomson Leighton, Bruce M. Maggs, Abhiram G. Ranade, and Satish Rao. Randomized
routing and sorting on fixed-connection networks. Journal of Algorithms, 17(1):157–205, 1994.
doi:10.1006/jagm.1994.1030.

26 Wolfgang Mulzer and Max Willert. Compact routing in unit disk graphs. In Proc. of the 31st
International Symposium on Algorithms and Computation (ISAAC 2020), pages 16:1–16:14,
2020. doi:10.4230/LIPIcs.ISAAC.2020.16.

27 Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks. The Computer
Journal, 28(1):5–8, 1985. doi:10.1093/comjnl/28.1.5.

28 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proc. of the 13th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA 2001), pages 1–10, 2001.
doi:10.1145/378580.378581.

29 Ge Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal on
Computing, 42(4):1620–1659, 2013. doi:10.1137/110832458.

30 Chenyu Yan, Yang Xiang, and Feodor F. Dragan. Compact and low delay routing labeling
scheme for unit disk graphs. Computational Geometry: Theory and Applications, 45(7):305–325,
2012. doi:10.1016/j.comgeo.2012.01.015.

https://doi.org/10.1137/S0097539703436357
https://doi.org/10.1137/S0097539703436357
https://doi.org/10.4230/LIPIcs.ICALP.2017.137
http://arxiv.org/abs/2009.03987
https://doi.org/10.1137/S0097539702409927
https://doi.org/10.1137/S0097539702409927
https://doi.org/10.5220/0006608800510059
https://doi.org/10.1007/s00453-017-0308-2
https://doi.org/10.1016/S0304-3975(96)00065-5
https://doi.org/10.1016/S0304-3975(96)00065-5
https://doi.org/10.1145/3382734.3405719
https://doi.org/10.1145/872035.872044
https://doi.org/10.1145/570810.570814
https://doi.org/10.1145/778415.778447
https://doi.org/10.1145/778415.778447
https://doi.org/10.1006/jagm.1994.1030
https://doi.org/10.4230/LIPIcs.ISAAC.2020.16
https://doi.org/10.1093/comjnl/28.1.5
https://doi.org/10.1145/378580.378581
https://doi.org/10.1137/110832458
https://doi.org/10.1016/j.comgeo.2012.01.015

S. Coy et al. 11:19

A Lower Bound Without Global Communication

The counterexample in Figure 4 (which follows the arguments of [23]) demonstrates that it
is impossible to set up a compact routing scheme with constant stretch in polylogarithmic
time when just relying on the unit-disk graph, even if it does not have radio holes and the
geometric location of the destination is known: Suppose the destination is in the center.
With a wheel of Θ(

√
n) spikes of Θ(

√
n) length each, no node on the wheel can guess the

right spike with probability better than Θ(1/
√

n), so routing information is required for a
constant stretch, but in order to compute the information needed for a constant stretch, the
starting point w of the spike leading to the destination in the center needs to be identified,
which requires Ω(

√
n) communication rounds.

▶ Theorem 24. There is no deterministic (randomized) distributed algorithm that can, within
o(
√

n) rounds, compute a compact routing scheme that achieves (expected) o(
√

n) stretch
when only communicating over the unit-disk graph. This claim holds even when the algorithm
can use geometric information6 and the unit-disk graph has no radio-holes.

Figure 4 Lower bound graph (slightly adapted from Figure 8 in [23]).

B Proof of Theorem 16

Proof of Theorem 16. Given some t ∈ V , the label ℓt of t is the concatenation of the
label ℓΓ,t of the grid node which is in the same cell as t and ID(t). Hence, the labelling
ℓG requires O(log n) bits, given that the same is true for ℓΓ. The information required to
compute ρG(v, ℓt) is composed of the knowledge of neighbors of v in G which includes the
representative of the cell of v (due to Lemma 3) and the information required to evaluate
ρΓ(v, ℓΓ,t). Since nodes know their neighbors already as part of the problem input (local
network equals the routing graph), we do not regard this as additional routing information.
The information to evaluate ρΓ(v, ℓΓ,t) is O(1) bits by our presumption.

We continue with the correctness and the stretch of a path implied by ρG. Let s ̸= t ∈ V

be the current node and the target node respectively. Consider the case that ∥s− t∥ ≤ 1,
i.e., the nodes are adjacent. Then, according to Definition 15 rule (1) the packet is delivered
directly to t which constitutes a correct and exact path.

6 i.e., each node knows and can communicate its own location, the location of its neighbours, and each
source will be given the location of its destination before routing.

OPODIS 2021

11:20 Near-Shortest Path Routing in Hybrid Communication Networks

Consider the case that ∥s− t∥ ≥ 1. Let gs, gt ∈ VΓ and rs, rg be the respective grid
nodes and representatives of the cells of s, t. Let Π∗ be the optimal gs-gt-path in Γ implied
by ρΓ. Then the path implied by ρG equals Πs,t = {{s, rs}} ∪ Πrs,rt

∪ {{rt, t}} from
Definition 9, where Πrs,rt :=

⋃
{g,g′}∈Π∗ Π{g,g′} and Π{g,g′} is the representation of the grid

edge {g, g′} ∈ Π∗. This is due to rules (2),(3) and (4).
By Theorem 10, we have that dist(Πs,t) ≤ |Πs,t| ≤ 36 · distG(s, t), implying a stretch

of O(1).
The runtime of pre-computing RG amounts to that of computing a representation R of Γ,

which takes O(1) rounds due to Lemma 7. Note that in all four cases of the routing function
ρG can be evaluated locally using the representation R of Γ from the pre-computation step,
information about local neighbors in G and (local) evaluations of ρΓ. ◀

C Additional Technical Details for Section 4

We provide the missing proof of Lemma 18 and additionally give an overview on some
techniques for hybrid networks that are used by our tree labelling algorithm in Section 4. A
more detailed description of these techniques can be found in [11, 16, 15].

C.1 Proof of Lemma 18
Proof of Lemma 18. The runtime of O(1) rounds is clear, as each node v only needs to
communicate for one round with its southern neighbor vS in the portal. We provide arguments
on why the construction is a tree. Since the cell polygon P ′ is simple (Lemma 5), the cells
of vertices in a portal connect two points on the same polygonal boundary of P ′. Thus,
removing these cells disconnects P ′ and therefore removing the vertices of a portal from Γ
disconnects Γ. This means the portal graph is acyclic, i.e., a tree. Since Γ is connected, the
portal graph is connected as well. ◀

C.2 Pointer Jumping
We show how to construct a network with diameter O(log n) in time O(log n) out of a simple
line graph L with O(n) nodes. Assume each node v ∈ L knows its left and right neighbor in
the line (except for the left- and rightmost node, who only know one neighbor). We let the
nodes of L generate shortcut edges via pointer jumping: In the first round, each node vi ∈ L

that has two neighbors vi−1, vi+1 ∈ L establishes the edge {vi−1, vi+1}. Whenever in each
subsequent round, a node v ∈ L receives two new shortcut edges {u, v}, {v, w} in the previous
round, v generates another shortcut edge {u, w}. It is easy to see that after O(log n) rounds,
no further shortcut edges are created and the resulting structure has diameter O(log n), thus
implying the following lemma.

▶ Lemma 25. Given a line L of O(n) nodes, setting up additional edges to obtain a structure
L+ with diameter O(log n) and degree O(log n) takes O(log n) rounds.

Performing pointer jumping on each of our portals in the portal tree, the grid nodes
within each portal P are able to set up a structure on which they can quickly broadcast
information to all grid nodes within P. By doing so, we immediately obtain the following
lemma.

▶ Lemma 26. Any O(log n)-bit message can be broadcast among all grid nodes within a
single portal P in O(log |P|) rounds.

S. Coy et al. 11:21

C.3 Rooting Trees of Arbitrary Depth

Given a tree T of n nodes with arbitrary depth and constant node degree, we show how
to root T at the node s with minimum identifier, such that every node in T is aware of
its parent node. To do so, we adapt the well-known Euler tour technique to a distributed
setting. Every node v ∈ T with neighbors v(0), . . . , v(deg(v)− 1) (sorted in ascending order
by their identifiers) simulates a virtual node vi for each of its neighbor v(i). We now connect
all virtual nodes to a simple cycle C as follows. For every node vi ∈ C, there is an edge
(vi, uj) ∈ C such that u = v((i + 1) mod deg(v)) and v = u(j). Therefore, each virtual node
vi that belongs to the node v with identifier id(v) is able to introduce itself to its predecessor
in C by sending its virtual identifier ĩd(vi) := id(v) ◦ i for all i ∈ [deg(v)], where ◦ denotes
the concatenation of two binary strings and [k] = {0, . . . , k − 1}. Since each node simulates
only a constant number of virtual nodes, the number of virtual nodes in the cycle C is O(n).

We first describe how to determine the virtual node si with minimal virtual identifier
in O(log n) rounds.7 Note that the node s simulating s0 is then the node with minimal
identifier. Consider the cycle C of virtual nodes and denote the edges of the cycle as level-1
edges. Our algorithm works in multiple iterations. Initially, each virtual node v stores its
own virtual identifier ĩd(v) in some variable v.I. In the first iteration, each virtual node v

does the following. In the first step, v sends v.I to its left neighbor in the cycle8. Upon
receipt of a virtual identifier v.I, each node u updates its variable u.I to v.I in case that
v.I < u.I. In the next step, each virtual node v introduces its left neighbor vl to its right
neighbor vr to create the edge {vl, vr}, a level-2 edge. In each subsequent iteration, say the
i-th iteration, each node v first sends v.I along with its own identifier via all of its level-j
edges (for all j ∈ {1, . . . , i}) and then creates level-(i+1) edges, using its level-i edges created
in the previous iteration. Note that after the i-th iteration, 2i nodes are aware of v’s virtual
identifier and thus have stored v’s virtual identifier in their variables u.I, in case v’s virtual
identifier is the minimal virtual identifier among all of these nodes. We proceed in this
manner until a virtual node v has received its own virtual identifier from its right neighbor in
some iteration, as in this case all nodes have received v’s virtual identifier. This happens at
the node s0 with minimum virtual identifier after O(log n) rounds, because C contains O(n)
virtual nodes. Thus, all that is left to do is to let s0 announce itself as the root of the tree by
broadcasting a message on the cycle with the generated shortcuts, indicating the termination
of the algorithm and announcing itself as the node with minimum virtual identifier. This
takes another O(log n) rounds. Then, each virtual node is now aware of the node s0 with
minimum virtual identifier and therefore also of the node s with minimum identifier.

Now we want to root the tree T at s. The virtual node s0 starts broadcasting its virtual
identifier via all of its outgoing edges to the left (including all of the generated shortcuts
from before). During this broadcast, we keep track of the traversal distance of the message
to be broadcasted, such that each virtual node is able to determine how many hops it is away
from s0 in the cycle. A real node v can now determine its parent in the tree T by looking at
its virtual node with minimum traversal distance to s0. Let this node be the node vi and let
ui be the predecessor of vi in the cycle C. Then it is easy to see that u is the parent node of
v in T , resulting in T getting rooted at s and implying the following lemma.

7 The virtual node with minimal virtual identifier ĩd(si) = id(s) ◦ i is the node si with id(s) ≤ id(v) for
all v ∈ T and i = 0.

8 The nodes may have different perceptions on which direction is left, but this is of no concern for our
algorithm.

OPODIS 2021

11:22 Near-Shortest Path Routing in Hybrid Communication Networks

▶ Lemma 27. Let T be a tree of n nodes with constant node degree. T can be rooted at the
node s with minimal identifier within O(log n) rounds.

C.4 Depth-First Search on Trees
Given a rooted tree T of n nodes with arbitrary depth and constant node degree, we compute
for each node v ∈ T the preorder number lv ∈ N according to a depth-first search (DFS) of
T . Let s be the root of T . As the first step, we perform the distributed Euler-Tour technique
described in the previous section with the exception that the virtual node s0 refrains from
introducing itself to its predecessor. It is easy to see that this results in the virtual nodes
being arranged in a simple line L instead of a cycle.

Next, we apply the pointer jumping technique from Lemma 25 to transform L into a
structure L+ with diameter O(log n). Through a single broadcast from the leftmost node
s ∈ L+, we are now able to compute a number l′

u for a virtual node u indicating the number
of (real) nodes v for which at least one of v’s virtual nodes is left of u on the line L. Each
real node u then sets lu to the minimum value out of all l′

u values of its virtual nodes, which
corresponds to u’s position in the DFS.

▶ Lemma 28. Let T be a rooted tree of n nodes with constant node degree. A DFS on T

where each node v ∈ T is assigned its number lv ∈ N in the DFS can be computed in O(log n)
rounds.

C.5 Computing the Maximum Preorder Number in a Rooted Tree
Assume we are given a rooted tree T of n nodes with arbitrary depth and constant node
degree in which every node v ∈ T possesses a preorder number lv ∈ N according to a DFS.
We compute for each node v ∈ T the maximum preorder number possessed by a node in v’s
subtree, i.e., we compute rv = max{lu ∈ N | u ∈ T (v)}, where T (v) is the subtree of T with
v as the root.9

Before we describe our algorithm, we let the nodes compute an upper bound of log n,
i.e., some value d = O(log n), d ≥ log n as follows. We compute the line L via the Euler-tour
described earlier on the rooted tree T and apply Lemma 25 on L to obtain the structure L+.
Then we perform a broadcast from the rightmost node u in L+ to the leftmost node s0 in
L+, where each message generated by the broadcast contains a counter that is incremented
by 1 once the message is forwarded. The node s0 then maintains a variable d that contains
the maximum counter received by s0. Since L+ has diameter O(log n), the broadcast finishes
after O(log n) rounds. Once the broadcast is finished, it is easy to see that d = O(log n).
The node s0 then broadcasts d to all nodes in L+, such that after another O(log n) rounds,
each node knows d. Observe that d ≥ log D(T), where D(T) is the depth of the tree T .

We are now ready to describe the algorithm for computing the values rv for each node
v ∈ T . Initially, each node v sets rv to lv. Denote the edges of T as level-0 edges. The
algorithms performs i = 1, . . . , d iterations, each iteration needing O(1) rounds. Iteration

9 A more general approach to this problem is presented in [16, Lemma 4.12], where the goal is to compute
the value of a distributive aggregate function for each node v’s own subtree. An aggregate function f is
called distributive if there is an aggregate function g such that for any multiset S and any partition
S1, . . . , Sℓ of S, f(S) = g(f(S1), . . . , f(Sℓ)). Classical examples are MAX, MIN, and SUM. However,
due to the generality of f , the authors had to make use of randomization, which results in a runtime of
O(log n), w.h.p. for their algorithm. We present a deterministic O(log n)-algorithm that is specifically
tailored to the MAX function in this section.

S. Coy et al. 11:23

i works as follows at each node v ∈ T . First, if v has a level-(i − 1) edge going up in the
tree to some node u, then v sends rv to u. Upon receipt of a value rw from node w in the
previous step, v updates rv by setting rv ← rw and marks the edge {v, w}.10 As the final
step of the iteration, v checks whether it has a marked edge {v, u} going up the tree and a
marked edge {v, w} going down the tree. If that is the case, v creates a level-i edge {u, w}
by introducing u to w and vice versa. If not, then v marks itself as ready.

Let T (v) be the subtree of T with v as the root and let w ∈ T (v) be the leaf node with
maximum preorder number. Consider the unique path P up the tree from w to v in T (v). It
is easy to see that our algorithm transfers the preorder number lw to all nodes on this path
within ⌈log k⌉ iterations, where k is the length of P , because in each iteration i, new level-i
shortcuts are added to the nodes on the path in a manner similar to the pointer-jumping
approach from Section C.2. Therefore, once a node v has marked itself as ready in iteration
i, v has received the desired value for rv in iteration i. As each node v ∈ T performs the
algorithm in parallel, each node v has determined rv after at most d = O(log n) iterations
(recall that d ≥ log D(T)). Note that the node degree for each node v does not exceed
O(log n) throughout the algorithm, as in each iteration, v’s degree increases by at most 2.

We obtain the following lemma.

▶ Lemma 29. Let T be a rooted tree of n nodes with constant node degree in which every
node v ∈ T possesses a preorder number lv ∈ N according to a DFS on T starting at its root.
Each node v ∈ T can compute the value rv = max{lu ∈ N | u ∈ T (v)}, where T (v) is the
subtree of T with v as the root, within O(log n) rounds.

10 Note that in the first iteration (i = 1), a node v receives a value rw from each of its child nodes w. It
then just sets rv to be the maximum value out of all received values rw. It is easy to see that v receives
at most one message in any subsequent iterations in this step.

OPODIS 2021

	1 Introduction
	1.1 Model and Problem Definition
	1.2 Our Contributions
	1.3 Overview
	1.4 Related Work

	2 Grid Graph
	2.1 Preliminaries
	2.2 Grid Graph Definition
	2.3 Properties of the Grid Graph
	2.4 Grid Graph Representation, Computation and Simulation

	3 Constant Stretch Routing Scheme for the UDG
	3.1 From Shortest Paths in Gamma to Approximate Paths in G
	3.2 Transforming Routing Schemes for the Grid Graph to the UDG

	4 Computing a Labelling for the Grid Graph
	5 Compact Routing Scheme for the Grid Graph
	6 Conclusion
	References
	A Lower Bound Without Global Communication
	B Proof of Theorem 16
	C Additional Technical Details for Section 4
	C.1 Proof of Lemma 18
	C.2 Pointer Jumping
	C.3 Rooting Trees of Arbitrary Depth
	C.4 Depth-First Search on Trees
	C.5 Computing the Maximum Preorder Number in a Rooted Tree

