
Non-Blocking Dynamic Unbounded Graphs with
Worst-Case Amortized Bounds
Bapi Chatterjee !

Indraprastha Institute of Information Technology Delhi, India

Sathya Peri !

Indian Institute of Technology Hyderabad, India

Muktikanta Sa !

Télécom SudParis – Institut Polytechnique de Paris, France

Komma Manogna !

Indian Institute of Technology Hyderabad, India

Abstract
Today’s graph-based analytics tasks in domains such as blockchains, social networks, biological
networks, and several others demand real-time data updates at high speed. The real-time updates
are efficiently ingested if the data structure naturally supports dynamic addition and removal of both
edges and vertices. These dynamic updates are best facilitated by concurrency in the underlying
data structure. Unfortunately, the existing dynamic graph frameworks broadly refurbish the static
processing models using approaches such as versioning and incremental computation. Consequently,
they carry their original design traits such as high memory footprint and batch processing that
do not honor the real-time changes. At the same time, multi-core processors–a natural setting for
concurrent data structures–are now commonplace, and the analytics tasks are moving closer to
data sources over lightweight devices. Thus, exploring a fresh design approach for real-time graph
analytics is significant.

This paper reports a novel concurrent graph data structure that provides breadth-first search,
single-source shortest-path, and betweenness centrality with concurrent dynamic updates of both
edges and vertices. We evaluate the proposed data structure theoretically – by an amortized analysis
– and experimentally via a C++ implementation. The experimental results show that (a) our
algorithm outperforms the current state-of-the-art by a throughput speed-up of up to three orders
of magnitude in several cases, and (b) it offers up to 80x lighter memory-footprint compared to
existing methods. The experiments include several counterparts: Stinger, Ligra and GraphOne. We
prove that the presented concurrent algorithms are non-blocking and linearizable.

2012 ACM Subject Classification Theory of computation → Concurrent algorithms

Keywords and phrases concurrent data structure, linearizability, non-blocking, directed graph,
breadth-first search, single-source shortest-path, betweenness centrality

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2021.20

Related Version Full Version: https://arxiv.org/abs/2003.01697

Supplementary Material Software (Source Code): https://github.com/sngraha/PANIGRAHAM

Funding This work was partially funded by National Supercomputing Mission, Govt. of India under
the project “Concurrent and Distributed Programming primitives and algorithms for Temporal
Graphs”(DST/NSM/R&D_Exascale/2021/16).

1 Introduction

A graph represents the pairwise relationships between objects or entities that underlie the
complex frameworks such as blockchains, social networks, semantic-web, biological networks
and many others. The contemporary applications of graph algorithms in real-time analytics,

© Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Komma Manogna;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Principles of Distributed Systems (OPODIS 2021).
Editors: Quentin Bramas, Vincent Gramoli, and Alessia Milani; Article No. 20; pp. 20:1–20:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bapi@iiitd.ac.in
https://orcid.org/0000-0002-2742-4028
mailto:sathya_p@cse.iith.ac.in
https://orcid.org/0000-0002-3471-7929
mailto:muktikanta.sa@gmail.com
https://orcid.org/0000-0002-7070-8210
mailto:cs18mtech11021@iith.ac.in
https://doi.org/10.4230/LIPIcs.OPODIS.2021.20
https://arxiv.org/abs/2003.01697
https://github.com/sngraha/PANIGRAHAM
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Non-Blocking Dynamic Unbounded Graphs

such as product recommendation or influential user tracking [31] over social network graphs,
demand dynamic addition and removal of vertices and/or edges over time. Existing approaches
for graph analytics can be broadly classified in batch analytics, e.g. GraphTinker [29], where
a graph operation is performed over a static temporal snapshot of the data structure, and
stream analytics e.g. Kineograph [14], where a temporal window of incoming data is studied.
In general, these approaches inherently assume that the dynamic updates are monotonic:
the structure of the graph largely remaining unaffected. A deviation from the assumed
data ingestion pattern severely affects their design optimizations. Notwithstanding, in such
techniques concurrency is predominantly limited in a “true” real-time sense. Furthermore, in
anticipation of growing number of edges, they allocate a large chunk of memory. Recent trends
show that there is an emerging niche for the analytics tasks closer to the data sources, such
as mobile and edge devices [8]. On such platforms, though multi-core is getting progressively
ubiquitous [40], unlike data-center-based settings, memory is limited and therefore the
graph applications with unlimited dynamic updates must aim to have a lightweight memory
footprint. In substance, the pursuit of an efficient lightweight real-time concurrent graph
analytics framework with a fresh design approach is imperative.

Concurrent Data Structures
With the rise of multi-core computers, concurrent data structures have become popular, for
they are able to harness the power of multiple cores effectively. Several concurrent data
structures have been developed in recent years such as: stacks [23], queues [4, 24, 32, 35],
linked-lists [13, 21, 22, 48, 49, 50], hash tables [37, 38], binary search trees [6, 10, 13, 19, 39, 43],
etc. On concurrent graphs, Kallimanis et al. [30] presented dynamic traversals and Chatterjee
et al. [12] presented reachability queries. However, graph analytics queries, for example,
single-source-shortest-path (SSSP) queries, which appertain to link-prediction in social
networks or betweenness centrality, which finds applications in stock markets [44], are much
more complex than reachability. The aforementioned queries inherently scan through (almost)
the entire graph. In a dynamic setting, a concurrent update of a vertex or an edge can
potentially render the output of such queries inconsistent.

To elucidate, consider computing the shortest path between two vertices. It requires
exploring all possible paths between them, followed by returning the set of edges that make
the shortest path. It is easy to see that an addition of an edge to another path can make it
shorter than the one returned, and similarly, a removal of an edge (from it) could make it no
longer the shortest. Imagine the addition and removal to be concurrent with the query, which
can certainly benefit the application. Clearly, the return of the query can be inconsistent
with the latest state of the graph.

In a concurrent dynamic graph, we require the updates and queries be consistent. To
motivate, consider the computation of the risk-adjusted performance of a stock-portfolio via
betweenness centrality [44]. In a dynamic setting, where the results of such analytics tasks
influence the high-stake financial decisions, it is significant that a user is supplied with a
consistent query result.

A commonly accepted correctness-criterion for concurrent data structures is lineariz-
ability [27], which intuitively infers that the output of a concurrent execution of a set of
operations should appear as executed in a certain sequential order. Separating a graph
query from concurrent updates by way of locking the shared vertices and edges can achieve
linearizability. However, locking the portion of the graph that requires access by a query,
which often could very well be its entirety, would obstruct a large number of concurrent fast
updates. Even an effortful interleaving of the query- and update-locks at a finer granularity

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:3

does not protect against pitfalls such as deadlock, convoying, etc [25]. A more attractive
option is to implement non-blocking (lock-free) progress, which ensures that some non-faulty
(non-crashing) threads complete their operations in a finite number of steps [26]. Surprisingly,
non-blocking linearizable design of queries that synchronize with concurrent updates in a
dynamic graph are difficult.

Proposed work. In this paper, we describe the design and implementation of a graph data
structure, which provides (a) three useful operations – breadth-first search (BFS), single-
source shortest-path (SSSP), and betweenness centrality (BC), (b) dynamic updates of edges
and vertices concurrent with the operations, (c) non-blocking progress with linearizability,
and (d) a light memory footprint. We call it PANIGRAHAM a: Practical Non-blocking
Graph Algorithms.

Algorithm Overview
In a nutshell, we implement a concurrent non-blocking dynamic directed graph data structure
as an adjacency-list formed by a composition of lock-free sets: a lock-free hash-table and
multiple lock-free binary search trees (BSTs). The set of outgoing edges Ev from a vertex
v ∈ V is implemented by a BST, whereas, v itself is a node of the hash-table (as shown in
Figure 1). Addition/removal of a vertex amounts to the same operation of a node in the
lock-free hash-table, whereas, addition/removal of an edge translates likewise to a lock-free
BST. Although lock-free progress is composable [16], thereby ensuring lock-free updates
in the graph, however, optimizing these operations is nontrivial as shown by us in this
paper. The operations – BFS, SSSP, BC – are implemented by specialized partial snapshots
of the composite data structure. In a dynamic concurrent non-blocking setting, we apply
multi-scan/validate [1] to ensure the linearizability of a partial snapshot. We prove that these
operations are non-blocking. The empirical results show the effectiveness of our algorithms.

Related work
Libraries of parallel implementation of graph operations are abundant in literature. A
relevant survey can be found in [5]. To mention a few well-known ones: PowerGraph [20],
Galois [33], Ligra [45], Ligra+ [46], MGraph [51], Congra [42], Congra+ [41]. However, they
primarily focus on static queries and natively do not allow updates to the data structure, let
alone concurrency.

Broadly, these libraries use the compressed sparse row (CSR) format, a read-only repre-
sentation, to implement a graph. In principle, the basic designs of an adjacency list and the
CSR are almost identical [47], however, in practice the CSR exhibits better cache efficiency
due to locality [7]. In a dynamic setting, a serious drawback of the CSR format is the
need for reprocessing the entire structure for vertex updates and the array that stores edge
information for edge updates.

To our knowledge, Stinger [18] was the first large-scale practical implementation that
supported dynamic updates in a graph. They implement a graph as an edge-list: edges
incident on a vertex are stored in a linked-list of edge-blocks. The vertices constitute a
logical vertex array, thereby the edge-blocks are referenced. The edge-blocks contain the
metadata such as timestamps and mark of valid edges. In practice, they allocate a big chunk

a Panigraham is the Sanskrit translation of Marriage, which undoubtedly is a prominent event in our
lives resulting in networks represented by graphs.

OPODIS 2021

20:4 Non-Blocking Dynamic Unbounded Graphs

of memory (by default, half of the available system memory) to minimize cost of allocation
for addition of edges after initialization. The removal of both edges and vertices is provided
via metadata-based marks. However, vertex addition requires copying the entire structure.
Furthermore, by design update operations are not allowed to be concurrent with queries.
In contrast, PANIGRAHAM is concurrent, non-blocking, uses a hash-table for vertex-list
and BSTs to contain edge-nodes. Moreover, the memory consumption is determined by the
actual data contained in the data structure. Stinger was extended and optimized in some
recent works such as GraphOne [34], GraphTinker [29]. GraphOne hybridizes an edge-list
and an adjacency-list to support batch processing. Their methodology maintains versions of
these lists to provide intermittent batch updates to an analytics engine. Clearly, for real-time
lightweight settings, this method suffers from similar drawbacks as Stinger. On the other hand,
GraphTinker builds upon Stinger and replaces linear probing with better hashed searches
on the edge-lists. Their approach also shows some load balancing as the data structure
grows. Nevertheless, none of these methods are efficient for dynamic vertex additions, and
updates and queries are inherently sequentialized. By contrast, PANIGRAHAM provides fully
concurrent queries and updates as a fundamental design component and ensures correctness
(linearizability). Aspen [17] is another recent framework that extends Stinger to support
graph updates with graph queries. However, the interface provided by them is very different -
acquire, set and release. It is not immediately clear how to use their framework for concurrent
graph updates and compare it with our framework.

Contributions and paper summary

First, we describe the non-blocking directed graph data structure as a composition of
lock-free hash table and binary search trees. (Section 2)

After that, we introduce our novel framework as an interface operation with its cor-
rectness and progress guarantee (Section 3) followed by the descriptions of concurrent
implementation of BFS, SSSP, and BC.

We present an experimental evaluation of our algorithm comparing it against the existing
parallel graph libraries Ligra [45] and Stinger [18] with respect to the throughput and
memory footprint (Section 4). Our experiments demonstrate the power of non-blocking
concurrency for dynamic updates in an application. Utilizing the parallel compute
resources – 56 threads – in a standard multi-core machine, our implementation performs
in some cases (a) up to 5x better than Graphone (b) up to 10x better than Ligra and
(c) 40x better than Stinger for BFS, SSSP, and BC algorithms. Significantly, for an
identically initialized data structure and an identical random orderly selection of graph
operations, we achieve up to 80x lighter memory footprint compared to Stinger (Section 4).
In comparative terms, the most recent counterpart of our work is GraphTinker [29], who
report up to 4x speedup in comparison with Stinger. Thus, the presented algorithm
outperforms its latest competitor.

Finally, we present an amortized analysis (Section 5) to theoretically contrast the worst
case cost of our method against that of Ligra and Stinger. To the best of our knowledge,
this is the first work on amortized upper bound for concurrent dynamic graph operations.

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:5

2 Non-blocking Graph Data Structure

Preliminaries
Our discussion uses a standard shared-memory model that supports atomic read, write,
fetch-and-add (FAA), and compare-and-swap (CAS) instructions.

Background on the Graph Operations. A graph is represented as a pair G = (V, E), where
V is the set of vertices and E is the set of edges. An edge e ∈ E, e := (u, v) represents a
pair of vertices u, v ∈ V . In a directed graphb e := (u, v) is an ordered pair, thus has an
associated direction: emanating (outgoing) from u and terminating (incoming) at v. We
denote the set of outgoing edges from v by Ev. Thus, ∪v∈V Ev = E. Each edge e ∈ E has a
weight we. A node v ∈ V is said reachable from u ∈ V : v ←↩ u if there are consecutive edges
{e1, e2, . . . , en} ⊆ E such that e1 emanates from u and en terminates at v.
1. Breadth First Search (BFS): Given a query vertex v ∈ V , output each vertex u ∈ V −v

reachable from v. The collection of vertices happens in a BFS order : those at a distance
d1 from v are collected before those at a distance d2 > d1.

2. Single Source Shortest Path (SSSP): Given a vertex v ∈ V , find a shortest path with
respect to total edge-weight from v to every other vertex u ∈ V − v. Note that, given a
pair of nodes u, v ∈ V , the shortest path between u and v may not be unique.

3. Betweeness Centrality (BC): Given a vertex v ∈ V , compute BC(v) =
∑

s,t∈V
σ(s,t|v)
σ(s,t) ,

where σ(s, t) is the number of shortest paths between vertices s, t ∈ V and σ(s, t|v) is
that passing through v. BC(v) indicates the prominence of v in V and finds several
applications where influence of an entity in a network is to be measured.

The Abstract Data Type (ADT)
Consider a weighted directed graph G = (V, E) as defined before. A vertex v ∈ V has an
immutable unique key drawn from a totally ordered universe. For brevity, we denote a vertex
with key v: v(v) by v itself. Extending on the notations used in Section 1, we denote a directed
edge with weight w from the vertex v1 to v2 as (v1, v2|w) ∈ E. We consider an ADT A

as a set of operations: A = {PutV(v), RemV(v), GetV(v), PutE(v1, v2|w), RemE(v1,

v2), GetE(v1, v2), BFS(v), SSSP(v), BC(v)} on G.

1. A PutV(v) updates V to V ∪ v and returns true if v /∈ V , otherwise it returns false
without any update.

2. A RemV(v) updates V to V − v and returns true if v(v) ∈ V , otherwise it returns false
without any update.

3. A GetV(v) returns true if v ∈ V , and false if v /∈ V .
4. A PutE(v1, v2|w)

1. updates E to E ∪ (v1, v2|w) and returns ⟨true,∞⟩ if v1 ∈ V ∧ v2 ∈ V ∧ (v1, v2|·) /∈ E,
2. updates E to E − (v1, v2|z) ∪ (v1, v2|w) and returns ⟨true,z⟩ if (v1, v2|z) ∈ E,
3. returns ⟨false,w⟩ if (v1, v2|w) ∈ E without updates,
4. returns ⟨false,∞⟩ if v1 /∈ V ∨ v2 /∈ V without updates.

5. A RemE(v1, v2) updates E to E − (v1, v2|w) and returns ⟨true,w⟩ if (v1, v2|w) ∈ E,
otherwise it returns ⟨false,∞⟩ without any update.

6. A GetE(v1, v2) returns ⟨true,w⟩ if (v1, v2|w) ∈ E, otherwise it returns ⟨false,∞⟩.

b In this paper we confine the scope of discussion to directed graphs only.

OPODIS 2021

20:6 Non-Blocking Dynamic Unbounded Graphs

struct bucket {
VNode vn;

}
struct HNode {

bucket [];
int size;
HNode pred;

}
class VNode {

int v;
VNode vnxt;
ENode enxt;
OpItem oi;

}

(a)

class OpItem {
int ecnt, VisA [];
· · · // Other fields

}
class ENode {

int e;
double w;
ENode el, er;
VNode ptv;

}
class SNode {

VNode n;
SNode nxt, p;
int ecnt;

}
(b)

4

3

1

5

7

(c)

B[0] B[1] B[2] B[3]

4 1

5

7

4

1

ENode

VNode

7

3

(d)

Figure 1 (a) and (b) Data structure components, (c) A sample directed graph, (d) Our imple-
mentation of (c).

7. A BFS(v), if v ∈ V , returns a sequence of vertices reachable from v arranged in a BFS
order as defined before. If v /∈ V , it returns NULL.

8. An SSSP(v), if v ∈ V , returns a set S(v) = {d(vi)}vi∈V , where d(vi) is the summation of
the weights of the edgesc on the shortest-path between v and vi if vi ←↩ v, and d(vi) =∞,
if vi ̸←↩ v. Note that d(v) = 0. There can be multiple paths between v and vi with the
same sum of edge-weights. If v /∈ V , it returns NULL.

9. A BC(v) returns the betweenness centrality of v as defined before, if v ∈ V . It returns
NULL if v /∈ V .

A precondition for (v1, v2|w) ∈ E is v1 ∈ V ∧ v2 ∈ V .

Data Structure Components
To facilitate both an efficient traversal and lock-freedom, we build the data structure based
on a composition of a lock-free hash-table implementing the vertex-list, and lock-free BSTs
implementing the edge-lists. On a skeleton of this composition, we include the design
components for efficient traversals and (partial) snapshots. This is a more efficient design
as compared to Chatterjee et al.’s approach [12] where the component dictionaries are
implemented using lock-free linked-lists only.

More specifically, the nodes of the vertex-list are instances of the class VNode, see
Figure 1(a). A VNode contains the key of the corresponding vertex along with a pointer to a
BST implementing its edge-list. The most important member of a VNode is a pointer to an
instance of the class OpItem, which facilitates anchoring of the traversals as described above.

The OpItem class, see Figure 1(b), encapsulates an array VisA of the size equal to the
number of threads in the system, a counter ecnt, and other algorithm specific indicators,
which we describe in Section 3 while specifying the queries. An element of VisA simply keeps
a count of the number of times the node is visited by a query performed by the corresponding

c We limit our discussion to positive edge-weights only.

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:7

thread. The counter ecnt is incremented every time an outgoing edge is added or removed
at the vertex. This serves an important purpose of notifying a thread if the same edge is
removed and added since the last visit.

The class ENode, see Figure 1(b), structures the nodes of an edge-list. It encapsulates
a key, the edge-weight, the left- and right-child pointers and a pointer to the associated
VNode where the edge terminates; the key in the ENode is that of the VNode; thus each ENode
delegates a directed edge. The VNodes are bagged in a linked-list being referred to by a
pointer from the buckets, see Figure 1(a). A resizable hash-table is constructed of the arrays
of these buckets, wherein arrays are linked in the form of a linked-list of HNodes.

At the bare-bones level, our resizable vertex-list derives from the lock-free hash-table of
Liu et al. [37], whereas the edge-lists extend the lock-free BST of Howley et al. [28]. We
introduce the OpItem fields in hash-table nodes. To facilitate non-recursive traversal in the
lock-free BST, we use stacks. As we explain later, aligning the operations of the hash-table
to the state of OpItem therein brings in nontrivial challenges.

The last but a significant component of our design is the class SNode, see Figure 1(b). It
encapsulates the information to validate a scan of the graph to output a consistent specialized
partial snapshot. More specifically, it packs the pointers to VNodes visited during a scan
along with two pointers nxt and p to keep track of the order of their visit. The field ecnt
records the ecnt counter of the corresponding visited VNode, which enables checking if the
visited VNode has had any addition or removal of an edge since the last visit.

Non-blocking Data Structure Construction
Having these components in place, we construct a non-blocking graph data structure in
a modular fashion. Refer to Figure 1(d) depicting a partial implementation of a sample
directed graph shown in Figure 1(c). The ENodes, shown as circles in Figure 1(d), with their
children and parent pointers make lock-free internal BSTs corresponding to the edge-lists. For
simplicity we have only shown the outgoing edges of vertex 5 in Figure 1(d) while the edges
of other vertices are represented by small triangles. Thus, whenever a vertex has outgoing
edges, the corresponding VNode, shown as small rectangles therein, has a non-null pointer
pointing to the root of a BST of ENodes. The VNodes themselves make sorted lock-free
linked-lists connected to the buckets of a hash-table. The buckets are cells of a bucket-array
that implement the lock-free hash-table. When required, we add/remove bucket-arrays for
an unbounded resizable dynamic design. The lock-free VNode-lists have two sentinel VNodes:
vh and vt initialized with keys -∞ and ∞, respectively.

We adopt the well-known technique of pointer marking – using a single-word CAS– via
bit-stealing [28, 37] to perform lazy non-blocking removal of nodes. Concretely, on a common
x86-64 architecture, memory has a 64-bit boundary and the last three least significant bits
are unused; this allows us to use the last significant bit of a pointer to indicate first a logical
removal of a node and thereafter detaching it from the data structure. Specifically, an HNode,
a VNode, and an ENode is logically removed by marking its pred, vnxt, and el pointer,
respectively. We call a node alive which is not logically removed.

3 PANIGRAHAM Framework

In this section, we describe a non-blocking algorithm that implements the ADT A . The
operations M :={PutV, RemV, GetV, PutE, RemE, GetE }⊂ A use the interface
of the hash-table and BST with interesting non-trivial adaptation to our purpose. In the
permitted space we describe the execution, correctness and progress property of the operations

OPODIS 2021

20:8 Non-Blocking Dynamic Unbounded Graphs

1: Operation Op(v)
2: tid ← GetThId();// get thread-id
3: if (isMrkd(v)) then
4: return NULL; //Vertex is not present
5: return Scan(v, tid);//Invoke Scan

6: Method Scan(v, tid)
7: list⟨SNode⟩ ot, nt ; //Trees to hold the nodes
8: ot ← TreeCollect (v, tid); //1st Collect
9: while (true) do //Repeat the tree collection

10: nt ← TreeCollect (v, tid); //2nd Collect
11: if (CmpTree (ot, nt)) then
12: return nt;//return if two collects are equal
13: ot ← nt;
14: Method CmpTree(ot, nt)
15: if (ot = NULL ∨ nt = NULL) then
16: return false;
17: oit ← ot.head, nit ← nt.head;
18: while (oit ̸= ot.tail ∧ nit ̸= nt.tail) do
19: if (oit.n ̸= nit.n ∨ oit.ecnt ̸= nit.ecnt ∨

oit.p ̸= nit.p) then
20: return false; //Both the trees are not equal
21: oit ← oit.nxt; nit ← nit.nxt;
22: if (oit.n ̸= nit.n ∨ oit.ecnt ̸= nit.ecnt ∨ oit.p
̸= nit.p) then //Both the trees are not equal

23: return false ;
24: else return true ; //Both the trees are equal

25: Method ChkVisit(adjn, tid, count)
26: if (adjn.oi.VisA [tid] = count) then
27: return true;
28: else return false ;
29: Method TreeCollect(v, tid)

30: queue ⟨SNode ⟩ que; //Queue used for traversal
31: list⟨SNode ⟩st; cnt ←cnt + 1; //List to keep

of the visited nodes
32: v.oi.VisA [tid] ← cnt;
33: sn←new CTNode(v,NULL,NULL,

v.oi.ecnt);//Create a new SNode
34: st.Add(sn);que.enque(sn);
35: while (¬que.empty()) do //Iterate all vertices
36: cvn ← que.deque(); // Get the front node
37: if (isMrkd (cvn)) then
38: continue;// If marked then continue
39: itn ← cvn.n.enxt; //Get the root ENode
40: stack ⟨ENode ⟩ S; // stack for inorder traversal
41: /*Process all neighbors of cvn in the order of
42: inorder traversal, as the edge-list is a BST*/
43: while (itn ∨ ¬S.empty()) do
44: while (itn) do
45: if (¬isMrkd(itn)) then
46: S.push(itn); // push the ENode

47: itn ← itn.el;
48: itn ← S.pop();
49: if (¬isMrkd(itn)) then //Validate it
50: adjn ← itn.ptv;
51: if (¬isMrkd (adjn)) then //Validate it
52: if (¬ChkVisit (adjn, tid, cnt)) then
53: adjn.oi.VisA [tid] ← cnt; //Mark it
54: //Create a new SNode
55: sn ← new CTNode(adjn,

cvn,NULL,adjn.oi.ecnt);
56: st.Add(sn); //Insert sn to st

57: que.enque(sn); //Push sn into the que

58: itn ← itn.er;
59: return st; //The tree is returned to the Scan

Figure 2 Framework interface operation for graph queries.

Q := {BFS, SSSP, BC} ⊂ A . To de-clutter the presentation, we encapsulate the three
queries in a unified framework. The framework comes with an interface operation Op. Op is
specialized to the requirements of the three queries. The functionality of Op is presented
in pseudo-code in Figures 2. Due to space constraints pseudo-code of the operations BFS,
SSSP, and BC and detail descriptions are presented in the technical report [11].

Before describing the algorithm, it is important to specify its correctness and progress
guarantee. In essence, we need to establish that during any execution the invariants corre-
sponding to a consistent state of the data structure are satisfied, which are: (a) each edge-list
maintains a BST order based on the ENode’s key e, and alive ENodes are reachable from enxt
of the corresponding VNode, (b) a VNode that holds a pointer to a BST containing any alive
ENode is itself alive, (c) each alive VNode is reachable from vh and vertex-lists connected to
buckets are sorted based on the VNode’s keys v, and (d) an HNode which contains a bucket
holding a pointer to an alive VNode is itself alive and an alive HNode is always connected to
the linked-list of HNodes.

To prove linearizability [27], we describe the execution generated by the data structure as
a collection of method invocation and response events. We assign an atomic step between
the invocation and response as the linearization point (LP) of a method call (operation).
Ordering the operations by their LPs provide a sequential history of the execution. We
prove the correctness of the data structure by assigning a sequential history to an arbitrary

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:9

execution which is valid, i.e., it maintains the invariants. Furthermore, we argue that the
data structure is non-blocking by showing that the queries would return in a finite number
of steps if no update operation happens and hence is obstruction-free [26]. Moreover in an
arbitrary execution at least one update operation returns in a finite number of steps and as
a result is lock-free [26]. The details are provided in technical report [11].

Pseudo-code convention. We use p.x to denote the member field x of a class object
pointer p. To indicate multiple return objects from an operation we use ⟨x1, x2, . . . , xn⟩.
To represent pointer-marking, we define three procedures: (a) isMrkd(p) returns true if
the last significant bit of the pointer p is set to 1, else, it returns false, (b) Mrk(p) sets
the last significant bit of p to 1, and (c) UnMrk(p) sets the same to 0. An invocation of
CVnode(v), CEnode(e) and CTNode(v), creates a new VNode with key v, a new ENode
with key e and a new SNode with a VNode v(v) respectively. For a newly created VNode,
ENode and SNode the pointer fields are initialized with NULL value.

The execution pipeline of Op is presented at lines 1 to 5 in Algorithm 2. Op intakes a
query vertex v. It starts with checking if v is alive at Line 3. In the case v was not alive, it
returns NULL. For this execution case, which results in Op returning NULL, the LP is at the
atomic step (a) where Op is invoked in case v was not in the data structure at that point,
and (b) where v was logically removed using a CAS in case it was alive at the invocation of
Op.

Now, if v was alive, it proceeds to perform the method Scan, Line 6 to 13. Scan repeatedly
performs (specialized partial) snapshot collection of the data structure along with comparing
every consecutive pair of scans, stopping when a consecutive pair of collected snapshots are
found identical. Snapshot collection is structured in the method TreeCollect, Line 29
to 59, whereas comparison of collected snapshots in performed by the method CmpTree,
Line 14 to 24.

Method TreeCollect performs a BFS traversal in the data structure to collect pointers
to the traversed VNodes, thereby forming a tree. A cell of VisA corresponding to thread-id is
marked on visiting it; notice that it is adaptation of the well-known use of node-dirty-bit for
BFS [15]. The traversal over VNodes in facilitated by a queue: Line 30, whereas, exploring
the outgoing edges at each VNode, equivalently, traversing over the BST corresponding to its
edge-list uses a stack: Line 40. The snapshot collection for the queries BFS and BC are
identical. For SSSP, where edge-weights are to be considered, the snapshot collection is
optimized in each consecutive scan based on the last collection. At the core, the collected
snapshot is a list of SNodes, where each SNode contains a pointer to a VNode, pointers to the
next and previous SNodes and the value of the ecnt field of the OpItem of the VNode.

Method CmpTree essentially compares two snapshots in three aspects: whether the
collected SNodes contain (a) pointers to the same VNodes (b) have the same SNode being
pointed by previous and next, and (c) have the same ecnt. The three checks ensure that a
consistent snapshot is the one which has its collection lifetime not concurrent to (a) a vertex
either added to or removed from it, (b) a path change by way of addition or removal of
an edge, and, (c) an edge removed and then added back to the same position, respectively.
Thus, at the completion of these checks, if two consecutive snapshots match, it is guranteed
to be unchanged during the time of the last two TreeCollect operations. Clearly, we can
put a linearization point just after the atomic step where the last check is done: Line 19
or 22, where CmpTree returns.

Now, it is clear that any q ∈ Q does not engage in helping any other operation. Fur-
thermore, an m ∈M does not help a q ∈ Q. Thus, given an execution E as a collection of
operation calls belonging to A , by the fact that the data-structures hash-table and BST are

OPODIS 2021

20:10 Non-Blocking Dynamic Unbounded Graphs

lock-free, and whenever no PutV, PutE, RemV, and RemE happen, a q ∈ Q returns, we
infer that the presented algorithm is non-blocking. In Appendix A, we present the details of
each of the operations.

Fundamentally, the functionalities of BFS, SSSP and BC queries are tailored by spe-
cialized construction of corresponding OpItem objects according to the requirements of their
respective partial snapshots. As mentioned above, these queries are obstruction-free. In the
technical report [11], we present the details of each of the queries.

4 Experiments

In this section, we describe the experimental evaluation of our non-blocking graph algorithms
against three well-known existing batch analytics methods: (a) Stinger [18], (b) Ligra [45],
and (c) GraphOne [34].

Dataset. We use (a) a standard synthetic dataset – R-MAT graphs [9] – with power-law
distribution of degrees, and (b) real-life SNAP{EmailEuAll, Slashdot0811, socEpinions1,
and WikiVot} [36] graph dataset.

Algorithms. While Stinger provides dynamic edge addition and removal and vertex removal
operations, Ligra is built for static queries. However, these libraries do not allow concurrent
updates with queries: we execute dynamic vertex and edge updates by intermittent sequential
addition and removal. As explained earlier, we needed the repeated snapshot collection
and validation methodology to guarantee linearizability of graph queries. However, if the
consistency requirement is not as strong as linearizability, we can still have non-blocking
progress if we collect the snapshots only once, i.e., we stop the scan algorithm after a single
round of snapshot collection. At the cost of theoretical consistency, we gain a lot in terms of
throughput, which is the primary demand of the analytics applications, who often go for
approximate queries. Thus, the experiments include the following methods: (1) PG-Cn:
Linearizable PANIGRAHAM, (2) PG-Icn: Inconsistent PANIGRAHAM, (3) Ligra, (4)
Stinger, and (5) GraphOne. Note that, while all the libraries provide BFS queries, only
Ligra supports SSSP and BC.

The choice of the competitors. One clear advantage of PANIGRAHAM over each of the
lately developed dynamic graph frameworks, such as GraphOne [34] and GraphTinker [29],
is that in a dynamic setting these frameworks do not provide any direct or intuitive method
for vertex removal. The dynamic property of the graph in these frameworks is primarily with
regards to the edges. While keeping the requirement for having support of dynamic vertex
and edges, we zeroed on Ligra [18] and Stinger [45] for comparisons. We also compare
the results of BFS on GraphOne [34] with concurrent PutE, and RemE operations by
keeping a fixed number of vertices.

Experimental Setup. We conducted our experiments on a system with Intel(R) Xeon(R)
E5-2690 v4 CPU packing 56 cores with a clock speed of 2.60GHz. There are 2 logical threads
for each core and each having a private 64KB L1 and 256KB L2 cache. The 35840KB L3
cache is shared across the cores. The system has 32GB of RAM and 1TB of hard disk. It
runs on a 64-bit Linux operating system. All implementationsdare in C++ without garbage
collection. We used Posix threads for multi-threaded implementation.

d The source code is available on https://github.com/PDCRL/PANIGRAHAM.

https://github.com/PDCRL/PANIGRAHAM

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:11

7 14 28 56

100

101

102

103

2/49/49

Stinger
Ligra
PG-Cn
PG-Icn

(a)
7 14 28 56

100

101

102

103
5/47.5/47.5

(b)
7 14 28 56

101

102

103
10/45/45

(c)

7 14 28 56

10−0.5

100

Ligra
PG-Cn
PG-Icn

(d)
7 14 28 56

10−1

100

(e)
7 14 28 56

100

101

(f)

7 14 28 56
10−1

100 Ligra
PG-Cn
PG-Icn

(g)
7 14 28 56

10−0.5

100

(h)
7 14 28 56

100

(i)

Figure 3 Latency of the executions containing Op: (1) BFS ((a), (b), and (c)) on a graph of size
|V |= 131K and |E|= 2.44M , (2) SSSP ((d), (e), and (f)) on a graph of size |V |= 8K and |E|= 80K,
and (3) BC ((g), (h), and (i)) on a graph of size |V |= 16K and |E|= 160K. X-axis and Y-axis units
are the number of threads and time in second, respectively.

The experiments start with a graph instance populating the data structure. At the
execution initialization, we spawned a fixed set of threads (7, 14, 28 and 56). During
the runtime, each thread randomly performed a set of operations chosen from a certain
random workload distribution. The random workload pre-constructed and the same across
all experiments. Each experiment was executed for 5 iterations. After ignoring the initial 5%
operations for warm-up and we took the average of the remaining operations. We considered
two evaluation metrics: (i) the latency: total time taken to complete the set of operations,
after a fixed warm-up – 5% of the total number of operations, and (ii) the memory footprint.

Workload Distribution. In each micro-benchmark, first we loaded a graph instance, there-
after performed warm-up operations, followed by an end-to-end run of 104 operations in
total, assigned in a uniform random order to the threads. We used a range of distribu-
tions over an ordered (family of) set of operations: {Op, Vertex-Updates:={PutV, RemV },
Edge-Updates:={PutE, RemE }}. A sample label, say, 20/60/20 on a performance plot refers
to a distribution {Op : 20%, {PutV : 30%, RemV : 30%}, {PutE : 10%, RemE : 10%}}.

OPODIS 2021

20:12 Non-Blocking Dynamic Unbounded Graphs

7 14 28 56
100

101

T
im

e
(S
ec
)

PGcn
PGIcn

GraphOne

(a) 2/49/49

7 14 28 56

100.5

101

(b) 10/45/45

7 14 28 56
100.5

101

(c) 20/40/40

Figure 4 Latency of the executions containing Op: BFS ((a), (b), and (c)) on a graph of size
|V |= 65K and |E|= 500K. Total 104 operations were performed with given distributions. The
distributions for each cases is: BFS/PutE/RemE, e.g., 2/49/49 : {BFS : 2%, PutE : 49%, RemE :
49%}. X-axis unit is the number of threads.

Experimental Observations and Discussion

Figure 3 to 10 show the evaluation results. In the following we highlight the significant
experimental observations.

7 14 28 56

103

104

#threads

M
em

or
y
u
se
d
(M

B
)

Stinger Ligra PG-Cn PG-Icn

(a) BFS

7 14 28 56

101.5

102

#threads

Ligra PG-Cn PG-Icn

(b) SSSP

7 14 28 56

102

#threads

Ligra PG-Cn PG-Icn

(c) BC

Figure 5 The memory footprint during the run-time corresponding to the workload distribution
10/45/45 as plotted in Figures 3(c), 3(f) and 3(i).

Scalability. See Figure 3; the concurrent methods scale well with the number of threads
irrespective of the workload and graph size, whereas Stinger shows negligible scalability.
With higher proportion of queries in the workload, Ligra starts scaling. This shows that
concurrency in dynamic analytics is a natural way to scale-up.

GraphOne vs PANIGRAHAM. GraphOne [34] does not allow vertex updates. Unlike
Stinger and Ligra, wherein copying the allocated graph structure to a new memory-location
was a workaround, the GraphOne interface does not let the structure of the allocated graph
be retrieved, thus disallowing any obvious possibility of PutV and RemV operations. Thus,
the only experimental comparison of PG-Cn and PG-Icn with GraphOne was in regards to
concurrent executions of BFS, PutE and RemE operations by fixing the number of vertices.
Figure 4 depicts different workloads and with a graph having a fixed number of vertices. We
observe that for the chosen graphs sizes and the common workload, that well represent a
dynamic size, GraphOne exhibits severely limited scalability with the number of threads, in
comparison to PG-Cn and PG-Icn.

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:13

(1) (2) (3) (4) (5)

103

104

105

106

V/E

T
im

e
(M

il
li
S
ec
)

30/50/20

(a)

(1) (2) (3) (4) (5)

103

104

105

106

V/E

40/40/20

(b)

(1) (2) (3) (4) (5)

102

103

104

105

106

V/E

60/20/20

PG-Cn
Stinger

(c)

Figure 6 Consistent concurrent analytics of PG-Cn against Stinger: the execution latency of BFS
is plotted for 56 threads for different graph-sizes as labeled on x-axis: {(V/E), (1) : 1K/10K, (2) :
8K/80K, (3) : 16K/160K, (4) : 32K/320K, (5) : 65K/500K}.

Memory footprint. Figure 5 shows that Stinger has approximately 80x heavier memory
footprint in comparison with PG-Cn or PG-Icn for executions with BFS queries. The reason
can be traced in the design of Stinger, whereby it pessimistically allocates a large chunk
of memory. For SSSP and BC queries, wherein the OpItem object gets bigger to facilitate
partial snapshot collection, Ligra gets advantage of compact CSR representation. However,
in no case the allocated memory by PG-Cn or PG-Icn spills as drastically as Stinger.

Concurrency vs. Batch analytics. Figure 6 shows that PG-Cn offers two to four orders of
magnitude speed-up in comparison with state-of-the-art Stinger for a given standard system
setting. It clearly implies that a concurrent analytics framework can vastly improve on the
existing methods of batch analytics.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
9.31
18.61
27.92

PG-CN

LIGRA

PG-ICN

(a) 60/20/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
7.79
15.57
23.36

(b) 40/40/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
6.77
13.54
20.32

(c) 30/50/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
6.65
13.29
19.94

(d) 20/60/20.

Figure 7 Latency of the executions containing Op: BFS. In the 3D-plots, z-axis indicates the
total time in seconds for an end-to-end run of 104 operations uniformly distributed according to the
respective distributions. The dataset sizes as labeled on the y-axis are {(V/E), {(1) : 1K/10K, (2) :
8K/80K, (3) : 16K/160K, (4) : 32K/320K, (5) : 65K/500K}.

Overall advantage of Concurrency. Having seen the comparative performance of Stinger-
based batch analytics and the proposed consistent concurrent analytics framework, now we
compare both the consistent and high performing inconsistent variants of PANIGRAHAM
with a lightweight static framework Ligra adopted to the batch analytics setting (as noted
earlier, Stinger and GraphOne do not support SSSP and BC queries). See Figures 7, 8, and
9. For smaller datasets, as well as for higher update workloads, both PG-Cn and PG-Icn
outperform Ligra. As the query workload grows i.e., the overall workload gets closer to static,
CSR based method exploits inline parallelization with lower cache misses, thus Ligra gets
advantage. Still, PG-Icn decisively performs better than Ligra over the entire range of graph
sizes and workload distribution. Notice that, in some cases, as we move from 28 to 56 threads,
hyperthreading activates leading to cache thrashing, which limits CSR’s optimization; in the
same way, in some cases, for higher thread contention PG-Cn’s performance also suffers.

OPODIS 2021

20:14 Non-Blocking Dynamic Unbounded Graphs

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0
119
238
357

PG-CN

LIGRA

PG-ICN

(a) 60/20/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.0
60.3
120.6
180.9

(b) 40/40/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.0
37.4
74.9
112.3

(c) 30/50/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
16.05
32.09
48.14

(d) 20/60/20.

Figure 8 End-to-end latency of the executions containing Op: SSSP. The plotting description is
similar to that of Fig. 7. The graph sizes as labeled on the y-axis are {(V/E), (1) : 1K/10K, (2) :
4K/30K, (3) : 8K/50K, (4) : 8K/70K, (5) : 8K/80K}.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
9.27
18.54
27.82

PG-CN

LIGRA

PG-ICN

(a) 60/20/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
5.59
11.19
16.79

(b) 40/40/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.00
3.89
7.78
11.66

(c) 30/50/20.

Threads
7 14 28 56 V/E(1)

(2)
(3)

(4)
(5)

Ti
m

e
(S

ec
)

0.000
2.312
4.625
6.937

(d) 20/60/20.

Figure 9 End-to-end latency of the executions containing Op: BC. The plotting description is
similar to that of Fig. 7. The graph sizes as labeled on the y-axis are {(V/E), (1) : 1K/10K, (2) :
2K/20K, (3) : 4K/40K, (4) : 8K/80K, (5) : 16K/120K}.

7 14 28 56
0

50

100

150

#threads

#
m

od
ifi

ca
ti

on
s

#V = 66K,#E = 420K

60/20/20
40/40/20
20/60/20

(a) Op:BFS.

7 14 28 56
0

50

100

150

#threads

#
m

od
ifi

ca
ti

on
s

#V = 4K,#E = 30K

60/20/20
40/40/20
20/60/20

(b) Op:SSSP.

7 14 28 56
0

50

100

150

#threads

#
m

od
ifi

ca
ti

on
s

#V = 8K,#E = 50K

60/20/20
40/40/20
20/60/20

(c) Op:BC.

7 14 28 56
0

2

4

6

#threads

#
co

lle
ct

s

#V = 66K,#E = 420K

60/20/20
40/40/20
20/60/20

(d) Op:BFS.

7 14 28 56
0

2

4

6

#threads

#
co

lle
ct

s
#V = 4K,#E = 30K

60/20/20
40/40/20
20/60/20

(e) Op:SSSP.

7 14 28 56
0

1

2

3

#threads

#
co

lle
ct

s

#V = 8K,#E = 50K

(f) Op:BC.

Figure 10 Average number of concurrent modifications and scans during a query. Legends
60/20/20, etc. are identical to those in Fig. 7, 8 and 9.

5 Complexity Analysis

Given a graph G = (V, E), denote |V |= n, |E|= m, δ = maxv∈V (δv), where δv is the degree
of vertex v. As PANIGRAHAM (PG) consists of a hash-table and BSTs, Ligra uses CSR
format, and Stinger uses edge-lists to represent G, the worst-case cost of operations by each
of them in a static setting are given in Table 1.

Table 1 The static worst-case complexities.

Algo. PutV RemV PutE RemE GetV GetE BFS SSSP BC

PG O(n) O(n) O(n + δ) O(n + δ) O(n) O(n + δ) O(n + m) O(mn) O(mn + n2)

Ligra O(n + m) O(n + m) O(m) O(m) O(1) O(log δ) O(n + m) O(mn) O(mn + n2)

Stinger O(n + m) O(δ) O(δ) O(δ) O(1) O(δ) O(n + m) – –

The worst-case cost of PutV/RemV/GetV for PG is due to the hash-table, and that of
PutE/RemE/GetE is due to the BST and hash-table. The worst-case cost of PutV/RemV
for Ligra comes from copying and shifting the entire structure, whereas, that for PutE/RemE

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:15

comes from shifting the edge array. GetV and GetE in Ligra relate to lookup in an index
and a sorted array, respectively. Stinger behaves similar to Ligra in terms vertex operations,
however, the edge-lists facilitate the worst-case linear cost in maximum degree δ only for
the operations RemV/PutE/RemE/GetE here. The queries in each of the data-structure
designs behave identically.

We define the state of a graph G as a tuple SG = (n, m, δ), where n, m, δ are as afore-
mentioned. Essentially, SG captures the size and shape of G. Now consider an execution –
set of operation calls – X such that invocations and responses of operations {o ∈ X} form a
valid history H [25]. Thus, for an o ∈ X, type(o) ∈ A , where type(o) denotes the type of o

and A is the ADT as described earlier. Denote the worst-case cost of o, given o is invoked
at an atomic time point when state of G was SG by Wo,SG

. The states of G, being tuples,
are ordered by dictionary order. In a dynamic setting, Wo,SG

is upper-bounded by the cost
of o as performed in a static setting over the worst-case state, during the lifetime of o, of G

as defined in Lemma 1.
Let Io and Co be the interval contention [2] and point contention [3], respectivelye, for

an o ∈ X. We name the execution cases – PG-Cn, PG-Icn, Ligra, and Stinger – as in section
4. Notice that, for an execution of Ligra and Stinger, Io = Co = 1 as there is no concurrency.
For PG-Icn, Co = 1 as even though the operations are performed concurrently, they are
essentially not obliged to maintain any consistency, thus, do not cause “restart” to their
peers though they may cause “cost escalation” which is captured by Io. Denote Ĩo = (Io− 1),
the total number of concurrent operation calls other than o itself (those responsible for a
possible cost escalation) that were invoked between the invocation and response of o. Lemma
1 is immediate:

▶ Lemma 1. If an operation call o ∈ X is invoked at a state SG,o = (n, m, δ) of G, the
worst-case state of G that o can encounter is SG,o = (O(n + Ĩo), O(m + Ĩo), O(δ + Ĩo)).

Denote XU = {o ∈ X | type(o) ∈ U , U ⊆ A }, where A is the ADT as defined in Section
2. Let Io,U and Co,U denote the interval and point contentions, respectively, of o pertaining
to the operation calls o ∈ {XU ∪ {o}}. Without loss of generality, we consider executions X,
s.t. type(o) ∈ M ∪ {q} ∀o ∈ X, where M ={PutV, RemV, PutE, RemE}⊂A , q∈Q and
Q={BFS, SSSP, BC }⊂A . This execution represents our experiments in section 4. The
worst-case cost Wo,SG,o

of operation calls belonging to different type(o), in a static setting,
are as listed in Table 1. Denote MV ={PutV, RemV}, ME={PutE, RemE}, and δo as
the degree of vertex v1, s.t. o ∈ {PutE(v1, v2|w), RemE(v1, v2)}. Using the fact that an
operation o ∈ X s.t. type(o) ∈ MV can be obstructed by only an operation o′ ∈ E s.t.
type(o′) ∈MV and similarly for the set ME , following the standard accounting method [13]
an amortization over the update operations XM gives Lemma 2.

▶ Lemma 2. The worst-case amortized cost per operation for an execution of XM , denoted
as AXM is

O

Co,MV

|XM |
∑

o∈XMV

Wo,SG,o
+ 1
|XM |

∑
o∈XME

Wo,SG,o
+ Co,ME

|XM |
∑

o∈XME

O(δe)

 .

e We are slightly adapting the original definitions of interval and point contention, where these notions
are defined for processes invoking o, to our terminologies.

OPODIS 2021

20:16 Non-Blocking Dynamic Unbounded Graphs

Notice that the worst-case costs for individual operation calls Wo,SG,o
consider a dynamic

setting. Lemma 2 essentially infers that a careful accounting for amortization should consider
only those concurrent operations that cause a CAS failure and thereby restart of an o ∈ X.
Furthermore, an o ∈ XME

restarts only from the vertex v1 as mentioned above. Using a
similar technique, and the fact that the queries by PG-Icn do not restart, we have Theorem 3

▶ Theorem 3. Denote

AX(M) = Co,MV

|E|
∑

o∈XMV

Wo,SG,o
+ 1
|X|

∑
o∈XME

Wo,SG,o
+ Co,ME

|E|
∑

o∈XME

O(δe). (1)

The worst-case amortized cost per operation AX for an execution of o s.t. type(o) ∈
M ∪ {q} ∀o ∈ X, and q ∈ Q = {BFS, SSSP, BC} is

1. For q ∈ Q performed by PG-Icn,

AX = AX(M) + 1
|X|

∑
o∈XQ

(
Wo,SG,o

+ Ĩo,M

)
. (2)

2. For q ∈ Q performed by PG-Cn,

AX = AX(M) + Co,M

|X|
∑

o∈XQ

(
Wo,SG,o

+ Ĩo,M

)
. (3)

Now, different from the concurrent analytics by PANIGRAHAM, in a batch analytics
setting, the updates and queries selected at a random order are essentially performed
sequentially, thus we have Theorem 4.

▶ Theorem 4. For q ∈ Q performed by Ligra or Stinger is O
(

1
|X|

∑
o∈X Wo,SG,o

)
.

Plugging in the worst-case costs from Table 1 gives the amortized costs in terms of the
parameters n, m, δ of G.

▶ Remark 5 (Observed contention). Notice that the worst-case amortized cost per operation
for PG-Cn can be tightened by more careful accounting as one restart of a query execution
o ∈ XQ corresponds to all the modifications in G that might have happened during its scan
phase. We experimentally obtained the average number of concurrent modifications and
scans as in TreeCollect for the queries as shown in Figure 10. Clearly, the average number
of scans before a linearized response is much less than the average number of concurrent
modifications during the lifetime of a query.

▶ Remark 6 (Parallel speedup). Assuming that there are p non-faulty threads in the shared-
memory system, and each atomic step can be executed in a unit time-step, the worst-case
amortized number of time-steps per operation for an execution of both PG-Cn and PG-
Icn is roughly AX/p, where AX is as given in Theorem 3. For Ligra and Stinger, the
operation calls o ∈ XQ get speedup due to parallel executions, whereas o ∈ XM are executed
sequentially. If the parallel execution of an o ∈ XQ has a speedup s ≤ p, then the worst-case
amortized number of time-steps per operation for an execution of Ligra or Stinger will be
O

(
1
|X|

∑
o∈XM

Wo,SG,o
+ 1

s|X|
∑

o∈XQ
Wo,SG,o

)
. Clearly, the theoretical insights from the

amortized analysis is corroborated by our experiments where we observed that even for a
moderately sized graph, PG-Icn performs better than Ligra, whereas, for smaller graphs
despite of costly consistent queries, PG-Cn outperforms the batch analytic methods.

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:17

6 Conclusion

In this paper, we presented a novel framework of concurrent dynamic graph analytics
PANIGRAHAM. We implemented commonly used graph algorithms: breadth-first search,
single-source-shortest-path, and betweenness centrality over this framework. The presented
framework is versatile enough such that it can be extended to other graph algorithms that
process the global information in a graph and are usually found in graph-based analytics. We
proved that the presented algorithms are non-blocking and linearizable. From the perspective
of higher performance at the cost of consistency, we presented an inconsistent variant as well.
We extensively evaluated a C++ implementation of the algorithms that shows scalability
of the method with parallel resources. Another important contribution of this paper is an
amortized analysis of the graph operations in a concurrent consistent non-blocking setting.
To the best of our knowledge, this is the first work to provide amortized upper bound
for concurrent dynamic graph operations. Unlike the well-known parallel batch analytics
libraries, our framework honors the real-time order of updates and most significantly provides
fully dynamic vertex additions, which has largely been unavailable previously. Its memory
footprint is up to 80x lighter compared to Stinger and it provides up-to-three orders of
magnitude better performance than Stinger.

The present work motivates two very important future works: (a) implementing lock-free
variant of CSR representation of graphs to take advantage of cache efficiency and concurrency,
and, (b) an amortized average-case analysis of these algorithm, which gives a more realistic
picture of the implementations with respect to their theoretical behavior.

References

1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic
Snapshots of Shared Memory. Journal of the ACM, 40(4):873–890, 1993.

2 Yehuda Afek, Gideon Stupp, and Dan Touitou. Long Lived Adaptive Splitter and Applications.
Distributed Comput., 15(2):67–86, 2002.

3 H. Attiya and A. Fouren. Alg. Adapting to Point Contention. J. ACM, 50(4):444–468, 2003.
4 Greg Barnes. A Method for Implementing Lock-free Shared-data Structures. In SPAA, pages

261–270, 1993.
5 Omar Batarfi, Radwa El Shawi, Ayman G Fayoumi, Reza Nouri, Ahmed Barnawi, Sherif

Sakr, et al. Large Scale Graph Processing Systems: Survey and an Experimental Evaluation.
Cluster Computing, 18(3):1189–1213, 2015.

6 Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees. In
PPoPP, pages 329–342, 2014.

7 A. Buluç, J. R. Gilbert, and V. B. Shah. Implementing Sparse Matrices for Graph Algorithms.
In Graph Algorithms in the Language of Linear Algebra, volume 22, pages 287–313. SIAM,
2011.

8 Hung Cao, Monica Wachowicz, and Sangwhan Cha. Developing an edge computing platform
for real-time descriptive analytics. 2017 IEEE International Conference on Big Data (Big
Data), pages 4546–4554, 2017.

9 Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A recursive model for
graph mining. In SDM, pages 442–446, 2004.

10 Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. Efficient Lock-free Binary Search Trees.
In PODC, pages 322–331, 2014.

11 Bapi Chatterjee, Sathya Peri, and Muktikanta Sa. Dynamic Graph Operations: A Consistent
Non-blocking Approach. CoRR, abs/2003.01697, 2020.

OPODIS 2021

20:18 Non-Blocking Dynamic Unbounded Graphs

12 Bapi Chatterjee, Sathya Peri, Muktikanta Sa, and Nandini Singhal. A Simple and Practical
Concurrent Non-blocking Unbounded Graph with Linearizable Reachability Queries. In
ICDCN, pages 168–177, 2019.

13 Bapi Chatterjee, Ivan Walulya, and Philippas Tsigas. Help-optimal and Language-portable
Lock-free Concurrent Data Structures. In ICPP, pages 360–369, 2016.

14 Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang,
Lidong Zhou, Feng Zhao, and Enhong Chen. Kineograph: taking the pulse of a fast-changing
and connected world. In EuroSys, pages 85–98, 2012.

15 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009.

16 Nhan Nguyen Dang and Philippas Tsigas. Progress guarantees when composing lock-free
objects. In Euro-Par, pages 148–159, 2011.

17 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Low-Latency Graph Streaming Using
Compressed Purely-Functional Trees. In PLDI, pages 918–934, 2019.

18 D. Ediger, R. McColl, J. Riedy, and D. A. Bader. STINGER: High Performance Data Structure
for Streaming Graphs. In HPEC, 2012.

19 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking binary
search trees. In PODC, pages 131–140, 2010.

20 Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In OSDI, pages 17–30, 2012.

21 Timothy L. Harris. A Pragmatic Implementation of Non-blocking Linked-Lists. In DISC,
pages 300–314, 2001.

22 Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III, and Nir
Shavit. A Lazy Concurrent List-Based Set Algorithm. Parallel Processing Letters, 17(4):411–
424, 2007.

23 Danny Hendler, Nir Shavit, and Lena Yerushalmi. A Scalable Lock-free Stack Algorithm. In
SPAA, pages 206–215, 2004.

24 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-Free Synchronization:
Double-Ended Queues as an Example. In (ICDCS, pages 522–529, 2003.

25 Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan K., 2008.
26 Maurice Herlihy and Nir Shavit. On the Nature of Progress. In OPODIS, pages 313–328, 2011.
27 Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for

Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.
28 Shane V. Howley and Jeremy Jones. A Non-blocking Internal Binary Search Tree. In SPAA,

pages 161–171, 2012.
29 Wole Jaiyeoba and K. Skadron. Graphtinker: A high performance data structure for dynamic

graph processing. IPDPS, pages 1030–1041, 2019.
30 Nikolaos D. Kallimanis and Eleni Kanellou. Wait-Free Concurrent Graph Objects with

Dynamic Traversals. In OPODIS, pages 1–27, 2015.
31 Miray Kas, Kathleen M. Carley, and L. Richard Carley. Incremental Closeness Centrality for

Dynamically Changing Social Networks. In ASONAM 2013, pages 1250–1258, 2013.
32 Alex Kogan and Erez Petrank. Wait-Free Queues With Multiple Enqueuers and Dequeuers.

In PPOPP, pages 223–234, 2011.
33 Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and

L. Paul Chew. Optimistic Parallelism Requires Abstractions. In PLDI, pages 211–222, 2007.
34 P. Kumar and H. Huang. Graphone: A data store for real-time analytics on evolving graphs.

In FAST, 2019.
35 Edya Ladan-Mozes and Nir Shavit. An Optimistic Approach to Lock-free FIFO Queues.

Distributed Computing, 20(5):323–341, 2008.
36 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collection.

http://snap.stanford.edu/data, June 2014.

http://snap.stanford.edu/data

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:19

37 Yujie Liu, Kunlong Zhang, and Michael Spear. Dynamic-sized Nonblocking Hash Tables. In
PODC, pages 242–251, 2014.

38 Maged M. Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets.
In SPAA, pages 73–82, 2002.

39 Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In PPoPP,
pages 317–328, 2014.

40 K A Obukhova, Iryna Zhuravska, and Volodymyr Burenko. Diagnostics of power consumption
of a mobile device multi-core processor with detail of each core utilization. TCSET, pages
368–372, 2020.

41 P. Pan, C. Li, and M. Guo. Congraplus: Towards efficient processing of concurrent graph
queries on numa machines. IEEE TPDS, 30(9):1990–2002, 2019.

42 Peitian Pan and Chao Li. Congra: Towards efficient processing of concurrent graph queries on
shared-memory machines. In ICCD, pages 217–224, 2017.

43 Arunmoezhi Ramachandran and Neeraj Mittal. A Fast Lock-Free Internal Binary Search Tree.
In ICDCN, pages 37:1–37:10, 2015.

44 Alberto G. Rossi, D. Blake, A. Timmermann, I. Tonks, and R. Wermers. Network centrality
and delegated investment performance. Journal of Financial Economics, 128:183–206, 2018.

45 Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing framework for shared
memory. In PPoPP, pages 135–146, 2013.

46 Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. Smaller and Faster: Parallel Processing
of Compressed Graphs with Ligra+. In DCC, pages 403–412, 2015.

47 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

48 Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-Free Linked-Lists.
In OPODIS, pages 330–344, 2012.

49 John D. Valois. Lock-Free Linked Lists Using Compare-and-Swap. In PODC, pages 214–222,
1995.

50 Kunlong Zhang, Yujiao Zhao, Yajun Yang, Yujie Liu, and Michael F. Spear. Practical
Non-blocking Unordered Lists. In DISC, pages 239–253, 2013.

51 J. Zhao, Y. Zhang, X. Liao, L. He, B. He, H. Jin, H. Liu, and Y. Chen. Graphm: An efficient
storage system for high throughput of concurrent graph processing. In SC, 2019.

A The Non-blocking Graph Algorithm

In this section, we present a detailed implementation of our non-blocking directed graph
algorithm. The non-blocking graph composes on the basic structures of the dynamic non-
blocking hash table [37] and non-blocking internal binary search tree [28]. For a self-contained
reading, we present the algorithms of non-blocking hash table and BST. Because it derives
and builds on the earlier works [37] and [28], many keywords in our presentation are identical
to theirs. One key difference between our non-blocking BST design from [28] is that we
maintain a mutable edge-weight in each BST node, thereby not only the implementation
requires extra steps but also we need to discuss extra cases in order to argue the correctness
of our design. Furthermore, we also perform non-recursive traversals in the BST for snapshot
collections, which were already discussed as part of the graph queries. The pseudo-codes
pertaining to the non-blocking hash-table are presented in Figure 12, whereas those for the
non-blocking BST are presented in Figures 13.

A.1 Structures
The declarations of the object structures that we use to build the data structure are listed in
Figure 12 and 13. The structures FSet, FSetOp, and HNode are used to build the vertex-list,
whereas Node, RelocateOp, and ChildCASOp are the component-objects of the edge-list. The

OPODIS 2021

20:20 Non-Blocking Dynamic Unbounded Graphs

1: Operation PutV(v)
2: return HashAdd(v);
3: Operation RemV(v)
4: return HashRem(v);
5: Operation GetV(v)
6: ⟨st, v⟩ ← HashCon(v);
7: if (st = true) then
8: return ⟨true, v⟩;
9: else

10: return ⟨false, NULL⟩;
11: Operation GetE(v1, v2)
12: ⟨u, v, st⟩ ← ConVPlus(v1, v2);
13: if (st = false) then
14: return ⟨false,∞⟩;
15: ⟨st, e⟩ ← BSTCon(v2, v.enxt);
16: if (st = FOUND ∧ ¬ HashCon(v1) ∧ ¬ HashCon(v2)
∧ (e.ptv = u)) then

17: z ← e.w;
18: return ⟨true,z⟩;
19: else return ⟨false,∞⟩;
20: Method ConVPlus(v1, v2)
21: ⟨st1,u⟩ ← HashCon(v1); //Modified GetV, re-

turns status along with ref
22: ⟨st2,v⟩← HashCon(v2);
23: if (st1 = true ∧ st2 = true) then
24: return ⟨u, v, true⟩;
25: else return ⟨u, u, false⟩;
26: Operation PutE(v1, v2|w)
27: ⟨ u, v, st ⟩ ← ConVPlus(v1, v2);
28: if (st = false) then return ⟨false,∞⟩;
29: while (true) do
30: if (isMrkd(u) ∨ isMrkd(v)) then
31: return ⟨false,∞⟩;
32: st ← Find(v2, pe, peOp, ce , ceOp, u.enxt);
33: if (GetFlag(pe) = MARKED) then
34: continue;
35: if (st = FOUND) then
36: if (ce.w = w) then return ⟨false,w⟩;
37: else
38: z ← ce.w;
39: CAS(ce.w, z, w);
40: u.ecnt.FetchAndAdd (1);
41: return ⟨true,z⟩;

42: else
43: ne ← CEnode (v2, w);
44: ne.ptv ← v;
45: Boolean ifLeft ← (st = NOTFOUND_L);
46: ENode old ← ifLeft ? ce.left : ce.right;
47: casOp ← new ChildCASOp(ifLeft, old, ne);
48: if (CAS(ce.op,ceOp,Flag(casOp,CHILDCAS)))

then
49: u.ecnt.FetchAndAdd (1);
50: HelpChildCAS(casOp, ce);
51: return ⟨true,∞⟩;
52: Operation RemE(v1, v2)
53: ⟨u, v, st⟩ ← ConVPlus(v1, v2);
54: if (st = false) then
55: return ⟨false,∞⟩;
56: while (true) do
57: if (isMrkd(u) ∨ isMrkd(v)) then
58: return ⟨false,∞⟩;
59: st ← Find(v2, pe, peOp, ce , ceOp, u.enxt);
60: if (st ̸= FOUND) then
61: return ⟨false,∞⟩;
62: if (IsNull(curr.right) ∨ IsNull(ce.left)))

then
63: if (CAS(ce.op, ceOp, Flag(ceOp, MARKED)))

then
64: u.ecnt.FetchAndAdd (1);
65: HelpMarked(pe, peOp, ce);
66: z ← ce.w;
67: break;
68: else
69: st ← Find(v2, pe, peOp, ce , ceOp, u.enxt);
70: if ((st = ABORT) ∨ (ce.op ̸= ceOp) then
71: continue;
72: relocOp ← new RelocateOp(ce, ceOp, v2,

replace.e);
73: if (CAS(replace.op, replaceOp, Flag (relocOp,

RELOCATE)) then
74: u.ecnt.FetchAndAdd (1);
75: if (HelpRelocate(relocOp,pe,peOp,replace))

then
76: z ← ce.w;
77: break;
78: return ⟨true,z⟩;

Figure 11 Pseudocodes of PutV, RemV, GetV, PutE, RemE, GetE and ConVPlus.

structure FSet, a freezable set of VNodes that serves as a building block of the non-blocking
hash table. An FSet object builds a VNode set with PutV, RemV and GetV operations,
and in addition, provides a Freeze method that makes the object immutable. The changes
of an FSet object can be either addition or removal of a VNode. For simplicity, we encode
PutV and RemV operation as FSetOp objects. The FSetOp has a state optype (PutV or
RemV), the key value, done a boolean field that shows the operation was applied or not,
and resp a boolean field that holds the return value.

The vertex-list is a dynamically resizable non-blocking hash table constructed with
the instances of VNodes, and it is a linked-list of HNodes (Hash Table Node). The HNode
composed of an array of buckets of FSet objects, the size field stores the array length and
the predecessor HNode is pointed to by the pred pointer. The head of the HNode is pointed
to by a shared Head pointer.

For clarity, we assume that a Resize method grows (doubles) or shrinks (halves) the
size of the HNode which amount to modifying the length of the bucket array. The hash
function uses modular arithmetic for indexing in the hash table, e.g. index = key mod
size.

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:21

Based on the boolean parameter taken by Resize method, it decides the hash table either
to grow or shrink. The initBkt method ensures all VNodes are physically present in the
buckets. It relocates the HNodes to the hash table which are in the predecessor’s list.

The ith bucket of a given HNode h is initialized by initBkt method, by splitting or
merging the buckets of h′s predecessor HNode s, if s exists. The sizes of h and s are compared
and then this method decides whether h is shrinking or expanding with reference to s. Then
it freezes the respective bucket(s) of s before copying the VNodes. If h halves the size of s,
then ith and (i + h.size)th buckets of s are merged together to form the ith bucket of h.
Otherwise, h doubles the size of s, then approximately half of the VNodes in the (i mod
h.size)th bucket of s relocate to the ith bucket of h. To avoid any races with the other
helping threads while splitting or merging of buckets a CAS is used (Line 137).

The ENode structure is similar to that of a lock-free BST [28] with an additional edge
weight w and a pointer field ptv which points to the corresponding VNode. This helps direct
access to its VNode while doing a BFS traversal and also helps in deletion of the incoming
edges. The operation op field stores if any changes are being made, which affects the ENode.
To avoid the overhead of another field in the node structure, we use bit-manipulation: last
significant bits of a pointer p, which are unused because of the memory-alignment of the
shared-memory system, are used to store information about the state of the pointer shared
by concurrent threads and executing an operation that would potentially update the pointee
of the pointer. More specifically, in case of an x86-64 bit architecture, memory has a 64-bit
boundary and the last three least significant bits are unused. So, we use the last two
significant bits, which are enough for our purpose, of the pointer to store auxiliary data. We
define four different methods to change an ENode pointer: IsNull(p) returns true if the
last two significant bits of p make 00, which indicates no ongoing operation, otherwise, it
returns false; isMrkd(p) returns true if the last two significant bits of p are set to 01, else
it returns false, which indicates the node is no longer in the tree and it should be physically
deleted; IsChildCAS (p) returns true if last two bits of p are set to 10, which indicates one
of the child node is being modified, else it returns false; IsRelocate(p) returns true if the
last two bits of p make 11, which indicates that the ENode is undergoing a node relocation
operation.

A ChildCASOp object holds sufficient information for another thread to finish an operation
that made changes to one of the child – right or left – pointers of a node. A node’s op field
holds a flag indicating an active ChildCASOp operation. Similarly, a RelocateOp object holds
sufficient information for another thread to finish an operation that removes the key of a
node with both the children and replaces it with the next largest key. To replace the next
largest key, we need the pointer to the node whose key is to be removed, the data stored in
the node’s op field, the key to replacement and the key being removed. As we did in case of
a ChildCASOp, the op field of a node holds a flag with a RELOCATE state indicating an active
RelocateOp operation.

A.2 The Vertex Operations
The working of the non-blocking vertex operations PutV, RemV, and GetV are presented
in Figure 11. A PutV(v) operation, at Lines 1 to 2, invokes HashAdd(v) to perform an
insertion of a VNode v in the hash table. A RemV(v) operation at lines 3 to 4 invokes
HashRem(v) to perform a deletion of VNode v from the hash table. The method Apply,
which tries to modify the corresponding buckets, is called by both HashAdd and HashRem,
see Line 109 and 114. It first creates a new FSetOp object consisting of the modification
request, and then constantly tries to apply the request to the respective bucket b, see Lines

OPODIS 2021

20:22 Non-Blocking Dynamic Unbounded Graphs

138 to 146. Before applying the changes to the bucket it checks whether b is NULL; if it is,
initBkt method is invoked to initialize the bucket (Line 144). At the end, the return value
is stored in the resp field.

The algorithm and the resizing hash table are orthogonal to each other, so we used
heuristic policies to resize the hash table. As a classical heuristic we use a HashAdd
operation that checks for the size of the hash table with some threshold value, if it exceeds
the threshold the size of the table is doubled. Similarly, a HashRem checks the threshold
value, if it falls below threshold, it shrinks the hash table size to halves.

A GetV(v) operation, at Lines 5 to 10, invokes HashCon(v) to search a VNode v in
the hash table. It starts by searching the given key v in the bucket b. If b is NULL, it reads
t′s predecessor (Line 122) s and then starts searching on it. At this point it could return
an incorrect result as HashCon is concurrently running with resizing of s. So, a double
check at Line 123 is required to test whether s is NULL between Lines 120 and 122. Then, we
re-read that bucket of t (Line 124 or 126), which must be initialized before s becomes NULL,
and then we perform the search in that bucket. If b is not NULL, then we simply return the
presence of the corresponding VNode in the bucket b. Note that, at any point in time there
are at most two HNodes: only one when no resizing happens and another to support resizing
– halving or doubling – of the hash table.

A.3 The Edge Operations
The non-blocking graph edge operations – PutE, RemE, and GetE – are presented in
Figure 11. Before describing these operations, we detail the implementation of Find method,
which is used by them. It is shown in Figure 13. The method Find, at Lines 199 to 227, tries
to locate the position of the key by traversing down the edge-list of a VNode. It returns the
position in pe and ce, and their corresponding op values in peOp and ceOp respectively. The
result of the method Find can be one of the four values: (1) FOUND: if the key is present in
the tree, (2) NOTFOUND_L: if the key is not in the tree but might have been placed at the left
child of ce if it was added by some other threads, (3) NOTFOUND_R: similar to NOTFOUND_L
but for the right child of ce, and (4) ABORT: if the search in a subtree is unable to return a
usable result.

A PutE(v1, v2|w) operation, at Lines 26 to 51, begins by validating the presence of v1
and v2 in the vertex-list. If the validations fails, it returns ⟨false,∞⟩ (Line 28). Once the
validation succeeds, PutE operation invokes Find method in the edge-list of the vertex with
key v1 to locate the position of the key v2. The position is returned in the variables pe and
ce, and their corresponding op values are stored in the peOp and ceOp respectively. On that,
PutE checks whether an ENode with the key v2 is present. If it is present containing the same
edge weight value w, it implies that an edge with the exact same weight is already present,
therefore PutE returns ⟨false,∞⟩ (Line 36). However, if it is present with a different edge
weight, say z, PutE updates ce’s old weight z to the new weight w and returns ⟨true,z⟩
(Line 38). We update the edge-weight using a CAS to ensure the correct return in case there
were multiple concurrent PutE operations trying to update the same edge. Notice that,
here we are not freezing the ENode in anyway while updating its weight. The linearizability
is still ensured, which we discuss in the next section.

If the key v2 is not present in the tree, a new ENode and a ChildCASOp object are
created. Then using CAS the object is inserted logically into ce′s op field (Line 48). If the
CAS succeeds, it implies that ce′s op field hadn’t been modified since the first read. Which
in turn indicates that all other fields of ce were also not changed by any other concurrent

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:23

thread. Hence, the CAS on one of the ce′s child pointer should not fail. Thereafter, using a
call to HelpChildCAS method the new ENode ne is physically added to the tree. This can
be done by any thread that sees the ongoing operation in ce′s op field.

A RemE(v1, v2) operation, at Lines 52 to 78, similarly begins by validating the presence
of v1 and v2 in the vertex-list. If the validation fails, it returns ⟨false,∞⟩. Once the
validation succeeds, it invokes Find method in the edge-list of the vertex having key v1 to
locate the position of the key v2. If the key is not present it returns ⟨false,∞⟩. If the key
is present, one of the two paths is followed. The first path at Lines 63 to 67 is followed if
the node has less than two children. In case the node has both its children present a second
path at Lines 69 to 77 is followed. The first path is relatively simpler to handle, as single
CAS instruction is used to mark the node from the state NONE to MARKED at this point the
node is considered as logically deleted from the tree. After a successful CAS, a HelpMarked
method is invoked to perform the physical deletion. It uses a ChildCASOp to replace pe′s
child pointer to ce′s with either a pointer to ce′s only child pointer, or a NULL pointer if ce is
a leaf node.

The second path is more difficult to handle, as the node has both the children. Firstly,
Find method only locates the children but an extra Find (Line 69) method is invoked to
locate the node with the next largest key. If the Find method returns ABORT, which indicates
that ce′s op field was modified after the first search, so the entire RemE operation is restarted.
After a successful search, a RelocateOp object replace is created (Line 72) to replace ce′s
key v2 with the node returned. This operation added to replace′s op field safeguards it
against a concurrent deletion while the RemE operation is running by virtue of the use of a
CAS (Line 73). Then HelpRelocate method is invoked to insert RelocateOp into the node
with v′2s op field. This is done using a CAS, after a successful CAS the node is considered as
logically removed from the tree. Until the result of the operation is known the initial state is
set to ONGOING. If any other thread either sees that the operation is completed by way of
performing all the required CAS executions or takes steps to perform those CAS operations
itself, it will set the operation state from ONGOING to SUCCESSFUL, using a CAS. If it has seen
other value, it sets the operation state from ONGOING to FAILED. After the successful state
change, a CAS is used to update the key to new value and a second CAS is used to delete the
ongoing RelocateOp from the same node. Then next part of the HelpRelocate method
performs cleanup on replace by either marking it if the relocation was successful or clearing
its op field if it has failed. If the operation is successful and ce is marked, HelpMarked
method is invoked to excise ce from the tree. At the end RemE returns ⟨true,ce.w⟩

Similar to PutE and RemE, a GetE(v1, v2) operation, at Lines 11 to 19, begins by
validating the presence of v1 and v2 in the vertex-list. If the validation fail, it returns
⟨false,∞⟩. Once the validation succeeds, it invokes Find method in the edge-list of the
vertex with key v1 to locate the position of the key v2. If it finds v2, it checks if both the
vertices are not marked and also the ceOp not marked; on ensuring that it returns ⟨true,ce.w⟩,
otherwise, it returns ⟨false,∞⟩.

OPODIS 2021

20:24 Non-Blocking Dynamic Unbounded Graphs

structFSetNode {int set; boolean ok; }
struct FSet { FSetNode node; }
struct FSetOp {int optype, key; boolean resp; }
struct HNode {FSet buckets;int size;HNode pred;}

79: Method GetResponse(op)
80: return op.resp;
81: Method HasMember(b, k)
82: o ← b.node; // local copy of b
83: return k ∈ o.set;
84: Method Invoke(b, op)
85: o ← b.node; // local copy of b
86: while (o.ok) do
87: if (op.optype = Add) then
88: resp ← op.key /∈ o.set;
89: set ← o.set ∪ {op.key};
90: else
91: if (op.optype = Remove) then
92: resp ← op.key ∈ o.set;
93: set ← o.set \ {op.key};
94: n ← new FSetNode(set, true);
95: if (CAS (b.node,o,n)); then
96: op.resp ← resp;
97: return true;
98: o ← b.node;
99: return false;
100: Method Freeze(b)
101: o ← b.node; // local copy of b
102: while (o.ok)) do
103: n ← new FSetNode(o.set, false);
104: if (CAS (b.node,o,n)); then
105: break;
106: o ← b.node;
107: return o.set
108: Operation HashAdd(key)
109: resp ← Apply(Add, key);]

110: if (heuristic-policy) then
111: Resize (true);
112: return resp;
113: Operation HashRem(key)
114: resp ← Apply(Remove, key);
115: if (heuristic-policy) then
116: Resize (false);
117: return resp;
118: Operation HashCon(key)
119: t← Head;
120: b← t.buckets[key mod t.size];
121: if (b = NULL) then
122: s ← t.pred;
123: if (s ̸= NULL) then
124: b← s.buckets(key mod s.size);
125: else
126: b← t.buckets(key mod t.size);
127: return HasMember (b,key);
128: Method Resize(grow)
129: t← Head;
130: if (t.size > 1 ∨ grow = true) then
131: for (i ← 0 to t.size-1) do
132: initBkt(t,i);
133: t.pred ← NULL;
134: size ← grow ? t.size ⋆ 2 : t.size/2;
135: buckets ← new FSet[size];
136: t′ ← new HNode(buckets, size, t);
137: CAS(Head, t, t′);
138: Method Apply(optype, key)
139: op ← new FSetOp(optype, key, false,−);
140: while (true) do
141: t← Head;
142: b← t.buckets[key mod t.size];
143: if (b = NULL) then
144: b ← initBkt(t,key.mod t.size);
145: if (Invoke(b, op)) then
146: return GetResponse (op);

Figure 12 Strucure of FSet, FSetOp and HNode. Pseudocodes of Invoke, Freeze, Add, and
Remove methods based on dynamic sized non-blocking hash table[37].

B. Chatterjee, S. Peri, M. Sa, and K. Manogna 20:25

147: Method initBkt(t, key)
148: b← t.buckets[key];
149: s← t.pred;
150: if (b = NULL ∧ s ̸= NULL) then
151: if (t.size = s.size) then
152: m ← s.buckets[i mod s.size];
153: set ← Freeze(m) ∩ { x | x mod t.size

= i };
154: else
155: m ← s.buckets[i];
156: m′ ← s.buckets[i + s.size];
157: set ← Freeze(m) ∪ Freeze(m′);
158: b′ ← new FSet(set, true);
159: CAS(t.buckets[i], NULL, b′);
160: return t.buckets[i];

struct Node{int key;Operation op; Node left,right;}
struct RelocateOp {int state,removeKey,replaceKey;

Node dest; Operation destOp; }
struct ChildCASOp {boolean ifLeft;

Node expected, update; }
161: Operation Add(key)
162: Node pred, curr, newNode;
163: Operation predOp, currOp, casOp;
164: int result;
165: while (true) do
166: result← Find(key, pred, predOp, curr, currOp,

root);
167: if (result = FOUND) then return false;
168: newNode ← new Node(key);
169: Boolean ifLeft ← (result = NOTFOUND_L);
170: Node old ← ifLeft ? curr.left : curr.right;
171: casOp← new ChildCASOp(ifLeft, old, newNode);
172: if (CAS(curr.op, currOp, Flag(casOp,CHILDCAS)))

then
173: HelpChildCAS(casOp, curr);
174: return true;
175: Operation Remove(key)
176: Nodepred, curr, replace;
177: Operation predOp, currOp, replaceOp, relocOp;
178: while (true) do
179: if (Find(key, pred, predOp, curr, currOp, root)
̸= FOUND) then

180: return false;
181: if (IsNull(curr.right ∨ IsNull(curr.left)))

then
182: if (CAS(curr.op, currOp, Flag(currOp, MARKED)))

then
183: HelpMarked(pred, predOp, curr);

184: return true;
185: else
186: if ((Find(key, pred, predOp, replace,

replaceOp, curr) = ABORT) ∨ (curr.op ̸= currOp)
then

187: continue;
188: relocOp ← new RelocateOp(curr, currOp,

key, replace.key);
189: if (CAS(replace.op, replaceOp, Flag(relocOp,

RELOCATE)) then
190: if (HelpRelocate(relocOp, pred, predOp,

replace)) then
191: return true;
192: Operation Contains(key)
193: Node pred, curr;
194: Operation predOp, currOp;
195: if (Find(key, pred, predOp, curr, currOp, root)

= FOUND) then
196: return true;
197: else
198: return false;
199: Method Find(key, pred, predOp, curr, currOp,

root)
200: int result, currKey ; Node next, lastRight;
201: Operation lastRightOp; result ← NOTFOUND_R;
202: curr ← root; currOp ← curr.op;
203: if (GetFlag(currOp) ̸= NULL) then
204: if (root = root) then
205: HelpChildCAS(UnFlag(currOp), curr);
206: goto Line 201;
207: else return ABORT;
208: next ← curr.right; lastRight ← curr;
209: lastRightOp ← currOp;
210: while (¬ IsNull(next)) do
211: pred ← curr; predOp ← currOp;
212: curr ← next; currOp ← curr.op;
213: if (GetFlag(currOp) ̸= NULL) then
214: HelpList(pred, predOp, curr, currOp);
215: goto Line 201;
216: currKey ← curr.key;
217: if (key < currKey) then
218: result ← NOTFOUND_L; next ← curr.left;
219: else
220: if (key > currKey) then
221: result ← NOTFOUND_R; next ← curr.right;
222: lastRight ← curr; lastRightOp ← currOp;
223: else
224: result ← FOUND; break;
225: if ((result ̸= FOUND)

∧
(lastRightOp ̸=

lastRight.op) then goto Line 201;
226: if (curr.op ̸= currOp) then goto Line 201;
227: return result;

Figure 13 Strucure of Node, RelocateOp and ChildCASOp. Pseudocodes of Add, Remove,
Contains and Find methods based on non-blocking binary search tree[28]. Pseudocodes of Contains,
Resize, Apply and initBkt methods based on dynamic sized non-blocking hash table[37].

OPODIS 2021

	1 Introduction
	2 Non-blocking Graph Data Structure
	3 PANIGRAHAM Framework
	4 Experiments
	5 Complexity Analysis
	6 Conclusion
	A The Non-blocking Graph Algorithm
	A.1 Structures
	A.2 The Vertex Operations
	A.3 The Edge Operations

