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Abstract
For a source node, v, and target node, w, the traceroute command iteratively issues “kth-hop”
queries, for k = 1, 2, . . . , δ(v, w), which return the name of the kth vertex on a shortest path from v

to w, where δ(v, w) is the distance between v and w, that is, the number of edges in a shortest-path
from v to w. The traceroute command is often used for network mapping applications, the study of
the connectivity of networks, and it has been studied theoretically with respect to biases it introduces
for network mapping when only a subset of nodes in the network can be the source of traceroute
queries. In this paper, we provide efficient network mapping algorithms, that are based on kth-hop
traceroute queries. Our results include an algorithm that runs in a constant number of parallel
rounds with a subquadratic number of queries under reasonable assumptions about the sampling
coverage of the nodes that may issue kth-hop traceroute queries. In addition, we introduce a
number of new algorithmic techniques, including a high-probability parametric parallelization of a
graph clustering technique of Thorup and Zwick, which may be of independent interest.
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1 Introduction

Network mapping involves inferring the topology of a communication network, such as the
Internet, from queries, e.g., see Figure 1 and [24, 49]. A prominent technique for network
mapping is active probing using the Unix traceroute command to perform queries that
reveal routing-path information, e.g., see [24, 32, 49]. We formulate the network mapping
problem as follows. Suppose we are given access to a subset, U ⊆ V , of the vertices of a
connected, undirected, unweighted graph, G = (V, E), so that the distance, δ(u, v), between
two vertices, u and v, in G is defined as the number of edges on a shortest path joining u

and v in G. The n vertices in U are known, but the set of edges, E, is unknown. The subset
U represents vantage point nodes from which we may issue the following type of queries:

kth-hop(k, u, v): return the vertex, w, that is the kth vertex on a shortest path from u to
v in G. If k ≥ δ(u, v), then return v.

Note that for u, v ∈ U , kth-hop(k, u, v) returns vertices in a single shortest path from
u to v. Shortest paths in G are not necessarily unique, however. So, for example, if
δ(u, v) = δ(u, w) + δ(w, v), it is not necessarily the case that kth-hop(δ(u, w), u, v) = w. In
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4:2 Mapping Networks via Parallel kth-Hop Traceroute Queries

Figure 1 Partial map of the Internet circa 2005. Image by The Opte Project, unchanged and
licensed under the Creative Commons Attribution 2.5 Generic license.

the network mapping problem, we are interested in using kth-hop queries to learn the edges
of the induced shortest-path graph, H = (U, Ẽ), such that there is an edge (u, v) ∈ Ẽ, for
u, v ∈ U , if and only if no kth-hop(k, u, v) query would return a vertex w ∈ U other than v,
that is, kth-hop(k, u, v) would return vertices of a shortest path from u to v that does not
include any other vertex in U . Thus, H is a weighted, connected, undirected graph such that
each edge (u, v) in H has weight δ(u, v).

Our motivation for focusing on kth-hop queries is that they form the “inner loop” of
how traceroute works by default. In particular, by default traceroute works by sending a
series of packets in a network from a source, u, to a destination, v, with the packets having
increasing time-to-live (TTL) values, up to an upper bound for the diameter, diam(G), of G,
which traceroute typically sets to 30 or 64 by default depending on the underlying operating
system. The TTL field in a packet is decremented with each hop it traverses and when
it reaches 1, then that node sends an ICMP message to the source address (with message
including the node’s address), e.g., see [1, 2]. Thus, the traceroute tool can be viewed as
first performing a kth-hop(1, u, v) query, then a kth-hop(2, u, v) query, and so on, until getting
a response from the vertex v. In fact, one can use options with the traceroute command to
issue a kth-hop query directly, e.g., to find the 5th hop from a node to example.com, one
could use the command, “traceroute -m 5 -M 5 example.com”.

Our formulation of the network mapping problem abstracts away certain system issues.
In particular, we are implicitly assuming that messages in G are routed along shortest paths,
which is a widely used setting assumed by the prior work [4,20,26]. An important system
issue that we do not abstract away, however, is that only vertices in U ⊆ V may issue
queries. Indeed, there is some interesting prior work regarding the sampling biases introduced
by only being able to issue queries from a subset, U , of the set of vertices, V , in G. For
example, Achlioptas, Clauset, Kempe, and Moore [4] show that traceroute sampling1 finds
power-law degree distributions in both ∆-regular and Poisson-distributed random graphs,
even though these underlying graphs do not themselves have power-law degree distributions,
which is a statistical finding in experiments by Lakhina, Byers, Crovella, and Xie [37]. Maciej,

1 Traceroute sampling samples the network graph as the union of paths that packets traverse in performing
traceroute queries from a subset of the nodes in a network.
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Markopoulou, and Patrick [36] study ways to correct for this bias when samping large graphs.
Further, Zhang, Kolaczyk, and Spencer [50] and Flaxman and Vera [26] study ways to correct
for this bias for estimating degree distributions. Interestingly, Barrat, Alvarez-Hamelin,
Dall’Asta, Vázquez, and Vespignani [13] provide an analysis that power laws still exist in
the Internet graph in spite of the traceroute sampling bias, which these authors show is
related to betweenness (see also [20]).

In spite of this interesting prior work concerning the sampling biases inherent in performing
traceroute queries only from the nodes in the subset, U , we are not familiar with any prior
work on efficient algorithms for solving the network mapping problem. We focus on two
complexity measures for a network mapping algorithm, A, in terms of n = |U |:

Q(n): the query complexity of A. This is the total number of kth-hop queries issued. This
complexity measure comes from learning theory (e.g., see [5, 18,22,43]) and complexity
theory (where it is also known as “decision-tree complexity,” e.g., see [16,48]).
R(n): the round complexity of A. This is the number of rounds of querying performed by
A, where the queries issued in a round are given in a batch such that any query issued
in a round may not depend on the response to any other query in that round (but each
query may depend on results of queries from previous rounds).

Prior Related Work. As mentioned above, we are not aware of prior algorithmic work on
network mapping. If we analyze the algorithm used in existing mapping systems that use
active probing, this amounts to a brute-force quadratic algorithm implemented by cooperating
nodes of the network, which perform a traceroute to every other known node in the network,
e.g., see [23, 24, 33]. Viewed combinatorially, this algorithm has query complexity, Q(n), that
is O(diam(G) · n2), and round complexity, R(n), that is O(diam(G)), for kth-hop queries.

The network mapping problem is related to graph reconstruction, e.g., see [3,6, 7, 9–12,
14,15,17,18,21,27–30,34,35,38,40–42,44,46, 47]. In this problem, one is given a connected
unweighted graph, G = (V, E), for which V is known and goal is to discover E through
queries, such as:

distance(u, v): return the distance, δ(u, v), between u to v in G.
shortest-path(u, v): return the vertices (in order) in a shortest path from u to v in G.

There is also work on other types of queries, including vertex-betweenness queries [3]; queries
returning whether a given subset of vertices induce a given edge [9–12,15,17]; queries returning
the number of edges induced by a given subset of vertices [18,27–29]; queries returning all
shortest paths from a given node to all other nodes [14,42]; queries returning the distance
between two leaves in a phylogenetic tree [6, 7,30,35,40,47]; and queries returning whether a
given vertex is an ancestor of another given vertex in a rooted tree [6, 7, 46].

There are a number of important differences between the network mapping problem
and graph reconstruction, however. Most significantly, the graph reconstruction problem
assumes queries can be performed for any vertices in V , whereas in the network mapping
problem we may only issue kth-hop queries for nodes in the subset U ⊆ V . In addition, even
if we restrict the network mapping problem to the case where U = V , previous work on
graph reconstruction has not considered kth-hop queries, which, as we mentioned above, form
the “inner-loop” for how traceroute works and are distinct from distance and shortest-path
queries. For example, it doesn’t seem possible to simulate a kth-hop query with fewer than
Θ(n) distance queries, while a distance query can be simulated with O(log diam(G)) kth-hop
queries via binary search. Also, although it is trivial to simulate a kth-hop query with a single
shortest-path query, it takes Θ(diam(G)) kth-hop queries to simulate a single shortest-path
query. Thus, kth-hop queries are strictly weaker than shortest-path queries while being better
at capturing the true message complexity of the traceroute command.

STACS 2022
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Another difference between the network mapping problem and graph reconstruction
is that previous work on graph reconstruction has mostly focused on how to sequentially
reconstruct the graph, G, whereas the network mapping problem is inherently parallel, due to
the motivation from mapping real-world networks, where each node is a computer. In terms
of previous work on graph reconstruction in parallel, Mathieu and Zhou [38] recently provided
a simple algorithm to reconstruct a connected, unweighted graph G, using an expected
number of Õ(N5/3) distance queries in 2 rounds.2 They also show that their algorithm takes
an expected number of Õ(N) distance queries to reconstruct a random ∆-regular graphs.

The most relevant prior work on graph reconstruction, however, is by Kannan, Mathieu,
and Zhou [34], who show how to reconstruct a connected, unweighted graph, G, using an
expected number of O(∆3N3/2 log2 N log log N) distance queries, or an expected number of
N1+O(τ(N)) shortest-path queries, where N = |V | and τ(N) =

√
(log log N + log ∆)/ log N ,

which is o(1) when ∆, the maximum degree of G, is No(1). They also show that verifying a
given set of edges can be done using O(N1+O(τ(N))) expected distance queries.

Our Results. A preliminary announcement of some of this paper’s results, using distance
queries for graph reconstruction, where queries can be performed for any vertices in V , was
presented in [8].

In Section 2, we introduce a new technique that may be of independent interest, where
we provide a new parallel implementation of a well-known graph clustering technique of
Thorup and Zwick [45] with round complexity of O(1), while their original implementation
implies an expected round complexity of O(log n). In doing so, we introduce a parameter
that allows to trade off parallel time and cluster size. Moreover, we show that our complexity
bounds hold with high probability,3 whereas Thorup and Zwick proved their complexity
bounds only in expectation. In Section 3, we will use this new construction to compute a
graph-theoretic Voronoi diagram in our network mapping algorithm. On the other hand,
our graph clustering technique can be applied to other problems, such as that studied by
Honiden, Houle, and Sommer [31] for balancing graph-theoretic Voronoi diagrams, to reduce
the number of centers to O(s) from O(s log n).

In Section 3, we provide the first non-trivial algorithmic results for the network mapping
problem. Our query complexities and round complexities are characterized in terms of
n = |U | and some interesting parameters that capture the sampling coverage provided by the
set U . For example, in addition to characterizing complexities in terms of ∆, the maximum
degree of the graph, H, we introduce a distance coverage parameter, δmax, which is the
maximum weight for an edge in H, and a nearby-vertices parameter, µ, which is an upper
bound on the number of vertices within a distance of 2δmax of any given vertex v ∈ U . As we
show, these parameters are required for the sake of efficiency, for we show that without these
parameters the network mapping problem has a quadratic query-complexity lower bound.
For example, under reasonable assumptions regarding these parameters, we are the first to
give a constant-round network-mapping algorithm with query complexity better than the
trivial brute-force algorithm.

In Section 4, we introduce a greedy approach for network mapping that is based on parallel
greedy approximate set cover, which allows us to achieve a near-quasilinear query complexity
(when ∆ is no(1)). As with a related sequential greedy graph reconstruction result of Kannan,
Mathieu, and Zhou [34], our query and round complexity bounds are parameterized in terms

2 The notation Õ(f(N)) is equivalent with O(f(N) · polylog(f(N))).
3 We say an event holds with high probability (w.h.p.) if it occurs with probability at least 1 − 1/n.
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of the best sequential query complexity for verifying the edges of a graph using distance
queries (without knowing the exact value of this query complexity). Further, for small values
of the parameters, δmax and ∆, our greedy approach uses a near-quasilinear number of
kth-hop queries, which are strictly weaker than the shortest-path queries used by Kannan,
Mathieu, and Zhou. We summarize our results in Table 1.

Table 1 Our w.h.p. bounds for the network mapping problem, where ϵ denotes a fixed constant,
0 < ϵ < 1/2, n = |U | and ∆, δmax, µ, and τ(·) are as defined above.

R(n) Q(n)

O(1) O(δmax µ n3/2+ϵ)

O(log n · log diam(G)) O(µ n3/2 log3/2 n · log diam(G))

if U ⊂ V : O(∆n) diam(G) · n1+O(τ(n))

if U = V : O(∆n log n) n1+O(τ(n))

2 Parallel Graph Clustering

Thorup and Zwick [45] introduced a graph clustering technique in presenting a stretch4 3
network routing scheme. We begin by describing our parallel graph clustering algorithm,
which may be of independent interest, as it provides a parameterized parallel extension of
the one by Thorup and Zwick [45]. Also, whereas Thorup and Zwick establish their bounds
in expectation, we establish ours with high probability. In Section 3, we apply our parallel
graph clustering algorithm in creating a graph-theoretic Voronoi diagram for our network
mapping algorithm.

We begin with some review from Thorup and Zwick [45]. Let G = (V, E) be a connected,
undirected n-vertex graph, and let δ(u, v) denote the distance between vertices u and v in G.
In this section, we allow G to be weighted, where δ(u, v) is the sum of weights on a shortest
path (lowest weight path) from u to v, but in our algorithms for parallel network mapping,
we assume G is unweighted, in which case δ(u, v) is the number of edges on a shortest path
from u to v. For a subset A ⊆ V , let δ(A, v) = mina∈A δ(a, v), and, for vertices w, v ∈ V , let
CA(w) be the cluster of w and BA(v) be the bunch of v with respect to A, defined as follows:

CA(w) = {v ∈ V | δ(w, v) < δ(A, v)} and BA(v) = {w ∈ V | δ(w, v) < δ(A, v)}.

Note that if w ∈ A, then CA(w) = ∅. Also, observe that bunches and clusters are
“inverses” of each other, in that v ∈ CA(w) if and only if w ∈ BA(v). In addition, notice
that clusters and bunches can only shrink as we add vertices to A; that is, if A′ ⊆ A, then
CA(w) ⊆ CA′(w) and BA(v) ⊆ BA′(v), for all v and w in V .

Now, let β ∈ [4, n), be a “parallelism” parameter and let s ∈ [4 ln n, n) be a “size”
parameter. Define a subset, A ⊆ V , to be a set of (β, s)-balanced centers if |CA(w)| ≤ βn/s,
for all w ∈ V . Thorup and Zwick [45] give a sequential algorithm for finding a set of (4, s)-
balanced centers of expected size O(s log n). In Algorithm 1, we give a parallel algorithm for
finding a set of (β, s)-balanced centers of size O(s logβ n) in O(logβ n) rounds w.h.p. Thus,
the parameter β allows one to trade off parallel time and cluster size.

4 Routing Stretch is the worst ratio between the length of a path on which a message is routed and the
length of the shortest path in the network from the source to the destination.

STACS 2022



4:6 Mapping Networks via Parallel kth-Hop Traceroute Queries

Algorithm 1 parallel-centers(V, s, β).

1 A← ∅, W ← V

2 while |W | > 0 do
3 A′ ← Sample(W, s) // a random sample of expected size s (or W if s ≥ |W |)
4 A← A ∪A′

5 for w ∈W do in parallel
6 CA(w)← {v ∈ V : δ(w, v) < δ(A, v)}
7 W ← {w ∈W : |CA(w)| > βn/s}
8 return A

Our algorithm (Algorithm 1) takes a graph G = (V, E) as input and initializes A, the
eventual output of the algorithm, to be empty, and W , the set of nodes v ∈ V where
|CA(v)| > βn/s, to be V . Then, we iteratively add Sample(W, s) to A, and replace W with
vertices w ∈ W such that |CA(w)| > βn/s, in parallel, where the function, Sample(W, s),
returns W if |W | ≤ s and, otherwise, returns a set of elements from W such that each
element in W is selected independently at random with probability s/|W |. We continue in
this way until W = ∅.

Since the size of a cluster, |CA(w)|, does not increase as we add more vertices to A, the
set A returned by our algorithm is a set of (β, s)-balanced centers. Also, the Sample function
returns a sample of size at most 2s with probability at least 1 − e−s/3, which holds with
high probability across all iterations when s ≥ 4 ln n, by a standard Chernoff bound, e.g.,
see [39, p. 69]. Incidentally, Thorup and Zwick use the same Sample function, but don’t
bound its maximum size as we do. This high-probability upper bound for the sample size
is not sufficient to achieve a high-probability bound, however, for the entire parallel graph
clustering algorithm.

To that end, we define a parameter, α, as follows:

α =
{

2 if β ≤ ((4/3)e)4

(4/3)eβ1/2 otherwise

where e ≈ 2.71828 is Euler’s number. This definition of α is made so that we may achieve
high probability bounds for a range of β values.

Let Wi denote the set W at the beginning of iteration i, let A′
i denote the set A′ that was

added in iteration i, and let Ai denote the set A in this iteration, including the set, A′
i, i.e.,

Ai = Ai−1 ∪A′
i, for i = 1, 2, . . ., where A0 = ∅. Say that iteration i is “bad” if the following

inequality holds:∑
w∈Wi

|CA′
i
(w)| > αn|Wi|

s
,

and that otherwise it is “good”. Note that, since Wi is a given for iteration i, whether
iteration i is good or bad depends only on A′

i.

▶ Lemma 1 (Thorup-Zwick [45], Lemma 3.2). Let W ⊆ V , let 1 ≤ s ≤ n, and let A′ ←
Sample(W, s). Then, for every v ∈ V , E[ |BA′(v) ∩W | ] ≤ |W |/s.

This implies the following:

E

[ ∑
w∈Wi

|CA′
i
(w)|

]
= E

[ ∑
v∈V

|BA′
i
(v) ∩Wi|

]
≤ n|Wi|

s
.
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Therefore, by Markov’s inequality, an iteration is bad with probability at most 1/α.
Let Wi+1 denote the set of vertices, W , whose clusters have size at least βn/s at the

end of a good iteration i. As Wi+1 ⊆ Wi, and CAi
(w) ⊆ CA′

i
(w), for all w ∈ V , in a good

iteration we have:

βn|Wi+1|
s

≤
∑

w∈Wi

|CAi(w)| ≤
∑

w∈Wi

|CA′
i
(w)| ≤ αn|Wi|

s
;

hence, |Wi+1| ≤ (α/β)|Wi| in a good iteration. Thus, the number of good iterations of our
algorithm is O(log(β/α) n), which is O(logβ n) for either choice of α. Moreover, because an
iteration is good independent of whether any other iteration is good or bad, we may use
standard and non-standard Chernoff bounds to show that the number of bad iterations is
also O(logβ n) w.h.p., for either value of α. (See Appendix A.1.) This gives us the following:

▶ Theorem 2. Given an undirected, connected graph, G = (V, E), we can find a set, A, of
(β, s)-balanced centers of size O(s logβ n) in O(logβ n) parallel rounds w.h.p.

For example, if β = 4, then A is constructed to have size O(s log n) in O(log n) rounds; if
β = nϵ, for constant 0 < ϵ < 1/2, then A is constructed to have size O(s) in O(1) rounds.

3 Our Fast Parallel Network Mapping Algorithms

In this section, we provide our fast parallel network mapping algorithms for a connected,
undirected, unweighted network, G = (V, E), given a subset U ⊆ V from which we may
perform kth-hop queries. We denote the size of U by n and the size of V by N . Let H be
the graph induced by the shortest paths in G between pairs of vertices in U . That is, H

has vertex set U and there is an edge (u, v) in H, for u, v ∈ U , if the shortest path between
u and v in G determined by kth-hop queries contains no other vertex in U besides u and
v. The weight of each edge (u, v) in H is the distance, δ(u, v), between u and v in G. The
goal of network mapping is to determine the edges of H (which can then be used to easily
determine the vertices in G in a shortest path corresponding to each edge (u, v) in H in a
single round of δ(u, v) kth-hop queries). We assume we know the value of δmax, which is the
weight of a maximum-weight edge in H. For example, if U = V , then δmax = 1. In the worst
case, δmax is equal to the diameter of G, but in real-world network mapping applications,
δmax is likely to be a constant.

We perform all the queries needed in our parallel network mapping algorithms in a
subroutine, Distances(v, W ), which determines the distance, δ(v, w), for a given v ∈ U and
every other w ∈ W ⊆ U . We describe two possible implementations for Distances(v, W ),
which we choose between depending on our desired goals. In our first implementation, we
perform a simple binary search using kth-hop(k, v, w) queries to determine δ(v, w), for each
w. This requires O(log diam(G)) rounds and a total of O(|W | log diam(G)) kth-hop queries,
and this implementation doesn’t require any assumptions about W . Note that we assume
that we know diam(G), and if this is not the case, we can instead perform a doubling binary
search with the same query complexity. In our second implementation, we perform δmax
kth-hop(k, w, v) queries in parallel, for each w, for k = 1 to δmax. This implementation
requires a single round of O(δmax |W |) kth-hop queries, and it requires that v ∈W , and the
nodes in W induce a connected subgraph of H that contains the shortest path in H from
each w in W to v, and that we are only interested in finding the edges of this subgraph.
This set of queries finds all the edges of a breadth-first search (BFS) tree, Bv, rooted at v,
in the induced graph, H, since a shortest path from w to v is also a shortest path from v

STACS 2022



4:8 Mapping Networks via Parallel kth-Hop Traceroute Queries

Algorithm 2 Our parallel querying algorithm, estimated-parallel-centers(U, s, β), for finding
a set of (β, s)-balanced centers A.

1 A← ∅, W ← U

2 T ← c1(s/β) log n // c1 is a constant set in the analysis
3 while |W | > 0 do
4 A′ ← Sample(W, s)
5 A← A ∪A′

6 R← a random subset with v ∈ U chosen independently with probability T/n

7 for each r ∈ R do in parallel
8 Distances(r, U)
9 for w ∈W do in parallel

10 S(w)← {v ∈ R : δ(w, v) < δ(A, v)} // S(w) = CA(w) ∩R

11 W ← {w ∈W : |S(w)| > 2βT/s} // that is, |S(w)|(n/T ) > 2βn/s

12 return A

to w, and a subpath of any shortest path is a shortest path for its endpoints. Thus, in this
second implementation, we can determine δ(v, w), for each w ∈ U , from Bv, by summing the
weights of the edges from v to w in Bv (which doesn’t require any additional queries). This
gives us the following lemma.

▶ Lemma 3. Distances(v, W ) can be implemented in O(log diam(G)) rounds using a total of
O(|W | log diam(G)) kth-hop queries. Alternatively, if v ∈W , and the subgraph of H induced
by W is connected and we are interested only in finding the edges of this subgraph, then
Distances(v, W ) can be implemented in 1 round with O(δmax |W |) kth-hop queries.

Let the cluster of vertex w with respect to centers A be CA(w) = {v ∈ U | δ(w, v) <

δ(A, v)}. The key idea of our parallel network mapping algorithm is to first find a set, A, of
(β, s)-balanced centers, using our parallel algorithm from the previous section, and then use
this set of centers to compute a graph-theoretic Voronoi diagram [25,31] for G, from which
we may efficiently then perform a brute-force querying step for each Voronoi region. This
approach is similar in spirit to the one by Kannan, Mathieu, Zhou [34, Section 2], with some
key important differences: i) the restriction of our queries to the vantage point U ⊆ V and
the parameters capturing sampling coverage of set U , ii) the usage of kth-hop queries, and
iii) our parallel graph clustering that allows us to trade off between round complexity and
query complexity.

The initial center-finding step builds a set, A, of size O(s logβ n) such that each vertex in
U has a cluster with respect to A of size at most βn/s. One of the challenges in implementing
this algorithm efficiently in parallel using kth-hop queries is that we need to determine cluster
sizes for all vertices in U in each iteration, which would take too many queries to compute
exactly. So, rather than compute such sizes exactly, we instead build a global random set, R,
which we use to approximate the size of each cluster. We give the details in Algorithm 2.

▶ Lemma 4. Our estimated-parallel-centers algorithm constructs a set, A, of (3β, s)-balanced
centers of size O(s logβ n). Suppose Distances(r, U) executes in R(n) rounds and Q(n) kth-hop
queries. Then estimated-parallel-centers algorithm executes in O(R(n) logβ n) rounds and
O(Q(n)(s/β) log n logβ n) kth-hop queries, w.h.p.

Proof. See Appendix A.2. ◀
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w2

w1

a
CA(w2)

CA(w1)

≤ 2δmax

Figure 2 This figure represents a partial structure of our Voronoi Diagram. Blue vertices represent
centers from A. The circle centered at a ∈ A represents the vertices of distance at most 2δmax from
a. We use clusters of nearby vertices of a to discover boundary edges. For simplicity, we draw only
two clusters for two arbitrary nodes w1, w2 ∈ N2δmax (a).

Now that we have defined and analyzed the function estimated-parallel-centers(U, s, β), let
us next turn to our parallel algorithm for mapping a connected, undirected graph, G = (V, E),
given a subset, U ⊆ V , from which we can perform kth-hop queries. This algorithm takes as
input the vertex set U , and outputs, Ẽ, the set of edges of the induced graph, H, defined by
the vertex set U and the shortest paths in G returned by kth-hop queries.

Let A ⊆ U be a set of centers, which in our network mapping algorithm will come from a
call to our estimated-parallel-centers(U, s, β) algorithm, but a graph-theoretic Voronoi diagram
can be defined for any weighted graph and any set of centers. Given a center, a ∈ A, define
the Voronoi cell, VorA(a), for a in H as VorA(a) = {v ∈ U : δ(a, v) ≤ δ(A\{a}, v)}. The
graph-theoretic Voronoi diagram for A in U consists of the union of Voronoi cells, VorA(a),
for each center, a ∈ A. We say that an edge (v, w) ∈ Ẽ is an interior edge if v, w ∈ VorA(a),
for some center a ∈ A, and it is a boundary edge if v ∈ VorA(a) and w ∈ VorA(b), where
a ̸= b. If we were to perform a set of kth-hop queries for every pair of vertices in a Voronoi
cell, then we are guaranteed to discover every internal edge in VorA(a), but we will miss
boundary edges going between two Voronoi cells. Thus, we need to “branch out” a little bit
from the vertices of VorA(a) in order to discover all the boundary edges. To facilitate this,
for any center, a ∈ A, let N2δmax(a) be the set of “nearby” vertices in H, that is, vertices
that are within a distance of 2δmax of a. Formally,

N2δmax(a) = {v ∈ U : δ(a, v) ≤ 2δmax}.

We assume we know µ, the maximum size of N2δmax(a), for any a ∈ A. Of course, µ < n.
The following lemma shows that it is sufficient to consider these nearby neighbors, for each
center a ∈ A, in order to cover all the edges in H, including interior edges and boundary
edges. (See also Figure 2.)

We give the details of our network mapping algorithm in Algorithm 3. Through a call to
estimated-parallel-centers(U, s, β), we find a set of (O(β), s)-balanced centers, A. Next, we
build a BFS tree from each vertex a ∈ A to be able to identify nodes in N2δmax(a). Then,
our mapping algorithm, map, constructs graph-theoretic Voronoi diagram for the centers in
A, and then “branches out” from each center a ∈ A by considering the nodes in N2δmax(a)
and the clusters defined by nodes in N2δmax(a). Finally, after having done this Voronoi
decomposition, our algorithm performs exhaustive searches in each cluster in parallel. This
part of the algorithm uses a method, Exhaustive-Query(W ), which finds all the edges of H

between vertices in W by calling Distances(v, W ), for each v ∈W .
The following lemmas establish the correctness and performance complexities for our

network mapping algorithm.
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Algorithm 3 Parallel network mapping using kth-hop queries.

1 Function map(U):
2 A← estimated-parallel-centers(U, s, β)
3 for each a ∈ A do in parallel
4 Distances(a, U) // gives us N2δmax(a) as well
5 for each a ∈ A do in parallel
6 Ea ← Exhaustive-Query(N2δmax(a))
7 for b ∈ N2δmax(a) do in parallel
8 Distances(b, U)
9 CA(b)← {v ∈ U : δ(b, v) < δ(A, v)}

10 Ea,b ← Exhaustive-Query(CA(b))
11 return

⋃
a∈A

(
Ea ∪

⋃
b∈N2δmax (a) Ea,b

)

▶ Lemma 5. Let (u, v) be an edge in H. Then there exists a center, a ∈ A, such that u and
v are both in N2δmax(a) or both in CA(b), for some b ∈ N2δmax(a).

Proof. Let (u, v) be an edge in H, and note that, by definition, δ(u, v) ≤ δmax. Assume,
without loss of generality, that δ(A, u) ≤ δ(A, v). Also, let a be a vertex in A such that
δ(a, u) = δ(A, u). If δ(a, u) ≤ δmax, then both u and v are in N2δmax(a), by the triangle
inequality. So, suppose δ(a, u) > δmax. Let b be a vertex in U on a shortest path from a to u

such that δmax < δ(a, b) ≤ 2δmax. Note that b must exist, since no edge in H has weight more
than δmax (it is possible that b = u). Further, b is in N2δmax(a) and δ(a, u) = δ(a, b) + δ(b, u).
Also, δ(b, u) < δ(a, u) = δ(A, u); hence, u is in CA(b).

By the triangle inequality, and the above observations,

δ(b, v) ≤ δ(b, u) + δ(u, v)
≤ δ(b, u) + δmax

= δ(a, u)− δ(a, b) + δmax

< δ(a, u)− δmax + δmax

= δ(a, u)
= δ(A, u).

Therefore, δ(b, v) < δ(A, v); hence, v is also in CA(b). ◀

▶ Lemma 6. If Distances(v, W ) executes in R(|W |) rounds using Q(|W |) kth-hop queries,
then Algorithm 3 uses O(Q(n)(s/β) log n logβ n + µ(Q(n) + (βn/s)Q(βn/s))s logβ n) queries
in O(R(n) logβ n) rounds, w.h.p., where µ = maxa∈A |N2δmax(a)|.

Proof. By Lemma 4, estimated-parallel-centers(U, s, β) executes in O(R(n) logβ n) rounds
and O(Q(n)(s/β) log n logβ n) kth-hop queries, and returns a set of (3β, s)-balanced centers
of size O(s logβ n), w.h.p. The parallel Distances calls in line 4 thus executes in O(R(n))
rounds using O(Q(n)s logβ n) kth-hop queries, w.h.p., and the calls to Exhaustive-Query in
line 6 execute in O(R(µ)) rounds using a total of O(µQ(µ)s logβ n) kth-hop queries, but
these bounds are dominated by the Distances calls in line 8, all of which execute in O(R(n))
rounds using O(µQ(n)s logβ n) kth-hop queries, w.h.p. Finally, the calls to Exhaustive-Query
in line 10 execute in O(R(βn/s)) rounds using O(µ(βn/s)Q(βn/s)s logβ n) kth-hop queries,
w.h.p. ◀
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Plugging in our derived bounds for Distances, we get the following theorem.

▶ Theorem 7. Given a connected graph, G = (V, E), and subset, U ⊆ V , one can map
the n-vertex induced shortest-path graph, H, with respect to G and U in O(1) rounds using
O(δmax µ n3/2+ϵ) kth-hop queries, for constant 0 < ϵ < 1/2, w.h.p. Alternatively, one can
map H in O(log n · log diam(G)) rounds using O(µ n3/2 log3/2 n · log diam(G)) queries, w.h.p.

Proof. For the first result, set β = nϵ and s = n1/2+ϵ, and let us use the implementation
of Distances that executes in 1 round using O(δmax n) kth-hop queries from Lemma 3. For
the second result, set β = 4 and s = (n/ log n)1/2 and let us use the implementation of
Distances that executes in O(log diam(G)) rounds using O(n log diam(G)) kth-hop queries
from Lemma 3. The bounds follow by Lemma 6. ◀

For example, depending on the values of δmax and µ, the above theorem establishes an
improvement over the brute-force querying algorithm for solving the parallel network mapping
problem in O(1) rounds. The following theorem shows that bounding the parameters δmax
and µ is needed in order to do better than a quadratic number of kth-hop queries.

▶ Theorem 8. There is an infinite family of n-vertex graphs, G, such that mapping the
induced shortest-path graph, H, for a set, U , of O(n) vertices requires Ω(n2) kth-hop queries,
when µ is Θ(n) and δmax is Θ(log n), even if G has maximum degree 3.

Proof. Let G be the graph of a complete binary tree with n nodes and let U be the set of
leaves of G. Thus, the distance in H between any node, v, in the left subtree of G, and a
node, w, in the right subtree of G, is 2 log n. Thus, δmax = 2 log n and µ is Θ(n). Now, let
G′ be G plus a single path in G of length (2 log n)− 1 between two vertices, v and w, in U

such that v is in the left subtree of G and w is in the right subtree of G. Thus, there is an
edge with weight (2 log n)− 1 joining v and w in the induced shortest-path graph, H ′, for G′,
and otherwise H ′ has the same edge set as H. But there are Ω(n2) such possible pairs and
the only way to discover the edge (v, w) in H is to perform a kth-hop(k, v, w) query. Any
other type of kth-hop query cannot distinguish between H and H ′. ◀

4 A Greedy Network Mapping Algorithm

Kannan, Methieu, and Zhou [34] introduce a proof technique that sequentially uses a
verification algorithm for unweighted graphs as an oracle for issuing shortest-path queries in
a greedy graph reconstruction algorithm. In this section, we show how to adapt this proof
technique to a parallel setting and apply it to map the weighted graph, H. For example, our
algorithm uses kth-hop queries and provides parallelism according to a parameter, 1 ≤ p < n.

Our greedy algorithm is based on performing steps of the classic greedy set cover algorithm
in parallel batches. Recall that in this problem, one is given a collection of sets, S1, S2, . . . , Sm,
whose union is the universe U , and the goal is to find a smallest sub-collection of sets whose
union is U , that is, a sub-collection that covers U . The greedy algorithm repeatedly chooses
the set covering the maximum number of uncovered items in U , and this results in a number
of sets that is at most an O(log n) factor more than optimum [19].

Let f(n, ∆) be the query complexity of the best sequential algorithm for the problem of
graph verification for any connected unweighted graph of n vertices and maximum degree
∆ via distance queries, that is, for determining whether an unknown graph, G = (V, E), is
equal to a given graph, Ĝ = (V, Ê). For example, Kannan, Methieu, and Zhou [34] show
that f(n, ∆) is n1+O(τ(n)), where τ(n) =

√
(log log n + log ∆)/ log n. The function, f(n, ∆),

is used only in our analysis, where we show that, given a parallelism parameter, 1 ≤ p < n,
our parallel network mapping algorithm can be tuned to have the desired query complexity,
Q(n), and round complexity, R(n).
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4:12 Mapping Networks via Parallel kth-Hop Traceroute Queries

The distance queries in an unweighted graph verification algorithm perform two functions
– confirming that edges in Ê are actually in E and confirming that edges not in Ê are
also not in E, that is, confirming every (u, v) /∈ Ê is not in E. To that latter end, let
δ̂h(u, v) denote the hop-count (number of edges) distance between u and v based on the
edges in Ê, and let Êc denote the set of non-edges in Ĝ, that is, the set of pairs, (u, v),
such that u ̸= v and (u, v) /∈ Ê. Similarly, let Ec denote the set of non-edges in G. For
any set of tentative edges, Ê, define the following set for each pair of vertices, (u, v) ∈ Êc:
Su,v(Ê) =

{
(x, y) ∈ Êc | δ̂h(u, x) + δ̂h(y, v) + 1 < δ̂h(u, v)

}
.

Kannan, Methieu, and Zhou [34] prove the following two lemmas.

▶ Lemma 9. Suppose Ê ⊆ E. For any (u, v) ∈ Êc, if δh(u, v) = δ̂h(u, v), where δh(u, v)
denotes the hop-count distance between u and v in G, then Su,v(Ê) ⊆ Ec, that is, each pair
in Su,v(Ê) is a non-edge in G.

▶ Lemma 10. If a set of distance queries, T , verifies that every non-edge of Ĝ is a non-edge
of G, then ∪(u,v)∈T Su,v(Ê) = Êc.

We present our parallel greedy algorithm for mapping H = (U, Ẽ) in G = (V, E), for
when U ⊂ V , that is, we incrementally build our tentative edge set Ê ⊆ Ẽ:
1. We initialize a set of tentative edges, Ê, to a spanning tree of H by calling kth-hop(k, v, u)

from every vertex, v ∈ U , to an arbitrarily chosen vertex, u ∈ U , for k = 1, . . . , diam(G),
in parallel. We initialize a set of confirmed non-edges of H, F ← ∅. Note that we always
maintain that F ⊆ Êc. This requires 1 round of O(diam(G)n) kth-hop queries.

2. We compute all the Su,v(Ê) sets, for pairs (u, v) ∈ Êc, which requires no queries.
3. We perform p steps of the greedy set-cover algorithm applied to the sets, Su,v(Ê)\F ,

with the goal of covering the remaining pairs, in Êc\F , in a greedy fashion, which also
requires no queries. Let {(u1, v1), (u2, v2), . . . , (up, vp)} denote the vertex pairs for the
Su,v(Ê) sets chosen by these greedy steps.

4. We perform kth-hop(k, ui, vi) queries, for k = 1, . . . , diam(G), in parallel, to determine
the actual hop-count distance, δh(ui, vi), between ui and vi in H, for each i = 1, 2, . . . , p

in parallel. This step requires O(1) rounds of O(p · diam(G)) kth-hop queries in total.
5. For each i such that δh(ui, vi) = δ̂h(ui, vi), we add all the pairs in Sui,vi

(Ê) to F . If
F = Êc, then we are done, by Lemma 10.

6. Otherwise, if F ̸= Êc and δh(ui, vi) = δ̂h(ui, vi), for all i = 1, 2, . . . , p, then we repeat the
above process, performing another p steps of greedy set cover, looping back to Step 3.

7. If, on the other hand, F ̸= Êc and δh(ui, vi) < δ̂h(ui, vi), for some i, then there must
be at least one edge on a shortest path from ui to vi that is in Ẽ and not yet in Ê. In
this case, we add all such edges (which were discovered when we performed the diam(G)
kth-hop(k, ui, vi) queries) to Ê, and repeat the above greedy searching for this updated
set, Ê, of candidate edges, returning to Step 2.

This gives us the following result.

▶ Theorem 11. Let f(n, ∆) be the query complexity of an optimal sequential algorithm for
graph verification for any unweighted connected graph with n vertices and maximum degree
∆ using distance queries. Then, for 1 ≤ p < n, our parallel network mapping algorithm has
kth-hop query complexity, Q(n) ∈ O((∆np + f(n, ∆) log n)diam(G)) and round complexity,
R(n) ∈ O((∆n + (f(n, ∆)/p) log n)), if U ⊂ V , or Q(n) ∈ O((∆np + f(n, ∆) log n) log n)
and round complexity, R(n) ∈ O((∆n + (f(n, ∆)/p) log n) log n), if U = V .

Proof. See Appendix A.3. ◀
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Thus, setting p to be nO(τ(n)) gives us the following.

▶ Corollary 12. One can solve the network mapping problem with query complexity, Q(n),
that is diam(G) · n1+O(τ(n)) and round complexity, R(n), that is O(∆n), if U ⊂ V , or with
Q(n) that is n1+O(τ(n)) and round complexity, R(n), that is O(∆n log n), if U = V .

This query complexity is within an no(1) factor of optimal when ∆ is no(1), by the following
simple lower bound.

▶ Theorem 13. Solving the network mapping problem for an n-vertex graph, G, with
maximum degree, ∆, requires Ω(∆n) kth-hop queries, even if H has only n edges.

Proof. Let H be a caterpillar (i.e., a tree where every leaf is at distance 1 from a vertex on
a central path), such that every internal node has degree ∆. Choose any pair, u and v, of
sibling leaves and connect them with an edge. The only way to discover the edge, (u, v), is to
perform a kth-hop(k, u, v) query, for k ≥ 1. Thus, in expectation, any graph reconstruction
algorithm must perform a query for over half of the pairs of siblings in H, that is, at least
Ω((n/∆)∆2) = Ω(∆n) queries, in order to discover all the edges of H. ◀

5 Conclusion

We have given efficient algorithms for solving the network mapping problem in parallel. Such
algorithms show the effectiveness of kth-hop queries, even though they are weaker than
shortest-path queries. Our methods assume knowledge of δmax and µ, but this assumption
can be relaxed at the expense of increasing the round complexity by an O(log n) factor, while
keeping the query complexity unchanged, by using our algorithm as a blackbox to perform a
doubling search for the values of these parameters. Our methods also assume kth-hop(k, u, v)
remains same in the algorithm, which is a reasonable assumption in static routing. In our
network mapping formulation, we abstracted away some system issues such that when the
TTL field of a packet reaches 1, the node sends an ICMP message to the source address;
however, in the real Internet, some nodes may have their ICMP responses switched off.
Therefore, a direction to extend this work would be to design algorithms addressing such
system issues.

We have also given new, parallel implementations for graph clustering, which provide
tradeoffs between the number of center vertices and the sizes of clusters. Even for sequential
algorithms, this result may prove useful for applications where minimizing the number of
center points is a primary optimization goal. For instance, one can apply our construction to
the problems studied by Honiden et al. [31] for balancing graph-theoretic Voronoi diagrams
to shave a O(log n) factor of the number of centers. It seems likely, therefore, that this result
will have other applications as well.
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and we said an iteration is “bad” if
∑

w∈Wi
|CA′

i
(w)| > αn|Wi|

s and otherwise it is “good.”
We also noted, by Markov’s inequality, that an iteration is bad with probability at most 1/α.
Further, note that L = log(β/α) n = O(logβ n) is the maximum number of good iterations,
for either choice for α. We wish to show that the number of bad iterations is O(L) w.h.p.

Since Wi is a given for iteration i, whether iteration i is good or bad depends only on A′
i;

therefore, an iteration is good independent of whether any other iteration is good or bad,
so, for the sake of analysis, consider a set of c0L iterations (i.e., padding out with “dummy”
iterations if necessary) where c0 ≥ 4 is a constant chosen below and each iteration is bad
independently with probability 1/α. Let X denote the number of bad iterations in this
set. So E[X] = c0L/α; hence, the probability that over 3/4 of our iterations are bad can
be bounded as p = Pr(X > (3/4)c0L) = Pr(X > (3/4)α · E[X]). Thus, at least L of our
iterations are good with probability at least 1− p.
Case 1: α = 2. In this case, β is O(1); hence, L is Θ(logβ n) = Θ(log n), since β ≥ 4.

Futher, Pr(X > (3/4)α · E[X]) = Pr(X > (3/2) · E[X]), and, by a standard Chernoff
bound,5 e.g., see [39, p. 69],

Pr(X > (3/2) · E[X]) ≤ e−E[X]/12 = e−c0L/24.

Thus, choosing c0 so that c0L/24 ≥ 2 ln n, we will have more than (3/4)c0L bad iterations
with probability at most 1/n2.

Case 2: α = (4/3)eβ1/2. In this case, (α/β) ≤ β−1/4; hence, L is O(logβ n). Further, we
have that Pr(X > (3/4)c0L) = Pr(X > (3/4)α · E[X]) = Pr(X > eβ1/2 · E[X]), and, by
a non-standard Chernoff bound,6 e.g., see [39, p. 70],

Pr(X > eβ1/2 · E[X]) ≤
(

e

eβ1/2

)(3/4)c0L

= β −(3/8)c0L.

Thus, by choosing c0 so that (3/8)c0L ≥ 2 logβ n, we will have more than (3/4)c0L bad
iterations with probability at most 1/n2.

Therefore, we have the following.

▶ Lemma 14. The number of good and bad iterations in Algorithm 1 is O(logβ n) w.h.p.

A.2 The Complexity of the estimated-parallel-centers Algorithm
Recall that the estimated-parallel-centers algorithm uses a global random sample set, R,
for estimating cluster sizes, where R is a random subset of U of size T = c1(s/β) log n.
Recall that, for each vertex w ∈ W , we defined S(w) such that S(w) = R ∩ CA(w). Thus,
E[|S(w)|] = |CA(w)|(T/n). We are interested in showing that w.h.p. this sample of CA(w) is
giving neither an over-estimate nor an under-estimate for the size of CA(w), which we define
respectively as follows:

Over-estimate event: |CA(w)| ≤ βn/s, but |S(w)| > 2βT/s. In this case, we would be
including w in W even though its cluster size is sufficiently small.
Under-estimate event: |CA(w)| > 3βn/s, but |S(w)| ≤ 2βT/s. In this case, we would be
excluding w from W even though its cluster size is big.

Let us consider each of these types of events in turn.

5 Pr(X ≥ (1 + δ) · E[X]) ≤ e−E[X]·δ2/3, for 0 < δ ≤ 1.
6 Pr(X ≥ (1 + δ) · E[X]) ≤ (e/(1 + δ))(1+δ)·E[X].
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Over-estimate event. We wish to bound the probability that |CA(w)| ≤ βn/s but |S(w)| >
2βT/s, where T = c1(s/β) log n. Let X denote the sum of |CA(w)| indicator random variables
for counting the members of CA(w) ∩R, i.e., where each variable is 1 independently with
probability T/n. Thus, E[X] = E[|S(w)|] = |CA(w)|(T/n). So

Pr(|S(w)| > 2βT/s) = Pr(X > 2βT/s) = Pr
(

X >
2βn

s|CA(w)| · E[X]
)

= Pr(X > (1 + δ) · E[X]),

where

δ =
(

2βn

s|CA(w)| − 1
)

> 1.

In addition,

δ · E[X] =
(

2βn

s|CA(w)| − 1
)
· |CA(w)|T

n
= 2βT

s
− |CA(w)|T

n

≥ 2βT

s
− βT

s
= βT

s
= c1 log n.

Thus, by a standard Chernoff bound,7 and the fact that δ > 1,

Pr(X ≥ (1 + δ) · E[X]) ≤ e−δ2·E[X]/(2+δ) ≤ e−δ·E[X]/3 ≤ e−(c1 log n)/3 ≤ 1
n3 ,

for c1 ≥ 9 ln 2 ≈ 6.24.

Under-estimate event. We wish to bound the probability that |CA(w)| > 3βn/s but
|S(w)| ≤ 2βT/s, where T = c1(s/β) log n. Let X denote the sum of |CA(w)| indicator
random variables for counting the members of CA(w) ∩ R, i.e., where each variable is 1
independently with probability T/n. Thus, E[X] = E[|S(w)|] = |CA(w)|(T/n) > 3c1 log n. So

Pr(|S(w)| ≤ 2βT/s) = Pr(X ≤ 2βT/s)

= Pr
(

X ≤ 2βn

s|CA(w)| · E[X]
)
≤ Pr(X ≤ (2/3) · E[X]).

Thus, by a standard Chernoff bound,8 e.g., see [39, p. 71],

Pr(|S(w)| ≤ 2βT/s) ≤ e−(3c1 log n)/18 ≤ 1
n3 ,

when c1 ≥ 18 ln 2 ≈ 12.48.

Of course, R is the same random sampling set for all our samples, S(w), for w ∈ W .
Nevertheless, by a union bound, the above analysis shows that R causes an over-estimate
event or an under-estimate event, for some S(w), with probability at most 1/n2.

By the bound on over-estimate events, we have shown that w.h.p. every cluster with size
over βn/s is included in W in any given iteration of our estimated-parallel-centers algorithm.
In addition, by the bound on under-estimate events, we have shown that w.h.p. every vertex,

7 Pr(X ≥ (1 + δ) · E[X]) ≤ e−δ2·E[X]/(2+δ), for δ > 0, e.g., see https://en.wikipedia.org/wiki/
Chernoff_bound.

8 Pr(X ≤ (1 − δ) · E[X]) ≤ e−δ2·E[X]/2, for 0 < δ < 1.

https://en.wikipedia.org/wiki/Chernoff_bound
https://en.wikipedia.org/wiki/Chernoff_bound
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w, that we exclude from W has a cluster size of at most 3βn/s. Thus, using essentially the
same analysis as we gave for the proofs of Theorem 2 and Lemma 14, and noting that each
iteration of our estimated-parallel-centers algorithm has round complexity O(R(n)) and query
complexity O(Q(n)(s/β) log n), where R(n) and Q(n) are the respective round and query
complexities for the Distances algorithm, we have the following.

▶ Lemma 15 (Lemma 4). Our estimated-parallel-centers algorithm constructs a set, A,
of (3β, s)-balanced centers of size O(s logβ n). Suppose Distances(r, U) executes in R(n)
rounds and Q(n) kth-hop queries. Then estimated-parallel-centers algorithm executes in
O(R(n) logβ n) rounds and O(Q(n)(s/β) log n logβ n) kth-hop queries, w.h.p.

A.3 Greedy Algorithm Proofs
Our description of our greedy algorithm given above in the body of our paper was for the
case when U ⊂ V . For the case when U = V , we modify our algorithm to be the following
(note that in this case, hop-count distance and graph distance are the same):
1. We initialize a set of tentative edges, Ê, to a spanning tree of H by calling kth-hop(1, v, u)

from every vertex, v ∈ U , to an arbitrarily chosen vertex, u ∈ U . We initialize a set of
confirmed non-edges, F ← ∅. This requires 1 round of O(n) kth-hop queries.

2. We compute all the Su,v(Ê) sets, for pairs (u, v) ∈ Êc, which requires no queries.
3. We perform p steps of the greedy set-cover algorithm applied to the sets, Su,v(Ê)\F ,

with the goal of covering the remaining pairs, in Êc\F , in a greedy fashion, which also
requires no queries. Let {(u1, v1), (u2, v2), . . . , (up, vp)} denote the vertex pairs for the
Su,v(Ê) sets chosen by these greedy steps.

4. We perform a binary search using kth-hop queries to determine the actual distance,
δ(ui, vi), between ui and vi in H, for each i = 1, 2, . . . , p in parallel. This step requires
O(log n) rounds of O(p log n) kth-hop queries in total.

5. For each i such that δ(ui, vi) = δ̂(ui, vi), we add all the pairs in Sui,vi
(Ê) to F . If F = Êc,

then we are done, by Lemma 10.
6. Otherwise, if F ̸= Êc and δ(ui, vi) = δ̂(ui, vi), for all i = 1, 2, . . . , p, then we repeat the

above process, performing another p steps of greedy set cover, repeating a loop returning
to Step 3.

7. If, on the other hand, F ̸= Êc and δ(ui, vi) < δ̂(ui, vi), for some i, then there must be at
least one edge on a shortest path from ui to vi that is in E and not yet in Ê. In this
case, we perform a binary search, described below, to find at least one such an edge,
add all such edges to Ê, and repeat the above greedy searching for this updated set, Ê,
of candidate edges, returning to Step 2. This step requires O(log n) rounds of at most
O(p log n) kth-hop queries in total.

Before we give our analysis, let us describe the details for the binary search to find
an undiscovered edge when δ(ui, vi) < δ̂(ui, vi), for some i. We begin with a query, kth-
hop(k, ui, vi), where k = ⌊δ(ui, vi)/2⌋, and let w denote the returned vertex. So, δ(ui, w) = k

and δ(w, vi) = δ(ui, vi)− k. Since δ(ui, vi) < δ̂(ui, vi), we know that δ(ui, w) < δ̂(ui, w) or
δ(w, vi) < δ̂(w, vi). Thus, we recursively search for one of these until we discover a new edge
not in Ê, which must exist, since δ(ui, vi) < δ̂(ui, vi).

▶ Theorem 16 (Theorem 11). Let f(n, ∆) be the query complexity of an optimal sequential
algorithm for graph verification for any unweighted connected graph with n vertices and
maximum degree ∆ using distance queries. Then, for 1 ≤ p < n, our parallel network
mapping algorithm has kth-hop query complexity, Q(n) ∈ O((∆np + f(n, ∆) log n)diam(G))
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and round complexity, R(n) ∈ O((∆n + (f(n, ∆)/p) log n)), if U ⊂ V , or Q(n) ∈ O((∆np +
f(n, ∆) log n) log n) and round complexity, R(n) ∈ O((∆n + (f(n, ∆)/p) log n) log n), if
U = V .

Proof. Building a spanning tree of H is a one-time expense taking O(n · diam(G)) kth-hop
queries and a round complexity of O(1) (step 1), for the case when U ⊂ V , or O(n) queries
with a round complexity of O(1) (step 1), for the case when U = V . Each iteration of our
greedy algorithm takes O(p · diam(G)) kth-hop queries with a round complexity of O(1)
(step 4), for the case when U ⊂ V , or O(p log n) kth-hop queries with a round complexity of
O(log n) (step 4 and step 7), for the case when U = V .

In the case when δh(ui, vi) < δ̂h(ui, vi), for some i ∈ [1, p], we discover at least one new
edge – let us charge the queries for this iteration to this edge. Thus, the total number of
kth-hop queries due to this case is O(∆np ·diam(G)), with O(∆n) rounds, for the U ⊂ V case,
or O(∆np log n), with O(∆n log n) rounds, for the U = V case. So, let us consider the case
when δh(ui, vi) = δ̂h(ui, vi), for all i ∈ [1, p], which we call a “completely-greedy” iteration.
We will provide an upper bound for the number of such iterations. Recall that in step 3, for
the case when U ⊂ V (similarly in step 3, for the case when U = V ) we performed p steps
of greedy set-cover algorithm applied to the sets, Su,v(Ê)\F , with the goal of covering the
remaining pairs, in Êc\F without additional queries. Let Fi denote the set of (x, y) pairs
covered by the i-th step of this greedy set-cover algorithm, for i = 1, 2, . . . , p. Thus,

|F1| ≥ |F2| ≥ · · · ≥ |Fp|,

and at the moment we chose the subset Fi it was the largest subset covering the uncovered
pairs in Ui = Êc\(

⋃i−1
j=1 Fj∪F ). The optimal sequential graph verification algorithm performs

f(n, ∆) distance queries and confirms all the pairs in Êc. Thus, in particular, this optimal
algorithm must perform queries that cover Ui as a part of its f(n, ∆) queries; hence, because
Fi is the subset for a distance query that covers the largest number of pairs in Ui, and the
average number of pairs in Ui covered by any distance query of the optimal algorithm is at
least |Ui|/f(n, ∆), we have that

|Fi| ≥
|Ui|

f(n, ∆) .

Thus, in any iteration of our algorithm, since we perform p greedy steps, the size of the
remaining pairs in Êc\F is reduced by a multiplicative factor of(

1− 1
f(n, ∆)

)p

≤ e−p/f(n,∆).

Therefore, since Êc ≤ n(n− 1) and by the end of our algorithm we cover every pair in Êc,
the total number of completely-greedy iterations, g, can be bounded above by the smallest
value of g such that

e−(p/f(n,∆))g < n−2;

therefore, the total number of completely-greedy iterations, g, is at most O((f(n, ∆)/p) log n).
Note that the set Êc is potentially growing during our algorithm, with completely-greedy
iterations possibly interspersed with iterations that discover new edges in Ẽ. Nevertheless,
the above analysis still holds, because (1) the function, f(n, ∆) is a uniform bound for any
connected graph with n nodes and maximum degree ∆, and (2) each time we (greedily)
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confirm that δ̂(u, v) = δ(u, v) for a set, Su,v(Ê), all the pairs in Su,v(Ê) are, in fact, non-edges
in Ẽc. The claimed complexity bounds follow then, since each completely-greedy iteration
requires O(p · diam(G)) kth-hop queries with round complexity O(1), for the U ⊂ V case, or
O(p log n) kth-hop queries with round complexity O(log n), for the U = V case. ◀

STACS 2022


	1 Introduction
	2 Parallel Graph Clustering
	3 Our Fast Parallel Network Mapping Algorithms
	4 A Greedy Network Mapping Algorithm
	5 Conclusion
	A Omitted Proofs
	A.1 Bounding the number of Bad Iterations for Parallel Graph Clustering
	A.2 The Complexity of the estimated-parallel-centers Algorithm
	A.3 Greedy Algorithm Proofs


