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Abstract
Let G be a directed graph with n vertices, m edges, and non-negative edge costs. Given G, a fixed
source vertex s, and a positive integer p, we consider the problem of computing, for each vertex
t ̸= s, p edge-disjoint paths of minimum total cost from s to t in G. Suurballe and Tarjan [Networks,
1984] solved the above problem for p = 2 by designing a O(m + n log n) time algorithm which also
computes a sparse single-source 2-multipath preserver, i.e., a subgraph containing 2 edge-disjoint
paths of minimum total cost from s to every other vertex of G. The case p ≥ 3 was left as an open
problem.

We study the general problem (p ≥ 2) and prove that any graph admits a sparse single-source
p-multipath preserver with p(n− 1) edges. This size is optimal since the in-degree of each non-root
vertex v must be at least p. Moreover, we design an algorithm that requires O(pn2(p + log n)) time
to compute both p edge-disjoint paths of minimum total cost from the source to all other vertices and
an optimal-size single-source p-multipath preserver. The running time of our algorithm outperforms
that of a natural approach that solves n− 1 single-pair instances using the well-known successive
shortest paths algorithm by a factor of Θ( m

np
) and is asymptotically near optimal if p = O(1) and

m = Θ(n2). Our results extend naturally to the case of p vertex-disjoint paths.
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1 Introduction

Consider a communication network modelled as a directed graph G with n vertices, m edges,
and non-negative edge costs. Whenever a source vertex s needs to send a message to a target
vertex t, we are faced with the problem of finding a good path connecting s and t in G.
Typically, this path is chosen with the aim of minimizing the communication cost, i.e., the
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sum of the costs of the path’s edges. In a scenario where some edges of the network might be
congested or faulty, it is useful to introduce some degree of redundancy in order to improve
the communication reliability. One of the possible approaches that aims to formalize the
above requirements asks to find p edge-disjoint paths from s to t in G for some integer p ≥ 2.
Quite naturally, similarly to the case of the shortest path, we would like to minimize the
sum of the costs of the edges in the selected paths.

This is equivalent to the problem of computing a minimum-cost flow of value p from s

to t in the unit-capacity network G and can be solved in time O(p(m + n log n)) using the
successive shortest paths (SSP) algorithm [2,14].

In this paper we focus on the single-source case, in which a fixed source vertex s wants
to communicate with every other vertex t using p edge-disjoint paths. We distill the above
discussion into the following two problems:
Single-source p-multipath preserver problem: We want to find a sparse subgraph H of G

such that, for every vertex t ̸= s, H contains p edge-disjoint paths of minimum total
cost from s to t in G. We will refer to such a subgraph H as a single-source p-multipath
preserver. Among all possible feasible solutions, we aim at computing the one of minimum
size, i.e., having the minimum number of edges.

Shortest p edge-disjoint paths problem: For every vertex t ̸= s, we want to compute a
subset St of edges from G that induce p edge-disjoint paths of minimum total cost from
s to t in G.

Observe that if the graph G is not sufficiently connected, the single-source p-multipath
preserver H and some of the sets St defined above might not exist. To avoid this issue, we
assume that G is p-edge-outconnected from s, i.e., given any vertex t ̸= s, G contains p

edge-disjoint paths from s to t.1
The above problems have been addressed by Suurballe and Tarjan for the special case

p = 2 in [25], where they provide an algorithm requiring time O(m + n log n) to compute
both a single-source p-multipath preserver of size 2(n − 1) and (a compact representation
of) all sets St of the shortest p edge-disjoint paths problem.2 In their paper, the authors
mention the case p > 2 as an important open problem.
In this paper we provide the following results:

We prove in Section 3 that any graph G always admits a single-source p-multipath
preserver of size p(n − 1). This size is optimal since the in-degree of each non-source
vertex t in H needs to be at least p, even to preserve the p-edge-outconnectivity from s

to t.
In Section 4 we design an algorithm that requires O(pn2(p + log n)) time to solve the
shortest p edge-disjoint paths problem. This improves over the natural algorithm that
computes the sets St with n−1 independent invocations of the SSP algorithm, which would
require O(pnm + pn2 log n) time. Up to logarithm factors, our algorithm is Θ( m

np ) times
faster than the above algorithm based on SSP. Moreover, for p = O(1) and m = Θ(n2),
the time complexity of our algorithm is optimal up to logarithmic factors. Finally, our
algorithm also computes a single-source p-multipath preserver H of optimal size that
contains all the edges in the sets St.

We point out that a modification of our algorithm allows us to handle graphs G that are
not p-edge-outconnected from s. In this case, our algorithm computes, for each vertex t ≠ s,
a set of edges St that induce σ(t) edge-disjoint paths from s to t of minimum total cost in G,

1 It is possible to check whether a graph is p-edge-outconnected from s in O(pm log n2

m ) time [16].
2 After the execution of their algorithm, it is possible to compute each set St in time O(|St|).
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where σ(t) is the minimum between p and the maximum number of edge-disjoint paths from
s to t. Moreover, the algorithm also returns a subgraph H of G of optimal size where each
vertex t ̸= s has exactly σ(t) incoming edges. As in the previous case, H contains all edges
in the sets St. The running time of our algorithm is asymptotically unaffected.

We also discuss a variant of the problem in which, instead of minimizing the overall cost
of p edge-disjoint paths, we aim at minimizing the cost of the path with maximum cost. We
show that our algorithm provides an optimal p-approximation, unless P = NP.

Finally, our results can be extended to the case of vertex-disjoint paths and to undirected
graphs via standard transformations of the input graph, thus proving an upper bound of
p(n − 1) on the size of p-multipath preservers in undirected graphs, which was posed as an
open problem in [17]. All the above modifications and variants are discussed in Appendix A.

Related work. As already mentioned, the closest related work is the paper by Suurballe
and Tarjan that studies the case p = 2 [25].

The single-source p-multipath preserver problem falls within a broad class of problems
with a long-standing research tradition. Here we are given a graph G and we want to select a
sparse subgraph H of G which maintains, either in an exact or in an approximate sense, some
distance-related property of interest. The goal is that of understanding the best trade-offs
that can be attained between the size of H and the accuracy of the maintained properties.
As a concrete example, if we focus on the cost of a single path (i.e., p = 1) between pairs of
vertices, a well-known notion adopted is that of graph spanners, which has been introduced
by Peleg and Schäffer [24]. A spanning subgraph H is an α-spanner of G if the distance
of each pair of vertices in H is at most α times the corresponding distance in G. If G is
undirected then it is possible to compute, for any integer k ≥ 1, a (2k − 1)-spanner of size
O(n1+ 1

k ) [3] (if we assume the Erdős Girth Conjecture [13], this trade-off is asymptotically
optimal), while there exist directed graphs for which any α-spanner has size Ω(n2).

When α = 1 and hence H retains the exact distances of G, a 1-spanner is usually
called a preserver. While Ω(n2) edges might be necessary to preserve all-to-all distances,
better trade-offs can be obtained if we only care to preserve distances between some pairs of
vertices. For example, a shortest-path tree can be seen as a sparse single-source preserver.
More significant trade-offs can be obtained for different choices of the pairs of interest (see,
e.g., [8, 10]). For more related results on the vast area of spanners and preservers, we refer
the interested reader to the survey in [1].

Concerning the case of multiple paths (p > 1), Gavoille et al. [17] introduced the notion
of p-multipath spanner of a weighted graph G, from which we borrow the term multipath.
A p-multipath α-spanner of G is a spanning subgraph H of G containing, for each pair of
vertices u, v, p edge-disjoint paths from u to v of total cost at most α times the cost of the
cheapest p edge-disjoint paths from u to v in G. Among other results, the authors of [17]
prove the existence, for any choice of p and for any k ≥ 1, of a p-multipath p(2k − 1)-spanner
of size O(pn1+ 1

k ) for undirected graphs. Following [17], there has been further work on
multipath spanners [11, 18]. All of the above papers, however, focus on approximated costs,
in the all-pairs setting on undirected graphs. Since our focus is on p-multipath α-spanners
for directed graphs, in the single-source case, and for α = 1, such results cannot be directly
compared to the one in this work.

As discussed above, edge-disjoint paths can be seen as a strategy to achieve fault-tolerance
through redundancy. In particular, Baswana et al. introduced the problem of computing a
sparse k-fault tolerant reachability subgraph H of a given directed graph G, i.e., a subgraph
that preserves reachability from a distinguished source vertex s following the failure of any
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Figure 1 An execution of the successive shortest paths algorithm on a graph G. Figures (a),
(b), (c), and (d) respectively show the residual networks Gt

0 = G, Gt
1, Gt

2, and Gt
3. The shortest

paths computed by the algorithm are highlighted in red. The edges that appear in the opposite
orientation w.r.t. G are shown in bold. If we orient the bold edges in Gt

i as in G, we obtain the
edges in St

i , i.e., those belonging to i edge-disjoint paths of minimum total cost from s to t in G.

set of at most k edges [5]. The authors show that it is always possible to select a subgraph
H with O(2kn) edges, and that this bound is tight in the sense that there are graphs G with
Ω(2kn) edges that cannot be sparsified.

We remark that the results for the problem in [5] are not directly comparable to ours.
Indeed, when G is not p-edge-outconnected from s, a subgraph containing σ(t) edge-disjoint
paths from s to every other vertex t is not necessarily a (p − 1)-fault tolerant reachability
subgraph. As a consequence, the lower bound of Ω(2kn) does not apply to our problem. On
the other hand, when we restrict ourselves to graphs that are p-edge-outconnected from s,
any single-source p-multipath preserver is also a (p − 1)-fault tolerant reachability subgraph,
yet the converse is not true. Indeed, a (p − 1)-fault tolerant reachability subgraph does not
necessarily guarantee that the cost of the p edge-disjoint paths from s to each t is minimized.

Other approaches to address faults in networks, which aim at (approximately) preserving
the length of the surviving shortest paths from a source vertex s, are captured by the notion
of single-source fault-tolerant spanners and preservers [4, 6, 7, 9, 19–23].

2 Preliminaries

We denote by V (G), E(G), and c : E(G) → R+, the set of vertices, the set of edges, and the
cost function, respectively. With a slight abuse of notation, if S is a set of edges (resp. π is a
path), we denote by c(S) (resp. c(π)) the sum of the costs c(e) for e ∈ S (resp. e ∈ E(π)).

In order to lighten the notation, in the rest of the paper we will assume that the graph is
anti-symmetric, i.e., if (u, v) ∈ E(G), then (v, u) ̸∈ E(G). We make this assumption as we
will define auxiliary graphs on the vertex set V (G) in which some edge (u, v) ∈ E(G) might
appear in the reversed direction (v, u) and therefore, a non anti-symmetric graph G may
cause the presence of two parallel edges in the auxiliary graphs. It is easy to remove this
assumption by distinguishing the two possible parallel edges with unique identifiers.

Relation with the s-t-min-cost flow problem. For a fixed pair of vertices s, t ∈ V (G), the
problem of finding p edge-disjoint paths of minimum total cost from s to t is a special case
of the s-t-min-cost flow problem where edges have unit capacities and the goal is to send
p units of flow from s to t at minimum total cost. Successive shortest path (SSP) [2, 14]
is a well-known algorithm that solves the s-t-min-cost flow problem. We now give a brief
description of SSP for the special case of unit edge capacities.
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The algorithm sends p units of flow from s to t by iteratively pushing one new unit of flow
through a shortest path from s to t in the residual network associated with the current flow.
More precisely, let the initial residual network be Gt

0 = G. In the generic i-th iteration, SSP
finds a shortest path πt from s to t in Gt

i−1, and uses it to compute a residual network Gt
i.

The residual network Gt
i is obtained from Gt

i−1 by reversing all the edges in πt, where
reversing an edge (u, v) of cost c(u, v) means replacing (u, v) with the edge (v, u) of cost
c(v, u) = −c(u, v). See Figure 1 for an example.

At the end of the i-th iteration, the i units of flow are sent through the edges of G that are
reversed in the residual network Gt

i. We denote by St
i the set of such edges, which contains

exactly the edges of i edge-disjoint paths from s to t of minimum total cost. Therefore, once
the p-th iteration is completed, St

p is a solution for the problem of finding p edge-disjoint
paths of minimum total cost from s to t. An interesting observation that we will use later on
is the following.

▶ Remark 1. The set St
i can be computed from St

i−1 and πt in O(|St
i | + n) time by first

setting St
i = St

i−1 and then by (i) deleting from St
i all edges (u, v) ∈ St

i that are reversed in
E(πt), and (ii) adding to St

i all edges (u, v) ∈ E(πt) ∩ E(G).

A straightforward implementation of the above algorithm requires time O(pnm) since
it computes p shortest paths using the Bellman-Ford algorithm (notice, indeed, that the
edge costs in the residual networks might be negative). The above time complexity can be
improved to O(p(m + n log n)) by suitably re-weighting the residual network so that edge
costs are non-negative and shortest paths are preserved, allowing the Dijkstra algorithm to
be used in place of Bellman-Ford [14].

We can solve n − 1 separated instances of s-t-min-cost flow (one for each node t) and
obtain (i) the solution for the shortest p edge-disjoint paths problem, i.e., the sets St

p for
each t ∈ V (G) \ {s}; (ii) a single-source p-multipath preserver by making the union of all
solutions St

p obtained. However, the resulting single-source p-multipath preserver may not
be sparse and the total running time needed to solve both problems is O(pn(m + n log n)).

In Section 3 we show the existence of a single-source p-multipath preserver of optimal
size p(n − 1) and in Section 4 we design an algorithm that solves both our problems in time
O(pn2(p + log n)).

3 An optimal-size single-source p-multipath preserver

In this section we show that it is possible to compute a single-source p-multipath preserver
having size p(n − 1).

We compute such a preserver iteratively: we start with an empty graph H0 = (V (G), ∅)
and, during the i-th iteration, we construct a i-multipath preserver3 Hi of G by adding to
Hi−1 a single new edge et entering in t for each vertex t ∈ V (G) \ {s}.4 This process stops
at the end of the p-th iteration. We will show that Hp is a sparse single-source p-multipath
preserver. Notice that, by construction, vertex s has in-degree 0 in Hi and each other vertex
has in-degree i, therefore Hp has size p(n − 1).

3 In the following we might shorten single-source i-multipath preserver to i-multipath preserver or, when i
is clear from the context, simply preserver.

4 For a fixed vertex t ̸= s, the edge et will be the last edge of a path from s to t in a suitable graph.
Hence, in each iteration, we augment the preserver with the union of all such last edges, in a way that
resembles the techniques used in [23,24].

STACS 2022
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Figure 2 An example of the suboptimality property of Lemma 5 for i = 3. (a) The graph G, in
which the edges in H2 are solid and the edges in E(G) \ E(H2) are dashed. Unlabelled edges cost 0.
For graphical convenience, G is 2-edge-outconnected from s and can be made 3-edge-outconnected
by a suitable addition of costly edges. (b) The graph Gt

2 in which the edges that appear in St
2 in

their opposite orientation are highlighted in red. A shortest path πt ∈ Π(s, t; Gt
2) is highlighted in

blue and traverses vertex q = q(πt). (c) The graph Gq
2 where the (reversed versions of) the edges

in Sq
2 are highlighted in red, and a shortest path πq ∈ Π(s, q; Gq

2) is highlighted in green. (d) The
graph Gt

2 where the path πq ◦ πt[q : t] is highlighted in green and blue and belongs to Π(s, t; Gt
2).

We will prove by induction on i that Hi contains i edge-disjoint paths of minimum total
cost (in G) from s to all vertices t ∈ V (G) \ {s}. Since this is trivially true when i = 0, in the
rest of the section we assume that the induction hypothesis is true for Hi−1 with 1 ≤ i < p,
and we focus on proving that it remains true for Hi.

Following the notation of Section 2, we denote by St
i−1 the set of edges belonging to any

i − 1 edge disjoint paths from s to t of minimum total cost in Hi−1 (and hence in G). We let
Gt

i−1 be the residual network obtained from G by reversing the edges in St
i−1.

To prove that Hp is a single-source p-multipath preserver we need to employ a suitable
tie-breaking rule between paths of the same cost. Although randomly perturbing the edge-
weights would be sufficient to prove the main result of this section, we will instead introduce
a different tie-breaking scheme. We use this scheme to provide structural lemmas that will
also be used in Section 4 to prove the correctness of our time-efficient deterministic algorithm
that computes a p-multipath preserver and solves the shortest p edge-disjoint paths problem.

To this aim, we define distances as pairs of elements from R ∪ {+∞}. Given d = (d1, d2)
and d′ = (d′

1, d′
2) we denote by d + d′ the pair (d1 + d′

1, d2 + d′
2). We also compare distances

lexicographically, and write d ≺ d′ to denote that the pair d precedes d′ in the lexicographical
order. Similarly, d ⪯ d′ if d ≺ d′ or d = d′. Given any path π, let η(π) be the number of edges
of π that are in E(G) \ E(Hi−1). We can associate π with a pair |π| = (c(π), η(π)). With a
slight abuse of notation, we can therefore extend the above linear order to paths: for two
paths π and π′, we write π ≺ π′ (resp. π ⪯ π′) as a shorthand for |π| ≺ |π′| (resp. |π| ⪯ |π′|).
Intuitively, when we compare paths w.r.t. ⪯, the values of η(·) serve as tie-breakers between
paths having the same cost. In the following Π(u, v; G′) will denote the set of paths from u

to v in G′ that are shortest w.r.t. the total order relation ⪯. When Π(u, v; G′) contains a
single path we denote by π(u, v; G′) the sole path in Π(u, v; G′). Given a path π1 from v0 to
v1 and a path π2 from v1 to v2, we denote by π1 ◦ π2 the path from v0 to v2 that is obtained
by composing π1 and π2. Given a path π from v0 and v1, and two distinct vertices u and v

of π such that π traverses u and v in this order, we denote by π[u : v] the subpath of π from
u to v.

The edge et entering t selected by the algorithm is the last edge of an arbitrarily chosen
path in Π(s, t; Gt

i−1). For π ∈ Π(s, t; Gt
i−1), we define q(π) as the last internal vertex of π

such that its incoming edge in π belongs to E(G) \ E(Hi−1). If no such vertex exists, we let
q(π) = s (see Figure 2 (b)).
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Figure 3 (a) A graph G with non-negative costs. The edges in St
2 (resp. Sv

2 ) are highlighted in
blue (resp. red) and induce two edge-disjoint paths of minimum total cost from s to t (resp. v) in
G. The edges in Sv

2 are exactly the ones used by the flow f ′ in the proof of Lemma 2. (b) The
graph Gt

2 obtained from G by reversing the edges in St
2. The reversed edges (highlighted in blue)

correspond to those used by the flow f in the proof of Lemma 2. (c) The graph Gv
2 obtained from G

by reversing the edges in Sv
2 . The reversed edges are highlighted in red. (d) The graph Gt

2 in which
the edges in ∆(t, v) are highlighted in green and induce 2 edge-disjoint paths of minimum total cost
from t to v in Gt

2. These edges are the ones used by the flow f ′′ in the proof of Lemma 2. The edge
costs that are missing in (b), (c), or (d) match those of the corresponding edges in (a).

The main technical ingredient of the result in this section is a suboptimality property,
which will be given formally in Lemma 5. Intuitively, if q = q(πt) for some path πt ∈
Π(s, t; Gt

i−1), then this property ensures that the composition πq ◦ πt[q : t] of any shortest
path πq ∈ Π(s, q; Gq

i−1) with the suffix πt[q : t] of πt is also a shortest path in Π(s, t, Gt
i−1).

Since (up to the orientation of its edges) πt[q : t] contains a single edge et not already in
Hi−1 (i.e., the one entering in t), this property allows to reuse the edges in Hi−1 and in
Sq

i \ E(Hi−1) to build St
i \ {et}. See Figure 2 (d) for an example. The rest of this section

formalizes the above intuition.
Given any two nodes t, v ∈ V (G), we denote by ∆(t, v) the set of edges of Gt

i−1 that
appear in the opposite orientation in Gv

i−1 (see Figure 3.). Formally, (x, y) ∈ ∆(t, v) iff
(x, y) ∈ E(Gt

i−1) and (y, x) ∈ E(Gv
i−1). As a consequence, (x, y) ∈ ∆(t, v) iff (y, x) ∈ ∆(v, t).

Moreover, we observe that (x, y) ∈ ∆(t, v) iff exactly one of the following conditions holds:
(i) (y, x) ∈ St

i−1; (ii) (x, y) ∈ Sv
i−1. Finally, we notice that E(G) ∩ ∆(t, v) ⊆ Sv

i−1 ⊆ E(Hi−1).
The next three lemmas will be instrumental to prove Lemma 5.

▶ Lemma 2. The edges in ∆(t, v) are exactly those belonging to i − 1 edge disjoint paths of
minimum total cost from t to v in Gt

i−1.

Proof. Consider Gt
i−1 as an instance of min-cost flow with unit capacity where we want to

send i − 1 units of flow from t to v. We define a first flow assignment f that sends i − 1 units
of flow from t to s in Gt

i−1 using the edges in St
i−1 in the reverse direction (see Figure 3 (b)).

More precisely, ∀(x, y) ∈ E(Gt
i−1), f(x, y) = 1 if (y, x) ∈ St

i−1, and f(x, y) = 0 otherwise.
Notice that f is a flow of value |f | = i − 1 in Gt

i−1 and that the associated residual graph is
G. We now consider a minimum-cost flow f ′ that pushes i − 1 units of flow from s to v in G

using the edges in Sv
i−1 (see Figure 3 (a) where the edges used by f ′ are highlighted in red).

In particular, we define f ′(e) = 1 if e ∈ Sv
i−1, and f(e) = 0 otherwise. The residual graph

associated with f ′ (w.r.t. G) is Gv
i−1 and, since f ′ is a minimum-cost flow, Gv

i−1 does not
contain any negative-cost cycle [14].

We can obtain a flow f ′′ from t to v in Gt
i−1 with |f ′′| = i − 1 by composing f and f ′: we

first push i − 1 units of flow from t to s in Gt
i−1 according to f and then push i − 1 units of

flow from s to t in the residual network G according to f ′ (see Figure 3 (d)). More precisely,

STACS 2022



12:8 Single-Source Shortest p-Disjoint Paths: Fast Computation and Sparse Preservers

q t

δ

s

π[s : q]

v u

Gt
i−1

∆(t, q)

Figure 4 A qualitative representation of the proof of Lemma 3. We are supposing towards a
contradiction that π[s : q] (highlighted in red) is not entirely contained in Gq

i−1 and hence traverses
an edge (u, v) belonging to the set ∆(t, q) (highlighted in green). The subpath of π (resp. δ) from v

to q is shown in bold (resp. is dashed).

the resulting net flow f ′′ is defined as follows: given (x, y) ∈ E(Gt
i−1), f ′′(x, y) = 1 iff either

(i) f(x, y) = 1 and f ′(y, x) = 0, or (ii) f(x, y) = 0 and f ′(x, y) = 1. The residual network
associated with f ′′ (w.r.t. Gt

i−1) is exactly Gv
i−1 and, since it contains no negative-cost cycles,

f ′′ is also a minimum-cost flow.
To conclude the proof it suffices to notice that the edges (x, y) for which f ′′(x, y) = 1 are

exactly those in ∆(t, v). ◀

▶ Lemma 3. For every t ∈ V (G), let π ∈ Π(s, t; Gt
i−1) and q = q(π). The subpath π[s : q] is

entirely contained in Gq
i−1.

Proof. If s = q the subpath π[s : q] is empty and the claim is trivially true. We therefore
consider s ≠ q and suppose towards a contradiction that π[s : q] is not entirely contained
in Gq

i−1. Then, π[s : q] traverses at least one edge in ∆(t, q). Let (u, v) be the last edge
traversed by π[s : q] that belongs to ∆(t, q). By Lemma 2, the edges in ∆(t, q) induce i − 1
edge disjoints paths of minimum total cost from t to q in the subgraph of Gt

i−1. Let δ one
such such path traversing (u, v).

Since, by definition of q, the edge e of π[s : q] entering in q is in E(G) \ E(Hi−1), we have
e ̸∈ ∆(t, q). Then, the subpath π[v : q] of π[s : q] is not empty and, by our choice of (u, v)
does not traverse any edge in ∆(t, q).

By the suboptimality property of shortest paths, π[v : q] ⪯ δ[v : q] and hence c(π[v :
q]) ≤ c(δ[v : q]). If c(π[v : q]) < c(δ[v : q]), we can replace δ[v : q] with π[v : q] in δ to obtain
a path δ′ from t to q in Gt

i−1 with c(δ′) < c(δ). This contradicts Lemma 2 since it implies
the existence of i − 1 edge-disjoint paths from t to q in Gt

i−1 with a total cost smaller than
c(∆(t, q)) (see Figure 4).

If c(π[v : q]) = c(δ[v : q]), we can replace π[v : q] with δ[v : q] in π[s : q] to obtain a path π′

from s to q in Gt
i−1 satisfying c(π′) = c(π[s : q]). Since all edges of E(G)∩E(δ[v : q]) ⊆ ∆(t, v)

are in Hi−1, π[v : q] contains more edges in E(G) \ E(Hi−1) than δ[v : q], thus π′ ≺ π[s : q].
This is a contradiction since, by the suboptimality property of shortest paths and by our
choice of π ∈ Π(s, t; Gt

i−1), π[s : q] must be a shortest path from s to q in Gt
i−1 w.r.t. ⪯. ◀

▶ Lemma 4. Let t, q ∈ V (G) \ {s}, and let π be a simple path from s to q in Gq
i−1 such that

the edge of π entering in q is in E(G) \ E(Hi−1). If π is not entirely contained in Gt
i−1, then

there exists a path π′ from s to q in Gt
i−1 such that π′ ≺ π.

Proof. If π is not entirely contained in Gt
i−1 then π traverses some edge in ∆(q, t). Consider

the first edge (u, v) ∈ ∆(q, t) traversed by π, and let δ be a simple path, from q to t that
traverses (u, v) in the subgraph of Gq

i−1 induced by ∆(q, t). Since in Gq
i−1 there are no negative
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q t

π

vu

Gq
i−1

∆(q, t)

q t

s
π[s : u]

u

Gt
i−1

∆(t, q)
δ′δ

(a) (b)

s

π′

Figure 5 A qualitative representation of the proof of Lemma 4. We are assuming that π

(highlighted in red) is a path from s to q in Gq
i−1 entering in q with and edge of E(G) \E(Hi−1). (a)

π intersects a path δ among the i− 1 edge-disjoint paths induced by the edges in ∆(q, t) (highlighted
in green). (b) The edges of path δ′ obtained by reversing the edges in δ belong to ∆(t, q) (highlighted
in green). Then, the path π′ = π[s : u] ◦ δ′[u : q] (shown in bold) is entirely contained in Gt

i−1 and
satisfies π′ ≺ π.

cycles [14], we have that c(π[u : q]) + c(δ[q : u]) ≥ 0 and hence c(π[u : q]) ≥ −c(δ[q : u]). By
reversing the edges in the subpath δ[q : u] we obtain a path δ′ from u to q that uses only edges
in ∆(t, q) and has cost c(δ′) = −c(δ(u, q)). We can then select π′ = π[s : u]◦δ′. Notice indeed
that c(π′) = c(π[s : u]) + c(δ′) = c(π[s : u]) − c(δ[q : u]) ≤ c(π[s : u]) + c(π[u : q]) = c(π)
(see Figure 5). Moreover, δ′ does not use any edge in E(G) \ E(Hi−1) while the last edge in
π[u : q] is in E(G) \ E(Hi−1). This shows that π′ ≺ π and concludes the proof. ◀

▶ Lemma 5 (Suboptimality property). Fix t ∈ V (G), let πt ∈ Π(s, t; Gt
i−1), q = q(πt), and

πq ∈ Π(s, q; Gq
i−1). We have that πq ◦ πt[q : t] ∈ Π(s, t; Gt

i−1).

Proof. We start by showing that πq must be entirely contained in Gt
i−1. To this aim suppose

towards a contradiction that πq is not entirely contained in Gt
i−1. By Lemma 4, there exists

a path π′ in Gt
i−1 such that π′ ≺ πq and, by Lemma 3, we know that πt[s : q] is entirely

contained in Gq
i−1. Then, since πq ∈ Π(s, q, Gq

i−1), we must have c(πq) ⪯ c(πt[s : q]). We can
therefore replace πt[s, q] with π′ in πt and obtain a new path π′′ ≺ πt from s to t in Gt

i−1,
contradicting πt ∈ Π(s, t, Gt

i−1).
The path π = πq ◦πt[q : t] obtained by replacing πt[s : q] with πq in πt is entirely contained

in Gt
i−1 and satisfies π ⪯ πt. Since πt is a shortest path in Gt

i−1 w.r.t. ⪯, so is π. ◀

Next lemma uses the suboptimality property to show that, for each t ̸= s, there exists a
shortest path δ from s to t in Gt

i−1 such that, when we orient the edges of δ in the same
direction as in G, the resulting set of edges is entirely contained in Hi.

▶ Lemma 6. For each t ∈ V (G) \ {s}, there exists a path δ ∈ Π(s, t, Gt
i−1) such that

E(δ) ∩ E(G) ⊆ E(Hi).

Proof. Define q0 = t. For j ≥ 0 and qj ≠ s, let πj ∈ Π(s, qj ; G
qj

i−1) be the shortest from s to
qj selected by the algorithm and define qj+1 = q(πj) (see Figure 6).

We now show that all qj are distinct, hence there exists a k for which qk = s. By
contradiction, consider the smallest index j′ > j such that q(πj′) = qj . We will construct
two paths towards qj′ in G

qj′

i−1 that have different lengths, yet they must both be shortest
paths, thus providing the sought contradiction.

By Lemma 5, we know that πj+1 ◦ πj [qj+1 : qj ] ∈ Π(s, qj ; G
qj

i−1). We can repetitively
apply Lemma 5, until we get δj = πj′ ◦ πj′−1[qj′ : qj′−1] ◦ . . . ◦ πj [qj+1 : qj ] ∈ Π(s, qj ; G

qj

i−1).
Since q(πj′) = qj , by Lemma 5 we have that δj′ = δj ◦ πj′ [qj : qj′ ] ∈ Π(s, qj′ ; G

qj′

i−1).
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q0 = t

q1

q2

s = q3

π0

π1

π2

Figure 6 A qualitative representation of the path δ constructed in the proof of Lemma 6 when
k = 3. The path δ is drawn with solid lines and the portions belonging to E(Hi−1) are shown in bold.
The shortest paths π0, π1, and π2 from s to q0, q1, and q2 in Gq0

i−1, Gq1
i−1, and Gq2

i−1 are highlighted
in red, blue, and green, respectively. The last edge of each πj (which belongs to E(G) \E(Hi−1)) is
drawn as a solid thin line.

Observe that both πj′ and δj′ belong to Π(s, qj′ ; G
qj′

i−1), hence must have the same length.
However |δj′ | = |δj | + |πj′ [qj : qj′ ]| = |πj′ | + |δj [qj′ : qj ]| + |πj′ [qj : qj′ ]|. As consequence,
|δj′ | ≠ |πj′ | since η(πj′ [qj : qj′ ]) = 1 and hence η(δj′) > η(πj′).

Define δ = πk−1[qk : qk−1] ◦ πk−2[qk−1 : qk−2] ◦ πk−3[qk−2 : qk−3] ◦ . . . ◦ π0[q1 : q0]. We
prove by reverse induction on j = k, . . . , 0 that (i) δ[s : qj ] is a shortest path from s to qj in
G

qj

i−1, and (ii) all edges in E(δ[s : qj ]) ∩ E(G) belong to Hi−1. The claim is trivially true
for j = k since qk = s and δ[s, qk] is the empty path. For j < k, consider the path πj and
notice that qj+1 = q(πj) by definition. By induction hypothesis, we have that δ[s : qj+1] ∈
Π(s, qj+1, G

qj+1
i−1 ). Then, by Lemma 5, δ[s : qj ] = δ[s : qj+1] ◦ πj [qj+1, qj ] ∈ Π(s, qj , G

qj

i−1),
which proves (i).

As far as (ii) is concerned, we only need to argue about πj [qj+1, qj ] since δ[s : qj ] = δ[s :
qj+1]◦πj [qj+1, qj ] and, by induction hypothesis, we know that all edges in E(δ[s : qj+1])∩E(G)
are in E(Hi). Let (u, qj) be the last edge of πj [qj+1, qj ] and notice that, since (u, qj) is also
the last edge of πj , our algorithm adds (u, qj) to Hi when qj is considered. Moreover, by
the choice of qj+1 = q(πj), the path πj [qj+1 : u] contains no edges in E(G) \ E(Hi−1). This
means that E(πj [qj+1 : u]) ∩ E(G) lies entirely in Hi−1 and hence in Hi. This shows that all
edges of E(πj [qj+1, qj ]) ∩ E(G) belong to E(Hi) and proves (ii). ◀

The above lemma easily implies that Hi is a i-multipath preserver of G.

▶ Lemma 7. Hi contains i edge-disjoint paths of minimum total cost from s to every
t ∈ V (G) \ {s}.

Proof. Fix a vertex t ∈ V (G) \ {s}. By induction hypothesis all edges in St
i−1 belong to

Hi−1. By Lemma 6, there is a path δ ∈ Π(s, t, Gt
i−1) such that E(δ) ∩ E(G) ⊆ E(Hi). We

now use Remark 1 to build St
i from St

i−1 and δ. It is easy to see that St
i must be entirely

contained in Hi. ◀

The combination of Lemma 7 with the discussion on the size of Hp at the beginning of
Section 3, immediately results in the following theorem.

▶ Theorem 8. Hp is a single-source p-multipath preserver of size p(n − 1). More precisely,
s has in-degree 0 in Hp while each other vertex has in-degree p.
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Algorithm 1 Computes a p-multipath preserver of a graph G and p-edge disjoint paths
of minimum total cost from s to t, for every t ∈ V (G) \ {s}.

Input : A graph G = (V (G), E(G)), a source vertex s ∈ V (G), p ∈ N+;
Output : p edge-disjoint paths St

p from s to t of minimum total cost, ∀t ∈ V (G);
Output : a p-multipath preserver Hp of G with source s;

1 H1 ← shortest path tree of G rooted at s; // H1 is a 1-multipath preserver
2 foreach t ∈ V (G) do St

1 ← path from s to t in H1;
3 for i← 2, . . . , p do // Compute Hi and all St

i

4 foreach t ∈ V (G) \ {s} do
5 Ht

i−1 ← Graph obtained from Hi−1 by reversing the edges in St
i−1 and adding the

edges incident to t in E(G) \ St
i−1;

6 T t
i−1 ← reverse SPT towards t in Ht

i−1;
// π(u, t; T t

i−1) is the sole path in Π(u, t; T t
i−1)

// Initialize distances and priority queue
7 d(s)← (0, 0); πs ← Empty path;
8 foreach t ∈ V (G) \ {s} do d(t)← (+∞, +∞);
9 Q← initialize a priority queue with values in V (G) and keys d(·);

10 Hi ← Hi−1;
11 while Q is not empty do
12 q ← Extract the minimum from Q;
13 if q ̸= s then
14 πq ← πρ(q) ◦ π(ρ(q), q; T q

i−1); // πq ∈ Π(s, q; Gq
i−1). ρ(q) was set in Line 20

15 eq ← last edge of πq;
16 E(Hi)← E(Hi) ∪ {eq}; // Update the i-multipath preserver
17 Compute Sq

i from Sq
i−1 and πq as explained in Remark 1

18 foreach t ∈ Q do
// Check whether πq ◦ π(q, t; T t

i−1) is shorter than d(t)
19 if q ∈ V (T t

i−1) and d(q) + |π(q, t; T t
i−1)| ≺ d(t) then

20 ρ(t)← q; // We found a shorter path to t in Gt
i−1 (via q)

21 d(t)← d(q) + |π(q, t; T t
i−1)|; // Relax d(t)

22 Decrease the key of vertex t in Q to d(t);

4 An efficient algorithm for finding p edge-disjoint shortest paths

In this section we describe an algorithm (whose pseudocode is given in Algorithm 1) running
in time O(p2n2 + pn2 log n) that computes: (i) p edge disjoint paths St

p of minimum total
cost from s to t; (ii) a single-source p-multipath preserver Hp of size p(n − 1) (as stated in
Theorem 8). Our algorithm also guarantees that each St

p is contained in Hp.
More precisely, the algorithm will compute along the way all single-source i-multipath

presevers Hi, for i = 1, . . . , p, as defined in the previous section (recall that Hi has size
i(n − 1)). In this sense, the algorithm can be seen as an efficient implementation of the one
described in Section 3.

The algorithm works in phases. The generic i-th phase will compute a i-multipath
preserver Hi from the (i − 1)-th multipath preserver Hi−1 computed by the previous phase.
The algorithm also maintains, for each vertex t, a solution St

i consisting of i edge-disjoint
paths of minimum total cost from s to t. Similarly to Hi, St

i is computed from St
i−1 during

phase i.
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Initially, H1 and all St
1 are simply a shortest-path tree (SPT) of G rooted at s, and the

(unique) path from s to t in H1. In each phase i ≥ 2, the algorithm aims to find a shortest
path πt ∈ Π(s, t; Gt

i−1). Since a direct computation of πt would be too time-consuming,
the idea is that of exploiting the suboptimality property of Lemma 5 to consider πt as the
composition of two subpaths πq and πt[q : t], where q = q(πt) and πq is a shortest path from
s to q in Gq

i−1.
To this aim, we follow a Dijkstra-like approach (see lines 7–22). More precisely, once we

have computed πq, we attempt to extend it towards every other vertex t by concatenating
πq with a shortest path from q to t in Gt

i−1.
As we have discussed in Section 2, once we have πt, we can easily compute St

i from St
i−1

and πt according to Remark 1. Moreover, as seen in Section 3, we compute Hi by adding to
Hi−1 all the last edges of each πt.

There are, however, three caveats that need to be carefully handled. The first two
concerns the algorithm’s correctness:

Whenever a path πq is extended towards a vertex t, the resulting path may not necessarily
exist in Gt

i−1 (since πq lies in Gq
i−1 which differs from Gt

i−1). However, this is not an
issue since, as we will prove in the following (see Lemma 10), when πq does not exist in
Gt

i−1, the length of the resulting path is always an upper bound to the length of πt.
In order for the Dijkstra-like approach to work, the vertices q need to be considered in
non-decreasing order of |πq|, and hence the shortest path from q to t in Gt

i−1 used to
extend πq must have non-negative costs. As we will show, this is indeed the case (see
Lemma 9).

The last critical aspect concerns the complexity of the algorithm: a direct computation
of the needed shortest path from q to t in Gt

i−1 would be too time-consuming.
Instead, we (pre-)compute it in a suitable sparse subgraph of Gt

i−1, referred as Ht
i−1 in

the pseudocode (see lines 4–6).

4.1 Proof of correctness
We prove the correctness of Algorithm 1 by induction on i ≥ 1. In particular we will
show that, at the end of phase i, the following three properties will be satisfied: (i) for
t ∈ V (G) \ {s}, the edges in St

i induce i edge-disjoint paths of minimum total cost from s to
t in G; (ii) Hi is a i-multipath preserver for G with source s; and (iii) for t ∈ V (G) \ {s}, St

i

is entirely contained in E(Hi).
The base case i = 1 is trivially true since H1 is a shortest path-tree from s in G, and St

i

is the (unique) path from s to t in H1. We hence assume (i), (ii), and (iii) for i − 1 and focus
on phase i ≥ 2.

For each t, let Gt
i−1 be the residual network obtained from G by reversing the edges of

St
i−1. The rest of the proof is organized as follows: we first prove that Algorithm 1 correctly

computes a shortest path πt ∈ Π(s, t; Gt
i−1). Then, we will argue that this implies properties

(i), (ii), and (iii).

▶ Lemma 9. Let t ∈ V (G), and consider the i-th phase of Algorithm 1. For every q ∈ V (T t
i−1),

we have c(π(q, t; T t
i−1)) ≥ 0.

Proof. Assume towards a contradiction that for some t, q ∈ V (G), c(π(q, t; T t
i−1)) < 0. The

cost of a shortest path π from q to t in Ht
i−1 is c(π(q, t; T t

i−1)). If c(π) < 0, it contains edges
that are reversed w.r.t. G. The set of reversed edges are those belonging to i − 1 edge disjoint
paths from t to s in Gt

i−1. Let (x, y) the first reversed edge traversed in π. Consider the
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subpath π[x : t]. It holds that c(π[x : t]) ≤ c(π). Consider path π′ from t to x in Gt
i−1, that

consists in only reversed edges. Thus π[x : t] ◦ π′ is a closed walk of negative total cost in
Gt

i−1 that does not contain negative cycles [14]. ◀

▶ Lemma 10. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The path πt computed by line 14 after t is extracted from Q satisfies |π| ⪯ |πt|.

Proof. By contradiction, consider first extracted node t for which π ⪯̸ πt. Let q = ρ(t) be
the last node that relaxed node t during phase i. Then πt = πq ◦ π(q, t; T t

i−1).
Consider π′ ∈ Π(s, q; Gq

i−1), by hypothesis π′ ⪯ πq. There are two cases: (i) π′ exists in
Gt

i−1, (ii) π′ does not exists in Gt
i−1. In the first case, π′ ◦ π(q, t; T t

i−1) exists in Gt
i−1 then,

π ⪯ π′ ◦ π(q, t; T t
i−1) ⪯ πq ◦ π(q, t; T t

i−1) = πt. In the second case by Lemma 4, there exists a
path π′′ from s to q in Gt

i−1 such that π′′ ≺ π′. Observe that π′′ ◦ π(q, t; T t
i−1) is an existing

path in Gt
i−1. Then, π ⪯ π′′ ◦ π(q, t; T t

i−1) ≺ π′ ◦ π(q, t; T t
i−1) ⪯ πq ◦ π(q, t; T t

i−1) = πt. ◀

Since, for each node t, the value of d(t) is initialized to (+∞, +∞) and it is only decreased
during the while loop, the above lemma implies that d(t) is an upper bound on the value |π|,
with π ∈ Π(s, t; Gt

i−1).

▶ Lemma 11. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The subpath π[q(π) : t] is entirely contained in Ht
i−1.

Proof. Recall that Ht
i−1 is defined as the graph obtained from Hi−1 where the edges in St

i−1
are reversed and contains all the edges E(G) \ St

i−1 entering in t.
By definition, π[q(π) : t] consists in a sequence of edges (possibly reversed) in Hi−1 and

one edge in E(G) \ E(Hi−1) entering in t. Since by inductive hypothesis St
i−1 ⊆ E(Hi−1)

and St
i−1 is the set of reversed edges in Gt

i−1, then π[q(π) : t] exists in Ht
i−1. ◀

▶ Lemma 12. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The path πt computed by line 14 after t is extracted from Q satisfies |πt| ⪯ |π|.

Proof. By contradiction, take the first extracted node t for which πt ⪯̸ π. For simplicity let
q = q(π).

By the suboptimality property (Lemma 5), we have that π = π′ ◦ π[q : t], where
π′ ∈ Π(s, q; Gq

i−1). By Lemma 11 π[q : t] exists in Ht
i−1. Notice that since Ht

i−1 ⊆ Gt
i−1,

then |π[q : t]| = |π(q, t; T t
i−1)| and by Lemma 9, c(π[q : t]) ≥ 0. Moreover π[q : t] contains

one edge in E(G) \ E(Hi−1) thus π′ ≺ π. By hypothesis, πq ⪯ π′ and by Lemma 10
π ⪯ πt, hence πq ≺ πt and node q is extracted before t. Line 19 of Algorithm 1 ensures that
πt ⪯ πq ◦ π(q, t; T t

i−1) ⪯ π′ ◦ π(q, t; T t
i−1) = π. ◀

▶ Lemma 13. Let t ∈ V (G), π ∈ Π(s, t; Gt
i−1) and consider the i-th phase of Algorithm 1.

The path πt computed by line 14 after t is extracted from Q is entirely contained in Gt
i−1.

Proof. By contradiction, take first extracted node t for which πt does not exists in Gt
i−1.

Let q be the last node that performed a relaxation for t, we have that πt = πq ◦ π(q, t; T t
i−1).

Since π(q, t; T t
i−1) exists in Gt

i−1 then πq does not. By hypothesis πq exists in Gq
i−1 and by

Lemma 4 there exists a path π′ in Gt
i−1 such that π′ ≺ πq. The path π′ ◦ π(q, t; T t

i−1) gives
us an existing path in Gt

i−1, such that π ⪯ π′ ◦ π(q, t; T t
i−1) ≺ πt, where π ∈ Π(s, t; Gt

i−1).
This contradicts Lemma 12 for which πt ⪯ π. ◀

We are now ready to establish the correctness of the algorithm as summarized by the following
lemma.
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▶ Lemma 14. For all i = 1, . . . , p and t ∈ V (G) \ {s}, Algorithm 1 computes a single-source
i-multipath preserver Hi of G and a set St

i , with St
i ⊆ E(H), inducing i edge-disjoint paths

of minimum total cost from s to t in G.

Proof. Consider a vertex t ∈ V (G) \ {s}. By Lemma 12 and Lemma 13, we have that at
the end of phase i, πt ∈ Π(s, t; Gt

i−1). Then, by the inductive hypothesis and by Remark 1,
the set St

i contains i-edge disjoint paths from s to t of minimum total cost in G, as desired.
Moreover, since phase i constructs Hi by augmenting Hi−1 with the last edge of every πt, as
shown in Section 3, we have that Hi is a single-source i-multipath preserver of G.

It remains to prove that, at the end of phase i of Algorithm 1, all edges in St
i are in Hi.

For any vertex t, let πt be the path computed in line 14 of Algorithm 1 during phase i.
Notice that, by construction (see Remark 1), each edge in St

i belongs to at least one of St
i−1

and E(πt) ∩ E(G). Since we already know that St
i−1 ⊆ E(Hi−1) ⊆ E(Hi), we only need to

show that E(πt) ∩ E(G) ⊆ E(Hi).
We consider all paths πt computed by Algorithm 1 during phase i, and we prove the

above property by induction on the number of edges ℓ of πt.
The base case ℓ = 0 is trivially true since any such path contains no edges. Consider

now a path πt with ℓ ≥ 1 edges. Since t ̸= s, πt has been computed in line 14 as the
concatenation of a path πρ(t) with π′ = π(ρ(t), t; T t

i−1). The path π′ is entirely contained
in T t

i−1 ⊆ Ht
i−1. By construction of Ht

i−1, the only edges of G that are in E(Ht
i−1) \ E(Hi)

enter t. Let et = (u, t) be the last edge π′ (this edge always exists since ρ(t) ̸= t). By the
above observation we have that E(π′[s : u]) ∩ E(G) ⊆ E(Hi−1) ⊆ E(Hi), while et is added
to Hi by line 16. Finally, πρ(t) satisfies E(πρ(t)) ∩ E(G) ⊆ E(Hi) by inductive hypothesis,
since πρ(t) has less edges than πt. ◀

4.2 Analysis of the computational complexity
In order to bound the time complexity of our algorithm we first argue about how, during
phase i of Algorithm 1, it is possible to implement Line 6 in time O(in + n log n).

For any fixed phase i of the algorithm, and for any target vertex t, Line 6 computes a
(reverse) shortest path tree towards t in Ht

i−1. As the edge costs in Ht
i−1 can be negative, a

naive implementation using the Bellman-Ford algorithm would require Θ(in2) time (since
Ht

i−1 has size Θ(in)). Consequently, the overall time needed to compute all trees T t
i−1, for

every i and every t, would be Θ(p2n3).
To reduce the time complexity of this step, we use a technique similar to the one employed

in the successive shortest path algorithm: we re-weight the edges of Ht
i−1 so that (i) shortest

paths are preserved, and (ii) all edge costs are non-negative. Then, after such a re-weighting,
a SPT towards t in Ht

i−1 can be found in O(in + n log n) time using Dijkstra’s algorithm.
We will employ a well-known re-weighting scheme in which the edge costs are completely

determined by some function h : V → R (see, e.g., [12, Ch 25.3]). Given h, the new cost
c′(u, v) of an edge (u, v) is defined as c(u, v) + h(u) − h(v). Notice that the cost of any path
π from x to y w.r.t. c′ is exactly c(π) + h(x) − h(y), thus the set of shortest paths w.r.t.
c′ coincides with the corresponding set w.r.t. c. Therefore, the above re-weighting scheme
immediately satisfies (i), and hence we will only need to argue about (ii).

Suppose that, at the beginning of phase i (where i ranges from 2 to p), we already know
a re-weighting function ht

i−2 such that the graph Gt
i−2 re-weighted according to ht

i−2 has no
negative-cost edges.5 We will show how to use ht

i−2 to obtain a new re-weighting function

5 Observe that, in the first phase i = 2, such a function ht
0 is trivially known. Indeed, since the edge costs

of G are already non-negative we can simply choose ht
0(v) = 0 for each v ∈ V (G).
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ht
i−1 such that the graph Gt

i−1 re-weighted according to ht
i−1 has no negative-cost edges.

Since Ht
i−1 is a subgraph of Gt

i−1, ht
i−1 also satisfies (ii). The re-weighting induced by ht

i−1
can then be immediately used to implement Line 6 of the algorithm in time O(in + n log n)
using Dijkstra’s algorithm.

Let H̄ be a graph obtained from Hi−1 by reversing the edges in St
i−2 (i.e., i − 2 edge-

disjoint paths of minimum total cost from s to t), and notice that H̄ is a subgraph of Gt
i−2.

We compute all the distances from s to the vertices in H̄ using Dijkstra algorithm (where
edges are re-weighted w.r.t. ht

i−2) and we let h(v) be the distance from s to v. Finally, for
each v ∈ V (G), we define ht

i−1(v) = ht
i−2(v) + h(v). In the following we prove that all edge

costs are non-negative once Gt
i−1 is re-weighted according to ht

i−1. We start with a technical
lemma showing that the distances from s in H̄ and Gt

i−2 coincide.

▶ Lemma 15. Let T be a shortest path tree rooted at s of H̄ then, T is also a shortest path
tree rooted at s of Gt

i−2.

Proof. By contradiction, if T is not a shortest path tree of Gt
i−2, it is because there exists

some node v in Gt
i−2 for which every path π ∈ Π(s, v; Gt

i−2) contains some edge from
E(G) \ E(H̄). Fix a π ∈ Π(s, v; Gt

i−2) and assume w.l.o.g. that π contains only one edge
from E(G) \ E(H̄) and that this edge enters in v.

We now show that π(s, v; T ) ⪯ π. Consider πv ∈ Π(s, v; Gv
i−2) computed by Algorithm 1

during phase i − 1, and observe that for each (u, v) ∈ πv either (u, v) ∈ E(Hi−1) or
(v, u) ∈ E(Hi−1). By Lemma 4, either πv exists in Gt

i−2 or there exists a path π′
v in Gt

i−2,
obtained from πv by substituting a subpath in πv with a path containing only edges from
∆(t, v) w.r.t. Gt

i−2 and Gv
i−2 and such that π′

v ≺ πv . Let π′ be the existing path in Gt
i−2

between π′
v and πv. By construction, π′ is a path that consists only in edges from H̄, thus

π(s, v; T ) ⪯ π′.
To conclude the proof, we need to show that π exists in Gv

i−2. Similarly to the proof of
Lemma 3, if π does not exists in Gv

i−2, it traverses at least one edge in ∆(t, v) w.r.t. Gt
i−2

and Gv
i−2. Let (x, y) be the last edge traversed by π that belongs in ∆(t, v). Let δ be a path

from t to y that traverses (x, y) in the subgraph of Gt
i−2 induced by the edges in ∆(t, v).

Since, by definition of π, the edge e of π entering in v is not in H̄, we have e ̸∈ ∆(t, v).
Then, the subpath π[y : v] of π is not empty and, by our choice of (x, y) does not traverse
any edge in ∆(t, v).

By the suboptimality property of shortest paths, π[y : v] ⪯ δ[y : v] and hence c(π[y :
v]) ≤ c(δ[y : v]). If c(π[y : v]) < c(δ[y : v]), we can replace δ[y : v] with π[y : v] in δ to obtain
a path δ′ from t to v in Gt

i−2 with c(δ′) < c(δ). This contradicts Lemma 2 since it implies
the existence of i − 2 edge-disjoint paths from t to v in Gt

i−2 with a total cost smaller than
c(∆(t, v)).

If c(π[y : v]) = c(δ[y : v]), we can replace π[y : v] with δ[y : v] in π to obtain a path π′′ from
s to v in Gt

i−2 satisfying c(π′′) = c(π). Since all edges (or their reverse) of E(δ[y : v]) ⊆ ∆(t, v)
are in Hi−2, π[y : v] contains more edges in E(G) \ E(Hi−2) than δ[y : v], thus π′′ ≺ π. This
is a contradiction since, by the suboptimality property of shortest paths and by our choice of
π ∈ Π(s, v; Gt

i−2), π must be a shortest path from s to v in Gt
i−2 w.r.t. ⪯.

Then knowing that π exists also in Gv
i−2, it holds that Π(s, v; T ) ⪯ π′ ⪯ π. ◀

▶ Lemma 16. For any (u, v) ∈ E(Gt
i−1), we have c(u, v) + ht

i−1(u) − ht
i−1(v) ≥ 0.

Proof. Let c′(u, v) denote the cost of edge (u, v) in Gt
i−2, when the graph is re-weighted

according to ht
i−2. Notice that, by hypothesis, c′(u, v) is always non-negative. Recall that

h(v) is the distance from s to v in H̄ w.r.t. c′ and that, by Lemma 15, h(v) is also the
distance from s to v in Gt

i−2 w.r.t. the cost function c′.
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Thus we have that, for each edge (u, v) ∈ E(Gt
i−2), h(u) + c′(u, v) ≥ h(v) implying that

c(u, v) + ht
i−1(u) − ht

i−1(v) = c′(u, v) + h(u) − h(v) ≥ 0. In particular, if (u, v) ∈ E(Gt
i−2)

belongs to a shortest path (w.r.t. c′) from s to v in Gt
i−2 then, h(u) + c′(u, v) = h(v) and

c(u, v) + ht
i−1(u) − ht

i−1(v) = c′(u, v) + h(u) − h(v) = 0.
By definition, Gt

i−1 is obtained from Gt
i−2 by reversing π ∈ Π(s, t; Gt

i−2).
For each (u, v) ∈ E(Gt

i−1) ∩ E(Gt
i−2), c(u, v) + ht

i−1(u) − ht
i−1(v) ≥ 0 and for each

(u, v) ∈ E(Gt
i−1) \ E(Gt

i−2) we have that (v, u) ∈ π then, c(u, v) + ht
i−1(u) − ht

i−1(v) =
−(c(v, u) − ht

i−1(u) + ht
i−1(v)) = 0. ◀

We conclude by observing that H̄ can be computed in O(in) and therefore the overall
running time required to compute T t

i is O(in + n log n), as claimed. The overall running time
of Algorithm 1 is O(p2n2 + pn2 log n). The next theorem follows from Theorem 8, Lemma 14,
and the above discussion.

▶ Theorem 17. Algorithm 1 solves both single-source p-multipath preserver problem and
shortest p edge-disjoint paths problem in O(p2n2 + pn2 log n). Moreover, the size of the
computed preserver is equal to p(n − 1), which is optimal.

Proof. We can ignore lines 1 and 2 since they require time O(n2). We therefore focus on an
iteration i ≥ 2 of the outer loop (i.e., on phase i).

The discussion in Section 4.2 shows that the loop at lines 4–6 requires time O(in2 +
n2 log n) = O(pn2 + n2 log n). Observe that line 14 can be implemented in time proportional
to the number of edges of πq, which is at most n − 1, and that line 17 requires time at
most O(|Sq

i−1| + n) = O(pn). We implement the priority queue Q using a data structure
that supports decrease-key operations in constant-time (e.g., an array). Since we perform
O(n) extract-min operations, and O(n2) decrease-key operations, we have that the loop at
lines 7–22 requires time O(in2) = O(pn2).

Thus, the overall time complexity of the algorithm is O(p2n2 + pn2 log n). ◀
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A Extensions and variants

In this section we show how to extend all our results to more general versions of the two
problems in which the input graph G is not necessarily p-edge-outconnected from s. More
precisely, we denote by λ(t) the maximum number of edge-disjoint paths from s to t in G.
We want to find, for each vertex t ∈ V (G) \ {s}, σ(t) := min{λ(t), p} edge-disjoint paths of
minimum total cost from s to t in G.

Moreover, we show how to use Algorithm 1 to approximate the problem of computing a
set of p edge-disjoint paths where the cost of the path with maximum cost is minimized. We
show that the approximation factor achieved by our algorithm is optimal.

Finally, for the sake of completeness, we also describe the graph transformation already
discussed in [25] if we are interested in finding paths that are vertex-disjoint rather than
edge-disjoint.

Extensions to general versions of our problems. W.l.o.g., we can assume that p < n as G

contains at most n − 1 edge-disjoint paths from s to any vertex t ∈ V (G) \ {s}.
We transform the input graph G into another graph G′ that is p-edge-outconnected

from s. To construct G′, we take a copy of G and augment it by adding a complete directed
graph C on p new “dummy vertices” v1, v2, . . . , vp, all edges in {s} × {v1, v2, . . . , vp}, and all
edges in {v1, v2, . . . , vp} × (V (G) \ {s}), where the cost of all the new edges is some large
value M > c(E(G)). We observe that each edge of cost M is incident to at least one dummy
vertex. Furthermore, there are p edge-disjoint paths from s to any other vertex of the vertex
of the graph, so H ′ is p-edge-outconnected from s. As p < n, the graph G′ still contains
O(n) vertices. We run Algorithm 1 on G′ to compute all the sets St

i , for each t ∈ V (G) \ s

and i ≤ p (Lemma 14) in O(p2n2 + pn log n) time. The solution to our problem for t is given
by St

σ(t), where we can find the value of σ(t) as the largest index i for which c(St
i ) < M .

Concerning the problem of finding a subgraph H of G such that St
σ(t) ⊆ E(H) for

every t ∈ V (G) \ {s}, we first compute a single-source p-multipath preserver H ′ of G′ in
O(p2n2 + pn log n) time using Algorithm 1. The graph H is obtained from H ′ by deleting
all the dummy vertices and, consequently, all the edges (each of cost M) that are incident to
the dummy vertices. We observe that H, being a subgraph of G, does not contain edges of
cost M .

▶ Theorem 18. For every t ∈ V (G) \ {s}, St
σ(t) ⊆ E(H). Moreover, the size of H is equal

to
∑

t∈V (G)\{s} σ(t), which is optimal.

Proof. By the algorithmic construction of the single-source p-multipath preserver, we have
that H ′ = H ′

p contains H ′
i, for every i ≤ p. Since the edges of St

σ(t) are also edges of H ′
σ(t)

(Lemma 14), it follows that St
σ(t) ⊆ E(H ′

p), and thus St
σ(t) ⊆ E(H), as St

σ(t) has no edge of
cost M .

https://doi.org/10.1145/2976741
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https://doi.org/10.1002/net.3230140209
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The lower bound of
∑

t∈V (G)\{s} σ(t) on the size of any feasible solution to the problem
comes from the fact that the in-degree of each vertex t must be at least σ(t).

We now prove that the size of H matches the lower bound by showing that the in-degree
of each vertex t ∈ V (G) \ {s} equals σ(t). Using the fact that the in-degree of t in H ′ is
exactly equal to p (Theorem 17), it is enough to show that there are p − σ(t) edges of cost
M that are entering t in H ′.

Consider the solution St
p that contains p edge-disjoint paths π1, . . . , πt from s to t in G′

of minimum total cost. W.l.o.g., we assume that c(π1) ≤ · · · ≤ c(πp). We claim that for each
i with σ(t) < i ≤ p, πi enters t with an edge of cost M . To show this it is enough to observe
two things. From the one hand, c(πi) must have a cost of at least M as otherwise we would
have σ(t) + 1 edge-disjoint paths from s to t in G of total cost of at most c(E(G)) < M , thus
contradicting the assumption that there are at most σ(t) = λ(t) edge-disjoint paths from s

to t in G. On the other hand, every path from s to t in G′ of cost of at least M has a cost
that is actually lower bounded by 2M . This is because any such path must pass through a
dummy vertex which has only edges of cost M incident to it. As a consequence, c(πi) ≥ 2M

for every σ(t) < i ≤ p.
To complete the proof, it is enough to notice that each path of cost equal to 2M from s

to t passes through a single dummy vertex and enters in t with an edge of cost M . As there
are p dummy vertices, there are also p edge-disjoint paths from s to t of cost 2M each. This
implies that each path πi from s to t of cost strictly larger than 2M can be replaced by a
path of cost exactly equal to 2M using shortcuts (i.e., the direct edge from the first dummy
vertex traversed in π to t). If we do this simultaneously for all the paths π1, . . . , πp of total
cost strictly larger than 2M , we obtain a new set of paths π′

1, . . . , π′
p that are still pairwise

edge-disjoint and such that
∑p

i=1 c(π′
i) <

∑p
i=1 c(πi). Therefore, by the optimality of St

p,
c(πi) = 2M for every σ(t) < i ≤ p. As a consequence, each πi, with σ(t) < i ≤ p, enters in t

with an edge of cost M . Therefore, p − σ(t) edges out the p edges entering t in H ′ are of
cost M each. Hence, the degree of t in H is equal to σ(t). ◀

Computing edge-disjoint paths with minimum maximum cost. We now consider a variant
of the shortest p edge-disjoint paths problem in which we have a different objective function:
we want to find, for a given source vertex s and every t ∈ V (G) \ {s}, p edge-disjoint paths
from s to t such that the cost of the path with maximum cost is minimized. More formally,
we want to find, for each t ∈ V (G) \ {s}, a set S̄t

p of p edge-disjoint paths from s to t that
minimize maxπ∈S̄t

p
c(π). We call this problem the minimum bottleneck p edge-disjoint paths

problem.
We observe that, for each t, the paths induced by a solution St

p for the shortest p edge-
disjoint path problem guarantees an approximation factor of p. Indeed, c(St

p) ≤
∑

π∈S̄t
p

c(π) ≤
p · maxπ∈S̄t

p
c(π). In the next theorem we show that this approximation factor is optimal,

unless P = NP.

▶ Theorem 19. There is no polynomial-time algorithm that approximates the minimum
bottleneck p edge-disjoint paths problem to within a factor smaller that p, unless P = NP.

Proof. We prove the statement for a given pair of nodes s and t. We reduce from the 2
directed paths problem (2DP): Given a directed graph G = (V (G), E(G)) and four vertices
s1, t1, s2, t2 ∈ V (G), decide if there exist two edge disjoint paths, one from s1 to t1 and one
from s2 to t2. The 2DP problem is NP-Complete [15].
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Figure 7 Reduction used in Theorem 19.

Starting from the input graph G of 2DP, we define a graph G′ which consists in p − 1
copies G1, . . . Gp−1 of G and two new vertices s and t and we set the cost of each edge in every
copy to 0. We denote by si

j and ti
j , the nodes sj and tj in the i-th copy of G, respectively,

for each 1 ≤ i ≤ p − 1 and j = 1, 2. Node s has p − 1 edges of cost 0 toward nodes si
2, for

each 1 ≤ i ≤ p − 1, and one edge of cost 1 toward node s1
1. Node t has p − 1 edges of cost 0

from nodes ti
1, for each 1 ≤ i ≤ p − 1, and one edge of cost 1 from tp−1

2 . Moreover, there is
an edge (ti

2, si+1
1 ) of cost 1, for each 1 ≤ i ≤ p − 2, see Figure 7 for an illustration.

We first show that, if in G there are two edge-disjoint paths, one from s1 to t1 and one
from s2 to t2, then in G′ there are p edge-disjoint paths from s to t each of them with cost 1.
For each 1 ≤ i ≤ p − 1, let us denote by πi

1 and πi
2 the two disjoint paths in Gi from si

1 to
ti
1 and from si

2 to ti
2, respectively. The first of the p edge-disjoint paths from s to t in G′

starts from s, goes to s1
1, follows path π1

1 and then goes from t1
1 to t. The total cost of this

path is 1. A second path starts from s goes to sp−1
2 , follows path πp−1

2 from sp−1
2 to tp−1

2 in
Gp−1 and then goes from tp−1

2 to t. The total cost of this path is 1. The remaining p − 2 are
constructed in this way: Each path i, with 1 ≤ i ≤ p − 2, starts from s goes to si

2, follows
path πi

2 from si
2 to ti

2 in Gi and then crosses edge (ti
2, si+1

1 ). In Gi+1, it follows path πi+1
1

from si+1
1 to ti+1

1 and finally crosses edge (ti+1
1 , t). The cost of each of these paths is 1. By

construction these p paths are edge-disjoint.
Now we show that, if in G there are not two edge disjoint paths, one from s1 to t1 and

one from s2 to t2, then in G′ any p edge disjoint paths from s to t contain a path of cost p.
We can assume w.l.o.g. that there are 2 edge-disjoint paths in G, one from s1 to t2 and one
from s2 to t1. In G′ there is only one possible set of p edge-disjoint paths, which is made of
p − 1 paths of cost 0 and one path of cost p. The first p − 1 paths are composed as follows:
for 1 ≤ i ≤ p − 1, each of these paths starts from s and goes to node si

2 in Gi through edge
(s, si

2), it follows a path πi
1 from si

2 to ti
1 (in Gi) disjoint from a path πi

2 between (si
1, ti

2) (in
Gi), and then reaches t by edge (ti

1, t). The last path starts from s and by crossing edge
(s, s1

1) of cost 1, follows πi
2 to reach node t1

2. At this point, it keeps moving along all copies
Gi of G by using edges (ti

2, si+1
1 ) of cost 1 and by using path πi

2 to reach ti
2 from si

1. Finally,
the last edge crossed is (tp−1

2 , t). The total cost of this path is p.
It follows that an algorithm that approximates the minimum bottleneck p edge-disjoint

paths problem to within a factor smaller that p can be used to solve 2DP. ◀

Vertex-disjoint paths. As also shown by Suurballe and Tarjan [25], all our results can be
extended to the case in which the p paths of minimum total cost from s to t ∈ V (G) \ {s}
must be pairwise vertex-disjoint via the following linear time reduction. We construct a
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graph G′ by replacing each vertex v ∈ V (G) with a pair of vertices v−, v+ that are connected
through an edge (v−, v+) with cost 0, and by adding to E(G′) an edge (u+, v−) of cost c(u, v)
for each edge (u, v) ∈ E(G). We observe that G′ still has O(n) vertices. Although G′ may
not be p-edge-outconnected from s (the in-degree of each vertex v+ is equal to 1), we can
solve the problem in O(p2n2 +pn log n) time using Algorithm 1, via the graph transformation
that adds p dummy vertices, as described in the previous paragraph.

Undirected graphs. Our results extend to the case in which the input graph G in undirected.
We start by transforming G in a directed graph G′: for every edge {u, v} ∈ E(G), G′ contains
a pair of directed edges (u, v), (v, u) of the same cost of {u, v}. We then invoke Algorithm 1,
and transform the computed solutions for G′ into solutions for G in linear time as follows.

For every t ∈ V (G)\{s}, let St be a set of edges from G′ that induce p edge-disjoint paths
of minimum total cost from s to t in G′. We can assume w.l.o.g. that for each (u, v) ∈ St,
(v, u) ̸∈ St. Indeed, if (u, v), (v, u) ∈ St, then the set obtained by removing both (u, v) and
(v, u) from St is still feasible.

Clearly, the solution obtained from St by replacing each directed edge (u, v) with the
undirected edge {u, v} still induces p edge-disjoint paths from s to t in G and has the same
cost as St. Moreover, any set of p edge-disjoint paths from s to t in G, can also be transformed
into a corresponding solution in G′ by suitably orienting the traversed edges. This doesn’t
affect the solution’s cost.

Observe that, by Lemma 14, all sets St are contained in the p-multipath preserver Hp

of G′ computed by Algorithm 1 and, by Theorem 8, the undirected version of Hp is a
p-multipath preserver of G of size at most p(n − 1).
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