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Abstract
A finite group of order n can be represented by its Cayley table. In the word-RAM model the
Cayley table of a group of order n can be stored using O(n2) words and can be used to answer a
multiplication query in constant time. It is interesting to ask if we can design a data structure to
store a group of order n that uses o(n2) space but can still answer a multiplication query in constant
time.

We design a constant query-time data structure that can store any finite group using O(n) words
where n is the order of the group.

Farzan and Munro (ISSAC 2006) gave an information theoretic lower bound of Ω(n) on the
number of words to store a group of order n. Since our data structure achieves this lower bound
and answers queries in constant time, it is optimal in both space usage and query-time.

A crucial step in the process is essentially to design linear space and constant query-time data
structures for nonabelian simple groups. The data structures for nonableian simple groups are
designed using a lemma that we prove using the Classification Theorem for Finite Simple Groups
(CFSG).
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1 Introduction

The Cayley table of a group of order n is a two dimensional table whose (i, j)th entry is the
product of the ith and jth element of the group. In the word-RAM model while it takes
O(n2) words to store the Cayley table of a group of order n, a multiplication query can be
answered in constant time by accessing the appropriate location of the table.

For many computational problems in group theory the input group is given by its
Cayley table. Some of these problems include the minimum generating set problem, various
problems in property testing, the group factoring problem, and the group isomorphism
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problem [18, 1, 15, 19]. Among these, the group isomorphism problem is probably the most
prominent one because of its unresolved complexity status despite years of extensive research
[4, 13, 2, 5, 20, 14].

The Cayley table is very fast in terms of query processing but it takes quadratic space
to store a group. It is interesting to ask if we can design a data structure for finite groups
using o(n2) space2 which can still answer multiplication query in constant time. We note
that while quasigroups, and semigroups can also be stored using their Cayley tables, it is not
possible to store quasigroups, and semigroups using o(n2) space. This is simply because the
numbers of quasigroups, and semigroups are too large [26, 17] and the information theoretic
lower bound is Ω(n2 log n) bits or Ω(n2) words.

Das et al. [9] showed that for any finite group G of order n and for any δ ∈ [1/ log n, 1],
a data structure can be constructed for G that uses O(n1+δ/δ) space and answers a multi-
plication query in time O(1/δ). Their result implies that there exist constant query-time
data structures for finite groups of order n that use O(n1.01) space. However, the result
cannot be used to design a constant query-time data structure even if we are allowed to use
Θ(n.polylog(n)) space.

In this paper we design constant query-time data structures for finite groups that can
be stored using O(n) words where n is the order of the group. An information theoretic
argument by Farzan and Munro shows that a lower bound to store a group of order n is
Ω(n log n) bits or Ω(n) words [11]. Our data structure is optimal in the sense that it achieves
the lower bound. A data structure that achieves the optimum information theoretic lower
bound asymptotically is known as a compact data structure. Therefore our data structure
is a constant query-time compact data structure for finite groups. We note that compact
query-time data structures were designed for some restricted classes of groups such as abelian
groups and Dedekind groups [8].

In the process of designing the data structure we first prove two results, which we call
extension theorems, on the construction of data structures for a group when we already have
a data structure for a subgroup of the given group. The extra space used by the newly
constructed data structure depends on the index of the subgroup in one of the results and the
structure3 of the subgroup in the other result. This indicates that finding suitable subgroups
of a group might be useful.

The Jordan-Hölder theorem provides us with a supply of subgroups in the form of
composition series. In our process we try to pick some suitable subgroups that are elements
of the composition series of the given group. However, picking suitable groups is not always
possible. This happens, as we will see in Section 4, when there is a “large” composition
factor sitting in a certain position of the composition series. The composition factors are
simple groups. In a sense the hard cases for constructing the data structure are for the simple
groups.

Simple groups are sometimes considered as the building blocks for finite groups. The
Classification Theorem for Finite Simple Groups (CFSG) is one of the most important
theorems in group theory. Informally, this theorem classifies the finite simple groups into
cyclic groups, alternating groups, certain groups of Lie-type and into 26 sporadic simple
groups. The precise statement of the theorem could be found in Section 5. Except for the 26
sporadic simple groups the other group classes are infinite. We use CFSG to prove a key
lemma that allows us to handle the case for the nonabelian simple groups.

2 In this paper we use the word-RAM model. The space used by a data structure or an algorithm refers
to the number of words used by them.

3 The subgroup needs to be normal and quotient needs to be cyclic.



B. Das, A. Kumar, S. Sharma, and D. Thakkar 25:3

We note that for solvable groups the design of the data structure is independent of CFSG.
The composition factors of a solvable group are cyclic of prime order. Such cases are handled
using one of the extension theorems proved in Section 3.

Related work. Farzan and Munro [11] gave a succinct representations for finite abelian
groups in a specific model of computation. In their model a compression algorithm first
produces labels of each group element. The queries are processed by a query processing unit
which is similar to the word-RAM model. However, along with the common arithmetic,
logical and comparison operations the query processing unit can also perform bit-reversal in
constant time. A user issuing a query, supplies the labels of two group elements that were
generated by the compression algorithm to the query processing unit which then returns the
label of the product of the two elements.

Das et al. [9] and Das and Sharma [8] have used Erdös-Réyni cube generating sequences,
Remak-Krull-Schmidt decomposition and the structure of indecomposable groups to design
their space and query-time efficient data structures. Our approach is quite different in the
sense that we use the extension theorems (Section 3) and the Classification Theorem for
Finite Simple groups to design the data structures.

Remark. There are several ways to represent a finite group apart from the Cayley table
representation. The permutation group representation, the polycyclic presentations and
the generator-relator presentations are some of the common group representations. These
representations are often incomparable. For example in the generator-relator presentation
we can represent infinite groups. However, many problems such as the membership testing,
testing if a group is finite becomes undecidable in the generator-relator presentation (c.f. [25]).
In the permutation group representation the membership testing takes superlinear time in
terms of the degree of the representation and polylogarithmic in the order of the group [24,
23, 12]. We contrast this with the Cayley table representation where membership testing
can be done in constant time since the elements are known and are already used as row and
column indices of the Cayley table. In the Cayley representation the user knows the labels
or the names of each group element explicitly and has a direct access to each element. The
labels of the elements are often taken to be 1, 2, . . . , n where n is the order of the group. The
situation is quite different for permutation group representation, polycyclic presentation or
generator-relator presentation. In these cases the user does not have an explicit representation
for each element.

2 Preliminary

In this section we recall some definitions and notations which we use in this paper. In this
paper we only consider finite groups. The number of elements in a group G is called the
order of G and is denoted by |G|. A group G is abelian if g1g2 = g2g1 for all g1, g2 ∈ G. For a
subgroup H of G and g ∈ G, the set gH = {gh | h ∈ H} is called a left coset. Similarly, we can
define right coset of G. The number of the left (or right) cosets of H in G is called the index
of H in G and is denoted by [G : H]. A left traversal of H in G is a set containing exactly
one element from each left coset and similarly we can define right traversals. The size of left
(right) traversal is the same as the index [G : H]. For g ∈ G, the set gHg−1 = {gag−1 | a ∈ H}
is called a conjugate of the subgroup H. A subgroup H of G is said to be normal in G

(denoted H ⊴ G) if gHg−1 = H for all g ∈ G. We define the normalizer of H in G to be
the set NG(H) = {g ∈ G | gHg−1 = H}. Note that, NG(H) is the largest subgroup in G in
which H is normal.

STACS 2022
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A group G is called simple if G has no nontrivial normal subgroup. The Classification
Theorem of Finite Simple Groups states that all the finite simple groups can be classified
into the following five classes: (1) cyclic groups of prime order, (2) alternating groups, (3)
classical groups, (4) exceptional groups of Lie type and (5) 26 sporadic simple groups.

We list all the classes of the finite simple groups later in the Classification Theorem for
Simple Groups in Section 5. If G is a finite simple group of Lie-type over Fq where q is a
power of some prime p, the Borel subgroup B of G is defined as the semidirect product of
the Sylow p-subgroup of G with the maximal split torus T . The Borel subgroup is also the
normalizer of the Sylow p-subgroup of the finite simple group (see [6], [27]).

For the purpose of this paper it might be sufficient to know some results on the orders
of certain subgroups of simple groups. The reader may choose to skip the details of the
structure of these groups. We indicate what kind of subgroups we are interested in and the
results regarding the order of those subgroups as and when required. An interested reader
may refer to the books by Carter [6], Wilson [27], or Aschbacher [3] for more details.

▶ Definition 1 (see e.g., [10]). A subnormal series of a group G is chain of subgroups

1 = Gk ≤ Gk−1 ≤ · · · ≤ G1 ≤ G0 = G

such that Gi ⊴ Gi−1, for all i.

▶ Definition 2 (see e.g., [10]). In a group G a sequence of subgroups

1 = Gk ≤ Gk−1 ≤ · · · ≤ G1 ≤ G0 = G

is called a composition series if Gi ⊴ Gi−1 and Gi−1/Gi is simple for all i ∈ [k]. Here, k is
the composition length of G.

▶ Theorem 3 (Jordan-Hölder Theorem see e.g., [10]). Let G be a finite group with G ̸= 1.
Then

(i) G has a composition series.
(ii) The composition factors in a composition series are unique, namely, if 1 = Nr ≤

Nr−1 ≤ · · · ≤ N1 ≤ N0 = G and 1 = Ms ≤ Ms−1 ≤ · · · ≤ M1 ≤ M0 = G are two
composition series for G, then r = s and there is some permutation π of {1, 2, . . . , r}
such that,

Mπ(i)

Mπ(i)+1
∼=

Ni

Ni+1
, for 1 ≤ i ≤ r.

▶ Theorem 4 (Correspondence Theorem see e.g., [21]). Let K ⊴ G and let v : G −→ G/K be
the canonical map i.e. v(g) = Kg for all g. Then S 7→ v(S) = S/K is a bijection from the
family of all those subgroups S of G which contain K to the family of all the subgroups of
G/K.

Model of computation. In this paper, we use an abstract model of computation known as
the word-RAM model. In this model, data is stored in resisters and memory units. Each
memory unit and resister can store O(log n) bits where n is the size of the input. The unit
of storage is called word. The machine in the word-RAM model can access a word and do
the usual arithmetic, logical, and comparison operations in constant time. The input size for
our purpose is the order of the group. Without loss of generality, we can assume that the
elements of groups are 1, 2, 3, ..., n. Thus, every group element can be stored in a word and
can be accessed in constant time.
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There are two phases in the construction of a data structure: the preprocessing phase
and the query phase. In the preprocessing phase, we assume that we have been given a
finite group by its Cayley table. Using the Cayley table, we construct a data structure that
consists of some arrays and tables. In the query phase, we process multiplication queries.
In a multiplication query, two group elements g1 and g2 are given by the user. The task
is to find the product of g1 and g2. In this phase, the data structure constructed in the
preprocessing phase is accessed to answer the query. The time taken to answer a single query
is called the query-time.

The time and space used in preprocessing stage are not considered. We only consider the
space used by the data structure and the time it takes to answer a query to multiply the
group elements.

▶ Definition 5. Let G be a group and s and t be two positive real numbers. We say that G

has an (s, t)-data structure, if G can be stored in a data-structure that uses at most s space
and can answer a multiplication query in time at most t.

▶ Definition 6. Let G be a class of group and let s, t : N → R≥0 be two functions. If for
every group G ∈ G of order n there is a data structure that uses O(s(n)) space to store G

and can answer a multiplication query in time at most O(t(n)) then we say that G has an
(O(s(n)), O(t(n)))-data structure.

3 Extension Theorems

In this section, we discuss how to use data structures for subgroups to build new data
structures for groups containing the subgroups.

▶ Theorem 7. There exist positive constants c and d such that for any group G and
a subgroup H of G if H has an (s, t)-data structure for some s and t then G has an
(s + c([G : H]2 + |G|), 2t + d)-data structure.

Proof. First we fix a left traversal L and a right traversal R of H in G. Each g ∈ G can
be uniquely written as g = hr where h ∈ H and r ∈ R. Thus we can define functions
sR : G −→ H and cR : G −→ R such that g = sR(g)cR(g). Similarly we can define
cL : G −→ L and sL : G −→ H such that g = cL(g)sL(g). We can store these four functions
in four arrays each of length |G|.

Suppose we need to find the product of g1 and g2. Note that,

g1g2 = cL(g1)sL(g1)sR(g2)cR(g2).

Since sL(g1), sR(g2) ∈ H, we can use the data structure for H to find sL(g1)sR(g2) within
time t. Let h1 = sL(g1)sR(g2). Therefore, we can write g1g2 = cL(g1)h1cR(g2).

Given l ∈ L and h ∈ H, we know that there exist unique elements h′ ∈ H and r ∈ R

such that lh = h′r. Thus, we can define two functions FlipH : L × H −→ H and FlipR :
L × H −→ R such that lh = FlipH(l, h)FlipR(l, h). We can store FlipH and FlipR in two
2-dimensional arrays using space linear in |H × L| = |G|. With the help of these functions,
we can write

g1g2 = FlipH(cL(g1), h1)FlipR(cL(g1), h1)cR(g2) = h2r1r2

where h2 = FlipH(cL(g1), h1), r1 = FlipR(cL(g1), h1) and r2 = cR(g2).

STACS 2022
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Again we use the fact that any element g of G can be uniquely written as g = hr where
h ∈ H and r ∈ R to define the functions CrossH : R × R −→ H and CrossR : R × R −→ R

such that for all r, r′ ∈ R we have rr′ = CrossH(r, r′)CrossR(r, r′). Note that we can store
these functions in two 2-dimensional arrays each requiring size linear in |R × R| = (|G|/|H|)2.
With the help of these functions we can write

g1g2 = h2CrossH(r1, r2)CrossR(r1, r2) = h2h3r3

where CrossH(r1, r2) = h3 and r3 = CrossR(r1, r2).
Again we can use the data structure for H to compute the product h4 = h2h3 within

time t. Thus g1g2 = h4r3. Finally, we define a function Fuse : H × R −→ G simply as
Fuse(h, r) = hr for all h ∈ H and r ∈ R. Clearly, a 2-dimensional array to store Fuse

would take space linear in |H × R| = |G|. Thus, to produce the final result we just return
g1g2 = Fuse(h4, r3).

All the functions except for CrossR and CrossH take space linear in |G|, while CrossR

and CrossH take space linear in (|G|/|H|)2. The data structure for H takes space at most s.
Therefore, the total space required is linear in |G| + (|G|/|H|)2. We note that each function
defined in this proof is queried exactly once. Thus, the time to query all the nine functions
is bounded by some constant d. Additionally, the time taken to query the data structure for
H is at most 2t. Therefore, we have the required data structure for G. ◀

An immediate corollary of the above theorem is the following.

▶ Corollary 8. Let 0 < c1 ≤ c2 be two constants. Let Gc1,c2 be the class of groups G that has
a subgroup H with c1

√
|G| ≤ |H| ≤ c2

√
|G|. Then Gc1,c2 has (O(n), O(1)) data-structures.

Proof. The Cayley table for H takes size at most c2
2|G| and answers queries in constant time.

Since |G|/|H| ≤ (1/c1)
√

|G|, we have (|G|/|H|)2 ≤ (1/c1)2|G|. Hence the result follows from
Theorem 7. ◀

In the next theorem we show how to use the data-structure for a normal subgroup of a
group to build a data structure for the group when the quotient group is cyclic.

▶ Theorem 9. There are positive constants c and d such that for every group G and any
normal subgroup N of G, if G/N is cyclic and N has an (s, t)-data structure for some s and
t, then G has an (s + c|G|, 2t + d)-data structure.

Proof. Since G/N is cyclic it is generated by an element g0N where g0 ∈ G. The cosets of
N in G are N, g0N, g2

0N, . . . , gk−1
0 N where k is the order of the group G/N , i.e., k = [G : N ].

Clearly, k ≤ |G|. Let S = {0, 1, . . . , k − 1}.
The set {g0

0 , g1
0 , . . . , gk−1

0 } is a left as well as a right traversal of N in G. Hence any
element g could be uniquely written as g = gr

0n = n′gr
0 for some r ∈ S and n, n′ ∈ N . This

enables us to define functions e : G −→ S, sR : G −→ N and sL : G −→ N such that for all
g ∈ G

g = g
e(g)
0 sR(g) = sL(g)ge(g)

0 .

These three functions could be stored in arrays each having size |G|. To multiply g1 and g2
we first observe that g1g2 = g

e(g1)
0 sR(g1)sL(g2)ge(g2)

0 . These expression could be obtained by
querying each of the functions once. The product n1 = sR(g1)sL(g2) can be obtained using
the data structure for N within query-time t. Thus g1g2 = gα

0 n1gβ
0 , where α = e(g1) and

β = e(g2).
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Next we define a function Flip : N × S −→ N with the property that for all n ∈ N and
i ∈ S, ngi

0 = gi
0Flip(n, i). In other words, Flip(n, i) is just g−i

0 ngi
0. This function can be

stored in space linear in |N × S| = |G|. Now we can write g1g2 = gα
0 gβ

0 Flip(n1, β) = gα+β
0 n2

where n2 = Flip(n1, β).
Next we compute gα

0 gβ
0 = gα+β

0 . Observe that α + β ∈ {0, 1, . . . , 2k − 2}. We define
two functions rede : {0, 1, . . . , 2k − 2} −→ S and redN : {0, 1, . . . , 2k − 2} −→ N such
that gℓ

0 = g
rede(ℓ)
0 redN (ℓ) for all ℓ ∈ {0, . . . , 2k − 2}. Note that for ℓ < k, rede(ℓ) = ℓ and

redN (ℓ) = id. These two functions can be stored using space linear in k. Since k ≤ |G|, the
space required is at most linear in G.

Therefore,

g1g2 = gα+β
0 n2 = g

rede(α+β)
0 redN (α + β)n2.

As before the product n3 of redN (α + β) and n2 can be found using the data structure for
N . Let rede(α + β) = γ. Hence, g1g2 = gγ

0 n3.
We finally define a function Fuse : S × N −→ G as Fuse(i, n) = gi

0n for all i ∈ S and
n ∈ N . Clearly, the function Fuse can be stored using space linear in |G|.

The product g1g2 is just Fuse(γ, n3).
Each function defined in this proof takes space linear in |G| and the data structure for N

takes space at most s. Each function is queried exactly once and the data structure for N is
queried twice. This proves the theorem. ◀

4 Compact Data Structures for Finite Groups

Let G be a group of order n. Our goal is to design a constant query-time data structure for
G of size linear in n. We first consider a composition series 1 = Gk ◁ . . . G1 ◁ G0 = G of G.
In case there is a subgroup Gi in the composition series with size within a constant factor of√

n, we can apply Corollary 8 to obtain a (O(n), O(1)) data structure for G. Otherwise we
consider the smallest subgroup Gi of order more than

√
n. Note that here |Gi+1| is at most√

n and therefore Gi+1 will have its Cayley table of size at most n. This Cayley table can be
used to answer a multiplication query involving elements in Gi+1 in constant time.

Now we consider the composition factor Gi/Gi+1. This quotient is a simple group. If
this is an abelian group it must be cyclic (of prime order) and we can use Theorem 9 to get
a data structure for Gi. Then an application of Theorem 7 with G and its subgroup Gi will
give us the required data structure for G.

The nontrivial case is when Gi/Gi+1 is nonabelian. This is where we use the Classification
Theorem of Finite Simple Groups. The classification theorem allows us to split the nonabelian
case into various subcases. In each of the subcases we show that we can insert two subgroups
Gi2 and Gi1 such that Gi+1 < Gi2 < Gi1 < Gi in such a manner that the indices [Gi2 : Gi+1],
[Gi1 : Gi2 ] and [Gi : Gi1 ] are all “small”. Since Gi+1 already has a constant query-time
data structure (namely its Cayley table) of size linear in n, this allows us to use Theorem 7
successively to the group and subgroup pairs (Gi2 , Gi+1), (Gi1 , Gi2), and (Gi, Gi1) to obtain
a constant query-time data structure for Gi of size linear in n. Finally, another application
of Theorem 7 with G and its subgroup Gi will give us the required data structure for G.

4.1 Solvable Finite Groups
In this subsection we consider the class Gsolv of finite solvable groups. We do this case first
before going to the general case for the class of all finite groups because it is independent of
the Classification Theorem for Finite Simple Groups.

STACS 2022
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▶ Theorem 10. The class Gsolv has (O(n), O(1)) data-structures.

Proof. Let G be a group and 1 = Gk ◁ . . . G1 ◁ G0 = G be a composition series of G. Let
n = |G|.

Case 1 : There is i such that
√

n/2 ≤ |Gi| ≤
√

n. We simply apply Corollary 8 to get the
desired data structure.

Case 2: There is no i such that
√

n/2 ≤ |Gi| ≤
√

n. Let i be the largest index such that√
n < |Gi|. We will have |Gi+1| <

√
n/2. The Cayley table for Gi+1 has at most n/4 entries.

Since G is solvable Gi/Gi+1 is cyclic of prime order. This allows us to use Theorem 9 to
obtain a constant query-time data structure for Gi which is linear in n. Next we observe
that [G : Gi] is at most

√
n. If we apply Theorem 7 on G and its subgroup Gi we get the

required data structure for G. ◀

4.2 The General Case
Before considering the case for general finite groups we need the following result for nonabelian
simple groups.

▶ Lemma 11. There are positive constants b1 and b2 such that for any nonabelian simple
group H there exist subgroups H1 and H2 such that 1 ≤ H2 ≤ H1 ≤ H and |H2| ≤

√
|H|,

[H : H1] ≤ b1
√

|H|, and [H1 : H2] ≤ b2
√

|H|.

Proof. The proof uses the Classification Theorem of Finite Simple Group (CFSG). The
proof idea is given in Section 5 and the details are given in the Appendix. ◀

Next we prove the main theorem of the paper. We note that Case 2 in the proof of the
following theorem can be viewed as a generalized version of the problem of designing linear
space and constant query-time data structure for nonableian simple groups.

▶ Theorem 12. The class Gfin of all finite groups has (O(n), O(1)) data structures.

Proof. Let G be a group of order n. We start by considering a composition series 1 =
Gk ◁ . . . G1 ◁ G0 = G be a composition series of G.

Case 1: This is the case when there is i such that
√

n/2 ≤ |Gi| ≤
√

n. This case is
exactly similar to the case for solvable groups.

Case 2: As before in this case we assume that there is no composition series element Gi

with order more that
√

n/2 but less than
√

n. Let i be the largest index such
√

n < |Gi|.
We will then have |Gi+1| <

√
n/2. Clearly, the Cayley table of Gi+1 will have at most n/4

entries. Since [G : Gi] <
√

n, by Theorem 7 it is enough to design constant query-time data
structure for Gi of size linear in n. In the rest of the proof we therefore concentrate on
designing a constant query-time data structure for Gi that uses O(n) space.

If the composition factor Gi/Gi+1 is abelian then we are again in the same situation as
in the second case of solvable groups. Therefore we assume that Gi/Gi+1 is nonabelian.

We apply Lemma 11 to H = Gi/Gi+1 to obtain subgroups H1 and H2 such that
1 ≤ H2 ≤ H1 ≤ H = Gi/Gi+1. By the correspondence theorem of groups, H1 and H2 will
be of the form Gi1/Gi+1 and Gi2/Gi+1 respectively for some subgroups Gi1 and Gi2 such
that Gi+1 ≤ Gi2 ≤ Gi1 ≤ Gi. From Lemma 11 we have [H1 : H2] ≤ b2

√
|H|. Since, H1 =

Gi1/Gi+1 and H2 = Gi2/Gi+1, we have [Gi1/Gi+1 : Gi2/Gi+1] ≤ b2
√

|Gi/Gi+1| ≤ b2
√

n.
Therefore, [Gi1 : Gi2 ] ≤ b2

√
n. Similarly, [Gi : Gi1 ] ≤ b1

√
n. Again from Lemma 11, we

have H2 ≤
√

|H|. This implies, [Gi2 : Gi+1] ≤
√

|Gi/Gi+1| ≤
√

n.
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Since Gi+1 has a Cayley table of size at most n and [Gi2 : Gi+1] ≤
√

n, we will have a
constant query-time data structure for the subgroup Gi2 of size at most n by Theorem 7.
Since [Gi1 : Gi2 ] ≤ b2

√
n and [Gi : Gi1 ] ≤ b1

√
n, another two applications of Theorem 7 with

the group and subgroup pairs (Gi1 , Gi2) and (Gi, Gi1) will give a data structure for Gi of
size linear in n which can answer a multiplication query in constant time. ◀

We note that there exist polynomial time algorithms for finding a composition series [22]
and checking if a composition factor is abelian [14]. First, we note that Gi1 and Gi2 can
be found simply by a brute force approach. Therefore, we can actually construct the data
structure for G in the above theorem. While obtaining a polynomial time algorithm to
construct the data structure is not our main goal, we note that we can also construct the
data structure in polynomial time. The proof of this involves careful use of existing results
from group theory and algorithms for group theoretic problems.

5 Proof Sketch for Lemma 11

In this section we sketch the proof idea behind Lemma 11. We first state the Classification
Theorem of Finite Simple Groups.

▶ Theorem 13 ([27]). (The Classification Theorem of Finite Simple Group)
Every finite simple group is isomorphic to one of the following:

(i) a cyclic group Cp of prime order p;
(ii) an alternating group Am, for m ≥ 5;
(iii) a classical group;

a. linear: Am(q)(or PSLm+1(q)), m ≥ 1, except PSL2(2) and PSL2(3);
b. unitary: 2Am(q2)(or PSUm+1(q)) , m ≥ 2, except PSU3(2);
c. symplectic: Cm(q))(or PSp2m(q)), m ≥ 2 except PSp4(2);
d. orthogonal: Bm(q)(or PΩ2m+1(q)), m ≥ 3, q odd;

Dm(q)(or PΩ+
2m(q)), m ≥ 4;

2Dm(q2)(or PΩ−
2m(q)) , m ≥ 4

where q is a power pa of some prime;
(iv) an exceptional group of Lie type:

G2(q), q ≥ 3; F4(q); E6(q);2 E6(q);3 D4(q); E7(q); E8(q) or

where q is a power pa of some prime;

2B2(22m+1), m ≥ 1;2 G2(32m+1), m ≥ 1;2 F4(22m+1), m ≥ 1

or the Tits group 2F4(2)′ ;
(v) one of 26 sporadic simple groups:

a. the five Mathieu groups M11, M12, M22, M23, M24;
b. the seven Leech Lattice groups Co1, Co2, Co3, McL, HS, Suz, J2;
c. the three Fischer groups Fi22, Fi23, Fi′

24;
d. the Monstrous groups M,B, Th, HN, He;
e. the six pariahs J1, J2, J4, O′N, Ly, Ru.

The definition of each of the group classes mentioned in the above theorem can be found in
the standard texts on CFSG (see e.g., [6], [27], [3]).

Since Lemma 11 is about nonabelian simple groups we need to consider cases (ii) to (v)
in Theorem 13. We take each subcases under these cases and show that there are subgroups
H1 and H2 satisfying the conditions of the lemma.
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We note that the 26 sporadic simple groups listed in the case (v) are of constant sizes.
Therefore, we can ignore these groups for the purpose of the proof by simply taking H2 to
be the identity subgroup and H1 to be H. Of course if we do so we need to pick extremely
large constant b2 as some the sporadic simple groups are of huge sizes. Fortunately, there
are known results on the groups listed under case (v) that helps us to keep the constants b1
and b2 under 5.

We handle the Alternating group (case (ii) of Theorem 13) case as follows. Notice that one
can find k ∈ Z such that k!

2 ≤
√

m!
2 < (k+1)!

2 , and H2 ∼= Ak and H1 ∼= Ak+1. Then clearly,

|H2|2 =
(

k!
2

)2 ≤ m!
2 . The inequality m!

2 <
( (k+1)!

2
)2 implies that k > m

2 . The value of k can
be computed easily. One can also check that,

( |H1|
|H2|

)2 = (k + 1)2 ≤ m!
2 and

( |H|
|H1|

)2
< m!

2 .

For the remaining groups we use the following two methods for the choices of H1 and H2.
The methods are as follows:

1. Method 1: In this method, we first choose H2 to be a certain Sylow subgroup of the
given simple group H. Next we pick H1 to be the normalizer of H2 in H or the Borel
subgroup containing H2..

Example: Let us take H to be a simple group Am(q) for some q > 2 which appears in
case (iii) of Theorem 13. Here q is power of some prime p. It is known that Am(q) has
order qm(m+1)/2 ∏m

i=1(qi+1 − 1)/(q − 1, m + 1) where (q − 1, m + 1) denotes the gcd of
q − 1 and m + 1 (see [3], p. 252). Clearly, H will have a Sylow p-subgroup of order
qm(m+1)/2. We set H2 to be this subgroup. Next we pick H1 to be the normailzer of H2
in H. It is also known that the order of H1 is qm(m+1)/2(q − 1)m (see [27], p. 46). One
can check that with b1 = 2 and b2 = 1, these choices satisfy the conditions of Lemma 11
(see Appendix for the details).

2. Method 2: In this method, we choose H1 to be a maximal subgroup of the simple group
H and H2 to certain Sylow subgroup of H1.

Example: In the example under Method 1 we consider the case for Am(q) when q > 2.
In this example we take the case when q = 2. Here H = Am(q) will have order
2m(m+1)/2 ∏m

i=1(2i+1 − 1) (see [3], p. 252). It is known that the maximal subgroup of
H is of order |H|/(2m − 1) (see [16], p. 175). We take this subgroup as H1. Next we
take H2 as a Sylow 2-subgroup of H1 which has order 2m(m+1)/2. It is easy to verify that
these choices of H1 and H2 along with b1 = b2 = 1 satisfy the conditions of Lemma 11
(see Appendix for the details).

Table 1 lists the methods that we have used for choosing the suitable subgroups in the
corresponding nonabelian simple group. The last two columns represent the constant factors
b1 and b2 for the corresponding simple group (see Table 1).

For case (v), we use Method 2 to get the suitable subgroups.

Appendix A.3 contains two comprehensive tables listing the orders of subgroups used in
the proof of Lemma 11 for different cases of CFSG.
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Table 1 Table representing the constant factor and method used for choosing suitable subgroups.

Case H Condition on q Method b1 b2

(iii)

Am(q) q > 2 Method 1 2 1
q = 2 Method 2 1 1

2Am(q2); m > 1
q > 2 Method 1 2 1
q = 2; 6 ∤ (m − 1) Method 2 1 1
q = 2; 6 | (m − 1) Method 2 1 1

Cm(q); m > 2 q > 2 Method 1 2 1
q = 2 Method 2 1 1

Bm(q); m > 1 q odd Method 1 2 1

Dm(q); m > 3 q > 2 Method 1 2 1
q = 2 Method 2 1 1

2Dm(q2); m > 3 q > 2 Method 1 3 1
q = 2 Method 2 1 1

(iv)

G2(q) q ≥ 3 Method 1 1 1
F4(q) All q Method 2 1 1

E6(q) q > 2 Method 1 1 1
q = 2 Method 2 1 1

2E6(q) All q Method 1 1 1
3D4(q) All q Method 1 1 1

E7(q) q > 2 Method 1 1 1
q = 2 Method 2 1 1

E8(q) q > 2 Method 1 1 1
q = 2 Method 2 1 1

2B2(q) q = 22t+1, t ≥ 1 Method 1 1 1
2G2(q) q = 32t+1, t ≥ 1 Method 1 1 1
2F4(q) q = 22t+1, t ≥ 1 Method 1 1 1
2F4(2)′ q = 2 Method 2 1 1

References

1 Vikraman Arvind and Jacobo Torán. The complexity of quasigroup isomorphism and the
minimum generating set problem. In International Symposium on Algorithms and Computation,
pages 233–242. Springer, 2006.

2 Vikraman Arvind and Jacobo Torán. Solvable group isomorphism is (almost) in NP ∩ conp.
ACM Trans. Comput. Theory, 2(2):4:1–4:22, 2011. doi:10.1145/1944857.1944859.

3 M. Aschbacher. Finite Group Theory. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2 edition, 2000. doi:10.1017/CBO9781139175319.

4 László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test
for groups with no abelian normal subgroups. In International Colloquium on Automata,
Languages, and Programming, pages 51–62. Springer, 2012.

5 László Babai and Youming Qiao. Polynomial-time isomorphism test for groups with abelian
sylow towers. In STACS’12 (29th Symposium on Theoretical Aspects of Computer Science),
volume 14, pages 453–464. LIPIcs, 2012.

6 Roger W. Carter. Finite groups of Lie type. Wiley Classics Library. John Wiley & Sons, Ltd.,
Chichester, 1993. Conjugacy classes and complex characters, Reprint of the 1985 original, A
Wiley-Interscience Publication.

STACS 2022

https://doi.org/10.1145/1944857.1944859
https://doi.org/10.1017/CBO9781139175319


25:12 Linear Space Data Structures for Finite Groups with Constant Query-Time

7 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. ATLAS of Finite
Groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters
for simple groups, With computational assistance from J. G. Thackray.

8 Bireswar Das and Shivdutt Sharma. Compact data structures for dedekind groups and finite
rings. In WALCOM, pages 90–102, 2021.

9 Bireswar Das, Shivdutt Sharma, and P. R. Vaidyanathan. Space efficient representations of
finite groups. J. Comput. Syst. Sci., 114:137–146, 2020. doi:10.1016/j.jcss.2020.06.007.

10 David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley & Sons, Inc., Hoboken,
NJ, third edition, 2004.

11 Arash Farzan and J. Ian Munro. Succinct representation of finite abelian groups. In ISSAC
2006, pages 87–92. ACM, New York, 2006.

12 Merrick Furst, John Hopcroft, and Eugene Luks. Polynomial-time algorithms for permutation
groups. In 21st Annual Symposium on Foundations of Computer Science (sfcs 1980), pages
36–41. IEEE, 1980.

13 François Le Gall. Efficient isomorphism testing for a class of group extensions. CoRR,
abs/0812.2298, 2008. arXiv:0812.2298.

14 T. Kavitha. Linear time algorithms for abelian group isomorphism and related problems. J.
Comput. System Sci., 73(6):986–996, 2007.

15 Neeraj Kayal and Timur Nezhmetdinov. Factoring groups efficiently. In International col-
loquium on automata, languages, and programming, pages 585–596. Springer, 2009.

16 Peter B. Kleidman and Martin W. Liebeck. The Subgroup Structure of the Finite Classical
Groups. London Mathematical Society Lecture Note Series. Cambridge University Press, 1990.
doi:10.1017/CBO9780511629235.

17 Daniel J. Kleitman, Bruce R. Rothschild, and Joel H. Spencer. The number of semigroups of
order n. Proc. Amer. Math. Soc., 55(1):227–232, 1976.

18 S Ravi Kumar and Ronitt Rubinfeld. Property testing of abelian group operations, 1998.
19 Gary L. Miller. On the nlog n isomorphism technique: A preliminary report. In Richard J.

Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V. Aho, editors,
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978,
San Diego, California, USA, pages 51–58. ACM, 1978.

20 Youming Qiao, Jayalal Sarma, and Bangsheng Tang. On isomorphism testing of groups
with normal hall subgroups. J. Comput. Sci. Technol., 27(4):687–701, 2012. doi:10.1007/
s11390-012-1255-7.

21 Joseph J. Rotman. An introduction to the theory of groups, volume 148 of Graduate Texts in
Mathematics. Springer-Verlag, New York, fourth edition, 1995.

22 Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge, 2003.

23 Charles C. Sims. Computational methods in the study of permutation groups. In John
Leech, editor, Computational Problems in Abstract Algebra, pages 169–183. Pergamon, 1970.
doi:10.1016/B978-0-08-012975-4.50020-5.

24 Charles C Sims. Computation with permutation groups. In Proceedings of the second ACM
symposium on Symbolic and algebraic manipulation, pages 23–28, 1971.

25 Charles C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.

26 J. H. van Lint and R. M. Wilson. A course in combinatorics. Cambridge University Press,
Cambridge, 1992.

27 Robert A. Wilson. The finite simple groups, volume 251 of Graduate Texts in Mathematics.
Springer-Verlag London, Ltd., London, 2009. doi:10.1007/978-1-84800-988-2.

28 Robert A. Wilson. Maximal subgroups of sporadic groups. In Finite simple groups: thirty
years of the atlas and beyond, volume 694 of Contemp. Math., pages 57–72. Amer. Math. Soc.,
Providence, RI, 2017.

https://doi.org/10.1016/j.jcss.2020.06.007
http://arxiv.org/abs/0812.2298
https://doi.org/10.1017/CBO9780511629235
https://doi.org/10.1007/s11390-012-1255-7
https://doi.org/10.1007/s11390-012-1255-7
https://doi.org/10.1016/B978-0-08-012975-4.50020-5
https://doi.org/10.1007/978-1-84800-988-2


B. Das, A. Kumar, S. Sharma, and D. Thakkar 25:13

A Proof of Lemma 11

In this section we indicate how to prove Lemma 11 in more detail. We do this in the ordering
mentioned in the Classification Theorem of Finite Simple Group, i.e., Theorem 13. As we
mentioned in Section 2, we just need to use some known results on the order of certain
subgroups of simple groups. The detailed description of these groups may be skipped for the
purpose of the proof. The results that are used in the proof are on the orders of the finite
simple groups, on the orders of maximal subgroups of simple groups and the normalizers of
certain types of Sylow subgroups of simple groups. The information about the order of these
simple groups can be obtained from [3]

In case (ii) of Theorem 13, H is an alternating group. We have already seen that the
subgroups H2 and H1 are certain suitably picked stabilizer subgroups of the given alternating
group H.

For the cases (iii) and (iv) of Theorem 13, we use Method 1 and Method 2 to get the
desired subgroups as required in Lemma 11. In this cases the finite simple group H is of
Lie-type and is defined over a finite field Fq where q is a power of some prime p. In Method
1, we take H2 to be certain Sylow p-subgroup of H. The existence of such H2 follows from
the well-known Sylow theorem. For the existence of H1, we take the normalizer of H2 or the
Borel subgroup. The information about the order of normalizer has been obtained from (see
[6], p. 76, [27], p. 46).

For the groups in which we use Method 2, we consider a maximal subgroup of H as H1
and H2 to be some Sylow p-subgroup of H1. The index of a maximal subgroup (and hence
its order) can be obtained from [16], p. 175 and [27], p. 156.

For the simple groups in case (v), we use Method 2 and the information about order of
maximal subgroup (H1) can be obtained from [28]. Also, for the choice of H2, we choose
certain Sylow subgroup of H1.

The inequalities in the following two remarks are used in the calculation multiple times.

▶ Remark 14. For all integer q > 2, we have q
(q−1)2 < 1.

▶ Remark 15.
∏i=m

i=1 (qi+1 − (−1)i+1) < q
∑i=m

i=1
(i+1).

▶ Remark 16. The gcd of two natural numbers m and n is denoted by (m, n).

A.1 The Classical Groups
We have seen the case(ii) of Theorem 13 in Section 5. In this section, we consider H to be a
classical simple group described in case (iii) of Theorem 13. In particular, we consider the
case when H is 2Am(q2) where q is a power of some prime p. All the other cases can be
handle similarly. As described earlier, we use Method 1 and Method 2 to show the existence
of subgroups H2 and H1 of the simple group H.

1.1 H = 2Am(q2); m ≥ 2, q > 2 (Method 1)
The finite simple group 2Am(q2) is isomorphic to the projective special unitary group
PSUm+1(q). The group PSUm+1(q) is the group obtain by taking special unitary group
SUm+1(q) and quotienting it by its center, i.e. 2Am(q2) ∼= SUm+1(q)

Z(SUm+1(q)) (see [27], p. 66).
It is known that (see [3], p. 252) the order of 2Am(q2) is,

|H| = q
m(m+1)

2

(q + 1, m + 1)

m∏
i=1

(qi+1 − (−1)i+1).

STACS 2022
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Let H2 be the Sylow p-subgroup of 2Am(q2), then |H2| = q
m(m+1)

2 and |H2|2 ≤ |H|. Let
H1 be the Borel subgroup of H of order (see [27], [6]),

|H1| = q
m(m+1)

2

(q+1,m+1) (q − 1)⌊m/2⌋(q + 1)⌈ m−1
2 ⌉.

One can check that
( |H1|

|H2|
)2 ≤ |H1| < |H| and |H|

|H1| ≤ 2
√

|H|.
1.2 H = 2Am(q2); m ≥ 2, q = 2 (Method 2)

The finite simple group 2Am(22) is of order 2
m(m+1)

2
∏m

i=1(2i+1 − (−1)i+1)/(3, m + 1) and
is isomorphic to projective special unitary group PSUm+1(2) or Um+1(q). The group
Um+1(q) has a maximal subgroup of index (2m+1−(−1)m+1)(2m−(−1)m)

3 when 6 ∤ (m − 1)
and of index 2m(2m+1−1)

3 , when 6 | (m − 1) (see [16], p. 175) .

(Case 1) 6 ∤ (m − 1)
Let H1 be corresponding maximal subgroup of 2Am(22) whose index is

(2m+1 − (−1)m+1)(2m − (−1)m)
3

in 2Am(22). Then, the order of H1 is,

|H1| = 3
(3, m + 1)

2
m(m+1)

2
∏m

i=1(2i+1 − (−1)i+1)
(2m+1 − (−1)m+1)(2m − (−1)m) .

Let H2 be the Sylow 2-subgroup of H1. Then, |H2| = 2
m(m+1)

2 and |H2|2 < | 2Am(22)|.

It is easy to see that
(

|H1|
|H2|

)2

| 2Am(22)| < 1 and
( | 2Am(22)|

|H1|
)2

< | 2Am(22)|.
(Case 2) 6|(m − 1) (i.e. m ≥ 7)

In this case, as we know that the group 2Am(q2) has a maximal subgroup of index
2m(2m+1−1)

3 . Let H1 be one such maximal subgroup. Then,

|H1| = 3
(3, m + 1)2

m(m−1)
2

m−1∏
i=1

(2i+1 − (−1)i+1).

Let H2 be the Sylow 2-subgroup of H1, then H2 has order 2
m(m−1)

2 and |H2|2 <

| 2Am(22)|.
Clearly we can check that

( |H1|
|H2|

)2
< | 2Am(22)| and

( | 2Am(22)|
|H1|

)2
< | 2Am(22)|.

A.2 Exceptional Group of Lie Type
In this section, we consider H to be an exceptional simple group of Lie Type described in
case (iv) of Theorem 13. In particular, we consider the case when H is F4(q), E6(q) and
2F4(2)′ where q is a power of some prime p. The similar arguments can be used to prove the
remaining cases.

(1) H = F4(q) (Method 2)
The finite simple group F4(q) has order (see [3], p. 252),

|F4(q)| = q24(q12 − 1)(q8 − 1)(q6 − 1)(q2 − 1).

It is known that (see [27], p. 156) the group F4(q) has a maximal subgroup q1+14 :
Sp6(q).Cq−1 of order q24(q6 −1)(q4 −1)(q2 −1)(q −1) say H1. This subgroup has a Sylow
p-subgroup say H2 of order q24 and |H2|2 ≤ |F4(q)|. Therefore,

( |H1|
|H2|

)2
< |H1| < |H|

and
( |H|

|H1|
)2

< |H|.
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(2) H = E6(q); q > 2 (Method 1)
The group E6(q) is a finite simple group. The order of H = E6(q) is (see [3], p. 252),

|E6(q)| = q36

(3, q − 1)(q12 − 1)(q9 − 1)(q8 − 1)(q6 − 1)(q5 − 1)(q2 − 1).

Clearly, it has a Sylow p-subgroup H2 of order q36 and |H2|2 ≤ |E6(q)|. Let H1 be
the Borel subgroup of H then the order of H1 is q36(q − 1)6 (see [27], [6]). Clearly,( |H1|

|H2|
)2

< |H1| < |H| and
( |H|

|H1|
)2 ≤ |H|.

Notice that, the group E6(2) is of constant order. However, we can use Method 2 to
reduce the constants b1, b2 to 1. By taking H1 to be maximal subgroup of order (see [7])
236 · 33 · 5 · 7 · 31 and H2 to be its Sylow 2-subgroup of order 236.

(3) H = 2F4(2)′; (Method 2)
The simple group H = 2F4(2)′; has order 17971200. It is known that H has a maximal
subgroup of order 11232. We take H1 to be this maximal subgroup and H2 to be the
Sylow 2-subgroup of H1 which has order 32. Thus, we get b1 = b2 = 1.

A.3 Tables
In this section we cover the details of Sporadic simple groups (Table 2), and the order of all
the simple groups that we define in cases (ii)-(iv) of Theorem 13 in Table 3 and 4. These
tables also contain the order of the subgroups H2 and H1.
Table 2 represents the information about the subgroups H2 and H1 of the Sporadic simple
groups. In Table 2 we consider the values of ti, i = 1, 2, 3, 4 as follows.

t1 = 808017424794512875886459904961710757005754368000000000
t2 = 242 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47
t3 = 4154781481226426191177580544000000
t4 = 238 · (212 − 1) · (29 + 1) · (28 − 1) · (26 − 1) · (25 + 1) · (22 − 1)

In the Table 3, the values of cmi, i = 1, 2, 3, 4, 5 are as follows.

cm1 = q
m(m+1)

2

(q+1,m+1) (q − 1)⌊m/2⌋(q + 1)⌈ m−1
2 ⌉.

cm2 = 3
(3,m+1)

2
m(m+1)

2
∏m

i=1
(2i+1−(−1)i+1)

(2m+1−(−1)m+1)(2m−(−1)m)

cm3 = 3
(3,m+1) 2

m(m−1)
2

∏m−1
i=1 (2i+1 − (−1)i+1)

cm4 = 2m2−m+1(2m + 1)
∏m−1

i=1 (22i − 1)
cm5 = 2m(m−1)(2m−1 + 1)

∏m−2
i=1 (22i − 1).
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Table 2 Table representing the constant factor and Method used for choosing suitable subgroups.

H Order of H
Order of
H2

Order of H1 b1 b2

M11 7920 24 720 1 1
M12 95040 22 660 1 1
M22 443520 26 20160 1 1
M23 10200960 27 443520 1 1
M24 244823040 28 887040 1 1
Co1 4157776806543360000 262144 42305400000000 1 1
Co2 42305400000000 262144 908328960 1 1
Co3 495767000000 27 10200960 1 1
McL 898128000 36 36 · 27 · 7 · 5 1 1
HS 44352000 27 27 · 32 · 5 · 7 · 11 1 1
Suz 448345497600 212 251596800 1 1
J2 604800 25 6048 1 1

Fi22 64561751654400 216 216(26 − 1)(25 + 1)(24 −
1)(23 + 1) 1 1

Fi23 4089470473293004800 218 218 · 39 · 52 · 7 · 11 · 13 1 1
Fi‘24 1255205709190661721292800 219 219 ·313 ·52 ·7·11·13·17·23 1 1
M t1 242 t2 1 1
B t3 238 t4 1 1
Th 90745943887872000 215 319979520 1 1
HN 273030912000000 29 239500800 1 1
He 4030387200 28 28 · 255 · 15 1 1
J1 175560 22 660 1 1
J3 50232960 25 8160 1 1
J4 86775571046077562880 2097152 57161637225 1 1
O′N 460815505920 26 3753792 1 1
Ly 51765179004000000 15625 5859000000 1 5
Ru 145926144000 212 35942400 1 1
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Table 3 Order of the simple groups (case (iii) of Theorem 13) and order of its subgroups H2, H1.

H |H| |H2| |H1|

Am(q); q > 2 q
m(m+1)

2
∏m

i=1
(qi+1−1)

(q−1,m+1)
q

m(m+1)
2 q

m(m+1)
2

(q−1,m+1) (q − 1)m

Am(2); q = 2 2
m(m+1)

2
∏m

i=1(2i+1 − 1) 2
m(m+1)

2 2
m(m+1)

2
∏m

i=1
(2i+1−1)

(2m+1−1)
2Am(q2); q >

2, m > 1
q

m(m+1)
2

(q+1,m+1)
∏m

i=1(qi+1 − (−1)i+1) q
m(m+1)

2 cm1

2Am(22); q =
2, m > 1, 6 ∤
(m − 1)

2
m(m+1)

2
(3,m+1)

∏m

i=1(2i+1 − (−1)i+1) 2
m(m+1)

2 cm2

2Am(22); q =
2, m > 1, 6 |
(m − 1)

2
m(m+1)

2
(3,m+1)

∏m

i=1(2i+1 − (−1)i+1) 2
m(m−1)

2 cm3

Cm(q); q > 2,
m > 2

qm2 ∏m

i=1
(q2i−1)

(2,q−1)
qm2

qm2

(2,q−1) (q − 1)m

Cm(2); q = 2,
m > 2 2m2 ∏m

i=1(22i − 1) 2m2−m+1 cm4

Bm(q); q odd,
m > 1

qm2 ∏m

i=1
(q2i−1)

(2,q−1)
qm2

qm2

(2,q−1) (q − 1)m

Dm(q); q > 2,
m > 3

qm(m−1)(qm−1)
∏m−1

i=1
(q2i−1)

(4,qm−1)
qm(m−1) qm(m−1)

(4,qm−1) (q − 1)m

Dm(2); q = 2,
m > 3 2m(m−1)(2m − 1)

∏m−1
i=1 (22i − 1) 2m2−2m+1 2m2−2m+1 ∏m−1

i=1 (22i −1)
2Dm(q2);
q > 2, m > 3

qm(m−1)(qm+1)
(4,qm+1)

∏m−1
i=1 (q2i − 1) qm(m−1) qm(m−1)

(4,qn+1) (q − 1)m

2Dm(22); q =
2, m > 3

2m(m−1)(2m+1)
(4,2m+1)

∏m−1
i=1 (22i − 1) 2m(m−1) cm5

Table 4 Order of the simple groups (case (iv) of Theorem 13) and order of its subgroups H2, H1.

G2(q) q6(q6 − 1)(q2 − 1) q6 q6(q − 1)2

F4(q) q24 ∏
i∈{2,6,8,12}(qi − 1) q24 q24 ∏

i∈{1,2,4,6}(qi − 1)
E6(q), q > 2 q36

(3,q−1)
∏

i∈{2,5,6,8,9,12}(qi − 1) q36 q36(q − 1)6

E6(2) 236 ∏
i∈{2,5,6,8,9,12}(2i − 1) 236 236 · 33 · 5 · 7 · 31

2E6(q) q36(q9+1)
(3,q+1)

∏
i∈{2,5,6,8,12}(qi − 1) q36 q36(q − 1)4(q + 1)2

3D4(q) q12(q8 + q4 + 1)(q6 − 1)(q2 − 1) q12 q12 (q3 − 1)(q − 1)
E7(q), q > 2 q63

(2,q−1)
∏

i∈{2,6,8,10,12,14,18}(qi − 1) q63 q63(q − 1)7

E7(2) 263 ∏
i∈{2,6,8,10,12,14,18}(2i − 1) 263 263 · 34 · 72 · 5

E8(q), q > 2 q120 ∏
i∈{2,8,12,14,18,20,24,30}(qi − 1) q120 q120(q − 1)8

E8(2) 2120 ∏
i∈{2,8,12,14,18,20,24,30}(2i − 1) 2119 2119 · 34 · 5 · 72 · 31

2B2(q);
q = 22t+1, t ≥ 1 q2(q2 + 1)(q − 1) q2 q2(q − 1)
2G2(q);
q = 32t+1, t ≥ 1 q3(q3 + 1)(q − 1) q3 q3(q − 1)
2F4(q);
q = 22t+1, t ≥ 1 q12(q6 + 1)(q4 − 1)(q3 + 1)(q − 1) q12 q12(q − 1)2
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