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Abstract
We study the fine-grained complexity of counting the number of colorings and connected spanning
edge sets parameterized by the cutwidth and treewidth of the graph. While decompositions of small
treewidth decompose the graph with small vertex separators, decompositions with small cutwidth
decompose the graph with small edge separators.

Let p, q ∈ N such that p is a prime and q ≥ 3. We show:
If p divides q − 1, there is a (q − 1)ctwnO(1) time algorithm for counting list q-colorings modulo
p of n-vertex graphs of cutwidth ctw. Furthermore, there is no ε > 0 for which there is a
(q − 1 − ε)ctwnO(1) time algorithm that counts the number of list q-colorings modulo p of n-vertex
graphs of cutwidth ctw, assuming the Strong Exponential Time Hypothesis (SETH).
If p does not divide q −1, there is no ε > 0 for which there exists a (q −ε)ctwnO(1) time algorithm
that counts the number of list q-colorings modulo p of n-vertex graphs of cutwidth ctw, assuming
SETH.

The lower bounds are in stark contrast with the existing 2ctwnO(1) time algorithm to compute the
chromatic number of a graph by Jansen and Nederlof [Theor. Comput. Sci.’18].

Furthermore, by building upon the above lower bounds, we obtain the following lower bound
for counting connected spanning edge sets: there is no ε > 0 for which there is an algorithm that,
given a graph G and a cutwidth ordering of cutwidth ctw, counts the number of spanning connected
edge sets of G modulo p in time (p − ε)ctwnO(1), assuming SETH. We also give an algorithm with
matching running time for this problem.

Before our work, even for the treewidth parameterization, the best conditional lower bound by
Dell et al. [ACM Trans. Algorithms’14] only excluded 2o(tw)nO(1) time algorithms for this problem.

Both our algorithms and lower bounds employ use of the matrix rank method, by relating the
complexity of the problem to the rank of a certain “compatibility matrix” in a non-trivial way.
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36:2 Tight Bounds for Counting Colorings and Connected Edge Sets

1 Introduction

A popular topic of interest in (fine-grained) algorithmic research is to determine the decom-
posability of NP-hard problems in easier subproblems. A natural decomposition strategy is
often implied by decomposing the solution into sub-solutions induced by a given decompos-
ition of the input graph such as tree decompositions, path decompositions, or tree depth
decompositions, independent of the problem to be solved. However, the efficiency of such a
decomposition can wildly vary per computational problem. Recently, researchers developed
tools that allow them to get a precise understanding of this efficiency : non-trivial algorithmic
tools (such as convolutions and the cut-and-count method [9, 25]) were developed to give
algorithms that have an optimal running time conditioned on hypotheses such as the Strong
Exponential Time Hypothesis (SETH) [16]. While the efficiency of such decompositions has
been settled for most decision problems parameterized by treewidth, many other interesting
settings remain elusive. Two of them are cutwidth and counting problems.

The cutwidth of an ordering of the vertices of the graph is defined as the maximum
number of edges with exactly one endpoint in a prefix of the ordering (where the maximum is
taken over all prefixes of the ordering). The cutwidth of a graph is defined to be the minimum
width over all its cutwidth orderings. Cutwidth is very similar to pathwidth, except that
cutwidth measures the number of edges of a cut, while the pathwidth measures the number
of endpoints of edges over the cut. Thus the cutwidth of a graph is always larger than its
pathwidth. But for some problems a decomposition scheme associated with a cutwidth
ordering of cutwidth k can be used much more efficiently than a decomposition of pathwidth
k. A recent example of such a problem is the q-coloring problem:1 While there is a (q − ε)pw

lower bound [21] assuming SETH, there is a 2ctwnO(1) time randomized algorithm [18].
Counting problems pose an interesting challenge if we want to study their decomposability.

Counting problems are naturally motivated if we are interested in any statistic rather than
just existence of the solutions space. While often a counting problem behaves very similarly
to its decision version (as in, the dynamic programming approach can be fairly directly
extended to solve the counting version as well), for some problems there is a rather puzzling
increase in complexity when going from the decision version to the counting version. 2

One of the most central problems in counting complexity is the evaluation of the Tutte
polynomial. The strength of this polynomial is that it expresses all graph invariants that can
be written as a linear recurrence using only the edge deletion and contraction operation [23],
and its evaluations specialize to a diverse set of parameters ranging from the number of
forests, nowhere-0 flows, q-colorings and spanning connected edge sets.

An interesting subdirection within counting complexity that is in between the decision
and counting version and that we will also address in this paper is modular counting, where
we want to count the number of solutions modulo a number p. This is an interesting direction
since the complexity of the problem at hand can wildly vary for different p (see [24] for a
famous example), but in the setting of this paper it is also naturally motivated: For example,
the cut-and-count method achieves the fastest algorithms for several decision problems by
actually solving the modular counting variant instead.

1 Recall that a q-coloring is a mapping from the vertices of the graph to {1, . . . , q} such that every two
adjacent vertices receive distinct colors, and the q-coloring problem asks whether a q-coloring exists.

2 Two examples herein are detecting/counting perfect matchings (while the decision version is in P , the
counting version can not be solved in time (2 − ε)twnO(1) for any ε > 0 assuming the SETH [7]) and
Hamiltonian cycles (while the decision version can be solved in (2 +

√
2)pw time [8], the counting version

can not be solved in time (6 − ε)twnO(1) for any ε > 0 assuming the SETH [6]).
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1.1 Our results
In this paper we study the complexity of two natural hard (modular) counting problems:
Counting the number of q-colorings of a graph and counting the number of spanning connected
edge sets, parameterized by the cutwidth of the graph.

Counting Colorings. Let G be a graph and suppose that for each v ∈ V we have an
associated list L(v) ⊆ {1, . . . , q}. A list q-coloring is a coloring c of G such that c(v) ∈ L(v)
for each v ∈ V . Two colorings are essentially distinct if they cannot be obtained from each
other by permuting the color classes. Since the number of essentially distinct colorings is
q! times the number of distinct colorings (assuming the chromatic number of the graph
is q), counting colorings modulo p may become trivial if p ≤ q. For this reason, we focus on
counting essentially distinct colorings in our lower bounds.

In this paper, we will focus on counting list q-colorings modulo a prime number p. Our
main theorem reads as follows:

▶ Theorem 1. Let p, q ∈ N with p prime and q ≥ 3.
If p divides q−1, then there is a (q−1)ctwnO(1) time algorithm for counting list q-colorings
modulo p of n-vertex graphs of cutwidth ctw. Furthermore, there is no ε > 0 for which
there exists a (q − 1 − ε)ctwnO(1) time algorithm that counts the number of essentially
distinct q-colorings modulo p in time (q − 1 − ε)ctwnO(1), assuming SETH.
If p does not divide q − 1, there is no ε > 0 for which there exists a (q − ε)ctwnO(1) time
algorithm that counts the number of essentially distinct q-colorings modulo p, assuming
SETH.

Thus, we show that under the cutwidth parameterization, the (modular) counting variant
of q-coloring is much harder than the decision, as the latter can be solved in 2ctwnO(1)

time with a randomized algorithm [18]. Additionally, we show there is a curious jump in
complexity based on whether p divides q − 1 or not: Since our bounds are tight, this jump is
inherent to the problem and not an artifact of our proof.

The proof strategy of all items of Theorem 1 relates the complexity of the problems to a
certain compatibility matrix. This is a Boolean matrix that has its rows and columns indexed
by partial solutions, and has a 1 if and only if the corresponding partial solutions combine
into a global solution. In previous work, it was shown that the rank of this matrix can be
used to design both algorithms [4, 8, 18, 22] and lower bounds [6, 8].

With this in mind, the curious jump can intuitively be explained as follows. Consider
the base case where the graph is a single edge and we decompose a (list) q-coloring into
the two colorings induced on the vertices. The compatibility matrix corresponding to this
decomposition is the complement of an q × q identity matrix. This matrix has full rank
if p does not divide q − 1 and it has rank q − 1 otherwise. We believe this is a very clean
illustration of the rank based methods, since it explains a curious gap that would be rather
mysterious without the rank based perspective.

Connected Spanning Edge Sets and Tutte polynomial. We say that X ⊆ E is a connected
spanning edge set if G[X] is connected and every vertex is adjacent to an edge in X. Our
second result is about counting the number of such sets. This problem is naturally motivated:
It gives the probability that a random subgraph remains connected, and is an important
special case of the Tutte polynomial. We determine the complexity of counting connected
spanning edge sets by treewidth and cutwidth by giving matching lower and upper bounds:

STACS 2022



36:4 Tight Bounds for Counting Colorings and Connected Edge Sets

▶ Theorem 2. Let p be a prime number. There is an algorithm that counts the number of
connected edge sets modulo p of n-vertex graphs of treewidth tw in time ptwnO(1).

Furthermore, there is no ε > 0 for which there is an algorithm that counts the number
of spanning connected edge sets modulo p of n-vertex graphs of cutwidth ctw in time (p −
ϵ)ctwnO(1), assuming SETH.

Note that before our work, even for the treewidth parameterization, the best conditional
lower bound by Dell et al. [10] only excluded 2o(tw)nO(1) time algorithms for this problem.

While the algorithm follows relatively quickly by using a cut-and-count type dynamic
programming approach, obtaining the lower bound is much harder.

In fact, for related counting variants of connectivity problems such as counting the number
of Hamiltonian cycles or Steiner trees, 2O(tw)nO(1) time algorithms do exist. So one may
think that connected spanning edge sets can be counted in a similar time bound. But in
Theorem 2 we show that this is not the case (by choosing p arbitrarily large).

To prove the lower bound, we make use of an existing formula for the Tutte polynomial
that relates the number of connected spanning edge sets to the number of essentially distinct
colorings, and subsequently apply Theorem 1.

Organization. The rest of the paper is organized as follows: in Section 2 we introduce the
notation that will be used throughout the paper and define the color compatibility matrix. In
Section 3 we prove the upper bound for #q-coloring modulo p. Section 4 contains the results
about lower bounds. We conclude the paper by discussing directions for further research.
The appendix contains the proofs omitted from previous sections.

1.2 Related work
Coloring. Counting the number of colorings of a graph is known to be #P -complete, even for
special classes of graphs such as triangle free regular graphs [14]. Björklund and Husfeldt [2]
and Koivisto [20] gave a 2nnO(1) algorithm for counting q-colorings, and a more general
2nnO(1) time algorithm even evaluates any point of the Tutte polynomial [3].

A q-coloring of a graph G is a special case of H-coloring, i.e. a homomorphism from G

to a given graph H. Namely, q-colorings correspond to homomorphisms from G to Kq, i.e.
Kq-colorings. Dyer and Greenhill [11] showed that counting the number of H-colorings is
#P -complete unless H is one of the few exceptions (an independent set, a complete graph
with loops on every vertex or a complete bipartite graph). Kazeminia and Bulatov [19]
classified the hardness of counting H-colorings modulo a prime p for square-free graphs H.

Methods. Our approach makes use of the rank based method, and in particular the so-called
color compatibility matrix introduced in [18]. This matrix tells us whether we can “combine”
two colorings. In [18], the authors studied the rank of a different matrix with the same
support as the color compatibility matrix, whereas in this paper we use the rank directly.
The rank based method has been used before only once for an algorithm for a counting
problem in [8] and only once for a lower bound for a counting problem in [6].

The Tutte polynomial T (G; x, y) is a graph polynomial in two variables which describes
how G is connected. In particular, calculating T (G; x, y) at specific points gives us the
number of subgraphs of G with certain properties: T (G; 2, 1) is equal to the number of forests
in G, T (G; 1, 1) is the number of spanning forests, T (G; 1, 2) counts the number of spanning
connected subgraphs etc. We will use the properties of the Tutte polynomial to give a lower
bound on the complexity of counting spanning connected edge sets.
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2 Preliminaries

In this section, we introduce the notation that will be used throughout the paper.

2.1 Notation and standard definitions
For integers a, b, we write [a, b] = {a, a + 1, . . . , b} for the integers between a and b, and for
a natural number n we short-cut [n] = [1, n] = {1, . . . , n}. Throughout the paper, p will
denote a prime number and Fp the finite field of order p. We will use a ≡p b to denote that
a and b are congruent modulo p, i.e. that p divides a − b. We write N = {1, 2, . . . } for the
set of natural numbers.

For a function f : A → Z (where A is any set), we define the support of f as the set
supp(f) = {a ∈ A : f(a) ̸= 0}. For B ⊆ A, the function f |B : B → Z is defined as
f |B(b) = f(b) for all b ∈ B.

In this paper, all graphs will be undirected and simple. Given a graph G = (V, E) and a
vertex v ∈ V , we denote by N(v) the open neighbourhood of v, i.e. the set of all vertices
adjacent to v. We often use n for the number of vertices of G, and denote the cutwidth of G

by ctw. We sometimes write V (G) for the vertex set of the graph G.
Note that, if G is not connected, we can count the number of q-colorings in each connected

component and multiply them to get the total number of q-colorings of G. Therefore, we
may assume that G is connected.

Given a graph G = (V, E), and lists L : V → 2[q], a list q-coloring of G is a coloring
c : V → [q] of its vertices such that c(u) ̸= c(v) for all edges uv and c(v) ∈ L(v) for all
vertices v. We will often abbreviate “list q-coloring” to “coloring”. For a subset B ⊆ V (G),
we will use the abbreviation c(B) = {c(v) : v ∈ B}.

Cutwidth and treewidth are graph parameters which are often used in parameterized
complexity. Informally, treewidth describes how far a graph is from being a tree. The
cutwidth is defined as follows.

▶ Definition 3. The cutwidth of a graph G is the smallest k such that its vertices can be
arranged in a sequence v1, . . . , vn such that for every i ∈ [n − 1], there are at most k edges
between {v1, . . . , vi} and {vi+1, . . . , vn}.

We recall the definition of Tutte polynomial.

▶ Definition 4. For a graph G, we denote by T (G; x, y) the Tutte polynomial of G evaluated
at the point (x, y). If G has no edges we have T (G; x, y) = 1. Otherwise we have

T (G; x, y) =
∑

A⊆E(G)

(x − 1)r(E)−r(A)(y − 1)|A|−r(A)

where r(A) = |V (G)| − k(A) indicates the rank of the edge set A and k(A) indicates the
number of connected components of (V, A).

Note that T (G; 1, 2) is exactly the number of spanning connected edge sets.
We denote the counting version of a problem by using the prefix #, and the counting

modulo p version of by using #p (e.g. #pSAT, #pCSP).

2.2 The color compatibility matrix and its rank
Given a subset A ⊆ V , we use colL(A) to denote the set of all list q-colorings of G[A]. If it
is clear which lists are used, we omit the subscript.

STACS 2022



36:6 Tight Bounds for Counting Colorings and Connected Edge Sets

It is often useful to color parts of the graph separately, and then “combine” those colorings.
If two colorings can be combined without conflicts, we call them compatible:

▶ Definition 5. For subsets A, B ⊆ V and colorings x ∈ col(A), z ∈ col(B), we say that x

and z are compatible, written x ∼ z, if
x(v) = z(v) for all v ∈ A ∩ B, and
x(u) ̸= z(v) for all uv ∈ E, where u ∈ A and v ∈ B.

For a set of colorings S ⊆ col(B), we write S[x] for the set of colorings y ∈ S that are
compatible with x.

If x ∼ z, then we define x ∪ z as the q-list coloring of G[A ∪ B] such that (x ∪ z)(a) = x(a)
for all a ∈ A and (x ∪ z)(b) = z(b) for all b ∈ B. This is well-defined by the definition above.

A key definition for this paper is the following.

▶ Definition 6. Let (X ∪ Y, E) be a bipartite graph and q a natural number. The qth color
compatibility matrix M is indexed by all q-colorings of X and Y , with

M [x, y] =
{

1, if x ∼ y,

0, otherwise,

for x ∈ col(X) and y ∈ col(Y ).

We denote the color compatibility matrix indexed by all q-colorings associated with the
bipartite graph that is matching on t vertices by Jt, and short-hand J := J1.

We will show that, if p divides q − 1, we can count all q-list colorings modulo p more
quickly due to the following bound on the rank of the color compatibility matrices.

▶ Lemma 7. Let p be a prime, q a natural number and let G = (X ∪ Y, E) be a bipartite
graph with qth color compatibility matrix M . Then the rank of M over Fp satisfies

rankp(M) ≤

{
(q − 1)|E| if p divides q − 1,

q|E| otherwise.

Moreover, equality is achieved if G is a perfect matching.

The proof can be found in the full version of our paper [15].
In particular, Jt is invertible mod p if and only if p does not divide q − 1.

3 Algorithm for #q-coloring modulo p

In this section we prove the first part of the first item of Theorem 1:

▶ Theorem 8. Let G be a graph with n vertices and cutwidth ctw. Given an integer q ≥ 3
and a prime p that divides q − 1, there is an (q − 1)ctwnO(1) algorithm for counting list
q-colorings modulo p.

3.1 Definitions and overview
We first introduce some additional notation and definitions needed in this section. Let q be
an integer and let p be a prime that divides q − 1. We are given a graph G = (V, E) with
the cutwidth ordering v1, . . . , vn of the vertices. Without loss of generality, we may assume
that G is connected. We write Gi = G[{v1, . . . , vi}] and

Li = {v ∈ V (Gi) : vvj ∈ E for some j > i}.

Note that by definition of cutwidth, Li ⊆ Li−1 ∪ {vi} and |Li| ≤ ctw for all i (since the
number of endpoints of a set of edges is upper bounded by the number of edges in the set).
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Let i ∈ [n] be given and write Xi = Li ∪ {vi} for the set of vertices left of the cut that
either have an edge in the cut, or are the rightmost vertex left of the cut. We also define
Yi = {vi+1, . . . , vn} ∩ N(Xi). Figure 1 illustrates this notation.

v1 v3 v4v2 v5 v6 v7

Figure 1 In the above graph, L4 = {v1, v3}, X4 = {v1, v3, v4} (the red vertices) and Y4 = {v5, v7}.

Let Ti[x] be the number of extensions of x ∈ col(Xi) to a coloring of Gi = G[{v1, . . . , vi}].
Equivalently, Ti[x] gives the number of colorings of Gi that are compatible with x.

A standard dynamic programming approach builds on the following observation.

▶ Lemma 9 (Folklore). For x ∈ col(Xi),

Ti[x] =
∑

z∈col(Xi−1)
z∼x

Ti−1[z].

The proof can be found in the full version of our paper [15]. Since | col(Xi)| may be of size
q|Xi|, we cannot compute Ti in its entirety within the claimed time bound. The idea of our
algorithm is to use the same dynamic programming iteration, but to compute the values of
Ti only for a subset S ′

i ⊆ col(Xi) of the possible colorings which is of significantly smaller
size. In fact, we will compute a function T ′

i : S ′
i → Fp that does not necessarily agree with

Ti on S ′
i. The important property that we aim to maintain is that T ′

i carries the “same
information” about the number of colorings modulo p as Ti does. This is formalised below.

▶ Definition 10. Let H = (X ∪ Y, E) be a bipartite graph with color compatibility matrix M .
Let T, T ′ : col(X) → Fp. We say T ′ is an M -representative of T if∑

x∈col(X)

M [x, y]T [x] ≡p

∑
x∈col(X)

M [x, y]T ′[x] for all y ∈ col(Y ).

In other words, T ′ is an M -representative of T if M⊤ · T ≡p M⊤ · T ′.
Above we left the lists and the integer q implicit. We recall that the color compatibility

matrix has entries M [x, y] = 1 if x ∈ col(X) and y ∈ col(Y ) are compatible, and M [x, y] = 0
otherwise. Let i ∈ [n − 1] be given. Let Mi be the color compatibility matrix of the bipartite
graph given by the edges between Xi and Yi.

Then for y ∈ col(Yi),∑
x∈col(Xi)

Mi[x, y]Ti[x]

gives the number of colorings of Gi compatible with y. If we can compute T ′
n−1 that is

an Mn−1-representative of Tn−1, then by Lemma 9 we can compute the number of q-list
colorings of the graph (modulo p) as∑

y∈col(G[vn])

∑
x∈supp(T ′

n−1)

Mn−1[x, y]T ′
n−1[x].

It is an exercise in linear algebra to show that there always exists a T ′ that M -represents T

with | supp(T ′)| ≤ rank(M). We also need to make sure that we can actually compute this
T ′ within the desired time complexity and therefore reduce the support in a slightly more
complicated fashion in Section 3.2. We then prove an analogue of Lemma 9 in Section 3.3,
and describe our final algorithm in Section 3.4.

STACS 2022



36:8 Tight Bounds for Counting Colorings and Connected Edge Sets

3.2 Computing a reduced representative
In this subsection, we show how to find a function T ′ that M -represents T , while decreasing
an upper bound on the size of the support of the function.

▶ Definition 11. For a function f : col(X) → Fp we say that r ∈ X is a reduced vertex if
f(c) = 0 whenever c(r) = q.

The link between reduced vertices and the support of T : col(X) → Fp is explained
as follows. If R is a set of reduced vertices of T , then we can compute a set of colorings
containing the support of T of size at most (q − 1)|R|q|X|−|R|. Indeed, we may restrict to the
colorings that do not assign the color q to any vertex in R.

The following result allows us to turn vertices of degree 1 in H into reduced vertices.
The assumption that the vertex has degree 1 will be useful in proving the result because it
implies the associated compatibility matrix can be written as a Kronecker product with Jq

and another matrix.

▶ Lemma 12. There is an algorithm Reduce that, given a bipartite graph H with parts
X, Y and associated color compatibility matrix M , a function T : col(X) → Fp with reduced
vertices R ⊆ X and a vertex v ∈ X \ R of degree 1 in H, outputs a function T ′ : col(X) →
Fp with reduced vertices R ∪ {v} that is an M-representative of T . The run time is in
O((q − 1)|R|q|X|−|R|).

The proof is given in Appendix A. We say that a function T : col(X) → Fp is fully reduced if
every vertex v ∈ X of degree 1 is a reduced vertex of T . In order to keep the running time
low, we will ensure that R is relatively large whenever we apply Lemma 12.

3.3 Computing T ′
i from T ′

i−1

Recall that Ti[x] gives the number of colorings of Gi that are compatible with x ∈ col(Xi)
and that Mi is the color compatibility matrix of the bipartite graph between Xi and Yi

(corresponding to the ith cut).

▶ Lemma 13. Let i ∈ [n − 1]. Suppose that T ′
i−1 is an Mi−1-representative of Ti−1 and that

T ′
i−1 is fully reduced. Given T ′

i−1 and a set Ri−1 of reduced vertices for T ′
i−1, we can compute

a function T ′
i that is an Mi-representative of Ti in time O((q − 1)|Ri−1|q|Xi−1|−|Ri−1|+1),

along with a set Ri of reduced vertices for T ′
i such that |Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1.

Proof. Let i ∈ [n − 1] and let T ′
i−1 be Mi−1-representative of Ti−1 and fully reduced,

with Ri−1 a set of reduced vertices for T ′
i−1. We need to compute (in time O((q −

1)|Ri−1|q|Xi−1|−|Ri−1|+1)) a function T ′
i that is Mi-representative of Ti, along with a set

Ri of reduced vertices for T ′
i , such that |Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1.

We will work over Fp during this proof, in particular abbreviating ≡p to =. Analogous to
Lemma 9, we define, for x ∈ col(Xi),

T ′
i [x] =

∑
z∈col(Xi−1)

z∼x

T ′
i−1[z]. (1)

Note that∑
z∈col(Xi−1)

z∼x

T ′
i−1[z] =

∑
z∈supp(T ′

i−1)
z∼x

T ′
i−1[z].
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We compute T ′
i from T ′

i−1 as follows. Let

S ′
i−1 = {c ∈ col(Xi−1) : c(r) ̸= q for all r ∈ Ri−1}.

By the definition of reduced vertex, S ′
i−1 contains the support of T ′

i−1 since T ′
i−1 is fully

reduced. Recall that Xi \ {vi} ⊆ Xi−1, so any x ∈ col(Xi) is determined if we provide colors
for the vertices in Xi−1 ∪ {vi}. For a color c ∈ [q], let fc : {vi} → {c} be the function that
assigns color c to vi. For each z ∈ S ′

i−1, for each c ∈ [q] for which z ∼ fc, we compute

x = (z ∪ fc)|Xi ∈ col(Xi)

and increase T ′
i [x] by T ′

i−1[z] if it has been defined already, and initialise it to T ′
i−1[z]

otherwise. The remaining values are implicitly defined to 0. The running time is as claimed
because |S ′

i−1| ≤ (q − 1)|Ri−1|q|Xi−1|−|Ri−1| and |[q]| ≤ q.
Next, we compute a set Ri of reduced vertices for T ′

i . We set Ri = Xi \ (Ai ∪ Bi ∪ {vi}),
where

Ai = {u ∈ Xi \ {vi} : |N(u) ∩ Yi| ≥ 2}

and

Bi = {u ∈ Xi \ {vi} : |N(u) ∩ Yi| = 1 and uvi ∈ E}.

It is easy to see that Ai and Bi are disjoint. Within the (i − 1)th cut, each vertex in
Ai ∪ Bi has at least two edges going across the cut, so |Ri| + 2|Ai| + 2|Bi| ≤ ctw. Therefore,
|Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1.

We now show that Ri is indeed a set of reduced vertices. Suppose not, and let r ∈ Ri and
c ∈ col(Xi) with c(r) = q yet T ′

i [c] ̸= 0. Since T ′
i [c] ̸= 0, there exists z ∈ col(Xi−1) with z ∼ c

and T ′
i−1[z] ̸= 0. By definition r ∈ Xi \ {vi} ⊆ Xi−1. Moreover, z(r) = q since z ∼ c and

c(r) = q. Therefore r is not reduced for T ′
i−1. We now show r moreover has degree 1 in the

bipartite graph between Xi−1 and Yi−1 (corresponding to the (i − 1)th cut), contradicting
our assumption that T ′

i−1 is fully reduced. Since r ̸∈ Ai ∪ Bi, it has at most one edge going
over the (i − 1)th cut. Moreover, r ∈ Xi \ {vi} ⊆ Li, and so it has at least one edge to
Yi ⊆ Yi−1. So r has exactly one neighbor in Yi−1.

It remains to prove that T ′
i is Mi-representative of Ti. This technical part of the proof

can be found in the full version of our paper [15]. ◀

3.4 Analysis of final algorithm
We initialize T1 = 1, the all-ones vector. Indeed, each x ∈ col({v1}) has a unique extension
to G1 (namely itself). We then repeatedly apply the Reduce algorithm from Lemma 12
until we obtain a fully reduced function T ′

1 that is an M1-representative of T1, with some set
of reduced vertices R1. For i = 2, . . . , n, we repeat the following two steps.
1. Apply Lemma 13 with inputs (T ′

i−1, Ri−1) in order to obtain the vector T ′
i that is an

Mi-representative of Ti, and a set of reduced vertices Ri for T ′
i .

2. While Xi \ Ri has a vertex v of degree 1, apply the Reduce algorithm from Lemma 12
to (T ′

i , Ri), and add v to Ri.
At the end of step 2, we obtain a fully reduced function T ′

i that is an Mi-representative of
Ti. Moreover, the set Ri of reduced vertices has only increased in size compared to the set
we obtained in step 1. We apply Lemma 12 at most |Xi| times in the second step.
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We eventually compute T ′
n−1 that is an Mn−1-representative of Tn−1 with a fully reduced

set Rn−1. We output∑
y∈col(Yn−1)

∑
x∈col(Xn−1)

T ′
n−1[x]Mn−1[x, y].

Since T ′
n−1 is an Mn−1-representative of Tn−1, this gives the number of list colorings of

G modulo p. We may compute the expression above efficiently by reducing the second
summation to the colorings in

S ′
n−1 = {c ∈ col(Xn−1) : c(r) ̸= q for all r ∈ Rn−1}.

The total running time is now bounded by

C

n−1∑
i=1

|Xi|(q − 1)|Ri|q|Xi|−|Ri|

for some constant C > 0. By Lemma 13, |Xi \ Ri| ≤ (ctw − |Ri|)/2 + 1 for all i ∈ [n − 1].
For q ≥ 3, q1/2 < q − 1 and so

(q − 1)|Ri|q|Xi|−|Ri| ≤ q(q − 1)|Ri|(q1/2)ctw−|Ri| < q(q − 1)ctw.

This shows the total running time is of order (q − 1)ctwnO(1). This finishes the proof of
Theorem 8.

4 Lower bounds

There exists an efficient reduction from SAT to the problem #pSAT of counting the number
of satisfying assignments for a given boolean formula modulo p [5]. There also exists a
reduction from SAT to CSP(q, r), which preserves the number of solutions [12]. Putting
these two together gives a reduction from SAT to #pCSP(q, r).

In this section we give a reduction from #pSAT to #pList q-Coloring, the problem of
counting the number of valid list q-colorings of a given graph G with color lists (Lv)v∈V (G).
We use this to conclude the lower bounds of Theorem 1 and Theorem 2.

4.1 Controlling the number of extensions modulo p

Our main gadget can be attached to a given set of vertices, and has the property that for
each precoloring of the “glued on” vertices, there is a specified number of extensions. This is
made precise in the result below.

▶ Theorem 14. Let k ∈ N and f : [q]k → N. There exist a graph Gf , a set of vertices
B = {b1, . . . , bk} ⊆ V (Gf ) of size k and lists (Lv)v∈V (Gf ), such that for any α ∈ [q]k, there
are exactly f(α) list q-colorings c of Gf with c(bi) = α(i) for all i ∈ [k]. Additionally,
|V (Gf )| ≤ 20kqk+1 max(f) and Gf has cutwidth at most 6kqk+2.

The proof is given in Appendix B.

4.2 Reduction for counting q-colorings modulo p

In this section we prove the following result.
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▶ Theorem 15. Let p be a prime and let q ∈ N such that p does not divide q − 1. Assuming
SETH, there is no ε > 0 for which there exists an algorithm that counts the number of list
q-colorings modulo p for a given n-vertex graph, with a given cut decomposition of width ctw,
in time (q − ε)ctwnO(1).

Suppose now that p divides q − 1. Let q′ = q − 1. Then p does not divide q′ − 1 = q − 2
and so the result above applies. Noting that any algorithm for #List q-Coloring also
works for #List q′-Coloring, we find the following corollary.

▶ Corollary 16. Let p be a prime and let q ∈ N such that p divides q − 1. Assuming SETH,
there is no ε > 0 for which there exists an algorithm that counts the number of list q-colorings
modulo p for a given n-vertex graph, with a given cut decomposition of width ctw, in time
(q − 1 − ε)ctwnO(1).

Combining the two results above with Theorem 8 gives Theorem 1.
We use the notion of constraint satisfaction problems (CSP). Informally, a CSP asks if

there is an assignment of values from a given domain to a set of variables such that they
satisfy a given set of relations. We denote by CSP(q, r) the CSP with domain [q] and
constraints of arity at most r. We use #CSP(q, r) to denote the problem of counting the
number of solutions of a given instance of CSP(q, r). We use the following result from [12].

▶ Theorem 17 ([12], Theorem 2.5). For each prime p, for every integer q ≥ 2 and ε > 0
there is an integer r, such that the following holds. Unless the SETH fails, #pCSP(q, r) with
n variables and m constraints cannot be solved in time (q − ε)n(n + m)O(1).

This theorem follows from the proof of [12, Theorem 2.5], since their reduction preserves the
number of solutions.

Proof of Theorem 15. Let q ∈ N and let p be a prime that does not divide q − 1. Fix ϵ > 0
and let r be given from Theorem 17. We will reduce a given instance of #pCSP(q, r) with
constraints C1, . . . , Cm and variables x1, . . . , xn to an instance (G, L) of #pList q-Coloring
on Op,r,q(nm) vertices of cutwidth n + Op,r,q(1).

The graph G contains 2m columns with n vertices: for each constraint Cj , and for each
variable xi, we create two vertices si,j and ti,j (where j ∈ [m] and i ∈ [n]), which all get
{1, . . . , q} as list. For all j ∈ [m − 1], we place an edge between ti,j and si,j+1.

The color assigned to si,1 will be interpreted as the value assigned to variable xi. Fix
j ∈ [m]. We create gadgets on some vertex set Vj using Theorem 14, that are “glued” on
subsets of vertices from Cj = {si,j , ti,j : i ∈ [n]}.
1. For each i ∈ [n], if j < m, we create a gadget on boundary set {si,j , ti,j} which ensures

that we may restrict to counting list colorings c of (G, L) with c(si,j) = c(si,j+1).
2. There is a gadget on a boundary set of size at most r (the si,j corresponding to the

variables involved in the jth constraint), for which the number of extensions of any
coloring of the boundary to this gadget is equivalent to 0 modulo p whenever the jth
constraint is not satisfied, and equal to one otherwise.

A broad overview of the construction is depicted in Figure 2.
For the first property, we need the fact that p does not divide q − 1: this ensures that

the color compatibility matrix of a single edge is invertible, which will allow us to “transfer
all information about the colors”. The precise construction of the gadgets is deferred to
Appendix B.

We obtain a cutwidth decomposition of the graph by first running over the vertices in
the order

C1 ∪ V1, C2 ∪ V2, . . . , Cm ∪ Vm.
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C1

V1

C2

V2

C3

V3

Figure 2 A sketch overview of the construction is given on the left-hand side and a more detailed
view of two of the columns is given on the right-hand side. The red areas ensure the preservation
of information, as described in point 1. The blue area checks whether the clause is satisfied, as
described in point 2.

Within Cj ∪ Vj , we first list s1,j , t1,j and the vertices in the gadget that has those vertices as
boundary set, and then repeat this for s2,j , t2,j , etcetera. Finally, we run over the vertices in
the gadget that verifies the jth constraint. At each point, the cutwidth is bounded by n plus
a constant (that may depend on p, q and r). ◀

4.3 Corollaries
We now extend the lower bound of Theorem 15 to counting connected edge sets via the
following problem.

▶ Definition 18. Given a graph G, two q-colorings c and c′ are equivalent if there is some
permutation π : [q] → [q] such that c = π ◦ c′. We will refer to these equivalence classes as
essentially distinct q-colorings and denote the problem of counting the number of essentially
distinct q-colorings modulo a prime p by #pEssentially distinct q-coloring.

A simple reduction now gives us the following lower bound for #pEssentially distinct
q-coloring.

▶ Corollary 19. Let p be a prime and q ∈ N an integer such that p does not divide q − 1.
Assuming SETH, there is no ϵ > 0 for which there exists an algorithm that counts the number
of essentially distinct q-colorings mod p for a given n-vertex graph that is not (q −1)-colorable,
with a given cut decomposition of cutwidth ctw, in time (q − ϵ)ctwnO(1).

Proof. Let (G, L) be an instance of list coloring with cut decomposition v1, . . . , vn. We
construct an instance of #pEssentially distinct q-coloring. The graph G′ has vertex set

V (G′) = V (G) ∪ {ui
c : c ∈ [q], i ∈ [n]}.

We add edges such that the vertices {ui
c : c ∈ [q]} induce a q-clique for all i ∈ [n], and for

i ∈ [n − 1] we add the edges ui
cui+1

c′ for all c ̸= c′. This ensures that, if u1
c is colored c, then

ui
c is colored c for all i ∈ [n]. We now also add edges ui

cui for all c ̸∈ Lvi
. Our new cut

decomposition is

v1, u1
1, . . . , u1

q, v2, u2
1, . . . , un−1

q , vn, un
1 , . . . , un

q .

Note that ctw(G′) ≤ ctw(G)+q2, |V (G′)| ≤ (q+1)|V (G)| and that G′ is not (q−1)-colorable.
By Theorem 1, it suffices to show that the number of essentially distinct q-colorings of G′

equals the number of list q-colorings of (G, L). We will do this by defining a bijective map.
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G

G′ \ G

v1

u1
1

u1
2 u1

3

v2

u2
1

u2
2 u2

3

v3

u3
1

u3
2 u3

3

Figure 3 Example of the construction on (a part of) a graph G, with the cliques indicated in red.
In this case q = 3 and we have Lv1 = {3}, Lv2 = {2, 3} and Lv3 = {2}.

Let α be a list coloring of (G, L). Then we can color G′ by setting α′(v) = α(v) for
v ∈ V (G) and α′(ui

c) = c for c ∈ [q] and i ∈ [n]. This gives us a mapping γ : α 7→ α′, where
α′ is the equivalence class of α′. We find an inverse map by first fixing a representative α′

for α′, such that α′(u1
c) = c for c ∈ [q]. We can do this since G′[{u1

1, . . . , u1
q}] is a clique and

thus each u1
c must get a unique color. Also note that since every color is now used, the rest

of the coloring is also fixed and thus we find a unique representative this way. We now map
c′ to c′|V (G). Note that these two maps are well defined and compose to the identity map.
We conclude that the number of list colorings of (G, L) is equal to the number of essentially
distinct colorings of G′. ◀

To achieve the lower bound in Theorem 2, we use an existing argument from [1] to extend
this bound to #pConnected Edge Sets. For this we will need the following definition.

▶ Definition 20. The k-stretch of a graph G is the graph obtained from G by replacing each
edge with a path of length k. We denote the k-stretch of G by kG.

Note that kG has the same cutwidth as G.
We now show that, assuming SETH, there is no ϵ > 0 for which there exists an algorithm

that counts the number of spanning connected edge sets mod p of n-vertex graphs of cutwidth
at most ctw in time O((p − ϵ)ctwnO(1)).

Proof. This proof closely follows a reduction from Annan [1], using ideas from Jaeger,
Vertigan and Welsh [17].

Let G be any graph with cutwidth ctw and let p be a prime. Note that the number of
spanning connected edgesets of G is equal to the value of T (G; 1, 2), the Tutte polynomial of
G at the point (1, 2). The following formula is found in ([17], proof of Theorem 2)

T (kG; a, b) = (1 + a + · · · + ak−1)n−r(G)T

(
G; ak,

b + a + · · · + ak−1

1 + a + · · · + ak−1

)
.

Choosing a = 1, b = 2 and k = p − 1, gives

T (p−1G; 1, 2) = (p − 1)n−r(G)T

(
G; 1,

2 + p − 2
p − 1

)
≡p (−1)n−r(G)T (G; 1 − p, 0).

Here we use the fact that for any multivariate polynomial P (x, y) ≡p P (x + tp, y + sp) for
any s, t ∈ Z. We find that, since the k-stretch of a graph G has the same cutwidth as G, an
algorithm that counts the number of spanning connected edgesets (mod p) on a graph with
bounded cutwidth, also gives the Tutte polynomial at (1 − p, 0) mod p.
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Using another well known interpretation of the Tutte polynomial [23] we can relate the
T (G; 1 − p, 0) to the chromatic polynomial P (G; p) as follows:

P (G; p) = (−1)r(G)pk(G)T (G; 1 − p, 0).

Note that we may assume that the number of connected components k(G) = 1 (and thus
r(G) = n − 1), since the number of spanning connected edgesets is trivially 0 if G has more
than one component. We want to get rid of the remaining factor of p (since we will work
mod p). To do this we will count the number of essentially distinct colorings (different up to
color-permutations) using exactly p colors instead. This will turn out to be at least as hard
as counting all colorings.

Let G be a graph that is not (p − 1)-colorable. With this assumption, the number of p

colorings of G is p! times the number Cp(G) of essentially distinct p-colorings of G, since any
coloring uses all colors and thus can be mapped to p! equivalent colorings by permuting the
colors. So

(−1)n−1pT (G, 1 − p, 0) = P (G; p) = p(p − 1)!Cp(G),

which holds over the real numbers hence we may divide both sides by p. By Wilson’s Theorem
(p − 1)! ≡p −1, so we find

(−1)n−1T (G, 1 − p, 0) ≡p −Cp(G).

Hence we can use the number of spanning connected edgesets (mod p) of the (p − 1)-stretch
of G to find the Tutte polynomial at (1 − p, 0) mod p and then also the number of essentially
distinct colorings. The lower bound of Theorem 2 now follows from Corollary 19 (with q = p).
The upper bound is proved in the full version of our paper [15]. ◀

5 Conclusion

In this paper we give tight lower and upper bounds for counting the number of (list) q-colorings
and connected spanning edge sets of graphs with a given cutwidth decomposition of small
cutwidth. Our results specifically relate to list q-coloring and essentially distinct q-coloring,
but they can easily be extended to normal q-coloring for certain cases. In particular, if q < p,
we may apply Corollary 19, since in the setting of the corollary, the values differ by q! which
is nonzero modulo p. If the chromatic number χ(G) ≥ p, then the number of q-colorings is
trivially 0 mod p, since the number of q-colorings is a multiple of χ(G). This leaves us with
the rather specific case of χ(G) < p ≤ q, for which the exact complexity remains unresolved.

Our results on the modular counting of colorings show that the modulus can influence the
complexity in interesting ways, and that in some cases this effect can be directly explained
by the rank of the compatibility matrix.

Our results leave several directions for further research:
What is the fine-grained complexity of evaluating other points of the Tutte polynomial
(modulo p)?
What is the complexity of counting homomorphisms to graphs different from complete
graphs, e.g. cycles or paths. Is it still determined by the rank of an associated compatibility
matrix?

Another question in the direction of fast decision problems is how small representative
sets we can get for the compatibility matrix of graphs other than complete bipartite graphs
(which is equivalent to the setting of [13, Theorem 1.2]) or matchings which has been studied
for the decision version in [18].
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A Proof of Lemma 12

Let H a bipartite graph with parts X, Y and associated color compatibility matrix M . Let
T : col(X) → Fp be a function with reduced vertices R ⊆ X and let vertex v ∈ X \ R

be a vertex of degree 1 in H. We need to find a function T ′ : col(X) → Fp with reduced
vertices R ∪ {v} that is M -representative of T . (And need to show this can be done in time
O((q − 1)|R|q|X|−|R|).)

We may restrict to colorings x that do not assign value q to any element of R. There are
at most (q − 1)|R|q|X\R| such colorings. We set

T ′[x] =

{
0, if x(v) = q,

T [x] − T [x′], where x′ is obtained from x by changing the value of v to q, otherwise.

This computation is done in time linear in the number of the colorings x we consider, so the
running time is in O((q − 1)|R|q|X\R|).

First we will show that T ′ is an M -representative of T . Let y ∈ col(Y ) be a coloring of
the right hand side of the bipartite graph H. We need to show that∑

x∈col(X)
x∼y

T [x] ≡p

∑
x∈col(X)

x∼y

T ′[x].

By definition,∑
x∈col(X)

x∼y

T ′[x] =
∑

x∈col(X)
x∼y

x(v)=q

0 +
∑

x∈col(X)
x∼y

x(v)̸=q

T [x] − T [x′].

http://arxiv.org/abs/1905.10682
https://doi.org/10.1109/FOCS.2006.11
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3357713.3384264
https://doi.org/10.1109/FOCS.2006.7
https://doi.org/10.1007/978-3-642-04128-0_51
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Thus it remains to show that∑
x∈col(X)

x∼y
x(v)̸=q

−T [x′] ≡p

∑
x∈col(X)

x∼y
x(v)=q

T [x].

Let x ∈ col(X) with x(v) = q. We show the equality by proving that the number of times
T [x] appears on the left hand side equals the number of times T [x] appears on the right
hand side, modulo p. Let w ∈ Y be the unique neighbor of the vertex v.

First assume that x ∼ y. Then y(w) ̸= q. If we adjust x to the coloring xi, which is
equal to x apart from assigning color i to v instead of q, then xi ∼ y if and only if i ̸= y(w).
Hence the term −T [x] appears q − 2 times on the left hand side, and T [x] appears once on
the right hand side. Since p divides q − 1, we find q − 2 ≡p −1 and hence both contributions
are equal modulo p.

If x ̸∼ y, then either x does not appear on both sides (because x|X\{v} is already
incompatible with y) or y(w) = q. If y(w) = q, then the term T [x] appears q − 1 ≡p 0 times
on the left hand side by a similar argument as the above, and does not appear on the right
hand side. This shows the claimed equality and finishes the proof.

B Proofs omitted from Section 4

B.1 Proof of Theorem 14
We first reduce the lists of each bi to {1, 2} using the following gadget.

▶ Lemma 21. Let q, k ∈ N and let a ∈ [q]. There is a graph G with b, b′ ∈ V (G) and color
lists Lv ⊆ [q] for v ∈ V (G), such that Lb = [q] and the following two properties hold:

for all cb ∈ [q], there is a unique list coloring c of G with c(b) = cb,
for all list colorings c of G, if c(b) = a, then c(b′) = 1 and if c(b) ̸= a then c(b′) = 2.

Proof. We first note that it is easy to “relabel colors”, as shown in the construction3 in
Figure 4. We can therefore first make a gadget for which b′ has color list {a, a′} for some

b′

{a, a′}

{a, 1}

{1, a′}

{2, a′}

b′′

{1, 2}

Figure 4 A gadget to “relabel colors”. It has two special vertices b′ and b′′, and lists are depicted
with sets. For any list coloring c of the depicted gadget, if c(b′) = a, then c(b′′) = 1 and if c(b′) = a′,
then c(b′′) = 2. In both cases, there is a unique way to color the remaining vertices.

a′ ̸= a, and then relabel a, a′ to 1, 2. By symmetry, we can therefore assume that a = 1 (or
simply replace 1 with a and 2 with a′ in the argument below). Let

V = {b, b′} ∪ {si : i = 2, . . . , q} ∪ {ti : i = 2, . . . , q}

and

3 If a = 1 or a′ = 2 we slightly change the construction by removing the top left or top right vertex
respectively.
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E = {sib : i = 2, . . . , q} ∪ {sib
′ : i = 2, . . . , q} ∪ {sitj : i, j = 2, . . . , q}.

Now let Lb = [q], Lb′ = {1, 2} and Lti
= Lsi

= {1, i} for i ∈ {2, . . . , q}. A depiction is given
in Figure 5.

b
{1, . . . , q}

s2{1, 2} sq {1, q}

t2{1, 2} tq {1, q}

b′

{1, 2}

. . .

. . .

Figure 5 The construction of the list coloring instance of the proof of Lemma 21.

If a list coloring c of G satisfies c(b) = 1, then c(si) = i and thus c(ti) = 1 for each
i ∈ {2, . . . , q}. In particular c(s2) = 2 and c(b′) = 1.

If cb ∈ {2, . . . , q}, then any list coloring c with c(b) = cb satisfies c(si) = 1 and c(ti) = i

for all i ∈ {2, . . . , q}, and so c(b′) = 2.
This proves that, starting with the color cb ∈ [q] for b, there is always a unique extension

to a list coloring of G, and this satisfies the property that vertex b′ receives color 1 if cb = 1,
and receives color 2 otherwise. ◀

We also make use of the following construction.

▶ Lemma 22. Let k, ℓ ∈ N. There is a graph G, a subset of vertices B = {b1, . . . , bk} ⊆ V

of size k, and color lists Lv for all v ∈ V (G) such that:
Lbi

= {1, 2} for all i ∈ {1, . . . , k},
there are exactly ℓ list colorings c of G with c(B) = {1},
for each partial coloring cB of B with cB(B) ̸= {1}, there is a unique extension of cB to
a list coloring of G.

Proof. We start with V = B and add a path4 w1, . . . , wℓ−1 with color lists

Lwi
=


{2, 3} if i ≡3 1,

{1, 3} if i ≡3 2,

{1, 2} if i ≡3 0,

and add edges biw1 for i = 1, . . . , k. A depiction is given in Figure 6.
If a list coloring c satisfies c(bi) = 2 for some i ∈ [k], then c(w1) = 3, c(w2) = 1, c(w3) = 2

etcetera. Hence there is a unique extension of any partial coloring of B that assigns color 2
somewhere.

If c(bi) = 1 for all i ∈ [k], then we have a choice for the color of w1. If c(w1) = 3 then we
get the same propagation as before, however if c(w1) = 2, then we have a choice for the color
of w2. Using a simple induction argument we find that the number of possible list colorings
with c(B) = 1 equals ℓ. ◀

4 When ℓ = 1, we add no vertices of the form wi and the statements of the lemma immediately follow.
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b1

{1, 2}

bk

{1, 2}

w1

{2, 3}

w2

{1, 3}

w3

{1, 2}

wℓ−1

{2, 3}

. . .

. . .

Figure 6 Construction in the proof of Lemma 22 when ℓ ≡3 2.

We are now ready to construct the main gadget.

Proof of Theorem 14. Let f ∈ [q]k. We create vertices b1, . . . , bk and give them all [q] as
list.

For each partial coloring α ∈ [q]k, we create a graph Gα that contains b1, . . . , bk in their
vertex set, but the graphs are on disjoint vertex sets otherwise (we “glue” the graphs on the
special vertices b1, . . . , bk). It suffices to show that we can find lists for the “private” vertices
of Gα such that the number of extensions of a coloring cB of B is 1 if cB(bi) ̸= α(i) for some
i ∈ [k], and f(α) otherwise. The resulting gadget will then have 1 · 1 · . . . · 1 · f(α) = f(α)
possible extensions for the precoloring α, as desired.

We now turn to constructing the gadget Gα for a fixed coloring α ∈ [q]k. We first reduce
to the case in which each bi has {1, 2} as list. Let i ∈ [k]. Using Lemma 21 with a = α(i), we
obtain a gadget Hb,b′ and identify the special vertex b with bi. For each α, we obtain a new
set of vertices b′

1, . . . , b′
k with lists {1, 2}. We then glue these onto the special vertices from a

gadget obtained by applying Lemma 22 with ℓ = f(α). If b1, . . . , bk are colored as specified
by α, then b′

1, . . . , b′
k all receive color 1 and Gα has f(α) possible extensions; however if

some bi receives the wrong color, the corresponding b′
i receives color 2 and there is a unique

extension to the rest of Gα.
It remains to show the bounds on the number of vertices and the cutwidth. We give the

very rough upperbound of 6kqk+2 on the cutwidth. The gadget from Lemma 21 has cutwidth
at most q2 + 6 (since this is an upper bound on the number of edges in that construction).
The gadgets from Lemma 22 have cutwidth at most k. A final cut decomposition can be
obtained by first enumerating the vertices in B, and then adding the cut decompositions of
each Gα, one after the other.

Finally the number of vertices of the graph is upper bounded by qk times the maximum
number of vertices of the graph Gα. The gadget of Lemma 21 has at most 2q + 6 vertices
and there are k of them, so they contribute at most 12kq vertices. The gadgets from Lemma
22 add at most f(α) vertices. In total,

|V (Gf )| ≤ 20kqk+1 max(f). ◀

B.2 Remaining details of the proof of Theorem 15
We first describe the gadgets for the “color transfer” (the first desired property). Let
j ∈ [m − 1] and i ∈ [n]. We will apply Theorem 14 to a function fi,j with boundary set
Bi,j = (si,j , ti,j) and max(fi,j) = p, resulting in a graph on Op,q(1) vertices. Let J1 be the
q × q coloring compatibility matrix of a single edge, and let J−1

1 denote its inverse over Fp
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(that is, J−1
1 J1 ≡p Iq, the q × q identity matrix). We “choose a representative” J̃1, which has

entries in {1, . . . , p} that are equivalent to those in J−1
1 modulo p. For c1, c2 ∈ [q] possible

colors for si,j and ti,j respectively, we set

fi,j(c1, c2) = J̃1[c1, c2].

Let Vi,j denote the vertices in the gadget obtained by applying Theorem 14 to (fi,j , Bi,j)
that are not in Bi,j . Let c1, c3 ∈ [q]. The number of list colorings c of the graph induced on
Bi,j ∪ Vi,j ∪ {si,j+1} with c(si,j) = c1 and c(si,j+1) = c3 is equal to∑

c2∈[q]

fi,j(c1, c2)J1[c2, c3] = (J̃1J1)[c1, c3],

since for any coloring c2 we have fi,j(c1, c2)J1[c2, c3] such colorings with c(ti,j) = c2, by
definition of fi, j and J1. Therefore, modulo p this number of extensions is equal to 1 if
c1 = c3 and 0 otherwise, as desired.

We now describe the gadgets that check the constraints. Let j ∈ [m] and let i1, . . . , iℓ

be given so that the jth constraint only depends on the variables xi1 , . . . , xiℓ
(where by

assumption ℓ ≤ r). We will apply Theorem 14 to a function gj with boundary set Bj =
(si1,j , . . . , siℓ,j) and max(gj) = p, resulting in a graph on Op,q,ℓ(1) = Op,q,r(1) vertices. We
set gj(c1, . . . , cℓ) to be equal to 1 if the assignment (c1, . . . , cℓ) to (xi1 , . . . , xiℓ

) satisfies the
jth constraint, and p otherwise. This ensures the second property described in the proof of
Theorem 15.
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