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—— Abstract

The point-to-set principle of J. Lutz and N. Lutz (2018) has recently enabled the theory of computing
to be used to answer open questions about fractal geometry in Euclidean spaces R™. These are
classical questions, meaning that their statements do not involve computation or related aspects of
logic.

In this paper we extend the reach of the point-to-set principle from Euclidean spaces to arbitrary
separable metric spaces X. We first extend two fractal dimensions — computability-theoretic versions
of classical Hausdorff and packing dimensions that assign dimensions dim(z) and Dim(z) to individual
points x € X — to arbitrary separable metric spaces and to arbitrary gauge families. Our first two
main results then extend the point-to-set principle to arbitrary separable metric spaces and to a
large class of gauge families.

We demonstrate the power of our extended point-to-set principle by using it to prove new
theorems about classical fractal dimensions in hyperspaces. (For a concrete computational example,
the stages Eo, E1, E2, ... used to construct a self-similar fractal F in the plane are elements of the
hyperspace of the plane, and they converge to E in the hyperspace.) Our third main result, proven
via our extended point-to-set principle, states that, under a wide variety of gauge families, the
classical packing dimension agrees with the classical upper Minkowski dimension on all hyperspaces
of compact sets. We use this theorem to give, for all sets F that are analytic, i.e., X1, a tight bound
on the packing dimension of the hyperspace of E in terms of the packing dimension of FE itself.
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Extending the Reach of the Point-To-Set Principle

1 Introduction

It is rare for the theory of computing to be used to answer open mathematical questions —
especially questions in continuous mathematics — whose statements do not involve computation
or related aspects of logic.! The point-to-set principle [22], described below, has enabled
several recent developments that do exactly this. This principle has been used to obtain
strengthened lower bounds on the Hausdorff dimensions of generalized Furstenberg sets [27],
extend the fractal intersection formula for Hausdorff dimension from Borel sets to arbitrary
sets [25], and prove that Marstrand’s projection theorem for Hausdorff dimension holds for any
set £ whose Hausdorff and packing dimensions coincide, whether or not E is analytic [26].2
(See [5, 6, 23, 24] for reviews of these developments.) More recently, the point-to-set principle
has been used to prove that V' = L implies that the maximal thin co-analytic set has
Hausdorff dimension 1 [40] and that the Continuum Hypothesis implies that every s € (0, 1]
is the Hausdorff dimension of a Hamel basis of the vector space R over the field Q [21].
These applications of the point-to-set principle all concern fractal geometry in Euclidean
spaces R™.3

This paper extends the reach of the point-to-set principle beyond Euclidean spaces. To
explain this, we first review the point-to-set principle to date. (All quantities defined in
this intuitive discussion are defined precisely later in the paper.) The two best-behaved
classical fractal dimensions, Hausdorff dimension and packing dimension, assign to every
subset E of a Euclidean space R" dimensions dimy(F) and dimp (E), respectively. When E
is a “smooth” set that intuitively has some integral dimension between 0 and n, the Hausdorff
and packing dimensions agree with this intuition, but more complex sets E may have any
real-valued dimensions satisfying 0 < dimg(E) < dimp(E) < n. Hausdorfl and packing
dimensions have many applications in information theory, dynamical systems, and other
areas of science [2, 7, 14, 35].

Early in this century, algorithmic versions of Hausdorff and packing dimensions were
developed to quantify the information densities of various types of data. The computational
resources allotted to these algorithmic dimensions range from finite-state to computable
enumerability and beyond, but the point-to-set principle concerns the computably enumerable
algorithmic dimensions introduced in [20, 1].* These assign to each individual point x in a
Euclidean space R™ an algorithmic dimension dim(z) and a strong algorithmic dimension
Dim(z). The point-to-set principle of [22] is a complete characterization of the classical
Hausdorff and packing dimensions in terms of oracle relativizations of these very non-classical
dimensions of individual points. Specifically, the point-to-set principle says that, for every
set F in a Euclidean space R",

dimy (E) = min sup dim* (z) (1.1)
ACN z€E

We use the adjective “classical” for theorems and questions whose statements do not involve computability
or logic, regardless of when they were proven or formulated. A “classical” theorem can thus be very
new.

These very non-classical proofs of new classical theorems have provoked new work in the fractal geometry
community. Orponen [34] has very recently used a discretized potential-theoretic method of Kaufman [16]
and tools of Katz and Tao [15] to give a new, classical proof of the two main theorems of [26].
Applications of the theory of computing — specifically Kolmogorov complexity — to discrete mathematics
are more numerous and are surveyed in [19]. Other applications to continuous mathematics, not
involving the point-to-set principle, include theorems in descriptive set theory [32, 12, 17], Riemannian
moduli space [43], and Banach spaces [18].

These have also been called “constructive” dimensions and “effective” dimensions by various authors.
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and

dimp (E) = min sup Dim* (z), (1.2)
ACN z€eFE
where the dimensions on the right are relative to the oracle A. The point-to-set principle
is so named because it enables one to use a lower bound on the relativized algorithmic
dimension of a single, judiciously chosen point in a set E to prove a lower bound on the
classical dimension of the set F.

The classical Hausdorff and packing dimensions work not only in Euclidean spaces, but
in arbitrary metric spaces. In contrast, nearly all work on algorithmic dimensions to date
(the exception being [29]) has been in Euclidean spaces or in spaces of infinite sequences
over finite alphabets. Our objective here is to significantly reduce this gap by extending the
theory of algorithmic dimensions, along with the point-to-set principle, to arbitrary separable
metric spaces. (A metric space X is separable if it has a countable subset D that is dense in
the sense that every point in X has points in D arbitrarily close to it.)

In parallel with extending algorithmic dimensions to separable metric spaces, we also
extend them to arbitrary gauge families. It was already explicit in Hausdorfl’s original
paper [8] that his dimension could be defined via various “lenses” that we now call gauge
functions. In fact, one often uses, as we do here, a gauge family p, which is a one-parameter
family of gauge functions @4 for s € (0,00). For each separable metric space X, each
gauge family ¢, and each set E C X, the classical p-gauged Hausdorff dimension dimjj(E)
and p-gauged packing dimension dim§(E) are thus well-defined. In this paper, for each
separable metric space X, each gauge family ¢, and each point x € X, we define the ¢-gauged
algorithmic dimension dim¥(z) and the ¢-gauged strong algorithmic dimension Dim?® (z)
of the point . We should mention here that there is a particular gauge family € that
gives the “un-gauged” dimensions in the sense that the identities dim%(E) = dimyg(F),
dim%(E) = dimp(E), dim?(z) = dim(z), and Dim?(z) = Dim(z) always hold.

Our first two main results (Theorems 4.1 and 4.2) extend the point-to-set principle to
arbitrary separable metric spaces and a wide variety of gauge families, proving that, for every
separable metric space X, every gauge family ¢ satisfying mild asymptotic constraints, and
every set & C X,

dim$(E) = min sup dim** () (1.3)
ACN z€E
and
dim$(E) = min sup Dim?*(z). (1.4)
ACN z€E

Various nontrivial modifications to both machinery and proofs are necessary in getting
from (1.1) and (1.2) to (1.3) and (1.4).

As an illustration of the power of our approach, we investigate the dimensions of hyper-
spaces. The hyperspace K(X) of a metric space X is the set of all nonempty compact subsets
of X, equipped with the Hausdorff metric [44]. (For example, the “stages” Fy, E1, Eo, ...
of a self-similar fractal E C R™ converge to F in the hyperspace R™.) The hyperspace of
a separable metric space is itself a separable metric space, and the hyperspace is typically
infinite-dimensional, even when the underlying metric space is finite-dimensional. One use
of gauge families is reducing such infinite dimensions to enable quantitative comparisons.
For example, McClure [30] defined, for each gauge family ¢, a jump @ (our notation) that is
also a gauge family, and he proved [31] for every self-similar subset E of a separable metric
space X,
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dimf;(K(E)) = dimp (E),

where 6 is the above-mentioned “un-gauged” gauge family.

Here we prove a hyperspace dimension theorem for the upper and lower Minkowski (i.e.,
box-counting) dimensions dim,, and dim . This states that, for every separable metric
space X, every gauge family ¢, and every E C X,

dim,(KC(E)) = dim¥, (F) (15)
and
dimy (K(E)) = dimiy (E). (1.6)

We note that it is implicit in [30] that these identities hold for totally bounded sets E and
gauge families ¢ satisfying a doubling condition.

Our third main result (Theorem 5.2) says that, for every separable metric space X, every
“well-behaved” gauge family ¢, and every compact set £ C X,

dimf(K(B)) = dim, (K(E)). (L.7)

Our proof of this result makes essential use of (1.6) and the point-to-set principle (1.4).

Finally, we use the point-to-set principle (1.4), the identities (1.6) and (1.7), and some
additional machinery to prove the hyperspace packing dimension theorem (Theorem 5.4),
which says that, for every separable metric space X, every well-behaved gauge family ¢, and
every analytic (i.e., £1, an analog of NP that Sipser famously investigated [37, 38, 39]) set
ECX,

dim&(K(E)) > dim&(E). (1.8)

It is implicit in [30] that (1.8) holds for all o-compact sets E.

At the time of this writing it is an open question whether there is an analogous hyperspace
dimension theorem for Hausdorff dimension.

David Hilbert famously wrote the following [10].

The final test of every new theory is its success in answering preexistent questions
that the theory was not specifically created to answer.

The theory of algorithmic dimensions passed Hilbert’s final test when the point-to-set principle
gave us the results in the first paragraph of this introduction. We hope that the machinery
developed here will lead to further such successes in the wider arena of separable metric
spaces.

2  Gauged Classical Dimensions

We review the definitions of gauged Hausdorff, packing, and Minkowski dimensions. We refer
the reader to [7, 28] for a complete introduction and motivation.

Let (X, p) be a metric space where p is the metric. (From now on we will omit p when
referring to the space (X, p).) X is separable if there exists a countable set D C X that is
dense in X, meaning that for every x € X and § > 0, there is a d € D such that p(x,d) < 6.
The diameter of a set E C X is diam(F) = sup {p(x,y) | z,y € E }; notice that the diameter
of a set can be infinite. A cover of £ C X is a collection U C P(X) such that £ C J; ¢, U,
and a d-cover of E is a cover U of E such that diam(U) < ¢ for all U € U.
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» Definition (gauge functions and families). A gauge function is a continuous,® nondecreasing
function from [0,00) to [0,00) that vanishes only at 0 [8, 36]. A gauge family is a one-
parameter family ¢ = {¢;|s € (0,00) } of gauge functions ¢ satisfying

©0s(8) = o(p(6)) as 6 — 0T
whenever s > t.

The canonical gauge family is @ = {05 |s € (0,00) }, defined by 6,(d) = §*. “Un-gauged”
or “ordinary” Hausdorff, packing, and Minkowski dimensions are special cases of the following
definitions, using ¢ = 6.

Some of our gauged dimension results will require the existence of a “precision family”
for the gauge family.

» Definition (precision family). A precision sequence for a gauge function ¢ is a function
a: N — QT that vanishes as r — oo and satisfies p(a(r)) = O(¢(a(r +1))) as r — oo.
A precision family for a gauge family ¢ = {ps | s € (0,00)} is a one-parameter family
a={as|s e (0,00)} of precision sequences satisfying

plas(r) _
2 ortan(r) <

reN

whenever s < t.
» Observation 2.1. «a.(r) = 275" is a precision family for the canonical gauge family 6.

» Definition (gauged Hausdorff measure and dimension). For every metric space X, set E C X,
and gauge function ¢, the p-gauged Hausdorff measure of E is

H¥?(E) = lim inf { > p(diam(U))

§—0t
veu

U is a countable §-cover of E} .

For every gauge family p = {4 |s € (0,00) }, the ¢-gauged Hausdorff dimension of E is
dimf;(F) = inf {s € (0,00) | H?*(E) =0}.

» Definition (gauged packing measure and dimension). For every metric space X, set F C X,
and ¢ € (0,00), let V5(FE) be the set of all countable collections of disjoint open balls with
centers in F and diameters at most J. For every gauge function ¢ and ¢ > 0, define the
quantity

PZ(E)= sup Z p(diam(U)).
Uevs(E) ey

Then the p-gauged packing pre-measure of E is
PY(E) = lim P{(FE),

6—0t

5 Some authors require only that the function is right-continuous when working with Hausdorff dimension
and left-continuous when working with packing dimension. Indeed, left continuity is sufficient for our
hyperspace packing dimension theorem.
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and the p-gauged packing measure of FE is

U is a countable cover of E } .

P¥(E) = inf { > PEW)

veu

For every gauge family ¢ = {¢s|s € (0,00) }, the p-gauged packing dimension of E is
dim$(E) =inf {s € (0,00) | P¥*(E) =0}.
» Definition (gauged Minkowski dimensions). For every metric space X, F C X, and

§ € (0,0), let

N(E,$) = min {|F|

FCXand EC UBé(x)},
zeF

where Bs(x) is the open ball of radius § centered at z. Then for every gauge family
© = {¥s}se(0,00) the p-gauged lower and upper Minkowski dimension of E are

dim?%,(F) = inf {s

I%H_l)(l)gf N(E,d)ps(d) = 0}
and

dimy,(E) = inf {s

limsup N(E, §)ps(d) = 0} ,

§—0+

respectively.

When X is separable, it is sometimes useful to require that the balls covering F have
centers in the countable dense set D. For all E C X and J € (0, 00), let

N(E,¥) :min{|F|

FCDand EC UB(;(x)}.
zeF

» Observation 2.2. If X is a separable metric space and ¢ = {ps}se(0,00) 95 @ gauge family,
then for all E C X,

1. dim%,(F) = inf {5

lim inf N (E =0¢.
iminf N(E, 8)s(9) 0}

2. dim),(E) = inf {s

limsup N (E, §)p,(8) = 0}.

6—07F

The following relationship between upper Minkowski dimension and packing dimension
was previously known to hold for the canonical gauge family 6, a result that is essentially
due to Tricot [42]. Our proof of this gauged generalization, is adapted from the presentation
by Bishop and Peres [3] of the un-gauged proof.

» Lemma 2.3 (generalizing Tricot [42]). Let X be any metric space, E C X, and ¢ a gauge
family.
1. If p(20) = O(ps(8)) as 6 — 0T for all s < t, then

dim&(E) > inf { supdim s, (E;) | E C U E; .
ieN ieN

2. If there is a precision family for ¢, then

dim%(E) < inf { supdim’y (E;) | E C U E; .
ieN ieN
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3 Gauged Algorithmic Dimensions

In this section we formulate algorithmic dimensions in arbitrary separable metric spaces and
with arbitrary gauge families.

For the rest of this paper, let X = (X, p) be a separable metric space, and fix a function
f:{0,1}* — X such that the set D = range(f) is dense in X. The metric space X is
computable if there is a computable function g : ({0,1}*)? x QT — Q that approximates p
on D in the sense that, for all v, w € {0,1}* and § € Q.

|g(v,w,6) - p(f(v),f(w))| < d.

Our results here hold for all separable metric spaces, whether or not they are computable,
but our methods make explicit use of the function f.

Following standard practice [33, 4, 19], fix a universal oracle Turing machine U, and
define the (plain) Kolmogorov complexity of a string w € {0,1}* relative to an oracle A C N
to be

C4(w) = min {Im|| = € {0,1}* and UA(r) = w},

i.e., the minimum number of bits required to cause U to output w when it has access to the
oracle A. The (plain) Kolmogorov complexity of w is then C(w) = C?(w).
We define the (plain) Kolmogorov complexity of a point ¢ € D to be

O(q) = min {C(w) |w € {0,1)° and f(w) =g},

noting that this depends on the enumeration f of D that we have fixed.
The Kolmogorov complezity of a point « € X at precision 6 € (0,00) is

Cs(x) =min {C(q) | ¢ € D and p(q,z) <d}.

The algorithmic dimension of a point x € X is

) . Cs(x)
dim(z) = lgrg(l)rlf Tog(1/0)’ (3.1)

and the strong algorithmic dimension of x is

Dim(z) = limsup Csla) (3.2)

5o+ log(1/0)
These two dimensions® have been extensively investigated in the special cases where X is
a Euclidean space R™ or a sequence space ¢ [23, 4].
Having generalized algorithmic dimensions to arbitrary separable metric spaces, we now
generalize them to arbitrary gauge families.
Let o = {ps|s € (0,00) } be a gauge family. Then, the ¢-gauged algorithmic dimension
of a point x € X is

dim¥(z) = inf {5

lim inf 205 @) (5) = o} : (3.3)

§—0+

6 The definitions given here differ slightly from the standard formulation in which prefix Kolmogorov
complexity is used instead of plain Kolmogorov complexity and the precision parameter ¢ belongs to
{277 | r € N}. The present formulation is equivalent to the standard one for un-gaugued dimensions
and facilitates our generalization to gauged algorithmic dimensions. In particular, plain Kolmogorov
complexity is only needed to accommodate gauge functions ¢ in which the convergence of ¢ to 0 as
§ — 0% is very slow.

48:7
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and the p-gauged strong algorithmic dimension of x is

Dim?(z) = inf {s

lim sup 295 ® o, (§) = 0 } , (3.4)
6—0+
Gauged algorithmic dimensions dim?(z) have been investigated by Staiger [41] in the
special case where X is a sequence space X¢.
A routine inspection of (3.1)—(3.4) verifies the following.

= dim(z) and Dim?(z) = Dim(z), where 0 is

» Observation 3.1. For all 2 € X, dim®(z)
= 0°.

the canonical gauge family given by 04(0)

A specific investigation of algorithmic (or classical) dimensions might call for a particular
gauge function or family for one of two reasons. First, many gauge functions may assign the
same dimension to an object under consideration (because they converge to 0 at somewhat
similar rates as § — 07) but additional considerations may identify one of these as being the
most precisely tuned to the phenomenon of interest. Finding such a gauge function is called
finding the “exact dimension” of the object under investigation. This sort of calibration has
been studied extensively for classical dimensions [7, 36] and by Staiger [41] for algorithmic
dimension.

The second reason, and the reason of interest to us here, why specific investigations might
call for particular gauge families is that a given gauge family ¢ may be so completely out of
tune with the phenomenon under investigation that the ¢-gauged dimensions of the objects
of interest are either all minimum (all 0) or else all maximum (all the same dimension as the
space X itself). In such a circumstance, a gauge family that converges to 0 more quickly
or slowly than ¢ may yield more informative dimensions. Several such circumstances were
investigated in a complexity-theoretic setting by Hitchcock, J. Lutz, and Mayordomo [11].

The following routine observation indicates the direction in which one adjusts a gauge
family’s convergence to 0 in order to adjust the resulting gauged dimensions upward or
downward.

» Observation 3.2. If ¢ and ¢ are gauge families with ps(8) = o(1ps(8)) as & — 0T for all
s € (0,00), then, for all z € X, dim?(z) < dim¥(z) and Dim?(z) < Dim"(z).

We now define an operation on gauge families that is implicit in earlier work [30] and is
explicitly used in the results of Section 5.

» Definition (jump). The jump of a gauge family ¢ is the family @ given 3, () = 27 1/%:(),
» Observation 3.3. The jump of a gauge family is a gauge family.

We now note that the jump of a gauge family always converges to 0 more quickly than
the original gauge family.

» Lemma 3.4. For all gauge families o and all s € (0,00), ps(0) = o(ps(d)) as & — 0.
Observation 3.3 and Lemma 3.4 immediately imply the following.

» Corollary 3.5. For all gauge families ¢ and allxz € X, dimg(sc) < dim*(x) and Dimg(x) <
Dim*¥(z).

The definitions and results of this section relativize to arbitrary oracles A C N in the
obvious manner, so the Kolmogorov complexities C4(¢q) and C£(z) and the dimensions
dim® (), Dim*(z), dim?* (), and Dim?*(z) are all well-defined and behave as indicated.
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» Observation 3.6. For all gauge families ¢, all x € X, and all s > 0,

_ Cs(x)ps(0) — 1
©s(0) '

The p-gauged algorithmic dimensions admit the following characterizations, the second
of which is used in the proof of our hyperspace packing dimension theorem.

log (205(58)58(5))

» Theorem 3.7. For all gauge families p and all x € X, the following identities hold.
1. dim?(x) = inf {5 ’ lim inf Cs(x)¢p4(0) = 0}.
50t

2. Dimg(x) = inf {s

lim sup Cs(z)ps(d) = 0},

§—0+

4 The General Point-to-Set Principle

We now show that the point-to-set principle of J. Lutz and N. Lutz [22] holds in arbitrary
separable metric spaces and for gauged dimensions. The proofs of these theorems are more
delicate and involved than those in [22]. This is partially due to the fact that the metric
spaces here need not be finite-dimensional, and to the weak restrictions we place on the
gauge family.

» Theorem 4.1 (general point-to-set principle for Hausdorff dimension). For every separable
metric space X, every gauge family v, and every set E C X,

dim$(E) > min sup dim® (x).
ACN z€E

FEquality holds if there is a precision family for ¢.

» Theorem 4.2 (general point-to-set principle for packing dimension). Let X be any separable
metric space, E C X, and ¢ a gauge family.
1. If (20) = O(ps(8)) and ps(8) = O(1/loglog(1/d)) as § — 0T for all s < t, then

dimg(E) > min sup Dim# (z).
ACN z€E

2. If there is a precision family for ¢, then

dim$(E) < min sup Dim?*(z).
ACN z€E

Proof of Theorem 4.2.

1. Assume that ¢;(26) = O (¢s(9)) and s(0) = O(1/loglog(1/4)) hold for all s < ¢. It
suffices to show that there exists A C N such that, for all z € F,

Dim?*(z) < dim&(E). (4.1)

Let s >t > u > dimj(E). Since u > dim{(F), Lemma 2.3 and our hypothesis on ¢ tell
us that there is a cover {E;};cz+ of E such that, for all ¢ € ZT,

dim’y(E;) < u. (4.2)
For each i € ZT and 6 € QN (0,1), let F(i,6) C D satisfy

|F(i,8)| = N(E;,5)

STACS 2022



48:10 Extending the Reach of the Point-To-Set Principle

and

Define h: ZT x QN (0,1) — ({0,1}*)* by

h(i,d) = (wi,a,l, e ?wi,5,N(Ei,5))7

where, recalling that f is the function mapping bit strings onto the dense set D,

F(i,6) = {f(wi,é,l)a cey f(wi,é,N(Eixé))} :

Let A be an oracle encoding h.
To prove (4.1), let € E. It suffices to show that

lim 20?('7”)908(5) = 0.

=0t

For this, let € > 0. It suffices to show that, for all sufficiently small § € Q*,

Cf(z) < log %@ (4.3)

For each 6 € QN (0,1), let 7(5) = ﬂog %—‘ and & = 2779 50 that % < §' < 4. Since s > t,
our hypothesis on ¢ tells us that there is a constant a > 0 such that, for all sufficiently

small 6 € QT
1 a a
< < . 4.4
P @) = 02 = 0 4
Since t > u, (4.2) tells us that, for all ¢ € N,
lim N(E;,8)e:(8) = 0.
Jim N (Ei, 0)¢: ()
Hence, for all 4 € N and all sufficiently small § € QT
. €
N(E;i, 6)pu(6) < % (4.5)
a
In particular, then, (4.4) and (4.5) tell us that, for all sufficiently small § € Q*,
N(E;, ) < — c (4.6)

= 2api(0) =~ 202(0)

For each i,k € Z* and § € QN (0,1), let m € {0,1}* be a string that encodes i, (d), and
k, with

|| = log k + O(logi 4 log r(9)).

Let M be an oracle Turing machine that, with oracle A and program m, outputs the
string w; 5 that is the k' component of h(i,d") (if there is one), where §' = 2779, Let
¢y be an optimality constant for M.

To see that (4.3) holds, choose i € Z* such that x € E;, and let § € QN (0,1). Let
8’ =277 and choose k € {1, el ]\AI(E“ 6’)} such that x € By (f(wi75f7k)). Then

f(wi,(;/’k) € DN Bsg(x) € DN Bs(x),
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so (4.6) gives, for all sufficiently small § € Q™

Ci(x) < CH(wis k)
< Coy (wisr i) + cnmr
<l +em
<logk + cpr + O(logi + log r(6))
< log N(E;,8") + O(logi + log r(3))

5

<log ———— + O(logi + logr(9)).
8550 T Ollogi+logr(d))
Since 17 is a constant and, by our assumption, logr(d) < log(log(1/8) +1) = O(1/¢:(9)) =
o(1/¢s(8)), the second term vanishes as ¢ — 07, affirming (4.3).

2. Let s >t > sup, Dim?(z). Then for each z € F and all sufficiently small § € Q*,
Cé(x) < log(1/pi(8)). For all § € Q7 let

Us = {Bs(f(w)) | CH(w) < log(1/¢1(5))} ,
and for each i € N, let
E,={z|Véd<1/i, x €Us}.

Then E C |J,.y Ei. For each § < 1/i, N(E;,0) < 2/¢¢(0), so N(E;,0)¢s(8) = o(1), and
therefore dim),(E;) < s. Assuming that there is a precision family for ¢, the result
follows by Lemma 2.3. <

5 Hyperspace Dimension Theorems

This section presents our main theorems.

As before, let X = (X, p) be a separable metric space. The hyperspace of X is the metric
space K(X) = (K(X), pu), where IC(X) is the set of all nonempty compact subsets of X and
pu is the Hausdorff metric [9] on K(X) defined by

pu(B. F) = s {sup ot ), sup p(E,) .
2€E yeF
where p(z, F') = infycr p(x,y) and p(E,y) = infzep p(z,y).

Let f:{0,1}* — X and D = range(f) be fixed as at the beginning of section 3, so that
D is dense in X. Let D be the set of all nonempty, finite subsets of D. It is well known and
easy to show that D is a countable dense subset of (X)), and it is routine to define from f
a function f : {0,1}* — K(X) such that range(f) = D. Thus K(X) is a separable metric
space, and the results in section 4 hold for K(X).

It is important to note the distinction between the classical Hausdorff and packing
dimensions dimy (F) and dimp (F) of a nonempty compact subset E of X and the algorithmic
dimensions dim(F) and Dim(FE) of this same set when it is regarded as a point in K(X).

Our first hyperspace dimension theorem applies to lower and upper Minkowski dimensions.
This theorem, which is proven using a counting argument, is very general, placing no
restrictions on the gauge family ¢ or the separable metric space X.

» Theorem 5.1 (hyperspace Minkowski dimension theorem). For every gauge family ¢ and
every £ C X,

dim?, (K(E)) = dim$,(E) and dim’y,(K(E)) = dimy, (E).

48:11
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Our third main result is the surprising fact that in a hyperspace, packing dimension and
upper Minkowski dimension are equivalent for compact sets.

» Theorem 5.2. For every separable metric space X, every compact set E C X, and every
gauge family ¢ such that ©(20) = O(ps(0)) and ps(d) = O(1/loglog(1/d)) as 6 — 0T for
all s <t and there is a precision family for o,

dimg (K(E)) = Ty, (K(E)).

The point-to-set principle is central to our proof of this theorem: We recursively construct
a single compact set L C F (i.e., a single point in the hyperspace K(FE)) that has high
Kolmogorov complexity at infinitely many precisions, relative to an appropriate oracle A. We
then invoke Theorem 3.7 to show that this L has high p-gauged strong algorithmic dimension
relative to A. By the point-to-set principle, then, IC(E) has high packing dimension.

» Observation 5.3. The conclusion of Theorem 5.2 does not hold for arbitrary sets E.

Proof. Let E = {1/n : n € N}. Then dlimi,l(E) = 1/2, but every compact subset of E is
finite, so C(E) is countable and dim% (K (E)) = 0. <

» Theorem 5.4 (hyperspace packing dimension theorem). If X is a separable metric space,
E C X is an analytic set, and ¢ is a gauge family such that ¢s(26) = O(ps(d)) and
©s(8) = O(1/loglog(1/68)) as & — 0T for all s € (0,00) and there is a precision family for ¢,
then

dim& (K(E)) > dim&(E).

Proof. For compact sets £, Theorem 5.2 and the hyperspace Minkowski dimension theorem
(Theorem 5.1) imply dim$(K(E)) = dim )y, (E).

A result of Joyce and Preiss (Corollary 1 in [13]) states that every analytic set with
positive (possibly infinite) gauged packing measure contains a compact subset with positive
(finite) packing measure in the same gauge. It follows that if F is analytic, then for all € > 0
there exists a compact subset E. C F with dim{(E.) > dim{(E) — €. Therefore

dimE(C(E.)) = dmj,(E)

> dim§ (E.)
> dimf(E) — e.

Letting € — 0 completes the proof. <

6 Conclusion

Our results exhibit and amplify the power of the theory of computing to make unexpected
contributions to other areas of the mathematical sciences. We hope and expect to see more
such results in the near future.

We mention three open problems whose solutions may contribute to such progress. First,
at the time of this writing, a hyperspace Hausdorff dimension theorem remains an open
problem. The difficulty in adapting our approach to that problem is that in the proof of
Theorem 5.2, the set L we construct is only guaranteed to have high complexity at infinitely
many precisions. An analogous proof for Hausdorff dimension would require constructing a
set L that has high complexity at all but finitely many precisions.
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Second, it would be useful to identify classes of spaces in which Billingsley-type algorithmic

dimensions — dimensions shaped by probability measures — can be formulated.

Finally, we do not at this time know how to characterize algorithmic dimensions in

separable metric spaces in terms of martingales or more general gales. This is despite the fact

that algorithmic dimensions were first formulated in these terms in sequence spaces [20, 1].
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