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Abstract
The Isolation Lemma of Mulmuley, Vazirani and Vazirani [Combinatorica’87] provides a self-reduction
scheme that allows one to assume that a given instance of a problem has a unique solution, provided a
solution exists at all. Since its introduction, much effort has been dedicated towards derandomization
of the Isolation Lemma for specific classes of problems. So far, the focus was mainly on problems
solvable in polynomial time.

In this paper, we study a setting that is more typical for NP-complete problems, and obtain
partial derandomizations in the form of significantly decreasing the number of required random bits.
In particular, motivated by the advances in parameterized algorithms, we focus on problems on
decomposable graphs. For example, for the problem of detecting a Hamiltonian cycle, we build upon
the rank-based approach from [Bodlaender et al., Inf. Comput.’15] and design isolation schemes that
use

O(t log n + log2 n) random bits on graphs of treewidth at most t;
O(

√
n) random bits on planar or H-minor free graphs; and

O(n)-random bits on general graphs.
In all these schemes, the weights are bounded exponentially in the number of random bits used.
As a corollary, for every fixed H we obtain an algorithm for detecting a Hamiltonian cycle in an
H-minor-free graph that runs in deterministic time 2O(

√
n) and uses polynomial space; this is the

first algorithm to achieve such complexity guarantees. For problems of more local nature, such as
finding an independent set of maximum size, we obtain isolation schemes on graphs of treedepth at
most d that use O(d) random bits and assign polynomially-bounded weights.

We also complement our findings with several unconditional and conditional lower bounds, which
show that many of the results cannot be significantly improved.
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50:2 Isolation Schemes for Problems on Decomposable Graphs

1 Introduction

Isolation is a procedure that allows to single out a unique solution to a given problem
within a possibly larger solution space, thus effectively reducing the original problem to a
variant where one may assume that if a solution exists, then there is a unique one. The
classic Isolation Lemma of Mulmuley, Vazirani and Vazirani [26] can be used to achieve
this at the cost of allowing randomization. In complexity theory, isolation is used to
show that hard problems are not easier to solve on instances with unique solutions [35].
This idea has found numerous applications ranging from structural results in complexity
theory (e.g. NL/poly ⊆ ⊕L/poly [37] or NL/poly = UL/poly [32]) to the design of parallel
algorithms [26, 22, 17, 34].

Since obtaining a general derandomization of the Isolation Lemma is impossible by
counting arguments [4, 8, 1], it is natural to ask whether the isolation step can be derandomized
for specific problems with explicit representation. In this context, there has recently been an
exciting progress in isolation for perfect matchings [2, 7, 13, 21, 3, 22], which culminated
in an isolation scheme that uses O(log3 n) random bits, implying a quasi-NC algorithm for
detecting a perfect matching [34].

In contrast to this, derandomization of isolation procedures for NP-complete problems
is relatively less studied, and not because of a lack of motivation: Many contemporary
fixed-parameter algorithms rely on the Isolation Lemma [25, 28, 5, 23, 24, 11, 38]. Usually,
the isolation procedure is the only subroutine requiring randomness. Many of the algorithms
mentioned above apply the Isolation Lemma in combination with a decomposition-based
method such as Divide&Conquer or dynamic programming. This motivates us to study the
following:

▶ Main Question. How much randomness is required for isolating problems with decomposable
structure?

More concretely, we focus on graph problems where the underlying graph is decomposable, in
the sense that it can be decomposed using small separators. Examples of such graphs are
planar graphs or graphs of bounded treewidth. It is well-known that for many NP-complete
problems, the nice structure of such graphs can be leveraged to solve these problems faster
than in general graphs. We show that a similar phenomenon occurs when one considers the
amount of randomness needed to isolate a single solution.

The model for isolation schemes. Suppose U is a finite set and ω : U → N is a weight
function. For X ⊆ U we write ω(X) :=

∑
e∈X ω(e). For a set family F ⊆ 2U we say that

ω isolates F if there is exactly one set S ∈ F such that ω(S) is the minimum possible
among the weights of the sets in F . The classic Isolation Lemma of Mulmuley et al. [26]
states that a weight function ω : U → {1, . . . , 2|U |} chosen uniformly at random isolates any
family F ⊆ 2U with probability at least 1

2 . Note that sampling such ω requires O(|U | log |U |)
random bits.

Most of our isolation schemes work in a very restricted model inspired by the discussion
above, which we explain now. Intuitively, the scheme is not aware of the graph or its
decomposition, but is only aware of the vertex count of the graph and the relevant width
parameter, such as the treewidth or treedepth.

Formally, a vertex selection problem is a function P that maps every graph G to a family
P(G) ⊆ 2V (G) consisting of subsets of the vertex set of G. Edge selection problems are
defined analogously: P(G) consists of subsets of E(G). For example, we could define a
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vertex selection problem MIS(·) that maps every graph G to the family MIS(G) comprising
all maximum-size independent sets in G, or an edge selection problem HC(·) that maps every
graph G to the family HC(G) comprising all (edge sets of) Hamiltonian cycles in G. Further,
let C be a class of graphs, that is, a set of graphs that is invariant under isomorphism. For
instance, C could be the class of planar graphs, or the class of graphs of treewidth at most k,
for any fixed k. Then our definition of an isolation scheme reads as follows (here, we write
[n] := {1, . . . , n}):

▶ Definition 1. For a graph class C, we say that a vertex selection problem P admits an
isolation scheme on C with log ℓ random bits and maximum weight W if for every n ∈ N
there exist weight functions ω1, . . . , ωℓ : [n] → [W ] such that for every G ∈ C with vertex set
[n], ωi isolates P(G) for at least half of the indices i ∈ [ℓ].

Isolation schemes for edge selection problems are defined analogously: the weight functions
ω1, . . . , ωℓ have domain [m] and should assign weights to all the edges in m-edge graphs in C,
where the edges are assumed to be enumerated with numbers in [m].

The two main parameters of interest for isolation schemes will be the number of random
bits, which is defined as log ℓ, and the maximum weight, defined as the maximum value
that any of the functions ωi may take. Although Definition 1 only assumes the existence
of suitable weight functions, all the isolation schemes proposed in this paper are extremely
simple and can be used as an effective derandomization tool.

1.1 Our contribution
In the following discussion we restrict attention to Hamiltonian cycles and maximum-size
independent sets for concreteness, that is, to the edge- and vertex-selection problems HC(·)
and MIS(·) described above. However, our techniques have a wider applicability, which
we comment on throughout the presentation. On a very high level, the natural idea that
permeates all our arguments is to reduce the randomness using Divide&Conquer along small
separators: If a separator X splits the given graph G in a balanced way, then the same
random bits can be reused in each part of G − X.

Isolation schemes for Hamiltonian cycles. We first consider the problem of detecting a
Hamiltonian cycle, since it represents an important class of connectivity problems such as
Steiner Tree or k-Path. For these problems, the Isolation Lemma has been particularly
useful in the design of parameterized algorithms [25, 28, 5, 23, 24, 11, 38]. Our first results
concerns general graphs.

▶ Theorem 2. There is an isolation scheme for Hamiltonian cycles in undirected graphs
that uses O(n) random bits and assigns weights upper bounded by 2O(n).

Observe that in an n-vertex graph there can be as many as n! different Hamiltonian cycles.
Hence, the application of the general-usage isolation scheme of Chari et al. [8] would give an
isolation scheme for Hamiltonian cycles in general graphs that uses O(log(n!)) = O(n log n)
random bits. Note that as proved in [8], isolating a family F over a universe of size n requires
Ω(log |F| + log n) random bits in general, hence the shaving of the log n factor reported in
Theorem 2 required a problem-specific insight into the family of Hamiltonian cycles in a
graph. This insight is provided by the rank-based approach, a technique introduced in the
context of detecting Hamiltonian cycles in graphs of bounded treewidth [6]. The fact that
this works is unexpected because all known methods for derandomizing Hamiltonian cycle
require at least exponential space (see [6] for overview).

STACS 2022
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Let us note that isolation of Hamiltonian cycles was used by Björklund [5] in his O(1.657n)-
time algorithm for detecting a Hamiltonian cycle in an undirected graph. This algorithm is
randomized due to the usage of the Isolation Lemma, and derandomizing it, even within time
complexity O((2 − ε)n) for any ε > 0, is a major open problem. While the constant hidden
in the O(·) notation used in Theorem 2 is too large to allow exploring the whole space of
random bits within time O((2 − ε)n), in principle we show that the amount of randomness
needed is of the same magnitude as would be required for derandomization of the algorithm
of Björklund.

Next, we show that in the setting of graphs of bounded treewidth the amount of random-
ness can be reduced dramatically, to a polylogarithm in n.

▶ Theorem 3. For every t ∈ N, there is an isolation scheme for Hamiltonian cycles in
graphs of treewidth at most t that uses O(t log n + log2(n)) random bits and assigns weights
upper bounded by 2O(t log n+log2 n).

The proof of Theorem 3 fully exploits the idea of using small separators to save on
randomness. It also uses the rank-based approach to shave off a log t factor in the number of
random bits.

Finally, we use the separator properties of H-minor free graphs to prove the following.

▶ Theorem 4. For every fixed H, there is an isolation scheme for Hamiltonian cycles in
H-minor-free graphs that uses O(

√
n) random bits and assigns weights upper bounded by

2O(
√

n).

Recently, [28] presented a randomized algorithm for detecting a Hamiltonian cycle in a
graph of treedepth at most d that works in time 2O(d) · (W + n)O(1) time and uses polynomial
space; here, W is the maximum weight assigned by isolation scheme1. The only source of
randomness in the algorithm of [28] is the Isolation Lemma. Since H-minor free graphs
have treedepth O(

√
n), we can use the isolation scheme of Theorem 4 to derandomize this

algorithm, thus obtaining the following result.

▶ Theorem 5. For every fixed H, there is a deterministic algorithm for detecting a Hamilto-
nian cycle in an H-minor-free graph that runs in time 2O(

√
n) and uses polynomial space.

To the best of our knowledge, this is the first application of a randomness-efficient isolation
scheme for a full derandomization of an exponential-time algorithm without a significant loss
on complexity guarantees. Further, we are not aware of any previous algorithms that would
simultaneously achieve determinism, running time 2O(

√
n), and polynomial space complexity,

even in the setting of planar graphs2. Finally, let us note that the algorithm of Theorem 5
does not rely on any topological properties of H-minor-free graphs: the existence of balanced
separators of size O(

√
n) is the only property we use.

MSO-definable problems on graphs of bounded treewidth. We observe that the approach
used in the proof of Theorem 3 relies only on finite-state properties of the Hamiltonian
Cycle problem on graphs of bounded treewidth. The range of problems enjoying such
properties is much wider and encompasses all problems definable in CMSO2: the Monadic

1 They did not consider the weighted case, but the statement is implied by a standard extension, see the
full version of this paper [27] for details.

2 Deterministic 2O(
√

n)-time algorithms were previously known, but all of these use exponential space [6,
18].
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Second-Order logic with modular counting predicates. Consequently, we can lift the proof of
Theorem 3 to a generic reasoning that yields an analogous result for every CMSO2-definable
problem. This proves the following (see the full full version of this paper [27] for definitions).

▶ Theorem 6. Let P be a CMSO2-definable edge (or vertex) selection problem. There exists
a computable function f such that for every k ∈ N, P admits an isolation scheme on graphs
of treewidth at most k that uses R := f(k) · log n + O(log2 n) random bits and assigns weights
upper bounded by 2R.

Lower bounds. We show that a significant improvement of the parameters in the isolation
schemes presented above is unlikely. First, a counting argument shows that the log n factor
is necessary.

▶ Theorem 7. There does not exist an isolation scheme for Hamiltonian cycles on graphs of
treewidth at most 4 that uses o(log n) random bits and polynomially bounded weights.

Using similar constructions we also provide analogous Ω(log n) lower bounds for isolating
other families of combinatorial objects related to NP-hard problems, such as maximum
independent sets, minimum Steiner trees, and minimum maximal matchings. These lower
bounds hold even in graphs of bounded treedepth, which is a more restrictive setting than
bounded treewidth.

We also show using existing reductions that a significant improvement over the scheme of
Theorem 2 would imply a surprising partial derandomization of isolation schemes for SAT.

▶ Theorem 8. Suppose there is an isolation scheme for Hamiltonian cycles in undirected
graphs that uses o(n) random bits and polynomially bounded weights. Then there is a
randomized polynomial-time reduction from SAT to Unique SAT that uses o(n) random
bits, where n is the number of variables.

Observe that since an n-vertex graph has treewidth at most n − 1, Theorem 8 also implies
that in Theorem 3 one cannot expect reducing the number of random bits to o(t). However,
we stress that the lower bounds of Theorems 7 and 8 are not completely tight with respect
to the upper bounds of Theorems 2 and 3, because the latter allow superpolynomial weights.
It remains open whether the weights used by the schemes of Theorems 2, 3, and 4 can be
reduced to polynomial.

In the full version of this paper [27] we further discuss consequences of the hypothetical
existence of a polynomial-time reduction from SAT to Unique SAT that would use o(n)
random bits.

Level-aware isolation schemes for independent sets. In the light of the Ω(log n) lower
bound of Theorem 7, we consider a relaxation of the model from Definition 1, where the
graph is provided together with an elimination forest (a decomposition notion suited for
the graph parameter treedepth), and the weight of a vertex may depend both on the vertex’
identifier and its level in the elimination forest. We demonstrate that in this relaxed model,
the Ω(log n) lower bound can be circumvented.

▶ Definition 9. We say that vertex selection problem P admits a level-aware isolation scheme
if for all n, d ∈ N there exist functions ω1, . . . , ωℓ : [n] × [d] → N such that for every graph
G on vertex set [n] and elimination forest F of G of height at most d, at least half of the
functions ω1, . . . , ωℓ isolate P(G). Here, when evaluating ωi on a vertex u ∈ [n], we apply ωi

to u and the index of the level of u in F .

STACS 2022
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▶ Theorem 10. For every d ∈ N, there is a level-aware isolation scheme for maximum-size
independent sets in graphs of treedepth at most d that uses O(d) random bits and assigns
weights bounded by O(n6).

In the proof of Theorem 10 we describe an abstract condition, dubbed the exchange
property, which is sufficient for the argument to go through. This property is enjoyed also by
other families of combinatorial objects defined through constraints of local nature, such as
minimum dominating sets or minimum vertex covers. Therefore, we can prove analogous
isolation results for those families as well.

Also, in the full version of this paper [27] we discuss a similar reasoning for edge-selection
problems on the example of maximum matchings, achieving a level-aware isolation scheme
that uses O(d log n) random bits and assigns weights bounded by nO(log n). This provides
another natural class of graphs where isolation-based algorithms for finding a maximum
matching can be derandomized (see [2, 7, 13, 21]).

We summarize our results with Table 1.

Table 1 Summary of our results based on Theorems 2-10.

Problem Random Bits Max Weight Graph Class

Hamiltonian Cycle O(n) 2O(n)

General Graphs
Ω(n) poly(n)

O(
√

n) 2O(
√

n)

H-minor free graphs
Ω(

√
n) poly(n)

O(t log(n) + log2(n)) nO(t+log(n))

Treewidth t graphs
Ω(t + log(n)) poly(n)

CMSO2 f(t) log(n) + O(log2(n)) nf(t)+O(log(n)) Treewidth t graphs

Max Independent Set O(d) poly(n)
Treedepth d graphs

Ω(d) poly(n)

1.2 Organization
In Section 2 we provide preliminaries. Section 3 is dedicated to the formal proof of Theorem 2.
In Appendix A, we formally proof Theorem 3. We finish the main part of the paper with
possible directions for further research in Section 4.

In the full version of this paper [27] we include the formal proofs of Theorem 4, Theorem 5
and the general CMSO2-result of Theorem 6. The full version [27] also includes the lower
bounds from Theorem 7 and Theorem 8, as well as the level-aware isolation schemes for local
vertex (respectively, edge) selection problems.

2 Preliminaries

Notation. For an integer k, we write [k] := {1, . . . , k}. We use standard graph notation:
V (G) and E(G) respectively denote the vertex set and the edge set of a graph G, for
X ⊆ V (G) the closed neighborhood NG[X] is X plus all the neighbors of vertices of X, and
the open neighborhood is NG(X) := NG[X] \ X.
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Hashing modulo primes. The following standard hashing lemma that dates back to the
work of Fredman, Komlós, and Szemerédi [19], will be the main source of randomness in our
isolation schemes.

▶ Lemma 11 (FKS hashing lemma [19]). Let S ⊆ {0, 1, . . . , 2n} be a set of k integers, where
n, k ⩾ 1. Suppose that p is a prime number chosen uniformly at random among prime
numbers in the range {1, . . . , M}, where M ⩾ 2. Then

P [x ̸≡ y mod p for all x, y ∈ S, x ̸= y] ⩾ 1 − nk2
√

M
.

Proof. Let

R :=
∏

x,y∈S,x ̸=y

|x − y|.

Note that R ⩽ 2n·(k
2). This implies that R may have at most n ·

(
k
2
)

different prime divisors.
On the other hand, from the prime number theorem it follows that π(M) ∈ Ω( M

log M ), where
π(M) denotes the number of primes in the range {1, . . . , M}. In fact, using a more precise
estimate of Rosser [33], for M ⩾ 17 we have π(M) ⩾ M

ln M . For 2 ⩽ M ⩽ 17 a direct check
shows that π(M) ⩾

√
M/2. Since M

ln M ⩾
√

M/2 for all M ⩾ 2, we conclude that the
probability that a random prime in the range {1, . . . M} is not among the at most n ·

(
k
2
)

prime divisors of R is at least

1 −
n ·
(

k
2
)

√
M/2

⩾ 1 − nk2
√

M
. ◀

Graph decompositions. A rooted forest is directed acyclic graph F where every node x has
at most one outneighbor, called the parent of x. A root is a node with no parent. If a node y

is reachable from x by a directed path, then we write y ⪯F x and say that y is an ancestor
of x and x is a descendant of y. Note that every vertex is considered its own ancestor and
descendant. For x ∈ V (F ), we write

tailF [x] := {y : y ⪯F x}, subtreeF [x] := {z : z ⪰F x},

tailF (x) := tailF [x] \ {x}, subtreeF (x) := subtreeF [x] \ {x}.

The level of a node x in F , denoted lvlF (x), is the number of its strict ancestors, that is,
|tailF (x)|. Note that roots have level 0. The height of a forest F is the maximum level among
its nodes, plus 1. If the forest F is clear from the context, then we may omit it in the above
notation.

An elimination forest of a graph G is a rooted forest F with V (F ) = V (G) such that
for every edge uv of G, either u is an ancestor of v in F or vice versa. The treedepth
of a graph G is the least possible height of an elimination forest of G. Treedepth as a
graph parameter plays a central role in the structural theory of sparse graphs, see [29,
Chapters 6 and 7]. It also has several applications in parameterized complexity and algorithm
design [9, 15, 20, 28, 30, 31], as well as exhibits interesting combinatorial properties [9, 12, 14]
and connections to descriptive complexity theory [16]. We refer to the introductory sections
of the above works for a wider discussion.

A tree decomposition of a graph G is a pair T = (T, β), where T is an (unrooted) tree
and β : V (T ) → 2V (G) is a function that assigns to each node x ∈ V (T ) its bag β(x) ⊆ V (G)
so that the following two conditions are satisfied:

STACS 2022



50:8 Isolation Schemes for Problems on Decomposable Graphs

for each u ∈ V (G), the set {x : u ∈ β(x)} induces a nonempty and connected subtree of
T ; and

for each uv ∈ E(G), there exists x ∈ V (T ) such that {u, v} ⊆ β(x).
The width of T is maxx∈V (T ) |β(x)| − 1 and the treewidth of G is the minimum possible width
of a tree decomposition of G. It is easy to see that the treedepth of a graph is at least its
treewidth plus one. Conversely, the treewidth is upper bounded by the treedepth times the
logarithm of the vertex count [29].

For surgery on tree decompositions we will use the following definition and standard
lemma.

▶ Definition 12 (Segment of a tree). For an unrooted tree T , a segment of T is a nonempty
and connected subtree I of T such that there are at most two vertices of I that have a neighbor
outside of I. The set of those at most two vertices is the boundary of I, and is denoted by
∂I. The size of I is equal to |E(I)|.

▶ Lemma 13. Let T be an unrooted tree and let I be a segment of T of size ℓ ⩾ 2. Then
there are at most 5 segments I1, . . . , It of T (t ⩽ 5), each of size at most ℓ/2, such that
segments I1, . . . , It have pairwise disjoint edge sets and E(I1) ∪ . . . ∪ E(It) = E(I).

Proof. For each edge xy ∈ E(I), let Iy,x and Ix,y be the connected components of I − xy

that contain x and y, respectively. Let I⃗ be the orientation of I where each edge xy is
oriented towards x if |E(Iy,x)| > |E(Ix,y)| and towards y if |E(Iy,x)| < |E(Ix,y)|; in case
|E(Iy,x)| = |E(Ix,y)|, the edge xy is oriented in any way. Since I has ℓ edges and ℓ + 1 nodes,
there is a node z of I that has outdegree 0 in I⃗. This means that for every neighbor x of z,
we have |E(Iz,x)| ⩽ |E(Ix,z)|, implying |E(Iz,x)| < ℓ/2. Denote Ix := Iz,x and let Îx be Ix

with the edge xz added.
We first argue that I can be edge-partitioned into at most 3 subtrees (not necessarily

segments), each with at most ℓ/2 edges. Consider first the corner case when there exists a
neighbor x of z such that Îx has more than ℓ/2 edges. Then both Ix = Iz,x and Ix,z have
exactly ℓ−1

2 edges each, so we can partition I into Iz,x, Ix,z, and a separate subtree consisting
only of the edge xz. This case being resolved, we can assume that each tree Îx has at most
ℓ/2 edges. Starting with the set of trees T := {Îx : x is a neighbor of z}, iteratively apply
the following procedure: take two trees from T with the smallest edge counts, and replace
them with their union, provided this union has at most ℓ/2 edges. The procedure stops when
this assertion fails to be satisfied. Observe that the procedure can be carried out as long as
|T | ⩾ 4, for then the two trees from T that have the smallest edge counts together include
at most half of the edges of I. Therefore, at the end we obtain the desired edge-partition of
I into at most three subtrees.

All in all, in both cases we edge-partitioned I into at most three subtrees, each having
at most ℓ/2 edges. Since |∂I| ⩽ 2, it is easy to see that all of those subtrees are already
segments (i.e. have boundaries of size at most 2) apart from at most one, say J , which may
have a boundary of size 3. Supposing that J exists, let ∂J = {a, b, c}. Then there exists
a node d of J such that every connected component of J − d contains at most one of the
vertices a, b, c. It is now straightforward to edge-partition J into three trees so that the
boundary of each of them consists of d and one of the vertices a, b, c. Thus, replacing J with
those three segments yields an edge-partition of I into at most 5 segments, each with at most
ℓ/2 edges. ◀
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3 Isolating Hamiltonian cycles

In this section we prove Theorem 2. We begin by defining configurations for Hamiltonian
cycles, which reflect the states of a natural dynamic programming algorithm for detection of
a Hamiltonian cycle in a bounded-treewidth graph. Then we use the rank-based approach to
bound the number of minimum weight compliant edge sets (see Theorem 19). This technical
result captures the essence of the rank-based approach and will be used in all subsections
that follow. Next, we prove Theorem 2 in Section 3.3. In Appendix A we also include the
full proof of Theorem 3.

3.1 Configurations for Hamiltonian cycles
Let us fix a graph G. An edge set S ⊆ E(G) is called a partial solution if every vertex of
G is incident to at most two edges of S and S has no cycles. The following notion of a
configuration describes the behavior of a partial solution with respect to a set of vertices.

▶ Definition 14 (Configurations). For X ⊆ V (G), we define the set of configurations conf(X)
on X as:

{ (V0, V1, V2, M) : (V0, V1, V2) is a partition of X and M is a perfect matching on V1 }.

Given a subgraph H of G, one can view the configurations on X ⊆ V (H) as all possible
different ways that a partial solution may behave on X. A vertex is then in the set Vi if it
is incident to exactly i edges of the partial solution. The matching M on V1 describes the
endpoints of each path in the partial solution. This intuition is formalized in the following
definition.

▶ Definition 15. Let X ⊆ V (G) be a set of vertices of G and let S ⊆ E(G) be a partial
solution. Then define the configuration of S on X as cX(S) := (V0, V1, V2, M) ∈ conf(X),
where

V0 := {v ∈ X : v is not incident to any edge of S},
V1 := {v ∈ X : v is incident to exactly one edge of S},
V2 := {v ∈ X : v is incident to exactly two edges of S},
M := {{u, v} ∈

(
V1
2
)

: there is a path with edges from S connecting u and v}.
We omit X in the notation and write c(S) when X is clear from context.

Note that in the above definition M is indeed a matching, because each v ∈ V1 is connected
to exactly one u ∈ V1 through S, as any partial solution covers each vertex at most twice.
For an example of deriving cX(S) from a partial solution S, see Figure 1.

We can use configurations to tell whether two partial solutions together form a Hamiltonian
cycle. Let H be a subgraph of G and let X ⊆ V (H). Assume that there exists a partial
solution S that visits only vertices from (V (G)\V (H))∪X, where every vertex of V (G)\V (H)
is visited exactly twice. Then we only need to know cX(S) to determine which partial solutions
S′ ⊆ E(H) would combine with S to a Hamiltonian cycle in G. We say that any such partial
solution is compliant with cX(S), as expressed formally in the next definition.

▶ Definition 16 (Compliant partial solution). For a graph H let X ⊆ V (H). A configuration
c = (V0, V1, V2, M) ∈ conf(X) and a partial solution S ⊆ E(H) are compliant if S ∩ M = ∅
and S ∪ M forms a Hamiltonian cycle on V (H) \ V2.

See Figure 2 for an example of a compliant partial solution.

STACS 2022



50:10 Isolation Schemes for Problems on Decomposable Graphs

X X

M

V0

V1

V2

S

cX(S)

Figure 1 Example partial solution S and
its configuration cX(S) = (V0, V1, V2, M) on
a set X.

X V (H)

M

V0

V1

V2

S

Figure 2 Example compliant par-
tial solution S for a configuration c =
(V0, V1, V2, M) ∈ conf(X).

In the sequel we will be trying to argue that some weight function ω is isolating the
family of Hamiltonian cycles in the given graph G with high probability. In all cases this
will be done by induction on larger and larger subgraphs of G, where at each point we argue
that a suitable family of partial solutions is isolated with high probability. The following
definition facilitates this discussion.

▶ Definition 17 (Minimum weight compliant partial solution). Let H be a subgraph of G,
X ⊆ V (H), c ∈ conf(X), and let ω : E(G) → N be a weight function on the edges of G. Then
we define the set Min(ω, H, c) of minimum weight partial solutions compliant with c as the
set of those partial solutions S ⊆ E(H) that

are compliant with c, and
subject to the above, have the smallest possible weight ω(S).

3.2 Rank-based approach
We will use the rank-based approach, introduced by Cygan et al. in [10], as a tool in our
analysis of isolation schemes. Let X be a set of vertices. Then define the compatibility matrix
HX as the matrix with entries indexed by HX [M1, M2] for M1, M2 perfect matchings on X,
where

HX [M1, M2] =
{

1 if M1 ∪ M2 is a simple cycle,
0 otherwise.

Note that HX [M1, M2] has 2O(|X| log |X|) rows and columns. The crux of the rank-based
approach is that in spite of that, this matrix has a small rank over the two-element field F2.

▶ Theorem 18 (Rank-based approach,[10]). For any set X, the rank of HX over F2 is equal
to 2|X|/2−1.

We use Theorem 18 to prove that the total number of minimum weight compliant solutions
is always relatively small, no matter what the weight function is. The following statement
will be reused several times in the sequel. Note that a trivial cardinality argument would
yield an upper bound of the form 2O(|X| log |X|); the point of the rank-based approach is to
reduce this to 2O(|X|).
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▶ Theorem 19. Let G be a graph, X ⊆ V (G), and ω : V (G) → N be a weight function such
that for all c ∈ conf(X), we have |Min(ω, G, c)| ⩽ 1. Then∣∣∣∣∣∣

⋃
c∈conf(X)

Min(ω, G, c)

∣∣∣∣∣∣ ⩽ 2O(|X|).

Proof. Let K :=
⋃

c∈conf(X) Min(ω, G, c) and let C := {c(S) : S ∈ K}.
We first verify that |C| = |K|. By construction, we have |C| ⩽ |K|. Assume for

contradiction that |C| < |K|. Then there are two different partial solutions S1, S2 ∈ K

such that c(S1) = c(S2). By construction and the assumptions, there are two different
configurations d1, d2 ∈ conf(X) such that Min(ω, G, d1) = {S1} and Min(ω, G, d2) = {S2}.
However, since c(S1) = c(S2), it follows that for any configuration d ∈ conf(X), S1 is
compliant with d if and only if S2 is compliant with d. In particular, S1 is compliant with d2
and S2 is compliant with d1. This implies that ω(S1) = ω(S2) and S2 ∈ Min(ω, G, d1) and
S1 ∈ Min(ω, G, d2), a contradiction. Hence |C| = |K|.

Define a matrix Ĥ with both coordinates indexed by conf(X) such that for c, c′ ∈ conf(X),
where c = (V0, V1, V2, M) and c′ = (V ′

0 , V ′
1 , V ′

2 , M ′):

Ĥ[c, c′] =
{

1 if V0 = V ′
2 , V2 = V ′

0 , and M ∪ M ′ is a simple cycle,
0 otherwise.

Notice that if we sort the indices of Ĥ by the partitions (V0, V1, V2), then Ĥ can be seen as a
block diagonal matrix with one block for each partition, and this block is a compatibility
matrix on V1. That is,

Ĥ =
⊕

V0⊎V1⊎V2=X

HV1 ,

where
⊕

denotes the operator of combining several matrices into a single block diagonal
matrix. By Theorem 18, the rank over F2 of each of these blocks is bounded by 2|X|/2−1,
hence the rank over F2 of Ĥ is bounded by 2|X|/2−1 · 3|X| ⩽ 2O(|X|).

Next, we claim that the set of rows of Ĥ corresponding to the configurations of C is
linearly independent over F2. Assume not, hence there is a nonempty set of configurations
D ⊆ C such that∑

d∈D

Ĥ[d, ·] = 0,

where 0 is the all-zero vector (all computations are performed in F2). For each d ∈ D

there is some Sd ∈ K such that d = c(Sd). Let dmax be a configuration of D for which
ω(Sdmax ) is the largest possible. Since dmax ∈ C, we have that Min(ω, G, c) = {Sdmax } for some
c ∈ conf(X) and hence Ĥ[dmax, c] = 1. However, as

∑
d∈D Ĥ[d, ·] = 0, there must be another

d′ ∈ D, d′ ̸= dmax, such that also Ĥ[d′, c] = 1. This means that d′ is compliant with c, which
implies that ω(Sd′) > ω(Sdmax ) by Min(ω, G, c) = {Sdmax }. This contradicts the maximality of
ω(Sdmax ).

We conclude that the set of rows of Ĥ corresponding to C are indeed linearly independent
over F2. Therefore, |K| = |C| is upper bounded by the rank of Ĥ over F2, which is at most
2O(|X|). ◀
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3.3 Hamiltonian cycles in general graphs using O(n) random bits
We now use the tools prepared so far to prove Theorem 2. The goal is to isolate all
Hamiltonian cycles in an undirected graph G = (V, E) using O(n) random bits, where n is
the vertex count. First we give the isolation procedure. Then we analyze the probability of
isolating all Hamiltonian cycles using configurations, compliant partial solutions, and the
rank-based approach (through Theorem 19). Throughout the subsection we assume without
loss of generality that log n is an integer.

As usual with isolation schemes, we assume that the vertex set of the considered graph G

is V = [n]. We will apply induction on specific subgraphs of G called intervals.

▶ Definition 20 (Interval of G). For integers 1 ⩽ s ⩽ t ⩽ n and 1 ⩽ s′ ⩽ t′ ⩽ n, the interval
G⟨s, t, s′, t′⟩ is the graph (V ′, E′), where

V ′ := {s, . . . , t}∪{s′, . . . , t′} and E′ := {uv : u ∈ {s, . . . , t}, v ∈ {s′, . . . , t′}, uv ∈ E}.

By V ⟨s, t, s′, t′⟩ we denote the vertex set V ′ of the interval G⟨s, t, s′, t′⟩.

Note that G⟨s, t, s, t⟩ is just the subgraph of G induced by {s, . . . , t}. On the other hand,
if {s, . . . , t} ∩ {s′, . . . , t′} = ∅, then G⟨s, t, s′, t′⟩ is a bipartite graph, with {s, . . . , t} and
{s′, . . . , t′} being the sides of the bipartition.

Isolation scheme. We first present the isolation scheme. Let id : E(G) → {1, . . . , |E(G)|}
be any bijection that assigns to each edge e ∈ E(G) its unique identifier id(e). Let C be
some large enough constant, to be chosen later. Then independently at random sample
1 + log n primes p0, p1, . . . , plog n so that pi is sampled uniformly among primes in the range
{1, . . . , Mi}, where Mi := 2C(log n+2i). Note that choosing each pi requires C(log n + 2i)
random bits, hence we have used O(n) random bits in total.

Next, we inductively define weights functions ω0, . . . , ωlog n on E(G) as follows:
Set ω0(e) := 2id(e) mod p0 for all e ∈ E(G).
For each e ∈ E(G) and i = 1, . . . , log n, set

ωi(e) := Mi−1n · ωi−1(e) +
(

2id(e) mod pi

)
.

Let ω := ωlog n and observe that ω assigns weights bounded by 2O(n), as required.

Analysis. We will prove the following statement for all 0 ⩽ i ⩽ log n using induction on i.

Induction hypothesis

With probability at least
(
1 − 1

n2

)i+1, for all intervals G⟨s, t, s′, t′⟩ s.t. t − s ⩽ 2i and
t′ −s′ ⩽ 2i and for each configuration c ∈ conf(V ⟨s, t, s′, t′⟩), there is at most one minimum
weight (w.r.t. ωi) compliant partial solution, i.e. |Min(ωi, G⟨s, t, s′, t′⟩, c)| ⩽ 1.

For i = log n, the induction hypothesis gives us that for the complete interval G =
G⟨1, 1, n, n⟩ and for the configuration c = (∅, ∅, V (G), ∅), there is at most one minimum
weight compliant partial solution w.r.t. ω. In other words, w.r.t. ω there is at most
one minimum weight Hamiltonian cycle in G. This happens with probability at least(
1 − 1

n2

)log n+1
⩾ 1 − 1

n . So it remains to perform the induction.
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Base step. For i = 0, we have t−s ⩽ 1 and t′ −s′ ⩽ 1. Hence each such interval G⟨s, t, s′, t′⟩
has at most 4 edges. Let

Y :=
⋃

t−s⩽1
t′−s′⩽1

2E(G⟨s,t,s′,t′⟩)

and for each S ∈ Y , let

xS :=
∑
e∈S

2id(e).

Observe that since the identifiers assigned to the edges are unique, the numbers xS are also
pairwise different. Also, note that |Y | ⩽ 16n2 as there are at most n2 intervals considered,
and for each of them there are at most 16 possible subsets of the at most four edges. Recall
that M0 = 2C(log n+1) and p0 is drawn uniformly at random among the primes in the range
{1, . . . , M0}. Therefore, from Lemma 11 we can conclude that with probability at least(

1 − (n2 + 1)(16n2)2

2(C/2)(log n+1)

)
⩾

(
1 − 1

n2

)
all the numbers {xS : S ∈ Y } have pairwise different remainders modulo p0; here the last
inequality holds for a large enough constant C. Since ω0(S) ≡ xS mod p0, this means that
with probability at least

(
1 − 1

n2

)
, all S ∈ Y receive pairwise different weights with respect

to ω0. Therefore, the induction hypothesis is true for i = 0.

Induction step. Assume the induction hypothesis is true for all intervals G⟨s, t, s′, t′⟩ such
that t − s ⩽ 2i−1 and t′ − s′ ⩽ 2i−1. Let

Y ′ :=
⋃

t−s⩽2i−1

t′−s′⩽2i−1

⋃
c∈conf(V ⟨s,t,s′,t′⟩)

Min(ωi−1, G⟨s, t, s′, t′⟩, c)

be the set of all the minimal partial solutions for those intervals. Further, let

Y := {S1 ∪ S2 ∪ S3 ∪ S4 : S1, S2, S3, S4 ∈ Y ′}

be the set containing all combinations of four such partial solutions. The strategy is as
follows. We first prove in Claim 21 that any relevant minimum weight compliant partial
solution should be in Y . Then Claim 22 says that with hight probability, all partial solutions
S ∈ Y have pairwise different weights with respect to ωi. Hence, proving these two claims
will be sufficient to make the induction hypothesis go through.

▷ Claim 21. Let 1 ⩽ a ⩽ b ⩽ n and 1 ⩽ a′ ⩽ b′ ⩽ n be such that b − a ⩽ 2i and b′ − a′ ⩽ 2i,
and let c ∈ conf(a, b, a′, b′). Then Min(ωi, G⟨a, b, a′, b′⟩, c) ⊆ Y .

Proof. Take any S ∈ Min(ωi, G⟨a, b, a′, b′⟩, c). Let

r = ⌈(a + b)/2⌉ and r′ = ⌈(a′ + b′)/2⌉

and let us select

S1 ⊆ E(G⟨a, r − 1, a′, r′ − 1⟩), S2 ⊆ E(G⟨a, r − 1, r′, b′⟩),
S3 ⊆ E(G⟨r, b, a′, r′ − 1⟩), S4 ⊆ E(G⟨r, b, r′, b′⟩)

so that S1, S2, S3, S4 are disjoint and S = S1 ∪ S2 ∪ S3 ∪ S4. See Figure 3 for an example.
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We argue that S1 ∈ Min(ωi−1, G⟨a, r − 1, a′, r′ − 1⟩, c1) for some c1 ∈ conf(V ⟨a, r −
1, a′, r′ − 1⟩). Let c = (V0, V1, V2, M). Since S ∪ M is a simple cycle that visits all vertices of
V ⟨a, b, a′, b′⟩, we see that R := S2 ∪S3 ∪S4 ∪M is a partial solution in the graph G⟨a, b, a′, b′⟩
with the edges of M added. Letting (V ′

0 , V ′
1 , V ′

2 , M ′) := cV ⟨a,r−1,b,r−1⟩(R), it follows that S1
is compliant with the configuration

c1 := (V ′
0 \ (V2 ∩ V ⟨a, r − 1, b, r − 1⟩)), V ′

1 , V ′
2 ∪ (V2 ∩ V ⟨a, r − 1, b, r − 1⟩), M ′).

Moreover, that S ∈ Min(ωi, G⟨a, b, a′, b′⟩, c) implies that S1 ∈
Min(ωi, G⟨a, r − 1, a′, r′ − 1⟩, c1), for otherwise S1 could be replaced in S with a
smaller-weight partial solution S′

1 that would be still compliant with c1, and this would
turn S into a smaller-weight partial solution S′ = S′

1 ∪ S2 ∪ S3 ∪ S4 that would be still
compliant with c. Finally, by the construction of ωi, S1 ∈ Min(ωi, G⟨a, r − 1, a′, r′ − 1⟩, c1)
entails S1 ∈ Min(ωi−1, G⟨a, r − 1, a′, r′ − 1⟩, c1).

Therefore S1 ∈ Y ′. Analogously we argue that S2, S3, S4 ∈ Y ′, hence we conclude that
S ∈ Y . ◁

a

b

a′

b′

∈ S

a

b

r

r − 1

a′

b′

r′

r′ − 1
∈ S1

∈ S2

∈ S3

∈ S4

Figure 3 Example of splitting a partial solution S ∈ E(G⟨a, b, a′, b′⟩) into four partial solutions
S1, S2, S3, S4, where S1 ⊆ E(G⟨a, r−1, a′, r′−1⟩), S2 ⊆ E(G⟨a, r−1, r′, b′⟩), S3 ⊆ E(G⟨r, b, a′, r′−1⟩)
and S4 ⊆ E(G⟨r, b, r′, b′⟩) with r = ⌈(a + b)/2⌉ and r′ = ⌈(a′ + b′)/2⌉.

▷ Claim 22. The following event happens with probability at least
(
1 − 1

n2

)i+1: for all
different S, S′ ∈ Y , it holds that ωi(S) ̸= ωi(S′).

Proof. For each S ∈ Y , let

xS :=
∑
e∈S

2id(e).

Observe that since identifiers assigned to the edges are unique, the numbers xS are pairwise
different. The induction hypothesis gives us that the following event Ai−1 happens with
probability at least

(
1 − 1

n2

)i: for all 1 ⩽ s ⩽ t ⩽ n and 1 ⩽ s′ ⩽ t′ ⩽ n′ with t − s ⩽ 2i−1

and t′ − s′ ⩽ 2i−1, and all c ∈ conf(V ⟨s, t, s′, t′⟩), we have |Min(ωi−1, G⟨s, t, s′, t′⟩, c)| ⩽ 1.
Assuming now that Ai−1 indeed happens, by Theorem 19 we conclude that for every fixed
choice of s, t, s′, t′ as above, we have∣∣∣∣∣∣

⋃
c∈conf(V ⟨s,t,s′,t′⟩)

Min(ωi−1, G⟨s, t, s′, t′⟩, c)

∣∣∣∣∣∣ ⩽ 2O(2i−1).
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Since there are at most n4 choices of s, t, s′, t′, this implies that

|Y | ⩽ |Y ′|4 ⩽ 2O(2i−1) · n16.

Since Mi = 2C(log n+2i) and pi is drawn uniformly at random among the primes in the range
{1, . . . , Mi}, from Lemma 11 we can conclude that, for large enough C, with probability at
least1 −

(n2 + 1)
(

n162O(2i−1)
)2

2(C/2)(log n+2i)

 ·
(

1 − 1
n2

)i

⩾

(
1 − 1

n2

)i+1
,

all the numbers {xS : S ∈ Y } have pairwise different remainders modulo pi; here, the term
(1 − 1

n2 )i corresponds to the probability that Ai happens. As a consequence, with the same
probability we have that ωi(S) ̸= ωi(S′) for all different S, S′ ∈ Y . ◁

Now the induction step follows directly from combining Claim 21 with Claim 22.

4 Conclusion and directions for further research

In this paper we presented several isolation schemes for NP-complete problems, and we
showed that analogues of decomposition-based methods such as Divide&Conquer can also
be used to design more randomness-efficient isolation schemes. While we provide nearly
matching lower bounds for all our results, at least as far as the number of random bits is
concerned, we still leave open a number of interesting open questions:
1. Can we improve our isolation schemes to have weights that are only polynomial in n,

while not increasing the number of used random bits? Note that in our approach, the use
of large weights is crucial for the application of Lemma 11 that deals with interactions
between different partial solutions in our isolation schemes.3

2. Can we shave off the log factors in the number of used random bits in our results?
While some of the log n factors seem to be inherent in our ideas, there still might be a
little room. For example, Melkebeek and Prakriya [36] presented an isolation scheme for
reachability that uses O(log1.5(n))-random bits. Perhaps with their ideas one can get the
same guarantees for isolating Hamiltonian cycles in constant treewidth graphs.

3. Does the (even more) natural isolation scheme work as well? Many of our isolation
schemes draw several random prime numbers and assign a weight that is obtained by
concatenating the congruence class of the vertex/edge identifier with respect to the
different primes. A more natural, but possibly harder to analyse, scheme would be to
sample a single (larger) prime number and define the weights to be the congruence classes
of the identifiers with respect to that single prime.

4. Our methods allowed us to derandomize polynomial-space algorithms for H-minor free
graphs without significantly increase the running time. Can our methods be used to
derandomize other algorithms likewise?

3 In [8] a similar lemma was used to obtain isolation schemes with polynomial weights, but since the
objects of the set family are not decomposed, the authors did not have this issue of interactions between
different partial solutions.
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A Hamiltonian cycles in graphs of bounded treewidth

We will now use the same approach to give a proof of Theorem 3. More precisely, assume we
are given a graph G of treewidth at most k. Our goal is to isolate the family of Hamiltonian
cycles in G using O(k log n + log2 n) random bits.

The proof follows the same structure as that of Theorem 2. We first describe the isolation
scheme and then analyze the scheme using a tree decomposition T = (T, β) of G of width at
most k. Note that the actual decomposition is not needed for the isolation procedure, and is
only used as a tool in the analysis.

Isolation scheme. We first present the isolation scheme. As before, we assume that
V (G) = [n] and n is a power of 2. Let id : E(G) → {1, . . . , |E(G)|} be any bijection that
assigns to each edge e ∈ E(G) its unique identifier id(e). Let C be some large enough
constant, to be chosen later. Then we independently sample 3 log n primes p1, . . . , p3 log n

so that each pi is sampled uniformly among all primes in the interval {1, . . . , M}, where
M = 2C(k log n). Note that choosing each pi requires C(k + log n) random bits, hence we have
used O(k log n + log2 n) random bits in total, as required.

Next, we inductively define weights functions ω0, . . . , ω3 log n on E(G) as follows:
Set ω0(e) := 0 for all e ∈ E(G).
For each e ∈ E(G) and i = 1, . . . , 3 log n, set

ωi(e) := Mn · ωi−1(e) +
(

2id(e) mod pi

)
.

We let ω := ω3 log n and we observe that ω assigns weights bounded by 2O(k log n+log2 n).

Analysis. Let T = (T, β) be a tree decomposition of G of width at most k. It is well-known
that T can be chosen so that it has at most n nodes. Further, let η := E(G) → V (T ) be
any function that assigns to each edge e of G any node x of T such that e ⊆ β(x). In
the sequel we will assume that η is injective. This can be achieved by adding, for each
node x ∈ V (T ), |η−1(x)| − 1 new nodes with the same bag and adjacent only to x, and
appropriately distributing the images of edges of η−1(x) among the new nodes. Note that
after this modification, the number of nodes of T is bounded by

(
k+1

2
)

· n ⩽ n3.
Compared to the proof of Theorem 2, instead of intervals we will use segments in the

tree T underlying the tree decomposition T. Recall that segments have been defined and
discussed in Section 2. We first observe that there are only few segments.

▷ Claim 23. There are at most n9 segments of T .
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Proof. Note that a segment I in T can be uniquely determined by specifying the at most
two vertices of ∂I and any vertex of V (I) \ ∂I, provided there exists any. Since T has at
most n3 nodes, there are at most n9 choices for such a specification. ◁

For a set of nodes Z ⊆ V (T ), we write β(Z) :=
⋃

z∈Z β(z). Further, for a segment I of T

we consider the graph

G⟨I⟩ :=
(
β(V (I)), η−1(V (I))

)
.

Usually when speaking about partial solutions in G⟨I⟩, we consider their configurations on
the vertex subset β(∂I). Note that G⟨T ⟩ = G.

We proceed to the induction. We will prove the following statement for all 0 ⩽ i ⩽ log n.

Induction hypothesis

With probability at least
(
1 − 1

n2

)i, for all segments I of T of size at most 2i and for each
configuration c ∈ conf(β(∂I)), there is at most one minimum weight (w.r.t. ωi) compliant
partial solution in G⟨I⟩, i.e. |Min(ωi, G⟨I⟩, c)| ⩽ 1.

Note that since |V (T )| ⩽ n3, for i = 3 log n the induction hypothesis gives that for
G⟨T ⟩ = G, there is at most one Hamiltonian cycle that has the minimum weight w.r.t. ω

with probability at least
(
1 − 1

n2

)3 log n
⩾
(
1 − 1

n

)
.

Base step. For i = 0, we take segments of size at most 1, i.e. we prove the induction
hypothesis for every segment I of T that has either one or two nodes. More precisely, we have
to prove that (with suitably large probability), for every such segment I and configuration
c ∈ conf(β(∂I)), we have |Min(ω0, G⟨I⟩, c)| ⩽ 1. Note that since I has at most two nodes
and η is injective, the edge set E(G⟨I⟩) consists of at most two edges. Moreover, it cannot
be that two different edge subsets E1, E2 ⊆ E(G⟨I⟩) are simultaneously compliant with the
same configuration c ∈ conf(β(∂I)). It follows that sets Min(ω0, G⟨I⟩, c) have sizes at most 1
always, so the induction hypothesis for i = 0 is true.

Induction step. Assume the induction hypothesis is true for all segments of size at most
2i−1. Let

Y ′ :=
⋃

I : segment of size ⩽2i−1

⋃
c∈conf(β(∂I))

Min(ωi−1, G⟨I⟩, c).

be the set of all minimum weight partial solutions for segments of size at most 2i−1. Further,
let

Y := { S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 : S1, S2, S3, S4, S5 ∈ Y ′ }

be the set comprising all combinations of five such partial solutions.
We first prove with Claim 24 that every relevant minimum weight compliant edge is

contained in Y . Then Claim 25 says that with high probability, all S ∈ Y receive pairwise
different weights with respect to ωi. The induction hypothesis will follow directly from
combining these two claims.

▷ Claim 24. Let I be any segment of size at most 2i and let c ∈ conf(β(∂I)). Then
Min(ωi, G⟨I⟩, c) ⊆ Y .
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Proof. Consider any S ∈ Min(ωi, G⟨I⟩, c). By Lemma 13, there exist segments I1, . . . , It

(t ⩽ 5), each of size at most 2i−1, such that E(I) is the disjoint union of E(I1), . . . , E(It).
For each j ∈ {1, . . . , t} choose Sj ∈ E(G⟨Ij⟩) so that S is the disjoint union of S1, . . . , St.
The same argument as that was used in the proof of Claim 21 shows that there exists
cj ∈ conf(β(∂Ij)) such that Sj ∈ Min(ωi−1, G⟨Ij⟩, cj). Hence Sj ∈ Y ′ for all j ∈ {1, . . . , t},
so it follows that S ∈ Y . ◁

▷ Claim 25. The probability of the following event is at least
(
1 − 1

n2

)i: for all different
S, S′ ∈ Y , it holds that ωi(S) ̸= ωi(S′).

Proof. For each S ∈ Y let us define

xS =
∑
e∈S

2id(e).

Observe that since the identifiers assigned to the edges are unique, the numbers xS are pairwise
different. By the induction hypothesis, the following event Ai−1 happens with probability
at least

(
1 − 1

n2

)i−1: for every segment I of size at most 2i−1 and each configuration
c ∈ conf(β(∂I)), we have |Min(ωi−1, G⟨I⟩, c)| ⩽ 1. By Theorem 19 it follows that provided
Ai−1 happens, for every fixed segment I of size at most 2i−1 we have∣∣∣∣∣∣

⋃
c∈conf(β(∂I))

Min(ωi−1, G⟨I⟩, c)

∣∣∣∣∣∣ ⩽ 2O(|β(∂I)|) ⩽ 2O(k).

By Claim 23 there are at most n9 different segments, hence this implies that

|Y | ⩽ |Y ′|5 ⩽ 2O(k) · n45.

Recall now that M = 2C(k+log n) and pi is drawn uniformly at random among the primes
in the range {1, . . . , M}. Hence, from Lemma 11 we can conclude that, for large enough C,
with probability at least(

1 −
(n2 + 1)

(
2O(k) · n45)2

2(C/2)(k+log n)

)
·
(

1 − 1
n2

)i−1
⩾

(
1 − 1

n2

)i

,

all the numbers in {xS : S ∈ Y } have pairwise different remainders modulo pi. Here, the
factor (1 − 1

n2 )i−1 corresponds to the probability that Ai−1 happens. As a consequence, with
the same probability for all different S, S′ ∈ Y we have ωi(S) ̸= ωi(S′). ◁

The induction step now follows directly from combining Claims 24 and 25.


	1 Introduction
	1.1 Our contribution
	1.2 Organization

	2 Preliminaries
	3 Isolating Hamiltonian cycles
	3.1 Configurations for Hamiltonian cycles
	3.2 Rank-based approach
	3.3 Hamiltonian cycles in general graphs using O(n) random bits

	4 Conclusion and directions for further research
	A Hamiltonian cycles in graphs of bounded treewidth

