Oritatami Systems Assemble Shapes No Less
Complex Than Tile Assembly Model (ATAM)

Daria Pchelina (lapba C ITuesmna)
LIPN, Institut Galilée — Université Paris 13, France

Nicolas Schabanel
Ecole Normale Supérieure de Lyon (LIP UMR5668 and IXXI, MC2), France

Shinnosuke Seki (B #r.21)

University of Electro-Communications, Tokyo, Japan
Guillaume Theyssier
Aix-Marseille Université, CNRS, I12M, Marseille, France

—— Abstract

Different models have been proposed to understand natural phenomena at the molecular scale from a

computational point of view. Oritatami systems are a model of molecular co-transcriptional folding:
the transcript (the “molecule”) folds as it is synthesized according to a local energy optimisation
process, in a similar way to how actual biomolecules such as RNA fold into complex shapes and
functions. We introduce a new model, called turedo, which is a self-avoiding Turing machine on the
plane that evolves by marking visited positions and that can only move to unmarked positions. Any
oritatami can be seen as a particular turedo. We show that any turedo with lookup radius 1 can
conversely be simulated by an oritatami, using a universal bead type set. Our notion of simulation is
strong enough to preserve the geometrical and dynamical features of these models up to a constant
spatio-temporal rescaling (as in intrinsic simulation). As a consequence, turedo can be used as a
readable oritatami “higher-level” programming language to build readily oritatami “smart robots”,
using our explicit simulation result as a compiler.

As an application of our simulation result, we prove two new complexity results on the (infinite)
limit configurations of oritatami systems (and radius-1 turedos), assembled from a finite seed
configuration. First, we show that such limit configurations can embed any recursively enumerable
set, and are thus exactly as complex as aTAM limit configurations. Second, we characterize the
possible densities of occupied positions in such limit configurations: they are exactly the Il,-
computable numbers between 0 and 1. We also show that all such limit densities can be produced
by one single oritatami system, just by changing the finite seed configuration.

None of these results is implied by previous constructions of oritatami embedding tag systems or
1D cellular automata, which produce only computable limit configurations with constrained density.

2012 ACM Subject Classification Computer systems organization — Molecular computing; Com-
puting methodologies — Molecular simulation; Applied computing — Molecular structural biology;
Theory of computation — Computability; Theory of computation — Complexity theory and logic

Keywords and phrases Molecular Self-assembly, Co-transcriptional folding, Intrinsic simulation,
Arithmetical hierarchy of real numbers, 2D Turing machines, Computability

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.51

Supplementary Material

Software (Radius-1 Turedo to Delay-3 Oritatami compiler):
https://hub.darcs.net/turedo2oritatami/turedo2oritatami/ [23]

Software (Oritatami simulator): http://perso.ens-1lyon.fr/nicolas.schabanel/0Ssimulator [22]

Funding Nicolas Schabanel: CNRS MITI MoPrExProgMol; IXXI Molécal; CNRS MITTI AMARP;
CNRS MITI DNASALGO; CNRS INS2I Algadene.

Shinnosuke Seki (B 12 P1): JSPS KAKENHI Grant-in-Aids for Scientific Research (B) No.
20H04141 and (C) No. 20K11672.

© Daria Pchelina, Nicolas Schabanel, Shinnosuke Seki, and Guillaume Theyssier; L)

37 licensed under Creative Commons License CC-BY 4.0 V"
39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). m I_
Editors: Petra Berenbrink and Benjamin Monmege; Article No. 51; pp. 51:1-51:23 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2022.51
https://hub.darcs.net/turedo2oritatami/turedo2oritatami/
https://hub.darcs.net/turedo2oritatami/turedo2oritatami/
http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2

Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

1 Introduction

A major trend of natural computing is the study of computational models inspired by
molecular biology that are both theoretically rich and realistic enough to allow in-vitro
implementations. Oritatami systems were introduced in [9, 10] to investigate the computa-
tional power of molecular co-transcriptional folding, in which an RNA sequence (transcript)
folds upon itself into an intricate structure while being synthesized (transcribed). This
phenomenon has proven programmable in-vitro by [12], in which Geary, Rothemund, and
Andersen demonstrated how to encode a rectangular tile-like structure in a transcript and
its folding pathway so that this transcript folds cotranscriptionally along the pathway into
the encoded structure. This RNA Origami architecture has recently been highly automated
by their software ROAD (RNA Origami Automated Design) [8]. ROAD extends the scale
and functional diversity of RNA scaffolds, and is thus a promising direction for the design of
RNA-based computation. DNA tile self-assembly did rely on the cellular automata theory to
build up the abstract Tile Assembly model (aTAM) [24] which in turn allowed to develop
experimental settings simple enough to be implement in vitro, such as the Sierpinski tri-
angle [21]. On the opposite, RNA origami was born first in-vitro and the oritatami system
was created [11] to answer the lack of theoretical framework to design computations for
cotranscriptional-based assembly systems. In this paper, we introduce the turedo model,
implementable in oritatami, which, as opposed to oritatami, is simple enough to program, to
wish for a design equivalent to the Sierpinski triangle experiment for cotranscription-based
in-vitro systems.

An oritatami system consists of a “molecule” (the transcript) made of “beads” that attract
each other. The molecule grows by one bead per step and, at each step, the é most recently
produced beads are free to move around to look for the position that maximizes the number
of bonds they can make with each other (hence the folding is co-transcriptional). This process
ends up self-assembling a shape incrementally. It is known from [11, 20] that oritatami
systems are Turing universal. They can also build arbitrary shapes [4] modulo a small
universal constant upscaling, as well as specific fractals [17]. However, oritatami systems
remain notably challenging to design. Indeed, the only shapes that can be built by [11, 20]
are space-time diagrams of cyclic tag-systems or 1D cellular automata; and [4] requires to
hardcode the whole shape in the transcript. The new computational model introduced in
this article (turedo) not only abstracts away the technical details of attraction rules and
bead sequence of oritatami, but embraces the geometrical aspects of them, as opposed to the
simulation of classical one-dimensional computational models. We demonstrate that turedos
can be simulated up to upscaling by oritatami systems. Our simulation allows thus to take
full advantage of turedo computations in building shapes, and can be used as a compiler to
design powerful oritatami systems as demonstrated below.

Oritatami systems and Turedos. The classical model of Turing machines has already been
considered in other settings than the one dimensional bi-infinite tape, in particular in higher
dimensions [1]. A popular class of Turing machines in Z? is that of turmites [16], which are
free to move on the plane but do it by just looking at their current internal state and the
tape content at their current position. In this paper, we introduce a somewhat orthogonal
class of Turing machines on the plane, that we call turedosl, which can look at the tape
content around their position to decide their move (like in [1]), but are constrained to move
only in a self-avoiding way.

! Inspired by the nicely coined terminology for turmites, as a reference to toredo navalis (shipworms) that
would only grow self-avoiding tunnels in wood if they were infinite.

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

Both our models (oritatami and turedos) have two strong constraints: they are sequential
and self-avoiding (i.e. each position of the plane can only be visited once and becomes an
obstruction for future moves). They can be seen as the sequential counterpart of aTAM model
of self-assembly [19, 5] or freezing cellular automata [13, 2, 18]. But they are not just finite
state automata growing a self-avoiding path in a regular way. Their computational power is
in their ability to make moves depending on the configuration of neighboring positions.

Our main result is that oritatami can simulate turedos of lookup radius 1. Our notion
of simulation is strong enough to preserve the geometrical and dynamical features of these
models up to a constant spatio-temporal rescaling: the oritatami reproduces the whole
dynamics of the turedo using macro-cells and a constant spatio-temporal rescaling. This
definition is similar to intrinsic simulations developed for cellular automata [3] or self-assembly
tilings [5]. Theorem 1.1 is proved in section 3.

» Theorem 1.1 (Main result 1). There is a universal bead type set B such that for any
turedo T of radius 1 with alphabet of size Q, there is a delay-3 oritatami system based on B

with period A = ©(Q°log Q) which simulates intrinsically T at space-scale O(Q>/log Q) and
time-scale A.

Complexity of limit configurations. The Turing universality results in [11, 20] induce
undecidability results of the form: given an oritatami, a seed and a position, determining
whether the position will be visited is undecidable. However, these embeddings are such
that the obtained limit configurations are always computable because the space-time of the
simulated tag system (or cellular automaton) computation is progressively constructed in a
predictable way in a fixed region of oritatami’s space. Precisely, in any limit configuration
¢ obtained this way, the map z + ¢ (z) is computable because there is a computable time
bound 7(2) such that if position z is not visited after 7(z) steps of the run, then it will never
be visited (see Lemma 4.1).

The first application of our simulation result is to prove that we can produce uncomputable
limit configurations from finite seeds with oritatami (section 4). This implies that there are
oritatami runs from finite seeds where there is no computable time bound 7(2) on the visit
time of position z.

Results on uncomputable limit configurations were already obtained in the model of
directed aTAM [15]. Nevertheless, the construction used takes full advantage of the massive
parallelism allowed in the aTAM model and cannot be translated into the turedo settings. Our
construction is actually simpler than that of [15] and shows that sequential self-avoiding models
can organize information in the plane in such a way that some regions allow “uncomputable
comebacks”.

» Theorem 1.2 (Main result 2). There exists a fived oritatami with delay 3 and a fized finite
seed o such that the produced limit configuration c, is uncomputable as a map.

The second application of our simulation result is about (upper) density of occupied
positions in the limit configurations obtained from finite seeds. Density is a natural geometrical
parameter to test the ability of our models to produce complex infinite self-avoiding paths from
finite seeds. We show that such densities are exactly the II5-computable numbers between 0
and 1 (Theorem 5.3), where IT,-computable means being the limsup of a computable sequence
of rational numbers [25]. In particular turedos and oritatami can produce limit densities
which are not recursively approximable (i.e. not the limit of any computable sequence of
rational numbers). We actually show that the whole spectrum of density can be obtained
in a single turedo by varying the seed (Theorem 5.3). Using our simulation framework, the
following result is shown first for turedos and then for oritatami in Section 5.

51:3

STACS 2022

51:4

Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

» Theorem 1.3 (Main result 3). For any € > 0, there exists an oritatami of delay 3 such
that for any Ily-computable number d € [0,1 — €], there is a finite seed o such that the limit
configuration co reached from it has density of occupied positions exactly d.

Note that the densities that can be produced in the (directed) aTAM model or freezing
cellular automata from finite initial configurations cannot be more complex (see Lemma 5.1).

The organization of the paper is as follows: we first present oritatami and turedo models
and the notion of simulation (section 2); then, we establish our main simulation result
(section 3) and its two applications (sections 4 and 5).

2 Definitions and Models

Oritatami systems. Oritatami systems are embedded in the triangular lattice T = (Z2, ~),
where (z,y) ~ (u,v) if and only if (u,v) € Uees1{(z + €,4), (x,y +€), (x + €,y + €)}. Every
position (z,y) in T is mapped in the euclidean plane to x - € +y - sW using the vector
basis € = (1,0) and sw = RotateClockwise (€,120°) = —%, —@) We will denote by
nw, né, €,58, W, sw the six canonical unit vectors in T. Let B be a finite set of bead types. A
configuration ¢ of a bead type sequence p € B* U BN is a directed self-avoiding path cycicg:-+
in T, where for all integer ¢, the vertex ¢; of ¢ is labeled by p; and refers to the position in T
of the (7 + 1)-th bead in the configuration. A partial configuration of p is a configuration of
a prefix of p.

For any partial configuration ¢ of some sequence p, an elongation of ¢ by k beads (or
k-elongation) is a partial configuration of p of length |c| + k extending by k positions the
self-avoiding path of ¢. We denote by C, the set of all partial configurations of p (the index
p will be omitted whenever it is clear from the context). We denote by ™" the set of all
k-elongations of a partial configuration c¢ of sequence p.

An oritatami system O = (p,#,0) is composed of (1) a (possibly infinite) bead type
sequence p, called the transcript, (2) an attraction rule, which is a symmetric relation @ < Bz,
and (3) a parameter § called the delay. O is said to be periodic if p is infinite and periodic.
Periodicity ensures that the “program” p embedded in the oritatami system is finite (does not
hardcode unbounded behavior) and at the same time allows arbitrarily long computation.

We say that two bead types a and b attract each other when a @ b. Furthermore, given
a (partial) configuration ¢ of a bead type sequence ¢, we say that there is a bond between
two adjacent positions ¢; and ¢; of ¢ in T if ¢; ®¢; and |¢ — j| > 1. The number of bonds of
configuration c of ¢ is denoted by H(c) = [{(4,7) : ¢; ~¢;, j > 1+ 1, and ¢; #q;}|.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay 6.
Informally, the configuration grows from a seed configuration (the input), one bead at a time.
This new bead adopts the position(s) that maximize(s) the potential number of bonds the
configuration can make when elongated by d beads in total. This dynamics is oblivious as it
keeps no memory of the previously preferred positions [11].

Formally, given an Oritatami system O = (p,%,6) and a seed configuration o of a seed
bead type sequence s, we denote by C, ,, the set of all partial configurations of the sequence
s - p elongating the seed configuration . The considered dynamics 2 : 9Cor 5 9l maps
every subset S of partial configurations of length ¢ elongating o of the sequence s - p to the
subset 2(S) of partial configurations of length £ + 1 of s - p as follows:

2(5) = U argmax(max H(n))
ne

>(5-1
ces ’yEc'>1 ’Y()

The possible configurations at time t of the oritatami system O are the elongations of the
seed configuration o by ¢ beads in the set 2'({c}).

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

Figure 1 Oritatami model: From left to right, the growth from bead E12 to bead E18
of a self-supported oritatami glider with delay 6 = 3, transcript p = E12...E23 and rule
{E12% E17, E14 % E21, E18 # E23, E20 #® E15}. At each step, the set of nascent paths and maximiz-
ing the number of bonds is shown. The nascent beads are highlighted in bold black. The nascent
paths are drawn in bold black until the last bond made and ends in colors when their tail is free to
move (i.e., is not bounded by any bond).

We say that the Oritatami system is deterministic if at each time ¢, 2°({c}) is either a
singleton or the empty set. In this case, we denote by ¢ the configuration at time ¢, such
that: ¢’ = 0 and 2'({o}) = {c'} for all ¢ > 0; we say that the partial configuration ¢’ folds
(co-transcriptionally) into the partial configuration P deterministically. In this case, at
time ¢, the (¢ + 1)-th bead of p is placed at cHl, that is at the position that maximises the
number of bonds that can be made in a d-elongation of . Figure 1 illustrates the folding
steps of a delay-3 oritatami glider.

Turedos: Self-avoiding Turing Machines. A turedo is a Turing machine working on
the plane with a lookup neighborhood (like in [1]), that can only move in a self-avoiding
way. Turedos are embedded in the hexagonal lattice H = (ZQ, <) whose 6 unit vectors
are Ny = {N =(1,1), NE = (1,0), SE = (0,-1), § = (=1,-1), 5W = (=1,0),Nw = (0,1)}.
Note that H’s underlying grid is rotated by 30° with respect to T’s . This choice is motivated
by the main simulation result of the paper where macrocells in oritatami in our figures
appear in the same orientation as the hexagonal cells in turedos. We denote by B(r) the
hexagonal ball of radius r centered on (0,0), i.e. the set of positions in Z” that can be
written as a sum of at most r vectors from Ng. We also denote by b(r) the size of B(r),
and c,(r) = (u € B(r) » c¢(z + u)) the restriction of a configuration ¢ to the ball of radius r
centered on z. Finally, we fix a universal blank symbol L representing unoccupied positions.

» Definition 2.1. A turedo is defined by T = (A, Q, qo,7,0) where A is the tape alpha-
bet, L € A, QQ is the set of head states with initial state qy € Q, v is the lookup radius,
J:Q X AP0 Q X Ny x AN {L} is the local transition map.

A tape configuration is an element of Az2. A global state is an element of

2
Sr = A% x 7% x Q (tape configuration, position and state of the head). The turedo T
induces a global map Fr : S+ — Sy defined as follows:

(¢,2,q) ife(z)# L orc(z+d)+ L,
F’T(Ca = q) = I I .

(c,z+d,q) otherwise,
where (¢,d,a) = 6(q,c.(r)) and image configuration ¢ is defined by: ¢'(z) =a and
¢(u) = c(u) for u# z. When the first case occurs, we say that the machine is blocked.

The key point of the above definition (which justifies the qualification of “self-avoiding”)
is that the only way tape configurations can be altered is by turning a blank symbol into a
non-blank symbol, and therefore the head cannot go back to a previously visited position

51:5

STACS 2022

51:6 Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

Left turn Zig-sweep
5 @ O
(n Li
e @,
)
7Right turn Zag—gveep

5 G
‘R.)

(a) A 4-cyclic clockwise walker turedo. (b) A 3-states Sierpinski triangle. turedo

Figure 2 Two examples of radius-1 turedos. The seed configurations are displayed in yellow.
The path followed by the turedo is highlighted in white. Empty (blank) positions are marked with a
blue dot. (a) The turedo exits to the counterclockwise-most empty cell starting from its entry side.
The states are just cycling in Z0,...,Z3. (b) The turedo uses three states LO,L1,R1 to perform a
zigzag sweeping drawing the Sierpinski triangles pattern using the local rule given above.

(except when the machine is blocked in which case the global state is a fixed point). Positions
holding a blank symbol are therefore seen as empty positions where the head can possibly
move to. Two examples of radius-1 turedos are given in Figure 2.

Limit configuration and freezing time. Given an initial global state s € S for a turedo
of global map Fr, let us consider the sequence (¢’ z;, q;) = Fr(s) for t € N. By the self-
avoiding property, it holds that for any z € Z* the sequence of symbols (¢ (2))nen is ultimately

2

constant, and, denoting its limit c; (z), we then have defined a tape configuration co € A%

which is called the limit configuration reached by F' starting from s. Said differently, using

the standard Cantor topology for tape configurations [14], we have that the sequence of
. t 00 .

configurations (c¢'), converges to ¢, . Moreover, we can associate to the system and the

initial global state s, the freezing time map 75 : Z> — N such that 7,(z) is the minimal ¢ for

which the tape content of cell z at time ¢ is ¢y (2) (in particular, 7,(z) = 0 if c; (z) = L1).

Programming turedos. Thanks to the freedom allowed in their local maps, turedos are in
general much easier to design than oritatami systems. The basic building block to design
complex turedos is the zigzag sweeping movement which allows us to embed any 1D Turing
machine/cellular automaton computation (see Fig. 2b). They can also be used as thick wires
to transport information from one region to another.

Simulations. Any oritatami with delay § can be seen as a particular turedo of radius § + 1:
indeed, an oritatami transition is completely determined by the position in the sequence of
beads, coded as a state of the turedo, and the local configuration in a ball of radius § + 1.
Our main result proven in the next section is a converse to this observation: any turedo
of radius 1 can be simulated by an oritatami system of delay 3. The general idea is to
reproduce the dynamics up to a linear spatio-temporal scale factor like in similar notions

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

already considered for cellular automata or self-assembly tilings [3, 6, 2]. More precisely,
each cell of the simulated system is represented by a macrocell in the simulator system, the
macrocells form a linearly distorted hexagonal lattice, and a constant number of time steps
is allowed for the simulator to reproduce one step of the simulated system. This notion of
simulation is very strict and allows to relate properties of the limit configurations in the
simulated system to the corresponding limit configuration in the simulator. This can be done
without further hypothesis for computability of limit configurations, but can also be done for
the density of non-blank states as soon as the simulation uses macrocells that are filled with
the same high enough density.

3 Delay-3 oritatami systems simulate radius-1 Turedos

This section provides an overview of the design implying main Theorem 1.1. As for the 1D
cellular automaton simulation in [20], our simulation proceeds in three phases: 1) reading
the neighboring letters, 2) preparing for writing the new letter on the boundaries of the
macrocell and 3) exiting to the computed next location. However, we must solve a significant
number of new challenges to adapt to turedos. Turedos are free to move in every direction:
the shape of the macrocells must then be isotropic. Furthermore, as the exit direction has
to be deduced from the symbols read, the reading process must be non-blocking. Thus we
cannot use the reading mechanism in [20], nor the writing flip-flap mechanism which would
block any further return to a previously visited border; we cannot use its hardcoded exit
mechanism either. Moreover, as we need to return to a random side after reading and writing
on all sides, our oritatami system must be able to absorb up to 4 times the side length
before exiting to the new macrocell and starting the next period of the transcript. It follows
that we cannot park unused information on the boundary of the macrocell as in [20], but
need to store information inside the macrocell to avoid increasing the macrocell side length
uncontrollably. Similarly the speedbump module introduced in [20] must be adapted to fit
inside a compact space.

To solve all those issues, we have developed new tools that we believe to be simple, powerful
and generic enough to have their own interest. We also believe that some of them could serve as

a guideline for a first biochemical implementation of computation using RNA co-transcription.

Our current implementation turedo2oritatami uses 1735 bead types. Examples of radius-1
turedos compiled as oritatami as well as a fully functional python compiler can be downloaded
from [23]: https://hub.darcs.net/turedo2oritatami/turedo2oritatami/python. The
resulting .os files are to be run with the oritatami simulator by [22].

Bit-weight encoding of a Turedo. Consider a radius-1 turedo. First, we get rid of its

internal state and orientation by encoding them in the symbols of the tape configuration.

We then encode each symbol of the resulting tape alphabet A as a string of ¢ bits where
q = [logy #.A]. The blank symbol L is encoded by the reserved word 0?. Let Q = 27. In
the following we assume that the neighboring cells of the current position are numbered
in counterclockwise (CCW) order from 0 to 5 where 5 denotes the cell previously visited
by the turedo. Our simulation assumes that the turedo transition function is a function
F:(29)°% - 29 {0,...,4}, that reads the g bits bi.0s- - -,b; g—1 encoding the symbol in the
ith CCW neighboring cell for ¢ = 0..5, and outputs the ¢ bits of the symbol to be written

51:7

STACS 2022

https://hub.darcs.net/turedo2oritatami/turedo2oritatami/python
https://hub.darcs.net/turedo2oritatami/turedo2oritatami/python

51:8

Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

[o

4. speedbump
%

1 1

Figure 3 Principle of the macrocell operation. The shift of the reading layer at the end of its

folding (and thus of the writing layer) is) ... read;=1 Wi = Wa + Ws.

and the CCW index of the next cell to go to.? Furthermore, we assume that F' is encoded
as a tuple ((w;;), ®) such that F((b;;)) = @(Zi’j w;;b;;) where the 6¢ bit-weights (w;;) are
non-negative integers. All transition function F' can be encoded this way using the weights
w;; = 297 We denote by W = Z” w;; the sum of the weights of the bits. Encoded this
way, the size of the transition table of F' is exactly W + 1 for every bit and the exit direction.

Principle of the macrocell operation. Fig. 3 presents a schematic overview of the key
operations in the macrocell. The transcript consists of five parts:

1. the scaffold of the macrocell folds, on each side of the macrocell, in front of the position
of each bit to be read, “read pockets” (in blue) of size equal to the weight given by the
transition function to that bit; it also builds one “exit pocket” (in orange) per side;

2. the read layer folds counterclockwise and fills the read pockets (outlined in blue) when
it senses a 0, and jumps over it when it senses a 1, pushing the transcript forward by a
shift corresponding to the sum A of the sizes of the pockets sensing a 1 (A = wy + wy in
the figure);

3. the write layer contains all the transition tables of the simulated turedo, one for each bit
to write on each side, and one for each exit-or-not decision on each side; this layer folds
clockwise, and as it is translated forward by A, it folds the Ath entry of each transition
table at the writing spots (in purple) that trigger the folding of the selected transition
table entries. The shift A accumulated by the read layer allows then to write the output
pattern on each side. It also places a “kicking bead” (in purple) in the exit pocket on the
computed exit side and no-kicking beads in the other using the same shift-principle;

4. the speedbump module (outlined in green) absorbs the shift so that the next layer starts
without any shift regardless of the values read by the read layer;

5. the exit layer folds counterclockwise, following the border until it hits the kick (outlined
in yellow) and folds upon itself to the next macrocell.

Observe that the reading layer needs to “read” the bit from neighboring cells while still

making room for the two next layers to fold between the reading layer and the neighboring

cells. This explains why our oritatami systems has delay 3: it has to read through 3 layers.
This presentation was just an overview of the macrocell. The complete description of the
macrocell is given in Fig. 4. We will now present some of the key tools used in our design.

% The case of attempting to exit towards the CCW neighboring cell n°5 from which the turedo came, is
purposely ignored as it would unnecessarily complicate the construction.

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

Entry point

v
7. Uturn block Corner
é %;:3;:2 interchange

block g North-east
Writing block

Middle interchange

18. North-east
Exit block

5. North-east

Middle Reading block

interchange

12. North-west
Writing block

Corner
interchange

Corner
interchange

9. South-east =
Writing block V=-4

Middle
interchange

2. South-west
Reading block

A 15
7 South-west
Exit block

17. South-east
Exit block

4. South-east

Middle Reading block

interchange . .
16. 7 Exit point
11. South-west South
ey . 10. South ¢, v
Writing block Exit Y orner
tne 3. South 1 o Writing interchange

Middle block

interchange block interchange
/
A .g/\/‘>A\l LETR\Y

Corner Reading

Figure 4 A macrocell for a turedo with g = 3 bits (Q = 8 tape symbols) together with the order
in which layers and modules are used along its boundary as well as snapshots of important modules:
(a)-(e) the read pocket in all possible situations: reading a 0/L (fig. b, d and e) or a 1 (fig. a and c)
from a neighboring cell (fig. a—d) (or not (fig. e)) and through its exit layer (fig. a and b) or directly
from its write layer (fig. ¢ and d) — (f)-(h) all possible situations for the write module: writing a
0 (fig. g and i) or a 1 (fig. f and h), through the exit layer (fig. h and i) or directly (fig. f and g) —
(j) the shift-absorbing speedbump — (k) the exit layer folds along the exit pocket — (1)-(m) the write
layer has placed the kicking bead ©76 in the corner that detaches the exit layer from the pocket and
concludes the folding by exiting to the SW. ‘ Zoom in for details ‘

51:9

STACS

2022

51:10 Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

Folding meter and pockets. Our construction relies on two new simple and powerful tools:

a folding meter is a 4n-periodic transcript whose period has 4 equally spaced articulation
points, so that it can either: 1) follow a border if it is strongly attracted to it; 2) fold
upon itself in a compact zig-zag form if the attraction to the border is weak; 3) reveal an
hardcoded structure if the attraction to its surrounding is mild (see Appendix A).
a pocket is a box which triggers the compact folding of a folding meter and which allows to
hide a portion of it in a compact space. The entrance to such a pocket can be conditioned
by the surrounding. For instance, the read folding meter enters a read pocket if and
only if its reading head rq88 or rq36 is not attracted by two beads encoding a 1 in its
neighborhood (see Fig. 4(a—e)), otherwise it folds into an hardcoded glider and exits the
pocket rightaway.

Furthermore, several folding meters can be layered on top of each other in opposite directions

as long as their periods match. Synchronizing and desynchronizing the two layers allow to

trigger the various behaviors as well, by varying the strength of their bonds. For instance, the

write layer folds into spikes encoding 0 or 1 when it passes over the read layer in Fig. 4(f-i)

because its bonds are weaker with the read layer when the latter is desynchronized after

having been sucked into the pitfalls that surround this area. The length n of the each segment
is a priori arbitrary as long as n = 6. In the present design, n was set to 26 in order to
accommodate all the desired configurations — the most demanding being the glider at the
entrance of a read pocket when reading a 0, and the writing of 0 or 1 over the write module.

Read layer and pocket. Let us illustrate the folding meter/pocket mechanism with the
read pocket used to induce a shift of 2nk in the transcript every time it reads a 1 with
bit-weight x. The primary purpose of the read pocket is namely to read a bit (0/1) and
to push forward the read layer by the amount equivalent to its capacity if the read layer
reads a 1. The read layer folds from right to left. When the read layer reaches the entrance
(see Fig. ba), its “reading head”, the bead rq88, “senses” whether there is a 1 written on
the adjacent macrocell at this location. If there is a 1, encoded by the presence of the pair
of beads [1]p62 and [l|p64 in Fig. 5a, then the reading head rq88 is momentarily attracted
upwards (making two temporary bonds), which results in placing bead rq86 away from the
border of the read pocket; the read layer gets then too far from the read pocket border
to get attracted to it anymore, and folds into its natural hidden shape: a glider that will
immediately escape from the read pocket (Fig. 5a). Otherwise, if there is a 0, encoded by the
absence of these bead types at the expected location in Fig. 5b, the reading head rq88 gets
attracted downwards inside the pocket by making one bond; the read layer pursues its course
downwards along the border until it reaches the bottom of the pocket which does not attract
it anymore; the read layer prefers then to fold upon itself into a switchback pattern, filling
the pocket completely, until it reaches the other side of the pocket which attracts it again;
the read layer follows this border until it exits the pocket. This results in a shift forward of
the read layer by an amount corresponding to the pocket capacity 2n« if and only if the bit
written on the adjacent macrocell is 1.

Remark that this novel bit reading method, using a reading head, does not obstruct the
way between adjacent cells unlike the method used in [20]; this allows the write and exit
layers to pass and reach the exit at an arbitrary side. Note that this is the reason why our
simulation uses delay 3.

Note finally that the interactions between the scaffold and the read layer are extremely
simple: the only places where these interactions are carefully designed are at the entrance
and at the end of the pocket (the three areas highlighted in green in Fig. 5), all the other

11

51

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

u

A (u gopdnmpwou (grrm) © L~ d+(1+ v\mviv ug = Aoeded se T+ yg > d yam d ‘m ‘y siejeurered o1} Aq paurtiIalep s 41 pue ‘g Surpeal uodn
pue 1 Surpea1 uodn jdidsuer) oY) Aq Usye) syjed oY) Usemyaq [ISUS] UI OUSISHIP oY} oq 0} pauyap st jexpod peal © Jo figrondvo oy, “1eood pesy] § ainSiy

"0 Surpeai jexpod pesy (q) "1 Surpeai jexood pesy (e)

sbddd e
x\.

R/ o1t

(-1 +yg)u

(T+yz)u

§ mz-@-¥I T (1t
K hlojjeos
g

Mg T - VL T (LHAg)u

: Sxiras
0z 5 T (TF7z) 0z —u

STACS 2022

51:12

Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

interactions are either “attract-them-all” (the areas highlighted in yellow) or “attract-none-
of-them” (the areas highlighted in blue). This demonstrates the simplicity of the folding
meter/pocket concept.

The read and write blocks. Fig. 6 shows in details the actual oritatami implementation of
the read and write blocks and how write pockets of size equal to the size of the transition
tables are used as interconnected vessels to place the correct entry of the table over each write
module. The write module (responsible for writing 0 or 1 on the sides of the macrocell) and
write pocket (responsible for hiding the unused entries of the transition table) are presented
in details in Appendix B.

Layer interchange. Each layer is heavily interacting with its neighboring layers inside a
macrocell. It follows that unwanted interferences may occur between facing layers from
neighboring macrocells. For this purpose, we use three different variants of bead types in
each layer: one for each half of each side (e.g. Readl and Read?2 for the read layer), plus one
in the middle and the corners which interconnects one to the other and cancel the need for
interactions between them (e.g., Read12 to switch between Readl and Read?2).

Setting up the exit block and computing the macrocell size. As the exit pocket needs to
accommodate the remaining of the exit layer before it exits, it must have room to fold in
a compact shape a folding meter of length up to four macrocell-sides long. Since the exit
pocket belongs to the macrocell side, extending the exit pocket extends the macrocell side as
well: we have thus to solve a fix point problem. Moreover, since a different amount of the
exit layer will fold into each exit pocket depending on its location in the macrocell, we need
a mechanism to make sure that, in all cases, the transcript will exit at the same position
on every macrocell side, without interfering with the fix point resolution above. The latter
problem is solved by using a pair of “loose ropes” of equal length, one on each side, “pulling”
on the exit pocket to adapt its position to the macrocell side (see the two triangles of varying
depth surrounding each of the five exit pockets in Fig. 4). Making the exit pocket deep
enough allows to solve this fix point issue, which concludes the proof overview of Thm. 1.1.

4 Uncomputable Limit Configurations and Freezing Time

A configuration ¢ € A22 is computable if there is a Turing machine which on input z € z?
computes c(z). We are interested in the computability of limit configurations obtained from
finite initial configurations (i.e. everywhere L except on a finite region).

As said in the introduction, constructions of Turing universal oritatami systems known so
far [20, 11] do not produce uncomputable limit configurations. The key reason is that they
have a computable escape direction: a direction u € Z% and a computable non-decreasing
function p such that p(t) — oo and for any ¢ € N, the position z; of the head after ¢ steps
verifies u + z; = p(t) where “-” denotes the scalar product (i.e. the head globally moves
away along the direction u). Such a computable escape direction appears naturally in these
simulations because they are fundamentally simulations of space-time of one-dimensional
systems: they work by growing successive 1D finite configurations and stacking them along a
direction u that corresponds to the time of the simulated system. The simulation never goes
back to previously stacked layers simply because computing one step of the 1D system is
performed using the last stacked 1D configuration only. More generally:

13

51

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

7__320 JOJ Ul WOOZ | "UOoIjR[NUIIS [UIR)R)LIO
[enjoe ue S SIYJ, "[[o20I0rW SULIOqUSIou urmoodn s)1 Jo IoAe] pral oY) Aq T © I0 (Sk peal oq [[Im Yoiym odeys paquioseid e ojur p[of [[Im jred sty {pojoadxo se
OPIS [[900I0RT A} UO 9ILIM 09 1Iq [ORD I0J SR} UOIISURI) 91} JO AIUL [)-Y oY) SUIPOOUs ouo o1} ST (oN[q Ul PoIYSIYSIY) S[MPOUT 9ILIM [[ORD I9A0 SUIP[O] IoAR]
9911M a1} Jo 4xed oty yeryy serjdwur sy (9IS S UI I0[0D JUSISPIP & UT PAPYSIYSIY ST o[qR) UOT}ISURI) [O©d) IoA®R] peal Surpadald s)1 Aq Paje[nuIMddR YIS €10}
oty ‘sporrad-jrey fm T=(FHpERx WY =y Aq premio] peyIys SI 11 ‘P[OJ 0} S1I8)S 19K SILIM O]} USYM ‘() ST JJIYS Y} UM S[NPOW LIM Y} YIM PauSi[e st A19ud
1SIY SI1 9RY) OS IoA®[91LIM O} UL PIJRIO[SI 9[(e} UOIISURI} 9} pue so[qe} uorisuer) Suol-(T + AA) 9Y) Ul SOLIJUS POsnUN 9} [[® 9)ePOW0ddR 0} sporad-jrey
A 09 19s st s1espod 911Im 9} Jo ozIs) ‘polwd-Jrey 1od suo :}dIIOSURI) I9AR] 91LIM ST} UI PaIO)s ole sa[qe) uorjsuer) oY) (dol) — aindy oY) ut sporrad-jrey
Om 3O 9J1US [euorIppe 209 @ SP[RIA SIY) 91q SUIrpuodserrod oyl Jo 1YSeM oY) Aq IoAR] pRal 97} JO PILMIO] PIUS 9} SISRAIOUL YOIYM ‘T © S90R] 11 JI 103p0d
pea1 o) sdiss 4nq ‘[[eooroewr Surroqusou a1} uo o e Suroe] je300d peal AI0Ad S[[Y 91 ‘SP[O] IoA®] peal oY) UayMm (W0110q) :$3J0|q 91LM pue peal ay| g a4nSi4

1="m _ummhm o='m wm@.m I=m wm@.m

sporrad—jrey poppe PopPPe
’m Aq premioj yiys PJIys ou JIys ou

V-

spotaad
—3rey

Vv 4q
pIemuoj
PaYIYs
SI J0A%]

oM BT,

U9IIM SI |
Vv, u A1juo

M

~~

-~

0.U 11q J10j 3|qe] uollisue} T.u }q Joj 3|qe] uoljisues) Z.U 11q 104 3]qe) uollisues)

STACS 2022

51:14

Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

——at most k paths cross the k-th area
v/, % [-
=il

Nr==lr=1r. >

]\47 halts M, halts M, halts

slowly growing
computation

Parallel TM simulation

(a) Sketch of the turedo building an uncomputable limit (b) Sketch of the turedo building a limit con-
configuration. figuration with an arbitrary density d € II5,.

Figure 7 Sketch of the two turedo constructions in sections 4 and 5.

» Fact 4.1. For any turedo reaching limit configuration cy from a finite global state s, the
maps z & cq (2) and z = 7,(2) are Turing-equivalent. Moreover, they are both computable
if the dynamics admits a computable escape direction.

In the next result, we construct a turedo that goes back uncomputably close to the origin
uncomputably often in spite of following a self-avoiding trajectory. Precisely, we prove that
turedos of radius 1 and therefore oritatami are powerful enough to embed any recursively
enumerable set into their limit configurations reached from a finite initial configuration. As
a consequence, both models produce uncomputable limit configurations.

» Theorem 4.2. There exists a fized turedo of radius 1 which, when started from a fized
global state s with a blank tape configuration, reaches an uncomputable limit configuration
and therefore has an uncomputable freezing time map Ts.

Proof sketch. The basic idea, illustrated in Fig. 7a, is to build a turedo which runs a Turing
machine simulation to test all Turing machines for halt in parallel and that, when it finds
that some machine 7 has halted, interrupts momentarily its computation and goes to write a
flag in a prefabricated area p(z) located at a computable in ¢ position (initially all areas p(i)
are empty). Areas of type p(i) are progressively filled in some uncomputable and unknown
order, but, at the limit, it holds that p(i) contains a flag if and only if the machine 7 halts.
Therefore the limit configuration is uncomputable because it can solve the halting problem
when used as an oracle.

The key to implementing this idea is the layout of the paths to reach the areas p(7):
when we proceed as shown in Fig. 7a, no more than 7 paths will go across the area p(i),
i.e. the ones that correspond to the halting Turing machines j with j < 7. As a zigzag of
thickness O(j) is enough for the turedo to reach area j, place a flag, and go back, then the
flag in area p(i) (if any) will never be placed higher than O(iz). It follows that these areas
have quadratic size and their ground basis can be set up in advance by the turedo as it
simulates the Turing machines in parallel (in particular, the turedo will start the simulation
of machine 4 only after the ground basis of area p(i) is set up). Of course, Figure 7a is a
simplification and does not represent all movements of the turedo’s head: in particular, when
moving towards area p(i), the turedo needs to carry on the information ¢ and to bubble up
the ground basis of each area crossed over along the way, and it cannot carry those in its
state set. Using our simulation framework, Theorem 1.2 follows from Theorems 1.1 and 4.2.

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

Figure 8 The linear map A\ between the turedo world and the oritatami world induces a tilt
between the concentric balls in the both worlds. This simulation tilt must be compensated by
providing to the simulated turedo a pair of vectors as an input, so that it fills a proper discretization
of the oritatami world balls when simulated: (left) the shortest radius vectors v'l, v; of a ball in the
oritatami world that can be mapped exactly in the turedo world — (right) when the two corresponding
vectors vy, v, in the turedo world are supplied to the turedo as an input, the turedo can use them to
build a proper discretization of large enough balls in the oritatami world — (middle) both turedo and
oritatami worlds superposed (the target balls are drawn in purple and the discretized turedo ones in
blue).

5 Characterization of Possible Densities of Limit Configurations

We can define the (upper) density E(c) of non-blank cells in configuration c¢ as follows:

d(c) = lim sup #iz € B(Z();)c(z) 1}

This choice is natural and gives a translation-invariant notion, but it is not unique (we could
replace the sequence (B(n)), by another Fglner sequence [7]). The problem is that, in a
simulation, the lattice of cells is distorted into a macro-lattice of macro-cells in such a way
that the macro-balls do not have the same shape as genuine balls, as shown in Fig. 8. Said
differently, the reference Fglner sequence is distorted into another one and this can change
the density. To circumvent this problem and produce more robust results, we will consider
all possible linearly distorted balls from the start: for any pair v, vy € Z? of non-colinear
vectors, we consider the (upper) density c_lv”,2 of non-blank state after distortion of the
lattice by the pair v; and v,.

We first prove that the computational complexity of c_lvl,vQ(c) is IIs-bounded as soon as ¢
is produced as the limit of a computable process on finite configurations such that the set of
non-blank positions is monotonically increasing and with diameter growing in a computable
way. This bound applies to turedos but also all systems cited in section 1.

» Lemma 5.1 (Densities of any self-assembling systems are II,). Let ¢ be the limit config-
uration reached from some finite seed by some system among oritatami, turedos, freezing
cellular automata or directed aTAM. Then for any pair of non-colinear vectors vy, vy, the
upper density Evth(cm) s a Ily-computable number.

For non-deterministic systems (both turedos and aTAM), we can state a similar lemma say-
ing that, starting from any finite seed, there is always one orbit converging to a configuration
with II, density.

Arbitrarily dense simulation. The next theorem is a stronger version of Theorem 1.1,
enforcing a constant and arbitrarily large density inside each macrocell of the oritatami
simulation of a given turedo. Precisely, if we consider the cell partition of the oritatami

51:15

STACS 2022

51:16 Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model
o, 0005, g0%0%
o o 0 0. oY _4
%ed® %30

Figure 9 Increasing the density by folding a filled hexagon inside the macrocell expanded by 50,
100 and 200 extra 2n-periods on each side. Actual oritatami simulation. ‘ Zoom in for details‘

%o

plane into disjoint identical copies of a macrocell tile M induced by the map A from the
turedo world to the oritatami world, where each copy A(z) + M covers exactly the macrocell
corresponding to the turedo position z (see Fig. 8), then:

» Theorem 5.2. For any turedo T of radius 1, and for any € > 0, there exists an oritatami
system of delay 3 that simulates T and such that the number of occupied positions in each
macrocell tile X\(z) + M in the oritatami limit configuration is exactly k for all non-L
position z of the turedo limit configuration (and 0 for L position), with k = (1 —€) - #M.

This result is obtained by 1) expanding of the macrocell with a straight line of length L in
the middle of each side so that the empty triangles between the macrocells become negligible
and 2) inserting a sequence in the scaffold that folds into a filled hexagon of radius L(1 + «)
inside the space freed inside the macrocell by the expansion. The factor o > 0 is necessary to
account for the increase of the exit pocket induced by the increase of the side length (more
transcript needs to fit into the pocket) (see Fig. 9). Picking L large enough concludes the
proof. The case of density 1 is treated separately by an ad hoc solution.

Arbitrary II,-density. We conclude with the construction of a turedo of radius 1 that
is able to produce limit configurations with any possible density when starting from the
appropriate finite configuration. By possible density we mean any real number d € [0,1]
which is ITy-computable [25], i.e. such that there exists a computable sequence of rational
numbers (g,) with d = lim sup,, ¢,. The construction is rather technical but the overall idea
is simple (see Fig. 7b): at step n, leave a large annulus empty then densely fill another large
annulus in such a way that the surface ratio between these annuli is g,, and that their sizes
are large enough to dominate all the previously constructed annulus in anterior steps. The
exact sequence of annuli is computed by the turedo in a sublinearly growing (hence negligible)
corridor.

» Theorem 5.3. There exists a turedo of radius 1 such that for any Ily-computable number
d € [0,1] and any pair of non-colinear vectors vy, vs, there is a finite initial global state such
that the limit tape configuration ¢~ reached from it verifies: dvl,vz(coo) =d.

The II,-computability limitation is unavoidable as shown in Lemma 5.1, hence our
result is optimal and actually gives a characterization of densities of limit configurations
of continuous sequential self-avoiding systems (resp. turedo, resp. oritatami) started from
finite configurations. Using our simulation framework and Theorem 5.2 we directly deduce
Theorem 1.3.

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

—— References

1

10

11

12

13

14
15

16

Sebastidn Barbieri, Jarkko Kari, and Ville Salo. The group of reversible Turing machines.

In Cellular Automata and Discrete Complex Systems, pages 49-62. Springer International
Publishing, 2016. doi:10.1007/978-3-319-39300-1_5.

Florent Becker, Diego Maldonado, Nicolas Ollinger, and Guillaume Theyssier. Universality in
freezing cellular automata. In Sailing Routes in the World of Computation - 14th Conference
on Computability in Europe, CiE 2018, Kiel, Germany, July 30 - August 3, 2018, Proceedings,
pages 50-59, 2018. doi:10.1007/978-3-319-94418-0_5.

Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier. Bulking
ii: Classifications of cellular automata. Theor. Comput. Sci., 412(30):3881-3905, 2011. doi:
10.1016/j.tcs.2011.02.024.

Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, Nicolas
Schabanel, Shinnosuke Seki, and Hadley Thomas. Know when to fold ’em: Self-assembly
of shapes by folding in oritatami. In DNA Computing and Molecular Programming - 24th
International Conference, DNA 24, Jinan, China, October 8-12, 2018, Proceedings, volume
LNCS 11145, pages 19-36, 2018. doi:10.1007/978-3-030-00030-1_2.

D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, and S. M. Summer. The tile assembly
model is intrinsically universal. In Proceedings of the 53rd Annual Foundations of Computer
Science (FOCS), 2012.

David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In FOCS2012: Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pages 302-310,
2012.

Erling Fglner. On groups with full banach mean value. MATHEMATICA SCANDINAVICA,
3:243, December 1955. doi:10.7146/math.scand.a-10442.

Cody Geary, Guido Grossi, Ewan K. S. McRae, Paul W. K. Rothemund, and Ebbe S. Andersen.
RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds.

Nature Chemistry, 13:549-558, 2021.

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Programming
biomolecules that fold greedily during transcription. In MFCS2016: Proceedings of the 41st
International Symposium on Mathematical Foundations of Computer Science, volume 58 of
LIPIcs, pages 43:1-43:14, 2016.

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Oritatami:
A computational model for molecular co-transcriptional folding. International Jounal of
Molecular Sciences, 9(2259), 2019. doi:10.3390/1ijms20092259.

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinonsuke Seki. Proving the
Turing universality of oritatami cotranscriptional folding. In ISAAC 2018: Proceedings of the
29th International Symposium on Algorithms and Computation, volume 123 of LIPIcs, pages
23:1-23:13, 2018.

Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science, 345:799-804, 2014.

E. Goles, N. Ollinger, and G. Theyssier. Introducing freezing cellular automata. In J. Kari,
I. Tormé, and M. Szabados, editors, Ezxploratory Papers of Cellular Automata and Discrete
Complex Systems (AUTOMATA 2015), pages 65-73, 2015.

Petr Kurka. Topological and symbolic dynamics. Société Mathématique de France, 2003.
James 1. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers. Computability
and complexity in self-assembly. Theory Comput. Syst., 48(3):617-647, 2011. doi:10.1007/
s00224-010-9252-0.

Diego Maldonado, Anahi Gajardo, Benjamin Hellouin de Menibus, and Andrés Moreira.

Nontrivial turmites are Turing-universal. J. Cell. Autom., 13(5-6):373-392, 2018. URL:
http://wuw.oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-
volume-13-number-5-6-2018/jca-13-5-6-p-373-392/.

51:17

STACS 2022

https://doi.org/10.1007/978-3-319-39300-1_5
https://doi.org/10.1007/978-3-319-94418-0_5
https://doi.org/10.1016/j.tcs.2011.02.024
https://doi.org/10.1016/j.tcs.2011.02.024
https://doi.org/10.1007/978-3-030-00030-1_2
https://doi.org/10.7146/math.scand.a-10442
https://doi.org/10.3390/ijms20092259
https://doi.org/10.1007/s00224-010-9252-0
https://doi.org/10.1007/s00224-010-9252-0
http://www.oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-volume-13-number-5-6-2018/jca-13-5-6-p-373-392/
http://www.oldcitypublishing.com/journals/jca-home/jca-issue-contents/jca-volume-13-number-5-6-2018/jca-13-5-6-p-373-392/

51:18

Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

17 Yusei Masuda, Shinnosuke Seki, and Yuki Ubukata. Towards the algorithmic molecular
self-assembly of fractals by cotranscriptional folding. In CIAA2018: the 23rd International
Conference on Implementation and Application of Automata, volume 10977 of LNCS, pages
261-273. Springer, 2018.

18 Nicolas Ollinger and Guillaume Theyssier. Freezing, bounded-change and convergent cellular
automata. CoRR, abs/1908.06751, 2019. arXiv:1908.06751.

19 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13(2):195-224, 2014.

20 Daria Pchelina, Nicolas Schabanel, Shinnosuke Seki, and Yuki Ubukata. Simple intrinsic simu-
lation of cellular automata in oritatami molecular folding model. In Yoshiharu Kohayakawa and
Flavio Keidi Miyazawa, editors, LATIN 2020: Theoretical Informatics - 14th Latin American
Symposium, Sao Paulo, Brazil, January 5-8, 2021, Proceedings, volume 12118 of Lecture Notes
in Computer Science, pages 425—436. Springer, 2020. doi:10.1007/978-3-030-61792-9_34.

21 Paul W. K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biology, 2:2041-2053, 2004.

22 Nicolas Schabanel. Simple OS simulator, 2021. URL: http://perso.ens-1lyon.fr/nicolas.
schabanel/0Ssimulator/.

23 Nicolas Schabanel and Shinnosuke Seki. Turedo to oritatami compiler, 2022. URL: https:
//hub.darcs.net/turedo2oritatami/turedo2oritatami.

24 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
1998.

25 Xizhong Zheng and Klaus Weihrauch. The arithmetical hierarchy of real numbers. In Mirostaw
Kutylowski, Leszek Pacholski, and Tomasz Wierzbicki, editors, Mathematical Foundations of
Computer Science 1999, pages 23-33, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

A Transcript, Folding meter and Pocket

In our design, the oritatami transcript is periodic, and one period folds into one macrocell.
The period is divided semantically in five parts:

Transcript = Scaffold - Read « Write - Speedbump -

Scaffold hardcodes the “skeleton” of the macrocell and folds clockwise. Read folds around
the scaffold counterclockwise. It reads the states of the adjacent macrocells, which induces a
shift of the transcript equal to the total weight of the bits read with value 1. Write folds on
top of the Read layer clockwise, and, according to the shift read, writes the bits to be output
on each side and marks the exit side. Speedbump annihilates the shift using a process similar

to [20]. Finally, folds on top of the Write layer counterclockwise until it reaches the “exit
mark” that has been placed by the Write layer.
Each of the Read, Write, layers have the same periodic structure that we call a
folding meter. A n-folding meter is a 4n-periodic transcript with a period R of the form:
R = Rty, Rty, Rts,, Rps, ..., Rpp_1, Rb,, Rb, 1, Rb,,o, Rans3, ..., Rdon_1,
Rton, Rtoni1s Rtznse, RPones, -5 RPsn-1, Rbspn, Rbspir, Rbspias Ragnes, -y RAanoy

where the letters t and b stand for top and bottom. The internal interactions are:

Ri#®#R_i-1, Ri#®R_o, R, #R,_;, andR,;#R,;—y foralli (1)

Going down Going up

They ensure that the folding meter will either:
follow a border if all of its beads bind to every bead on the border. Two examples are
the Read layer along the right border in Fig. 5, and the Write layer along the left border
in Fig. 11. This process allows as well to stack several n-folding meters on top of each

http://arxiv.org/abs/1908.06751
https://doi.org/10.1007/978-3-030-61792-9_34
http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator/
http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator/
https://hub.darcs.net/turedo2oritatami/turedo2oritatami
https://hub.darcs.net/turedo2oritatami/turedo2oritatami

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

other in opposite direction and that are in-sync, i.e. such that one’s p-parts face other’s
g-parts. As an example, observe the folding of the three layers Read, Write and at
the top right of the write pocket in Fig. 11;
or fold upon itself in the manner of the “folding meter” tool, when reaching the bottom of
a pocket that no longer attract the layer. Two examples are the Read layer in Fig. 5b or
the Write layer in Fig. 11. Indeed, in Fig. 11, the beads rp15..12 do not attract the beads
Wb26..28 which thus fold upwards thanks to the interactions listed in Eq. (1) yielding to
a switchback pattern that continues until the Write layer reaches the right side, to which
the Write layer is attracted and thus resumes following the border.
As the binding between the switchbacks of a n-folding meter are strong, they can flatten
any custom interactions encoded internally in either the p- or the g-beads of an n-folding

meter as long as these interactions are weak, i.e. do not involve more than 3 bonds per bead.

This allows us to hide or expose on-demand specific behaviors when the binding with the
lower layer is weak enough: for instance, in Fig. 10, the binding between the p-parts of the
Write and Read layers is weak enough to let the p-part of the Write layer fold into various
two-spikes patterns encoding O or 1 that flatten anywhere else in the macrocell.

In this article, n = 26. Note that each folding meter is essentially 2n-periodic with period
(t,p,b,q). This 2n-period is repeated twice only to prevent unwanted interactions when
in switchback form. This is why everywhere in the paper the true unit of length is 2n,
half-period of the folding meter, and not a full period. Furthermore every bead type Ri in a
folding meter R behaves the same as the beadtype R(i + 2n) = R(i + 52). For this reason,
we will adopt the following notation: given a folding meter R, Ri will refer to either bead
types Ri or R(i + 2n); for instance R12 refers to both bead types R12 and R64.

Notations. For any pair of integers z = 0 and y = 1:
z.nextMultiple(of: y) = y[z/y] is the least multiple of y larger or equal to x
x.complement(to: y) = y[z/y]— = so that x + z.complement(to: y) = z.nextMultiple(of: y)

B The write block

As seen in Fig. 6, the write block on each side of a macrocell consists in an alternation of
q + 1 write pockets of capacity 2n)V beads, and ¢ write modules, one for each of the ¢ bits
to be written. Each write pocket hides the W entries of the (W + 1)-long transition tables
that are unused, while the write module writes the selected entry. Let us start by describing
the write module.

B.1 Write module

Write modules are the places where the oritatami writes the bits output on each side. Every
side of a macrocell is provided with ¢ write modules, each of which is responsible for one of
the ¢ bits to be output. Precisely, this module places two beads of special type (circled in
red in figures) at a designated readable site to write a 1 (Figs. 10a and 10b), or deliberately
out of the site so that they cannot attract the reading head no matter what types they are
to write a 0 (Figs. 10c and 10d).

Depending on whether the module is located before of after the side by which the oritatami
will exit the macrocell, the module will be covered or not by the layer, leading to the
4 possible configurations in total presented in Fig. 10. As the side by which the oritatami
system will exit is known as soon as the states of the neighboring macrocell are read, we can

51:19

STACS 2022

51:20

Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

(a) Write module — Top variant: the Write layer
writes a 1 by forming two spikes on the top of the
module, with two active beads aligned with the
reading head of the adjacent macrocell.

(c) Write module — Right variant 1: on a side located
before the exit that will be taken later, the Write
layer writes a 0 by forming two spikes to the right of
the module; as the layer will exit before reaching
this position, the reading positions will stay empty,
which will be interpreted as a 0 by the reading head
of the facing macrocell.

(b) Write module — Left variant: the Write layer
prepares for writing a 1 by forming two spikes to
the left of the module so that the two active beads
of the layer get aligned with the reading head
of the facing macrocell.

(d) Write module — Right variant 2: the Write layer
prepares for writing a 0 by forming two spikes to the
right of the module, so that the two active beads of
the layer get misaligned with the reading head
of the facing macrocell.

Figure 10 The four variants of the Write module: (a,b) writing a 1 and (c,d) writing a 0.

use, in the Write layer description, the appropriate variant of the encoding for each bit on
each bit according of the relative position of the module with the exit direction to be taken:

= In the case where the Write layer is to be covered, the Write layer folds into two spikes
either to the left (Fig. 10b) or the right (Fig. 10d) of the blue hill at the center of the

module; then, when the
and Y33 in the

layer folds from right to left, the two special bead types v 32
layer will either be placed at the top of the hill (where they will

attract the reading head) or hidden in the right side of the hill (where they cannot
attract the reading head), which will be interpreted by the facing macrocell as a 1 or a 0

respectively.

= Otherwise, the bit 0/1 is encoded directly either by two big spikes bearing the special
attracting bead types 11110 and [[]12 at the top of the hill, which will be read as a 1
(Fig. 10a), or by two spikes to the left of the hill leaving the designated site empty, which

will be read as a 0 (Fig. 10c).

In order for the Write layer to adopt these peculiar configurations, we need it to take its
independence from the underlying Read layer. This is accomplished thanks to the two pitfalls
surrounding the write module. Each of them have a capacity of n beads exactly, which

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier

induces a phase difference of n between the Read and the Write layers, resulting in the p-part
of the Write layer to fold on top of the p-part of Read layer over the write modules. These
two p-parts have specific interactions between them allowing the specific configurations to be
folded there and only there.

B.2 Write pocket

Write pocket operation. Its primary purpose is to hide the W unused entries of the
(W +1)-long transition tables as can be observed in Fig. 6. These pockets are placed between
the write modules so that only the entries to be written are exposed on the border, at the
locations of the write modules; all the others are hidden in the write pockets. The Read layer
does not fill the write pocket but simply “coats” its border. The Write layer, however, enters
it and folds inside into its compact switchback form, hiding away the YW unused entries of
each transition table, encoded each in one p-part of the Write layer. Finally, the layer
simply jumps over it by folding into a hardcoded bridge to get across its entrance.

As for the read pocket, write pockets are also used in the interchange blocks to switch
between the three variants of the write layer Writel « Writel2 < Write2 (see Fig. 4).

Write pocket design. This pocket differs from the read pocket in three ways: 1) as opposed
to the read pocket, both layers Read and Write will enter the pocket unconditionally; 2) the
Read and Write layers will enter the pocket from opposite directions; 3) only the Write layer
fills the pocket: the Read layer must not fill the pocket. It follows that:
Been “coated” by the Read layer, both sides of the write pocket entrance will attract the
Write layer. To avoid unwanted interactions, we need thus to make the entrance wider. It
follows that the layer will not be able to jump over the entrance as the Write layer
does over the read pocket. Fortunately, as the layer is never shifted, we can hardcode

a bridge G4..16 in this layer at this precise location to solve this issue (see top of Fig. 11).

Furthermore, as the Read layer will enter the pocket with an arbitrary shift, the interactions
of the pocket with the Write layer cannot be directly hardcoded. As illustrated in Fig. 5,
a pocket has essentially three kinds of interactions with the layer that fills it: 1) full
attraction (highlighted in yellow), 2) no attraction (in blue), and 3) localised specific
attractions (in green). We create similar interactions using two mechanisms: A) two
pitfalls are located at the bottom left and at the middle right of the pocket (see Fig. 11)
that introduce and then cancel a phase difference between the Read and Write layers;
B) the bottom and bottom right borders of the pocket are moved out of reach of the
Write layer switchbacks. A) and B) ensure at the bottom right that the Write layer is not
attracted by the bottom nor opposite border while it folds in switchbacks. Specifically
programmed interactions between the in-sync write bead types @b78..80@q81..83 and
the out-of-sync read bead types rp24..25rb26..28rq29 that appear just before the second
pitfall in the middle of the right border, ensure that the Write layer glues back to the
border once it has ended its switchback pattern and not earlier.

Fitting all these constraints together contributes to the choice of n = 26 for the period of our

folding meters.

Geometry. The pocket geometry is determined by four integer parameters: its width w,
height k, remainder p < 2k + 1, and extension . The two “bubbles” to the right of the
pocket are used to keep synchronised the three layers Read, Write and . Their sizes are
determined by two extra integer parameters x and y which are adjusted as follows:

51:21

STACS 2022

51:22 Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model

(a) The length of the Write layer path from Wt0/Wb26 to Wt0 inside the upper bubble
should be equal to 0 modulo 2n if p is even or equal to n modulo 2n if p is odd. The total
length is 2(z + w + 17) + pn; thus, should be set to: x = (w + 17).complement(to: n).

(b) The length of the Read layer path from Rt0/Rb26 to Rb26 inside the lower bubble should
be equal to 0 modulo 2n if p is odd, or equal to n modulo 2n if p is even. The total
length is 2(w + y + 12) + (2k + 1 — p)n; thus, we set: y = (w + 12).complement(to: n).

(c) Lastly, in order to avoid collision with other modules, we set the extension
¢ so that the pocket module ends to the right of the two bubbles, that is:

¢ = (2w + max(x + 8,y — 3)).nextMultiple(of: 2n)/2n.

n-6
n(2l41)

n(21) —2w—y + 3

Vi
1

n(2k+1-p)-4

Pty),
(AR ::r[uu’::n’uu,

i

o /‘ >)

Analogy with the
folding meter tool

Figure 11 Write pocket. Given w, parameters z, y and £ must be adjusted so as to match the
period of the folding meter. The part of the Read layer which is desynchronized with the Write layer

is highlighted in purple.

D. Pchelina, N. Schabanel, S. Seki, and G. Theyssier 51:23

Capacity. The capacity of a write pocket is defined as the length of the path taken by the
Write layer from the leftmost Wt0 to the rightmost Wt0, and it is determined by the three
independent parameters k, w, p with p < 2k + 1, and one dependent parameter £ as:

capacity(w, k, p, £) = 2n((2k + 1)w + p) + 2(w + 17).nextMultiple(of: n) + 2nf.

Building a write pocket with a given capacity. Various parameters can yield the same
capacity, thus we aim for the parameters that yield the shortest transcript. The length of the
transcript is given by the Read layer, whose asymptotic length is ~ 4nk + 6w. Minimizing
this value subject to a fixed asymptotic capacity of 2w(2k + 1)n yields to the ideal ratio of
w ~ 2nk/3. Now, to obtain a write pocket of target capacity 2nWV we proceed as follows:
solving capacity(w = 2nk/3,k,p = 0,£ = 0) = 2nWV yields a suggested value for k of:

VIZnW +n2+4n-224 1 1
k := max| 0, - —

4n 2n 4

we then set w by solving 2nW = capacity(w, k, p = 0,£ ~ w/n) which yields:

)

x, y, and ¢ are then computed according to the formulas (a), (b), and (c).
we conclude by setting:

capacity(w,k,p=0,¢)

pi= max((), 2nW — <2n((2k + 1w + 1) + 2(w + 17).nextMultiple(of: n) + 2n£))/n,

if p > 2k, then rerun the two last steps with w := w + 1.
This ensures that: 2nW < capacity(w, k, p,£) < 2n(W +2) and that k, w, and £ are O(¥VW).

STACS 2022

	1 Introduction
	2 Definitions and Models
	3 Delay-3 oritatami systems simulate radius-1 Turedos
	4 Uncomputable Limit Configurations and Freezing Time
	5 Characterization of Possible Densities of Limit Configurations
	A Transcript, Folding meter and Pocket
	B The write block
	B.1 Write module
	B.2 Write pocket

