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Preface

The papers in this volume were presented at Tokenomics 2021, the 3rd International Con-
ference on Blockchain Economics, Security and Protocols, hosted virtually at New York
University from November 18th to 19th, 2021.

Tokenomics is an international forum for theory, design, analysis, implementation and
applications of blockchains and smart contracts. The goal of the conference is to bring
together economists, computer science researchers and practitioners working on blockchains
in a unique program featuring outstanding invited talks and academic presentations.

The Program Committee of Tokenomics 2021 was divided in two sub-committees. One
sub-commitee of 26 international computer science experts co-chaired by Vincent Gramoli
and Rafael Pass and another sub-committee of 36 international economics experts chaired by
Hanna Halaburda. The Program Committee received 41 submissions, each submission was
classified by their authors depending on its topic:

22 submissions were classified as mostly economics papers;
11 submissions were classified as overlapping both fields of computer science and economics;
8 submissions were classified as mostly computer science papers.

Each paper was assigned 3 reviewers among the program committee members based on the
expertise and expressed interest of the members.

Out of all submissions, 5 papers were accepted to be presented and published in the
proceedings of the conference and 13 papers were accepted for presentation only. Each
submitted paper went through a reviewing process before being discussed online by the
program committee until convergence towards a decision upon whether to include it in the
program.

Lin William Cong (Cornell University, USA), Xi Li (Newcastle University, UK), Ke Tang
(Tsinghua University, China) and Yang Yang (Tsinghua University, China) received the Best
Paper Award of Tokenomics 2021 for their paper Crypto Wash Trading. The paper presents
tests based on statistical and behavioral trading patterns to detect fake transactions on 29
cryptocurrency exchanges. These tests led to identify that an average of 70% of the trading
volume on these exchange platforms is dedicated to wash trading, i.e., simultaneously selling
and buying the same financial assets to create artificial activity in the marketplace. This
work finds applications in forensics finance and suggests the potential of regulation in the
area of cryptocurrency. The award was offered by the Blockchain & Platform Chair of the
École Polytechnique.

Last but not least, the program also included three great keynote talks: Joe Halpern
(Cornell University, USA) presented Distributed Computing Meets Game Theory: Fault Toler-
ance and Implementation with Cheap Talk, David Parkes (MIT, USA) presented Mechanism
Design for the Blockchain Transaction-Fee Market and Catherine Tucker (Harvard University,
USA) presented Privacy and Blockchain.

We are grateful to the sponsors of Tokenomics 2021: Blockchain & Platform Chair of the
École Polytechnique and New York University, NY, USA.

Vincent Gramoli, Hanna Halaburda, and Rafael Pass
3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021).
Editors: Vincent Gramoli, Hanna Halaburda, and Rafael Pass
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Distributed Computing Meets Game Theory
Fault Tolerance and Implementation with Cheap Talk

Joseph Y. Halpern #

Cornell University, Ithaca, NY, USA

Abstract
Traditionally, work in distributed computing has divided the agents into “good guys” and “bad guys”.
The good guys follow the protocol; the bad guys do everything in their power to make sure it does
not work. By way of contrast, game theory has focused on “rational” agents, who try to maximize
their utilities. Here I try to combine these viewpoints. Specifically, following the work of Abraham
et al. [2], I consider (k, t)-robust protocols/strategies, which tolerate coalitions of rational players of
size up to k and up to t malicious players. I focus in particular on the problem that economists
have called implementing a mediator. That is, can the players in the system, just talking among
themselves (using what economists call “cheap talk”) simulate the effects of the mediator (see, e.g.,
[3, 4, 5, 6, 8, 10, 11]). In computer science, this essentially amounts to multiparty computation
[7, 9, 12]. Ideas from cryptography and distributed computing allow us to prove results on how
many agents are required to implement a (k, t)-robust mediator just using cheap talk. These results
subsume (and, in some cases, correct) results from the game theory literature.

The results of Abraham et al. [2] were proved for what are called synchronous systems in the
distributed computing community; this is also the case for all the results in the economics literature
cited above. In synchronous systems, communication proceeds in atomic rounds, and all messages
sent during round r are received by round r+1. But many systems in the real world are asynchronous.
In an asynchronous setting, there are no rounds; messages sent by the players may take arbitrarily
long to get to their recipients. Markets and the internet are best viewed as asynchronous. Blockchain
implementations assume partial synchrony, where there is an upper bound on how long messages
take to arrive. The partial synchronous setting already shows some of the difficulty of moving away
from synchrony: An agent i can wait to take its action until it receives a message from j (on which
its action can depend). This cannot happen in a synchronous setting. Abraham, Dolev, Geffner,
abnd Halpern [1] extend the results on implementing mediators to the asynchronous setting.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism
design

Keywords and phrases robust equilibrium, implementing mediators, asynchronous systems

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2021.1

Category Invited Talk

Related Versions The talk described by this paper is based on two papers: “Distributed computing
meets game theory: robust mechanisms for rational secret sharing and multiparty computation”, by
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of the 25th Annual ACM Symposium on Principles of Distributed Computing, pp. 53–62, 2006, and
“Implementing mediators with asynchronous cheap talk”, by Ittai Abraham, Danny Dolev, Ivan
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General Congestion Attack on HTLC-Based
Payment Channel Networks
Zhichun Lu #

Cryptape, Hangzhou, China

Runchao Han #

Monash University, Melbourne, Australia
CSIRO-Data61, Melbourne, Australia

Jiangshan Yu #

Monash University, Melbourne, Australia

Abstract
Payment Channel Networks (PCNs) have been a promising approach to scale blockchains. However,
PCNs have limited liquidity: large-amount or multi-hop payments may fail. The major threat of
PCNs liquidity is payment griefing, where the adversary who acts as the payee keeps withholding the
payment, so that coins involved in the payment cannot be used for routing other payments before
the payment expires. Payment griefing gives adversaries a chance to launch the congestion attack,
where the adversary griefs a large number of payments and paralyses the entire PCN. Understanding
congestion attacks, including their strategies and impact, is crucial for designing PCNs with better
liquidity guarantees. However, existing research has only focused on the specific attacking strategies
and specific aspects of their impact on PCNs.

We fill this gap by studying the general congestion attack. Compared to existing attack strategies,
in our framework each step serves an orthogonal purpose and is customisable, allowing the adversary
to focus on different aspects of the liquidity. To evaluate the attack’s impact, we propose a generic
method of quantifying PCNs’ liquidity and effectiveness of the congestion attacks. We evaluate our
general congestion attacks on Bitcoin’s Lightning Network, and show that with direct channels to
1.5% richest nodes, and ∼ 0.0096 BTC of cost, the adversary can launch a congestion attack that
locks 47% (∼280 BTC) coins in the network; reduces success rate of payments by 16.0%∼60.0%;
increases fee of payments by 4.5%∼16.0%; increases average attempts of payments by 42.0%∼115.3%;
and increase the number of bankruptcy nodes (i.e., nodes with insufficient balance for making
normal-size payments) by 26.6%∼109.4%, where the amounts of payments range from 0.001 to 0.019
BTC.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Blockchain, PCN, Congestion

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2021.2

Related Version Full Version: https://eprint.iacr.org/2020/456

1 Introduction

Public blockchains suffer from limited throughput. Payment Channel Network (PCN) –
introduced by the Lightning Network (LN) [17] – is one of the promising ways to scale
blockchains. Payment channels enable off-chain payments, i.e. payments that do not need to
be recorded on the blockchain. To open a payment channel, two nodes collateralise some coins
in a joint address. They can make a payment by signing a new transaction that updates their
balances. To close the channel, one of the two nodes commits the transaction recording the
latest balance allocation to the blockchain. If two nodes do not have a direct channel, they
can make payments to each other using multi-hop payments, i.e., payments going through
one or more intermediate channels. In a multi-hop payment, the payer has to find a path
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2:2 General Congestion Attack on HTLC-Based Payment Channel Networks

that directs him to the payee. The payment is made by updating balances of these channels
in an atomic way. The atomic update can be achieved by Hash Time Locked Contracts
(HTLCs): the payment in each hop is locked by a hash value chosen by the payee, and all
payments proceed if the payee reveal a hash value’s preimage before a timeout to redeem the
payment from the payer, otherwise the payment will expire. In a HTLC-based multi-hop
payment, the payee chooses a preimage, and nodes make HTLC payments on all involved
channels with this preimage’s hash value. Revealing this preimage activates these HTLC
payments simultaneously.

A well-known attack on HTLC-based multi-hop payments is payment griefing [19], where
the adversary makes a payment and withholds the preimage, so that coins involved in this
payment are locked and cannot be used in other payments before the griefing payment
expires. Thus, payment griefing can reduce the PCN’s liquidity, i.e. the ability of routing
payments. In addition, payment griefing is free, as the payer does not need to pay anything
for failed payments. Moreover, payment griefing is also unaccountable, as 1) the victim
cannot distinguish between a normal failed payment and a griefing payment, and 2) the
intermediate nodes can not know the payer and payee’s identity.

Griefing opens an important attack vector on HTLC-based PCN’s liquidity, namely the
congestion attack [7, 14]. In a congestion attack, the adversary initiates a large number
of concurrent payments and griefs them. Consequently, some channels hit the limit of
max_concurrent_htlcs, i.e., the number of concurrent unsettled payments allowed in the
channel, and therefore cannot route payments before the adversary’s payments expire. By
launching a large-scale congestion attack, the entire PCN can be paralysed, i.e., the PCN
cannot route further payments.

Understanding congestion attacks is important for understanding PCNs’ liquidity and
therefore future PCN design. However, congestion attacks are still a new concept and haven’t
been well-studied yet. While existing research [7,14] only considers max_concurrent_htlcs
as an exhaustible resource, it’s unclear whether there exists other resources that can be
exhausted to create congestion. In addition, existing congestion attacks apply a rather
straightforward attack strategy, which will be analysed in detail in §7. Moreover, we also
observe that liquidity – the congestion attack’s target – is not well-defined yet. Besides
the amount of locked balance and the number of locked channels mentioned in Mizrahi et
al. [14], some other metrics such as success rate of payments, fee of payments, and number of
attempts for making a payment have direct indications on the PCN’s liquidity. Congestion
attacks over these metrics are not explored before.

In this paper, we fill this gap by introducing general congestion attack, which generalises
the existing congestion attack in terms of attack strategies and targeted metrics. We introduce
a framework for launching congestion attacks, where the adversary generates Sybil nodes
connecting to a carefully chosen set of nodes, establishes channels with them, initiates
numerous multi-hop payments between its nodes, and griefs these payments simultaneously.
Compared to existing studies that put less effort on the order of payments to be griefed [14,22],
we provide five strategies for ranking these payments, and each strategy focuses on some
specific aspects of liquidity. To quantify the effectiveness of congestion attacks, we introduce
a generic method of quantifying PCNs’ liquidity. We evaluate the congestion attack on
Bitcoin’s LN – the first and most well-known PCN. Our results show that congestion attacks
can significantly damage the liquidity of PCNs. In particular, with direct channels to 1.5%
richest nodes, the adversary can launch a congestion attack that locks 47% (∼280 BTC)
coins in the network; reduces success rate of payments by 16.0%∼60.0%; increases fee of
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payments by 4.5%∼16.0%; increases average attempts of payments by 42.0%∼115.3%; and
increase the number of bankruptcy nodes by 26.6%∼109.4%, where the amounts of payments
range from 0.001 to 0.019 BTC.

While being effective, our general congestion attacks are cheap to launch. The only cost
of general congestion attacks is the fee for establishing channels. Our evaluation shows that,
a successful attack on LN requires channel fee of approximately 0.0096 BTC. The adversary
does not lose its custody (i.e., coins in the channel) during the attack, as payments for
griefing will expire.

Section 2 provides the background of PCNs and griefing. Section 3 describes the security
model and the congestion attack. Section 4 describes the method of quantifying PCNs’
liquidity. Section 5 evaluates congestion attacks on LN. Section 6 discusses the cost of
congestion and strategy to utilise it for making a profit. Section 7 reviews relevant literature,
and provides a quantitative comparison between the general congestion attack and the
existing ones. Section 8 concludes this paper.

2 Background

2.1 Payment Channel Networks
Lightning Network (LN) [17] introduces the idea of Payment Channel Networks. A payment
channel allows two parties to pay each other without the need to publish every payment to
the blockchain. Instead, they collateralise their coins into a 2-of-2 multi-signature address.
They can make payments by mutually signing new transactions with updated balances. They
can make payments with each other by mutually signing new transactions with updated
amounts of their collateralised coins. To close the channel, one party commits the latest
state of channel balance to the blockchain, and coins in the channel will be allocated to both
parties accordingly.

A B C

C sends h to A

A and B sign H1e−07
AB

B and C sign H9e−08
BC

C reveals s to B to advance H9e−08
BC

B reveals s to A to advance H1e−07
AB

Figure 1 A multi-hop payment from A to C via an intermediate node B.

The system can be further extended to support multi-hop payments. Most multi-hop
payment protocols are based on Hash Time Locked Contracts (HTLCs). HTLC is a contract
between two parties which guarantees that a payment will be made if the payee shows the
preimage of a hash value before a negotiated block height on the blockchain. If the payee
does not show the preimage and the timeout expires, the payment is deemed invalid.

Figure 1 describes a multi-hop payment where A pays 9e-08 BTC to C via an intermediate
node B in Bitcoin’s LN. First, C chooses a random string s as preimage and sends its hash
value h = H(s) to A, where H(·) is a cryptographic hash function. A then signs a HTLC
contract H1e−07

AB with B stating “A will pay 1e-07 BTC to B if B can show the value of s

Tokenomics 2021



2:4 General Congestion Attack on HTLC-Based Payment Channel Networks

within (e.g.) 144 blocks”. B also signs a HTLC contract H9e−08
BC with C saying that “B will

pay 9e-08 BTC to C if C can show the value of s within (e.g.) 138 blocks”. Then C shows
s to B to redeem 9e-08 BTC in H9e−08

BC from B. Meanwhile, B can redeem 1e-07 BTC in
H1e−07

AB from A by revealing s to A. B is incentivised to reveal s, as B does not want to lose
money. The timelock of AB is set to be longer than BC, so B always has sufficient time to
reveal s to A.

By routing this payment, B gets 1e-08 BTC from A. This is known as “fee”, which is
paid by the payer and is used for encouraging nodes to route multi-hop payments. In LN, fee
consists of a fixed base fee and proportional fee that fluctuates according to the congestion
level of the network. To minimise the cost, payers usually search for a path with the least
fee when making payments.

2.2 Payment Griefing
If the payee C reveals the preimage on time and the intermediate node B is rational, the
multi-hop payment will happen. However, as we mentioned before, there exists an attack
called payment griefing [11], where the payee withholds the preimage until HTLCs expire.
Before HTLC expires, coins involved in all channels of this payment are locked and cannot
route other payments.

Payment griefing is a threat to PCNs’ liquidity. If a big portion of coins in a PCN are
locked, the PCN will no longer be able to route payments. Payment griefing is cheap, as
the payment does not really happen and the payer does not pay for the fee to intermediate
nodes. Identifying payment griefing can be hard, as nodes cannot distinguish whether the
withholding is due to network delay, on purpose, or by accident. If the PCN’s routing protocol
is privacy-preserving, payment griefing can even be launched anonymously. For example,
Bitcoin’s LN adopts Sphinx [5], where each intermediate node only has the knowledge of
nodes who directly connect with him.

2.3 Congestion attack

Attacker

Attacker

Attacker

1
1

1 1

2 2 2 2

3

3

22

Attacker

3

Figure 2 Congestion attack.

In a congestion attack, the adversary establishes payment channels with existing nodes
in the PCN, and make numerous multi-hop payments between its nodes simultaneously.
Then, the adversary withholds preimages until these payments expire. Before that, coins
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locked in these payments cannot be used in other payments. If the adversary has sufficient
custody, it can lock a great portion of coins in the PCN so that the PCN may be paralysed.
Figure 2 shows the intuition of the congestion attack, where the adversary generates Sybil
nodes connecting to a carefully chosen set of nodes, establishes channels with them, initiates
numerous multi-hop payments between its nodes, and griefs these payments simultaneously.

To reduce the custody required for an attack, Mizrahi et al. [14] proposed to lock the chan-
nel by initiating numerous payments with small amounts to occupy all max_concurrent_htlcs,
the maximum number of concurrent payments in a channel. In addition, they propose three
strategies for enumerating payment paths. Tikhomirov et al. [22] provided another strategy,
where the adversary attacks a single channel rather than a path for each step.

We compare the strategies of our attack with those of Mizrahi et al. [14] and Tikhomirov
et al. [22] in §3.2, and compare the cost and effectiveness in §7. The result show that. If
the attacker is fee-sensitive, then our attack is preferred because our fees are 16% of and 5%
of other two. Whereas, if the attacker has a restricted custody in hand, then the attack by
person Mizrahi et al. is more preferred, as the custody required is only 1.5% of our attack
(in case of locking 41% network’s capacity).

3 General congestion attack

3.1 Model
We consider a HTLC-based PCN that is identical to Bitcoin’s Lightning Network as described
in §2.1. We model the PCN as a weighted directed graph G = (V, E). V is the set of nodes
in the network, and all v∗ in the remainder of the paper refer to a specific element (i.e. a
node) in V . E is a set of tuples (vs, vt, capacity), which represents a channel with a capacity
of capacity from vs to vt. Since channels in LN is bi-directional, a channel is represented in
the graph as two opposite edges (vs, vt, capacity) and (vt, vs, capacity). A payment P is a
dictionary {amount : α, path : path}, where α is the amount of coins that the payer wants
to pay to the payee and path is the path of payment (a list of edges). Then, P denotes list
of payments enumerated by the attacker. Meanwhile, we use l to refer the length of path.
For simplicity, we do not consider the impact of timelocks on our attack. The payer also
needs to pay some fee fi for each intermediate node i on the path. We can now get the size
of a multi-hop payment θ as

θ = α · l +
l∑

i=2
fi

In addiciton, we use Γv to refer the total capacity of all channels connecting to v.
Therefore, the richest node we defined earlier is the node with the largest Γv.

We consider nodes in the PCN are rational. Each honest node in a multi-hop payment
will reveal the preimage of the hashlock to the upstream node once the node knows it. We
assume a malicious adversary, who has sufficient coins and aims at paralysing the entire
PCN with minimal cost. The adversary does not control any node in the beginning, but
has the knowledge of the network topology and each channel’s capacity and fee policy. The
information can be retrieved from PCN’s P2P protocol, evidenced by existing studies [3, 9].

When the adversary establishes a channel with a node, the node is willing to provide
sufficient capacity. According to liquidity providers such as Bitrefill [2], purchasing capacity
from nodes is easy and costs negligible coins. Moreover, if an adversary just wants to attack
PCN for a period of time, it can use the channel lease marketplace like lightning pool [15] to
get incoming liquidity at a much lower cost.
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3.2 Attack framework
We generalise the congestion attack in terms of attack strategies and liquidity metrics. We
propose a framework for launching congestion attacks. The framework consists of four steps
as follows.

1. Node selection: the adversary chooses a set of nodes and establishes channels with
them.

2. Payment enumeration: the adversary enumerates all payments between its nodes.
3. Path ranking: the adversary orders these payments.
4. Launching attack: the adversary starts to make and abort payments in this order.

While existing congestion attacks [14, 22] start by enumerating griefing paths or griefing
channels, our attack chooses nodes in the beginning and enumerates paths within the given
set of nodes. Such design allows us to divide the attack into multiple steps with orthogonal
purposes, revealing the complete design space for congestion attacks. Specifically, the
adversary decides resources (e.g., channel capacity or the max_concurrent_htlc parameter)
to congest when enumerating payments, and decides its focus of liquidity metrics when
ranking payments.

In addition, in existing congestion attacks [14, 22], the adversary has to create new
channels when attacking a new channel or path. Therefore, the adversary has to establish
a large number of channels, which incurs additional transaction fees on the underlying
blockchain. In contrast, our attack chooses nodes in the beginning and enumerates paths
within the given set of nodes, and therefore requires much fewer channels.

3.3 Node selection
The adversary’s first step is to join the PCN by establishing channels with existing nodes. We
analyse the adversary’s strategy on the type of nodes and the number of nodes to establish
channels with.

We suggest establishing channels with the richest (w.r.t. total capacity of involved
channels) nodes (which we call hubs) in the network, as they are likely to route more griefing
payments than a normal node. If establishing channels with nodes with little capacity, the
adversary has to establish channels with more nodes, leading to more fee on establishing
channels.

The number of nodes to establish channels with depends on how the adversary enumerates
griefing payments (i.e., the second step). By establishing channels with sufficient nodes,
the total size of enumerated payments will take the majority of the network capacity, and
therefore the congestion attack will take effect. Later in §5.1, we will show that for Bitcoin’s
Lightning Network, by establishing channels with the top 1.5% richest nodes the enumerated
payments can occupy 81% of the network capacity ideally (47% in the experiment).

3.4 Enumerating payments
After establishing payment channels, the adversary enumerates all possible payments between
its nodes. To this end, the adversary has to find all paths between each pair of its nodes,
and calculate the maximum amount that each path can afford. Our payment enumerating
algorithm builds upon the Ford–Fulkerson algorithm [8] - a maximum flow algorithm in
graph theory. Maximum flow is a classic problem in graph theory, which aims at finding the
maximum amount of flow that the network allows from a source to a sink. Ford–Fulkerson
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Algorithm 1 Enumerating payments.

Input:
1: The entire network G = (V, E)
2: The adversary’s node list N

Output:
3: The list of payments P

4: P ← []
5: for (v1, v2) in N .combination() do
6: path_list← BFS(G, v1, v2)
7: for path ∈ path_list do
8: P ← {path : [], amount : 0}
9: P.path← path

10: capacity_list← [edge.capacity for edge in path]
11: α← min(capacity_list) ▷ Max viable amount
12: if α = 0 then continue ▷ This path is not viable
13: P.amount← α ▷ P is a viable payment
14: Append P to P
15: Consume P in G
16: end for
17: end for
18: return P

algorithm is one of the most effective algorithms to solve the maximum flow problem. Given
a weighted directed graph and two vertices. The Ford-Fulkerson algorithm uses Breadth-
First Search (BFS) [12] to find all paths between these two vertices. For each path, the
maximum viable amount is the minimum weight of edges. Algorithm 1 describes the process
of enumerating payments in Python syntax. First, it enumerates the binary combinations
of nodes who the adversary establishes channels as the starting and ending points of the
path. Second, it executes BFS to find all paths between each two adversary nodes similar
Ford–Fulkerson. Third, we derive the most viable amount using the least channel capacity
for each path. Last, it consumes this payment from the graph and adds this payment to our
payment list, i.e., we subtract the amount of this payment from the capacity of all channels
on the path.

3.5 Ranking payments

Different griefing payments have different impacts on the PCNs’ liquidity. With limited
balance, the adversary has to start from griefing important payments for maximising the
attack’s effect.

We first consider three ranking criteria, namely the length, amount, and size θ of a
payment. Rank-by-length aims at maximising the effect while minimising the cost, as long
payments lock most capacity with the least amount. Rank-by-amount aims at attacking the
channel with large capacity. Since real-time balance in LN cannot be seen, payer tends to
prefer to go through channels with large capacities to reduce the number of attempts. Rank-
by-size aims at maximising the attack effect without considering the custody, as payments
with large sizes cost most collateral.
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Inspired by B’eres et al. [3], we consider rank-by-fee, where the adversary starts from
attacking channels with lower fees. This aims at maximising the average channel fee of normal
payments after the attack. The ranking criterium Score(P ) for payment P is calculated as

Score(P ) = −
∑l

i=2 fi

l

In addition, we consider the bankruptcy rates presented by Dandekar et al. [4,18,21] as a
ranking criterium. The adversary first attacks channels that make most nodes “bankrupt”.
Dandekar et al. introduced credit networks [4], where nodes are connected by edges with a
limited resource called credit. We model the PCN as a credit network following Ramseyer et
al. [18], where each channel’s credit is its capacity. Liquidity in a credit network is quantified
as the probability that nodes become bankrupt, i.e., loss of all credit. Dandekar et al. [4]
proved that the probability that a node v goes bankrupt is upper-bounded by 1

Γv+1 , where
Γv is the total capacity of all channels connecting to v. Griefing can be seen as “removing”
the capacity of nodes, and therefore increases the probability of nodes becoming bankrupt.
In rank-by-bankrupt, the adversary first attacks payments that reduce the most mathematical
expectations of the probability of nodes becoming bankrupt.

The bankruptcy criterium is quantified as the total increased probability Score(P ) of
nodes in P becoming bankruptcy

Score(P ) = Scoret(v1, α) +
l∑

i=1
Scorei(vi, α) + Scoret(vl+1, α)

where Scoret(v1, α) and Scoret(vl+1, α) are the increased probability of node v1 and vl+1,
respectively, and Scorei(vi, α) is the increased probability of intermediate nodes vi where
i ∈ [2, l]. For node v = v1 or vl+1, the capacity is reduced by α, so

Scoret(v, α) = 1
Γv − α + 1 −

1
Γv + 1

Meanwhile, for intermediate nodes v = vi where i ∈ [1, l − 1], the capacity is reduced by
2α, so

Scorei(v, α) = 1
Γv − 2α + 1 −

1
Γv + 1

3.6 Launching attack

To obtain a list of griefing payments before launching the attack, we use channels’ capacities
rather than their balances for determining the amounts of payments. As balances are
fluctuating in real-time, some of the enumerated payments may not succeed during the attack.
In real-world PCNs, if a node cannot route a payment, the node will reply to the payer with
an error message, e.g., LN calls this error InsufficientFunds. Thus, we introduce a retry
mechanism that, when a griefing payment is rejected, the adversary reduces its amount by a
parameter step, and retries the same path until it is successful or the amount reaches zero.
Algorithm 2 describes the attack process. To avoid being detected due to the retry pattern,
the adversary can obfuscate the payment pattern, e.g., by dividing payments into multiple
ones with random amounts.
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Algorithm 2 Launching attack.

Input:
1: The list of ranked payments Pranked

2: The dropping step ratio step_ratio

3: The custody of the adversary B

4: for P in Pranked do
5: if B ≤ 0 then
6: return ;
7: end if
8: step_amount← step_ratio ∗ P.amount

9: while True do
10: response← make_payment(P )
11: if response = InsufficientFunds then
12: P.amount = P.amount− step_amount

13: if P.amount ≤ 0 then break
14: continue
15: end if
16: B = B − P.amount

17: break
18: end while
19: end for

4 Quantifying PCNs’ liquidity and congestion attacks’ impact

We propose a generic method of quantifying PCNs’ liquidity and congestion attacks’ impact.
In our method, we generate a batch of payments, simulate them on the PCN, and calculate
liquidity metrics. The liquidity metrics include the success rate, the average cost and the
number of attempts of payments, and the number of bankruptcy nodes. A congestion attack’s
impact is quantified as the liquidity difference before and after the attack.

4.1 Generating payments for simulation

We follow the approach of Béres et al. [3] to test PCNs’ liquidity. Specifically, we generate a
batch of n payments, of which payers and payees are random and the amount xt is fixed. We
test multiple batches of payments with different amounts to cover regular payment scenarios,
which will be discussed in §5.

We simulate these payments in the PCN. Each payment is allowed to try r times to find
a viable path. If it finds a path within r tries, we consider it successful, otherwise failed.
Then the payments can be categorized into three states according to the status before and
after the attack, namely added, survived, or removed. Added means the payment fails before
the attack but is successful after the attack. Survived means the payment is successful both
before and after the attack. Removed means the payment is successful before the attack but
fails after the attack. Since our analysis is based on successful payments, payments that fail
both before and after the attack are ignored here.

Interestingly, some payments are added. Assuming a payments P1 = A→ B → C → D

fails before the attack since BC has insufficient balance. For example, if some successful
payments that would have gone through BC failed after the attack, then channel BC would

Tokenomics 2021



2:10 General Congestion Attack on HTLC-Based Payment Channel Networks

become available to P1. Another example is that the attack may cause some payments to
change their paths. Suppose a successful payment P2 originally went through EF and was
forced to go through CB after the attack, then the balance of BC will increase and make it
have enough balance to route P1.

4.2 Calculating liquidity metrics

We derive the PCNs’ liquidity from the execution results of the simulated payments. We
consider the following five metrics: 1) amount of locked funds, 2) success rate of payments,
3) fee of payments, 4) average attempt times of payments and 5) the number of bankruptcy
nodes. A congestion attack’s impact is quantified by the difference of liquidity metrics before
and after the attack.

5 Evaluation of congestion attacks

In this section, we evaluate congestion attacks on Bitcoin’s Lightning Network (LN), the
first and most well-known PCN. We analyse the impact of congestion attacks with different
strategies in terms of the defined five liquidity metrics. Our results show that the adversary
who adopts congestion can severely limit the functionality of the entire PCN. Specifically,
the adversary can launch a congestion attack that locks 47% (∼280 BTC) coins in the
network; reduces success rate of payments by 16.0%∼60.0%; increases fee of payments by
4.5%∼16.0%; increases average attempts of payments by 42.0%∼115.3%; and increase the
number of bankruptcy nodes by 26.6%∼109.4%, where the amounts of payments range from
0.001 to 0.019 BTC.

5.1 Experimental setting

We simulate and implement our attack using Python 3.7.4 and NetworkX. For simplicity, we
implement all algorithms sequentially. Adversaries can use multi-threaded programming to
speed up the algorithm if they prefer efficiency. The topology provided by B’eres et al. [3]
is the snapshot of the LN in 2019 (we checked the network snapshot for 2021 and found
the topology to be similar to 2019, so we believe the results are similar of simulation on
the 2021 snapshot). The snapshot also includes the fee policy for each channel as well as
the capacity. Since the balance distribution characteristics of LN are not publicly available,
we apply the random uniform distribution for initialising the channels’ balances similar to
existing studies [3]. To amortise the bias from randomness, we run each group of simulations
with a certain strategy and custody level for ten times. Our results show that the coefficient
of variation for the quantitative impact of the different balance distributions is only 1%.

In the real-world scenario, payments may sometimes fail, as nodes cannot know the
real-time balances of channels they do not involve. LN introduces a success probability
mechanism to optimise the routing. Specifically, if intermediate node A is unable to forward a
payment because of insufficient balance, then it will return an error to the sender. The sender
will temporarily reduce the success probability of this node. The path finding mechanism of
LN is finding the shortest path on a weighted graph. For simplicity, we set the weight as
channel fee. The routing algorithm is the plain Dijkstra [6] algorithm. When an attempt
fails, we temporarily remove the first node on the current path with insufficient balance and
try again. A payment is allowed to try r times for finding a viable path. If it finds a path
within r tries, it is successful, otherwise we consider it fails.
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Figure 4 Characterisation of enumerated payments and the amount of locked balance.

We test attacks with different levels of custody of the adversary, i.e., {7.7, 15.4, . . . , 77}
BTC, all ranking criteria in Section 3.5, and step_ratio = 0.1 in Algorithm 2. When testing
LN’s liquidity, we pick batch size n = 7000 for testing liquidity(which is identical to to
existing works [3]), payment amount xt ∈ {0.001, 0.007, 0.013, 0.019} BTC, and payment
retry times r = 10. In total, we ran 10 ∗ 4 ∗ 10 ∗ 5 = 2000 (retry times * # of payment
amounts * # of different custody levels * # of strategies) simulations. We consider the
threshold of bankruptcy as 0.006 BTC, which is the average amount of payments in LN [3].

We test the percentage of the capacity that the adversary can lock by establishing channels
with different numbers of richest nodes in LN. Figure 3 shows that, by establishing channels
with the top 1.5% (42) richest nodes, the enumerated payments take ∼ 83% of the capacity
of the entire network. In addition, the total amount of enumerated payments converges with
the percentage of hubs increasing.

5.2 Impact of congestion attacks
We simulate the general congestion attack with five strategies in §3.5, and evaluate their
impact in terms of the five metrics defined in §4. Figure 4 summarises the results under
rank-by-length strategy, figures of all strategies appear in the full version available online [13].
For Figure 4b and Figure 5, the baseline (when x = 0) is the scenario without any attack.

As mentioned before, we establish channels with the 42 richest nodes in the network.
Algorithm 1 enumerates 35,402 payments in total. Figure 4a visualises the distribution of
these payments w.r.t. their amounts and lengths. Red indicates there are many griefing
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Figure 5 Overview of impacts of rank-by-fee.

paths under that path length and payment amount, while blue means the opposite. The
amount ranges from zero to 0.1 BTC, while the length ranges from 1 to 13. On average,
most payments have a length of 3 ∼ 6 and an amount of 1e− 05 ∼ 0.01 BTC.

With a custody of 80 BTC (13% of the total capacity), an adversary can lock 280 BTC
(47% of the total capacity) in LN, where rank-by-length is the most efficient strategy for
locking balance. The average length of griefing payments is 3.8, which implies that there
is room for optimisation of our path enumeration algorithm, since LN allows a maximum
payment length of 20 hops.

Figure 5 shows the result of the rank-by-fee strategy on LN as an example. With the
rank-by-fee strategy and 7 ∼ 80 BTC as custody, the attack can reduce the payments’ success
rates by 21.4%∼52.3%, increase the fee by 9.3%∼27%, increase the number of attempts by
50%∼88.7%, and increase the number of bankrupt nodes by 26.7%∼60%.

6 Discussion

The budget of launching congestion attacks is twofold: 1) channel fee for establishing
channels and 2) custody deposited into channels. When preparing for a congestion attack, the
adversary needs to pay the transaction fee for opening channels. Transaction fee is negligible
as analysed in §5.1. After the congestion attack, the custody is refunded as payments are
expired. For LN, the required custody is 77 BTC (13% of the network capacity). In Bitcoin,
there are more than 10,000 addresses with more than 157 BTC [1], making them having
sufficient capacity to launch a congestion attack.

The adversary can apply griefing on other nodes’ channels, so that more payments
go through its controlled channels. To receive most fees following this approach, the
adversary redirects as many payments to its channels as possible. Existing research [23]
shows that the probability is proportional to the adversarial node’s betweenness centrality,
while maximising the betweenness centrality by removing channels can be formalised as the
destructive betweenness improvement problem that is NP-hard [10]. To our knowledge, there
exists no approximation algorithm to solve this problem, and we consider designing such
algorism as future work.
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7 Related work and comparison

7.1 Attacks on PCNs
Congestion attack was informally discussed by Lightning Network community [7]. Mizrahi
et al. [14] first systematically studied the congestion attack on PCNs. In their proposed
attack, the adversary makes a large number of small payments, in order to make channels
hit max_concurrent_htlcs, the maximum number of concurrent payments. Tikhomirov et
al. [22] used the same idea to lock the balance of the channel, but they only grief a single
channel at a time.

The two congestion attacks focus on a single attack liquidity metric, or put limitations
on the attack strategy, and therefore can be seen as special cases of our general congestion
attack. In addition, as their attacks focus on a single path or channel at a time, the adversary
has to establish new channels when attacking a new path or channel. Establishing a large
number of channels makes the adversary easier to be identified, and existing nodes may
not be willing to establish too many channels in a short time period. Moreover, to occupy
max_concurrent_htlcs, the adversary in their two attacks has to make a large number of
concurrent payments compared to our attack. This also makes the adversary’s behaviour
easier to be identified.

There have been attacks on PCNs with different goals. In the lockdown attack [16],
the adversary griefs the victim’s channels to isolate it from the network. In the hijacking
attack [23], the adversary publishes channels with small fee to attract payments, and withhold
all payments through its channels. Rohrer et al. [20] discussed two attacks, namely channel
exhaustion and node isolation. While congestion attacks aim at paralysing the entire PCN,
these three attacks aim at exhausting individual channels or isolating individual nodes.

7.2 Quantitative comparison with existing congestion attacks
We quantitatively compare existing congestion attacks [14, 22] with ours w.r.t. different
budget level of custody and channel fee and different max_concurrent_htlcs value distribution.
For both attacks, we simulate the capacity-first strategy. The strategy iterates the following
process: when a path is enumerated, calculate the total capacity of involved channels whose
max_concurrent_htlcs values have been filled, then remove these channels from the network.
Locking a channel by using max_concurrent_htlcs takes max_concurrent_htlcs * 2 payments
(as a channel has two directions). The smallest payment amount is 5.46e-06 BTC (i.e. the
dust limit). Thus, the custody required for griefing a path is 2 * max_concurrent_htlcs *
5.46e-06 BTC. When enumerating a path, we check whether both ends have channels with
the adversary. If not, the adversary has to establish channels with them, leading to a fee of
0.0002 BTC (∼ 18.89 USD at the time of writing).

To quantify the impact of max_concurrent_htlcs, we test the locked capacity when
different portions of channels adjust max_concurrent_htlcs. Given the size limit of Bitcoin
transactions, the maximum value of max_concurrent_htlcs in Bitcoin’s LN is 483. Thus,
we assume the adjusted value of max_concurrent_htlcs is uniformly distributed in interval
[1, 483]. When the custody is limited, we assume the fee is unlimited, and vice versa.

Figure 6 shows the experimental results. Each experiment is repeated 10 times, and
the variation of experimental results is about 2.4%. As the results are similar after the
20% channel adjustment, we skipped the simulation in 30%-90% for brevity. Figure 6a
shows the performance of the three attacks under different custody. When all channels share
the same max_concurrent_htlcs, Mizrahi et al.’s attack locks most capacity. When more
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Figure 6 Comparison with congestion attack. x% adjustment means x% channels adjust their
max_concurrent_htlcs.

channels adjust max_concurrent_htlcs, the locked capacity becomes less. This is because
when channels in a path have different max_concurrent_htlcs values, the adversary can only
congest the channel with the smallest max_concurrent_htlcs in this path by spamming this
path only, making the strategy of Mizrahi et al. less effective. Meanwhile, Tikhomirov et
al.’s attack and our attack are not affected by max_concurrent_htlcs. This is because our
attack does not rely on max_concurrent_htlcs and the number of concurrent htlcs occupied
by our attack averaged only 3.8 per channel, and Tikhomirov et al.’s attack focuses on a
channel at a time. Figure 6b shows that, both Tikhomirov’s and Mizrahi’s attacks require
more transaction fee compared to our attack. This is because, in their attacks, the adversary
has to open a new channel when attacking a new path. With sufficient transaction fee,
Tikhomirov’s locks more money compared to our attack.

To lock in 250 BTC of liquidity. The attack by Mizrahi et al et al. requires 1 BTC of
custody and pays a transaction fee of 0.05 BTC, the attack by person Tikhomirov et al.
requires 8 BTC of custody and a fee of 0.15 BTC, while our attack requires 65 BTC of
custody and a fee of 0.008 BTC. Therefore, if the attacker is fee-sensitive, then our attack is
preferred because our fees are 16% of and 5% of other two. Whereas, if the attacker has a
restricted custody in hand, then the attack by person Mizrahi et al. is more preferred, as the
custody required is only 1.5% of our attack.

8 Conclusion

In this paper, we propose the general congestion attack on payment channel networks
(PCNs). Our general congestion attack generalises the existing congestion attacks in terms
of attack strategies, targeted metrics and optimisation techniques. We develop concrete
steps for launching congestion attacks, and provide a generic method of quantifying PCNs’
liquidity and effectiveness of congestion attacks. We evaluate our congestion attacks on
Lightning Network – the first and most well-known PCN. Our evaluation results show that
the congestion attack is cheap to launch and can greatly reduce the LN’s liquidity.
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Abstract

Proof of Work (PoW ) is a Sybil-deterrence security mechanism. It introduces an external cost
to system participation by requiring computational effort to perform actions. However, since its
inception, a central challenge was to tune this cost. Initial designs for deterring spam email and DoS
attacks applied overhead equally to honest participants and attackers. Requiring too little effort
does not deter attacks, whereas too much encumbers honest participation. This might be the reason
it was never widely adopted.

Nakamoto overcame this trade-off in Bitcoin by distinguishing desired from malicious behavior
and introducing internal rewards for the former. This mechanism gained popularity in securing
permissionless cryptocurrencies, using virtual internally-minted tokens for rewards. However, in
existing blockchain protocols the internal rewards directly compensate users for (almost) the same
value of external expenses. Thus, as the token value soars, so does the PoW expenditure. Bitcoin
PoW, for example, already expends as much electricity as Colombia or Switzerland. This amount of
resource-guzzling is unsustainable, and hinders even wider adoption of these systems.

As such, a prominent alternative named Proof of Stake (PoS) replaces the expenditure requirement
with token possession. However, PoS is shun by many cryptocurrency projects, as it is only secure
under qualitatively-different assumptions, and the resultant systems are not permissionless.

In this work we present Hybrid Expenditure Blockchain (HEB), a novel PoW mechanism. HEB is
a generalization of Nakamoto’s protocol that enables tuning the external expenditure by introducing
a complementary internal-expenditure mechanism. Thus, for the first time, HEB decouples external
expenditure from the reward value.

We show a practical parameter choice by which HEB requires significantly less external con-
sumption compare to Nakamoto’s protocol, its resilience against rational attackers is similar, and it
retains the decentralized and permissionless nature of the system. Taking the Bitcoin ecosystem as
an example, HEB cuts the electricity consumption by half.
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Table 1 Security scheme rewards-expenses comparison.

Internal Expenses
Rewards Negligible External External & Internal

Exist PoS Blockchains [39, 29, 24, 30] PoW Blockchains [50, 10] HEB (this work)
Absent Open systems (e.g., email) Original PoW [19, 37]

1 Introduction

Permissionless systems are susceptible to Sybil attacks [18] where a single attacker can
masquerade as multiple entities. To mitigate such attacks, Proof of Work (PoW ) [19, 36]
security schemes introduce external costs, making attacks expensive. To perform operations in
a PoW system, users must provide a proof of computation, whose production requires resource
expenditure. This makes attacks like email spam and denial of service [37] prohibitively
expensive, as they require many operations. However, honest users are also subject to these
costs, and the system cannot balance deterring adversarial behavior but not honest one [43].

To circumvent this trade-off, Nakamoto [50] suggested introducing internal rewards for
honest behavior (Table 1 summarizes this taxonomy). Indeed, nowadays PoW is widely used
to secure decentralized and permissionless cryptocurrencies like Bitcoin and Ethereum [10].
These are replicated state-machines [12] that facilitate monetary ecosystems of internally-
minted tokens, maintained by principals called miners. Miners that follow the protocol are
rewarded with tokens; tokens are scarce, hence a market forms [45, 9]; so, miners can sell
their obtained tokens, compensating them for their PoW expenses.

To guarantee their security [26, 15], PoW cryptocurrencies moderate their operation rate
by dynamically tuning the required computation difficulty to match miner capabilities [40, 55].
Consequently, the PoW expenditure directly depends on token values [48, 4, 42] – higher
token prices imply higher mining rewards, which draw more miners to participate, leading
to more expended resources. This results with the external PoW expenditure matching the
internal mining rewards, balancing honest participation overhead with high attack costs.

Indeed, with exponentially-growing token values, the amount of resources spent on PoW
mining has also been growing accordingly1. Bitcoin PoW computations alone are responsi-
ble for about 0.3% of the global electricity consumption [14, 17], surpassing medium-sized
countries like Colombia and Switzerland [23]. This level of resource guzzling is unsustain-
able [21, 60], bears a significant ecological impact [33, 49], and prevents adoption [54, 32].
Unfortunately, Nakamoto’s mechanism directly incentivizes external expenditure at the same
rate as of the internal rewards, and offers no means of reducing its external effects.

Previous work (§2) explored PoW alternatives for cryptocurrencies, notably focusing
on Proof of Stake (PoS) [39, 29, 24]. Such systems avoid the external resource expenditure by
replacing the computational effort with internal token ownership requirements. However, PoS
systems operate, and are secured under, qualitatively-different assumptions. Namely, they
rely on deprecated data deletion [39], or extended user availability [29, 30, 24]. Moreover, new
users need to obtain tokens to participate, requiring the permission of current stakeholders.

We note that naive adjustments of the cryptocurrency minting rate do not reduce the
external expenses; that a simple reduction of rewards hampers security; and that forcing
miners to internally-spend breaks the permissionless property of the system. We review these
options in our extended report [63].

1 https://www.blockchain.com/charts/

https://www.blockchain.com/charts/


I. Tsabary, A. Spiegelman, and I. Eyal 3:3

In this work we present Hybrid Expenditure Blockchain (HEB), the first PoW protocol
with lower external costs than its internal rewards. Despite the reduced external expenditure,
HEB provides similar security guarantees against rational attackers compared to the more-
wasteful Nakamoto protocol. HEB is tunable, allowing to optimize for desired properties.

HEB Overview. The main challenge is to reduce the external expenses while keeping attack
(and also participation) costs high. These objectives seem to contradict, as in previous
work [19, 36, 50, 10] the participation costs are only external.

This is the main novelty of HEB – it is a generalization of Nakamoto’s protocol that
enables and incentivizes miners to forfeit system tokens as part of the mining process. Miners
that do so increase their rewards, resulting with this being the optimal behavior. So, the
external mining expenses in HEB are lower than existing PoW blockchains, while the total
expenses (internal and external) are the same.

Similarly to Bitcoin, HEB constructs a tree data structure of elements named blocks,
where the longest path defines the system state. Miners produce PoW to create blocks and
broadcast them with a p2p network. However, unlike Bitcoin, HEB considers epochs of
blocks, and the mining rewards for each epoch are distributed after its conclusion.

In HEB there are two types of blocks miners can create – regular or factored, which have
a weight attribute with values 1 and F > 1, respectively. The epoch rewards are distributed
among the miners proportionally to the relative weight of their blocks (in the epoch). Miners
can always create regular blocks, but have to forfeit system tokens in epoch k to create
factored blocks in epoch k + 1. This mechanism incentivizes miners to divert some of their
total participation budget internally to create factored blocks, reducing their external PoW
expenditure. The ratio between internal and external expenses is tuned with a parameter ρ,
determining the expenditure required to create a factored block.

To maintain the total circulating token supply, the internally-expended tokens are dis-
tributed proportionally among all system entities (i.e., any token holder) at the epoch
conclusion. This redistribution maintains the token value as in a standard PoW cryptocur-
rency (e.g., Bitcoin), as well as the relative wealth of all system entities. The internally-spent
tokens are redistributed using a novel redistribution technique, which might be of independent
interest (e.g., for regulating transaction fees, cf. [58]).

We emphasize that HEB draws ideas from PoS, prominently the utilization of system
tokens for security, but the model assumptions, the solution, and the guarantees are distinct.
In particular, HEB uses the standard PoW assumptions and miners expend (lose) their tokens
for mining, whereas in PoS participants derive their power from maintaining ownership.

HEB Analysis. Our goal in analyzing HEB is twofold: show it is incentive-compatible,
secure, and permissionless, similarly to Nakamoto’s protocol, and; show it achieves the desired,
reduced external impact. For these two purposes we lay forth the following groundwork.
We begin by modeling the cryptocurrency ecosystem, and follow with the underlying data
structures, participants, and execution (§3). As in previous work [20, 28, 61], we consider a
set of rational miners that optimize their revenues and an adversary who is willing to expend
resources in order to attack.

We then instantiate Nakamoto’s protocol (§4) and use it for a comparison baseline,
following with the formal presentation of HEB (§5).

To compare and contrast HEB with Nakamoto we consider a variety of cryptocurrency
metrics (§6). These include common security metrics, namely coalition resistance and ten-
dency to encourage coalitions [20, 59, 62]. We also introduce a new metric – external expenses,
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measuring the resources spent on PoW. Instead of the binary metric permissioned/permis-
sionless (classical-consensus-protocols/Nakamoto-blockchain, respectively), we introduce the
continuous metric of permissiveness, describing the cost of joining the system.

Finally, we tease apart the common safety-violation security metric into two. We observe
that safety-violating chain-reorganization attacks [57, 5, 35] in existing PoW blockchains
require high resource investment from the attacker; however, once successful, they completely
refund themselves. We therefore consider this type of attacks, as well as a sabotage variant
where the attacker is not refunded. We show that in HEB the attack cost for the refunded
variant is linear in the total expenses (as secure as Nakamoto), and that the sabotage variant
costs are linear in the external ones.

HEB includes several parameters for the system designer to tune. As an example, we
present a specific choice of parameter values (§7). Choosing the prominent Bitcoin ecosystem
as a reference point, we analyze HEB and show this parameter choice is practical, achieves
strong security guarantees, and reduces the external consumption by half – the equivalent of
reducing the entire electricity consumption of Denmark [14].

In summary, we expand the PoW design space by introducing internal expenses. We
present HEB – a PoW blockchain protocol with external expenses that are lower than its
internal rewards. We prove that HEB offers similar security guarantees against rational
attackers compared to pure PoW solutions, and show it can significantly reduce the latter’s
ecological impact.

2 Related Work

In Nakamoto’s blockchain and all subsequent PoW protocols we are aware of, the incentives
equal the value of the generated cryptocurrency tokens (and fees). We are not aware of
previous work tuning PoW expenditure in cryptocurrencies – the main focus of this work.

We proceed to survey PoS and analysis approaches. Our extended report [63] discusses
permissioned and trusted hardware solutions that make qualitatively-stronger assumptions;
protocols that expend different external resources rather than electricity, for which HEB
applies equally well; and protocols with several types of internal tokens that do not achieve
incentive compatibility nor reduced external expenses.

Proof of Stake. HEB and PoS are fundamentally different: the latter limits miner par-
ticipation to those with stake in the system, i.e., miners who own tokens; the former does
not. Moreover, in PoS the Sybil-deterrence [18] is due to the cost of acquiring and holding
the system tokens, which the participants maintain throughout the system execution. In
contrast, HEB relies on PoW, and the participants spend the internal currency.

PoS systems like Algorand [39], Ouroboros [29], Tezos [30] and the forthcoming
Ethereum 2.0 [24] are designed and analyzed under different assumptions than PoW. Their
security is based on users’ owned tokens rather than their expended resources. They assume
a new participant wanting to join the system can acquire (or, alternatively, lock as a collat-
eral [39, 30, 24]) as many system tokens as she can afford. That is, existing system miners
authorize transactions that introduce new system miners, even if these result in a state less
favorable from their perspective. Additionally, to combat long-range attacks [16, 27] and
nothing-at-stake [56, 8], these systems assume users voluntarily delete deprecated data [39],
or assume users remain online for extended periods [29, 30, 24].

In contrast, HEB is PoW-based, and newly-joining miners do not require the cooperation of
existing miners to join. It is also resistant to said long-range attacks and the nothing-at-stake
problems, and hence does not rely on voluntary data deletion or user persistence.
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A parallel work [25], which draws ideas from a previous version of this report, suggests
emulating PoW over PoS. The main idea is that the stake used for the consensus degrades
over time and usage, mimicking the external expenditures of PoW systems. However, as
built atop of PoS, it also requires the aforementioned assumptions.

Proof of Work Analysis. We use the standard techniques [20, 59, 52, 44, 28] to ana-
lyze HEB’s security and incentive compatibility. The evaluation metrics used are a formal-
ization of previous ones presented by said work, and also include definition of new ones
regarding the external expenditure and permissiveness level. To the best of our knowledge
we are the first to define, evaluate and optimize for such metrics.

Chen et al. [13] define and analyze desired properties of reward allocation schemes in
PoW cryptocurrencies. Their work focuses on the reward of a single block, and does not
consider environmental impact nor malicious miners. We note that HEB’s reward allocation
rule is incentive-compatible and Sybil-resistant, satisfying those desired properties.

3 Model

We present a model for an abstract blockchain system, instantiated with a cryptocurrency
protocol. This allows us to compare different instantiations, namely Nakamoto and HEB.
We first define the monetary value of system tokens using an exogenous reference-point fiat
currency (§3.1). We follow by presenting the blockchain, the participating entities and how
the system derives its state (§3.2). We then define how a cryptocurrency protocol instantiates
that system, defining an internal system currency based on the blockchain (§3.3), and explain
how the system makes progress (§3.4).

3.1 Cryptocurrency Economics
The external expenditure of a PoW cryptocurrency system depends on the rewards it grants
miners and on mining costs. We note that mining rewards are internal while PoW costs are
external, hence we first define the relation, or the exchange rate, of the two.

The reward is an amount of the system’s internal currency ic (e.g., Bitcoin, Ether), and
the external cost is an amount of an external currency ec (e.g., USD). We assume the external
currency has a market capital orders of magnitude larger than that of the internal currency2,
and it effectively represents real values.

We assume there is an instantaneous and commission-free exchange service of ec and ic,
where the exchange rate matches token real value. To simplify presentation we normalize
the price level so the exchange rate is one, and assume the exchange is available to all
participating entities. We often sum ec and ic, meaning the sum of their values in real terms.

3.2 Blockchain and System Principals
The system comprises a shared global storage, a scheduler, and two types of entities: sys-
tem users, and principals maintaining the system named miners.

The global storage is an append-only set containing elements called blocks. Each block
includes a reference to another block and data generated by system entities, with the only
exception being a so-called genesis block that contains neither. The global storage initially

2 https://fiatmarketcap.com/
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contains only the genesis block, thus defining a directed tree data structure. We refer to
paths in the data structure starting at the genesis block as chains. We partition a chain C

to epochs of ℓ blocks.
As common [20, 59, 52, 61] we assume that the sets of entities are static during an epoch

execution, that is, entities do not join or leave during the course of an epoch.
Each miner i has a local storage accessible only to her, which, like the global storage, is

an append-only block set. The scheduler invokes miners, allowing them to create blocks in
their local storage, and to publish their local blocks by copying them to the global storage.
We denote by Nk

i the number of blocks in epoch k created by miner i. For presentation
simplicity, we assume the main chain at an epoch beginning remains a prefix of the main
chain throughout the entire epoch. Note this does not rule out the main chain changing
during an epoch, but only that its initial prefix does not.

Entities derive the system state by parsing the global storage according to the block
order of the main chain. They might choose to infer the state based on a chain prefix,
excluding potentially-volatile suffixes [26], such as in the case of multiple longest chains.
Such considerations are outside the scope of this work.

3.3 Instantiating a Cryptocurrency Protocol

The system is instantiated with a cryptocurrency protocol Π that defines a currency internal
to the system, ic. The protocol Π maps all its internal tokens to system entities with a
function BalΠ(C), taking as input a chain C. The function returns a vector where each
element BalΠi (C) is the number of tokens mapped to entity i. When the context is clear, we
often omit the protocol name Π and simply write Bal(C).

We say the total value of tokens mapped to an entity is her ic balance, and note the total
number of tokens is the sum of all balances. The protocol mints rk · ℓ new tokens at the
end of each epoch k, and we often omit the epoch index when it is clear from context. This
means the number of tokens is fixed throughout any epoch k, and increases when epoch k + 1
begins. The protocol Π maps the newly-minted tokens to entities using Bal (C).

Aside from their owned ic, miners also own ec. We use the terms internal and external
balances to distinguish the different holdings, and simply balance for their aggregate value.

Miners expend all their balance on system maintenance. In practice, a principal can split
its balance, using some of it as a miner, and the rest as a user. We model such principals as
two separate entities – a miner that spends all its balance, and a user that holds the rest.

For any epoch k we denote by Bec
i (k), Bic

i (k) and Bi (k) the initial external, internal
and total balances of each miner i, respectively. We also denote by bec

i (k), bic
i (k) and bi (k)

the relative (out of all miners’ balances) the external, internal and total balances of miner i.
Finally, we denote the total balances of all miners by BMiners (k) and of all users by Bic

Users (k).
We assume the value of expended resources by the miners on system maintenance in

a single epoch k is much smaller than the system market cap. That is, the balance of
all miners is negligible compared to that of all users, i.e., BMiners (k) ≪ Bic

Users (k). In
practice, BMiners(k)

Bic
Users(k) ≪ 10−7 holds for both Bitcoin and Ethereum3.

3 https://coinmarketcap.com/currencies/

https://coinmarketcap.com/currencies/
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3.4 Execution

Initially, the global storage contains only the genesis block, and each miner has an empty
local storage. The state variables (like the global and local storage) change over time, but
we omit indexing as it is clear from the context.

The system progresses is orchestrated by a scheduler, where epoch k begins when the
main chain is of length ℓk. First, the scheduler lets miners set their internal and external
balances using the exchange service, achieving their preferred balance of the two. We use the
term allocate to describe this action, and say miner i allocates her balance Bi (k) with the
invocation of the Allocatei (Bi (k)) function, returning a tuple of her internal and external
balances ⟨Bic

i (k) , Bec
i (k)⟩.

Note that modeling changes in the miner set and balance allocations at epoch transitions
is for presentation simplicity; these occur throughout the system execution.

The rest of the epoch execution progresses in steps, until the main chain is extended by ℓ

blocks. Each step begins with the scheduler selecting a single miner at random, proportionally
to her relative external expenditure, that is Pr (scheduler selects i) = bec

i (k). Similarly to
previous work [20, 1, 59, 52], these steps represent a standard PoW mechanism and its logical
state changes, and entities have synchronous access to the global storage.

The scheduler invokes the selected miner i’s function GenerateΠ
i (), returning a newly

generated block, and adds it to miner i’s local storage. The protocol Π states block validity
rules in BalΠ(C), and invalid blocks do not affect the system state. Creating an invalid block
or not creating one at all is sub-optimal and we only consider miners who avoid doing so.

Next, the scheduler lets any miner i publish any of her unpublished blocks by invoking
Publishi (), returning a subset of her previously-private local blocks. The scheduler adds the
returned blocks to the global storage, and repeats this process until all miners do not wish
to publish any more blocks. This captures strategic-block-release behaviors [20, 59, 52].

The cryptocurrency protocol Π includes implementations of Allocatei (Bi (k)),
GenerateΠ

i (), and Publishi () that each miner i should follow. We refer to the tuple of
three implementations as the prescribed strategy and denote it by σΠ

prescribed. The protocol Π

is therefore a tuple of the balance function BalΠ and a prescribed strategy σΠ
prescribed. Note

that Π cannot force miners to follow σΠ
prescribed.

4 Nakamoto’s Protocol

As an example and to serve as a baseline, we instantiate an epoch-based Nakamoto protocol
(used with ℓ = 1 in Bitcoin, Litecoin, etc.) in our model.

The balance function of Nakamoto awards each miner i with r tokens per block she
created in the epoch, and a total of ℓ · r new tokens are minted. Hence, the balance of each
miner i at epoch conclusion is Ni · r.

The prescribed strategy σNakamoto
prescribed states that each miner i allocates her balance Bec

i = Bi

and Bic
i = 0, extends the longest chain, and publishes her blocks immediately. In case of

multiple longest chains, σNakamoto
prescribed picks uniformly-at-random4.

4 Bitcoin defines a different tie-breaking rule – pick the first longest chain the miner became aware of. Therefore
its security guarantees vary, depending on the underlying network assumptions. As in previous work [41, 59], we
avoid such assumptions by considering the uniformly-at-random variation.
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5 HEB Protocol

We are now ready to present HEB. Briefly, it incentivizes miners to expend their balances
internally by enabling miners who do so to create higher-reward blocks. Two parameters, ρ ∈
[0, 1) and F ∈ R>1, control the reward distribution mechanism. We detail the different block
types, the reward distribution mechanism, and the desired strategy.

Block types. Each block has a type, determined at its creation – either regular or factored.
During an epoch, miner i can create regular blocks whenever the scheduler invokes Generatei().
However, aside from an invocation by the scheduler, creating a factored block requires an
internal expenditure of ρ · r in ic by miner i at the previous epoch; recall we model these
internal expenditures as if they occur at the start of current epoch. We emphasize that
creating blocks of either type occurs only by an invocation of the scheduler, i.e., based on
the external expenditure of the miner.

Consequently, if ρ > 0 then miner i can create at most
⌊

Bic
i

ρ·r

⌋
factored blocks in an epoch

on chain C. HEB assigns a weight to each block according to its type, and factored and
regular blocks have weights of F and 1, respectively.

Reward distribution. HEB distributes the ℓr minted tokens among the miners in propor-
tional to their block weights. Denote by Wi (C) the total block weight of miner i on chain C.
So, miner i gets Wi(C)∑

j
Wj(C)

ℓr tokens for her created blocks.

The internal expenses Bic
Miners are distributed among all system entities (i.e., includ-

ing users) proportionally to their ic balances at the epoch beginning. So, miner i re-
ceives Bic

i

Bic
Miners+Bic

Users
Bic

Miners tokens from the redistribution. We discuss shortcomings of other
distribution schemes in the extended report [63].

In summary, miner i gets Wi()∑
j

Wj()
ℓr + Bic

i

Bic
Miners+Bic

Users
Bic

Miners at the epoch conclusion.

Prescribed strategy. The prescribed strategy σHEB
prescribed states that miners allocate their

balance with ratio ρ and create factored blocks up to their internal balance limitation.
Formally, miner i allocates Bic

i = ρBi and Bec
i = (1 − ρ) Bi. If ρ = 0 then the miner creates

all blocks as factored, and if ρ > 0 then only the first
⌊

Bic
i

ρ·r

⌋
are factored. As in Nakamoto,

miner i points her created blocks to the longest chain, and publishes them immediately.

▶ Note. Setting ρ = 0 enables miners to create all blocks as factored, and setting F = 1
removes motivation to create any factored blocks at all. In both cases there is only one
practical block type, reducing HEB to Nakamoto.

We discuss practical implementation aspects of HEB in our extended report [63] – short-
ening epochs, utilizing a pure PoW ramp-up period to create a sufficiently-large currency
circulation, and addressing discretization issues.

6 Evaluation

We now evaluate HEB, showing how parameter choices affect its properties. For that, we
formalize the cryptocurrency system as a game played by the miners, striving to maximize
their rewards (§6.1). We use Nakamoto as a baseline, highlighting HEB parameter choices
that result with significantly lower PoW expenditure while limiting undesirable side-effects.
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To compare we first need to define criteria. Hence, throughout this section we present
cryptocurrency evaluation metrics, each followed by its evaluation in Nakamoto and in HEB.
We consider common security metrics [20, 13, 26] regarding the incentive compatibility
of a system (§6.2 and §6.3); refine the common safety-violation security metric [38, 7, 46],
measuring attack costs (§6.4); generalize the binary permissioned/permissionless notion [50, 3]
to a continuous metric (§6.5); and conclude with a new metric for external expenses (§6.6).

6.1 Block Creation as a Game
The model gives rise to a game, played by miners for the duration of a single epoch k

(hereinafter omitting the epoch index). We define the utility Ui of miner i as her expected
cryptocurrency holdings at the conclusion of the epoch.

As commonly done in the analysis of cryptocurrency protocols [20, 34, 61, 59], we assume
that during an epoch the system is quasi-static, where all miners participate and the total
profit is constant. In operational systems miners participate for a positive profit [48, 64], but
discussing the required return-on-investment ratio for such behavior is out the scope of this
work, and we arbitrarily assume it to be 0 [22, 31]. Accordingly, the sum of all miner utilities
equals the overall miner balances, that is, BMiners =

∑
i Ui.

We normalize the number of newly-minted tokens per block to be one, meaning r = 1, so
a total of ℓ tokens are created in the epoch.

The strategy space comprises choosing the allocation ratio, what blocks to generate, and
when to publish them, i.e., implementations of Allocate (), Generate () and Publish ().

▶ Example (Nakamoto). We demonstrate the compatibility of our definitions and modeling
with previous results [51] regarding Nakamoto. We consider a scenario where all miners
follow σNakamoto

prescribed . So, all miner balances are in ec and consequently bi = bec
i . Additionally,

all miners extend the longest chain.

We note the scheduler picks at each step a miner proportional to her relative external
balance. We can consider each pick as a Bernoulli trial where miner i is picked with success
probability of bi. So, the number of blocks a miner i creates in an epoch is binomially
distributed Ni ∼ Bin (ℓ, bi).

Therefore, E [Ni] = bec
i ℓ, and the utility of miner i is UNakamoto

i = bec
i ℓ, matching previous

analysis [50]. Summing for all miners yields BMiners = Bec
Miners = ℓ, and the expected cost to

create each block is 1, matching its reward.

6.2 Size bias
Cryptocurrency security relies on having multiple, independent miners, none of which has
control over the system [13, 26]. For that, these systems strive to distribute their rewards in
a way that is size-indifferent, meaning that miners get relative reward matching their relative
balances, and hence have no incentive to coalesce. The metric Size bias measures how well a
protocol satisfies this desideratum when all miners follow the prescribed strategy. Unlike the
other metrics, it is evaluated for a specific balance distribution.

Formally, assume a balance distribution and that each miner i with relative balance bi

follows σΠ
prescribed. The utility of such miner is UΠ

i , and her relative utility is UΠ
i∑

j
UΠ

j

. We

define Size bias to be the maximal difference of each miner’s relative balance and relative
utility, that is, Size bias ≜ max

i

∣∣∣∣bi − UΠ
i∑

j
UΠ

j

∣∣∣∣.
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i
for ρ and F values.

Systems strive for Size bias to be minimal, as higher values indicate more disproportionate
shares. Preferably, Size bias = 0, indicating all miners are rewarded proportionally.

In practice, there is an inherent advantage for having a larger relative balance due to
fork-rate [53, 47] and economy-of-scale [1] considerations, and although Size bias = 0 is a
theoretical desideratum, systems like Bitcoin successfully operate even with non-zero values.

Nakamoto. Recall that in Nakamoto the utility of each miner i is UNakamoto
i = bec

i ℓ,
meaning UNakamoto

i∑
j

UNakamoto
j

= bi and in our model Size bias = 0. This matches previous analysis [50].

HEB. We move to analyze HEB’s Size bias. Throughout this section we present a summary
of the analysis and its results, and bring the details in our extended report [63].

In HEB it holds that if all miners follow the prescribed strategy then BMiners = ℓ and
the utility of each miner i is UHEB

i = E[Wi(C)]∑
j
E[Wj(C)]

ℓ. To show the above we first show the

redistributed internal currency a miner receives is negligible, allowing us to focus on the
minting reward. For that we analyze the number of blocks a miner creates. Then, we derive
her conditional total block weight, that is, her total block weight conditioned on the number
of blocks she creates. We proceed to derive her expected total block weight, and conclude
with finding her utility.

Then, we show that HEB achieves Size bias = 0 with sufficiently long epochs, as formalized
by the following corollary:

▶ Corollary 1. HEB achieves lim
ℓ→∞

Size bias = 0.

The proof begins by showing that if all miners follow the prescribed strategy, then for any
two miners i, j the ratio of the expected weight and relative budget is equal E[Wi(C)]

b
i

= E[Wj(C)]
b

j

iff Size bias = 0. Then it shows that if all miners follow σHEB
prescribed, then lim

ℓ→∞
E[Wi(C)]

b
i

= ℓF

for any miner i, and consequently, the former condition holds.
We conclude with concrete number instantiations, showing that Size bias improves

(decreases) with longer epochs (larger ℓ) and a smaller factor (smaller F ) value, while
being independent of ρ. We also show more balanced distributions have lower Size bias,
but note these are not under the control of the system designer. Considering practical
parameter choices, we show that even for an extreme balance distribution, HEB achieves
Size bias < 0.3%. In a similar, yet balanced scenario, Size bias = 0.

For that, we calculate E[Wi(C)]
b

i
for various F , ℓ and bi values. We present the results in

Fig. 1, multiplied by 1
ℓF for comparison purposes. Although we present results for specific

configurations, we assert that different parameter values yield the same qualitative results.
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Table 2 Size bias for ℓ = 1000 and F = 20.

Balance distribution Size biasb1 b2 b3 b4 b5
0.20 0.80 – – – 0.0029
0.10 0.15 0.20 0.20 0.35 0.0025
0.20 0.40 0.40 – – 0.0015
0.20 0.20 0.30 0.30 – 0.0007
0.20 0.20 0.20 0.20 0.20 0.0000

Fig. 1a shows for a fixed F = 20 the value of 1
ℓF · E[Wi(C)]

b
i

as a function of ℓ. As
expected, 1

ℓF · E[Wi(C)]
b

i
approaches 1 as ℓ grows, leading towards Size bias = 0. However, for

any fixed ℓ value, miners of different bi have different 1
ℓF · E[Wi(C)]

b
i

, resulting with Size bias > 0.

We also illustrate the effect of F on 1
ℓF · E[Wi(C)]

b
i

. Fig. 1b shows 1
ℓF · E[Wi(C)]

b
i

for ℓ = 1000
as function of F . At the region of lower F values, increasing F also increases the difference
of 1

ℓF · E[Wi(C)]
b

i
for different bi. However, as F becomes larger, then 1

ℓF · E[Wi(C)]
b

i
tends

towards a constant and the difference for different bi remains fixed. This is expected, as for
larger F values the expected weight is dominated by the expected weight of factored blocks
(see [63]), and the expected weight becomes linear in F .

We dedicate the rest of this section to analyze how different balance distributions affect
miners’ utilities and Size bias. We consider various settings of at most 5 miners with epoch
length of ℓ = 1000 blocks and F = 20.

For each setting we numerically calculate Size bias and present it, along with its respective
balance distribution, in Table 2. We choose these specific settings to demonstrate Size bias
both balanced and extreme distributions.

Table 2 shows that more extreme balance distributions results in higher Size bias. For
instance, consider the setting with only two miners where b1 = 0.2 and b2 = 0.8. This setting
leads to the highest value of Size bias = 0.0029. Note that this is an unrealistic setting,
presented only as an example for a highly-uneven distribution. Even in this extreme scenario
miner 1 has a degradation of less than 0.3% in her relative utility. More balanced settings
lead to lower Size bias values.

In summary, even a highly-unbalanced distribution results in minor deviations from
proportional rewards. Increasing ℓ and decreasing F both reduce these deviations.

6.3 Nash threshold

Recall protocol Π provides a prescribed strategy σΠ
prescribed that miners individually choose

whether to follow. The protocol properties rely on miners following this strategy [20, 59, 52,
11, 62, 28, 61], hence it should incentivize miners to do so.

The question is whether the prescribed strategy is a Nash-equilibrium, meaning no
miner can benefit from individually deviating to a different strategy. Like in previous
work [20, 59, 52], the Nash threshold metric is the maximal relative miner balance that
achieves this: If all miners have relative balances smaller than the threshold, then the
prescribed strategy is a Nash-equilibrium.

Formally, denote by σΠ
i,best the best-response strategy of miner i with relative bal-

ance bi when all other miners follow σΠ
prescribed. Nash threshold is the maximal value bi

such that σΠ
i,best = σΠ

prescribed. It follows that σΠ
prescribed is a Nash-equilibrium if all miner

relative balances are not greater than Nash threshold.
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Nakamoto. Sapirshtein et al. [59] showed that for Nakamoto with the uniform tie-breaking
fork selection rule (see §4) the metric value is Nash threshold = 0.232.

HEB. An optimal miner strategy must consider how to allocate the balance, which previous
blocks to point to, what block type to create, and when to publish created blocks.

Before considering the best strategy a miner can follow, we start by considering a specific,
natural, PoW-only strategy σHEB

PoW-only, which simply ignores the internal expenditure. The
idea of σHEB

PoW-only is to maximize the block creation rate by expending all resources externally.
The miner tries to create all the epoch blocks herself, and thus obtain all the epoch rewards.

This strategy is of interest as it abuses the internal expenditure mechanism; it is also
simple enough to lend itself to a closed-form analysis. Specifically, we show (in our extended
report [63]) that this strategy is more rewarding than σHEB

prescribed if bi > 1−ρ
2−ρ . It follows the

latter is an upper bound for Nash threshold. We note that higher ρ values lower the bound,
as miner i is competing against less external balance. This result matches Nakamoto, as
if ρ = 0 then 1−ρ

2−ρ = 0.5, yielding the established 50% bound [59, 42]. We now move to search
for the best-response strategy of a miner.

Following previous work [59, 28], we use Markov Decision Process (MDP) to search for
the optimal strategy in HEB. The MDP includes the internal expenditure and block weights,
and produces miner i’s best-response strategy σHEB

i,best based on system parameters. We defer
the MDP technical details to our extended report [63].

We note the state and action spaces grow exponentially with the epoch length, limiting
available analysis to relatively small epoch values. Therefore, similarly to previous work [59,
28], we also limit the state space by excluding strategies requiring longer, and thus less
probable, sequences of events.

Our focus is finding the required parameter values for which σHEB
i,best matches σHEB

i,prescribed.
Recall that σHEB

i,best is the optimal implementation of Allocatei(), Generatei() and Publishi()
given Bi and the system parameters ℓ, F, ρ, hence we take the following approach.

We fix ℓ = 10 to limit the state space, and for various values of ρ and bi we use binary-
search to find the minimal F ∈

[
1, 108]

value such that σHEB
i,best = σHEB

prescribed. First, we
consider Allocatei() implementations that let miner i create a natural number of blocks
(allocating balance to enable the creation of a fraction of a block is strictly dominated,
enabling discretization of possible implementations). For each such implementation we use
the MDP to obtain the optimal implementation of Generatei() and Publishi(). We let the
miner play the resultant strategies, and take the most rewarding to be σHEB

i,best.
We present the results in Fig. 2, showing that increasing F values and lowering ρ

increases Nash threshold. Specifically, for bi = 0.2 the required F values grow exponentially
with ρ up to ρ = 0.5, and from there even the maximal F value does not accommodate the
desired behavior. We note a similar behavior for bi = 0.1, growing exponentially with ρ up
to ρ = 0.7, being the maximal ρ that leads to σHEB

prescribed being a Nash-equilibrium.
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We also note that lower bi requires lower F values, and specifically, there are no F and ρ

values for which the configuration of bi = 0.3 achieves a Nash-equilibrium. This is expected
as the profitability threshold for selfish-mining variants is bi = 0.232 [59], and indeed the
resultant best-response strategies resemble selfish-mining in Nakamoto.

We conclude that Nash threshold relies on ℓ, F and ρ; by setting F = 20, we can
obtain Nash threshold = 0.2 even for ρ = 0.5, close to Nakamoto’s value [59].

6.4 Free safety-violation threshold and Safety-violation threshold

We consider safety-violation attacks [38, 7, 46, 2, 57, 5, 35] as scenarios where an attacker
causes the system to make an invalid transition. This can be achieved by creating and
publishing an alternative chain, surpassing the main one. The original chain blocks are then
discarded, and the system state is reinstated according to the blocks on the alternative chain.

To mount this attack in Nakamoto the attacker expends her resources on creating blocks
to form the alternative chain; recall that each block costs its worth in reward to create.
Therefore, if the attack is successful, the attacker is fully compensated for her expenditures
by the rewards from her created blocks. As such, there is a threshold of required resources
to mount this attack, but once met, the attack is free.

The metric Free safety-violation threshold measures the minimal required balance for a
miner to deploy such a refunded safety-violation attack on the system, assuming all other
miners follow the prescribed strategy σΠ

prescribed. As shown in previous work [7], the attacker
may rent vast computational resources for a short period of time or a moderate amount for
longer periods. We therefore measure the expected cost to create a single block, disregarding
the attack duration and amplitude.

The Safety-violation threshold metric removes the refund requirement, and simply repre-
sents the cost to create a block.

Formally, assume all miners follow σΠ
prescribed. Then, Free safety-violation threshold is the

minimal cost to create a block, guaranteeing full compensation should it be on the main chain,
and Safety-violation threshold is this cost without any further compensation guarantees.

Nakamoto. In Nakamoto the cost to create each block is 1, hence Free safety-violation
threshold = 1. All blocks produce the same reward, hence a miner cannot reduce the
cost for a safety-violation attack by choosing to create less-rewarding blocks. There-
fore, Safety-violation threshold = 1.

HEB. In equilibria the total external expenses are 1 − ρ of the total balances, that
is Bec

Miners = (1 − ρ) BMiners. As BMiners = ℓ it follows that the required external expenses
to create a single block is 1 − ρ.

As other miners create factored blocks, a miner also has to create a factored block to be
fully compensated for her expenses, requiring additional spending of ρ. Hence, the cost to
create a single block is 1, so Free safety-violation threshold = 1. That is, HEB is as resilient
to refunded attacks as Nakamoto.

Alternatively, a miner can disregard compensation and choose to create regular blocks,
baring no additional internal expenses, and so Safety-violation threshold = 1 − ρ, which is
less secure than Nakamoto. However, the lack of direct compensation makes these attacks
very expensive, hence they are only available to a well-funded adversary with an exogenous
utility, e.g., interested in destabilizing or short-selling a cryptocurrency.
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Indeed, previous attack instances [57, 5, 35] were on relatively-small systems and were of
the former, refunded type. We are not aware of such sabotage attacks happening in practice;
this is possibly because the required expenditure surpasses the potential profit [2].

6.5 Permissiveness
Cryptocurrency protocols implement their own reward distribution mechanisms [13], and
may choose to condition rewards on a miner having the internal system currency ic. For
example, in PoS systems [39, 29], owning ic is a requisite, and miners without ic cannot
participate and get rewards. In contrast, in PoW systems this is not the case.

Acquisition of ic involves an update of the new currency ownership in the system state.
This requires the cooperation of the present system miners: They decide which state updates
occur when placing data in their created blocks. So, if token ownership is a mining requirement,
then a new miner wishing to participate requires the cooperation of existing miners.

Previous work considered either permissioned systems that require token ownership [29,
39, 30] (some also require explicitly locking owned tokens as a collateral), or permissionless
systems [50, 10] that do not.

We generalize this binary differentiation to a continuous metric, Permissiveness, measuring
the revenue of a newly-joining miner without cooperation from the incumbents. The metric
is the ratio between the revenues of a miner where she failed or managed to obtain ic.

Formally, consider a miner i with balance Bi, and assume that all other miners fol-
low σΠ

prescribed. Denote by σΠ
prescribed-no-ic a strategy identical to σΠ

prescribed with the ex-
ception that the Allocate () implementation returns ⟨0, Bi⟩. Note this captures the in-
ability of miner i to obtain ic. Denote by UΠ

i,prescribed-no-ic and by UΠ
i,prescribed the util-

ity of miner i if she follows σΠ
prescribed-no-ic and σΠ

prescribed, respectively. We then define

Permissiveness ≜ UΠ
i,prescribed-no-ic
UΠ

i,prescribed
.

If Permissiveness = 1 then a miner’s utility is not affected by her inability to obtain ic,
meaning the protocol is permissionless. In contrast, Permissiveness = 0 indicates that a
miner who cannot obtain ic is completely prevented from participation.

Nakamoto. As a pure PoW blockchain protocol, Nakamoto miners do not require ic balance,
so Permissiveness = 1.

HEB. Calculating both utilities, we get that Permissiveness = (bi + F (1 − bi))
−1 ([63]),

which Fig. 3 presents for different values of bi as a function of F . It shows that higher factor
values F lead to lower Permissiveness values, making the system more permissioned. It also
shows that miners with higher relative balances are slightly less susceptible to these effects.

Although failure to obtain ic results with a lower reward, it still enables the new miner to
create blocks herself, removing the requirement for cooperation from the incumbents in the
subsequent epochs. The reduced reward in the first epoch is a one-time cost that is negligible
for a long-running miner. This is a significant and qualitative improvement over permissioned
systems, where a miner that cannot obtain tokens [29] or lock them as a collateral [39, 30, 24]
is blocked from all future participation.

6.6 External expenses
External expenses evaluates the external expenditure of the protocol, and lower values
indicate a lower environmental impact. Formally, assume all miners follow σΠ

prescribed.
External expenses is the total of miner external expenses, measured in ec, normalized by the
epoch length, i.e, External expenses ≜ Bec

Miners
ℓ .
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Nakamoto. The total miner expenses are Bec
Miners = ℓ, so External expenses = 1.

HEB. When all miners follow σHEB
prescribed then Bec

Miners = (1 − ρ) BMiners and
External expenses = 1 − ρ. This is the main advantage of HEB over Nakamoto.

7 Practical Parameters

As we have seen, HEB presents several knobs for the system designer. Longer epoch length ℓ

improves Size bias, however, also means that reward distribution takes longer. Higher
factored block weight F improves Nash threshold at the expense of Permissiveness. Higher
internal expenditure rate ρ reduces the external expenditures, but makes the system less
robust against rational miners, and reduces the required costs for sabotage attacks.

The choice of parameter values should be according to the desired system properties. Each
system has different goals, and we emphasize that determining optimal parameter values is
not a goal of this work. Nevertheless, in this section we consider a specific parameter choice.
We compare this instantiation to Bitcoin, and use the latter’s miner balance distribution [6]
as a representative example.

We choose the external cost parameter to be ρ = 0.5, the epoch length to be ℓ = 1000,
and the factor to be F = 20. First and foremost, this setting results with only half of the
external resource consumption (External expenses = 0.5), which is equivalent to reducing the
entire power consumption of Denmark [14]. This choice incentivizes rational miners with up
to 0.2 relative balance to follow the prescribed strategy (Nash threshold = 0.2) down from
Bitcoin’s 0.232 [59]. Note that the largest miner in Bitcoin has a relative balance of 0.16 [6],
so rational miners would follow the prescribed, honest mining behavior.

With Bitcoin’s expected block creation interval of 10 minutes, having epochs of ℓ = 1000
means mining rewards are distributed on a weekly basis. This is longer than the seventeen
hours Bitcoin miners wait today, but arguably still an acceptable time frame.

The threshold for a refunded safety-violation (Free safety-violation threshold = 1), is as
in Bitcoin, but the non-refunded variation is twice as cheap (Safety-violation threshold = 0.5).
We note that we are not aware of attacks of either type on prominent cryptocurrency systems,
and that the non-refunded type is unlikely due to the lack of endogenous compensation (§6.4).

In regards to permissiveness, a miner with 10% budget that fails to obtain any ic
due to incumbent censorship is expected to get 5% of what she would have had with ic
(Permissiveness = 0.05). Recall this is a one-time entry cost (§6.5), and a qualitative
improvement on a permissioned system.

Finally, for the current Bitcoin miner balance distribution [6] the maximal relative
advantage from size differences is 0.1% (Size bias = 0.001). We consider modifications to
further decrease this value in our extended report [63].

8 Conclusion

We propose a new PoW paradigm that utilizes internal expenditure as a balancing mechanism
for the external impact. We present HEB – a generalization of Nakamoto’s protocol that
allows its designer to tune external resource expenditure. We formalize evaluation metrics
including a blockchain’s resilience to sabotage and revenue-seeking attacks and permissiveness
on a continuous scale. We propose practical parameters based on Bitcoin’s ecosystem that
cut down by half the PoW expenditure (equivalent to reducing the power consumption of an
entire country) while maintaining similar security guarantees against practical attacks.
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Natural questions that arise from the introduction of HEB are what should be the security
target for cryptocurrency protocols, how to set the parameters dynamically, and how to
govern them [30]. Beyond these, HEB extends the design space of decentralized systems, and
is a step forward in realizing secure PoW systems with a sustainable environmental impact.
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Abstract
The security of cryptocurrency and decentralized blockchain-maintained assets relies on their owners
safeguarding secrets, typically cryptographic keys. This applies equally to individuals keeping
daily-spending amounts and to large asset management companies. Loss of keys and attackers
gaining control of keys resulted in numerous losses of funds.

The security of individual keys was widely studied with practical solutions available, from
mnemonic phrases to dedicated hardware. There are also techniques for securing funds by requiring
combinations of multiple keys. However, to the best of our knowledge, a crucial question was never
addressed: How is wallet security affected by the number of keys, their types, and how they are
combined? This is the focus of this work.

We present a model where each key has certain probabilities for being safe, lost, leaked, or
stolen (available only to an attacker). The number of possible wallets for a given number of keys is
the Dedekind number, prohibiting an exhaustive search with many keys. Nonetheless, we bound
optimal-wallet failure probabilities with an evolutionary algorithm.

We evaluate the security (complement of failure probability) of wallets based on the number
and types of keys used. Our analysis covers a wide range of settings and reveals several surprises.
The failure probability general trend drops exponentially with the number of keys, but has a strong
dependency on its parity. In many cases, but not always, heterogeneous keys (not all with the same
fault probabilities) allow for superior wallets than homogeneous keys. Nonetheless, in the case of 3
keys, the common practice of requiring any pair is optimal in many settings.

Our formulation of the problem and initial results reveal several open questions, from user studies
of key fault probabilities to finding optimal wallets with very large numbers of keys. But they also
have an immediate practical outcome, informing cryptocurrency users on optimal wallet design.
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1 Introduction

Cryptocurrency systems maintain their state in a database called a blockchain. The state
includes user’s data as well as their token balances. To change their data, and in particular
to order transactions of their funds, users append data structures called transactions to the
blockchain. To authenticate themselves, users include in the transaction a proof of their
(typically pseudonymous) identity.

Unlike common centralized systems, the choice of the authentication method is at the
hands of the users themselves. A user defines, with a blockchain transaction, a predicate for
authentication to access her digital assets. Transaction that access those assets must include
inputs to make this predicate true. The predicate is called a wallet, and it is specified in a
dedicated programming language as a smart contract. Typically, wallets require one or more
cryptographic signatures. The security of a wallet, its probability of not failing, thus relies
on the safekeeping of one or more secrets – private keys maintained by the user.
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In classical systems like bank accounts and credit cards, accounts are identified and users
are insured against theft. They are allowed to revoke and refresh their keys using alternative
authentication techniques [13]. None of those mechanisms apply to cryptocurrencies, and
if a user’s keys are lost or leaked, she immediately loses access to her funds. The problem
applies equally to personal wallets, holding small amounts for daily use, and to large actors
such as companies holding their own1 or their clients’2 funds.

Previous work (§2) proposed techniques to maintain keys [5, 11], including locally-stored
files, possibly encrypted, dedicated hardware [1], hosted online services, paper wallets, and
brain wallets (i.e., committing the key to memory). Other work discovered techniques to
implement threshold signatures [19, 15, 14], where multiple secrets are necessary to produce
a signature but, unlike classical secret sharing [21], the private key is never learnt by any
party. Password-protected secret sharing [2, 17] allows users to store a secret shared between
multiple servers, overcoming server faults, and without the servers learning the secret without
a password. Companies3 and open-source projects4 use wallets that require two keys, or
alternatively one-out-of-two keys, two-out-of-three keys, or more elaborate schemes.

Nonetheless, to the best of our knowledge, the question of how many keys a user should
maintain and what combination is the most secure was never formally explored. This is the
goal of this work.

We model the system (§3) by considering a principal, called an owner, that wishes to
secure cryptocurrency tokens. The owner can store one or more secrets called keys. These
could be cryptographic signing keys, portions thereof, or any other secrets. If only the owner
can access a key we call that key safe. But keys can suffer three types of faults. First,
they can be lost; e.g., in a discarded hard-drive5, a forgotten password6, due to a fire, etc.
Secondly they can be leaked to the adversary, e.g., by gaining access to a machine, keystroke
logging, or guessing [22, 6]. Finally, they can be stolen; this is a combination of the previous
faults, where the adversary gains access to the key and the owner loses access to it. This
could happen, e.g., if the key is controlled by an online service that is compromised, or if an
attacker physically steals a written secret or even a hardware key [16]. There is a certain
probability for each of the keys to suffer each of the faults. Note that the four states cannot
be reduced: the probability of loss and leakage can be 2% each with a theft probability of
either 0 or 1%, for example. For simplicity we assume that fault probabilities of the keys are
independent of one another. We also assume that the owner knows these probabilities.

To secure her funds, the owner locks her tokens in the cryptocurrency system with a smart
contract that can require an arbitrary combination of the keys. For two keys it can require
either key, so if one is lost she can use the other. She could also require both keys, so if one
is leaked the adversary cannot move the tokens. We call the set of possible combinations
defined in the contract a wallet. If a party has the keys for one of the combinations we say
she can satisfy the wallet. The wallet fails if the owner cannot satisfy it or if an adversary
can. The former happens if enough keys are either lost of stolen, and the latter if enough
keys are either leaked or stolen. The owner should choose the best wallet (lowest failure
probability) given the fault probabilities of the keys.

1 https://edition.cnn.com/2021/02/08/investing/tesla-bitcoins/index.html
2 https://www.forbes.com/advisor/investing/best-crypto-exchanges,

https://www.cmegroup.com/markets/cryptocurrencies.html
3 https://keys.casa/, https://zengo.com/
4 https://electrum.readthedocs.io/en/latest/multisig.html
5 https://www.bbc.com/news/uk-wales-south-east-wales-25134289
6 https://www.nytimes.com/2019/02/05/business/quadriga-cx-gerald-cotten.html

https://edition.cnn.com/2021/02/08/investing/tesla-bitcoins/index.html
https://www.forbes.com/advisor/investing/best-crypto-exchanges
https://www.cmegroup.com/markets/cryptocurrencies.html
https://keys.casa/
https://zengo.com/
https://electrum.readthedocs.io/en/latest/multisig.html
https://www.bbc.com/news/uk-wales-south-east-wales-25134289
https://www.nytimes.com/2019/02/05/business/quadriga-cx-gerald-cotten.html
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To analyze wallet design we use two techniques (§4). First, for wallets with up to 5
keys we are able to complete an exhaustive search of the wallet space. By enumerating the
probabilities of all key states and calculating the failure probability of each wallet we can
find the optimal wallet given key fault probabilities.

The wallet space grows super-exponentially with the number of keys prohibiting an
exhaustive search for large wallets. However, we can bound the failure probabilities of the
optimal wallets using evolutionary optimization [10]. Roughly, we construct a population of
wallet candidates and iteratively perturb them and select the best for the next generation.

We begin our analysis (§5) with a detailed review of the optimal wallets for up to 4 keys
with specific fault probabilities. Even with two keys, we find that there are prominent cases
where the owner is better off by using only one key and ignoring the other. This happens with
homogeneous keys (that have the same probabilities) if the theft probability is non-negligible
and the loss and leak probabilities are similar. With three keys, we confirm that the common
2/3 approach [12] is indeed the optimum for a variety of realistic settings. We illustrate why
different optimal wallets are better in different settings by considering the probabilities that
the owner and that the attacker can satisfy a wallet. With four keys, two distinct natural
extrapolations of the 2/3 solution are optimal for a wide range of probabilities, namely either
all pairs or all triads. However, in prominent cases, where theft probability is non-negligible
and loss and leak probabilities are similar, the optimum is a different, asymmetric wallet.

The owner can choose how many keys to use for its wallet. Our next step is therefore to
evaluate the effect of the number of keys of wallet security. As expected, the optimal-wallet
failure probability drops in a general exponential trend with the number of keys. However,
when the theft probability is non-negligible, there is a strong dependence on parity. For
example, when all keys have the same theft probability but no other faults, failure probability
does not improve when adding a key to an odd-key wallet.

Finally, the owner has a choice of which keys to use for its wallet. For example, she could
use a key stored in a mobile-device and two hardware keys, or vice versa. By considering
the design space for 3-key wallets, we find that it is often, but not always, best to have
heterogeneous keys.

We conclude (§6) by reviewing several open directions exposed by this work. These
include user studies to quantify the probabilities of key faults, dependency among key fault
probabilities, and techniques to identify optimal wallets with very large numbers of keys.
However, the results presented here are of immediate importance to users, who can estimate
their keys’ fault probabilities, choose keys wisely, and thus improve the security of their
funds. We intend to open-source the tools presented here.

2 Related Work

No work we are aware of analyzes cryptocurrency wallet design, though many works discuss
tools for wallet design and implement a variety of designs.

Kirstein et al. [18] assume users have two storage tiers, one that is harder to access but
is more secure, and another that is easy to access but is less secure. They design a wallet
contract based on Moser et al. [20] that takes advantage of the two tiers to provide both
good security and good accessibility. Earlier work by Baratam [3] uses a similar technique to
combine a variety of keys with different properties. He combines user-maintained keys with
keys hosted by remote services and proposes a wallet contract to minimize failure probability.
Both of the proposals focus on the mechanics of the wallets, but neither of them describes
the key fault probabilities, analyzes the resultant wallet failure probabilities, or addresses
the choice of type and number of keys.
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Eskandari et al. [11] provide a taxonomy of individual key storage options, including local
storage, encrypted local storage, offline storage, hosted, etc. Evaluated criteria cover security,
as well as usability and deployability. However, they do not consider multi-key wallets and
overall wallet failures, only the security of individual keys.

Bonneau et al. [5] devote a whole chapter in their Systemization of Knowledge work to
client-side security. In addition to per-key storage options, they also discuss the mechanics
for implementing a symmetric k/n wallet, but not a formal treatment of its superior wallet
security.

In their review of cryptocurrency research challenges, Barber et al. [4] also devote a
chapter to client-side security. But they, too, focus on the properties of individual keys.
They explicitly discuss the threat of benign key loss, but do not consider theft, and do not
quantify fault probabilities and their effect.

3 Model

We explain the reasoning and simplifications resulting in our model (§3.1) followed by the
formal specification (§3.2).

3.1 Rationale
A cryptocurrency user secures her assets by defining arbitrary logic to authorize access to
her assets. We call this logic a wallet. It is implemented in a so-called smart-contract for
the relevant blockchain. Once the wallet is implemented in a smart contract, assets can be
allocated (sent) to it on the blockchain. When issuing commands that affect those assets,
the user publishes a transaction with inputs to the smart contract, and the transaction takes
effect only if the contract authorizes it.

The transaction is first published via a peer-to-peer network, and subsequently placed
in the blockchain by one of its operators, called miners. This mechanism means that the
authentication mechanism should prohibit malicious parties from being able to authenticate
themselves based on observed transactions. Otherwise, miners (or really anyone) [8] could
take advantage and relieve the user of her assets: They would observe a transaction, replace
the order with another, and falsely authenticate.

Therefore, wallets are typically implementing by requiring cryptographic signatures
matching predefined public keys. A wallet can combine any number of signature requirements,
e.g., for two particular public keys, for any pair out of three options, etc. Moreover, the
contract can require only a single signature, but the user partitions her secret into several
parts and combines them offline before issuing a transaction. Either way, the result is the
same – the wallet is secured by a set of secrets we call keys (even if they are parts of a single
cryptographic key) requiring a combination of the keys to authenticate. The wallet is thus a
predicate of this set of keys, and if a party has enough keys to make this predicate true we
say she can satisfy the wallet.

We say a wallet fails if the user loses control of her assets, which could happen due to
two reasons. First, the owner might lose access to keys and not be able to satisfy the wallet.
Secondly, an adversary could gain access to a combination of keys that allows her to satisfy
the wallet and steal the assets. This second option includes scenarios where both parties can
satisfy the wallet. In practice, in such scenarios the parties can enter a bidding war, each
paying more fees, trying to get the miners to place her transaction in the blockchain. The
fees can be arbitrarily high, with the attacker possibly willing to pay almost the entire wallet
amount to make a profit. We therefore consider the wallet failed in such scenarios.
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An owner can add offline security measures to her keys. For example, she could encrypt
locally-stored keys or require a PIN access code to a hardware signing device. These
approaches simply reduce the probability that the attacker gains access to a key but also
increase the probability that the owner loses access [5]. They are thus covered by our model.

An owner might lose access to her keys gradually. For example, she forgets one memorized
key, and after several months loses another paper key due to a basement flood. An adversary
can also gain key access gradually. For example, a hacker steals a hardware signing device
and subsequently retrieves a typed key with a keystroke logger as the user tries to save her
assets.

In our model we flatten such series of events of keys being lost and leaked to probabilities
per key. One can think of those as being evaluated at the time at which the owner wishes
to transact her funds. At this point, there is a certain probability that the adversary had
gained access to the keys, or that the owner had lost access.

3.2 Model Details
An owner maintains a set of n keys k1, . . . , kn. Each key is in one of four states:
safe Only the user has access,
loss No one has access,
leak Both the user and the adversary have access, or
theft Only the adversary has access,
denoted S, i.e., for each 1 ≤ i ≤ n: ki ∈ S = {safe, loss, leak, theft}.

A scenario σ is the state vector of each of the keys, and denote by Σn the set of all
scenarios with n keys, i.e., σ ∈ Σn = (safe, loss, leak, theft)n. Denote by σi the state of key i

in scenario σ.
Denote by σO and σA the binary availability vectors of each of the keys in scenario σ for

the owner and for the adversary, respectively. For the state of key i, σi, the availabilities
are σO

i and σA
i . For example, if σi = safe then σO

i = True and σA
i = False. Table 1

summarizes the translation from state to availability.
The states of the different keys are determined by a probability space specified by

independent probabilities of each of the keys. These probabilities are described by a tuple P

of probability vectors P safe, P loss, P leak and P theft. The probabilities that key i is in each of
the states are denoted P safe

i , P loss
i , P leak

i , and P theft
i for safe, loss, leak, and theft, respectively.

The sum of probabilities for each key i is one, P safe
i + P loss

i + P leak
i + P theft

i = 1.
The probability of a scenario can be calculated given the probability vector tuple. For

example, for three keys, the probability that the first is safe, the second is lost and the third
is leaked is P safe

1 × P loss
2 × P leak

3 . In general: (1c is the indicator function, it equals 1 if the
condition c holds and 0 otherwise)

Pr[σ] =
n∏

i=1

(∑
s∈S

1σi=s × P s
i

)
. (1)

With n keys there are 4n possible states, each key being in one of its four possible states.
We can calculate the probability of each scenario and derive the key availability probabilities
for each party. Table 2 shows 5 scenarios from the 42 = 16 possible with 2 keys.

A wallet w is a predicate of the availability of the n keys. For example, a wallet w that
requires the availability of either keys k1 and k2 or keys k2 and k3 is defined by w(a1, a2, a3) ∆=
(a1 ∧ a2) ∨ (a2 ∧ a3). By slight abuse of notation, for a vector v = (v1, v2, v3) we write w(v)
for w(v1, v2, v3).
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Table 1 Key state and
availability.

σ i σO
i σA

i

safe True False
loss False False
leak True True
theft False True

Table 2 State enumeration.

σ1 σ2 probability σO σA

safe safe (P safe)2 (True, True) (False, False)
safe loss P safe × P loss (True, False) (False, False)
safe leak P safe × P leak (True, True) (False, True)
safe theft P safe × P theft (True, False) (False, True)
loss safe P loss × P safe (False, True) (False, False)
. . . . . . . . . . . . . . .

We denote by wk/n the wallet that is satisfied by any set of k out of the n keys. The
wallet wAND

n is the wallet requiring all n keys (wn/n), and the wallet wOR
n is the wallet requiring

any of the n keys (w1/n).
A wallet w is successful in a scenario σ if and only if the adversary cannot satisfy it and

the owner can, i.e., w(σO) ∧ ¬w(σA). Otherwise, the wallet has failed in this scenario.
Given a probability vector tuple P , we can calculate for wallet w its success and failure

probabilities, pP
success(w) and pP

failure(w), respectively. For success, we sum the probabilities
of all states where the wallet is successful,

pP
success(w) =

∑
σ∈Σn

Pr[σ] × 1w(σO) × 1¬w(σA) , (2)

and the failure probability is the complement pP
failure(w) = 1 − pP

success(w).
We denote the fact a wallet w is better than wallet w′, i.e., pP

failure(w) < pP
failure(w′) by

w′ ≺P w, omitting the subscript (w′ ≺ w) when P is clear from the context.

4 Methodology

To find the optimal wallet for a given probability vector tuple, we search the entire design
space when possible (§4.1) or use an approximation (§4.2) otherwise.

4.1 Exhaustive Search
For small numbers of keys we can find the optimal wallet by exhaustively calculating the
failure probabilities of all possible wallets. We observe that each wallet is a monotone
boolean function – if a party can satisfy the wallet, being able to access another key will not
prohibit it from satisfying the wallet. The exact number of such functions, the Dedekind
number [9] minus 2 (excluding the constant functions True and False), is only known up
to 8 keys [7, 23, 24]. It grows super-exponentially, making complete coverage of all possible
wallets intractable. Complete coverage also becomes intractable due to the exponentially
growing number of key states (4n).

To enumerate all wallets, we express wallets as a logical or of sets of logical and’s. We call
each set of and-ed keys a combination. For example, for two keys we consider four possible
wallets, requiring one combination of both keys (k1 ∧ k2), requiring either of them (k1) ∨ (k2)
(two combinations), but also the asymmetric options of requiring one (k1) or the other (k2).

We denote by c ⊂ c′ the fact that all keys in combination c are also in combination c′

and say c′ covers c. We exclude wallets where one combination covers another, e.g., (k1 ∧
k2 ∧ k3) ∨ (k1 ∧ k2) as it is the same function as (k1 ∧ k2), which is evaluated.

There are a total of (2n − 1) possible non-zero combinations, and we consider all sets of
those combinations that are not redundant due to one combination covering another.
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Algorithm 1 Wallet enumeration.

1 function enumerateWallets (baseWallet, prevCombi, keyCount)
2 wallets← ∅
3 for combi = next(prevCombi) to lastCombi(n) do
4 if ∄c ∈ baseWallet : c ⊂ combi then (Skip redundant combinations)
5 currWallet← baseWallet ∪ {combi}
6 wallets← wallets ∪ {currWallet} (With new combination)
7 wallets← wallets ∪ enumerateWallets(currWallet, combi, keyCount)

(With new combination and others)
8 return(wallets)

For example, with three keys there are 18 possible wallets, as follows,

(k1), (k2), (k3), (3a)
(k1) ∨ (k2), (k1) ∨ (k3), (k2) ∨ (k3), (3b)
(k1) ∨ (k2) ∨ (k3), (3c)
(k1 ∧ k2), (k1 ∧ k3), (k2 ∧ k3), (3d)
(k1 ∧ k2) ∨ (k3), (k1) ∨ (k2 ∧ k3), (k2) ∨ (k1 ∧ k3), (3e)
(k1 ∧ k2) ∨ (k1 ∧ k3), (k1 ∧ k2) ∨ (k2 ∧ k3), (k1 ∧ k3) ∨ (k2 ∧ k3), (3f)
(k1 ∧ k2) ∨ (k1 ∧ k3) ∨ (k2 ∧ k3), (3g)
(k1 ∧ k2 ∧ k3) . (3h)

We enumerate the wallets recursively, as shown in Algorithm 1. The algorithm utilizes a
lexicographic order of the combinations, implemented with the function next that returns the
next combination in order and last that return the last combination, namely k1, . . . , kn. We
call the algorithm with baseWallet = ∅, prevCombi = 0, and the desired number of keys, n.
The recursive algorithm returns the set of all wallets with all non-redundant subsequent
combinations, considering redundancy with wallets in baseWallet.

4.2 Evolutionary Approximation

To analyze larger numbers of keys, beyond the reach of an exhaustive search, we search the
space with an evolutionary algorithm [10] (Algorithm 2). We bootstrap the algorithm with
a random population – a multiset of npop wallets. The algorithm then iteratively improves
this population. In each iteration i we produce a new generation based on the population of
iteration i − 1.

We first select a multiset of npop wallets as follows. For each selection we consider nselection
wallets uniformly at random (UAR) from iteration i − 1 and select the best (lowest failure
rate) among them. Good wallets are likely to appear multiple times in the new multiset.

We then perturb each wallet in the selection by choosing one of its combinations uniformly
at random and flipping each of its key requirements with independent probability pperturb.
For example, for a three-key wallet combination of k1 ∧ k2, key k1 is removed with
probability pperturb, key k2 is removed with probability pperturb, and key k3 is added with
probability pperturb.

The resultant wallet multiset is then taken as the population of the next iteration. We
repeat this until there is no improvement in wallet failure probability for nstability generations.

Tokenomics 2021
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Algorithm 2 Evolutionary Wallet Optimization.
input : n, P ; npop, nselection, pperturb, nstability

1 pop← npop random wallets
2 δ ← 0 (Convergence counter)
3 best← 0 (Best wallet’s probability)
4 while δ < nstability do (While not stable for long enough)
5 if maxw{pP

success(w)|w ∈ pop} > best then
6 best← maxw{pP

success(w)|w ∈ pop}
7 δ ← 0 (Reset convergence counter)
8 else
9 δ ← δ + 1

10 selected← {{arg maxw{pP
success(w)|w ∈ pop}}} (Keep best wallet)

11 while |selected| < npop do
12 W← choose nselection UAR from pop
13 selected← selected + {{arg maxw{pP

success(w)|w ∈W}}}
14 nextGen← {{}}
15 foreach wallet w in selected do
16 c

$← w ∪ {∅} (Choose UAR a combination in w or an empty combination)
17 c′ ← ∅
18 foreach i ∈ [n + 1] do (With probability pperturb toggle each key)
19 with probability pperturb

20 c′ ← c′ ∪
{
{ki} ki ̸∈ c

∅ ki ∈ c

21 else

22 c′ ← c′ ∪
{
{ki} ki ∈ c

∅ ki ̸∈ c

23 w′ ← w \ {c} ∪ {c′} (Replace perturbed combination)
24 nextGen← nextGen + {w′} (Replace perturbed wallet)
25 pop← nextGen

5 Optimal Wallets

We are now ready to analyze the optimal wallet choices and the resultant probabilities.
We begin (§5.1) by studying in detail optimal wallets with small numbers homogeneous
keys. Next (§5.2) we look at the effect of the number of keys on wallet failure probability.
Finally (§5.3) we turn our attention to optimal wallets for heterogeneous keys.

5.1 Homogeneous Keys

For homogeneous keys we denote state probabilities by P safe, P loss, P leak, and P theft, omitting
the key indices.

5.1.1 One Key

For a wallet with a single key, wSingle(k1) = k1, the probability for success is simply the
probability that the key was neither lost, leaked, nor stolen, i.e.,

psuccess(wSingle) = P safe . (4)
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(a) Failure prob.
Single key.

(b) Failure prob.
k1 ∧ k2.

(c) Failure prob.
k1 ∨ k2.

(d) Best wallet. (e) Best wallet;
P theft = 0.04.

Figure 1 Two-key wallets; P theft = 0.01 unless noted otherwise.

Figure 1a illustrates the success probability of the wallet for different values of P leak

and P loss with a constant P theft = 0.01. The isolines show equal failure probability, indicating
the lowest failure probability reaches 0.01 when P leak = P loss = 0.

5.1.2 Two keys
With two keys several wallets are possible:
AND Require both keys (Figure 1b). For success we require that either both keys are safe,

or one is safe and the other is leaked. If either key is lost or stolen then the wallet fails as
the owner cannot satisfy it.

psuccess(wAND
2 ) = (P safe)2 + 2P safeP leak . (5)

OR Require at least one of the keys (Figure 1c). For success we require that either both
keys are safe or one is safe and the other is lost. If either key is leaked or stolen then the
wallet has failed.

psuccess(wOR
2 ) = (P safe)2 + 2P safeP loss . (6)

The symmetry between these two wallets is clear, and it is evident that when P leak < P loss

the OR wallet is superior, and vice versa. But there is a third option, which simply ignores
one of the keys; since the probabilities are the same for both keys it doesn’t matter which
one:

Single Require that the key is neither lost nor leaked (Figure 1a, Equation 4).

Comparing these probabilities shows that there is a region where using a single key is
more secure than either of the other options – when the loss and leak probabilities are similar.
To be better than the OR wallet, it should hold that (P safe)2 + 2P safeP loss < P safe, and
similarly for the AND wallet, i.e.,

P loss − P leak < P theft ⇒ wOR
2 ≺ wsingle, (7a)

P leak − P loss < P theft ⇒ wAND
2 ≺ wsingle, (7b)

so if |P loss − P leak| < P theft, the optimal 2-key wallet is wSingle.
Figures 1d-1e show which wallet dominates each region in the settings space with theft

probabilities of 0.01 and 0.04. Note that although we draw the full range (fault probabilities
almost up to 1), the practical range is where fault probabilities are small, and the single-key
wallet is optimal in a significant portion of this region.
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(a) P theft = 0.0. (b) P theft = 0.08.

Figure 2 Three-key optimal wallet for varying theft probability.

5.1.3 Three keys
With three keys there are 18 possible wallets (§4.1). Figure 2 shows the optimal wallets in a
range of settings. In such figures we write i instead of ki to reduce clutter.

We see that the common wisdom in wallet design [12] is correct in a wide range of settings:
The wallet w2/3 = (k1 ∧ k2) ∨ (k2 ∧ k3) ∨ (k3 ∧ k1) is optimal when P loss and P leak are roughly
the same. As expected, the OR wallet (k1 ∨ k2 ∨ k3) is optimal when the loss probability is
much higher than the leak probability, and the AND wallet is optimal when a leak is much
more likely than a loss.

When there is no theft (Figure 2a), symmetric wallets are optimal across the range of loss
and leak probabilities. However, there are regions in the homogeneous settings space where
asymmetric wallets are optimal, using only a pair of the keys, or all three, e.g., (k1 ∧k2)∨ (k3).
This occurs when theft probability is non-negligible, and becomes pronounced when it is
large, as shown for P theft = 0.8 in Figure 2b. Nonetheless, the common w2/3 wallet remains
optimal in the key portion of the space where the fault probabilities are small.

Owner and Adversary Perspectives
To better understand the wallet changes, we explore the probabilities that each of the owner
and adversary can satisfy the optimal wallet. A wallet does not fail if the owner has the
keys and the adversary does not, and this is the probability we aim to maximize. Figure 3c
shows the failure probability of the optimal wallet with P theft = 0.08 and varying values
of P loss and P leak. The black lines show the transition lines between different optimal
wallets (cf. Figure 2). Figures 3a and 3b show the probability that the owner and the
adversary (respectively) can satisfy the optimal wallet.

We observe that the wallet success probability is continuous as expected – a switch from
one wallet to another occurs at the point where their success probabilities are the same.
Figure 3a shows where the owner’s decreasing probability leads to a wallet switch, shown as
a darkening color switching to light across a boundary. Figure 3b shows the contrary, where
the adversary’s increasing probability leads to a wallet switch, shown as a lightning color
switching to dark across a boundary.

5.1.4 Four Keys
When moving to four keys, it is natural to consider an optimal wallet based on the three-key
case, w2/3. But extrapolating to four keys we could require either any pair, w2/4, or any
triad, w3/4. If there is no theft, Figure 4a shows that indeed these two options dominate a
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(a) Owner access probability.
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(b) Adversary access probability.
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(c) Wallet failure probability.

Figure 3 Wallet failure breakdown. P theft = 0.08.

(a) P theft = 0.0. (b) P theft = 0.08.

Figure 4 Best four-key wallets without theft.

wide range of settings. Specifically, if P loss is larger than P leak, then pairs is the right choice,
as less keys are required from the owner. And if P leak is larger than P loss then triads is the
right choice, as more keys are required from the attacker. As expected, the OR wallet is
optimal when loss is very likely and leak isn’t; and the AND wallet is optimal when leak is
very likely but loss isn’t.

When P theft is positive, as in the two-key case, asymmetric solutions become optimal in
a wider range of cases. Figure 4b shows the case for theft probability of 0.08 (taking a large
value to illustrate the effect). The two extrapolations of the 3-key case remain dominant
in many settings. But now, unless P loss and P leak are significantly different, the optimal
wallets are asymmetric.

Figure 5 focuses on the range of smaller fault probabilities, with loss and leak of up
to 0.10, and with more realistic theft probabilities of 0.01 and 0.02. We see that in this
region, asymmetric wallets become dominant in the most practical region. When both P loss

and P leak are roughly similar and below 0.01, the optimal wallet is of the type (1 ∧ 2 ∧ 3) ∨
(1 ∧ 4) ∨ (2 ∧ 4) ∨ (3 ∧ 4) (or any permutation, as the key probabilities are identical).

5.2 Number of keys

The number of keys, has major effect on wallet security. While 2-3 keys might be all that is
necessary or technically feasible for an individual, much larger numbers could be practical
when storing large amounts, e.g., by financial institutions. In such cases, a group of 6
executives, maybe more, can be assigned to keep 6 different keys.
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(a) P theft = 0.01. (b) P theft = 0.02.

Figure 5 Best four-key wallets without theft – small probabilities.
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(a) P loss = 0.01, P leak = 0.01.
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(b) P theft = 0.01.
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(c) First: P loss = P leak = 0.01;
Next: P theft = 0.01.

Figure 6 Wallets with many keys and one fault type.

We assume all keys have the same fault probabilities and vary the number of keys from 1
to 7. If the only fault is loss with some probability P loss, the optimal wallet is wOR

n , and its
failure probability drops exponentially with the number of keys (Figure 6a). A similar result
is achieved with the wAND

n wallet if only leaks are possible.
In a theft-only setting the result is different (Figure 6b). While the overall trend remains

exponential, the improvement only emerges on odd numbers of keys. With an odd n number,
the best solution is the symmetric n − 1 optimal solution. The figures show the optimal
wallet failure probability, where it can be calculated; with larger numbers of keys they show
the failure probability of the best-guess-wallet. The guesses include all symmetric wallets
with m keys where m ≤ n, i.e., all symmetric wallets for smaller key sets.

In all cases the evolutionary algorithm closely approximates the optima when starting
from a random population, demonstrating its effectiveness. In the next evaluations we
bootstrap with the best symmetric key available, so it can only improve further.

In practice, increasing the number of keys could imply using keys with individual larger
fault probabilities. For example, by assigning key keeping responsibilities to more, less trusted,
individuals. Figure 6c shows the security when the first wallet can be lost or leaked, but not
stolen (P loss = P leak = 0.01), and the rest of the keys can only be stolen (P theft = 0.01).

Figure 7 shows the approximate optimal wallet failure probability with wallets that suffer
only loss and theft with different fault probabilities and different numbers of keys. The
exponential improvement with key number results, for example, in an order-of-magnitude
improvement when theft (loss) probability is a constant 0.01, when using 7 keys with loss
(theft) probability of 0.03 compared to 3 keys with loss (theft) probability of 0.01.
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Figure 7 Failure probability with different fault probabilities.

Table 3 Heterogeneous Keys.

Key 1 Key 2 Key 3
pfailure Wallet

P loss
1 P leak

1 P theft
1 P loss

2 P leak
2 P theft

2 P loss
3 P leak

3 P theft
3

1 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.0010 (1) ∨ (2) ∨ (3)
2 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.0010 (1 ∧ 2 ∧ 3)
3 0.100 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.000 0.0100 (1) ∨ (2)
4 0.100 0.000 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.0100 (2 ∧ 3)
5 0.050 0.050 0.000 0.050 0.050 0.000 0.050 0.050 0.000 0.0145 (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3)
6 0.050 0.050 0.000 0.050 0.050 0.000 0.000 0.100 0.000 0.0122 (1 ∧ 3) ∨ (2 ∧ 3)
7 0.050 0.050 0.000 0.050 0.050 0.000 0.100 0.000 0.000 0.0122 (1 ∧ 2) ∨ (3)
8 0.100 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.100 0.0100 (1) ∨ (2)
9 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.0280 (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3)
10 0.000 0.000 0.050 0.000 0.000 0.050 0.000 0.000 0.050 0.0073 (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3)

5.3 Key Type Choice
Apart from the number of keys, the owner could choose the types of keys she maintains.
For example, she could keep 3 secrets in different safety deposit boxes, or three secrets on
hardware devices held by different people. Alternatively, she could keep one key in a safety
deposit box, another on a hardware device held by a person, and another memorized.

To compare such alternatives, assume the owner has a budget of 0.1 fault probability
per key and can choose three keys such that for each key i: P loss

i + P leak
i + P theft

i = 0.1.
Table 3 shows the optimal wallet and its failure probability for different heterogeneous key
sets. Among these settings, the best wallets are obtained with homogeneous keys that can
either be only lost (Line 1) or leaked (Line 2), and theft is naturally the most problematic.

Figure 8 explores the effects of budget distribution with heterogeneous keys. For all
key combinations, the sum of fault probabilities is 0.1. In all settings we keep the fault
probabilities of keys 1 and 2 constant and vary that of key 3 such that its loss probability
grows from 0 to 0.1 and its leak probability drops from 0.1 to 0.

In all cases, if the loss probability of k3 is very low (and its leak probability is high) it is
required in all combinations, as it is unlikely the owner would not have access to it (this is
not always visible at this resolution). Similarly, if its leak probability is very low then the
optimal wallet can be satisfied only with k3.

With no theft (Figure 8a), if the probabilities for the first two keys are pure, i.e., only
loss or only leak, it is best to have a third key of the same type. However, if they are not
pure (P loss = 0.09, P leak = 0.01), it is better to have the third key of a different type (e.g.,
P loss = 0.01, P leak = 0.09).
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Figure 8 Heterogeneous keys.

The optimal wallets change significantly if we introduce just a bit of theft probability
(Figure 8b, P theft

1 = P theft
2 = 0.01), slightly increasing the fault budget. There is a significant

advantage in taking k3 to be different than the first two, i.e., if they have large loss probability,
it is better to take k3 with small loss probability. With the two keys having P loss = P leak =
0.05, all choices of k3 result in the same wallet failure probability.

6 Conclusion

We present a simple model allowing, for the first time, to analyze the design of cryptocurrency
wallets. Our analysis shows that careful design is necessary for constructing secure wallets –
adding keys provides in general an exponential improvement, but strongly depends on parity;
and choosing whether to add keys of the same type or of a different type depends on the
exact key fault probabilities.

Our results raise questions for future work. First, user studies to quantify key fault
probabilities are critically missing, both for theoretical analysis and to inform users; the
infamous frequency of wallet failures indicates users commonly underestimate the fault
probability of their keys. Secondly, the model can be expanded to consider (the undesirable)
correlation between key faults. Those occur, for example, if a user keeps two keys at the
same location and loses access to it, or if two company employees defect together. Thirdly,
our evolutionary algorithm only reaches a limited number of keys, as the key state space
became too large to evaluate. Techniques for estimating security with larger spaces would
allow to analyze, or at least bound, wallet security with larger numbers of keys.

Nevertheless, the results presented here are of immediate importance to users, who can
estimate their keys’ fault probabilities, choose keys wisely, and thus improve the security of
their funds.
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A Optimal Keys

For two cases we can easily prove what the optimal wallets are.
We often omit the function parameters to reduce clutter. For example, a wallet w and its

sub-expressions are all functions of key availability, but rather than writing w(k1, k2, k3) =
e1(k1, k2, k3) ∨ e2(k1, k2, k3) we suffice with w = e1 ∨ e2.

First, if keys can only suffer loss, the optimal wallet is the wOR
n wallet.

▶ Proposition 1. In a setting where all n keys can only suffer loss, i.e., ∀1 ≤ i ≤ n : P leak
i =

P theft
i = 0, for all wallets w, pP

success(w) ≤ pP
success(wOR

n ).

Proof. Consider a wallet expressed as a DNF comprising m expressions, i.e., w = e1 ∨. . .∨em,
where each ej is a conjunction of one or more key availabilities.

For any key ki, consider the wallet w′ formed by adding another disjunction of that key,
i.e., w′(k1, . . . , kn) = w(k1, . . . , kn) ∨ ki.

Set a scenario σ with a positive probability Pr[σ] > 0. Key i is either safe or lost. In
both cases, it is not available to the adversary, therefore the adversary can satisfy w′ iff it
can satisfy w. If the owner can satisfy w then it can also satisfy w′. Therefore, if wallet w

is successful in σ then wallet w′ is also successful in σ. Therefore, the probability that the
wallet w′ is successful is not smaller than the probability that the wallet w is successful.

We take the wallet w and create a wallet w1(k1, . . . , kn) = w(k1, . . . kn) ∨ k1, and continue
creating a series of wallets such that wj(k1, . . . kn) = wj−1(k1, . . . kn) ∨ kj . As we have shown,
each wallet is at least as successful as its predecessor and therefore at least as successful
as w. The last wallet, wn(k1, . . . kn) = w ∨ k1 ∨ · · · ∨ kn, is equivalent to wOR

n , completing
our proof. ◀

Secondly, if keys can only suffer leakage, the optimal wallet is the wAND
n wallet.

▶ Proposition 2. In a setting where all n keys can only suffer leakage, i.e., ∀1 ≤ i ≤ n :
P loss

i = P theft
i = 0, for all wallets w, pP

success(w) ≤ pP
success(wAND

n ).

The proof approach is similar.

Proof. Consider a wallet expressed as a DNF comprising m expressions, i.e., w = e1 ∨. . .∨em,
where each ej is a conjunction of one or more key availabilities.

For any key ki, consider the wallet w′ formed by adding ki to each conjunction,
i.e., w′(k1, . . . , kn) = (e1 ∧ ki) ∨ · · · ∨ (em ∧ ki).

Set a scenario σ with a positive probability Pr[σ] > 0. Key i is either safe or leaked. In
both cases, the owner can access it, therefore the owner can satisfy w′ iff it can satisfy w.
If the adversary cannot satisfy w then it cannot satisfy w′ either. Therefore, if wallet w is
successful in σ then wallet w′ is also successful in σ. Therefore, the probability that the
wallet w′ is successful is not smaller than the probability that the wallet w is successful.

We take the wallet w = e1 ∨ . . . em and create a wallet w1 = (e1 ∧ k1) ∨ · · · ∨ (em ∧ k1).
and continue creating a series of wallets w1, . . . , wn, where wj = ej

1 ∨ · · · ∨ ej
m and for all

2 ≤ j ≤ n and 1 ≤ ℓ ≤ m, we take ej
ℓ = ej−1

ℓ ∧ kj .
As we have shown, each wallet is at least as successful as its predecessor and therefore at

least as successful as w. The last wallet, wn = (e1 ∧ k1 ∧ · · · ∧ kn) ∨ · · · ∨ (em ∧ k1 ∧ · · · ∧ kn)
is equivalent to wAND

n , completing our proof. ◀
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It is known that Bitcoin enables to achieve fairness in secure computation by imposing a monetary
penalty on adversarial parties. This functionality is called secure computation with penalties. Bentov
and Kumaresan (Crypto 2014) showed that it could be realized with O(n) rounds and O(n) broadcasts
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1 Introduction

1.1 Backgrounds
Secure computation enables parties to compute a function whose inputs are their private
data [20]. There are several notions of security, such as privacy, correctness, independence
of inputs, guaranteed output delivery, and fairness. Fairness requires that at the end of a
protocol, either all parties learn the output value or none of them learn it, i.e., no malicious
parties receive their output while some honest parties do not receive output. Unfortunately, it
is known that secure computation cannot achieve fairness in the standard model if a majority
of parties are corrupted [7].

In order to circumvent the impossibility result, there are works to achieve fairness in
secure computation by imposing a monetary penalty on aborting parties [17]. We focus on
achieving fairness by using decentralized digital currency [3, 2, 1, 4, 13], e.g., Bitcoin [18]. In
secure computation on Bitcoin, an aborting party is given a penalty for losing coins, and
honest parties are compensated with coins.

Back and Bentov [3] and Andrychowicz, Dziembowski, Malinowski, and Mazurek [2]
introduced secure computation on Bitcoin. They studied fair lottery protocols that guarantee
any party aborting after learning the result is forced to pay penalties to all other parties.
After that, Bentov and Kumaresan [4] formalized such a model of computation as secure
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computation with penalties. In particular, they defined a claim-or-refund functionality F∗
CR

that plays an important role in secure computation with penalties. In F∗
CR, a sender can

send coins with a puzzle ϕs,r(·) and a round number τ to a receiver. The receiver gets the
coins if he/she reveals a solution w such as ϕs,r(w) = 1 in τ , and the sender gets back the
coins if the receiver does not publish the solution in τ .

Bentov and Kumaresan [4] showed that secure computation with penalties can be realized
for any function in the (FOT,F∗

CR)-hybrid model, where FOT is an ideal functionality of
oblivious transfer. Their protocol requires O(n) rounds1 and O(n) broadcasts, where n is the
number of parties and the number of broadcasts is the number of transactions. Kumaresan
and Bentov [13] introduced a new functionality F∗

ML and showed that secure computation
with penalties could be realized in the (FOT,F∗

ML)-hybrid model with only O(1) rounds.
However, this protocol requires O(n2) broadcasts. In the paper, they posed an open problem
as follows:

Is it possible to design a fair protocol
that needs only O(1) rounds and O(n) broadcasts?

Related works
Kumaresan, Moran, and Bentov [15] extended secure computation with penalties to the
reactive model that can also handle multistage functionalities, such as Texas Holdem poker.
Also, they defined a new security model for the reactive model and proposed a fair protocol in
the reactive model. This paper focuses on the single-stage (i.e., non-reactive) model following
the same setting in [4].

Kumaresan and Bentov [14] improved the efficiency of protocols by amortizing the cost
over multiple executions. Kumaresan, Vaikuntanathan, and Vasudevan [16] reduced the
script complexity of ϕs,r. This paper focuses on reducing the number of rounds and the
number of broadcasts.

There are several works [11, 6, 8] based on the model with stateful contracts, which
is stronger than our model. The model with stateful contracts can be instantiated by an
advanced blockchain technique like Ethereum [19], while our model can be instantiated by
Bitcoin.

1.2 Our Contributions
We introduce a new functionality, secure computation with non-equivalent penalties, which
is a slightly relaxed variant of secure computation with penalties. It guarantees that each
honest party is compensated with more than a predetermined amount of coins, while secure
computation with penalties guarantees that every honest party is compensated for the same
amount of coins. That is, in secure computation with non-equivalent penalties, two honest
parties may be compensated with different amounts of coins, although they are at least a
predetermined amount.

We show that secure computation with non-equivalent penalties can be realized for
arbitrary functions in the (FOT,F∗

CR)-hybrid model (See Table 1). Our technical contribution
is to propose a new fair reconstruction protocol, which is a subprotocol of a secure computation

1 In [5], it is stated that one round should be about an hour on Bitcoin to prevent the double-spending
attack. Thus, it implies that a s-round protocol takes about s hours.
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Table 1 Comparison of secure computation protocols with (non-equivalent) penalties.

References # of Rounds # of Broadcasts Compensation Amount

Bentov–Kumaresan [4] O(n) O(n) Equivalent

Kumaresan-Bentov [13] O(1) O(n2) Equivalent

This work (Sect. 4) O(1) O(n) Non-equivalent

protocol with (non-equivalent) penalties, with O(1) rounds and O(n) broadcasts. As a result,
we obtain secure computation with non-equivalent penalties with O(1) rounds and O(n)
broadcasts by replacing Bentov–Kumaresan’s fair reconstruction protocol with ours.

We note that our protocol is equivalent to a protocol achieving secure computation
with penalties if all parties behave honestly. Moreover, when we set the least amount of
compensation appropriately, malicious behavior is prevented. We believe that our result
gives a partial answer to the open problem posed by Kumaresan and Bentov [13].

2 Preliminaries

2.1 Basic Notations
For any positive integer i ∈ N, [i] denotes the set of integers {1, . . . , i}. We denote by n the
number of parties in a protocol. We denote by H ⊆ [n] (resp. C ⊆ [n]) the set of honest (resp.
corrupted) parties. Since each party is either honest or corrupted, it must hold h + c = n for
h := |H| and c := |C|. We denote by k a security parameter. We assume that all parties are
non-uniform probabilistic polynomial-time algorithms in k.

2.2 Secure Computation with Coins
Bentov–Kumaresan [4] introduced a new secure computation model called secure computation
with coins (SCC) model. It is the same model as the standard model except that entities (i.e.,
parties, adversaries, ideal functionalities, and an environment) can deal with a non-standard
entity called coins, which is an atomic entity representing electronic money. Coins are
assumed to be having the following properties.

Coins cannot be duplicated and forged.
No multiple parties hold the same coin simultaneously.
Any parties can transfer their coins to other parties freely.
Each coin is perfectly indistinguishable from one another.

We use the notation coins(·) to express the amount of coins. If a party owning coins(x)
receives coins(y) from another party, then the party holds coins(x + y) as a result.

In the SCC model, some ideal functionalities can deal with coins. We call such a
functionality a special ideal functionality. These functionalities are described with the
superscript ∗, e.g., F∗

xxx. We call an ideal functionality without handling coins a standard
ideal functionality. Our protocol is realized in the hybrid model where parties have access to
a standard functionality FOT, which is the ideal functionality for oblivious transfer, and a
special ideal functionality F∗

CR, described later.
The SCC model follows the real/ideal simulation paradigm as with the standard secure

computation model. Let IDEALF,S,Z(k, z) denote the output of an environment Z in the
ideal world for realizing an ideal functionality F , where Z (with an auxiliary input z) is
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interacting with an ideal adversary S on security parameter k. Let HYBRIDG
π,A,Z(k, z)

denote the output of environment Z in the real (hybrid) world for executing a hybrid protocol
π with an ideal functionality G, where Z is interacting with a real adversary A. The difference
with the standard secure computation is that all entities (i.e., parties, adversaries, special
ideal functionalities, and an environment) can deal with coins: sending coins, storing coins,
and receiving coins.

▶ Definition 1. Let π be a probabilistic polynomial-time n-party protocol and let F be a
probabilistic polynomial-time n-party (standard or special) ideal functionality. We say that
π SCC realizes F with abort in the G hybrid model (where G is a standard or special ideal
functionality) if for every non-uniform probabilistic polynomial-time adversary A, there
exists a non-uniform probabilistic polynomial-time adversary S such that for every non-
uniform probabilistic polynomial-time environment Z, two families of random variables
{IDEALF,S,Z(k, z)}k∈N,z∈{0,1}∗ and {HYBRIDG

π,A,Z(k, z)}k∈N,z∈{0,1}∗ are computationally
indistinguishable.

2.3 Special Ideal Functionalities
2.3.1 Claim-or-refund functionality F∗

CR

This functionality F∗
CR [4] can be seen as an analogue of puzzles with bounty. Roughly

speaking, for a puzzle ϕs,r with coins submitted by a sender, a receiver gets the coins if and
only if he/she submits a solution w of the puzzle (i.e., ϕs,r(w) = 1). F∗

CR consists of three
phases: deposit, claim, and refund. In the deposit phase, a sender Ps sends to a receiver
Pr “conditional” coins together with a circuit ϕs,r. The coins also have a round number τ

specified by the sender. In the claim phase, the receiver Pr claims to receive the coins. Pr

can receive the coins only if he/she broadcasts the witness w of ϕs,r (i.e., ϕs,r(w) = 1) in τ .
Note that the witness w published in the claim phase is made public to all parties. In the
refund phase, if Pr does not claim in τ , then the coins are refunded to the sender Ps. See
Algorithm 1 for a formal description of F∗

CR.2 At least one broadcast is necessary to realize
F∗

CR on Bitcoin. Thus, the number of calling F∗
CR corresponds to the number of broadcasts.

We call the message in the deposit phase a deposit transaction. We use the following
“arrow” notation to denote the deposit transaction for the sender Ps and the receiver Pr.

Ps
w−−−−−−→

c,τ
Pr

After making an arrow from Ps to Pr as above (i.e., after the deposit phase), Pr can claim
to receive coins(c) only if he/she publishes the witness w in round τ . coins(c) is refunded
back to the original holder Ps if Pr does not publish w in τ .

2.3.2 Secure computation with penalties F∗
f

This functionality F∗
f is the same as the standard secure function evaluation except that

aborting parties are forced to pay penalties [4]. In principle, it guarantees the following
properties:

no honest party pays any penalty, and
if a party aborts after learning the output value and does not tell the value to the other
parties, then every party who does not learn the value is compensated with coins.

2 [5, 14] show how to realize F∗
CR using Bitcoin.
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Algorithm 1 Claim-or-refund functionality F∗
CR [4].

Setup The session identifier is sid. Running with parties P1, . . . , Pn and an ideal adversary
S.

Deposit phase Receiving (deposit, sid, ssid, s, r, ϕs,r, τ, coins(c)) from Ps, perform the fol-
lowing process.
1) Record the message (deposit, sid, ssid, s, r, ϕs,r, τ, c)
2) Send all parties (deposit, sid, ssid, s, r, ϕs,r, τ, c)

- Ignore any future messages with the same ssid from Ps to Pr.
Claim phase Receiving (claim, sid, ssid, s, r, ϕs,r, τ, c, w) from Pr in round τ , perform the

following process.
1) Check the two conditions:

- (deposit, sid, ssid, s, r, ϕs,r, τ, c) was recorded,
- ϕs,r(w) = 1.

2) If both checks are passed, perform the following process:
2-i) send (claim, sid, ssid, s, r, ϕs,r, τ, c, w) to all parties,
2-ii) send (claim, sid, ssid, s, r, ϕs,r, τ, coins(c)) to Pr,
2-iii) delete the record (deposit, sid, ssid, s, r, ϕs,r, τ, c).

Refund phase In τ + 1, if the record (deposit, sid, ssid, s, r, ϕs,r, τ, c) was not deleted, then
perform the following process:

1) send (refund, sid, ssid, s, r, ϕs,r, τ, coins(c)) to Ps,
2) delete the record (deposit, sid, ssid, s, r, ϕs,r, τ, c).

See Algorithm 2 for a formal description of F∗
f . The parameters q and d specify the

amounts of coins. At the beginning of the protocol, each party submits coins(d) together
with input xi. If a party aborts after learning the output and does not tell the value to
the other parties, then F∗

f gives coins(q) to every party who does not learn the output as
compensation. Then, it is important note that the compensation amount is always q for any
parties.

H is a set of honest parties and H ′ ⊆ H is a subset chosen by S, which represents parties
who are compensated. At first glance, it is somewhat strange that S chooses a subset of
honest parties. The reason why H ′ is needed is that there are two types of aborting in secure
computation with abort. The first one is that an adversary aborts after obtaining the output
and thus honest parties cannot obtain the outputs. In this case, S chooses H ′ = H and all
honest parties are compensated with coins(q) although the output is stolen by the adversary.
The second one is that an adversary aborts before obtaining the output so the protocol
just terminates. In this case, S chooses H ′ ⊊ H (possibly empty) and the parties in H ′ are
compensated with coins(q).3

2.4 Non-malleable secret sharing with public verifiability and public
reconstructibility

A non-malleable secret sharing scheme with public verifiability and public reconstructibility (in
short, pubNMSS) [4] is a variant of non-malleable secret sharing scheme. The share algorithm
of pubNMSS takes a secret s as input, generates “tag-token” pairs (Tagi, Tokeni)i∈[n], and

3 H ′′ is required for a technical reason in order to prove the security. See [4] for a detail. In order to
prove the security of our protocol, our new functionality follows the same strategy.
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Algorithm 2 Secure computation with penalties F∗
f [4].

Setup The session identifier is sid. Running with parties P1, . . . , Pn, and an ideal adversary
S that corrupts parties {Pi}i∈C . Let d be a parameter representing the safety deposit,
and let q denote the penalty amount.

Input phase Wait to receive the following messages.
- (input, sid, ssid, i, xi, coins(d)) from Pi for all i ∈ H

- (input, sid, ssid, {yi}i∈C , H ′, coins(h′q)) from S, where H ′ ⊆ H and h′ = |H ′|
Output phase Perform the following process.

1) Send (return, sid, ssid, coins(d)) to each Pi for i ∈ H.
2) Compute (y1, . . . , yn)← f(x1, . . . , xn).

- if h′ = 0, then send message (output, sid, ssid, yi) to Pi for i ∈ H, and terminate.
- If 0 < h′ < h, then send (extra, sid, ssid, coins(q)) to Pi for each i ∈ H ′, and

terminate, where h := |H|.
- If h′ = h, then send message (output, sid, ssid, {yi}i∈C) to S.

3) If S returns (continue, sid, ssid, H ′′), where H ′′ ⊆ H, then perform the following
process:
3-i) send (output, sid, ssid, yi) to Pi for all i ∈ H,
3-ii) send (payback, sid, ssid, coins((h− h′′)q)) to S where h′′ = |H ′′|,
3-iii) send (extrapay, sid, ssid, coins(q)) to Pi for each i ∈ H ′′.

4) Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to Pi for all i ∈ H .

outputs Tokeni and (Tag1, . . . , Tagn) to each party Pi. The parties can reconstruct s by
collecting all n tokens. For all i ∈ [n], the parties can verify if the published Tokeni is valid
with Tagi. The tag-token pairs have the following properties:

all tags (Tag1, . . . , Tagn) leak no information about s,
any sets of t(< n) tokens leak no information about s,
for any i ∈ [n], the adversary cannot generate Token′

i( ̸= Tokeni) such that (Tagi, Token′
i)

is a valid tag-token pair.

A pubNMSS scheme can be obtained from the honest-binding commitment, which can
be constructed from one-way functions [9]. Tagi is an (honest-binding) commitment that
is computed by a secret share shi and a randomness ri as input, and Tokeni := (shi, ri).
Namely, the parties can verify if the published Token′

i = (sh′
i, r′

i) is valid by comparing Tagi

and the commitment whose input is sh′
i and r′

i. In the following discussions, this verification
corresponds to ϕs,r in F∗

CR executions.

3 Existing Protocol for secure computation with penalties

In this section, we introduce Bentov–Kumaresan’s protocol [4] for secure computation with
penalties in the (FOT,F∗

CR)-hybrid model.

3.1 Bentov–Kumaresan’s Protocol
For a function f , an augmented function denoted by f̂ is defined by a function that takes an
input x and distributes secret shares of the output value f(x). The underlying secret sharing
scheme is non-malleable secret sharing with publicly verifiability and publicly reconstructibility
(Section 2.4). Thus the augmented function f̂ outputs a token Tokeni (i.e., a share of f(x))
and a set of tags (Tag1, . . . , Tagn) to party Pi.
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Bentov–Kumaresan’s protocol proceeds as follows:
(i) The parties execute a secure computation protocol for f̂ , and then each party Pi

obtains a token Tokeni of f(x) and a set of tags (Tag1, . . . , Tagn). (Note that this is
the standard computation without Bitcoin).

(ii) For the reconstruction of tokens, the parties execute the fair reconstruction protocol,
where each party Pi is forced to broadcast a token Tokeni. The validity of the submitted
token Tokeni is verified with the tag Tagi. (Note that this computation is based on
Bitcoin).

It is well known that the OT functionality FOT is sufficient to achieve secure computa-
tion for any standard functionality [12, 10]. Moreover, this can be performed in constant
rounds [10]. Therefore, the secure computation stage (i) is performed in constant rounds in
the FOT-hybrid model.

The main step of Bentov–Kumaresan’s protocol is the fair reconstruction protocol (ii). By
collecting all tokens, the parties can reconstruct the output value f(x). However, malicious
parties may abort so as to learn the output value while other parties do not. The fair
reconstruction protocol prevents parties from aborting in the reconstruction phase. When
malicious parties abort, they have to pay some amount of money for compensation to honest
parties. It satisfies the following conditions:
(A) No honest party pays any penalty.
(B) If an adversary learns the reconstruction result, but an honest party cannot, then the

honest party is compensated with coins. Furthermore, the compensation amounts are
the same for any honest parties.

Note that honest parties are not guaranteed to receive compensation if an adversary aborts
without learning the output value.

In summary, secure computation with penalties can be realized by executing a secure
computation protocol for f̂ and the fair reconstruction protocol. The next section shows
Bentov–Kumaresan’s fair reconstruction protocol in the F∗

CR-hybrid model.

3.2 Bentov–Kumaresan’s Fair Reconstruction Protocol
Hereafter, we use Ti to denote Tokeni. Suppose that each party Pi has a token Ti and a set
of tags (Tag1, . . . , Tagn) at the beginning of the fair reconstruction protocol. We assume
that all parties agree on the penalty amount q, where honest parties are compensated with
coins(q) when malicious parties abort with obtaining the output value. In the below, we
successively explain a naïve approach, a solution for the two-party setting, and a solution for
the n-party setting.

Naïve approach. Suppose that the number of parties is two. A naïve approach is to make
a deposit transaction from P1 to P2 and a deposit transaction of the reverse direction as
follows:

P1
T2−−−−−−→
q,τ

P2 (1)

P2
T1−−−−−−→
q,τ

P1 (2)

The above arrow means that “P2 can receive coins(q) only if P2 publishes the token T2,
otherwise coins(q) is refunded back to P1” (see Section 2.3). The bottom arrow is similar.
At first glance, it seems a fair reconstruction protocol satisfying conditions (A) and (B)
in Section 3.1. However, it is not the case. For instance, when P2 is malicious, P2 can
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steal coins(q) from P1 as follows: after establishing transaction (1), P2 publishes the token
T2 without making transaction (2). As a result, honest P1 loses coins(q). This violates
condition (A).

Bentov-Kumaresan’s solution. In order to avoid the above attack, Bentov–Kumaresan’s
fair reconstruction protocol for the two-party setting proceeds as follows:

P1
T1∧T2−−−−−−−−→

q,τ2
P2 (1)

P2
T1−−−−−−−−→

q,τ1
P1 (2)

where the rounds satisfy τ1 < τ2. (Hereafter, we assume τi < τi+1 for any integer i.) P1 first
makes a deposit transaction for T1 ∧ T2. Transaction (1) means that P2 can receive coins(q)
only if P2 publishes both T1 and T2 in τ2. Namely, it is necessary that both (Tag1, T1) and
(Tag2, T2) are valid tag-token pairs to satisfy ϕs,r(T1∧T2) = 1. After making the first deposit
transaction, P2 makes a deposit transaction for T1. Transaction (2) means that P1 can
receive coins(q) only if P1 publishes T1 in τ1. In the claim phase, P1 first publishes T1, and
then P2 publishes both T1 and T2.

It is important to note that P1 needs to make transaction (1) first. As a result, P2 cannot
claim this transaction without making transaction (2) since P2 does not know T1 yet. Also,
the claims are performed in the reverse order of making the transactions, i.e., P1 first claims.

If P2 aborts after P1 claims, then P2 is penalized with coins(q) and P1 is compensated
with that coins. Thus, P2 needs to publish T2 in order not to lose coins(q). Also, both
parties never are penalized if they behave honestly. Therefore, the above protocol satisfies
the conditions (A) and (B) in Section 3.1.

We show Bentov-Kumaresan’s solution for the n-party setting on the left side of Figure 1.
As with the two-party case, parties make deposit transactions from the top and claim from
the bottom in the n-party setting. Namely, the parties make transactions (1) to (2n − 2)
and claim transactions (2n− 2) to (1).

Here, we describe an intuitive explanation that Bentov-Kumaresan’s fair reconstruction
protocol satisfies the condition (A) and (B). (See [5] for a formal security proof based on
Definition 1.) It is trivial that no party loses coins if all parties behave honestly. Thus, we
consider the case where there is a party to abort.

Let consider the case where an adversary aborts in the deposit phase. Since no honest
party publishes his/her token, the adversary does not learn the reconstruction result nor
receives any coins from honest parties. This case satisfies the condition (A) and (B).

Let consider the case where an adversary aborts in the claim phase. In order to learn
the reconstruction result, the adversary must collude all parties that have not claimed yet
to learn tokens that are not published. Every honest party holds coins(q) since he/she has
already claimed and has got coins. This case also satisfies the condition (A) and (B).

Efficiency. Bentov–Kumaresan’s fair reconstruction protocol requires n rounds for deposit
phase and n rounds for claim phase, and thus it requires a total of 2n rounds. Also, it
requires 2n − 2 calls of F∗

CR. Recall that the augmented function can be computed in a
constant round for any function. Therefore, for any function, Bentov–Kumaresan’s protocol
for the secure computation with penalties can be SCC realized in the (FOT,F∗

CR)-hybrid
model with O(n) rounds and O(n) calls of F∗

CR.
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Table 2 Comparison of fair reconstruction protocols.

References # of Rounds # of Calling F∗
CR Compensation Amount

Bentov–Kumaresan [4] 2n 2n − 2 Equivalent

This work (Sect. 4) 8 3n − 4 Non-equivalent

Algorithm 3 Secure computation with non-equivalent penalties F∗
f,neq.

Setup The session identifier is sid. Running with parties P1, . . . , Pn, and an ideal adversary
S that corrupts parties {Pi}i∈C . Let d be a parameter representing the safety deposit.
Let q denote the minimum penalty amount.

Input phase Wait to receive the following messages.
- (input, sid, ssid, i, xi, coins(d)) from Pi for all i ∈ H

- (input, sid, ssid, {xi}i∈C , H ′, coins(
∑

i∈H′ qi)) from S, where H ′ ⊆ H and qi (≥ q) is
the penalty amount for each i ∈ H ′.

Output phase Perform the following process.
1) Send (return, sid, ssid, coins(d)) to each Pr for r ∈ H.
2) Compute (y1, . . . , yn)← f(x1, . . . , xn).

- if h′ = 0, then send message (output, sid, ssid, zr) to Pr for r ∈ H, and terminate.
- If 0 < h′ < h, then send (extra, sid, ssid, coins(qi)) to Pi for each i ∈ H ′, and

terminate, where h := |H|.
- If h′ = h, then send message (output, sid, ssid, {yi}i∈C) to S.

3) If S returns (continue, sid, ssid, H ′′), where H ′′ ⊆ H, then perform the following
process:
3-i) send (output, sid, ssid, yi) to Pi for all i ∈ H,
3-ii) send (payback, sid, ssid, coins(

∑
i∈H′ qi −

∑
j∈H′′ qj) to S where h′′ = |H ′′|,

3-iii) send (extrapay, sid, ssid, coins(qi)) to Pi for each i ∈ H ′′.
4) Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(qi)) to Pi for each

i ∈ H.

4 Proposed Protocol

In this section, we introduce a special functionality called secure computation with non-
equivalent penalties (Section 4.1). Then we design a protocol achieving this functionality in
the (FOT,F∗

CR)-hybrid model. In particular, we design a new fair reconstruction protocol in
the F∗

CR-hybrid model (Section 4.3), and putting it with a secure computation protocol for
an augmented function into the FOT-hybrid model as in Section 3.1. Notably, our protocol
requires O(1) rounds and O(n) broadcasts only (See Table 1).

4.1 Secure Computation with Non-equivalent Penalties
In secure computation with penalties F∗

f , all honest parties are compensated with the same
amount of money coins(q). A new functionality, secure computation with non-equivalent
penalties F∗

f,neq, is the same as F∗
f except that each honest party is compensated with coins(q)

or more, i.e., the amount of compensation may be different with each party. For example, in
F∗

f,neq, we allow the following situation: An honest P1 is compensated with coins(q) but an
honest P2 is compensated with coins(2q).
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See Algorithm 3 for a formal definition of F∗
f,neq. The difference with F∗

f is that a
simulator can decide the amount qi for each i ∈ H ′ and inputs coins(

∑
i∈H′ qi) while a

simulator in F∗
f must input coins(h′q) for h′ := |H ′|. We require that qi ≥ q for all i ∈ H ′,

where q is the minimum amount of compensation.
We note that compensation happens only when a malicious party has stolen the output

value. That is, F∗
f and F∗

f,neq are the same if all parties behave honestly. By choosing q

appropriately, it is possible to prevent malicious behavior, and then we obtain a protocol
with fairness. In this sense, a new functionality F∗

f,neq brings almost the same effect on F∗
f .

4.2 Fair Reconstruction for Secure Computation with Non-equivalent
Penalties

Following Bentov-Kumaresan’s protocol, we construct a fair reconstruction protocol to realize
secure computation with non-equivalent penalties. In order to realize secure computation
with non-equivalent penalties, a fair reconstruction protocol needs to satisfy the following
conditions:
(A) No honest party pays any penalty.
(B*) If an adversary learns the reconstruction result, but an honest party cannot, then the

honest party is compensated with coins. Furthermore, the compensation is more than a
predetermined amount.

Note that the difference between condition (B*) and condition (B) in Section 3.1 is the
amount of compensations only. Namely, our fair reconstruction protocol does not guarantee
that each honest party is compensated with the same amount of coins.

4.3 Our Fair Reconstruction Protocol
Our fair reconstruction protocol proceeds as follows (see also the right side of Figure 1):

Deposit phase
1) For i ∈ {1, . . . , n− 1}, Pi makes a transaction to send Pn coins(q) with a circuit ϕi,n

and a round number τ4, where ϕi,n(x) = 1 only if x = T1 ∧ · · · ∧ Tn.
2) Pn makes a transaction to send Pn−1 coins((n− 1)q) with a circuit ϕn,n−1 and a round

number τ3, where ϕn,n−1(x) = 1 only if x = T1 ∧ · · · ∧ Tn−1.
3) For i ∈ {1, . . . , n − 2}, Pn−1 makes a transaction to send Pi coins((n − 1)q) with a

circuit ϕn−1,i and a round number τ2, where ϕn−1,i(x) = 1 only if x = Tn−1 ∧ Ti.
4) For i ∈ {1, . . . , n − 2}, Pi makes a transaction to send Pn−1 coins((n − 2)q) with a

circuit ϕi,n−1 and a round number τ1, where ϕi,n−1(x) = 1 only if x = Tn−1.

Claim phase
5) Pn−1 claims by publishing Tn−1 in round τ1 and receives coins((n− 2)q) from each of

P1, . . . , Pn−2.
6) For i ∈ {1, . . . , n − 2}, Pi claims by publishing Tn−1 ∧ Ti in round τ2 and receives

coins((n− 1)q) from Pn−1.
7) Pn−1 claims by publishing T1∧ · · ·∧Tn−1 in round τ3 and receives coins((n−1)q) from

Pn.
8) Pn claims by publishing T1 ∧ · · · ∧ Tn in round τ4 and receives coins(q) from each of

P1, . . . , Pn−1.

Our fair reconstruction protocol requires eight rounds and 3n − 4 calls of F∗
CR. Since

FOT is sufficient to compute any standard functionality in constant rounds, we can derive
the following theorem. (We defer the proof to the full version.)
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▶ Theorem 2. Assuming the existing of one-way functions, for every n-party functionality f

there exists a protocol that SCC realizes F∗
f,neq in the (FOT,F∗

CR)-hybrid model. The protocol
requires O(1) rounds and O(n) calls of F∗

CR.

4.4 Idea behind Our Protocol
See Figure 2 that shows flows of the claim phase of Bentov–Kumaresan’s fair reconstruction
protocol and ours.4 In Bentov–Kumaresan’s protocol, parties publishes his/her token in
serial order, i.e., each token is published in each round. (Token Ti is published in round τi.)
Thus, their protocol requires O(n) rounds.

On the other hand, our protocol enables to publish multiple tokens in one round to
improve the round complexity. See step 6) in Section 4.3, the parties P1, . . . , Pn−2 publish
their token in one round.

In the claim phase, our protocol proceeds as follows: We call P1, . . . , Pn−2 middle parties
and Pn−1 aggregator. In round τ1, the aggregator Pn−1 collects coins from all middle parties
by publishing token Tn−1. After that, the middle parties publishes their tokens T1, . . . , Tn−2
and receive coins, which are more than they sent in round τ1, from the aggregator Pn−1 in
round τ2. In round τ3, the aggregator Pn−1 receives coins from Pn by publishing his/her
token and all of middle parties’ tokens. In the last round τ4, Pn publishes the last token Tn

and receives coins from every other party. As a result, all parties learn the reconstruction
result and every party’s wallet are balanced, i.e., it has neither loss nor gain.

We discuss the amount of coins sent in each transaction to satisfy the conditions (A) and
(B*) below.

The amount of coins. In our protocol, Pn receives coins(q) from every other party in
the last round τ4. (See Figure 1.) In order to satisfy the condition (A), every wallet of
P1, . . . , Pn−1 must hold coins(q) at the end of round τ3. We show that our protocol satisfies
this condition in Figure 3.

When we decide the amount of coins in rounds τ1 and τ2, we should note that the
aggregator Pn−1 cannot claim in round τ3 if at least one of the middle parties abort in round
τ2. Since the aggregator sends more coins in round τ2 than he/she received in round τ1,
his/her wallet holds negative amount of coins at the end of round τ2. In order to satisfy the
conditions (A) and (B*), it is necessary to satisfy that the aggregator’s wallet holds positive
amount of coins at the end of round τ2 if at least one of the middle parties abort in round τ2.
The amounts of coins sent in rounds τ1 and τ2 are derived as follows.

Suppose that Pn−1 gets coins(xq) from each of P1, . . . , Pn−2 in round τ1, and each of
P1, . . . , Pn−2 get coins((x + 1)q) from Pn−1 in round τ2. In round τ2, Pn−1’s wallet should
have positive amount of coins unless all of P1, . . . , Pn−2 claims. Thus, we can derive x from
the following equation: (n − 2)x > (n − 3)(x + 1). The least solution of the equation is
x = n− 2. Therefore, each middle party sends coins((n− 2)q) to the aggregator in round τ1
and the aggregator sends coins((n− 1)q) to each middle party in round τ2.

Security intuition. Let consider the case where one of the middle parties aborts in round
τ2. (See Figure 4.) Suppose that P1 aborts in round τ2, i.e., he/she does not publish T1 and
does not receive coins((n− 1)q) from Pn−1. Note that P1 must collude with Pn to learn the

4 For ease of understanding, Figure 2 omits the transactions (among Pn and other parties) in the last
round. (See transactions (1), (2), . . . , (n − 1) in Figure 1.)
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reconstruction result. Thus, the condition (B*) is satisfied since every wallet of P2, . . . , Pn−1
holds coins(q) as the compensation at the end of the protocol. Furthermore, since no honest
party does not pay a penalty, the condition (A) is satisfied. We can confirm that our protocol
satisfies the conditions (A) and (B*) by the same way in the other cases.

▶ Remark 3. Compensations to honest parties may not be the same amount of coins. See
Pn−1 who receives coins((n − 2)q) from each of P1, . . . , Pn−2 in round τ1. The amount of
Pn−1’s compensation depends on the number of aborting parties in them. On the other hand,
compensations for other parties are coins(q). Namely, Pn−1 is the only party who can be
compensated with more than coins(q).

▶ Remark 4. At first glance, it seems that rounds τ3 and τ4 need not be separated since Pn

can already claim in τ3. However, if these rounds are combined into one (i.e., τ4 = τ3), the
modified protocol violates condition (A). Suppose all but Pn are malicious. First, in the
deposit phase, the adversary makes the n− 1 transactions to Pn honestly. However, after Pn

makes the deposit transaction to Pn−1, the adversary waits for time to pass without making
the subsequent transactions. Just before the end of τ3, the adversary claims the transaction
made by Pn and obtains coins((n − 1)q). Pn−1 can get that coins back by claiming n − 1
transactions made by the adversary, however Pn may not claim due to the lack of time
remaining. As a result, Pn may lose the coins, which violates the condition (A).

5 Conclusion

This paper focused on Bentov and Kumaresan’s work [4] in secure computation with penalties.
They showed that secure computation with penalties could be constructed with O(n) rounds
and O(n) broadcasts for any function in the (FOT,F∗

CR)-hybrid model. Also, it was the open
problem whether the round order could be improved to O(1) with O(n) broadcasts [13].

This paper presented a positive answer to this question in a relaxed setting. In Bentov-
Kumaresan’s protocol, every honest party can be compensated with the same amount of coins
when an adversary aborts after learning the output value. On the other hand, in our setting,
every honest party is guaranteed to be compensated with more than a predetermined amount
of coins, but not the same amount. We formalized this new setting as secure computation
with non-equivalent penalties. We showed that secure computation with non-equivalent
penalties could be realized with O(1) rounds and O(n) broadcasts for arbitrary functions in
the (FOT,F∗

CR)-hybrid model. In particular, we improved the fair reconstruction protocol [4],
which is a key ingredient for realizing secure computation with penalties.
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P1
T1∧···∧Tn−−−−−−−−−−−−−−→

q,τn

Pn (1)

P2
T1∧···∧Tn−−−−−−−−−−−−−−→

q,τn

Pn (2)

...

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−→

q,τn

Pn (n− 1)

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−→
(n−1)q,τn−1

Pn−1 (n)

Pn−1
T1∧···∧Tn−2−−−−−−−−−−−−−→
(n−2)q,τn−2

Pn−2 (n + 1)

...

P4
T1∧T2∧T3−−−−−−−−−−−−→

3q,τ3
P3 (2n− 4)

P3
T1∧T2−−−−−−−−−−−−−→
2q,τ2

P2 (2n− 3)

P2
T1−−−−−−−−−−−−→

q,τ1
P1 (2n− 2)

P1
T1∧···∧Tn−−−−−−−−−−−−−−−→

q,τ4
Pn (1)

P2
T1∧···∧Tn−−−−−−−−−−−−−−−→

q,τ4
Pn (2)

...

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−−→

q,τ4
Pn (n− 1)

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−−−−−→
(n−1)q,τ3

Pn−1 (n)

Pn−1
Tn−1∧Tn−2−−−−−−−−−−−−−−−−→
(n−1)q,τ2

Pn−2 (n + 1)

Pn−1
Tn−1∧Tn−3−−−−−−−−−−−−−−−−→
(n−1)q,τ2

Pn−3 (n + 2)

...

Pn−1
Tn−1∧T1−−−−−−−−−−−−−−−−−→
(n−1)q,τ2

P1

(2n− 2)

Pn−2
Tn−1−−−−−−−−−−−−−−→

(n−2)q,τ1
Pn−1

(2n− 1)

Pn−3
Tn−1−−−−−−−−−−−−−−→

(n−2)q,τ1
Pn−1 (2n)

...

P1
Tn−1−−−−−−−−−−−−−−−→

(n−2)q,τ1
Pn−1

(3n− 4)

Figure 1 Bentov–Kumaresan’s fair reconstruction protocol (left) and our fair reconstruction
protocol (right) in the n-party setting: In the deposit phase, the transactions are created from top
to bottom, i.e., (1) to (2n − 2) in the left protocol and (1) to (3n − 4) in the right protocol. In the
claim phase, the transactions are claimed in the reverse direction, i.e., (2n − 2) to (1) in the left
protocol and (3n − 4) to (1) in the right protocol. The horizontal lines separate each round. Namely,
in the deposit (resp. claim) phase, transactions belonging to the same section are created (resp.
claimed) in one round.
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Figure 2 Flow of Bentov–Kumaresan’s fair reconstruction protocol (left) and ours (right).
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Figure 3 Coins flow in round τ1 to τ3 in the case where all parties behave honestly.
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Abstract
In recent years, prominent blockchain systems such as Bitcoin and Ethereum have experienced
explosive growth in transaction volume, leading to frequent surges in demand for limited block space
and causing transaction fees to fluctuate by orders of magnitude. Existing systems sell space using
first-price auctions; however, users find it difficult to estimate how much they need to bid in order
to get their transactions accepted onto the chain. If they bid too low, their transactions can have
long confirmation times. If they bid too high, they pay larger fees than necessary.

In light of these issues, new transaction fee mechanisms have been proposed, most notably
EIP-1559, aiming to provide better usability. EIP-1559 is a history-dependent mechanism that
relies on block utilization to adjust a base fee. We propose an alternative design – a dynamic
posted-price mechanism – which uses not only block utilization but also observable bids from past
blocks to compute a posted price for subsequent blocks. We show its potential to reduce price
volatility by providing examples for which the prices of EIP-1559 are unstable while the prices of the
proposed mechanism are stable. More generally, whenever the demand for the blockchain stabilizes,
we ask if our mechanism is able to converge to a stable state. Our main result provides sufficient
conditions in a probabilistic setting for which the proposed mechanism is approximately welfare
optimal and the prices are stable. Our main technical contribution towards establishing stability
is an iterative algorithm that, given oracle access to a Lipschitz continuous and strictly concave
function f , converges to a fixed point of f .
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Abstract
An important feature of physical cash payments is resilience, due to their independence of power
outages or network coverage. Many central banks are exploring issuing digital cash substitutes with
similar offline payment functionality. Such substitutes could incorporate novel features making them
more desirable than physical cash. This paper considers introducing an expiry date for offline digital
currency balances to automate personal loss recovery. We show this functionality could increase
consumer demand for digital cash, with the time to expiration playing a key role. The optimal
time to expiration should have short wait time to get lost money reimbursed but leave enough time
for agents to deposit received offline balances. Setting the time to expiration a bit too long has
minor impact on welfare but setting it too short dramatically reduce welfare. If the offline device
provides information about past transactions to the central bank, the accuracy of loss recovery can
be improved but welfare can decrease.
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Abstract
Trades in today’s financial system are inherently subject to settlement uncertainty. This paper
explores tokenization as a potential technological solution. A token system, by enabling program-
mability of assets, can be designed to eradicate settlement uncertainty. We study the allocations
achieved in a decentralized market with either the legacy settlement system or a token system.
Tokenization can improve efficiency in markets subject to a limited commitment problem. However,
it also materially alters the information environment, which in turn aggravates a hold-up problem.
This limits potential gains from resolving settlement uncertainty, particularly for markets that
depend on intermediaries.
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Abstract
Initial Coin Offerings (ICOs) are an emerging form of crowdfunding for blockchain-based startups.
While ICO design varies greatly in practice, many service-based platforms (e.g., Ethereum), use
“uncapped” structures that forego limits on token supply, subjecting early investors to dilution risk.
In this paper, we examine the conditions under which such ICOs are optimal and provide guidance
for their design. Despite their popularity in practice, uncapped ICOs are understudied and not as
well understood as their capped counterparts. We model game-theoretic interactions among various
stakeholders in an infinite-horizon setting with network effects, taking account of operational details.
We show that uncapped ICOs weakly dominate capped ones in the context of service platforms. In
terms of design, a platform commission and regulation are generally “substitutes” when it comes to
overcoming moral hazard, but can also be combined to make ICOs more accessible, especially for
platforms with high initial setup costs. ICO accessibility can also be increased by employing a dual
token offering (security & transaction tokens), at the cost of reduced expected profit. The paper
provides a theoretical underpinning for the use of uncapped ICOs in practice. At a high level, it
shows that ICOs succeed more easily in the presence of regulation, and platforms with low (high)
setup costs should preferably issue utility (dual token) type ICOs.
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Abstract
We introduce systematic tests exploiting robust statistical and behavioral patterns in trading to detect
fake transactions on 29 cryptocurrency exchanges. Regulated exchanges feature patterns consistently
observed in financial markets and nature; abnormal first-significant-digit distributions, size rounding,
and transaction tail distributions on unregulated exchanges reveal rampant manipulations unlikely
driven by strategy or exchange heterogeneity. We quantify the wash trading on each unregulated
exchange, which averaged over 70% of the reported volume. We further document how these
fabricated volumes (trillions of dollars annually) improve exchange ranking, temporarily distort
prices, and relate to exchange characteristics (e.g., age and userbase), market conditions, and
regulation.
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1 Crypto Wash Trading

The market capitalization of all cryptocurrencies exceeded 1.5 trillion USD in Feb 2021, and
the total trading volume is 8.8 trillion USD in the first quarter of 2020 alone [6]. Both financial
institutions and retail investors have significant exposure to the cryptocurrency industry.1

Meanwhile, crypto exchanges, arguably the most profitable players in the ecosystem, remain
mostly unregulated with less than 1% transactions taking place on regulated crypto exchanges
in 2019 as we posted the first draft of the paper. In the process of vying for dominance in
this lightly regulated market, some exchanges are suspected of gaining an advantage in ways
ethically and legally questionable [11, 3]. One form of such market manipulation is Wash
trading – investors simultaneously selling and buying the same financial assets to create
artificial activity in the marketplace, which is known to distort price, volume, and volatility,
and reduce investors’ confidence and participation in financial markets [1].

Against such a backdrop, we conduct the first academic study of wash trading and
misreporting on cryptocurrency exchanges. By inspecting the distribution of trade size whose
first significant digit should follow Benford’s law, should exhibit clustering at round numbers,
and whose tail distribution is traditionally described by power law (Pareto-Levy law), we
find that most unregulated exchanges wash trade (fabricating trades and acting as the
counterparty on both sides to inflate volume).2 We also estimate that unregulated exchanges
on average inflate over 70% of the reported volumes in our sample. Furthermore, we provide
suggestive evidence that the misreporting (generically referred to as wash trading) improves
their ranking and prominence within the industry, relates to short-term price dispersion
across exchanges, occurs more on newly established exchanges with smaller userbases, and
has implications for the long-term industrial organization, development, and regulations.

While industry reports in 2018-2019 constitute whistle-blowers, their analyses are often
imprecise, ad hoc, unscalable, and non-transparent [4]. Practitioners were unsure if wash
trading only concerns a few specific exchanges with legal cases or was widespread; neither
did they know how regulations play a role. Our goal is not to identify a specific wash
trade, but to rigorously establish that wash trading is a rampant, industry-wide issue for
the cryptocurrency market. We are among the earliest to provide evidence for the efficacy

1 Surveys reveal that 22% institutional investors have invested in cryptocurrencies [10] and by April
2019 9% of adults have owned Bitcoins in particular [2]. In the UK, 25% consumers could identify
“cryptocurrency” and 3% had bought them [5]. Between 2016 and 2018, Bitcoin ownership increased
from 3% to 5% [7]

2 Wash trading is, according to the U.S. Commodity Exchange Act, “Entering into, or purporting to enter
into, transactions to give the appearance that purchases and sales have been made, without incurring
market risk or changing the trader’s market position.” Definition of wash trading from US Commod-
ity Exchange Act can be found at https://www.cftc.gov/ConsumerProtection/EducationCenter/
CFTCGlossary/glossary_wxyz.html

https://www.cftc.gov/ConsumerProtection/EducationCenter/CFTCGlossary/glossary_wxyz.html
https://www.cftc.gov/ConsumerProtection/EducationCenter/CFTCGlossary/glossary_wxyz.html
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of regulation in this industry, which has implications for investor protection and financial
stability.3 Our findings also likely have consequences for ongoing lawsuits and empirical
research on cryptocurrencies which frequently reference transaction volumes. Finally, they
serve as illustrations of the usefulness of statistical and behavioral principles for forensic
finance, with regulatory implications for FinTech and beyond.

Wash trading on crypto exchanges warrants our attention for several reasons. First,
crypto exchanges play essential roles in the industry, providing liquidity and facilitating
price discovery just like traditional exchanges. Many crypto exchanges have expanded into
upstream (e.g., mining) and downstream (e.g., payment) sectors, consequently wielding
great influence as a complex of trading platforms, custodians, banks, and clearinghouses.
Naturally, crypto exchanges constitute an anchoring point for understanding the ecosystem
from academic, industrial, and regulatory perspectives. Second, because liquidity begets
liquidity, crypto exchanges have strong economic incentives to inflate trading volumes to
increase brand awareness and ranks on third-party aggregator websites or media (e.g.,
CoinMarketCap, CoinGecko, Bitcointalk, and Reddit), which in turn increases the exchanges’
profits from transaction fees. Third, while wash trading is largely prohibited in most financial
markets and developed economies [8], cryptocurrencies are particularly prone to wash trading,
under limited regulatory oversight.

We collect cryptocurrency transaction information on 29 major exchanges from the
proprietary database maintained by TokenInsight (www.tokeninsight.com), a data provider
who offers consulting, rating, and research reports for the cryptocurrency-related business.
We adopt the definition of regulated exchanges from the state of New York, which has one of
the earliest regulatory frameworks in the world.4 We then use web traffic ranking as a proxy
for brand awareness and reputation to further categorize unregulated exchanges for easy
reference: “Tier-1” for exchanges ranking in the top 700 in the finance/investment section of
SimilarWeb.com and “Tier-2” for the rest of unregulated exchanges on our data (all ranking
outside top 960). Our data cover the period from 00:00 July 09th, 2019 (when TokenInsight
started to collect transaction information from these exchanges) to 23:59 November 03rd, 2019
(the time we wrote the first draft). Our data also contain variables including aggregate trading
volume, reputation metrics, and exchange characteristics such as exchange age. For each
exchange, we examine several most widely recognized and heavily traded cryptocurrencies
against US dollars (USD), including Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), and
Ripple (XRP).

We are fully aware of the challenges of forensic finance and employ multiple approaches
that have been successfully applied in numerous fields in sciences and social sciences and
are shown to be unlikely affected by dispersed traders’ strategies, exchange characteristics,
or specificities of the asset class. To start, we examine the first significant digit for each

3 After we publicly circulated our study in late 2019, several ranking websites changed their matrices
from purely volume-based to more sophisticated multi-dimensional ranking models, with at least one
website doing so in response to our research finding. Regulators also increased scrutiny on wash trading
behavior: Canada-based crypto trading platform Coinsquare has agreed to settle with the Ontario
Securities Commission for wash trading charge; Coinbase was fined before IPO for wash trading several
years earlier.

4 Regulated exchanges are issued BitLicenses and are regulated by the New York State Department of Fin-
ancial Services. Bitlicence carries some of the most stringent requirements. Our main results are robust to
alternative classifications of regulated exchanges. As of June 2020, NYDFS has issued licenses to 25 regu-
lated entities, six of which provide crypto exchange service. They are Itbit, Coinbase, Bitstamp, Bitflyer,
Gemini, and Bakkt (futures and options only). Further information can be found at: https://www.dfs.
ny.gov/apps_and_licensing/virtual_currency_businesses/regulated_entities. (Last accessed:
July 3, 2020)
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transaction and check its frequency distribution on each exchange against Benford’s law – the
well-known statistical benchmark in natural sciences and social sciences and widely used to
detect frauds in macroeconomic, accounting and engineering fields. We next exploit a classical
behavioral regularity in trading: clustering at certain transaction sizes. Round numbers are
routinely used as cognitive reference points in individuals’ decision-making. Rounding is
commonly observed in finance, including analysts’ forecasts or LIBOR submissions. Our
third test explores whether the distributions of observed trade size have fat tails characterized
by the power law as seen in traditional financial markets and other economic settings. We fit
a power-law distribution and estimate the exponent parameters in addition to graphically
inspecting the tail distributions on a log-log scale. We consistently find anomalous trading
patterns only on unregulated exchanges, with Tier-1 exchanges failing more than 20% of the
tests and Tier-2 exchanges failing more than 60%. The findings remain robust when under
joint hypothesis tests.

Figure 1 First-significant-digit, Trade-size Clustering, and Tail Distribution of Trade Size. The
figure demonstrates the BTC/USD distribution drawn from sample exchanges compared with
the benchmarks. Three exchanges are shown in the figure, one from each category (regulated
exchange-left, Tier 1 unregulated exchanges-center, Tier 2 unregulated exchanges-right). Panel (a)
are the first-significant-digit distributions and comparisons with Benford’s law. Black dots represent
distributions derived from Benford’s law. Distributions of trading data are reported in bar charts.
Panel (b) shows the clustering effect in trade-size distributions histograms on exchanges. In each
histogram, we highlight every 5th and 10th bin to illustrate the clustering effect around round trade
sizes. Panel (c) displays tails of trade-size distributions and the fitted power-law lines on log-log
plots. Fitted power-law lines are plotted with parameters estimated by Ordinary Least Square (OLS)
and Maximum Likelihood Estimation (MLE), shown in black and red lines, respectively. Blue dots
represent empirical data points for trade-size frequencies.
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As Figure 1 shows, the example unregulated exchanges deviate from all three benchmarks,
Benford’s Law, clustering effect, and power law, significantly. This holds for all four currency
pairs on majority unregulated exchanges. While current business incentives and ranking
systems fuel the rampant wash trading on unregulated exchanges, the regulated exchanges,
having committed considerable resources towards compliance and license acquisition and
facing severe punishments for market manipulation [9], conduct little wash trading.

Besides identifying exchanges that wash trade, we quantify the fractions of fake volume
by taking advantage of the rounding regularity. A benchmark ratio (based on calculations
from the regulated exchanges) of unrounded trades to authentic trades with round sizes are
calculated. The extra unrounded trades above the ratio naturally constitute wash trades
on unregulated exchanges. We find that the wash trading volume on average is as high as
77.5% of the total trading volume on the unregulated exchanges, with a median of 79.1%. In
particular, wash trades on the twelve Tier-2 exchanges are estimated to be more than 80%
of the total trade volume, which is still over 70% after accounting for observable exchange
heterogeneity. Combined with the reported volumes in Helms’ article [6], these estimates
translate into wash trading of over 4.5 Trillion USD in spot markets and over 1.5 Trillion
USD in derivatives markets in the first quarter of 2020 alone. To mitigate the influence
of heterogeneity of traders and algorithmic trading strategies across various exchanges, we
validate the roundness-ratio estimation and conduct a number of robustness tests to allay
selection concerns.

Table 1 Aggregated Wash Trading Percentage. The table presents the simple averaged and
volume-weighted wash trading percentage for each exchange category.

We then study exchange characteristics that correlate with wash trading and investigate
the impact of wash trading on market outcomes such as exchange ranking. In addition,
we obtain proprietary data on historical ranking and trading volume information from
CoinMarketCap and show that exchange ranking depends on wash trading (70% wash
trading of total reported volume moves an exchange’s rank up by 46 positions). We find
that an exchange’s wash trading is positively correlated with its cryptocurrency prices over
the short term. We also find that exchanges with longer establishment history and larger
userbase wash trade less. Less prominent exchanges, in contrast, have short-term incentives
for wash trading without drawing too much attention. Moreover, wash trading is positively
predicted by returns and negatively by price volatility.

To sum up, as the first comprehensive study of the pervasive crypto wash trading, our
paper not only provides a cautionary tale to regulators around the globe but also reminds
the readers of the disciplining or screening effects of regulation in emerging industries, the
importance of using wash-trading-adjusted volume in certain empirical studies, and the utility
of statistical tools and behavioral benchmarks for forensic finance and fraud detection. We
offer a concrete set of tools for exchange regulation and third-party supervision in the crypto
market for convincingly exposing wash trading and potentially combating non-compliant
exchanges. Admittedly, the tests we introduce are not exhaustive, and wash traders may
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adjust their strategies in response to these tests. Our tools nevertheless serve as valid
detection of wash trading historically and thus make fabrications more difficult and facilitate
regulatory resource allocation.
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Abstract
We study the fundamentals governing the price of the MakerDAO governance token MKR. Governance
tokens are minted in response to liquidations, and burned in response to growth in the system
surplus. MKR tokens appreciate with an increase in system surplus and depreciate with a rise in
systemic risk due to DAI liquidation spirals. We discuss incentive compatibility conditions that need
to be satisfied for the protocol to maintain the DAI stablecoin peg.
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1 Introduction and Motivation

Decentralized stablecoins are led by MakerDAO’s DAI token, in which the issuance of
new tokens is decentralized through using autonomous smart contracts on the Ethereum
blockchain.1 DAI tokens are generated when an investor deposits a set amount of collateral,
typically Ethereum (ETH), into a collateralized debt position (CDP).

Empirical work on DAI has focused on understanding the role of collateral risk and
peg stability, the fundamental sources of peg-price deviations and demand for DAI in DeFi
applications. [5, 2, 3, 7]. Theoretical contributions of DAI include a study of liquidations,
the incentive compatibility of governance structures, and the use of a reserve buffer as a
solution to peg instability [4, 6, 1].

In this paper, we discuss the fundamentals of the governance token price, the supply
mechanism of mints and burns, and the incentive compatibility conditions that need to
be met for peg stability. In our empirical analysis, we find the MKR governance token
appreciates when MKR tokens are burned due to growth in the system surplus. MKR tokens
are minted in response to debt auctions to cover losses on liquidating DAI loans. Finally, we
discuss the role of the voting mechanism used in governance. The governance protocol can
lead to inefficient outcomes if MKR token holdings are concentrated with a single investor.
The remainder of the paper is structured as follows. In section 2 we outline fundamentals of
the MKR token. Section 3 discusses issues in mechanism design and whether the governance
protocol is incentive compatible. Section 4 concludes.

1 A smart contract is a set of instructions, written in computer code, that defines the conditions of the
contract for each counterparty under different scenarios (default etc). Being managed by computer code
and visible on the blockchain, it can be verified publicly by all nodes in the blockchain.
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2 Fundamentals of Governance Token Valuation

The Maker Governance protocol is in charge of adding new collateral types, the regulation of
the smart contracts enforcing collateralize debt positions, and adjusting risk parameters of
the protocol, such as the liquidation ratio, debt ceilings and the stability and savings rate.
Panel A of Figure 1 illustrates the MKR price. In panel B, the MakerDAO token launched
with a supply of 1 million MKR. In panel C, we plot the net redemptions of MKR tokens.
In panel D, the system surplus is the amount of DAI generated from system fees, including
Stability Fees and Liquidation Fees set by Maker governance. In panel E, we plot the ratio
of the MKR price to the system surplus per unit of the MKR token.2 In Panel F, we show
that Systemic risk in ETH is strongly correlated with volatility in MKR. We now outline our
three hypotheses of fundamentals of MKR token valuation.

▶ Hypothesis 1. System surplus ↑ =⇒ MKR tokens burned =⇒ MKR prices ↑

When the system surplus exceeds the safety buffer, any additional DAI is auctioned off
for MKR, the governance token of the Maker Protocol, in lots of 10,000 DAI in a Surplus
Auction. The system then burns the MKR it receives in the Surplus Auction, reducing the
total supply. In 2021, strong growth in the system surplus due to stability and liquidation
fees has led to a net reduction of MKR tokens through surplus auctions. We hypothesize
that growth in the system surplus leads to a net burning of MKR tokens and an increase in
the valuation of the MKR token.

▶ Hypothesis 2. Liquidations ↑ =⇒ MKR tokens minted =⇒ MKR prices ↓

During the Black Thursday Crypto crash on March 12th 2020, MKR tokens were minted
to pay off the DAI debt triggered by liquidations. If the sale of collateral is not sufficient to
pay off the DAI loans triggered in liquidation, the Protocol triggers a MKR Debt Auction.
MKR is minted by the system, increasing the amount of MKR in circulation, and then sold
to bidders for DAI. We hypothesize that the minting of MKR tokens devalues the MKR token.

▶ Hypothesis 3. Volatility of ETH ↑ =⇒ Volatility of MKR ↑ and MKR prices ↓

ETH volatility can translate to MKR volatility through (i) an increase in gas fees and
congestion on the blockchain, (ii) more volatile demand for ERC-20 tokens and decentralized
finance applications, and (iii) increased systemic risk of vaults that hold ETH collateral. We
empirically test the three fundamentals of MKR prices in Equation (1):

Yt = β0 + β1
∆Surplust−1

MKR
+ β2σET H,t + β3Liquidationt + ut (1)

Here, the outcome variable Yt is the MKR return and the intra-day volatility. Intra-day
volatility is calculated as the square root of the average sum of squared hourly returns over
the trading day. Explanatory variables include the growth in the system surplus normalized
by MKR tokens in circulation, ETH intra-day volatility, and liquidations (millions DAI).

2 The valuation of the MKR token is analogous to a dividend that is paid to MKR stakeholders for
supporting the governance protocol in maintaining the DAI peg.The valuation of a MKR token per unit
of system surplus fluctuates between 100 to 500.
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The results are summarized in Table 1. Consistent with our proposed hypotheses, MKR
returns correlate positively with system surplus and negatively with liquidations. In column
(IV), a 1 per cent increase in the ratio of system surplus to MKR tokens results in a 4.7 basis
point increase in MKR returns, and a 1 million increase in DAI liquidations is associated
with a 1.07 per cent decline in MKR returns. MKR volatility correlates significantly with
ETH volatility with an estimated elasticity of 0.82 in column (VIII).

3 Governance and Incentive Compatibility Conditions

The MKR governance token is used for voting on the management of the protocol and setting
many of the parameters of the DAI stablecoin peg. For example, to change the stability
rate, each user places a vote on their preferred stability rate by staking their MKR tokens.
Each MKR token equals one vote when locked in a voting contract. Users commit their
Maker tokens to a proposal, with the outcome being decided by the number of MKR tokens
it receives.

A rational user has the following objective function: to maximize the system surplus
subject to the constraint of the DAI peg stability. Setting parameters that move the DAI
price away from the peg can have adverse effects on system surplus if it causes DAI users to
switch toward other stablecoins. For illustration, suppose that MKR holders decide to set
a high debt ceiling for risky collateral types like ETH, and lower the debt ceiling for safe
collateral types like USDC. While this policy change may increase short-run revenues, this
increases systemic risk due to negative valuations of ETH. Therefore MKR holders need to
internalize the setting of policy parameters impact on the DAI peg and to set parameters to
minimize systemic risk to the protocol.

Governance voting protocols can lead to inefficient outcomes if tokens are concentrated
with one user. An example is the vote on the stability fee on October 28th, 2019, in which
an individual MKR holder staked up to 94% of the vote to change the stability fee from 9 %
to 5%. 3 Such outcomes can be sub-optimal if they conflict with the target of peg stability.
A concentration of MKR tokens with one user can also lead to inefficient prices of MKR
auctions. The MakerDAO system burns MKR tokens when the system surplus exceeds the
reserve buffer. The burning of MKR tokens takes place in an auction when users make bids
for DAI tokens in return for selling their MKR tokens. If all MKR tokens are concentrated
with one investor, they will be able to sell their MKR tokens at a high valuation, leading to
significant losses for the protocol.

4 Conclusion

In this paper, we discuss the fundamentals of the governance token price and the incentive
compatibility conditions that need to be met for peg stability. The MKR token typically
appreciates in response to an increase in the system surplus, and depreciates when MKR
tokens are minted in response to MKR debt auctions and to cover losses on liquidating DAI
loans. While MKR holders have an incentive to set parameters to minimize systemic risk
to the DAI peg and governance protocol, there are potential vulnerabilities when there is
concentration of MKR tokens. A potential solution to the governance protocol is to set caps
on the MKR staked to prevent a single user from being able to alter the outcome of policy
parameters.

3 https://cryptoslate.com/makerdao-whale-with-94-voting-power-reduces-dai-stability-fee-
by-4/
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Table 1 MKR Price Fundamentals: Liquidations.

I II III IV V VI VII VIII
RMKR RMKR RMKR RMKR σMKR σMKR σMKR σMKR

Surplus 0.0442*** 0.0474*** 0.0255*** 0.0211***
(0.0126) (0.0124) (0.0080) (0.0069)

σET H -0.2828*** -0.1760 0.8285*** 0.8283***
(0.1049) (0.1108) (0.0573) (0.0612)

Liquidation -1.2039*** -1.0691*** 0.9301*** -0.0671
(0.3297) (0.3504) (0.2088) (0.1936)

Intercept 0.2581 1.7793*** 0.6902** 1.1143** 6.2645*** 2.8575*** 6.3346*** 2.7228***
(0.3265) (0.5528) (0.3170) (0.5642) (0.2083) (0.3018) (0.2007) (0.3117)

R-squared 0.02 0.01 0.02 0.05 0.02 0.27 0.03 0.29
No. observations 555 555 555 555 555 555 555 555

Note: This table regresses MKR returns and volatility on ETH volatility,system surplus and liquidations.
The dependent variable RMKR measures the daily MKR return. The dependent variable σMKR measures
the intra-day volatility of MKR prices. The sample runs from November 18th, 2019 to March 31st, 2021,
corresponding to the period of Multi Collateral DAI. White heteroscedasticity-robust standard errors are
reported in parentheses. *** denotes significance at the 1 percent level, ** at the 5 percent level, and * at
the 10 percent level.
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Sample period is from April 13th, 2018 to March 31st, 2020.

Figure 1 MKR price, MKR Supply, Burned/Minted Tokens and System Surplus.
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Abstract
The unique value proposition of ’smart contracts’ based on blockchain technology is the creation of a
permanent public record of agreed-upon transactions that cannot be changed retroactively. Though
this is attractive in terms of reducing the potential for fraud, a person entering into a smart contract
pre-commits both their current self and their future selves, no matter what changes occur to them
or to their circumstances. The advantages of such pre-commitments can be substantial, but even in
an age of increasing adoption of distributed ledger technologies, self-reinvention remains important.
From a surveillance perspective, it is important to prevent governments from reliably associating
a particular cryptoasset transaction with a particular person. For individuals, it is important to
preserve the ability to assume new identities both formally and informally. This presentation will
present an expanded and refined understanding of what it means for a blockchain use case to “protect
privacy,” and in particular, how such use cases can encourage a notion of personal identity that
is inflexible and matches poorly with individuals’ notions regarding their identities. In addition I
discuss how privacy regulation may itself shape the development of blockchain.

2012 ACM Subject Classification Security and privacy → Block and stream ciphers

Keywords and phrases Blockchain, Privacy

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2021.12

Category Invited Talk

Acknowledgements I want to thank Alex Marthews for coauthoring the paper with me that inspired
this talk.

© Catherine Tucker;
licensed under Creative Commons License CC-BY 4.0

3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021).
Editors: Vincent Gramoli, Hanna Halaburda, and Rafael Pass; Article No. 12; pp. 12:1–12:1

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cetucker@mit.edu
https://orcid.org/0000-0002-1847-4832
https://doi.org/10.4230/OASIcs.Tokenomics.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de




Presentation and Publication: Loss and Slippage in
Networks of Automated Market Makers
Daniel Engel #

Computer Science Department, Brown University, Providence, RI, USA

Maurice Herlihy #

Computer Science Department, Brown University, Providence, RI, USA

Abstract
Automated market makers (AMMs) are smart contracts that automatically trade electronic assets
according to a mathematical formula. This paper investigates how an AMM’s formula affects the
interests of liquidity providers, who endow the AMM with assets, and traders, who exchange one
asset for another at the AMM’s rates. Linear slippage measures how a trade’s size affects the trader’s
return, angular slippage measures how a trade’s size affects the subsequent market price, divergence
loss measures the opportunity cost of providers’ investments, and load balances the costs to traders
and providers. We give formal definitions for these costs, show that they obey certain conservation
laws: these costs can be shifted around but never fully eliminated. We analyze how these costs
behave under composition, when simple individual AMMs are linked to form more complex networks
of AMMs.
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1 Introduction

An automated market maker (AMM) is an automaton that trades electronic assets according
to a fixed formula. Unlike traditional “order book” traders, AMMs have custody of their own
asset pools, so they can trade directly with clients, and do not need to match up (and wait for)
compatible buyers and sellers. Today, AMMs such as Uniswap [5], Bancor [17], and others
have become one of the most popular ways to trade electronic assets such as cryptocurrencies,
electronic securities, or tokens. An AMM is typically implemented as a smart contract on
a blockchain such as Ethereum [13]. Like circuit elements, AMMs can be composed into
networks. They can be composed sequentially, where the output of one AMM’s trade is fed
to another, and they can be composed in parallel, where a trade is split between two AMMs
with different formulas. Compositions of AMMs can themselves be treated as AMMs [12].
This paper makes the following contributions. AMMs have well-known inherent costs. One
such cost is slippage, where a large trade increases the price of the asset being purchased, both
for the trader making the trade, and for later traders. We give two alternative mathematical
definitions of slippage expressed directly in terms of the AMM’s formula: linear slippage
focuses on the buyer’s price difference, and angular slippage characterizes how that buyer
affects prices for later buyers.

Another cost is divergence loss (sometimes called impermanent loss), where the value of
the liquidity providers’ investments end up worth less than if the invested assets had been
left untouched. We give a precise mathematical definition of divergence loss, expressed in
directly terms of the AMM’s formula,
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We introduce a new figure of merit, called load, that measures how costs are balanced
among parties on different sides of a trade.

We show how these costs can be analyzed in either worst-case or in expectation. We
identify various conservation laws that govern these costs: they can be shifted, but never
fully eliminated. We characterize how these costs behave under sequential and parallel
composition, showing how to compute these costs for networks of AMMs, not just individual
AMMs. Finally, we propose novel AMM designs capable of adapting to changes in these
costs.

The paper is organized as follows. Section 2 describes our model and terminology.
Section 3 introduces our cost measures and their conservation laws. Section 4 shows how
these measure are affected by sequential composition, where the output of one AMM becomes
the input of another AMM. Section 4 shows how these measure are affected by parallel
composition, where traders split their trade between two AMMs that trade the same assets
but according to different formulas. Section 6 surveys some simple adaptive strategies that
can mitigate the costs’ conservation laws. Section 7 surveys related work.

Some of our numbered equations require long, mostly routine derivations which have
been moved to the appendix to save space. A few of the longer proofs have also been moved
to the appendix.

2 Definitions

We use bold face for vectors (x) and italics for scalars (x). Variables, scalar or vector, are
usually taken from the end of the alphabet (x, y, z), and constants from the beginning (a, b, c).
We use “:=” for definitions and “=” for equality. A function f : R → R is strictly convex if
for all t ∈ (0, 1) and distinct x,x′ ∈ R, f(tx + (1 − t)x′) < tf(x) + (1 − t)f(x′). Any tangent
line for a strictly convex function lies below its curve.

Here is an informal example of a constant-product AMM [20]. An AMM in state (x, y) has
custody x units of asset X, and y units of asset Y , subject to the invariant that the product
xy = c, for x, y > 0 and some constant c > 0. The AMM’s states thus lie on the hyperbolic
curve xy = c. If a trader transfers δX units of X to the AMM, the AMM will return δY

units of Y to the trader, where δY is chosen to preserve the invariant (x+ δX)(y − δY ) = c.
Formally, the state of an AMM that trades assets X and Y is given by a pair (x, y) ∈ R2

>0,
where x is the number of X units in the AMM’s pool, and y the number of Y units. The state
space is given by a curve (x, f(x)), where f : R>0 → R>0. Except when noted, the AMMs
considered here satisfy the boundary conditions limx→0 f(x) = ∞ and limx→∞ f(x) = 0,
meaning that traders cannot exhaust either pool of assets. The function f is subject to
further restrictions discussed later.

There are two kinds of participants in decentralized finance. (1) Traders transfer assets to
AMMs, and receive assets back. Traders can compose AMMs into networks to conduct more
complicated trades involving multiple kinds of assets. (2) Liquidity providers (or “providers”)
fund the AMMs by lending assets, and receiving shares, fees, or other profits. Traders and
providers play a kind of alternating game: traders modify AMM states by trading one asset
for another, and providers can respond by adding or removing assets, reinvesting fees, or
adjusting other AMM properties.

AMM typically charge fees for trades. For example, Uniswap v1 diverts 0.3% of the assets
returned by each trade back into that asset’s pool. Although there is no formal difficulty
including fees in our analysis, we neglect them here because they have little impact on costs:
fees slightly reduce both slippage costs for traders and divergence loss for providers.
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A valuation v ∈ (0, 1) assigns relative values to an AMM’s assets: v units of X are deemed
worth (1 − v) units of Y . At valuation v, a trader who moves an AMM from state (x, f(x))
to (x′, f(x′)) makes a profit if v(x − x′) + (1 − v)(f(x) − f(x′)) is positive, and otherwise
incurs a loss. The trader’s profit is maximal precisely when vx′ + (1 − v)f(x′) is minimal.
We assume that at any time, there is a single market valuation accepted by most traders.
An arbitrage trade is one in which a trader makes a profit by moving an AMM from a state
reflecting a prior market valuation to a distinct state reflecting the current market valuation.

A stable point for an AMM A and valuation v is a point (x, f(x)) that minimizes
vx+ (1 − v)f(x). If v is the market valuation, then any trader can make an arbitrage profit
by moving the AMM from any state to a stable state, and no trader can make a profit by
moving the AMM out of a stable state. Valuations, stable points, and exchange rates are
related. If (x, f(x)) is the stable point for valuation v, then

df(x)
dx

= − v

1 − v
. (1)

Following Engel and Herlihy [12], we require the AMM function f to satisfy certain
reasonable properties, expressed here as axioms. A detailed discussion and justification for
each axiom appears elsewhere [12].

Every AMM state should define a unique rate of exchange between its assets, and trades
should change that rate gradually rather than abruptly.

▶ Axiom 1 (Continuity). The function f is strictly decreasing and (at least) twice-differentiable.

An AMM must be able to adapt to any market conditions. The exchange rate of asset Y
in units of X at state (x, f(x)) is −f ′(x), the negative of the curve’s slope at that point.

▶ Axiom 2 (Expressivity). The exchange rate −f ′(x) can assume every value in the open
interval (0,∞).

Slippage should work to the disadvantage of the trader. To prevent runaway trading,
buying more of asset X should make X more expensive, not less.

▶ Axiom 3 (Convexity). For every AMM A := (x, f(x)), f is strictly convex.

It can be shown [12] that for any AMM satisfying these axioms, every valuation has a
unique stable state.

▶ Theorem 1 (Stability). The function

ϕ(v) = f ′−1
(

− v

1 − v

)
(2)

is a homeomorphism ϕ : (0, 1) → R>0 that carries each valuation v ∈ (0, 1) to the unique
stable state x that minimizes vx+ (1 − v)f(x).

For example, the stable state map for the constant-product AMM (x, 1/x) is ϕ(v) =
√

(1−v)
v .

Sometimes it is convenient to express ϕ in vector form as Φ : (0, 1) → R2
>0, where Φ(v) :=

(ϕ(v), f(ϕ(v))). We will sometimes use ψ : R>0 → (0, 1), the inverse function of ϕ:

ψ(x) = − f ′(x)
1 − f ′(x) . (3)

The vector form is Ψ(x) := (ψ(x), 1 − ψ(x)).
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Figure 1 Balanced Capitalization of AMMs (x, 1/x) (symmetric curve, blue) and (x, 1/x2)
(asymmetric curve, yellow) at stable points.

Most of the properties of interest in this paper can be expressed either in the asset domain,
as functions of x and f(x), or in the valuation domain, as functions of v and 1 − v.

These definitions extend naturally to AMMs that trade more than two assets. Many (but
not all) if the results presented below also generalize, but for brevity we focus on AMMs
that trade between two assets.

3 Properties of Interest

3.1 AMM Capitalization
Let (v, 1 − v) be a valuation with stable point (x, f(x)). What is a useful way to define the
capitalization (total value) of an AMM’s holdings? It may be appealing to pick one asset to
act as numéraire, computing the AMM’s capitalization at point (x, f(x)) in terms of that
asset alone:

numcapX(v;A) := ϕ(v) +
(

1 − v

v

)
f(ϕ(v)).

For example, the numéraire capitalization of the constant-product AMM at the stable point
for valuation v is 2

√
1
v − 1.

Unfortunately, this notion of capitalization can lead to counter-intuitive results if the
numéraire asset becomes volatile. As the value of the numéraire X tends toward zero,
“bad money drives out good”, and arbitrage traders will replace more valuable Y with less
valuable X. As the AMM fills up with increasingly worthless units of X, its numéraire
capitalization grows without bound, so an AMM whose holdings have become worthless has
infinite numéraire capitalization.

A more robust approach is to choose a formula that balances the asset classes in proportion
to their relative valuations. Define the (balanced) capitalization at (x, f(x)) to be the sum of
the two asset pools weighted by their relative values. Let v = (v, 1 − v) and x = (x, f(x)).

cap(x, v;A) := vx+ (1 − v)f(x) = v · x. (4)

If v is the current market valuation, then A will usually be in the corresponding stable state
Φ(v) = (ϕ(v), f(ϕ(v)), yielding

cap(v;A) := cap(ϕ(v), v;A) = v · Φ(v). (5)
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For example, AMMs A := (x, 1/x) and B := (x, 1/x2) have capitalization at their stable
points:

cap(v; (x, 1/x)) = 2
√
v(1 − v),

cap(v; (x, 1/x2)) =
3v 3
√

1
v − 1

22/3 .

See Figure 1. Both have minimum capitalization 0 at v = 0 and v = 1, where one asset is
worthless, and maximal capitalizations at respective valuations v = 1/2 and v = 2/3.

▶ Theorem 2. An AMM’s capitalization is maximal at the fixed-point ϕ(v) = f(ϕ(v)), where
the amounts of X and Y are equal.

However, Figure 1 shows that the valuation that maximizes an AMM’s capitalization
is not necessarily 1

2 . An AMM is symmetric if f = f−1. (Both Uniswap and Curve use
symmetric curves.)

▶ Lemma 3. The stable state map for any symmetric AMM satisfies f(ϕ(v)) = ϕ(1 − v)

▶ Theorem 4. Any symmetric AMM has maximum capitalization at v = ( 1
2 ,

1
2 ).

3.2 Divergence Loss
Consider the following simple game. A liquidity provider funds an AMM A, leaving it in the
stable state x for the current market valuation v. Suppose the market valuation changes
from v to v′, and a trader submits an arbitrage trade that would take A to the stable state
x′ for the new valuation. The provider has a choice: (1) immediately withdraw its liquidity
from A instead of accepting the trade, or (2) accept the trade. It is not hard to see that
the provider should always choose to withdraw. The shift to the new valuation changes the
AMM’s capitalization. If x is the stable state for v, then it cannot be stable for v′, so the
difference between the capitalizations v′ · x − v′ · x′ must be positive, so the arbitrage trader
would profit at the provider’s expense. (In practice, a provider would take into account the
value of current and future fees in making this decision.)

Define the divergence loss for an AMM A = (x, f(x)) to be

divloss(v, v′;A) := v′ · Φ(v) − v′ · Φ(v′)
= v′ϕ(v) + (1 − v′)f(ϕ(v)) − (v′ϕ(v′) + (1 − v′)f(ϕ(v′)))

where Φ(v, 1 − v) = (ϕ(v), f(ϕ(v))). Sometimes it is useful to express divergence loss in the
trade domain, as a function of liquidity pool size instead of valuation:

divloss∗(x, x′;A) := divloss(ψ(x), ψ(x′);A)
= Ψ(x′) · x − Ψ(x′) · x′

= ψ(x′)x+ (1 − ψ(x′))f(x) − (ψ(x′)x′ + (1 − ψ(x′))f(x′).

Informally, divergence loss measures the difference in value between funds invested in an
AMM and funds left in a wallet. Recall that by definition v′ minimizes Φ(v′)·v′, so divergence
loss is always positive when v ̸= v′.

Is it possible to bound divergence loss by bounding trade size? More precisely, can an
AMM guarantee that any trade that adds δ or fewer units of X incurs a divergence loss less
than some ϵ, for positive constants δ, ϵ?
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Unfortunately, no. There is a strong sense in which divergence loss can be shifted, but
never eliminated. For example, for the constant-product AMM A := (x, 1/x), the divergence
loss for a trade of size δ is

divloss∗(x, x+ δ;A) = δ2

2δx2 + x3 + δ2x+ x
(6)

Holding δ constant and letting x approach 0, the divergence loss for even constant-sized
trades grows without bound. This property holds for all AMMs.

▶ Theorem 5. No AMM can bound divergence loss even for bounded-size trades.

Proof. For AMM A := (x, f(x)),

divloss∗(x, x+ δ;A) = ψ(x+ δ)x+ (1 − ψ(x+ δ))f(x)
− (ψ(x + δ)(x + δ) + (1 − ψ(x + δ))f(x + δ)).

Note that limx→0(1 − ψ(x + δ)) > 0, and limx→0 f(x) = ∞. All other terms have finite
limits, so limx→0 divloss∗(x, x+ δ;A) = ∞. ◀

What is a provider’s worst-case exposure to divergence loss? Consider an AMM A :=
(x, f(x)) in state (a, f(a)). As the X asset becomes increasingly worthless, the valuation v′

approaches (0, 1) as its stable state approaches (∞, 0).

lim
v′→0

divloss(v, v′;A) = (v′, 1 − v′) · (a, f(a)) − (v′, 1 − v′) · (ϕ(v′), f(ϕ(v′)))) = f(a).

Symmetrically, if the Y asset becomes worthless,

lim
v′→1

divloss(v, v′;A) = (v′, 1 − v′) · (a, f(a)) − (v′, 1 − v′) · (ϕ(v′), f(ϕ(v′)))) = a.

The provider’s worst-case exposure to divergence loss in state (a, f(a)) is thus max(a, f(a)).
The minimum worst-case exposure occurs when a = f(a). Recall from Section 3.1 that this
fixed-point is exactly the state that maximizes the AMM’s capitalization. (See Appendix
Section C for a more formal treatment of this claim.)

Divergence loss is sometimes called impermanent loss, because the loss vanishes if the
assets return to their original valuation. The inevitability of impermanent loss does not mean
that an AMM’s capitalization cannot increase, only that there is always an opportunity cost
to the provider for not cashing in earlier.

3.3 Linear Slippage
Linear slippage measures how increasing the size of a trade diminishes that trader’s rate of
return. Let A := (x, f(x)) be an AMM in stable state (a, f(a)) for valuation v. Suppose a
trader sends δ > 0 units of X to A, taking A from (a, f(a)) to (a+ δ, f(a+ δ)), the stable
state for valuation v′ < v. If the rate of exchange were linear, the trader would receive
−δf ′(a) units of Y in return for δ units of X. In fact, the trader receives only f(a) − f(a+ δ)
units, for a difference of −δf ′(a) − f(a) + f(a+ δ).

The linear slippage(with respect to X) is the value of this difference:

linslipX(v, v′;A) =
(

1 − v′

1 − v

)
(v · Φ(v′) − v · Φ(v)) (7)

In the trade domain, linslip∗
X(x, x′;A) = linslipX(ψ(x), ψ(x′);A). Linear slippage with

respect to Y is defined symmetrically.
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f(x +δ)

x x+δ

f(x)

angular slippage

(unweighted) linear slippage

Figure 2 Angular vs linear slippage).

For example, the linear slippage for the constant-product AMM A := (x, 1/x) for a trade
of size δ is

linslip∗
X(x, x+ δ;A) = − δ2(δ + x)

x2 (δ2 + x2 + 2δx+ 1) (8)

Just as for divergence loss, holding δ constant and letting x approach 0, the linear slippage
across constant-sized trades grows without bound.

▶ Theorem 6. No AMM can bound linear slippage for bounded-size trades.

Proof. As in the proof of Theorem 5, the claim follows because limx−>0 linslip∗
X(x, x+δ;A) =

∞. ◀

3.4 Angular Slippage
Angular slippage measures how the size of a trade affects the exchange rate between the two
assets. This measure focuses on how a trade affects the traders who come after. Recall that
the (instantaneous) exchange rate in state (x, f(x)) is the slope of the tangent f ′(x). Let θ(x)
denote the angle of that tangent with the X-axis. (We could equally well use the tangent’s
angle with the Y -axis.) A convenient way to measure the change in price is to measure the
change in angle. Consider a trade that carries A from valuation v with stable point (x, f(x)),
to valuation v′ with stable point (x′, f(x′)). Define the angular slippage of that trade to be
the difference in tangent angles at x and x′ (expressed in the valuation domain):

angslip(v, v′;A) = θ(ϕ(v′)) − θ(ϕ(v)).

In the trade domain, angslip∗(x, x′;A) := angslip(ϕ(x), ϕ(x′);A). Angular slippage is additive:
for distinct valuations v < v′ < v′′, angslip(v, v′′;A) = angslip(v, v′;A) + angslip(v′, v′′;A).
Note that linear slippage is not additive.

Angular slippage and linear slippage are different ways of measuring the same underlying
phenomenon: their relation is illustrated in Figure 2.

Here is how to compute angular slippage. By definition,tan θ(x) = − 1
f ′(x) . Let x′ > x,

v = (v, 1 − v), and v′ = (v′, 1 − v′).

angslip(v, v′;A) = θ(x′) − θ(x) = arctan
(
v − v′

v · v′

)
(9)

The next lemma says says that the overall angular slippage, angslip(0,∞), is a constant
independent of the AMM.
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Figure 3 Expected load for A := (x, 1/x) at 1/2 as a function of β distribution parameters.
(Mathematica source is shown in Appendix Section D.)

▶ Theorem 7. For every AMM A, angslip(0,∞;A) = π/2.

Proof. Consider an AMM A := (x, f(x)). As limx→0 f
′(x) = − v

1−v = −∞, implying v = 1.
As limx→∞ f ′(x) = − v

1−v = 0 implying v = 0. Because tan angslip(0,∞;A) = 1−0
(0,1)·(0,1) = ∞,

angslip(0,∞;A) = π
2 . ◀

The additive property means that no AMM can eliminate angular slippage over every
finite interval. Lowering angular slippage in one interval requires increasing it elsewhere.

▶ Corollary 8. For any AMM A, and any level of slippage s, 0 < s < π/2, there is an
interval (x0, x1) ⊂ R>0 such that angslip∗(x0, x1;A) > s.

For example, the Curve [11] AMM advertises itself as having lower slippage than its
competitors. Theorem 7 helps us understand this claim: compared to a constant-product
AMM, Curve does have lower slippage than a constant-product AMM for stable coins when
they trade at near-parity, but it must have higher slippage when the exchange rate wanders
out of that interval.

3.5 Load
Divergence loss is a cost to providers, and linear slippage is a cost to traders. Controlling
one without controlling the other is pointless because AMMs function only if both providers
and traders consider their costs acceptable. We propose the following measure to balance
provider-facing and trader-facing costs. The load (with respect to X) across an interval is
the product of that interval’s divergence loss and linear slippage:

loadX(v, v′;A) := divloss(v, v′;A) linslipX(v, v′;A) (10)

Load can also be expressed in the trade domain:
load∗

X(x, x′;A) := divloss∗(x, x′;A) linslip∗
X(x, x′;A).

3.6 Expected Load
We have seen that cost measures such as divergence loss, linear slippage, angular slippage,
and load cannot be bounded in the worst case. Nevertheless, these costs can be shifted. Not
all AMM states are equally likely. For example, one would expect stablecoins to trade at
near parity [11].
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Suppose we are given a probability density for future valuations. This distribution might
be given a priori, or it may be learned from historical data. Can we compare the behavior of
alternative AMMs given such a distribution?

Let p(v) be the distribution over possible future valuations. The expected load when
trading X for Y starting in the stable state for valuation v is∫ v

0
P (v′|v′ < v) loadX(v, v′;A)dv′

Weighting this expectation with the probability P (v > v′) that the trade will go in that
direction yields

P (v > v′)
∫ v

0
P (v′|v′ < v) loadX(v, v′;A)dv′ =

∫ v

0
p(v′) loadX(v, v′;A)dv′.

Define the expected load of AMM A at valuation v to be:

Ep[load(v;A)] :=
∫ v

0
p(v′) loadX(v, v′;A)dv′ +

∫ 1

v

p(v′) loadY (v, v′;A)dv′.

Of course, one can compute the expected value of any the measures proposed here, not just
load.

Figure 3 shows the expected load for A := (1, 1/x) , starting at valuation 1/2, where
the expectation is taken over the beta(α1, α2) distributions [22], where parameters α1, α2
range independently from 1 to 4. Inspecting the figure shows that symmetric distributions
β(α, α), which are increasingly concentrated around 1/2 as α grows, yield decreasing loads
as the next valuation becomes increasingly likely to be close to the current one. By contrast,
asymmetric distributions, which favor unbalanced valuations, yield higher loads because the
next valuation is likely to be farther from the current one.

4 Sequential Composition

The sequential composition of two AMMs is constructed by using the output of one AMM as
the input to the other. (See Engel and Herlihy [12] for a proof that the sequential composition
of two AMMs is an AMM.) For example, if A trades between florins and guilders, and B

trades between guilders and francs, then their sequential composition A⊕B trades between
florins and francs. A trader might deposit florins in A, receiving guilders, then deposit
those guilders in B, receiving francs. In this section, we investigate how linear slippage and
divergence loss interact with sequential composition.

Consider two AMMs A = (x, f(x)), B = (y, g(y)), where A trades between X and Y , and
B between Y and Z. If A is in state (a, f(a)) and B in state (b, g(b)) then their sequential
composition is A ⊕ B := (x, h(x)), where h(x) = g(b + f(a) − f(x)) [12]. (The sequential
composition of more than two AMMs can be constructed by repeated two-way compositions.)

Let v = (v1, v2, v3) be the market valuation linking X,Y, Z, inducing pairwise valuations

v12 = v1

v1 + v2
, v23 = v2

v2 + v3
, v13 = v1

v1 + v3
,

along with their vector forms v12 = (v12, 1 − v12), v23 = (v23, 1 − v23), v13 = (v13, 1 −
v13). Let v′ ̸= v be a three-way valuation inducing analogous pair-wise valuations. Let
ϕA, ϕB , ϕAB : (0, 1) → R>0 be the stable point maps for A,B,A ⊕ B respectively, and
ΦA,ΦB ,ΦAB : (0, 1) → R2

>0 their vector forms.
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Our composition rules apply when A and B start in their respective stable states1 for
a market valuation v: (a, f(a)) is the stable state for v12, (a+ δ, f(a+ δ)) for v′

12. (b, g(b))
for v23, and (b+ f(a) − f(a+ δ), g(b+ f(a) − f(a+ δ)) for v′

23. We analyze the changes in
divergence loss and linear slippage when the market valuation changes from v to v′.

4.1 Divergence Loss
Initially, the combined capitalization of A and B is v1x+ v2(f(x) + y) + v3g(y). A trader
sends δ units to A, reducing the combined capitalization by

−δv′
1 + v′

2(f(x) − f(x+ δ)) = v′
3 divloss(v12, v

′
12;A) (11)

Next the trader sends the assets returned from the first trade to B, reducing the combined
capitalization by:

v′
2(f(x+ δ) − f(x)) + v′

3(g(y) − g(y + f(x) − f(x+ δ))) = v′
1 divloss(v23, v

′
23;B) (12)

Finally, treating both trades as a single transaction reduces the combined capitalization by:

−δv′
1 + v′

3(h(x) − h(x+ δ)) = v′
2 divloss(v13, v

′
13;A⊕B) (13)

Combining Equations 11-13 yields

divloss(v13, v
′
13;A⊕B) =

(
v′

3
v′

2

)
divloss(v12, v

′
12;A) +

(
v′

1
v′

2

)
divloss(v23, v

′
23;B). (14)

The effect of sequential composition on divergence loss is linear but not additive: the
divergence loss of the composition is a weighted sum of the divergence losses of the components.

4.2 Linear Slippage
With respect to v, a trader who sends δ units of X to A incurs the following slippage

v′
2(−δf ′(x) + f(x+ δ) − f(x)) = (v′

1 + v′
2) linslipX(v′

12, v12;A). (15)

Next the trader sends the assets returned from the first trade to B, incurring the following
slippage:

v′
3 ((f(x) − (x+ δ))g′(y) + g(y + f(x) − (x+ δ)) − g(y)) = (v′

2 + v′
3) linslipX(v23, v

′
23;B).

(16)

Finally, treating both trades as a single transaction yields slippage:

v′
3(−δh′(x) + h(x+ δ) − h(x))(v′

1 + v′
3) linslipX(v′

13, v13, A⊕B) (17)

Combining Equations 15-17 yields

linslipX(v13, v
′
13;A⊕B) =

(
1 − v′

3
1 − v′

2

)
linslipX(v12, v

′
12;A) +

(
1 − v′

1
1 − v′

2

)
linslipX(v23, v

′
23;B)

(18)

1 If A and B do not start in stable states for the current market valuation, then an arbitrage trader will
eventually put them there.
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4.3 Angular Slippage
A trader sends δ to A, where f(a+ δ) is the stable point for v′

12, g(b+ f(a) − f(a+ δ)) the
stable point for v′

23. By construction,

h′(a) = −g′(b)f ′(a) = − v23

1 − v23

v12

1 − v12
= −v2

v3

v1

v2
= −v1

v3

h′(a+ δ) = −g′(b+ f(a) − f(a+ δ))f ′(a+ δ) = − v′
23

1 − v′
23

v′
12

1 − v′
12

= −v′
2
v′

3

v′
1
v′

2
= −v′

1
v′

3

Define θA(x), θB(y), θB(y) to be the respective angles of f ′(x), g′(y), and h′(x) with their
X-axes. We can express the tangents of the composite AMM’s angles in terms of the tangents
of the component AMMs’ angles.

tan θAB(x) = − 1
h′(x) = − 1

−g′(b+ f(a) − f(x))f ′(x)

tan θAB(a) = v3

v2

v2

v1
= v3

v1
, tan θAB(a+ δ) = v′

3
v′

2

v′
2
v′

1
= v′

3
v′

1
.

The component AMMs A and B determine the valuations v1, v2, v
′
1, v

′
2, which induce the

remaining valuations v3, v
′
3, v12, v23, v13, v

′
12, v

′
23, v

′
13.

angslip(v13, v13′ , A⊕B) = arctan
(
v13 − v′

13
v13 · v′

13

)
(19)

It follows that the angular slippage of the sequential composition of two AMMs can be
computed from the component AMMs’ valuations.

4.4 Load
Combining Equation 14 and Equation 18 yields

loadX(v13, v′
13; A ⊕ B) =

(
v′

3(1 − v′
3)

v′
2(1 − v′

2)

)
loadX(v12, v′

12; A) +
(

v′
1(1 − v′

1)
v′

2(1 − v′
2)

)
loadX(v23, v′

23; B)

(20)

+
(

v′
3(1 − v′

3)
v′

2(1 − v′
2)

)
divloss(v12, v′

12; A) linslipX(v23, v′
23; B)

+
(

v′
1(1 − v′

1)
v′

2(1 − v′
2)

)
divloss(v23, v′

23; B) linslipX(v12, v′
12; A)

It follows that the load of a sequential composition is a weighted sum of the loads of the
components, plus additional (strictly positive) cross-terms.

5 Parallel Composition

Parallel composition [12] arises when a trader is presented with two AMMs A := (x, f(x)) and
B := (x, g(x)), both trading assets X and Y , and seeks to treat them as a single combined
AMM A||B. Let ϕA, ϕB : (0, 1) → R>0 be the stable point maps for A,B respectively,
with ΦA, ϕB : (0, 1) → R2

>0 their vector forms, and ψA, ψB : R>0 → (0, 1) their inverses.
(The parallel composition of more than two AMMs can be constructed by repeated two-way
compositions.)

As shown elsewhere [12], a trader who sends δ units of X to the combined AMM maximizes
return by splitting those units between A and B, sending tδ to A and (1 − t)δ to B, for
0 ≤ t ≤ 1, where f ′(x+ tδ) = g′(y + (1 − t)δ).
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We assume traders are rational, and always split trades in this way. Because the derivatives
are equal, x + tδ and y + (1 − t)δ are stable points of A and B respectively for the same
valuation v′, so x+ tδ = ϕA(v′), and y+ (1 − t)δ = ϕB(v′). If A is in state (a, f(a)) and B in
(b, g(b)), then A||B := (x, h(x)), where h(x) := (f(a) − f(a+ tx) + g(b) − g(b+ (1 − t)x). Our
composition rules apply when both A,B are in their stable states for valuation v = (v, 1 − v).
We analyze the change in divergence loss and linear slippage when the common valuation
changes from v to v′ = (v′, 1 − v′). The new valuation v′ may be the new market valuation,
or it may be the best the trader can reach with a fixed budget of δ.

5.1 Divergence Loss
If a trader sends δ units of X to A||B, the combined capitalization suffers a loss of

divloss(v, v′;A||B) = divloss(v, v′;A) + divloss(v, v′;B). (21)

It follows that divergence loss under parallel composition is additive.

5.2 Linear Slippage
A straightforward calculation shows:

linslipX(v, v′;A||B) = linslipX(v, v′;A) + linslipX(v, v′;B) (22)

Linear slippage is thus additive under parallel composition.
Linear slippage is also linear under scalar multiplication. Any AMM A := (x, f(x)) can

be scaled by a constant α > 0 yielding a distinct AMM αA := (αx, αf(x)). Let (x, f(x)) be
the stable point for valuation v, and (x′, f ′(x′)) the stable point for v′.

linslipX(v, v′;αA) = α linslipX(v, v′;A). (23)

5.3 Angular Slippage
Because both A and B go from stable states for v to stable states for v′,

f ′(a) = g′(a) = h′(a) = −v
1 − v

, f ′(a+ tδ) = g′(a+ (1 − t)δ) = h′(a+ δ) = −v′

1 − v′

It follows that

angslip(v, v′;A||B) = angslip(v, v′;A) = angslip(v, v′;B). (24)

5.4 Load
Combining Equation 21 and Equation 22 yields

loadX(v, v′;A||B) = loadX(v, v′;A) + loadX(v, v′;B)
divloss(v, v′;A) linslipX(v, v′;B) divloss(v, v′;B) linslipX(v, v′;A) (25)

It follows that the parallel composition’s load is the sum of the components’ loads, plus
additional (strictly positive) cross-terms.
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6 Adaptive Strategies

So far we have proposed several ways to quantify the costs associated with AMMs. Now we
turn our attention to strategies for adapting to cost changes. A complete analysis of adaptive
AMM strategies is material for another paper, so here we summarize two broad strategies
motivated by our proposed cost measures. We focus on adjustments that might be executed
automatically, without demanding additional liquidity from providers.

6.1 Change of Valuation

Suppose an AMM learns, perhaps from a trusted Oracle service, that its assets’ market
valuation has moved away from the AMM’s current stable state, leaving the providers exposed
to substantial divergence loss. Specifically, suppose A := (x, f(x)) has valuation v1 with
stable state (a1, b1), when it learns that the market valuation has changed to v2 with stable
point (a2, b2).

An arbitrage trader would move A from (a1, b1) to (a2, b2), pocketing a profit. Informally,
A can eliminate that divergence loss by “pretending” to conduct that arbitrage trade itself,
leaving the state the same, but moving the curve. We call this strategy pseudo-arbitrage.

A changes its function using linear changes of variable in x and y. Suppose a1 > a2
and b2 > b1. First, replace x with x− (a1 − a2), shifting the curve along the X-axis. Next,
replace y with y − (b2 − b1), shifting the curve along the y-axis. The transformed AMM is
now A′ := (x, f(x− (a1 − a2)) − (b2 − b1)). The current state (a1, b1) still lies on the shifted
curve, but now with slope v2

v2−1 , matching the new valuation. The advantage of this change
is that A’s providers are no longer exposed to divergence loss from the new market valuation.

The disadvantage is that pseudo-arbitrage produces AMMs that do not satisfy the usual
boundary conditions f(0) = ∞ and f(∞) = 0, although they continue to satisfy the AMM
axioms. In practical terms, A now has more units of X than it needs, but not enough
units of Y to cover all possible trades. The AMM must refuse trades that would lower its
Y holdings below zero, and there are (a1 − a2) units of X inaccessible to the AMM. The
liquidity providers might withdraw this excess, they might “top up” with more units of Y to
rebalance the pools, or they might leave the extra balance to cover future pseudo-arbitrage
changes. (Note that A’s ability to conduct trades only while the valuation stays within a
certain range is similar to Uniswap v3’s “concentrated liquidity” option.)

6.2 Change of Distribution

Suppose an AMM’s formula was initially chosen to match a predicted distribution on future
valuations. If that prediction changes, then it may be possible to adjust the AMM’s formula
to match the new prediction. Such an adjustment might be built into the AMM’s smart
contract, or it could be imposed from outside by the liquidity providers. The AMM’s current
function could be replaced with an alternative that improves some expected cost measure,
say, reducing expected load or increasing expected capitalization. But replacing AMM
A := (x, f(x)), in the stable state for the market valuation, with another Ã := (x, f̃(x)),
must follow certain common-sense rules.

First, any such replacement should not change the AMM’s reserves: if the AMM is in
state (a, f(a)), then the updated AMM is in state (a, f̃(a)) where f(a) = f̃(a). Adding
or removing liquidity requires the active participation of the AMM’s providers, which can
certainly happen, but not as part of the kind of automatic strategy considered here.
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Second, any such replacement should not change the AMM’s current exchange rate: if the
AMM is in state (a, f(a)), then the updated AMM is in state (a, f̃(a)) where f ′(a) = f̃ ′(a).
To do otherwise invites further divergence loss. If (a, f(a)) is the stable state for the current
valuation, and f ′(a) ̸= f̃ ′(a), then (a, f̃(a)) is not stable, and a trader can make an arbitrage
profit (and divergence loss) by moving the AMM’s state back to the stable state.

For example, an AMM’s expected capitalization under distribution p is∫ 1

0
p(v)v · Φ(v)dv,

where Φ(v) = (ϕ(v), f(ϕ(v))). If the distribution changes to p̃, then an adaptive strategy is
to find a function f̃ : R>0 → R>0 with associated stable-point function ϕ̃ : (0, 1) → R>0 that
optimizes (or at least improves) the difference∫ 1

0
p(v)v · Φ(v)dv −

∫ 1

0
p̃(v)v · Φ̃(v)dv,

subject to boundary conditions f(a) = f̃(a) and f ′(a) = f̃ ′(a), where Φ̃(v) = (ϕ̃(v), f(ϕ̃(v))).
Developing practical ways to find such functions is the subject of future work.

7 Related Work

Today, the most popular automated market maker is Uniswap [2, 5, 16, 23], a family
of constant-product AMMs. Originally trading between ERC-20 tokens and ether
cryptocurrency, later versions added direct trading between pairs of ERC-20 tokens, and
allowed liquidity providers to restrict the range of prices in which their asset participate.
Bancor [17] AMMs permit more flexible pricing schemes, and later versions [7] include
integration with external “price oracles” to keep prices in line with market conditions.
Balancer [18] AMMs trade across more than two assets, based on a constant mean formula
that generalizes constant product. Curve [11] uses a custom curve specialized for trading
stablecoins , maintaining low slippage and divergence loss as long as the stablecoins trade at
near-parity. Pourpouneh et al. [21] provide a survey of current AMMs.

The formal model for AMMs used here, including the axioms constraining AMM functions,
and notions of composition, are taken from Engel and Herlihy [12].

Angeris and Chitra [3] introduce a constant function market maker model and focus on
conditions that ensure that agents who interact with AMMs correctly report asset prices.

In event prediction markets [1, 9, 10, 14, 15], parties effective place bets on the outcomes
of certain events, such as elections. Event prediction AMMs differ from DeFi AMMs in
important ways: pricing models are different because prediction outcome spaces are discrete
rather than continuous, prediction securities have finite lifetimes, and composing AMMs is
not a concern.

AMM curves resemble consumer utility curves from classical economics [19], and trader
arbitrage resembles expenditure minimization. Despite some mathematical similarities, there
are fundamentally differences in application. In particular, traders interact with AMMs via
composition, an issue that does not arise in the consumer model.

Aoyagi [6] analyzes strategies for constant-product AMM liquidity providers in the
presence of “noise” trading, which is not intended to move prices, and “informed” trading,
intended to move the AMM to the stable point for a new and more accurate valuation.

Angeris et al. [4] propose an economic model relating how the curvature of the AMM’s
function affects LP profitability in the presence of informed and uninformed traders.



D. Engel and M. Herlihy 13:15

Bartoletti et al. [8] give a formal semantics for a constant-product AMM expressed as a
labeled transition system, and formally verify a number of basic properties.

References
1 Jacob Abernethy, Yiling Chen, and Jennifer Wortman Vaughan. An optimization-based

framework for automated market-making. In Proceedings of the 12th ACM conference on
Electronic commerce - EC ’11, page 297, San Jose, California, USA, 2011. ACM Press.
doi:10.1145/1993574.1993621.

2 Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core. https://uniswap.
org/whitepaper.pdf, March 2020. As of 8 February 2021.

3 Guillermo Angeris and Tarun Chitra. Improved Price Oracles: Constant Function Market
Makers. SSRN Electronic Journal, 2020. doi:10.2139/ssrn.3636514.

4 Guillermo Angeris, Alex Evans, and Tarun Chitra. When does the tail wag the dog? Curvature
and market making. arXiv:2012.08040 [q-fin], December 2020. arXiv:2012.08040.

5 Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis
of Uniswap markets. arXiv:1911.03380 [cs, math, q-fin], February 2021. arXiv:1911.03380.

6 Jun Aoyagi. Lazy Liquidity in Automated Market Making. SSRN Electronic Journal, 2020.
doi:10.2139/ssrn.3674178.

7 Bancor. Proposing bancor v2.1: Single-sided amm with elastic bnt supply. https://blog.
bancor.network/proposing-bancor-v2-1-single-sided-amm-with-elastic-bnt-supply-
bcac9fe655b, October 2020. As of 8 February 2021.

8 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A theory of
Automated Market Makers in DeFi. arXiv:2102.11350 [cs], April 2021. arXiv:2102.11350.

9 Yiling Chen and David M. Pennock. A utility framework for bounded-loss market makers. In
Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence, UAI’07,
pages 49–56, Arlington, Virginia, USA, 2007. AUAI Press.

10 Yiling Chen and Jennifer Wortman Vaughan. A new understanding of prediction markets
via no-regret learning. In Proceedings of the 11th ACM Conference on Electronic Commerce,
EC ’10, pages 189–198, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1807342.1807372.

11 Michael Egorov. Stableswap - efficient mechanism for stablecoin liquidity. https://www.curve.
fi/stableswap-paper.pdf, November 2019. As of 8 February 2021.

12 Daniel Engel and Maurice Herlihy. Composing Networks of Automated Market Makers.
arXiv:2106.00083 [cs], June 2021. arXiv:2106.00083.

13 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, July 2021.
URL: https://ethereum.github.io/yellowpaper/paper.pdf.

14 Robin Hanson. Combinatorial Information Market Design. Information Systems Frontiers,
5(1):107–119, January 2003. doi:10.1023/A:1022058209073.

15 Robin Hanson. Logarithmic market scoring rules for modular combinatorial information
aggregation. Journal of Prediction Markets, 1(1):3–15, 2007. URL: https://EconPapers.
repec.org/RePEc:buc:jpredm:v:1:y:2007:i:1:p:3-15.

16 Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap
v3 Core, March 2021. URL: https://uniswap.org/whitepaper-v3.pdf.

17 Eyal Hertzog, Guy Benartzi, and Galia Benartzi. Bancor protocol. https://whitepaper.io/
document/52/bancor-whitepaper, 2017.

18 Fernando Martinelli and Nikolai Mushegian. Balancer: A non-custodial portfolio man- ager,
liquidity provider, and price sensor. https://balancer.finance/whitepaper/, 2109. As of 2
February 2021.

19 Andreu Mas-Collell, Michael Whinston, and Jerry R. Green. Microeconomic Theory. Oxford
University Press, 1995.

Tokenomics 2021

https://doi.org/10.1145/1993574.1993621
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://doi.org/10.2139/ssrn.3636514
http://arxiv.org/abs/2012.08040
http://arxiv.org/abs/1911.03380
https://doi.org/10.2139/ssrn.3674178
https://blog.bancor.network/proposing-bancor-v2-1-single-sided-amm-with-elastic-bnt-supply-bcac9fe655b
https://blog.bancor.network/proposing-bancor-v2-1-single-sided-amm-with-elastic-bnt-supply-bcac9fe655b
https://blog.bancor.network/proposing-bancor-v2-1-single-sided-amm-with-elastic-bnt-supply-bcac9fe655b
http://arxiv.org/abs/2102.11350
https://doi.org/10.1145/1807342.1807372
https://www.curve.fi/stableswap-paper.pdf
https://www.curve.fi/stableswap-paper.pdf
http://arxiv.org/abs/2106.00083
https://ethereum.github.io/yellowpaper/paper.pdf
https://doi.org/10.1023/A:1022058209073
https://EconPapers.repec.org/RePEc:buc:jpredm:v:1:y:2007:i:1:p:3-15
https://EconPapers.repec.org/RePEc:buc:jpredm:v:1:y:2007:i:1:p:3-15
https://uniswap.org/whitepaper-v3.pdf
https://whitepaper.io/document/52/bancor-whitepaper
https://whitepaper.io/document/52/bancor-whitepaper


13:16 Loss and Slippage in Networks of Automated Market Makers

20 Pintail. Uniswap: A good deal for liquidity providers? https://medium.com/@pintail/
uniswap-a-good-deal-for-liquidity-providers-104c0b6816f2.

21 Mohsen Pourpouneh, Kurt Nielsen, and Omri Ross. Automated Market Makers. IFRO Working
Paper 2020/08, University of Copenhagen, Department of Food and Resource Economics, July
2020. URL: https://ideas.repec.org/p/foi/wpaper/2020_08.html.

22 wikipedia. Beta distribution. https://en.wikipedia.org/wiki/Beta_distribution. As of
11 August 2021.

23 Yi Zhang, Xiaohong Chen, and Daejun Park. Formal specification of constant product (x . y
= k) market maker model and implementation. https://github.com/runtimeverification/
verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf, 2018.

A Appendix: Derivations of Equations

A.1 Equation 7

linslipX(v, v′;A) := (1 − v′) (−δf ′(x) + f(x+ δ) − f(x))

= (1 − v′)
(
δ

v

1 − v
+ f(x+ δ) − f(x)

)
=
(

1 − v′

1 − v

)
(vϕ(v′) − vϕ(v) + (1 − v)f(ϕ(v′)) − (1 − v)f(ϕ(v)))

=
(

1 − v′

1 − v

)
(v · Φ(v′) − v · Φ(v))

=
(

1 − v′

1 − v

)
divloss(v′, v;A).

A.2 Equation 9

angslip(v, v′;A) = θ(x′) − θ(x)

= arctan
(

1
−f ′(x′)

)
− arctan

(
1

−f ′(x)

)
= arctan

(
1 − v′

v′

)
− arctan

(
1 − v

v

)
= arctan

(
( 1−v′

v′ ) − ( 1−v
v )

1 + ( 1−v′

v′ )( 1−v
v )

)

= arctan
(
v − v′

v · v′

)

A.3 Equation 11

−δv′
1 + v′

2(f(x) − f(x+ δ)) = v′
1(ϕA(v12) − ϕA(v′

12)) + v′
2(f(ϕA(v12)) − f(ϕA(v′

12))
= (v′

1 + v′
2)(v′

12 · ΦA(v12) − v′
12 · ΦA(v′

12))
= (v′

1 + v′
2) divloss(v12, v

′
12;A)

= v′
3 divloss(v12, v

′
12;A)
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https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
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A.4 Equation 12

v′
2(f(x+ δ) − f(x)) + v′

3(g(y) − g(y + f(x) − f(x+ δ)))
= v′

2(ϕB(v23) − ϕB(v′
23)) + v′

3(g(ϕB(v23)) − g(ϕA(v′
23))

= (v′
2 + v′

3)(v′
23 · ΦB(v23) − v′

23 · ΦB(v′
23))

= v′
1 divloss(v23, v

′
23;B

A.5 Equation 13

−δv′
1 + v′

3(h(x) − h(x + δ)) = v′
1(ϕAB(v13) − ϕAB(v′

13)) + v′
3(h(ϕAB(v13)) − h(ϕAB(v′

13))
= (v′

1 + v′
3)((v′

13 · ΦAB(v13) − v′
13 · ΦA(v′

13))
= v′

2 divloss(v13, v′
13; A ⊕ B)

A.6 Equation 14

v′
2 divloss(v13, v

′
13;A⊕B) = v′

3 divloss(v12, v
′
12;A) + v′

1 divloss(v23, v
′
23;B)

divloss(v13, v
′
13;A⊕B) =

(
v′

3
v′

2

)
divloss(v12, v

′
12;A) +

(
v′

1
v′

2

)
divloss(v23, v

′
23;B).

A.7 Equation 15

linslipX(v12, v′
12; A) =

(
v′

2
v2

)(
v1 + v2

v′
1 + v′

2

)(
v12 · Φ(v′

12) − v12 · Φ(v12)
)

v′
2(−δf ′(x) + f(x + δ) − f(x)) = v′

2

(
v1

v2
(ϕA(v′

12) − ϕA(v12)) + (f(ϕA(v′
12)) − f(ϕA(v12))

)
= v′

2
v2

(v1 + v2)(v12 · ΦA(v′
12) − v12 · ΦA(v12))

= (v′
1 + v′

2) linslipX(v′
12, v12; A).

A.8 Equation 16

linslipX(v23, v
′
23;B) =

(
v′

3
v3

)(
v2 + v3

v′
2 + v′

3

)
(v23 · Φ(v′

23) − v23 · Φ(v23))

v′
3 ((f(x) − (x+ δ))g′(y) + g(y + f(x) − (x+ δ)) − g(y))

= v′
3

(
(f(x) − (x+ δ))v2

v3
+ g(y + f(x) − (x+ δ)) − g(y)

)
= v′

3
v3

(v2 + v3) (v23 · ΦB(v′
23) − v23 · ΦB(v23)))

= (v′
2 + v′

3) linslipX(v23, v
′
23;B).

A.9 Equation 17
v′

3(−δh′(x) + h(x + δ) − h(x)) = v′
3

(
v1

v3
(ϕA(v′

13) − ϕA(v13)) + (h(ϕA(v′
13)) − h(ϕA(v13))

)
= v′

3
v3

(v1 + v3)(v13 · ΦA(v′
13) − v13 · ΦA(v13))

= (v′
1 + v′

3) linslipX(v′
13, v13, A ⊕ B)
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A.10 Equation 18

(v′
1 + v′

3) linslipX(v13, v′
13; A ⊕ B)) = (v′

1 + v′
2) linslipX(v12, v′

12; A)
+ (v′

2 + v′
3) linslipX(v13, v′

13; B)

linslipX(v13, v′
13; A ⊕ B) =

(
v′

1 + v′
2

v′
1 + v′

3

)
linslipX(v12, v′

12; A)

+
(

v′
2 + v′

3
v′

1 + v′
3

)
linslipX(v23, v′

23; B)

=
(

1 − v′
3

1 − v′
2

)
linslipX(v12, v′

12; A)

+
(

1 − v′
1

1 − v′
2

)
linslipX(v23, v′

23; B)

A.11 Equation 18

angslip(v13, v13′ , A ⊕ B) = arctan
(

v′
3

v′
1

)
− arctan

(
v3

v1

)
= arctan

(
v1v′

3 − v′
1v3

v1v′
1 + v3v′

3

)
= arctan

(
v13 − v′

13
v13 · v13

)

A.12 Equation 20

loadX(v13, v′
13; A ⊕ B) = divloss(v13, v′

13; A ⊕ B) linslipX(v13, v′
13; A ⊕ B)

=
(

v′
3(1 − v′

3)
v′

2(1 − v′
2)

)
loadX(v12, v′

12; A)

+
(

v′
1(1 − v′

1)
v′

2(1 − v′
2)

)
loadX(v23, v′

23; B)

+
(

v′
3(1 − v′

3)
v′

2(1 − v′
2)

)
divloss(v12, v′

12; A) linslipX(v23, v′
23; B)

+
(

v′
1(1 − v′

1)
v′

2(1 − v′
2)

)
divloss(v23, v′

23; B) linslipX(v12, v′
12; A)

A.13 Equation 21

divloss(v, v′; A||B) = v′(−δ) + (1 − v′)(f(x) − f(x + tδ) + g(y) − g(y + (1 − t)δ))
= −v′(x + tδ − x + y + (1 − t)δ − y)

+ (1 − v′)(f(ϕA(v)) − f(ϕA(v′)) + g(ϕB(v)) − g(ϕB(v′)))
= −v′(ϕA(v′) − ϕA(v) + ϕB(v′) − ϕB(v))

+ (1 − v′)(f(ϕA(v)) − f(ϕA(v′)) + g(ϕB(v)) − g(ϕB(v′)))
= v′ · ϕA(v) − v′ · ϕA(v′) + v′ · ϕB(v) − v′ · ϕB(v′)
= divloss(v, v′; A) + divloss(v, v′; B)
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A.14 Equation 22

h′(x) = −(tf ′(a + tx) + (1 − t)g′(b + (1 − t)x)

= −
(

t
v

(1 − v) + (1 − t) v

(1 − v)

)
= − v

(1 − v)
δ = tδ + (1 − t)δ
δ = ϕA(v′) − ϕA(v) + ϕB(v′) − ϕB(v)

linslipX(v, v′; A||B) = −(1 − v′)(−δh′(x) + h(x + δ) − h(x))

= −(1 − v′)
(

−δ
v

1 − v
+ h(x + δ) − h(x)

)
=
(

1 − v′

1 − v

)
(δv − (1 − v)(h(x + δ) − h(x)))

=
(

1 − v′

1 − v

)
(δv − (1 − v)(f(a) − f(a + t(x + δ))

+ g(b) − g(b + (1 − t)(x + δ))
− (f(a) − f(a + tx) + g(b) − g(b + (1 − t)x))))

=
(

1 − v′

1 − v

)
(δv + (1 − v)(f(a + t(x + δ)) − f(a + tx)

+ g(b + (1 − t)(x + δ)) − g(b + (1 − t)x)))

=
(

1 − v′

1 − v

)
(δv + (1 − v)(f(ϕA(v′)) − f(ϕA(v)) + g(ϕB(v′)) − g(ϕB(v))))

=
(

1 − v′

1 − v

)
(v(ϕA(v′) − ϕA(v) + ϕB(v′) − ϕB(v))

+ (1 − v)(f(ϕA(v′)) − f(ϕA(v)) + g(ϕB(v′)) − g(ϕB(v))))

=
(

1 − v′

1 − v

)
(v(ϕA(v′) − ϕA(v)) + (1 − v)(f(ϕA(v′)) − f(ϕA(v)))

+ v(ϕB(v′) − ϕB(v)) + (1 − v)(g(ϕB(v′)) − g(ϕB(v))))

=
(

1 − v′

1 − v

)
(v · ΦA(v′) − v · ΦA(v′)) + (v · ΦB(v′) − v · ΦB(v′))

= linslipX(v, v′; A) + linslipX(v, v′; B).

A.15 Equation 23

linslipX(v, v′; αA) = v′ · (αx, αf(x)) − v′ · (αx′, αf(x′))
= α(v′ · Φ(v) − v′ · Φ(v′)
= α linslipX(v, v′; A).

B Appendix: Proofs

B.1 Theorem 2
Proof. Let h(v) = v · Φ(v) = vϕ(v) + (1 − v)f(ϕ(v)) be the capitilization at v. Note that h is a
continuous function on the compact set [0, 1] which guarantees the existence of the maximum. Let
v∗ be the point where the maximum occurs. The first derivative is
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h′(v) = ϕ(v) + vϕ′(v) + (1 − v)f ′(ϕ(v))ϕ′(v) − f(ϕ(v))

ϕ(v) + vϕ′(v) + (1 − v) −v

1 − v
ϕ′(v) − f(ϕ(v))

= ϕ(v) − f(ϕ(v))

The second derivative is

h′′(v) = ϕ′(v) − f ′(ϕ(v))ϕ′(v)

= ϕ′(v)(1 − −v

1 − v
)

= ϕ′(v)(1 − v + v

1 − v
) = ϕ′(v)

1 − v

Now take a derivative with respect to v of

f ′(ϕ(v)) = −v

1 − v

ϕ′(v) = −1
(1 − v)2f ′′(ϕ(v)) < 0.

Recall that f is strictly convex, so f ′′(ϕ(v)) > 0 for all v ∈ (0, 1).
We can then write the second derivative of the capitalization as

h′′(v) = −1
(1 − v)3f ′′(ϕ(v)) < 0

Thus h is strictly concave so the maximum is unique. Finally, the first-order conditions tell us
that h′(v∗) = 0 or ϕ(v∗) = f(ϕ(v∗)). ◀

B.2 Lemma 3
Proof. Let g = f−1 = f .

f ′(y) = g′(y) = 1
f ′(f−1(y)) = 1

f ′(f(y)) = 1
f ′(x) = − (1 − v)

v
= −(1 − v)

1 − (1 − v)

Thus y = ϕ(1 − v). ◀

B.3 Theorem 4
Proof. From the proof of Theorem 2 we know ϕ′(v) < 0 for v ∈ (0, 1), so ϕ(v) is strictly decreasing.
Applying Theorem 2 and Lemma 3 tells us that capitalization is maximized when ϕ(v) = x = y =
ϕ(1 − v). Because ϕ is strictly decreasing, the only way ϕ(v) = ϕ(1 − v) is if v = 1 − v or v = 1

2 . ◀

C Appendix: Minimizing Divergence Loss Exposure

Let A := (x, f(x)) be an AMM currently in state (a, f(a)), the stable state for (v, 1 − v). Define
an X-partition to be a sequence of values {xi}∞

i=1 in R>0 such that x1 = a, xi < xi+1, and
limn→∞ xn = ∞.

Given a partition PX = {xi}n
i=1, define the total divergence loss with respect to that partition as

divloss(PX ; A) =
∞∑

i=1

divloss∗(xi, xi+1; A)
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Writing this out explicitly gives
∞∑

i=1

divloss∗(xi, xi+1; A)

=
∞∑

i=1

vi+1 · (Φ(vi) − Φ(vi+1))

=
∞∑

i=1

vi+1 · ((ϕ(vi), f(ϕ(vi))) − (ϕ(vi+1), f(ϕ(vi+1))))

=
∞∑

i=1

(vi+1, 1 − vi+1) · (ϕ(vi) − ϕ(vi+1), f(ϕ(vi)) − f(ϕ(vi+1)))

=
∞∑

i=1

vi+1(ϕ(vi) − ϕ(vi+1)) − vi+1(f(ϕ(vi)) − f(ϕ(vi+1))) +
∞∑

i=1

f(ϕ(vi)) − f(ϕ(vi+1))

=
∞∑

i=1

vi+1(ϕ(vi) − ϕ(vi+1)) − vi+1(f(ϕ(vi)) − f(ϕ(vi+1))) + f(ϕ(v1))

=
∞∑

i=1

vi+1[ϕ(vi) − ϕ(vi+1) + f(ϕ(vi+1)) − f(ϕ(vi))] + f(ϕ(v1))

Note that each term ϕ(vi) − ϕ(vi+1) + f(ϕ(vi+1)) − f(ϕ(vi)) ≤ 0. We also know that v1 ≥ vi+1 for
each i. This gives us the upper bound

∞∑
i=1

vi+1[ϕ(vi) − ϕ(vi+1) + f(ϕ(vi+1)) − f(ϕ(vi))] + f(ϕ(v1)) ≤ f(ϕ(v1)) = f(x)

and the lower bound
∞∑

i=1

vi+1[ϕ(vi) − ϕ(vi+1) + f(ϕ(vi+1)) − f(ϕ(vi))] + f(ϕ(v1))

≥ v1

∞∑
i=1

[ϕ(vi) − ϕ(vi+1) + f(ϕ(vi+1)) − f(ϕ(vi))] + f(ϕ(v1))

= v1[ϕ(v1) − f(ϕ(v1))] + f(ϕ(v1))
= v1ϕ(v1) + (1 − v1)f(ϕ(v1))
= cap(v; A)

Simply put

cap(v; A) ≤ divloss(PX ; A) ≤ f(a)

How tight can this lower bound get? Well, let v∗ be the point where cap(v; A) is maximized. If
we let x∗ = ϕ(v∗), then we know that f(x∗) = x∗. We know that cap(v; A) = v∗x∗ + (1 − v∗)f(x∗) =
f(x∗). But if x = x∗ then this means

f(x∗) ≤ divloss(P ; A) ≤ f(x∗)

which is entirely independent of the chosen partition PX , so

f(x∗) ≤ divloss(A) ≤ f(x∗)

or divloss(A) = f(x∗). Additionally, total loss is conserved even if we modify the AMM A for x > x∗.
No matter how you choose to drain asset type Y by depositing asset type X, in the end you will
drain all of f(x∗) if you deposit an infinite amount of X.
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We get a similar result when trading along the Y -axis. Define a Y -partition to be a sequence of
elements {xi}∞

i=1 in R>0 such that y1 = f(a), yi ≤ yi+1, and limn→∞ yn = ∞.
Let PY = {yi}∞

i=1 be a Y-partition, g = f−1(x). and yi = f(xi) so xi = f−1(yi) = g(yi). Thus
Φ(vi) = (xi, f(xi)) = (g(yi), f ◦g(yi)) where f ◦g(yi) = f ◦f−1(yi) = yi. That is, Φ(vi) = (g(yi), yi).
The total cost with respect to this partition is

divloss(PY ; A) =
∞∑

i=1

divloss∗(yi, yi+1; A)

For symmetry, define v′
i = 1 − vi.

∞∑
i=1

divloss∗(yi, yi+1; A) =
∞∑

i=1

vi+1 · (Φ(vi) − Φ(vi+1))

=
∞∑

i=1

vi+1 · (g(yi) − g(yi+1), yi − yi+1)

=
∞∑

i=1

(1 − v′
i+1)(g(yi) − g(yi+1) + v′

i+1(yi − yi+1)

=
∞∑

i=1

v′
i+1[yi − yi+1 + g(yi+1) − g(yi)] +

∞∑
i=1

(g(yi) − g(yi+1)

=
∞∑

i=1

v′
i+1[yi − yi+1 + g(yi+1) − g(yi)] + a

Note that g(yi) − g(yi+1)) + yi+1 − yi ≤ 0 and v′
1 ≥ v′

i+1 for each i. We now get the upper bound

∞∑
i=1

v′
i+1[yi − yi+1 + g(yi+1) − g(yi)] + a ≤ a

and the lower bound

∞∑
i=1

v′
i+1[yi − yi+1 + g(yi+1) − g(yi)] + a ≥ v′

1

∞∑
i=1

yi − yi+1 + g(yi+1) − g(yi) + a

= v′
1(y1 − g(y1)) + a

= (1 − v1)(f(a) − a) + a

= (1 − v1)f(a) + v1a = cap(v; A)

So again we get the bounds

cap(v; A) ≤ divloss(PY ; A) ≤ a

Similar to the X-axis case this inequality is tight if y1 = f(x∗) and divloss(PY ; A) = a. Thus we
do get a loss conservation result if we start at (x∗, f(x∗)). Namely

divloss(PX ; A) + divloss(PY ; A) = x∗ + f(x∗) = 2x∗ = 2 cap(v∗; A)

The valuation v∗ thus corresponds to the AMM state where half of the wealth may be lost to X

trades and half can be lost to Y trades.
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D Mathematica Code
This section shows the Mathematica scripts used to generate Figure 3.

1 g[x_] := InverseFunction [ f ][ x ];
2 \[Phi ][ v_] := InverseFunction [ f ’][−v/(1−v)];
3 divloss [v1_,v2_] :=
4 v2 \[Phi ][ v1] + (1−v2) f[\[Phi ][ v1 ]] − (v2 \[Phi ][ v2] + (1−v2) f[\[Phi ][ v2 ]]);
5

6 linslipx [v1_,v2_] :=
7 ((1−v2)/(1−v1)) (v1 \[Phi][v2] − v1 \[Phi ][v1]
8 + (1−v1) f[\[Phi ][ v2 ]] − (1−v1) f[\[Phi ][ v1 ]]);
9

10 linslipy [v1_,v2_] :=
11 (v2/v1) ((1−v1) f [\[Phi ][ v2 ]] − (1−v1) f[\[Phi ][ v1 ]]
12 + v1 \[Phi ][v2] − v1 \[Phi ][v1 ]);
13

14 loadx[v1_,v2_] := divload[v1,v2] linslipx [v1,v2 ];
15 loady[v1_,v2_] := divloss [v1,v2] linslipy [v1,v2 ];
16

17 exploadx[v_,\[Alpha]1_,\[Alpha]2_] :=
18 PDF[BetaDistribution[\[Alpha]1, \[Alpha ]2]][ v] loadx [1/2,v ];
19 exploady[v_,\[Alpha]1_,\[Alpha]2_] :=
20 PDF[BetaDistribution[\[Alpha]1, \[Alpha ]2]][ v] loady [1/2,v ];
21 expload [\[Alpha]1_, \[Alpha]2_] :=
22 NIntegrate [exploadx[v, \[Alpha]1, \[Alpha ]2], {v, 0, 1/2}] +
23 NIntegrate [exploady[v, \[Alpha]1, \[Alpha ]2], {v, 1/2, 1}]
24

25 expslipx [v_,\[Alpha]1_,\[Alpha]2_] :=
26 PDF[BetaDistribution[\[Alpha]1, \[Alpha ]2]][ v] linslipx [1/2,v ];
27 expslipy [v_,\[Alpha]1_,\[Alpha]2_] :=
28 PDF[BetaDistribution[\[Alpha]1, \[Alpha ]2]][ v] linslipy [1/2,v ];
29 expslip [\[Alpha]1_, \[Alpha]2_] :=
30 NIntegrate [ expslipx [v, \[Alpha]1, \[Alpha ]2], {v, 0, 1/2}] +
31 NIntegrate [ expslipy [v, \[Alpha]1, \[Alpha ]2], {v, 1/2, 1}]
32

33 exploadx[v_,\[Alpha]1_,\[Alpha]2_] :=
34 PDF[BetaDistribution[\[Alpha]1, \[Alpha ]2]][ v] divloss [1/2,v ];
35 exploady[v_,\[Alpha]1_,\[Alpha]2_] :=
36 PDF[BetaDistribution[\[Alpha]1, \[Alpha ]2]][ v] divloss [1/2,v ];
37 expload [\[Alpha]1_, \[Alpha]2_] :=
38 NIntegrate [exploadx[v, \[Alpha]1, \[Alpha ]2], {v, 0, 1/2}] +
39 NIntegrate [exploady[v, \[Alpha]1, \[Alpha ]2], {v, 1/2, 1}]
40

41 Plot3D[expload[\[Alpha]1, \[Alpha ]2], {\[Alpha]1, 1, 4}, {\[Alpha]2,
42 1, 4}, PlotRange −> All, MeshFunctions −> {#3 &}]
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