
Report from Dagstuhl Seminar 21462

Foundations of Persistent Programming
Edited by
Hans-J. Boehm1, Ori Lahav2, and Azalea Raad3

1 Google – Mountain View, US, boehm@acm.org
2 Tel Aviv University, IL, orilahav@tau.ac.il
3 Imperial College London, GB, azalea.raad@imperial.ac.uk

Abstract
Although early electronic computers commonly had persistent core memory that retained its
contents with power off, modern computers generally do not. DRAM loses its contents when
power is lost. However, DRAM has been difficult to scale to smaller feature sizes and larger
capacities, making it costly to build balanced systems with sufficient amounts of directly accessible
memory. Commonly proposed replacements, including Intel’s Optane product, are once again
persistent. It is however unclear, and probably unlikely, that the fastest levels of the memory
hierarchy will be able to adopt such technology. No such non-volatile (NVM) technology has yet
taken over, but there remains a strong economic incentive to move hardware in this direction,
and it would be disappointing if we continued to be constrained by the current DRAM scaling.

Since current computer systems often invest great effort, in the form of software complexity,
power, and computation time, to “persist” data from DRAM by rearranging and copying it to
persistent storage, like magnetic disks or flash memory, it is natural and important to ask whether
we can leverage persistence of part of primary memory to avoid this overhead. Such efforts are
complicated by the fact that real systems are likely to remain only partially persistent; some
memory components, like processor caches and device registers. may remain volatile.

This seminar focused on various aspects of programming for such persistent memory systems,
ranging from programming models for reasoning about and formally verifying programs that
leverage persistence, to techniques for converting existing multithreaded programs (particularly,
lock-free ones) to corresponding programs that also directly persist their state in NVM. We
explored relationships between this problem and prior work on concurrent programming models.

Seminar November 14–17, 2021 – http://www.dagstuhl.de/21462
2012 ACM Subject Classification Theory of computation → Concurrency; Hardware → Non-

volatile memory; Theory of computation → Program semantics
Keywords and phrases concurrency; non-volatile-memory; persistency; semantics; weak memory

models
Digital Object Identifier 10.4230/DagRep.11.10.94
Edited in cooperation with Michalis Kokologiannakis

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Foundations of Persistent Programming, Dagstuhl Reports, Vol. 11, Issue 10, pp. 94–110
Editors: Hans-J. Boehm, Ori Lahav, and Azalea Raad

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/21462
https://doi.org/10.4230/DagRep.11.10.94
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Hans-J. Boehm, Ori Lahav, and Azalea Raad 95

1 Executive Summary

Hans-J. Boehm (Google – Mountain View, US, boehm@acm.org)
Ori Lahav (Tel Aviv University, IL, orilahav@tau.ac.il)
Azalea Raad (Imperial College London, GB, azalea.raad@imperial.ac.uk)

License Creative Commons BY 4.0 International license
© Hans-J. Boehm, Ori Lahav, and Azalea Raad

We brought together 15 in-person attendees at Schloss Dagstuhl, with a roughly equal number
of remote attendees. Remote attendance was challenging, particularly for attendees from
very different time-zones. It nonetheless provided the opportunity for us to hear from a wider
selection of participants.

We decided up-front not to try to cater the schedule to remote participation. Given the
number of time zones covered by the participants, we continue to believe that, although it
clearly had adverse impacts, it was the right decision.

We had a number of remote presentations that included interactions with the speakers.
Otherwise the discussion tended to happen mostly among the in-person participants, in
spite of the excellent AV systems at Dagstuhl. Many remote participants were limited in
attendance due to time-zone issues.

Our area is perhaps unique, in that it includes deep theoretical work, but is also very
dependent on technological developments. Accordingly, the participants of the seminar
were from a spectrum of topics ranging from theory of distributed systems to hardware
specification and design. The seminar gave many of us the opportunity to catch up on both
theory and practice, including input from some participants with more direct insights into
industrial developments.

We began the seminar by reviewing some of the underlying assumptions that were made
by prior work in this field, often without certainty about their correctness. We were actually
able to get much more shared clarity on a few of these as a result of audience discussion
during the seminar. Some of us learned that non-volatile caches are being publicly discussed
by Intel, and that there also is similar agreement that memory encryption, to restore volatility
when needed, is desirable. We also learned that writes to the same cache line are not just
believed by software researchers to reach memory in the correct order, but at least one
hardware vendor also agrees. Though this last fact is rather obscure, it is important for some
NVM algorithms, and not normally reflected in hardware manuals.

The rest of the seminar consisted of talks and group discussions. Three talks were longer
overview talks on different aspects (Michael Scott on buffered persistency, Parosh Aziz
Abdulla on verification, and Erez Petrank on persistent lock-free data structures). We did
not feel the need for smaller break-out sessions, since the in-person group was quite small,
largely due to our timing with respect to Covid waves. Much of the benefit here appears to
have been in listening to discussions that often were either significantly more theoretical or
significantly more practical than our own research.

NVM programming is both complicated by, and often synergistic with concurrent pro-
gramming. Much of our focus was on the interaction between the two. Due to these close
interactions, we asked several speakers to talk about concurrency issues that seemed particu-
larly relevant (e.g., Peter Sewell on Armv8-A virtual memory model, Mark Batty on novel
solution to the “thin air problem”, and Paul McKenney on weak memory schemes used in
the Linux kernel).

Several talks raised questions on the foundations of the field, such as what are the
hardware-supplied programming models, or what it means for a persistent program to be

21462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

96 21462 – Foundations of Persistent Programming

correct. It is entirely possible that most future NVM programmers will be more concerned
with something like the persistent transactions discussed in Michael Bond’s talk. However,
given the relative immaturity of the area and foundational uncertainty, the emphasis seemed
appropriate.

Hans-J. Boehm, Ori Lahav, and Azalea Raad 97

2 Table of Contents

Executive Summary
Hans-J. Boehm, Ori Lahav, and Azalea Raad . 95

Overview of Talks
Recoverable Self-Implementations of Primitive Operations
Hagit Attiya . 99

Consistency and Persistency: Challenges and Opportunities in Program Verification
Parosh Aziz Abdulla . 99

Isolating the Thin Air Problem: Semantic Dependency for Optimised Concurrency
Mark Batty . 100

Persistent Transactions: Desirable Semantics and Efficient Designs
Michael D. Bond . 100

Model Checking Persistent Memory Programs
Brian Demsky . 101

View-Based Owicki–Gries Reasoning for Persistent x86-TSO
Brijesh Dongol . 101

General Constructions for Non-Volatile Memory
Michal Friedman . 102

Formal Foundations for Intermittent Computing
Limin Jia . 102

Revamping Hardware Persistency Models: View-Based and Axiomatic Persistency
Models for Intel-X86 and Armv8
Jeehoon Kang . 103

Abstraction for Crash-Resilient Objects
Artem Khyzha . 103

Taming x86-TSO Persistency
Artem Khyzha . 104

PerSeVerE: Persistency Semantics for Verification under Ext4
Michalis Kokologiannakis . 104

Weak Memory Schemes Used in the Linux Kernel
Paul McKenney . 105

Hazard Pointer Synchronous Reclamation
Maged M. Michael . 105

Persistent Lock-Free Data Structures for Non-Volatile Memory
Erez Petrank . 105

TSOPER: Efficient Coherence-Based Strict Persistency
Konstantinos Sagonas . 106

The Case for Buffered Persistence
Michael Scott . 106

A Taste of Armv8-A Relaxed Virtual Memory
Peter Sewell . 107

21462

98 21462 – Foundations of Persistent Programming

The ISA Semantics / Concurrency Model Interface
Peter Sewell . 107

Non-Temporal Stores and their Semantics
Viktor Vafeiadis . 108

Architectural Support for Persistent Programming
William Wang . 109

Modularizing Verification of Durable Opacity
Heike Wehrheim . 109

Participants . 110

Remote Participants . 110

Hans-J. Boehm, Ori Lahav, and Azalea Raad 99

3 Overview of Talks

3.1 Recoverable Self-Implementations of Primitive Operations
Hagit Attiya (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
© Hagit Attiya

Joint work of Liad Nahum, Hagit Attiya, Ohad Ben-Baruch, Denny Hendler
Main reference Liad Nahum, Hagit Attiya, Ohad Ben-Baruch, Danny Hendler: “Recoverable and Detectable

Fetch&Add”. OPODIS 2021, LIPIcs Vol. 217
URL https://doi.org/10.4230/LIPIcs.OPODIS.2021.29

An attractive way to derive recoverable programs is to substitute every invocation of a
primitive operation with a recoverable self-implementation of the same primitive.

We explore the properties that should be satisfied by such implementations for this ap-
proach to work. We also present some positive (implementations) and negative (impossibility)
results, for primitives such as test&set, fetch&add, and compare&swap.

3.2 Consistency and Persistency: Challenges and Opportunities in
Program Verification

Parosh Aziz Abdulla (Uppsala University, SE)

License Creative Commons BY 4.0 International license
© Parosh Aziz Abdulla

Joint work of Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, Prakash
Saivasan

Main reference Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, Prakash
Saivasan: “Deciding reachability under persistent x86-TSO”, Proc. ACM Program. Lang.,
Vol. 5(POPL), pp. 1–32, 2021.

URL http://dx.doi.org/10.1145/3434337

Nowadays, most application platforms offer more relaxed semantics than the classical Se-
quential Consistency (SC) semantics. There are two primary sources of relaxation, namely
weak consistency and weak persistence. Weakly consistent platforms are present at all level
of the system design: at the hardware level, e.g., multiprocessors such as x86-TSO, SPARC,
IBM POWER, and ARM; at the language level, e.g., C11 or Java; and at the application
level, e.g., distributed databases, and geo-replicated systems. All these platforms sacrifice
SC to provide stronger efficiency guarantees.

Weak persistence means that the order in which data persist over system crashes is incon-
sistent with the order in which the data is generated by the application. Weakly persistent
systems arise in intermittent computing, file systems, and (more recently) architectures that
employ Nonvolatile memories (NVRAMs).

Concurrent programs exhibit entirely new behaviors compared to SC when running on
platforms with relaxed semantics. Even textbook programs such as small mutual exclusion
protocols or concurrent data structures that are provably correct under SC can now show
counter-intuitive behaviors. Hence, the verification community is currently facing new
exciting, complicated, and practically motivated challenges.

To make the ideas concrete, I will present the semantics of concurrent programs that run
on the Persistent Intel x86 architecture (Px86), implemented in Intel’s Optane memory chip.
We investigate the state reachability problem and show how to prove its decidability for
finite-state programs. To achieve that, we provide a new formal model that is equivalent to
Px86, and that has the feature of being a well-structured system. Deriving this new model
results from a deep investigation of the properties of Px86 and the interplay of its component.

21462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPIcs.OPODIS.2021.29
https://doi.org/10.4230/LIPIcs.OPODIS.2021.29
https://doi.org/10.4230/LIPIcs.OPODIS.2021.29
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3434337
http://dx.doi.org/10.1145/3434337
http://dx.doi.org/10.1145/3434337
http://dx.doi.org/10.1145/3434337

100 21462 – Foundations of Persistent Programming

3.3 Isolating the Thin Air Problem: Semantic Dependency for
Optimised Concurrency

Mark Batty (University of Kent – Canterbury, GB)

License Creative Commons BY 4.0 International license
© Mark Batty

Joint work of Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, Brijesh Dongol, Alan
Jeffrey, James Riely, Ilya Kaysin, Anton Podkopaev, Mark Batty

Main reference Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, Anton Podkopaev: “The leaky
semicolon: compositional semantic dependencies for relaxed-memory concurrency”, Proc. ACM
Program. Lang., Vol. 6(POPL), pp. 1–30, 2022.

URL http://dx.doi.org/10.1145/3498716

Languages like C/C++ (and Java) include both aggressive sequential optimisation and
unmediated concurrent access to memory. These features collude to produce the out-of-thin-
air problem – the language definition allows the conjuring of erroneous values in concurrent
executions that can never be seen in practice, wrecking our ability to reason about concurrent
code. Previous solutions involve disallowing optimisations at a cost to performance, or
rebasing the language semantics on a very different model – an unlikely route for a language
specification like C/C++. Here we present a less intrusive fix: an oracle takes the program and
calculates semantic dependency, a record of which thread-local dependencies are preserved,
and this dependency relation is used in the standard concurrency model of C/C++. We
highlight recent work presenting two options for the calculation of semantic dependency, and
a prospective operational model and program logic built upon semantic dependency. We
believe this approach is reusable in the context of persistent memory.

3.4 Persistent Transactions: Desirable Semantics and Efficient Designs
Michael D. Bond (Ohio State University – Columbus, US)

License Creative Commons BY 4.0 International license
© Michael D. Bond

Joint work of Kann Genç, Guoqing Harry Xu, Michael D. Bond

I’ll argue that persistent transactions should provide failure atomicity and strict durability
and respect inter-thread dependencies, under an assumption of data race freedom. Is this
behavior reasonable and sufficient? And how do we implement such persistent transactions
efficiently? I’ll suggest that a combination of shadow memory, redo logs, and reference-
counting-based dependence tracking yields a simple design that is likely more efficient than
prior designs, although the performance story is complicated by tradeoffs of using shadow
memory. Looking forward to your feedback and discussion.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3498716
http://dx.doi.org/10.1145/3498716
http://dx.doi.org/10.1145/3498716
http://dx.doi.org/10.1145/3498716
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Hans-J. Boehm, Ori Lahav, and Azalea Raad 101

3.5 Model Checking Persistent Memory Programs
Brian Demsky (University of California – Irvine, US)

License Creative Commons BY 4.0 International license
© Brian Demsky

Joint work of Hamed Gorjiara, Guoqing Harry Xu, Brian Demsky
Main reference Hamed Gorjiara, Guoqing Harry Xu, Brian Demsky: “Jaaru: efficiently model checking persistent

memory programs”, in Proc. of the ASPLOS ’21: 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Virtual Event, USA,
April 19-23, 2021, pp. 415–428, ACM, 2021.

URL http://dx.doi.org/10.1145/3445814.3446735

Persistent memory (PM) technologies combine near DRAM performance with persistency
and open the possibility of using one copy of a data structure as both a working copy and
a persistent store of the data. Ensuring that these persistent data structures are crash
consistent is a major challenge. Stores to persistent memory are not immediately made
persistent — they initially reside in processor cache and are only written to PM when a flush
occurs due to space constraints or explicit flush instructions. It is more challenging to test
crash consistency for PM than for disks given the PM’s byte-addressability that leads to
significantly more states.

I present Jaaru, a fully-automated and efficient model checker for PM programs. Key
to Jaaru’s efficiency is a new technique based on constraint refinement that can reduce the
number of executions that must be explored by many orders of magnitude. This exploration
technique effectively leverages commit stores, a common coding pattern, to reduce the model
checking complexity from exponential in the length of program executions to quadratic. We
have evaluated Jaaru with PMDK and RECIPE, and found 25 persistency bugs, 18 of which
are new.

3.6 View-Based Owicki–Gries Reasoning for Persistent x86-TSO
Brijesh Dongol (University of Surrey – Guildford, GB)

License Creative Commons BY 4.0 International license
© Brijesh Dongol

Joint work of Eleni Bila, Brijesh Dongol, Ori Lahav, Azalea Raad, John Wickerson
Main reference Eleni Bila, BBrijesh Dongol, Ori Lahav, Azalea Raad, John Wickerson: “View-Based Owicki–Gries

Reasoning for Persistent x86-TSO”. ESOP 2022 (To appear)

This work develops a program logic for reasoning about persistent x86 code that uses low-level
operations such as memory accesses, fences, and flushes. Our logic, called Pierogi, benefits
from an underlying operational semantics by Cho et al that is based on views. Pierogi is able
to handle optimised flush operations that previous program logics for persistency could not.
Pierogi is mechanised in the Isabelle/HOL proof assistant, which serves as a semi-automated
verification tool. This talk will discuss the basics of Pierogi, its use in program verification,
and its encoding in Isabelle/HOL.

21462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3445814.3446735
http://dx.doi.org/10.1145/3445814.3446735
http://dx.doi.org/10.1145/3445814.3446735
http://dx.doi.org/10.1145/3445814.3446735
http://dx.doi.org/10.1145/3445814.3446735
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

102 21462 – Foundations of Persistent Programming

3.7 General Constructions for Non-Volatile Memory
Michal Friedman (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
© Michal Friedman

Joint work of Michal Friedman, Erez Petrank, Guy E. Blelloch, Pedro Ramalhete, Naama Ben David, Yuanhao Wei
Main reference Michal Friedman, Erez Petrank, Pedro Ramalhete: “Mirror: making lock-free data structures

persistent”, in Proc. of the PLDI ’21: 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
pp. 1218–1232, ACM, 2021.

URL http://dx.doi.org/10.1145/3453483.3454105

With the recent launch of the Intel Optane memory platform, non-volatile main memory
in the form of fast, dense, byte-addressable non-volatile memory has now become available.
Nevertheless, designing crash-resilient data structures is complex and error-prone, especially
when caches and machine registers are still volatile and the data residing in memory after
a crash might not reflect a consistent view of the program state. This talk will focus on
NVTraverse and Mirror, which are two different general transformations that adds durability
in an automatic manner to lock-free data structures, with a low performance overhead.

3.8 Formal Foundations for Intermittent Computing
Limin Jia (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 4.0 International license
© Limin Jia

Joint work of Milijana Surbatovich, Brandon Lucia, Limin Jia
Main reference Milijana Surbatovich, Brandon Lucia, Limin Jia: “Towards a formal foundation of intermittent

computing”, Proc. ACM Program. Lang., Vol. 4(OOPSLA), pp. 163:1–163:31, 2020.
URL http://dx.doi.org/10.1145/3428231

Intermittently powered devices enable new applications in harsh or remote environments, e.g.,
space or in-body implants, but also introduce problems in programmability and correctness.
A variety of intermittent systems to save and restore program state have been proposed
to ensure complete program execution despite power failures. For such systems to execute
programs correctly, non-volatile memory locations, whose writes may cause intermittent
executions to diverge from continuously powered executions, need to be handled carefully. In
this talk, I will present our work on formalizing and proving the correctness properties of
intermittent systems and discuss our ongoing work targeting Rust.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3453483.3454105
http://dx.doi.org/10.1145/3453483.3454105
http://dx.doi.org/10.1145/3453483.3454105
http://dx.doi.org/10.1145/3453483.3454105
http://dx.doi.org/10.1145/3453483.3454105
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3428231
http://dx.doi.org/10.1145/3428231
http://dx.doi.org/10.1145/3428231

Hans-J. Boehm, Ori Lahav, and Azalea Raad 103

3.9 Revamping Hardware Persistency Models: View-Based and
Axiomatic Persistency Models for Intel-X86 and Armv8

Jeehoon Kang (KAIST – Daejeon, KR)

License Creative Commons BY 4.0 International license
© Jeehoon Kang

Joint work of CKyeongmin Cho, Sung Hwan Lee, Azalea Raad, Jeehoon Kang
Main reference Kyeongmin Cho, Sung Hwan Lee, Azalea Raad, Jeehoon Kang: “Revamping hardware persistency

models: view-based and axiomatic persistency models for Intel-x86 and Armv8”, in Proc. of the
PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, pp. 16–31, ACM, 2021.

URL http://dx.doi.org/10.1145/3453483.3454027

Non-volatile memory (NVM) is a cutting-edge storage technology that promises the perform-
ance of DRAM with the durability of SSD. Recent work has proposed several persistency
models for mainstream architectures such as Intel-x86 and Armv8, describing the order in
which writes are propagated to NVM. However, these models have several limitations; most
notably, they either lack operational models or do not support persistent synchronization
patterns.

We close this gap by revamping the existing persistency models. First, inspired by the
recent work on promising semantics, we propose a unified operational style for describing
persistency using views, and develop view-based operational persistency models for Intel-x86
and Armv8, thus presenting the first operational model for Armv8 persistency. Next, we
propose a unified axiomatic style for describing hardware persistency, allowing us to recast
and repair the existing axiomatic models of Intel-x86 and Armv8 persistency. We prove
that our axiomatic models are equivalent to the authoritative semantics reviewed by Intel
and Arm engineers. We further prove that each axiomatic hardware persistency model is
equivalent to its operational counterpart. Finally, we develop a persistent model checking
algorithm and tool, and use it to verify several representative examples.

This talk is based on a conference paper [1].

References
1 Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang. Revamping hardware

persistency models: view-based and axiomatic persistency models for Intel-x86 and Armv8.
PLDI 2021). DOI: https://doi.org/10.1145/3453483.3454027

3.10 Abstraction for Crash-Resilient Objects
Artem Khyzha (Arm – Cambridge, GB)

License Creative Commons BY 4.0 International license
© Artem Khyzha

Joint work of Artem Khyzha, Ori Lahav
Main reference Artem Khyzha, Ori Lahav: “Abstraction for Crash-Resilient Objects (Extended Version)”, CoRR,

Vol. abs/2111.03881, 2021.
URL https://arxiv.org/abs/2111.03881

In this talk we discuss formal compositional reasoning under non-volatile memory. We
develop a library correctness criterion that is sound for ensuring contextual refinement in
this setting, thus allowing clients to reason about library behaviors in terms of their abstract
specifications, and library developers to verify their implementations against the specifications
abstracting away from particular client programs.

21462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3453483.3454027
http://dx.doi.org/10.1145/3453483.3454027
http://dx.doi.org/10.1145/3453483.3454027
http://dx.doi.org/10.1145/3453483.3454027
http://dx.doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3453483.3454027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2111.03881
https://arxiv.org/abs/2111.03881
https://arxiv.org/abs/2111.03881

104 21462 – Foundations of Persistent Programming

We employ a recent NVM model, called Persistent Sequential Consistency, as a semantic
foundation, and extend its language and operational semantics with useful specification
constructs. The proposed correctness criterion accounts for NVM-related interactions between
client and library code due to explicit persist instructions, and for calling policies enforced
by libraries.

3.11 Taming x86-TSO Persistency
Artem Khyzha (Arm – Cambridge, GB)

License Creative Commons BY 4.0 International license
© Artem Khyzha

Joint work of Artem Khyzha, Ori Lahav
Main reference Artem Khyzha, Ori Lahav: “Taming x86-TSO persistency”, Proc. ACM Program. Lang.,

Vol. 5(POPL), pp. 1–29, 2021.
URL http://dx.doi.org/10.1145/3434328

We study the formal semantics of non-volatile memory in the x86-TSO architecture. We show
that while the explicit persist operations in the recent model of Raad et al. from POPL’20
only enforce order between writes to the non-volatile memory, it is equivalent, in terms of
reachable states, to a model whose explicit persist operations mandate that prior writes are
actually written to the non-volatile memory. The latter provides a novel model that is much
closer to common developers’ understanding of persistency semantics. We further introduce
a simpler and stronger sequentially consistent persistency model, develop a sound mapping
from this model to x86, and establish a data-race-freedom guarantee providing programmers
with a safe programming discipline. Our operational models are accompanied with equivalent
declarative formulations, which facilitate our formal arguments, and may prove useful for
program verification under x86 persistency.

3.12 PerSeVerE: Persistency Semantics for Verification under Ext4
Michalis Kokologiannakis (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Michalis Kokologiannakis

Joint work of Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, Viktor Vafeiadis
Main reference Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, Viktor Vafeiadis: “PerSeVerE: persistency

semantics for verification under ext4”, Proc. ACM Program. Lang., Vol. 5(POPL), pp. 1–29, 2021.
URL http://dx.doi.org/10.1145/3434324

Although ubiquitous, modern filesystems have rather complex behaviours that are hardly
understood by programmers and lead to severe software bugs such as data corruption.

As a first step to ensure correctness of software performing file I/O, we have formalized
the semantics of the Linux ext4 filesystem, which we have integrated with the weak memory
consistency semantics of C/C++. In addition, we have developed an effective model checking
approach for verifying programs that use the filesystem. While doing so, we discovered bugs
in commonly-used text editors such as vim, emacs and nano.

My talk gives an overview of ext4’s persistency semantics and our formalization, as well
as of some editor bugs we found.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3434328
http://dx.doi.org/10.1145/3434328
http://dx.doi.org/10.1145/3434328
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3434324
http://dx.doi.org/10.1145/3434324
http://dx.doi.org/10.1145/3434324

Hans-J. Boehm, Ori Lahav, and Azalea Raad 105

3.13 Weak Memory Schemes Used in the Linux Kernel
Paul McKenney (Facebook – Beaverton, US)

License Creative Commons BY 4.0 International license
© Paul McKenney

This talk gives background on persistent-memory mechanisms provided by the Linux kernel.
The kernel generally does not rely on persistent memory internally because this would make
it difficult to run the kernel on systems lacking persistent memory.

This talk then explains why many researchers have encountered significant performance
penalties associated with strong ordering and persistent memory, showing how this is due to
the finite speed of light (especially in solids), the non-zero size of atoms, protocol overheads
(for example, due to cache coherence protocols), overheads from electrical fundamentals, and,
in some cases, chemistry. These penalties are of special interest to organizations having large
numbers of systems, where even a 1% increase in overhead can be quite expensive.

Further, the finite speed of light can make it impossible to determine the order in which
external events occurred, in which case strong ordering might not be particularly helpful.

The talk concludes with a survey of a few of the weakly ordered concurrent algorithms
used in the Linux kernel.

3.14 Hazard Pointer Synchronous Reclamation
Maged M. Michael (Facebook – New York, US)

License Creative Commons BY 4.0 International license
© Maged M. Michael

Deferred reclamation techniques, such as hazard pointers, do not guarantee the timing of
reclamation of reclaimable objects by default. This talk describes the problem of synchronous
deferred reclamation, where users require guarantees for the timing of reclamation. This talk
also reviews the semantics of various synchronous reclamation guarantees, and outlines cohort-
based reclamation, a novel scalable algorithm for hazard pointer synchronous reclamation.

3.15 Persistent Lock-Free Data Structures for Non-Volatile Memory
Erez Petrank (Technion – Haifa, IL)

License Creative Commons BY 4.0 International license
© Erez Petrank

In this talk I will discuss the design of lock-free (concurrent) data structures adequate for
non-volatile RAM. I will shortly review constructions of persistent queues and sets, mention
general transformation and discuss the basic techniques behind all.

21462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

106 21462 – Foundations of Persistent Programming

3.16 TSOPER: Efficient Coherence-Based Strict Persistency
Konstantinos Sagonas (Uppsala University, SE)

License Creative Commons BY 4.0 International license
© Konstantinos Sagonas

Joint work of Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, Stefanos Kaxiras
Main reference Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, Stefanos Kaxiras: “TSOPER: Efficient

Coherence-Based Strict Persistency”, in Proc. of the IEEE International Symposium on
High-Performance Computer Architecture, HPCA 2021, Seoul, South Korea, February 27 – March 3,
2021, pp. 125–138, IEEE, 2021.

URL http://dx.doi.org/10.1109/HPCA51647.2021.00021

We propose a novel approach for hardware-based strict TSO persistency, called TSOPER.
We allow a TSO persistency model to freely coalesce values in the caches, by forming atomic
groups of cachelines to be persisted. A group persist is initiated for an atomic group if any
of its newly written values are exposed to the outside world. A key difference with prior
work is that our architecture is based on the concept of a TSO persist buffer, that sits in
parallel to the shared LLC, and persists atomic groups directly from private caches to NVM,
bypassing the coherence serialization of the LLC. To impose dependencies among atomic
groups that are persisted from the private caches to the TSO persist buffer, we introduce a
sharing-list coherence protocol that naturally captures the order of coherence operations in
its sharing lists, and thus can reconstruct the dependencies among different atomic groups
entirely at the private cache level without involving the shared LLC. The combination of
the sharing-list coherence and the TSO persist buffer allows persist operations and writes
to non-volatile memory to happen in the background and trail the coherence operations.
Coherence runs ahead at full speed; persistency follows belatedly. Our evaluation shows that
TSOPER provides the same level of reordering as a program-driven relaxed model, hence,
approximately the same level of performance, albeit without needing the programmer or
compiler to be concerned about false sharing, data-race-free semantics, etc., and guaranteeing
all software that can run on top of TSO, automatically persists in TSO.

3.17 The Case for Buffered Persistence
Michael Scott (University of Rochester, US)

License Creative Commons BY 4.0 International license
© Michael Scott

Joint work of Wentao Cai, Haosen Wen, Vladimir Maksimovski, Mingzhe Du, Rafaello Sanna, Shreif Abdallah,
Michael L. Scott, Benjamin Valpey, Louis Jenkins, H. Alan Beadle, Mohammad Hedayati, Joseph
Izraelevitz, Hammurabi Mendes

Main reference Wentao Cai, Haosen Wen, Vladimir Maksimovski, Mingzhe Du, Rafaello Sanna, Shreif Abdallah,
Michael L. Scott: “Fast Nonblocking Persistence for Concurrent Data Structures”, in Proc. of the
35th International Symposium on Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg,
Germany (Virtual Conference), LIPIcs, Vol. 209, pp. 14:1–14:20, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

URL http://dx.doi.org/10.4230/LIPIcs.DISC.2021.14

For machines with nonvolatile memory (NVM) but volatile caches, most work on persistent
data structures has assumed the need for strict durable linearizability – for operations
whose effects are guaranteed to survive any crash that occurs after their return to the caller.
Most programmers, however, aren’t interested in persisting existing transient structures:
they’re interested in avoiding serialization and deserialization of structures currently kept
long-term in block-structured files and databases. For such structures, programmers are
comfortable with the familiar concept of buffering, which separates persistence from atomicity
and consistency, allowing data to persist some time in the (not-too-distant) future or in
response to an explicit sync operation.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1109/HPCA51647.2021.00021
http://dx.doi.org/10.1109/HPCA51647.2021.00021
http://dx.doi.org/10.1109/HPCA51647.2021.00021
http://dx.doi.org/10.1109/HPCA51647.2021.00021
http://dx.doi.org/10.1109/HPCA51647.2021.00021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.4230/LIPIcs.DISC.2021.14
http://dx.doi.org/10.4230/LIPIcs.DISC.2021.14
http://dx.doi.org/10.4230/LIPIcs.DISC.2021.14
http://dx.doi.org/10.4230/LIPIcs.DISC.2021.14
http://dx.doi.org/10.4230/LIPIcs.DISC.2021.14
http://dx.doi.org/10.4230/LIPIcs.DISC.2021.14

Hans-J. Boehm, Ori Lahav, and Azalea Raad 107

Given the high latency of fence instructions, buffered persistence has the potential to
significantly shorten the critical path of the application. To evaluate this potential, we
have created a general-purpose persistence system, Montage, that divides time into multi-
millisecond epochs. Each epoch boundary is guaranteed to represent a consistent cut across
the happens-before graph of operations. On a crash, recovery restores state as of the second-
to-last epoch boundary. Experiments with both micro and macro benchmarks confirm that
Montage dramatically outperforms existing general-purpose persistence systems, rivals or
exceeds the performance of special-purpose persistent structures, and indeed approaches the
performance of nonpersistent structures placed in NVM.

3.18 A Taste of Armv8-A Relaxed Virtual Memory
Peter Sewell (University of Cambridge, GB)

License Creative Commons BY 4.0 International license
© Peter Sewell

Joint work of Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Peter Sewell

Virtual memory is an essential mechanism for enforcing security boundaries, but its relaxed-
memory concurrency semantics has not previously been investigated in detail. The concurrent
systems code managing virtual memory has been left on an entirely informal basis, and OS
and hypervisor verification has had to make major simplifying assumptions.

This talk will give a taste of work in progress on relaxed virtual memory semantics for
the Armv8-A architecture, to support future system-software verification. We identify many
design questions, in discussion with Arm; develop a test suite, including use cases from
the pKVM production hypervisor under development by Google; delimit the design space
with axiomatic-style concurrency models; prove that under simple stable configurations our
architectural model collapses to previous “user” models; develop tooling to compute allowed
behaviours in the model integrated with the full Armv8-A ISA semantics; and develop a
hardware test harness.

This lays out some of the main issues in relaxed virtual memory, bringing these security-
critical systems phenomena into the domain of programming-language semantics and verific-
ation, with foundational architecture semantics, for the first time.

3.19 The ISA Semantics / Concurrency Model Interface
Peter Sewell (University of Cambridge, GB)

License Creative Commons BY 4.0 International license
© Peter Sewell

Joint work of Peter Sewell, Jean Pichon-Pharabod, Alasdair Armstrong, Ben Simner, Brian Campbell, Christopher
Pulte, Thomas Bauereiss, Shaked Flur

We want to establish a standard interface between instruction-set architecture (ISA) semantics
and concurrency models, to support the many things one would like to do above them –
especially as one moves to concurrency models that handle more systems features, and to
complete ISA definitions rather than idealised fragments. In this talk I’ll spell out some
of the desiderata and our current sketch design; hopefully it will stimulate discussion with
potential users.

21462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

108 21462 – Foundations of Persistent Programming

The interface shouldn’t be large or complex, but it does have to harmonise several different
usages and cope with all the many phenomena we care about, and it may underlie a lot
of future work, so it’s worth polishing it as much as we reasonably can up-front (though
it will surely also have to change as it’s used). It builds on our existing ISA/concurrency
integrations in the rmem and isla-axiomatic tools, for full Armv8-A and RISC-V ISAs in Sail,
and for user, ifetch, and virtual-memory concurrency, and on our Sail-generated Isabelle and
Coq ISA semantics. We want to clean these up and generalise them, both for tools and for
theorem-prover reasoning.

3.20 Non-Temporal Stores and their Semantics
Viktor Vafeiadis (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Viktor Vafeiadis

Joint work of Azalea Raad, Luc Maranget, Viktor Vafeiadis
Main reference Azalea Raad, Luc Maranget, Viktor Vafeiadis: “Extending Intel-x86 consistency and persistency:

formalising the semantics of Intel-x86 memory types and non-temporal stores”, Proc. ACM Program.
Lang., Vol. 6(POPL), pp. 1–31, 2022.

URL http://dx.doi.org/10.1145/3498683

In the research community, there are several formalisations of the sequential semantics of
various fragments of the Intel-x86 architecture and a few that also describe their weakly con-
sistent concurrency semantics and/or their persistency semantics. As far as the concurrency
semantics is concerned, Intel-x86 is widely believed to follow the x86-TSO model of Sewell et
al. [1]. The persistency semantics is similarly believed to follow the Px86 model of Raad et
al. [2].

Nevertheless, this is not the full story. The x86-TSO and Px86 models cover only a small
fragment of its available features that are relevant for the consistency semantics of multi-
threaded programs and the persistency semantics of programs interfacing with non-volatile
memory. In particular, besides normal store instructions, Intel-x86 supports non-temporal
stores, which provide higher performance and are used to ensure that updates are flushed to
memory. Furthermore, Intel-x86 allows declaring regions of memory with different types—
uncacheable, write-back, write-combined, write-protected, and write-through—and existing
models cover only the semantics of the (default) write-back memory regions.

Since both non-temporal stores and memory regions with different types are widely used
in systems code, Azalea Raad, Luc Maranget, and I have extended the existing x86-TSO and
Px86 formalizations to cover these features and the interaction between them. Our formal
model is published at POPL’22 [3]. My talk at the seminar presented an overview of these
additional features: how they can be used and what semantics they have.

References
1 Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.

x86-TSO: a rigorous and usable programmer’s model for x86 multiprocessors. Commun.
ACM 53(7), 2010. DOI: https://doi.org/10.1145/1785414.1785443

2 Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. Persistency semantics
of the Intel-x86 architecture. Proc. ACM Program. Lang. 4(POPL), 2020. DOI: https:
//doi.org/10.1145/3371079

3 Azalea Raad, Luc Maranget, and Viktor Vafeiadis. Extending Intel-x86 consistency and
persistency: formalising the semantics of Intel-x86 memory types and non-temporal stores.
Proc. ACM Program. Lang. 6(POPL), 2022. DOI: https://doi.org/10.1145/3498683

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/3498683
http://dx.doi.org/10.1145/3498683
http://dx.doi.org/10.1145/3498683
http://dx.doi.org/10.1145/3498683
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3498683

Hans-J. Boehm, Ori Lahav, and Azalea Raad 109

3.21 Architectural Support for Persistent Programming
William Wang (Arm – Cambridge, GB)

License Creative Commons BY 4.0 International license
© William Wang

The talk opens with the use cases of NVM, including “more” memory and persistent memory,
leveraging its density and persistence. Then the talk focuses on the persistent use, which
requires software changes that bring programming challenges.

To reduce the barrier of entry for persistent memory and simplify persistent programming,
we ask whether the Arm architecture has sufficient support for programming persistent
memory. In searching for an answer, two problems related to ensuring persistent ordering
across threads and within a thread are uncovered, and two solutions are outlined. Specifically,
the persistent transitive stores at the instruction set architectural level and the battery-backed
buffers at the microarchitectural level.

To wrap up, the talk briefly mentions about other persistent programming challenges,
including failure atomicity, persistent addressing that can also benefit from architectural
support.

3.22 Modularizing Verification of Durable Opacity
Heike Wehrheim (Universität Oldenburg, DE)

License Creative Commons BY 4.0 International license
© Heike Wehrheim

Joint work of Eleni Bila, John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn, Heike Wehrheim
Main reference Eleni Bila, John Derrick, Simon Doherty, Brijesh Dongol, Gerhard Schellhorn, Heike Wehrheim:

“Modularising Verification Of Durable Opacity”, CoRR, Vol. abs/2011.15013, 2020.
URL https://arxiv.org/abs/2011.15013

Opacity is the standard correctness condition for Software Transactional Memory Algorithms.
One way of proving opacity is by showing a refinement relationship to hold between an
abstract sequential specification and an implementation. Durable opacity is the analogue of
opacity for settings with non-volatile memory. It can similarly be shown by refinement, now
using a durable abstract specification. In the talk, I will present work towards (a) reusing
existing refinement proofs of opacity for proving durable opacity, and (b) modularizing such
proofs by capsulating all accesses to shared state in a library, and only showing this library
to be durable linearizable.

21462

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2011.15013
https://arxiv.org/abs/2011.15013
https://arxiv.org/abs/2011.15013

110 21462 – Foundations of Persistent Programming

Participants

Mark Batty
University of Kent –
Canterbury, GB

Hans-J. Boehm
Google – Mountain View, US

Michael D. Bond
Ohio State University –
Columbus, US

Brijesh Dongol
University of Surrey –
Guildford, GB

Michal Friedman
Technion – Haifa, IL

Michalis Kokologiannakis
MPI-SWS – Kaiserslautern, DE

Ori Lahav
Tel Aviv University, IL

Maged M. Michael
Facebook – New York, US

Erez Petrank
Technion – Haifa, IL

Azalea Raad
Imperial College London, GB

Konstantinos Sagonas
Uppsala University, SE

Michael Scott
University of Rochester, US

Viktor Vafeiadis
MPI-SWS – Kaiserslautern, DE

William Wang
Arm – Cambridge, GB

Heike Wehrheim
Universität Oldenburg, DE

Remote Participants

Hagit Attiya
Technion – Haifa, IL

Parosh Aziz Abdulla
Uppsala University, SE

Piotr Balcer
Intel Technology – Gdansk, PL

Eleni Bila
University of Surrey –
Guildford, GB

Dhruva Chakrabarti
AMD – Santa Clara, US

Soham Chakraborty
TU Delft, NL

Ricardo Ciríaco da Graca
MPI-SWS – Kaiserslautern, DE

Brian Demsky
University of California –
Irvine, US

Derek Dreyer
MPI-SWS – Saarbrücken, DE

João F. Ferreira
INESC-ID – Lisboa, PT

Maurice Herlihy
Brown University –
Providence, US

Joseph Izraelevitz
University of Colorado –
Boulder, US

Limin Jia
Carnegie Mellon University –
Pittsburgh, US

Jeehoon Kang
KAIST – Daejeon, KR

Artem Khyzha
Arm – Cambridge, GB

Umang Mathur
National University of
Singapore, SG

Paul McKenney
Facebook – Beaverton, US

Nikos Nikoleris
Arm – Cambridge, GB

Andy Rudoff
Intel – Boulder, US

Peter Sewell
University of Cambridge, GB

John Wickerson
Imperial College London, GB

	Executive Summary Hans-J. Boehm, Ori Lahav, and Azalea Raad
	Table of Contents
	Overview of Talks
	Recoverable Self-Implementations of Primitive Operations Hagit Attiya
	Consistency and Persistency: Challenges and Opportunities in Program Verification Parosh Aziz Abdulla
	Isolating the Thin Air Problem: Semantic Dependency for Optimised Concurrency Mark Batty
	Persistent Transactions: Desirable Semantics and Efficient Designs Michael D. Bond
	Model Checking Persistent Memory Programs Brian Demsky
	View-Based Owicki–Gries Reasoning for Persistent x86-TSO Brijesh Dongol
	General Constructions for Non-Volatile Memory Michal Friedman
	Formal Foundations for Intermittent Computing Limin Jia
	Revamping Hardware Persistency Models: View-Based and Axiomatic Persistency Models for Intel-X86 and Armv8 Jeehoon Kang
	Abstraction for Crash-Resilient Objects Artem Khyzha
	Taming x86-TSO Persistency Artem Khyzha
	PerSeVerE: Persistency Semantics for Verification under Ext4 Michalis Kokologiannakis
	Weak Memory Schemes Used in the Linux Kernel Paul McKenney
	Hazard Pointer Synchronous Reclamation Maged M. Michael
	Persistent Lock-Free Data Structures for Non-Volatile Memory Erez Petrank
	TSOPER: Efficient Coherence-Based Strict Persistency Konstantinos Sagonas
	The Case for Buffered Persistence Michael Scott
	A Taste of Armv8-A Relaxed Virtual Memory Peter Sewell
	The ISA Semantics / Concurrency Model Interface Peter Sewell
	Non-Temporal Stores and their Semantics Viktor Vafeiadis
	Architectural Support for Persistent Programming William Wang
	Modularizing Verification of Durable Opacity Heike Wehrheim

	Participants
	Remote Participants

