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Abstract
At least from a practical and contemporary angle, the time-honoured question about the extent
of intuitionistic mathematics rather is to which extent any given proof is effective, which proofs
of which theorems can be rendered effective, and whether and how numerical information such as
bounds and algorithms can be extracted from proofs. All this is ideally done by manipulating
proofs mechanically or by adequate metatheorems, which includes proof translations, automated
theorem proving, program extraction from proofs, proof analysis and proof mining. The question
should thus be put as: What is the computational content of proofs?

Guided by this central question, the present Dagstuhl seminar puts a special focus on coherent
and geometric theories and their generalisations. These are not only widespread in mathematics
and non-classical logics such as temporal and modal logics, but also a priori amenable for
constructivisation, e.g., by Barr’s Theorem, and last but not least particularly suited as a basis for
automated theorem proving. Specific topics include categorical semantics for geometric theories,
complexity issues of and algorithms for geometrisation of theories including speed-up questions, the
use of geometric theories in constructive mathematics including finding algorithms, proof-theoretic
presentation of sheaf models and higher toposes, and coherent logic for automatically readable
proofs.
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1 Executive Summary

Thierry Coquand
Hajime Ishihara
Sara Negri
Peter M. Schuster
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A central question has remained from the foundational crisis of mathematics about a century
ago: What is the extent of intuitionistic mathematics? From a practical angle, the question is
to which extent any given proof is effective, which proofs of which theorems can be rendered
effective, and whether and how numerical information such as bounds and algorithms can be
extracted from proofs. Ideally, all this is treated by manipulating proofs mechanically and/or
by adequate proof-theoretic metatheorems (proof translations, automated theorem proving,
program extraction from proofs, proof analysis, proof mining, etc.). In this vein, the central
question should rather be put as follows: What is the computational content of proofs?

Guided by this form of the central question, the Dagstuhl Seminar 21472 put a special
focus on coherent and geometric theories and their generalisations. These indeed are fairly
widespread in mathematics and non-classical logics such as temporal and modal logics, a
priori amenable for constructivisation in the vein of Barr’s Theorem, and particularly suited
as a basis for automated theorem proving. Specific topics included categorical semantics for
geometric theories, complexity issues of and algorithms for geometrisation of theories with
the related speed-up questions, the use of geometric theories in constructive mathematics up
to finding algorithms, proof-theoretic presentation of sheaf models and higher toposes, and
coherent logic for automated proving.

The Dagstuhl Seminar 21472 attracted researchers and practitioners from all over the
world, including participants from various research areas in order to broaden the scope of the
seminar and to create connections between communities. The seminar participants presented
and discussed their research by means of programmed and ad-hoc talks, and a tutorial on
Agda the well developed proof assistant based on dependent type theory – was held over
several time slots. Numerous new research directions were developed in small working groups:
for example, new perspectives on classifying toposes in algebraic geometry, applications of
dynamical methods to quadratic forms, and Zorn induction to capture transfinite methods
computationally.

The tireless efforts by Dagstuhl staff notwithstanding, it would not be fair to say that
this seminar did not suffer from the pandemic-related travel restrictions by which many
invitees were confined to remote participation, which of course made hard if not impossible
that they took part at the invaluable informal exchange on-site characteristic for events held
at Dagstuhl. Under the given circumstances, however, the seminar was still judged a success
by all the participants. Following an unconditional request by many, the organisers intend to
propose a follow-up Dagstuhl seminar on a related topic in the near future – if possible, all
on-site.
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3 Overview of Talks

3.1 Progress and challenges in program extraction
Ulrich Berger (Swansea University, GB)

License Creative Commons BY 4.0 International license
© Ulrich Berger

Program extraction from proofs is a technique to exploit the computational content of
constructive proofs to extract programs that are provably correct. The technique builds on
realizability as introduced by Kleene and Kreisel in the 1940s and 1950s.

We report about recent progress in program extraction, on the one hand regarding the
inclusion of limited forms of nonconstructve principles such as the axiom of choice and the
law of excluded middle, on the other hand regarding capturing computations that go beyond
the usual functional paradigm, namely nondeterminism and concurrency. It turns out that
limited form of the law of excluded middle is required to extract concurrent programs. We
report on case studies regarding exact real number computation, infinite Gray code and
Gaussian elimination for matrices with exact real number entries. This is joint work Hideki
Tsuiki, Dieter Spreen, and Monika Seisenberger.

The main current challenge is the general axiom of choice. Raoult gave a reformulation
of the axiom of choice as an induction principle (Open Induction). However, this does not
seem to be amenable for program extraction (only restricted forms of Open Induction permit
program extraction). In joint work with Peter Schuster, we are currently exploring different
formulations of the axiom of choice, in its form as Zorn’s Lemma, as ’induction-like principles
(Zorn Induction), that might permit program extraction.

3.2 Loop-checking and the uniform word problem for join-semilattices
with an inflationary endomorphism

Marc Bezem (University of Bergen, NO)

License Creative Commons BY 4.0 International license
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Main reference Marc Bezem, Thierry Coquand: “Loop-checking and the uniform word problem for join-semilattices
with an inflationary endomorphism”, Theoretical Computer Science, 2022.

URL http://dx.doi.org/10.1016/j.tcs.2022.01.017

We solve in polynomial time two decision problems that occur in type checking when typings
depend on universe level constraints.
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3.3 Bridging the foundational gap: updating algebraic geometry in face
of current challenges regarding formalizability, constructivity and
predicativity

Ingo Blechschmidt (Universität Augsburg, DE)

License Creative Commons BY 4.0 International license
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The Lean community recently reached a major milestone in formalizing the definition of
schemes, the objects of study in algebraic geometry. However, their development spans more
than 10,000 lines of code. A fundamental notion such as that of schemes should not be such
demanding to formalize.

We argue that this defect is due to the reliance on transfinite methods in the classical
presentation of the foundations of algebraic geometry, which the Lean community decided
to follow. Just as they are inappropriate from a constructive and predicative point of view,
they don’t provide a good basis for formalization. In fact, those three concerns are closely
related, perhaps even sides of the same coin.

The talk explores the tension between the foundation of algebraic geometry and these
modern challenges, and reports on work in progress recasting the foundation of algebraic
geometry to face these challenges, including a constructive and predicative framework for
setting up cohomology of quasicoherent sheaves.

References
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3.4 An automated method to reasoning about differentiable functions
Gabriele Buriola (University of Verona, IT)
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13-15, 2020, CEUR Workshop Proceedings, Vol. 2710, pp. 231–247, CEUR-WS.org, 2020.
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This contribution concerns an enrichment of pre-existing decision algorithms, which in
their turn augmented a fragment of Tarski’s elementary algebra with one-argument real
functions endowed with continuous first derivative. In its present (still quantifier-free) version,
our decidable language embodies addition of functions; the issue we address is the one of
satisfiability. As regards real numbers, individual variables and constructs designating
the basic arithmetic operations are available, along with comparison relators. As regards
functions, we have another sort of variables, out of which compound terms are formed by
means of constructs designating addition and – outermostly – differentiation. An array of
predicates designate various relationships between functions, as well as function properties,
that may hold over intervals of the real line; those are: function comparisons, strict and
nonstrict monotonicity / convexity / concavity, comparisons between the derivative of a
function and a real term. Our decision method consists in preprocessing the given formula into
an equi-satisfiable quantifier-free formula of the elementary algebra of real numbers, whose
satisfiability can then be checked by means of Tarski’s decision method. No direct reference
to functions will appear in the target formula, each function variable having been superseded
by a collection of stub real variables; hence, in order to prove that the proposed translation
is satisfiability-preserving, we must figure out a flexible-enough family of interpolating C1

functions that can accommodate a model for the source formula whenever the target formula
turns out to be satisfiable.
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3.5 Deductive systems and Grothendieck topologies
Olivia Caramello (University of Insubria – Como, IT)
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Main reference Olivia Caramello: “Theories, Sites, Toposes: Relating and studying mathematical theories through
topos-theoretic ’bridges’ ” Oxford University Press, 2017.
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I will show that the classical proof system of geometric logic over a given geometric theory
is equivalent to new proof systems based on the notion of Grothendieck topology. These
equivalences result from a proof-theoretic interpretation of the duality between the quotients
of a given geometric theory and the subtoposes of its classifying topos. Interestingly, these
alternative proof systems turn out to be computationally better-behaved than the classical
one for many purposes, as I will illustrate by discussing a few selected applications.

3.6 A General Glivenko–Gödel Theorem for Nuclei
Giulio Fellin (University of Verona, IT) and Peter M. Schuster (University of Verona, IT)
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Main reference Giulio Fellin, Peter Schuster: “A General Glivenko-Gödel Theorem for Nuclei”, in Proc. of the
Proceedings 37th Conference on Mathematical Foundations of Programming Semantics, MFPS 2021,
Hybrid: Salzburg, Austria and Online, 30th August – 2nd September, 2021, EPTCS, Vol. 351,
pp. 51–66, 2021.
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Glivenko’s theorem says that, in propositional logic, classical provability of a formula entails
intuitionistic provability of double negation of that formula. We generalise Glivenko’s theorem
from double negation to an arbitrary nucleus, from provability in a calculus to an inductively
generated abstract consequence relation, and from propositional logic to any set of objects
whatsoever. The resulting conservation theorem comes with precise criteria for its validity,
which allow us to instantly include Gödel’s counterpart for first-order predicate logic of
Glivenko’s theorem. The open nucleus gives us a form of the deduction theorem for positive
logic, and the closed nucleus prompts a variant of the reduction from intuitionistic to minimal
logic going back to Johansson.

The present study was carried out within the projects “A New Dawn of Intuitionism:
Mathematical and Philosophical Advances” (John Templeton Foundation, ID 60842) and
“Reducing complexity in algebra, logic, combinatorics – REDCOM” (“Ricerca Scientifica di
Eccellenza 2018”, Fondazione Cariverona); and within GNSAGA of INdAM.

3.7 Proof mining a nonlinear ergodic theorem for Banach spaces
Anton Freund (TU Darmstadt, DE)
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Proof mining uses tools from logic to extract quantitative (and sometimes new qualitative)
results from seemingly noneffective proofs in core mathematics (see the textbook by Ulrich
Kohlenbach [3]). This talk presents joint work of Kohlenbach and the speaker [1], which is
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concerned with nonexpansive maps on Banach spaces: by analysing a proof due to Kazuo
Kobayasi and Isao Miyadera [2], we obtain a rate of metastability for the strong convergence
of Cesàro means. In the talk, we focus on one particular step of the analysis, which deals with
a seemingly noneffective use of a limit inferior. This focus allows us to explain fundamental
ideas of proof mining by means of a concrete mathematical example.

Both Anton Freund and Ulrich Kohlenbach were supported by the “Deutsche Forschungs-
gemeinschaft” (DFG, German Research Foundation) – Projects 460597863, DFG KO 1737/6-1
and DFG KO 1737/6-2.
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3.8 Conservation theorems on semi-classical arithmetic
Makoto Fujiwara (Meiji University – Kawasaki, JP)
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It is well-known that classical arithmetic PA is Π2-conservative over intuitionistic arithmetic
HA. Using a generalized negative translation, we relativize this result with respect to theories
of semi-classical arithmetic, which lie in-between PA and HA. In particular, it follows from
our main result that PA is Πk+2-conservative over HA + Σk-LEM where Σk-LEM is the
low-of-excluded-middle scheme for formulas of Σk form.

3.9 Gluing classifying toposes along open subtoposes
Matthias Hutzler (Universität Augsburg, DE)

License Creative Commons BY 4.0 International license
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A geometric theory classified by some Grothendieck topos can be regarded as a syntactic
presentation of the theory. In this talk, we consider the question how to construct such a
syntactic presentation for a topos from syntactic presentations of a covering family of open
subtoposes, and how to capture appropriate additional gluing data in a syntactic way.

Here, extensions (or expansions) of geometric theories, which can add new sorts, symbols
and axioms, and which can be regarded as syntactic presentations of geometric morphisms,
play an important role. As an instructive example, we construct a geometric theory classified
by the big Zariski topos of the projective line, which is covered by two copies of the big
Zariski topos of the affine line, both classifying local algebras with one distinguished element.
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3.10 Negative Results in Universal Proof Theory
Rosalie Iemhoff (Utrecht University, NL)
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In this talk I explain how a property of logics, such as uniform interpolation, can be used
to establish that a logic does not have proof systems of a certain kind, in this case sequent
calculi with good structural properties and other desirable qualities. This connection between
the properties of a logic and its proof systems is based on a proof method for uniform
interpolation that applies to any intermediate, substructural, modal or intuitionistic modal
logic that has a sequent calculus of that kind.

Some of the relevant references:
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3.11 Theorem Proving as Constraint Solving with Coherent Logic
Predrag Janicic (University of Belgrade, RS) and Julien Narboux (University of Strasbourg,
FR)
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submitted, 2021

We think coherent logic is well suited framework for automatic generation of readable proofs.
In contrast to common automated theorem proving approaches, in which the search space is
a set of some formulae and what is sought is again a (goal) formula, we propose an approach
based on searching for a proof (of a given length) as a whole. Namely, a proof of a formula
in a fixed logical setting can be encoded as a sequence of natural numbers meeting some
conditions and a suitable constraint solver can find such sequence. The sequence can then
be decoded giving a proof in the original theory language. This approach leads to several
unique features, for instance, it can provide shortest proofs. We use SAT and SMT solvers
for solving sets of constraints. We implemented the proposed method and we present its
features, perspectives and performance.

3.12 Proof mining in nonconvex optimization
Ulrich Kohlenbach (TU Darmstadt, DE)
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Proof mining uses so-called proof interpretations, such as suitable forms of Gödel’s functional
interpretation, to extract explicit computational information from given prima facie nonef-
fective proofs in mathematics. In recent years this has been successfully applied in convex
optimization with the extraction of effective rates of asymptotic regularity for cyclic projection
methods ([3]) and effective rates of metastability for Proximal Point Type algorithms such
as PPA and HPPA which approximate zeros of maximally monotone operators ([2, 4, 5]).
In order to be able to treat also nonconvex/nonconcave optimization problems one has to
generalize the concept of monotone operator. Recently, Bauschke et al. [1] studied as such a
generalization so-called comonotone operators. In the case studies [4, 5] of applying proof
mining to PPA and HPPA it becomes apparent that the monotonicity of A is used only in
a restricted form which makes it easily possible to adopt the extracted bounds as well as
the underlying qualitative convergence theorems also to comonotone operators ([6]). This
illustrates how proof mining also facilitates the generalization of proofs.

This research is supported by the ‘Deutsche Forschungsgemeinschaft’ (Project DFG KO
1737/6-2).
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3.13 Geometric theories versus Grothendieck toposes, questions w.r.t. a
possible constructive elementary approach

Henri Lombardi (University of Franche-Comté – Besancon, FR)
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We use the terminology and notations of dynamical theories. See [1, 2, 4, 8, 12, 13, 14].
Dynamical theories, introduced in [8], are a version without logic, purely computational,

of geometric theories. See also the paper [1] describing some advantages of this approach,
and pioneering articles [19, Sections 1.5 and 4.2], [18] and [11].

Dynamical algebraic structures are explicite in [12, 14] and implicite in [8], where they
are described through their presentations. They are also implicite in [13] and, last but not
least, in [9, D5], which was a main source: it is possible to compute inside the algebraic
closure of a discrete field, even if it is impossible to construct the structure. So it suffices to
consider the algebraic closure as a dynamical algebraic structure à la D5 rather than a usual
algebraic structure: lazy evaluation à la D5 gives a constructive semantic for the algebraic
closure of a discrete field.

Since geometric theories, which are concrete objects are closely related to Grothendieck
toposes, our aim is to describe, using a constructive external mathematical world à la Bishop
([3]) all the work on toposes in terms of geometric theories and dynamical theories. See
related work in [5, 6, 7, 15, 17] and a preliminary draft in [16].
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3.14 Verifiable Solving of Geometric Construction Problems in the
Framework of Coherent Logic

Vesna Marinkovic (University of Belgrade, RS)
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Geometry construction problems are one of the longest studied problems in mathematical
education. Solving construction problem corresponds to proving constructively a theorem
in a coherent logic form. Automated solving of construction problems has been studied,
however rarely in rigorous logical terms.

In this talk I will present a formal logical framework describing a traditional four phases
process of solving construction problems and a mechanism for automated generation of
solutions, both formalized and human-readable. For this purpose a solver for construction
problems ArgoTriCS and a prover for coherent logic ArgoCLP (both developed in our research
group) are used. It turns out that coherent logic is a natural framework for carrying out two
of four phases. In order to obtain proofs as close as possible to ones generated by humans,
automatically generated proofs in coherent logic form are simplified using a simplification
procedure integrated within ArgoCLP.
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3.15 No speedup for geometric theories
Michael Rathjen
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Geometric theories based on classical logic are conservative over their intuitionistic coun-
terparts for geometric implications. In the talk I plan to look at two aspects of geometric
theories.

The first will be concerned with the cost of transforming a classical proof in a geometric
theory into an intuitionistic one. The latter result (sometimes referred to as Barr’s theorem)
is squarely a consequence of Gentzen’s Hauptsatz. Prima facie though, cut elimination can
result in superexponentially longer proofs, posing the question of whether this transformation
can be achieved in feasibly many steps.

There is also an infinitary version of geometric theories formulated in the logics L∞ω

with arbitrary infinite (of any set size) disjunctions and conjunctions. These logics are very
expressive. I’d like to discuss the constructivity of the proof that classical L∞ω-proofs of
infinite geometrical implications can be turned into intuitionistic proofs. Can this proof be
carried out in CZF? An even more basic question presents itself: What is the proper notion
of infinite proof? The latter question is also relevant if one works in classical set theory
without AC (recall Barwise’s completeness theorem). Also the choice of the proof system is
relevant, for instance, if one wants to show that if a proof of phi from T exists in a forcing
extension then there is also one in the ground model (assuming phi and T are in the latter).

3.16 Constructiveness and lattices in Lorenzen’s work
Stefan Neuwirth (University of Franche-Comté – Besancon, FR)
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Joint work of Thierry Coquand, Henri Lombardi, Stefan Neuwirth
Main reference “The free pseudocomplemented semilattice generated by a preordered set”, work in progress.

URL http://lmb.univ-fcomte.fr/IMG/pdf/the_free_pseudocomplemented_semilattice_generated
_by_a_preordered_set.pdf

This is joint work with Thierry Coquand and Henri Lombardi.
Let (M, ≤M ) be a preordered set.
Let us define the free meet-semilattice over M . Let us consider the set H of unordered

lists of elements of M , denoted by a = α1 ∧ · · · ∧ αn; we shall define a relation ≤H on H by
the following deduction rules:
(1) if α ≤M β then α ≤H β;
(2) if a ≤H c then a ∧ b ≤H c;
(3) if c ≤H a and c ≤H b then c ≤H a ∧ b.
It is easy to prove that the converse holds in (3) and that ≤H is transitive by showing the
admissibility of the corresponding deduction rules. Furthermore, as (2) and (3) introduce
relations only between elements one of which is a list of at least two elements of M , the
converse holds as well in (1): this is a conservativity result.
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A meet-semilattice with least element 0 is pseudocomplemented if for every b there
is c such that a ∧ b ≤ 0 if and only if a ≤ c; the element c is denoted by b̄. Let us
define the free pseudocomplemented meet-semilattice over M . Let us consider the set H

generated inductively from M as the set of unordered lists of elements of H or of formal
pseudocomplements of elements of H; we shall define a relation ≤H on H by the deduction
rules (1)–(5) with:
(4) if a ∧ b ≤H 0 then a ≤H b̄;
(5) if a ≤H b then a ∧ b̄ ≤H c.
It is easy to prove that the converse holds in (1), (3), (4); but it is quite difficult to prove
that ≤H is transitive.

A meet-semilattice is σ-complete if for every sequence (a1, a2, . . . ) there is a meet∧
(a1, a2, . . . ). Let us define the free σ-complete pseudocomplemented meet-semilattice

over M . Let us consider the set H generated as before but with the additional inductive
clause of containing the sequences (a1, a2, . . . ) of elements of H written as formal meets∧

(a1, a2, . . . ); we shall define a relation ≤H on H by the deduction rules (1)–(8) with:
(6) if ak ∧ b ≤H c then

∧
(a1, a2, . . . ) ∧ b ≤H c;

(7) if c ≤H a1, c ≤H a2, . . . , then c ≤H

∧
(a1, a2, . . . );

(8) if a ∧ a ∧ b ≤H c then a ∧ b ≤H c.
It is easy to prove that the converse holds in (1), (3), (4), (7); the proof of the transitivity
of ≤H is much easier here because of the inclusion of the contraction rule (8) among the
deduction rules.

The first two constructions appear in Paul Lorenzen’s “Algebraische und logistische
Untersuchungen über freie Verbände” (1951). The third one appears in his manuscript “Ein
halbordnungstheoretischer Widerspruchsfreiheitsbeweis” (1944), in which he explains why this
construction is the semilattice counterpart to the proof of consistency of elementary number
theory: this theory may be viewed as contained in the free σ-complete pseudocomplemented
meet-semilattice over the set M of numerical propositions preordered by material implication.
“The fact that the logic calculuses are semilattices or lattices permits a simple logistic
application of free lattices” (Lorenzen 1951).

This talk is also an invitation to reflect upon mathematical objects (like the semilattices
here) as given dynamically by rules instead of being considered statically as completed
totalities.
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3.17 The distributivity of the category of dependent objects over the
Grothendieck category

Iosif Petrakis (LMU München, DE)

License Creative Commons BY 4.0 International license
© Iosif Petrakis

In [1] and [2] the type-theoretic axiom of choice, or the distributivity of the Π-type over the
Σ-type, is translated into Bishop set theory (BST) as the distributivity of the Π-set over the
Σ-set. We present this distributivity categorically, as the distributivity of the category of
dependent objects over the Grothendieck category. Similarly to the fact that the category of
dependent objects is defined through the Grothendieck category and the functor category, in
BST the Π-set can be defined through the Σ-set and the function set.
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3.18 Supercompactly generated theories
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There are a few standard ways to identify theories classified by a given topos. I discussed
how to do so starting from a theory of presheaf type, in the special case of a topos obtained
from a principal site, which is to say a site whose covering families are generated by a class
of individual covering morphisms, based on the fourth chapter of my forthcoming thesis. I
only got as far as presenting the case of topologies on the simplex category, but I illustrated
the background principles involved.

3.19 Proofs and computation with infinite data
Helmut Schwichtenberg (LMU München, DE)
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Joint work of Helmut Schwichtenberg, Nils Köpp

It is natural to represent real numbers in [−1, 1] by streams of signed digits −1, 0, 1. Al-
gorithms operating on such streams can be extracted from formal proofs involving a unary
coinductive predicate CoI on (standard) real numbers x: a realizer of CoI(x) is a stream
representing x. We address the question how to obtain bounds for the lookahead of such
algorithms: how far do we have to look into the input streams to compute the first n digits
of the output stream? We present a proof-theoretic method how this can be done. The
idea is to replace the coinductive predicate CoI(x) by an inductive predicate I(x, n) with the
intended meaning that we know the first n digits of a stream representing x. Then from a
formal proof of I(x, n + 1) → I(y, n + 1) → I(1/2(x + y), n) we can extract an algorithm for
the average function whose lookahead is n + 1 for both arguments.
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3.20 Coherent logic in representation and proving of informal proofs
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There are several different approaches to verification of proofs from mathematical textbooks.
I will discuss one idea for using coherent logic for representation of semi-formal textbook
proofs. Also, coherent logic vernacular can be used for automatic generation of more detailed
proof objects, and eventually generate formal proofs in language of different interactive
theorem provers. This approach is tested on two sets of theorem proofs using classical
axiomatic system for Euclidean geometry created by David Hilbert, and a modern axiomatic
system E created by Jeremy Avigad, Edward Dean, and John Mumma.
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3.21 Terminating sequent calculi for a class of intermediate logics
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Syntactic decision procedures for propositional intuitionistic logic usually exploit a suitably
formulated sequent calculus. There are various approaches known in the literature, the reader
can see [3] for an extended survey. These systems fail to satisfy one of the following four
desiderata: 1. a simple termination procedure which does not require a loop-checking, 2. the
invertibility of every rule of the calculus which eliminates the need for backtraking, 3. the
extraction of a finite countermodel out of a failed proof search and 4. modularity, i.e. the
possibility to extend the general methodology to various extension of intuitionistic logic.

We offer a new method based on labelled sequent calculi [2] which meets the desiderata
listed above. To start with, we propose a variant with respect to the usual Kripke semantics
for intuitionistic logic. In particular, we introduce strict Kripke models, i.e. models based on
finite transitive and irreflexive orders.

The standard truth condition for the implication is replaced by the following. x ⊩ A → B

if and only if the two conditions:
1. If x ⊩ A, then x ⊩ B

2. For all y (if x < y and y ⊩ A, then y ⊩ B).
hold. The two semantics are shown to be equivalent and thus intuitionistic propositional
logic proves sound and complete with respect to the strict semantics. This is shown using
the finite model property for intuitionistic propositional logic [1] and by providing an easy
transformation of finite partial orders into finite strict orders and vice versa. We introduce
the following abbreviation:

x ⊩ A > B ≡ for all y (if x < y and y ⊩ A, then y ⊩ B)

and we show that in every strict intuitionistic model condition 2. is equivalent to:
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2′. For all y (if x < y and y ⊩ A and y ⊩ A > B, then y ⊩ B)

The new semantics is employed to obtain a labelled sequent calculus G3I< in which
the rules for the implication → are obtained through those for the new connective >. The
following rules govern the implication connective:

x : A > B, Γ ⇒ ∆, x : A x : B, x : A > B, Γ ⇒ ∆
L →

x : A → B, Γ ⇒ ∆
Γ ⇒ ∆, x : A > B x : A, Γ ⇒ ∆, x : B

R →
Γ ⇒ ∆, x : A → B

x < y, x : A > B, Γ ⇒ ∆, y : A y : B, x < y, x : A > B, Γ ⇒ ∆
L >

x < y, x : A > B, Γ ⇒ ∆
x < y, y : A > B, y : A, Γ ⇒ ∆, y : B

R >, y fresh
Γ ⇒ ∆, x : A > B

The termination of the calculus G3I< is proved by showing that every proof search ends
and yields either a proof or a strict countermodel. This gives a completeness result and a
decision procedure for intuitionistic logic. The termination depends on the formulation of
the rule R> prevents the formation of loops.

Finally, the sequent calculus G3I< can be extended with relational rules which preserve
the properties of the base system. We focus on the extensions for intermediate logics
characterized by classes of frames with a condition of the form ∀xφ where φ is a quantifier-
free formula. The termination strategy encompasses all these systems and so we obtain
terminating calculi for intermediate logics with a universal frame condition and the finite
model property.
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3.22 Some remarks about Skolem-Noether Theorem
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We discuss a constructive proof of Skolem-Noether Theorem. In particular, the original proof
of Skolem was an early example of the technique of Galois descent. This is part of a general
constructive study of the theory of central simple algebra.
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4 Working groups

4.1 Tutorial on Agda, the dependently typed proof assistant
Ingo Blechschmidt (Universität Augsburg, DE) and Matthias Hutzler (Universität Augsburg,
DE)
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We give an introduction to Agda, a dependently typed proof assistant, loosely following a
tutorial by Martín Escardó given at Proof and Computation 2018 in Fischbachau.
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4.2 Working group on classifying toposes in algebraic geometry
Ingo Blechschmidt (Universität Augsburg, DE), Ulrik Buchholtz (TU Darmstadt, DE), Mat-
thias Hutzler (Universität Augsburg, DE), Henri Lombardi (University of Franche-Comté –
Besancon, FR), and Stefan Neuwirth (University of Franche-Comté – Besancon, FR)
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A logical way to present a Grothendieck topos is to give a geometric theory which is classified
by the topos. This point of view originated from Monique Hakim’s PhD thesis, in which she
determined such syntactic presentations of two important toposes in algebraic geometry, the
Zariski topos and the étale topos.

However, for many related toposes in algebraic geometry, similar syntactic presentations
are still lacking. This state of affairs only started to change in recent years, when the theories
corresponding to the fppf and the surjective topologies and when theories presenting the
infinitesimal and the crystalline topos have been determined.

In this working group, we studied several of the remaining toposes, and made progress on
several such, namely the cl, cdf, cdp and the f toposes.
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4.3 Zorn Induction
Peter M. Schuster (University of Verona, IT) and Ulrich Berger (Swansea University, GB)
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We put forward Zorn Induction as a competitor of Raoult’s Open Induction [3] in the
undertaking to rephrase as classically equivalent but computationally interesting induction
principles the minimal (or maximal) element principle known as Zorn’s Lemma [7]. As
compared to Open Induction, Zorn Induction works with chains rather than directed subsets,
and refers to a strict partial order. We expect Zorn Induction to be of use for computation
just as is Open Induction [1, 2], also in abstract algebra [5, 4]. A challenge will be how to
capture the nondeterministic consequent of Zorn Induction, as this does not fit directly the
setting of least fixed points [6].

By a (strict) partial order we understand a pair (X, <) where X is a set and < is a
transitive and irreflexive relation on X. An element x ∈ X is a lower bound of a subset Y

of X if x < y for all y ∈ Y . By lb(Y ) we denote the set of lower bounds of Y . Let P be a
property of subsets of X. We say that a subset A of X is P-progressive if, for all subsets Y

of X having property P, if A contains all lower bounds of Y , then A contains an element of
Y , i.e.,

∀Y ⊆ X(P(Y ) ∧ lb(Y ) ⊆ A → Y ∩ A ̸= ∅) .

We now can formulate Zorn Induction as the principle

∀A ⊆ X(A chain-progressive → X ⊆ A).

With classical logic, Zorn Induction is equivalent to Zorn’s Lemma in the form

∀B ⊆ X(B inductive and nonempty → B has a minimal element)

where B is inductive if every chain contained in B has a lower bound in B, and b is a minimal
element in B if b ∈ B and there is no y ∈ B with y < b.
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