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Abstract
Everyday life takes place in space and time, and spatial experience lies at the heart of our
existence. Understanding how we conceive spatial relations, and how we solve spatio-temporal
problems, is therefore key to understanding human cognition. Spatial cognition research has
advanced considerably over the past decades, with major successes particularly in computational
implementations of knowledge representation and reasoning methods. Still, a range of key issues
continue to pose major challenges. The goal of this report is to discuss the various options for the
formalisation, implementation and automated solution of spatial problems including the following
issues: the identification and specification of relevant concepts as expressed in human language;
modules for automated understanding of domain descriptions; the use of spatial structures and
affordances for direct spatial problem solving; and, the development of efficient planning systems
capable of providing feasible solutions to spatial problems.

This report documents the program and the outcomes of Dagstuhl Seminar 21492 “Representing
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Preamble: The idea of organising a Dagstuhl seminar on representing and solving spatial
problems started with a discussion between Paulo Santos and the late Christian Freksa over
a pair of Erdingers1 during a previous Dagstuhl Seminar2 in 2015. In this discussion we tried
to solve, once and for all, the underlying reasoning strategies for spatial problem solving,
whether it is logical-formal-symbolic, or it is totally/partially grounded on the real world (on
what Christian called “the spatial substrates”). Considering the contributions in this volume,
we believe the answer lies in the spectrum of approaches and that the right choice is dictated
by the application domain. Indeed, one of the concrete contributions of this meeting was a
discussion of possible problem scenarios that should constitute a Spatio-temporal Problem
Repository to guide the future development of this field.

Summary of contributions: Spatio-temporal reasoning is a fundamental aspect of
problem solving in general, and it occupies an ubiquitous place in AI and robotics, in the
sense that almost all problem domains contain a spatio-temporal component. Paradoxically,
despite its importance, the combination of spatial and temporal reasoning is one of the AI
subfields with a wider gap between the current scientific progress and the human commonsense
performance.

This seminar received contributions from researchers working in the various disciplines
involved in investigating the problem of representing and reasoning about spatial problems
(both in humans and artificial systems). The discussions were initially motivated by the
following four main topics that are used below to organise the contributions in this collection:

1: Representation.
2: Formalisation.
3: Description.
4: Problem solving.

Representation
The discussions around the topic Representation were motivated by the following questions:
How do humans conceptualise and mentally represent spatial problems? What is the role
of high-level spatio-temporal structures for perceiving spatial problems, for manipulating
spatial configurations, and for commonsense spatial problem solving?

In this volume, Cohn (Section 3.3) lists seven important problems that could be obstructing
the development of automated commonsense spatial reasoning, including the lack of a proper
definition of commonsense reasoning, the need for a foundational ontology of space, the

1 One of which the former agent managed to spill all over the Schloss cellar floor!
2 Dagstuhl Seminar 15192 – The Message in the Shadow: Noise or Knowledge?

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15192
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problem of how to tackle vagueness and implicit knowledge and the need for suitable default
reasoning mechanisms for dealing with spatial information. The acquisition of commonsense
knowledge and the role of embodiment in perception and spatial awareness were also pointed
out as key open research questions. Complementarily, Kuhn (Section 3.9) advocates for the
following three conceptualisations for spatio-temporal phenomena: (i) space-time varying
fields of attributes, (ii) objects and object collections, (iii) events over fields and objects.
Wörgötter (Section 3.22) goes one step up in the abstraction level suggesting the investigation
of the very idea of concepts and how stimulus-driven experience drives the formation abstract
thought. Starting from a distinct standpoint, Sioutis’ arguments (Section 3.17) go in a similar
direction with the proposal of a generic neurosymbolic framework for integrating qualitative
spation-temporal reasoning with neural models from a probabilistic perspective. The idea
for a “(symbolic) spatio-temporal knowledge base, naturally grounded on physics and human
cognition” could be a good starting point for testing representation frameworks. Langley
(Section 3.10) describes a cognitive architecture for embodied agents, whose recent extensions
(towards more flexible representation of space and processes) could provide a fertile ground
for the development of research into the core problems in the representation and reasoning
about commonsense spatial information.

Formalisation
This topic was motivated by the investigation of what would be a suitable formalism for
commonsense problem solving that allows an accurate, flexible and readable knowledge
representation for spatio-temporal effects of actions performed by an intelligent agent.

Much work in spatio-temporal reasoning has focused on Qualitative Spatial Reasoning
(QSR) [11], a field that attempts the formalisation of spatial knowledge based on primitive
relations defined over elementary spatial entities. Although the combination of (qualitative)
temporal and spatial reasoning is not infrequent in the literature in general (see for instance
[1]), QSR approaches have traditionally overlooked a formal treatment of actions. Aiming to
bridge the gap between commonsense reasoning, reasoning about actions and change and
qualitative spatial representation and reasoning, some recent research has focused on spatial
puzzles and games [2, 12, 3], as these domains offer a small number of objects requiring a
minimum background knowledge about unrelated features, while they keep enough complexity
to constitute a challenging problem of KR. This is in line with Cabalar’s contribution in this
volume (Section 3.2), where the challenging problem of evidence analysis of digital forensics is
proposed as a challenging domain for the application of spatio-temporal reasoning strategies.
Calabar also suggests a set of minimum requirements for a KRR formalism about common
sense, which includes simplicity, natural understanding, clear semantics, computability and
elaboration tolerance, where logical formalisms allowing non-monotonic reasoning is pointed
as the best candidate to fulfil these requirements.

One of the most modern computational tools for non-monotonic reasoning is Answer
Set Programming (ASP). Ludäscher (Section 3.12) describes two technical challenges in
the ASP encoding of QSR reasoning systems, namely the difficulty in distinguishing spatial
configurations using the natural ASP encoding of pairwise relations; and the exploration of
the hierarchical structure of various QSR formalisms. While Ludäscher describes the latter
issue from an implementation perspective, Stell (Section 3.18) suggests a research program to
investigate the interaction with hierarchical models of discrete space and time representing
changes at different levels of detail. The key idea here is to combine granular change with
temporal change for supporting reasoning about effects of actions at different levels of detail.
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From a more foundational standpoint, Borgo (Section 3.1) argues for the creation of a
systematic program for the formal study of spatial notions, such as between, convex, simplex,
parallel etc. This program should include the comparison of distinct perspectives for such
modelling, facilitating the understanding of cognitive representation and reasoning. The
notion of path is given as an example of how this systematic program could be developed.

Pease (Section 3.14) proposes the formalisation of everyday concepts and facts in a
high-level classical logic engine called Suggested Upper Merged Ontology (SUMO). This
formalisation would constitute a collection of real-world spatio-temporal problems that could
be used to test the sufficiency of spatial knowledge representation strategies.

Description
This topic deals with the development of human readable descriptions of the inputs, reasoning
steps and solutions of spatial problems. In particular, it addresses whether (and to what
extent) it would be possible to develop high-level representations or interfaces for dealing
with natural language and/or diagrammatic descriptions that allow specifying both the input
knowledge and the output conclusions in terms of textual descriptions of spatial problems.

Research on spatio-temporal language highlights the range of meanings across contexts
[13] as well as patterns of usage in relation to mental representations [14] and problem-solving
[15] in various domains. Part of the insight gained in this research concerns the significance of
what can (or will normally) not be represented in language. Often, non-verbalised concepts
are those that are best understood through features of the spatial world itself. For instance,
we may verbalise only the high-level goal of an everyday action (such as dress up), because
every detailed action is represented through a combination of world knowledge with the
affordances of the actual objects in question. There is no need to learn or conceptualise how
to handle every possible instance of these objects, because the affordances of each exemplar
are sufficiently clear to act upon as required. Some of these issues feature in the contributions
of Dobnik (Section 3.4), Lopes (Section 3.11), Scheider (Section 3.16), Stock (Section 3.19)
and Tenbrink (Section 3.20)

The following three semantic representational dimensions are listed by Dobnik (Section
3.4), as a summary of the core aspects of spatial descriptions studied in areas of linguistics,
psychology, and computer science: (i) scene geometry, (ii) world knowledge and (iii) dynamic
aspects of interaction. Dobnik’s contribution also points out to a few open problems in this
field, such as the lack of a unified computational language model that includes all of the cited
dimensions, the limitation in the current research of grounding language in perception, that
mostly deals with geometric perceptual context, and the need for experimental evaluation of
models in real open domains.

Lopes (Section 3.11) suggests the use of the differences and interrelations between
maps and navigation instructions to instantiate three cognitive core strategies of problem
solving (attributed independently to McCarthy and Sloman), which are solving problems by
following instructions, by descriptive knowledge representation and by analogical reasoning.
Complementary, Stock (Section 3.19) argues that the current modelling of relative location
descriptions is too restricted, not taking into account important contextual factors such as
physical environment and objects in it; the observer’s goals and expectations; the audience
location and knowledge. Two main research advances were then proposed to push the
boundaries of this field: (i) the incorporation of factors proved to be important in linguistic
and cognitive science research and (ii) cognitive science investigation on some neglected
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factors that could be used in computational models, such as the influence of users’ goals in
the use of spatial relation terms. Tenbrink (Section 3.20) discusses the gap between human
descriptions of routes and the state-of-the-art in the automatic generation of such descriptions
to motivate three main challenges that deserve further attention: the combination of visual
and verbal information, the consideration of change over time, and the flexibility in the use of
various reference systems. Scheider (Section 3.16) contributes to this discussion suggesting the
study of transformation models for concepts that are constitutive of spatial information, such
as the concept of location, field, object, event and network. Arguing that transformations
lie at the core of spatial reference systems, the author suggests that transformation models
could be used to handle the variability of spatial information conceptualisations.

Problem Solving
The discussion about problem solving was initially motivated by questions about whether
or not it would be possible (and desirable) to develop interfaces for dealing with spatial
configurations including diagrammatic depictions and natural language descriptions to solve
spatial puzzles in similar ways as humans do; and also, what are the commonsense problem
solving capabilities involving spatio-temporal features including temporal explanation and
planning under physical/geometric qualitative or semi-quantitative constraints. This issue
also includes the investigation of appropriate problem solving algorithms and their potential
applications to real-world domains that could be of interest to industry.

Calculi for qualitative temporal and spatial reasoning have a long history [4, 5]. More
recently the relation between 2D and 3D structures of space (plus time) and their 1D formal
descriptions have been investigated; the goal is a farther reaching exploitation of spatial
structure for spatial problem solving. Cognitive architectures for robotic agents that make
direct use of knowledge and spatial affordances in physical environments (‘knowledge in
the world’) are currently being developed [10]. The knowledge in the mind of these agents
controls their perception and action in ways that simplifies spatial configurations in order to
reduce the difficulty of solving the spatial problem at hand, while knowledge about spatial
relations is represented directly in perceivable and manipulable physical structures [9]. A
principle underlying this approach is the use of mild abstraction [7] as employed in map
navigation or in constructive geometry [8]. Much QSR and related reasoning research was
originally motivated by the obvious discrepancy between logic-based metric computation
(where spatial directions may be defined, for instance, by exact geometric angles and location
specifications) and human concepts (such as “to the left”). Falomir’s contribution (Section
3.5) starts from a discussion of the need to use cognitive heuristics for problem solving
directly acting in the physical world, and argues for an effective combination of machine
learning with automated reasoning for spatial problem solving. Spatial reasoning problems
based on Perceptual/Differential Ability tests (PAT/DAT) are suggested as test domain
for this development. Instead of assuming PAT/DAT as test domain, but still advocating
the investigation of cognitive heuristics, Kroll (Section 3.8) describes recent results on the
use of gaze heuristics for guiding an autonomous agent, and suggests the use of these ideas
to dexterous assembly tasks; whereas Zachmann (Section 3.23) describes several issues
pertaining the development of 3D geometric simulation methods for discovering affordances.

Hazarika (Section 3.6) discusses the use of mental maps defined over the space-time
information structures underlying spatial problems (the Spatial Substrate [6]) for understand-
ing how objects and their affordances affect the way humans reason about space. Following
a similar line, Nath (Section 3.13) suggests the use of diagrammatic representations and
reasoning to express the spatial problems and their physical substrate.
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More explicit representation tools for problem solving were described by Homem (Section
3.7) and Santos (Section 3.15), in which they propose extending their previous work on
applying case-based reasoning combined with QSR techniques towards complex real-world
problems, such as real-time strategy games (Section 3.7) and collaborative mission planning
for autonomous maritime vehicles (Section 3.15). Similarly, Wolter (Section 3.21) advocates
the investigation of spatial problem solving techniques in dynamic domains (e.g. physical
manipulation games) that allow for the progressive development of systems towards human-
level capabilities.

Spatio-temporal Problem Repository
An issue that was of common agreement between the participants of the seminar is the need
to create a Spatial Reasoning Problem repository. A few possible domain scenarios were
discussed during the seminar, as listed below, but their full description is left for a future
document.

1. Digital Forensics, cited in Section 3.2;
2. Puzzles such as Crazy Machines and Cut the Rope, cited in Section 3.2;
3. Angry birds, cited in Section 3.21
4. TPTP-style spatial problems, cited in Section 3.14
5. Perceptual/Differential Ability tests (PAT/DAT), cited in Section 3.5
6. Interpretation and generation of map descriptions (discussed during the seminar)
7. Multi step reasoning VQA (discussed during the seminar)

Ignore the images and concentrate on the scene graphs
Turn the scene graphs into logical formalism

8. From puzzle’s descriptions to solutions (discussed during the seminar)
Input: Puzzles described as diagrams, or described with words or both
Output: A solution
it involves: Multiple step reasoning, combining diagrams, language and problem solving
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3 Contributions

3.1 Path in mereology
Stefano Borgo (National Research Council – Povo (Trento), IT)
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Main reference Stefano Borgo, Claudio Masolo: “Full Mereogeometries”, Rev. Symb. Log., Vol. 3(4), pp. 521–567,
2010.

URL http://dx.doi.org/10.1017/S1755020310000110

The formal study of spatial notions (like between, convex, simplex, parallel and so on) whose
expressivity lies on the landscape with mereology on the one hand and mereogeometry on
the other, has brought interesting results in the last 30 years. Research shows that the
mereogeometrical realm offers a rich variety of formal systems with respect to the systems
existing within the Euclidean geometry approach. Notwithstanding, today our knowledge
of these notions is still partial, the study of these systems lacks systematicity, and an
overall research program has not been proposed. Spatial information within the mereological
framework can be modeled from different perspectives. (I wrote “spatial information” but
this observation applies more broadly, e.g., it can be stated for temporal and cognitive
information.) Not surprisingly, many spatial notions that are exploited in common-sense
reasoning have rich conceptual flexibility and rich expressivity power. The formal study of
the alternative interpretations they allow and the systematic comparison of these alternatives
would give us a wide range of formal systems which are, I believe, effective tools in exploring
(human and beyond) cognitive representation and reasoning.

Recently, I have concentrated on one of these notions which I find very promising, namely,
the notion of path. This notion has not received much attention in mereology even though it
seems to be as old as our study of space. My interest on this notion has two motivations.
First, it is well developed in mathematical topology and characterises almost all spaces
encountered in analysis. Furthermore, all metric spaces are Hausdorff spaces. The rich
structure that the notion of path allows to build in mathematics pushes for more attention.
In comparison, we know almost nothing about how to understand path as a mereological
notion. Second, it seems to me that path is a precursor (if not a precondition) to understand
other notions that have been studied in mereogeometry starting from the very notion of
congruence. My suggestion is to investigate our formal understanding of path moving away
from the simple (and simplistic) mathematical intuition of path as “there is a continuity of
positions from x to y”. There are different ways to make sense of this intuition of “path” in
mereology and they give rise to a variety of path-concepts.

Generally speaking, our cognitive understanding of space relies on a series of concepts
which we use to build qualitative models. We know that each of these models relies on several,
often implicit, modeling choices. One problem that we face is the mutual incompatibility
of most of these models. Some claim that this incompatibility is in the nature of these
representation systems. I would not be so sure. A deeper study of cognitive primitives,
and of the possible readings that their informal understanding allows, would give us more
flexibility in building and understanding these very models, and this is a first step toward the
interconnection, if not integration, of what today we consider isolated and context-dependent
systems.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1017/S1755020310000110
http://dx.doi.org/10.1017/S1755020310000110
http://dx.doi.org/10.1017/S1755020310000110
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3.2 Formalising Qualitative Spatial Knowledge: position paper
Pedro Cabalar (University of A Coruña, ES)

License Creative Commons BY 4.0 International license
© Pedro Cabalar

This position paper summarises the debate and drawn conclusions on the topic of Formalisa-
tion inside the Dagstuhl Seminar on Representing and Solving Spatial Problems (21492).

Introduction

One of the long-term goals of Artificial Intelligence (AI) is to endow computers with common-
sense reasoning, a topic that dates back to the very beginning [10] of the area of Knowledge
Representation and Reasoning (KRR). A device with common sense should be capable of
making similar assumptions as those made by humans in ordinary situations of their daily
life. These assumptions involve common knowledge about their physical environment, the
behaviour of other agents, the existing interactions and their possible effects, all of them,
crucial capabilities for the development of intelligent robotic systems. Our group in the
University of A Coruña is specialised in KRR mostly under the paradigm of Answer Set
Programming [2] (ASP), a popular logic programming formalism based on the answer set (or
stable model) semantics [9] and well-suited for practical KRR and problem solving. Although
great part of our research has been focused on theoretical foundations of ASP, we are known
in the area for our results in extensions of this paradigm, especially with the addition of
modal temporal operators [1], epistemic reasoning [4] and causal reasoning [5]. One of the
goals for these fundamental results is the formalisation of dynamic or action domains, with
the definition and interpretation of action languages and the study of different kinds of
temporal problems such as prediction, explanation, planning or diagnosis. An application
domain in which we became recently interested is the use of spatio-temporal reasoning
for evidence analysis in Digital Forensics, being actively involved in an European COST
action3 on that topic. In collaboration with Paulo E. Santos, one line of research where
we have also been particularly active is the formalisation of common sense reasoning about
actions with Qualitative Spatial Reasoning. In particular, in a series of papers, [3, 6, 7, 8]
plus [11, 12, 13], we have studied domains involving flexible objects like strings and make
them interact with holed objects. Following a bottom-up methodology well-established in
KRR, we have considered different families of puzzles involving strings, starting from simpler
cases and gradually increasing the complexity of the operations required for solving the
puzzle.

Discussion on Formalisation during the Seminar

One of the main four topics in the seminar was formalisation of Qualitative Spatial Reasoning
(QSR). During the first round of presentations, I presented an introduction to KRR explaining
some of the basic concepts and the usual scientific methodology followed in the area. For
instance, among the desirable goals of a KRR formalism, we may include:

3 DigForASP: Digital Forensics – evidence Analysis via intelligent Systems and Practices, European
COST action CA-17124. https://digforasp.uca.es/
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1. simplicity: the formalism should deal with a minimum amount of expressions and should
allow compact descriptions

2. natural understanding: that is, some kind of correspondence with natural language or
human methods of communication

3. clear semantics: an unambiguous correspondence between syntax and semantics, so that
humans have a way of accurate communication with the machine

4. computability: the reasoning tasks associated to our language should be computable in an
efficitent way, or at least, their computational complexity (or even decidability) should
be known.

5. elaboration tolerance or flexibility: small changes in a problem should mean small changes
in its representation in our KRR language.

The most usual candidate languages used in KRR that satisfy these goals up to a reasonable
extent are logical formalisms, especially those allowing non-monotonic or default reasoning, if
we are concerned about elaboration tolerance. Curiously, the goal of natural understanding
(number 2) seems to require a variation in the case of QSR, since humans usually combine
natural language with diagrams when they wish to communicate spatial knowledge. For this
reason, the seminar included a thorough debate about diagrams as a representation tool. One
of the conclusions was that diagrams may act as a perfectly valid KRR formalism containing
both qualitative and sometimes quantitative information. Diagrams usually contain some
features that provide accurate spatial information, whereas others are just illustrative: for
instance, in a spreadsheet chart using bars, the height of the bar faithfully corresponds
to some measured quantity, whereas its colour or width is usually selected for illustration.
Similarly, a subway map just illustrates the existing connections, but distances have no direct
correspondence with the real geographic distribution. Automated reasoning and knowledge
representation can be performed on the diagram features that are actually representative.

Another part of the discussion about formalisation had to do with the usual methodology
in KRR based on so-called drosophila examples. The name comes from an analogy proposed
by Alexander Kronrod but made popular by John McCarthy: geneticists used the drosophila
(or fruit fly) to study the genome because it is a simple organism but it keeps enough
complexity to perform experimentation on the topic. In the same way, KRR in Artificial
Intelligence has frequently used small examples (games, puzzles, small scenarios, etc) focused
on some given feature under study. In many cases, the KRR formalisms have evolved by
a successive incorporation of more complex features, covering new challenging examples
unsolved before. An example of that methodology is our aforementioned work on puzzles
with strings and holed objects. After some discussion about the adequacy of counting with
challenging scenarios, an interesting proposal promoted by Sabine Timpf is preparing a
repository with several groups of problems. This repository has been already started as
an online board covering the categories: (1) problems with no representation or reasoning
required; (2) problems with implicit representation required; (3) problems that require an
explicit representation of knowledge; (4) problems that require representation and reasoning
or problem solving algorithms.

One interesting feature that attracted much attention among the participants from
different disciplines was the treatment of affordances, that is, finding a goal-driven utility for
a given object or spatial configuration, possibly different from its normal or intended use.
For instance, we know from movies that a high-heeled shoe can be used to drink champagne.
Several possible drosophila have been discussed as challenging scenarios for experimentation
on affordances, especially video games that require imaginative solutions (like Crazy Machines
or Cut the Rope). As ongoing work, we expect to collect these examples in a larger repository
and make it publicly available soon.
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3.3 The Challenge of Automated Commonsense Spatial Reasoning
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challenge”. In Human-Like Machine Intelligence (ed.S. Muggleton and N. Chater), p. 405. Oxford
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URL https://doi.org/10.1093/oso/9780198862536.003.0020

Achieving commonsense reasoning capabilities in a computational system has been one of the
goals of Artificial Intelligence since its inception in the 1960s [32, 31, 43]. However, as Marcus
and Davis have recently argued [30]: “Common sense is not just the hardest problem for AI;
in the long run, it’s also the most important problem”. Moreover, it is generally accepted
that space (and time) underlie much of what we regard as commonsense reasoning. For
example, in the list of commonsense reasoning challenges given at www-formal.stanford.
edu/leora/commonsense/, most of these rely crucially on spatial information.
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From the 1990s onwards, considerable attention has been given to developing theories
of spatial information and reasoning, where the vocabulary of the theory was intended
to correspond closely with properties and relationships expressed in natural language but
the structure of the representation and its inference rules were formulated in terms of
computational data and algorithms [17, 14, 19, 18, 29, 27, 20, 46, 16, 15, 24, 34, 35] or in a
precise logical language, such as classical first-order logic [38, 25, 6, 5, 7, 21, 37, 36, 9, 22].

However, despite a great number of successes in dealing with particular restricted types of
spatial information, the development of a system capable of carrying out automated spatial
reasoning involving a variety of spatial properties, of similar diversity to what one finds in
ordinary natural language descriptions, seems to be a long way off. The lack of progress in
providing general automated commonsense spatial reasoning capabilities suggests that this is
a very difficult problem.

As with most unsolved problems, there are a variety of opinions about why commonsense
spatial reasoning is so difficult to achieve and what might be the best approach to take. A
point of particular contention, which is explored in detail in the full chapter [3], is: what is
the role of natural language in relation to commonsense spatial reasoning?

The main purpose of the chapter is to help researchers orient and focus their investigations
within the context of a highly complex multi-facetted area of research. We believe that
research into computational commonsense spatial reasoning is sometimes misdirected for
one or both of the following reasons: a) the goal of the research may incorporate several
sub-problems that would be better tackled separately; b) the methodology of the research
may assume that other related problems can be solved much more easily than is actually the
case.

The chapter gives a fairly general (though not comprehensive) overview of the goal of
automating commonsense reasoning by means of symbolic representations and computational
algorithms. Previous work in the area will be surveyed, the nature of the goal will be clarified
and the problem will be analysed into a number of interacting sub-problems. Key difficulties
faced in tackling these problems will be highlighted and some possibilities for solving them
will be proposed.

The chapter is structured in terms of the following list of what we consider to be the
most important problems that are obstructing the development of automated commonsense
spatial reasoning systems:

1. Lack of a precise meaning of “commonsense reasoning”.
2. Difficulty of establishing a general foundational ontology of spatial entities and relation-

ships.
3. Identification and organisation of a suitable vocabulary of formalised spatial properties

and relations.
4. How to take account of polysemy, ambiguity and vagueness of natural language.
5. Difficulty of modelling the role of various forms of implicit knowledge (context, background

knowledge, tacit knowledge).
6. Lack of a default reasoning mechanism suited to reasoning with spatial information.
7. Intrinsic complexity of reasoning with spatial information.

The main body of the chapter is largely negative in tone: pointing out the challenges
in endowing machines with commonsense spatial reasoning and the problems listed above.
Of course there has been progress towards this goal, and indeed we mention some of this
in the chapter. Foremost in this direction is the work on qualitative spatial representation
and reasoning (QSR). There are now a large number of QSR calculi capable of representing
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spatial information about (mereo)topology, direction, shape, distance, size among other
aspects of spatial information. The computational complexity of reasoning with many of
these calculi, at least the constraint languages associated with them, has been investigated
thoroughly, and tractable subclasses identified (e.g. [39]). There are toolkits for reasoning
with many of these, such as SparQ [45] and for extracting QSR representations from video
data, e.g. QSRlib [23]. Moreover there are many implemented systems, particularly in the
domain of activity understanding which exploit QSR (e.g. [13]) or which learn about spatial
relations (e.g. [2]) from real world data. There is still though a disconnect between much
of this work on QSR and the real problems of commonsense reasoning, as noted by [11].
Davis has contributed much to the field of commonsense reasoning, and spatial reasoning in
particular e.g. his work on liquids [10] and containers [12].

There has also been work addressing the problem of how to acquire symbolic knowledge
from perceptual sensors which are typically noisy and only incompletely observe the world,
e.g. because of occlusion. Approaches in the literature which try to address these issues,
include the use of formalisms which explicitly represent spatial vagueness such as [8], or ways
of smoothing noisy detections (e.g [42]), building probabilistic models of QSR, e.g. [28], or
by explicitly reasoning about occlusion, e.g. [4].

As is the case for AI in general, the more task/domain is constrained and well specified,
the easier it is to come up with a (spatial) theory that is sufficient for appropriate reasoning
and inference. The real challenge is to achieve general commonsense (spatial) reasoning.

In the chapter we decompose the problem of achieving automated commonsense spatial
reasoning into a number of sub-problems (seven to be precise), which we consider to be key
to solving the general problem, and are sufficiently independent from each other as to be
addressed separately. Possibly, we have missed out further important problems, or conflated
issues that would be best treated separately.

For example, one issue that we do not discuss much is how a commonsense knowledge
could be acquired by an automated reasoning system, and in particular spatially related
knowledge4. One approach, adopted by the CYC system already mentioned above is to
manually specify such knowledge; the challenge here is the enormity of the knowledge and it
is clear that despite several decades of research and development this remains an unfinished
enterprise. The alternative is to try to acquire such knowledge via a process of learning. The
NELL project [33] aims to learn such knowledge from text. An alternative is to learn from
multimodal data, which has the advantage in simultaneously learning a semantic grounding
in the perceptual world. For example [1] show how the meaning of object properties, spatial
relations and actions, as well as a grammar, can be learned from paired video-text clips,
while [40] demonstrate how the different senses of spatial prepositions such as in, above,
against, and under can be acquired from human annotations in a virtual reality setting.

Another issue we hardly discuss is how embodiment affects perception and spatial aware-
ness5. Tversky, among others, has discussed at length how embodiment affects the human
reasoning: “Spatial thinking comes from and is shaped by perceiving the world and acting in
it, be it through learning or through evolution” [44]. There is work in AI which takes an
embodied approach to spatial cognition and spatial commonsense (e.g. [2, 41]) but more

4 Use of automated knowledge extraction is potentially a way to circumvent problems that arise in several
of the categories of difficulty that we identified. In particular problems 3 and 5 above and to some
extent also 2 and 4.

5 Embodiment could be regarded as being the source of a particular (perhaps especially significant) form
of implicit/tacit knowledge (see problem 5 above). Though it does seem it also affects reasoning, perhaps
by providing an unconscious way in which the constraints of space and time become apparent to us.
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research on this is certainly needed. Possibly it is a way that humans and other intelligent
animals can mitigate the problem of computational complexity (6) – their “embodiment”
circumvents the need for spatial reasoning in many cases because we can directly experience
the consequences of spatio-temporal properties and relationships.

Most of the problems we discuss actually apply to commonsense reasoning in general,
rather than exclusively to spatial reasoning; and yet in the examples we have consider, it is
primarily in the spatial aspects of semantics and reasoning where the difficulties lie. This
is because the spatial domain is extremely rich and manifests huge variety and complexity.
Issues relating to ambiguity vagueness are particularly apparent for spatial relationships
because, although we have well-developed mathematical theories within which geometrical
constraints can be precisely defined, there is no direct mapping from natural language terms
to these precise constraints. And, even if these interpretative problems are circumvented,
reasoning about space involves many highly intractable computations (though perhaps these
go beyond the realm of commonsense).

Our analysis is not intended to be prescriptive of a particular research direction or
methodology6. As well as exposing a large number of problems, we indicate a variety of
different approaches that might lead to their solution. Our aim is primarily to provide an
overview that would help researchers progress effectively by focusing their attention on some
particular aspect of the highly complex problem of achieving automated commonsense spatial
reasoning.
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Spatial descriptions have been studied extensively in linguistics, computational linguistics,
psychology, computer science, robotics and geo-information science. Theoretical work suggests
that the following are the relevant semantic representational dimensions: (i) scene geometry:
a two-dimensional or three-dimensional coordinate frame in which we can represent geometric
objects and angles and distances between them; (ii) world knowledge: object conceptualisation
and dynamic kinematic routines between objects; (iii) dynamic aspects of interaction such as
assignment of perspective or frame of reference: directionals such as “to the left of” require a
specification of a viewpoint, e.g. “from where I stand”.

Physical sciences have developed ways in which space can be described with a high
degree of accuracy, for example by measuring distances and angles. Such measures can be
represented on a continuous scale of real numbers. However, humans refer to space quite
differently: descriptions such as “the chair is to the left of the table” or “turn right at
the next crossroad” refer to discrete units such as points, regions and volumes and require
knowledge about how the objects related by a preposition interact with each other. Since
spatial descriptions connect human conceptual and perceptual domains and distributions
of perceptual features are associated with conceptual labels they are notoriously vague.
Generation and understanding relies on mechanisms of attention determined from both the
perceptual and linguistic communicative contexts and contextual distractors. Although the
challenges for computational modelling of spatial language are sufficiently well-defined, to
date there has been no unified computational language model that would include all aspects
of their meaning.

Associating linguistic descriptions with perceptual representations is known as grounding
language in perception. The majority of the current computational models used in situated
agents only consider geometric perceptual context as a meaning component of spatial
descriptions (see [3] for an example and references). Our earlier work focuses on individual
components that could be applied in spatial language interpretation and generation. In
[7, 8, 5, 13] we estimate the effect a world knowledge (i.e. functional vs geometric knowledge)
on the use of spatial preposition from a large corpus of image descriptions. We also find
the strength of association between different object pairs and prepositions and generalise
categories of objects that prepositions occur with. Such model can be used in addition to the
geometric model to identify the most natural preposition to be used with a particular pair of
objects. In [5] we test the functional-geometric hypothesis as a function of perplexity of a
neural language model which we train on a much larger corpus of spatial descriptions from
image captions. In [4] we also examine if the functional-geometric bias of spatial relations is
also expressed in the geometric arrangement of objects. In [6, 9] we examine how the spatial
perspective is assigned in dialogue interaction between human conversational partners.

The deep learning approach using artificial neural networks has shown that they can
successfully learn multimodal representations, in particular grounded language models in
images in an unsupervised fashion in the domain of image captioning. Consequently, deep
learning has the potential to be a useful approach to the problem of learning multimodal
representations of the semantics of spatial descriptions [11, 12, 14]. Furthermore, deep
learning describes a family of neural network models and there are some early examples
in the literature of the application of neural networks to the problem of learning spatial
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representations [17, 2] which, however, have only been tested and implemented within a
constrained experimental environment and participant responses rather than in real open
domains.

The discussions in this seminar addressed the issues related to identifying the components
of spatial semantics and how their representations can modelled both top-down and bottom-
up. A central issue that has been identified is that of the role of affordances in spatial
cognition which reminds us of the distinction made in [16]. It has been concluded that
while there has been an important work done related to modelling spatial geometry (where)
the effect of interacting objects and detection of affordances (what) is still one of the most
challenging open questions. Interestingly, this direction leads spatial cognition away from
its core geometric modelling to modelling of common sense world knowledge which can
be expressed in neural language models and ontologies. Ontologies encode knowledge of
their designer(s) top-down and this raises an interdisciplinary research question to what
degree such information can be integrated in the bottom up data-driven systems (neural
language models, visual embeddings), a problem that is commonly known as information
fusion. Different spatial problems appear to rely on different sources of knowledge and
therefore a need was identified to construct collections of spatial problem sets on which
different systems can be studied and evaluated, similarly to the work on natural language
inference [1]. Data-driven resources collected by the machine learning community such as
the Visual Genome dataset [15] are also useful for constructors of rule-based systems and
cognitive researchers as they provide examples of spatial language use and cognition. Here,
the central questions are what aspects should be modelled, what are the basic modelling
building blocks and what level of granularity of representation should be considered. An
interesting connected discussion point was the relation between representations used to model
spatial problems and descriptions in natural language. While formal spatial representations
aim to be consistent and unambiguous, descriptions in natural language are underspecified
(ambiguous) and frequently inconsistent. However, they are used in interaction between
several participants who can exploit interactive mechanisms such as joint attention and
clarification to resolve inconsistencies when they arise, for example to resolve reference [10].
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3.5 Towards Bridging the Gap between Spatial Reasoning and Machine
Learning for Solving Spatial Problems
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Everyday we are solving spatial problems (i.e. finding a new address in a map, folding clothes,
solving puzzles with your kids, etc.). These problems appear in our real physical space and
we are solving them there. According to [5] a spatial problem is: (1) A question about a
given spatial configuration (of arbitrary physical entities) that needs to be answered. For
example: is there water in a glass? (2) The challenge to construct a spatial configuration
with certain properties from a given spatial configuration. For example, playing tic-tac-toe.

How do we humans solve problems? As Helie and Pizlo mentions [7]: “The travelling
salesperson (TSP) problem with only 20 cities has 19!/2 tours, which is about 1017 possible
states. The number of neurons in the brain is one million times smaller than this number.
And our working memory (WM) can only hold and manipulate 4-7 items at a time. But a
human subject produces a TSP tour in 60 seconds.” So, if we humans have less memory than
a computer and our biological neurons are slower than the digital switches in computers, how
do we humans solve problems on a daily basis in a so fast and efficient way? Helie and Pizlo
[7] concludes that humans do not typically engage in exploring even a small fraction of the
problem space, that “we humans build a problem representation and solve the represented
problem, not the problem that is out there”, that is, in the real physical space. So humans
may use heuristics to solve spatial problems. For example, the gaze heuristic [6] allowed an
effective behaviour in agents catching a falling ball without using any dynamic model of the
flying object (more details by F. Kroll [11] in this volume).

Strategies. Two main types of problem solving strategies were distinguished by [5]:

Direct problem solving: operating on the real space. Others [3] may name this direct
problem solving as zero-shot learning,
Abstract problem solving: representing the problem, using this representation for reasoning
and instating the solution to the real space.

Sometimes solving the problem by directly acting in the physical space is quicker than
representing the problem and solving it by computing on the representations. According to [3],
we can find examples of zero-shot learning observing animals solving spatial problems. That
is because they have the ability to break down complex problems into simpler, previously
learned sub-problems and this hierarchical approach allow humans and some intelligent
animals to solve previously unseen problems in a zero-shot manner, that is, without any trial
and error.

Proposal. Knowledge based techniques allow us to represent/abstract and reason to solve
spatial problems and machine learning techniques allow agents to learn directly from space,
that is, from the data gathered while interacting with it through their actions. How to
combine machine learning with automated reasoning for validating and improving strategies
for spatial problem solving is the idea behind this position paper.

Methods. In cognitive psychology, human abilities to solve spatial problems are measured
by perceptual/differential aptitud tests (PAT/DAT), some of them are: paper-folding-and-
punching tests, mental rotation tests, 3D object perspective tests, etc. In the literature,
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there are studies that have shown that people with better spatial reasoning abilities are more
successful in Science, Technology, Engineering and Math (STEM) disciplines [13], they are
also more creative and produce more patents and scientific innovations [10]. Moreover, some
studies by Sorby [14] demonstrated that spatial abilities can be trained at any age.

So, when developing tools for people to train their spatial abilities we need to present
them with spatial problems and: (i) show them clues about how to solve them or/and (ii)
provide feedback to them when they got wrong solutions.

As an example of spatial problem, we took the paper-folding-and-punching tests and we
developed a representation for the problem and an automated reasoning algorithm which
later we tested it in a virtual space (videogame) [4]. The master mode in this videogame
can create automatically instances of questions/problems and answers/solutions using the
representation and the reasoning method embedded in it. So the question-answered produced
are random and can be used to train human spatial skills.

The main aim would be to define an artificial agent that learns the reasoning behind
paper folding by interacting with the game. In the learning process, it would be interesting
to study if there are differences between defining the starting point for the agent to learn as
the virtual space or the representation. May the representation act as a cognitive heuristic?
If this expert representation takes the form of a knowledge graph (KG) or an ontology,
does it allow comparison with the knowledge learnt from the data-driven system to allow
validation? In most cases, the knowledge extracted from machine learning algorithms are
not explicable or understandable by users. May a comparison with the expert knowledge
graph provide a possible explanation of the learning process? If so, how do we evaluate the
adequacy/rationality of these explanations?

Seminar Discussion. As Stefano Borjo [1] stated in this volume, one problem that we face
in spatio-temporal reasoning is the mutual incompatibility of some qualitative models which
have been build on different representation systems choosing different modelling choices.
There is a need to integrate these models, which are nowadays very context-dependent
systems. Our proposal is to study algorithms of machine learning in a context and extract
the knowledge-graph (KG) that the system has learnt and study if that KG is solving a
specific problem or an approximate generalisation of all the problems which can provide a
hint about how to integrate the models that produce their solutions.

As Simon Dobnik [2] discussed in this volume, spatial representations used to solve
spatial problems can be modelled top-down (by experts using ontologies) and bottom up
by data-driven systems (neural language models learn the spatial representations). The
challenge here is to which degree top-down models can be integrated with data-driven models.
This is also known by the information fusion problem.

In this seminar, T. Homem and P. Santos [8, 9] also discussed their algorithm for
Qualitative Case-Based Reasoning and Learning (QCBRL) which is a case-based reasoning
system that uses EOPRA model (cardinal directions with local distances [12]) to retrieve and
reuse cases combined with reinforcement learning to allow the agent to learn new qualitative
cases at runtime, without assuming a pre-processing step. This work is an example about
how to integrate a spatial reasoning model with reinforcement learning technique and it will
inspire us towards solving the challenge presented in this position paper.

D. Wolter [15] also presented AI Birds in this seminar: a physical manipulation game for
conducting research in spatial problem solving and for evaluating the progress made towards
human capabilities. The agents deal with a large action space, have incomplete knowledge
about the physical parameters of objects and thus the consequences of possible actions can
only be estimated. Machine learning approaches have been largely unsuccessful maybe due
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to the limited number of Angry Birds levels for training. This game is another example that
provide evidence of how games have been used as a microcosm for conducting AI research
and it will inspire us in our challenge presented in this position paper.

Seminar Conclusion. A repository of spatial problems (including insight problems) is needed
to study procedures that lead to solutions that arise either in a direct way (applying zero-shot
learning/reasoning) or exploiting a representation that allows effective reasoning/learning
mechanisms. This repository will allow to compare computational procedures and methods
among them and to human performance.

Acknowledgements. I want to thank the Schloss Dagstuhl – Leibniz Center for Informatics
for hosting our Seminar 21492 on Representing and Solving Spatial Problems. And I also
acknowledge the funding provided by the Ramon y Cajal fellowship (RYC2019-027177-I /
AEI / 10.13039/501100011033) awarded by the Spanish Ministry of Science, Innovation and
Universities and the research project PDC2021-121097-I00.

References
1 Stefano Borjo. Path in mereology. In Pedro Cabalar, Zoe Falomir, P. E. Santos, and

Thora Tenbrink, editors, Report from Dagstuhl Seminar 21492: Representing and Solving
Spatial Problems, this volume. Dagstuhl Reports, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl Publishing, Germany, 2022. doi:10.4230/DagRep.11.11.1.

2 Simon Dobnik. Computational generation and interpretation of spatial descriptions. In
Pedro Cabalar, Zoe Falomir, P. E. Santos, and Thora Tenbrink, editors, Report from
Dagstuhl Seminar 21492: Representing and Solving Spatial Problems, this volume. Dagstuhl
Reports, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany,
2022. doi:10.4230/DagRep.11.11.1.

3 M. Eppe, C. Gumbsch, M Kerzel, P. Nguyen, Martin Butz, and S. Wermter. Intelligent
problem-solving as integrated hierarchical reinforcement learning. Nat Mach Intell, 4:11–20,
2022. URL: https://doi.org/10.1038/s42256-021-00433-9.

4 Zoe Falomir, Ruben Tarin, Aurelio Puerta, and Pablo Garcia-Segarra. An interactive game
for training reasoning about paper folding. Multim. Tools Appl., 80(5):6535–6566, 2021.
doi:10.1007/s11042-020-09830-5.

5 C. Freksa, T. Barkowsky, F. Dylla, Z. Falomir, A-M. Olteţeanu, and J. van de Ven. Spatial
problem solving and cognition. In H. Taylor J. Zacks, editor, Representations in Mind and
World, pages 156–183. Routledge, Taylor and Francis, New York, 2018.

6 Gerd Gigerenzer and Henry Brighton. Homo heuristicus: Why biased minds make better
inferences. Topics in Cognitive Science, 1:107 – 143, 01 2009. doi:10.1111/j.1756-8765.
2008.01006.x.

7 Sebastien Helie and Zygmunt Pizlo. When is psychology research useful in artificial
intelligence? a case for reducing computational complexity in problem solving. Topics in
Cognitive Science, n/a(n/a), 2021. doi:https://doi.org/10.1111/tops.12572.

8 Thiago Homem. Transfer learning through qualitate spatial reasoning. In Pedro Cabalar,
Zoe Falomir, P. E. Santos, and Thora Tenbrink, editors, Report from Dagstuhl Seminar
21492: Representing and Solving Spatial Problems, this volume. Dagstuhl Reports, Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, 2022. doi:
10.4230/DagRep.11.11.1.

9 Thiago P. D. Homem, Paulo E. Santos, Anna Helena Reali Costa, Reinaldo Augusto da Costa
Bianchi, and Ramon Lopez de Mantaras. Qualitative case-based reasoning and learning.
Artificial Intelligence, 283:103258, 2020. doi:https://doi.org/10.1016/j.artint.2020.
103258.

http://dx.doi.org/10.4230/DagRep.11.11.1
http://dx.doi.org/10.4230/DagRep.11.11.1
https://doi.org/10.1038/s42256-021-00433-9
http://dx.doi.org/10.1007/s11042-020-09830-5
http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x
http://dx.doi.org/10.1111/j.1756-8765.2008.01006.x
http://dx.doi.org/https://doi.org/10.1111/tops.12572
http://dx.doi.org/10.4230/DagRep.11.11.1
http://dx.doi.org/10.4230/DagRep.11.11.1
http://dx.doi.org/https://doi.org/10.1016/j.artint.2020.103258
http://dx.doi.org/https://doi.org/10.1016/j.artint.2020.103258


Pedro Cabalar, Zoe Falomir, Paulo E. Santos, and Thora Tenbrink 25

10 HJ Kell, D Lubinski, CP Benbow, and JH Steiger. Creativity and technical innovation: spa-
tial ability’s unique role. Psychol Sci, 24(9):1831–6, 2013. doi:10.1177/0956797613478615.

11 Felix Kroll. Strong spatial strategy retrieval in the context of an assembly task. In Pedro
Cabalar, Zoe Falomir, P. E. Santos, and Thora Tenbrink, editors, Report from Dagstuhl
Seminar 21492: Representing and Solving Spatial Problems, this volume. Dagstuhl Reports,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, 2022.
doi:10.4230/DagRep.11.11.1.

12 R. Moratz and J.O. Wallgruen. Spatial reasoning with augmented points: Extending cardinal
directions with local distances. Journal of Spatial Information Science, 5(2012):1–30, 2012.
doi:10.5311/JOSIS.2012.5.84.

13 N. Newcombe. Picture this: Increasing math and science learning by improving spatial
thinking. American Educator, 34(2):29–35, 2010.

14 Sheryl A. Sorby. Educational research in developing 3D spatial skills for engineering
students. International Journal of Science Education, 31(3):459–480, 2009. doi:10.1080/
09500690802595839.

15 Diedrich Wolter. Spatial problem solving in physical manipulation games. In Pedro
Cabalar, Zoe Falomir, P. E. Santos, and Thora Tenbrink, editors, Report from Dagstuhl
Seminar 21492: Representing and Solving Spatial Problems, this volume. Dagstuhl Reports,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, 2022.
doi:10.4230/DagRep.11.11.1.
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My primary interest is in Robotic Neurorehabilitation. This translates into interest in
qualitative spatio-temporal reasoning; particularly reasoning about actions for daily living
activities. How do objects and their affordances govern the way people reason and interact
with their environments? I am interested in exploring the use of mental maps or diagrams
directly over the spatial substrate for solving such problems, particularly exploiting object
affordance. Work I am conducting on understanding the neural correlates of affordance
reasoning may be relevant.

For human beings, spatial reasoning is a particularly powerful and accessible mode of
cognition. In our everyday interaction with the physical world, spatial reasoning appears to
be driven by qualitative abstractions rather than complete quantitative knowledge a priori.
Space and time are inextricably linked. Connection between time and space has been a
recurring topic, initially in geography, and more recently within AI. Reasoning about space
often involves reasoning about change in spatial configurations. There is a requirement to
build into the spatial representations which changes respect the underlying continuous nature
of change. Formalizing notions of continuity for a theory of spatial change / motion holds
promise.
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Human basically convey effective solutions based on mental maps or spatial organization
of problems. Mental Maps exploit the spatial substrate, i.e., space – time information
structures underlying a spatial problem. Diagrams for representation and reasoning narrows
the option of ambiguity in relational composition. Freksa introduced the need of comparison
between formal and Diagrammatic Reasoning processes for the same underlying problems.
Diagrammatic Reasoning and Qualitative Spatio-temporal Reasoning needs to be revisited
from the perspective of not only Cognitive Vision but other areas involving space and action
including Language Understanding. There remains immense potential for research advances
in the use of diagrams as a representation and reasoning paradigm. Object affordance, a
characterization of the different functionalities of an object, refers to the numerous possibilities
of interaction with the object. This forms an implicit background of our everyday spatio-
temporal reasoning. An object affordance driven novel pipeline have allowed us to demonstrate
that symbolic conceptual abstraction helps to curb curse of dimensionality present in high
dimensional demonstration for learning. Object affordance can directly link to higher level
behaviours such as intents. It has a significant part in driving understanding of action verbs
and priming motoric actions. Investigating the influence of affordance driven motor priming
holds promise for design of Intelligent Assistive Devices and is part of ongoing research within
the Biomimetic Robotics and Artificial Intelligence Lab at IIT Guwahati.
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The ability of an agent to learn, adapt and solve new problems is one of the big challenge of
research in Artificial Intelligence. In some cases, the domains are too complex or the input
data provided by the sensors is purely quantitative, which creates a complex problem and
the agent is not able to learn or, in the best case, it learns too slowly.

Especially in problems that contain spatial information, Qualitative Spatial and Temporal
Reasoning abstracts the metric information and transforms the problem into a kind of
human-like representation and reasoning. This could create generalizations and solutions to
the learning and to the transfer learning problems.

The purpose of this work consists of two phases: 1) abstracting the metric information
into qualitative spatial relationships and creating a qualitative machine learning model in a
source domain; 2) transfer the qualitative model to a target domain.

The proposal evaluation includes model metric evaluation as follows: in phase (1) the
qualitative learning model must perform on the target domain as well as when trained with
quantitative data and in phase (2) the qualitative learning model must perform in the source
domain as well as running in the target domain or by running the learning phase directly
on the target domain or by running the learning phase directly on the target domain with
quantitative data.

This proposal extends the work presented in [1] but with the new focus on qualitative
learning and transfer learning. In terms of qualitative representation and reasoning, Elevated
Oriented Point Relation Algebra (EOPRA) [2] or Region Connection Calculus (RCC8) [3]
are considered to be used. For the task of qualitative learning and transfer learning, Deep
Learning is considered, such as the works of [4] and [5].
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The application domain is still uncertain, but probably robot soccer or real-time strategy
games will be chosen, allowing the proposal to be expanded in real-world problems.
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3.8 Strong Spatial Strategy Retrieval in the Context of an Assembly
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Strong Spatial Strategy

The gaze heuristic described by Gerd Gigerenzer [5] has proven to be a very effective strategy
to catch a flying object [3] in terms of generalization of the object trajectories that are
catchable. Common analytical approaches are bound to their modeled dynamics and thus
have a big generalization gap due to the vast differences in object properties like air drag or
Magnus forces and external factors like side winds. In contrast to these, the gaze heuristic is
not bound to any dynamic model of the flying object. It just requires the agent to establish
an geometric alignment based on the angle of observation towards the object and constant
applied correcting movements.

The gaze heuristic can be categorised as a strong spatial strategy in the sense of the strong
spatial cognition paradigm [2], because it offloads cognition into the environment rather
than reason with an internal representation. A reduced set of immediate observations is
taken to control the agents actions. The continuous observations are directly mapped to a
corresponding action. The work of Christian Freksa [2] describes other examples that fall
into this category, for example to distinguish the distance between objects by concentrating
on their parallax effect and making a lateral movement.

We believe that these kinds of strategies are the key to enable time and energy efficient
spatio-temporal problem solving for all kinds of organisms. Furthermore does it allow them
to react robustly on unseen situations because the strategies are not dependent on a (full)
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model of the problem dynamics. In the case of the gaze heuristic the only assumption
that needs to hold is the continuity of the flying object. The work of Robert P. Hamlin [6]
showcases that in nature this assumption is key to intercept prey or – by utilising it – trick
the hunters and escape their grasp. It holds for high enough sampling rates and therefore is
decoupled from the objects dynamics.

Assembly Task

We think that a field where those strong spatial strategies could be particularly beneficial
and natural is the one of dextrous assembly task. These are tasks where a bigger construct
or product is built from a number of smaller parts by grasping and combining them. In this
context, a typical and seemingly simple sub-task is the problem of re-orienting an object (e.g.
bolts, plugs, packages or screws) “in-hand” while it is held by the manipulator, i.e., one has
to change the orientation of the object relative to the manipulator.

While there are many different solutions to this problem, e.g. make use of a second
manipulator or perform in-hand-manipulation with a multi-finger-gripper, a common approach
in robotics is to utilise fixtures in the environment, e.g., a table to perform the re-orientation.
Most current robot-manipulators are two-finger-grippers. Hence in-hand-manipulation is
not applicable and we will focus in this discussion on a two finger scenario which requires
fixtures to solve the task.

From a human perspective a strategy can be described as follows: If the goal is to re-orient
a almost vertical bolt held between two fingers to be in a horizontal orientation, the human
would likely push the bolt onto a table until the bolt’s orientation is the same as the table
horizontal surface. The human would perform a parabola like downwards movement until the
the lower end of the bolt touches the table and then continue the movement until finally the
fingers touch the table. During this movement the bolt would be kept between the fingers
with the minimal required pressure so it can rotate but not fall down. The touch input is
a strong indication about the state of the strategy. It indicates when to adjust the grasp
pressure and when the strategy is completed. Since the bolt is rigid and the table too, the
bolt can not penetrate the table or get stuck assuming both have a low friction coefficient.
The table affords a re-orientation by its physical properties if the bolt is pushed against it
with the given constraints of the two finger grasp.

In robotics this strategy can be replicated with the common analytical modelling approach:
It would require the bolt’s, table’s and gripper’s shape in form of meshes. Also their physical
properties need to be known; the centre of mass and their friction coefficients. The aim is to
use a planner that searches continuously for a movement trajectory of the arm to perform the
strategy. In order to use the planner one would use the given properties of the environment
to replicate it in form of a physics simulation which must be capable of solving multi-contact
situations between the table, the bolt and the gripper. This simulation would be utilised in
the motion planner. In order to keep the simulation aligned with reality one would have to
track the bolt’s and the gripper’s orientation-state with a camera or object tracking system.
This approach does not scale well to objects with varying geometries and physical properties,
and in terms of computational costs.

When looking at this problem from a strong spatial perspective, these limitations can be
avoided. The bolts state would be an angle between the table and itself. The torque sensors
of a torque controlled robotic arm could be used to register the contact with the fixture
surface. From there, the robot could perform the same movement algorithm as the human
until it would also register a force feedback or the bolt reaches the desired orientation angle.
This strategy could be applied to many bolts with varying size, weight and friction coefficients
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because the angular state is independent of the object’s physical properties and the force
feedback signals the full alignment of the bolt with the surface’s orientation. Further, the
mapping of measurements to actions would be far simpler to compute because it avoids to
create a replica of the world that must be kept up to date.

There are still many challenges to solve and this strategy is not as well understood as the
gaze heuristic, but it displays how well it circumvents the modeling-challenges of classical
model-based strategies. There is no need for a model and the object’s representation can
be reduced to a 2D visual orientation of the object because it is rigid. We assume, that the
measurement of a torque controlled robotic arm and one external mounted camera is enough
to perform the strategy.

Further, this re-orientation problem would also be of interest to do research on the
question of if and how humans use strong spatial strategies in the field of dextrous assembly
tasks. This would be similar to the gaze heuristic, where observing football players [1, 7] or
dogs [8] helped in deriving and understanding it.

Seminar Discussion

We utilise the strong spatial cognition paradigm as a framework to find strategies for
manipulation tasks in robotics. Human behaviour might lead to new strong spatial strategies.
However, keeping the idea of affordances in mind (in the sense of James J Gibson [4]), we
can also engineer new strong spatial strategies from the ground up.

While we believe that we can construct autonomous agents which act purely based
on strong spatial strategies, we face often problems where the most useful observation for
applying it is not available or disturbed, e.g. in the case of of the gaze heuristic if no geometric
relation to the ball can be established due to the optical sensor’s excessive exposure to the
sun. In this scenario we can fall back to spatial reasoning and constructing a (minimal)
spatial representation to get back on track. Furthermore, there are scenarios where the agent
can not act inside the environment and thus no strong spatial strategy can be applied. In
this case there can be still observations which the agent can utilise to plan a head or come up
with a solution by reasoning. Such observations are retrieved form external sources or own
experiences, e.g. street maps or from other agents in form of speech or the agents memories.
Here (analytical) reasoning is the only option since there are only indirect observations of
the spatio-temporal environment accessible.

A key result of the seminar is that there is no free lunch for spatial cognition. Sometimes
it is hard to find a spatial representation to apply reasoning. In those cases we could look
for a strong spatial strategy. But other times the spatial representation is easy to construct
and the observations are not available in rapid intervals like many strong spatial strategies
require them to be. Here, reasoning provides a more robust solution. We propose, that
the spatial cognition research should shift its attention to combine strong spatial strategies
with analytical predictions to circumvent representational bottlenecks without sacrificing
computational and representational efficiency and a sense for the outcome (knowledge of
uncertainty).

This ambivalence leads the seminar’s participants to conclude that a (spatio-temporal)
problem repository is necessary to find robust unified representations, reasoning methods
or strong spatial strategies by testing and evaluating them in the problem domain of the
repository. The robotic assembly task, like the here mentioned bolt re-orientation, could be
part of such a problem repository. However, it is not yet clear in which description format
the problems can be defined formally.
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How should one conceptualize space in order to effectively and efficiently solve a spatial
problem? This question has driven my research on ontologies of geographic space for the last
three decades. While I have primarily addressed it to improve the usability of Geographic
Information Systems (GIS), my longer-term goal is to design spatial computations that are
cognitively more adequate. My arguments will be limited to geographic space, which I define
as space in time at the scales of human activities. Some common examples of problems
in geographic space are those arising in wayfinding, assessing environmental impacts of a
construction project, or understanding what drives climate change.

The preliminary answer to the stated open question that I will advocate and explore at
this Dagstuhl Seminar is that three conceptualizations of geographic space are necessary and
sufficient. In these three conceptualizations, one can view spatio-temporal phenomena as

fields of attributes varying across space and time
objects and object collections with identity
events with fields and objects as participants.

None of these concepts are, of course, novel to modelers and practitioners. My point
is that they are necessary and sufficient to deal with geographic phenomena, if suitably
(re)defined:

fields as continuous functions from space and time to attribute
objects as individuals bounded in space (though not necessarily having an explicit
boundary)
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events as temporally chunked instances of processes, bounded in time, and located by the
fields and objects they change.

Each of these three conceptualization highlights a key aspect of spatial phenomena,
namely

the spatio-temporal variation of attributes (such as temperature, gravity, or population
density);
the properties, relations, and behavior of individuals (such as animals or vehicles) and
groups or aggregates of these;
the attribution of changes in fields and objects to events (such as the passing of a cold
front, an earthquake, or a pandemic).

The three conceptualizations serve as conceptual lenses that one chooses and combines
when solving spatial problems [1]. They precede and are independent of the data models used
to represent them (such as the various vector and raster models used in GIS), in the sense
that their choice does not imply or necessitate a particular data model, and that data in a
data model (say, a raster data set) do not necessarily represent a particular conceptualization
(such as a field view). While some data models apply more easily to some conceptualizations
than others (and vice versa), it is essential for the usability and interoperability of systems
to understand the difference between conceptualizing the world and representing the result
in a convenient computational model.

In addition to the three conceptualizations of geographic space, I suggest that spatial
information itself, in particular its quality, can also be viewed in only a few ways, currently
in terms of the three notions of

granularity or level of detail;
accuracy with respect to a given or assumed reference;
provenance from an agent that used some data and methods to produce it.

Non-geographic spaces, such as those of human organs, chemical molecules, or galaxies also
appear to be best conceptualized through fields, objects, or events, and information about
them is also usefully assessed in terms of granularity, accuracy, and provenance. Furthermore,
spatializations of abstract data are beneficially designed around these concepts. Given their
presumed general validity, I refer to the concepts of field, object, event, granularity, accuracy,
and provenance as Core Concepts of Spatial Information.

To formalize the core concepts, I use parameterized type classes in Haskell. Such a
functional approach, where spatial questions are functions returning spatial information,
allows for an explicit account of how conceptualizations constrain representations, which in
turn are data types instantiating the type classes. It also allows for combining multiple views
of space, and translating between representations (though not between conceptualizations,
which is by definition not achievable).
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Research on cognitive architectures aims to develop unified theories of intelligent systems
[6, 2]. This paradigm incorporates many ideas from cognitive psychology and focuses on
agents that operate over time. However, an emphasis on generality has led the architecture
community to avoid making commitments about the representation and processing of spatial
content. The fields needs additional work that addresses this critical omission and, in this
position piece, we report some initial progress in this direction.

In previous research, we have developed PUG, a cognitive architecture for embodied agents
[3]. The framework incorporates ideas from classical architectures, such as distinguishing
long-term from short-term memory and encoding their content as modular mental structures.
However, it combines symbolic and numeric representations and processing to support a
unified account of discrete planning and continuous control. Key theoretical commitments of
the architecture include:

Symbolic concepts are grounded in constituent physical objects and their associated
numeric attributes.
Symbolic concepts are graded, matching to different degrees based on constituent objects’
attributes.
Symbolic skills include equations for control attributes that are functions of mismatch to
target concepts.
Execution involves the iterative use of skills to compute control values based on these
mismatches.
To determine values for control attributes, execution takes the vector sum of results from
active skills.
Processes specify equations that predict changes to state attributes based on state and
control attributes.
Mental simulation uses skills and processes to predict trajectories in the agent’s state
space over time.
Motion planning involves search through a space of skill sets to achieve the agent’s desired
beliefs.
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Task planning searches through a space of motion plan sequences to achieve the agent’s
desired beliefs.
Trajectories produced by mental simulation are used to evaluate candidate motion plans
and task plans.

PUG provides a high-level programming language we have used to create simple robot
agents that operate in simulated two-dimensional environments. Demonstrations have
included tasks in which robots must move to static objects and must pursue mobile ones,
in both cases avoiding obstacles along their paths. We have also developed an extended
framework, PUG/X, that integrates generation, execution, and monitoring of task and motion
plans to let agents detect and respond to unexpected events [2].

The PUG architecture supports agents that operate in dynamic physical environments
and it unifies symbolic approaches to problem solving with continuous approaches to control,
but it does not yet incorporate any strong theoretical commitments about how to encode
or reason over spatial content. In response, we have devised some promising extensions to
the framework that address its representational and processing limitations. These include
distinctive claims that:

Agents encode spatial situations using continuous numeric relations to objects in the
environment.
Agents represent their spatial relations to these objects in terms of egocentric polar
coordinates.
A place P is a concept that specifies a set of visible objects, along with distances and
angles to them.
An instance I of place P includes the perceived distances and angles to P’s associated
objects.
Inference estimates I’s distance and angle to P from distances and angles to P’s associated
objects.
The degree of I’s match to place P is a function of its estimated distance and angle to P.
Skill execution uses I’s match to P as a guide for moving to a situation that matches P
acceptably.
A map is a collection of place concepts that include distances and angles to other places.
Skill execution can use a place definition P to move from P to another place Q that it
references.

These theoretical postulates differ markedly from those adopted by most research efforts on
mobile robotics, which encode space as discretized, world-centric grids. However, they share
elements with a few frameworks, such as those reported by [1, 7, 8]. We have implemented a
number of these ideas and demonstrated them in a simulated robotic environment [5]. Future
work will test the augmented architecture on agent localization, inter-place navigation, and
other tasks that require spatial reasoning.
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In one of his seminal papers on Artificial Intelligence, John McCarthy compared humans
and machines receiving and following instructions for problem solving. Machines normally
take sequences of imperative sentences whereas humans are instructed “mainly in declarative
sentences describing situations in which action is required” [3]. In other words, humans would
know what to do directly by understanding the states of affairs. A few years later, A. Sloman
would add yet another human strategy to problem solving: “analogical representations such
as maps models”, which could be employed as means for enhancing reasoning capabilities of
artificial systems (or describing human intelligence) with non-linguistic representations [4].
These discussions from the beginnings of AI seem to fully apply to nowadays attempts of
formalizing spatial relationships understanding by machines and humans. A comparison of
cartographic representations in maps and route instructions that could be given both to
humans and to robotic agents may shed a light on this matter.

How do maps and navigation instructions overlap and interrelate? One of the main uses for
maps is to allow people to find paths between cities or points of interest outdoors or indoors.
Nevertheless, the mere depiction of roads or tracks on the map does not automatically
translate into instructions on how to go from one location to another. One still has to
algorithmically convert route knowledge from the map into action steps for reaching the
target. Easy as this may sound, maps do not stand as necessary nor sufficient conditions for
navigation. On the other hand, the inverse frequently applies: new paths often engender new
maps. Yet not only the information needed for navigation is different from pure cartographic
information, it also relies on different cognitive capabilities.

Starting off by what maps and navigation instructions have in common, they both deal
with ways of conceiving spatial relationships, and they both serve specific purposes. Purpose
is explicit for navigation tasks – namely, to reach a certain target location. Regarding maps,
purposes may vary but are always there: to provide information on political borders, or on
topographic features etc. And, as [1] put it, purposes are often made explicit by the map
title.
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Generation and understanding of navigation instructions are part of a specific Artificial
Intelligence multimodal task called Vision-and-Language Navigation (VLN). Despite of the
fact that maps and VLN both deal with visual and natural language data, it is arguable
that knowledge is represented in quite different ways on each of them. As diagrams, maps
render all the relevant information about the depicted objects simultaneously available. It
is important to mention that the merotopological relations on the map do not reflect the
merotopology of the “real world” directly, but rather the merotopological knowledge about
the world. Medieval mapa mundi will prove this point. Objects not exhibited in the map are
either irrelevant for its purpose or unknown. In VLN, on the contrary, it is not essential to
know all the necessary steps towards the target beforehand. Instead, new objects and moves
are added at each step as navigation goes on. Any assertions about future states of affairs
related to the path are at least partly uncertain (i.e., logically incomplete).

Navigation instructions can rely exclusively on topological directives such as “turn right”,
“go forth” and so on, whereas maps exhibit places instead of mere locations or spatial
relationships. Places convey meanings [6] and can be often identified by Named Entities in
maps or in speech [8].

In papers dealing with navigation instructions uttered by humans for humans, objects,
buildings, and landscape sights are typically used as landmarks [5, 7, 2]. Addressees of
the instructions have their attention called upon those landmarks for situating themselves
before starting to walk or drive. Landmarks are systematically chosen employing familiarity
criteria. They must be easy to recognize (matching the description) by addressees. Navigation
instructions are thus grounded on familiar objects (indoors) or familiar landmarks (outdoors).
They explicitly rely on common ground information.

Instruction utterances are ordered by two main factors: the order of presentation, which
is roughly analogous to the move steps (what comes first on the path is uttered first), and the
order of familiarity in which supposedly recognizable objects help to find out which way to go
throughout potentially unfamiliar paths. It is also important to notice that path descriptions
usually rely not on geometrical objects like lines and curves, but on body orientation and
movement. This too marks a difference from maps, for which there are no such embodied
nor dynamic features.

Finally, while maps are not capable of representing negation at all, propositions in
navigation instructions are often canceled (“There is a door to your right – no, I mean, to
your left”). In such cases, the two propositions combined are never understood as a persisting
contradiction but instead the latter always cancels the former. As for maps, they have no
means to express any negative propositions whatsoever. Whenever the knowledge depicted
in the map changes for any reason (say, for instance, when national borders change), a new
map must be drawn – epistemically speaking every new piece of knowledge should hence
bring about a new map (or, as [1] call it, a new layer in an existing map).

Summing up, I would argue that differences and interrelations between maps and naviga-
tion instructions are capable of fully instantiating the three cognitive models for problem
solving in general as put forth by McCarthy and Sloman (among others) early in the dawn
of AI, namely: by explicitly following instructions; by descriptively representing knowledge,
and by diagrammatically (i.e., analogically) apprehending relationships.
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The composition table of region connection calculus can be easily and naturally specified via
ASP (answer set programming) rules. For example, the partial knowledge represented by
disjunctions in RCC-5 or RCC-8 [4] is naturally expressed by disjunctions in ASP rule heads
or by choice rules. We have successfully employed different ASP encodings to RCC reasoning
problems [7, 6, 5, 3, 1, 2], but encountered two main technical challenges. First, the natural
ASP encoding via pairwise relations of regions does not allow to distinguish configurations
that should be distinguishable. For example, if we know that three regions A, B, and C are
pairwise overlapping, we do not know whether or not the intersection of all three regions
is empty or not. A fine-grained case-analysis should enumerate the alternative solutions.
To overcome this limitation, a simple approach is to extend the underlying vocabulary
from n region names to 2n “combined region” names, corresponding to the minterms in
a Karnaugh-Veitch diagram. Unfortunately, the gain in expressive power is paid for with
an exponentially larger search space, which seems to render the approach infeasible for all
but the smallest problems. A second challenge is how to exploit the hierarchical structure
of many reasoning problems, e.g., when aligning and merging two taxonomies using RCC
relations [7] in order to obtain a more scalable approach. Based on our experience and initial
experiments, we believe that answer set programming is an ideal paradigm to specify and
implement user-customizable qualitative reasoning approaches, provided we can solve the two
technical challenges just outlined. We invite the qualitative reasoning and ASP community
to join forces on this endeavor.
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An explicit representation of visual input seems promising for efficient low-level perceptions
during visual information processing. This abstract discusses an approach for mapping spatial
objects and relations, exploring the power of diagrams directly influencing an information
perception and visualization paradigm over the problem’s physical substrate. Our objective
is a comprehensive representation and reasoning of visual information combining Qualitative
Spatial and Temporal Reasoning (QSTR) and diagram-based reasoning techniques within
Diagrammatic Reasoning (DR). Qualitative Spatial and Temporal Reasoning (QSTR) [3] is
a foremost mechanism with numerous formalisms to deal with spatial entities for space-time
relational abstractions. However, existing spatial problem representation techniques are often
inefficient to perceive exact spatial relations [6]. Under such scenarios, explicit representation
through diagrams holds promise. Diagrammatic Reasoning (DR) allows reasoning over
diagrams through a set of actions like diagram modification [12], manipulation [4], and
re-organization [2]. In line with Freksa’s idea [5, 4] on spatial problem solving directly over
the spatial substrate as a computationally efficient technique within cognitive processing,
we intend to address the above shortfall and strengthen existing formal representation and
reasoning techniques through a QSTR-DR framework.
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Spatial reasoning is very common in common sense problems. Where could I have put my
shoes? How can I get home from work and pick up milk on the way? Can this shelf hold
my suitcase? We deal with problems like this throughout the day and solving them requires
extensive knowledge about the world. We discussed in our sessions at Dagstuhl that much
work to date has been towards solving isolated problems like route planning, or solving
well structured mathematical problems [3], or representing general abstractions [13]. But
comparatively little work has been towards capturing the wealth of often mundane concepts
and facts that are needed to encode in a machine the broad knowledge that we use about the
world in order to reason every day. Until now there has not been a collection of real-world
reasoning problems available to test the sufficiency of spatial knowledge representation.

In our work we utilize the Suggested Upper Merged Ontology (SUMO)[7, 9]7, a compre-
hensive ontology of around 20,000 concepts and 80,000 hand-authored logical statements in a
higher-order logic, that has an associated integrated development environment[12] including
leading theorem provers such as Eprover [15] Vampire [6] and LEO-II [1], and manually-
created links[8] to all 117,000 word senses in the WordNet lexico-semantic database[4]. SUMO
has automatic translations [12] to the strictly first order language of TPTP [18], as well
as the TF0 language (first order logic with typed arithmetic) [10] and THF[2]. The recent
development of our TF0 translator means that we can reason with numerical measures in a
truth-preserving representation [14]. Numerical reasoning is very common in practical spatial
problems.

In order to demonstrate progress and a method for solving common-sense spatial problems,
we developed a set of problems stated in English, formalized in SUMO, and for some of
those problems, solved with the Vampire theorem prover. The current set of problems with
solutions is available on GitHub8 and described briefly in [11].

A challenge for representation is the large numbers of possible objects, processes and
relationships that one may need in order to capture a set of non-trivial, real-world problems.
In particular, one of our Dagstuhl sessions discussed the need for affordances[5] that can
designate the tasks that some kinds of objects can participate in. SUMO is a library of
just such a large set of formalized concepts. SUMO has 4801 subclasses of Object many of
which are extensively formalized with rules that define their real world relationships and
behavior. There are 1321 kinds of Process that govern what the use and purpose of many
of those objects may be. Physical things exist in time, so there are 39 TemporalRelations
that include facilities for representing particular metric times, including days of the week and
holidays. Central to this effort are the instances of SpatialRelation, of which there are 83.

In order to use these formalizations in theorem proving, it is essential that they be free of
contradiction. However, in such a large system, it is not possible to ensure consistency by
hand. We employ E and Vampire to test the consistency of SUMO. While issues can often

7 https://www.ontologyportal.org
8 https://github.com/ontologyportal/sumo/blob/master/tests/SpatialQs.txt
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be found simply by asking the provers to prove “false”, we can also employ an automated
means of focusing on different parts of the ontology. The E prover has a mechanism [16] for
generating thousands of test problems that focus on different relation symbols, which are
then subjected to theorem proving. We also employ the StarExec [17] server cluster to make
such large scale testing practical.
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The exploration of unknown environments, often presents unforeseen challenges and inherent
risks due to the uncertainties involved. While single autonomous systems are capable of
completing complex missions, the introduction of multi-robotic teams can permit increased
level of efficiency to a given task, especially when these tasks cover large areas and mission
completion time is a critical constraint. The use of heterogeneous robotic teams of autonom-
ous underwater vehicles (AUVs), autonomous surface vehicles (ASVs) and seabed crawler
vehicles can further facilitate a higher degree of flexibility and redundancy when analysing
complex environments under diverse environmental conditions. The challenge of traditional
autonomous-vehicle team-based localisation and control techniques are, however, considerably
magnified in the underwater domain by the lower reliability and potential asynchronicity of
underwater acoustic communications as compared to RF based communication in the above
water domain. This complicates possible mission tasking approaches for hybrid teams of
autonomous marine vehicles in terms of obtaining a shared understanding of the environment
and the team status, thus requiring new solutions for control, coordination, collaboration
and communication to overcome these complications.

This brings the need to investigate efficient reasoning processes, communication strategies
and underlying low-level control mechanisms necessary to coordinate heterogeneous teams
of autonomous marine vehicles, in dynamic and uncertain environments. An underlying
assumption of this work is that the autonomous agents have to achieve a common agreement,
via a negotiation procedure, in order to solve complex problems collaboratively. Our aim
is the development of a mixed-initiative system [1], where the interaction and negotiation
between the agents will maximise their resources in order to optimise the successful execution
of a common task. The negotiation procedure between vehicles will be conducted in game-
theoretic terms [4], where the agent interaction is modelled as a cooperative game and the
Nash equilibrium (representing the agents’ agreement) will be obtained by online distributed
algorithms [3]. This provides efficient task allocation solutions that can be easily extended to
consider outside threats along with team collaboration, where the interactions with additional
agents are modelled as a non-cooperative game [5]. Negotiation, however, occurs only when
there is some level of conflict in the perceived states, assigned actions across the team and the
availability of resources within the heterogeneous team. To obtain an efficient problem solving
policy for any given problem we propose to use a novel algorithm, Qualitative Case-Based
Reasoning and Learning (QCBRL) [2]. In QCBRL, cases are predetermined solutions for
groups of autonomous agents (represented as QSR formulae) that could be adapted to
similar situations. A reinforcement learning (RL) module enables the team of agents to
learn new solutions to unforeseen situations at runtime, without assuming a pre-processing
step. Extending QCBRL with the game-theoretic delegation model to a team of underwater
vehicles is one of the main tasks to be executed. The project should bridge the gap between
current QSR laboratory experiments to large-scale robotics application.
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Conceptual models of space are required to model spatial reference in natural language
processing, orientation in spatial cognition, as well as to make effective use of spatial
information for answering questions. Yet, such models often seem limited in accounting
for and distinguishing the different ways how space can be conceptualized. One reason
seems to lie in our inability to assess the possible transformations of the concepts underlying
spatial information. Therefore, future research should study transformation models for those
concepts that are constitutive of spatial information, including the core concepts of location,
field, object, event and network.

Transformations lie at the core of spatial reference systems. For example, to understand
a location of a particular coordinate reference system, we can express it as a series of
transformations starting from a common frame, e.g. from a geocentric Cartesian frame
using ellipsoidal angles and projection equations. This fundamental observation applies
equally to cognitive reference frames. Frames enable orientations in the wild, as well as
interpreting spatial references in natural language texts. For example, to move towards the
specified location, an intrinsic spatial reference such as “in front of the church” may need
to be transformed into an allocentric overview map, and finally into an egocentric frame.
Likewise, “mapping” spatial references in texts onto a geographic map requires suitable
cognitive transformations into a coordinate reference system. To this end, we need to account
for the diversity of linguistic frames. Frames frequently go beyond the classical Euclidean
strategies (as used by Levinson), including zonal strategies (neighbourhoods around and
within objects), topological strategies (inside, outside, etc.), as well as linear referencing
strategies (distance along a path) (see Table 1). Transformation models could therefore help
us uncover possible frame variants in texts, and at the same time give us a way to transform
locative expressions into a map.
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Table 1 Transformation types for core concepts.

transformation type
core
concept
(from)

parameters
core
concept
(to)

coordinate
reference
transformations

projection
ellipsoidal
angle

location
(point)

ellipsoid
datum

location
(point)

cognitive
reference
transformations

euclidean location
(fuzzy)

object
direction
distance

location
(fuzzy)

zonal location
(fuzzy)

object
distance

location
(fuzzy)

topological location
(fuzzy)

object
topological
relation

location
(fuzzy)

linear location
(fuzzy)

object
path

location
(fuzzy)

core concept
transformations

closest object
distance objects distance field

field capacity field location amount
field coverage field amount location
object capacity objects location amount
object coverage objects amount location

Transformations also provide a key towards handling the variability of conceptualizations
of spatial information. Location (as defined by spatial reference systems) is only one out
of a range of core concepts needed to deal with the content of spatial information (i.e.,
what geo-data represents). The latter includes also objects, fields, events and networks.
Similar to spatial reference systems, core concepts often remain implicit in the geodata
representing them. Still, conceptualizations vary with the way the underlying geodata was
generated. That is, geodata transformations reflect also a transformation on the conceptual
level. For example, a choropleth map of administrative units, produced by averaging a spatial
field generated by measuring the Euclidean distance to the closest park, corresponds to a
conceptual transformation from objects (parks) to some (distance) field, and from a field to
amounts (average distance) defined as object qualities (unit statistics). In Table 1, the former
transformation is called closest object distance transformation, and the latter field-capacity
transformation. In field-capacity transformations, amounts play a central role in quantifying
other core concepts. Amounts can be used to measure the coverage of fields or objects in
terms of the locations they occupy (“the area further than one kilometre from a park”).
It turns out that such transformations are at the core of Geographic Information Systems
(GIS), and not only constrain the meaning of the resulting map (“average distance to the
closest park”) but also its purpose (e.g., for accessibility assessments).

In short, an important future research task lies in studying conceptual transformation
models which account for the transformation possibilities of spatial information. This would
not only enable us to deal with the inherent variability of concepts of space, it would also
give us a way to model the ways spatial information can be transformed according to some
purpose.
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We argue for the importance of exploiting the area of Qualitative Spatio-Temporal Reasoning
(QSTR), as a means to develop hybrid AI systems involving computations with spatio-
temporal information. In short, QSTR is a Symbolic AI framework for representing and
reasoning about spatial and temporal information via the use of disjunctive natural relations,
e.g., “Task A is scheduled after or during Task C”. We give some examples of how QSTR can
be the backbone of hybrid AI systems, emphasizing on abductive learning and AI planning
in particular.

One of the main challenges in Artificial Intelligence (AI) today, and where the most
progress towards the AI dream is expected to be seen over the next decade, is the seamless
integration of statistical learning and symbolic reasoning [9].9 Such an integration is the area
of study of Neuro-Symbolic AI [2].10 Specifically, over the past years, statistical learning and
symbolic reasoning have been developed mostly separately in AI – with few exceptions [2].
What is more, the representations (models) that are learned in statistical learning are generally
low-level (sub-symbolic), whereas the representations used in symbolic reasoning are high-level
(symbolic); thus, integrating the former with the latter representations is challenging, and it
is exactly this task that Neuro-Symbolic AI addresses. In sum, Neuro-Symbolic AI seeks to
combine principles from neural-networks learning and logical reasoning, by leveraging the
strengths of both worlds to the extent possible. In a sense, this framework closely resembles
how humans perform problem-solving, as, from a psychological viewpoint, the perception,
which is a data-driven process, and the logical reasoning, which is a knowledge-driven process,
are entangled rather than separated in humans.

Drawing inspiration from the work in [1], where a qualitative spatial reasoner is used to
act as a referee upon the output of a classifier, we argue for working towards a generic neuro-
symbolic framework that will integrate qualitative spatio-temporal reasoning (QSTR) [4] and
neural methods from a probabilistic perspective. Such an integration is currently identified as
an open challenge in the AI community [5, Section 9]. In our context, qualitative spatial or
temporal variables can be annotated with the probability-infused output of a neural network,
and spatial or temporal relations themselves may carry a probability too. A simplified
example of such a neuro-symbolic formula would look as follows (%s denote confidence):

X(95% yolk) is contained in(45% true) or overlaps(55% true) Y (90% egg).

In that sense, QSTR becomes neurally-enhanced, and probabilities are used to encode
a bidirectional feedback loop between the symbolic framework and the Machine Learning
(ML) model, much like as in Abductive Learning [10, Figure 1]. We propose to use logic to
compose concepts learned by ML methods, and also allow learned concepts by ML methods
to influence that logical composition. We argue that a (symbolic) spatio-temporal knowledge
base, naturally grounded on physics and human cognition, could provide a dependable causal
seed upon which machine learning models could generalize [6]. Moreover, in relation to

9 http://ai100.stanford.edu/2021-report
10 http://www.neural-symbolic.org/
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obtaining the most likely interpretation of an uncertain environment through neuro-symbolic
reasoning, we argue for using this framework in order to integrate the two largely separate
viewpoints of environment mapping and planning, and learn qualitative spatio-temporal
representations of the environment to facilitate motion planning and control under complex
spatio-temporal tasks. As an example, a service robot moves through a swarm of humans
and other obstacles in a café to deliver a coffee; the uncertainty here pertains to noisy
sensor readings and unpredictable moving objects. The qualitative approach of QSTR
could discretize numerical data online and form the most likely qualitative spatio-temporal
representation of the environment at each point of time, encoding the qualitative relations
among the various actors (e.g., in terms of orientation, topology, or anything else needed).
Such a qualitative approach can indeed drastically reduce the huge search space that is
typical when constructing a plan in dynamic contexts of heterogeneous knowledge; this has
been shown to some extent in [3], where a qualitative orientation calculus is used.
Excerpts of the above text have appeared in [8] and [7].

References
1 Marjan Alirezaie, Martin Längkvist, Michael Sioutis, and Amy Loutfi. Semantic referee: A

neural-symbolic framework for enhancing geospatial semantic segmentation. Semantic Web,
10:863–880, 2019.

2 Artur S. d’Avila Garcez, Tarek R. Besold, Luc De Raedt, Peter Földiak, Pascal Hitzler,
Thomas Icard, Kai-Uwe Kühnberger, Luís C. Lamb, Riisto Miikkulainen, and Daniel L.
Silver. Neural-Symbolic Learning and Reasoning: Contributions and Challenges. In AAAI
Spring Symposium on Knowledge Representation and Reasoning: Integrating Symbolic and
Neural Approaches., 2015.

3 Thiago Pedro Donadon Homem, Paulo Eduardo Santos, Anna Helena Reali Costa, Rein-
aldo Augusto da Costa Bianchi, and Ramón López de Mántaras. Qualitative case-based
reasoning and learning. Artif. Intell., 283:103258, 2020.

4 Gérard Ligozat. Qualitative Spatial and Temporal Reasoning. ISTE Series. Wiley, 2011.
5 Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve, and Giuseppe Marra. From Statistical

Relational to Neuro-Symbolic Artificial Intelligence. In IJCAI, 2020.
6 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,

Anirudh Goyal, and Yoshua Bengio. Toward Causal Representation Learning. Proc. IEEE,
109:612–634, 2021.

7 Michael Sioutis and Hua Meng. Towards Robust Qualitative Spatio-Temporal Reasoning
for Hybrid AI Systems. In ISKE, 2021. To appear.

8 Michael Sioutis and Diedrich Wolter. Qualitative Spatial and Temporal Reasoning: Current
Status and Future Challenges. In IJCAI, 2021.

9 Leslie G. Valiant. Knowledge Infusion: In Pursuit of Robustness in Artificial Intelligence.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, 2008.

10 Zhi-Hua Zhou. Abductive learning: towards bridging machine learning and logical reasoning.
Sci. China Inf. Sci., 62:76101:1–76101:3, 2019.



Pedro Cabalar, Zoe Falomir, Paulo E. Santos, and Thora Tenbrink 45

3.18 Spatio-Temporal Granularity
John Stell (University of Leeds, UK)

License Creative Commons BY 4.0 International license
© John Stell

Joint work of John Stell, Giulia Sindoni, Katsuhiko Sano
Main reference Giulia Sindoni, Katsuhiko Sano, John G. Stell: “Expressing discrete spatial relations under

granularity”, J. Log. Algebraic Methods Program., Vol. 122, p. 100682, 2021.
URL http://dx.doi.org/10.1016/j.jlamp.2021.100682

The topic of Formalism at this seminar asks what would be “suitable formalism for common-
sense problem solving that allows an accurate, flexible, and readable knowledge representation
for spatio-temporal effects of actions performed by an intelligent agent”. Such a means of
knowledge representation needs to have a rigorous semantics if the requirement to be accurate
is to be justified. The need for semantics is also essential if the formalism is to support
reasoning. The activity of reasoning is itself important if intelligent agents are to be capable
of explaining their actions, and arguing for one course of action rather than another.

The need for commonsense problem solving, and the desire for a representation that is
readable by humans, indicates a role for qualitative approaches to spatio-temporal descriptions
underlying any formalism. Qualitative representations are well established [1], but the
interaction with hierarchical models of discrete space and time representing changes at
different levels of detail should be important here. In [3] a foundation for a theory of
hierarchical change was set out, but this is restricted by the qualitative descriptions used.
This theory incorporates both change over time and over level of detail and should be capable
of integration with more recent work [2] which models qualitative variation across two levels
of detail, but in a static setting.

In [3] change of level of detail is modelled in a discrete space through the operations of
opening and closing as used in the image-processing techniques of mathematical morphology.
This allows the modelling the way level of detail changes by capturing readily understandable
phenomena. Examples include that way distinct regions separated by a narrow channel
appear to fuse into a single region from a more “zoomed out” perspective. This need not be
directly visual, but could describe the way qualitative closeness of objects can be affected by
distance from an agent. The qualitative changes in [3] can be seen as changes to a single
spatial entity, made up multiple parts that can split and merge both over time and over
granularity.

Spatial relationships, such as two distinct entities overlapping, can also change in time
and according to granularity, but are more complex than the existing model. Qualitative
relationships changing over time at a single level of detail is well-known through ideas such as
conceptual neighbourhoods. Granular change, as in [2], needs to be combined with temporal
change to produce a a richer description that can support agents reasoning about effects of
actions at different levels of detail.
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3.19 Where Are You Really? Creating a More Complete Automated
Model of the Factors that Influence the Interpretation of Spatial
Relation Terms

Kristin Stock (Massey University – Auckland, NZ)
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Current methods for computational modelling of the locations referred to in natural language
relative location descriptions mostly rely on either geometric or linguistic information.
Geometric models assume that specific relation terms reflect specific geometric configurations
in space. For example, near (e.g. the church near the Aotea Centre) implies a specific
distance range relative to a reference object; west of implies a particular azimuth (angle
relative to north); and left (I live on the left side of Hillcrest Road) implies a region relative
to some axis of a reference system which may depend on the position of the observer and/or
other objects in the environment. It has long been recognised that these geometric models
provide only part of the picture, and that humans take into account a multitude of contextual
factors when interpretating spatial relation terms, including the physical environment and
objects in it; the observer’s goal and expectations of the audience knowledge; the audience
location and knowledge and the characteristics of the object.

Some research has acknowledged the tendency for spatial relation terms to have degrees of
“goodness of fit” in particular locations – areas where the relation definitely applies (e.g. 270
degree azimuth for west of), and areas where they may still fit, but less well, and probably
depending on the context (e.g. 250 degree azimuth for west of) and developed probabilistic of
density field based models to accommodate this. In addition, machine learning models have
attempted to incorporate context to address the problem, by learning the interpretation of a
spatial relation term within an expression from similar expressions, using word embeddings
and other new technologies (e.g neural networks).

However, the list of contextual factors that have been incorporated in automated spatial
relation term models (either explicitly or implicitly through language modelling) is still very
small, mostly incorporating characteristics of the located and reference objects (e.g. type,
size), and there is much potential for research advances in this field, in three directions:

1. Incorporating factors that have been shown to be important in linguistic and cognitive
science research into computational models, which involves determining how to:

a. Automatically extract data from natural language text or related geographic data sets
that would be informative in regard to factors identified in linguistic and cognitive
science research. For example, the importance of reference frame has been recognised,
but this is not easy to automatically extract either from language (to encode expressions
in machine learning models), or from the geographic environment (e.g. to decide in a
given scene which objects count as being on the left side of Hillcrest Road).

b. Encode extracted data in a form that would suit state of the art machine learning
models (e.g. transfer learning models that work with large text corpora). This encoding
must ensure that machine learning models can recognise the similarity in a particular
aspect for pairs of expressions, and the data must be encoded in a way that highlights
this. This may be easy for numerical factors (e.g. area), but much more difficult for

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1080/13658816.2021.1987441
http://dx.doi.org/10.1080/13658816.2021.1987441
http://dx.doi.org/10.1080/13658816.2021.1987441
http://dx.doi.org/10.1080/13658816.2021.1987441


Pedro Cabalar, Zoe Falomir, Paulo E. Santos, and Thora Tenbrink 47

qualitative factors. Another example is “knowledge of the world” that is used to aid
in interpretation – human understanding of how possible or likely some particular
configuration might be (e.g. if we refer to the café beside the Thames, we assume that
this is most likely on land, but not necessarily, as in the case of a café barge moored in
the river).

2. Directing linguistic and cognitive science research towards factors that may be important,
but have not yet been explored in the research to sufficient degree, or in a form to
facilitate their incorporation in computational models. For example, user goals may
influence the use of spatial relation terms, and to incorporate this in computational
models, specific and concrete models of the influence of such factors on spatial relation
terms (e.g. that can be encoded as numerical features) are useful. There are examples
of interdisciplinary research that has used linguistic and cognitive methods to develop
models for computational purposes, and more of this would benefit this research area.

3.20 Challenges for the implementation of spatiotemporal concepts
Thora Tenbrink (Bangor University, UK)
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The formalisation and implementation of spatial/spatiotemporal concepts posits a range
of hard challenges that are not likely to be overcome by standard automated machine-
learning approaches. Human-readable description of complex spatiotemporal problems and
relationships requires a clear understanding of human thoughts and thought processes, to
an extent sufficiently detailed and fine-grained to allow for modelling, implementation and
eventually automatic generation in language that humans will find easy to follow, even if it
exhibits systematic differences to how humans would generate such a description themselves.
For example, although automatically generated route descriptions have massively improved
over the past decades, they still don’t follow some of the most basic conceptual principles
of wayfinding reflected in human route descriptions, such as references to landmarks and
qualitative rather than metric information. Nevertheless, they are sufficiently aligned with
human needs to be very useful.

Wayfinding and navigation have been extensively investigated over the past decades, but
other areas of spatiotemporal problem-solving pose different challenges that haven’t received
quite as much attention. Here are some examples:

Combination of visual and verbal information: Even considering the high quality of
standard automatically generated route descriptions, it is notable that the visual in-
formation is detached from the verbal. In human communication, in contrast, all types
of information are simultaneously integrated and frequently cross-referred, for instance
by deictic pointers. This allows for systematic use of overspecification (providing more
information than strictly needed, particularly for complex challenges), underspecification
(providing only selected necessary information, allowing humans to make straightforward
inferences as appropriate and adopting heuristics such as moving in a vague, visually
approximated direction), and complementary presentation (where each bit of information
is presented in the visual or verbal mode that is most suitable for it, e.g., shapes and
angles are clearer in visual form, whereas temporal information is best conveyed verbally).
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Changes over time: Wayfinding takes time as a process, but as it happens within a
short time frame it can be assumed that the world itself doesn’t change. However,
the world does change continuously, and humans adapt flexibly to such changes as a
normal part of everyday life, in ways that are not well understood from a computational
perspective. Some changes are simply nuisances (such as road blocks on the way to
work – a minor problem that even most automatic navigation systems can address by
calculating detours), whereas other changes are more significant, such as climate related
changes (floods, sinkholes, extended fires) that are threatening to livelihoods, affect
personal relations to places, and change habits more permanently. Crucially, humans have
the extraordinary ability (not available to automatic systems) to use whatever method
available at any given time and place to work around a challenge – especially if motivated,
for instance by place attachment. To support this, automatic systems would need access
to more flexible reasoning abilities that allow for re-purposing available resources in the
face of local changes.
Flexibility of reference systems: Within spatial cognition and computation research, the
research focus on standard activities such as navigation and object localisation seems to
have distracted from other actions in which humans engage around the world, and which
require different (and often more flexible) ways of thinking about space or spatiotemporal
relationships. The use of spatial reference systems not only differs across cultures (as
shown for Levinson’s intrinsic, relative and absolute reference systems) but also across
activities in the everyday life of a single culture – such as using wind-based concepts for
establishing directionality during sailing.

With ideas about “Artificial Intelligence” (though often represented by machine-learning
based “intelligence”) increasingly dominating agendas and debates both within and outside
academia, it is time to address such fundamentally human ways of thinking, and consider
how computational methods can be adapted to support them more flexibly and efficiently.

3.21 Spatial Problem Solving in Physical Manipulation Games
Diedrich Wolter (Universität Bamberg, DE)
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One aim of AI research is to develop systems capable of solving real-world problems. To
this end, processing of spatial, temporal and physical knowledge is key, in particular when
envisaging future service robots that assist humans in manifold ways. A challenge faced in
everyday situations human excel at is to come up with effective strategies in the light of
uncertain knowledge about the environment. Humans may be poor at, or even unable to
estimate physical parameters like friction, density, geometry, etc. but they can reliably stack
dishes in the kitchen sink, arrange groceries in the shopping bag, or use tools in new but
effective ways. By contrast, physical manipulation skills in robotics and AI largely hinge on
constructing (respectively learning) precise physical models that are employed in forward
models for planning. This limits applicability to problem instances sufficiently similar to
what the agent has experienced so far or has been explicitly prepared for.
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Unfortunately, sensor and motor capabilities available to robotic systems are both ex-
pensive, economically as well as with respect to the time required for maintenance and
preparation. Above all, they are still no match to human sensorimotor skills. As a result, we
may not see service robots in our homes capable of human-like object manipulation anytime
soon. An economic way to make progress towards such skills can be seen in the realm of
physical manipulation games. In these games, humans (or computers) are confronted with
physical puzzles that need to be solved in a controlled yet not fully observable environment.
Similar to how games have been regarded as a microcosm for conducting AI research in
classic fields such as search [1], physical manipulation games can present a suitable basis for
conducting research in spatial problem solving and conveniently evaluating the progress made
towards human capabilities. One of such games is the game of Angry Birds which is used as
basis for the AI competition “AI Birds” [2]. The objective of this game is to catapult objects
at structures in a 2D world to destroy targets by physical impact. Although the task appears
very simple, instances can be crafted that require a great variety of physical knowledge in
order to be solved. Put differently, difficulty can easily be scaled. In particular, since the
game is interfaced only via the graphical representation of a scene, physical parameters
remain hidden like in real-world tasks.

By putting a limit on the time an agent is allowed to try solving a previously unseen
level, abstract physical problem solving skills become imperative. A unique and important
feature of games and real-world tasks is that evaluation based on performance punishes
over-simplified approaches that make assumptions that cannot be met by technical systems.
Our work on creating an agent for AI Birds has forced us to stress the interaction between
abstract problem solving, perception, and task execution. We must not consider wrong
estimates about the environment to be an exception (e.g., the shape of objects and whether
they would fit into a container or not), but consider it to be too typical to ignore. We need
ways that allow the agent to reflect its decision in the light of the effects caused, and to adapt
quickly by drawing the right conclusions. In essence, physical manipulation games force us
to take a sufficiently broad perspective on spatial problem solving that fosters development
of techniques that will be useful components in an overall agent design.
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3.22 On Concepts
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The central problem addressed here is how to represent symbolic entities in the brain that
can be used (also) for spatio-temporal reasoning. We can operate with symbols (language),
but how can we get from stimulus driven experience formation to the formation of abstract
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thought and then back to motor-signals to execute and action. In the core of this is the
question about “Concepts”. The substrate “spatio-temporal” would here offer a nice testbed
for asking if any representation “works or not”.

In this short paper I would like to first provide some definitions and then only discuss
some neuronal aspects. Maybe this Dagstuhl seminar wants to take this up and extend these
thoughts into a more technical, computer science direction. I wrote this quickly and this is
certainly not yet up to high scientific standard. It’s just a collection of (wild) thoughts.

On concepts (some definitions):

1. Concepts are different from Categories because Categories are “un-reflected clusterings”
within a feature space, whereas Concepts are the narrative, the rule, the essence of the
thereby captured entities. This is related to the Piagetian “Schemas”, but goes – in our
view – beyond mere “feature constellations”, which you could obtain by clustering, too.
For example, Alpha-Go can cluster feature constellations on the Go-board into groups
that require the same move, but Alpha-Go cannot speak out about the “rules of Go”.
How to formalize what we mean when saying the “a concept is given by a narrative” will
be specified below.

2. Concepts are (at any moment in time!) “momentarily closed” with a relatively hard
boundary to separate them from each other. One step from moving upwards from a
Category to the forming of a concept is to perform this closure. Concepts are, thus,
fundamentally discrete. There is a “cup” and no “partial-” or “almost-cup”. And “cup”
is also distinct from “no-cup”.

3. The boundary of a Concept can (at the next moment) be modified when the agent’s
experience of the world changes. Clearly, some Concepts will, this way, have more volatile
boundaries than others.

4. Concepts are compositional. They are (usually) composed from other (narrower) concepts.
5. They form dividable sets: “Apple” divides into “red, green, yellow Apple”, etc. This way

also hierarchies of Concepts can be formed. All this is very well known from ontologies in
AI.

6. From the above we would argue that Concepts come into being by relational operations.
Here the most fundamental one is the enclosure versus exclosure operator, but also
operators like “part-of”, “combined-from”, etc. This allows us to arrive at a formal
definition of how to form a Concept.

7. Naturally, for us Concepts can be (and are usually) expressed by language (“narrative” of
an entity) and/or captured in AI using ontologies. Concepts can be expressed by single
words, too. “Cup” is a concept. But this comes then with an explanatory narrative
(which you can express in case you want to explain “your concept” – of a “Cup” – to
someone else).

8. Thus, the act of expressing a Concept is fundamentally linked to symbolic representations
(language, at least in humans). Semiotic processes need here to take place and the closure
and separation (the making-discrete) of a Concept relative to other Concepts happens by
this.

9. This makes it difficult to verify the existence of Concepts in non-linguistic agents (animals).
Possible the only other way to verify this is to find planning-capabilities in another agent
assuming that planning sequences and planning operators are directly related to (are the
same as?) Concepts (for this see further below).

How many concepts do we have?
This question could be linked to language (again). How many words does YOUR

vocabulary have? While there are >170,000 words existing in active English language
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(https://englishlive.ef.com/blog/language-lab/many-words-english-language/), native speak-
ers use only about up to 35,000 of them. If we assume that every word is a concept then this
would be the same number. Now some concepts may not be “word-expressible”, but might
require “a phrase”. While this could go up to larger numbers this way, we might benefit
from the compositionality of concepts. If you have phrased a concept, you might as well
“name” it. Phrasing would correspond to the pulling out (from memory) one-by-one all those
sub-concepts that form the new one. Hence, the new concept would at first consist of a
sequential activation of those different sub-concepts.

The German language is here expressive. An alternative word for “Konzept” is “Begriff”;
this refers to the word used to describe an entity/concept. This means literally the being
able to “touch and feel” an entity as “greifen” means “to grasp”, which we also use in
English saying that “we grasp a concept”. The “Begriff” for that furry animal that says
“mio” and. . . etc., etc., is “cat”. The narrative – the rule-set – for cat is then replaced by the
Begriff “cat”. Hence, this points to the capturing of a concept in quite a literal way and the
forming of any novel “Begriff” is the conCATenation of a complex narrative into a single
word. Certainly, in the Middle Ages no one had a concept of automobile. However, after its
invention, this complex machine that looks like a horse-cart but drives on its own, needed
a word that stands for the concept. Accordingly, the word “automobile” had been coined.
Inventing a new word happens all the time in language, or loosing words for concepts no
longer in use. For the Germans: do you know what a “Kumpf” is?? (I need an English
example, here of an obsolete concept and its belonging word)

Thus, here the question arises if one needs now a process that makes this time-serial
sequential narrative-representation into a momentarily-arising (simultaneously-arising) one.
Can Concepts be spread out over narration-time or is this then “something different” and not
yet a Concept? Possibly, we have “pop-up” Concepts, which are very strongly consolidated
and reside as “one entity” in memory, while other more complex concepts are rather more
sub-sequential. I would argue that only pop-up Concepts are true ones. All others are “in
the making”.

Neuronal Aspects:
The question of neuronal representations of concepts remains difficult. If we consider that

we do not have more than 100,000 pop-up concepts (this number seems too high anyhow)
then you could easily represent those by individual static (overlapping) cell assemblies. If
we allocate 10,000 neurons per concept, we would need 109 neurons in total for this. Given
that many concepts might have a very high degree of overlap, it could well be that this
number reduces by- say – a factor of 100 to get us to 107 neurons needed for this. That
is a very small number given that there are 100,000 neurons in 1 mm3 of cortical tissue.
We need 102 mm3, with a thickness of 1mm (really its rather 1.5mm) this comes down to
about 10x10 millimeter of cortical surface area to cover for this. If we go up one order of
magnitude to 108 needed neurons (less assembly overlap) then this makes 33x33 millimeters.
It would be interesting to measure the degree of psychological (cognitive) concept-overlap.
For example asking people to explain “cup” and (after some distractors) “glass” and see how
much semantic (linguistic) overlap exists in these explanations. Or some experiment of this
kind.

On compositionality
If a Concept has not yet reached the stage of “pop up”, then one could consider it as

the spatio-temporal cross-section of all “neural activations” that happen and contribute to
its (sequential) narrative even across (vastly) different contexts. Naively, the Concept of a
“Bilauri” would be the cross-section of **dirty Bilauris, your-memory-of-one-specific-Bilauri,
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clean Bilauris in the cupboard, drinking from a Bilauri, filling it with water, etc., etc.** If
one could invoke all these different entities then the neural-activation cross-section might
stand for the concept of “Bilauri”.

Did a Concept begin to form for you when reading this?11 Hence, the process of being
able to interpret the narrative and maybe forming the known-to-you-words: Cup, Bottle,
Glass (?) translates the sequential narrative between the ** text ** into several pop-up
Concepts.

On the role of actions: We assume that a Concept represents the “rule-set” (the narrative)
that captures an entity. Certain rules will allow performing some actions and forbid others
(like for a game, but also for objects, like apples, which you can: eat, roll around, throw,
cut, cook, but not sit-on, stack, lever up, etc., etc.). Then we could infer that the set of
all “by-this-rule-set-permitted” actions is a very good (not complete, but highly indicative)
indicator of that Concept. Here we are now (finally) again in the realm of space and time!
Hence, asking an agent what-all it could do “with it” (with that Concept in a given situation),
might be a good way to see that the agents indeed “has” that Concept (has it mentally
represented). This might help in the scientific verification problem: how can we show that
an agent (an ape, an ANN, a robot) has indeed formed a Concept?

3.23 Discovery of Affordances Using Geometric Proximity Queries
Gabriel Zachmann (Universität Bremen, DE)
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Discovering affordances has been a long-term research question, with many different ap-
proaches both on the symbolic/ontological level [13, 4, 12] and on the geometric/simulation
level [3, 6, 8, 5, 2]. It seems that the latter has, however, not received as many attention
as the former. One reason might be that only in the past few years have simulation tools
and geometric proximity queries become fast enough to be a viable option for affordance
discovery.

We posit that with today’s 3D geometric computing and simulation methods, the following
problem can be tackled: given a task and a “target” object, find a “helper” object (tool)
among a set of given potential helper tools with which the task can be achieved. For example,
given a bottle and the task is to open the crown cap, a number of other helper objects can
be used, besides the specifically designed tool. In order to make the problem amenable for
simulation and geometric computing, a first simplification could be to reduce the task to
a force vector and a point to which this should be applied on the target object. Thus, the
goal will be to find a helper object (or several), a suitable 6D pose, and a suitable force and
torque such that the sought-after force on the target object will result.

Finding suitable poses for the helper objects could perhaps be done using optimization
methods with which the 6D space of all possible poses can be explored goal-oriented.
Constraints would be that no other collisions occur than at the given target position. At the
target position, some penetration is permissible and can be mapped into forces. Parameters for

11“Bilauri” is Swahili for “glass”.
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a goal function could be to maximize average distance between helper object and target object,
or to maximize the lever. Suitable optimization methods should not require the computation
of derivatives, as this would probably slow down the overall convergence. Therefore, methods
such as particle swarm optimization or downhill simplex could be potential candidates.

One of the building blocks for the method above is proximity and penetration computation
that should allow for extremely fast query times, no matter the complexity of the given objects.
Therefore, a lot of acceleration data structures have been devised, such as Boxtrees [15],
higher-order AABB-Trees [14], kd-trees, inner sphere trees [11], irregular grids [7], and many
more.

Another trend is to intertwine acceleration data structures with the actual proximity
queries, so that they become an integral part of the proximity query algorithm itself. One
approach is to only build a skeleton or rudimentary data structure, then update or adapt the
data structure at runtime on demand [1, 9]. Another approach is to reduce the sophistication
of the acceleration data structure, thus the preprocessing time, and make it suitable for
massive parallalization [10], so that it can be rebuilt from scratch every time the geometry
has changed.

With the advent of machine learning techniques, other approaches to proximity queries
for highly dynamic geometries might be possible as well. One idea could be to combine
acceleration data structures with machine learning, so that such data structures can be built
on-demand whenever the geometry has changed. This could probably imply that the data
structure is suitable for parallel construction (e.g., on the GPU), so that all polygons of the
geometry can be processed in parallel. One could also consider hybrid construction methods
where the machine learning algorithm is used to guide the construction of the hierarchy in
the regular top-down fashion (which is, usually, not optimal anyways). Furthermore, when
dealing with pairs of objects or just patches of objects, it might be possible to train regression
methods such that the answers to proximiy queries is learnt in their latent space. The latter
would, most probably, be very time-consuming preprocessing.
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