
1st Symposium on Algorithmic
Foundations of Dynamic
Networks

SAND 2022, March 28–30, 2022, Virtual Conference

Edited by

James Aspnes
Othon Michail

LIPIcs – Vo l . 221 – SAND 2022 www.dagstuh l .de/ l ip i c s

Editors

James Aspnes
Yale University, New Haven, Connecticut, USA
james.aspnes@gmail.com

Othon Michail
University of Liverpool, UK
Othon.Michail@liverpool.ac.uk

ACM Classification 2012
Theory of computation; Mathematics of computing; Networks → Network algorithms

ISBN 978-3-95977-224-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-224-2.

Publication date
April, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SAND.2022.0

ISBN 978-3-95977-224-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:james.aspnes@gmail.com
https://orcid.org/0000-0002-6234-3960
mailto:Othon.Michail@liverpool.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-224-2
https://www.dagstuhl.de/dagpub/978-3-95977-224-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.SAND.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-224-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SAND 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
James Aspnes and Othon Michail . 0:vii–0:viii

Organization
. 0:ix–0x

Authors
. 0:xiii–0xv

Invited Talks

Recent Advances in Fully Dynamic Graph Algorithms
Kathrin Hanauer, Monika Henzinger, and Christian Schulz . 1:1–1:47

Algorithmic Problems on Temporal Graphs
Paul G. Spirakis . 2:1–2:1

Networks, Dynamics, Algorithms, and Learning
Roger Wattenhofer . 3:1–3:1

Regular Papers

Atomic Splittable Flow Over Time Games
Antonia Adamik and Leon Sering . 4:1–4:16

Faster Exploration of Some Temporal Graphs
Duncan Adamson, Vladimir V. Gusev, Dmitriy Malyshev, and Viktor Zamaraev . 5:1–5:10

Building Squares with Optimal State Complexity in Restricted Active
Self-Assembly

Robert M. Alaniz, David Caballero, Sonya C. Cirlos, Timothy Gomez, Elise Grizzell,
Andrew Rodriguez, Robert Schweller, Armando Tenorio, and Tim Wylie 6:1–6:18

Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem
Petra Berenbrink, Felix Biermeier, Christopher Hahn, and Dominik Kaaser 7:1–7:17

Complexity of Verification in Self-Assembly with Prebuilt Assemblies
David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie 8:1–8:15

Robustness of Distances and Diameter in a Fragile Network
Arnaud Casteigts, Timothée Corsini, Hervé Hocquard, and Arnaud Labourel 9:1–9:16

Computing Outside the Box: Average Consensus over Dynamic Networks
Bernadette Charron-Bost and Patrick Lambein-Monette . 10:1–10:16

Fast and Succinct Population Protocols for Presburger Arithmetic
Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza 11:1–11:17

Local Mutual Exclusion for Dynamic, Anonymous, Bounded Memory Message
Passing Systems

Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler 12:1–12:19
1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Dynamic Size Counting in Population Protocols
David Doty and Mahsa Eftekhari . 13:1–13:18

Simulating 3-Symbol Turing Machines with SIMD||DNA
David Doty and Aaron Ong . 14:1–14:15

Parameterized Temporal Exploration Problems
Thomas Erlebach and Jakob T. Spooner . 15:1–15:17

Bipartite Temporal Graphs and the Parameterized Complexity of Multistage
2-Coloring

Till Fluschnik and Pascal Kunz . 16:1–16:18

Temporal Connectivity: Coping with Foreseen and Unforeseen Delays
Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken 17:1–17:17

Fully Dynamic Four-Vertex Subgraph Counting
Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua . 18:1–18:17

Temporal Unit Interval Independent Sets
Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Rolf Niedermeier 19:1–19:16

Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid
Ryonosuke Yamada and Yukiko Yamauchi . 20:1–20:16

Brief Announcements

Brief Announcement: Cooperative Guarding in Polygons with Holes
John Augustine and Srikkanth Ramachandran . 21:1–21:3

Brief Announcement: The Temporal Firefighter Problem
Samuel D. Hand, Jessica Enright, and Kitty Meeks . 22:1–22:3

Brief Announcement: Fault-Tolerant Shape Formation in the Amoebot Model
Irina Kostitsyna, Christian Scheideler, and Daniel Warner . 23:1–23:3

Brief Announcement: Barrier-1 Reachability for Thermodynamic Binding
Networks Is PSPACE-Complete

Austin Luchsinger . 24:1–24:3

Preface

This volume contains the papers that were presented at the 1st Symposium on Algorithmic
Foundations of Dynamic Networks. Due to the COVID-19 pandemic, the conference was
held online, March 28-30, 2022.

The Symposium on Algorithmic Foundations of Dynamic Networks (SAND) is a newly
established conference. Its objective is to become the primary venue for original research
on fundamental aspects of computing in dynamic networks and computational dynamics,
bringing together researchers from computer science and related areas. SAND is seeking
important contributions from all viewpoints, including theory and practice, characterized by
a marked algorithmic aspect and addressing or being motivated by the role of dynamics in
computing. It welcomes both conceptual and technical contributions, as well as novel ideas
and new problems that will inspire the community and facilitate the further growth of the
area.

The program committee of SAND 2022 consisted of James Aspnes (Co-Chair, Yale
University), Luca Becchetti (University of Rome Sapienza), Petra Berenbrink (University
of Hamburg), Janna Burman (Université Paris-Sud – LRI), Arnaud Casteigts (University
of Bordeaux), Keren Censor-Hillel (Technion), Andrea Clementi (University of Rome Tor
Vergata), Giuseppe Antonio Di Luna (University of Rome Sapienza), David Doty (University
of California, Davis), Yuval Emek (Technion), Thomas Erlebach (Durham University), Sándor
Fekete (TU Braunschweig), Paola Flocchini (University of Ottawa), David Ilcinkas (CNRS,
Bordeaux), Zvi Lotker (Bar Ilan University), Toshimitsu Masuzawa (Osaka University),
George Mertzios (Durham University), Othon Michail (Co-Chair, University of Liverpool),
Rolf Niedermeier (TU Berlin), Rotem Oshman (Tel Aviv University), Andrea Richa (Arizona
State University), Nicola Santoro (Carleton University), Christian Scheideler (University of
Paderborn), David Soloveichik (University of Texas at Austin), Paul Spirakis (University of
Liverpool and University of Patras), Damien Woods (Maynooth University), Viktor Zamaraev
(University of Liverpool), and Christos Zaroliagis (University of Patras).

SAND 2022 received 30 submissions. The review process was double-blind and each paper
was assigned to at least three members of the program committee with relevant expertise
and eventually reviewed by them and/or by additional reviewers whenever needed. The
program committee accepted 17 regular papers and 4 brief announcements that cover a
wide range of topics in the broad area of algorithmic foundations of dynamic networks and
computational dynamics, including DNA self-assembly, dynamic networks and distributed
algorithms, mobile computing and robotics, population protocols, and temporal and dynamic
graph algorithms. Keynote talks were given by distinguished researchers, to whom we are
grateful: Monika Henzinger (University of Vienna), Paul Spirakis (University of Liverpool
and University of Patras), and Roger Wattenhofer (ETH Zurich). We would also like to
thank Kathrin Hanauer, Monika Henzinger, and Christian Schulz for contributing to the
volume a survey on fully dynamic graph algorithms.

The program committee selected the paper “Fast and Succinct Population Protocols for
Presburger Arithmetic” by Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier
Esparza for the Best Paper Award and the paper “Building Squares with Optimal State
Complexity in Restricted Active Self-Assembly” by Robert M. Alaniz, David Caballero, Sonya
C. Cirlos, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert Schweller, Armando
Tenorio, and Tim Wylie for the Best Student Paper Award.

We wish to thank the members of the various committees of SAND as well as its advisory
1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Preface

board, for all the hard work that they have put and which has made it possible to set up
a new conference. All have been supportive throughout. We are grateful to the program
committee members and to the additional reviewers for devoting time and effort in order to
come up with a strong conference program. A special thanks goes to the general chairs of
the organizing committee, Giuseppe Antonio Di Luna and Viktor Zamaraev. We are also
indebted to the Chair of the SAND steering committee, Paola Flocchini, for all her support,
to Giuseppe Prencipe for handling all the financial aspects, and to George Skretas for helping
on publicity matters.

Above all, we thank the authors for submitting their work to SAND 2022. We can assure
the reader that in this volume they will find well-presented ideas and results that make
substantial contributions to our knowledge on the role of dynamics in computing. We do
believe that this volume will inspire further work and will contribute to the further growth
of this exciting research area.

Finally, we should point out that due to the outbreak of war
in Ukraine, the SAND 2022 steering and organizing committees
decided to replace the logo of the conference with the peace
dynamic graph, until ceasefire and return to diplomacy and
peace is achieved.

March, 2022 James Aspnes, Yale University, USA
Othon Michail, University of Liverpool, UK
SAND 2022 Program Chairs

Organization

Program Chairs

James Aspnes Yale University, USA
Othon Michail University of Liverpool, UK

Program Committee

James Aspnes (Co-Chair) Yale University, USA
Luca Becchetti University of Rome Sapienza, Italy
Petra Berenbrink University of Hamburg, Germany
Janna Burman Université Paris-Sud – LRI, France
Arnaud Casteigts University of Bordeaux, France
Keren Censor-Hillel Technion, Israel
Andrea Clementi University of Rome Tor Vergata, Italy
Giuseppe Antonio Di Luna University of Rome Sapienza, Italy
David Doty University of California, Davis, USA
Yuval Emek Technion, Israel
Thomas Erlebach Durham University, UK
Sándor Fekete TU Braunschweig, Germany
Paola Flocchini University of Ottawa, Canada
David Ilcinkas CNRS, Bordeaux, France
Zvi Lotker Bar Ilan University, Israel
Toshimitsu Masuzawa Osaka University, Japan
George Mertzios Durham University, UK
Othon Michail (Co-Chair) University of Liverpool, UK
Rolf Niedermeier TU Berlin, Germany
Rotem Oshman Tel Aviv University, Israel
Andrea Richa Arizona State University, USA
Nicola Santoro Carleton University, Canada
Christian Scheideler University of Paderborn, Germany
David Soloveichik University of Texas at Austin, USA
Paul Spirakis University of Liverpool, UK and University of Patras, Greece
Damien Woods Maynooth University, Ireland
Viktor Zamaraev University of Liverpool, UK
Christos Zaroliagis University of Patras, Greece

Organizing Committee

James Aspnes (Program Chair) Yale University, USA
Giuseppe Antonio Di Luna (General Chair) University of Rome Sapienza, Italy
Othon Michail (Program Chair) University of Liverpool, UK
George Skretas (Publicity Chair) University of Liverpool, UK
Viktor Zamaraev (General Chair) University of Liverpool, UK

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Organization

Steering Committee

James Aspnes (PC Chair 2022) Yale University, USA
Giuseppe Antonio Di Luna (General Chair 2022) University of Rome Sapienza, Italy
Paola Flocchini (Chair) University of Ottawa, Canada
Othon Michail (PC Chair 2022) University of Liverpool, UK
Giuseppe Prencipe (Treasurer) Pisa University, Italy
Viktor Zamaraev (General Chair 2022) University of Liverpool, UK

Advisory Board

James Aspnes Yale University, USA
Luca Becchetti University of Rome Sapienza, Italy
Arnaud Casteigts University of Bordeaux, France
Giuseppe Antonio Di Luna University of Rome Sapienza, Italy
Paola Flocchini University of Ottawa, Canada
George Mertzios Durham University, UK
Othon Michail University of Liverpool, UK
Rolf Niedermeier TU Berlin, Germany
Rotem Oshman Tel Aviv University, Israel
Nicola Santoro Carleton University, Canada
Paul Spirakis University of Liverpool, UK and University of Patras, Greece
Viktor Zamaraev University of Liverpool, UK

Additional Reviewers
Duncan Adamson Abdul Ghani Mina Latifi
Matthias Bentert Thorsten Götte Andreas Padalkin
Joseph Briones Luciano Gualà Francesco Pasquale
Timothée Corsini Klaus Heeger Josh Petrack
Francesco d’Amore Kristian Hinnenthal Christoforos Raptopoulos
Joshua Daymude Nina Klobas Arne Schmidt
Fabien Dufoulon Irina Kostitsyna George Skretas
Mahsa Eftekhari Hesari Pascal Kunz Michail Theofilatos

Organization 0:xi

Supporters

SAND 2022 would like to thank the School of EEE/CS and the Department of Computer
Science of the University of Liverpool, the Department of Computer Science of the University
of Pisa, and the Sapienza University of Rome for their support. SAND 2022 was also made
possible by the use of Easychair as the submission server and review process management
system, due to LIPIcs producing and publishing the proceedings, Zoom which was used as
the video conferencing system, and Gather used for breaks and socializing.

SAND 2022

List of Authors

Antonia Adamik (4)
Technische Universität Berlin, Germany

Duncan Adamson (5)
Department of Computer Science, Reykjavik
University, Iceland

Robert M. Alaniz (6)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

John Augustine (21)
Department of Computer Science & Engineering,
Indian Institute of Technology Madras, India

Petra Berenbrink (7)
Universität Hamburg, Germany

Felix Biermeier (7)
Universität Hamburg, Germany

David Caballero (6, 8)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Arnaud Casteigts (9)
LaBRI, CNRS, Université de Bordeaux,
Bordeaux INP, France

Bernadette Charron-Bost (10)
Département d’informatique de l’ENS, ENS,
CNRS, PSL University, Paris, France

Sonya C. Cirlos (6)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Timothée Corsini (9)
LaBRI, CNRS, Université de Bordeaux,
Bordeaux INP, France

Philipp Czerner (11)
Department of Informatics, Technische
Universität München, Germany

Joshua J. Daymude (12)
Biodesign Center for Biocomputing, Security
and Society, Arizona State University, Tempe,
AZ, USA

David Doty (13, 14)
University of California, Davis, CA, USA

Mahsa Eftekhari (13)
University of California, Davis, CA, USA

Jessica Enright (22)
School of Computing Science, University of
Glasgow, UK

Thomas Erlebach (15)
Department of Computer Science, Durham
University, UK

Javier Esparza (11)
Department of Informatics, Technische
Universität München, Germany

Till Fluschnik (16)
Algorithmics and Computational Complexity,
Technische Universität Berlin, Germany

Eugen Füchsle (17)
Faculty IV, Algorithmics and Computational
Complexity, TU Berlin, Germany

Timothy Gomez (6, 8)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Elise Grizzell (6)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Vladimir V. Gusev (5)
Materials Innovation Factory, University of
Liverpool, UK; Department of Computer
Science, University of Liverpool

Roland Guttenberg (11)
Department of Informatics, Technische
Universität München, Germany

Christopher Hahn (7)
Universität Hamburg, Germany

Kathrin Hanauer (1, 18)
Faculty of Computer Science, Universität Wien,
Austria

Samuel D. Hand (22)
School of Computing Science, University of
Glasgow, UK

Martin Helfrich (11)
Department of Informatics, Technische
Universität München, Germany

Monika Henzinger (1, 18)
Faculty of Computer Science, Universität Wien,
Austria

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SAND.2022.4
https://doi.org/10.4230/LIPIcs.SAND.2022.5
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://orcid.org/0000-0003-0948-3961
https://doi.org/10.4230/LIPIcs.SAND.2022.21
https://doi.org/10.4230/LIPIcs.SAND.2022.7
https://doi.org/10.4230/LIPIcs.SAND.2022.7
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://doi.org/10.4230/LIPIcs.SAND.2022.8
https://orcid.org/0000-0002-7819-7013
https://doi.org/10.4230/LIPIcs.SAND.2022.9
https://doi.org/10.4230/LIPIcs.SAND.2022.10
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://orcid.org/0000-0003-1055-5627
https://doi.org/10.4230/LIPIcs.SAND.2022.9
https://orcid.org/0000-0002-1786-9592
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://orcid.org/0000-0001-7294-5626
https://doi.org/10.4230/LIPIcs.SAND.2022.12
https://orcid.org/0000-0002-3922-172X
https://doi.org/10.4230/LIPIcs.SAND.2022.13
https://doi.org/10.4230/LIPIcs.SAND.2022.14
https://orcid.org/0000-0001-5680-2086
https://doi.org/10.4230/LIPIcs.SAND.2022.13
https://orcid.org/0000-0002-0266-3292
https://doi.org/10.4230/LIPIcs.SAND.2022.22
https://orcid.org/0000-0002-4470-5868
https://doi.org/10.4230/LIPIcs.SAND.2022.15
https://orcid.org/0000-0001-9862-4919
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://orcid.org/0000-0003-2203-4386
https://doi.org/10.4230/LIPIcs.SAND.2022.16
https://doi.org/10.4230/LIPIcs.SAND.2022.17
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://doi.org/10.4230/LIPIcs.SAND.2022.8
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://doi.org/10.4230/LIPIcs.SAND.2022.5
https://orcid.org/0000-0001-6140-6707
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://doi.org/10.4230/LIPIcs.SAND.2022.7
https://orcid.org/0000-0002-5945-837X
https://doi.org/10.4230/LIPIcs.SAND.2022.1
https://doi.org/10.4230/LIPIcs.SAND.2022.18
https://orcid.org/0000-0001-8021-249X
https://doi.org/10.4230/LIPIcs.SAND.2022.22
https://orcid.org/0000-0002-3191-8098
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://orcid.org/0000-0002-5008-6530
https://doi.org/10.4230/LIPIcs.SAND.2022.1
https://doi.org/10.4230/LIPIcs.SAND.2022.18
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Authors

Danny Hermelin (19)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Hervé Hocquard (9)
LaBRI, CNRS, Université de Bordeaux,
Bordeaux INP, France

Qi Cheng Hua (18)
Faculty of Computer Science, University of
Vienna, Austria

Yuval Itzhaki (19)
Faculty IV, Algorithmics and Computational
Complexity, TU Berlin, Germany

Dominik Kaaser (7)
Universität Hamburg, Germany

Irina Kostitsyna (23)
Department of Mathematics and Computer
Science, Eindhoven University of Technology,
The Netherlands

Pascal Kunz (16)
Algorithmics and Computational Complexity,
Technische Universität Berlin, Germany

Arnaud Labourel (9)
Aix Marseille Univ, CNRS, LIS, Marseille,
France

Patrick Lambein-Monette (10)
Université Paris Cité, CNRS, IRIF, F-75013,
Paris, France

Austin Luchsinger (24)
The University of Texas at Austin, TX, USA

Dmitriy Malyshev (5)
Laboratory of Algorithms and Technologies for
Network Analysis, HSE University, Nizhny
Novgorod, Russian Federation

Kitty Meeks (22)
School of Computing Science, University of
Glasgow, UK

Hendrik Molter (17, 19)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Rolf Niedermeier (17, 19)
Faculty IV, Algorithmics and Computational
Complexity, TU Berlin, Germany

Aaron Ong (14)
University of California, Davis, CA, USA

Srikkanth Ramachandran (21)
Department of Computer Science & Engineering,
Indian Institute of Technology Madras, India

Malte Renken (17)
Faculty IV, Algorithmics and Computational
Complexity, TU Berlin, Germany

Andréa W. Richa (12)
School of Computing and Augmented
Intelligence, Arizona State University, Tempe,
AZ, USA

Andrew Rodriguez (6)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Christian Scheideler (12, 23)
Department of Computer Science, Universität
Paderborn, Germany

Christian Schulz (1)
Faculty of Mathematics and Computer Science,
Universität Heidelberg, Germany

Robert Schweller (6, 8)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Leon Sering (4)
ETH Zürich, Switzerland

Paul G. Spirakis (2)
Department of Computer Science, University of
Liverpool, UK; Computer Engineering &
Informatics Department, Univerity of Patras,
Greece

Jakob T. Spooner (15)
School of Computing and Mathematical
Sciences, University of Leicester, UK

Armando Tenorio (6)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Daniel Warner (23)
Department of Computer Science, Paderborn
University, Germany

Roger Wattenhofer (3)
ETH Zürich, Switzerland

Tim Wylie (6, 8)
Department of Computer Science, University of
Texas Rio Grande Valley, TX, USA

Ryonosuke Yamada (20)
Graduate School of Information Science and
Electrical Engineering, Kyushu University,
Fukuoka, Japan

https://doi.org/10.4230/LIPIcs.SAND.2022.19
https://orcid.org/0000-0001-8194-4684
https://doi.org/10.4230/LIPIcs.SAND.2022.9
https://doi.org/10.4230/LIPIcs.SAND.2022.18
https://doi.org/10.4230/LIPIcs.SAND.2022.19
https://orcid.org/0000-0002-2083-7145
https://doi.org/10.4230/LIPIcs.SAND.2022.7
https://orcid.org/0000-0003-0544-2257
https://doi.org/10.4230/LIPIcs.SAND.2022.23
https://orcid.org/0000-0002-0787-8428
https://doi.org/10.4230/LIPIcs.SAND.2022.16
https://orcid.org/0000-0003-0162-1899
https://doi.org/10.4230/LIPIcs.SAND.2022.9
https://orcid.org/0000-0002-9401-8564
https://doi.org/10.4230/LIPIcs.SAND.2022.10
https://doi.org/10.4230/LIPIcs.SAND.2022.24
https://doi.org/10.4230/LIPIcs.SAND.2022.5
https://orcid.org/0000-0001-5299-3073
https://doi.org/10.4230/LIPIcs.SAND.2022.22
https://orcid.org/0000-0002-4590-798X
https://doi.org/10.4230/LIPIcs.SAND.2022.17
https://doi.org/10.4230/LIPIcs.SAND.2022.19
https://orcid.org/0000-0003-1703-1236
https://doi.org/10.4230/LIPIcs.SAND.2022.17
https://doi.org/10.4230/LIPIcs.SAND.2022.19
https://doi.org/10.4230/LIPIcs.SAND.2022.14
https://orcid.org/0000-0003-2392-1999
https://doi.org/10.4230/LIPIcs.SAND.2022.21
https://orcid.org/0000-0002-1450-1901
https://doi.org/10.4230/LIPIcs.SAND.2022.17
https://orcid.org/0000-0003-3592-3756
https://doi.org/10.4230/LIPIcs.SAND.2022.12
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://orcid.org/0000-0002-5278-528X
https://doi.org/10.4230/LIPIcs.SAND.2022.12
https://doi.org/10.4230/LIPIcs.SAND.2022.23
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.SAND.2022.1
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://doi.org/10.4230/LIPIcs.SAND.2022.8
https://orcid.org/0000-0003-2953-1115
https://doi.org/10.4230/LIPIcs.SAND.2022.4
https://orcid.org/0000-0001-5396-3749
https://doi.org/10.4230/LIPIcs.SAND.2022.2
https://orcid.org/0000-0003-3816-6308
https://doi.org/10.4230/LIPIcs.SAND.2022.15
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://orcid.org/0000-0002-9423-6094
https://doi.org/10.4230/LIPIcs.SAND.2022.23
https://doi.org/10.4230/LIPIcs.SAND.2022.3
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://doi.org/10.4230/LIPIcs.SAND.2022.8
https://doi.org/10.4230/LIPIcs.SAND.2022.20

Authors 0:xv

Yukiko Yamauchi (20)
Faculty of Information Science and Electrical
Engineering, Kyushu University, Fukuoka, Japan

Viktor Zamaraev (5)
Department of Computer Science, University of
Liverpool, UK

SAND 2022

https://doi.org/10.4230/LIPIcs.SAND.2022.20
https://doi.org/10.4230/LIPIcs.SAND.2022.5

Recent Advances in Fully Dynamic Graph
Algorithms
Kathrin Hanauer #

Faculty of Computer Science, Universität Wien, Austria

Monika Henzinger #

Faculty of Computer Science, Universität Wien, Austria

Christian Schulz #

Faculty of Mathematics and Computer Science, Universität Heidelberg, Germany

Abstract
In recent years, significant advances have been made in the design and analysis of fully dynamic
algorithms. However, these theoretical results have received very little attention from the practical
perspective. Few of the algorithms are implemented and tested on real datasets, and their practical
potential is far from understood. Here, we present a quick reference guide to recent engineering and
theory results in the area of fully dynamic graph algorithms.

2012 ACM Subject Classification General and reference → Surveys and overviews; Networks →
Network dynamics; Mathematics of computing → Graph algorithms

Keywords and phrases fully dynamic graph algorithms, survey

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.1

Category Invited Talk

Funding This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019564, “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)”), as well as
from the Austrian Science Fund (FWF) and netIDEE SCIENCE project P 33775-N. Moreover, we
have been partially supported by DFG grant SCHU 2567/1-2.

1 Introduction

A (fully) dynamic graph algorithm is a data structure that supports edge insertions, edge
deletions, and answers certain queries that are specific to the problem under consideration.
There has been a lot of research on dynamic algorithms for graph problems that are solvable
in polynomial time by a static algorithm. The most studied dynamic problems are graph
problems such as connectivity, reachability, shortest paths, or matching (see [115]). Typically,
any dynamic algorithm that can handle edge insertions can be used as a static algorithm by
starting with an empty graph and inserting all m edges of the static input graph step-by-step.
A fundamental question that arises is which problems can be fully dynamized, which boils
down to the question whether they admit a dynamic algorithm that supports updates in
O(T (m)/m) time, where T (m) is the static running time. Thus, for static problems that
can be solved in near-linear time, the research community is interested in near-constant
time updates. By now, such results have been achieved for a wide range of problems [115],
which resulted in a rich algorithmic toolbox spanning a wide range of techniques. However,
while there is a large body of theoretical work on efficient dynamic graph algorithms, until
recently there has been very little on their empirical evaluation. For some classical dynamic
algorithms, experimental studies have been performed, such as for fully dynamic graph
clustering [76] and fully dynamic approximation of betweenness centrality [33]. However, for

© Kathrin Hanauer, Monika Henzinger, and Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 1; pp. 1:1–1:47

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kathrin.hanauer@univie.ac.at
https://orcid.org/0000-0002-5945-837X
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0002-5008-6530
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.SAND.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Recent Advances in Fully Dynamic Graph Algorithms

other fundamental dynamic graph problems, the theoretical algorithmic ideas have received
very little attention from the practical perspective. In particular, very little work has been
devoted to engineering such algorithms and providing efficient implementations in practice.
Previous surveys on the topic [249, 10] are more than twenty years old and do not capture
the state-of-the-field anymore. In this work, we aim to survey recent progress in theory
as well as in the empirical evaluation of fully dynamic graph algorithms and summarize
methodologies used to evaluate such algorithms. Moreover, we point to theoretical results
that we think have a good potential for practical implementations. Hence, this paper should
help an unfamiliar reader by providing most recent references for various problems in fully
dynamic graph algorithms. Lastly, there currently is a lack of fully dynamic real-world graphs
available online – most of the instances that can be found to date are insertions-only. Hence,
together with this survey we will also start a new open-access graph repository that provides
fully dynamic graph instances12.

We want to point out that there are also various dynamic graph models which we cannot
discuss in any depth for space limitations. These are insertions-only algorithms, deletions-
only algorithms, offline dynamic algorithms, algorithms with vertex insertions and deletions,
kinetic algorithms, temporal algorithms, algorithms with a limit on the number of allowed
queries, algorithms for the sliding-windows model, and algorithms for sensitivity problems
(also called emergency planning or fault-tolerant algorithms). . We also exclude dynamic
algorithms in other models of computation such as distributed algorithms and algorithms in
the massively parallel computation (MPC) model. If the full graph is known at preprocessing
time and vertices are “switched on and off”, this is called the subgraph model, whereas
algorithms under failures deal with the case that vertices or edges are only “switched off”.
We do not discuss these algorithms either.

Note that fully dynamic graph algorithms (according to our definition) are also sometimes
called algorithms for evolving graphs or for incremental graphs or sometimes even maintaining
a graph online.

2 Preliminaries

Let G = (V, E) be a (un)directed graph with vertex set V and edge set E. Throughout
this paper, let n = |V | and m = |E|. The density of G is d = m

n . In the directed case,
an edge (u, v) ∈ E has tail u and head v and u and v are said to be adjacent. (u, v) is
said to be an outgoing edge or out-edge of u and an incoming edge or in-edge of v. The
outdegree deg+(v)/indegree deg−(v)/degree deg(v) of a vertex v is its number of (out-/in-)
edges. The out-neighborhood (in-neighborhood) of a vertex u is the set of all vertices v such
that (u, v) ∈ E ((v, u) ∈ E). In the undirected case, N(v) := {u : {v, u} ∈ E} denotes the
neighbors of v. The degree of a vertex v is deg(v) := |N(v)| here. In the following, ∆ denotes
the maximum degree that can be found in any state of the dynamic graph. Our focus in
this paper are fully dynamic graphs, where the number of vertices is fixed, but edges can be
added and removed. We use Õ(·) to hide polylogarithmic factors.

1 If you have access to fully dynamic instances, we are happy to provide them in our repository.
2 https://DynGraphLab.github.io

https://DynGraphLab.github.io

K. Hanauer, M. Henzinger, and C. Schulz 1:3

2.1 Conditional Lower Bounds
There are lower bounds for fully dynamic graph algorithms based on various popular
conjectures initiated by [183, 3, 117]. These lower bounds usually involve three parameters:
the preprocessing time p(m, n), the update time u(m, n), and the query time q(m, n). We
will use the notation (p(m, n), u(m, n), q(m, n)) below to indicate that no algorithm with
preprocessing time at most p(m, n) exists that requires at most update time u(m, n) and
query time q(m, n). Note that if the preprocessing time is larger than p(m, n) or if the
query time is larger than q(m, n), then it might be possible to achieve an update time better
than u(m, n). In the same vein, if the preprocessing time is larger than p(m, n) or if the
update time is larger than u(m, n), then it might be possible to achieve a query time better
than q(m, n). We will write poly to denote any running time that is polynomial in the
size of the input.

Any conditional lower bound that is based on the OMv (Online Boolean Matrix-Vector
Multiplication) conjecture [117] applies to both the (amortized or worst-case) running time
of any fully dynamic algorithm and also to the worst-case running time of insertions-only
and deletions-only algorithms. We will not mention this for each problem below and only
state the lower bound, except in cases where as a result of the lower bound only algorithms
for the insertions-only or deletions-only setting have been studied.

3 Fully Dynamic Graph Algorithms

In this section, we describe recent efforts in fully dynamic graph algorithms. We start by
describing fundamental problems that we think belong to a basic toolbox of fully dynamic
graph algorithms: strongly connected components, minimum spanning trees, cycle detec-
tion/topological ordering, matching, core decomposition, subgraph detection, diameter, as
well as independent sets. Later on, we discuss problems that are closer to the application
side. To this end we include fully dynamic algorithms for shortest paths, maximum flows,
graph clustering, centrality measures, and graph partitioning.

3.1 (Strongly) Connected Components and BFS/DFS Trees
One of the most fundamental questions on graphs is whether two given vertices are connected
by a path. In the undirected case, a path connecting two vertices u and w is a sequence
of edges P = ({u, v0}, {v0, v1}, . . . , {vk, w}). A connected component is a maximal set of
vertices that are pairwise connected by a path. A graph is connected if there is exactly
one connected component, which is V . In a directed graph, we say that a vertex u can
reach a vertex w if there is a directed path from u to w, i.e., a sequence of directed edges
P = ((u, v0), (v0, v1), . . . , (vk, w)). A strongly connected component (SCC) is a maximal set
of vertices that can reach each other pairwise. A directed graph is strongly connected if there
is just one strongly connected component, which is V . The transitive closure of a graph G is
a graph on the same vertex set with an edge (u, w) ∈ V × V if and only if u can reach w in
G. Given an undirected graph, we can construct a directed graph from it by replacing each
undirected edge {u, w} by a pair of directed edges (u, w) and (w, u) and translate queries of
connectedness into reachability queries on the directed graph. A breadth-first search (BFS)
or depth-first search (DFS) traversal of a directed or undirected graph defines a rooted,
spanning subtree that consists of the edges via which a new vertex was discovered. Apart
from connectivity or reachability, BFS and DFS trees can be used to answer a variety of
problems on graphs, such as testing bipartiteness, shortest paths in the unweighted setting,
2-edge connectivity, or biconnectivity.

SAND 2022

1:4 Recent Advances in Fully Dynamic Graph Algorithms

Undirected Graphs (Connectivity)

Patrascu and Demaine [184] gave an (unconditional) lower bound of Ω(log n) per operation
for this problem, improving a bound of Ω(log n/ log log n) [123]. The first non-trivial dynamic
algorithms for connectivity, and also for 2-edge connectivity, and 2-vertex connectivity [86,
121, 79, 80, 122] took time Õ(

√
n) per operation. Henzinger and King [125] were the first to

give a fully dynamic algorithm with polylogarithmic time per operation for this problem.
Their algorithm is, however, randomized. Holm et al. [127] gave the first deterministic
fully dynamic algorithm with polylogarithmic time per operation. The currently fastest
fully dynamic connectivity algorithm takes O(log n(log log n)2) amortized expected time per
operation [132]. There also is a batch-dynamic parallel algorithm that answers k queries in
O(k log(1 + n/k)) expected work and O(log n) depth with O(log n log(1 + n/B)) expected
amortized work per update and O(log3 n) depth for an average batch size of B [6].

The fully dynamic connectivity problem can be reduced to the maintenance of a spanning
forest, using, e.g., dynamic trees [222, 7] or Euler tour trees [124, 232] (see also Section 3.2),
for the components. If the graph is a forest, updates and queries can be processed in amortized
O(log n) time, whereas the theoretically fastest algorithms [141] to date for general graphs
have polylogarithmic worst-case update time and O(log n/ log log n) worst-case query time,
the latter matching the lower bound [123, 168]. The key challenge on general graphs is to
determine whether the deletion of an edge of the spanning forest disconnects the component
or whether a replacement edge can be found. There are also fully dynamic algorithms
for more refined notions of connectivity: Two-edge connectivity [125, 126] and two-vertex
connectivity [126] can also be maintained in polylogarithmic time per operation. See [134]
for a survey on that topic.

Building on an earlier study by Alberts et al. [10], Iyer et al. [137] experimentally compared
the Euler tour tree-based algorithms by Henzinger and King [124] and Holm et al. [126]
to each other as well as several heuristics to achieve speedups in both candidates. The
instances used in the evaluation were random graphs with random edge insertions and
deletions, random graphs where a fixed set of edges appear and disappear dynamically,
graphs consisting of cliques of equal size plus a set of inter-clique edges, where only the latter
are inserted and deleted, as well as specially crafted worst-case instances for the algorithms.
The authors showed that the running time of both algorithms can be improved distinctly via
heuristics; in particular a sampling approach to replace deleted tree edges has proven to be
successful. The experimental running time of both algorithms was comparable, but with the
heuristics, the algorithm by Holm et al. [126] performed better.

Baswana et al. [25] gave the first algorithm for maintaining an undirected DFS tree with
o(m) update time and showed a conditional lower bound of Ω(n) on the update time in case of
vertex updates and, if the tree is maintained explicitly, an unconditional lower bound of Ω(n)
under edge updates. Their algorithm has a preprocessing time of O(m log n), a worst-case
update time of O(

√
mn log2.5 n), and uses O(m log2 n) bits. Nakamura and Sadakane [172]

improved the update time by polylog n factors and the space required to O(m log n). Recently,
Baswana et al. [27] further reduced the update time down to O(

√
mn log n). A parallel

algorithm that uses m processors and O(polylog n) update time was given by Khan [145].
To the best of our knowledge, experimental evaluations have only been conducted to date
with algorithms designed for the incremental setting, but not for fully-dynamic algorithms.
No experimental studies on dynamically maintaining BFS trees are known to us.

K. Hanauer, M. Henzinger, and C. Schulz 1:5

Directed Graphs (Reachability, Strong Connectivity, Transitive Closure)

For directed graphs that are and remain acyclic, the same algorithms can be employed
for reachability as for (undirected) connectivity in forests (see above). On general graphs,
there is a conditional lower bound of (poly, m1/2−δ, m1−δ) for any small constant δ > 0
based on the OMv conjecture. This bound even holds for the s-t reachability problem,
where both s and t are fixed for all queries. The currently fastest algorithms for transitive
closure are three Monte Carlo algorithms with one-sided error: Two by Sankowski [205]
with O(1) or O(n0.58) worst-case query time and O(n2) or O(n1.58) worst-case update time,
respectively, and one by van den Brand, Nanongkai, and Saranurak [234] with O(n1.407)
worst-case update and worst-case query time. There exists a conditional lower bound based
on a variant of the OMv conjecture that shows that these running times are optimal [234].
Moreover, there are two deterministic, combinatorial algorithms: Roditty’s algorithm with
constant query time and O(n2) amortized update time [198], as well as one by Roditty and
Zwick [201] with an improved O(m + n log n) amortized update time at the expense of O(n)
worst-case query time.

Frigioni et al. [89] and later Krommidas and Zaroliagis [153] empirically studied the
performance of an extensive number of algorithms for transitive closure, including those
mentioned above. They also developed various extensions and variations and compared
them not only to each other, but also to static, so-called “simple-minded” algorithms such as
breadth-first and depth-first search. Their evaluation included random Erdős-Renyí graphs,
specially constructed hard instances, as well as two instances based on real-world graphs. It
showed that the “simple-minded” algorithms could outperform the dynamic ones distinctly
and up to several factors, unless the query ratio was more than 65 % or the instances were
dense random graphs.

In recent experimental studies by Hanauer et al. [110, 109], two relatively straightforward
algorithms for single-source reachability could outperform the “simple-minded” algorithms of
the earlier studies in a single-source setting by several orders of magnitude in practice both on
random graphs as well as on real-world instances: SI maintains an arbitrary reachability tree
which is re-constructed via a combined forward and backward breadth-first search traversal
on edge deletions if necessary and is especially fast if insertions predominate, which can be
handled in O(n + m) time. By contrast, it may take up to O(nm) time for a single edge
removal. SES is an extension and simplification of Even-Shiloach trees [220], which originally
only handle edge deletions. Its strength are hence instances with many deletions. As a plus,
it is able to deliver not just any path as a witness for reachability, but even the shortest path
(with respect to the number of edges). Furthermore, it internally maintains a BFS tree, which
makes it viable also for numerous other applications, see above. Its worst-case update time is
O(n+m), and, like SI, it answers queries in constant time. One key ingredient for the superior
performance of both algorithms in practice are carefully chosen criteria for an abortion of the
re-construction of their data structures and their re-building from scratch [110]. To query the
transitive closure of a graph, a number of so-called “supportive vertices”, for which both in-
and out-reachability trees are maintained explicitly, can be picked either once or periodically
anew and then be used to answer both positive and negative reachability queries between a
number of pairs of vertices decisively in constant time [109]. The fallback routine can be a
simple static graph traversal and therefore be relatively expensive: With a random initial
choice of supportive vertices and no periodic renewals, this approach has been shown to
answer a great majority of reachability queries on both random and real-world instances in
constant time already if the number of supportive vertices is very small, i.e., two or three.

SAND 2022

1:6 Recent Advances in Fully Dynamic Graph Algorithms

These experimental studies clearly show the limitations of worst-case analysis: All
implemented algorithms are fully dynamic with at least linear worst-case running time per
operation and, thus, all perform “(very) poor” in the worst case. Still on all graphs used in
the study the relatively simple new algorithms clearly outperformed the algorithms used in
previous studies.

Yang et al. [246] were the first to give a fully dynamic algorithm for maintaining a DFS
tree in a directed graph along with several optimizations to achieve speedups in practice. In
an experimental evaluation on twelve real-world instances, they showed that the optimized
version of their algorithm can handle edge insertions and deletions within few seconds on
average for instances with millions of vertices. With regard to BFS trees, the already
mentioned SES algorithm [110] is the only fully dynamic algorithm we are aware of that
maintains a BFS tree on a directed graph.

3.2 Minimum Weight Spanning Trees
A minimum weight spanning tree (MST) of a connected graph is a subset of the edges
such that all nodes are connected via the edges in the subset, the induced subgraph has no
cycles and, lastly, has the minimum total weight among all possible subsets fulfilling the first
two properties.

The lower bound of Ω(log n) [184] on the time per operation for connectivity trivially
extends to maintaining the weight of a minimum spanning tree. Holm et al. [127] gave the
first fully dynamic algorithm with polylogarithmic time per operation for this problem. It
was later slightly improved to O(log4 n)/ log log n) time per operation [128].

Amato et al. [133] presented the first experimental study of dynamic minimum spanning
tree algorithms. In particular, the authors implemented different versions of Frederickson’s
algorithm [85] which uses partitions and topology trees. The algorithms have been adapted
with sparsification techniques to improve their performance. The update running times of
these algorithms range from O(m2/3) to O(m1/2). The authors further presented a variant
of Frederickson’s algorithm that is significantly faster than all other implementations of this
algorithm. However, the authors also proposed a simple adaption of a partially dynamic
data structure of Kruskal’s algorithm that was the fastest implementation on random inputs.
Later, Cattaneo et al. [56, 57] presented an experimental study on several algorithms for
the problem. The authors presented an efficient implementation of the algorithm of Holm
et al. [127], proposed new simple algorithms for dynamic MST that are not as asymptotically
efficient as the algorithm by Holm et al. but seem to be fast in practice, and lastly compared
their algorithms with the results of Amato et al. [133]. The algorithm by Holm et al. uses a
clever refinement of a technique by Henzinger and King [119] for developing fully dynamic
algorithms starting from the deletions-only case. One outcome of their experiments is that
simple algorithms outperform the theoretically more heavy algorithms on random and worst-
case networks. On the other hand, on k-clique inputs, i.e. graphs that contain k cliques of
size c plus 2k randomly chosen inter-clique edges, the implementation of the algorithm by
Holm et al. outperformed the simpler algorithms.

Tarjan and Werneck [227] performed experiments for several variants of dynamic trees
data structure. The evaluated data structures have been used by Ribero and Toso [196], who
focused on the case of changing weights, i.e. the edges of the graph are constant, but the edge
weights can change dynamically. The authors also proposed and used a new data structure
for dynamic tree representation called DRD-trees. In their algorithm the dynamic tree data
structure is used to speed up connectivity queries that check whether two vertices belong to
different subtrees. More generally, the authors compared different types of data structures

K. Hanauer, M. Henzinger, and C. Schulz 1:7

to do this task. In particular, the authors used the dynamic tree data structures that have
been evaluated by Tarjan and Werneck [227]. The experimental evaluation demonstrated
that the new structure reduces the computation time observed for the algorithm of Cattaneo
et al. [56], and at the same time yielded the fastest algorithms in the experiments.

3.3 Cycle Detection and Topological Ordering
A cycle in a (directed) graph G = (V, E) is a non-empty path P = (v1, . . . , vk = v1) such that
(vi, vi+1) ∈ E. A topological ordering of a directed graph is a linear ordering of its vertices
from 1 to n such that for every directed edge (u, v) from vertex u to vertex v, u is ordered
before v. In the static case, one can use a depth-first search (DFS) to compute a topological
ordering of a directed acyclic graph or to check if a (un)directed graph contains a cycle.

Let δ > 0 be any small constant. Based on the OMv conjecture [117] it is straightforward
to construct a lower bound of (poly, m1/2−δ, m1−δ) for the (amortized or worst-case) running
time of any fully dynamic algorithm that detects whether the graph contains any cycle. As
any algorithm for topological ordering can be used to decide whether a graph contains a
cycle, this lower bound also applies to any fully dynamic topological ordering algorithm.
Via dynamic matrix inverse one can maintain fully dynamic directed cycle detection in
O(n1.407) [234], which is conditionally optimal based on a variant of the OMv conjecture.

Pearce and Kelly [187, 188] were the first to evaluate algorithms for topological ordering
in the presence of edge insertions and deletions. In their work, the authors compared three
algorithms that can deal with the online topological ordering problem. More precisely,
the authors implemented the algorithms by Marchetti-Spaccamela et al. [164] and Alpern
et al. [12] as well as a newly developed algorithm. Their new algorithm is the one that
performed best in their experiments. The algorithm maintains a node-to-index map, called
n2i, that maps each vertex to a unique integer in {1 . . . n} and ensures that for any edge (u, v)
in G, it holds n2i[u] < n2i[v]. When an insertion (u, v) invalidates the topological ordering,
affected nodes are updated. The set of affected nodes are identified using a forward DFS
from v and backward DFS from u. The two sets are then separately sorted into increasing
topological order and afterwards a remapping to the available indices is performed. The
algorithm by Marchetti-Spaccamela et al. [164] is quite similar to the algorithm by Pearce
and Kelly. However, it only maintains the forward set of affected nodes and obtains a correct
solution by shifting the affected nodes up in the ordering (putting them after u). Alpern
et al. [12] used a data structure to create new priorities between existing ones in constant
worst-case time. The result by Pearce and Kelly has later been applied to online cycle
detection and difference propagation in pointer analysis by Pearce et al. [189]. Furthermore,
Pearce and Kelly [186] later extended their algorithm to be able to provide more efficient
batch updates.

3.4 (Weighted) Matching
The matching problem is one of the most prominently studied combinatorial graph problems
having a variety of practical applications. A matching M of a graph G = (V, E) is a subset
of edges such that no two elements of M have a common end point. Many applications
require matchings with certain properties, like being maximal (no edge can be added to M
without violating the matching property) or having maximum cardinality.

In the dynamic setting, there is a conditional lower bound of (poly, m1/2−δ, m1−δ) (for any
small constant δ > 0) for the size of the maximum cardinality matching based on the OMv
conjecture [117]. Of course, maintaining an actual maximum matching is only harder than

SAND 2022

1:8 Recent Advances in Fully Dynamic Graph Algorithms

maintaining the size of a maximum matching. Thus upper bounds have mostly focused on
approximately maximum matching. However, also here we have to distinguish (a) algorithms
that maintain the size of an approximately maximum matching and (b) algorithms that
maintain an approximately maximum matching.

(a) Improving Sankowski’s O(n1.495) update time bound [207], van den Brand et al. [234]
maintain the exact size of a maximum matching in O(n1.407) update time. To maintain
the approximate size of the maximum matching, dynamic algorithms use the duality of
maximum matching and vertex cover and maintain instead a (2 + ϵ)-approximate vertex
cover. This line of work lead to a sequence of papers [135, 40, 42, 39], resulting finally
in a deterministic (2 + ϵ)-approximation algorithm that maintains a hierarchical graph
decomposition with O(1/ϵ2) amortized update time [47]. The algorithm can be turned
into an algorithm with worst-case O(log3 n) time per update [43].

(b) One can trivially maintain a maximal matching in O(n) update time by resolving all
trivial augmenting paths, i.e. cycle-free paths that start and end on a unmatched vertex
and where edges from M alternate with edges from E \ M, of length one. As any
maximal matching is a 2-approximation of a maximum matching, this leads to a 2-
approximation algorithm. Onak and Rubinfeld [181] presented a randomized algorithm
for maintaining an O(1)-approximate matching with O(log2 n) expected amortized
time per edge update. Baswana, Gupta, and Sen [26] gave an elegant algorithm that
maintains a maximal matching with amortized update time O(log n). It is based on
a hierarchical graph decomposition and was subsequently improved by Solomon to
amortized constant expected update time [223]. For worst-case bounds, the best results
are a (1 + ϵ)-approximation in O(

√
m/ϵ) update time by Gupta and Peng [104] (see [178]

for a 3/2-approximation in the same time), a (3/2 + ϵ)-approximation in O(m1/4/ϵ2.5)
time by Bernstein and Stein [37], and a (2 + ϵ)-approximation in O(polylog n) time
by Charikar and Solomon [59] and Arar et al. [17]. Recently, Grandoni et al. [100]
gave an incremental matching algorithm that achieves a (1 + ϵ)-approximate matching
in constant deterministic amortized time. Finally, Bernstein et al. [36] improved the
maximal matching algorithm of Baswana et al. [26] to O(log5 n) worst-case time with
high probability.

Despite this variety of different algorithms, to the best of our knowledge, there have been
only limited efforts so far to engineer and evaluate these algorithms on real-world instances.
Henzinger et al. [116] initiated the empirical evaluation of algorithms for this problem in
practice. To this end, the authors evaluated several dynamic maximal matching algorithms as
well as an algorithm that is able to maintain the maximum matching. They implemented the
algorithm by Baswana, Gupta and Sen [26], which performs edge updates in O(

√
n) time and

maintains a 2-approximate maximum matching, the algorithm of Neiman and Solomon [178],
which takes O(

√
m) time to maintain a 3/2-approximate maximum matching, as well as

two novel dynamic algorithms, namely a random walk-based algorithm as well as a dynamic
algorithm that searches for augmenting paths using a (depth-bounded) blossom algorithm.
Their experiments indicate that an optimum matching can be maintained dynamically more
than an order of magnitude faster than the naive algorithm that recomputes maximum
matchings from scratch . Second, all non-optimum dynamic algorithms that have been
considered in this work were able to maintain near-optimum matchings in practice while
being multiple orders of magnitudes faster than the naive exact dynamic algorithm. The
study concludes that in practice an extended random walk-based algorithms is the method
of choice.

K. Hanauer, M. Henzinger, and C. Schulz 1:9

For the weighted dynamic matching problem, Anand et al. [14] proposed an algorithm
that can maintain an 4.911-approximate dynamic maximum weight matching that runs
in amortized O(log n log C) time where C is the ratio of the weight of the highest weight
edge to the weight of the smallest weight edge. Furthermore, a sequence [41, 1, 39, 46, 44]
of work on fully dynamic set cover resulted in (1 + ϵ)-approximate weighted dynamic
matching algorithms, with O(1/ϵ3 + (1/ϵ2) log C) amortized and O((1/ϵ3) log2(Cn)) worst-
case time per operation based on various hierarchical hypergraph decompositions. Gupta
and Peng [105] maintain a (1 + ϵ)-approximation under edge insertions/deletions that runs in
time O(

√
mϵ−2−O(1/ϵ) log N) time per update, if edge weights are in between 1 and N . Their

result is based on rerunning a static algorithm from time to time, a trimming routine that
trims the graph to a smaller equivalent graph whenever possible and in the weighted case, a
partition of the weights of the edges into intervals of geometrically increasing size. Stubbs
and Williams [225] presented metatheorems for dynamic weighted matching. Here, the
authors reduced the dynamic maximum weight matching problem to the dynamic maximum
cardinality matching problem in which the graph is unweighted. The authors proved that
using this reduction, if there is an α-approximation for maximum cardinality matching with
update time T in an unweighted graph, then there is also a (2 + ϵ)α-approximation for
maximum weight matching with update time O(T

ϵ2 log2 N). Their basic idea is an extension
of the algorithm of Crouch and Stubbs [64] who tackled the problem in the streaming model.
Here, the reduction is to take matchings from weight-threshold based subgraphs of the
dynamic graph, i.e. the algorithm maintains maximal matchings in log C subgraphs, where
subgraph i contains all edges having weight at least (1 + ϵ)i. The resulting matchings are
then greedily merged together by considering the matched edges in descending order of i

(heaviest edges first). Recently, the approach by Stubbs and Williams has been evaluated
experimentally and has been compared against a new random walk-based approach [16]
which gives a (1 + ϵ) approximation w.h.p.. When inserting or deleting an edge, the random
walk-based approach finds random simple paths (using random walks) and solves those paths
using dynamic programming to improve the maintained matching. In practice, the random
walk-based approach outperforms the approach by Stubbs and Williams significantly.

3.5 k-Core Decomposition

A k-core of a graph is a maximal connected subgraph in which all vertices have degree at
least k. The k-core decomposition problem is to compute the core number of every node
in the graph. It is well-known that a k-core decomposition can be computed in linear time
for a static graph. The problem of maintaining the k-core decomposition in a fully dynamic
graph has not received much attention by the theoretical computer science community: Sun
et al. [226] showed that the insertion and deletion of a single edge can change the core
value of all vertices. They also gave a (4 + ϵ)-approximate fully dynamic algorithm with
polylogarithmic running time. The algorithm can be implemented in time O(log2 n) in
graphs using the algorithm of [45]. It dynamically maintains O(log(1+ϵ) n) many (α, β)-
decompositions of the graph, one for each β-value that is a power of (1 + ϵ) between 1 and
(1 + ϵ)n. An (α, β)-decomposition of a graph G = (V, E) is a decomposition Z1, . . . , ZL of V

into L := 1 + ⌈(1 + ϵ) log n⌉ levels such that Zi+1 ⊆ Zi for all 1 ≤ i < L, Z1 = V , and the
following invariants are maintained: (1) All vertices v on level Zi with degZi

(v) > αβ belong
to Zi+1 and (2) all vertices v on level Zi with degZi(v) < β do not belong to Zi+1. There
are no further lower bounds, neither conditional nor unconditional, and no faster algorithms
known for maintaining an approximate k-core decomposition.

SAND 2022

1:10 Recent Advances in Fully Dynamic Graph Algorithms

Miorandi and De Pellegrini [169] proposed two methods to rank nodes according to their
k-core number in fully dynamic networks. The focus of their work is to identify the most
influential spreaders in complex dynamic networks. Li et al. [157] used a filtering method to
only update nodes whose core number is affected by the network update. More precisely,
the authors showed that nodes that need to be updated must be connected via a path to
the endpoints of the inserted/removed edge and the core number must be equal to the
smaller core number of the endpoints. Moreover, the authors presented efficient algorithms
to identify such nodes as well as additional techniques to reduce the size of the nodes that
need updates. Similarly, Sariyüce et al. [208] proposed the k-core algorithm TRAVERSAL
and gave additional rules to prune the size of the subgraphs that are guaranteed to contain
the vertices whose k-core number can have changed. Note that these algorithm can have
a high variation in running time for the update operations depending on the size of the
affected subgraphs. Zhang et al. [250] noted that due to this reason it can be impractical to
process updates one by one and introduced the k-order concept which can reduce the cost
of the update operations. A k-order is defined as follows: a node u is ordered before v in
the k-order if u has a smaller core number than v or when the vertices have the same core
number, if the linear time algorithm to compute the core decomposition would remove u

before v. A recent result by Sun et al. [226] also contains experimental results. However,
their main focus is on hypergraphs and there are no comparisons against the algorithms
mentioned above.

Aridhi et al. [18] gave a distributed k-core decomposition algorithm in large dynamic
graphs. The authors used a graph partitioning approach to distribute the workload and
pruning techniques to find nodes that are affected by the changes. Wang et al. [242] gave
a parallel algorithm that appears to significantly outperform the TRAVERSAL algorithm.
Jin et al. [138] presented a parallel approach based on matching to update core numbers in
fully dynamic networks. Specifically, the authors showed that if a batch of inserted/deleted
edges forms a matching, then the core number update step can be performed in parallel.
However, the type of the edges has to be the same (i.e. only insertions, or only deletions)
in each update. Hua et al. [130] noted that previous algorithms become inefficient for high
superior degree vertices, i.e. , vertices that have many neighbors that have a core number
that is larger than its own core number. For example, the matching-based approach of Jin
et al. [138] can only process one edge associated to a vertex in each iteration. Their new
algorithm can handle multiple insertions/deletions per iteration.

It would be interesting to evaluate the algorithm of Sun et al. [226] which maintains a
(4 + ϵ)-approximate core number, on graphs to see how far from the exact core numbers
these estimates are and how its running time compares to the above approaches. Note that
an (α, β)-decomposition actually gives a (2α + ϵ) approximation and α has to be chosen
to be slightly larger than 2 only to guarantee polylogarithmic updates. Thus, it would be
interesting to also experiment with smaller values of α.

3.6 Motif Search and Motif Counting
Two graphs are isomorphic if there is a bijection between the vertex sets of the graphs that
preserves adjacency. Given a graph pattern H (or multiple Hi), motif counting counts the
subgraphs of G that are isomorphic to H (Hi respectively). In the work that is currently
available there is a subset of work that focuses on the special case of counting triangles or
wedges, i.e., paths of length two, in dynamic networks.

There is a conditional lower bound of (poly, m1/2−δ, m1−δ) even for the most fundamental
problem of detecting whether a graph contains a triangle [117]. The same lower bound
also extends to various four-vertex subgraphs [108], whereas there is a lower bound of

K. Hanauer, M. Henzinger, and C. Schulz 1:11

(poly, m1−δ, m2−δ) for counting 4-cliques as well as induced connected four-vertex subgraphs.
A fully dynamic algorithm with O(

√
m) update time was recently given independently by

Kara et al. [142, 143] for counting triangles. Subsequently, Lu and Tao [161] studied the
trade-off between update time and approximation quality and presented a new data structure
for exact triangle counting whose complexity depends on the arboricity of the graph. The
result by Kara et al. was also extended to general k-clique counting by Dhulipala et al. [74].
Motivated by the fact that real-world graphs in certain applications often have small h-index
h (i.e., there are at most h vertices of degree at least h), Eppstein and Spiro [82] showed
that the undirected triangle count can be maintained in O(h) time. Eppstein et al. [81] later
extended this result to maintaining the counts of directed triangles in amortized O(h) time
and of undirected four-vertex subgraphs in amortized O(h2). Note that h can be as large
as O(

√
m), resulting in an amortized time complexity of O(m) per update for four-vertex

subgraphs in general. Only very recently, Hanauer et al. [108] showed how to reduce this to
amortized O(m2/3) time per update for all four-vertex subgraphs except the 4-clique. This
is currently an active area of research.

In our description of the empirical work for this problem we start with recent work that
mainly focuses on triangle counting. Pavan et al. [185] introduced neighborhood sampling to
count and sample triangles in a one-pass streaming algorithm. In neighborhood sampling,
first a random edge in the stream is sampled and in subsequent steps, edges that share an
endpoint with the already sampled edges are sampled. The algorithm outperformed their
implementations of the previous best algorithms for the problem, namely the algorithms
by Jowhari and Ghodsi [140] and by Buriol et al. [54]. Note that the method does not
appear to be able to handle edge deletions. Bulteau et al. [53] estimated the number of
triangles in fully dynamic streamed graphs. Their method adapts 2-path sampling to work
for dynamic graphs. The main idea of 2-path sampling is to sample a certain number of
2-paths and compute the ratio of 2-paths in the sample that are complete triangles. The
total number of 2-paths in the graph is then multiplied with the ratio to obtain the total
number of 2-paths in the graph. This approach fails, however, if one allows deletions. Thus,
the contribution of the paper is a novel technique for sampling 2-paths. More precisely,
the algorithm first streams the graph and sparsifies it. Afterwards, the sampling technique
is applied on the sparsified graph. The core contribution of the authors is to show that
the estimate obtained in the sparsified graph is similar to the number of triangles in the
original graph. For graphs with constant transitivity coefficient, the authors achieve constant
processing time per edge. Makkar et al. [163] presented an exact and parallel approach using
an inclusion-exclusion formulation for triangle counting in dynamic graphs. The algorithm
is implemented in cuSTINGER [84] and runs on GPUs. The algorithm computes updates
for batches of edge updates and also updates the number of triangles each vertex belongs
to. The TRIÈST algorithm [224] estimates local and global triangles. An input parameter
of the algorithm is the amount of available memory. The algorithm maintains a sample of
the edges using reservoir sampling and random pairing to exploit the available memory as
much as possible. The algorithm reduces the average estimation error by up to 90 % w.r.t.
to the previous state-of-the-art. Han and Sethu [107] proposed a new sampling approach,
called edge-sample-and-discard, which generates an unbiased estimate of the total number of
triangles in a fully dynamic graph. The algorithm significantly reduces the estimation error
compared to TRIÈST. The MASCOT algorithm [159, 158] focuses on local triangle counting,
i.e. counting the triangles adjacent to every node. In their work, the authors provide an
unbiased estimation of the number of local triangles.

We now report algorithms that can count more complex patterns. The neighborhood
sampling method of Pavan et al. [185] can also be used for more complex patters, for example
Pavan et al. also presented experiments for 4-cliques. Shiller et al. [212] presented the

SAND 2022

1:12 Recent Advances in Fully Dynamic Graph Algorithms

stream-based (insertions and deletions) algorithm StreaM for counting undirected 4-vertex
motifs in dynamic graphs. Ahmed et al. [8] presented a general purpose sampling framework
for graph streams. The authors proposed a martingale formulation for subgraph count
estimation and showed how to compute unbiased estimate of subgraph counts from a sample
at any point during the stream. The estimates for triangle and wedge counting obtained are
less than 1 % away from the true number of triangles/wedges. The algorithm outperformed
their own implementation of TRIÈST and MASCOT. Mukherjee et al. [171] gave an exact
counting algorithm for a given set of motifs in dynamic networks. Their focus is on biological
networks. The algorithm computes an initial embedding of each motif in the initial network.
Then for each motif its embeddings are stored in a list. This list is then dynamically updated
while the graph evolves. Liu et al. [160] estimated motifs in dynamic networks. The algorithm
uses exact counting algorithms as a subroutine, and hence can speed up any exact algorithm
at the expense of accuracy. The main idea of their algorithm is to partition the stream into
time intervals and find exact motif counts in subsets of these intervals. Recently, Wang
et al. [241] improved on the result of Liu et al.. The improvement stems from a generic
edge sampling algorithm to estimate the number of instances of any k-vertex ℓ-edge motif in
a dynamic network. The main idea of the algorithm is to first uniformly at random draw
random edges from the dynamic network, then exactly count the number of local motifs and
lastly estimate the global count from the local counts. The experimental evaluation showed
that their algorithm is up to 48.5 times faster than the previous state-of-the-art while having
lower estimation errors.

Dhulipala et al. [74] recently gave parallel batch-dynamic algorithms for k-clique counting.
Their first algorithm is a batch-dynamic parallel algorithm for triangle counting that has
amortized work O(∆

√
∆ + m) and O(log∗(∆ + m)) depth with high probability. The

algorithm is based on degree thresholding which divides the vertices into vertices with low-
and high-degree. Given the classification of the vertex, different updates routines are used. A
multicore implementation of the triangle counting algorithm is given. Experiments indicate
that the algorithms achieve 36.54 to 74.73-times parallel speedups on a machine with 72 cores.
Lastly, the authors developed a simple batch-dynamic algorithm for k-clique counting that
has expected O(∆(m + ∆)αk−4) work and O(logk−2 n) depth with high probability, for
graphs with arboricity α.

To summarize for this problem the empirical work is far ahead of the theoretical work
and it would be interesting to better understand the theoretical complexity of motif search
and motif counting.

3.7 Diameter
The eccentricity of a vertex is the greatest distance between the vertex and any other vertex
in the graph. Based on this definition, the diameter of a graph is defined as the maximum
eccentricity over all vertices in the graph. The radius is the minimum eccentricity of all vertices.
Through recomputation from scratch it is straightforward to compute a 2-approximation for
diameter and radius and a (2 + ϵ)-approximation for radius in linear time.

Anacona et al. [15] recently showed that under the strong exponential time hypothesis
(SETH) there can be no (2 − ϵ)-approximate fully dynamic approximation algorithm for
any of these problems with O(m1−δ) update or query time for any δ > 0. There also exist
non-trivial (and sub-n2 time) fully dynamic algorithms for (1.5 + ϵ) approximate diameter
(and also for radius and eccentricities) [234]. In this paper, the authors also construct a
non-trivial algorithm for exact diameter. We are not aware of any experimental study for
fully dynamic diameter.

K. Hanauer, M. Henzinger, and C. Schulz 1:13

3.8 Independent Set and Vertex Cover
Given a graph G = (V, E), an independent set is a set S ⊆ V such that no vertices in
S are adjacent to one another. The maximum independent set problem is to compute an
independent set of maximum cardinality, called a maximum independent set (MIS). The
minimum vertex cover problem is equivalent to the maximum independent set problem: S

is a minimum vertex cover C in G iff V \ S is a maximum independent set V \ C in G.
Thus, an algorithm that solves one of these problems can be used to solve the other. Note,
however, that this does not hold for approximation algorithms: If C ′ is an α-approximation
of a minimum vertex cover, then V \ C ′ is not necessarily an α-approximation of a maximum
independent set. Another related problem is the maximal independent set problem. A set S

is a maximal independent set if it is an independent set such that for any vertex v ∈ V \ S,
S ∪ {v} is not independent.

As computing the size of an MIS is NP-hard, all dynamic algorithms of independent set
study the maximal independent set problem. Note, however, that unlike for matching a
maximal independent set does not give an approximate solution for the MIS problem, as
shown by a star graph. In a sequence of papers [19, 103, 20, 60, 31] the running time for the
maximal independent set problem was reduced to O(log4 n) expected worst-case update time.

While quite a large amount of engineering work has been devoted to the computation
of independent sets/vertex covers in static graphs, the amount of engineering work for the
dynamic independent set problem is very limited. Zheng et al. [252] presented a heuristic
fully dynamic algorithm and proposed a lazy search algorithm to improve the size of the
maintained independent set. A year later, Zheng et al. [251] improved the result such that the
algorithm is less sensitive to the quality of the initial solution used for the evolving MIS. In
their algorithm, the authors used two well known data reduction rules, degree one and degree
two vertex reduction, that are frequently used in the static case. Moreover, the authors can
handle batch updates. Bhore et al. [48] focused on the special case of MIS for independent
rectangles which is frequently used in map labelling applications. The authors presented a
deterministic algorithm for maintaining a MIS of a dynamic set of uniform rectangles with
amortized sub-logarithmic update time. Moreover, the authors evaluated their approach
using extensive experiments.

3.9 Shortest Paths
One of the most studied problems on weighted dynamic networks is the maintenance of
shortest path information between pairs of vertices. In the most general setting, given an
undirected, dynamic graph with dynamically changing edge weights representing distances,
we are interested in the shortest path between two arbitrary vertices s and t (all-pairs
shortest path problem). For the single-source shortest path problem, the source vertex s

is fixed beforehand and the dynamic graph algorithm is only required to answer distance
queries between s and an (arbitrary) vertex t which is specified by the query operation. In
the s-t shortest path problem both s and t are fixed beforehand and the data structure is
only required to return the distance between s and t as answer to a query. In all cases, the
analogous problem can also be cast on a directed graph, asking for a shortest path from s to
t instead.

Let δ > 0 be a small constant. There is a conditional lower bound of (poly, m1/2−δ, m1−δ)
for any small constant δ > 0 based on the OMv conjecture, even for s-t shortest paths [117].
This lower bound applies also to any algorithm that gives a better than 5/3-approximation.
For planar graphs the product of query and update time is Ω(n1−δ) based on the APSP

SAND 2022

1:14 Recent Advances in Fully Dynamic Graph Algorithms

conjecture [2]. As even the partially dynamic versions have shown to be at least as hard
as the static all-pairs shortest paths problem [199, 2], one cannot hope for a combinatorial
fully dynamic all-pairs shortest paths algorithm with O(n3−δ) preprocessing time, O(n2−δ)
amortized update time, and constant query time. The state-of-the-art algorithms come close
to this: For directed, weighted graphs, Demetrescu and Italiano [72] achieved an amortized
update time of Õ(n2), which was later improved by a polylogarithmic factor by Thorup [228].
Both of these algorithms actually allow vertex insertions and deletion, not just edge updates.
There is also a fully dynamic 2O(k2)-approximation algorithm that takes time Õ(

√
mn1/k)

per update and O(k2) per update for any positive integer k [5].

With respect to worst-case update times, the currently fastest algorithms are randomized
with Õ(n2+2/3) update time [4, 106]. Moreover, Probst Gutenberg and Wulff-Nilsen [106]
presented a deterministic algorithm with Õ(n2+5/7) update time, thereby improving a
15 years old result by Thorup [229]. Van den Brand and Nanongkai [233] showed that
Monte Carlo-randomized (1+ ϵ)-approximation algorithms exist with Õ(n1.823/ϵ2) worst-case
update time for the fully dynamic single-source shortest path problem and Õ(n2.045/ϵ2) for
all-pairs shortest paths, in each case with positive real edge weights and constant query time.
Slightly faster exact and approximative algorithms exist in part for the “special cases” of
unweighted graphs [206, 199, 4, 106, 234, 233] (all edges have unit weight) and/or undirected
graphs [200, 233] (every edge has a reverse edge of the same weight). More details on
shortest paths algorithms including fully dynamic algorithms are given in the survey of
Madkour et al. [162].

The first experimental study for fully dynamic single-source shortest paths on directed
graphs with positive real edge weights was conducted by Frigioni et al. [87], who evaluated
Dijkstra’s seminal static algorithm [75] against a fully dynamic algorithm by Ramalingam and
Reps [195] (RR) as well as one by Frigioni et al. [88] (FMN). RR is based on Dijkstra’s static
algorithm and maintains a spanning subgraph consisting of edges that belong to at least one
shortest s-t path for some vertex t. After an edge insertion, the spanning subgraph is updated
starting from the edge’s head until all affected vertices have been processed. In case of an
edge deletion, the affected vertices are identified as a first step, followed by an update of their
distances. The resulting worst-case update time is O(xδ + nδ log nδ) ⊆ O(m + n log n), where
nδ corresponds to the number of vertices affected by the update, i.e., whose distance from s

changes and xδ equals nδ plus the number of edges incident to an affected vertex. Similarly,
Frigioni et al. [88] analyzed the update complexity of their algorithm FMN with respect to
the change in the solution and showed a worst-case running time of O(|Uδ|

√
m log n), where

Uδ is the set of vertices where either the distance from s must be updated or their parent
in the shortest paths tree. The algorithm assigns each edge (u, v) a forward (backward)
level, which corresponds to the difference between the (sum of) v’s (u’s) distance from s

and the edge weight, as well as an owner, which is either u or v, and used to bound the
running time. Incident outgoing and incoming edges of a vertex that it does not own are
kept in a priority queue each, with the priority corresponding to the edge’s level. In case
of a distance update at a vertex, only those edges are scanned that are either owned by
the vertex or have a priority that indicates a shorter path. Edge insertion and deletion
routines are based on Dijkstra’s algorithm and handled similar as in RR, but using level
and ownership information. The experiments were run on three types of input instances:
randomly generated ones, instances crafted specifically for the tested algorithms, and random
updates on autonomous systems networks. The static Dijkstra algorithm is made dynamic
in that it is re-run from scratch each time its shortest paths tree is affected by an update.
The evaluation showed that the dynamic algorithms can speed up the update time by 95 %

K. Hanauer, M. Henzinger, and C. Schulz 1:15

over the static algorithm. Furthermore, RR turned out to be faster in practice than FMN
except on autonomous systems instances, where the spanning subgraph was large due to
many alternative shortest paths. In a follow-up work, Demetrescu et al. [71, 70] extended this
study to dynamic graphs with arbitrary edge weight, allowing in particular also for negative
weights. In addition to the above mentioned algorithm by Ramalingam and Reps [195] in
a slightly lighter version (RRL) and the one by Frigioni et al. [88] (FMN), their study also
includes a simplified variant of the latter which waives edge ownership (DFMN), as well as a
rather straightforward dynamic algorithm (DF) that in case of a weight increase on an edge
(u, v) first marks all vertices in the shortest paths subtree rooted at v and then finds for each
of these vertices an alternative path from s using only unmarked vertices. The new weight of
these vertices can be at most this distance or the old distance plus the amount of weight
increase on (u, v). Therefore, the minimum is taken as a distance estimate for the second
step, where the procedure is as in Dijkstra’s algorithm. In case of a weight decrease on an
edge (u, v) the first step is omitted. As Dijkstra’s algorithm is employed as a subroutine,
the worst-case running time of DF for a weight change is O(m + n log n). For updates, all
algorithms use a technique introduced by Edmonds and Karp [78] to transform the weight
w(u, v) of each edge (u, v) to a non-negative one by replacing it with the reduced weight
w(u, v) − (d(v) − d(u)), where d(·) denotes the distance from s. This preserves shortest
paths and allows Dijkstra’s algorithm to be used during the update process. The authors
compared these dynamic algorithms to re-running the static algorithm by Bellman and Ford
on each update from scratch on various randomly generated dynamic instances with mixed
incremental and decremental updates on the edge weights, always avoiding negative-length
cycles. Their study showed that DF is the fastest in practice on most instances, however, in
certain circumstances RR and DFMN are faster, whereas FMN turned out to be too slow in
practice due to its complicated data structures. The authors observed a runtime dependency
on the interval size of the edge weights; RR was the fastest if this interval was small, except
for very sparse graphs. DFMN on the other hand was shown to perform better than DF
in presence of zero-length cycles, whereas RR is incapable of handling such instances. It is
interesting to note here that the differences in running time are only due to the updates
that increase distances, as all three candidates used the same routine for operations that
decrease distances. The static algorithm was slower than the dynamic algorithms by several
orders of magnitude.

The first fully dynamic algorithm for all-pairs shortest paths in graphs with positive integer
weights less than a constant C was presented by King [147], with an amortized update time
of O(n2.5√

C log n). For each vertex v, it maintains two shortest paths trees up to a distance
d: one outbound with v as source and one inbound with v as target. A so-called stitching
algorithm is used to stitch together longer paths from shortest paths of distance at most d. To
achieve the above mentioned running time, d is set to

√
nC log n. The space requirement is

O(n3) originally, but can be reduced to Õ(n2
√

nC) [148]. For non-negative, real-valued edge
weights, Demetrescu and Italiano [72] proposed an algorithm with an amortized update time
of O(n2 log3 n), which was later improved to O(n2(log n+log2((n+m)/n))) by Thorup [228].
The algorithm uses the concept of locally shortest paths, which are paths such that each proper
subpath is a shortest path, but not necessarily the entire path, and historical shortest paths,
which are paths that have once been shortest paths and whose edges have not received any
weight updates since then. The combination of both yields so-called locally historical paths,
which are maintained by the algorithm. To keep their number small, the original sequence of
updates is transformed into an equivalent, but slightly longer smoothed sequence. In case
of a weight update, the algorithm discards all maintained paths containing the updated

SAND 2022

1:16 Recent Advances in Fully Dynamic Graph Algorithms

edge and then computes new locally historical paths using a routine similar to Dijkstra’s
algorithm. Both algorithms have constant query time and were evaluated experimentally
in a study by Demetrescu and Italiano [73] against RRL [71] on random instances, graphs
with a single bottleneck edge, which serves as a bridge between two equally-sized complete
bipartite graphs and only its weight is subject to updates, as well as real-world instances
obtained from the US road networks and autonomous systems networks. Apart from RRL,
the study also comprises the Dijkstra’s static algorithm. Both these algorithms are designed
for single-source shortest paths and were hence run once per vertex. All algorithms were
implemented with small deviations from their respective theoretical description to speed them
up in practice. The study showed that RRL and the algorithm based on locally historical
paths (LHP) can outperform the static algorithm by a factor of up to 10 000, whereas the
algorithm by King only achieves a speedup factor of around 10. RRL turned out to be
especially fast if the solution changes only slightly, but by contrast exhibited the worst
performance on the bottleneck instances unless the graphs were sparse. In comparison,
LHP was slightly slower on sparse instances, but could beat RRL as the density increased.
The authors also point out differences in performance that depend mainly on the memory
architecture of the machines used for benchmarking, where RRL could better cope with small
caches or memory bandwidth due to its reduced space requirements and better locality in
the memory access pattern, whereas LHP benefited from larger caches and more bandwidth.

Buriol et al. [55] presented a technique that reduces the number of elements that need to
be processed in a heap after an update for various dynamic shortest paths algorithms by
excluding vertices whose distance changes by exactly the same amount as the weight change
and handling them separately. They showed how this improvement can be incorporated
into RR [195], a variant similar to RRL [195], the algorithm by King and Thorup [148]
(KT), and DF [70] and achieves speedups of up to 1.79 for random weight changes and up
to 5.11 for unit weight changes. Narváez et al. [173] proposed a framework to dynamize
static shortest path algorithms such as Dijkstra’s or Bellman-Ford [32]. In a follow-up
work [174], they developed a new algorithm that fits in this framework and is based on the
linear programming formulation of shortest paths and its dual, which yields the problem in
a so-called ball-and-string model. The authors experimentally showed that their algorithm
needs fewer comparisons per vertex when processing an update than the algorithms from
their earlier work, as it can reuse intact substructures of the old shortest path tree.

To speed up shortest paths computations experimentally, Wagner et al. [239] introduced
a concept for pruning the search space by geometric containers. Here, each edge (u, v) is
associated with a set of vertices called container, which is a superset of all vertices w whose
shortest u-w path starts with (u, v). The authors assume that each vertex is mapped to
a point in two-dimensional Euclidean space and based on this, suggest different types of
geometric objects as containers, such as disks, ellipses, sectors or boxes. All types of container
only require constant additional space per edge. The experimental evaluation on static
instances obtained from road and railway networks showed that using the bounding box as
container reduces the query time the most in comparison to running the Dijkstra algorithm
without pruning, as the search space could be reduced to 5 % to 10 %. This could be preserved
for dynamic instances obtained from railway networks if containers were grown and shrunk in
response to an update, with a speedup factor of 2 to 3 over a recomputation of the containers
from scratch. For bidirectional search, reverse containers need to be maintained additionally,
which about doubled the absolute update time. Delling and Wagner [69] adapted the static
ALT algorithm [90] to the dynamic setting. ALT is a variant of bidirectional A∗ search that
uses a small subset of vertices called landmarks, for which distances from and to all other

K. Hanauer, M. Henzinger, and C. Schulz 1:17

vertices are precomputed, and the triangle inequality to direct the search for a shortest path
towards the target more efficiently. The authors distinguish between an eager and a lazy
dynamic version of ALT, where the eager one updates all shortest path trees of the landmarks
immediately after an update. The lazy variant instead keeps the preprocessed information as
long as it still guarantees correctness, which holds as long as the weight of an edge is at least
its initial weight, however at the expense of a potentially larger search space. The choice of
landmarks remains fixed. The experimental study on large road networks showed that queries
in the lazy version are almost as fast as in the eager version for short distances or if no edges
representing motorways are affected, but slower by several factors for longer distances, larger
changes to the weight of motorway edges, or after many updates. Schultes and Sanders [216]
combined and generalized different techniques that have been successfully used in the static
setting, such as separators, highway hierarchies, and transit node routing in a multi-level
approach termed highway-node routing: For the set of vertices Vi on each level i, Vi ⊆ Vi−1,
and the overlay graph Gi is defined on Vi with an edge (s, t) ∈ Vi × Vi iff there is a shortest
s-t path in Gi−1 that contains no vertices in Vi except for s and t. Queries are carried out
by a modified Dijkstra search on this graph hierarchy. The authors extended this approach
also to the dynamic setting and consider two scenarios: a server scenario, where in case of
edge weight changes the sets of highway nodes Vi are kept and the graphs Gi are updated,
and a mobile scenario, where only those vertices that are potentially affected are determined
and the query routine needs to be aware of possibly outdated information during a search.
In an experimental evaluation on a very large road network with dynamically changing
travel times as weights it is shown that the dynamic highway-node routing outperformed
recomputation from scratch as well as dynamic ALT search with 16 landmarks clearly with
respect to preprocessing, update, and query time as well as space overhead.

Misra and Oommen [170] presented algorithms for single-source shortest paths that are
based on learning automata and designed to find “statistical” shortest paths in a stochastic
graph with stochastically changing edge weights. The algorithms are extensions of RR [195]
and FMN [88] and shown to be superior to the original versions of RR and FMN by several
orders of magnitude once they have converged. Chan and Yang [58] studied the problem of
dynamically updating a single-source shortest path tree under multiple concurrent edge weight
updates. They amended the algorithm by Narváez et al. [174] (MBS), for which they showed
that it may misbehave in certain circumstances and suggested two further algorithms: MFP
is an optimized version of an algorithm by Ramalingam and Reps [194] (DynamicSWSF-FP),
which can handle multiple updates at once. The second algorithm is a generalization of the
dynamic Dijkstra algorithm proposed by Narváez et al. [173]. In a detailed evaluation, they
showed that an algorithm obtained by combining the incremental phase of MBS and the
decremental phase of their dynamization of Dijkstra’s algorithm performed best on road
networks, whereas the dynamized Dijkstra’s algorithm was best on random networks. An
extensive experimental study on single-source shortest path algorithms was conducted by
Bauer and Wagner [29]. They suggested several tuned variants of DynamicSWSF-FP [194]
and evaluated them against FMN [88], different algorithms from the framework by Narváez
et al. [173], as well as RR [195] on a diverse set of instances. The algorithms from the
Narváez framework showed similar performance in case of single-edge updates and were the
fastest on road networks and generated grid-like graphs. By contrast, the tuned variants of
DynamicSWSF-FP behaved less consistent. RR was superior on Internet networks, whereas
FMN was the slowest, especially on sparse instances. Interestingly, the authors showed that
for batch updates with a set of randomly chosen edges, the algorithms behave similar as for
single-edge updates, as there was almost no interference. The picture changed slightly for

SAND 2022

1:18 Recent Advances in Fully Dynamic Graph Algorithms

simulated node failures and strongly for simulated traffic jams. RR and a tuned variant of
DynamicSWSF-FP showed the best performance for simulated node failures, and two tuned
variants of DynamicSWSF-FP dominated in case of simulated traffic jams. Notably, the
algorithms from the Narváez framework were faster here if instead of in batches, the updates
were processed one-by-one. In follow-up works, D’Andrea et al. [65] evaluated several batch-
dynamic algorithms for single-source shortest paths, where the batches are homogeneous, i.e.,
all updates are either incremental or decremental. Their study contains RR [195], a tuned
variant of DynamicSWSF-FP [194] described by Bauer and Wagner [29] (TSWSF), as well as
a new algorithm DDFLP, which is designed specifically to handle homogeneous batches and
uses similar techniques as FMN [88]. The instance set comprised road and Internet networks
as well as randomly generated graphs according to the Erdős-Rényi model (uniform degree
distribution) and the Barabási-Albert model (power-law degree distribution). Batch updates
were obtained from simulated node failure and recovery, simulated traffic jam and recovery,
as well as randomly selected edges for which the weights were either increased or decreased
randomly. The evaluation confirmed the results by Bauer and Wagner [29] and showed
that DDFLP and TSWSF are best in case of update scenarios like node failures or traffic
jams and otherwise TSWSF and RR, where RR is preferable to TSWSF if the interference
among the updates is low and vice versa. DDFLP generally benefited from dense instances.
Singh and Khare [221] presented the first batch-dynamic parallel algorithm for single-source
shortest paths for GPUs and showed in experiments that it outperforms the (sequential)
tuned DynamicSWSF-FP algorithm [29] by a factor of up to 20 if the distances of up to 10 %
of the nodes are affected.

For real-time shortest path computations on networks with fixed topology, but varying
metric, Delling et al. [68] suggested a three-stage approach: In the first, preprocessing step,
a metric-independent, moderate amount of auxiliary data is obtained from the network’s
topology. It is followed by a customization step, which is run for each metric and produces
few additional data. Whereas the first phase is run only once and can therefore use more
computation time, the second phase must complete within seconds in real-life scenarios.
Shortest path queries form the third phase and must be fast enough for actual applications.
For the first, metric-independent stage, the authors describe an approach based on graph
partitioning, where the number of boundary edges, i.e., edges between different partitions,
is to be minimized. For the second stage, they compute an overlay network consisting of
shortest paths between all pairs of boundary nodes, i.e. nodes that are incident to at least one
boundary edge. An s-t query is then answered by running a bidirectional Dijkstra algorithm
on the graph obtained by combining the overlay graph with the subgraphs induced by the
partitions containing s and t, respectively. The authors also considered various options for
speedups, such as a sparsification of the overlay network, incorporating goal-directed search
techniques, and multiple levels of overlays. An experimental evaluation on road networks
with travel distances and travel times as metrics showed that their approach allows for
real-time queries and needs only few seconds for the metric-dependent customization phase.

Arc flags belong in the category of goal-directed techniques to speed up shortest path
computations and have been successfully used in the static setting [28]. To this end, the set
of vertices is partitioned into a number of regions. Each edge receives a label consisting of
a flag for each region, which tells whether there is a shortest path starting with this edge
and ending in the region. The technique is related to geometric containers and uses the arc
flags to prune a (bidirectional) Dijkstra search. Berettini et al. [38] were the first to consider
arc flags in a dynamic setting, however only for the case of weight increases. Their main
idea is to maintain a threshold for each edge and region that gives the increase in weight

K. Hanauer, M. Henzinger, and C. Schulz 1:19

required for the edge to lie on a shortest path. On a weight increase, the thresholds are
updated and used to determine when to change an arc flag. Although this potentially reduces
the quality of the arc flags with each update, the experimental evaluation showed that the
increase in query time is very small as long as the update sequence is short. With respect to
the update time, a significant speedup could be achieved over recomputing arc flags from
scratch. To refresh arc flags more exactly and in a fully dynamical setting, D’Angelo et
al. [66] introduced a data structure called road signs. Road signs complement arc flags and
store for each edge e and region R the set of boundary nodes contained in any shortest path
starting with e and ending in R. In case of a weight increase, the algorithm first identifies all
affected nodes whose shortest path to a boundary node changed and then updates all road
signs for all outgoing edges of an affected node. In case of a weight decrease on edge (u, v),
the authors observed that all shortest paths containing (u, v) remain unchanged. However,
shortest paths starting with other outgoing or incoming edges of u might require updates,
as well as other paths containing an incoming edge of u. In an experimental study on road
networks, the authors compared their algorithm against one that recomputes arc flags from
scratch as well as the algorithm by Berettini et al. [38] (BDD). To mimic traffic jams and
similar occurrences, the weight of a randomly chosen edge increases and then decreases by
the same amount, however not necessarily in subsequent updates. The evaluation showed
that updating both road signs and arc flags is by several factors faster than recomputing arc
flags from scratch. On instances with weight increases only, the authors showed that their
new algorithm outperforms BDD distinctly both for updates and queries.

A further speedup technique for shortest path queries are 2-hop cover labelings, where
the label L(v) of each node v is a carefully chosen set of nodes Uv along with the distance
between v and u for each u ∈ U . For each pair of vertices s and t, the shortest s-t path can
be obtained by intersecting Us and Ut and taking the minimum over all combinations of s-x
and x-t paths for all nodes x ∈ Us ∩ Ut. In the static setting, a 2-hop cover labeling can be
computed based on a breadth-first search that is run once for every vertex (“naive landmark
labeling”). Akiba et al. [9] introduced pruned landmark labeling (PLL), which constitutes a
more refined approach and uses pruned breadth-first searches instead. The authors developed
an incremental algorithm for PLL, which was complemented by D’Angelo et al. [67] to a
fully dynamic algorithm. The experimental evaluation showed that the algorithm achieves
speedups of several orders of magnitude over a recomputation from scratch, while at the
same time preserving the quality of the labeling, which makes this speedup technique suitable
for practical use in dynamic scenarios.

Hayashi et al. [111] proposed a method to support shortest paths queries on unweighted
networks with billions of edges by combining a bidirectional breadth-first search, which is
optimized for the structure of small-world networks, with landmarks. To this end, the authors
choose high-degree vertices and store shortest path trees as well as those of a subset of their
neighbors in a so-called “bit-parallel” form. This increases the number of landmarks, which
in turn generally speeds up the search and in particular for high-degree vertices, and at the
same time keeps the memory requirements comparatively small. After an edge insertion or
deletion, the bit-parallel shortest paths trees are updated accordingly. The experimental
evaluation on twelve real-world instances having between 1.5 million and 3.7 billion edges
showed that the new algorithm was able to process queries on average in less than 8 ms and
even considerably less on many instances. The average edge insertion and deletion times
were less than 1.3 ms and 8.1 s, respectively, after an initialization time of less than 1 h. The
incremental algorithm by Akiba et al. [9], which was included in the study, was distinctly
faster on queries, but on some instances several factors slower on insertions. However, it failed
to complete the preprocessing step within 10 h or required more than 128 GB of memory on
half of all instances.

SAND 2022

1:20 Recent Advances in Fully Dynamic Graph Algorithms

3.10 Maximum Flows and Minimum Cuts
An instance of the maximum flow/minimum cut problem consists of an edge-weighted directed
graph G = (V, E, c) along with two distinguished vertices s and t. The edge weights c are
positive and commonly referred to as capacities. An (s-t) flow f is a non-negative weight
function on the edges such f(e) ≤ c(e) for all e ∈ E (capacity constraints) and except for s

and t, the total flow on the incoming edges of each vertex must equal the total flow on the
outgoing edges (conservation constraints). The excess of a vertex v is the total flow on its
incoming edges minus that on its outgoing edges, which must be zero for all vertices except
s and t. The value of a flow f then is the excess of t. The task is to find a flow of maximum
value. An (s-t) cut is a subset of edges C ⊆ E whose removal makes t unreachable from s,
and its value is the sum of the capacities of all edges in the cut. The well-known max-flow
min-cut theorem states that the maximum value of a flow equals the minimum value of a cut.
The fastest static algorithm whose running time does not depend on the size of the largest
edge weight computes an optimal solution in O(nm) time [182].

In the dynamic setting, there is a conditional lower bound of (poly, m1/2−δ, m1−δ) (for
any small constant δ > 0) for the size of the maximum s-t flow even in unweighted, undirected
graphs based on the OMv conjecture [117]. Recently Chen et al. [62] gave an O(log n log log n)-
approximate fully dynamic maximum flow algorithm in time Õ(n2/3+o(1)) per update and
Goranci et al. [95] gave a no(1)-approximate fully dynamic algorithm in time no(1) worst-case
update time and O(log1/6 n) query time. In the unweighted setting Jin and Sun [139] gave a
datastructure that can be constructed for any fixed positive integer c = (log n)o(1) and that
answers for any pair (s, t) of vertices that are parameters of the query in time no(1) where s

and t are c-edge connected.
For global minimum cuts in the unweighted setting Thorup and Karger [231] presented a√

2 + o(1)-approximation algorithm that takes polylogarithmic time per update and query
and Thorup [230] designed a (1 + ϵ)-approximate algorithm in Õ(

√
n) time per update

and query.
Kumar and Gupta [154] extended the preflow-push approach [93] to solve maximum flow

in static graphs to the dynamic setting. A preflow is a flow under a relaxed conservation
constraint in that the excess of all vertices except s must be non-negative. Vertices with
positive excess are called active. Preflow-push algorithms, also called push-relabel algorithms,
use this relaxed variant of a flow during the construction of a maximum flow along with
distance labels on the vertices. Generally speaking, they push flow out of active vertices
towards vertices with smaller distance (to t) and terminate with a valid flow (i.e., observing
conservation constraints). In case of an edge insertion or deletion, Kumar and Gupta first
identify affected vertices via forward and backward breadth-first search while observing
and updating distance labels and then follow the scheme of a basic preflow-push algorithm,
however restricted to the set of affected vertices. The authors evaluated their algorithm
only for the incremental setting on a set of randomly generated instances against the static
preflow-push algorithm in [93] and found that their algorithm is able to reduce the number of
push and relabel operations significantly as long as the instances are sparse and the number
of affected vertices remains small.

Many important fields of application for the maximum flow/minimum cut problem stem
from computer vision. In this area, the static algorithm of Boykov and Kolmogorov [50]
(BK) is widely used due to its good performance in practice on computer vision instances
and despite its pseudo-polynomial worst-case running time of O(nm · Opt), with Opt being
the value of a maximum flow/minimum cut. Interestingly, however, a study by Verma and
Batra [238] shows that its practical superiority only holds for sparse instances. BK follows

K. Hanauer, M. Henzinger, and C. Schulz 1:21

the Ford-Fulkerson method of augmenting flow along s-t paths, but uses two search trees
grown from s and t, respectively, to find such paths. Kohli and Torr [149, 150] extended
BK to the fully dynamic setting by updating capacities and flow upon changes and discuss
an optimization that tries to recycle the search trees. They experimentally compared their
algorithm to repeated executions of the static algorithm on dynamic instances obtained
from video sequences and achieve a substantial speedup. They also observed that reusing
the search trees leads to longer s-t paths, which affects the update time negatively as the
instances undergo many changes.

Goldberg et al. [91] developed EIBFS, a generalization of their earlier algorithm IBFS, that
by contrast also extends to the dynamic setting in a straightforward manner. IBFS in turn is a
modification of BK that ensures that the two trees grown from s and t are height-minimal (i.e.,
BFS trees) and is closely related to the concept of blocking flows. The running time of EIBFS
in the static setting and thus the initialization in the dynamic setting, is O(mn log(n2/m))
with dynamic trees or O(mn2) without. The algorithm works with a so-called pseudoflow,
which observes capacity constraints, but may violate conservation constraints. It maintains
two vertex-disjoint forests S and T , where the roots are exactly those vertices with a surplus
of incoming flow and those with a surplus of outgoing flow, respectively, and originally only
contain s and t. The steps of the algorithm consist in growth steps, where S or T are grown
level-wise, augmentation steps, which occur if a link between the forests has been established
and flow is pushed to a vertex in the other forest and further on to the root, and adoption
steps, where vertices in T with surplus incoming flow or vertices in S with surplus outgoing
flow are either adopted by a new parent in the same forest or become a root in the other
forest. In case of an update in the dynamic setting, the invariants of the forests are restored
and flow is pushed where possible, followed by alternating augmentation and adoption steps
if necessary. The authors also mention that resetting the forests every O(m) work such that
they contain only vertices with a surplus outgoing or incoming flow seemed to be beneficial
in practice. In their experimental evaluation of EIBFS against the algorithm by Kohli and
Torr as well as an altered version thereof and a more naive dynamization of IBFS, they
showed for different dynamic real-world instances from the field of computer vision that
EIBFS is the fastest on eight out of fourteen instances and relatively robust: In contrast to
its competitors, it always takes at most roughly twice the time of the fastest algorithm on an
instance. Notably, no algorithm is dominated by another one across all instances.

Zhu et al. [253] described a dynamic update strategy based on augmenting and de-
augmenting paths as well as cancelling cyclic flows. The latter serves as a preparatory step
and only reroutes flow in the network without increasing or decreasing the total s-t flow
and is only necessary in a decremental update operation. They experimentally evaluated
the effectiveness of their algorithm for online semi-supervised learning, where real-world big
data is classified via minimum cuts, and showed that their algorithm outperforms state-of-
the-art stream classification algorithms. A very similar algorithm was proposed by Greco
et al. [101]. The authors compared it experimentally against EIBFS and the dynamic BK
algorithm by Kohli and Torr as well as a number of the currently fastest static algorithms.
Their experiments were conducted on a set of instances from computer vision where equally
many edges are randomly chosen to be inserted and deleted, respectively. They showed
that their algorithm is with one exception always the fastest on average in performing edge
insertions if compared to the average update time of the competitors, and on half of all
instances also in case of edge deletions. On the remaining instances, the average update time
of EIBFS dominated.

SAND 2022

1:22 Recent Advances in Fully Dynamic Graph Algorithms

For the global minimum cut problem, Henzinger et al. [118] implemented an algorithm
for large dynamic graphs under both edge insertions and deletions. For edge insertions, the
algorithm uses the approach of Henzinger [120] and Goranci et al. [94], which maintain a
compact data structure of all minimum cuts in a graph and invalidate only the minimum cuts
that are affected by an edge insertion. For edge deletions, the algorithms use the push-relabel
algorithm of Goldberg and Tarjan [92] to certify whether the previous minimum cut is still
a minimum cut. The algorithm outperformed static approaches by up to five orders of
magnitude on large graphs.

3.11 Graph Clustering
Graph clustering is the problem of detecting tightly connected regions of a graph. More
precisely, a clustering C is a partition of the set of vertices, i.e. a set of disjoint clusters of
vertices V1,. . . ,Vk such that V1 ∪ · · · ∪ Vk = V . However, k is usually not given in advance
and some objective function that models intra-cluster density versus inter-cluster sparsity, is
optimized. It is common knowledge that there is neither a single best strategy nor objective
function for graph clustering, which justifies a plethora of existing approaches. Moreover,
most quality indices for graph clusterings have turned out to be NP-hard to optimize and
are rather resilient to effective approximations, see, e.g. [21, 51], allowing only heuristic
approaches for optimization. There has been a wide-range of algorithms for static graph
clustering, the majority are based on the paradigm of intra-cluster density versus inter-cluster
sparsity. For dynamic graphs, there has been a recent survey on the topic of community
detection [202]. The survey covers features and challenges of dynamic community detection
and classifies published approaches. Here we focus on engineering results and extend their
survey in that regard with additional references as well as results that appeared in the
meantime. Most algorithms in the area optimize for modularity. Modularity has recently
been proposed [179]. The core idea for modularity is to take coverage, i.e. the fraction of
edges covered by clusters, minus the expected value of the same quantity in a network with
the same community divisions, but random connections between the vertices. The commonly
used formula is as follows: mod(C) := m(C)

m − 1
4m2

∑
C∈C

(∑
v∈C deg(v)

)2.
Miller and Eliassi-Rad [167] adapted a dynamic extension of Latent Dirichlet Allocation

for dynamic graph clustering. Latent Dirichlet Allocation has been originally proposed
for modeling text documents, i.e. the algorithm assumes that a given set of documents
can be classified into k topics. This approach has been transferred to graphs [113] and
was adapted by the authors for dynamic networks. Aynaud and Guillaume [23] tracked
communities between successive snapshots of the input network. They first noted that using
standard community detection algorithms results in stability issues, i.e. little modifications
of the network can result in wildly different clusterings. Hence, the authors propose a
modification of the Louvain method to obtain stable clusterings. This is done by modi-
fying the initialization routine of the Louvain method. By default, the Louvain method
starts with each node being in its own clustering. In the modified version of Aynaud and
Guillaume, the algorithm keeps the clustering of the previous time step and uses this as a
starting point for the Louvain method which results in much more stable clusterings. Bansal
et al. [24] also reused the communities from previous time steps. However, their approach is
based on greedy agglomeration where two communities are merged at each step to optimize
the modularity objective function. The authors improved the efficiency of dynamic graph
clustering algorithms by limiting recomputation to regions of the network and merging
processes that have been affected by insertion and deletion operations. Görke et al. [96]
showed that the structure of minimum s-t-cuts in a graph allows for efficient updates of

K. Hanauer, M. Henzinger, and C. Schulz 1:23

clusterings. The algorithm builds on partially updating a specific part of a minimum-cut tree
and is able to maintain a clustering fulfilling a provable quality guarantee, i.e. the clusterings
computed by the algorithm are guaranteed to yield a certain expansion. To the best of
our knowledge, this is the only dynamic graph clustering algorithm that provides such a
guarantee. Later, Görke et al. [99, 98] formally introduced the concept of smoothness to
compare consecutive clusterings and provided a portfolio of different update strategies for
different types of local and global algorithms. Moreover, their fastest algorithm is guaranteed
to run in time Θ(log n) per update. Their experimental evaluation indicates that dynamically
maintaining a clustering of a dynamic random network saves time and at the same time
also yields higher modularity than recomputation from scratch. Alvari et al. [13] proposed
a dynamic game theory method to tackle the community detection problem in dynamic
social networks. Roughly speaking, the authors model the process of community detection
as an iterative game performed in a dynamic multiagent environment where each node is
an agent who wants to maximize its total utility. In each iteration, an agent can decide to
join, switch, leave, or stay in a community. The new utility is then computed by the best
outcome of these operations. The authors use neighborhood similarity to measure structural
similarity and optimize for modularity. The experimental evaluation is limited to two graphs.
Zakrzweska and Bader [248] presented two algorithms that update communities. Their first
algorithm is similar to the dynamic greedy agglomeration algorithm by Görke et al. [98].
The second algorithm is a modification of the first one that runs faster. This first is achieved
by more stringent backtracking of merges than Görke et al. [98], i.e. merges are only undone
if the merge has significantly changed the modularity score of the clustering. Moreover, the
authors used a faster agglomeration scheme during update operations that uses information
about previous merges to speed up contractions. Recently, Zhuang et al. [254] proposed the
DynaMo algorithm which also is a dynamic algorithm for modularity maximization, however
the algorithm processes network changes in batches.

3.12 Centralities
We will describe three popular measures to find central nodes in networks in the fully
dynamic setting: Katz centrality, betweenness centrality and closeness centrality. The
only two theoretical fully dynamic results that we are aware of are due to Pontecorvi and
Ramachandran [191], who achieve amortized O(ν∗2 · log2 n) update time for betweenness
centrality where ν∗ bounds the number of distinct edges that lie on shortest paths through
any single vertex, and a result due to van den Brand and Nanongkai [233], who present a
(1 + ϵ)-approximate fully-dynamic algorithm for closeness centrality with O(n1.823) update
time. This is an obvious area for future work.

Katz Centrality

Katz centrality is a centrality metric that measure the relation between vertices by counting
weighted walks between them. Nathan and Bader [177] were the first to look at the problem
in a dynamic setting. At that time, static algorithms mostly used linear algebra-based
techniques to compute Katz scores. The dynamic version of their algorithm incrementally
updates the scores by exploiting properties of iterative solvers, i.e. Jacobi iterations. Their
algorithm achieved speedups of over two orders of magnitude over the simple algorithms
that perform static recomputation every time the graph changes. Later, they improved
their algorithm [176] to handle updates by using an alternative, agglomerative method of
calculating Katz scores. While their static algorithm is already several orders of magnitude

SAND 2022

1:24 Recent Advances in Fully Dynamic Graph Algorithms

faster than typical linear algebra approaches, their dynamic algorithm is also faster than pure
static recomputation every time the graph changes. A drawback of the algorithms by Nathan
and Bader is that they are unable to reproduce the exact Katz ranking after dynamic updates.
Van der Grinten et al. [235] fixed this problem by presenting a dynamic algorithm that
iteratively improves upper and lower bounds on the centrality scores. The computed scores
are approximate, but the bounds guarantee the correct ranking. The dynamic algorithm
improves over the static recomputation of the Katz rankings as long as the size of the batches
in the update sequence is smaller than 10 000.

Betweenness Centrality

Given a graph and a vertex v in the graph, the betweenness centrality measure is defined to
be c(v) =

∑
u,w,u ̸=w

σu,w(v)
σu,w

, where σu,w is the number of shortest paths between u and w and
σu,w(v) is the number of shortest paths between u and w that include v. Statically computing
betweenness centrality involves solving the all-pairs shortest path problem. Dynamically
maintaining betweenness centrality is challenging as the insertion or deletion of a single edge
can lead to changes of many shortest paths in the graph. The QUBE algorithm [156] was the
first to provide a non-trivial update routine. The key idea is to perform the betweenness
computation on a reduced set of vertices, i.e. the algorithm first finds vertices whose centrality
index might have changed. Betweenness centrality is then only computed on the first set of
vertices. However, QUBE is limited to the insertion and deletion of non-bridge edges. Lee
et al. [155] extended the QUBE algorithm [156] to be able to insert and delete non-bridge edges.
Moreover, the authors reduced the number of shortest paths that need to be recomputed
and thus gained additional speedups over QUBE. Kourtellis et al. [152, 151] contributed
an algorithm that maintains both vertex and edge betweenness centrality. Their algorithm
needs less space than the algorithm by Green et al. [102] as it avoids storing predecessor
lists. Their method can be parallelized and runs on top of parallel data processing engines
such as Hadoop. Bergamini et al. [35] presented an incremental approximation algorithm
for the problem which is based on the first theory result that is asymptotically faster than
recomputing everything from scratch due to Nasre et al. [175]. As a building block of their
algorithm, the authors used an asymptotically faster algorithm for the dynamic single-source
shortest path problem and additionally sample shortest paths. Experiments indicate that
the algorithm can be up to four orders of magnitude faster compared to restarting the
static approximation algorithm by Riondato and Kornaropoulos [197]. In the same year, the
authors extended their algorithm to become a fully dynamic approximation algorithm for
the problem [33, 34]. In addition to dynamic single-source shortest paths, the authors also
employed an approximation of the vertex diameter that is needed to compute the number of
shortest paths that need to be sampled as a function of a given error guarantee that should
be achieved. Hayashi et al. [112] provided a fully dynamic approximation algorithm that is
also based on sampling. In contrast to Bergamini et al. [35, 33, 34], which selects between
each pair of sampled vertices, the authors save all the paths between each sampled pair of
vertices. Moreover, the shortest paths are represented in a data structure called hypergraph
sketch. To further reduce the running time when handling unreachable pairs, the authors
maintain a reachability index. Gil-Pons [190] focused on exact betweenness in incremental
graphs. The author presented a space-efficient algorithm with linear space complexity. Lastly,
Chehreghani et al. [61] focused on the special case in which the betweenness of a single node
has to be maintained under updates.

K. Hanauer, M. Henzinger, and C. Schulz 1:25

Closeness Centrality

Given a graph and a vertex v, the harmonic closeness centrality measure is defined as
clo(v) =

∑
u∈V,u ̸=v

1
d(u,v) where d(u, v) is the distance between u and v. Roughly speaking,

it is the sum of the reciprocal length of the shortest path between the node and all other
nodes in the graph. Baevla’s definition of closeness centrality is similarly |V |−1∑

v∈V
d(u,v)

. Kas

et al. [144] were the first to give an fully dynamic algorithm for the problem. As computing
closeness centrality depends on the all-pairs shortest path problem, the authors extended an
existing dynamic all-pairs shortest path algorithm [193] for their problem. As the algorithm
stores pairwise distances between nodes it has quadratic memory requirement. Sariyuce
et al. [209] provided an algorithm that can handle insertions and deletions. In contrast
to Kas et al. [144], the authors used static single-source shortest paths from each vertex.
The algorithm does not need to store pairwise distances and hence requires only a linear
amount of memory. Moreover, the authors observed that in scale-free networks the diameter
grows proportional to the logarithm of the number of nodes, i.e. the diameter is typically
small. When the graph is modified with minor updates, the diameter also tends to stay
small. This can be used to limit the number of vertices that need to updated. In particular,
the authors showed that recomputation of closeness can be skipped for vertices s such that
|d(s, u) − d(s, v)| = 1 where u, v are the endpoints of the newly inserted edge. Lastly,
the authors used data reduction rules to filter vertices, i.e. real-life networks can contain
nodes that have the same or similar neighborhood structure that can be merged. Later,
Sariyuce et al. [210, 211] proposed a distributed memory-parallel algorithm for the problem.
Yen et al. [247] proposed the fully dynamic algorithm CENDY which can reduce the number
of internal updates to a few single-source shortest path computations necessary by using
breadth-first searches. The main idea is that given an augmented rooted BFS tree of an
unweighted network, edges that are inserted or deleted within the same level of the tree do
not change the distances from the root to all other vertices. Putman et al. [192] provided
a faster algorithm for fully dynamic harmonic closeness. The authors also used a filtering
method to heavily reduce the number of computations for each incremental update. The
filtering method is an extension of level-based filtering to directed and weighted networks.
The dynamic algorithm by Shao et al. [219] maintains closeness centrality by efficiently
detecting all affected shortest paths based on articulation points. The main observation is
that a graph can be divided into a series of biconnected components which are connected
by articulation points – the distances between two arbitrary vertices in the graph can be
expressed as multiple distances between different biconnected components.

Bisenius et al. [49] contributed an algorithm to maintain top-k harmonic closeness in
fully dynamic graphs. The algorithm is not required to compute closeness centrality for the
initial graph and the memory footprint of their algorithm is linear. Their algorithm also
tries to skip recomputations of vertices that are unaffected by the modifications of the graph
by running breadth-first searches. Crescenzi et al. [63] gave a fully dynamic approximation
algorithm for top-k harmonic closeness. The algorithm is based on sampling paths and a
backward dynamic breadth-first search algorithm.

3.13 Graph Partitioning
Typically the graph partitioning problem asks for a partition of a graph into k blocks of
about equal size such that there are few edges between them. More formally, given a
graph G = (V, E), we are looking for disjoint blocks of vertices V1,. . . ,Vk that partition
V , i.e., V1 ∪ · · · ∪ Vk = V . A balancing constraint demands that all blocks have weight

SAND 2022

1:26 Recent Advances in Fully Dynamic Graph Algorithms

c(Vi) ≤ (1 + ϵ)⌈ c(V)
k ⌉ for some imbalance parameter ϵ. The most used objective is to

minimize the total cut ω(E ∩
⋃

i<j Vi × Vj). The problem is known to be NP-hard and no
constant-factor approximation algorithms exist. Thus heuristic algorithms are mostly used
in practice. Dynamic graph partitioning algorithms are also known in the community as
repartitioning algorithms. As the problem is typically not solved to optimality in practice,
repartitioning involves a tradeoff between the quality, i.e. the number of edges in different sets
of the partitioning, and the amount of vertices that need to change their block as they cause
communication when physically moved between the processors as the partition is adopted.
The latter is especially important when graph partitioning is used in adaptive numerical
simulations. In these simulations, the main goal is to partition a model of computation and
communication in which nodes model computation and edges model communication. The
blocks of the partition are then fixed to a specific processing element. When the dynamic
graph partitioning algorithm decides to change the blocks due to changes in the graph
topology, nodes that are moved to a different block create communication in the simulation
system as the underlying data needs to be moved between the corresponding processors.

Hendrikson et al. [114] tackled the repartitioning problem by introducing k virtual vertices.
Each of the virtual vertices is connected to all nodes of its corresponding block. The edges
get a weight α which is proportional to the migration cost of a vertex and the vertex weights
of the virtual vertices are set to zero. Then an updated partition can be computed using a
static partitioning algorithm since the model accounts for migration costs and edge cut size
at the same time.

Schloegel et al. [213] presented heuristics to control the tradeoff between edge-cut size and
vertex migration costs. The most simple algorithm is to compute a completely new partition
and then determine a mapping between the blocks of the old and the new partition that
minimizes migration. The more sophisticated algorithm of [213] is a multilevel algorithm
based on a simple process, i.e. nodes are moved from blocks that contain too many vertices
to blocks that contain not enough vertices. However, this approach often yields partitions
that cut a large number of edges. The result has been improved later by combining the two
approaches in the parallel partitioning tool ParMetis [214]. Schloegel et al. [215] later extended
their algorithm to be able to handle multiple balance constraints. Hu and Blake [129] noted
that diffusion processes can suffer from slow convergence and improved the performance of
diffusion through the use of Chebyshev polynomials. More precisely, the diffusion process in
their paper is a directed diffusion that computes a diffusion solution by solving a so-called head
conduction equation while minimizing the data movement. Walshaw et al. [240] integrated
a repartitioning algorithm into their parallel (meanwhile uncontinued) tool Jostle. The
algorithm is a directed diffusion process based on the solver proposed by Hu and Blake [129].
Rotaru and Nägeli [203] extended previous diffusion-based algorithms to be able to handle
heterogeneous systems. These approaches, however, have certain weaknesses: For example,
in numerical applications the maximum number of boundary nodes of a block is often a
better estimate of the occurring communication in the simulation than the number of edges
cut. Meyerhenke and Gehweiler [165, 166] explored a disturbed diffusion process that is able
to overcome some of the issues of the previous approaches. To do so, Meyerhenke adapted
DIBAP, a previously developed algorithm that aims at computing well-shaped partitions. A
diffusion process is called disturbed if its convergence state does not result in a balanced
distribution. These processes can be helpful to find densely connected regions in the graph.

There has been also work that tackles slightly different problem formulations. Kiefer
et al. [146] noted that performance in applications usually does not scale linearly with
the amount of work per block due to contention on different compute components. Their

K. Hanauer, M. Henzinger, and C. Schulz 1:27

algorithm uses a simplified penalized resource consumption model. Roughly speaking, the
authors introduced a penalized block weight and modified the graph partitioning problem
accordingly. More precisely, a positive, monotonically increasing penalty function p is used
to penalize the weight of a block based on the partition cardinality. Vaquero et al. [237]
looked at the problem for distributed graph processing systems. Their approach is based
on iterative vertex migration based on label propagation. More precisely, a vertex has a
list of candidate blocks where the highest number of its neighbors are located. However,
initial partitions are computed using hashing which does not yield high quality partitions
since it completely ignores the structure of the graph. The authors did not compare their
work against other state-of-the art repartitioning algorithms, so it is unclear how well the
algorithm performs compared to other algorithms. Xu et al. [245] and Nicoara et al. [180]
also presented dynamic algorithms specifically designed for graph processing systems. Other
approaches have focused on the edge partitioning problem [204, 131, 83] or the special case
of road networks [52].

4 Dynamic Graph Systems

The methodology of the previous two sections is to engineer algorithms for specific dynamic
graph problems. In contrast to this, there are also approaches that try to engineer dynamic
graph systems that can be applied to a wide range of dynamic graph problems. Alberts
et al. [11] started this effort and presented a software library of dynamic graph algorithms.
The library is written in C++ and is an extension of the well known LEDA library of efficient
data types and algorithms. The library contains algorithms for connectivity, spanning trees,
single-source shortest paths and transitive closure.
A decade later Weigert et al. [243] presented a system that is able to deal with dynamic

distributed graphs, i.e. in settings in which a graph is too large for the memory of a single
machine and, thus, needs to be distributed over multiple machines. A user can implement a
query function to implement graph queries. Based on their experiments, the system appears
to scale well to large distributed graphs. Ediger et al. [77] engineered STINGER which is short
for Spatio-Temporal Interaction Networks and Graphs Extensible Representation. STINGER
provides fast insertions, deletions, and updates on semantic graphs that have a skewed
degree distribution. The authors showed in their experiments that the system can handle
3 million updates per second on a scale-free graph with 537 million edges on a Cray XMT
machine. The authors already implemented a variety of algorithms on STINGER including
community detection, k-core extraction, and many more. Later, Feng et al. [84] presented
DISTINGER which has the same goals as STINGER, but focuses on the distributed memory
case, i.e. the authors presented a distributed graph representation. Vaquero et al. [236]
presented a dynamic graph processing system that uses adaptive partitioning to update the
graph distribution over the processors over time. This speeds up queries as a better graph
distribution significantly reduces communication overhead. Experiments showed that the
repartitioning heuristic (also explained in Section 3.13) improves computation performance
in their system up to 50 % for an algorithm that computes the estimated diameter in
a graph. Sengupta et al. [217] introduced a dynamic graph analytics framework called
GraphIn. Part of GraphIn is a new programming model based on the gather-apply-scatter
programming paradigm that allows users to implement a wide range of graph algorithms that
run in parallel. Compared to STINGER, the authors reported a 6.6-fold speedup. Iwabuchi
et al. [136] presented an even larger speedup over STINGER. Their dynamic graph data store
is, like STINGER, designed for scale-free networks. The system uses compact hash tables
with high data locality. In their experiments, their system called DegAwareRHH, is a factor
206.5 faster than STINGER.

SAND 2022

1:28 Recent Advances in Fully Dynamic Graph Algorithms

Another line of research focuses on graph analytic frameworks and data structures for
GPUs. Green and Bader [84] presented cuSTINGER, which is a GPU extension of STINGER
and targets NVIDIA’s CUDA supported GPUs. One drawback of cuSTINGER is that the
system has to perform restarts after a large number of edge updates. Busato et al. fixed this
issue in their system, called Hornet, and, thus, outperform cuSTINGER. Moreover, Hornet
uses a factor of 5 to 10 less memory than cuSTINGER. In contrast to previous approaches,
faimGraph due to Winter et al. [244] is able to deal with a changing number of vertices. Awad
et al. [22] noted that the experiments performed by Busato et al. are missing true dynamism
that is expected in real world scenarios and proposed a dynamic graph structure that uses
one hash table per vertex to store adjacency lists. The system achieves speedups between 5.8
to 14.8 compared to Hornet and 3.4 to 5.4 compared to faimGraph for batched edge insertions
(and slightly smaller speedups for batched edge deletions). The algorithm also supports
vertex deletions, as does faimGraph.

5 Methodology

Currently there is a limited amount of real-world fully dynamic networks publicly available.
There are repositories that feature a lot of real-world insertions only instances such as SNAP3

and KONECT4. However, since the fully dynamic instances are rarely available at the moment,
we start a new graph repository that provides fully dynamic graph instances5. Currently,
there is also very limited work on dynamic graph generators. A generator for clustered
dynamic random networks has been proposed by Görke et al. [97]. Another approach is due
to Sengupta [218] to generate networks for dynamic overlapping communities in networks.
A generative model for dynamic networks with community structure can be found in [30].
This is a widely open topic for future work, both in terms of oblivious adversaries as well
as adaptive adversaries. To still be able to evaluate fully dynamic algorithms in practice,
research uses a wide range of models at the moment to turn static networks into dynamic
ones. We give a brief overview over the most important ones. In undo-based approaches,
edges of a static network are inserted in some order until all edges are inserted. In the end,
x % of the last insertions are undone. The intuition here is that one wants undo changes
that happened to a network and to recreate a previous state of the data structure. In
window-based approaches, edges are inserted and have a predefined lifetime. That means
an edge is deleted after a given number d of new edges have been inserted. In remove and
add based approaches, a small fraction of random edges from a static network is removed
and later on reinserted. In practice, researchers use a single edge as well as whole batches of
edges. In morphing-based approaches, one takes two related networks and creates a sequence
of edge updates such that the second network obtained after the update sequence has been
applied to the first network.

3 https://snap.stanford.edu/
4 http://konect.cc/
5 https://DynGraphLab.github.io

https://snap.stanford.edu/
http://konect.cc/
https://DynGraphLab.github.io

K. Hanauer, M. Henzinger, and C. Schulz 1:29

References
1 Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna

Saha. Dynamic set cover: improved algorithms and lower bounds. In Moses Charikar and
Edith Cohen, editors, Proc. of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 114–125. ACM, 2019.
doi:10.1145/3313276.3316376.

2 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar
graph algorithms. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 477–486. IEEE, 2016.

3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on, pages 434–443. IEEE, 2014. doi:10.1109/FOCS.2014.53.

4 Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest paths
with worst-case update-time revisited. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 440–452. SIAM, 2017. doi:10.1137/1.9781611974782.
28.

5 Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully dynamic all-pairs shortest paths:
Breaking the o(n) barrier. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and
Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, volume 28 of LIPIcs, pages 1–16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.1.

6 Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. Parallel batch-
dynamic graph connectivity. In Christian Scheideler and Petra Berenbrink, editors, The 31st
ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, Phoenix,
AZ, USA, June 22-24, 2019, pages 381–392. ACM, 2019. doi:10.1145/3323165.3323196.

7 Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick.
Parallel batch-dynamic trees via change propagation. In Fabrizio Grandoni, Grzegorz Herman,
and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020,
September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 2:1–2:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.2.

8 Nesreen K. Ahmed, Nick G. Duffield, Theodore L. Willke, and Ryan A. Rossi. On sampling
from massive graph streams. Proc. VLDB Endow., 10(11):1430–1441, 2017. doi:10.14778/
3137628.3137651.

9 Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Dynamic and historical shortest-path
distance queries on large evolving networks by pruned landmark labeling. In Chin-Wan Chung,
Andrei Z. Broder, Kyuseok Shim, and Torsten Suel, editors, 23rd International World Wide
Web Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, pages 237–248. ACM,
2014. doi:10.1145/2566486.2568007.

10 David Alberts, Giuseppe Cattaneo, and Giuseppe F. Italiano. An empirical study of dynamic
graph algorithms. ACM J. Exp. Algorithmics, 2:5, 1997. doi:10.1145/264216.264223.

11 David Alberts, Giuseppe Cattaneo, Giuseppe F Italiano, Umberto Nanni, and Christos
Zaroliagis. A software library of dynamic graph algorithms. In Proc. Workshop on Algorithms
and Experiments, pages 129–136. Citeseer, 1998.

12 Bowen Alpern, Roger Hoover, Barry K. Rosen, Peter F. Sweeney, and F. Kenneth Zadeck.
Incremental evaluation of computational circuits. In David S. Johnson, editor, Proc. of
the First Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January 1990, San
Francisco, California, USA, pages 32–42. SIAM, 1990. URL: http://dl.acm.org/citation.
cfm?id=320176.320180.

SAND 2022

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611974782.28
https://doi.org/10.1137/1.9781611974782.28
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
https://doi.org/10.1145/3323165.3323196
https://doi.org/10.4230/LIPIcs.ESA.2020.2
https://doi.org/10.14778/3137628.3137651
https://doi.org/10.14778/3137628.3137651
https://doi.org/10.1145/2566486.2568007
https://doi.org/10.1145/264216.264223
http://dl.acm.org/citation.cfm?id=320176.320180
http://dl.acm.org/citation.cfm?id=320176.320180

1:30 Recent Advances in Fully Dynamic Graph Algorithms

13 Hamidreza Alvari, Alireza Hajibagheri, and Gita Reese Sukthankar. Community detection
in dynamic social networks: A game-theoretic approach. In Xindong Wu, Martin Ester, and
Guandong Xu, editors, 2014 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, ASONAM 2014, Beijing, China, August 17-20, 2014, pages
101–107. IEEE Computer Society, 2014. doi:10.1109/ASONAM.2014.6921567.

14 Abhash Anand, Surender Baswana, Manoj Gupta, and Sandeep Sen. Maintaining approximate
maximum weighted matching in fully dynamic graphs. In Deepak D’Souza, Telikepalli
Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012,
Hyderabad, India, volume 18 of LIPIcs, pages 257–266. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.257.

15 Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole
Wein. Algorithms and hardness for diameter in dynamic graphs. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece,
volume 132 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ICALP.2019.13.

16 Eugenio Angriman, Henning Meyerhenke, Christian Schulz, and Bora Uçar. Fully-dynamic
weighted matching approximation in practice. CoRR, abs/2104.13098, 2021. arXiv:2104.
13098.

17 Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic matching:
Reducing integral algorithms to approximately-maximal fractional algorithms. In 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2018, pages 7:1–7:16,
2018. doi:10.4230/LIPIcs.ICALP.2018.7.

18 Sabeur Aridhi, Martin Brugnara, Alberto Montresor, and Yannis Velegrakis. Distributed
k-core decomposition and maintenance in large dynamic graphs. In Proc. of the 10th ACM
International Conference on Distributed and Event-based Systems, pages 161–168, 2016. doi:
10.1145/2933267.2933299.

19 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proc. of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 815–826. ACM,
2018. doi:10.1145/3188745.3188922.

20 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear in n update time. In Timothy M. Chan, editor, Proc. of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1919–1936. SIAM, 2019. doi:10.1137/1.
9781611975482.116.

21 G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation: Combinatorial Optimization Problems and their Approximab-
ility Properties. Springer Science & Business Media, 2012.

22 Muhammad A. Awad, Saman Ashkiani, Serban D. Porumbescu, and John D. Owens. Dynamic
graphs on the GPU. In 2020 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), New Orleans, LA, USA, May 18-22, 2020, pages 739–748. IEEE, 2020. doi:
10.1109/IPDPS47924.2020.00081.

23 Thomas Aynaud and Jean-Loup Guillaume. Static community detection algorithms for evolving
networks. In Lavy Libman Ariel Orda, Nidhi Hegde, editor, 8th International Symposium on
Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2010), May 31
- June 4, 2010, University of Avignon, Avignon, France, pages 513–519. IEEE, 2010. URL:
http://ieeexplore.ieee.org/document/5520221/.

https://doi.org/10.1109/ASONAM.2014.6921567
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.257
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
http://arxiv.org/abs/2104.13098
http://arxiv.org/abs/2104.13098
https://doi.org/10.4230/LIPIcs.ICALP.2018.7
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1145/3188745.3188922
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1109/IPDPS47924.2020.00081
https://doi.org/10.1109/IPDPS47924.2020.00081
http://ieeexplore.ieee.org/document/5520221/

K. Hanauer, M. Henzinger, and C. Schulz 1:31

24 Shweta Bansal, Sanjukta Bhowmick, and Prashant Paymal. Fast community detection for
dynamic complex networks. In Luciano da F. Costa, Alexandre G. Evsukoff, Giuseppe
Mangioni, and Ronaldo Menezes, editors, Complex Networks - Second International Workshop,
CompleNet 2010, Rio de Janeiro, Brazil, October 13-15, 2010, Revised Selected Papers, volume
116 of Communications in Computer and Information Science, pages 196–207. Springer, 2010.
doi:10.1007/978-3-642-25501-4_20.

25 Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz Khan. Dynamic
DFS in undirected graphs: Breaking the o(m) barrier. SIAM J. Comput., 48(4):1335–1363,
2019. doi:10.1137/17M114306X.

26 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(log n) update time. SIAM J. Comput., 44(1):88–113, 2015. doi:10.1137/16M1106158.

27 Surender Baswana, Shiv Kumar Gupta, and Ayush Tulsyan. Fault tolerant and fully dynamic
DFS in undirected graphs: Simple yet efficient. In Peter Rossmanith, Pinar Heggernes, and
Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of
LIPIcs, pages 65:1–65:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.MFCS.2019.65.

28 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, and
Dorothea Wagner. Combining hierarchical and goal-directed speed-up techniques for dijkstra’s
algorithm. ACM J. Exp. Algorithmics, 15, 2010. doi:10.1145/1671970.1671976.

29 Reinhard Bauer and Dorothea Wagner. Batch dynamic single-source shortest-path algorithms:
An experimental study. In Jan Vahrenhold, editor, Experimental Algorithms, 8th International
Symposium, SEA 2009, Dortmund, Germany, June 4-6, 2009. Proc., volume 5526 of Lecture
Notes in Computer Science, pages 51–62. Springer, 2009. doi:10.1007/978-3-642-02011-7_7.

30 F. Becker. Generative Model for Dynamic Networks with Community Structures. Master’s
Thesis, Heidelberg University, 2020.

31 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In David
Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 382–405. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00032.

32 Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.
33 Elisabetta Bergamini and Henning Meyerhenke. Fully-dynamic approximation of betweenness

centrality. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proc., volume 9294 of Lecture
Notes in Computer Science, pages 155–166. Springer, 2015. doi:10.1007/978-3-662-48350-3_
14.

34 Elisabetta Bergamini and Henning Meyerhenke. Approximating betweenness centrality in
fully dynamic networks. Internet Math., 12(5):281–314, 2016. doi:10.1080/15427951.2016.
1177802.

35 Elisabetta Bergamini, Henning Meyerhenke, and Christian Staudt. Approximating betweenness
centrality in large evolving networks. In Ulrik Brandes and David Eppstein, editors, Proc. of the
Seventeenth Workshop on Algorithm Engineering and Experiments, ALENEX 2015, San Diego,
CA, USA, January 5, 2015, pages 133–146. SIAM, 2015. doi:10.1137/1.9781611973754.12.

36 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach
for dynamic spanner and dynamic maximal matching. In Timothy M. Chan, editor, Proc.
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1899–1918. SIAM, 2019. doi:10.1137/1.
9781611975482.115.

37 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proc. of the 27th Symposium on Discrete Algorithms SODA, pages 692–711. SIAM,
2016. doi:10.1137/1.9781611974331.ch50.

SAND 2022

https://doi.org/10.1007/978-3-642-25501-4_20
https://doi.org/10.1137/17M114306X
https://doi.org/10.1137/16M1106158
https://doi.org/10.4230/LIPIcs.MFCS.2019.65
https://doi.org/10.4230/LIPIcs.MFCS.2019.65
https://doi.org/10.1145/1671970.1671976
https://doi.org/10.1007/978-3-642-02011-7_7
https://doi.org/10.1109/FOCS.2019.00032
https://doi.org/10.1007/978-3-662-48350-3_14
https://doi.org/10.1007/978-3-662-48350-3_14
https://doi.org/10.1080/15427951.2016.1177802
https://doi.org/10.1080/15427951.2016.1177802
https://doi.org/10.1137/1.9781611973754.12
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1137/1.9781611974331.ch50

1:32 Recent Advances in Fully Dynamic Graph Algorithms

38 Emanuele Berrettini, Gianlorenzo D’Angelo, and Daniel Delling. Arc-flags in dynamic graphs.
In Jens Clausen and Gabriele Di Stefano, editors, ATMOS 2009 - 9th Workshop on Al-
gorithmic Approaches for Transportation Modeling, Optimization, and Systems, IT University
of Copenhagen, Denmark, September 10, 2009, volume 12 of OASICS. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany, 2009. URL: http://drops.dagstuhl.de/opus/
volltexte/2009/2149.

39 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic dy-
namic matching in O(1) update time. Algorithmica, 82(4):1057–1080, 2020. doi:10.1007/
s00453-019-00630-4.

40 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018.
doi:10.1137/140998925.

41 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Dynamic algorithms via
the primal-dual method. Inf. Comput., 261:219–239, 2018. doi:10.1016/j.ic.2018.02.005.

42 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approx-
imation algorithms for fully dynamic matching. In Proc. of the 48th Annual Symposium on
Theory of Computing, pages 398–411. ACM, 2016. doi:10.1145/2897518.2897568.

43 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate
maximum matching and minimum vertex cover in O(log3 n) worst case update time. In
Philip N. Klein, editor, Proc. of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms SODA, pages 470–489. SIAM, 2017. doi:10.1137/1.9781611973730.54.

44 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. A new deterministic
algorithm for dynamic set cover. In David Zuckerman, editor, 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November
9-12, 2019, pages 406–423. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00033.

45 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proc. of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 173–182. ACM, 2015. doi:10.1145/2746539.2746592.

46 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Xiaowei Wu. An improved
algorithm for dynamic set cover. CoRR, abs/2002.11171, 2020. arXiv:2002.11171.

47 Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2 + ε)-
approximate minimum vertex cover in o(1/ε2) amortized update time. In Timothy M. Chan,
editor, Proc. of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 1872–1885. SIAM, 2019. doi:
10.1137/1.9781611975482.113.

48 Sujoy Bhore, Guangping Li, and Martin Nöllenburg. An algorithmic study of fully dynamic
independent sets for map labeling. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 19:1–19:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.19.

49 Patrick Bisenius, Elisabetta Bergamini, Eugenio Angriman, and Henning Meyerhenke. Com-
puting top-k closeness centrality in fully-dynamic graphs. In Rasmus Pagh and Suresh
Venkatasubramanian, editors, Proc. of the Twentieth Workshop on Algorithm Engineering and
Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018, pages 21–35. SIAM,
2018. doi:10.1137/1.9781611975055.3.

50 Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell.,
26(9):1124–1137, 2004. doi:10.1109/TPAMI.2004.60.

http://drops.dagstuhl.de/opus/volltexte/2009/2149
http://drops.dagstuhl.de/opus/volltexte/2009/2149
https://doi.org/10.1007/s00453-019-00630-4
https://doi.org/10.1007/s00453-019-00630-4
https://doi.org/10.1137/140998925
https://doi.org/10.1016/j.ic.2018.02.005
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1137/1.9781611973730.54
https://doi.org/10.1109/FOCS.2019.00033
https://doi.org/10.1145/2746539.2746592
http://arxiv.org/abs/2002.11171
https://doi.org/10.1137/1.9781611975482.113
https://doi.org/10.1137/1.9781611975482.113
https://doi.org/10.4230/LIPIcs.ESA.2020.19
https://doi.org/10.1137/1.9781611975055.3
https://doi.org/10.1109/TPAMI.2004.60

K. Hanauer, M. Henzinger, and C. Schulz 1:33

51 U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner. On
Modularity Clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2):172–188,
2008. doi:10.1109/TKDE.2007.190689.

52 Valentin Buchhold, Daniel Delling, Dennis Schieferdecker, and Michael Wegner. Fast and stable
repartitioning of road networks. In 18th International Symposium on Experimental Algorithms
(SEA 2020), volume 160 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.SEA.2020.26.

53 Laurent Bulteau, Vincent Froese, Konstantin Kutzkov, and Rasmus Pagh. Triangle
counting in dynamic graph streams. Algorithmica, 76(1):259–278, 2016. doi:10.1007/
s00453-015-0036-4.

54 Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Stijn Vansummeren, editor, Proc. of
the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 26-28, 2006, Chicago, Illinois, USA, pages 253–262. ACM, 2006. doi:10.1145/
1142351.1142388.

55 Luciana S. Buriol, Mauricio G. C. Resende, and Mikkel Thorup. Speeding up dynamic shortest-
path algorithms. INFORMS J. Comput., 20(2):191–204, 2008. doi:10.1287/ijoc.1070.0231.

56 Giuseppe Cattaneo, Pompeo Faruolo, Umberto Ferraro Petrillo, and Giuseppe F. Itali-
ano. Maintaining dynamic minimum spanning trees: An experimental study. In David M.
Mount and Clifford Stein, editors, Algorithm Engineering and Experiments, 4th Interna-
tional Workshop, ALENEX 2002, San Francisco, CA, USA, January 4-5, 2002, Revised
Papers, volume 2409 of Lecture Notes in Computer Science, pages 111–125. Springer, 2002.
doi:10.1007/3-540-45643-0_9.

57 Giuseppe Cattaneo, Pompeo Faruolo, Umberto Ferraro Petrillo, and Giuseppe F. Italiano.
Maintaining dynamic minimum spanning trees: An experimental study. Discret. Appl. Math.,
158(5):404–425, 2010. doi:10.1016/j.dam.2009.10.005.

58 Edward P. F. Chan and Yaya Yang. Shortest path tree computation in dynamic graphs. IEEE
Trans. Computers, 58(4):541–557, 2009. doi:10.1109/TC.2008.198.

59 Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the
polynomial worst-case time barrier. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, volume 107 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.33.

60 Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log
update time. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
370–381. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00031.

61 Mostafa Haghir Chehreghani, Albert Bifet, and Talel Abdessalem. Dybed: An efficient
algorithm for updating betweenness centrality in directed dynamic graphs. In Naoki Abe,
Huan Liu, Calton Pu, Xiaohua Hu, Nesreen K. Ahmed, Mu Qiao, Yang Song, Donald
Kossmann, Bing Liu, Kisung Lee, Jiliang Tang, Jingrui He, and Jeffrey S. Saltz, editors, IEEE
International Conference on Big Data, Big Data 2018, Seattle, WA, USA, December 10-13,
2018, pages 2114–2123. IEEE, 2018. doi:10.1109/BigData.2018.8622452.

62 Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Saranurak.
Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 1135–1146. IEEE, 2020. doi:10.1109/FOCS46700.2020.00109.

63 Pierluigi Crescenzi, Clémence Magnien, and Andrea Marino. Finding top-k nodes for temporal
closeness in large temporal graphs. Algorithms, 13(9):211, 2020. doi:10.3390/a13090211.

64 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching,
via unweighted matching. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and
Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optimization.

SAND 2022

https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.4230/LIPIcs.SEA.2020.26
https://doi.org/10.1007/s00453-015-0036-4
https://doi.org/10.1007/s00453-015-0036-4
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1287/ijoc.1070.0231
https://doi.org/10.1007/3-540-45643-0_9
https://doi.org/10.1016/j.dam.2009.10.005
https://doi.org/10.1109/TC.2008.198
https://doi.org/10.4230/LIPIcs.ICALP.2018.33
https://doi.org/10.1109/FOCS.2019.00031
https://doi.org/10.1109/BigData.2018.8622452
https://doi.org/10.1109/FOCS46700.2020.00109
https://doi.org/10.3390/a13090211

1:34 Recent Advances in Fully Dynamic Graph Algorithms

Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, volume 28 of LIPIcs, pages 96–104. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

65 Annalisa D’Andrea, Mattia D’Emidio, Daniele Frigioni, Stefano Leucci, and Guido Proietti.
Dynamic maintenance of a shortest-path tree on homogeneous batches of updates: New
algorithms and experiments. ACM J. Exp. Algorithmics, 20:1.5:1.1–1.5:1.33, 2015. doi:
10.1145/2786022.

66 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic update of
arc-flags. Networks, 63(3):243–259, 2014. doi:10.1002/net.21542.

67 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic 2-hop cover
labeling. ACM J. Exp. Algorithmics, 24(1):1.6:1–1.6:36, 2019. doi:10.1145/3299901.

68 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato Fonseca F. Werneck. Cus-
tomizable route planning. In Panos M. Pardalos and Steffen Rebennack, editors, Experimental
Algorithms - 10th International Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece,
May 5-7, 2011. Proc., volume 6630 of Lecture Notes in Computer Science, pages 376–387.
Springer, 2011. doi:10.1007/978-3-642-20662-7_32.

69 Daniel Delling and Dorothea Wagner. Landmark-based routing in dynamic graphs. In Camil
Demetrescu, editor, Experimental Algorithms, 6th International Workshop, WEA 2007, Rome,
Italy, June 6-8, 2007, Proc., volume 4525 of Lecture Notes in Computer Science, pages 52–65.
Springer, 2007. doi:10.1007/978-3-540-72845-0_5.

70 Camil Demetrescu. Fully Dynamic Algorithms for Path Problems on Directed Graphs. PhD
thesis, Universtita Degli Studi Di Roma, 2001. URL: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.21.8921.

71 Camil Demetrescu, Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni.
Maintaining shortest paths in digraphs with arbitrary arc weights: An experimental study. In
Stefan Näher and Dorothea Wagner, editors, Algorithm Engineering, 4th International Work-
shop, WAE 2000, Saarbrücken, Germany, September 5-8, 2000, Proc., volume 1982 of Lecture
Notes in Computer Science, pages 218–229. Springer, 2000. doi:10.1007/3-540-44691-5_19.

72 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

73 Camil Demetrescu and Giuseppe F. Italiano. Experimental analysis of dynamic all pairs shortest
path algorithms. ACM Trans. Algorithms, 2(4):578–601, 2006. doi:10.1145/1198513.1198519.

74 Laxman Dhulipala, Quanquan C. Liu, and Julian Shun. Parallel batch-dynamic k-clique
counting. CoRR, abs/2003.13585, 2020. arXiv:2003.13585.

75 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. doi:10.1007/BF01386390.

76 Christof Doll, Tanja Hartmann, and Dorothea Wagner. Fully-dynamic hierarchical graph
clustering using cut trees. In 12th Intl. Symp. on Algorithms and Data Structures, WADS’11,
volume 6844 of LNCS, pages 338–349, 2011. doi:10.1007/978-3-642-22300-6_29.

77 David Ediger, Robert McColl, E. Jason Riedy, and David A. Bader. STINGER: high
performance data structure for streaming graphs. In IEEE Conference on High Performance
Extreme Computing, HPEC 2012, Waltham, MA, USA, September 10-12, 2012, pages 1–5.
IEEE, 2012. doi:10.1109/HPEC.2012.6408680.

78 Jack R. Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. J. ACM, 19(2):248–264, 1972. doi:10.1145/321694.321699.

79 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. i. planary testing and minimum spanning trees. J. Comput. Syst. Sci., 52(1):3–27,
1996. doi:10.1006/jcss.1996.0002.

80 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator-based
sparsification II: edge and vertex connectivity. SIAM J. Comput., 28(1):341–381, 1998.
doi:10.1137/S0097539794269072.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.1145/2786022
https://doi.org/10.1145/2786022
https://doi.org/10.1002/net.21542
https://doi.org/10.1145/3299901
https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1007/978-3-540-72845-0_5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8921
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.8921
https://doi.org/10.1007/3-540-44691-5_19
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1145/1198513.1198519
http://arxiv.org/abs/2003.13585
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-642-22300-6_29
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1145/321694.321699
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1137/S0097539794269072

K. Hanauer, M. Henzinger, and C. Schulz 1:35

81 David Eppstein, Michael T. Goodrich, Darren Strash, and Lowell Trott. Extended dynamic
subgraph statistics using h-index parameterized data structures. Theor. Comput. Sci., 447:44–
52, 2012. doi:10.1016/j.tcs.2011.11.034.

82 David Eppstein and Emma S. Spiro. The h-index of a graph and its application to dynamic
subgraph statistics. J. Graph Algorithms Appl., 16(2):543–567, 2012. doi:10.7155/jgaa.
00273.

83 Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. Incrementalization of
graph partitioning algorithms. Proc. VLDB Endow., 13(8):1261–1274, 2020. doi:10.14778/
3389133.3389142.

84 Guoyao Feng, Xiao Meng, and Khaled Ammar. Distinger: A distributed graph data structure
for massive dynamic graph processing. In 2015 IEEE International Conference on Big Data
(Big Data), pages 1814–1822. IEEE, 2015. doi:10.1109/BigData.2015.7363954.

85 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985. doi:10.1137/0214055.

86 Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smal-
lest spanning trees. SIAM J. Comput., 26(2):484–538, 1997. doi:10.1137/S0097539792226825.

87 Daniele Frigioni, Mario Ioffreda, Umberto Nanni, and Giulio Pasqualone. Experimental
analysis of dynamic algorithms for the single-source shortest-path problem. ACM J. Exp.
Algorithmics, 3:5, 1998. doi:10.1145/297096.297147.

88 Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Fully dynamic output
bounded single source shortest path problem (extended abstract). In Éva Tardos, editor,
Proc. of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January
1996, Atlanta, Georgia, USA, pages 212–221. ACM/SIAM, 1996. URL: http://dl.acm.org/
citation.cfm?id=313852.313926.

89 Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos D. Zaroliagis. An experimental
study of dynamic algorithms for transitive closure. ACM J. Exp. Algorithmics, 6:9, 2001.
doi:10.1145/945394.945403.

90 Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A search meets
graph theory. In Proc. of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 156–165.
SIAM, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070455.

91 Andrew V. Goldberg, Sagi Hed, Haim Kaplan, Pushmeet Kohli, Robert Endre Tarjan, and
Renato F. Werneck. Faster and more dynamic maximum flow by incremental breadth-first
search. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd Annual
European Symposium, Patras, Greece, September 14-16, 2015, Proc., volume 9294 of Lecture
Notes in Computer Science, pages 619–630. Springer, 2015. doi:10.1007/978-3-662-48350-3_
52.

92 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35(4):921–940, 1988.

93 Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-flow problem.
J. ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

94 Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in
polylogarithmic amortized update time. ACM Transactions on Algorithms (TALG), 14(2):1–
21, 2018.

95 Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. CoRR, abs/2005.02369, 2020.
arXiv:2005.02369.

96 Robert Görke, Tanja Hartmann, and Dorothea Wagner. Dynamic graph clustering using
minimum-cut trees. J. Graph Algorithms Appl., 16(2):411–446, 2012. doi:10.7155/jgaa.
00269.

SAND 2022

https://doi.org/10.1016/j.tcs.2011.11.034
https://doi.org/10.7155/jgaa.00273
https://doi.org/10.7155/jgaa.00273
https://doi.org/10.14778/3389133.3389142
https://doi.org/10.14778/3389133.3389142
https://doi.org/10.1109/BigData.2015.7363954
https://doi.org/10.1137/0214055
https://doi.org/10.1137/S0097539792226825
https://doi.org/10.1145/297096.297147
http://dl.acm.org/citation.cfm?id=313852.313926
http://dl.acm.org/citation.cfm?id=313852.313926
https://doi.org/10.1145/945394.945403
http://dl.acm.org/citation.cfm?id=1070432.1070455
https://doi.org/10.1007/978-3-662-48350-3_52
https://doi.org/10.1007/978-3-662-48350-3_52
https://doi.org/10.1145/48014.61051
http://arxiv.org/abs/2005.02369
https://doi.org/10.7155/jgaa.00269
https://doi.org/10.7155/jgaa.00269

1:36 Recent Advances in Fully Dynamic Graph Algorithms

97 Robert Görke, Roland Kluge, Andrea Schumm, Christian Staudt, and Dorothea Wagner. An
efficient generator for clustered dynamic random networks. In Guy Even and Dror Rawitz,
editors, Design and Analysis of Algorithms - First Mediterranean Conference on Algorithms,
MedAlg 2012, Kibbutz Ein Gedi, Israel, December 3-5, 2012. Proc., volume 7659 of Lecture Notes
in Computer Science, pages 219–233. Springer, 2012. doi:10.1007/978-3-642-34862-4_16.

98 Robert Görke, Pascal Maillard, Andrea Schumm, Christian Staudt, and Dorothea Wagner.
Dynamic graph clustering combining modularity and smoothness. ACM J. Exp. Algorithmics,
18, 2013. doi:10.1145/2444016.2444021.

99 Robert Görke, Pascal Maillard, Christian Staudt, and Dorothea Wagner. Modularity-
driven clustering of dynamic graphs. In Paola Festa, editor, Experimental Algorithms,
9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010.
Proc., volume 6049 of Lecture Notes in Computer Science, pages 436–448. Springer, 2010.
doi:10.1007/978-3-642-13193-6_37.

100 Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay
Solomon. (1 + ϵ)-approximate incremental matching in constant deterministic amortized time.
In Timothy M. Chan, editor, Proc. of the 20th Symposium on Discrete Algorithms, pages
1886–1898. SIAM, 2019. doi:10.1137/1.9781611975482.114.

101 Sergio Greco, Cristian Molinaro, Chiara Pulice, and Ximena Quintana. Incremental maximum
flow computation on evolving networks. In Ahmed Seffah, Birgit Penzenstadler, Carina Alves,
and Xin Peng, editors, Proc. of the Symposium on Applied Computing, SAC 2017, Marrakech,
Morocco, April 3-7, 2017, pages 1061–1067. ACM, 2017. doi:10.1145/3019612.3019816.

102 Oded Green, Robert McColl, and David A. Bader. A fast algorithm for streaming betweenness
centrality. In 2012 International Conference on Privacy, Security, Risk and Trust, PASSAT
2012, and 2012 International Confernece on Social Computing, SocialCom 2012, Amsterdam,
Netherlands, September 3-5, 2012, pages 11–20. IEEE Computer Society, 2012. doi:10.1109/
SocialCom-PASSAT.2012.37.

103 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for maximal independent set
and other problems. In 4th Symposium on Simplicity in Algorithms, SOSA@SODA 2021, to
appear, 2021. arXiv:1804.01823.

104 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Symposium on Foundations of Computer Science, FOCS, pages 548–557. IEEE Computer
Society, 2013. URL: https://ieeexplore.ieee.org/xpl/conhome/6685222/proceeding.

105 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society, 2013.

106 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs shortest
paths: Improved worst-case time and space bounds. In Shuchi Chawla, editor, Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 2562–2574. SIAM, 2020. doi:10.1137/1.9781611975994.156.

107 Guyue Han and Harish Sethu. Edge sample and discard: A new algorithm for counting triangles
in large dynamic graphs. In Jana Diesner, Elena Ferrari, and Guandong Xu, editors, Proc.
of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining 2017, Sydney, Australia, July 31 - August 03, 2017, pages 44–49. ACM, 2017.
doi:10.1145/3110025.3110061.

108 Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. Fully dynamic four-vertex subgraph
counting. CoRR, abs/2106.15524, 2021. arXiv:2106.15524.

109 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster fully dynamic transitive
closure in practice. In Simone Faro and Domenico Cantone, editors, 18th International
Symposium on Experimental Algorithms, SEA 2020, June 16-18, 2020, Catania, Italy, volume
160 of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SEA.2020.14.

https://doi.org/10.1007/978-3-642-34862-4_16
https://doi.org/10.1145/2444016.2444021
https://doi.org/10.1007/978-3-642-13193-6_37
https://doi.org/10.1137/1.9781611975482.114
https://doi.org/10.1145/3019612.3019816
https://doi.org/10.1109/SocialCom-PASSAT.2012.37
https://doi.org/10.1109/SocialCom-PASSAT.2012.37
http://arxiv.org/abs/1804.01823
https://ieeexplore.ieee.org/xpl/conhome/6685222/proceeding
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1145/3110025.3110061
http://arxiv.org/abs/2106.15524
https://doi.org/10.4230/LIPIcs.SEA.2020.14

K. Hanauer, M. Henzinger, and C. Schulz 1:37

110 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Fully dynamic single-source
reachability in practice: An experimental study. In Guy E. Blelloch and Irene Finocchi,
editors, Proc. of the Symposium on Algorithm Engineering and Experiments, ALENEX
2020, Salt Lake City, UT, USA, January 5-6, 2020, pages 106–119. SIAM, 2020. doi:
10.1137/1.9781611976007.9.

111 Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. Fully dynamic shortest-path
distance query acceleration on massive networks. In Snehasis Mukhopadhyay, ChengXiang
Zhai, Elisa Bertino, Fabio Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang,
Yunyao Li, and Parikshit Sondhi, editors, Proc. of the 25th ACM International Conference on
Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October 24-28,
2016, pages 1533–1542. ACM, 2016. doi:10.1145/2983323.2983731.

112 Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. Fully dynamic betweenness centrality
maintenance on massive networks. Proc. VLDB Endow., 9(2):48–59, 2015. doi:10.14778/
2850578.2850580.

113 Keith Henderson and Tina Eliassi-Rad. Applying latent dirichlet allocation to group discovery
in large graphs. In Sung Y. Shin and Sascha Ossowski, editors, Proc. of the 2009 ACM
Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009, pages
1456–1461. ACM, 2009. doi:10.1145/1529282.1529607.

114 Bruce Hendrickson, Robert W. Leland, and Rafael Van Driessche. Enhancing data locality
by using terminal propagation. In 29th Annual Hawaii International Conference on System
Sciences (HICSS-29), January 3-6, 1996, Maui, Hawaii, USA, pages 565–574. IEEE Computer
Society, 1996. doi:10.1109/HICSS.1996.495507.

115 Monika Henzinger. The state of the art in dynamic graph algorithms. In 44th Intl. Conf. on
Current Trends in Theory and Practice of Computer Science, SOFSEM’18, volume 10706 of
LNCS, pages 40–44. Springer, 2018. doi:10.1007/978-3-319-73117-9_3.

116 Monika Henzinger, Shahbaz Khan, Richard Paul, and Christian Schulz. Dynamic matching
algorithms in practice. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors,
28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy
(Virtual Conference), volume 173 of LIPIcs, pages 58:1–58:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.58.

117 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proc. of the forty-seventh annual ACM symposium on Theory of
computing, pages 21–30, 2015. doi:10.1145/2746539.2746609.

118 Monika Henzinger, Alexander Noe, and Christian Schulz. Practical fully dynamic minimum
cut algorithms. CoRR, abs/2101.05033, 2021. arXiv:2101.05033.

119 Monika R Henzinger and Valerie King. Maintaining minimum spanning trees in dynamic
graphs. In International Colloquium on Automata, Languages, and Programming, pages
594–604. Springer, 1997.

120 Monika Rauch Henzinger. Approximating minimum cuts under insertions. In International
Colloquium on Automata, Languages, and Programming, pages 280–291. Springer, 1995.

121 Monika Rauch Henzinger. Fully dynamic biconnectivity in graphs. Algorithmica, 13(6):503–538,
1995. doi:10.1007/BF01189067.

122 Monika Rauch Henzinger. Improved data structures for fully dynamic biconnectivity. SIAM J.
Comput., 29(6):1761–1815, 2000. doi:10.1137/S0097539794263907.

123 Monika Rauch Henzinger and Michael L. Fredman. Lower bounds for fully dynamic connectivity
problems in graphs. Algorithmica, 22(3):351–362, 1998. doi:10.1007/PL00009228.

124 Monika Rauch Henzinger and Valerie King. Randomized dynamic graph algorithms with
polylogarithmic time per operation. In Frank Thomson Leighton and Allan Borodin, editors,
Proc. of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June
1995, Las Vegas, Nevada, USA, pages 519–527. ACM, 1995. doi:10.1145/225058.225269.

SAND 2022

https://doi.org/10.1137/1.9781611976007.9
https://doi.org/10.1137/1.9781611976007.9
https://doi.org/10.1145/2983323.2983731
https://doi.org/10.14778/2850578.2850580
https://doi.org/10.14778/2850578.2850580
https://doi.org/10.1145/1529282.1529607
https://doi.org/10.1109/HICSS.1996.495507
https://doi.org/10.1007/978-3-319-73117-9_3
https://doi.org/10.4230/LIPIcs.ESA.2020.58
https://doi.org/10.1145/2746539.2746609
http://arxiv.org/abs/2101.05033
https://doi.org/10.1007/BF01189067
https://doi.org/10.1137/S0097539794263907
https://doi.org/10.1007/PL00009228
https://doi.org/10.1145/225058.225269

1:38 Recent Advances in Fully Dynamic Graph Algorithms

125 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.
320215.

126 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
In Jeffrey Scott Vitter, editor, Proc. of the Thirtieth Annual ACM Symposium on the Theory
of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 79–89. ACM, 1998. doi:10.1145/
276698.276715.

127 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

128 Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic minimum
spanning forest. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 -
23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proc., volume
9294 of Lecture Notes in Computer Science, pages 742–753. Springer, 2015. doi:10.1007/
978-3-662-48350-3_62.

129 Y.F. Hu and R.J. Blake. An improved diffusion algorithm for dynamic load balancing. Parallel
Computing, 25(4):417–444, 1999. doi:10.1016/S0167-8191(99)00002-2.

130 Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipeng Cai, Xiuzhen Cheng,
and Hanhua Chen. Faster parallel core maintenance algorithms in dynamic graphs. IEEE
Trans. Parallel Distributed Syst., 31(6):1287–1300, 2020. doi:10.1109/TPDS.2019.2960226.

131 Jiewen Huang and Daniel Abadi. LEOPARD: lightweight edge-oriented partitioning and
replication for dynamic graphs. Proc. VLDB Endow., 9(7):540–551, 2016. doi:10.14778/
2904483.2904486.

132 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In Philip N. Klein, editor, Proc. of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, January 16-19, pages 510–520. SIAM, 2017. doi:10.1137/1.9781611974782.
32.

133 Giuseppe Amato II, Giuseppe Cattaneo, and Giuseppe F. Italiano. Experimental analysis
of dynamic minimum spanning tree algorithms (extended abstract). In Michael E. Saks,
editor, Proc. of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 5-7
January 1997, New Orleans, Louisiana, USA, pages 314–323. ACM/SIAM, 1997. URL:
http://dl.acm.org/citation.cfm?id=314161.314314.

134 Giuseppe F. Italiano. Fully dynamic higher connectivity. In Encyclopedia of Algorithms, pages
797–800. Springer, 2016. doi:10.1007/978-1-4939-2864-4_154.

135 Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In 19th
International Workshop Graph-Theoretic Concepts in Computer Science, volume 790 of LNCS,
pages 99–111, 1993.

136 Keita Iwabuchi, Scott Sallinen, Roger Pearce, Brian Van Essen, Maya Gokhale, and Satoshi
Matsuoka. Towards a distributed large-scale dynamic graph data store. In 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages
892–901. IEEE, 2016. doi:10.1109/IPDPSW.2016.189.

137 Raj Iyer, David R. Karger, Hariharan Rahul, and Mikkel Thorup. An experimental study of
polylogarithmic, fully dynamic, connectivity algorithms. ACM J. Exp. Algorithmics, 6:4, 2001.
doi:10.1145/945394.945398.

138 Hai Jin, Na Wang, Dongxiao Yu, Qiang-Sheng Hua, Xuanhua Shi, and Xia Xie. Core
maintenance in dynamic graphs: A parallel approach based on matching. IEEE Trans. Parallel
Distributed Syst., 29(11):2416–2428, 2018. doi:10.1109/TPDS.2018.2835441.

139 Wenyu Jin and Xiaorui Sun. Fully dynamic c-edge connectivity in subpolynomial time. CoRR,
abs/2004.07650, 2020. arXiv:2004.07650.

https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/276698.276715
https://doi.org/10.1145/276698.276715
https://doi.org/10.1145/502090.502095
https://doi.org/10.1007/978-3-662-48350-3_62
https://doi.org/10.1007/978-3-662-48350-3_62
https://doi.org/10.1016/S0167-8191(99)00002-2
https://doi.org/10.1109/TPDS.2019.2960226
https://doi.org/10.14778/2904483.2904486
https://doi.org/10.14778/2904483.2904486
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1137/1.9781611974782.32
http://dl.acm.org/citation.cfm?id=314161.314314
https://doi.org/10.1007/978-1-4939-2864-4_154
https://doi.org/10.1109/IPDPSW.2016.189
https://doi.org/10.1145/945394.945398
https://doi.org/10.1109/TPDS.2018.2835441
http://arxiv.org/abs/2004.07650

K. Hanauer, M. Henzinger, and C. Schulz 1:39

140 Hossein Jowhari and Mohammad Ghodsi. New streaming algorithms for counting triangles in
graphs. In Lusheng Wang, editor, Computing and Combinatorics, 11th Annual International
Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Proc., volume 3595 of
Lecture Notes in Computer Science, pages 710–716. Springer, 2005. doi:10.1007/11533719_72.

141 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Sanjeev Khanna, editor, Proc. of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1131–1142. SIAM, 2013. doi:10.1137/1.9781611973105.81.

142 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting
triangles under updates in worst-case optimal time. In Pablo Barceló and Marco Calautti,
editors, 22nd International Conference on Database Theory, ICDT 2019, March 26-28, 2019,
Lisbon, Portugal, volume 127 of LIPIcs, pages 4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ICDT.2019.4.

143 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining
triangle queries under updates. ACM Trans. Database Syst., 45(3):11:1–11:46, 2020. doi:
10.1145/3396375.

144 Miray Kas, Kathleen M. Carley, and L. Richard Carley. Incremental closeness centrality
for dynamically changing social networks. In Jon G. Rokne and Christos Faloutsos, editors,
Advances in Social Networks Analysis and Mining 2013, ASONAM ’13, Niagara, ON, Canada
- August 25 - 29, 2013, pages 1250–1258. ACM, 2013. doi:10.1145/2492517.2500270.

145 Shahbaz Khan. Near optimal parallel algorithms for dynamic DFS in undirected graphs. ACM
Trans. Parallel Comput., 6(3):18:1–18:33, 2019. doi:10.1145/3364212.

146 Tim Kiefer, Dirk Habich, and Wolfgang Lehner. Penalized graph partitioning for static and
dynamic load balancing. In Pierre-François Dutot and Denis Trystram, editors, Euro-Par 2016:
Parallel Processing - 22nd International Conference on Parallel and Distributed Computing,
Grenoble, France, August 24-26, 2016, Proc., volume 9833 of Lecture Notes in Computer
Science, pages 146–158. Springer, 2016. doi:10.1007/978-3-319-43659-3_11.

147 Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, 17-18 October, 1999, New York, NY, USA, pages 81–91. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814580.

148 Valerie King and Mikkel Thorup. A space saving trick for directed dynamic transitive
closure and shortest path algorithms. In Jie Wang, editor, Computing and Combinatorics,
7th Annual International Conference, COCOON 2001, Guilin, China, August 20-23, 2001,
Proc., volume 2108 of Lecture Notes in Computer Science, pages 268–277. Springer, 2001.
doi:10.1007/3-540-44679-6_30.

149 Pushmeet Kohli and Philip H. S. Torr. Dynamic graph cuts for efficient inference in markov
random fields. IEEE Trans. Pattern Anal. Mach. Intell., 29(12):2079–2088, 2007. doi:
10.1109/TPAMI.2007.1128.

150 Pushmeet Kohli and Philip H. S. Torr. Dynamic graph cuts and their applications in
computer vision. In Roberto Cipolla, Sebastiano Battiato, and Giovanni Maria Farinella,
editors, Computer Vision: Detection, Recognition and Reconstruction, volume 285 of Studies in
Computational Intelligence, pages 51–108. Springer, 2010. doi:10.1007/978-3-642-12848-6_
3.

151 Nicolas Kourtellis, Gianmarco De Francisci Morales, and Francesco Bonchi. Scalable online
betweenness centrality in evolving graphs. IEEE Trans. Knowl. Data Eng., 27(9):2494–2506,
2015. doi:10.1109/TKDE.2015.2419666.

152 Nicolas Kourtellis, Gianmarco De Francisci Morales, and Francesco Bonchi. Scalable online
betweenness centrality in evolving graphs. In 32nd IEEE International Conference on Data En-
gineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 1580–1581. IEEE Computer
Society, 2016. doi:10.1109/ICDE.2016.7498421.

SAND 2022

https://doi.org/10.1007/11533719_72
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://doi.org/10.1145/3396375
https://doi.org/10.1145/3396375
https://doi.org/10.1145/2492517.2500270
https://doi.org/10.1145/3364212
https://doi.org/10.1007/978-3-319-43659-3_11
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1007/3-540-44679-6_30
https://doi.org/10.1109/TPAMI.2007.1128
https://doi.org/10.1109/TPAMI.2007.1128
https://doi.org/10.1007/978-3-642-12848-6_3
https://doi.org/10.1007/978-3-642-12848-6_3
https://doi.org/10.1109/TKDE.2015.2419666
https://doi.org/10.1109/ICDE.2016.7498421

1:40 Recent Advances in Fully Dynamic Graph Algorithms

153 Ioannis Krommidas and Christos D. Zaroliagis. An experimental study of algorithms for
fully dynamic transitive closure. ACM J. Exp. Algorithmics, 12:1.6:1–1.6:22, 2008. doi:
10.1145/1227161.1370597.

154 S. Kumar and P. Gupta. An incremental algorithm for the maximum flow problem. J. Math.
Model. Algorithms, 2(1):1–16, 2003. doi:10.1023/A:1023607406540.

155 Min-Joong Lee, Sunghee Choi, and Chin-Wan Chung. Efficient algorithms for updating
betweenness centrality in fully dynamic graphs. Inf. Sci., 326:278–296, 2016. doi:10.1016/j.
ins.2015.07.053.

156 Min-Joong Lee, Jungmin Lee, Jaimie Yejean Park, Ryan Hyun Choi, and Chin-Wan Chung.
QUBE: a quick algorithm for updating betweenness centrality. In Alain Mille, Fabien L.
Gandon, Jacques Misselis, Michael Rabinovich, and Steffen Staab, editors, Proc. of the 21st
World Wide Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages
351–360. ACM, 2012. doi:10.1145/2187836.2187884.

157 Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. Efficient core maintenance in large dynamic graphs.
IEEE Trans. Knowl. Data Eng., 26(10):2453–2465, 2014. doi:10.1109/TKDE.2013.158.

158 Yongsub Lim, Minsoo Jung, and U Kang. Memory-efficient and accurate sampling for counting
local triangles in graph streams: From simple to multigraphs. ACM Trans. Knowl. Discov.
Data, 12(1):4:1–4:28, 2018. doi:10.1145/3022186.

159 Yongsub Lim and U Kang. MASCOT: memory-efficient and accurate sampling for counting
local triangles in graph streams. In Longbing Cao, Chengqi Zhang, Thorsten Joachims,
Geoffrey I. Webb, Dragos D. Margineantu, and Graham Williams, editors, Proc. of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney,
NSW, Australia, August 10-13, 2015, pages 685–694. ACM, 2015. doi:10.1145/2783258.
2783285.

160 Paul Liu, Austin R. Benson, and Moses Charikar. Sampling methods for counting temporal
motifs. In J. Shane Culpepper, Alistair Moffat, Paul N. Bennett, and Kristina Lerman,
editors, Proc. of the Twelfth ACM International Conference on Web Search and Data Mining,
WSDM 2019, Melbourne, VIC, Australia, February 11-15, 2019, pages 294–302. ACM, 2019.
doi:10.1145/3289600.3290988.

161 Shangqi Lu and Yufei Tao. Towards optimal dynamic indexes for approximate (and exact)
triangle counting. In Ke Yi and Zhewei Wei, editors, 24th International Conference on Database
Theory, ICDT 2021, March 23-26, 2021, Nicosia, Cyprus, volume 186 of LIPIcs, pages 6:1–6:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICDT.2021.6.

162 Amgad Madkour, Walid G Aref, Faizan Ur Rehman, Mohamed Abdur Rahman, and Saleh
Basalamah. A survey of shortest-path algorithms. arXiv preprint, 2017. arXiv:1705.02044.

163 Devavret Makkar, David A. Bader, and Oded Green. Exact and parallel triangle counting in
dynamic graphs. In 24th IEEE International Conference on High Performance Computing,
HiPC 2017, Jaipur, India, December 18-21, 2017, pages 2–12. IEEE Computer Society, 2017.
doi:10.1109/HiPC.2017.00011.

164 Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert. Maintaining a topo-
logical order under edge insertions. Inf. Process. Lett., 59(1):53–58, 1996. doi:10.1016/
0020-0190(96)00075-0.

165 Henning Meyerhenke. Dynamic load balancing for parallel numerical simulations based on
repartitioning with disturbed diffusion. In 15th International Conference on Parallel and
Distributed Systems, pages 150–157. IEEE, 2009. doi:10.1109/ICPADS.2009.114.

166 Henning Meyerhenke and Joachim Gehweiler. On dynamic graph partitioning and graph
clustering using diffusion. In Giuseppe F. Italiano, David S. Johnson, Petra Mutzel, and
Peter Sanders, editors, Algorithm Engineering, 27.06. - 02.07.2010, volume 10261 of Dagstuhl
Seminar Proc. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010. URL:
http://drops.dagstuhl.de/opus/volltexte/2010/2798/.

https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1145/1227161.1370597
https://doi.org/10.1023/A:1023607406540
https://doi.org/10.1016/j.ins.2015.07.053
https://doi.org/10.1016/j.ins.2015.07.053
https://doi.org/10.1145/2187836.2187884
https://doi.org/10.1109/TKDE.2013.158
https://doi.org/10.1145/3022186
https://doi.org/10.1145/2783258.2783285
https://doi.org/10.1145/2783258.2783285
https://doi.org/10.1145/3289600.3290988
https://doi.org/10.4230/LIPIcs.ICDT.2021.6
http://arxiv.org/abs/1705.02044
https://doi.org/10.1109/HiPC.2017.00011
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1109/ICPADS.2009.114
http://drops.dagstuhl.de/opus/volltexte/2010/2798/

K. Hanauer, M. Henzinger, and C. Schulz 1:41

167 Kurt T Miller and Tina Eliassi-Rad. Continuous time group discovery in dynamic graphs. In
Notes of the 2009 NIPS Workshop on Analyzing Networks and Learning with Graphs, Whistler,
BC, Canada, 2009.

168 Peter Bro Miltersen, Sairam Subramanian, Jeffrey Scott Vitter, and Roberto Tamassia.
Complexity models for incremental computation. Theor. Comput. Sci., 130(1):203–236, 1994.
doi:10.1016/0304-3975(94)90159-7.

169 Daniele Miorandi and Francesco De Pellegrini. K-shell decomposition for dynamic complex
networks. In Lavy Libman Ariel Orda, Nidhi Hegde, editor, 8th International Symposium on
Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks (WiOpt 2010), May 31
- June 4, 2010, University of Avignon, Avignon, France, pages 488–496. IEEE, 2010. URL:
http://ieeexplore.ieee.org/document/5520231/.

170 Sudip Misra and B. John Oommen. Dynamic algorithms for the shortest path routing problem:
Learning automata-based solutions. IEEE Trans. Syst. Man Cybern. Part B, 35(6):1179–1192,
2005. doi:10.1109/TSMCB.2005.850180.

171 Kingshuk Mukherjee, Md Mahmudul Hasan, Christina Boucher, and Tamer Kahveci. Count-
ing motifs in dynamic networks. BMC Syst. Biol., 12(1):1–12, 2018. doi:10.1186/
s12918-018-0533-6.

172 Kengo Nakamura and Kunihiko Sadakane. Space-efficient fully dynamic DFS in undirected
graphs. Algorithms, 12(3):52, 2019. doi:10.3390/a12030052.

173 Paolo Narváez, Kai-Yeung Siu, and Hong-Yi Tzeng. New dynamic algorithms for shortest path
tree computation. IEEE/ACM Trans. Netw., 8(6):734–746, 2000. doi:10.1109/90.893870.

174 Paolo Narváez, Kai-Yeung Siu, and Hong-Yi Tzeng. New dynamic SPT algorithm based on a
ball-and-string model. IEEE/ACM Trans. Netw., 9(6):706–718, 2001. doi:10.1109/90.974525.

175 Meghana Nasre, Matteo Pontecorvi, and Vijaya Ramachandran. Betweenness centrality
- incremental and faster. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán
Ésik, editors, Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II,
volume 8635 of Lecture Notes in Computer Science, pages 577–588. Springer, 2014. doi:
10.1007/978-3-662-44465-8_49.

176 Eisha Nathan and David A. Bader. Approximating personalized katz centrality in dy-
namic graphs. In Roman Wyrzykowski, Jack J. Dongarra, Ewa Deelman, and Konrad
Karczewski, editors, Parallel Processing and Applied Mathematics - 12th International Con-
ference, PPAM 2017, Lublin, Poland, September 10-13, 2017, Revised Selected Papers, Part
I, volume 10777 of Lecture Notes in Computer Science, pages 290–302. Springer, 2017.
doi:10.1007/978-3-319-78024-5_26.

177 Eisha Nathan and David A. Bader. A dynamic algorithm for updating katz centrality in graphs.
In Jana Diesner, Elena Ferrari, and Guandong Xu, editors, Proc. of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2017, Sydney,
Australia, July 31 - August 03, 2017, pages 149–154. ACM, 2017. doi:10.1145/3110025.
3110034.

178 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Trans. Algorithms, 12(1):7:1–7:15, 2016. doi:10.1145/2700206.

179 M. EJ Newman and M. Girvan. Finding and Evaluating Community Structure in Networks.
Physical review E, 69(2):026113, 2004. doi:10.1103/PhysRevE.69.026113.

180 Daniel Nicoara, Shahin Kamali, Khuzaima Daudjee, and Lei Chen. Hermes: Dynamic
partitioning for distributed social network graph databases. In EDBT, pages 25–36, 2015.
doi:10.5441/002/edbt.2015.04.

181 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover.
In STOC, pages 457–464, 2010. doi:10.1145/1806689.1806753.

182 James B. Orlin. Max flows in o(nm) time, or better. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 765–774. ACM, 2013. doi:10.1145/2488608.2488705.

SAND 2022

https://doi.org/10.1016/0304-3975(94)90159-7
http://ieeexplore.ieee.org/document/5520231/
https://doi.org/10.1109/TSMCB.2005.850180
https://doi.org/10.1186/s12918-018-0533-6
https://doi.org/10.1186/s12918-018-0533-6
https://doi.org/10.3390/a12030052
https://doi.org/10.1109/90.893870
https://doi.org/10.1109/90.974525
https://doi.org/10.1007/978-3-662-44465-8_49
https://doi.org/10.1007/978-3-662-44465-8_49
https://doi.org/10.1007/978-3-319-78024-5_26
https://doi.org/10.1145/3110025.3110034
https://doi.org/10.1145/3110025.3110034
https://doi.org/10.1145/2700206
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.5441/002/edbt.2015.04
https://doi.org/10.1145/1806689.1806753
https://doi.org/10.1145/2488608.2488705

1:42 Recent Advances in Fully Dynamic Graph Algorithms

183 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proc. of
the 42nd ACM Symposium on Theory of Computing, STOC, pages 603–610. ACM, 2010.
doi:10.1145/1806689.1806772.

184 Mihai Patrascu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput., 35(4):932–963, 2006. doi:10.1137/S0097539705447256.

185 A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting and
sampling triangles from a graph stream. Proc. VLDB Endow., 6(14):1870–1881, 2013. doi:
10.14778/2556549.2556569.

186 D. Pearce and P. Kelly. A batch algorithm for maintaining a topological order. In ACSC,
2010. doi:10.5555/1862199.1862208.

187 David J. Pearce and Paul H. J. Kelly. A dynamic algorithm for topologically sorting directed
acyclic graphs. In Celso C. Ribeiro and Simone L. Martins, editors, Experimental and Efficient
Algorithms, Third International Workshop, WEA 2004, Angra dos Reis, Brazil, May 25-28,
2004, Proc., volume 3059 of Lecture Notes in Computer Science, pages 383–398. Springer,
2004. doi:10.1007/978-3-540-24838-5_29.

188 David J. Pearce and Paul H. J. Kelly. A dynamic topological sort algorithm for directed
acyclic graphs. ACM J. Exp. Algorithmics, 11, 2006. doi:10.1145/1187436.1210590.

189 David J. Pearce, Paul H. J. Kelly, and Chris Hankin. Online cycle detection and difference
propagation: Applications to pointer analysis. Softw. Qual. J., 12(4):311–337, 2004. doi:
10.1023/B:SQJO.0000039791.93071.a2.

190 Reynaldo Gil Pons. Space efficient incremental betweenness algorithm for directed graphs.
In Rubén Vera-Rodríguez, Julian Fiérrez, and Aythami Morales, editors, Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress,
CIARP 2018, Madrid, Spain, November 19-22, 2018, Proc., volume 11401 of Lecture Notes in
Computer Science, pages 262–270. Springer, 2018. doi:10.1007/978-3-030-13469-3_31.

191 Matteo Pontecorvi and Vijaya Ramachandran. Fully dynamic betweenness centrality. In
Khaled M. Elbassioni and Kazuhisa Makino, editors, Algorithms and Computation - 26th
International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings,
volume 9472 of Lecture Notes in Computer Science, pages 331–342. Springer, 2015. doi:
10.1007/978-3-662-48971-0_29.

192 K. (Lynn) Putman, Hanjo D. Boekhout, and Frank W. Takes. Fast incremental computation
of harmonic closeness centrality in directed weighted networks. In Francesca Spezzano, Wei
Chen, and Xiaokui Xiao, editors, ASONAM ’19: International Conference on Advances in
Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27-30 August,
2019, pages 1018–1025. ACM, 2019. doi:10.1145/3341161.3344829.

193 G Ramalingam and Thomas Reps. On the computational complexity of incremental algorithms.
Technical report, University of Wisconsin-Madison Department of Computer Sciences, 1991.

194 G. Ramalingam and Thomas W. Reps. An incremental algorithm for a generalization of the
shortest-path problem. J. Algorithms, 21(2):267–305, 1996. doi:10.1006/jagm.1996.0046.

195 G. Ramalingam and Thomas W. Reps. On the computational complexity of dynamic
graph problems. Theor. Comput. Sci., 158(1&2):233–277, 1996. doi:10.1016/0304-3975(95)
00079-8.

196 Celso C. Ribeiro and Rodrigo F. Toso. Experimental analysis of algorithms for updating
minimum spanning trees on graphs subject to changes on edge weights. In Camil Demetrescu,
editor, Experimental Algorithms, 6th International Workshop, WEA 2007, Rome, Italy, June
6-8, 2007, Proc., volume 4525 of Lecture Notes in Computer Science, pages 393–405. Springer,
2007. doi:10.1007/978-3-540-72845-0_30.

197 Matteo Riondato and Evgenios M. Kornaropoulos. Fast approximation of betweenness
centrality through sampling. In Ben Carterette, Fernando Diaz, Carlos Castillo, and Donald
Metzler, editors, Seventh ACM International Conference on Web Search and Data Mining,
WSDM 2014, New York, NY, USA, February 24-28, 2014, pages 413–422. ACM, 2014.
doi:10.1145/2556195.2556224.

https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1137/S0097539705447256
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.14778/2556549.2556569
https://doi.org/10.5555/1862199.1862208
https://doi.org/10.1007/978-3-540-24838-5_29
https://doi.org/10.1145/1187436.1210590
https://doi.org/10.1023/B:SQJO.0000039791.93071.a2
https://doi.org/10.1023/B:SQJO.0000039791.93071.a2
https://doi.org/10.1007/978-3-030-13469-3_31
https://doi.org/10.1007/978-3-662-48971-0_29
https://doi.org/10.1007/978-3-662-48971-0_29
https://doi.org/10.1145/3341161.3344829
https://doi.org/10.1006/jagm.1996.0046
https://doi.org/10.1016/0304-3975(95)00079-8
https://doi.org/10.1016/0304-3975(95)00079-8
https://doi.org/10.1007/978-3-540-72845-0_30
https://doi.org/10.1145/2556195.2556224

K. Hanauer, M. Henzinger, and C. Schulz 1:43

198 Liam Roditty. A faster and simpler fully dynamic transitive closure. ACM Trans. Algorithms,
4(1):6:1–6:16, 2008. doi:10.1145/1328911.1328917.

199 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

200 Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected
graphs. SIAM J. Comput., 41(3):670–683, 2012. doi:10.1137/090776573.

201 Liam Roditty and Uri Zwick. A fully dynamic reachability algorithm for directed graphs
with an almost linear update time. SIAM Journal on Computing, 45(3):712–733, 2016.
doi:10.1137/13093618X.

202 Giulio Rossetti and Rémy Cazabet. Community discovery in dynamic networks: A survey.
ACM Comput. Surv., 51(2):35:1–35:37, 2018. doi:10.1145/3172867.

203 Tiberiu Rotaru and Hans-Heinrich Nägeli. Dynamic load balancing by diffusion in het-
erogeneous systems. Journal of Parallel and Distributed Computing, 64(4):481–497, 2004.
doi:10.1016/j.jpdc.2004.02.001.

204 Chayma Sakouhi, Sabeur Aridhi, Alessio Guerrieri, Salma Sassi, and Alberto Montresor.
Dynamicdfep: A distributed edge partitioning approach for large dynamic graphs. In Evan
Desai, Bipin C. Desai, Motomichi Toyama, and Jorge Bernardino, editors, Proc. of the 20th
International Database Engineering & Applications Symposium, IDEAS 2016, Montreal, QC,
Canada, July 11-13, 2016, pages 142–147. ACM, 2016. doi:10.1145/2938503.2938506.

205 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended abstract).
In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proc., pages 509–517. IEEE Computer Society, 2004. doi:10.1109/FOCS.2004.25.

206 Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Lusheng Wang,
editor, Computing and Combinatorics, 11th Annual International Conference, COCOON 2005,
Kunming, China, August 16-29, 2005, Proceedings, volume 3595 of Lecture Notes in Computer
Science, pages 461–470. Springer, 2005. doi:10.1007/11533719_47.

207 Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages 118–126,
2007. doi:10.1145/1283383.1283397.

208 Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V.
Çatalyürek. Incremental k-core decomposition: algorithms and evaluation. VLDB J., 25(3):425–
447, 2016. doi:10.1007/s00778-016-0423-8.

209 Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. Incremental
algorithms for closeness centrality. In Xiaohua Hu, Tsau Young Lin, Vijay V. Raghavan,
Benjamin W. Wah, Ricardo Baeza-Yates, Geoffrey C. Fox, Cyrus Shahabi, Matthew Smith,
Qiang Yang, Rayid Ghani, Wei Fan, Ronny Lempel, and Raghunath Nambiar, editors, Proc.
of the 2013 IEEE International Conference on Big Data, 6-9 October 2013, Santa Clara, CA,
USA, pages 487–492. IEEE Computer Society, 2013. doi:10.1109/BigData.2013.6691611.

210 Ahmet Erdem Sariyüce, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. STREAMER:
A distributed framework for incremental closeness centrality computation. In 2013 IEEE
International Conference on Cluster Computing, CLUSTER 2013, Indianapolis, IN, USA,
September 23-27, 2013, pages 1–8. IEEE Computer Society, 2013. doi:10.1109/CLUSTER.
2013.6702680.

211 Ahmet Erdem Sariyüce, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. Incremental
closeness centrality in distributed memory. Parallel Comput., 47:3–18, 2015. doi:10.1016/j.
parco.2015.01.003.

212 Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. Stream - A stream-based
algorithm for counting motifs in dynamic graphs. In Adrian-Horia Dediu, Francisco Hernández
Quiroz, Carlos Martín-Vide, and David A. Rosenblueth, editors, Algorithms for Computational
Biology - Second International Conference, AlCoB 2015, Mexico City, Mexico, August 4-5,
2015, Proc., volume 9199 of Lecture Notes in Computer Science, pages 53–67. Springer, 2015.
doi:10.1007/978-3-319-21233-3_5.

SAND 2022

https://doi.org/10.1145/1328911.1328917
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1137/090776573
https://doi.org/10.1137/13093618X
https://doi.org/10.1145/3172867
https://doi.org/10.1016/j.jpdc.2004.02.001
https://doi.org/10.1145/2938503.2938506
https://doi.org/10.1109/FOCS.2004.25
https://doi.org/10.1007/11533719_47
https://doi.org/10.1145/1283383.1283397
https://doi.org/10.1007/s00778-016-0423-8
https://doi.org/10.1109/BigData.2013.6691611
https://doi.org/10.1109/CLUSTER.2013.6702680
https://doi.org/10.1109/CLUSTER.2013.6702680
https://doi.org/10.1016/j.parco.2015.01.003
https://doi.org/10.1016/j.parco.2015.01.003
https://doi.org/10.1007/978-3-319-21233-3_5

1:44 Recent Advances in Fully Dynamic Graph Algorithms

213 Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for re-
partitioning of adaptive meshes. J. Parallel Distributed Comput., 47(2):109–124, 1997.
doi:10.1006/jpdc.1997.1410.

214 Kirk Schloegel, George Karypis, and Vipin Kumar. A unified algorithm for load-balancing
adaptive scientific simulations. In Jed Donnelley, editor, Proc. Supercomputing 2000, November
4-10, 2000, Dallas, Texas, USA. IEEE Computer Society, CD-ROM, page 59. IEEE Computer
Society, 2000. doi:10.1109/SC.2000.10035.

215 Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel static and dynamic multi-
constraint graph partitioning. Concurr. Comput. Pract. Exp., 14(3):219–240, 2002. doi:
10.1002/cpe.605.

216 Dominik Schultes and Peter Sanders. Dynamic highway-node routing. In Camil Demetrescu,
editor, Experimental Algorithms, 6th International Workshop, WEA 2007, Rome, Italy, June
6-8, 2007, Proc., volume 4525 of Lecture Notes in Computer Science, pages 66–79. Springer,
2007. doi:10.1007/978-3-540-72845-0_6.

217 Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L Willke, Jeffrey Young,
Matthew Wolf, and Karsten Schwan. Graphin: An online high performance incremental
graph processing framework. In European Conference on Parallel Processing, pages 319–333.
Springer, 2016. doi:10.1007/978-3-319-43659-3_24.

218 Neha Sengupta, Michael Hamann, and Dorothea Wagner. Benchmark generator for dynamic
overlapping communities in networks. In Vijay Raghavan, Srinivas Aluru, George Karypis,
Lucio Miele, and Xindong Wu, editors, 2017 IEEE International Conference on Data Mining,
ICDM 2017, New Orleans, LA, USA, November 18-21, 2017, pages 415–424. IEEE Computer
Society, 2017. doi:10.1109/ICDM.2017.51.

219 Zhenzhen Shao, Na Guo, Yu Gu, Zhigang Wang, Fangfang Li, and Ge Yu. Efficient closeness
centrality computation for dynamic graphs. In Yunmook Nah, Bin Cui, Sang-Won Lee,
Jeffrey Xu Yu, Yang-Sae Moon, and Steven Euijong Whang, editors, Database Systems for
Advanced Applications - 25th International Conference, DASFAA 2020, Jeju, South Korea,
September 24-27, 2020, Proc., Part II, volume 12113 of Lecture Notes in Computer Science,
pages 534–550. Springer, 2020. doi:10.1007/978-3-030-59416-9_32.

220 Y. Shiloach and S. Even. An on-line edge-deletion problem. Journal of the ACM, 28(1):1–4,
1981. doi:10.1145/322234.322235.

221 Dhirendra Singh and Nilay Khare. Parallel batch dynamic single source shortest path al-
gorithm and its implementation on GPU based machine. Int. Arab J. Inf. Technol., 16(2):217–
225, 2019. URL: http://iajit.org/index.php?option=com_content&task=blogcategory&
id=137&Itemid=469.

222 Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proc.
of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee,
Wisconsin, USA, pages 114–122. ACM, 1981. doi:10.1145/800076.802464.

223 Shay Solomon. Fully dynamic maximal matching in constant update time. In 57th Symposium
on Foundations of Computer Science FOCS, pages 325–334, 2016. doi:10.1109/FOCS.2016.43.

224 Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. Trièst: Counting
local and global triangles in fully dynamic streams with fixed memory size. ACM Trans.
Knowl. Discov. Data, 11(4):43:1–43:50, 2017. doi:10.1145/3059194.

225 Daniel Stubbs and Virginia Vassilevska Williams. Metatheorems for dynamic weighted
matching. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer
Science Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of
LIPIcs, pages 58:1–58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.ITCS.2017.58.

226 Bintao Sun, T.-H. Hubert Chan, and Mauro Sozio. Fully dynamic approximate k-core
decomposition in hypergraphs. ACM Trans. Knowl. Discov. Data, 14(4), May 2020. doi:
10.1145/3385416.

https://doi.org/10.1006/jpdc.1997.1410
https://doi.org/10.1109/SC.2000.10035
https://doi.org/10.1002/cpe.605
https://doi.org/10.1002/cpe.605
https://doi.org/10.1007/978-3-540-72845-0_6
https://doi.org/10.1007/978-3-319-43659-3_24
https://doi.org/10.1109/ICDM.2017.51
https://doi.org/10.1007/978-3-030-59416-9_32
https://doi.org/10.1145/322234.322235
http://iajit.org/index.php?option=com_content&task=blogcategory&id=137&Itemid=469
http://iajit.org/index.php?option=com_content&task=blogcategory&id=137&Itemid=469
https://doi.org/10.1145/800076.802464
https://doi.org/10.1109/FOCS.2016.43
https://doi.org/10.1145/3059194
https://doi.org/10.4230/LIPIcs.ITCS.2017.58
https://doi.org/10.4230/LIPIcs.ITCS.2017.58
https://doi.org/10.1145/3385416
https://doi.org/10.1145/3385416

K. Hanauer, M. Henzinger, and C. Schulz 1:45

227 Robert Endre Tarjan and Renato Fonseca F. Werneck. Dynamic trees in practice. ACM J.
Exp. Algorithmics, 14, 2009. doi:10.1145/1498698.1594231.

228 Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles.
In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004, 9th
Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-10, 2004, Pro-
ceedings, volume 3111 of Lecture Notes in Computer Science, pages 384–396. Springer, 2004.
doi:10.1007/978-3-540-27810-8_33.

229 Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 112–119. ACM, 2005.
doi:10.1145/1060590.1060607.

230 Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91–127, 2007. doi:10.1007/
s00493-007-0045-2.

231 Mikkel Thorup and David R. Karger. Dynamic graph algorithms with applications. In
Magnús M. Halldórsson, editor, Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop
on Algorithm Theory, Bergen, Norway, July 5-7, 2000, Proceedings, volume 1851 of Lecture
Notes in Computer Science, pages 1–9. Springer, 2000. doi:10.1007/3-540-44985-X_1.

232 Thomas Tseng, Laxman Dhulipala, and Guy E. Blelloch. Batch-parallel euler tour trees. In
Stephen G. Kobourov and Henning Meyerhenke, editors, Proceedings of the Twenty-First
Workshop on Algorithm Engineering and Experiments, ALENEX 2019, San Diego, CA, USA,
January 7-8, 2019, pages 92–106. SIAM, 2019. doi:10.1137/1.9781611975499.8.

233 Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and
beyond: Subquadratic and worst-case update time. In David Zuckerman, editor, 60th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 436–455. IEEE Computer Society, 2019. doi:10.1109/FOCS.
2019.00035.

234 Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In David Zuckerman,
editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 456–480. IEEE Computer Society,
2019. doi:10.1109/FOCS.2019.00036.

235 Alexander van der Grinten, Elisabetta Bergamini, Oded Green, David A. Bader, and Henning
Meyerhenke. Scalable katz ranking computation in large static and dynamic graphs. In Yossi
Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium on
Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages
42:1–42:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
ESA.2018.42.

236 Luis M. Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella. xdgp: A
dynamic graph processing system with adaptive partitioning. CoRR, abs/1309.1049, 2013.
arXiv:1309.1049.

237 Luis M. Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella. Adaptive
partitioning for large-scale dynamic graphs. In IEEE 34th International Conference on
Distributed Computing Systems, ICDCS 2014, Madrid, Spain, June 30 - July 3, 2014, pages
144–153. IEEE Computer Society, 2014. doi:10.1109/ICDCS.2014.23.

238 Tanmay Verma and Dhruv Batra. Maxflow revisited: An empirical comparison of maxflow
algorithms for dense vision problems. In Richard Bowden, John P. Collomosse, and Krystian
Mikolajczyk, editors, British Machine Vision Conference, BMVC 2012, Surrey, UK, September
3-7, 2012, pages 1–12. BMVA Press, 2012. doi:10.5244/C.26.61.

239 Dorothea Wagner, Thomas Willhalm, and Christos D. Zaroliagis. Geometric containers for
efficient shortest-path computation. ACM J. Exp. Algorithmics, 10, 2005. doi:10.1145/
1064546.1103378.

SAND 2022

https://doi.org/10.1145/1498698.1594231
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1145/1060590.1060607
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/3-540-44985-X_1
https://doi.org/10.1137/1.9781611975499.8
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.4230/LIPIcs.ESA.2018.42
https://doi.org/10.4230/LIPIcs.ESA.2018.42
http://arxiv.org/abs/1309.1049
https://doi.org/10.1109/ICDCS.2014.23
https://doi.org/10.5244/C.26.61
https://doi.org/10.1145/1064546.1103378
https://doi.org/10.1145/1064546.1103378

1:46 Recent Advances in Fully Dynamic Graph Algorithms

240 Chris Walshaw, Mark Cross, and Martin G. Everett. Parallel dynamic graph partitioning
for adaptive unstructured meshes. J. Parallel Distributed Comput., 47(2):102–108, 1997.
doi:10.1006/jpdc.1997.1407.

241 Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan. Efficient sampling
algorithms for approximate temporal motif counting. In Mathieu d’Aquin, Stefan Dietze,
Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux, editors, CIKM ’20: The 29th
ACM International Conference on Information and Knowledge Management, Virtual Event,
Ireland, October 19-23, 2020, pages 1505–1514. ACM, 2020. doi:10.1145/3340531.3411862.

242 Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua. Parallel algorithm
for core maintenance in dynamic graphs. In Kisung Lee and Ling Liu, editors, 37th IEEE
International Conference on Distributed Computing Systems, ICDCS 2017, Atlanta, GA, USA,
June 5-8, 2017, pages 2366–2371. IEEE Computer Society, 2017. doi:10.1109/ICDCS.2017.
288.

243 Stefan Weigert, Matti Hiltunen, and Christof Fetzer. Mining large distributed log data in
near real time. In Managing Large-scale Systems via the Analysis of System Logs and the
Application of Machine Learning Techniques, pages 1–8. Association for Computing Machinery,
2011. doi:10.1145/2038633.2038638.

244 Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus Steinberger.
faimgraph: high performance management of fully-dynamic graphs under tight memory
constraints on the GPU. In Proc. of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11-16,
2018, pages 60:1–60:13. IEEE / ACM, 2018. URL: http://dl.acm.org/citation.cfm?id=
3291736.

245 Ning Xu, Lei Chen, and Bin Cui. Loggp: a log-based dynamic graph partitioning method.
Proc. of the VLDB Endowment, 7(14):1917–1928, 2014. doi:10.14778/2733085.2733097.

246 Bohua Yang, Dong Wen, Lu Qin, Ying Zhang, Xubo Wang, and Xuemin Lin. Fully dynamic
depth-first search in directed graphs. Proc. VLDB Endow., 13(2):142–154, 2019. doi:10.
14778/3364324.3364329.

247 Chia-Chen Yen, Mi-Yen Yeh, and Ming-Syan Chen. An efficient approach to updating
closeness centrality and average path length in dynamic networks. In Hui Xiong, George
Karypis, Bhavani M. Thuraisingham, Diane J. Cook, and Xindong Wu, editors, 2013 IEEE
13th International Conference on Data Mining, Dallas, TX, USA, December 7-10, 2013, pages
867–876. IEEE Computer Society, 2013. doi:10.1109/ICDM.2013.135.

248 Anita Zakrzewska and David A. Bader. Fast incremental community detection on dynamic
graphs. In Roman Wyrzykowski, Ewa Deelman, Jack Dongarra, Konrad Karczewski, Jacek
Kitowski, and Kazimierz Wiatr, editors, Parallel Processing and Applied Mathematics, pages
207–217, Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-32149-3_
20.

249 Christos D Zaroliagis. Implementations and experimental studies of dynamic graph algorithms.
In Experimental algorithmics, pages 229–278. Springer, 2002. doi:10.1007/3-540-36383-1_
11.

250 Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. A fast order-based approach for
core maintenance. In 33rd IEEE International Conference on Data Engineering, ICDE 2017,
San Diego, CA, USA, April 19-22, 2017, pages 337–348. IEEE Computer Society, 2017.
doi:10.1109/ICDE.2017.93.

251 Weiguo Zheng, Chengzhi Piao, Hong Cheng, and Jeffrey Xu Yu. Computing a near-
maximum independent set in dynamic graphs. In 35th IEEE International Conference on
Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages 76–87. IEEE, 2019.
doi:10.1109/ICDE.2019.00016.

252 Weiguo Zheng, Qichen Wang, Jeffrey Xu Yu, Hong Cheng, and Lei Zou. Efficient computation of
a near-maximum independent set over evolving graphs. In 34th IEEE International Conference
on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018, pages 869–880. IEEE
Computer Society, 2018. doi:10.1109/ICDE.2018.00083.

https://doi.org/10.1006/jpdc.1997.1407
https://doi.org/10.1145/3340531.3411862
https://doi.org/10.1109/ICDCS.2017.288
https://doi.org/10.1109/ICDCS.2017.288
https://doi.org/10.1145/2038633.2038638
http://dl.acm.org/citation.cfm?id=3291736
http://dl.acm.org/citation.cfm?id=3291736
https://doi.org/10.14778/2733085.2733097
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.14778/3364324.3364329
https://doi.org/10.1109/ICDM.2013.135
https://doi.org/10.1007/978-3-319-32149-3_20
https://doi.org/10.1007/978-3-319-32149-3_20
https://doi.org/10.1007/3-540-36383-1_11
https://doi.org/10.1007/3-540-36383-1_11
https://doi.org/10.1109/ICDE.2017.93
https://doi.org/10.1109/ICDE.2019.00016
https://doi.org/10.1109/ICDE.2018.00083

K. Hanauer, M. Henzinger, and C. Schulz 1:47

253 Lei Zhu, Shaoning Pang, Abdolhossein Sarrafzadeh, Tao Ban, and Daisuke Inoue. Incremental
and decremental max-flow for online semi-supervised learning. IEEE Trans. Knowl. Data
Eng., 28(8):2115–2127, 2016. doi:10.1109/TKDE.2016.2550042.

254 Di Zhuang, Morris J Chang, and Mingchen Li. Dynamo: Dynamic community detection by
incrementally maximizing modularity. IEEE Transactions on Knowledge and Data Engineering,
2019. doi:10.1109/TKDE.2019.2951419.

SAND 2022

https://doi.org/10.1109/TKDE.2016.2550042
https://doi.org/10.1109/TKDE.2019.2951419

Algorithmic Problems on Temporal Graphs
Paul G. Spirakis #

Department of Computer Science, University of Liverpool, UK
Computer Engineering & Informatics Department, Univerity of Patras, Greece

Abstract
Research on Temporal Graphs has expanded in the last few years. Most of the results till now,
address problems related to the notion of Temporal Paths (and Temporal Connectivity). In this talk,
we focus, instead, on problems whose main topic is not on Temporal Paths. In particular, we will
discuss Temporal Vertex Covers, the notion of Temporal Transitivity, and also issues and models of
stochastic temporal graphs. We believe that several algorithmic graph problems, not directly related
to paths, can be raised in the temporal domain. This may motivate new research towards lifting
more topics of algorithmic graph theory to the temporal case.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Discrete mathematics

Keywords and phrases Temporal graph, stochastic temporal graph, vertex cover, temporal transitiv-
ity

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.2

Category Invited Talk

© Paul G. Spirakis;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
https://doi.org/10.4230/LIPIcs.SAND.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Networks, Dynamics, Algorithms, and Learning
Roger Wattenhofer # Ñ

ETH Zürich, Switzerland

Abstract
Networks are notoriously difficult to understand, and adding dynamics does not help. Can the
current wonder weapon of computation (yes, machine learning) come to the rescue? Unfortunately,
learning with networks is generally not well understood. “Neural network networks” (better and
less confusingly known as graph neural networks) can learn simple graph patterns, but they are a
far cry from their impressive machine learning cousins in the image- or the game-domain. In my
opinion, the most astonishing graph neural networks are in fact dealing with dynamic networks:
They simulate sand (the granular material, not the symposium) quite naturally. In my talk, I will
discuss and compare different computational objects and paradigms: networks, dynamics, algorithms,
and learning. What are the differences? And what can they learn from each other? In the technical
part of the talk, I will present DropGNN, our new algorithm-inspired approach for handling graph
neural networks. But mostly I will vent about misunderstandings and mistakes, and I will propose
open questions, and new research directions. DropGNN is joint work with Pál András Papp, Karolis
Martinkus, and Lukas Faber, published at NeurIPS, December 2021.

2012 ACM Subject Classification Computing methodologies → Neural networks; Theory of compu-
tation → Distributed computing models

Keywords and phrases graph neural networks

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.3

Category Invited Talk

© Roger Wattenhofer;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wattenhofer@ethz.ch
http://disco.ethz.ch
https://doi.org/10.4230/LIPIcs.SAND.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Atomic Splittable Flow Over Time Games
Antonia Adamik #

Technische Universität Berlin, Germany

Leon Sering #

ETH Zürich, Switzerland

Abstract
In an atomic splittable flow over time game, finitely many players route flow dynamically through
a network, in which edges are equipped with transit times, specifying the traversing time, and
with capacities, restricting flow rates. Infinitesimally small flow particles controlled by the same
player arrive at a constant rate at the player’s origin and the player’s goal is to maximize the
flow volume that arrives at the player’s destination within a given time horizon. Here, the flow
dynamics are described by the deterministic queuing model, i.e., flow of different players merges
perfectly, but excessive flow has to wait in a queue in front of the bottle-neck. In order to determine
Nash equilibria in such games, the main challenge is to consider suitable definitions for the players’
strategies, which depend on the level of information the players receive throughout the game. For
the most restricted version, in which the players receive no information on the network state at all,
we can show that there is no Nash equilibrium in general, not even for networks with only two edges.
However, if the current edge congestions are provided over time, the players can adapt their route
choices dynamically. We show that a profile of those strategies always lead to a unique feasible flow
over time. Hence, those atomic splittable flow over time games are well-defined. For parallel-edge
networks Nash equilibria exists and the total flow arriving in time equals the value of a maximum
flow over time leading to a price of anarchy of 1.

2012 ACM Subject Classification Theory of computation → Network flows; Theory of computation
→ Network games; Mathematics of computing → Network flows; Theory of computation → Quality
of equilibria

Keywords and phrases Flows Over Time, Deterministic Queuing, Atomic Splittable Games, Equilib-
ria, Traffic, Cooperation

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.4

Related Version Full Version: https://arxiv.org/abs/2010.02148

Funding Leon Sering: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center
MATH+ (EXC-2046/1, project ID: 390685689).

Acknowledgements We have considered atomic splittable flow over time games in different settings
and under various assumptions in collaboration with several people. Unfortunately, most of these
research directions were more challenging than expected and not as successful as the work at
hand. Nonetheless, we want to thank Laura Vargas Koch, Veerle Timmermans, Björn Tauer, Tim
Oosterwijk and Dario Frascaria for the excellent collaboration and inspiring discussions.

1 Introduction

In static routing problems, traffic is to be routed through a network at minimum total cost.
The cost or traveling time on each edge depends on its congestion. However, the assumption
that an optimal routing might be implemented by some superordinate authority is not
realistic in many settings. More likely, each network participant selfishly chooses a path in
order to minimize their own traveling time. In general, the lack of coordination causes a
higher total traveling time. To quantify this decrease in performance, the total traveling time

© Antonia Adamik and Leon Sering;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonia.mp.adamik@campus.tu-berlin.de
mailto:leon@sering.eu
https://orcid.org/0000-0003-2953-1115
https://doi.org/10.4230/LIPIcs.SAND.2022.4
https://arxiv.org/abs/2010.02148
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Atomic Splittable Flow Over Time Games

of a Wardrop equilibrium [45] is compared to the total traveling time of the system optimum.
The ratio between a worst equilibrium and the system optimum is the price of anarchy [38].
This basic model can be extended in several ways. In this research work we want to focus on
two aspects.

The first aspect is the temporal dimension. Vehicles in real traffic need time to move from
the origin to the destination and the traveling time increases with the degree of congestion,
which varies over time. In other words, the traffic flow does not traverse the network
instantaneously, but progresses at a certain pace. In addition, the effects of a routing decision
in one part of the network take some time to spread across the network as a whole. In order
to mathematically model this, we add a time component, transforming static flows into flows
over time. Here, every infinitesimally small flow particle needs time to traverse the network
and the flow rates of the edges are restricted by capacities. By assuming that each particle
acts selfishly, we can consider dynamic equilibria, which are called Nash flows over time [29].

For the second aspect, note that in real-world traffic the activity of a single road user has
in most cases a negligible impact on the performance of the system as a whole. Furthermore,
the assumption of independent and selfish particles is not justifiable in all applications:
Networks where participants control a flow of positive measure are not covered. For instance,
in transportation networks freight units might not act selfishly; they are controlled by
freight companies that each control a significant amount of traffic. This leads to the second
aspect, cooperative behavior among groups of network participants. To integrate this into
the mathematical model, flow particles are allowed to form coalitions. In so-called atomic
splittable routing games we consider a finite number of atomic players (the coalitions), each
controlling a positive amount of flow volume that has to be routed through the network but
can be split up and divided over different routes.

In this paper we want to combine both aspects, as depicted in Figure 1. That means, in
contrast to Nash flows over time, sets of particles form coalitions which will be represented
by superordinate players. In contrast to atomic splittable routing games, flow is modeled by
a flow over time and players’ decisions might be adapted to new situations. This extension
covers a greater variety of scenarios. For example, road traffic models in which most drivers
are guided by navigation systems (e.g. Google Maps, TomTom, Here, Garmin) can be
modeled by covering the strategic behavior of the firms: The decisions of a single driver do
not have a big impact on the city’s traffic, but Google Maps decisions do; and TomTom
might actually want to react. The situation will even intensify in the future with the rise of
autonomous driving, as the decision making process is shifted to the navigation systems. We
would like to point out that – in contrast to previous models – the interests of navigation
companies and the general public are assumably in line: The cooperation of the users of a
navigation system could reduce the average driving time per company on the one hand and
the driving time in general on the other hand. This would lead to lower energy consumption,
and therefore, lower emissions of polluting substances.

It turned out to be surprisingly challenging to consider equilibria in atomic splittable
flow over time games. For this reason the overall goal is to define a solid model on these
dynamic games and to present some preliminary observations, as well as some non-trivial
first results, which serve as a basis for further research.

Related work. Static network flows have been studied for quite a while. A lot of pioneer
work is due to Ford and Fulkerson, who also were the first to introduce flows over time [15, 16].
They provided an efficient algorithm for a maximum flow over time, which sends the maximal
flow volume from a source to a sink given a finite time horizon. Closely related, a quickest flow

A. Adamik and L. Sering 4:3

static dynamic

nonatomic

atomic

Wardrop equilibria in
static routing games Nash flows over time

atomic splittable
routing games

atomic splittable
flow over time games

add coop-
eration

add tem-
poral

dimension

add tem-
poral

dimension

add coop-
eration

Figure 1 Relationship between equilibrium situations in static routing games and atomic splittable
flow over time games.

minimizes the arrival time of the latest particle for a given flow volume. This can be achieved
by combining the algorithm of Ford and Fulkerson with a binary search framework [6, 14].
For single-source and single-sink networks it is furthermore possible to construct a flow over
time that is maximal for all time horizons (and quickest for all flow volumes) simultaneously.
The existence of these so-called earliest arrival flows was shown by Gale in 1959 [17]. They
can be computed algorithmically by using the successive shortest path algorithm in the
residual networks [31]. For more details and further references to literature on optimization
problems in the flow over time setting, we refer to the survey of Skutella [43].

Koch and Skutella [29] approach flows over time from a game theoretic perspective by
introducing Nash flows over time. In their model, every infinitesimally small flow particle is
considered to be a player aiming to reach the common destination as early as possible. As
the flow rate entering an edge could exceed its capacity, they considered the deterministic
queuing model [44], which causes the excess flow to wait in a queue in front of the bottle-neck.
Existence of these dynamic equilibria were shown by Cominetti et al. [8]. Several other
aspects, including uniqueness, continuity, long term behavior, multi-terminals, spillback
and price of anarchy, were studied in recent years [3, 9, 10, 12, 27, 32, 34, 40, 41]; see [39]
for an overview. A slightly different approach for user equilibria was presented by Graf
et al. [18, 19, 20]. They use the same flow over time model, except that particles do not
anticipate the future evolution of the flow, but instead choose quickest routes according to
current waiting times. As these delays may be subject to change, each particle can adapt its
route choice along the way.

Atomic splittable congestion games for static network flows can be described as Wardrop
equilibria [45] with coalitions [25, 30]; see also the survey of Correa and Stier-Moses [13].
For these games, Nash equilibria always exist, which can be shown by standard fixed point
techniques [35]. Altman et al. [1] showed that equilibria are unique if the delay functions
are polynomials of degree less than 3. Regarding more general delay functions, Bhaskar et
al. [4] showed that for two players a unique equilibrium exists if, and only if, the network
is a generalized series-parallel graph. Harks and Timmermans [24] showed uniqueness of

SAND 2022

4:4 Atomic Splittable Flow Over Time Games

equilibria when the players’ strategy space has a bidirectional flow polymatroid structure.
Roughgarden [36] showed that the inefficiency of a system decreases with an increasing degree
of cooperation. He showed that the price of anarchy for classes of traveling time functions
in the atomic case is bounded by the price of anarchy for the same class of functions in
the nonatomic case. Further research on the price of anarchy in static atomic splittable
games is due to Cominetti et al. [11], Harks [21], and Roughgarden and Schoppmann [37].
Computational-wise Cominetti et al. [11] showed that equilibria can be computed efficiently
when the cost functions are affine and player-independent. Regarding player-specific affine
costs, Harks and Timmermans [23] described a polynomial algorithm for parallel-edge
networks, and Bhaskar and Lolakapuri [5] presented an exponential algorithm for general
convex functions. Very recently, Klimm and Warode showed that the computation with
player-specific affine costs is PPAD-complete for general networks [28].

We should also mention that the combination of cooperation and temporal dimension
has been considered for discrete packet routing games; see Peis et al. [33]. Here, each player
controls a finite amount of packets, which has to be routed through a network in discrete
time steps. For more results on competitive packet routing models we refer to Hoefer et
al. [26] (continuous-time packets model) and Harks et al. [22] (discrete-time packet model).

Contribution and overview. In Section 2, we introduce all notations and formally describe
atomic splittable flow over time games for general networks. The players’ strategies determine
how much flow they assign to each edge for every point in time during the game depending on
available information on the current state. We consider two very natural sets of information.
The first consists solely of the current time. In Section 3 we show that this setting does not
allow for a Nash equilibrium in general, not even in a network with only two parallel edges.
This motivates to consider more complex information models. Hence, Section 4 is dedicated
to the second set of information which additionally comprises the current congestion of the
edges in form of the exit times. As the first main result we show that every strategy profile
results in a unique feasible flow over time by formulating the conditions as initial value
problem and applying the Picard-Lindelöf theorem. For parallel-edge networks we show that
Nash equilibria always exist by explicitly stating a strategy profile. Furthermore, we prove
for that setting that all Nash equilibria have the same objective equal to the system optimum
(i.e., the value of a maximum flow over time) implying that the price of anarchy for those
networks is 1. Finally, we suggest further areas of research in Section 5.

2 Atomic Splittable Flow Over Time Games

In this section, we are going to properly define atomic splittable flow over time games. The
two main aspects are the multi-commodity flow dynamics (see [40]) and the players’ strategies,
which depend on the information received over time.

Game setting. A network consists of a directed graph G = (V, E), where every edge e ∈ E

is equipped with a transit time τe > 0 and a capacity νe > 0. For a node v ∈ V we denote
the set of all incoming edges by δ−

v and the set of outgoing edges by δ+
v .

For an atomic splittable flow over time game we consider a finite set of players P , each
with an origin-destination pair sj-tj and a supply rate dj > 0, as well as a time horizon H > 0.
We assume that sj can reach tj within the network.

The flow of player j enters the network via node sj at a rate of dj from time 0 onwards.
The goal is to maximize the cumulative flow volume reaching node tj before the end of the
game at time H.

A. Adamik and L. Sering 4:5

u v
∑

j∈P f+
e,j(θ)

∑
j∈P f−

e,j(θ)

ze(θ) νe

τe

Figure 2 Representation of an edge in the deterministic queuing model: If more flow particles
enter edge e = uv within the total inflow rate

∑
j∈P

f+
e,j(θ) than its capacity νe allows to process,

they build up a queue, whose current length is given by ze(θ). Whenever the queue is non-empty at
time θ the total outflow rate

∑
j∈P

f−
e,j(θ + τe) at time θ + τe equals the capacity νe.

Flow dynamics. In the deterministic queuing model the total inflow rate into an edge is
bounded by the capacity. If the capacity is exceeded, a queue builds up in which all entering
particles have to wait in line. Afterwards each particle needs τe time to traverse the edge
before it can enter the next edge along the path; see Figure 2. The dynamics of this process
are formally defined as follows:

A flow over time is described by a family of Lebesgue-integrable functions f = (f+, f−) =
(f+

e,j , f−
e,j)e∈E,j∈P , where f+

e,j , f−
e,j : [0, H) → R≥0 denote the rate at which flow controlled by

player j enters and leaves edge e. The flow rates summed over all players
∑

j∈P f+
e,j(θ) and∑

j∈P f−
e,j(θ) are called total in- and outflow rates. The cumulative in- and outflows, i.e.,

the amount of player j’s flow that has entered or left an edge e up to time θ, is denoted by
F +

e,j(θ) =
∫ θ

0 f+
e,j(ϑ) dϑ and F −

e,j(θ) =
∫ θ

0 f−
e,j(ϑ) dϑ. Finally, f+, f−, F + and F − denote the

vectors of (cumulative) in- and outflows with one entry per edge-player-pair.
Such a family of functions f is a flow over time if the following two conditions hold for

all e ∈ E and j ∈ P :
Flow conservation is fulfilled for all θ ∈ [0, H):

∑
e∈δ+

v

f+
e,j(θ) −

∑
e∈δ−

v

f−
e,j(θ) =

{
dj for v = sj ,

0 for v ∈ V \ { sj , tj } .
(1)

Non-deficit constraints are satisfied for all θ ∈ [0, H − τe):

F +
e,j(θ) − F −

e,j(θ + τe) ≥ 0. (2)

To track the net flow that is not yet processed and remains in the queue, we introduce
ze(θ) to denote the queue length at time θ. Formally, it is defined as ze(θ) =

∑
j∈P F +

e,j(θ) −∑
j∈P F −

e,j(θ + τe) for e ∈ E. For a feasible flow over time we require that, whenever flow is
waiting in the queue, the edge operates at capacity rate. In other words, for all θ ∈ [0, H − τe)
and e ∈ E, we require

∑
j∈P

f−
e,j(θ + τe) =

{
νe if ze(θ) > 0,

min {
∑

j∈P f+
e,j(θ), νe } else.

(3)

The waiting time qe(θ) experienced by a particle entering edge e at time θ is generally
defined as the time needed to process the flow present in the queue when the particle enters
it. In other words, it is the time span between its entrance to and its exit from the queue
just before traversing the edge. That is

qe(θ) := min

 q ≥ 0

∣∣∣∣∣∣
∫ θ+q

θ

∑
j∈P

f−
e,j(ϑ + τe) dϑ = ze(θ)

 = ze(θ)
νe

.

SAND 2022

4:6 Atomic Splittable Flow Over Time Games

The exit time Te(θ) of a particle entering an edge e ∈ E at time θ is given by the sum of
the entrance time θ, its waiting time in the queue qe(θ) and the transit time τe. Hence, we
have

Te(θ) := θ + ze(θ)
νe

+ τe.

Since ze can at most decrease at rate νe, it follows that q′
e(θ) ≥ −1 and T ′

e(θ) ≥ 0, which
induces that Te is non-decreasing. Note that these derivatives exist for almost all θ due to
Lebesgue’s differentiation theorem.

Finally, in a feasible flow over time, the flow of different players should merge seamlessly.
This means that, at any point in time, a player’s share of the total outflow rate is equal to
her share of the total inflow rate back at the time when the flow entered the edge. More
precisely, we require

f−
e,j(θ) =

f+

e,j
(ϕ)∑

j′∈P
f+

e,j′ (ϕ)
·
∑

j′∈P f−
e,j′(θ) if

∑
j′∈P f+

e,j′(ϕ) > 0,

0 else,
(4)

for all θ ∈ [0, H) and ϕ := max T −1
e (θ). Here, we set f+

e,j′(ϕ) := 0 for ϕ < 0. Note that
ϕ denotes the edge-entrance times of all particles leaving the edge at time θ. Taking the
maximum of T −1

e (θ) simply ensures well-definedness which is required since Te might not be
strictly increasing.

To conclude we denote the set of all feasible flows over time by F , i.e., all f = (f+, f−)
that satisfy (1), (2), (3) and (4). As the outflow rates are uniquely defined by the inflow
rates, we refer to a feasible flow over time only by the corresponding inflow f+, and write
f+ ∈ F .

Atomic splittable flow over time games. Let ρj : F → R be the function indicating player
j’s payoff for a given f ∈ F , which is to be maximized. In general, ρ can be set to various
objective functions (e.g. arrival time of the player’s latest particle or the average arrival
time), but in this paper we will focus on the maximum flow over time problem. Each player
wants to maximize her amount of flow routed from sj to tj before the end of the game at
time H:

ρj(f) =
∑

e∈δ−
tj

F −
e,j(H) −

∑
e∈δ+

tj

F +
e,j(H).

We choose this maximum flow objective as it seems to be the most straight-forward payoff-
function. It is conceivable though, that most results might transfer to quickest flow payoff-
functions via a binary-search framework (cf. in non-competitive settings quickest flows are
constructed from maximum flows over time via binary-search). But we leave this for future
research.

The strategy space is a player’s set of viable options in order to maximize her payoff. A
single strategy is a complete instruction determining the player’s inflow rates of all times
and for all situations possibly occurring. Formally, the strategy space of player j is a set of
functions

Σj =
{

gj : I → [0, 1]E
∣∣∣∣∣ ge,j is Lebesgue-integrable for all e ∈ E and∑

e∈δ+
v

ge,j(I) = 1 for all I ∈ I, v ∈ V \ { tj }

}
,

A. Adamik and L. Sering 4:7

where I is the set of information available to the players. This set is not well-defined yet, but
we will discuss this extensively, and in the end, we will consider two separate definitions for I,
one in Section 3 and one in Section 4. Informally, the set of information is used to delineate
what defines a situation and how it is perceived by the players. The interpretation is as
follows. For every information I ∈ I, the value ge,j(I) determines which proportion of player
j’s flow arriving at v is distributed onto the outgoing edges e ∈ δ+

v . We use proportions
that sum up to 1 instead of the inflow rates, as this easily ensures that flow conservation is
fulfilled at all times. Note that the received information I can depend on the current time
θ and on the flow over time f itself. As we normally do not want the players to see the
future, it should only depend on the flow over time up to time θ. In general it might be
player dependent, hence, we write Ij(θ, f).

In order to turn a strategy profile g = (gj)j∈P ∈×j∈P
Σj into a feasible flow over time f ,

we consider the following system of equations that has to be satisfied for all θ ∈ [0, H):

f+
e,j(θ) = ge,j(Ij(θ, f)) ·

(∑
e′∈δ−

sj

f−
e′,j(θ) + dj

)
for j ∈ P, e ∈ δ+

sj
,

f+
e,j(θ) = ge,j(Ij(θ, f)) ·

∑
e′∈δ−

u

f−
e′,j(θ) for j ∈ P, e = uv ∈ E \ (δ+

sj
∪ δ+

tj
),

f+
e,j(θ) = 0 for j ∈ P, e ∈ δ+

tj
.

(5)

Note that in order to keep it as simple as possible, we assume that flow of player j reaching
tj leaves the network immediately, hence, f+

e,j(θ) = 0 for all e ∈ δ+
tj

. This leads to a simpler
payoff for all players j of ρj(f) =

∑
e∈δ−

tj

F −
e,j(H).

Since the inflow rates f+(θ) might depend on the flow over time itself up to time θ, it is
not guaranteed that this system of equations yields a feasible flow over time as solution.

To illustrate this issue assume for example a game with a single player in a network with
two parallel edges e1 and e2 where e1 has a tiny capacity. If the player’s strategy is to send
everything into e1 as long as there is no waiting time on e1, and otherwise send everything
into e2, this would not result in a feasible flow over time. To see this, suppose that the inflow
into e1 would be positive on a measurable set, which would immediately cause a positive
waiting time on e1. Hence, the strategy says that no flow is sent into e1. On the other
hand, if no flow is sent into e1 at all there would not be any waiting time, leading again to a
contradiction.

For that reason, the key challenge is to find a reasonable set of information I and strategy
spaces Σj , such that, on the one hand, there exists a unique (up to a null set) feasible flow
over time satisfying (5) for every given strategy profile g, and on the other hand, a Nash
equilibrium exists. Note that we only consider pure Nash equilibria.

In the following two sections we discuss two very natural sets of information.

3 Temporal Information Only

First, we want to examine the simplest set of information, namely the current point in time
only: We set Ij(θ, f) := θ for all players j ∈ P . That means the players do not receive any
information about the current state of the flow, but instead have to decide at the beginning
of the game along which routes their flow particles are routed. In this case it is guaranteed
that there exists a unique feasible flow over time that satisfies (5), as we can simply set
f+

e,j(θ) to the right sides of (5) (formally this also follows from Theorem 2). However, Nash
equilibria do not exist in general, which is already true for very simple networks.

SAND 2022

4:8 Atomic Splittable Flow Over Time Games

d1 = 4
d2 = 4

ν1 = 2

ν2 = 2

e1

e2

τ1 = 1

τ2 = 1

H = 21

s t

(a) A parallel network with two identical edges and two identical players.

θ

f+(θ)

p2

p1

p1

p2

e2

e1

r2

r1 H

5 10 15 20

(b) Step 1: p1 mirrors p2’s strategy. We have
r1 = r2 = 10 and both queues build up from θ = 0
onward. W.l.o.g., we have f+

1,2(θ) ≤ d2 = 4 for
θ ∈ [10 − ε, 10).

θ

f̂+(θ)

p2

p1

p1

p2

e2

e1

r̂1

r̂2

H

5 10 15 20

(c) Step 2: p1 shifts δ flow units from e1 to e2
causing r̂1 > 10 and r̂2 < 10. By pumping at
maximum rate into e1 after r̂2 her payoff is ρ̂1 >
40 = OPT /2.

Figure 3 Construction of a response strategy that always yields strictly more than half of the
total optimum in a network of two parallel edges. Here, ri and r̂i denote the time when the last
particles arriving at t just in time, enter ei.

▶ Theorem 1. With temporal information only, there exists no Nash equilibrium in an
atomic splittable flow over time game of two players p1 and p2 with identical supply rates
d1, d2 > 0, on a network with two identical parallel edges e1, e2 from s (= sp1 = sp2) to t (
= tp1 = tp2) with νe1 =νe2 < d1 =d2 and τe1 =τe2 < H.

The key proof idea is the following. To every strategy of the competitor, a player can
choose a response strategy that yields a payoff of strictly more than half the total optimum,
i.e., the flow value of a maximum flow over time with inflow rate d1 + d2. This can be
achieved by first mirroring the competitor’s strategy (copying the strategy but interchanging
the roles of e1 and e2) and then shifting some flow in the beginning of the game. This shift
changes the points in time ri when the last particles arriving at t just in time, enter edge ei

for i = 1, 2. As the new values r̂1 and r̂2 are not equal anymore the responding player can
modify the inflow rates between r̂1 and r̂2 in order to squeeze in a little more flow than the
competitor, which will then be a little more than OPT /2.

As in turn the competitor can again choose a strategy with a payoff of more than half
the optimum, this immediately implies that a Nash equilibrium cannot exist. This idea for
the network given in Figure 3a is visualized in Figures 3b and 3c.

Proof of Theorem 1. For the sake of simplicity we replace indexes ei by i and pj by j. E.g.
f1,2 denotes the inflow rate function of p2 into e1. Furthermore, r1 and r2 denote the points
in time when the last particles arriving at t before H enter e1 and e2, respectively. We will
use a hat to denote parameters that have altered with the change in strategy. For example,
ρ will denote the initial and ρ̂ the new payoff. The optimal value of a maximum flow is
OPT = ν1 · (H − τ1) + ν2 · (H − τ2). We show that to every strategy of player p2, player p1
can choose a response strategy that yields a payoff of strictly more than half the optimum.

A. Adamik and L. Sering 4:9

As in turn p2 can again choose a strategy with a payoff of more than half the optimum, this
immediately implies that a Nash equilibrium cannot exist. To achieve this, player p1 mirrors
p2’s strategy. By this we mean that p1 has the same strategy as p2, but the roles of the edges
are interchanged. Figure 3b illustrates this behavior.

f+
1,1(θ) = f+

2,2(θ) and f+
2,1(θ) = f+

1,2(θ) for θ ∈ [0, H).

Both total inflow rates into the edges are equal and exceed the capacities, i.e., f+
1,1(θ) +

f+
1,2(θ) = f+

2,1(θ) + f+
2,2(θ) > ν1 = ν2 for θ ∈ [0, H). It is easy to see that both payoffs are

OPT /2. As capacities are exceeded, queues build up from the very beginning. At time
r1 = r2 = OPT /(d1 + d2) the last particles that will reach t in time enter the network. The
response strategy of p1 now consists of reallocating a little flow to benefit from deferred r̂1
and r̂2: W.l.o.g. let p2 send not more than half of her supply rate d2 at any time in [r1 −ε, r1)
for ε > 0, into e1. That means player p1 sends not less than half of d1 into e1. (If no such
ε exists, due to some crazy function behavior, one can consider averages instead.) Player
p1 reallocates some δ > 0 flow units from e1 to e2. By doing so, r̂2 is shifted to r2 − δ

ν2
.

Meanwhile we want that δ
ν2

≤ ε, that the δ flow units are taken before time r2 − ε and that
the queue of e1 is never empty for θ > 0. Since there has to exist p1-flow of positive measure
up to time r1 on e1 (in case the only flow p1 sends into e1 is within [r1 − ε, r1) we can choose
a smaller ε), we can clearly set δ small enough to fulfill these conditions. As a result, r̂1
is postponed, i.e., r̂1 > r̂2. Conclusively, every flow sent until time r̂2 reaches t before H.
Hence, the payoffs of both players belonging to [0, r̂2) are equal. After time r̂2, player p1 can
pump all her flow into e1, since it is still eligible to reach t before H. See Figure 3c for an
illustration. Therefore,

f̂+
1,1(θ) := d1

{
> d2/2 ≥ f+

1,2(θ) θ ∈ [r̂2, r1)
≥ f+

1,2(θ) θ ≥ r1.

Hence, p1’s inflow rate into e1 is strictly greater than p2’s during a time period of positive
measure, which shows that the payoff of p1 is strictly larger than that of p2. As the sum of
the payoffs equals OPT we have that ρ̂1 > OPT /2. ◀

4 Information on Exit Times

The absence of a Nash equilibrium for temporal information only was mainly due to the
theoretical information advantage of the deviating player. Player p1 can respond to p2’s
strategy, while p2 does not see p1’s moves and is unable to react. As it is very natural to
require inter-player reactions over time, we extend the information by the current congestion
of the edges in form of the exit times T (θ) := (Te(θ))e∈E . Formally, we define

Ij(θ, f) := (θ, T (θ)) ∈ I := [0, H) × RE
≥0 for all j ∈ P.

The reason for choosing exit times over waiting times or queue sizes, which both contain the
same information about the congestion in the networks as the exit times, is that the exit
times are non-decreasing. As the exit time Te(θ) = θ + τe + 1

νe

∑
j∈P

(
F +

e,j(θ) − F −
e,j(θ + τe)

)
depends directly on the cumulative flows the equations system (5) becomes a system of
differential equations. In order to show existence and uniqueness we use the Picard-Lindelöf
theorem. For this reason, we require the strategies to be locally Lipschitz-continuous from
the right in order to ensure uniqueness. More formally, we say a strategy ge,j is right-
Lipschitz if for every I ∈ I there exists an L > 0 such that there exists an ε > 0 with
|ge,j(I) − ge,j(I + x)| ≤ L · ∥x∥ for all x ∈ [0, ε] × [0, ε]E .

SAND 2022

4:10 Atomic Splittable Flow Over Time Games

Existence and uniqueness. First we show, that in this setting every right-Lipschitz strategy
profile yields a unique feasible flow over time.

▶ Theorem 2. For all right-Lipschitz strategy profiles g = (gj)j∈P of an atomic splittable
flow over time game with information on exit times, there exists a unique feasible flow over
time f+ satisfying (5).

Proof. We will construct the feasible flow over time satisfying (5) step by step starting with
the empty flow over time f+ ≡ 0 up to time 0. We define a restricted flow over time on the
interval [0, a) to be a vector of Lebesgue-integrable functions (f+

e,j)e∈E,j∈P , such that all flow
conditions hold for all times in [0, a).

Suppose we are given a unique restricted feasible flow over time satisfying (5) on the
interval [0, a) for some a ∈ [0, H]. If a = H, we are done. It is possible to determine the
queue lengths z(a) = (ze(a))e∈E , the waiting times q(a) = (qe(a))e∈E and the exit times
T (a) = (Te(a))e∈E based on f+|[0,a). Hence, we can also evaluate g(a, T (a)). In order to
further extend the flow over time, we specify an interval [a, b) ⊆ [0, H). The right endpoint
b > a has to be small enough to ensure that ge,j(θ, T (θ)) is Lipschitz-continuous for θ ∈ [a, b)
and for all e ∈ E and j ∈ P . We can find such b as all ge,j are right-Lipschitz, the exit time
functions Te are non-decreasing and continuous in θ.

We obtain the following initial value problem:

f+
e,j(a) = ge,j(a, T (a)) · Cu(a),

f+
e,j(θ) = ge,j(θ,

(
θ + τe′ + 1

νe′

∑
j′∈P

F +
e′,j′(θ) − F −

e′,j′(θ + τe′)
)

e′∈E
) · Cu(θ),

for all j ∈ P and e = uv ∈ E. Here, Cu(θ) ≥ 0 is the total inflow rate into node u except for
t where it is 0 (as stated in (5)). Since the transit times are strictly positive Cu : [a, b) → R is
completely determined by the restricted feasible flow over time on [0, a) as long as b − a < τe.
In addition, Cu is right-Lipschitz, therefore, we can choose b small enough, such that Cu is
Lipschitz-continuous on [a, b). Furthermore, if qe(θ) > 0 we have that F −

e′,j′(θ + τe′) is also
determined from the past as long as b − a < qe(θ) or in the case of qe(θ) = 0, we have that
F −

e′,j′(θ + τe′) =
∑

j′∈P F +
e′,j′(θ) as required by (2).

Since the exit times T depend Lipschitz-continuous on F +, also the right-side depends
Lipschitz-continuous on F +. Hence, the Picard-Lindelöf theorem guarantees the existence
of a unique solution. It is easy to see, that extending f by this solution yields a restricted
feasible flow over time on [0, b). Flow conservation is fulfilled as

∑
e∈δ+

v
ge,j(θ, T (θ)) = 1 and

(2), (3) and (4) are satisfied as we implicitly define the outflow rates accordingly.
It remains to show that it is possible to repeat the process until we cover the whole

interval [0, H). Let bi, i = 1, 2, 3, . . . , be the right endpoints during this extension process.
The sequence might converge to lim

i→∞
bi = b∞ < H. Existence and uniqueness are thus

provided on [0, b∞). But this means, we can apply the extension process for a = b∞. As we
can always continue this process from a limit point, we can apply this transfinite induction
to obtain a unique feasible flow over time on [0, H). ◀

This theorem shows that we obtain a well-defined atomic splittable flow over time game
as long as we only consider strategies that are not too wild. It is worth noting that right-
Lipschitz functions can have infinitely many jumps and that we cannot hope for much more
general strategy-functions as argued in the following. Suppose we allow for strategies that
are not continuous from the right. We end up with the following problem: Consider a game
with only one player p1 and a network consisting of two edges e1, e2 both from sp1 to tp1

A. Adamik and L. Sering 4:11

and with νe1 < dp1 . The strategy with ge1,p1(θ, T (θ)) = 1 if Te1(θ) ≤ θ + τe1 and 0 otherwise,
means, that if there is no queue on e1 the players sends all its flow into e1 (which causes
a queue to build up) but if there is a positive queue she sends nothing (which causes any
positive queue to decrease). This strategy is not right-continuous in T as ge1,1 switches from
1 to 0 as soon as T > τe1 + θ, and clearly, it cannot lead to a feasible flow over time.

Existence of Nash equilibria in parallel-edge networks. Unfortunately, the task to show
the existence of a Nash equilibrium in this setting turns out to be quite challenging. For this
reason we only show the existence of Nash equilibria for simple networks: For the remaining
of this section we consider parallel-edge networks with two nodes s = sj and t = tj , j ∈ P .
We obtain

Σj =
{

gj : I → [0, dj]E
∣∣∣∣ ge,j is right-Lipschitz for all e ∈ E

and
∑

e∈E ge,j(I) = 1 for all I ∈ I

}
.

This leads to an “over time” version of atomic splittable singleton games as they were
studied in by Harks and Timmermans [23]. As an additional motivation, it is worth noting,
that these restricted networks, become more meaningful if, instead of a routing game, we
consider a throughput-scheduling problem [42]. Suppose the edges represent machines on
which competing players want to maximize their throughput. The jobs can run in parallel
on multiple machines up to some maximum rate of dj and each machine has a maximal
service rate of νe and individual time horizons H − τe. A very similar model without the
game-theoretical aspect is for example studied by Armony and Bambos [2].

In order to obtain a Nash equilibrium, it is worth noting that players do not care on
which edge their flow is sent, as long as it arrives at the destination before H. To model a
suitable strategy, we introduce the set of active edges E′(T) := { e ∈ E | Te < H } on which
flow still arrives at t before H, depending on the exit times. The resulting strategy for a
player j ∈ P on edge e ∈ E could look as follows:

ge,j(θ, T) :=

νe∑
e′∈E′(T)

νe′
if e ∈ E′(T),

0 if E′(T) ̸= ∅ and e /∈ E′(T),

νe∑
e′∈E

νe′
if E′(T) = ∅.

(6)

The third case is not of importance for the player, as none of the flow sent into the network
will arrive in time anymore. As E′(T) stays constant for small increases of T , the same is
true for ge,j . Since

∑
e∈E ge,j(θ, T) = 1, we have gj ∈ Σj .

We will show that this strategy profile leads to a Nash equilibrium. For this we first show
in Lemma 3 that the given strategy profile leads to a total payoff equal to the system optimum
OPT (the value of a maximum flow over time with inflow rate

∑
j∈P dj). Afterwards, we

determine in Lemma 4 that the payoff for each player given the strategy profile in (6) is a
fixed share of the total payoff. Finally, we argue that none of the players has an incentive to
deviate from the given strategy profile, since shares cannot be increased.

For the remaining of this section, let re be the point in time when the (first) particle that
arrives at t at time H enters edge e. Formally, re := min T −1

e (H). Hence, Te(θ) < H for any
θ < re and Te(θ) ≥ H for any θ ≥ re.

▶ Lemma 3. For the strategy profile given in (6) the sum of the payoffs of all players equals
the system optimum OPT.

SAND 2022

4:12 Atomic Splittable Flow Over Time Games

Proof. To prove this, we allow the network to have transit times that equal 0. We split the
set of instances into three cases
Case 1:

∑
j∈P dj ≥

∑
e∈E νe.

W.l.o.g. we assume τe < H ; otherwise the edge would be superfluous and could be deleted.
We have OPT =

∑
e∈E νe · (H − τe) as shown in [43]. Since all players route their flow

proportionally to the capacities of the active edges, we have∑
j∈P

f+
e,j(θ) = νe∑

e′∈E′(T (θ)) νe′
·
∑
j∈P

dj ≥ νe for all θ with Te(θ) < H.

With this at hand, we can state the total outflow during the whole game:

∑
j∈P

ρj =
∑
e∈E

∑
j∈P

F −
e,j(H) =

∑
e∈E

∫ H

0

∑
j∈P

f−
e,j(θ) dθ

=
∑
e∈E

(∫ τe

0
0 dθ +

∫ H

τe

νe dθ
)

=
∑
e∈E

(H − τe) · νe = OPT .

Case 2:
∑

j∈P dj <
∑

e∈E νe and τe = 0 for all e ∈ E.
We can easily see that OPT = H ·

∑
j∈P dj and∑

j∈J

f+
e,j(θ) = νe∑

e′∈E νe′
·
∑
j∈P

dj < νe for all θ < H.

Since no queues build up, all edges stay active for all θ ∈ [0, H). Therefore, it holds that

∑
j∈P

ρj =
∑
e∈E

∫ H

0

∑
j∈P

f−
e,j(θ) dθ =

∑
e∈E

∑
j∈P

H ·dj · νe∑
e′∈E νe′

= H ·
∑
j∈P

dj = OPT .

Case 3:
∑

j∈P dj <
∑

e∈E νe and there exists an e ∈ E with τe > 0.
We assume that τe < H for all e ∈ E. Let e∗ be the first edge to drop out of E′(T (θ)),
i.e., re∗ is minimal among all re. As in the first phase no queues build up (see Case 2),
we have re∗ = H − τe∗ , which means that τe∗ is maximal among all τe. Emphasis should
be put on the fact that the whole flow sent into the network up to time re∗ arrives at t

in time; a volume of
∑

j∈P dj · (H − τe∗) in total. Hence, the system optimum cannot
perform any better until re∗ . To show that after time re∗ , the summed payoffs correspond
to the system optimum as well, we reduce the remaining instance. First, we remove e∗

from the set of edges, i.e., Ê = E \ { e∗ }. Second, we shift the time axis re∗ time units
back. By that we mean that the new time 0 corresponds to re∗ in the former instance
and Ĥ = H − re∗ = τe∗ . Everything else remains untouched, in particular all queues are
empty at re∗ . This instance is strictly smaller, which means that eventually the reduction
process must end because either we obtain

∑
j∈P dj ≥

∑
e∈Ê νe (Case 1), τe = 0 for

all e ∈ Ê (Case 2) or we reach |Ê| = 1 in which case the total payoff trivially equals
OPT. ◀

▶ Lemma 4. For the strategy profile given in (6), the payoff of player j is given by

ρj = OPT · dj∑
j′∈P dj′

.

A. Adamik and L. Sering 4:13

Proof. For θ ∈ [0, re) we have
∑

j∈P f+
e,j(θ) =

∑
j∈P dj · ge,j(θ, T (θ)) > 0. We want to

examine the outflow rates for ϕ ∈ [τe, H). With (4) and θ = max T −1
e (ϕ) < re we obtain for

all e ∈ E and j ∈ P that

f−
e,j(ϕ) =

f+
e,j(θ)∑

j′∈P f+
e,j′(θ)

·
∑
j′∈P

f−
e,j′(ϕ)

= dj · ge,j(θ, T (θ))∑
j′∈P

dj′ · ge,j′(θ, T (θ)) ·
∑
j′∈P

f−
e,j′(ϕ) = dj∑

j′∈P

dj′
·

∑
j′∈P

f−
e,j′(ϕ).

Taking the integral over [0, H], summing over all edges e ∈ E and using Lemma 3, yields

ρj =
∑
e∈E

F −
e,j(H) = dj∑

j′∈P

dj′
·
∑
e∈E

∑
j′∈P

F −
e,j′(ϕ) = dj∑

j′∈P

dj′
· OPT . ◀

With these two lemmas we can finally prove the following theorem.

▶ Theorem 5. The strategy profile (gj)j∈P given by (6) is a Nash equilibrium.

Proof. We want to observe what happens if one player j∗ deviates from her strategy in an
ex ante manner. For this let r := maxe∈E re be the point in time when the last edge becomes
inactive for the modified strategy-profile and let ρ :=

∑
j∈P ρj be the total amount of flow

arriving in time. Clearly, ρ ≤ OPT.
During [0, r] every non-deviating player j ∈ P \ { j∗ } sends all her flow into edges that

are still active, and therefore, all this flow arrives in time. Hence, her payoff is given by
ρj = dj · r.

Since no flow that enters after r can possibly arrive in time, player j∗ can achieve at most
a payoff of dj∗ · r. It follows that her share of the total amount of flow arriving in time in
upper bounded by dj∗∑

j∈P
dj

, i.e.,

ρj∗ ≤ ρ · dj∗∑
j∈P dj

≤ OPT · dj∗∑
j∈P dj

.

By Lemma 4 the right-side equals the payoff of player j∗ when choosing gj∗ as strategy.
Hence, she cannot improve her payoff by deviating, which shows that (gj)j∈P is indeed an
equilibrium. ◀

We observe the following: As long as the players constantly choose from the set of active
egdes and the summed payoff equals OPT, i.e., no queue runs dry in case of a restricted
network, the players’ payoffs stay the same. Hence, there is a whole class of Nash equilibria.

Next we want to show that this characterizes all possible Nash equilibria, which implies
that the price of anarchy is 1.

▶ Theorem 6. For atomic splittable flow over time games on parallel-edge networks where
exit times are provided as information with right-Lipschitz strategies, the price of anarchy
is 1.

Proof. The key observation is that every player j’s share of the total payoff
∑

j′∈P ρj′ is at
least dj/

∑
j′∈P dj′ as long as the player only sends flow into active edges E′(T (θ)). Also,

the total payoff is never decreased when a player shifts inflow from an inactive edge to an
active edge, since flow sent into inactive edges does not arrive in time. Note here that due to

SAND 2022

4:14 Atomic Splittable Flow Over Time Games

τ = 10

τ = 10

τ = 1

τ = 1

e1

e2

s1 s2

v1

v2

t

Figure 4 A network with two non-symmetric players. We have t = t1 = t2. Player 1 must commit
to a split of her inflow rate at time θ before knowing the relevant information on the congestion
on e1 and e2 at time θ + 10. Player 2 might use this to her advantage, which could lead to the
non-existence of Nash equilibria.

the flow dynamics, the cumulative outflow function of an edge depends non-decreasingly on
the cumulative inflow function of the edge (more precisely, F −

j,e(θ) ≥ F̂ −
j,e(θ) for all θ ∈ [0, H)

if F +
j,e(θ) ≥ F̂ +

j,e(θ) for all θ ∈ [0, H)). Suppose we have a strategy profile g such that the
total payoff

∑
j∈P ρj is strictly smaller than OPT. Either one of the players’ shares of the

total payoff is strictly less than dj/
∑

j′∈P dj′ , so this player can improve, or all players have
a share of dj/

∑
j′∈P dj′ . But then there has to be an edge e where flow is wasted, which

means that the queue on e is empty and the total inflow rate is strictly smaller than the
capacity for a time span of positive measure when e is still active; instead, flow is sent into
inactive edges or edges with a queue, which hinders later flow to get to t in time. Hence, j

can improve by shifting flow from an inactive edge or edge with a queue, as this increases
the total payoff but does not decrease her share. Hence, in both cases g was not a Nash
equilibrium, which shows that the price of anarchy is 1. ◀

5 Further Research

The topic opens up a multitude of further research directions. First of all, either proving
or disproving the existence of Nash equilibria for more general networks for games with
information on the exit times. As the exit times do not cover all information that might be
necessary for the players to react, a responding player might have an advantage. This is
especially critical in games with non-symmetric players. To illustrate this difficulty consider
the network in Figure 4.

For this reason an interesting research direction would be to identify more general network
classes for which a Nash equilibrium still exists. Symmetric games where all players share
the same origin and the same destination might be a necessary restriction.

Additionally, the dependencies among different objective functions have not yet been
understood very well: Shedding light on whether the results for the maximum flow over time
objective translate to a quickest flow objective (maybe via binary-search) would be very
interesting. It might even be possible to consider the average arrived flow or the average
arrival time as payoff functions, which could then be compared to an earliest arrival flow.

Finally, cooperative and non-cooperative models might be mixed in order to assess how
coalitions and selfish particles behave together (as e.g. in [7] for the static case).

References
1 Eitan Altman, Tamer Bacsar, Tania Jimenez, and Nahum Shimkin. Competitive routing in

networks with polynomial costs. IEEE Transactions on Automatic Control, 47(1):92–96, 2002.
2 Mor Armony and Nicholas Bambos. Queueing dynamics and maximal throughput scheduling

in switched processing systems. Queueing systems, 44(3):209–252, 2003.

A. Adamik and L. Sering 4:15

3 U. Bhaskar, L. Fleischer, and E. Anshelevich. A stackelberg strategy for routing flow over
time. Games and Economic Behavior, 92:232–247, 2015.

4 Umang Bhaskar, Lisa Fleischer, Darrell Hoy, and Chien-Chung Huang. On the uniqueness
of equilibrium in atomic splittable routing games. Mathematics of Operations Research,
40(3):634–654, 2015.

5 Umang Bhaskar and Phani Raj Lolakapuri. Equilibrium computation in atomic splittable
routing games. In 26th Annual European Symposium on Algorithms (ESA 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

6 R. E. Burkard, K. Dlaska, and B. Klinz. The quickest flow problem. Zeitschrift für Operations
Research, 37(1):31–58, 1993.

7 Stefano Catoni and Stefano Pallottino. Traffic equilibrium paradoxes. Transportation Science,
25(3):240–244, 1991.

8 R. Cominetti, J. Correa, and O. Larré. Existence and uniqueness of equilibria for flows over
time. In International Colloquium on Automata, Languages, and Programming, pages 552–563.
Springer, 2011.

9 R. Cominetti, J. Correa, and N. Olver. Long-term behavior of dynamic equilibria in fluid
queuing networks. Operations Research, 2021.

10 Roberto Cominetti, José R. Correa, and Omar Larré. Dynamic equilibria in fluid queueing
networks. Operations Research, 63(1):21–34, 2015.

11 Roberto Cominetti, José R Correa, and Nicolás E Stier-Moses. The impact of oligopolistic
competition in networks. Operations Research, 57(6):1421–1437, 2009.

12 José Correa, Andrés Cristi, and Tim Oosterwijk. On the price of anarchy for flows over time.
In Proceedings of the 2019 ACM Conference on Economics and Computation, EC ’19, pages
559–577, New York, 2019. Association for Computing Machinery.

13 José Correa and Nicolás E Stier-Moses. Wardrop equilibria. Wiley encyclopedia of operations
research and management science, 2010.

14 Lisa Fleischer and Éva Tardos. Efficient continuous-time dynamic network flow algorithms.
Operations Research Letters, 23(3):71–80, 1998.

15 L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static flows.
Operations research, 6:419–433, 1958.

16 L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
17 David Gale. Transient flows in networks. Michigan Mathematical Journal, 6(1):59–63, 1959.
18 Lukas Graf and Tobias Harks. The price of anarchy for instantaneous dynamic equilibria. In

International Conference on Web and Internet Economics, pages 237–251. Springer, 2020.
19 Lukas Graf and Tobias Harks. A finite time combinatorial algorithm for instantaneous dynamic

equilibrium flows. Mathematical Programming, pages 1–32, 2022.
20 Lukas Graf, Tobias Harks, and Leon Sering. Dynamic flows with adaptive route choice.

Mathematical Programming, 2020.
21 Tobias Harks. Stackelberg strategies and collusion in network games with splittable flow.

Theory of Computing Systems, 48(4):781–802, 2011.
22 Tobias Harks, Britta Peis, Daniel Schmand, Bjoern Tauer, and Laura Vargas Koch. Competitive

packet routing with priority lists. ACM Transactions on Economics and Computation (TEAC),
6(1):4, 2018.

23 Tobias Harks and Veerle Timmermans. Equilibrium computation in atomic splittable singleton
congestion games. In International Conference on Integer Programming and Combinatorial
Optimization, pages 442–454. Springer, 2017.

24 Tobias Harks and Veerle Timmermans. Uniqueness of equilibria in atomic splittable polyma-
troid congestion games. Journal of Combinatorial Optimization, 36(3):812–830, 2018.

25 Alain Haurie and Patrice Marcotte. On the relationship between nash-cournot and wardrop
equilibria. Networks, 15(3):295–308, 1985.

SAND 2022

4:16 Atomic Splittable Flow Over Time Games

26 Martin Hoefer, Vahab S Mirrokni, Heiko Röglin, and Shang-Hua Teng. Competitive routing
over time. In International Workshop on Internet and Network Economics, pages 18–29.
Springer, 2009.

27 J. Israel and L. Sering. The impact of spillback on the price of anarchy for flows over time. In
International Symposium on Algorithmic Game Theory, pages 114–129. Springer, 2020.

28 Max Klimm and Philipp Warode. Complexity and parametric computation of equilibria
in atomic splittable congestion games via weighted block laplacians. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2728–2747. SIAM,
2020.

29 Ronald Koch and Martin Skutella. Nash equilibria and the price of anarchy for flows over
time. Theory of Computing Systems, 49(1):71–97, 2011.

30 Patrice Marcotte. Algorithms for the network oligopoly problem. Journal of the Operational
Research Society, 38(11):1051–1065, 1987.

31 E. Minieka. Maximal, lexicographic, and dynamic network flows. Operations Research,
21(2):517–527, 1973.

32 N. Olver, L. Sering, and L. Vargas Koch. Continuity, uniqueness and long-term behavior of
Nash flows over time. In 2021 IEEE 62st Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 2021.

33 Britta Peis, Bjoern Tauer, Veerle Timmermans, and Laura Vargas Koch. Oligopolistic
competitive packet routing. In 18th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

34 H. Pham and L. Sering. Dynamic equilibria in time-varying networks. In International
Symposium on Algorithmic Game Theory, pages 130–145. Springer, 2020.

35 J Ben Rosen. Existence and uniqueness of equilibrium points for concave n-person games.
Econometrica: Journal of the Econometric Society, pages 520–534, 1965.

36 Tim Roughgarden. Selfish routing with atomic players. Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’05), pages 1184–1185, 2005.

37 Tim Roughgarden and Florian Schoppmann. Local smoothness and the price of anarchy in
splittable congestion games. Journal of Economic Theory, 156:317–342, 2015.

38 Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM,
49(2):236–259, 2002.

39 L. Sering. Nash flows over time. Technische Universitaet Berlin (Germany), 2020.
40 L. Sering and M. Skutella. Multi-source multi-sink Nash flows over time. In 18th Workshop on

Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 65,
pages 12:1–12:20, 2018.

41 L. Sering and L. Vargas Koch. Nash flows over time with spillback. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 935–945. SIAM, 2019.

42 Jiří Sgall. Open problems in throughput scheduling. In European Symposium on Algorithms,
pages 2–11. Springer, 2012.

43 Martin Skutella. An introduction to network flows over time. In Research trends in combina-
torial optimization, pages 451–482. Springer, 2009.

44 W. S. Vickrey. Congestion theory and transport investment. The American Economic Review,
59(2):251–260, 1969. URL: http://www.jstor.org/stable/1823678.

45 John Glen Wardrop. Some theoretical aspects of road traffic research. Proceedings of the
Institution of Civil Engineers, 1(3):325–362, 1952.

http://www.jstor.org/stable/1823678

Faster Exploration of Some Temporal Graphs
Duncan Adamson #

Department of Computer Science, Reykjavik University, Iceland

Vladimir V. Gusev #

Materials Innovation Factory, University of Liverpool, UK
Department of Computer Science, University of Liverpool

Dmitriy Malyshev #

Laboratory of Algorithms and Technologies for Network Analysis, HSE University,
Nizhny Novgorod, Russian Federation

Viktor Zamaraev #

Department of Computer Science, University of Liverpool, UK

Abstract
A temporal graph G = (G1, G2, . . . , GT) is a graph represented by a sequence of T graphs over a
common set of vertices, such that at the ith time step only the edge set Ei is active. The temporal
graph exploration problem asks for a shortest temporal walk on some temporal graph visiting every
vertex. We show that temporal graphs with n vertices can be explored in O(kn1.5 log n) days if
the underlying graph has treewidth k and in O(n1.75 log n) days if the underlying graph is planar.
Furthermore, we show that any temporal graph whose underlying graph is a cycle with k chords can
be explored in at most 6kn days. Finally, we demonstrate that there are temporal realisations of
sub cubic planar graphs that cannot be explored faster than in Ω(n log n) days. All these improve
best known results in the literature.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems

Keywords and phrases Temporal Graphs, Graph Exploration

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.5

Funding Duncan Adamson: Funded by the Leverhulme trust.
Vladimir V. Gusev: Funded by the Leverhulme trust.
Dmitriy Malyshev: The work of Dmitriy Malyshev was conducted within the framework of the Basic
Research Program at the National Research University Higher School of Economics (HSE).

1 Introduction

In many real world settings, networks are not static objects but instead have unstable connec-
tions that vary with time. Temporal graphs provide a model for such time-varying networks.
Formally, a temporal graph G is a sequence (G1, G2, G3, . . . , GT) of undirected graphs, called
snapshots, that all share the same vertex set V , but whose edge sets E1, E2, E3, . . . , ET ,
respectively, may differ. The number T + 1 is called the lifetime of G and we refer to i,
0 ≤ i ≤ T , as a time i or day i. The graph G = (V, E1 ∪E2 ∪· · ·∪ET) is called the underlying
graph of G, and G is said to be a temporal realisation of G. A pair (e, i), where e ∈ Ei is
called a time edge of G. A temporal walk from v1 ∈ V starting at time t to vk ∈ V is an
alternating sequence of vertices and time edges v1, (e1, i1), v2, . . . , vk−1, (ek−1, ik−1), vk such
that ej = {vj , vj+1} ∈ Eij for 0 ≤ j ≤ k − 1 and t ≤ i1 < ij < . . . < ik−1. The time ik−1 + 1
is called the arrival time of the walk.

Motivated by the central role of the Travelling Salesman problem in the world of static
graphs, Michail and Spirakis [7] introduced and initiated the study of the natural temporal
analogue called the Temporal Graph Exploration problem (TEXP for brevity). The
goal of TEXP is to compute a temporal walk with the earliest arrival time that starts in a
given vertex s ∈ V and visits (i.e., explores) all vertices of the temporal graph. It is often

© Duncan Adamson, Vladimir V. Gusev, Dmitriy Malyshev, and Viktor Zamaraev;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 5; pp. 5:1–5:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:duncana@ru.is
mailto:Vladimir.Gusev@liverpool.ac.uk
mailto:dsmalyshev@rambler.ru
mailto:viktor.zamaraev@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.SAND.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Faster Exploration of Some Temporal Graphs

convenient to describe a construction of an exploration temporal walk as the actions of an
agent that is initially located at some starting vertex s and that can in every day i either
stay at its current node or move to a node u that is adjacent to its current node in Ei. In the
latter case, the agent departs from the current vertex at time i and arrives at u at time i + 1.

The decision version of TEXP in which one has to decide if at least one exploration
schedule exists in a given temporal graph from a given starting vertex is an NP-complete
problem [7]. In fact, this decision problem remains NP-complete even if the underlying
graph has pathwidth 2 and every snapshot is a tree [2], or even if the underlying graph is a
star and the exploration has to start and end at the center of the star [1].

Michail and Spirakis [7] proved that TEXP admits no (2 − ε)-approximation algorithm
for any ε > 0, unless P=NP. In other words, there is no polynomial time algorithm that
outputs an exploration schedule whose arrival time is at most (2 − ε) times the arrival time of
an optimal exploration schedule. This was substantially strengthened by Erlebach et. al. [3]
who established NP-hardness of n1−ε-approximation for any ε > 0. In fact, the result was
shown for always-connected temporal graphs, i.e., temporal graphs in which every snapshot
is a connected graph. This connectedness assumption makes the above inapproximability
result tight, because one the one hand, obviously, any exploration cannot be done faster than
in n − 1 days, and on the other hand any always-connected temporal graph can be explored
in at most n2 days [7].

The strong inapproximability result for TEXP on always-connected temporal graphs
motivated the study into bounds on the length of fastest exploration schedules for such
temporal graphs and the present work contributes to this line of research. For convenience,
from now on, unless specified otherwise we assume that every temporal graph is always-
connected and has lifetime at least n2. In [3] Erlebach et. al. demonstrated that for some
temporal graphs any exploration requires Ω(n2) days, and thus showed that the upper bound
of Michail and Spirakis [7] is asymptotically best possible. This result naturally led the
investigation to consider restricted temporal graphs.

One natural way to restrict a temporal graph is to restrict its underlying graph. In this
direction, Erlebach et. al. [3] showed that temporal realisations of planar graphs can be
explored in O(n1.8 log n) days; temporal realisations of graphs of treewidth at most k can be
explored in O(k1.5n1.5 log n) days; temporal realisations of 2 × n grids can be explored in
O(n log3 n) days. They also showed that temporal realisations of a cycle or a cycle with a
single chord can be explored in O(n) days, and conjectured that any temporal graph whose
underlying graph is a cycle with at most k chords can be explored in no more than f(k) · n

days, where f(k) is some function. This conjecture was recently proved by Alamouti [8] with
a factorial-type function f(k) = k2k!ek. In [4] Erlebach et. al. proved that any temporal
graph in which every snapshot is a bounded-degree graph (in particular, temporal realisations
of bounded-degree graphs) can be explored in O(n1.75) days. On the negative side, Erlebach
et. al. [3] constructed temporal realisations of planar graphs of degree at most 4 that cannot
be explored faster than in Ω(n log n) days.

In [5] Erlebach and Spooner considered TEXP under another natural restriction on the
input temporal graphs. Namely, they studied TEXP on k-edge-deficient temporal graphs, i.e.,
temporal graphs in which every snapshot is obtained from the underlying graph by removing
at most k edges. They showed that k-edge-deficient and 1-edge-deficient temporal graphs
can be explored in O(kn log n) and O(n) days, respectively, and constructed k-edge-deficient
temporal graphs that cannot be explored faster than in Ω(n log k) days.

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:3

Table 1 Summary of the new algorithms we provide for exploring temporal graphs versus the
previous best known bounds.

Setting Known Bounds Our Bounds
Cycles with k-Chords O(6k2 · k! · (2e)kn) ([8]) O(kn)
Treewidth-k graphs O(k1.5n1.5 log(n)) ([3]) O(kn1.5 log(n))
Planar graphs O(n1.8 log(n)) ([3]) O(n1.75 log(n))

Our contribution

In this work we improve a number of bounds on exploration of temporal graphs with
underlying graphs from restricted classes of graphs. Table 1 provides a summary of these
results and how they compare to the best known current bounds. First, in Section 2 we
show that a temporal realisation of a cycle with k chords can be explored in at most 6kn

days. Next, in Section 3 we first strengthen the exploration bound of Erlebach et. al. [3] for
temporal realisations of graphs admitting a (r, b)-division; then using this bound we prove
that any temporal realisation of a planar graph can be explored in O(n1.75 log n) days and
any temporal realisation of a graph of treewidth at most k can be explored in O(kn1.5 log n)
days. Finally, in Section 4 we demonstrate that there are temporal realisations of planar
graphs of degree at most 3 that cannot be explored faster than Ω(n log n). The latter result
is tight in the sense that temporal realisations of graphs of degree at most 2 are explorable
in O(n) days.

Notation and tools

For a vertex set W ⊆ V we denote by G[W] the temporal subgraph of G induced by W ,
i.e., the temporal graph (G1[W], G2[W], G3[W], . . . , GT [W]), where for a static graph G the
notation G[W] means the subgraph of G induced by W . In the our proofs we will employ
two useful lemmas from [3].

▶ Lemma 1 (reachability, [3]). Let G be a (not necessarily always-connected) temporal graph
with a vertex set V . Let U ⊆ V be a set of vertices of G of size k, and let u, v ∈ U . If there
exists a set of k − 1 snapshots each of which has a path from u to v that contains only vertices
from U , then an agent can reach v starting from u and moving only in these k − 1 snapshots.

Notice that a straightforward consequence of the above lemma is that a temporal graph can
always be explored in at most n2 days by visiting vertices in an arbitrary order and spending
at most n days to move from one vertex to the next.

The following lemma is a general reduction that transforms a multi-agent exploration
schedule to a single-agent one. In the multi-agent setting, there are several agents that all
start at the same vertex and move or stay put in every day independently from each other.
Similarly to the single-agent setting, the goal is to visit (explore) every vertex of the temporal
graph by at least one agent as soon as possible.

▶ Lemma 2 (multi-agent to single-agent, [3]). Let G be a graph on n vertices. If any temporal
realisation of G can be explored in t days with k agents, then any temporal realisation of G

can be explored in O((t + n)k log n) days with one agent.

SAND 2022

5:4 Faster Exploration of Some Temporal Graphs

2 Cycles with bounded number of chords

Erlebach et al. proved in [3] that a temporal realisation of a cycle can be explored in at most
2n − 2 days, and this is a tight bound in the sense that there exist temporal realisations
of cycles on n vertices for which any optimal exploration requires at least 2n − 3 days. In
the same work it was further shown that any temporal realisation of a cycle with one chord
can be explored in at most 7n days. Furthermore, the authors conjectured that temporal
realisations of cycles with a constant number of chords are explorable in O(n) days. This
conjecture was confirmed in [8] where the author has shown that a temporal realisation of a
cycle with k chords can be explored in at most 6k2 · k! · (2e)kn days. In the present section
we strengthen this result by showing that any temporal realisation of a cycle with k chords
can be explored in 6kn days. We start with the following auxiliary lemma.

▶ Lemma 3. Let G = (G1, G2, . . . , G2n) be an n-vertex temporal graph of lifetime T = 2n,
and let G be the underlying graph of G. Let P = (v1, v2, . . . , vρ), ρ ≥ 1, be a path in G such
that every vertex of P , except possibly its endpoints v1 and vρ, has degree 2 in G. Moreover,
in every snapshot of G at most one edge of P is absent. Then there exists a vertex v ∈ V (G)
such that all vertices of P can be explored starting from v.

Proof. If there exists n snapshots in G, in which all edges of P are present, then clearly the
vertices of P can be explored in this n snapshots starting from any of the endpoints of P . It
can therefore be assumed that there are less than n such snapshots, i.e., there are at least
n + 1 snapshots in which exactly one edge of P is absent. We can therefore assume without
loss of generality that the first n + 1 snapshots G1, G2, . . . , Gn+1 of G miss exactly one edge.

Observe that as every snapshot is connected and exactly one edge of P is absent in every
snapshot, for every i ∈ {1, 2, . . . , n + 1} the graph Hi = Gi − {v1, . . . , vρ−1} is connected.
Therefore, by Lemma 1, in the temporal graph H = (H1, H2, . . . , Hn+1) every vertex can
reach any other vertex in at most n − (ρ − 1) − 1 = n − ρ days. For every i ∈ {1, 2, . . . , ρ},
let Ji denote some fixed temporal walk from v1 to vρ in H that starts at time i and has the
earliest arrival time. Note that the arrival time of Ji is at most n − ρ + i.

Now assume there are n+1 agents a1, a2, . . . , an+1 that are initially placed at the vertices
of G as follows: agent ai is located at vi for every i ∈ {0, 1, . . . , ρ − 1} and all the other
n − ρ + 1 agents aρ, aρ+1, aρ+2, . . . , an are located at vertex vρ. Every day each agent will
either move or stay at its current vertex. To describe the movement rules, let the score µt(a)
of an agent a at time t as equal to the number vertices of P that a visited by time t. In
particular, µ2(ai) = 1 for every i ∈ {1, 2, . . . , n + 1}. Now, if the score µt(a) of an agent a at
time t is ρ + 1, then a does not move. Otherwise the movement of the agent a at day t is
determined according to the following rules:
1. a is at vertex vρ at time t. If µt(a) is the minimum among all agents that are currently

at vρ, then a moves to vρ−1. Otherwise a stays at vρ. If there are multiple agents with
the minimum value of µt(a), then only the agent with the minimum index moves and
all other stay at vρ. If there is no edge between vρ and vρ−1 at time t, then the moving
agent dies;

2. a is at vertex vi at time t, for some i ∈ {1, 2, 3, . . . , ρ − 1}. Then a moves to vi−1. As
before, if there is no edge between vi and vi−1 at time t, then a dies;

3. a is at vertex v1 at time t. Then starting from time t the agent a moves according to the
temporal walk Jt.

Observe that at every day at most one agent can die, and therefore after n days at least one
of the agents survives. This leaves the problem of showing that any such agent has visited
all vertices of P . To this end, let ai be an agent that is alive after n days.

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:5

If i ≥ ρ, then, according to the initial positions and the moving rules, ai will start moving
from vertex vρ at day i − ρ, and will visit one new vertex of P every day. Since i ≤ n, after
i − ρ + ρ ≤ n days ai visits all vertices of P and stops moving.

Suppose now that i < ρ. According to the rules, after the first i days, the agent ai

moves along the path P and visits the vertices vi, vi−1, . . . , v1. After visiting all these
vertices the score µi(ai) of ai at time i is equal to i + 1 and the agent continues to move
following the temporal temporal walk Ji. Let t∗ be the time when ai arrives at vρ. Observe
that µt∗(ai) = i + 2 and t∗ ≤ n − ρ + i. By the end of day t∗, there could be at most
n − ρ − t∗ + i agents at vertex vρ with a smaller score than the score µt∗(ai) of ai: at most
n − ρ + 1 − (t∗ + 1) = n − ρ − t∗ agents that were initially located at vρ and have not departed
until the end of day t∗ and at most i agents ai, ai−1, . . . , a1 that arrived at vρ earlier or at
the same time as ai (and have not departed until the end of day t∗). All other agents at vρ

at time t∗, if any, have larger scores. Hence, the agent ai will depart from vρ no later than
on day

t∗ + (n − ρ − t∗ + i) + 1 = n − ρ + i + 1 = n − (ρ − i − 1),

and therefore it will survive for further ρ − i − 1 days thus visiting the remaining ρ − i − 1
vertices vρ−1, vρ−2, . . . , vi+1 of P . ◀

▶ Theorem 4. A temporal realisation of a cycle with n vertices and k chords can be explored
in at most 6kn days.

Proof. Let G be a temporal realisation of an n-vertex cycle with k chords and let G be the
underlying graph of G. Let us denote by C the underlying cycle of G, and let a1, a2, . . . , as,
s ≤ 2k, be the distinct vertices of C, ordered according to their clockwise appearance on the
cycle, which are incident with at least one of the chords. For every i ∈ {1, 2, . . . , s}, let Pi be
the subpath of C that one obtains by following the cycle clockwise starting at ai and ending
at ai+1, where the summation is modulo s.

Let i ∈ {1, 2, . . . , s} be an arbitrary fixed index. Note that all internal vertices of Pi have
degree 2 in the underlying graph G. This together with the connectivity of the snapshots of
G imply that at every day at most one edge of Pi is absent. Therefore, Pi and the temporal
graph obtained by restricting G to any sequence of 2n consecutive snapshots satisfy the
assumptions of Lemma 3. Hence, the vertices of Pi can be visited during any sequence
of 3n − 1 consecutive snapshots: Using Lemma 3, in the first n − 1 snapshots we reach a
vertex v guaranteed by Lemma 3, and in the subsequent 2n snapshots, by Lemma 3, we visit
all the vertices of Pi starting from v. Since the index i was chosen arbitrarily, the above
procedure can be repeated for each of the s paths, which implies that G be explored in at
most 2k(3n − 1) < 6kn days. ◀

3 Underlying graphs with (r, b)-divisions

In [3] Erlebach et al. showed that any temporal realisation of an n-vertex graph of treewidth
k can be explored in O(k1.5n1.5 log n) days, and any temporal realisation of an n-vertex
planar graph can be explored in O(n1.8 log n) days. The key ingredient in the proofs of both
results was the following

▶ Theorem 5 (Theorem 4.3, [3]). A temporal graph G, whose underlying graph has a (r, b)-
division1, can be explored in O

(
(n + r2b) nb

r log n
)

days.

1 The notion of (r, b)-division is formally defined in Section 3.1

SAND 2022

5:6 Faster Exploration of Some Temporal Graphs

In Section 3.1 we obtain a stronger version of the above theorem, which we apply in Section 3.2
to improve the exploration bounds for temporal realisations of graphs of treewidth k and
planar graphs. The main technical contribution that allows us to strengthen Theorem 5 is
Lemma 6 saying that if two vertex sets S and U in an n-vertex temporal graph G are such
that |U | ≤ |S| and in every snapshot of G for every vertex u ∈ U there exists a path between
u and a vertex in S, then |S| agents starting at the vertices of S (one agent per vertex) can
explore vertices in U and return to their original positions in at most 4|S|n days.

3.1 Tools
For a graph G = (V, E), we say that a vertex v ∈ V is reachable from a vertex u ∈ V in G if
there is a path from u to v in G. We also say that a subset S ⊆ V reaches a subset U ⊆ V

in G, if every vertex u ∈ U is reachable from some vertex in S. For a temporal graph G and
subsets S and U of its vertices, we say that S always reaches U in G, if S reaches U in every
snapshot of G.

▶ Lemma 6. Let G be a not necessarily always-connected temporal graph with vertex set V ,
let S be a subset of V of cardinality s, and let U be a subset of V with |U | ≤ s. If S always
reaches U in G and the lifetime of G is at least 4sn, then s agents starting at the vertices of
S (one agent per vertex) can explore vertices in U and return to their original positions.

Proof. Let S = {x1, x2, . . . , xs} and let a1, a2, . . . , as denote the agents that are initially
located at the vertices x1, x2, . . . , xs respectively. For convenience, we assume that every
vertex in U holds a token, and we restrict our consideration only to the exploration schedules
in which the agents collect all the tokens from the vertices in U and bring them to the agents’
original locations. We assume that every agent can carry at most one token at a time. We
say that a vertex u ∈ U is explored by an agent a, if a starts at its original position, visits u,
takes the token of u, moves back to its original location, where she drops the token. A day on
which agent a returns to its original location and drops the token of u will be called a return
day of a. The assumption that an agent can carry only one token at a time implies that
the agent can explore at most one vertex between any two consecutive visits to its original
location.

Let U = {u1, u2, . . . , ur} and, for every i ∈ [r], denote by ti the earliest day by which the
agents can explore i vertices in U . We will prove by induction on i that ti ≤ 2n(s + i − 1).
As r ≤ s, the inequality for i = r will imply the lemma.

For the base case i = 1, we need to show that at least one vertex in U can be explored
by day 2ns. Since every vertex in U is reachable from a vertex in S in every snapshot, by
the pigeonhole principle, vertex u1 is reachable from some fixed vertex x ∈ S in at least 2n

snapshots out of the first 2ns snapshots. Hence, by Lemma 1, the agent of x can explore u1
by day 2ns.

Let now 1 < i ≤ r and assume that the agents can explore i − 1 vertices by time
ti−1 ≤ 2n(s + i − 2). Suppose, towards a contradiction, that the agents cannot explore i

vertices in the first 2n(s + i − 1) days. Let us fix a fastest exploration schedule in which the
agents explore i−1 vertices in U . Without loss of generality, assume that the vertices explored
under this schedule are u1, u2, . . . , ui−1. For k ∈ [s], let ℓk be the number of vertices explored
by agent ak in the first 2n(s + i − 1) days; note that ℓ1 + ℓ2 + . . . + ℓs = i − 1. Furthermore,
we denote by d

(k)
1 < d

(k)
2 < . . . < d

(k)
ℓk

the return days of agent ak and call (d(k)
1 , d

(k)
2 , . . . , d

(k)
ℓk

)
the vector of return days of ak. We also assume, without loss of generality, that the schedule
is minimal in the sense that there is no schedule in which all the agents explore the same
number of vertices in U , and all the agents have the same vectors of return days, except one
of the agents, say ak, that has a vector of return days that is lexicographically smaller than
(d(k)

1 , d
(k)
2 , . . . , d

(k)
ℓk

).

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:7

Next, for an arbitrary but fixed k ∈ [s], we will count the number of snapshots in the
first 2n(s + i − 1) days in which vertex ui is reachable from vertex xk. We claim that in
each of the time intervals [1, d

(k)
1 − 1], [d(k)

j + 1, d
(k)
j+1 − 1], j ∈ [ℓk − 1], [d(k)

ℓk
+ 1, 2n(s + i − 1)]

there are at most 2(n − 1) such snapshots. Indeed, if the interval [1, d
(k)
1 − 1] or any of the

intervals [d(k)
j + 1, d

(k)
j+1 − 1], j ∈ [ℓk − 1] would contain 2(n − 1) snapshots in which vertex ui

is reachable from vertex xk, then we could amend the schedule of agent ak by ordering her to
explore ui during this time interval and keeping the schedule the same in the other intervals.
This would produce a schedule in which ak would have a lexicographically smaller vector of
return days than (d(k)

1 , d
(k)
2 , . . . , d

(k)
ℓk

), contradicting the minimality of the schedule. Also, if
the last interval [d(k)

ℓk
+ 1, 2n(s + i − 1)] would contain 2(n − 1) snapshots in which vertex ui

is reachable from vertex xk, then agent ak could explored ui in this interval, contradicting
the assumption that the agents cannot explore i vertices in the first 2n(s + i − 1) days. Hence
the total number of snapshot in which ui is reachable from vertex xk in the first 2n(s + i − 1)
snapshots is at most 2(n − 1)(ℓk + 1) + ℓk. Consequently, the total number of snapshots in
which ui is reachable from any vertex in S in the first 2n(s + i − 1) snapshots is at most

s∑
k=1

(
2(n − 1)(ℓk + 1) + ℓk

)
= 2(n − 1)(s + i − 1) + i − 1 < 2n(s + i − 1),

which contradicts the assumption that S always reaches U in G. ◀

We will now use Lemma 6 to prove a stronger version of Theorem 5. The notion of
(r, b)-division was introduced by Erlebach et al. [3] and it generalizes the notion of r-divisions
used by Frederickson [6]. For positive integers r and b (which might be functions of n), a
(r, b)-division of a graph G = (V, E) with n vertices is given by a set S ⊆ V and a partition
of G[V \ S] into O(n/r) (not necessarily connected) components, each associated with a
boundary set consisting of vertices from S, such that the following properties hold:
(1) Each component contains at most r vertices.
(2) The boundary set of each component has size at most b.
(3) The boundary sets of different components may overlap, and the union of the boundary

sets of all components is S.
(4) Every edge of G that has only one endpoint in a component has its other endpoint in

the boundary set of that component.

▶ Theorem 7. A temporal graph G, whose underlying graph has a (r, b)-division, can be
explored in O

(
(n + max{r, b}(r + b)) nb

r log n
)

days.

Proof. We will use b agents to explore all O(n/r) components one by one. Consider the
exploration of a component C and its boundary set B. Since the graph is always-connected,
the definition of (r, b)-division implies that B always reaches C in G[B ∪ C], which allows
us to apply Lemma 6 as follows. First, using Lemma 1, we position at most b agents at
the boundary vertices in at most n − 1 days. Next, we partition |C| into ⌊|C|/|B|⌋ subsets,
each with |B| elements, and the subset of the |C| − |B| ⌊|C|/|B|⌋ remaining elements. By
Lemma 6, any of these subsets can be explored in 4|B|(|C|+ |B|) days in G[B ∪C]. Therefore,
C can be explored in O ((⌊|C|/|B|⌋ + 1)|B|(|C| + |B|)) = O(max{r, b}(r + b)) days, and the
set B ∪ C in O(n + max{r, b}(r + b)) days. Consequently, the entire graph G can be explored
in O((n+max{r, b}(r +b)) n

r) days using b agents, and hence, by Lemma 2, it can be explored
in O((n + max{r, b}(r + b)) nb

r log n) days with a single agent. ◀

SAND 2022

5:8 Faster Exploration of Some Temporal Graphs

3.2 Applications

3.2.1 Bounded treewidth graphs
It was shown in [3] that temporal graphs whose underlying graph has treewidth at most k

can be explored in O(k1.5n1.5 log n) days. This bound provides an improvement over the
general O(n2) bound whenever k = o

(
n1/3/ log2/3 n

)
. A key ingredient of the proof of this

result was the fact that graphs with treewidth at most k admit a
(
2
√

n/k, 6k
)
-division (see

Lemma 4.4 in [3]). Using exactly the same proof as in [3], but replacing
√

n
k and

√
nk with√

n everywhere, one can obtain the following

▶ Lemma 8 (adaptation of Lemma 4.4 [3]). Any graph of treewidth at most k admits a(
2
√

n, 6k
)
-division.

We will use this latter fact together with Theorem 7 to derive an improved exploration bound
for graphs of treewidth at most k.

▶ Theorem 9. An n-vertex temporal graph, whose underlying graph has treewidth at most k,
can be explored in O(kn1.5 log n) days.

Proof. We can assume, without loss of generality, that k = o(n0.5), as otherwise the bound in
the statement becomes ω(n2) and the result clearly holds. Under this assumption, Lemma 8
and Theorem 7 imply that an n-vertex temporal graph, whose underlying graph has treewidth
at most k, can be explored in O ((n +

√
n(

√
n + k))

√
nk log n) = O(kn1.5 log n) days. ◀

We note that Theorem 9 improves the previous bound from [3] as well as implies an
improvement over the general O(n2) bound for graphs with treewidth k = o

(
n0.5/ log n

)
.

3.2.2 Planar graphs
It was shown in [3] that temporal realisations of planar graphs can be explored in O(n1.8 log n)
days. We will follow a similar strategy as in [3] but use our Theorem 7 to reduce the bound
to O(n1.75 log n).

▶ Theorem 10. An n-vertex temporal graph, whose underlying graph is planar, can be
explored in O(n1.75 log n) days.

Proof. Frederickson proved that planar graphs admit (r, O(
√

r))-divisions for any 1 ≤ r ≤ n

[6]. Applying this result with r =
√

n and Theorem 7 we conclude that a temporal
realisation of an n-vertex planar graph can be explored in O

(
(n + r(r +

√
r)) n√

r
log n

)
=

O
(
(n2/

√
r + r1.5n) log n

)
= O

(
n1.75 log n

)
days. ◀

4 Subcubic planar graphs

Temporal realisations of graphs of maximum degree at most 2 can be explored in linear
time. Indeed, a connected graph of maximum degree 2 is either a path or a cycle. Temporal
realisations of paths are trivially explorable in linear time, because every snapshot in such
temporal graphs must be the same connected graph. As shown in [3], temporal realisations
of cycles are also explorable in linear time. On the other hand, it was proved in [3] that some
temporal realisations of planar graphs of maximum degree 4 cannot be explored faster than
in Ω(n log n) days even if every snapshot is a path.

D. Adamson, V. V. Gusev, D. Malyshev, and V. Zamaraev 5:9

u v1

v2

v3

v4

u1

u2

u3

u4

v4

v1

v2

v3

Figure 1 An illustration of the transformation from the neighbourhood around the vertex v in G

to the 4-cycle (u1, u2, u3, u4) in H.

▶ Theorem 11 (Theorem 4.1, [3]). There exist temporal realisations of n-vertex planar graphs
of maximum degree 4, in which every snapshot is a path, that cannot be explored faster than
Ω(n log n) days.

This leaves an intriguing open case of exploration time of temporal realisations of planar
graphs of maximum degree 3. In particular, are such temporal graphs always explorable in
linear time? As we shall see below, in general, such temporal graphs can require Ω(n log n)
days for their exploration. To prove the result, we will transform the construction from the
proof of Theorem 11 and apply the following edge contraction lemma from [3].

▶ Lemma 12 (edge contraction, Lemma 2.4, [3]). Let G be a graph such that every temporal
realisation of G with lifetime at least t can be explored in t days. Let G′ be a graph that is
obtained from G by contracting edges. Then every temporal realisation of G′ with lifetime t

can also be explored in t days.

▶ Theorem 13. There exist temporal realisations of n-vertex subcubic planar graphs that
cannot be explored faster than Ω(n log n) days.

Proof. Let n′ ≥ 16, let G be an n′-vertex planar graph of maximum degree 4, and let G be
a temporal realisation of G for which every exploration requires at least cn′ log n′ days for
some positive constant c. Such G and G exist by Theorem 11.

From graph G we obtain a graph H as follows. For every vertex u in G with 4 neigh-
bours v1, v2, v3, v4, we delete u from G, add 4 new vertices u1, u2, u3, u4, forming a 4-cycle
(u1, u2, u3, u4), and add 4 new edges {u1, v1}, {u2, v2}, {u3, v3}, {u4, v4} (see Figure 1). Let
n be the number of vertices in H. Clearly, n′ ≤ n ≤ 4n′ and G is obtained from H by
contracting edges. Furthermore, it is not hard to see that H is planar and every vertex in
H has degree at most 3. Therefore, there exists a temporal realisation H of H for which
every exploration requires at least cn′ log n′ days. Indeed, otherwise, by Lemma 12, G could
be explored in less than cn′ log n′ days, which would contradict our assumption. Hence, H
cannot be explored in less than

cn′ log n′ ≥ c
n

4 log n

4 ≥ c

8n log n = Ω(n log n)

days, where the latter inequality uses the assumption that n ≥ 16. ◀

▶ Remark. We note that in the temporal graph G from the proof of Theorem 11 every
snapshot is a path. The transformation in the above proof of Theorem 13 can be easily
specified in such a way that every snapshot in H is also a path. We leave the details to the
interested reader.

SAND 2022

5:10 Faster Exploration of Some Temporal Graphs

References
1 Eleni C Akrida, George B Mertzios, Paul G Spirakis, and Christoforos Raptopoulos. The

temporal explorer who returns to the base. Journal of Computer and System Sciences,
120:179–193, 2021.

2 Hans L Bodlaender and Tom C van der Zanden. On exploring always-connected temporal
graphs of small pathwidth. Information Processing Letters, 142:68–71, 2019.

3 Thomas Erlebach, Michael Hoffmann, and Michael Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021.

4 Thomas Erlebach, Frank Kammer, Kelin Luo, Andrej Sajenko, and Jakob T Spooner. Two
moves per time step make a difference. In 46th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

5 Thomas Erlebach and Jakob T. Spooner. Exploration of k-edge-deficient temporal graphs. In
Anna Lubiw and Mohammad Salavatipour, editors, Algorithms and Data Structures, pages
371–384, Cham, 2021. Springer International Publishing.

6 Greg Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal of Computing, 16:1004–1022, 1987.

7 Othon Michail and Paul G Spirakis. Traveling salesman problems in temporal graphs. Theor-
etical Computer Science, 634:1–23, 2016.

8 Shadi Taghian Alamouti. Exploring temporal cycles and grids. Master’s thesis, Concordia
University, 2020.

Building Squares with Optimal State Complexity in
Restricted Active Self-Assembly
Robert M. Alaniz #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

David Caballero #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Sonya C. Cirlos #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Timothy Gomez #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Elise Grizzell #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Andrew Rodriguez #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Robert Schweller #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Armando Tenorio #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Tim Wylie #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Abstract
Tile Automata is a recently defined model of self-assembly that borrows many concepts from cellular
automata to create active self-assembling systems where changes may be occurring within an assembly
without requiring attachment. This model has been shown to be powerful, but many fundamental
questions have yet to be explored. Here, we study the state complexity of assembling n × n squares
in seeded Tile Automata systems where growth starts from a seed and tiles may attach one at a
time, similar to the abstract Tile Assembly Model. We provide optimal bounds for three classes of
seeded Tile Automata systems (all without detachment), which vary in the amount of complexity
allowed in the transition rules. We show that, in general, seeded Tile Automata systems require
Θ(log 1

4 n) states. For Single-Transition systems, where only one state may change in a transition
rule, we show a bound of Θ(log 1

3 n), and for deterministic systems, where each pair of states may
only have one associated transition rule, a bound of Θ((log n

log log n
) 1

2).

2012 ACM Subject Classification Theory of computation → Computational geometry; Applied
computing → Computational biology; Theory of computation → Self-organization

Keywords and phrases Active Self-Assembly, State Complexity, Tile Automata

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.6

Supplementary Material Software (Source Code): https://github.com/asarg/AutoTile
archived at swh:1:dir:fd83de54cc0e347b80c90911b19bd8e0266a5bc8

Funding This research was supported in part by National Science Foundation Grant CCF-1817602.

Acknowledgements We would like to thank the reviewers for their comments, specifically for pointing
us toward relevant Cellular Automata Literature.

1 Introduction

Self-assembly is the process by which simple elements in a system organize themselves into
more complex structures based on a set of rules that govern their interactions. These types
of systems occur naturally and can be easily constructed artificially to offer many advantages
when building micro or nanoscale objects. One abstraction of these systems that has yielded
interesting results is Tile Self-Assembly.

© Robert M. Alaniz, David Caballero, Sonya C. Cirlos, Timothy Gomez, Elise Grizzell,
Andrew Rodriguez, Robert Schweller, Armando Tenorio, and Tim Wylie;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.alaniz01@utrgv.edu
mailto:david.caballero01@utrgv.edu
mailto:sonya.cirlos01@utrgv.edu
mailto:timothy.gomez01@utrgv.edu
mailto:elise.grizzell01@utrgv.edu
mailto:andrew.rodriguez09@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:armando.tenorio01@utrgv.edu
mailto:timothy.wylie@utrgv.edu
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://github.com/asarg/AutoTile
https://archive.softwareheritage.org/swh:1:dir:fd83de54cc0e347b80c90911b19bd8e0266a5bc8;origin=https://github.com/asarg/AutoTile;visit=swh:1:snp:72b9413e0d8881c9412792ab8954d592e89807ae;anchor=swh:1:rev:c6f3135642358c0cd08fde7d45f34b6b842e6a4e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

In the abstract Tile Assembly Model (aTAM) [35], the elements of a system are represented
using labeled unit squares called tiles. A system is initialized with a seed (a tile or assembly)
that grows as other single tiles attach until there are no more valid attachments. The behavior
of a system can then be programmed, using the interactions of tiles, and is known to be
capable of Turing Computation [35], is Intrinsically Universal [14], and can assemble general
scaled shapes [33]. However, many of these results utilize a concept called cooperative binding,
where a tile must attach to an assembly using the interaction from two other tiles. Unlike
with cooperative binding, the non-cooperative aTAM is not Intrinsically Universal [25,27]
and more recent work has shown that it is not capable of Turing Computation [26]. Many
extensions of this model increase the power of non-cooperative systems [4, 16,18,22,23,30].

One recent model of self-assembly is Tile Automata [8]. This model marries the concept
of state changes from Cellular Automata [19, 28, 37] and the assembly process from the
2-Handed Assembly model (2HAM) [6]. Previous work [3,7,8] has explored Tile Automata
as a unifying model for comparing the relative powers of the many different Tile Assembly
models. The complexity of verifying the behavior of systems along with their computational
power was studied in [5]. Many of these works impose additional experimentally motivated
limitations on the Tile Automata model that help connect the model and its capabilities to
potential molecular implementations, such as using DNA assemblies with sensors to assemble
larger structures [21], building spacial localized circuits on DNA origami [10], or DNA walkers
that sort cargo [34].

In this paper, we explore the aTAM generalized with state changes; we define our
producible assemblies as what can be grown by attaching tiles one at a time to a seed
tile or performing transition rules, which we refer to as seeded Tile Automata. This is a
bounded version of Asynchronous Cellular Automata [15]. Reachability problems, which are
similar to verification problems in self-assembly, have been studied with many completeness
results [13]. Further, the freezing property used in this and previous work also exists in
Cellular Automata [20,29].1 Freezing is defined differently in Cellular Automata by requiring
that there exists an ordering to the states.

While Tile Automata has many possible metrics, we focus on the number of states needed
to uniquely assemble n × n squares at the smallest constant temperature, τ = 1. We achieve
optimal bounds in three versions of the model with varying restrictions on the transition
rules. Our results, along with previous results in the aTAM, are outlined in Table 1.

1.1 Previous Work

In the aTAM, the number of tile types needed, for nearly all n, to construct an n × n square
is Θ(log n

log n log n) [1, 31] with temperature τ = 2 (row 2 of Table 1). The same lower bounds
hold for τ = 1 (row 1 of Table 1). The run time of this system was also shown to be optimal
Θ(n) [1]. Other bounds for building rectangles were shown in [2]. While no tighter bounds2

have been shown for n × n squares at τ = 1 in the aTAM, generalizations to the model
that allow (just-barely) 3D growth have shown an upper bound of O(log n) for tile types
needed [11]. Recent work in [17] shows improved upper and lower bounds on building thin
rectangles in the case of τ = 1 and in (just-barely) 3D.

Other models of self-assembly have also been shown to have a smaller tile complexity,
such as the staged assembly model [9, 12] and temperature programming [24]. Investigation
into different active self-assembly models have also explored the run time of systems [32,36].

1 We would like to thank a reviewer for bringing these works to our attention.
2 Other than trivial O(n) bounds.

R. M. Alaniz et al. 6:3

Table 1 Bounds on the number of states for n × n squares in the Abstract Tile Assembly model,
with and without cooperative binding, and the seeded Tile Automata model with our transition
rules. ST stands for Single-Transition.

Model τ
n × n Squares

Lower Upper Theorem

aTAM 1 Ω(log n
log log n

) O(n) [31], [1]

aTAM 2 Θ(log n
log log n

) [31], [1]

Flexible Glue aTAM 2 Θ(log 1
2 n) [2]

Seeded TA Det. 1 Θ((log n
log log n

) 1
2) Thm. 2, 12

Seeded TA ST 1 Θ(log 1
3 n) Thm. 4, 12

Seeded TA 1 Θ(log 1
4 n) Thm. 3, 12

1.2 Our Contributions

In this work, we explore building an important benchmark shape, squares, in non-cooperative
seeded Tile Automata. We also consider only affinity-strengthening transition rules that
remove the ability for an assembly to break apart. Our results are shown in Table 1.

We start in Section 3 by proving lower bounds for building n × n squares based on three
different transition rule restrictions. The first is nondeterministic or general seeded Tile
Automata, where there are no restrictions and a pair of states may have multiple transition
rules. The second is Single-Transition rules where only one tile may change states in a
transition rule, but we still allow multiple rules for each pair of states. The last restriction,
Deterministic, is the most restrictive where each pair of states may only have one transition
rule (for each direction).

In Section 4, we use Transition Rules to optimally encode strings in the various versions
of the model. We use these encodings as gadgets to seed the future constructions. We show
how to build optimal state complexity rectangles in Section 5, and finally optimal state
complexity squares in Section 6. Future work is discussed in Section 7.

AutoTile. To test our constructions, we developed AutoTile, a seeded Tile Automata
simulator. Each system discussed in the paper is currently available for simulation. AutoTile
is available at https://github.com/asarg/AutoTile.

2 Definitions

The Tile Automata model differs quite a bit from normal self-assembly models since a tile
may change state, which draws inspiration from Cellular Automata. Thus, there are two
aspects of a TA system being: the self-assembling that may occur with tiles in a state and
the changes to the states once they have attached to each other. To address these aspects,
we define the building blocks and interactions, and then the definitions around the model
and what it may assemble or output. Finally, since we are looking at a limited TA system,
we also define specific limitations and variations of the model. For reference, an example
system is shown in Figure 1.

SAND 2022

https://github.com/asarg/AutoTile

6:4 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

2.1 Building Blocks

The basic definitions of all self-assembly models include the concepts of tiles, some method
of attachment, and the concept of aggregation into larger assemblies. The Cellular Automata
aspect also brings in the concept of transitions.

Tiles. Let Σ be a set of states or symbols. A tile t = (σ, p) is a non-rotatable unit square
placed at point p ∈ Z2 and has a state of σ ∈ Σ.

Affinity Function. An affinity function Π over a set of states Σ takes an ordered pair of
states (σ1, σ2) ∈ Σ × Σ and an orientation d ∈ D, where D = {⊥, ⊢}, and outputs an element
of Z0. The orientation d is the relative position to each other with ⊢ meaning horizontal and
⊥ meaning vertical, with the σ1 being the west or north state respectively. We refer to the
output as the Affinity Strength between these two states.

Transition Rules. A Transition Rule consists of two ordered pairs of states (σ1, σ2), (σ3, σ4)
and an orientation d ∈ D, where D = {⊥, ⊢}. This denotes that if the states (σ1, σ2) are
next to each other in orientation d (σ1 as the west/north state) they may be replaced by the
states (σ3, σ4).

Assembly. An assembly A is a set of tiles with states in Σ such that for every pair of tiles
t1 = (σ1, p1), t2 = (σ2, p2), p1 ≠ p2. Informally, each position contains at most one tile.
Further, we say assemblies are equal in regards to translation. Two assemblies A1 and A2
are equal if there exists a vector v⃗ such that A1 = A2 + v⃗.

Let BG(A) be the bond graph formed by taking a node for each tile in A and adding
an edge between neighboring tiles t1 = (σ1, p1) and t2 = (σ2, p2) with a weight equal to
Π(σ1, σ2). We say an assembly A is τ -stable for some τ ∈ Z0 if the minimum cut through
BG(A) is greater than or equal to τ .

2.2 The Tile Automata Model

Here, we define and investigate the Seeded Tile Automata model, which differs by only
allowing single tile attachments to a growing seed similar to the aTAM.

Seeded Tile Automata. A Seeded Tile Automata system is a 6-tuple Γ = {Σ, Λ, Π, ∆, s, τ}
where Σ is a set of states, Λ ⊆ Σ a set of initial states, Π is an affinity function, ∆ is a set of
transition rules, s is a stable assembly called the seed assembly, and τ is the temperature (or
threshold). Our results use the most restrictive version of this model where s is a single tile.

Attachment Step. A tile t = (σ, p) may attach to an assembly A at temperature τ to build
an assembly A′ = A

⋃
t if A′ is τ -stable and σ ∈ Λ. We denote this as A →Λ,τ A′.

Transition Step. An assembly A is transitionable to an assembly A′ if there exists two
neighboring tiles t1 = (σ1, p1), t2 = (σ2, p2) ∈ A (where t1 is the west or north tile) such
that there exists a transition rule in ∆ with the first pair being (σ1, σ2) and A′ = (A \
{t1, t2})

⋃
{t3 = (σ3, p1), t4 = (σ4, p2)}. We denote this as A →∆ A′.

R. M. Alaniz et al. 6:5

S X1 X2

Y1 Y2 0

X1'

SX1 X2 Y1

Y2 0S Y1
X1

X1 X2

Y1 Y2

0

X1Y1

Y2 0 X1'

0

Y2

Y1

States Transitions

Affinity Initial States

0

X1Y1 0S S

(a)

S X2

Y1

Y2

S X1

Y1

Y2

S X1 X2

Y1

Y2
0X1 X2

S X1 X2

Y1

Y2
0X1 X2

0
X1'

S X1 X2

Y1

Y2
0X1 X2

X20

0

(b)

Figure 1 (a) Example of a Tile Automata system, it should be noted that τ = 1 and state S

is our seed. (b) A walkthrough of our example Tile Automata system building the 3 × 3 square it
uniquely produces. We use dotted lines throughout our paper to represent tiles attaching to one
another.

Producibles. We refer to both attachment steps and transition steps as production steps,
we define A →∗ A′ as the transitive closure of A →Λ,τ A′ and A →∆ A′. The set of producible
assemblies for a Tile Automata system Γ = {Σ, Λ, Π, ∆, s, τ} is written as PROD(Γ). We
define PROD(Γ) recursively as follows,

s ∈ PROD(Γ)
A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A →Λ,τ A′.
A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A →∆ A′.

Terminal Assemblies. The set of terminal assemblies for a Tile Automata system Γ =
{Σ, Λ, Π, ∆, τ} is written as TERM(Γ). This is the set of assemblies that cannot grow or
transition any further. Formally, an assembly A ∈ TERM(Γ) if A ∈ PROD(Γ) and there
does not exists any assembly A′ ∈ PROD(Γ) such that A →Λ,τ A′ or A →∆ A′. A Tile
Automata system Γ = {Σ, Λ, Π, ∆, s, τ} uniquely assembles an assembly A if A ∈ TERM(Γ),
and for all A′ ∈ PROD(Γ), A′ →∗ A.

2.3 Limited Model Reference
We explore an extremely limited version of seeded TA that is affinity-strengthening, freez-
ing, and may be a single-transition system. We investigate both deterministic and non-
deterministic versions of this model.

Affinity Strengthening. We only consider transitions rules that are affinity strengthening,
meaning for each transition rule ((σ1, σ2), (σ3, σ4), d), the bond between (σ3, σ4) must be
at least the strength of (σ1, σ2). Formally, Π(σ3, σ4, d) ≥ Π(σ1, σ2, d). This ensures that
transitions may not induce cuts in the bond graph.

In the case of non-cooperative systems (τ = 1), the affinity strength between states is
always 1 so we may refer to the affinity function as an affinity set Λs, where each affinity is a
3-pule (σ1, σ2, d).

Freezing. Freezing systems were introduced with Tile Automata. A freezing system simply
means that a tile may transition to any state only once. Thus, if a tile is in state A and
transitions to another state, it is not allowed to ever transition back to A.

Deterministic vs. Nondeterministic. For clarification, a deterministic system in TA has
only one possible production step at a time, whether that be an attachment or a state
transition. A nondeterministic system may have many possible production steps and any
choice may be taken.

SAND 2022

6:6 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

Single-Transition System. We restrict our TA system to only use single-transition rules.
This means that for each transition rule one of the states may change, but not both. It
should be noted that we still allow Nondeterminism in this system.

3 State Space Lower Bounds

Let p(n) be a function from the positive integers to the set {0, 1}, informally termed a
proposition, where 0 denotes the proposition being false and 1 denotes the proposition being
true. We say a proposition p(n) holds for almost all n if limn→∞

1
n

∑n
i=1 p(i) = 1.

▶ Lemma 1. Let U be a set of TA systems, b be a one-to-one function mapping each element
of U to a string of bits, and ϵ a real number from 0 < ϵ < 1. Then for almost all integers n,
any TA system Γ ∈ U that uniquely assembles either an n × n square or a 1 × n line has a
bit-string of length |b(Γ)| ≥ (1 − ϵ) log n.

Proof. For a given i ≥ 1, let Mi ∈ U denote the TA system in U with the minimum
value |b(Mi)| over all systems in U that uniquely assembly an i × i square or 1 × i line,
and let Mi be undefined if no such system in U builds such a shape. Let p(i) be the
proposition that |b(Mi)| ≥ (1 − ϵ) log i. We show that limn→∞

1
n

∑n
i=1 p(i) = 1. Let

Rn = {Mi|1 ≤ i ≤ n, |b(Mi)| < (1 − ϵ) log n}. Note that n − |Rn| ≤
∑n

i=1 p(i). By the
pigeon-hole principle, |Rn| ≤ 2(1−ϵ) log n = n(1−ϵ). Therefore,

lim
n→∞

1
n

n∑
i=1

p(i) ≥ lim
n→∞

1
n

(n − |Rn|) ≥ lim
n→∞

1
n

(n − n1−ϵ) = 1. ◀

▶ Theorem 2 (Deterministic TA). For almost all n, any Deterministic Tile Automata system
that uniquely assembles either a 1 × n line or an n × n square contains Ω(log n

log log n) 1
2 states.

Proof. We can create a one-to-one mapping b(Γ) from any deterministic TA system to
bit-strings in the following way. Let S denote the set of states in a given system. We encode
the state set in O(log |S|) bits, we encode the affinity function in a |S| × |S| table of strengths
in O(|S|2) bits (assuming a constant bound on bonding thresholds), and we encode the rules
of the system in an |S| × |S| table mapping pairs of rules to their unique new pair of rules
using O(|S|2 log |S|) bits, for a total of O(|S|2 log |S|) bits to encode any |S| state system.

Let Γn denote the smallest state system that uniquely assembles an n × n square (or
similarly a 1×n line), and let Sn denote the state set. By Lemma 1, |b(Γn)| ≥ (1−ϵ) log n for
almost all n, and so |Sn|2 log |Sn| = Ω(log n) for almost all n. We know that |Sn| = O(log n),
so for some constant c, |Sn| ≥ c(log n

log log n) 1
2 for almost all n. ◀

▶ Theorem 3 (Nondeterministic TA). For almost all n, any Tile Automata system (in
particular any Nondeterministic system) that uniquely assembles either a 1 × n line or an
n × n square contains Ω(log

1
4 n) states.

▶ Theorem 4 (Single-Transition TA). For almost all n, any Single-Transition Tile Automata
system that uniquely assembles either a 1 × n line or an n × n square contains Ω(log

1
3 n)

states.

4 String Unpacking

A key tool in our constructions is the ability to build strings efficiently. We do so by encoding
the string in the transition rules.

R. M. Alaniz et al. 6:7

▶ Definition 5 (String Representation). An assembly A over states Σ represent a string S

over a set of symbols U if there exists a mapping from the elements of U to the elements of Σ
and a 1 × |S| (or |S| × 1) subassembly A′ ⊏ A, such that the state of the ith tile of A′ maps
to the ith symbol of S for all 0 ≤ i ≤ |S|.

4.1 Deterministic Transitions
We start by showing how to encode a binary string of length n in a set of (freezing) transition
rules that take place on a 2 × (n + 2) rectangle that will print the string on its right side.
We extend this construction to work for an arbitrary base string.

4.1.1 Overview
Consider a system that builds a length n string. First, we create a rectangle of index states
that is two wide as seen on the left side of Figure 5c. Each row has a unique pair of index
states so each bit of the string is uniquely indexed. We divide the index states into two
groups based on which column they are in, and which “digit” they represent. Let r = ⌈n

1
2 ⌉.

Starting with index states A0 and B0, we build a counter pattern with base r. We use
O(n 1

2) states shown in Figure 2 to build this pattern. We encode each bit of the string in
a transition rule between the two states that index that bit. A table with these transition
rules can be seen in Figure 5b.

The pattern is built in r sections of size 2 × r with the first section growing off of the
seed. The tile in state SA is the seed. There is also a state SB that has affinity for the right
side of SA. The building process is defined in the following steps for each section.
1. The states SB , 0B , 1B , . . . , (r−1B) grow off of SB , forming the right column of the section.

The last B state allows for a′ to attach on its west side. a tiles attach below a′ and below
itself. This places a states in a row south toward the state SA, depicted in Figure 3b.

2. Once a section is built, the states begin to follow their transition rules shown in Figure 4a.
The a state transitions with seed state SA to begin indexing the A column by changing
state a to state 0A. For 1 ≤ y ≤ n − 2, state a vertically transitions with the other y′

A

states, incrementing the index by changing from state a to state (y + 1)A.
3. This new index state zA propagates up by transitioning the a tiles to the state zA as well.

Once the zA state reaches a′ at the top of the column, it transitions a′ to the state z′
A.

Figure 4b presents this process of indexing the A column.
4. If z < n − 1, there is a horizontal transition rule from states (z′

A, n − 1B) to states
(z′

A, n − 1′
B). The state 0B attaches to the north of n − 1B and starts the next section. If

z = n, there does not exist a transition.
5. This creates an assembly with a unique state pair in each row as seen in the first column

of Figure 5c.

4.1.2 States
An example system with the states required to print a length-9 string are shown in Figure 2.
The first states build the seed row of the assembly. The seed tile has the state SA with initial
tiles in state SB . The index states are divided into two groups. The first set of index states,
which we call the A index states, are used to build the left column. For each i, 0 ≤ i < r, we
have the states iA and i′

A. There are two states a and a′, which exist as initial tiles and act
as “blank” states that can transition to the other A states. The second set of index states
are the B states. Again, we have r B states numbered from 0 to r − 1, however, we do not

SAND 2022

6:8 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

a'

a

0B 1B 2B

2'B 2''B

2'A

2A1A

1'A0'A

0A

B StatesA States

SA

SB a'

a0B

1B

2B

Seed

Initial Tiles

NB

NA

SB 1i0iSA

Seed Row

NBNA

Cap Row Symbol States

Figure 2 States to build a length-9 string in deterministic Tile Automata.

SA SB SB a2Ba'

a'

a

a0B

0B

1B

1B

2B

2'B

0B

(a) Affinity Rules for Initial Tiles.

SA SB

0B

1B

2B

2B

a'

0B

1B

SA SB SA SB

0B

2B

a

a SA SB

0Ba

1B

2B

a

a'

1B

(b) Process of Building a section.

Figure 3 (a) Affinity rules to build each section. We only show affinity rules that are actually
used in our system for initial tiles to attach, while our system would have more rules in order to
meet the affinity strengthening restriction. (b) The B column attaches above the state SB as shown
by the dotted lines. The a′ attaches to the left of 2B and the other a states may attach below it
until they reach SA.

have a prime for each state. Instead, there are two states r − 1′
B and r − 1′′

B , that are used
to control the growth of the next column and the printing of the strings. The last states are
the symbol states 0S and 1S , the states that represent the string.

4.1.3 Affinity Rules/Placing Section

Here, we describe the affinity rules for building the first section. We later describe how this is
generalized to the other r − 1 sections. We walk through this process in Figure 3b. To begin,
the B states attach in sequence above the tile SB in the seed row. Assuming r2 = n, n is a
perfect square, the first state to attach is 0B . 1B attaches above this tile and so on. The last
B state r − 1B does not have affinity with 0B , so the column stops growing. However, the
state a′ has affinity on the left of r − 1B and can attach. a has affinity for the south side of
a′, so it attaches below. The a state also has a vertical affinity with itself. This grows the A

column southward toward the seed row.
If n is not a perfect square, we start the index state pattern at a different value. We do

so by finding the value q = r2 − n. In general, the state iB attaches above SB for i = q%r.

4.1.4 Transition Rules/Indexing A column

Once the A column is complete and the last A state is placed above the seed, it transitions
with SA to 0A (assuming r2 = n). A has a vertical transition rule with iA (0 ≤ i < r)
changing the state A to state iA. This can be seen in Figure 4a, where the 0A state is
propagated upward to the A′ state. The A′ state also transitions when 0A is below it, going
from state A′ to state 0′

A. If n is not a perfect square, then A transitions to iA for i = ⌊q/r⌋.
Once the transition rules have finished indexing the A column if i < r − 1, the last state

i′
A transitions with r − 1B changing the state r − 1B to r − 1′

B. This transition can be
seen in Figure 4b. The new state r − 1′

B has an affinity rule allowing 0B to attach above it
allowing the next section to be built. When the state A is above a state j′

A, 0 ≤ j < r − 1, it
transitions with that state changing from state A to j + 1A, which increments the A index.

R. M. Alaniz et al. 6:9

a

0ASA

a

SA

0A

0A
2B0'A

0A

0A a'

0A

0'A
2'B0'A

(a) Transition Rules to Index the first section.

SA SB

0Ba

1B

2B

a

a'

SA SB

0B0A

1B

2B

a

a'

SA SB

0B0A

1B

2B

0A

a'

SA SB

0B0A

1B

2B

0A

0'A

SA SB

0B0A

1B

2'B

0A

0'A

0B

(b) Process of Indexing A column.

Figure 4 (a) The first transition rule used is takes place between the seed SA and the a state
changing to 0A. The state 0A changes the states north of it to 0A or 0′

A. Finally, the state 0′
A

transitions with 2B (b) Once the a states reach the seed row they transition with the state SA to go
to 0A. This state propagates upward to the top of the section.

4.1.5 Look up
After creating a 2 × (n + 2) rectangle, we can encode a length n string S into the transitions
rules. Note that each row of our assembly consists of a unique pair of index states, which we
call a bit gadget. Each bit gadget will look up a specific bit of our string and transition the
B tile to a state representing the value of that bit.

Figure 5b shows how to encode a string S in a table with two columns using r digits to
index each bit. From this encoding, we create our transition rules. Consider the kth bit of S

(where the 0th bit is the least significant bit) for k = ir + j. Add transition rules between the
states iA and jB, changing the state jB to either 0S or 1S based on the kth bit of S. This
transition rule is slightly different for the northmost row of each section as the state in the
A column is i′

A. Also, we do not want the state in the B column, r − 1B, to prematurely
transition to a symbol state. Thus, we have the two states r − 1′

B and r − 1′′
B . As mentioned,

once the A column finishes indexing, it changes the state r − 1B to state r − 1′
B, allowing

for 0B to attach above it, which starts the next column. Once the state 0B (or a symbol
state) is above r − 1′

B , there are no longer any possible undesired attachments, so the state
transitions to r − 1′′

B , which has the transition to the symbol state.
The last section has a slightly different process as r − 1B state will never have a 0B attach

above it, so we have a different transition rule. This alternate process is shown in Figure
5a. The state r − 1′

A has a vertical affinity with the cap state NA. This state allows NB to
attach on its right side. This state transitions with r − 1B below it, changing it directly to
r − 1′′

B , allowing the symbol state to print.

▶ Theorem 6. For any binary string s with length n > 0, there exists a freezing tile automata
system Γs with deterministic transition rules, that uniquely assembles an 2 × (n + 2) assembly
AS that represents S with O(n 1

2) states.

4.1.6 Arbitrary Base
In order to optimally build rectangles, we first print arbitrary base strings. Here, we show
how to generalize Theorem 6 to print base-b strings.

▶ Corollary 7. For any base-b string S with length n > 0, there exists a freezing tile automata
system Γ with deterministic transition rules, that uniquely assembles an (n + 2) × 2 assembly
which represents S with O(n 1

2 + b) states.

4.2 Nondeterministic Single-Transition Systems
For the case of Single-Transition systems, we use the same method from above but instead
building bit gadgets that are of size 3 × 2. Expanding to 3 columns allows for a third index
digit to be used giving us an upper bound of O(n 1

3). The second row will be used for error

SAND 2022

6:10 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

2B

0B

1B

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

a'

a

a

2B

0B

1B

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2B

0B

1B

a'

a

a

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

NA

2B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

NBNA
2''B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

NBNA

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A 2B

NBNA
2B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

(a) Attaching Cap Row.

A B S

2 2 0
2 1 1
2 0 1
1 2 1
1 1 0
1 0 1
0 2 1
0 1 0
0 0 0

(b) Encoding of S.

S1S2 S1FS2F

0B0A

1B0A

0'A

0B1A

1B1A

1'A

0B2A

1B2A

2'A 2''B

2''B

2''B

2'A

2A

2A

1'A

1A

1A

0'A

0A

0A

1S

0S

0S

0S

0S

1S

1S

1S

1S

(c) Transition Rules.

Figure 5 (a) Once the last section finishes building the state NA attaches above 2′
A. NB then

attaches to the assembly and transitions with 2B changing it directly to 2′′
B so the string may begin

printing. (b) A table indexing the string S = 011101100 using two columns and base |S|
1
2 . (c)

Transition Rules to print S. We build an assembly where each row has a unique pair of index states
in ascending order.

checking which we will describe later in the section. This system utilizes Nondeterministic
transitions, (two states may have multiple rules with the same orientation) and is non-freezing
(a tile may repeat states). This system also contains cycles in its production graph, this
implies the system may run indefinitely. We conjecture this system has a polynomial run
time. Here, let r = ⌈n

1
3 ⌉.

4.2.1 Index States and Look Up States

We generalize the method from above to start from a C column. The B column now behaves
as the second index of the pattern and is built using B′ and B as the A column was in the
previous system. Once the B reaches the seed row, it is indexed with its starting value. This
construction also requires bit gadgets of height 2, so we will use index states iA, iB , iC and
north index states iAu, iBu, iCu for 0 ≤ i < r. This allows us to separate the two functions
of the bit gadget into each row. The north row has transition rules to control the building of
each section. The bottom row has transition rules that encode the represented bit.

In addition to the index states, we use 2r look up states, 0Ci and 1Ci for 0 ≤ i < r.
These states are used as intermediate states during the look up. The first number (0 or 1)
represents the value of the retrieved bit, while the second number represents the C index
of the bit. The A and B indices of the bit will be represented by the other states in the
transition rule.

In the same way as the previous construction, we build the rightmost column first. We
include the C index states as initial states and allow 0C to attach above SC . We include
affinity rules to build the column northwards as follows starting with the southmost state
0C , 0Cu, 1C , 1Cu, . . . , r − 2Cu, r − 1C , r − 1Cu .

To build the other columns, the state b′ can attach on the left of r − 1Cu. The state b

is an initial state and attaches below b′ and itself to grow downward toward the seed row.
The state b transitions with the seed row as in the previous construction to start the column.
However, we alternate between C states and Cu states. The state b above iC transitions b

to iCu. If b is above iCu it transitions to iC . The state b′ above state iB transitions to i′
Bu.

If i < r − 1, the state i′
B and r − 1Cu transition horizontally changing r − 1′

Cu, which allows
0C to attach above it to repeat the process. This is shown in Figure 6b.

R. M. Alaniz et al. 6:11

0C0A

0Cu0Au

0Bu

1C0 2C0

1C1 2C1

0C0

0C1

xB

0B

1C 2C

2B1B

1Cu 2Cu

2Bu1Bu

1A

1Au

2A

2Au

Index States

2'Cu

1''Bu0'Bu

0''Bu1'Bu

2'Bu

2'Au

1'Au

0'Au

Look Up States

Symbol States

SBSA SC

Seed Row

B

A

A'

B' 2''Bu

1S 0S

(a) States space for when |S| = 27.

2C

2CuB'

B

1C

1Cu

0B

0Bu

2C

2CuB'

1C

1Cu

0B

0Bu

0B 2C

2Cu

1C

1Cu

0B

0Bu

0B

0'Bu

2C

1C

1Cu

0B

0Bu

0B

0'Bu 2'Cu

0C

2C

2Cu

1C

1Cu

B'

B

B

B

(b) Indexing B column.

2Cu

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

A

A

A

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

A

0A

0Au

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

0A

0Au

0A 2C

1C

1Cu

2B

2Bu

2B

2'Bu

0A

0Au

0A

0'Au

2C

1C

1Cu

2'Cu

2B

2Bu

2B

0A

0Au

0A

0'An2''Bu

2C

1C

1Cu

2B

2Bu

2B

0A

0Au

0A

0'Au2Cu 2Cu 2Cu 2Cu

0C

2''Bu

(c) Indexing the A column.

Figure 6 (a) States needed to construct a length 27 string where r = 3. (b) The index 0
propagates upward by transitioning the tiles in the column to 0B and 0Bu and transitions a′ to 0′

Bu.
The state 0′

Bu transitions with the state 2Cu, changing the state 2Cu to 2′
Cu, which has affinity with

0C to build the next section. These rules also exist for the index 1. (c) When the index state 2B

reaches the top of the section, it transitions b′ to 2′
Bu. This state does not transition with the C

column and instead has affinity with the state a′, which builds the A column downward. The index
propagates up the A column in the same way as the B column. When the index state 0A reaches
the top of the section, it transitions the state 2′

B to 2′′
B . This state transitions with 2Cu changing it

to 2′
Cu allowing the column to grow.

The state a′ attaches on the left of r − 1Cu. The A column is indexed just like the B

column. For 0 ≤ i < r − 1, the state i′
Au and r − 1′

Bu change the state r − 1′
Bu to r − 1′′

Bu.
This state transitions with r − 1Cu, changing it to r − 1′

Cu. See Figure 6c.

4.2.2 Bit Gadget Look Up
The bottom row of each bit gadget has a unique sequence of states, again we use these index
states to represent the bit indexed by the digits of the states. However, since we can only
transition between two tiles at a time, we must read all three states in multiple steps. These
steps are outlined in Figure 7a. The first transition takes place between the states iA and
jB. We refer to these transition rules as look up rules. We have r look up rules between
these states for 0 ≤ k < r of these states that changes the state jB to that state kC0 if the
bit indexed by i, j, and k is 0 or the state kC1 if the bit is 1.

Our bit gadget has Nondeterministically looked up each bit indexed by it’s A and B

states, Now, we must compare the bit we just retrieved to the C index via the state in the C

column. The states kC0 and kC transition changing the state kC to the 0i state only when
they represent the same k. The same is true for the state kC1 except Ck transitions to 1i.

If they both represent different k, then the state kC goes to the state Bx. This is the
error checking of our system. The Bx states transitions with the north state jBu above it
transitioning Bx to jB once again. This takes the bit gadget back to it’s starting configuration
and another look up can occur.

▶ Theorem 8. For any binary string S with length n > 0, there exists a Single-Transition
tile automata system Γ, that uniquely assembles an (2n + 2) × 3 assembly which represents S

with O(n 1
3) states.

4.3 General Nondeterministic Transitions
Using a similar method to the previous sections, we build length n strings using O(n 1

4) states.
We start by building a pattern of index states with bit gadgets of height 2 and width 4.

SAND 2022

6:12 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

(u)

(u)

(u)

(v)

(x)

(w)

1C00A

0Au 0Bu 0Cu 0Cu

0Cu

2C10A

0Au 0Bu

0C

0C00A

0Au 0Bu

0s0A

0Au 0Bu

0B 0C

0Cu

S = 001...

0C 0C

0C0 0C0A

0Cu0Au 0Bu 0Cu

xB0A

0Au 0Bu

(a) ST Bit Gadget look up.

0'B

0D

0Bu0Cu

0Cu

0Bu

0Bu

0Cu 0Cu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu0Au 0Bu 0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0D

0Du0Cu

1D10A1

0D0C0A 0B

0Du0Cu

0D0C0A 0'B 0D00A00A

0D02A0

0A

0A

0D0PA00A

PA1 1D10A

FB 0D00A

PD0PA00A

FCPA10A

PD0FB0A

PA00A 0S PA00A

FB FC0A

0Du0Cu0Au 0Bu 0Du

0D

0Du

0D

0Du

0D

0Du

0Du0Cu

0D

0Au

0Au

0Au

0Au 0Bu

0Au 0Bu

0Au 0Bu 0Du0Cu

0A

0Au 0Bu 0Du0Cu

0DxC

0A

0Au 0Bu 0Du0Cu

0DxC0'B

(a) (b) (c) (c) (d)

(e)

(d)

(f)

0S 0S

(b) Nondeterminstic Bit Gadget look up.

Figure 7 (a.u) For a string S, where the first 3 bits are 001, the states 0A and 0B have |S|
1
3

transition rules changing the state 0B to a state representing one of the first |S|
1
3 bits. The state is

iC0 if the ith bit is 0 or iC1 if the ith bit is 1 (a.v) The state 0C0 and the state 0C both represent the
same C index so the 0C state transition to the 0s. (a.w) For all states not matching the index of 0C ,
they transition to xB , which can be seen as a blank B state. (a.x) The state 0Bu transitions with the
state xB changing to 0B resetting the bit gadget. (b.a) Once the state A0 appears in the bit gadget
it transitions with 0B changing 0B to 0′

B . (b.b) The states 0′
B and 0C Nondeterminstically look up

bits with matching B and C indices. The state 0′
B transitions to look up state representing the bit

retrieved and the bit’s A index. The state 0C transitions to a look up state representing the D index
of the retrieved bit. (b.c) The look-up states transition with the states 0A and 0D, respectively. As
with the Single-Transition construction these may pass or fail. (b.d) When both tests pass, they
transition the D look up state to a symbol state that propagates out. (b.e) If a test fails, the states
both go to blank states. (b.f) The blank states then reset using the states to their north.

4.3.1 Overview

Here, let r = ⌈n
1
4 ⌉. We build index states in the same way as the Single-Transition system

but instead starting from the D column. We have 4 sets of index states, A, B, C, D. The
same methods are used to control when the next section builds by transitioning the state
r − 1D to r − 1′

D when the current section is finished building.

We use a similar look up method as the previous construction where we Nondeterminist-
ically retrieve a bit. However, since we are not restricting our rules to be a Single-Transition
system, we may retrieve 2 indices in a single step. We include 2 sets of O(r) look up
states, the A look up states and the D look up states. We also include Pass and Fail states
FB , FC , PA0, PD0, PA1, PD1 along with the blank states Bx and Cx. We utilize the same
method to build the north and south row.

Let S(α, β, γ, δ) be the ith bit of S where i = αr3+βr2+γr+δ. The states β′
B and γC have

r2 transitions rules. The process of these transitions is outlined in Figure 7b. They transition
from (β′

B , γC) to either (αA0, δD0) if S(α, β, γ, δ) = 0, or (αA1, δD1) if S(α, β, γ, δ) = 1. After
both transitions have happened, we test if the indices match to the actual A and D indices.
We include the transition rules (αA, αA0) to (αA, PA0) and (αA, αA1) to (αA, PA1). We refer
to this as the bit gadget passing a test. The two states (PA0, PD0) horizontally transition to
(PA0, 0s). The 0s state then transitions the state δD to 0s as well as propagating the state to
the right side of the assembly. If the compared indices are not equal, then the test fails and
the look up states will transition to the fail states FB or FC . These fail states will transition
with the states above them, resetting the bit gadget as in the previous system.

▶ Theorem 9. For any binary string S with length n > 0, there exists a tile automata system
Γ, that uniquely assembles an (2n + 2) × 4 assembly which represents S with O(n 1

4) states.

R. M. Alaniz et al. 6:13

0

1c

nc

N

S+

Additional States

2'A

N c

0c

c nc

1 0

nc

+

+SB

S +

Affinity Rules

0c

c1 1 0c

0 c 0 1

nc1 1 1

0 nc 0 0

N nc N N

1

+ S

1

0

+

0

S

Transition Rules

0c

1

0

1

0c 0

00

(a) New states and rules for a binary counter.

1

S + S +

0

1

S +

c

S +

0 c

1

S +

0c

S +

0 1

1

1 0c

0

1 0c

1 c

1 0c

0 c

1 0c

1 0c

1 0c

0 1

1 0c

Attachment

Transition

1

1
0

1
0

0

1
0

1
0

1 nc

1
0

1
0

0 nc

1
0

1
0

1 1

1
0

1
0

0 0

1
0

1
0

(b) Every case for the half adder.

Figure 8 (b) The 0/1 tile is not present in the system. It is used in the diagram to show that
either a 0 tile or a 1 tile can take that place.

S

1

1

0

0

1

0

0

0

N

S

1

1

0

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

c

S

1

0

0

1

0

0

0

N

+

1 0c

+S

1

1

0

0

1

0

0

0

N

0c

+S

1

0

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

0c

0c

+S

1

1

0

1

0

0

0

N

0c

0c

0 1

+S

1

1

0

0

1

0

0

0

N

0c

0c

1

nc

+S

1

1

0

1

0

0

0

N

0c

0c

1

0 0

+S

1

1

0

0

1

0

0

0

N

0c

0c

1

0

1

0

0

0

+S

1

1

0

0

1

0

0

0

0c

0c

1

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

0c

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

1

0

1

0

0

0

N

S

1

1

0

0

1

0

0

0

N

1

0

1

0

0

0

0

0

SS

1

0

0

1

0

0

0

N

S

0

0

1

0

0

0

N

0

0

1

S

0

0

1

0

0

0

N

0

0

+

c

c

nc N N

1

0 0

00c

1 0c

(a) Binary Counter.

S

7

0

0

1

N

S

7

0

0

1

N

+ S

7

0

0

1

N

+

c

S

7

0

0

1

N

+

8

S

7

0

0

1

N

8

0

0

1

N

S +

c

S

7

0

0

1

N

8

0

0

1

N

S +

9

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

1

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

1

0

1

N

0

S

(b) Base-10 Counter.

Figure 9 (a) The process of the binary counter. (b) A base-10 counter.

5 Rectangles

In this section, we will show how to use the previous constructions to build O(log n) × n

rectangles. All of these constructions rely on using the previous results to encode and print
a string then adding additional states and rules to build a counter.

5.1 States

We choose a string and construct a system that will create that string, using the techniques
shown in the previous section. We then add states to implement a binary counter that
will count up from the initial string. The states of the system, seen in Figure 8a, have two
purposes. The north and south states (N and S) are the bounds of the assembly. The plus,
carry, and no carry states (+, c, and nc) forward the counting. The 1, 0, and 0 with a carry
state make up the number. The counting states and the number states work together as half
adders to compute bits of the number.

5.2 Transition Rules / Single Tile Half Adder

As the column grows, in order to complete computing the number, each new tile attached in
the current column along with its west neighbor are used in a half adder configuration to
compute the next bit. Figure 8b shows the various cases for this half adder.

When a bit is going to be computed, the first step is an attachment of a carry tile or a
no-carry tile (c or nc). A carry tile is attached if the previous bit has a carry, indicated by a
tile with a state of plus or 0 with a carry (+ or 0c). A no-carry tile is placed if the previous
bit has no-carry, indicated by a tile with a state of 0 or 1. Next, a transition needs to occur
between the newly attached tile and its neighbor to the west. This transition step is the
addition between the newly placed tile and the west neighbor. The neighbor does not change
states, but the newly placed tile changes into a number state, 0 or 1, that either contains a
carry or does not. This transition step completes the half adder cycle, and the next bit is
ready to be computed.

SAND 2022

6:14 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

5.3 Walls and Stopping
The computation of a column is complete when a no-carry tile is placed next to any tile with
a north state. The transition rule changes the no-carry tile into a north state, preventing the
column from growing any higher. The tiles in the column with a carry transition to remove
the carry information, as it is no longer needed for computation. A tile with a carry changes
states into a state without the carry. The next column can begin computation when the plus
tile transitions into a south tile, thus allowing a new plus tile to be attached. The assembly
stops growing to the right when the last column gets stuck in an unfinished state. This
column, the stopping column, has carry information in every tile that is unable to transition.
When a carry tile is placed next to a north tile, there is no transition rule to change the state
of the carry tile, thus preventing any more growth to the right of the column.

▶ Theorem 10. For all n > 0, there exists a Tile Automata system that uniquely assembles
a O(log n) × n rectangle using,

Deterministic Transition Rules and O(log
1
2 n) states.

Single-Transition Transition Rules and Θ(log
1
3 n) states.

Nondeterministic Transition Rules and Θ(log
1
4 n) states.

5.4 Arbitrary Bases
Here, we generalize the binary counter process for arbitrary bases. The basic functionality
remains the same. The digits of the number are computed one at a time going up the column.
If a digit has a carry, then a carry tile attaches to the north, just like the binary counter. If
a digit has no carry, then a no-carry tile is attached to the north. The half adder addition
step still adds the newly placed carry or no-carry tile with the west neighbor to compute the
next digit. This requires adding O(b) counter states to the system, where b is the base.

▶ Theorem 11. For all n > 0, there exists a Deterministic Tile Automata system that
uniquely assembles a O(log n

log log n) × n rectangle using Θ
(

(log n
log log n) 1

2

)
states.

6 Squares

In this section we utilize the rectangle constructions to build n × n squares using the optimal
number of states.

Let n′ = n − 4⌈ log n
log log n ⌉ − 2, and Γ0 be a determinstic Tile Automata system that builds

a n′ × (4⌈ log n
log log n ⌉ + 2) rectangle using the process described in Theorem 11. Let Γ1 be a

copy of Γ0 with the affinity and transition rules rotated 90 degrees clockwise, and the state
labels appended with the symbol “*1”. This system will have distinct states from Γ0, and
will build an equivalent rectangle rotated 90 degrees clockwise. We create two more copies of
Γ0 (Γ2 and Γ3), and rotate them 180 and 270 degrees, respectively. We append the state
labels of Γ2 and Γ3 in a similar way.

We utilize the four systems described above to build a hollow border consisting of the
four rectangles, and then adding additional initial states which fill in this border, creating
the n × n square.

We create Γn, starting with system Γ0, and adding all the states, initial states, affinity
rules, and transition rules from the other systems (Γ1, Γ2, Γ3). The seed states of the other
systems are added as initial states to Γn. We add a constant number of additional states and
transition rules so that the completion of one rectangle allows for the “seeding” of the next.

R. M. Alaniz et al. 6:15

SA

N C pAN

SA

SA*

C*

N*

pA

SA

SA*pA

SA

Figure 10 The transitions that take place after the first rectangle is built. The carry state
transitions to a new state that allows a seed row for the second rectangle to begin growth.

pC

SA#

pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f f f

fff

ff

f f f

f f

f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

Figure 11 Once all 4 sides of the square build the pD state propagates to the center and allows
the light blue tiles to fill in.

Reseeding the Next Rectangle. To Γn we add transition rules such that once the first
rectangle (originally built by Γ0) has built to its final width, a tile on the rightmost column
of the rectangle will transition to a new state pA. pA has affinity with the state SA ∗ 1, which
originally was the seed state of Γ1. This allows state SA ∗ 1 to attach to the right side of the
rectangle, “seeding” Γ1 and allowing the next rectangle to assemble (Figure 10). The same
technique is used to seed Γ2 and Γ3.

Filler Tiles. When the construction of the final rectangle (of Γ3) completes, transition rules
propagate a state pD towards the center of the square (Figure 11). Additionally, we add an
initial state r, which has affinity with itself in every orientation, as will as with state pD on
its west side. This allows the center of the square to be filled with tiles.

▶ Theorem 12. For all n > 0, there exists a Tile Automata system that uniquely assembles
an n × n square with,

Deterministic transition rules and Θ
(

(log n
log log n) 1

2

)
states.

Single-Transition rules and Θ(log
1
3 n) states.

Nondeterministic transition rules and Θ(log
1
4 n) states.

7 Future Work

This paper showed optimal bounds for uniquely building n × n squares in three variants of
seeded Tile Automata without cooperative binding. En route, we proved upper bounds for
constructing strings and rectangles. Serving as a preliminary investigation into constructing
shapes in this model. This leaves many open questions:

As shown in [5], even 1D Tile Automata systems can perform Turing computation. This
behavior may imply interesting results for constructing 1 × n lines. We conjecture, it is
possible to achieve the optimal bound of Θ((log n

log log n) 1
2) with deterministic rules.

Our rectangles had a height bounded by O(log n
log log n), and none fell below the k < log n

log log n [2]
bound for a thin rectangle. In Tile Automata without cooperative binding, is it possible
to optimally construct k × n thin rectangles?
We allow transition rules between non-bonded tiles. Can the same results be achieved
with the restriction that a transition rule can only exist between two tiles if they share
an affinity in the same direction?

SAND 2022

6:16 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

While we show optimal bounds can be achieved without cooperative binding, can we
simulate so-called zig-zag aTAM systems? These are a restricted version of the cooperative
aTAM that is capable of Turing computation.
We show efficient bounds for constructing strings in Tile Automata. Given the power of
the model, it should be possible to build algorithmically defined shapes such as in [33] by
printing Komolgorov optimal strings and inputting them to a Turing machine.

References
1 Leonard Adleman, Qi Cheng, Ashish Goel, and Ming-Deh Huang. Running time and program

size for self-assembled squares. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 740–748, 2001.

2 Gagan Aggarwal, Qi Cheng, Michael H Goldwasser, Ming-Yang Kao, Pablo Moisset De Espanes,
and Robert T Schweller. Complexities for generalized models of self-assembly. SIAM Journal
on Computing, 34(6):1493–1515, 2005.

3 John Calvin Alumbaugh, Joshua J. Daymude, Erik D. Demaine, Matthew J. Patitz, and
Andréa W. Richa. Simulation of programmable matter systems using active tile-based self-
assembly. In Chris Thachuk and Yan Liu, editors, DNA Computing and Molecular Programming,
pages 140–158, Cham, 2019. Springer International Publishing.

4 Bahar Behsaz, Ján Maňuch, and Ladislav Stacho. Turing universality of step-wise and stage
assembly at temperature 1. In Darko Stefanovic and Andrew Turberfield, editors, DNA
Computing and Molecular Programming, pages 1–11, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

5 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and
Computation in Restricted Tile Automata. In Cody Geary and Matthew J. Patitz, editors,
26th International Conference on DNA Computing and Molecular Programming (DNA 26),
volume 174 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:18,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.DNA.2020.10.

6 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than
One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 172–184. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

7 Angel A Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Signal passing self-
assembly simulates tile automata. In 31st International Symposium on Algorithms and
Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

8 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and
Tim Wylie. Freezing simulates non-freezing tile automata. In David Doty and Hendrik Dietz,
editors, DNA Computing and Molecular Programming, pages 155–172, Cham, 2018. Springer
International Publishing.

9 Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim
Wylie. Optimal staged self-assembly of general shapes. Algorithmica, 80(4):1383–1409, 2018.

10 Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig.
A spatially localized architecture for fast and modular DNA computing. Nature Nano-
technology, July 2017. URL: https://www.microsoft.com/en-us/research/publication/
spatially-localized-architecture-fast-modular-dna-computing/.

11 Matthew Cook, Yunhui Fu, and Robert Schweller. Temperature 1 self-assembly: Deterministic
assembly in 3d and probabilistic assembly in 2d. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, pages 570–589. SIAM, 2011.

https://doi.org/10.4230/LIPIcs.DNA.2020.10
https://doi.org/10.4230/LIPIcs.DNA.2020.10
https://www.microsoft.com/en-us/research/publication/spatially-localized-architecture-fast-modular-dna-computing/
https://www.microsoft.com/en-us/research/publication/spatially-localized-architecture-fast-modular-dna-computing/

R. M. Alaniz et al. 6:17

12 Erik D Demaine, Martin L Demaine, Sándor P Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T Schweller, and Diane L Souvaine. Staged self-assembly: nanomanufacture of arbitrary
shapes with o (1) glues. Natural Computing, 7(3):347–370, 2008.

13 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Giancarlo Mauri, and Antonio E Porreca.
Computational complexity of finite asynchronous cellular automata. Theoretical Computer
Science, 664:131–143, 2017.

14 David Doty, Jack H Lutz, Matthew J Patitz, Robert T Schweller, Scott M Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 302–310. IEEE, 2012.

15 Nazim Fates. A guided tour of asynchronous cellular automata. In International Workshop on
Cellular Automata and Discrete Complex Systems, pages 15–30. Springer, 2013.

16 Bin Fu, Matthew J Patitz, Robert T Schweller, and Robert Sheline. Self-assembly with
geometric tiles. In International Colloquium on Automata, Languages, and Programming,
pages 714–725. Springer, 2012.

17 David Furcy, Scott M. Summers, and Logan Withers. Improved Lower and Upper Bounds on
the Tile Complexity of Uniquely Self-Assembling a Thin Rectangle Non-Cooperatively in 3D.
In Matthew R. Lakin and Petr Šulc, editors, 27th International Conference on DNA Computing
and Molecular Programming (DNA 27), volume 205 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.DNA.27.4.

18 Oscar Gilbert, Jacob Hendricks, Matthew J Patitz, and Trent A Rogers. Computing in
continuous space with self-assembling polygonal tiles. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 937–956. SIAM, 2016.

19 Eric Goles, P-E Meunier, Ivan Rapaport, and Guillaume Theyssier. Communication complexity
and intrinsic universality in cellular automata. Theoretical Computer Science, 412(1-2):2–21,
2011.

20 Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular auto-
mata. In Cellular Automata and Discrete Complex Systems, 21st International Workshop
(AUTOMATA 2015), volume 24, pages 65–73, 2015.

21 Leopold N Green, Hari KK Subramanian, Vahid Mardanlou, Jongmin Kim, Rizal F Hariadi,
and Elisa Franco. Autonomous dynamic control of DNA nanostructure self-assembly. Nature
chemistry, 11(6):510–520, 2019.

22 Daniel Hader and Matthew J Patitz. Geometric tiles and powers and limitations of geometric
hindrance in self-assembly. Natural Computing, 20(2):243–258, 2021.

23 Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Scott M. Summers. The power
of duples (in self-assembly): It’s not so hip to be square. Theoretical Computer Science,
743:148–166, 2018. doi:10.1016/j.tcs.2015.12.008.

24 Ming-Yang Kao and Robert Schweller. Reducing tile complexity for self-assembly through
temperature programming. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA ’06, pages 571–580, USA, 2006. Society for Industrial and
Applied Mathematics.

25 Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew
Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires cooperation.
In Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 752–771, 2014. doi:10.1137/1.9781611973402.56.

26 Pierre-Étienne Meunier and Damien Regnault. Directed Non-Cooperative Tile Assembly Is
Decidable. In Matthew R. Lakin and Petr Šulc, editors, 27th International Conference on
DNA Computing and Molecular Programming (DNA 27), volume 205 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 6:1–6:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DNA.27.6.

SAND 2022

https://doi.org/10.4230/LIPIcs.DNA.27.4
https://doi.org/10.1016/j.tcs.2015.12.008
https://doi.org/10.1137/1.9781611973402.56
https://doi.org/10.4230/LIPIcs.DNA.27.6

6:18 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

27 Pierre-Étienne Meunier and Damien Woods. The non-cooperative tile assembly model is not
intrinsically universal or capable of bounded Turing machine simulation. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 328–341,
New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3055399.
3055446.

28 Turlough Neary and Damien Woods. P-completeness of cellular automaton rule 110. In Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages
and Programming, pages 132–143, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

29 Nicolas Ollinger and Guillaume Theyssier. Freezing, bounded-change and convergent cellular
automata. arXiv preprint, 2019. arXiv:1908.06751.

30 Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and Turing
universality at temperature 1 with a single negative glue. In Proceedings of the 17th Interna-
tional Conference on DNA Computing and Molecular Programming, DNA’11, pages 175–189,
Berlin, Heidelberg, 2011. Springer-Verlag.

31 Paul WK Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In Proceedings of the thirty-second annual ACM symposium on Theory of computing,
pages 459–468, 2000.

32 Nicholas Schiefer and Erik Winfree. Time complexity of computation and construction in the
chemical reaction network-controlled tile assembly model. In Yannick Rondelez and Damien
Woods, editors, DNA Computing and Molecular Programming, pages 165–182, Cham, 2016.
Springer International Publishing.

33 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007.

34 Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi, Yae Lim
Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, Erik Winfree, and
Lulu Qian. A cargo-sorting DNA robot. Science, 357(6356):eaan6558, 2017. doi:10.1126/
science.aan6558.

35 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

36 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings
of the 4th conference on Innovations in Theoretical Computer Science, pages 353–354, 2013.

37 Thomas Worsch. Towards intrinsically universal asynchronous ca. Natural Computing,
12(4):539–550, 2013.

https://doi.org/10.1145/3055399.3055446
https://doi.org/10.1145/3055399.3055446
http://arxiv.org/abs/1908.06751
https://doi.org/10.1126/science.aan6558
https://doi.org/10.1126/science.aan6558

Loosely-Stabilizing Phase Clocks and The
Adaptive Majority Problem
Petra Berenbrink #

Universität Hamburg, Germany

Felix Biermeier #

Universität Hamburg, Germany

Christopher Hahn #

Universität Hamburg, Germany

Dominik Kaaser #

Universität Hamburg, Germany

Abstract
We present a loosely-stabilizing phase clock for population protocols. In the population model we
are given a system of n identical agents which interact in a sequence of randomly chosen pairs.
Our phase clock is leaderless and it requires O(log n) states. It runs forever and is, at any point of
time, in a synchronous state w.h.p. When started in an arbitrary configuration, it recovers rapidly
and enters a synchronous configuration within O(n log n) interactions w.h.p. Once the clock is
synchronized, it stays in a synchronous configuration for at least poly(n) parallel time w.h.p.

We use our clock to design a loosely-stabilizing protocol that solves the adaptive variant of the
majority problem. We assume that the agents have either opinion A or B or they are undecided and
agents can change their opinion at a rate of 1/n. The goal is to keep track which of the two opinions
is (momentarily) the majority. We show that if the majority has a support of at least Ω(log n)
agents and a sufficiently large bias is present, then the protocol converges to a correct output within
O(n log n) interactions and stays in a correct configuration for poly(n) interactions, w.h.p.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Population Protocols, Phase Clocks, Loose Self-stabilization, Clock Synchro-
nization, Majority, Adaptive

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.7

Related Version arXiv version: https://doi.org/10.48550/arXiv.2106.13002 [13]

1 Introduction

In this paper we introduce a loosely-stabilizing leaderless phase clock for the population model
and demonstrate its usability by applying the clock to the comparison problem introduced in
[3]. Population protocols have been introduced by Angluin et al. [5]. A population consists
of n anonymous agents. A random scheduler selects in discrete time steps pairs of agents
to interact. The interacting agents execute a state transition, as specified by the algorithm
of the population protocol. Angluin et al. [5] gave a variety of motivating examples for the
population model, including averaging in sensor networks, or modeling a disease monitoring
system for a flock of birds. In [24] the authors introduce the notion of loose-stabilization. A
population protocol is loosely-stabilizing if, from an arbitrary state, it reaches a state with
correct output fast and remains in such a state for a polynomial number of interactions.
In contrast, self-stabilizing protocols are required to converge to the correct output state
from any possible initial configuration and stay in a correct configuration indefinitely. Many
population protocols heavily rely on so-called phase clocks which divide the interactions into

© Petra Berenbrink, Felix Biermeier, Christopher Hahn, and Dominik Kaaser;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petra.berenbrink@uni-hamburg.de
mailto:felix.biermeier@uni-hamburg.de
mailto:tim.christopher.hahn@uni-hamburg.de
mailto:dominik.kaaser@uni-hamburg.de
https://orcid.org/0000-0002-2083-7145
https://doi.org/10.4230/LIPIcs.SAND.2022.7
https://doi.org/10.48550/arXiv.2106.13002
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

blocks of O(n log n) interactions each. The phase clocks are used to synchronize population
protocols. For example, in [22, 16] they are used to efficiently solve leader election and in [15]
they are used to solve the majority problem.

In the first part of this paper we present a loosely-stabilizing and leaderless phase clock
with O(log n) many states per agent. We show that this clock can run forever and that, at
any point of time, it is synchronized w.h.p.1 In contrast to related work [1, 7, 15, 22], our
clock protocol recovers rapidly in case of an error: from an arbitrary configuration it always
enters a synchronous configuration within O(n log n) interactions w.h.p. Once synchronized
it stays in a synchronous configuration for at least poly (n) interactions, w.h.p. Our phase
clock can be used to synchronize population protocols into phases of O(n log n) interactions,
guaranteeing that there is a big overlap between the phases of any pair of agents. Our clock
protocol is simple, robust and easy to use.

In the second part of this paper we demonstrate how to apply our phase clock by solving
an adaptive majority problem motivated by the work of [3, 4]. Our problem is defined as
follows. Each agent has either opinion A, B, or U for being undecided. We say that agents
change their input with rate r if in every time step an arbitrary agent can change its opinion
with probability r. The goal is to output, at any time, the actual majority opinion. The idea
of our approach is as follows. Our protocol simply starts, at the beginning of each phase, a
static majority protocol as a black box. This protocol takes as an input the set of opinions at
that time and calculates the majority opinion over these inputs. The outcome of the protocol
is then used during the whole next phase as majority opinion. In order to highlight the
simplicity of our phase clock, we first use the very natural protocol based solely on canceling
opposing opinions introduced in [7]. Then we present a variant based on the undecided state
dynamics from [8] which works as follows. The agents have one of two opinions A or B, or
they are undecided. Whenever two agents with the same opinion interact, nothing happens.
When two agents with an opposite opinion interact they will become undecided. Undecided
agents interacting with an agent with either opinion A or opinion B adopt that opinion.

Without loss of generality we assume that A is the majority opinion in the following.
When at least Ω(log n) agents have opinion A, there is a constant factor bias between A and
B, and the opinions change at most at rate 1/n per interaction, the system outputs A w.h.p.
Our protocol requires only O(log n) many states. For the setting where all agents have either
opinion A or B (none of the agent is in the undecided state U) and we have an additive bias
of n3/4+ε for some constant ε > 0 is present, the system again converges to A w.h.p. In the
latter setting we can tolerate a rate of order r = Ω(n−1/4+ε).

Related Work. Population protocols have been introduced by Angluin et al. [5]. Many
of the early results focus on characterizing the class of problems which are solvable in the
population model. For example, population protocols with a constant number of states can
exactly compute predicates which are definable in Presburger arithmetic [5, 6, 9]. There are
many results for majority and leader election, see [20] and [16] for the latest results. In [24]
the authors introduce the notion of loose-stabilization to mitigate the fact that self-stabilizing
protocols usually require some global knowledge on the population size (or a large amount of
states). See [17] for an overview of self-stabilizing population protocols.

In [7] the authors present and analyze a phase clock which divides time into phases of
O(n log n) interactions assuming that a unique leader exists. They also present a general-
ization using a junta of size nε (for constant ε) instead of a unique leader and analyze the

1 The expression with high probability (w.h.p.) refers to a probability of 1 − n− Ω(1).

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:3

process empirically. In [22] the authors show that a junta can be elected using O(log log n)
many states and use the resulting clock to solve leader election. The protocol can easily be
modified such that it requires only a constant number of states after the junta election [15].
In [1] the authors present a leaderless phase clock with O(log n) states. In contrast to our
leaderless phase clock, the clock from [1] was not proven to be self-stabilizing. The analysis
is based on the potential function analysis introduced in [25] for the greedy balls-into-bins
strategy where each ball has to be allocated into one out of two randomly chosen bins. This
analysis assumes an initially balanced configuration and it cannot be adopted to an arbitrary
unbalanced state, which would be required to deal with unsynchronized clock configurations.
In [10] the authors consider a variant of the population model, so-called clocked population
protocols, where agents have an additional flag for clock ticks. The clock signal indicates
when the agents have waited sufficiently long for a protocol to have converged. They show
that a clocked population protocol running in less than ωk time for fixed k ≥ 2 is equivalent
in power to nondeterministic Turing machines with logarithmic space.

Another line of related work considers the problem of exact majority, where one seeks to
achieve (guaranteed) majority consensus, even if the additive bias is as small as one [21, 1, 14,
12]. The currently best protocol [20] solves exact majority with O(log n) states and O(log n)
stabilization time, both in expectation and w.h.p. The authors of [8] solve the approximate
majority problem. They introduce the undecided state dynamics in the population model for
two opinions. They show that their 3-state protocol reaches consensus w.h.p. in O(n log n)
interactions. If the bias is of order ω(

√
n · log n) the undecided state dynamics converges

towards the initial majority w.h.p. In [18] the required bias is reduced to Ω(
√

n log n). For
completeness [11] provides a survey about further protocols in the gossip model.

In [2] the authors define the catalytic input model (CI model). In this model the
agents are divided into the two groups catalytic agents and non-catalytic agents. Non-
catalytic agents perform pairwise interactions and change their state. Catalytic agents
never change their state. Additionally to the normal state changes non-catalytic agents can
perform spurious state changes; the so-called leak rate specifies the frequency of the spurious
reactions. The goal of the non-catalytic agents is to compute a function over the states of
the catalytic agents. The authors develop an algorithm for their model to detect whether
there is a catalytic agent in a given state D or not. Note that, due to the leaky transactions
non-catalysts can compute false-positives. In [4] the authors use the catalytic input model
with n catalysts and m non-catalysts which they call worker agents (N = n + m). They
solve the approximate majority problem for two opinions w.h.p. in O(N log N) interactions
when the initial bias among the catalysts is Ω

(√
N log N

)
and m = Θ(n). They show that

the size of the initial bias is tight up to a O
(√

log N
)

factor. Additionally, they consider the
approximate majority problem in the CI model and in the population model with leaks. Their
protocols tolerate a leak rate of at most β = O

(√
N log N/N

)
in the CI model and a leak

rate of at most β = O
(√

n log n/n
)

in the population model. They also show a separation
between the computational power of the CI model and the population model.

In [3] the authors consider the CI model and introduce the robust comparison problem.
The catalytic agents are either in state A or B and the goal of the worker agents is to decide
which of the two states A and B has the larger support. In they dynamic version the number
of agents in state A or B can change during the execution as long as the counts for A and B

remain stable for a sufficiently long period allowing the algorithm to stabilize on an output.
If at time t at least Ω(log n) catalytic agents are in either A or B and the ratio between the
numbers of agents supporting agents A and B is at least a constant, then most non-catalytic
agents (up to O(n/logn) agents) outputs w.h.p. the correct majority. The protocol needs
with O(log n · log log n) states per agent, assuming that the number of catalytic agents in A

and B does not change in the meantime. They also mention that with standard population

SAND 2022

7:4 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

splitting O(log n + log log n) states are sufficient under the constraint that only a constant
fraction of the agents store the output. Additionally the authors show that their protocol is
robust to leaky transitions at a rate of O(1/n). If the initial support of A and B states is
Ω

(
log2 n

)
the authors can strengthen their results such that a ratio between the two base

states of 1 + o(1) is sufficient.

2 Population Model and Problem Definitions

In the population model we are given a set V of n anonymous agents. At each time step
two agents are chosen independently and uniformly at random randomly to interact. We
assume that interactions between two agents (u, v) are ordered and call u the initiator and v

the responder. The interacting agents update their states according to a common transition
function of their previous states. Formally, a population protocol is defined as a tuple of a
finite set of states Q, a transition function δ : Q×Q→ Q×Q, a finite set of output symbols
Σ, and an output function ω : Q→ Σ which maps every state to an output. A configuration
is a mapping C : V → Q which specifies the state of each agent. An execution of a protocol
is an infinite sequence C0, C1, . . . such that for all Ci there exist two agents v1, v2 and a
transition (q1, q2)→ (q′

1, q′
2) such that Ci(v1) = q1, Ci(v2) = q2, Ci+1(v1) = q′

1, Ci+1(v2) = q′
2

and Ci(w) = Ci+1(w) for all w ̸= v1, v2. The main quality criteria of a population protocol
are the required number of states and the running time measured in interactions.

The goal of this paper is to develop protocols that are loosely-stabilizing according to the
definitions of [24]. Let C denote an arbitrary subset of all possible configurations. Consider
an infinite sequence of configurations C0, C1, For an arbitrary configuration Ci ̸∈ C the
convergence time is defined as the smallest t such that Ci+t1 ∈ C. Intuitively, the convergence
time bounds the time it takes to reach a configuration in C when starting from a configuration
not in C. For an arbitrary configuration Ci ∈ C the holding time t2 is defined as the largest t

such that Ci+t2 ∈ C. Intuitively, the holding time bounds the time during which the protocol
remains in a configuration in C when starting from a configuration in C.

▶ Definition 1. A protocol is loosely-stabilizing wrt. to a subset of configurations C if the
maximum convergence time over all possible configurations is w.h.p. less than t1 and the
minimum holding time over all configurations in C is w.h.p. at least t2.

Phase Clocks. Phase clocks are used to synchronize population protocols. We assume
a phase clock is implemented by simple counters clock[u1], . . . , clock[un] modulo |Q| (see,
e.g., [1, 7, 15, 19, 22]). Whenever clock[u] crosses zero, agent u receives a so-called signal.
These signals will divide the time into phases of Θ(n log n) interactions each. We say a
(τ, w)-phase clock is synchronous in the time interval [t1, t2] if every agent gets a signal every
Θ(n log n) interactions. More formally:

Every agent receives a signal in the first 2 · (w + 1) · τ · n steps of the interval.
Assume an agent u receives a signal at time t ∈ [t1, t2].

For all v ∈ V , agent v receives a signal at time tv with |t− tv| ≤ τ · n.
Agent u receives the next signal at time t′ with (w +1) · τ ·n ≤ |t− t′| ≤ 2 · (w +1) · τ ·n.

The above definition divides the time interval [t1, t2] into a sequence of subintervals that
alternates between so-called burst-intervals and overlap-intervals.

A burst-interval has length at most τ · n and every agent gets exactly one signal.
An overlap-interval consists of those time steps between two burst-intervals where none
of the agents gets a signal. It has length at least w · τ · n.

A burst-interval together with the subsequent overlap-interval forms a phase.

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:5

To define loosely-stabilizing phase clocks, we need to define the set of synchronous
configurations C. Intuitively, we call a state Ct of a (τ, w)-phase clock at time t synchronous
if the counters of all pairs of agents do not deviate much. More precisely, clock[u](t) −
clock[v](t) <|Q| f(w, τ) for all pairs of agents (u, v) (Here, “≤|Q|” denotes smaller w.r.t. the
circular order modulo |Q|.) We define f and give the formal definition of a synchronous
configuration in the next section.

3 Clock Algorithm

0
1

2

work

3

launch

14 + w + 4 ·
√
10 + w hours

gather

6 + 2 ·
√
10 + w hours

Figure 1 Schematic representation of the clock states.

In this section we introduce our phase clock protocol. For ease of notation, we as-
sume in this section that the state space of an agent is Q Our (τ, w)-phase clock has a
state space Q = { 0, . . . ,

(
21 + w + 6 ·

√
10 + w

)
· τ − 1 }. The clock states are divided into(

21 + w + 6 ·
√

10 + w
)

hours, and each hour consists of τ = τ(c) = 36 · (c + 4) · ln n minutes.
The parameter c ≥ 6 determines the error probability in each phase and thus the holding
time (see Theorem 2). The parameter w ≥ 0 can be chosen as needed by the application.
As we will see, τ is a multiple of the running time of the one-way epidemic (see Lemma 4)
and w · τ · n is the number of interactions in which our agents are synchronized. We divide
the hours into three consecutive intervals (see Figure 1): the launching interval Ilaunch (first
hour), the working interval Iwork (14 + w + 4 ·

√
10 + w hours) and the gathering interval

Igather (last 6 + 2 ·
√

10 + w hours). We say that agent u is in one of the intervals whenever
its clock counter clock[u] is in that interval. If the agents are either all in Igather, all in Iwork,
or all in Ilaunch, we say the configuration is homogeneous. For two agents u and v we define
a distance d(u, v) = min{|clock[u]− clock[v]|, |Q| − |clock[u]− clock[v]|} that takes the cyclic
nature of the clock into account. This allows us to define synchronous configurations as
follows.

▶ Definition (Synchronous Configuration). A configuration C is called synchronous if and
only if for all pairs of agents (u, v) we have d(u, v) < |Ilaunch|+ |Igather| = (7 +2 ·

√
10 + w) · τ .

Our clock works as follows. Assume agents (u, v) interact. With two exceptions, agent u

increments its counter clock[u] by one minute modulo |Q| (Rules 1 and 2). If, however, u is
in Igather and v is in Ilaunch then agent u adopts clock[v] (Rule 3): we say the agent hops. If
u is in Igather and v is in Iwork then agent u returns to the beginning of Igather (Rule 4): we
say that the agent resets. We define that agent u receives a signal whenever its clock crosses
the wrap-around from Igather to Ilaunch. Formally, our clock uses the following transitions.

SAND 2022

7:6 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

(q1, q2) ∈ (Q \ Igather)×Q : (q1, q2)→ (q1 + 1, q2) (step forward) (1)
(q1, q2) ∈ Igather × Igather : (q1, q2)→ (q1 + 1 mod |Q|, q2) (step forward) (2)
(q1, q2) ∈ Igather × Ilaunch : (q1, q2)→ (q2, q2) (hopping) (3)
(q1, q2) ∈ Igather × Iwork : (q1, q2)→ (|Ilaunch|+ |Iwork|, q2) (reset) (4)

Note that |Iwork| = 2(|Ilaunch|+ |Igather|) + w · τ to have w · τ · n homogeneous working
configurations between two signals. On the other hand, |Igather|/τ = Θ

(√
|Iwork|/τ

)
which

is necessary to apply Chernoff bounds. We chose |Ilaunch| = τ for simplicity. On an intuitive
level, the clock works as follows. Assume the clock is synchronized and all agents are in
Ilaunch. Now consider the next k = Θ

(
n · |Q|

)
interactions. All agents step forward according

to Rule 1 until they reach Igather. The maximum distance between any agents grows during
the k interactions but can still bounded by O

(√
k/n

)
= O

(√
|w| · log n

)
, w.h.p. via Chernoff

bounds. Hence, due to the choice of w there is no agent left behind in Ilaunch when the first
agent reaches Igather. Additionally, due to the size of Igather when the last agent enters Igather
all of the other agents are still in |Igather|. As soon as the first agent reaches Ilaunch, Rule 3
(agents hop onto agents in Ilaunch) ensures that all agents start the next phase without a
large gap. Hence, there is an interaction after which all agents are in |Ilaunch| which brings
us back to our initial configuration (all agents in Ilaunch).

Now we consider an asynchronous configuration Ct where the agents can be arbitrarily
distributed over the |Q| states of the clock. The main idea for the recovery of our clock is as
follows. We show that after O(n log n) interactions there is a time t where Ilaunch is empty.
After O(n log n) additional steps most of the agents are in Igather: agents cannot hop since
Ilaunch is empty, and they reset as soon as they interact with an agent in Iwork. They enter
Ilaunch as soon as the first agent crosses 0 by increasing its clock counter.

We will show that the following two properties hold for our clock.

▶ Theorem 2. Let τ = 36 · (c + 4) · ln n and let w be a sufficiently large constant. Let t1, t2
with t1 ≤ t2 be two points in time and assume that the configuration Ct1 at time t1 is a
homogeneous launching configuration and t2 − t1 ≤ nc. Then the clock counters of the agents
implement a synchronous (τ, w)-phase clock in the time interval [t1, t2] w.h.p.

▶ Theorem 3. The clock counters of the agents implement a
(
O

(
n · log n

)
, Ω

(
poly n

))
-

loosely-stabilizing
(
Θ

(
log n

)
, w

)
-phase clock.

Note that our simulations suggest that the algorithm also works if τ is smaller by a constant
fraction. We prove Theorem 2 in Section 4 and Theorem 3 in Section 5.

Auxiliary Results. The one-way-epidemic is a population protocol with state space { 0, 1 }
and transitions (q1, q2) → (max(q1, q2), q2). An agent in state 0 is called susceptible and
an agent in state 1 is called infected. We say agent v infects agent u if v is infected and
u initiates an interaction with v. The following result is folklore, see, e.g., [7]. Additional
details can be found in the full version of this paper.

▶ Lemma 4 (One-way-epidemic). Assume an agent starts the one-way epidemic in step 1.
All agents are infected after t = τ/4 · n many steps with probability at least 1− n−(7+2c).

The following lemma bounds the number of interactions initiated by some fixed agent
u among a sequence of t interactions. It is used throughout Sections 4 and 5 and follows
immediately from Chernoff bounds (see [23]).

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:7

▶ Lemma 5. Consider an arbitrary sequence of t interactions and let Xu be the number of
interactions initiated by agent u within this sequence. Then

Pr[Xu < (1 + δ) · t/n] ≥ 1−n− 12·(c+4)t·δ2
n·τ and Pr[Xu > (1− δ) · t/n] ≥ 1−n− 18·(c+4)t·δ2

n·τ .

4 Maintenance: Proof of Theorem 2

In this section we first show the following main result. At the end of the section we show
how Theorem 2 follows from this proposition.

▶ Proposition 6 (Maintenance). Consider our (τ, w)-phase clock for n agents with τ =
36 · (c+4) · ln n for any c ≥ 6 and sufficiently large w. Let configuration Ct1 be a homogeneous
launching configuration. Then, with probability at least 1 − n−(c+1), there exists a t2 =
Θ

(
n · w · log n

)
such that the following holds:

1. Ct1+t2 is a homogeneous launching configuration,
2. ∀t ∈ [t1, t1 + t2]: Ct is synchronous,
3. in the time interval [t1, t1 + t2] there exists a contiguous sequence of homogeneous working

configurations of length w · τ · n.
We split the proof of Proposition 6 into two parts, Lemmas 7 and 8. The formal proof follows.

Proof. Assume the configuration Ct1 at time t1 is a homogeneous launching configuration.
Statements 1 and 2 of Proposition 6 follow immediately from Lemmas 7 and 8:

It follows from Lemma 7 that the agents transition via a sequence of synchronous configu-
rations into a homogeneous gathering configuration within Θ

(
n · w · log n

)
time w.h.p.

It follow from Lemma 8 that the agents transition via a sequence of synchronous configu-
rations back into a homogeneous launching configuration within Θ

(
n · w · log n

)
further

time w.h.p.
It remains to show Statement 3. Recall that in a synchronous configuration all pairs of agents
have distance (w.r.t. the circular order modulo |Q|) at most ∆ = (7 + 2 ·

√
10 + w) · τ . Since

|Iwork| = w · τ + 2∆ it immediately follows that there must be w · τ · n interactions where all
agents are in Iwork. This concludes the proof. ◀

The following lemma establishes that w.h.p. all agents transition from a homogeneous
launching configuration into a homogeneous gathering configuration via a sequence of
synchronous configurations.

▶ Lemma 7. Let Ct be a homogeneous launching configuration. Let t′ = n · |Ilaunch|+|Iwork|
1−

(
2·
√

|Iwork|/τ
)−1 .

Then the following holds with probability at least 1− n−(c+1)/2:
1. Ct+t′ is a homogeneous gathering configuration and
2. ∀t′′ ∈ [t, t + t′] : Ct′′ is synchronous.

Proof. In the following we assume w.l.o.g. t = 0. We prove the two statements separately.

Statement 1. Our goal is to show that after t′ interactions all agents are in Igather when we
start from a homogeneous launching configuration C0 at time t = 0. We first show that there
is no agent left in Ilaunch when the first agent enters Igather. Let ta be the first interaction in
which an agent enters Igather. Note that before ta all agents are either in Ilaunch or in Iwork
and thus the agents increase their counter by one whenever they initiate an interaction.

First we show that w.h.p. ta ≥ 2 · τ · n. Let Xu(2 · τ · n) denote the number of
interactions agent u initiates before time 2 · τ · n. From Lemma 5 it follows with δ = 1 that
Xu(2 · τ · n) < 4 · τ with probability at least 1− n−24·(c+4). Since 4 · τ < |Iwork|, it holds that

SAND 2022

7:8 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

clock[u](2 · τ · n) < |Ilaunch|+ |Iwork| in this case. Hence, agent u has not yet reached Igather
with probability at least 1 − n−24·(c+4) at time ta. It follows from a union bound over all
agents that no agent has reached Igather with probability at least 1− n−24·(c+4)+1 at time ta.

Next we show that w.h.p. at time 2 · τ · n all agents have left Ilaunch. As before, let
Xu(2 · τ · n) denote the number of interactions agent u initiates before time 2 · τ · n. From
Lemma 5 it follows with δ = 1 that Xu(2 · τ · n) > τ with probability at least 1− n−36·(c+4).
Since τ = |Ilaunch|, it holds that clock[u](t + 2 · τ · n) ≥ |Ilaunch| in this case. Hence, agent
u has left Ilaunch with probability at least 1− n−36·(c+4) at time ta. Again, it follows from
a union bound over all agents that all agents have left Ilaunch with probability at least
1− n−36·(c+4)+1 at time ta.

Let now tb be the first interaction in which an agent enters the last minute of Igather and
observe that tb > ta. Then, w.h.p. no agent is in Ilaunch during the time interval [t+ ta, t+ tb].
Therefore, agents cannot hop. Thus, by definition of tb, no agent can leave Igather before
time tb. All initiators must therefore either increase their counter by one or reset.

First we show that w.h.p. tb > t′. From Lemma 5 it follows with δ =
(

2 ·
√
|Iwork|/τ

)−1

that Xu(t′) < |Iwork| + |Igather| with probability at least 1 − n−3(c+4). (Note that we use
(1 + δ)/(1− δ) < 1/(1− 2 · δ) for δ < 0.5 and (|Ilaunch + |Iwork|)/(1− 2 · δ) = |Iwork|+ (w +
5 ·
√

10 + w + 16)/(
√

10 + w + 1)) · τ < |Iwork|+ |Igather|.) Thus, clock[u](t′) ≤ clock[u](0) +
Xu(t′) < |Ilaunch| − 1 + |Iwork|+ |Igather| (which is the last state of Igather) with probability
at least 1− n−3(c+4). By a union bound, this holds for all agents with probability at least
1− n−(3c+11).

Next we show that w.h.p. at time t′ all agents have reached Igather. From Lemma 5
it follows for our choice of δ that Xu(t′) > |Ilaunch| + |Iwork| with probability at least
1 − n−9·(c+4)/2. Thus, clock[u](t′) ≥ clock[u](0) + Xu(t′) > 0 + |Ilaunch| + |Iwork|, with
probability at least 1 − n−9·(c+4)/2. By a union bound, this holds for all agents with
probability at least 1− n−(17+9/2·c).

Together it follows that at time t′ no agent has left Igather but all agents have entered it
with probability at least 1−n−(c+3). Therefore, Ct′ is a homogeneous gathering configuration.

Statement 2. Recall that a synchronous configuration C is defined as a configuration
where max(u,v) { d(u, v) } < |Ilaunch|+ |Igather|. As before, let Xu(i) denote the number of
interactions agent u initiates before time i. Now fix a time t ≤ t′ and a pair of agents (u, v)
with Xu(t) < Xv(t). We use Lemma 5 to bound the deviation of Xu(t) and Xv(t) at time t

as follows: Pr[Xu(t) > t/n− |Igather|/2] ≥ 1− n−6(c+4) and Pr[Xv(t) < t/n + |Igather|/2] ≥
1− n−4(c+4). Therefore, |Xv(t)−Xu(t)| < |Igather| with probability at least 1− n−4(c+4) −
n−6(c+4).

Note that Lemma 5 allows us to bound the deviation in the numbers of interactions
initiated by agents u and v. However, this does not immediately give a bound on the
difference of the clock counters |clock[v](t)− clock[u](t)|. To bound the deviation of clock
counters (by |Ilaunch|+ |Igather|), we therefore distinguish three cases.

First, assume that neither u nor v have reached Igather at time t. Then clock[u](t) =
clock[u](0)+Xu(t) and clock[v](t) = clock[v](t)+Xv(t). Observe that by the assumption of the
lemma, both u and v are in Ilaunch at time t = 0 and thus |clock[v](0)−clock[u](0)| < |Ilaunch|.
Together with the above bound on |Xv(t) − Xu(t)| we get |clock[v](t) − clock[u](t)| <

|Ilaunch|+ |Igather|.
Secondly, assume that u has not reached Igather but v has reached Igather at time t. Then

clock[u](t) = clock[u](0) + Xu(t). For clock[v](t), however, it might have occurred that v has
reset in some interactions before time t. Nevertheless, the clock counter of v is bounded by

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:9

the number of initiated interactions such that clock[v](t) ≤ clock[v](t) + Xv(t). (Note that v

can only increment its clock[v] counter or reset its value; hopping is not possible since we
have shown in the proof of the first statement that Ilaunch is empty when the first agent
enters Igather.) Therefore, we get again |clock[v](t)− clock[u](t)| < |Ilaunch|+ |Igather|.

Finally, assume that both u and v are in Igather at time t. Then |clock[v](t)−clock[u](t)| ≤
|Igather| < |Ilaunch|+ |Igather| is trivially true.

There are no further cases: in the proof of the first statement we have shown that all
agents transition from a homogeneous launching configuration to a homogeneous gathering
configuration during the time interval [0, t′]. The result now follows from a union bound over
all o(n2) points in time t ≤ t′ and all n · (n− 1) pairs of agents. ◀

The following lemma is the main technical contribution of this section. It establishes that
w.h.p. all agents transition from a homogeneous gathering configuration into a homogeneous
launching configuration via a sequence of synchronous configurations. Consider a homo-
geneous gathering configuration and recall that whenever an agent hops from Igather into
Ilaunch it adopts the state of the responder. The main difficulty is to show that all agents
hop into Ilaunch before the first agent leaves Ilaunch.

▶ Lemma 8. Let Ct be a homogeneous gathering configuration. Then with probability at
least 1− n−(c+1)/2 the following holds:
1. there exists a t0 = O

(
n ·
√

w · log n
)

such that the first agent enters Ilaunch at time t + t0,
2. there exists a t′ ≤ τ/4 · n such that Ct+t0+t′ is a homogeneous launching configuration,
3. ∀t′′ ∈ [t, t + t′] : Ct′′ is synchronous.

Proof. We prove first show Statement 1, Statement 2 and Statement 3 are shown together.

Statement 1. Let t0 be defined such that the first agent u leaves Igather at time t + t0.
Since Ct is a homogeneous gathering configuration, Ilaunch is empty at time t and hence
agent u can only leave Igather by increasing its counter. In every interaction before time
t + t0 some agent has to increase its state by one. Thus t0 ≤ n · |Igather| = O

(
n ·
√

w · log n
)
.

Statement 2+3. We continue our analysis at time t0 and again assume w.l.o.g. for the
sake of brevity of notation that t0 = 0. Note that at that time exactly one agent is in state
0 and all remaining agents are still in Igather. We show the following: there exists a time
t̃ = τ/4 ·n such that at time t̃ all agents are in Ilaunch (Recall that |Ilaunch| = τ ·n). To do so
we first define a simplified process with the same state space Q, however, we refer to the last
state of Ilaunch as stop. Agents in stop never change their state (which renders the states of
Iwork unreachable). The formal definition of the simplified process is as follows. Rule 2 and
3 are identical to the original process and Rule 1 and 4 are modified as follows.

(q1, q2) ∈ (Ilaunch \ { stop })×Q : (q1, q2)→ (q1 + 1, q2) (step forward) (1)
(q1, q2) ∈ { stop } ×Q : (q1, q2)→ (q1, q2) (stopping) (4)

For this simplified process we show a lower bound: after t̃ = Θ
(
n · log n

)
interactions all

agents are in Ilaunch. Then we show (for the simplified process) an upper bound: in Ct̃

none of the agents are in state stop. A simple coupling of the simplified process and the
original process shows that under these circumstances none of the agents entered Iwork for
our original process. This finishes the proof with t′ = t̃.

Lower Bound. In the simplified process agents can enter Ilaunch either via hopping or by
making enough steps forward on their own. From Lemma 4 it follows that all agents enter
Ilaunch after at most t̃ = τ/4 · n interactions with probability at least 1 − n−(5+c). (For

SAND 2022

7:10 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

the upper bound, one can simply discard setting the clock counter to zero when an agent
enters Ilaunch by increasing its counter.) Showing that none of the agents are in state
stop is much harder. Due to the hopping the clock counters of agents in Ilaunch are highly
correlated. Nevertheless, we can show that the clock counters of each agent can be majorized
by independent binomially distributed random variables as follows.

Upper Bound. Let ui be the i’th agent that enters Ilaunch and let ti be the time when ui enters
Ilaunch. Let furthermore Xi(t) be a random variable for the clock counter of agent ui in Ilaunch
in the time interval [0, t]. Formally, we define for a time step t that Xi(t) = 0 if ui is in Igather
and Xi(t) = clock[ui](t) if ui is in Ilaunch. We show by induction on i that Xi(t) is majorized by
a random variable Zi(t) with binomial distribution Zi(t) ∼ Bin

(
t, 1/n · (1 + 1/(n− 1))i−1)

,
i.e., Pr[Xi(t) > x] ≤ Pr[Zi(t) > x] for all x ≥ 0. Ultimately, our goal is to apply Chernoff
bounds to Zi(t̃) which shows that agent ui does not reach stop w.h.p. The statement for the
simplified process then follows from a union bound over all agents w.h.p.

Base Case. For the base case we consider all agents that enter Ilaunch on their own by
incrementing their counters to 0 (modulo |Q|) in Igather. Fix such an agent ui. It holds that
Xi(t) for t ≥ ti has binomial distribution Xi(t) ∼ Bin(t− ti, 1/n). Therefore, Xi(t) ≺ Zi(t)
as claimed.2 (Intuitively, this means that the clock counter of any other agent ui with i > 1
that enters Ilaunch at time ti > 0 is majorized by the clock counter of an agent which enters
Ilaunch at time t1 = 0 and increments its counter with probability 1/n.)

Induction Step. For the induction step we now consider all agents that enter Ilaunch by
hopping onto some other agent in Ilaunch. Fix such an agent ui. Let Si be the event that agent
ui is the i’th agent that enters Ilaunch. Let furthermore ti be the time when ui enters Ilaunch.
We condition on Si and observe that agent ui enters Ilaunch by hopping onto some other
agent uj ∈ {u1, . . . , ui−1 }. Intuitively, we would now like to exploit the fact that the counter
of agent ui is copied at time ti from agent uj such that Xi(ti) = Xj(ti). Unfortunately,
we must be extremely careful here: conditioning on Si alters the probability space! (For
example, under Si the agent ui with i ≥ 3 cannot initiate an interaction with agent u1 before
agent u2 does, since Si rules out that ui enters Ilaunch before agent u2.) We account for the
modified probability space as follows.

Let ΩSi(t) be the probability space of possible interactions conditioned on Si at time
t ≤ t̃. Without the conditioning on Si, the probability space Ω(t) at time t contains all
(ordered) pairs of agents with |Ω(t)| = n · (n−1). When conditioning on Si, the event Si rules
out that agent ui interacts with any other agent uj ∈ Ilaunch before time ti. In particular,
agent ui cannot interact with another agent uj with j < i during the time interval [tj , ti].
In order to give a lower bound on |ΩSi(t)|, we exclude all (n − 1) interactions (ui, uj) for
j ∈ [n] from Ω(t). Hence |ΩSi

(t)| ≥ n · (n− 1)− (n− 1) = (n− 1)2 for any time t ≤ ti. (The
probability space after time ti is not affected by conditioning on Si, but the majorization
holds nonetheless.) We now consider the event Et̂ for t̂ ≤ ti that the interaction at time t̂

increments Xj(t) by 1 (recall that uj is the agent onto which ui hopped). It then holds for
the reduced probability space ΩSi

that Pr[Et̂ | Si] ≤ Pr[Et̂] · |Ω(t)|/|ΩSi
(t)|. (Note that ΩSi

is still a uniform probability space.) We calculate

|Ω(t)|
|ΩSi

(t)| = n · (n− 1)
(n− 1)2 = 1 + 1

n− 1

2 The expression X ≺ Y means that the random variable X is majorized by the random variable Y .

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:11

and get Pr[Et̂ | Si] ≤ Pr[Et̂] · (1 + 1/(n− 1)) for t̂ ≤ ti. Therefore, we use the in-
duction hypothesis (that describes Xj(ti)) and get Xi(ti) ≺ Zi(ti), where Zi(ti) ∼
Bin

(
ti, 1/n · (1 + 1/(n− 1))i−1

)
. Similarly, we define Et̂ for t̂ ≥ ti to be the event that

ui increments its counter in Ilaunch. Observe that Pr[Et̂] ≤ 1/n for t̂ > ti. It follows that
Xi(t) ≺ Zi(t) with distribution Zi(t) ∼ Bin(t̃, 1/n · (1 + 1/(n− 1))i−1) for t ≤ t̃ as claimed.
This concludes the induction.

Conclusions. From the induction it follows that for each agent ui the clock counter
clock[ui](t̃) at time t̃ is majorized by a random variable Z(t̃) with binomial distribution
Z(t̃) ∼ Bin(t̃, e/n). (Note that we used the inequality (1 + 1/(n − 1))(n−1) < e.) From
Chernoff bounds (see [23]) it follows that Pr

[
Z(t̃) ≥ τ − 1

]
≤ n−(c+4). Finally, the proof for

the simplified process follows from a union bound over all agents.

It is now straightforward to couple the actual phase clock process with the simplified
process. Assume that we start both processes at time 0 when exactly one agent is in state 0.
In the simplified process no agent reaches state τ in τ/4 · n interactions with probability at
least 1− n−(c+3). In this case, however, the simplified process and the actual phase clock
process do not deviate and, in particular, no agent reaches the beginning of Iwork in τ/4 · n
many interactions. Thus, the configuration Ct′ is a homogeneous launching configuration
with probability at least 1− n−(c+3).

Since all agents started in Igather and no agent reaches the beginning of Iwork, the agents
are in a synchronous configuration by definition during the whole time interval [0, t′]. ◀

We are now ready to put everything together and prove our first theorem.

Proof of Theorem 2. The proof of Theorem 2 follows readily from the main result of this
section, Proposition 6.

Assume the configuration at time t1 is a homogeneous launching configuration. Then from
Proposition 6 it follows w.h.p. that after t2 = Θ

(
n · w · log n

)
interactions the configuration

Ct2 is again a homogeneous launching configuration, and all configurations in [t1, t2] are
synchronous. From Statement 3 it follows that no agent receives a signal in a contiguous
subinterval [t′

1, t′
2] ⊂ [t1, t2] of length t′

2 − t′
1 = w · τ · n. This shows that we have w.h.p. the

required overlap according to the definition of synchronous (τ, w)-phase clocks.
From Lemma 8 it follows w.h.p. that all agents transition from a homogeneous gathering

configuration into a homogeneous launching configuration within τ/4 · n interactions. Recall
that whenever an agent crosses zero, it receives a signal. Therefore, when all agents transition
from a homogeneous gathering configuration into a homogeneous launching configuration via
a sequence of synchronous configurations, all agents receive exactly one signal, and the time
between two signals of two agents (u, v) is w.h.p. at most τ/4 · n. This shows that we have
w.h.p. the required bursts according to the definition of synchronous (τ, w)-phase clocks.

Together, the counters of our clock implement a synchronous (τ, w)-phase clock in [t1, t2]
with probability n−c. It follows from an inductive argument that the clock counters implement
a synchronous (τ, w)-phase clock during the nc interactions that follow time t1 w.h.p. ◀

5 Recovery: Proof of Theorem 3

In this section we first show the following main result. At the end of the section we show
how Theorem 3 follows from this proposition.

SAND 2022

7:12 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

▶ Proposition 9 (Recovery). Consider our (τ, w)-phase clock with n agents and sufficiently
large c and w. Let Ct1 be an arbitrary configuration. Then with probability at least 1− 1/n,
there exists a t2 = O

(
n ·w · log n

)
such that Ct1+t2 is a homogeneous launching configuration.

We say a configuration is an almost homogeneous gathering configuration if no agent is
in Ilaunch and at least 0.9 · n many agents are in Igather. We start our analysis by showing
that within t = O

(
n · w · log n

)
interactions, we reach an almost homogeneous gathering

configuration Ct1+t.

▶ Lemma 10. Let Ct be an arbitrary configuration. Then with probability at least 1− 1/(3n),
there exists a t′ = O

(
n · w · log n

)
such that Ct+t′ is an almost homogeneous gathering

configuration.

Proof Sketch. The main idea of the proof is as follows. If there are not too many agents in
Igather, the reset rule prevents agents from reaching the end of Igather. Agents may still enter
Ilaunch by hopping, but if no agent enters state 0, eventually there is no agent left in state 0 to
hop on. Then the same argument applies to state 1, and so on. Eventually, there are no agents
left in Ilaunch to hop onto. This means the agents are trapped in Igather until a sufficiently
large number of agents enters Igather which renders resetting quite unlikely again. The
resulting configuration is what we call an almost homogeneous gathering configuration. ◀

Next, we show that from an almost homogeneous gathering configuration we reach a
homogeneous gathering configuration in O

(
n · w · log n

)
interactions. From Lemma 8 in

Section 4 it then follows that we reach a homogeneous launching configuration in an additional
number of O(n · log n) interactions.

▶ Lemma 11. Let Ct be an almost homogeneous gathering configuration. Then with probability
at least 1−1/(3n), there exists a t′ = Θ

(
n·w ·ln n

)
such that Ct+t′ is a homogeneous gathering

configuration.

Proof Sketch. If Ct is an almost homogeneous gathering configuration, then there are no
agents in Ilaunch and at least 0.9 · n many agents in Igather. Thus, agents cannot hop until an
agent enters Ilaunch on its own. Now there are two cases. If no agent enters Ilaunch on its
own before the last agent enters Igather, we are done: this is by definition of a homogeneous
gathering configuration. Otherwise, we will show that a large fraction of agents leave Igather
together. This large fraction behaves similar as in the proof of the maintenance. The
remaining agents have a small head start but then they are again trapped in Igather until the
bulk of agents arrives. Once the bulk of agents enters Igather we have reached a homogeneous
gathering configuration and all agents start to run through the clock synchronously. ◀

Proof of Theorem 3. The proof of Theorem 3 follows readily from the main result of this
section, Proposition 9. Observe that τ = Θ(log n). According to Proposition 9, our clock
recovers to a homogeneous launching configuration in O(n · log n) interactions. By Theorem 2,
this marks the beginning of a time interval in which the agents implement a synchronous
(τ, w)-phase clock. It follows immediately from Theorem 2 that this interval has length
nc. Together, this implies that our (τ, w)-phase clock is a (O(n · logn), Ω(poly(n)))-loosely-
stabilizing (Θ(log n), w)-phase clock. ◀

6 Adaptive Majority Problem

In this section we consider the adaptive majority problem. At any time, every agent has as
input either an opinion (A or B) or it has no input, in which case we say it is undecided
(U). During the execution of the protocol, the opinions of the agents can change. In the

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:13

adaptive majority problem, the goal is that all agents output (at all times) the opinion
which is dominant among all inputs. In this setting we present a loosely-stabilizing protocol
that solves the adaptive majority problem. We define a loosely-stabilizing adaptive majority
protocol according to Definition 1 by defining C as all configurations where all agents output
the correct majority opinion. Recall that the performance of a loosely-stabilizing protocol
is measured in terms of the convergence time and the holding time. Note that the loose-
stabilization comes from an application of our phase clock. The phase clocks guarantee
synchronized phases for polynomial time. During this time we say a configuration C is
correct w.r.t. the adaptive majority problem if the following conditions hold. Suppose there
is a sufficiently large bias towards one opinion. Then every agent in a correct configuration
outputs the majority opinion. Otherwise, if there is no sufficiently large bias, we consider
any output of the agents as correct. In this setting, we show the following result: We show
that a (O

(
log n

)
, poly(n))-loosely-stabilizing algorithm exists that solves adaptive majority,

using O
(
log n

)
states per agent.

6.1 Our Protocol
Our protocol is based on the (τ, w)-phase clock defined in Section 3 with w = 566. In addition
to the states required by the clock, every agent v has three variables input[v], opinion[v],
and output output[v]. The variable input[v] always reflects the current input to the agent,
opinion[v] holds the current opinion of agent v, and output[v] defines the current output value
of agent v. All three variables take values in {A, B, U }. A and B stand for the corresponding
opinions and U stands for undecided. The state space of the protocol is Qc × {A, B, U }3

where Qc is the state space of our clock for τ = 36 · (c + 4) ln n and w = 566.
We use the (τ, w)-phase clock to synchronize the agents. Then it follows from Proposition 6

that all configurations are synchronous w.h.p. Observe that in a synchronous configuration for
our choice of parameters the clock counters of agents do not deviate by more than ∆ = 55 · τ .
This allows us to define three subphases of Iwork, where agents execute three different
protocols, as follows. We split the working interval Iwork into six contiguous subintervals of
equal length. The clock counters clock[u] allows us to define a simple interface to the phase
clock for each agent u as follows. The variable subphase[u] for each agent u is then defined as
follows. We set subphase[u] = 1 if clock[u] is in the first subinterval of Iwork, subphase[u] = 2
if clock[u] is in the third subinterval of Iwork, and subphase[u] = 3 if clock[u] is in the fifth
subinterval of Iwork. Otherwise, subphase[u] = ⊥. The clock now assures a clean separation
into these subphases such that no two agents perform a different protocol at any time w.h.p.
Additionally, we will show the overlap within each subphase is long enough such that the
subprotocols for the corresponding subphases succeed w.h.p.

On an intuitive level, our protocol works as follows. At the beginning of the phase, the
input is copied to the opinion variable. In the first protocol, the support of opinions A and
B is amplified until no undecided agents are left. We call this the Pólya Subphase. In the
second protocol, agents with opposite opinions cancel each other out, becoming undecided.
We call this the Cancellation Subphase. Finally, in the third protocol the single remaining
opinion is amplified again. We call this the Broadcasting Subphase. The resulting opinion
is copied to the output variable after the working interval Iwork. Formally, our protocol is
specified in Algorithm 1.

In the remainder of this section, we let At and Bt denote the number of agents u with
opinion[u] = A and opinion[u] = B, respectively, at time t. Analogously, we let Ain

t and Bin
t

denote the number of agents u with input[u] = A and input[u] = B, respectively, at time t.
We now state our main result for this section.

SAND 2022

7:14 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

Algorithm 1 Interaction of agents (u, v) in the adaptive majority protocol.

1 update clock[u] according to Rules 1–4 with w = 566
2 if Agent u receives a signal then opinion[u]← input[u]
3 if subphase[u] = 1 ∧ opinion[u] = U then opinion[u]← opinion[v]
4 if subphase[u] = 2 ∧ opinion[u] ̸= opinion[v] ∧ opinion[u], opinion[v] ̸= U then
5 opinion[u], opinion[v]← U

6 if subphase[u] = 3 ∧ opinion[u] = U then opinion[u]← opinion[v]
7 if clock[u] ≥ |Ilaunch|+ |Iwork| then output[u]← opinion[u]

▶ Theorem 12. Algorithm 1 is a (O
(
n log n

)
, Ω(poly (n)))-loosely stabilizing adaptive ma-

jority protocol.

Note that we match the results of [3] for r = 1/n, a multiplicative bias of 1+β = 1+1/ log n

and Ω
(
log2 n

)
many agents (α ≥ log n). In contrast to their protocol, every agent outputs at

any point of time the correct majority opinion, w.h.p. But, again in contrast to their work,
we do not consider leaky transitions.

6.2 Analysis
In the following analysis, we consider an arbitrary but fixed phase. We condition on the
event that the clock is synchronized according to Proposition 6. We show the following main
result, and later in this section we describe how Theorem 12 follows from it this proposition.
The proofs for the statements in this section can be found in the full version of this paper.

▶ Proposition 13. Assume that at time t1 the agents are in a homogeneous launching
configuration and we have At1 ≥ α · log n and At1 ≥ (1 + β) · Bt1 . If α and β are large
enough constants, then there exists a t2 = Θ(n · w · log n) such that all agents output A in
configuration Ct1+t2 with probability 1− n−c.

The analysis is split into three parts, one for the Pólya Subphase, one for the Cancellation
Subphase, and one for the Broadcasting Subphase. First, we assume that no changes in
the input occur. Then we generalize our results: we adopt the undecided state dynamics
introduced in [8], and show how we can tolerate input changes at various rates.

Observe that we get a separation between the subphases from the guarantees of the phase
clock in Theorem 2: no two agents are more than 1/6 of Iwork apart. We also know that
every agent has copied its input at the beginning of the phase before the first agent enters
the first subphase. The total time for the three subphases (including the separation time) is
sufficiently large such that every agent has finished its work before the next phase starts.

When we refer to a distribution before a subphase, we mean the distribution at the time
just before the first agent performs an interaction in that subphase. Analogously, when we
refer to a distribution after a subphase, we mean the distribution at the time when the last
agent has performed an interaction in that subphase. Recall that in the following analysis,
we let At and Bt denote the number of agents u with opinion[u] = A and opinion[u] = B,
respectively, at time t. Furthermore, we let si and ei (for start and end) be the first and the
last time, respectively, when an agent performs an interaction in the i’th subphase.

Subphases. We first consider the Pólya Subphase, where we model the process by means
of so-called Pólya urns. Pólya urns are defined as follows. Initially, the urn contains a red
balls and b blue balls. In each step, a ball is drawn uniformly at random from the urn. The

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:15

ball’s color is observed, and it is returned into the urn along with an additional ball of the
same color. The Pólya-Eggenberger distribution PE(a, b, m) describes the total number of
red balls after m steps of this urn process.

This observation allows us to apply concentration bounds to the opinion distribution after
the Pólya Subphase. Recall that s1 and e1 are the first and the last time steps, respectively,
when an agent performs an interaction in the Pólya Subphase. We get the following lemma.

▶ Lemma 14. Let a = As1−1 and b = Bs1−1. For any constant β > 0 there exists a constant
α such that if a > α · log n and a > (1 + β) · b then Ae1 −Be1 = Ω(n) with probability at least
1− n−(c+2).

Next we consider the Cancellation Subphase. The goal is to remove any occurrence of
the minority opinion. Whenever an agent with opinion A interacts with another agent with
opinion B, both agents become undecided. Formally, we show the following lemma.

▶ Lemma 15. If As2−1 − Bs2−1 = Ω(n) then Ae2 = Ω(n) and Be2 = 0 with probability at
least 1− n−(c+2).

Finally we consider the Broadcasting Subphase. The goal is to spread the (unique)
remaining opinion to all other agents. Whenever an undecided agent u interacts with
another agent v that has an opinion, agent u adopts the opinion of agent v. This leads to
a configuration where every agent has the majority opinion w.h.p. Formally, we show the
following lemma.

▶ Lemma 16. If Ae2 = Ω(n) and Be2 = 0, then Ae3 = n and Be3 = 0 with probability at
least 1− n−(c+2).

We have now everything we need to prove Proposition 13 and in turn Theorem 12.

Proof of Proposition 13. We assume the configuration at time t1 is a homogeneous launching
configuration. From Proposition 6 it follows that all configurations in the time interval
[t1, t1 + t2] for some t2 = Θ(n ·w · log n) are synchronous with probability at least 1−n−(c+1).
This means that the three subphases are strictly separated as explained above. It therefore
follows (each with probability at least 1 − n−(c+2)),from Lemma 14 that after the Pólya
Subphase no agent is undecided, from Lemma 15 that after the Cancellation Subphase
no agent has opinion B, and from Lemma 16 that after the Broadcasting Subphase all
agents have opinion A. Once all agents have opinion A, this becomes the output when the
agents enter Igather. Together, this shows that all agents output the majority opinion after
Θ(n · w · log n) interactions with probability at least 1− n−c. ◀

Proof of Theorem 12. Here we show the result without input changes. Fix a time t1 and
assume the agents are in an arbitrary configuration at time t1. From Theorem 3 it follows
the agents enter a synchronous configuration within O(n log n) interactions and stay in
synchronous configurations for poly(n) time w.h.p.

Now we consider a fixed synchronized phase i < poly(n) of our phase clock. It follows
from Proposition 13 that all agents enter a correct configuration at the end of phase i

with probability at least 1− n−c. (Recall that in a correct configuration all agents have to
output the majority opinion if there is a sufficiently large bias. Without a bias, any output
constitutes a correct configuration.) From the guarantees of the phase clock it follows that
the first synchronized phase starts within O(n log n) time after time t1 w.h.p. This shows
a convergence time of O(n log n). From a union bound over at most nc−1 phases it follows
that the protocol is in a correct configuration for poly(n) interactions w.h.p. This shows a
holding time of poly(n).

SAND 2022

7:16 Loosely-Stabilizing Phase Clocks and The Adaptive Majority Problem

The proof with input changes can be found in the full version. The main idea is that
we bound the number of input changes in Θ(n log n) interactions by a simple application of
Chernoff bounds. ◀

Improving the Bound. In order to show-case the simplicity of the application of our phase
clock, we have presented a simplistic protocol, where we assumed a constant factor bias
towards the majority opinion. If we replace the Cancellation Subphase and the Broadcasting
Subphase (lines 6 to 9 in Algorithm 1) with the undecided state dynamics introduced in [8]
we can show a tighter result.

Formally, we show the following statement, the proof can be found in the full version of
this paper.

▶ Observation 17. If we use the undecided state dynamics, Proposition 13 also holds for
α = Ω

(
β−2)

provided that β = Ω
(
n−1/4+ε

)
.

This means that we can solve the adaptive majority problem with a multiplicative bias of
1 + β = 1 + 1/ log n = 1 + o

(
1
)

and asymptotically at least Ω
(
log2 n

)
many agents with

opinion A or B (assuming sufficiently large constants). Hence we achieve similar results as
in [3] for a model without leaky transitions.

References
1 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population

protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2221–2239. SIAM, 2018. doi:10.1137/1.9781611975031.144.

2 Dan Alistarh, Bartlomiej Dudek, Adrian Kosowski, David Soloveichik, and Przemyslaw
Uznanski. Robust detection in leak-prone population protocols. In DNA Computing and
Molecular Programming - 23rd International Conference, DNA, volume 10467 of Lecture Notes
in Computer Science, pages 155–171. Springer, 2017. doi:10.1007/978-3-319-66799-7_11.

3 Dan Alistarh, Martin Töpfer, and Przemyslaw Uznanski. Comparison dynamics in population
protocols. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21:
ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, July 26-30,
2021, pages 55–65. ACM, 2021. doi:10.1145/3465084.3467915.

4 Talley Amir, James Aspnes, and John Lazarsfeld. Approximate majority with catalytic
inputs. In Quentin Bramas, Rotem Oshman, and Paolo Romano, editors, 24th International
Conference on Principles of Distributed Systems, OPODIS 2020, December 14-16, 2020,
Strasbourg, France (Virtual Conference), volume 184 of LIPIcs, pages 19:1–19:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.OPODIS.2020.19.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/s00446-005-0138-3.

6 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC, pages 292–299. ACM, 2006. doi:10.1145/1146381.1146425.

7 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Comput., 21(3):183–199, 2008. doi:10.1007/s00446-008-0067-z.

8 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for
fast robust approximate majority. Distributed Comput., 21(2):87–102, 2008. doi:10.1007/
s00446-008-0059-z.

9 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1007/978-3-319-66799-7_11
https://doi.org/10.1145/3465084.3467915
https://doi.org/10.4230/LIPIcs.OPODIS.2020.19
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1145/1146381.1146425
https://doi.org/10.1007/s00446-008-0067-z
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2

P. Berenbrink, F. Biermeier, C. Hahn, and D. Kaaser 7:17

10 James Aspnes. Clocked population protocols. J. Comput. Syst. Sci., 121:34–48, 2021. doi:
10.1016/j.jcss.2021.05.001.

11 Luca Becchetti, Andrea E. F. Clementi, and Emanuele Natale. Consensus dynamics: An
overview. SIGACT News, 51(1):58–104, 2020. doi:10.1145/3388392.3388403.

12 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An o(log3/2 n) parallel time
population protocol for majority with o(log n) states. In Proceedings of the ACM Symposium
on Principles of Distributed Computing, PODC 2020, Virtual Event, Italy, August 3-7, 2020,
page to appear, 2020.

13 Petra Berenbrink, Felix Biermeier, Christopher Hahn, and Dominik Kaaser. Self-stabilizing
phase clocks and the adaptive majority problem. CoRR, abs/2106.13002, 2021. arXiv:
2106.13002.

14 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed
Computing, 2020.

15 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Time-space trade-offs in population protocols for the majority problem. Distributed
Comput., 34(2):91–111, 2021. doi:10.1007/s00446-020-00385-0.

16 Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader election
in population protocols. In Proccedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC, pages 119–129. ACM, 2020. doi:10.1145/3357713.3384312.

17 Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric E. Severson,
and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In Avery
Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 33–44.
ACM, 2021. doi:10.1145/3465084.3467898.

18 Anne Condon, Monir Hajiaghayi, David G. Kirkpatrick, and Ján Manuch. Approximate
majority analyses using tri-molecular chemical reaction networks. Nat. Comput., 19(1):249–
270, 2020. doi:10.1007/s11047-019-09756-4.

19 Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM, 51(5):780–799, September 2004. doi:10.1145/1017460.1017463.

20 David Doty, Mahsa Eftekhari, Leszek Gąsieniec, Eric Severson, Grzegorz Stachowiak, and
Przemysław Uznański. A time and space optimal stable population protocol solving exact
majority, 2022. FOCS 2022, to appear. arXiv:2106.10201.

21 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. Distributed Computing, 31(4):257–271, 2018. doi:10.1007/s00446-016-0281-z.

22 Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2653–2667. SIAM, 2018. doi:10.1137/1.9781611975031.169.

23 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CBO9780511813603.

24 Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. Loosely-stabilizing leader election in a population protocol model.
Theor. Comput. Sci., 444:100–112, 2012. doi:10.1016/j.tcs.2012.01.007.

25 Kunal Talwar and Udi Wieder. Balanced allocations: A simple proof for the heavily loaded
case. In Automata, Languages, and Programming - 41st International Colloquium, ICALP,
volume 8572 of Lecture Notes in Computer Science, pages 979–990. Springer, 2014. doi:
10.1007/978-3-662-43948-7_81.

SAND 2022

https://doi.org/10.1016/j.jcss.2021.05.001
https://doi.org/10.1016/j.jcss.2021.05.001
https://doi.org/10.1145/3388392.3388403
http://arxiv.org/abs/2106.13002
http://arxiv.org/abs/2106.13002
https://doi.org/10.1007/s00446-020-00385-0
https://doi.org/10.1145/3357713.3384312
https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1007/s11047-019-09756-4
https://doi.org/10.1145/1017460.1017463
http://arxiv.org/abs/2106.10201
https://doi.org/10.1007/s00446-016-0281-z
https://doi.org/10.1137/1.9781611975031.169
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1016/j.tcs.2012.01.007
https://doi.org/10.1007/978-3-662-43948-7_81
https://doi.org/10.1007/978-3-662-43948-7_81

Complexity of Verification in Self-Assembly with
Prebuilt Assemblies
David Caballero #

Department of Computer Science, University of Texas Rio Grande Valley, TX, USA

Timothy Gomez #

Department of Computer Science, University of Texas Rio Grande Valley, TX, USA

Robert Schweller #

Department of Computer Science, University of Texas Rio Grande Valley, TX, USA

Tim Wylie #

Department of Computer Science, University of Texas Rio Grande Valley, TX, USA

Abstract
We analyze the complexity of two fundamental verification problems within a generalization of the
two-handed tile self-assembly model (2HAM) where initial system assemblies are not restricted
to be singleton tiles, but may be larger pre-built assemblies. Within this model we consider the
producibility problem, which asks if a given tile system builds, or produces, a given assembly, and
the unique assembly verification (UAV) problem, which asks if a given system uniquely produces
a given assembly. We show that producibility is NP-complete and UAV is coNPNP-complete even
when the initial assembly size and temperature threshold are both bounded by a constant. This is
in stark contrast to results in the standard model with singleton input tiles where producibility is
in P and UAV is in coNP for O(1) bounded temperature and coNP-complete when temperature is
part of the input. We further provide preliminary results for producibility and UAV in the case of
1-dimensional linear assemblies with pre-built assemblies, and provide polynomial time solutions.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Applied computing → Computational biology

Keywords and phrases 2-handed assembly, verification, prebuilt

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.8

Funding This research was supported in part by National Science Foundation Grant CCF-1817602.

1 Introduction

Self-Assembly is the process by which a system of simple particles autonomously come
together to form complex structures. Algorithmic self-assembly studies scenarios in which
dynamics of system molecules encode computation, allowing for algorithmic control of the
self-assembly of matter. A premiere model for the study of algorithmic self-assembly is the
tile self-assembly model [3, 17], in which system monomers are modeled as four-sided Wang
tiles that randomly collide and combine based on matching tile edges and a given bonding
threshold called the temperature. Tile self-assembly has received substantial theoretical
consideration (see [13, 14, 19] for surveys and recent results) as well as various experimental
DNA implementations [6, 10, 20].

In this paper we focus on a specific generalization of the standard 2-handed tile self-
assembly model (2HAM) in which we permit initial assemblies to consist of prebuilt assemblies
of more than one tile. The motivation for studying such a generalization is strong. First,
some of the most successful implementations of algorithmic DNA self-assembly utilize a
combination of singleton DNA tiles mixed with larger prebuilt assemblies. For example,
the experimental implementations of DNA tile counters [10] and the 21 DNA tile circuits

© David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.caballero01@utrgv.edu
mailto:timothy.gomez01@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:timothy.wylie@utrgv.edu
https://doi.org/10.4230/LIPIcs.SAND.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Complexity of Verification in Self-Assembly with Prebuilt Assemblies

implemented in [20] both utilize a combination of single tiles seeded with a larger prebuilt
DNA origami structure encoding the program input. In [10], they additionally include a mix
of singleton and prebuilt domino assemblies among the system’s tile set. Second, the inclusion
of prebuilt shapes of different geometries and sizes allows for the potential application of
steric hindrance, in which geometric blocking of potential attachments is used to control
algorithmic growth, as seen in the theoretical works of [5, 11, 12], and the experimental
works of [9, 18]. These examples suggest that consideration of shapes more general than
uniform single squares has the promise to allow for improved computational power and
efficiency of self-assembled systems.

Given the importance of understanding self-assembly with prebuilt initial assemblies, we
consider the complexity of two fundamental computational questions related to verifying the
correctness of such systems. First is the Producibility problem, which asks if a given tile system
can build/produce a given assembly. The second is the Unique Assembly Verification (UAV)
problem, which asks if a given tile system uniquely produces a given assembly, i.e., produces
the assembly and nothing else provided sufficient assembly time. For the producibility
problem, the 2HAM with just single-tile initial assemblies has a polynomial time solution [7],
whereas we show NP-completeness when prebuilt assemblies are permitted. In the case of
the UAV problem with singleton tile initial assemblies, the problem resides in coNP [3] for
a constant-bounded temperature threshold and is coNP-complete for larger temperature
thresholds [15], whereas we show coNPNP-completeness with prebuilt assemblies. In both
scenarios, our hardness results hold even for prebuilt assemblies of a bounded O(1) size
and O(1)-bounded temperature thresholds. We accompany these results with a preliminary
exploration of the producibility and UAV problems when restricted to 1-dimensional linear
assemblies with pre-built assemblies, and provide polynomial time solutions.

1.1 Previous work
The model used here differs from the polyTAM model of [11] in that the set of starting
elements in our system are defined as assemblies made up of multiple tiles. In the polyTAM,
the set of elements are single tiles that are allowed to be larger than a unit square. We are
attempting to model the situations where smaller components may have preassembled into
larger structures prior to being introduced to the system. This is more similar to the staged
model of self-assembly however in that model all the bins are usually assumed to have the
same temperature so any assemblies built in early stages must be producible. Here we only
require that the input assemblies are stable.

Verification problems have been well-studied in many models of Tile Self-Assembly. In
the Abstract Tile Assembly model (aTAM), both the producibility and UAV problem are
solvable in polynomial time [1]. When allowing negative or repulsive glues the UAV problem
becomes undecidable due to detachment [8], but when restricted to growth-only systems
(no detachment can occur) the problem is coNP-complete [4]. Producibility verification in
the 2-handed assembly model at any temperature, along with UAV for temperature 1, are
both solvable in polynomial time [7]. Membership in the class coNP for general 2HAM
systems was shown in [3] along with a hardness result showing coNP-completeness when
one step into the 3rd dimension is allowed. By allowing the temperature to be a part of the
input UAV has been shown to be coNP-complete [15] even in 2 dimensions. More powerful
generalizations have shown an increase in complexity of the UAV problem such as in Tile
Automata which merges ideas from Cellular Automata and the 2HAM. This problem was
shown to be coNPNP-complete even with the restrictions of Freezing (A tile only changes
states a finite number of times) and growth only (no detachment).

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 8:3

Table 1 Complexity of verifying producibility of an assembly in various models. The Assembly
Size column indicates the size of the assemblies in the initial assembly set. Previous work has studied
the case when only single tiles are allowed. Our results allow for up to constant sized assemblies.

Model Input Assembly Size Temperature Result Reference
aTAM Single Tiles Variable P [1]
2HAM Single Tiles Variable P [7]
2HAM Constant 2 NP-complete Thm. 3

Table 2 Complexity results of Unique Assembly Verification in the aTAM and the 2HAM. UAV
is undecidable in the negative aTAM, but coNP-complete with negative glues if the system never
allows detachment (∗growth only). ∗∗Tile Automata with freezing and growth only restrictions.

Model Input Assembly Temperature Result Reference
aTAM Single Tiles Variable P [1]

Neg. aTAM G.O.∗ Single Tiles 2 coNP-complete [4]
2HAM Single Tiles 1 P [7]
2HAM Single Tiles Constant coNP [3]
2HAM Single Tiles Variable coNP-complete [15]

2HAM 3D Single Tiles 2 coNP-complete [3]
Tile Automata∗∗ Single Tiles 2 coNPNP-complete [2]

2HAM Constant 2 coNPNP-complete Thm. 6

2 Definitions

In this section we overview the basic definitions related to the two-handed self-assembly
model and the verification problems under consideration.

Tiles. A tile is a non-rotatable unit square with each edge labeled with a glue from a set Σ.
Each pair of glues g1, g2 ∈ Σ has a non-negative integer strength str(g1, g2).

Configurations, bond graphs, and stability. A configuration is a partial function A : Z2 →
T for some set of tiles T , i.e. an arrangement of tiles on a square grid. For a given
configuration A, define the bond graph GA to be the weighted grid graph in which each
element of dom(A) is a vertex, and the weight of the edge between a pair of tiles is
equal to the strength of the coincident glue pair. A configuration is said to be τ -stable
for positive integer τ if every edge cut of GA has strength at least τ , and is τ -unstable
otherwise.

Assemblies. For a configuration A and vector u⃗ = ⟨ux, uy⟩ with ux, uy ∈ Z2, A + u⃗ denotes
the configuration A ◦ f , where f(x, y) = (x + ux, y + uy). For two configurations A and
B, B is a translation of A, written B ≃ A, provided that B = A + u⃗ for some vector u⃗.
For a configuration A, the assembly of A is the set Ã = {B : B ≃ A}. An assembly Ã is a
subassembly of an assembly B̃, denoted Ã ⊑ B̃, provided that there exists an A ∈ Ã and
B ∈ B̃ such that A ⊆ B. An assembly is τ -stable provided the configurations it contains
are τ -stable. Assemblies Ã and B̃ are τ -combinable into an assembly C̃ provided there
exist A ∈ Ã, B ∈ B̃, and C ∈ C̃ such that A ∪ B = C, A ∩ B = ∅, and C̃ is τ -stable.

Two-handed assembly. A Two-handed assembly system is an ordered tuple (S, τ) where S

is a set of initial assemblies and τ is a positive integer parameter called the temperature.
Each assembly in S must be τ -stable. For a system (S, τ), the set of producible assemblies
P ′

(S,τ) is defined recursively as follows:
1. S ⊆ P ′

(S,τ).
2. If A, B ∈ P ′

(S,τ) are τ -combinable into C, then C ∈ P ′
(S,τ).

SAND 2022

8:4 Complexity of Verification in Self-Assembly with Prebuilt Assemblies

Left Edge Assembly

Ci

Ci+1

Right Edge Assembly

Ci

Ci+1

Variable Assembly 0

Xi Xi+1

Variable Assembly 1

Xi Xi+1

Cover Tiles

Left Corner Assembly
C1 X1

Right Corner Assembly

X|V|

C1

(a)

xi

xi

cj cj

north arm

south arm

east armwest arm

north glue

west glue

south glue

east glue

(b)

xi

xi

cj cj01

S
U S

U

10

(c)

Figure 1 (a) Edge Assemblies used to construct the frame of the assembly. For each clause
we include a left and right edge assembly. For each variable we include two variable assemblies
representing 0 and 1. We include a single left corner assembly along with a right corner assembly.
The filler tiles are used to fill in holes between attached macroblocks. (b) A single macro block
mi,j(0, U, U) with outer glues labeled. The north and south glues connect to other macro blocks that
represent the same variable. The east and west glues connects to other macroblocks that represent
the same clause. (c) Arm position labels on a macroblock. Opposite sides have complementary
values to allow for attachment.

A producible assembly is terminal provided it is not τ -combinable with any other
producible assembly, and the set of all terminal assemblies of a system (S, τ) is denoted
P(S,τ). Intuitively, P ′

(S,τ) represents the set of all possible assemblies that can self-assemble
from the initial set S, whereas P(S,τ) represents only the set of assemblies that cannot grow
any further. An assembly A is uniquely produced if P(S,τ) = {A} and for each B ∈ P ′

(S,τ)
B ⊑ A.

▶ Definition 1 (Producibility Problem). Given a 2HAM system Γ = (S, τ) and an assembly
A, is A a producible assembly of Γ?

▶ Definition 2 (Unique Assembly Verification Problem (UAV)). Given a 2HAM system
Γ = (S, τ) and an assembly A, is A uniquely produced by Γ?

3 Producibility Hardness

In this section we show that the producibility problem is NP-complete if the initial set of
assemblies may include assemblies larger than singleton tiles. The hardness is derived by
reducing from 3SAT and holds even if assembly size and system temperature is bounded by
a constant. Our construction extends to the seeded abstract tile assembly model where there
is a seed tile, and elements of the tile set (in this case assembly set) attach one at a time to
the growing seed. See appendix for details.

3.1 Overview
We reduce from 3SAT, which asks whether a given 3CNF formula ϕ is satisfiable. Let |V |
and |C| be the number of variables and clauses in ϕ, respectively. The reduction creates an
instance of producibility (Γ, A) with τ = 2, such that Γ produces the target assembly A iff
ϕ is satisfiable. The target assembly is a rectangle shown and described in Figure 4a. The
assemblies in the reduction can be divided into two groups: edge assemblies (Figure 1a) and
macroblocks (Figure 1b). There are two variable assemblies for each bit that each correspond
to an assignment of 0 or 1 based on the position of the 3 × 2 arm section of the assembly

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 8:5

x1
1

x1
0

x2
1

x2
0

x3
1

x3
0

x4
1

x4
0

(a)

x1
1 x2

1 x3
0

c1

U

x4
1

(b)

x1
1

c1

U

1

U

x1
1

c1

U

1

U

x1
1

c1

U
U

0

x1

c1

U
U

(c)

Figure 2 (a) Variable gadgets can non-deterministically build a frame assembly for each possible
assignment to ϕ. (b) Example of the assembly made for assignment 1101 with a single left edge
assembly attached. (c) If the macroblock has complimentary arm positions it will be able to attach
to the frame assembly. If the macroblocks do not have matching arm positions the attachment will
be geometrically blocked and cannot occur.

cj:S

Xi = 1

cj:S

Xi = 1

cj:S

Xi = 0

cj:S

Xi = 0

cj:U

Xi = 0

Xi = 0

cj:U

Xi = 1

Xi = 1

mi,j(0,S,S)

U
S

U
S

Mi,j

mi,j(1,S,S) mi,j(0,U,?) mi,j(1,U,?)

Figure 3 Possible Macroblocks that make up Mi,j . Arm positions represent the value assigned
to xi and whether or not cj has been satisfied. There will always be 4 macroblocks in each set. The
left pair of macroblocks are always included and will attach if a clause is already satisfied. The
remaining macroblocks attach if the clause is not yet satisfied, and their arm positions depend on ϕ.
If the positive literal xi is in cj , mi,j(1, U, S) ∈ Mi,j , otherwise mi,j(1, U, U) ∈ Mi,j . If the negative
literal x̄i is in cj , mi,j(0, U, S) ∈ Mi,j , otherwise mi,j(0, U, U) ∈ Mi,j .

(green and red tiles in the figures). As shown in Figure 1c, each arm position represents a
certain value. For vertical arms, the position represents either 0 or 1. For horizontal arms,
their position is either U or S, meaning unsatisfied or satisfied.

These assemblies will combine to form an assembly for each possible assignment to ϕ

(Figure 2a). We include a unique left edge assembly for each clause whose arm is always
in the top position representing that the clause is currently not yet satisfied. A left edge
assembly can attach to an assembly that encodes an assignment to ϕ. This starts to form an
L shaped frame assembly as shown in Figure 2b. Macroblocks may attach to this frame if it
has complementary arms to the currently growing frame assembly. As shown in Figure 2c, a
macroblock can attach using two strength-1 glues on its east and south sides. If the arms
have complimentary positions the attachment will be able to take place. However, if the
arms overlaps, the macroblock is geometrically blocked from attaching, and thus not allowed.

The final challenge for designing this reduction is there must exist a single assembly that
is produced regardless of the satisfying assignment. This means we must hide the values
passed between macroblocks. We do this by including a certain subset of the tiles which will
fill any spaces left between macroblocks.

SAND 2022

8:6 Complexity of Verification in Self-Assembly with Prebuilt Assemblies

|C|

|V|

(a)

U

x3
0 x4

1

(b)

x4
1

S

(c)

S

(d)

(e)

Figure 4 (a) Target assembly for producibility in the 2HAM with prebuilt assemblies. Target
assembly is a 10|C|+3 by 10|V |+6 rectangle. Smaller rectangles between tiles denote strength-1 glues.
Glues between blue tiles are not shown. Each blue tile shares a strength-2 glue with neighboring blue
tiles. The exceptions are tiles separated by the thicker borders that do not share a glue unless shown.
(b) A frame assembly with macroblocks attached. Here, c1 = x1 ∨ x3 ∨ x4. (c) Here x3 = 0 satisfies
the clause so this macroblock that attaches has its arm in the S position. (d) The macroblocks that
attach after always have their arms in the S position. (e) The right edge assembly can attach to the
last macroblock since its arm position is in on the S position completing the row.

3.2 Macroblocks

A single macroblock can be seen in Figure 1b and has two parts: the body that contains
glues to allow attachment (blue), and four arms which encode ϕ (green/red). Each arm on
the macroblock encodes a single bit of information by being in one of two positions. We call
these positions “0” and “1” for the north/south arms and “U” and “S” (unsatisfied/satisfied)
for the east/west arms (Figure 1c).

We denote a macroblock representing a variable/clause pair (vi, cj) by its glues and arm
positions as mi,j(b, w, e) where b ∈ {0, 1} is the position of the north/south arm, w ∈ {U, S}
is the position of the west arm, and e ∈ {U, S} is the position of the east arm. Each
macroblock has a single strength-1 glue on each side (macroblocks representing the last clause
do not contain glues or arms on their north side). The glues indicate which variable and
clause pair this macroblock represents. The north and south glues relate to the variable, and
the east and west glues relate to the clause. The south and west glues allow for cooperative
attachment to an assembly that already contains macroblocks mi−1,j and mi,j−1. The north
and east glues allow for attachment of the next macroblocks.

Each variable/clause pair (vi, cj) has a set Mi,j of four macroblocks associated with it
(shown in Figure 3). The exact macroblocks that are included depends on whether xi or
x̄i is present in the jth clause. The macroblocks mi,j(0, S, S) and mi,j(1, S, S) are always
included since the assignment of a variable can not change a clause from being satisfied
to unsatisfied. If the the positive literal vi appears in cj , then we include the macroblocks
mi,j(1, U, S), or mi,j(1, U, U) if it does not. If the negative literal v̄i appears is in cj we
include the macroblock mi,j(0, U, S), or mi,j(0, U, U) if it does not.

3.3 Computing Clauses

The left edge assembly starts with an arm in the U position. Macroblocks maintain this
position (Figure 4b) until a macroblock attaches that satisfies the clause, and changes the
arm to an S position (Figure 4c). Once a row of the assembly is complete (Figure 4d), if the
horizontal arm is in the satisfied position, the right edge assembly can attach cooperatively
and complete the row (Figure 4e). For a right edge assembly to attach, the clause must be

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 8:7

satisfied and the assembly below it (either another right edge assembly or the right corner
assembly) must attach as well. Thus, the right edge assembly only attaches if the clause it
represents is satisfied.

Each row has multiple size-2 holes between macroblocks. Filler tiles cannot attach
to macroblocks on their own due to the temperature of the system. However, once two
macroblocks are attached, the tiles can cooperatively bind across the hole with strength-1
glues from each side (Figure 5b). As shown in Figure 5c, this hides the previously used arm
positions. The exposed northern arms also continue to encode the input string so the next
clause can be computed after the attachment of the next left edge assembly.

▶ Theorem 3. The producibility problem in the 2HAM with prebuilt assemblies of size O(1) is
NP-complete with τ = 2 and an initial assembly set containing O(|V ||C|) distinct assemblies.

Proof. For membership in the class NP consider an assembly tree υ for a producible assembly
A. To verify A is producible we may use υ as a certificate. If υ is a valid tree (each combination
is legal) and each leaf is in the input set I, then A is producible.

To show NP-hardness we reduce from 3SAT. Given a formula ϕ in 3CNF form with |V |
variables and |C| clauses. Our target assembly A is the rectangle described above made from
macroblocks and edge assemblies with each of the spaces between arms completely filled
with tiles. The input assembly set includes I, |C| left edge assemblies with their arm in
the unsatisfied position, and |C| right edge assemblies in their satisfied position. For each
variable, two input assemblies representing 0 and 1 assignments are included. The clauses
are encoded by the selection of macroblock arm combinations. A set of 4 macroblocks are
included in I for each variable and clause combination, so there are a total of O(|V ||C|)
macroblocks. This results in a total initial assembly set size of O(|V ||C|), and each assembly
is constant sized.

The starting assemblies, I, will grow into A if and only if ϕ is satisfiable. If ϕ is satisfiable
by some assignment x, then the ‘L’ shaped frame assembly representing x will grow by
attaching macroblocks. Since x satisfies ϕ each clause will eventually have its arm position
changed to satisfied allowing for all the right edge assemblies to attach. The single tiles will
then fill in the spaces to complete A. If A is producible then there exists some ‘L’ shaped
frame assembled that grew into A. The only way this frame could have grown into A is if
the position of the arms on the input assemblies represented a string x that satisfied each
clause meaning ϕ is satisfiable. ◀

4 Unique Assembly Verification is coNPNP-complete

In this section we show coNPNP-completeness of the Unique Assembly verification problem in
the 2HAM with constant sized prebuilt assemblies. We start by proving UAV is in the class
of problems solvable by a nondeterministic algorithm with access to an oracle for a problem
in the class NP. We then show hardness by reducing from ∀∃SAT. This is an extension of
the reduction shown in the previous section, and further, we utilize similar techniques used
in previous reductions in the 2HAM and Tile Automata [2, 16].

▶ Lemma 4. The Unique Assembly Verification problem in the 2HAM with prebuilt assemblies
is in coNPNP

Proof. Given an instance (Γ, A), refer to a “rogue assembly” R as a producible assembly
in the system Γ that is either (1) not a subassembly of the target assembly A, R ̸⊑ A,
or (2) a strict subassembly of A and terminal, i.e., R ⊏ A and R ∈ P(S,τ). The following
nondeterministic algorithm solves UAV.

SAND 2022

8:8 Complexity of Verification in Self-Assembly with Prebuilt Assemblies

Sink Assemblies

Test Bit Assemblies

Macroblocks

Edge Assemblies

SAT Assembly

Test Assembly

Matched Test Assembly

Sunk SAT Assembly

Target Assembly

a

b

c

d

e

Unmatched Test Assembly

fClause Verifier

(a)

(b)

x1 1 x2 1 x3 0 x4 1

(c)

Figure 5 (a.a) Test bit assemblies come together to build a test assembly for all possible
assignments of the variables in X. Clause Verifier assemblies may attach to SAT assemblies that
satisfied all clauses. (a.b) Macroblocks and edge assemblies from the previous reduction are used to
create SAT assemblies that evaluate the formula for every assignment of all the variables. (a.c) The
sink assemblies begin attaching to SAT assemblies, ensuring they all grow into the target assembly.
(a.d) A test assembly will attach to a SAT assembly that satisfies the formula and has matching
assignments to the variables in X. (a.e) Matched test assemblies and sunk SAT assemblies attach to
each other forming the target assembly. (a.f) Any test assembly that does not find a SAT assembly
to attach to is unmatched and terminal. If any unmatched test assemblies exist, the instance of
UAV is false. (b) Once two macroblocks attach, the green filler tiles are able to cooperatively
attach using one glue on the macroblock, and the other glue from the red tiles of the arms from
the other macroblock. The filling process hides the information that was passed. (c) Another left
edge assembly may attach above the first. Since the north arms of macroblocks encode the variable
assignment, the second clause may be computed in the same way as the first.

1. Nondeterministically build an assembly B of size |B| ≤ 2|A|.
2. If B is a rogue assembly, reject.

It suffices to check all assemblies B up to size 2|A| since any assembly of size > 2|A|
must have been built from at least one other assembly B′, s.t. |A| < |B′| ≤ 2|A|. B′ is a
rogue assembly itself and will be accounted for in a different branch of the computation. It
remains to be checked whether B is a rogue assembly. The first condition can be verified
in polynomial time by checking if B is a subassembly of A. The second condition can be
checked using an NP oracle that answers the following: “Does there exists an assembly C,
|C| ≤ |A|, such that C can attach to B?”. This problem can be solved by an NP machine
that nondeterministically builds an assembly C up to size A and attempts to attach it to
B. If any C can attach to B, B is not terminal. If any branch finds a rogue assembly, the
co-nondeterministic machine will reject. ◀

4.1 Reduction Overview
▶ Definition 5 (∀∃SAT). Given an n-bit Boolean formula ϕ(x1, x2...xn) with the inputs
divided into two sets X and Y , for every assignment to X, does there exist an assignment to
Y such that ϕ(X, Y) = 1?

We show this problem is coNPNP-hard by reducing from ∀∃SAT. An overview of the
important assemblies and processes are shown in Figure 5a. The same construction used
in the previous reduction is used to create exponentially many “SAT assemblies”, each of

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 8:9

(a)
Sink Glue

SAT glue

Edge Glue

Test Glue

X Y

(b)

Figure 6 (a) Target Assembly for UAV. Assembly can be divided into three parts, Test assembly
with satisfied SAT assembly, Sunk SAT assembly, and a column of clean up frames (b) SAT assembly.
Built using the previous reduction with additional northern arms for the variables in X. Also we do
not add right edge assemblies an arm is exposed which shows whether a clause has been satisfied.

which evaluates the Boolean formula on one of its input assignments. A SAT assembly is
shown in Figure 6b. We do not include right edge assemblies so SAT assemblies that have
finished computing will have exposed arms on their right side denoting whether or not each
clause was satisfied. The assembly has exposed arms to the north above variables in X that
represent their assigned values. Variables in Y will still have no arms on their north side.
We construct a test assembly (Figure 7a) for each possible assignment to the variables in X

(Figure 8a) along with a clause verifier assembly. The clause verifier assemblies are made of
right edge assemblies with their arms in the S position. Each test assembly can attach to any
SAT assembly with matching assignments to X (complimentary arm positions) if the clause
verifier has already attached. Other assemblies are included that “sink” all assemblies to the
target except for test assemblies that did not attach to a SAT assembly. Test assemblies
may build into the target assembly if and only if they find a matching SAT assembly. The
key question about the system is “For all test assemblies, does there exist a compatible SAT
assembly where all clauses evaluated to true?”

This system uniquely constructs the target assembly if and only if the instance of ∀∃SAT
is true. If the instance is false, there exists an assignment to the variables in X where no
satisfying assignment of Y exists. In this case, the test assembly representing that assignment
will be terminal, which means the system does not uniquely produce the target assembly.

4.2 SAT Assembly
We use the assemblies from the previous reduction to compute all satisfying assignments to
ϕ. We use the same macroblocks, input assemblies, and left edge assemblies, however, we
do not include any right edge assemblies or the right corner assembly. A frame assembly is
constructed for each assignment to ϕ. The assembly process then computes whether or not
the assignment satisfies the clauses in the same way by attaching macroblocks with matching
geometry. In this construction we mark the assignment to variables in X by including
northern arms to the top most macroblocks for those variables instead of omitting them as
in the previous construction. This results in a final assembly that has its assignment to X

and the computed value of each clause being encoded in the exposed arm positions.
The assembly can be seen in Figure 6b with glues labeled. The exposed glues all have

strength-2. In the bottom right corner of the assembly, the last variable assembly has two
glues. The bottom glue is called the sink glue and this is one of the glues the sink assembly
uses to attach to a SAT assembly. The glue above it, called the SAT glue, is used by both
the left sink base assembly and the test assembly. The next glue appears on each macroblock
with an exposed arm, and the northern side of the rightmost macroblock. This glue allows

SAND 2022

8:10 Complexity of Verification in Self-Assembly with Prebuilt Assemblies

Test Glue

1

0

1

0
100

Left Corner
Test Assembly Right Corner

Test Assembly

SAT glue

Test-Sink glue

S

Test Cap
Assembly

Test Glue

S

Edge Glue

(a)

1 0

S

S
S

S

(b)

A
X

10

1 0

11

00

S

S

Test Assemblies Clause
Verifier

(c)

Figure 7 (a) Test bit assemblies nondeterministically construct a test assembly for each assignment
to the variables in X. Right edge assemblies with arms in the satisfied positions are used to build
the clause verifier. Only the north most edge assembly has an edge glue to allow a clause verifier to
attach to a SAT assembly. A test assembly may attach to a SAT assembly with a clause checker
attached using the test glues on their south side. The Test-Sink glue is used to cooperatively attach
to a sink assembly once the test assembly is matched with a SAT assembly. (b) A clause verifier
may attach to SAT assemblies that have their arms in the satisfied position. (c) Test Assemblies
that are created for a X that contains 2 variables along with the single clause verifier.

for sink assemblies to attach and cover exposed arms to reach the target assembly. The test
glue is the last glue on this assembly and appears in the top right corner. The test assembly
uses this glue with the SAT glue to attach to a SAT assembly with matching geometry.

4.3 Test Assembly

A test assembly is constructed for each possible assignment to X starting from constant
sized test bit assemblies shown in Figure 7a. For each variable in X, we include two test
bit assemblies. For each each variable in Y , we include a blank test bit assembly, which is a
3 × 10 rectangle. This row is capped by left and right corner test assemblies. The left and
right corner assemblies have a strength-1 glue. The clause verifier assembly is built using
right edge assemblies. These assemblies all have their arms in the satisfied position. The
north most assembly has a strength-1 glue on its left side to attach to SAT assemblies and
another on its north side to allow test assemblies to attach. They connect downward to a
1 × 3 test cap assembly. The test cap has the strength-1 SAT glue on its left side to allow a
test assembly to cooperatively bind to a SAT assembly with all arms in the satisfied position
(Figure 7b). On its south side it has the test-sink glue which will be used to attach to a sink
assembly cooperatively once a SAT assembly is found. This assembly process creates a test
assembly for each possible assignment to the variables in X. The example of test assemblies
for an instance where |X| = 2 and |Y | = 2 can be seen in Figure 7c.

The test assembly has two exposed glues on opposite ends of the assembly. Thus, the
assembly cannot attach to a SAT assembly until it is completely constructed and a clause
verifier assembly has attached. A clause verifier assembly may only attach to SAT assembly
with matching arm positions, i.e., SAT assemblies that satisfied all clauses. A test assembly
may only attach to SAT assemblies with a clause verifier and that have the same assignment
to X. A test assembly along with the four possible SAT assemblies it could attach to is
shown in Figure 8a. A test assembly is terminal if there does not exist a SAT assembly with
the same assignment to X that satisfies all clauses. A terminal test assembly can be seen in
8b. We call these terminal test assemblies unmatched test assemblies. Since we construct a
SAT assembly for each possible assignment to the formula ϕ, if the test assembly representing
a partial assignment x is terminal that means there does not exist a remaining assignment
to the variables in Y that satisfies the formula, and causes the instance of UAV to be false.

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 8:11

EY

1 0

S

S

1 0

S

S

1 0

S

S

00

S

S

01

1 0

S
10

U S

S

1 0

S

1 1 U

S

S

(a)

Unmatched
Test Assembly

01

EY

1 0

00

U

U

S

S

1 0

10

U

U

S

S

1 0

S

1 1 U

S

S

1 0

S

1 0 U

S

S

(b)

Figure 8 (a) If there exists a satisfying assignment to Y when X = 10, the test assembly with
those arms can attach to a SAT assembly. (b) If there does not exist a satisfying assignment, all the
SAT assemblies will have at least one arm not in the S position that will geometrically block the
test assembly’s arm. This test assembly will be terminal so the answer to UAV will be no.

4.4 Sink

Since our goal is to design a system that uniquely constructs an assembly when the instance
of ∀∃SAT is true, we will sink assemblies representing a non-satisfying assignment to the
target assembly. This ensures that each assembly (besides unmatched test assemblies) must
eventually grow into the target assembly thus sinking all other producible assemblies to our
target. We do so via sink assemblies and macroblock frames. The sink assemblies are shown
in Figure 9a. The first sink assembly, the right sink base assembly, is similar to the right
corner assembly of the previous section but is of height 4. Sink base tiles are single tiles that
may attach to the right base assembly on its left side bottom row, which eventually connects
to the left base assembly.

The right sink base assembly attaches to any SAT assembly that has not attached to a
test assembly using the sink and test-sink glues. We call the attachments that occur after
this the Sink Process. During the Sink Process, sink edge assemblies attach cooperatively
with the right sink base assembly and with the SAT assembly. This allows for the sink edge
assemblies to attach one-by-one and “cover” each exposed arm on the SAT assembly. The
last sink edge (northern most) is slightly longer to allow for the horizontal sink edges to
attach across the top of the assembly. The left sink base assembly cooperatively attaches to
test assemblies that have already attached to SAT assemblies using the SAT glue on its right
side and the test-sink glue on its north side.

The last assembly type that has not been accounted for in the final assembly are any
unused macroblocks. In the previous reduction, any unused macroblocks are terminal since
they are never used in the computation. In this reduction, we cannot have any other terminal
assembly, so these must be included in our target assembly. We do this by adding frames
to store the macroblocks. For each macroblock we include in our input set, we also include
a clean up frame (Figure 9b). Any macroblock is now not terminal as it can attach to the
clean up frame. These frames are enumerated and attach in order to the south side of the
sink assembly in a single column (Figure 9c).

▶ Theorem 6. The Unique Assembly Verification problem in the 2HAM with prebuilt
assemblies of size O(1) is coNPNP-complete with an initial assembly set size of O(|V ||C|)
and τ = 2.

SAND 2022

8:12 Complexity of Verification in Self-Assembly with Prebuilt Assemblies

Variable Sink Edges Blank Sink Edges

Last clause

Test-Sink glue SAT glue

Sink Glue Sink Glue

Clause Sink Edges

Left Sink Base Right Sink Base

(a) (b)

Right Sink
Base Assembly

Left Sink
Base Assembly

(c)

Figure 9 (a) The set of sink assemblies. The sink glue and test-sink glue are utilized for
cooperative attachment. (b) For each macroblock we also include a frame so none of the macroblocks
are terminal. These frames attach to each other in order at the bottom of the sink assembly. (c)
The process of sinking all assemblies towards the target assembly.

Proof. We show membership in Lemma 4. Given an instance of ∀∃SAT with a formula
ϕ(x1, x2, . . . , xn) we create a 2HAM system S that uniquely assembles a target assembly S

if and only if the instance of ∀∃SAT is true. If the instance of ∀∃SAT is false then S will
produce a test assembly that is terminal.

The construction of SAT assemblies begins with combinations of variable and edge
assemblies to produce an L shaped frame assembly for each possible assignment to ϕ. The
output of ϕ on each assignment is then computed by the attachment of macroblocks that
encode the clauses of ϕ, and producing a SAT assembly. The SAT assemblies expose arms
representing the assignment of the variables in X, as well as arms that represent whether
each clause has been satisfied. From the included prebuilt assemblies, a test assembly is
produced for each possible assignment to X. Due to their arm positions, they may only
attach to SAT assemblies that have a matching assignment to X and that represent an
assignment that satisfies every clause.

Each assembly besides unmatched test assemblies will sink to the target assembly. Every
prebuilt assembly that was designed for building a SAT assembly will be used in the
construction of at least one SAT assembly, besides the macroblocks. In some cases it is
possible for a macroblock to not be able to attach to any SAT assembly. To account for
this this we include a macroblock frame for each macroblock to attach to, ensuring that
no macroblock is terminal. The right sink base assembly may attach to any SAT assembly
regardless of arm position so none of the SAT assemblies are terminal. Each sink assembly is
used in the process of reaching the target assembly so none are terminal.

A test assembly is only terminal if there does not exist a SAT assembly with matching X

arm positions that has each clause satisfied. This means for that assignment to X there does
not exist an assignment to Y that satisfied ϕ, and the instance of ∀∃SAT is false.

The new assemblies in this reduction only increase the number of assemblies by a constant
factor. The test and sink assemblies only add O(|V | + |C|) to the input assembly size, and
the added macroblock frames are equal to the number of macroblocks, which is constant. ◀

5 1D Verification

Here, we show that the producibility and the UAV problems in one-dimensional 2HAM (all
assemblies are of height-1, and tiles only have glues on their left and right sides) with prebuilt
assemblies is solvable in polynomial time. Proofs omitted due to space.

Producibility Verification. At a high level, the algorithm constructs a graph of initial
assemblies that may be combined to form the target assembly A. An example graph is shown
in Figure 10. We add a starting node s that connects to possible leftmost assemblies and a

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 8:13

A B C D E

Target Assembly

B C DA B C

B C D E

A B

Initial Assemblies

E A B C D E

A B Cs t

B C D

E

Graph

Figure 10 Example instance of Producibility with the graph G created. The path between s and
t implies a build sequence to produce the target assembly.

target node t that connects to possible rightmost assemblies. There exists an edge between
two assemblies if they may attach as part of an assembly sequence building A. Thus, a path
from s to t implies an assembly sequence using those nodes to build the target assembly.

▶ Theorem 7. The producibility problem in the one-dimensional 2HAM with prebuilt assem-
blies is solvable in polynomial time.

Unique Assembly Verification. Given an instance of UAV (Γ, A), we first present three
conditions that, if checked, provide the answer. If and only if all these conditions are true,
the answer to UAV is “yes”: 1) A is producible. 2) There does not exist a subassembly
B ⊑ A that is terminal. 3) There does not exist a producible assembly R ̸⊑ A. Here, R is a
rogue assembly since it will never grow into A. As a given system can have an exponential
number of assemblies of size ≤ |A|, we present a lemma showing a limit on the search for a
witness that condition 3 is false.

▶ Lemma 8. Let (Γ, A) be an instance of UAV in the one-dimensional 2HAM with prebuilt
assemblies such that every initial assembly is a subassembly of A, and A is producible. If there
exists a rogue assembly R ̸⊑ A, then there exists a rogue assembly R′ that can be produced by
combining two assemblies R′

1, R′
2 that are subassemblies of A.

Utilizing this lemma, we search only the subassemblies of our target assembly A to verify
the third condition. 1D assemblies only have a polynomial number of subassemblies, so this
allows us to check both the second and third condition. Combining these two steps with the
polynomial time producibility algorithm from above, we solve UAV in polynomial time.

▶ Theorem 9. The Unique Assembly Verification problem in the one-dimensional 2HAM
with prebuilt assemblies is solvable in polynomial time.

6 Future Work

Here we showed NP-completeness of the producibility problem and coNPNP-completeness of
UAV in the 2HAM with constant-sized prebuilt assemblies with τ = 2. The non-cooperative
versions (τ = 1) of many models see a drop in complexity for these problems and have been
proven to be incapable of universal computation. However, the authors of [11] show that
even without cooperative binding the, Polyomino Tile Assembly Model (tiles may be larger
polyominoes instead of only unit squares) is capable of universal computation. Since the
polyominoes in this model are similar to prebuilt macroblocks, perhaps the same results may
be proven in the 2HAM with prebuilt assemblies and τ = 1.

References
1 Leonard M. Adleman, Qi Cheng, Ashish Goel, Ming-Deh A. Huang, David Kempe, Pablo Mois-

set de Espanés, and Paul W. K. Rothemund. Combinatorial optimization problems in
self-assembly. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pages 23–32, 2002.

SAND 2022

8:14 Complexity of Verification in Self-Assembly with Prebuilt Assemblies

2 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and
Computation in Restricted Tile Automata. In Cody Geary and Matthew J. Patitz, editors,
26th International Conference on DNA Computing and Molecular Programming (DNA 26),
volume 174 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:18,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.DNA.2020.10.

3 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than
One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 172–184. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

4 Angel A Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Covert computation in
self-assembled circuits. Algorithmica, 83(2):531–552, 2021.

5 Erik D Demaine, Martin L Demaine, Sándor P Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T Schweller, and Diane L Souvaine. Staged self-assembly: nanomanufacture of arbitrary
shapes with o (1) glues. Natural Computing, 7(3):347–370, 2008.

6 David Doty. Theory of algorithmic self-assembly. Communications of the ACM, 55(12):78–88,
2012.

7 David Doty. Producibility in hierarchical self-assembly. In Oscar H. Ibarra, Lila Kari,
and Steffen Kopecki, editors, Unconventional Computation and Natural Computation, pages
142–154, Cham, 2014. Springer International Publishing.

8 David Doty, Lila Kari, and Benoît Masson. Negative interactions in irreversible self-assembly.
Algorithmica, 66(1):153–172, 2013.

9 Masayuki Endo, Tsutomu Sugita, Yousuke Katsuda, Kumi Hidaka, and Hiroshi Sugiyama.
Programmed-assembly system using DNA jigsaw pieces. Chemistry: A European Journal,
pages 5362–5368, 2010.

10 Constantine Evans. Crystals that Count! Physical Principles and Experimental Investigations
of DNA Tile Self-Assembly. PhD thesis, California Inst. of Tech., 2014.

11 Sándor P Fekete, Jacob Hendricks, Matthew J Patitz, Trent A Rogers, and Robert T Schweller.
Universal computation with arbitrary polyomino tiles in non-cooperative self-assembly. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
148–167. SIAM, 2014.

12 Bin Fu, Matthew J Patitz, Robert T Schweller, and Robert Sheline. Self-assembly with
geometric tiles. In International Colloquium on Automata, Languages, and Programming,
pages 714–725. Springer, 2012.

13 Pierre-Étienne Meunier, Damien Regnault, and Damien Woods. The program-size complexity
of self-assembled paths. In STOC: Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, pages 727–737. Association for Computing Machinery,
2020. doi:10.1145/3357713.3384263.

14 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13(2):195–224, June 2014.

15 Robert Schweller, Andrew Winslow, and Tim Wylie. Complexities for high-temperature
two-handed tile self-assembly. In Robert Brijder and Lulu Qian, editors, DNA Computing and
Molecular Programming, pages 98–109, Cham, 2017. Springer International Publishing.

16 Robert Schweller, Andrew Winslow, and Tim Wylie. Verification in staged tile self-assembly.
Natural Computing, 18(1):107–117, 2019.

17 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

18 Sungwook Woo and Paul W.K. Rothemund. Stacking bonds: Programming molecular re-
cognition based on the geometry of DNA nanostructures. Nature Chemistry, 3:620–627,
2011.

https://doi.org/10.4230/LIPIcs.DNA.2020.10
https://doi.org/10.4230/LIPIcs.DNA.2020.10
https://doi.org/10.1145/3357713.3384263

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 8:15

19 Damien Woods. Intrinsic universality and the computational power of self-assembly. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
373(2046):16–22, 2013.

20 Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik
Winfree. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Nature, 567:366–372, March 2019. doi:10.1038/s41586-019-1014-9.

SAND 2022

https://doi.org/10.1038/s41586-019-1014-9

Robustness of Distances and Diameter in a Fragile
Network
Arnaud Casteigts # Ñ

LaBRI, CNRS, Université de Bordeaux, Bordeaux INP, France

Timothée Corsini # Ñ

LaBRI, CNRS, Université de Bordeaux, Bordeaux INP, France

Hervé Hocquard # Ñ

LaBRI, CNRS, Université de Bordeaux, Bordeaux INP, France

Arnaud Labourel # Ñ

Aix Marseille Univ, CNRS, LIS, Marseille, France

Abstract
A property of a graph G is robust if it remains unchanged in all connected spanning subgraphs
of G. This form of robustness is motivated by networking contexts where some links eventually fail
permanently, and the network keeps being used so long as it is connected. It is then natural to ask
how certain properties of the network may be impacted as the network deteriorates. In this paper,
we focus on two particular properties, which are the diameter, and pairwise distances among nodes.
Surprisingly, the complexities of deciding whether these properties are robust are quite different:
deciding the robustness of the diameter is coNP-complete, whereas deciding the robustness of the
distance between two given nodes has a linear time complexity. This is counterintuitive, because the
diameter consists of the maximum distance over all pairs of nodes, thus one may expect that the
robustness of the diameter reduces to testing the robustness of pairwise distances. On the technical
side, the difficulty of the diameter is established through a reduction from hamiltonian paths. The
linear time algorithm for deciding robustness of the distance relies on a new characterization of
two-terminal series-parallel graphs (TTSPs) in terms of excluded rooted minor, which may be of
independent interest.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems;
Networks → Network dynamics; Theory of computation → Complexity classes

Keywords and phrases Dynamic networks, Longest path, Series-parallel graphs, Rooted minors

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.9

Funding ANR project ESTATE (ANR-16-CE25-0009-03) and DREAMY (ANR-21-CE48-0003)

1 Introduction

The diameter of a network is the maximum distance between any pair of nodes. This concept
plays an important role in various fields of network science. For example, in communication
networks and distributed algorithms, the diameter is a key parameter involved in the
complexity of basic tasks such as leader election, spanning tree construction, and broadcast.
Indeed, both the execution time and number of messages may depend on this parameter.
Similarly, distances between nodes play a role in nearly all networking phenomena.

In a physical network, the links may deteriorate and eventually become subject to
permanent failure. In this case, either the network is maintained (repaired), or it is used
despite the failures so long as communication remains possible, i.e., so long as it remains
connected. A natural question, is then to what extent the properties of the network could
change as the network deteriorates. In graph theoretical terms, the connectivity assumption
imposes that the communication graph always remains a connected spanning subgraph of the
original graph, although one does not know in advance which such subgraph will occur. A
notion of robustness accounting for the preservation of a property in all these subgraphs

© Arnaud Casteigts, Timothée Corsini, Hervé Hocquard, and Arnaud Labourel;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnaud.casteigts@labri.fr
https://www.labri.fr/perso/acasteig/
https://orcid.org/0000-0002-7819-7013
mailto:timothee.corsini@labri.fr
https://www.labri.fr/perso/tcorsini/
https://orcid.org/0000-0003-1055-5627
mailto:herve.hocquard@labri.fr
https://www.labri.fr/perso/hocquard/
https://orcid.org/0000-0001-8194-4684
mailto:arnaud.labourel@lis-lab.fr
http://pageperso.lif.univ-mrs.fr/~arnaud.labourel
https://orcid.org/0000-0003-0162-1899
https://doi.org/10.4230/LIPIcs.SAND.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Robustness of Distances and Diameter in a Fragile Network

was investigated in [3] in the context of covering problems. Although it can be formulated
in classical graph theoretical terms, the notion of robustness was initially motivated by a
temporal context. Namely, if the lifetime is infinite, then some edges may be recurrent (i.e.,
always reappear), and some may eventually disappear forever. If the network is guaranteed to
have a recurrent temporal connectivity (class T CR), then a certain connected spanning subset
of the edges must be recurrent, although one does not know in advance which subset. (In
technical terms, the eventual footprint is any connected spanning subgraph of the footprint.)

In this paper, we investigate the robustness of distances and diameter in the classical
(i.e. non-temporal) setting, where deletions are definitive. Relations between edge deletions
and distances in a graph have been studied over decades in some fields, such as that of
graph spanners. A spanner of a graph is a subgraph that preserves, to some extent, the
properties of the input graph – typically, the distances – while retaining as few edges as
possible. For example, we know since [1] that a tradeoff exists between the size of the spanner
and the deterioration of distances, in proportional terms (called stretch factor). Namely,
there always exists a spanner of size O(n1+1/k) whose stretch factor is at most 2k− 1, where
n is the number of nodes in the graph. The reader is referred to [6] for background in graph
spanners. A significant difference between this topic and questions about robustness is that,
in the case of spanners, the deletions of edges are chosen by the algorithm, whereas in the
case of robustness, they are imposed by the environment. Thus, it makes sense to think of
robustness in terms of adversarial edge deletions. The question is then whether and how
the distances are preserved under all possible choices of deletions by an adversary, up to
preserving connectivity.

As a warm-up, observe that, for any path P connecting two nodes u and v in a graph G,
the adversary can always delete enough edges that this path becomes the only path between
u and v (for example, by choosing a spanning tree G′ ⊆ G that contains this path). Thus,
deciding whether the distance between u and v is robust comes to decide if there exists a path
between u and v that is longer than their original distance d(u, v) in G. A similar question
was considered recently in the case of induced paths [2] and was shown to be solvable in
polynomial time, albeit with a time complexity of O(|G|18) (as of the current analysis, which
the authors of [2] do not consider tight). The non-induced case is arguably simpler. In fact,
the question for non-induced paths reduces (without being equivalent) to a question known
as the next-to-shortest path, which consists of finding a path between u and v that is the
shortest among all paths of cost strictly greater than d(u, v). Clearly, d(u, v) is robust if
and only if no such path exist. A number of algorithms were introduced for this problem,
both in directed [11] and undirected [10, 12, 9] graphs. The best known algorithm, in the
undirected case, is that of [9], with a time complexity of O(n2). It is not known whether this
algorithm is optimal for general graphs (in particular, sparse graphs), the quadratic term
being independent from the number of edges.

1.1 Contributions
The first set of contributions of this paper is a structural investigation of robustness, which
results in a linear time algorithm for deciding whether the distance between two vertices u

and v is robust. To do so, we identify and exploit a connection between robust distances and
two-terminal series-parallel graphs (TTSPs), whose recognition is known to be solvable in
linear time [16]. Precisely, we introduce a new class of TTSP graphs, referred to as TTSPs
of fixed length. Then, we show that the distance between u and v is robust in a graph G if
and only if the subgraph of G induced by the union of all paths from u and v is a TTSP of
fixed length. The main contribution is the characterization itself. First, we show that general

A. Casteigts, T. Corsini, H. Hocquard, and A. Labourel 9:3

TTSPs correspond to the graphs that exclude a certain rooted minor, namely, a diamond
rooted at u and v. This point of view clarifies earlier characterizations of TTSPs that
essentially arrived at the same conclusion without relying explicitly on a forbidden pattern.
(In the case of series-parallel graphs which are not two-terminal, such a characterization
was already known in terms of forbidden K4 [4, 5].) Then, we establish the correspondence
between these forbidden rooted diamonds and the robustness of the distance between u

and v. The natural consequence of our characterization is that robustness can be tested in
linear time by adapting the recognition algorithm from Valdes, Tarjan, and Lawler [16] to
the special case of fixed length TTSPs, with the same running time of O(n + m) operations
(where m is the number of edges).

The second set of contributions is the computational complexity of deciding whether the
diameter of a graph is robust. Clearly, the concept of diameter is strongly related to the one
of distance. However, and quite surprisingly, computing the robustness of the diameter turns
out to be a much different (and much more difficult) problem than computing the robustness
of pairwise distances. Precisely, we show that Robust-Diameter is coNP-complete (in other
words, proving that the diameter of certain networks are robust is difficult). This is done
through a reduction from Hamiltonian-Path, where one must decide if a path of length
n− 1 exists in a graph.

1.2 Organization of the document
The document is organized as follows. Section 2 provides the main definitions and some
basic observations. Then, we establish in Section 3 that deciding whether the diameter is
robust is a difficult (coNP-complete) problem. In Section 4, we investigate several aspects of
the robustness of distances, in relation to two-terminal series-parallel graphs (TTSPs). The
main results of this section are a new characterization of TTSPs (Section 4.2) and a linear
time decision algorithm for robustness of distances (Section 4.4). Finally, we conclude with
some remarks and open questions in Section 5.

2 Definitions and preliminary observations

2.1 Basic definitions
An undirected graph G is a pair (V (G), E(G)) where V (G) and E(G) are two disjoint sets,
the set of vertices (or nodes) and the set of edges respectively. Each edge is associated with
two vertices called its endpoints. A loop is an edge whose endpoints are the same vertex. If
there are several edges with the same endpoints, these edges are called a multi-edge. An
undirected graph is simple if it does not have loops nor multiple edges. A graph that can
have multi-edges is called a multigraph. A graph without loops is called loopless. Unless
otherwise mentioned, all the graphs in this paper are simple. The order of a graph G is
|V (G)| and its size is |E(G)|. Two vertices u and v are adjacent if there exist an edge uv

in E(G). In a loopless graph, the degree of a vertex u in G is the number of edges incident
with u. In a simple graph, this corresponds to the number of vertices with which u shares an
edge, called its neighbors. A complete graph is a simple graph such that every pair of vertices
are neighbors, we denote the complete graph of order n by Kn.

Let H and G be two graphs. We say that H is a subgraph of G if and only if V (H) ⊆ V (G)
and E(H) ⊆ E(G). If V (H) = V (G) and E(H) ⊆ E(G) then H is a spanning subgraph
of G. Let X ⊆ V (G), the induced subgraph G[X] is the subgraph of G on vertex set X and

SAND 2022

9:4 Robustness of Distances and Diameter in a Fragile Network

where, for every two vertices u and v of X, uv ∈ E(G[X]) if and only if uv ∈ E(G). Finally,
we use G−X as a shorthand for G[V −X] if X is a set of vertices, and for (V, E −X) if X

is a set of edges.
A path P from v0 to vk is a sequence of edges (e1, e2, . . . ek) of length k for which there

is a sequence of vertices (v0, v1, . . . , vk) such that the endpoints of ei are vi−1 and vi for
i = 1, . . . , k. All vertices in a path must be distinct, except possibly for the first and last, in
which case the path is a cycle. In a simple graph, the sequence of vertices identifies uniquely
the corresponding path. The length of a path is the number of edges in it. The distance
between two vertices u and v in a graph G, denoted by dG(u, v) (or simply d(u, v) when the
context of G is clear), is the minimum length of a path from u to v. The diameter of a graph
G, denoted by diam(G), is the maximum distance between any pair of vertices. A graph
is connected if for every pair of vertices u and v, there exists a path from u to v, and it is
biconnected if for any v ∈ V , the graph G− {v} is connected. A tree is a connected graph
without cycle.

A connected component is a maximal connected subgraph. A block or biconnected
component is a maximal biconnected subgraph. A separator of a connected graph G is a
set of vertices whose removal renders G disconnected. An articulation point of a connected
graph G is a separator of size 1 (a single vertex). The structure of blocks and separators of
a connected graph can be described by a tree called the block-cut tree [7]. This tree has a
vertex for each block and for each articulation point of the given graph. There is an edge
in the block-cut tree for each block and for each articulation point that belongs to that
block. For a graph G and two vertices u and v, we say that G is a block-cut (u, v)-path if the
block-cut tree of G is a path from s to t, such that u (resp. v) is only contained in the block
associated to s (resp. t). Observe that by definition, u and v are not articulation points.

Let us now define the notion of robustness that we consider in this work.

▶ Definition 1 (Robustness). A property P of a connected graph G is called robust [3] if
P is satisfied in every connected spanning subgraph of G (including G itself). By extension,
if P denotes a quantity rather than a predicate (such as, here, a distance), then it is called
robust if its value is the same in all connected spanning subgraphs of G.

We are now ready to state the main two problems that we address in this paper, namely
Robust-Diameter and Robust-Distance.

▶ Definition 2 (Robust-Diameter).
Input: A graph G.
Output: Whether the diameter of G is robust.

▶ Definition 3 (Robust-Distance).
Input: A graph G, two vertices u and v of G.
Output: Whether the distance between u and v is robust in G.

2.2 Preliminary observations
In this section, we establish a number of basic facts, most of which are used in the rest of
the paper.

▶ Lemma 4. Let G be a connected graph and P ⊆ G a path between distinct vertices u and
v, then there exist a spanning tree S ⊆ G such that P ⊆ S.

Proof. Observe that P is a (possibly non-spanning) tree. As long as it is not spanning, one
can extend it by adding a node that is not in it, but that has a neighbor in it. Such a node
always exists because G is connected. ◀

A. Casteigts, T. Corsini, H. Hocquard, and A. Labourel 9:5

▶ Lemma 5. Let G be a connected graph and u, v two vertices of G. The distance between u

and v is robust if and only if there is no path between u and v longer than dG(u, v).

Proof. Suppose there is a longer path in G between u and v. By Lemma 4, it is thus possible
for the adversary to reduce G to a spanning tree S ⊆ G such that dS(u, v) > dG(u, v). ◀

▶ Lemma 6. Let G be a biconnected graph and u, v and w three vertices of G. There is a
path from u to w passing through v.

Proof. Consider a graph G′ obtained from G by adding an extra vertex z adjacent to
both u and w. G′ is also biconnected since no articulation point was added. By Menger’s
theorem [13], there exist two vertex-disjoint paths from z to v. Since z has only two neighbors
v and w, there are two subpaths: one from u to v and another from v to w. By composing
these subpaths, one can thus obtain a path from u to w passing through v. ◀

The following lemma allows us to subsequently restrict our attention to a limited part of
the graph, when investigating the robustness of distance between two given vertices.

▶ Lemma 7. Let G be a connected graph, u, v two distincts vertices of G and H the graph
induced by the paths from u to v. The distance from u to v is robust in G if and only if it is
robust in H.

Proof. =⇒ If the distance is robust in G, since H is a subgraph of G, the distance must be
robust in H.
⇐= By definition of H , all paths from u to v in G are also in H , thus, if all those paths

have length d(u, v) (equivalent to the robustness of the distance), then all the paths in G

from u to v have the same length and the distance is robust as well in G. ◀

Figure 1 shows a graph where the distance between u and v is not robust, this can be
verified by only considering the graph induced by all paths from u to v thanks to Lemma 7.
Observe that H , the graph induced by the paths from u to v, is always a block-cut (u, v)-path.

u v

Figure 1 A graph and its subgraph induced by the paths from u to v (in dashed red). This
subgraph is a block-cut (u, v)-path.

▶ Lemma 8. Let G be a graph and u, v two vertices of G. Then, the graph H induced by the
paths from u to v is a block-cut (u, v)-path.

Proof. By definition of H , all vertices in V (H) are part of a path between u and v and H is
connected. Let T be the block-cut tree of H , by definition, T has a vertex for each block and
each articulation point of H . The leaves of T (vertices of degree 1) are blocks, the neighbors
of blocks are articulation points, and the neighbors of articulation points are blocks. Suppose
that H is not a block-cut (u, v)-path, it means one of the following cases:

SAND 2022

9:6 Robustness of Distances and Diameter in a Fragile Network

u or v are not part of the leaves in T . Consider a path in T (x0, . . . , xk) that contains
both u and v (or their blocks), u ∈ xi and v ∈ xj such that i > 0 or j < k. If i > 0 (the
same could be done with v if j < k), then there is a path (x0, . . . , xi) crossing at least
one articulation point of H (v1). It can be deduced that any vertex in v0 cannot be part
of a path between u and v which leads to a contradiction in H.
T is a tree with at least one vertex of degree 3 or more. Since u and v must be in the
leaves of T , then there is a path between u and v that crosses a vertex x of degree at
least 3. Consider a neighbor y of x not part of such path. Either y is a block, and x is an
articulation point and all paths from u to v in H cannot reach a vertex in y, or y is an
articulation point, and there must be another block z that cannot be crossed by paths
between u and v (which we assume is not the case). ◀

The following two lemmas are not used in this paper. However, they establish some
connections between the robustness of distances and that of the diameter, which is of general
interest in the present study.

▶ Lemma 9. All the distances are robust in G if and only if G is a tree.

Proof. If G is a tree, then the adversary cannot remove any edge, so all the distances are
trivially robust. If it is not a tree, then at least one edge uv can be removed, and the distance
between u and v thus increases from one to something strictly larger. ◀

▶ Lemma 10. Let G be a connected graph, if diam(G) is robust, then for every pair of
vertices u, v in G such that d(u, v) = diam(G), their distance is robust.

Proof. By contradiction, if their distance is not robust, then there must exist a path of length
greater than dG(u, v). By Lemma 4, the adversary can obtain a spanning tree containing
this path, whose diameter is thus also greater than dG(u, v) = diam(G). ◀

3 Robustness of the diameter is hard

In this section, we prove that the problem of deciding whether the diameter of a graph G is
robust is coNP-complete. We start with two basic facts that will be used only in this section.

▶ Lemma 11. If H is a connected spanning subgraph of G, then diam(H) ≥ diam(G).

Proof. Let H be a connected spanning subgraph of G. If diam(H) < diam(G), then there
must exist two vertices u, v such that dG(u, v) = diam(G) and dH(u, v) < diam(G). Let P

be a path of length dH(u, v) in H. Since H ⊆ G, P must also exist in G, which contradicts
the fact that dG(u, v) > dH(u, v). ◀

▶ Lemma 12. The diameter of a connected graph G is robust if and only if it is equal to the
length of the longest path of G.

Proof. ⇐= Let G be a graph of diameter d that is also the longest path in G. Any
connected spanning subgraph H of G has, by Lemma 11, diam(H) ≥ d. If diam(H) > d,
then there is a path in H (and in G) that is longer than d, which is impossible, thus
diam(H) = diam(G) = d for any of these graphs and the diameter of G is robust.

=⇒ By contradiction, let G be a graph whose diameter d is robust even though a
longest path of length l > diam(G) exists between some vertices u and v. By Lemma 4, the
adversary can obtain a spanning tree T of G containing this path, whose diameter must be
strictly larger than that of G. ◀

A. Casteigts, T. Corsini, H. Hocquard, and A. Labourel 9:7

▶ Theorem 13. Robust-Diameter is coNP-complete.

Proof. To prove this statement, we will show that the problem is in coNP and that the
Hamiltonian-Path problem reduces to it in polynomial time. (Hamiltonian-Path consists
of deciding whether a given graph G admits a path of length n− 1.) The fact that Robust-
Diameter is in coNP is direct, using any path of length longer than the diameter as (negative)
certificate.

Now, let G be an input graph for Hamiltonian-Path. Without loss of generality, we
suppose that G is connected and that it is not itself a path, as otherwise the answer is
trivially positive. From G, we can construct a graph Hu as follows: Let P be a graph that
consists of a single path of length 2n− 2 on vertices {vi}, i ∈ [1, 2n− 1]. The graph Hu is
built by picking a vertex u in V (G) and adding an edge between u and vn, the middle vertex
of P2n−1. See Figure 2 for an illustration.

G
u

vn

v2n−1

v1

1
n− 1

n− 1

Figure 2 The graph Hu.

We will now prove that G admits a path of length n− 1 if and only if the diameter of Hu

is not robust, for some choice of u. Since G is not itself a path, the diameter of Hu must be
2n− 2. If the diameter of Hu is not robust for some u, then there must exist a path of length
at least 2n− 1 in some connected spanning subgraph of Hu. The only way this can happen
is that n− 1 vertices on this path are in G, which implies that G admits a hamiltonian path
(starting at u). Conversely, if G admits such a path, then there exists a choice of u such that
this path will cause the diameter of Hu to be non-robust. Clearly, the above construction
can be made in polynomial time, and guessing u will only contribute an additional factor of
n to the complexity. ◀

4 Robustness of pairwise distances

In this section, we investigate the problem of deciding whether the distance between two
vertices u and v is robust in a given graph G (Robust-Distance problem). It turns out
that the positive instances to this problem can be characterized in terms of two-terminal
series-parallel graphs of a certain type. Thus, we start by defining, in Section 4.1, some
basic concepts related to two-terminal series-parallel graphs (TTSPs). Our main technical
contribution, described in Section 4.2, is an original characterization of TTSPs in terms of
excluded rooted diamonds whose “roots” (endpoints) are u and v. This characterization may
be of independent interest. In the context of Robust-Distance, it allows us to formulate a
necessary condition for the positive instances of the problem, in terms of excluding (u, v)-
rooted diamonds (Section 4.3). This condition is however not sufficient, as some TTSPs
with respect to u and v may admit paths of different length. We show that existing TTSP

SAND 2022

9:8 Robustness of Distances and Diameter in a Fragile Network

recognition algorithms can be adapted at essentially no cost in order to test for the special
case of fixed length TTSPs, which capture exactly the properties that should be tested
(Section 4.4).

4.1 Two-terminal series-parallel graphs (TTSPs)
The concept of a two-terminal series-parallel graph seems to have been introduced by Riordan
and Shannon in [14] (1942). It is now classically defined as follows.

▶ Definition 14 (Two-terminal series–parallel graph). Let G be a connected multigraph, s

and t two distincts vertices of G called source and sink respectively. G is two-terminal
series–parallel (TTSP) if it can be turned into K2 by a sequence of the following operations:

S: Delete a vertex of degree 2 (other than s or t) and connect its neighbors with an edge.
P : Replace a pair of parallel edges with a single edge connecting the same endpoints.

Symmetrically, TTSPs can be seen as the graphs which can be obtained from K2 through the
reverse operations of P and S.

These operations S and P are illustrated in Figure 3 and an example of TTSP graph is
given in Figure 4. In this example, the distance between s and t is not robust. Note that the
fact that s and t are fixed is an important aspect of TTSP graph. For example, if s and t

were chosen differently in the graph of Figure 4, the graph would not be a TTSP. The class
of graphs that admit a valid pair (s, t) resulting in a TTSP is called SP (for series-parallel).
We do not use it in this paper.

u v P−→
u v

S−→
vwu u v

Figure 3 The operations P and S to define TTSP.

s
t

Figure 4 A TTSP between s and t.

When a graph (together with a pair (s, t)) is not a TTSP, then the repeated application
of rules S and P eventually fails and one is left with an irreducible graph.

▶ Definition 15 (TTSP-irreducible). Let G be a graph and u, v two vertices, then G is
TTSP(u, v)-irreducible if G has at least three vertices and the operations S and P cannot be
applied relative to u and v.

The following lemma makes a connection between a TTSP(s, t) and a block-cut (s, t)-path.

▶ Lemma 16 (Lemma 8 in [5]). Let G be a TTSP graph with respect to (s, t), then G is a
block-cut (s, t)-path.

A. Casteigts, T. Corsini, H. Hocquard, and A. Labourel 9:9

However, the converse is not true, and some graphs that are block-cut (s, t)-paths are
not a TTSP(s, t). These graphs have special properties characterized through the following
lemma (which will be used later).

▶ Lemma 17. Let G be a multigraph that is a block-cut (u, v) path, G is TTSP(u, v)-irreducible
if and only if G is simple, with at least 4 vertices, and such that for all w ∈ V (G)− {u, v},
deg(w) ≥ 3.

Proof. Let G be such a graph.
P cannot be applied, unless G has multiple edges, so a TTSP(u, v)-irreducible multigraph
must be simple.
S cannot be applied to G, unless there exists a vertex of degree two (other than u and v).
Thus, no vertex in an irreducible graph can have degree 2, and since G is a block-cut
(u, v)-path, every vertex except u and v must have degree at least 3.
If G is TTSP(u, v)-irreducible, then it has at least 3 vertices. But since one of them has
degree 3 and G is simple, then G actually has at least 4 vertices.

Conversely, if G is simple, with degree at least 3, and has at least four vertices, then
(respectively), P cannot be applied, S cannot be applied, and G has at least three vertices. ◀

4.2 Characterization of TTSPs in terms of excluded rooted minor
In this section, we characterize graphs that are TTSP via an excluded rooted minor that
corresponds to a complete graph of order four minus one edge called diamond. A similar
characterization was mentioned in [16] in which it is stated that a directed graph is not TTSP
if only if it has as a subgraph a subdivision of a directed diamond. This result was given as
an easy deduction from the classical result of [4] that states that graph is not series-parallel
if and only if it has as a subgraph a subdivision of K4. This characterization of TTSP graphs
is not sufficient to directly show that the distance between the two terminal is not robust if
the graph between u and v is not a TTSP for which one needs to root the terminal vertices
in the minor. Moreover, the setting was different since it considers directed graph. For all
these reasons, it seems worth characterizing TTSPs in terms of a clear excluded pattern,
which is the purpose of this section. Let us start with basic definitions.

▶ Definition 18 (Minor). Let G and H be two graphs, G has a minor H if there is a graph
isomorphic to H from G after a succession of the following operations:

deleting a vertex v;
deleting an edge e;
contracting an edge xy into the vertex x: removing y and adding a new edge xz for every
z such that yz ∈ E(G).

The notion of minor is not precise enough to guarantee the non-robustness of the distance
between two vertices u and v, because the position of u and v within the minor matters.
Therefore, we use the finer concept of rooted minors, where some vertices can be distinguished
in the minor. The difference to “normal” minors is that we want to keep a set X ⊆ V (G)
of root vertices alive in the minors. An X-legal minor operation is either the deletion of a
vertex y /∈ X, the deletion of any edge, or the contraction of an edge xy into x with y /∈ X.

▶ Definition 19 (Rooted minor). Let G and H be two graphs, X ⊆ V (G) with |X| ≤ |V (H)|,
π : X → V (H) an injection. The pair (G, X) is said to have a π-rooted-minor if G has a
minor H such that each vertex x ∈ X corresponds to the vertex π(x) in H obtained with
X-legal minor operations.

SAND 2022

9:10 Robustness of Distances and Diameter in a Fragile Network

We are now ready to show the main technical part of this section. Observe that our
definition of rooted minors differs from the definition found in [15] and [17], since all the
vertices of the minor are not necessarily rooted. Let Hd be the complete graph of order four
minus one edge between x and y (K4 \ {x, y}). For a TTSP(u, v)-irreducible graph G, we
define the bijection πd : {u, v} → {x, y} by πd(u) = x and πd(v) = y.

▶ Lemma 20. If G is a TTSP(u, v)-irreducible graph and a block-cut (u, v)-path for some
u, v ∈ V (G), then G has a πd-rooted-minor Hd.

Proof. We will show the property by induction on the order and the size of the graph.
Consider a block-cut (u, v)-path G, such graph is connected. If the order of G is less or equal
to 3, then by Lemma 17, G is not a TTSP(u, v)-irreducible graph and the property is satisfied.
For n = 4, by Lemma 17, G must have two vertices distinct from u and v with degree 3 in
order to be TTSP(u, v)-irreducible, thus G has a diamond subgraph and a πd-rooted-minor
Hd. For n > 4, consider that G is a TTSP(u, v)-irreducible graph and a block-cut (u, v)-path
of order n and size m. Assume by induction that the property is verified for all graphs of
order less or equal to n− 1 or graphs of order n with a size less or equal to m− 1.

If G is not biconnected, then let c1, c2, . . . ck be the articulation points from u to v. Since
G is a block-cut (u, v)-path, any path from u to v crosses these articulation points in order.
Let u = c0 and v = ck+1. Observe that, for any 0 ≤ i ≤ k, the block B between ci and ci+1
must be a TTSP(ci, ci+1)-irreducible graph since otherwise G would not be a TTSP(u, v)-
irreducible graph. B is a TTSP(ci, ci+1)-irreducible graph and a block-cut (ci, ci+1)-path of
order less than n. By induction, B has a π′

d-rooted-minor Hd with π′
d : {ci, ci+1} → {x, y}.

One can find two disjoint paths: one from u to ci and another one from ci+1 to v that do not
contain edges of B. It follows that G has a πd-rooted-minor Hd. Hence, for the remainder of
the proof, one can assume that G is a biconnected graph.

We now consider several cases depending on the neighborhood of u and v. Observe that
the degrees of u and v must be at least two since otherwise G would not be biconnected.

Case 1: u and v are adjacent.
In this case, we consider the graph G′ which is G minus the edge uv. First, we show
that G′ is a block-cut (u, v)-path. By Lemma 6, for any vertex w ∈ V (G) there is a
path from u to v passing through w since G is biconnected. This path also exists in
G′ since it does not use the edge uv in G. It follows that there is no articulation point
separating w from both u and v and so G′ is a block-cut (u, v)-path. Assume, by way
of contradiction, that G′ is a TTSP(u, v) graph. It means that there is a sequence of
operations P and S such that G′ can be turned into K2 while preserving u and v. Using
the same sequence of operations, G can be turned into a multigraph of two vertices u and
v with two edges linking u and v. By applying an operation P , we obtain a K2 and thus
there is a contradiction with the fact that G is a TTSP(u, v)-irreducible graph. Hence,
G′ is a TTSP(u, v)-irreducible graph and a block-cut (u, v)-path. By induction, since G′

is of order n and size m− 1, G′ has a πd-rooted-minor Hd and so has G.
Case 2: u is adjacent to w ̸= v such that w is not adjacent to other neighbors of u.
In this case, one can contract edge uw into u. Observe that if {u, w} is a separator of G

then u is the only articulation point in the connected new graph. One only keeps the
block containing v to obtain the graph G′. G′ is a biconnected simple graph and all of its
vertices are of degree at least 3 except u and v which have degree at least 2 since G′ is
biconnected. By Lemma 17, G′ is a TTSP(u, v)-irreducible graph. Since its order is less
than n, it has a πd-rooted-minor Hd and so has G.

A. Casteigts, T. Corsini, H. Hocquard, and A. Labourel 9:11

Case 3: u is adjacent to two vertices w ̸= v and z ̸= v that are adjacent.
We remove u from G obtaining graph G′. Since G is biconnected, G′ is connected. Hence,
there is a path Pwv from w to v in G′ and a path Pzv from z to v. Consider a path Pwv

without z and a path Pzv without w if such paths exist. If Pwv does not contain z and
Pzv does not contain w then u, w, z, v define a πd-rooted-minor Hd. If Pwv contains z

then its subpath from z to v is a path not containing w. Since the same can be said
for Pzv and w, it follows that either Pwv does not contain z or Pzv does not contain w.
Assume, without loss of generality, that all paths between w and v contain z. It means
that z is an articulation point of G′ separating w and v and {u, z} is a separator of G.
Consider the subgraph G′′ obtained by removing from G all vertices that are cut from v

by removing {u, z} (including w). Observe that, since G′′ is biconnected, u has degree at
least 2 in G′′. If z has degree 2, one contracts edge uz into u. Each other vertex of G′′

has the same degree in G′′ and G. It follows that all vertices of G′′ have degree at least 3
except u and v that have degree at least 2. By Lemma 17, G′′ is a TTSP(u, v)-irreducible
graph. Since its order is less than n, it has a πd-rooted-minor Hd and so has G. ◀

▶ Proposition 21. TTSP(u, v) graphs correspond exactly to the block-cut (u, v)-paths which
have no πd-rooted-minor Hd.

Proof. We show the equivalent proposition that states that G is not a TTSP(u, v) graph if
and only if G is not a block-cut (u, v)-path or admits a πd-rooted-minor Hd.
⇐= By Lemma 16, if G is not a block-cut (u, v)-path then it is not a TTSP(u, v) graph.

Hence, one can assume that G is a block-cut (u, v)-path and admits a πd-rooted-minor
Hd. Consider H, the graph obtained after a succession of operations S and P on G such
that no more of these operations can be applied, H is either K2, or, by Lemma 17, a
TTSP(u, v)-irreducible graph. However, S and P are {u, v}-legal minor operation (P being
an edge deletion and S being an edge contraction preserving u and v). Since Hd could not
be reduced with S or P , it means that H must have a πd-rooted-minor Hd. Therefore, H

cannot be K2 and G is not TTSP between u and v.
=⇒ Suppose G is not TTSP between u and v. One can assume that G is a block-cut

(u, v)-path since otherwise the property is satisfied. By Lemma 17, G can be reduced to a
TTSP(u, v)-irreducible graph H. By Lemma 20, H admits a πd-rooted-minor Hd. Since S

and P are particular minor operations, G also admits a πd-rooted-minor Hd. ◀

4.3 Robust distance in terms of rooted diamonds
With Proposition 21, we have established that any block-cut (u, v)-path that is not a TTSP
must have a rooted diamond. With that characterization, it is easier to characterize the
graphs in which d(u, v) is not robust.

▶ Lemma 22. Let G be a connected graph and u, v two vertices of G. If G has a πd-rooted
diamond minor in u, v, then the distance between u and v is not robust.

Proof. Suppose G admits a πd-rooted diamond minor in u, v, where x and y are the other
two vertices (of degree 3 in the minor). It means there are four paths from u to v in G:

c1 that crosses x but not y;
c2 that crosses y but not x;
c3 that is the same path as c1 until x, then crosses y from x before crosses the same
vertices from y to v as c2;
c4 that crosses y then x and finally v by crossing the same vertices as c2 (until y) then c3
(until x) then c1 (until v).

SAND 2022

9:12 Robustness of Distances and Diameter in a Fragile Network

Consider the subpaths ux, xv, xy, uy and yv crossed by the previous paths, these subpaths
are all disjoints. If the distance between u and v was robust, then it would mean that
l(c1) = l(c2) = l(c3) = l(c4). Hence, we have l(c3) + l(c4) = l(c1) + l(c2) which implies that
2l(xy) = 0. Since x and y are distincts, a path between the two vertices must have a length
of at least 1. Therefore the distance between u and v cannot be robust. ◀

▶ Lemma 23. Let G be a block-cut (u, v) path. If G is not TTSP between u and v, then the
distance between u and v is not robust.

Proof. By Proposition 21, a block-cut (u, v) path which is not a TTSP(u, v) must have a
rooted diamond minor in u, v. By Lemma 22, such a graph cannot have a robust distance
between u and v. ◀

4.4 An efficient recognition algorithm for distance-preserving TTSPs
We are now ready to exploit the above characterizations in order to test efficiently (indeed,
in linear time) whether the distance between two given vertices is robust in a given graph.

▶ Definition 24. A graph G is a TTSP of fixed length (TTSPf) between s and t if, starting
with weights of 1, it is turned into K2 by a sequence of the following operations (see Figure 5):

Pf : Replace a pair of parallel edges of weight i with a single edge of weight i connecting
their common endpoints.
Sf : Replace a pair of edges of weight i and j, incident to a vertex of degree 2 other than
s or t with a single edge of weight i + j.

u v Pf−→
u v

Sf−→
vwu u v

i

i i

i j i + j

Figure 5 The operations Pf and Sf associated with TTSP of fixed length.

Note that a TTSP of fixed length remains de facto a TTSP, because the new operations are
only more restricted. In the following, we say that the length of a weighted path corresponds
to the sum of weights of its edges.

▶ Lemma 25. Let G be a connected edge-weighted multigraph and let s and t be two distinct
vertices in G. Consider the edge-weighted multigraph H that results from applying Pf and
Sf exhaustively on G. For any length d, there is a path c from s to t of length d in G if and
only if there is a path c′ from s to t of length d in H.

Proof. Consider two cases on H:
If H is the result of the operation Pf on two parallel edges e1, e2 of weight i into an edge
e′ of weight i, then:

If c does not cross e1 or e2, then c is the same in H;
If e1 or e2 is crossed by c (but not both), then there is a path c′ in H that is the same
as c but crossing e′ instead, c′ has the same length as c. On the contrary, considering
c′ in H crossing e′, it means that there is a path c in G which crosses e1 or e2 of the
same length.

If H is the result of the operation Sf on a pair of edges e1, e2 of weight i and j incident
to a vertex v of degree 2, into an edge e′ of weight i + j, then:

A. Casteigts, T. Corsini, H. Hocquard, and A. Labourel 9:13

If v /∈ c, then the path c is the same in H;
If v ∈ c, then c crosses e1 and e2 (since v has degree 2 and is neither s nor t). In this
case, there is a path c′ in H that is the same as c but that crosses e′ instead of e1
and e2. The length of this path is d − l(e1) − l(e2) + l(e′) = d − i − j + (i + j) = d.
Conversely, a path c′ that crosses e′ in H implies the existence of a path c in G which
crosses the contracted vertex v. These paths have the same length. ◀

Lemma 25 guarantees that the length of the paths from s to t are preserved no matter
how many times the operations Pf and Sf are applied. Therefore, if there is a longer path
in G, it will be possible to find a path of the same length in H after applying a succession of
Pf and Sf operations.

▶ Lemma 26. Let G be a TTSP graph between s and t, the distance between s and t is
robust if and only if G is a TTSP of fixed length.

Proof. ⇐= Lemma 25 shows that if G is turned into K2 with a succession of operations
Pf and Sf , then all paths from s to t in G have length d(s, t), meaning the distance between
s and t is robust.

=⇒ Let G be a TTSP graph between s and t such that the distance between s and t is
robust. Suppose that G can not be reduced to K2 with a succession of operations Pf and
Sf , that is, there is a graph H obtained from G by these operations that cannot be reduced
any further and is not K2:

If Sf cannot be applied to H , then H does not have any vertex of degree 2 (except s and
t), else it would be possible to sum the weight of the edges with the application of Sf ;
If Pf cannot be applied to H, then one of the following must hold:

H does not have any multiple edges and with Sf impossible, that would means that G

is not TTSP;
H has a pair of parallel edges e, f of distinct weights, thus there are in H two paths
of different length between u and v, and same in G (by Lemma 25). By Lemma 5, it
would mean that the distance is not robust. ◀

Finally the following theorem can be proved:

▶ Theorem 27. Let G be a connected graph, u, v two vertices of G and H the graph induced
by the paths from u to v. The distance between u and v is robust if and only if H is a TTSP
of fixed length between u and v.

Proof. The proof combines several previous results:
by Lemma 7, the distance is robust in G ⇐⇒ it is robust in H;
by Lemma 23, the distance is robust in H =⇒ H is TTSP;
by Lemma 26, if H is TTSP, then the distance is robust ⇐⇒ H is TTSP of fixed length.

It can be deduced that if the distance between u and v is robust in G, then H is a TTSP
of fixed length between u and v. Reciprocally, if H is a TTSP of fixed length between u and
v, then the distance between the two vertices is robust in G. ◀

This theorem means that determining the robustness of the distance between two vertices
s, t in a graph G can be done efficiently by performing Algorithm 1 (see below). Our algorithm
is heavily based on the recognition of TTSP by applying the operations S and P from [16].
Here, instead, we apply the operations Pf and Sf designed for TTSPf from Definition 24.
The original algorithm that uses the TTSP operations runs in O(n + m) time. In order to
prove that our algorithm runs in linear time, we will describe the main differences from the
TTSP-recognition algorithm. Our algorithm performs the following steps:

SAND 2022

9:14 Robustness of Distances and Diameter in a Fragile Network

1. Extract the graph H from G induced by all paths from s to t (by Lemma 7, the robustness
of the distance in H is equivalent to the property in G). Extracting H is similar to
finding every biconnected component crossed by a path from s to t. Finding the block
decomposition is in O(n + m) time [8]. Finding any path from s to t can be done in
O(n + m) time as well in an unweighted graph by doing a Breadth-First-Search. The
time complexity of this step is O(n + m);

2. If H is unweighted, we initiate a weight of 1 on each edge of H, this is done in O(m);
3. Check if H is a TTSPf by applying the algorithm from [16]. The only operations added

are when applying Pf and Sf instead of P and S. Considering that P and S are applied
once per edge (as it is done in the TTSP-recognition algorithm), we only need to verify
that we add a constant number of operations for each use of Pf and Sf . First of all,
with Sf , applied in Lines 22-33, in the original algorithm, the vertex v of degree 2 is
removed with its two edges e1, e2 and a new edge e is added to connect its neighbors
v1, v2, creating a potential multiple edge. Here, the newly created edge e has a weight
equal to the sum of the deleted edges e1, e2 as shown in Line 26, adding two integers is a
constant operation performed once per Sf operations. With the Pf operation, instead of
checking every edge of the adjacency list, the original algorithm checks the first edge in
the adjacency list of v. After removing the invalid edges in Line 12 that were virtually
removed in Lines 17 and 28, the algorithm then checks if a pair of edges that share the
same endpoints, in which case it applies P . Here, we first make sure that both edges have
the same weight as shown in Line 15, if their weight is different, then the graph is not a
TTSPf since Pf would not be applicable. The same kind of verification is done near the
end of the algorithm between the remaining edges between s and t in Line 40. Since this
verification is only a comparison of integers, it can be done in constant time, as stated
before, Pf and Sf being done once per edge, this step of our algorithm adds a complexity
of O(m) to the complexity of the original algorithm, therefore this step runs in O(n + m).

5 Concluding remarks and open questions

In this paper, we have shown that the concept of a robust diameter is quite different from
the one of robust pairwise distances, so much so that the corresponding decision problems
have very different complexities. In the case of the distance, we have identified and exploited
a strong connection between TTSP graphs and robust distances, which allowed us to design
a linear time algorithm for testing if a given distance is robust. It would be interesting
to consider more relaxed versions of the robustness, where one does not ask only whether
the distance (or diameter) remains exactly the same, but also whether the deterioration
may preserve some comparative quality (this information would have a more practical use).
For example, how difficult is it to decide if the distance between u and v may deteriorate
up to d(u, v) + k for a fixed k? Similarly, can the robustness of diameter be approximated
in the sense of deciding whether the diameter may deteriorate beyond a certain factor of
its original value? Beyond the particular case of robust distances and diameter, the study
of robust properties in general is in its infancy, and it would be interesting to see if some
meta-theorems can be obtained for robust properties in general.

A. Casteigts, T. Corsini, H. Hocquard, and A. Labourel 9:15

Algorithm 1 Determination of the robustness of the distance.

Data: G = (V, E), s, t ∈ V (G)
Result: True iff dist(s, t) is robust

1 H ← inducedPathsGraph(G, s, t);
2 (order, size)← (|V (H)|, |E(H)|);
3 for e ∈ E(H) do
4 e.weight← 1;
5 e.valid← True ; /* Presence of edges in H */
6 X ← V (H) \ {s, t};
7 while X ̸= ∅ do
8 v ← X.removefirst();
9 while v.degree() > 2 do

10 (e1, e2, e3)← (v.edges()[0], v.edges()[1], v.edges()[2]);
11 if ∃e ∈ {e1, e2, e3}, e.valid = False then
12 v.edges().delete(e);
13 else if ∃(e, f) ∈ {e1, e2, e3}, e, f have the same endpoints then
14 if e.weight ̸= f.weight then
15 return False ; /* Pf cannot be applied */
16 else
17 f.valid← False;
18 size← size− 1;
19 v.edges().delete(f);
20 else
21 exit while;
22 if v.degree() = 2 then
23 (e1, e2)← v.edges() ; /* Application of Sf */
24 (v1, v2)← v.neighbors();
25 e← NewEdge(v1, v2);
26 e.weight← e1.weight + e2.weight;
27 H.addEdge(e);
28 (e1.valid, e2.valid)← (False, False);
29 (order, size)← (order − 1, size− 1);
30 if v1 ̸= s and v1 ̸= t then
31 X.add(v1);
32 if v2 ̸= s and v2 ̸= t then
33 X.add(v2);
34 if order > 2 then
35 return False;
36 if size > 1 then
37 w ← E(H)[0].weight ; /* Final application of Pf on st edges */
38 for e ∈ E(H) do
39 if e.weight ̸= w then
40 return False;
41 return True;

SAND 2022

9:16 Robustness of Distances and Diameter in a Fragile Network

References
1 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993.
2 Eli Berger, Paul Seymour, and Sophie Spirkl. Finding an induced path that is not a shortest

path. Discrete Mathematics, 344(7):112398, 2021.
3 Arnaud Casteigts, Swan Dubois, Franck Petit, and John M Robson. Robustness: A new form

of heredity motivated by dynamic networks. Theoretical Computer Science, 806:429–445, 2020.
4 R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and

Applications, 10(2):303–318, 1965.
5 David Eppstein. Parallel recognition of series-parallel graphs. Information and Computation,

98(1):41–55, 1992.
6 Cyril Gavoille, Quentin Godfroy, and Laurent Viennot. Node-disjoint multipath spanners and

their relationship with fault-tolerant spanners. In International Conference On Principles Of
Distributed Systems, pages 143–158, 2011.

7 Frank Harary. Graph Theory. Addison-Wesley Publishing Company, 1st edition, 1969.
8 John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation.

Communications of the ACM, 16(6):372–378, 1973.
9 Kuo-Hua Kao, Jou-Ming Chang, Yue-Li Wang, and Justie Su-Tzu Juan. A quadratic algorithm

for finding next-to-shortest paths in graphs. Algorithmica, 61(2):402–418, 2011.
10 Ilia Krasikov and Steven D Noble. Finding next-to-shortest paths in a graph. Information

processing letters, 92(3):117–119, 2004.
11 Kumar N Lalgudi and Marios C Papaefthymiou. Computing strictly-second shortest paths.

Information processing letters, 63(4):177–181, 1997.
12 Shisheng Li, Guangzhong Sun, and Guoliang Chen. Improved algorithm for finding next-to-

shortest paths. Information processing letters, 99(5):192–194, 2006.
13 Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115, 1927.
14 John Riordan and Claude E Shannon. The number of two-terminal series-parallel networks.

Journal of Mathematics and Physics, 21(1-4):83–93, 1942.
15 Neil Robertson and Paul D Seymour. Graph minors. xiii. the disjoint paths problem. Journal

of combinatorial theory, Series B, 63(1):65–110, 1995.
16 Jacobo Valdes, Robert E Tarjan, and Eugene L Lawler. The recognition of series parallel

digraphs. In Proc. of the 11th ACM Symposium on Theory of Computing, pages 1–12, 1979.
17 Paul Wollan. Extremal functions for graph linkages and rooted minors. Georgia Institute of

Technology, 2005.

Computing Outside the Box: Average Consensus
over Dynamic Networks
Bernadette Charron-Bost #

Département d’informatique de l’ENS, ENS, CNRS, PSL University, Paris, France

Patrick Lambein-Monette1 #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract
Networked systems of autonomous agents, and applications thereof, often rely on the control primitive
of average consensus, where the agents are to compute the average of private initial values. To
provide reliable services that are easy to deploy, average consensus should continue to operate when
the network is subject to frequent and unpredictable change, and should mobilize few computational
resources, so that deterministic, low powered, and anonymous agents can partake in the network.

In this stringent adversarial context, we investigate the implementation of average consensus by
distributed algorithms over networks with bidirectional, but potentially short-lived, communication
links. Inspired by convex recurrence rules for multi-agent systems, and the Metropolis average
consensus rule in particular, we design a deterministic distributed algorithm that achieves asymptotic
average consensus, which we show to operate in polynomial time in a synchronous temporal model.

The algorithm is easy to implement, has low space and computational complexity, and is fully
distributed, requiring neither symmetry-breaking devices like unique identifiers, nor global control
or knowledge of the network. In the fully decentralized model that we adopt, to our knowledge, no
other distributed average consensus algorithm has a better temporal complexity.

Our approach distinguishes itself from classical convex recurrence rules in that the agent’s values
may sometimes leave their previous convex hull. As a consequence, our convergence bound requires
a subtle analysis, despite the syntactic simplicity of our algorithm.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Distributed artificial intelligence; Networks → Sensor networks; Networks →
Mobile networks; Networks → Network dynamics

Keywords and phrases average consensus, dynamic networks, distributed algorithms, iterated
averaging, Metropolis

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.10

Related Version Extended Version: https://arxiv.org/abs/2010.05675

Acknowledgements Patrick Lambein-Monette would like to thank his doctoral jury for stimulating
discussions and remarks regarding previous versions of this material.

1 Introduction

1.1 Asymptotic average consensus
We consider a networked system of n agents – the generic term we use to denote the
autonomous nodes of the network – denoted by the integer labels 1, . . . , n. Agent i begins
with an input value µi ∈ R, and maintains an estimate xi(t) of an objective. The input
represents the agent’s private observation of some aspect of its environment, which we assume
to be taken arbitrarily from the domain of the problem; for example, the input may be a
temperature reading, or the agent’s initial position in space or velocity, if it is mobile. The

1 Correponding author

© Bernadette Charron-Bost and Patrick Lambein-Monette;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Bernadette.Charron-Bost@ens.fr
mailto:lambein@irif.fr
https://orcid.org/0000-0002-9401-8564
https://doi.org/10.4230/LIPIcs.SAND.2022.10
https://arxiv.org/abs/2010.05675
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Computing Outside the Box

estimate represents some aspect of the environment affected by the agent; depending on the
system, it may simply be a local variable in the agent’s memory, or it may directly represent
some external parameter like the agent’s heading or altitude.

Here, we focus on (asymptotic) average consensus, a control primitive widely studied
by the distributed control community, where the estimates are made to achieve asymptotic
consensus on the average of the input values – that is, to jointly converge towards the same
limit µ := 1

n

∑
i µi. The problem of computing an average is central to many applications in

distributed control: let us cite sensor fusion and data aggregation [37, 27, 36], distributed
optimization and machine learning [24, 28, 26], collective motion [32, 30], and more [13, 8, 12].
More generally, an average consensus primitive can be used to compute the relative frequency
of the input values [16], and as such allows for the distributed computation of other statistical
measures, for example the mode – the value with the highest support.

We study the problem of designing distributed algorithms for average consensus in the
adversarial context of dynamic networks, where the communication links joining the agents
change over time. Indeed, average consensus primitives are often needed in inherently dynamic
settings, that static models fail to adequately describe. For a few examples, let us cite mobile
ad-hoc networks, where links change as external factors cause the agents to move in space;
autonomous vehicular networks, where agents are in control of their motion; or peer-to-peer
networks, where constant arrivals and departures cause the network to reconfigure.

Specifically, we study distributed algorithms in a fully decentralized context: all agents
start in the same state, run the same local algorithm, receive no global information about
the system, only manipulate local variables, and interact with the system exclusively by
exchanging messages with neighboring agents in the instantaneous communication graph.
These constraints preclude the use of many standard solutions where the agents receive
unique identifiers, where an agent is designated as a leader, or where tll agentshey initially
agree on a bound on the network’s degree or size. Moreover, we adopt a standard local
broadcast communication model, particularly suited to modeling wireless networks, in which
agents cast their messages without knowledge of their eventual recipients, and in particular
cannot individually address their neighbors.

These conditions make it extremely hard to compute functions of the input values
µ1, . . . , µn: on general fixed directed networks, deterministic distributed algorithms are only
capable of computing functions that depend on the set of the input values {µ1, . . . , µn}, but
not on their multi-set [17]. In particular, this precludes the distributed computation of the
average. Here, we only consider networks with bidirectional communication links. Under this
condition, the problem is rather simple if we assume a static communication graph [37, 5], in
which case we can even deploy efficient solutions [31, 28] relying on spectral properties of the
underlying graph. The problem is obviously much harder in a dynamic setting, which, for
example, forbids the use of such sophisticated spectral techniques.

1.2 Contribution

A standard approach to asymptotic consensus has agents regularly adjust their estimates as
a convex combination of those of their neighbors [10, 33], defined by a convex recurrence rule.
We adopt a standard model of synchronized rounds, where this is expressed as a recurrence
relation taking the generic form xi(t) =

∑
j∈Ni(t) aij(t)xj(t − 1), where the weights aij(t)

are taken to form a convex combination, and the sum is over an agent’s incoming neighbors
in the communication graph at round t.

B. Charron-Bost and P. Lambein-Monette 10:3

While asymptotic consensus is guaranteed as long as the never permanently splits [22],
the estimates do not, in general, converge towards the average µ; reaching average consensus
usually requires additionally enforcing symmetric weights aij(t) = aji(t). Here, we study
distributed algorithms for average consensus, i.e., we are interested in devising an algorithm
that produces such weights through local computations only, in a fully decentralized manner.

For a simple example, average consensus comes easily by picking the weights aij(t) = 1
n

when agents i ̸= j are neighbors in round t, and aii(t) = 1− degi(t)−1
n . However, this scheme

might be simple to describe, but getting the agents to use these weights clearly requires
getting them to know n, which is itself a serious distributed computing problem.

We will argue that the Metropolis rule [37], defined by the weights aij(t) = 1
max(degi(t),degj (t))

for any two i ≠ j neighbors in round t, breaks down over dynamic networks because of similar,
albeit subtler, issues. We then propose a symmetric recurrence rule that is implementable
over dynamic bidirectional networks, that we show to produce average consensus over any
sufficiently connected network. The issues faced by the Metropolis rule are overcome by
making the rule sometimes break convexity, which allows for keeping the average of the
estimates constant even though the network changes unpredictably.

The temporal convexity of our distributed algorithm is polynomial, namely with a
bound in O(n4 log n), whereas the theoretical complexity bound of the Metropolis rule is
of O(n2 log n) [5]. To the best of our knowledge, this is the first deterministic algorithm
that achieves asymptotic average consensus over bidirectional dynamic networks without any
centralized input or symmetry-breaking assumptions. We note in passing that there exist
randomized algorithms that are efficient in bandwidth and memory and converge in O(n)
rounds to a good approximation of the average µ with high probability [6, 20, 23].

We dub our distributed algorithm MaxMetropolis. Compared to the Metropolis rule, the
change that we propose is deceptively simple: in the expression of the Metropolis weights,
we replace the degree degi(t) with the value degi(t − 1) = max{degi(1), . . . , degi(t − 1)}.
However, the resulting rule is no longer convex – the estimates xi(t) may sometimes leave
the convex hull of the set {x1(t− 1), . . . , xn(t− 1)} – which makes the analysis substantially
harder than in the purely convex case. Interestingly, although such “bad”, convexity-breaking
rounds, can happen at an arbitrarily late stage in the execution, we are able to bound the
convergence time independently of when bad rounds occur – that is, once our target error
threshold has been reached, disagreement in the system can still increase in later bad rounds,
but not enough to break the threshold again.

1.3 Related works
Average consensus itself is at the center of a large body of works: among many others, let
us cite [33, 34, 8, 19, 35, 37, 25, 3, 13, 28, 14], and see [26] for a recent overview of the
domain. The approach based on doubly stochastic matrices in particular has been studied
in depth, notably in [25, 29], with an analytical approach that focuses on aspects such
as the temporal complexity and tolerance to quantization, whereas we address issues of a
distributed nature, in particular the implementation of rules by distributed algorithms. We
also note earlier work on random walks by Avin et al., who showed that dynamic networks
can present considerable obstacles to mixing, in stark contrast with the well-behaved static
case. Although their proposed solution is not directly implementable in our model, as it
leverages global information (a bound over n), their study nonetheless deeply influenced the
current work.

Of interest to our argument, we note that [35] looks for the fixed affine weights that
optimize the speed of convergence towards average consensus over a given fixed graph, and
find that the weights can often be negative. Our algorithm is itself able to solve average

SAND 2022

10:4 Computing Outside the Box

consensus over dynamic networks precisely because it is sometimes allowed to use negative
weights. When compared with our approach, the important difference is that we consider
dynamic graphs and focus on distributed implementation of the recurrence rules, while the
weights obtained in [35] are given by a centralized optimization problem, and are incompatible
with a distributed approach.

A number of strategies aim at speeding up convex recurrence rules over static networks by
having the agents learn what amounts to spectral elements of the graph Laplacian [4], and can
result in linear-time convergence [31]. As is the case here, these represent distributed methods
by which the agents learn structural properties of the communication graph. However, these
methods rely on centralized symmetry-breaking crutches like unique identifiers, and their
memory and computation footprint is much greater than ours, with agents computing and
memorizing, in each round, the kernels of Hankel matrices of dimension Θ(n) ×Θ(n). In
contrast, our method can be used by anonymous agents, requires ⌈log n⌉ additional bits of
memory and bandwidth, and has a trivial computational overhead.

2 Preliminaries

2.1 Mathematical toolbox
Let us fix some notation. If k is a positive integer, we denote by [k] the set {1, . . . , k}. If any
set S ⊂ R is non-empty and bounded, we denote its diameter by diam S := max S −min S.

A directed graph (or simply graph) G = (V, E), with vertices in V and edges in E ⊆ V ×V ,
is called reflexive when (i, i) ∈ E for all i ∈ V ; G is bidirectional when (i, j) ∈ E ⇐⇒
(j, i) ∈ E for all i, j ∈ V ; and G is strongly connected when directed paths join any pair of
vertices – or simply connected when G is bidirectional.

All graphs that we consider here will be reflexive, bidirectional, and connected graphs
of the form G = ([n], E). In such a graph, the vertices linked to some vertex i form its
neighborhood Ni(G) := {j ∈ [n] | (j, i) ∈ E}, and the count of its neighbors is its degree
degi(G) := |Ni(G)|. By definition, the degree is at most n, and in a reflexive graph it is at
least 1.

We consistently denote matrices and vectors in bold italic style: upper case for matrices
(e.g., A) and lower case for vectors (e.g., u), with their individual entries in regular italic
style, (e.g., Aij , uk). The shorthand vN denotes the infinite vector sequence v(0), v(1),

The graph GA = ([n], E) associated to a matrix A ∈ Rn×n is defined by (j, i) ∈ E ⇐⇒
Aij ≠ 0 for all i, j ∈ [n]. The matrix A is said to be irreducible when GA is strongly
connected.

Given a vector v ∈ Rn, we write diam v to mean the diameter of the set {v1, . . . , vn} of
its entries. The diameter constitutes a seminorm over Rn; we call consensus vectors those of
null diameter.

A matrix or a vector with non-negative (resp. positive) entries is itself called non-negative
(resp. positive). A vector is called stochastic if its entries are non-negative sum to 1.

A matrix A is stochastic if its rows are all stochastic – that is, if A1 = 1 – and any
matrix that satisfies the condition A1 = 1 will be said to be affine. We say that a matrix A

is doubly stochastic when both A and AT are stochastic.
We denote the mean value of a vector v ∈ Rn by ⟨v⟩ := 1

n

∑
i vi. Doubly stochastic

matrices play a central role in the study of average consensus, as multiplying any vector v

by a doubly stochastic matrix A preserves its average – that is, ⟨Av⟩ = ⟨v⟩.
For any matrix A ∈ Rn×n, we can arrange its n eigenvalues λ1, . . . , λn, counted with

their algebraic multiplicities, in decreasing order of magnitude: |λ1| ⩾ |λ2| ⩾ · · · ⩾ |λn|.

B. Charron-Bost and P. Lambein-Monette 10:5

Under this convention, the spectral radius of the matrix A is the quantity ρA := |λ1|, and
its spectral gap is the quantity γA := |λ1| − |λ2|. In particular, a stochastic matrix has a
spectral radius of 1, which is itself an eigenvalue for the eigenvector 1.

2.2 Computing model

We consider a networked system of n agents, denoted 1, 2, . . . , n. Computation proceeds
in synchronized rounds that are communication closed, in the sense that no agent receives
messages in round t that are sent in a different round. In each round t ∈ N>0, each agent i

successively

1. broadcasts a single message mi(t) determined by its state at the beginning of round t

2. receives some messages among m1(t), . . . , mn(t)

3. undergoes an internal transition to a new state

4. produces a round output xi(t) ∈ R and proceeds to round t + 1.
The agents receiving agent i’s message mi(t) are unknown to agent i at the time of emission,
in step 1. Communications that occur in round t are modeled by a directed graph G(t) :=
([n], E(t)), called the round t communication graph, which may change from one round to
the next. We assume each communication graph G(t) to be reflexive, as an agent always has
access to its own messages without delay or transmission loss.

Messages to be sent in step 1 and state transitions in step 3 are determined by a sending
and a transition functions, which together define the local algorithm for agent i. Collected
together, the local algorithms of all agents in the system constitute a distributed algorithm.
We posit no a priori global coordination or knowledge of the agents: in particular, we assume
no leader, no unique identifiers, and no initial agreement on global parameters such as n. An
agent’s computations only involve its own local variables in memory.

An execution of a distributed algorithm is a sequence of rounds, as defined above, with
each agent running the corresponding local algorithm. We assume that all agents start
simultaneously in round 1, since the algorithms under our consideration are robust to asyn-
chronous starts, retaining the same time complexity as when the agents start simultaneously.
Indeed, asynchronous starts only induce an initial transient period during which the network
is disconnected, which cannot affect the convergence and complexity results of algorithms
driven by convex recurrence rules.

In any execution of a distributed algorithm, the entire sequence xN is determined by
the input vector µ and the patterns of communications in each round t, i.e., the sequence
of communication graphs G := (G(t))t⩾1, called the dynamic communication graph of the
execution, and so we write xN = xN(G, µ). When the dynamic graph G is understood, we let
Ni(t) and degi(t) respectively stand for Ni(G(t)) and degi(G(t)). As no confusion can arise,
we will sometimes identify an agent with its corresponding vertex in the communication
graph, and speak of the degree or neighborhood of an agent in a round of an execution.

We call a network class a set of dynamic graphs; given a class C, we denote by C|n the
subclass {G ∈ C | |G| = n}. Here, our investigation will revolve around the class Bc of
dynamic graphs of the following sort.

▶ Assumption 1. In each round t ∈ N>0, the communication graph G(t) is reflexive,
bidirectional, and connected.

SAND 2022

10:6 Computing Outside the Box

3 Recurrence rules for consensus

We distinguish local algorithms, as defined above, from the recurrence rules that they
implement: the latter are recurrence relations that only describe how the estimates xi(t)
change over time, while the former specifies the distributed implementation of such rules
in the system, through local interactions. This discrepancy is apparent in the Metropolis
rule, whose distributed implementation over dynamic networks is problematic due to its
dependence on “knowledge at distance two”.

3.1 Affine recurrence rules
Definition

Here, we focus on algorithmic solutions to the average consensus problem whose executions
realize recurrence relations of the general form

xi(t) =
∑

j∈Ni(t)

aij(t)xj(t− 1), (1)

where the time-varying weights aij(t) satisfy the affine constraint
∑

j∈Ni(t) aij(t) = 1 and
may depend on the dynamic graph G and the input values µ1, . . . , µn. We refer to such
relations as affine recurrence rules, and we say that a distributed algorithm implements the
rule, insisting again that a distributed algorithm is distinct from the rule it implements.

Because of the constraint
∑

j∈Ni(t) aij(t) = 1, the self-weights satisfy aii(t) = 1 −∑
j∈Ni(t)\{i} aij(t). An affine recurrence rule is thus fully specified by the weights aij(t)

assigned to an agent’s proper neighbors j ̸= i.
The affine rule of Equation (1) is equivalent to the vector equation x(t) = A(t)x(t− 1),

where Aij(t) = aij(t) when i and j are neighbors in round t, and Aij(t) = 0 otherwise. The
affinity constraint then corresponds to the condition A(t)1 = 1.

Convexity and convergence

We call the rule convex when all weights are non-negative – equivalently, when all matrices A(t)
are stochastic. By and large, the study of affine recurrence rules focuses on that of convex
recurrence rules, which guarantee convergence under mild conditions. We recall a standard
convergence result, found under various forms in the literature, see for example [7, 33, 18, 22].

▶ Proposition 2. Assume that the weights of Equation (1) admit a uniform positive lower
bound α: aij(t) ⩾ α > 0 for all t, i, and j ∈ Ni(t). Under Assumption 1, the vectors x(t)
converge to a consensus vector.

We speak of uniform convexity when such a parameter α exists, and we note that in this
case asymptotic consensus is actually ensured by conditions much weaker than Assumption 1:
for bidirectional interactions, it is enough that the network never become permanently
split [22, Theorem 1].

Remark that Proposition 2 says nothing of the value of the consensus; affine recurrence
rules for average consensus are typically designed to produce matrices that are doubly
stochastic. By enforcing the invariant ⟨x(t)⟩ = ⟨x(t− 1)⟩, this makes the initial average µ

the only admissible consensus value.

B. Charron-Bost and P. Lambein-Monette 10:7

The convergence time of a single sequence zN, given by T(ε; zN) := inf{t ∈ N | ∀τ ⩾
t : diam z(τ) ⩽ ε}, measure its progress towards asymptotic consensus. For a rule or an
algorithm, we consider the more helpful worst-case relative convergence time over a class C:
for a system of n agents, it is defined by

T(ε; n,C) := sup
µ∈Rn

sup
G∈C|n

T
(
ε · diam µ; xN(G, µ)

)
, (2)

where we drop the class C if it is clear from the context.
We recall the following bounds for uniformly convex recurrence rules over the class Bc:

when all matrices are doubly stochastic, the convergence time is in O(α−1n2 log n/ε) [25,
Theorem 10]. In the common case that α = Θ(1/n), all rules are known to admit executions
that do not converge before Ω(n2 log 1/ε) rounds over the fixed line graph with n vertices [29,
Theorem 6.1].

3.2 Consensus and average consensus rules
The EqualNeighbor rule

The prototypical example of a convex recurrence rule is the EqualNeighbor rule, where an
agent assigns the equal weights to all its neighbors, itself included:

xi(t) = 1
degi(t)

∑
j∈Ni(t)

xj(t). (3)

We can mechanically derive an algorithm implementing the EqualNeighbor rule: in
each round t, broadcast one’s latest estimate xi(t− 1), and pick as new estimate xi(t) the
arithmetic mean of the incoming values. Since degi(t) ⩽ n, this rule admits 1/n as a parameter
of uniform convexity, and for a dynamic graph of Bc, Proposition 2 shows that any solution
to Equation (3) converges to a consensus vector.

Clearly, the EqualNeighbor rule does not solve the average consensus problem on the
entire class Bc, as the weights are generally not symmetric, unless each communication
graph G(t) is regular – that is, if all its vertices have the same degree.

The Metropolis rule

In [37], Xiao et al. investigate the problem of distributed sensor fusion with the help
of an average consensus primitive. For that, they describe the “maximum-degree” rule,
parametrized with an integer N ⩾ 1, defined by the constant weights aij(t) = 1/N for any
agents i ̸= j neighbors in round t.

The authors note that this rule solves average consensus over the class ∪n⩽NBc|n, but
remark that implementing this rule hinges on the agents initially agreeing on the bound N ,
embedding an assumption of centralized control. This makes the “maximum-degree” rule
inapplicable over truly decentralized systems – indeed, our communication model does not
generally allow for the distributed computation of such a bound N [1]. Xiao et al. go on
suggesting the alternative rule:

xi(t) = xi(t− 1) +
∑

j∈Ni(t)

xj(t− 1)− xi(t− 1)
max(degi(t), degj(t)) , (4)

generally referred to as the Metropolis rule, as it is inspired from the Metropolis-Hastings
method [15, 21].

SAND 2022

10:8 Computing Outside the Box

Analytically, this rule is appealing, as it was recently shown [5] to display a worst-case
convergence time of O(n2 log n) over the entire class Bc – making it the fastest rule known
to us to solve either consensus or average consensus on that class. From a computational
perspective, it is argued in [37] that the Metropolis rule is better suited for decentralized
systems, as it only leverages “local” knowledge. Indeed, agents can implement this rule
knowing only, in each round, their own degrees in the current communication graph and
that of their neighbors – compared to the initial agreement over N ⩾ n required of the
“maximum-degree” rule.

Unfortunately, local algorithms cannot implement the Metropolis rule over dynamic
networks. The rule is only “local” in the weak sense that an agent’s next estimate xi(t)
depends on information present within distance 2 of agent i in the communication graph G(t),
which is not local enough when the network is subject to change.

Indeed, since agent j ∈ Ni(t) only learns its round t degree degj(t) at the end of round t

– by counting its incoming messages – it cannot share this information with other agents
before the following round. Any distributed implementation of the Metropolis rule would
therefore require communication links that evolve at a slow and regular pace; one can imagine
a network whose topology can only change once every k rounds, when t ≡ 0 mod k, e.g., at
even rounds.

When the network is subject to unpredictable changes, the situation is even worse: we
need to warn all agents, ahead of time, about any upcoming topology change. In effect, this
amounts to having a global synchronization signal precede every change in the communication
topology. For a topology change in round t0, this differs little from starting an entirely new
execution with new input values µ′

1 = x1(t0 − 1), . . . , µ′
n = xn(t0 − 1). To paraphrase, given

a sufficiently stable communication network, one “can” implement the Metropolis rule over
dynamic networks; however, the execution is fully decentralized only as long as no topology
change actually occurs.

We note that, although we have covered the Metropolis rule here, other average consensus
rules typically face similar problems, even when expressingly designed for dynamic networks.
As an example, while the Metropolis rule can be implemented with a two-message protocol –
e.g., on a communication graph that changes every other round, and with all agents agreeing
on the parity of the round number, see e.g., [9] for a discussion – the rules given in [29,
Algorithm 8.2] and [25, Section IV.A] involve a three-message protocol. Their implementation
thus requires more network stability, and a stronger agreement, than Metropolis.

4 The MaxMetropolis algorithm

4.1 A symmetric affine rule

Symmetrizing

Let us briefly recall the idea of the Metropolis-Hastings [15, 21] method: given a positive
stochastic vector π, the method turns a stochastic matrix A – usually viewed as the transition
matrix of a reversible Markov chain – into another stochastic matrix A′ with stationary
distribution π, by picking off-diagonal entries as A′

ij = min
(

Aij ,
πj

πi
Aji

)
. When π is the

constant vector
(1

n , 1
n , · · · , 1

n

)
, we get the simpler transform M(−), defined entry-wise by:

∀i, j ∈ [n] : [M(A)]ij =
{

min(Aij , Aji) j ̸= i

1−
∑

k ̸=i min(Aik, Aki) j = i.
(5)

B. Charron-Bost and P. Lambein-Monette 10:9

Let us call this transform the Metropolis-Hastings symmetrization; as an example, the
symmetrization of the EqualNeighbor matrix yields the Metropolis matrix. We can make a
few remarks: for any matrix A, the matrix M(A) is affine and symmetric by construction,
and for any j ≠ i we have [M(A)]ij ⩽ Aij and therefore [M(A)]ii ⩾ Aii. In particular, if
the matrix A is stochastic with positive diagonal entries, then so is M(A); if we can use
Proposition 2 to establish the convergence of the system x(t) = A(t)x(t−1), then necessarily
the system y(t) = M(A(t))y(t− 1) also converges, and achieves average consensus.

Bound learning

To apply the Metropolis-Hastings symmetrization while avoiding the aforementioned lim-
itations of the Metropolis rule, let us temporarily assume that each agent i ∈ [n] initially
knows an upper bound qi ⩾ 1 over its degree throughout the execution, i.e., qi ⩾ degi(t) for
all t ⩾ 1.

In this case, an agent may broadcast in each round the pair ⟨qi, xi(t− 1)⟩ to its neighbors,
and adjust its estimate as

xi(t) = xi(t− 1) +
∑

j∈Ni(t)

xj(t− 1)− xi(t− 1)
max(qj , qi)

; (6)

we easily see that this rule produces symmetric weights (aij(t) = aji(t)) and has a uniform
convexity parameter of 1/ maxi qi. For a dynamic graph of Bc, any solution zN of Equation (6)
converges to a consensus vector, by Proposition 2, and therefore achieves asymptotic average
consensus, since the weights are symmetric. Using e.g., the aforementioned result of [25,
Theorem 10], we can show that the convergence time behaves as O(maxi qi · n2 log n/ε), which
is polynomial in n when the bounds qi themselves are.

Obviously, assuming such bounds qi supposes that the agents dispose of information about
the dynamic structure of the network ahead of the execution, which our model explicitly
disallows. Instead of assuming such bounds, we next show that we can solve the average
consensus problem for the class Bc by making agents learn good bounds over time in a
manner consistent with our symmetric and local model.

To this effect, for each agent i we let degi(t) := max{degi(1), . . . , degi(t)} for any round t.
For a dynamic graph in Bc|n, the value degi(t) ∈ [2, n] is weakly increasing with t, and
therefore stabilizing: we have degi(t) = degi := maxτ⩾1 degi τ for all rounds t beyond some
round t∗

i , Thus, by keeping track of degi(t), agent i will eventually hold a bound on its future
degrees for the rest of the execution, which may be used to implement Equation (6), not for
the whole interval [1,∞[, but on all but finitely many rounds.

Moreover, we have by definition degi(t) ⩾ degi(t), so that using degi(t) in place of qi in
Equation (6) produces a convex rule – even though degi(t) may be inferior to agent i’s future
degree. Unfortunately, the weights 1

max(degi(t),degj(t)) cannot be computed in a local manner:

since degi(t) depends on degi(t), the issues of the Metropolis rule apply here as well, as an
agent cannot communicate its degree to its neighbors at the time they need the information.

We overcome this obstacle with a small, but crucial adjustment: building the round t

weights using the latest known bound degi(t − 1) in place of degi(t) allows us to conform
to the stringent locality constraints by sacrificing the convexity of the rule. Specifically, we
propose the MaxMetropolis algorithm – given in Algorithm 1, – a deterministic distributed
algorithm which solves the average consensus problem over the class Bc in polynomial time,
by implementing the rule

xi(t) = xi(t− 1) +
∑

j∈Ni(t)

xj(t− 1)− xi(t− 1)
max

(
degj(t− 1), degi(t− 1)

) . (7)

SAND 2022

10:10 Computing Outside the Box

Algorithm 1 The MaxMetropolis algorithm, code for agent i.
Input: µi ∈ R

1 Initially:
2 xi ← µi ;
3 qi ← 2 ;
4 In each round do:
5 send mi = ⟨xi, qi⟩ ;
6 receive mj1 , . . . , mjd

; ▷ d neighbors

7 xi ← xi +
d∑

k=1

xjk
−xi

max(qi,qjk
) ;

8 qi ← max(qi, d) ;
9 output xi ;

The weights are clearly symmetric, and so any solution to Equation (7) satisfies the
invariant ⟨x(t + 1)⟩ = ⟨x(t)⟩. Moreover, by construction, there exists a round t∗ after which
we have degi(t − 1) = degi ⩾ degi(t); the assumptions of Proposition 2 are then satisfied
over the infinite interval [t∗,∞[. Taken together, these observations immediately give us that
MaxMetropolis is an average consensus distributed algorithm for the class Bc.

On the other hand, in contrast with the Metropolis rule, the MaxMetropolis rule offers
no guarantee of convexity: we easily see that if, for example, degi(t) is much larger than
degi(t− 1), xi(t) may leave the convex hull of {xj(t− 1) | j ∈ Ni(t)}, and in fact may even
leave the convex hull of {xj(t− 1) | j ∈ [n]}. Such convexity-breaking rounds can occur late
in the execution, and our main analytical difficulty will be to show that these “late bad
rounds” cannot introduce too much noise in the system once a given degree of agreement
has been reached.

▶ Theorem 3. The MaxMetropolis algorithm solves the average consensus problem in all of
its executions over the class Bc. For a system of n agents and an error threshold of ε > 0,
the convergence time is bounded by T(ε; n) = O(n4 log n/ε).

4.2 Temporal complexity of the MaxMetropolis algorithm
To prove Theorem 3, we need to introduce a few technical results borrowed from [5], where
they are given a more general and detailed exposition. In the following, we denote by
σ(−) the sample standard deviation: σ(x) :=

√∑
i(xi − ⟨x⟩)2. The crux of the proof is

to dominate σ(x(t)) with a geometrically decreasing sequence, taking care when handling
matrices with possibly negative entries.

▶ Lemma 4. For any vector v ∈ Rn, we have√
2/n σ(v) ⩽ diam v ⩽ 2 σ(v). (8)

The inequalities are strict if, and only if, the vectors v and 1 are independent.

Proof. Developing the definition of the standard deviation, we have σ(v) =
√

1
2
∑

i ̸=j
(vi − vj)2,

which yields the left-hand side inequality. Moreover, without loss of generality we can assume
⟨v⟩ = 0, in which case σ(v) = ∥v∥; the right-hand side inequality then follows from the
classic bounds diam− ⩽ 2 ∥−∥∞ and ∥−∥∞ ⩽ ∥−∥. ◀

B. Charron-Bost and P. Lambein-Monette 10:11

The following lemma is a restatement of a standard variational characterization of the
eigenvalues of the matrix I−ATA; see e.g., [11] for an in-depth treatment of the question.

▶ Lemma 5. Let A denote a doubly stochastic matrix, irreducible and with positive diagonal
entries. For any vector v, we have

σ(Av) ⩽
√

1− γATA σ(v); (9)

in the particular case where A is symmetric, we have σ(Av) ⩽ (1− γA) σ(v).

Finally, we will rely on the following spectral bound, given in [25, Lemma 9].

▶ Lemma 6. Let A be a stochastic matrix, with smallest positive entry α. If A is symmetric,
irreducible, and has positive diagonal entries, then we have

γA ⩾
α

n(n− 1) . (10)

With Lemmas 4–6, we can turn to the proof of Theorem 3.

Proof of Theorem 3. Let us fix a dynamic graph G ∈ Bc with n ⩾ 2 vertices, and define

degi(t) := max
τ⩽t

degi τ, degi := sup
t⩾1

degi(t), degG := max
i∈[n]

degi, and

K := {t ⩾ 1 | ∃i : degi(t− 1) < degi(t)},
(11)

where by convention we set degi(0) = 2 so that the set K is properly defined. By definition,
each sequence degi(t) is weakly increasing with t, and has degi for limit. Since degi(t) ⩽ n,
there are at most degi rounds with degi(t− 1) < degi(t). The set K is therefore finite, with
cardinal δ := |K| ⩽

∑
i degi. We let t∗ := maxK + 1; by construction, in all rounds t ⩾ t∗

we have degi(t) = degi.
By an immediate induction, we see that, in any execution of the MaxMetropolis algorithm

over the dynamic communication graph G, the sequence of estimate vectors satisfies the
recurrence relation x(t) = A(t) x(t − 1), where the affine MaxMetropolis matrix A(t) is
given for off-diagonal entries i ̸= j by

Aij(t) =

1

max
(
degi(t− 1), degj(t− 1)

) j ∈ Ni(t)

0 j /∈ Ni(t),
(12)

and x(0) = (µ1, . . . , µn) is given by the input values of the execution.
Equation (12), shows that the affine matrix A(t) is symmetric, and thus for any vector v

we have ⟨A(t)v⟩ = ⟨v⟩. This is true for all t ⩾ 1, and so ⟨x(t)⟩ = µ is an invariant of the
execution. If we show asymptotic consensus, then the consensus value is necessarily the
initial average µ.

As a result of the Metropolis-Hastings symmetrization, the diagonal entries of the matrix
A(t) satisfy

Aii(t) ⩾ 1− degi(t)− 1
degi(t− 1)

, (13)

which gives in particular Aii(t) ⩾ 1/n when t /∈ K. The vector sequence (x(t))t⩾t∗ thus
satisfies the assumptions of Proposition 2 for the uniform convexity parameter α = 1/n, and
so x(t) converges to a consensus vector. As already discussed, the limit value is necessarily

SAND 2022

10:12 Computing Outside the Box

the initial average µ, and the system achieves asymptotic average consensus. This holds for
any dynamic graph G ∈ Bc and arbitrary input values µ1, . . . , µn, and thus MaxMetropolis
is an average consensus algorithm for the class Bc.

It remains to show the polynomial convergence bound T(ε; n) = O(n4 log n/ε). We start
with the remark that the diagonal entry Aii(t) can be negative in a round t during which
degi(t) > degi(t− 1). Because of this, the estimate xi(t) might end up outside the range of
the previous estimates {x1(t), . . . , xn(t)}. As a consequence, rounds t ∈ K are “bad” rounds,
where the system may move away from consensus, delaying the eventual convergence. In the
class Bc, there is no uniform upper bound on the value of t∗, and such convexity-breaking
rounds may occur arbitrarily late in the execution. Our challenge is therefore to show that,
in finite time, the system reaches a given degree of agreement which cannot be undone in
later “bad” rounds. We do this by accounting, from the start, the total delay that can be
accrued in rounds t ∈ K.

We follow the variations of the sample standard deviation S(t) := σ(x(t)) from one round
to the next, distinguishing on whether t ∈ K or not.

Case t /∈ K. By Equation (13), the irreducible matrix A(t) has positive diagonal entries,
and thus has a positive spectral gap. By Lemma 5, we have

∀t /∈ K : S(t) ⩽ (1− γA(t)) · S(t− 1). (14)

Case t ∈ K. Here, the matrix A(t) may have negative diagonal entries. It need not be
a stochastic matrix, and indeed its spectral radius ρA(t) is possibly greater than 1.
However, as a symmetric matrix, the matrix A(t) is diagonalizable, and thus we have
∥A(t)v∥ ⩽ ρA(t) · ∥v∥ for any vector v. For the particular case v = x(t− 1)− µ1, this
results in

∀t ∈ K : S(t) ⩽ ρA(t) · S(t− 1). (15)

Equation (15) actually holds for all t ⩾ 1, but it is strictly worse than Equation (14) for
rounds t /∈ K.

Thus we let

κ(t) :=
{

ρA(t) t ∈ K,

1− γA(t) t /∈ K,
(16)

and we can summarize Equations (14) and (15) by ∀t ⩾ 1: S(t) ⩽ κ(t) ·S(t−1). By induction,
we then have S(t) ⩽

∏
τ⩽t κ(τ) · S(0), and, applying Lemma 4 twice, we get

∀t ⩾ 1: diam x(t) ⩽ 2
√

n
∏
τ⩽t

κ(τ) · diam µ. (17)

We are interested in the asymptotic behavior of 2
√

n
∏

τ⩽t κ(τ).
In order to bound the spectral radius ρA(t), we let νt,i := 1 −min(0, Aii(t)), and νt :=

maxi νt,i. Let us show that ρA(t) ⩽ ν2
t : pick any eigenvalue λ ∈ Sp A(t). By construction,

the quantity
(

1 + λ−1
νt

)
is an eigenvalue of the stochastic matrix 1

νt
(A(t) + (νt − 1)I), and

so is less than 1 in absolute value. We have 1− 2 νt ⩽ λ ⩽ 1, and so |λ| ⩽ 2νt − 1. Using the
basic inequality x2 − 2 x + 1 ⩾ 0, we have |λ| ⩽ ν2

t , and therefore ρA(t) ⩽ ν2
t since this holds

for any λ ∈ Sp A(t).

B. Charron-Bost and P. Lambein-Monette 10:13

For any t ∈ K and i ∈ [n], we have
∑

j ̸=i Aij(t) ⩽ degi(t)−1
degi(t−1)

⩽ degi(t)
degi(t−1)

. Since degi(t) is

weakly increasing with t, we have in turn νt,i ⩽
degi(t)

degi(t−1)
, from here we have

∏
t∈K ρA(t) ⩽

(∏
t∈K maxi∈[n] νt,i

)2

⩽
(∏

t∈K
∏

i∈[n] νt,i

)2

⩽
(∏

i∈[n]
∏

t∈K
degi(t)

degi(t−1)

)2

⩽
(∏

i∈[n]
∏

t⩾1
degi(t)

degi(t−1)

)2

=
(∏

i∈[n]
degi

2

)2
= 2−2nϖ2,

νt,i ⩾ 1

νt,i ⩽
degi(t)

degi(t−1)

degi(t) = degi(t − 1) when t /∈ K

where ϖ :=
∏

i∈[n] degi.
From here, we let γ := inft/∈K γA(t), and we have

∏
τ⩽t κ(τ) =

(∏
τ∈[1,t]∩K κ(τ)

)(∏
τ∈[1,t]\K κ(τ)

)
⩽
(∏

τ∈K ρA(t)
)(∏

τ∈[1,t]\K(1− γA(t))
)

⩽ 2−2nϖ2(1− γ)t−δ.

κ(τ ∈ K) ⩾ 1

As a consequence, given any error threshold ε > 0, the estimates are contained in a ball of
diameter (ε ·diam µ) at the latest in round tε ⩽ δ +γ−1 log(2−2n+1ϖ2√n/ε). From Lemma 6,
we have γ−1 ⩽ n(n − 1)degG, and using ϖ :=

∏
i∈[n] degi and δ := |K| ⩽

∑
i∈[n] degi − 2n,

we get:

tε ⩽
∑

i

degi − 2n + n(n− 1)degG

(
2
∑

i

log degi − (2 n− 1) log 2− log ε

)
, (18)

which, using the fact that degi ⩽ n, finally gives us tε = O(n4 log n/ε). ◀

Compared to the O(n2 log n/ε) convergence time of the Metropolis rule, the latter asymp-
totic bound is worse by a factor n degG. From the proof, we can give a rough analysis of this
factors: the factor n represents the delay due to broken convexity, as each agent individually
induces a delay of log degi. The factor degG comes from the fact that, whereas the Metropolis
rule always selects the best possible off-diagonal weights – that is, the largest ones, – the
MaxMetropolis rule makes conservative choices so as to allow for a decentralized algorithmic
implementation that only breaks convexity finitely many times.

Improvements to the MaxMetropolis approach, based for example on adjusting the
parameters qi downwards in pursuit of faster mixing, must therefore be considered with
extreme care, as gains due to larger weights might result in greater delays due to broken
convergence.

5 Conclusion

In this paper, we have presented the MaxMetropolis algorithm, a parsimonious distributed
algorithm for average consensus that operates in polynomial time over connected bidirectional
dynamic networks, without resorting to any centralized crutch like unique identifiers, a
designated leader, or global information on the network.

SAND 2022

10:14 Computing Outside the Box

Our solution has many potential uses, given that average consensus primitives underpin
many applications studied in distributed control. In contrast with the classic approaches
used in this domain, we take an algorithmic stance, grounded in the theory of anonymous
computation [1, 2, 17] and of the algorithmic study of dynamic networks [20]. We argue
that the fundamental convex recurrence rule for average consensus, namely, the Metropolis
rule, cannot be implemented in a fully distributed and decentralized setting when the
network is subject to unpredictable change. Our solution consists in relaxing the convexity
constraint, resulting in an affine recurrence rule for average consensus that is algorithmically
implementable in any networked multi-agent system with a time-varying communication
graph, under the sole constraint of bidirectional links and permanent connectivity.

In the long version of our paper, we will relax the latter assumption and show that
(B ⩾ 1)-bounded connectivity – where it is only each matrix product A(t + B − 1) · · ·A(t)
that is assumed irreducible – only delays our convergence bound by a factor B. An open
question is whether one can design a fully decentralized average consensus algorithm that
doesn’t break the convex hull of the estimates, or whether that is impossible.

References
1 Dana Angluin. Local and global properties in networks of processors (extended abstract). In

R. E. Miller, S Ginsburg, W. A. Burkhard, and R. J. Lipton, editors, Proceedings of the twelfth
annual ACM symposium on Theory of computing - STOC ’80, pages 82–93. ACM Press, 1980.
doi:10.1145/800141.804655.

2 Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anonymous
networks. In Jennifer Welch, editor, DISC 2001: Distributed Computing, volume 2180 of
Lecture Notes in Computer Science, pages 33–47. Springer Berlin Heidelberg, 2001. doi:
10.1007/3-540-45414-4_3.

3 Florence Bénézit, Vincent D. Blondel, Patrick Thiran, John N. Tsitsiklis, and Martin Vetterli.
Weighted gossip: Distributed averaging using non-doubly stochastic matrices. In 2010 IEEE
International Symposium on Information Theory, pages 1753–1757, June 2010. doi:10.1109/
ISIT.2010.5513273.

4 Themistoklis Charalambous, Michael G. Rabbat, Mikael Johansson, and Christoforos N.
Hadjicostis. Distributed Finite-Time Computation of Digraph Parameters: Left-Eigenvector,
Out-Degree and Spectrum. IEEE Transactions on Control of Network Systems, 3(2):137–148,
2016. doi:10.1109/TCNS.2015.2428411.

5 Bernadette Charron-Bost. Geometric Bounds for Convergence Rates of Averaging Algorithms.
Information and Computation, 2022. (To appear). arXiv:2007.04837.

6 Bernadette Charron-Bost and Patrick Lambein-Monette. Randomization and quantization
for average consensus. In 2018 IEEE Conference on Decision and Control (CDC), pages
3716–3721. IEEE, December 2018. doi:10.1109/CDC.2018.8619817.

7 Samprit Chatterjee and Eugene Seneta. Towards Consensus: Some Convergence Theorems on
Repeated Averaging. Journal of Applied Probability, 14(1):89–97, 1977. doi:10.2307/3213262.

8 George Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal
of Parallel and Distributed Computing, 7(2):279–301, 1989. doi:10.1016/0743-7315(89)
90021-X.

9 Louis Penet de Monterno, Bernadette Charron-Bost, and Stephan Merz. Synchronization
modulo k in dynamic networks. In Stabilization, Safety, and Security of Distributed Systems -
23rd International Symposium, SSS 2021, Virtual Event, November 17-20, 2021, Proceedings,
volume 13046 of Lecture Notes in Computer Science, pages 425–439. Springer, 2021. doi:
10.1007/978-3-030-91081-5_28.

10 Morris H. DeGroot. Reaching a Consensus. Journal of the American Statistical Association,
69(345):118–121, 1974. doi:10.2307/2285509.

https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/3-540-45414-4_3
https://doi.org/10.1007/3-540-45414-4_3
https://doi.org/10.1109/ISIT.2010.5513273
https://doi.org/10.1109/ISIT.2010.5513273
https://doi.org/10.1109/TCNS.2015.2428411
http://arxiv.org/abs/2007.04837
https://doi.org/10.1109/CDC.2018.8619817
https://doi.org/10.2307/3213262
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1007/978-3-030-91081-5_28
https://doi.org/10.1007/978-3-030-91081-5_28
https://doi.org/10.2307/2285509

B. Charron-Bost and P. Lambein-Monette 10:15

11 Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of markov chains. The
Annals of Applied Probability, 1(1):36–61, February 1991. doi:10.1214/aoap/1177005980.

12 Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport. Load balancing with
bounded convergence in dynamic networks. In IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, pages 1–9, Atlanta, GA, USA, 2017. IEEE. doi:10.1109/
INFOCOM.2017.8057000.

13 Alejandro D. Dominguez-Garcia, Stanton T. Cady, and Christoforos N. Hadjicostis. Decentral-
ized optimal dispatch of distributed energy resources. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pages 3688–3693. IEEE, December 2012. ZSCC: 0000166.
doi:10/ggd8nx.

14 Balazs Gerencser and Julien M. Hendrickx. Push-sum with transmission failures. IEEE
Transactions on Automatic Control, 64(3):1019–1033, March 2019. doi:10.1109/TAC.2018.
2836861.

15 Wilfred Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, April 1970. doi:10.1093/biomet/57.1.97.

16 Julien M. Hendrickx, Alex Olshevsky, and John N. Tsitsiklis. Distributed anonymous discrete
function computation. IEEE Transactions on Automatic Control, 56(10):2276–2289, October
2011. doi:10.1109/TAC.2011.2163874.

17 Julien M. Hendrickx and John N. Tsitsiklis. Fundamental limitations for anonymous distributed
systems with broadcast communications. In 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 9–16. IEEE, September 2015.
doi:10.1109/ALLERTON.2015.7446980.

18 Ali Jadbabaie, Jie Lin, and A. Stephen Morse. Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001,
2003. doi:10.1109/TAC.2003.812781.

19 David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 482–491, October 2003. doi:10/fcmmkg.

20 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM symposium on Theory of computing - STOC ’10,
page 513. ACM Press, 2010. doi:10.1145/1806689.1806760.

21 Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, March 1953. doi:10.2172/4390578.

22 Luc Moreau. Stability of multiagent systems with time-dependent communication links. IEEE
Transactions on Automatic Control, 50(2):169–182, 2005. doi:10.1109/TAC.2004.841888.

23 Damon Mosk-Aoyama and Devavrat Shah. Computing separable functions via gossip. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
PODC ’06, pages 113–122. ACM Press, July 2006. doi:10.1145/1146381.1146401.

24 Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying directed graphs.
IEEE Transactions on Automatic Control, 60(3):601–615, 2014. doi:10/f63582.

25 Angelia Nedić, Alex Olshevsky, Asuman Ozdaglar, and John N. Tsitsiklis. On Distributed
Averaging Algorithms and Quantization Effects. IEEE Transactions on Automatic Control,
54(11):2506–2517, 2009. doi:10.1109/TAC.2009.2031203.

26 Angelia Nedić, Alex Olshevsky, and Michael G. Rabbat. Network Topology and Communication-
Computation Tradeoffs in Decentralized Optimization. Proceedings of the IEEE, 106(5):953–976,
2018. doi:10.1109/JPROC.2018.2817461.

27 Reza Olfati-Saber and Jeff S. Shamma. Consensus filters for sensor networks and distributed
sensor fusion. In Proceedings of the 44th IEEE Conference on Decision and Control, pages
6698–6703, December 2005. doi:10/c338d4.

SAND 2022

https://doi.org/10.1214/aoap/1177005980
https://doi.org/10.1109/INFOCOM.2017.8057000
https://doi.org/10.1109/INFOCOM.2017.8057000
https://doi.org/10/ggd8nx
https://doi.org/10.1109/TAC.2018.2836861
https://doi.org/10.1109/TAC.2018.2836861
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1109/TAC.2011.2163874
https://doi.org/10.1109/ALLERTON.2015.7446980
https://doi.org/10.1109/TAC.2003.812781
https://doi.org/10/fcmmkg
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.2172/4390578
https://doi.org/10.1109/TAC.2004.841888
https://doi.org/10.1145/1146381.1146401
https://doi.org/10/f63582
https://doi.org/10.1109/TAC.2009.2031203
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10/c338d4

10:16 Computing Outside the Box

28 Alex Olshevsky. Linear Time Average Consensus and Distributed Optimization on Fixed
Graphs. SIAM Journal on Control and Optimization, 55(6):3990–4014, 2017. doi:10.1137/
16M1076629.

29 Alex Olshevsky and John N. Tsitsiklis. Convergence Speed in Distributed Consensus and
Averaging. SIAM Review, 53(4):747–772, 2011. doi:10.1137/110837462.

30 W. Ren. Consensus strategies for cooperative control of vehicle formations. IET Control
Theory & Applications, 1(2):505–512, 2007. doi:10.1049/iet-cta:20050401.

31 Shreyas Sundaram and Christoforos N. Hadjicostis. Finite-Time Distributed Consensus in
Graphs with Time-Invariant Topologies. In 2007 American Control Conference, pages 711–716,
2007. doi:10.1109/ACC.2007.4282726.

32 Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

33 John N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1984. URL:
https://www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf.

34 John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed Asynchronous
Deterministic and Stochastic Gradient Optimization Algorithms. IEEE Transactions on
Automatic Control, 31(9):803–812, 1986. doi:10.1109/TAC.1986.1104412.

35 Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems &
Control Letters, 53(1):65–78, 2004. doi:10.1016/j.sysconle.2004.02.022.

36 Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-
mean-square deviation. Journal of Parallel and Distributed Computing, 67(1):33–46, 2007.
doi:10/bmq2t4.

37 Lin Xiao, Stephen Boyd, and Sanjay Lall. A Scheme for Robust Distributed Sensor Fusion
Based on Average Consensus. In Fourth International Symposium on Information Processing
in Sensor Networks, 2005., pages 63–70, Los Angeles, CA, USA, 2005. IEEE. doi:10.1109/
IPSN.2005.1440896.

https://doi.org/10.1137/16M1076629
https://doi.org/10.1137/16M1076629
https://doi.org/10.1137/110837462
https://doi.org/10.1049/iet-cta:20050401
https://doi.org/10.1109/ACC.2007.4282726
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf
https://doi.org/10.1109/TAC.1986.1104412
https://doi.org/10.1016/j.sysconle.2004.02.022
https://doi.org/10/bmq2t4
https://doi.org/10.1109/IPSN.2005.1440896
https://doi.org/10.1109/IPSN.2005.1440896

Fast and Succinct Population Protocols for
Presburger Arithmetic
Philipp Czerner # Ñ

Department of Informatics, Technische Universität München, Germany

Roland Guttenberg #

Department of Informatics, Technische Universität München, Germany

Martin Helfrich # Ñ

Department of Informatics, Technische Universität München, Germany

Javier Esparza # Ñ

Department of Informatics, Technische Universität München, Germany

Abstract
In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that,
given any Presburger predicate as input, outputs a leaderless population protocol that decides the
predicate. The protocol for a predicate of size m (when expressed as a Boolean combination of
threshold and remainder predicates with coefficients in binary) runs in O(m · n2 log n) expected
number of interactions, which is almost optimal in n, the number of interacting agents. However,
the number of states of the protocol is exponential in m. This is a problem for natural computing
applications, where a state corresponds to a chemical species and it is difficult to implement protocols
with many states. Blondin et al. described in STACS 2020 another construction that produces
protocols with a polynomial number of states, but exponential expected number of interactions. We
present a construction that produces protocols with O(m) states that run in expected O(m7 · n2)
interactions, optimal in n, for all inputs of size Ω(m). For this, we introduce population computers,
a carefully crafted generalization of population protocols easier to program, and show that our
computers for Presburger predicates can be translated into fast and succinct population protocols.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases population protocols, fast, succinct, population computers

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.11

Related Version Full Version: https://arxiv.org/abs/2202.11601v2 [11]

Funding This work was supported by an ERC Advanced Grant (787367: PaVeS) and by the Research
Training Network of the Deutsche Forschungsgemeinschaft (DFG) (378803395: ConVeY).

Acknowledgements We thank the anonymous reviewers for many helpful remarks. In particular,
one remark led to Lemma 11, which in turn led to a nicer formulation of Theorem 2, one of our
main results.

1 Introduction

Population protocols [4, 5] are a model of computation in which indistinguishable, mobile
finite-state agents, randomly interact in pairs to decide whether their initial configuration
satisfies a given property, modelled as a predicate on the set of all configurations. The
decision is taken by stable consensus; eventually all agents agree on whether the property
holds or not, and never change their mind again. Population protocols are very close to
chemical reaction networks, a model in which agents are molecules and interactions are
chemical reactions.

© Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:czerner@in.tum.de
https://nicze.de/philipp
https://orcid.org/0000-0002-1786-9592
mailto:guttenbe@in.tum.de
https://orcid.org/0000-0001-6140-6707
mailto:helfrich@in.tum.de
https://martinhelfrich.de
https://orcid.org/0000-0002-3191-8098
mailto:esparza@in.tum.de
https://www7.in.tum.de/~esparza
https://orcid.org/0000-0001-9862-4919
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://arxiv.org/abs/2202.11601v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Fast and Succinct Population Protocols for Presburger Arithmetic

In a seminal paper, Angluin et al. proved that population protocols decide exactly the
predicates definable in Presburger arithmetic (PA) [7]. One direction of the result is proved
in [5] by means of a construction that takes as input a Presburger predicate and outputs a
protocol that decides it. The construction uses the quantifier elimination procedure for PA:
every Presburger formula φ can be transformed into an equivalent boolean combination of
threshold predicates of the form a⃗ · x⃗ ≥ c and remainder predicates of the form a⃗ · x⃗ ≡m c,
where a⃗ is an integer vector, c and m are integers, and ≡m denotes congruence modulo m [14].
Slightly abusing language, we call the set of these boolean combinations quantifier-free
Presburger arithmetic (QFPA).1 Using that PA and QFPA have the same expressive power,
Angluin et al. first construct protocols for all threshold and remainder predicates, and then
show that the predicates computed by protocols are closed under negation and conjunction.

The two fundamental parameters of a protocol are the expected number of interactions
until a stable consensus is reached, and the number of states of each agent. The expected
number of interactions divided by the number of agents, also called the parallel execution
time, is an adequate measure of the runtime of a protocol when interactions occur in parallel
according to a Poisson process [6]. The number of states measures the complexity of an
agent. In natural computing applications, where a state corresponds to a chemical species, it
is difficult to implement protocols with many states.

Given a formula φ of QFPA, let m be the number of bits of the largest coefficient of φ

in absolute value, and let s be the number of atomic formulas of φ, respectively. Let n be
the number of agents participating in the protocol. The construction of [5] yields a protocol
with O(s · n2 log n) expected interactions. Observe that the protocol does not have a leader
(an auxiliary agent helping the other agents to coordinate), and agents have a fixed number
of states, independent of the size of the population. Under these assumptions, which are also
the assumptions of this paper, every protocol for the majority predicate needs Ω(n2) expected
interactions [1], and so the construction is nearly optimal.2 However, the number of states is
Ω(2m+s), or Ω(2|φ|) in terms of the number |φ| of bits needed to write φ with coefficients in
binary. This is well beyond the only known lower bound, showing that for every construction
there exist an infinite subset of predicates φ for which the construction produces protocols
with Ω(|φ|1/4) states [9]. So the constructions of [5], and also those of [6, 3, 13], produce fast
but very large protocols.

In [9, 8] Blondin et al. exhibit a construction that produces succinct protocols with
O(poly(|φ|)) states. However, they do not analyse their stabilisation time. We demonstrate
that they run in Ω(2n) expected interactions. Loosely speaking, the reason is the use of
transitions that “revert” the effect of other transitions. This allows the protocol to “try out”
different distributions of agents, retracing its steps until it hits the right one, but also makes
it very slow. So [9, 8] produce succinct but very slow protocols.

Is it possible to produce protocols that are both fast and succinct? We give an affirmative
answer. We present a construction that yields for every formula φ of QFPA a protocol with
O(poly(|φ|)) states and O(poly(|φ|) · n2) expected interactions. So our construction achieves
optimal stabilisation time in n, and, at the same time, yields more succinct protocols than
the construction of [8]. Moreover, for inputs of size Ω(|φ|) (a very mild constraint when
agents are molecules), we obtain protocols with O(|φ|) states.

1 Remainder predicates cannot be directly expressed in Presburger arithmetic without quantifiers.
2 If the model is extended by allowing a leader (and one considers the slightly weaker notion of convergence

time), or the number of states of an agent is allowed to grow with the population size, O(n · polylog(n))
interactions can be achieved [6, 3, 2, 13, 12].

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:3

Our construction relies on population computers, a carefully crafted generalization of
the population protocol model of [5]. Population computers extend population protocols in
three ways. First, they can exhibit certain k-way interactions between more than two agents.
Second, they have a more flexible output condition, defined by an arbitrary function that
assigns an output to every subset of states, instead of to every state.3 Finally, population
computers can use helpers: auxiliary agents that, like leaders, help regular agents to coordinate
themselves but whose number, contrary to leaders, is not known a priori. We exhibit succinct
population computers for all Presburger predicates in which every run is finite, and show
how to translate such population computers into fast and succinct population protocols.

Organization of the paper. We give preliminary definitions in Section 2 and introduce
population computers in Section 3. Section 4 gives an overview of the rest of the paper and
summarises our main results. Section 5 describes why previous constructions were either not
succinct or slow. Section 6 describes population computers for every Presburger predicate.
Section 7 converts these computers into succinct population protocols. Section 8 shows that
the resulting protocols are also fast.

An extended version of this paper, containing the details of the constructions and all
proofs, can be found at [11]. It contains several appendices. Appendix A completes the
proofs of Section 5. For the other appendices, there is no one-to-one correspondence to
sections of the main paper, instead they are grouped by the construction they analyse.
Appendix B concerns the construction of Section 6, but also analyses speed. The four parts
of our conversion process are analysed separately, in Appendices C, D, E and F. Appendix G
combines the previous to prove the complete conversion theorem. Appendix H summarises
the definitions for our speed analyses, and Appendix I contains minor technical lemmata.

2 Preliminaries

Multisets. Let E be a finite set. A multiset over E is a mapping E → N, and NE denotes the
set of all multisets over E. We sometimes write multisets using set-like notation, e.g. Ha, 2 · bI
denotes the multiset v such that v(a) = 1, v(b) = 2 and v(e) = 0 for every e ∈ E \ {a, b}.
The empty multiset HI is also denoted ∅.

For E′ ⊆ E, v(E′) :=
∑

e∈E′ v(e) is the number of elements in v that are in E′. The size
of v ∈ NE is |v| := v(E). The support of v ∈ NE is the set supp(v) := {e ∈ E | v(e) > 0}. If
E ⊆ Z, then we let sum(v) :=

∑
e∈E e · v(e) denote the sum of all the elements of v. Given

u, v ∈ NE , u + v and u − v denote the multisets given by (u + v)(e) := u(e) + v(e) and
(u − v)(e) := u(e) − v(e) for every e ∈ E. The latter is only defined if u ≥ v.

Multiset rewriting transitions. A multiset rewriting transition, or just a transition, is a
pair (r, s) ∈ NE × NE , also written r 7→ s. A transition t = (r, s) is enabled at v ∈ NE if
v ≥ r, and its occurrence leads to v′ := v − r + s, denoted v →t v′. We call v →t v′ a step.
The multiset v is terminal if it does not enable any transition. An execution is a finite or
infinite sequence v0, v1, ... of multisets such that v →t1 v1 →t2 · · · for some sequence t1, t2, ...

of transitions. A multiset v′ is reachable from v if there is an execution v0, v1, ..., vk with
v0 = v and vk = v′; we also say that the execution leads from v to v′. An execution is a run
if it is infinite or it is finite and its last multiset is terminal. A run v0, v1, ... is fair if it is
finite, or it is infinite and for every multiset v, if v is reachable from vi for infinitely many
i ≥ 0, then v = vj for some j ≥ 0.

3 Other output conventions for population protocols have been considered [10].

SAND 2022

11:4 Fast and Succinct Population Protocols for Presburger Arithmetic

Presburger arithmetic. Angluin et al. proved that population protocols decide exactly
the predicates Nk → {0, 1} definable in Presburger arithmetic, the first-order theory of
addition, which coincide with the semilinear predicates [14]. Using the quantifier elimination
procedure of Presburger arithmetic, every Presburger predicate can be represented as a
Boolean combination of threshold and remainder predicates. A predicate φ : Nv → {0, 1} is a
threshold predicate if φ(x1, ..., xv) = (

∑v
i=1 aixi ≥ c), where a1, ..., av, c ∈ Z, and a remainder

predicate if φ(x1, ..., xv) = (
∑v

i=1 aixi ≡m c), where a1, ..., av ∈ Z, m ≥ 1, c ∈ {0, ..., m−1},
and a ≡m b denotes that a is congruent to b modulo m. We call the set of these formulas
quantifier-free Presburger arithmetic, or QFPA. The size of a predicate is the minimal number
of bits of a formula of QFPA representing it, with coefficients written in binary.

3 Population Computers

Population computers are a generalization of population protocols that allows us to give very
concise descriptions of our protocols for Presburger predicates.

Syntax. A population computer is a tuple P = (Q, δ, I, O, H), where:
Q is a finite set of states. Multisets over Q are called configurations.
δ ⊆ NQ ×NQ is a set of multiset rewriting transitions r 7→ s over Q such that |r| = |s| ≥ 2
and |supp(r)| ≤ 2. Further, we require that δ is a partial function, so s1 = s2 for all
r, s1, s2 with (r1 7→ s1), (r2 7→ s2) ∈ δ. A transition r 7→ s is binary if |r| = 2. We call a
population computer is binary if every transition binary.
I ⊆ Q is a set of input states. An input is a configuration C such that supp(C) ⊆ supp(I).
O : 2Q → {0, 1, ⊥} is an output function. The output of a configuration C is O(supp(C)).
An output function O is a consensus output if there is a partition Q = Q0 ∪ Q1 of Q such
that O(Q′) = 0 iff Q′ ⊆ Q0, O(Q′) = 1 iff Q′ ⊆ Q1, and O(Q′) = ⊥ otherwise.
H ∈ NQ\I is a multiset of helper agents or just helpers. A helper configuration is a
configuration C such that supp(C) ⊆ supp(H) and C ≥ H.

Graphical notation. We visualise population computers as Petri nets (see e.g. Figure 3).
Places (circles) and transitions (squares) represent respectively states and transitions. To
visualise configurations, we draw agents as tokens (smaller filled circles).

Semantics. Intuitively, a population computer decides which output (0 or 1) corresponds
to an input CI as follows. It adds to the agents of CI an arbitrary helper configuration CH

of agents to produce the initial configuration CI + CH . Then it starts the computation and
lets it stabilise to configurations of output 1 or output 0. Formally, the initial configurations
of P for input CI are all configurations of the form CI + CH for some helper configuration
CH . A run C0C1... stabilises to b if there exists an i ≥ 0 such that O(supp(Ci)) = b and Ci

only reaches configurations C ′ with O(supp(C ′)) = b. An input CI has output b if for every
initial configuration C0 = CI + CH , every fair run starting at C0 stabilises to b. A population
computer P decides a predicate φ : NI → {0, 1} if every input CI has output φ(CI).

Terminating and bounded computers. A population computer is bounded if no run starting
at an initial configuration C is infinite, and terminating if no fair run starting at C is infinite.
Observe that bounded population computers are terminating.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:5

Size and adjusted size. Let P = (Q, δ, I, O, H) be a population computer. We assume
that O is described as a boolean circuit with size(O) gates. For every transition t = (r 7→ s)
let |t| := |r|. The size of P is size(P) := |Q| + |H| + size(O) +

∑
t∈δ|t|. If P is binary, then

(as for population protocols) we do not count the transitions and define the adjusted size
size2(P) := |Q| + |H| + size(O). Observe that both the size of a transition and the size of
the helper multiset are the number of elements, i.e. the size in unary, strengthening our later
result about the existence of succinct population computers.

Population protocols. A population computer P = (Q, δ, I, O, H) is a population protocol
if it is binary, has no helpers (H = ∅), and O is a consensus output. It is easy to see that
this definition coincides with the one of [5]. The speed of a binary population computer with
no helpers, and so in particular of a population protocol, is defined as follows. We assume a
probabilistic execution model in which at configuration C two agents are picked uniformly at
random and execute a transition, if possible, moving to a configuration C ′ (by assumption
they enable at most one transition). This is called an interaction. Repeating this process, we
generate a random execution C0C1... . We say that the execution stabilises at time t if Ct

reaches only configurations C ′ with O(supp(C ′)) = O(supp(Ct)), and we say that P decides
φ within T interactions if it decides φ and E(t) ≤ T . See e.g. [6] for more details.

Population computers vs. population protocols. Population computers generalise popula-
tion protocols in three ways:

They have non-binary transitions, but only those in which the interacting agents populate
at most two states. For example, Hp, p, qI 7→ Hp, q, oI (which in the following is written
simply as p, p, q 7→ p, q, o) is allowed, but p, q, o 7→ p, p, q is not.
They use a multiset H of auxiliary helper agents, but the addition of more helpers does
not change the output of the computation. Intuitively, contrary to the case of leaders,
agents do not know any upper bound on the number of helpers, and so the protocol
cannot rely on this bound for correctness or speed.
They have a more flexible output condition. Loosely speaking, population computers
accept by stabilising the population to an accepting set of states, instead of to a set of
accepting states.

4 Overview and Main Results

Given a predicate φ ∈ QFPA over variables x1, ..., xv, the rest of this paper shows how
to construct a fast and succinct population protocol deciding φ. First, Section 5 gives an
overview of previous constructions and explains why they are not fast or not succinct. Then
we proceed in five steps:
1. Construct the predicate double(φ) ∈ QFPA over variables x1, ..., xv, x′

1, ..., x′
v by syn-

tactically replacing every occurrence of xi in φ by xi +2x′
i. For example, if φ = (x−y ≥ 0)

then double(φ) = (x + 2x′ − y − 2y′ ≥ 0). Observe that |double(φ)| ∈ O(|φ|).
2. Construct a succinct bounded population computer P deciding double(φ).
3. Convert P into a succinct population protocol P ′ deciding φ for inputs of size Ω(|φ|).
4. Prove that P ′ runs within O(n3) interactions.
5. Use a refined running-time analysis to prove that P ′ runs within O(n2) interactions.

Section 6 constructs bounded population computers for all predicates φ ∈ QFPA. This
allows us to conduct steps 1 and 2. More precisely, the section proves:

SAND 2022

11:6 Fast and Succinct Population Protocols for Presburger Arithmetic

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

Section 7 proves the following conversion theorem (steps 3 and 4).

▶ Theorem 2. Every bounded population computer of size m deciding double(φ) can be
converted into a terminating population protocol with O(m2) states which decides φ in at
most O(f(m) n3) interactions for inputs of size Ω(m), for some function f .

Section 8 introduces α-rapid population computers, where α ≥ 1 is a certain parameter,
and uses a more detailed analysis to show that the population protocols of Theorem 2 are in
fact smaller and faster (step 5):

▶ Theorem 3.
(a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).

The restriction to inputs of size Ω(m) is very mild. Moreover, it can be lifted using a
technique of [8], at the price of adding additional states (and at no cost regarding asymptotic
speed, since the speed of the new protocol only changes for inputs of size O(m)):

▶ Corollary 4. For every φ ∈ QFPA there exists a terminating population protocol with
O(poly(|φ|)) states that decides φ in O(f(|φ|) n2) interactions, for a function f .

It is known that the majority predicate can only be decided in Ω(n2) interactions by
population protocols [1], so — as a general construction — our result is optimal w.r.t. time.
Regarding space, an Ω(|φ|1/4) lower bound was shown in [9], leaving a polynomial gap.

5 Previous Constructions: Angluin et al. and Blondin et al.

The population protocols for a quantifier free Presburger predicate φ constructed in [5] are
not succinct, i.e. do not have O(|φ|a) states for any constant a, and those of [8] are not fast,
i.e. do not have speed O(|φ|anb) for any constants a, b. We explain why with the help of
some examples.

▶ Example 5. Consider the protocol of [5] for the predicate φ = (x − y ≥ 2d). The states are
the triples (ℓ, b, u) where ℓ ∈ {A, P}, b ∈ {Y, N} and −2d ≤ u ≤ 2d. Intuitively, ℓ indicates
whether the agent is active (A) or passive (P), b indicates whether it currently believes
that φ holds (Y) or not (N), and u is the agent’s wealth, which can be negative. Agents
for input x are initially in state (A, N, 1), and agents for y in (A, N, −1). If two passive
agents meet their encounter has no effect. If at least one agent is active, then the result of
the encounter is given by the transition (∗, ∗, u), (∗, ∗, u′) 7→ (A, b, q), (P, b, r) where b = Y

if u + u′ ≥ 2d else N ; q = max(−2d, min(2d, u + u′)); and r = (u + u′) − q. The protocol
stabilises after O(n2 log n) expected interactions [5], but it has 2d+1 + 1 states, exponentially
many in |φ| ∈ Θ(d).

▶ Example 6. We give a protocol for φ = (x − y ≥ 2d) with a polynomial number of states.
This is essentially the protocol of [8]. We remove states and transitions from the protocol of
Example 5, retaining only the states (ℓ, b, u) such that u is a power of 2, and some of the
transitions involving these states:

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:7

(∗, ∗, 2i), (∗, ∗, 2i) 7→ (A, N, 2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 2
(∗, ∗, 2d−1), (∗, ∗, 2d−1) 7→ (A, Y, 2d), (P, Y, 0)

(∗, ∗, −2i), (∗, ∗, −2i) 7→ (A, N, −2i+1), (P, N, 0) for every 0 ≤ i ≤ d − 1
(∗, ∗, 2i), (∗, ∗, −2i) 7→ (A, N, 0), (P, N, 0) for every 0 ≤ i ≤ d − 1

The protocol is not yet correct. For example, for d = 1 and the input x = 2, y = 1, the
protocol can reach in one step the configuration in which the three agents (two x-agents and
one y-agent) are in states (A, Y, 2), (P, Y, 0), (A, N, −1), after which it gets stuck. In [8] this
is solved by adding “reverse” transitions:

(A, N, 2i+1), (P, N, 0) 7→ (A, N, 2i), (P, N, 2i) for every 0 ≤ i ≤ d − 2
(A, Y, 2d), (P, Y, 0) 7→ (A, N, 2d−1), (P, N, 2d−1)

(A, N, −2i+1), (P, N, 0) 7→ (A, N, −2i), (A, N, −2i) for every 0 ≤ i ≤ d − 1

The protocol has only Θ(d) states and transitions, but runs within Ω(n2d−2) interactions.
Consider the inputs x, y such that x−y = 2d, and let n := x+y. Say that an agent is positive
at a configuration if it has positive wealth at it. The protocol can only stabilise if it reaches
a configuration with exactly one positive agent with wealth 2d. Consider a configuration
with i < 2d positive agents. The next configuration can have i − 1, i, or i + 1 positive agents.
The probability of i + 1 positive agents is Ω(1/n), while that of i − 1 positive agents is only
O(1/n2), and the expected number of interactions needed to go from 2d positive agents to
only 1 is Ω(n2d−1) [11, Appendix A.1].

▶ Example 7. Given protocols P1, P2 with n1 and n2 states deciding predicates φ1 and φ2,
Angluin et al. construct in [5] a protocol P for φ1 ∧ φ2 with n1 · n2 states. It follows that the
number of states of a protocol for φ := φ1 ∧ · · · ∧ φs grows exponentially in s, and so in |φ|.
Blondin et al. give an alternative construction with polynomially many states [8, Section 5.3].
However, their construction contains transitions that, as in the previous example, reverse the
effect of other transitions, and make the protocol very slow. The problem is already observed
in the toy protocol with states q1, q2 and transitions q1, q1 7→ q2, q2 and q1, q2 7→ q1, q1.
(Similar transitions are used in the initialisation of [8].) Starting with an even number n ≥ 2
of agents in q1, eventually all agents move to q2 and stay there, but the expected number of
interactions is Ω(2n/10) [11, Appendix A.2].

6 Succinct Bounded Population Computers for Presburger Predicates

In Sections 6.1 and 6.2 we construct population computers for remainder and threshold
predicates in which all coefficients are powers of two. We present the remainder case in detail,
and sketch the threshold case. The generalization to arbitrary coefficients is achieved by means
of a gadget very similar to the one we used to compute boolean combinations of predicates.
This later gadget is presented in Section 6.3, and so we introduce the generalization there.

6.1 Population computers for remainder predicates
Let Pow+ = {2i | i ≥ 0} be the set of positive powers of 2.

We construct population computers Pφ for remainder predicates φ :=
∑v

i=1 aixi ≡m c,
where ai ∈ Pow+ ∩ {0, ..., m−1} for every 1 ≤ i ≤ v, m ∈ N, and c ∈ {0, ..., m−1}. We
say that a finite multiset r over Pow+ represents the residue rep(r) := sum(r)mod m.
For example, if m = 11 then r18 := H23, 23, 21I represents 7. Accordingly, we call the

SAND 2022

11:8 Fast and Succinct Population Protocols for Presburger Arithmetic

multisets over Pow+ representations. A representation of degree d only contains elements
of Pow+

d := {2d, 2d−1, ..., 20}. A representation r is a support representation if r(x) ≤ 1 for
every x ∈ Pow+; so its represented value is completely determined by the support. For
example, r18 is not a support representation of 7, but H25, 23I is.

0

x

y

(1)1

(2)1

(4)1

(8)1

(16)1

(1)2 (−1)2

(2)2 (−2)2

(4)2

(−4)2

(8)2 (−8)2

(16)2 (−16)2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

242

2

t

f

∃8

else

∃4

el
se

∃4 else

∃2el
se

else
∃2

∃1

else

else

∃1

t f

else∃1
6

∃−
16

∃−
8∃8

else

∃4

else

∃−
4

el
se

∃−2

else∃2

else∃1

Figure 1 (middle) Graphical Petri net representation (see Section 3) of population computer
for the predicate φ1 ∨ φ2 with φ1 = (8x + 5y ≡11 4) and φ2 = (y − 2x ≥ 5). All dashed arrows
implicitly lead to the reservoir state 0. It has 22 helpers although only 9 are drawn for space reasons.
(left) decision diagram for output function of remainder predicate 8x + 5y ≡11 4. It checks if the
total value is 15 or 4. Starting at the top node of the diagram: if state 8 is populated, we move to
the left child, otherwise to the right child; at the left child, if state 4 is populated we move to the
right child, etc. (right) decision diagram for output function of threshold predicate y − 2x ≥ 5.

We proceed to construct Pφ. Let us give some intuition first. Pφ has Pow+
d ∪ {0} as set

of states. We extend the notion of representation to configurations by disregarding agents in
state 0; a configuration is therefore a support representation if all states except 0 have at
most one agent. The initial states of Pφ are chosen so that every initial configuration for an
input (x1, ..., xv) is a representation of the residue z :=

∑v
i=1 aixi mod m. The transitions

transform this initial representation of z into a support representation of z. Whether z ≡m c

holds or not depends only on the support of this representation, and the output function
thus returns 1 for the supports satisfying z ≡m c, and 0 otherwise. Let us now formally
describe Pφ for φ :=

∑v
i=1 aixi ≡m c where ai ∈ Pow+ ∩ {0, ..., m−1}.

States and initial states. Let d := ⌈log2 m⌉. The set of states is Q = Pow+
d ∪ {0}. The

set of initial states is I := {a1, ..., av}. Observe that an input CI = Hx1 · a1, ..., xv · avI is a
representation of z, but not necessarily a support representation.

Transitions. Transitions ensure that non-support representations, i.e. representations with
two or more agents in some state q, are transformed into representations of the same residue
“closer” to a support representation. For q ∈ 20, ..., 2d−1 we introduce the transition:

2i, 2i 7→ 2i+1, 0 for 0 ≤ i ≤ d − 1 〈combine〉

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:9

For q = 2d we introduce a transition that replaces an agent in 2d by a multiset of agents
r with sum(r) = 2d − m, preserving the residue. Let bdbd−1...b0 be the binary encoding of
2d − m, and let {i1, ..., ij} be the positions such that bi1 = · · · = bij

= 1. The transition is:

2d, 0, ..., 0 7→ 2i1 , ..., 2ij 〈modulo〉

These transitions are enough, but we also add a transition that takes d agents in 2d and
replaces them by agents with sum d · 2d mod m. Intuitively, this makes the protocol faster.
Let bdbd−1...b0 and {i1, ..., ij} be as above, but for d · 2d mod m instead of 2d − m.

2d, ..., 2d 7→ 2i1 , ..., 2ij , 0, ..., 0 〈fast modulo〉

Helpers. We set H := H3d · 0I, i.e. the computer initially places at least 3d helper agents in
state 0. This makes sure one can always execute the next 〈modulo〉 or 〈fast modulo〉 transition:
if no more agents can be combined, there are at most d agents in the states 20, ..., 2d−1.
Thus, there are at least 2d agents in the states 0 and 2d, enabling one of these transitions.
Observe that for every initial configuration CI + CH we have sum(CI + CH) = sum(CI), and
so, abusing language, every initial configuration for CI is also a representation of z.

Output function. The computer eventually reaches a support configuration with at most
one agent in every state except for 0. Thus, for every support set S ⊆ Q, we define O(S) := 1
if sum(S) ≡m c, and O(S) = 0 else. We show the existence of a small boolean circuit for the
output function O in the proof of Lemma 8; this can be found in [11, Appendix B.1].

▶ Lemma 8. Let φ :=
∑v

i=1 aixi ≡m c, where ai ∈ {2d−1, ..., 21, 20} for every 1 ≤ i ≤ v and
c ∈ {0, ..., m−1} with d := ⌈log2 m⌉. There is a bounded computer of size O(d) deciding φ.

The left half of Figure 1 shows the population computer for φ = (8x + 5y ≡11 4).

6.2 Population computers for threshold predicates
We sketch the construction of population computers Pφ for threshold predicates φ :=∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v and c ∈ N. As the
construction is similar to the construction for remainder, we will focus on the differences and
refer to [11, Appendix B.2] for details.

As for remainder, we work with representations that are multisets of powers of 2. However,
they represent the sum of their elements (without modulo) and we allow both positive and
negative powers of 2. Similar to the remainder construction, the computer transforms any
representation into a support representation without changing the represented value. Then,
the computer decides the predicate using only the support of that representation.

Again, there are 〈combine〉 transitions that allow agents with the same value to com-
bine. Instead of modulo transitions, 〈cancel〉 transitions further simplify the representation:
2i, −2i 7→ 0, 0. Note that even after exhaustively applying 〈combine〉 and 〈cancel〉 there can
still be many agents in 2d or many agents in −2d. This has two consequences:

In the construction for general predicates of Section 6.3, we need that computers for
remainder and threshold move most agents to state 0. In the remainder construction, all
but a constant number of agents are moved to 0. In contrast, the threshold construction
does not have this property. Thus, we do not design a single computer for a given
threshold predicate φ but a family: one for every degree d larger than some minimum
degree d0 ∈ Ω(|φ|). Intuitively, larger degrees result in a larger fraction of agents in 0.

SAND 2022

11:10 Fast and Succinct Population Protocols for Presburger Arithmetic

Assume we detect agents in 2d (−2d is analogous). If there are many, the predicate is
true. However, if there is just one, then the represented value might be small, due to
negative contributions −20, ..., −2d−1. We cannot distinguish the two cases, so we add
transition 〈cancel 2nd highest〉: 2d, −2d−1 7→ 2d−1, 0. It ensures that agents cannot be
present in both 2d and −2d−1; therefore, an agent in 2d certifies a value of at least 2d−1.

The right half of Figure 1 shows the population computer for φ = (−2x + y ≥ 5) with degree
d = 4. [11, Appendix B.2] proves:

▶ Lemma 9. Let φ :=
∑v

i=1 aixi ≥ c, where ai ∈ {2j , 2−j | j ≥ 0} for every 1 ≤ i ≤ v.
For every d ≥ max{⌈log2 c⌉ + 1, ⌈log2|a1|⌉, ..., ⌈log2|av|⌉} there is a bounded computer of size
O(d) that decides φ.

6.3 Population computers for all Presburger predicates

We present a construction that, given threshold or remainder predicates φ1, ..., φs, yields a
population computer P deciding an arbitrary given boolean combination B(φ1, ..., φs) of
φ1, ..., φs. We only sketch the construction, see [11, Appendix B.3] for details. We use the
example φ1 = (y − 2x ≥ 5), φ2 = (8x + 5y ≡11 4) and B(φ1, φ2) = φ1 ∨ φ2. The result of
the construction for this example is shown in Figure 1. The construction has 6 steps:

1. Rewrite Predicates. The constructions in Sections 6.1 and 6.2 only work for predicates
where all coefficients are powers of 2. We transform each predicate φi into a new predicate φ′

i

where all coefficients are decomposed into their powers of 2. In our example, φ′
1 := φ1 because

all coefficients are already powers of 2. However, φ2(x, y) = (8x + 5y ≡11 4) is rewritten as
φ′

2(x, y1, y2) := (8x + 4y1 + 1y2 ≡11 4) because 5 = 4 + 1. Note that φ2(x, y) = φ′
2(x, y, y)

holds for every x, y ∈ N. Let r be the size of the largest split of a coefficient, i.e. r = 2 in the
example.

2. Construct Subcomputers. For every 1 ≤ i ≤ s, if φi is a remainder predicate, then let
Pi be the computer defined in Section 6.1. If φi is a threshold predicate, then let Pi be the
computer of Section 6.2, with d = d0 + ⌈log2 s⌉. We explain this choice of d in step 5.

3. Combine Subcomputers. Take the disjoint union of Pi, but merging their 0 states.
More precisely, rename all states q ∈ Qi to (q)i, with the exception of state 0. Construct a
computer with the union of all the renamed states and transitions. Figure 1 shows the Petri
net representation of the computer so obtained for our example. We call the combined 0
state reservoir as it holds agents with no value that are needed for various tasks like input
distribution.

4. Input Distribution. For each variable xi add a corresponding new input state xi. Then
add a transition that takes an agent in state xi and agents in 0 and distributes agents to the
input states of the subcomputers that correspond to xi. In our example, we add two states x

and y and the transitions x, 0 7→ (1)1 , (8)2 and y, 0, 0 7→ (−2)1 , (4)2 , (1)2. The distribution
for x needs one helper, because we need one agent in each subcomputer. The distribution
for y needs two helpers, one for P1 and two for P2, as 5y was split into 4y1 + 1y2. This
way, once the input states are empty, the correct value is distributed to each subcomputer.
Crucially, this input distribution can be fast as it is not reversible.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:11

5. Add Extra Helpers. In addition to all helpers from the subcomputers, add r − 1 more
helpers to state 0. Intuitively, this allows to distribute the first input agent. Because of
our choice for d in threshold subcomputers, each subcomputer returns most agents back to
state 0. More precisely, for each distribution the number of agents that do not get returned
to 0 only increases by at most 1

s (per subcomputer). So in total only one agent is “consumed”
per distribution and enough agents are returned to 0 for the next distribution to occur. In
our example, the agents that stay in each of the s = 2 subcomputers only increases by at
most 1

2 per distribution. (In fact, remainder subcomputers return all distributed agents.)

6. Combine Output. Note that we can still decide φi from the support of the states in the
corresponding subcomputer Pi. We compute the output for φ by combining the outputs of
the subcomputers P1, ..., Ps according to B(φ1, ..., φs). In our example, we set the output to
1 if and only if the output of P1 or P2 is 1.

In [11, Appendix B.3], we show that this computer is succinct, correct and bounded:

▶ Theorem 1. For every predicate φ ∈ QFPA there exists a bounded population computer of
size O(|φ|) that decides φ.

7 Converting Population Computers to Population Protocols

In this section we prove Theorem 2. We proceed in four steps, which must be carried out in
the given order. Section 7.1 converts any bounded computer P for double(φ) of size m into
a binary bounded computer P1 with O(m2) states. Section 7.2 converts P1 into a binary
bounded computer P2 with a marked consensus output function (a notion defined in the
section). Section 7.3 converts P2 into a binary bounded computer P3 for φ — not double(φ)

— with a marked consensus output function and no helpers. Section 7.4 shows that P3 runs
within O(n3) interactions. Finally, we convert P3 to a binary terminating (not necessarily
bounded) computer P4 with a normal consensus output and no helpers, also running within
O(n3) interactions. This uses standard ideas; for space reasons it is described only in the full
version at [11, Appendix F]. Similarly, the other conversions and results are only sketched,
with details in [11].

7.1 Removing multiway transitions
We transform a bounded population computer with k-way transitions r 7→ s such that
|supp(r)| ≤ 2 into a binary bounded population computer. Let us first explain why the
construction introduced in [9, Lemma 3], which works for arbitrary transitions r 7→ s, is too
slow. In [9], the 3-way transition t : q1, q2, q3 7→ q′

1, q′
2, q′

3 is simulated by the transitions

t1 : q1, q2 7→ w, q12 t2 : q12, q3 7→ c12, q′
3 t3 : q′

3, w 7→ q′
1, q′

2 t1 : w, q12 7→ q1, q2

Intuitively, the occurrence of t1 indicates that two agents in q1 and q2 want to execute t, and
are waiting for an agent in q3. If the agent arrives, then all three execute t2t3, which takes
them to q′

1, q′
2, q′

3. Otherwise, the two agents must be able to return to q1, q2 to possibly
execute other transitions. This is achieved by the “revert” transition t1. The construction
for a k-way transition has “revert” transitions t1, ..., tk−2. As in Example 6 and Example 7,
these transitions make the final protocol very slow.

We present a gadget without “revert” transitions that works for k-way transitions r 7→ s

satisfying |supp(r)| ≤ 2. Figure 2 illustrates it, using Petri net notation, for the 5-way
transition t : H3p, 2qI 7→ Ha, b, c, d, eI. In the gadget, states p and q are split into (p, 0), ..., (p, 3)

SAND 2022

11:12 Fast and Succinct Population Protocols for Presburger Arithmetic

c

b

a

d

e

q

p

2

3
⇝

2 1 0

q

〈execute〉
a

b

c

d

e

1 023

〈commit〉

p

2

22

Figure 2 Simulating the 5-way transition H3 · p, 2 · q 7→ a, b, c, d, eI by binary transitions.

and (q, 0), ..., (q, 2). Intuitively, an agent in (q, i) acts as representative for a group of i agents
in state q. Agents in (p, 3) and (q, 2) commit to executing t by executing the binary transition
〈commit〉. After committing, they move to the states a, ..., e together with the other members
of the group, who are “waiting” in the states (p, 0) and (q, 0). Note that 〈commit〉 is binary
because of the restriction |supp(r)| ≤ 2 for multiway transitions.

To ensure correctness of the conversion, agents can commit to transitions if they represent
more than the required amount. In this case, the initiating agents would commit to a
transition and then elect representatives for the superfluous agents, before executing the
transition. This requires additional intermediate states.

[11, Appendix C] formalises the gadget and proves its correctness and speed.

7.2 Converting output functions to marked-consensus output functions
We convert a computer with an arbitrary output function into another one with a marked-
consensus output function. An output function is a marked-consensus output function if there
are disjoint sets of states Q0, Q1 ⊆ Q such that O(S) := b if S ∩ Qb ≠ ∅ and S ∩ Q1−b = ∅,
for b ∈ {0, 1}, and O(S) := ⊥ otherwise. Intuitively, for every S ⊆ Q we have O(S) = 1
if all agents agree to avoid Q0 (consensus), and at least one agent populates Q1 (marked
consensus). We only sketch the construction, a detailed description as well as a graphical
example can be found in [11, Appendix D].

Our starting point is some bounded and binary computer P = (Q, δ, I, O, H), e.g. as
constructed in Section 7.1. Let (G, E) be a boolean circuit with only NAND-gates computing
the output function O. We simulate P by a computer P ′ with a marked consensus output and
O(|Q| + |G|) states. This result allows us to bound the number of states of P ′ by applying
well known results on the complexity of Boolean functions.

Intuitively, P ′ consists of two processes running asynchronously in parallel. The first one
is (essentially, see below) the computer P itself. The second one is a gadget that simulates
the execution of G on the support of the current configuration of P . Whenever P executes a
transition, it raises a flag indicating that the gadget must be reset (for this, we duplicate
each state q ∈ Q into two states (q, +) and (q, −), indicating whether the flag is raised or
lowered). Crucially, P is bounded, and so it eventually performs a transition for the last
time. This resets the gadget for the last time, after which the gadget simulates (G, E) on the
support of the terminal configuration reached by P.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:13

The gadget is designed to be operated by one state-helper for each q ∈ Q, with set of
states Qsupp(q), and a gate-helper for each gate g ∈ G, with set of states Qgate(g), defined as
follows:

Qsupp(q) := {q} × {0, 1, !}. These states indicate that q belongs/does not belong to the
support of the current configuration (states (q, 0) and (q, 1)), or that the output has
changed from 0 to 1 (state (q, !)).
Qgate(g) := {g} × {0, 1, ⊥}3 for each gate g ∈ G, storing the current values of the two
inputs of the gate and its output. Uninitialised values are stored as ⊥.

Recall that a population computer must also remain correct for a larger number of helpers.
This is ensured by letting all helpers populating one of these sets, say Qsupp(q), perform
a leader election; whenever two helpers in states of Qsupp(q) meet, one of them becomes
a non-leader, and a flag requesting a complete reset of the gadget is raised. All resets are
carried out by a reset-helper with set of states Qreset := {0, ..., |Q| + |G|}, initially in state 0.
(Reset-helpers also carry out their own leader election!) Whenever a reset is triggered, the
reset-helper contacts all other |Q| + |G| helpers in round-robin fashion, asking them to reset
the computation.

Eventually the original protocol P has already reached a terminal configuration with
some support Qterm, each set Qsupp(q) and Qgate(g) is populated by exactly one helper, and
all previous resets are terminated. From this moment on, P never changes its configuration.
The |Q| state-helpers detect the support Qterm of the terminal configuration by means of
transitions that move them to the states Qterm × {1} and (Q \ Qterm) × {0}; the gate-helpers
execute (G, E) on input Q′ by means of transitions that move them to the states describing
the correct inputs and outputs for each gate. State-helpers use Q × {!} as intermediate states,
indicating that the circuit must recompute its output.

It remains to choose the sets Q0 and Q1 of states the marked consensus output. We do it
according to the output b of the output gate gout ∈ G: Qb is the set of states of Qgate(gout)
corresponding to output b.

7.3 Removing helpers
We convert a bounded binary computer P deciding the predicate double(φ) over variables
x1, ..., xk, x′

1, ..., x′
k into a computer P ′ with no helpers deciding φ over variables x1, ..., xk.

In [8], a protocol with helpers and set of states Q is converted into a protocol without helpers
with states Q × Q. We sketch a better construction that avoids the quadratic blowup. A
detailed description can be found in [11, Appendix E].

Let us give some intuition first. All agents of an initial configuration of P ′ are in
input states. P ′ simulates P by liberating some of these agents and transforming them
into helpers, without changing the output of the computation. For this, two agents in
an input state xi are allowed to interact, producing one agent in x′

i and one “liberated”
agent, which can be used as a helper. This does not change the output of the computation,
because double(φ)(..., xi, ..., x′

i, ...) = double(φ)(..., xi − 2, ..., x′
i + 1, ...) holds by definition

of double(φ).
Figure 3 illustrates this idea. Assume P has input states x, y, x′, y′ and helpers H =

Hq1, q2, q3, q4I, as shown on the left-hand side. Assume further that P computes a predicate
double(φ)(x, y, x′, y′). The computer P ′ is shown on the right of the figure. The additional
transitions liberate agents, and send them to the helper states H. Observe that the initial
states of P ′ are only x and y. Let us see why P ′ decides φ(x, y). As the initial configuration of

SAND 2022

11:14 Fast and Succinct Population Protocols for Presburger Arithmetic

x

x′

q1 q2 q3 q4

y

y′ ⇝

x

x′

liberated y

y′

q2q1 q3 q4

2 2

4

Figure 3 Illustration in graphical Petri net notation (see Section 3) of construction that removes
helpers. Initial states are highlighted.

P ′ for an input x, y puts no agents in x′, y′, the computer P ′ produces the same output on input
x, y as P on input x, y, 0, 0. Since P decides double(φ) and double(φ)(x, y, 0, 0) = φ(x, y) by
the definition of double(φ), we are done. We make some remarks:

P ′ may liberate more agents than necessary to simulate the multiset H of helpers of P.
This is not an issue, because by definition additional helpers do not change the output of
the computation.
If the input is too small, P ′ cannot liberate enough agents to simulate H. Therefore, the
new computer only works for inputs of size Ω(|H|) = Ω(|φ|).
Even if the input is large enough, P ′ might move agents out of input states before
liberating enough helpers. However, the computers of Section 6 can only do this if there
are enough helpers in the reservoir state (see point 3. in Section 6.3). Therefore, they
always generate enough helpers when the input is large enough.

7.4 A O(n3) bound on the expected interactions
We show that the computer obtained after the previous conversion runs within O(n3)
interactions. We sketch the main ideas; the details are in [11, Appendix G].

We introduce potential functions that assign to every configuration a positive potential,
with the property that executing any transition strictly decreases the potential. Intuitively,
every transition “makes progres”. We then prove two results: (1) under a mild condition,
a computer has a potential function iff it is bounded, and (2) every binary computer with
a potential function and no helpers, i.e. any bounded computer for which speed is defined,
stabilises within O(n3) interactions. This concludes the proof.

Fix a population computer P = (Q, δ, I, O, H).

▶ Definition 10. A function Φ : NQ → N is linear if there exist weights w : Q → N s.t.
Φ(C) =

∑
q∈Q w(q)C(q) for every C ∈ NQ. We write Φ(q) instead of w(q). A potential

function (for P) is a linear function Φ such that Φ(r) ≥ Φ(s) + |r| − 1 for all (r 7→ s) ∈ δ.

Observe that k-way transitions reduce the potential by k − 1, binary transitions by 1. At
this point, we consider only binary computers, but this distinction becomes relevant for the
refined speed analysis.

If a population computer has a potential function, then every run executes at most O(n)
transitions, and so the computer is bounded. Applying Farkas’ Lemma we can show that the
converse holds for computers in which every state can be populated – a mild condition, since
states that can never be populated can be deleted without changing the behaviour.

▶ Lemma 11. If P has a reachable configuration Cq with Cq(q) > 0 for each q ∈ Q, then P
is bounded iff there is a potential function for P.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:15

Consider now a binary computer with a potential function and no helpers. At every
non-terminal configuration, at least one (binary) transition is enabled. The probability that
two agents chosen uniformly at random enable this transition is Ω(1/n2), and so a transition
occurs within O(n2) interactions. Since the computer has a potential function, every run
executes at most O(n) transitions, and so the computer stabilises within O(n3) interactions.

The final step to produce a population protocol is to translate computers with marked-
consensus output function into computers with standard consensus output function, while
preserving the number of interactions. For space reasons this construction is presented in [11,
Appendix F].

8 Rapid Population Computers: Proving a O(n2) Bound

We refine our running-time analysis to show that the population protocols we have constructed
actually stabilise within O(n2) interactions. We continue to use potential functions, as
introduced in Section 7.4, but improve our analysis as follows:

We introduce rapidly-decreasing potential functions. Intuitively, their existence shows
that progress is not only possible, but also likely. We prove that they certify stabilisation
within O(n2) interactions.
We introduce rapid population computers, as computers with rapidly-decreasing potential
functions that also satisfy some technical conditions. We convert rapid computers into
protocols with O(|φ|) states, and show that the computers of Section 6 are rapid.

In order to define rapidly-decreasing potential functions, we need a notion of “probability
to execute a transition” that generalises to multiway transitions and is preserved by our
conversions. At a configuration C of a protocol, the probability of executing a binary
transition t = (p, q 7→ p′, q′) is C(q)C(p)/n(n − 1). Intuitively, leaving out the normalisation
factor 1/n(n − 1), the transition has “speed” C(q)C(p), proportional in the product of the
number of agents in p and q. But for a multiway transition like q, q, p 7→ r1, r2, r3 the
situation changes. If C(q) = 2, it does not matter how many agents are in p – the transition
is always going to take Ω(n2) interactions. We therefore define the speed of a transition as
min{C(q), C(p)}2 instead of C(q)C(p).

For the remainder of this section, let P = (Q, δ, I, O, H) denote a population computer.

▶ Definition 12. Given a configuration C ∈ NQ and some transition t = (r 7→ s) ∈ δ,
we let tmint(C) := min{C(q) : q ∈ supp(r)}. For a set of transitions T ⊆ δ, we define
speedT (C) :=

∑
t∈T tmint(C)2, and write speed(C) := speedδ(C) for convenience.

▶ Definition 13. Let Φ denote a potential function for P and let α ≥ 1. We say that Φ
is α-rapidly decreasing at a configuration C if speed(C) ≥ (Φ(C) − Φ(Cterm))2/α for all
terminal configurations Cterm with C → Cterm.

We have not been able to find potential functions for the computers of Section 6 that are
rapidly decreasing at every reachable configuration, only at reachable configurations with
sufficiently many helpers, defined below. Fortunately, that is enough for our purposes.

▶ Definition 14. C ∈ NQ is well-initialised if C is reachable and C(I) + |H| ≤ 2
3 n.

Observe that an initial configuration C can only be well-initialised if C(supp(H)) ∈
Ω(C(I)). We now define rapid population computers, and state the result of our improved
analysis.

SAND 2022

11:16 Fast and Succinct Population Protocols for Presburger Arithmetic

▶ Definition 15. P is α-rapid if
1. it has a potential function Φ which is α-rapidly decreasing in well-initialised configurations,
2. every state of P but one has at most 2 outgoing transitions,
3. all configurations in NI are terminal, and
4. for all transitions t = (r 7→ s), q ∈ I we have r(q) ≤ 1 and s(q) = 0.

▶ Theorem 3.
(a) The population computers constructed in Theorem 1 are O(|φ|3)-rapid.
(b) Every α-rapid population computer of size m deciding double(φ) can be converted into a

terminating population protocol with O(m) states that decides φ in O(α m4n2) interactions
for inputs of size Ω(m).

The detailed proofs can be found in the full version [11], in the following sections. The
proof of (a) is given in Appendix B. For (b), we prove separate theorems for each conversion
in Appendices C, D, E, and F. To achieve a tighter analysis of our conversions, we generalise
the notion of potential function; this is described in Appendix H.

9 Conclusions

We have shown that every predicate φ of quantifier-free Presburger arithmetic has a population
protocol with O(poly(|φ|)) states and O(|φ|7 · n2) expected number of interactions. If only
inputs of size Ω(|φ|) matter, we give a protocol with O(|φ|) states and the same speed.
The obvious point for further improvement is the |φ|7 factor in the expected number of
interactions.

Our construction is close to optimal. Indeed, for every construction there is an infinite
family of predicates for which it yields protocols with Ω(|φ|1/4) states [9]; further, it is known
that every protocol for the majority predicate requires in Ω(n2) interactions.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

space trade-offs in population protocols. In SODA, pages 2560–2579. SIAM, 2017.
2 Dan Alistarh and Rati Gelashvili. Recent algorithmic advances in population protocols.

SIGACT News, 49(3):63–73, 2018.
3 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population

protocols. In PODC, pages 47–56. ACM, 2015.
4 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. In PODC, pages 290–299. ACM, 2004.
5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
6 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols

with a leader. Distributed Comput., 21(3):183–199, 2008.
7 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power

of population protocols. Distributed Comput., 20(4):279–304, 2007.
8 Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan Jaax. Succinct

population protocols for Presburger arithmetic. In STACS, volume 154 of LIPIcs, pages
40:1–40:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

9 Michael Blondin, Javier Esparza, and Stefan Jaax. Large flocks of small birds: On the minimal
size of population protocols. In STACS, volume 96 of LIPIcs, pages 16:1–16:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

P. Czerner, R. Guttenberg, M. Helfrich, and J. Esparza 11:17

10 Robert Brijder, David Doty, and David Soloveichik. Democratic, existential, and consensus-
based output conventions in stable computation by chemical reaction networks. Natural
Computing, 17(1):97–108, 2018.

11 Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza. Fast and succinct
population protocols for Presburger arithmetic, 2022. arXiv:2202.11601v2.

12 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Grzegorz Stachowiak, and
Przemyslaw Uznanski. Brief announcement: A time and space optimal stable population
protocol solving exact majority. In PODC, pages 77–80. ACM, 2021.

13 Robert Elsässer and Tomasz Radzik. Recent results in population protocols for exact majority
and leader election. Bull. EATCS, 126, 2018.

14 Christoph Haase. A survival guide to Presburger arithmetic. ACM SIGLOG News, 5(3):67–82,
2018.

SAND 2022

http://arxiv.org/abs/2202.11601v2

Local Mutual Exclusion for Dynamic, Anonymous,
Bounded Memory Message Passing Systems
Joshua J. Daymude #

Biodesign Center for Biocomputing, Security and Society,
Arizona State University, Tempe, AZ, USA

Andréa W. Richa #

School of Computing and Augmented Intelligence,
Arizona State University, Tempe, AZ, USA

Christian Scheideler #

Department of Computer Science, Universität Paderborn, Germany

Abstract
Mutual exclusion is a classical problem in distributed computing that provides isolation among
concurrent action executions that may require access to the same shared resources. Inspired by
algorithmic research on distributed systems of weakly capable entities whose connections change over
time, we address the local mutual exclusion problem that tasks each node with acquiring exclusive
locks for itself and the maximal subset of its “persistent” neighbors that remain connected to it
over the time interval of the lock request. Using the established time-varying graphs model to
capture adversarial topological changes, we propose and rigorously analyze a local mutual exclusion
algorithm for nodes that are anonymous and communicate via asynchronous message passing. The
algorithm satisfies mutual exclusion (non-intersecting lock sets) and lockout freedom (eventual success
with probability 1) under both semi-synchronous and asynchronous concurrency. It requires O(∆)
memory per node and messages of size Θ(1), where ∆ is the maximum number of connections
per node. We conclude by describing how our algorithm can implement the pairwise interactions
assumed by population protocols and the concurrency control operations assumed by the canonical
amoebot model, demonstrating its utility in both passively and actively dynamic distributed systems.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Concurrency; Software and its engineering → Mutual exclusion

Keywords and phrases Mutual exclusion, dynamic networks, message passing, concurrency

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.12

Related Version Full Version: https://arxiv.org/abs/2111.09449

Funding Joshua J. Daymude: NSF (CCF-1733680), U.S. ARO (MURI W911NF-19-1-0233), the
Momental Foundation’s Mistletoe Research Fellowship, and the ASU Biodesign Institute.
Andréa W. Richa: NSF (CCF-1733680, CCF-2106917) and U.S. ARO (MURI W911NF-19-1-0233).
Christian Scheideler : DFG Project SCHE 1592/6-1.

1 Introduction

Distributed computing research has grown increasingly concerned with characterizing the
capabilities and limitations of systems composed of dynamic entities (or nodes). Recently,
these studies have considered both biological collectives such as social insects [2, 14, 26],
spiking neural networks [49], and DNA and molecular computers [13, 39, 51] as well as
engineered systems such as overlay networks and the Internet of Things (IoT) [23], swarm and
modular self-reconfigurable robotics [25, 28, 40, 53], and programmable matter [3, 17, 19, 37].
Entities in these systems often make decisions based only on their own knowledge (or “state”),
locally-perceptible measures of their environment (e.g., pheromones, the number or density
of nearby neighbors, etc.), and information communicated to them by their neighbors.

© Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 12; pp. 12:1–12:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jdaymude@asu.edu
https://orcid.org/0000-0001-7294-5626
mailto:aricha@asu.edu
https://orcid.org/0000-0003-3592-3756
mailto:scheideler@upb.de
https://orcid.org/0000-0002-5278-528X
https://doi.org/10.4230/LIPIcs.SAND.2022.12
https://arxiv.org/abs/2111.09449
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

Compared to the static setting where acting nodes’ neighborhoods do not change, designing
correct distributed algorithms in the dynamic setting is a challenging task. In this paper, we
use the established time-varying graphs (TVGs) model [11, 12] to capture adversarial changes
in network topology and consider weakly capable nodes that are anonymous, have bounded
memory, communicate via asynchronous message passing, and execute their algorithms
semi-synchronously or asynchronously. The classical mutual exclusion problem [20] regulates
how nodes enter their critical sections using locks, defined as a pair of operations Lock
and Unlock. Our local mutual exclusion problem – designed to enable nodes to locally
coordinate their interactions in the dynamic, concurrent setting – defines Lock as a node
acquiring locks for itself and the maximal subset of its “persistent” neighbors that remain
connected to it while the request is processed. A core challenge in designing such a Lock
operation in the dynamic setting lies in the nodes’ inability to know, when issuing lock
requests, which neighbors will be persistent and which others will later be removed.

This locking mechanism greatly simplifies the design of local distributed algorithms
in highly dynamic settings by providing isolation for concurrently executed actions. An
algorithm’s actions can first be designed for the simpler sequential setting in which at
most one node is active (potentially changing the system configuration) at a time. When
considering the concurrent setting, each action is then treated as a critical section wrapped
in a Lock/Unlock pair; this ensures that no two simultaneously executing actions can
involve overlapping neighborhoods. Our locking mechanism gracefully handles neighbor dis-
connections, ensuring that the locked and connected subset of an acting node’s neighborhood
remains fixed throughout the execution of its action, just as it would be in the sequential
setting. Thus, our locking mechanism restricts the algorithm designer’s concern from all
possible complications arising from concurrent dynamics to just one: New connections may
concurrently be established with a node while it is executing an action.

Our Contributions. We summarize our contributions as follows.
A formalization of the local mutual exclusion problem in an extension of the time-varying
graphs model that captures topological changes, asynchronous message passing, and
semi-synchronous or asynchronous node activation (Section 2).
A randomized algorithm implementing the Lock and Unlock operations for local mutual
exclusion that satisfies mutual exclusion (non-intersecting lock sets) and lockout freedom
(eventual success with probability 1) under both semi-synchronous and asynchronous
concurrency. This algorithm requires O(∆) memory per node and messages of size Θ(1),
where ∆ is the maximum number of connections per node (Sections 3–5).
Applications of this local mutual exclusion algorithm to population protocols [3], estab-
lishing an underlying mechanism for guaranteeing pairwise interactions in a broader class
of concurrent activation models, and the canonical amoebot model [17], implementing the
model’s concurrency control operations (Section 6).

Related Work

Designing algorithms for concurrent computing environments is a challenging task requiring
the careful control of simultaneously interacting processes and coordinated access to shared
resources. Since its introduction by Dijsktra [20], the closely related mutual exclusion problem
has received much attention from the research community. For shared memory systems,
mutual exclusion can be conveniently solved by atomic operations like compare-and-swap,
test-and-set, and fetch-and-add [29]. In contrast, our present focus is on asynchronous
message passing. Classical approaches to mutual exclusion in asynchronous message passing

J. J. Daymude, A. W. Richa, and C. Scheideler 12:3

systems often assume that nodes have unique identifiers and global coordination (see, e.g., the
survey [47]) or make use of unbounded counters like Lamport clocks (e.g., [35, 43]), neither
of which are appropriate for the anonymous, bounded memory nodes we consider here. The
most relevant classical algorithm to our setting is the arrow protocol [18, 41] that requires
only constant memory per node to locally maintain a spanning tree rooted at the node with
exclusive access to the shared resource; however, despite recent improvements [27, 32], it is
not clear how to adapt this protocol to systems with dynamic topologies.

Our local variant of the mutual exclusion problem blurs the usual delineation between
processes and the shared resources they’re accessing as nodes compete to gain exclusive
access to their neighborhoods. Like the well-studied k-mutual exclusion [24] and group
mutual exclusion [30, 31] variants, ours allows multiple nodes to be in their critical sections
simultaneously; however, these variants allow multiple process to access the same shared
resource(s) concurrently while ours requires that concurrently locked neighborhoods be
non-intersecting. This constraint is similar to ensuring the active nodes form a distance-3
independent set from graph theory and is related to the more general (α, β)-ruling sets [5]
recently solved under the LOCAL and CONGEST models [33, 44]; however, these distributed
algorithms rely on static topologies, unique identifiers, and synchronous message delivery.
The recent results on mutual exclusion for fully anonymous systems [42], like our nodes and
their neighborhoods, assume that neither the processes nor the shared resources have unique
identifiers. However, like the earlier classical results above and other recent models of weak
finite automata [21, 22], these do not extend to dynamic network topologies.

Research on mobile ad hoc networks (MANETs) directly embraces node and edge dynamics,
modeling wireless communication links that form and fail as nodes move in and out of each
other’s transmission radii. Mutual exclusion has been exhaustively studied under MANET
models [4, 6, 7, 15, 45, 50], and many of those ideas inspired recent work on mutual exclusion
for intersection traffic control for autonomous vehicles [46, 52]. Mutual exclusion for MANETs
is almost always solved using a token-based approach, sometimes combined with the imposition
of a logical structure like a ring or tree. These approaches only apply to competitions for a
single shared resource or critical section per token type; our nodes’ competitions over their
local neighborhoods would need one token type per neighboring node which is not addressed
by prior work. More relevant to our local variant of mutual exclusion are randomized backoff
mechanisms for local contention resolution used by MANETs and wireless networks [8, 9, 10]
to ensure no two nodes are broadcasting in overlapping neighborhoods; however, these rely on
nodes’ chosen backoff delays to correspond to a consistent wall clock that is incompatible with
our weaker model of concurrency. In any case, the standard MANET communication model
of wireless broadcast with time-ordered, instantaneous receipt of messages is more powerful
than our asynchronous message passing. Like MANETs, algorithms for self-stabilizing overlay
networks (see [23] for a recent survey) similarly embrace node and edge dynamics, but often
use more memory than our present algorithm and assume unique node identifiers.

Finally, we briefly highlight related models of dynamic networks, i.e., those whose
structural properties change over time. Our model is closely related to the time-varying
graphs (TVGs) model [11, 12] which unifies prior models of dynamic networks by capturing
graph structural evolution over time through adversarial dynamics. We join recent work on
message passing algorithms for TVGs that address the challenge of rapidly changing network
topology [1]. The local nature of our mutual exclusion problem enables us to weaken the
assumptions considered by prior works in this area. For example, we allow messages to have
arbitrary but finite delays akin to asynchronous message passing, we assume weaker “semi-
synchronous” and asynchronous models of concurrency, and we trade globally unique node

SAND 2022

12:4 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

identifiers for local port labels. In Section 6, we demonstrate how the rapid dynamics modeled
by TVGs combined with these weak assumptions on node capabilities facilitate application
of our mutual exclusion algorithm to both systems with passive dynamics [3, 48], in which
nodes have no control over topological changes, and those with active dynamics [17, 36, 38]
in which nodes control the connections they establish and sever (e.g., via movements).

2 Preliminaries

2.1 Computational Model
We consider a distributed system composed of a fixed set of nodes V . Each node is assumed
to be anonymous, lacking a unique identifier, and has a local memory storing its state.
Nodes communicate with each other via message passing over a communication graph
whose topology changes over time. We model this topology using a time-varying graph
G = (V, E, T, ρ) where V is the set of nodes, E is a (static) set of undirected pairwise
edges between nodes, T = {0, . . . , tmax} for some (possibly infinite) tmax ∈ N is called the
lifetime of G, and ρ : E × T → {0, 1} is the presence function indicating whether or not a
given edge exists at a given time. A snapshot of G at time t ∈ T is the undirected graph
Gt = (V, {e ∈ E : ρ(e, t) = 1}) and the neighborhood of a node u ∈ V at time t ∈ T is the set
Nt(u) = {v ∈ V : ρ({u, v}, t) = 1}. For i ≥ 0, the i-th round lasts from time i to the instant
just before time i + 1; thus, the communication graph in round i is Gi.

We assume that an adversary controls the presence function ρ and that E is the complete
set of edges on nodes V ; i.e., we do not limit which edges the adversary can introduce. The
only constraint we place on the adversary’s topological changes is ∀t ∈ T, u ∈ V, |Nt(u)| ≤ ∆,
where ∆ > 0 is the fixed number of ports per node. When the adversary establishes a new
connection between nodes u and v, it must assign the endpoints of edge {u, v} to open ports
on u and v (and cannot do so if either node has no open ports). Node u locally identifies
{u, v} using its corresponding port label ℓ ∈ {1, . . . , ∆} and v does likewise. For convenience
of notation, we use ℓu(v) to refer to the label of the port on node u that is assigned to
the edge {u, v}; this mapping of port labels to nodes is not available to the nodes. Edge
endpoints remain in their assigned ports (and thus labels remain fixed) until disconnection,
but nodes u and v may label {u, v} differently and their labels are not known to each other
a priori. Each node has a disconnection detector that adds the label of any port whose
connection is severed to a set D ⊆ {1, . . . , ∆}. A node’s disconnection detector provides it a
snapshot of D whenever it starts an action execution (see below) and then resets D to ∅.1

Nodes communicate via message passing. A node u sends a message m to a neighbor v by
calling Send(m, ℓu(v)). Message m remains in transit until either v receives and processes m

at a later round chosen by the adversary, or u and v are disconnected and m is lost. Multiple
messages in transit from u to v may be received by v in a different order than they were
sent. A node always knows from which port it received a given message.

All nodes execute the same distributed algorithm A, which is a set of actions each of
the form ⟨label⟩ : ⟨guard⟩ → ⟨operations⟩. An action’s label specifies its name. Its guard
is a Boolean predicate determining whether a node u can execute it based on the state of
u and any message in transit that u may receive. An action is enabled for a node u if its
guard is true for u; a node u is enabled if it has at least one enabled action. An action’s

1 Without this assumption, the adversary could disconnect an edge assigned to port ℓ of node u and then
immediately connect a different edge to ℓ, causing an indistinguishability issue for node u.

J. J. Daymude, A. W. Richa, and C. Scheideler 12:5

operations specify what a node does when executing the action, structured as (i) receiving at
most one message chosen by the adversary, (ii) a finite amount of internal computation and
state updates, and (iii) at most one call to Send(m, ℓ) per port label ℓ.

Each node executes its own instance of A independently, sequentially (executing at most
one action at a time), and reliably (meaning we do not consider crash or Byzantine faults).
We assume an adversary controls the timing of node activations and action executions.
When the adversary activates a node, it also chooses exactly one of the node’s enabled
actions for the node to execute; we note that this choice must be compatible with any
message the adversary chooses to deliver to the node. In this work, we primarily focus on
semi-synchronous activations, which we interpret in the time-varying graph context to mean
that in each round, the adversary activates any (possibly empty) subset of enabled nodes
concurrently and the activated nodes execute their specified actions within that round. In
Section 5, we additionally consider asynchronous activations in which action executions
may span arbitrary finite time intervals. We only constrain the adversary by weak fairness,
meaning it must activate nodes such that any continuously enabled action is eventually
executed and any message in transit on a continuously existent edge is eventually processed.

2.2 Local Mutual Exclusion

In the classical problem of mutual exclusion, nodes enter their critical sections using locks,
defined as a pair of operations Lock and Unlock (or “acquire” and “release”). A node
issues a lock request by calling Lock; once acquired, it is assumed that a node eventually
releases these locks by calling Unlock. Our local mutual exclusion variant is concerned with
nodes acquiring exclusive access to themselves and their immediate neighbors, though in the
present context of dynamic networks, these neighborhoods may change over time.

Formally, each node u stores a variable lock ∈ {⊥, 0, . . . , ∆} that is equal to ⊥ if u is
unlocked, 0 if u has locked itself, and ℓu(v) ∈ {1, . . . , ∆} if u is locked by v. The lock set of
a node u in round i is Li(u) = {v ∈ Ni(u) : lock(v) = ℓv(u)} which additionally includes u

itself if lock(u) = 0. Suppose that in round i, a node u calls Lock to issue a lock request of
its current closed neighborhood Ni[u] = {u} ∪ Ni(u). This lock request succeeds at some later
round j > i if round j is the first in which Lj(u) = {u}∪{v ∈ Ni(u) : ∀t ∈ [i, j], {u, v} ∈ Gt};
i.e., j is the earliest round in which u obtains locks for itself and every persistent neighbor
that remained connected to u in rounds i through j. Our goal is to design an algorithm A
implementing Lock and Unlock that satisfies the following properties:

Mutual Exclusion. For all rounds i ∈ T and all pairs of nodes u, v ∈ V , Li(u) ∩ Li(v) = ∅.

Lockout Freedom. Every issued lock request eventually succeeds with probability 1.

Following the long tradition of mutual exclusion problem definitions, our local mutual
exclusion problem is defined in terms of mutual exclusion and fairness properties. However,
because each lock variable points to at most one node per time, it is impossible for two
nodes’ lock sets to intersect, trivially satisfying the mutual exclusion property. Nevertheless,
satisfying lockout freedom remains challenging, especially in highly dynamic settings. When
issuing lock requests, nodes do not know which of their connections will remain stable and
which will disconnect by the time their coordination is complete. Thus, our problem variant
captures what it means for nodes to lock their maximal persistent neighborhoods despite
unpredictable and rapid topological changes.

SAND 2022

12:6 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

Table 1 The notation, domain, initialization, and description of the local variables used in the
algorithm for local mutual exclusion by a node u.

Var. Domain Init. Description

lock {⊥, 0, . . . , ∆} ⊥ ⊥ if u is unlocked, 0 if u has locked itself, and ℓu(v)
if u is locked by v

state {⊥, prepare, compete,
win, locked, unlock}

⊥ The lock state of node u

phase {⊥, prepare, compete} ⊥ The algorithm phase node u is in
L ⊆ N [u] ∅ Ports (nodes) u intends to lock
R ⊆ N [u] ∅ Ports via which u has received ready(), ack-lock(),

or ack-unlock() responses
W ⊆ N [u]× {true, false} ∅ Port-outcome pairs of win() messages u has received
H ⊆ N [u] ∅ Ports (nodes) on hold for the competition to lock u

A ⊆ N [u] ∅ Ports (nodes) of applicants that can join the compe-
tition to lock u

C ⊆ N [u] ∅ Ports (nodes) of candidates competing to lock u

P ⊆ C(u)× {0, . . . , K − 1} ∅ Port-priority pairs of the candidates

3 Algorithm for Local Mutual Exclusion

Our randomized algorithm for the local mutual exclusion problem specifies actions for the
execution of Lock and Unlock operations satisfying mutual exclusion and lockout freedom.
An execution of the Lock operation by a node u is organized into two phases: a preparation
phase (Algorithm 1) in which u determines and notifies the nodes L(u) it intends to lock, and
a competition phase (Algorithm 2) in which u attempts to lock all nodes in L(u), contending
with any other nodes v for which L(v) ∩ L(u) ̸= ∅. An execution of the Unlock operation
(Algorithm 3) by node u is straightforward, simply notifying all nodes in L(u) that their
locks are released. All local variables used in our algorithm are listed in Table 1 as they
appear in the pseudocode. In a slight abuse of notation, we use N [u] and the subsets thereof
to represent both the nodes in the closed neighborhood of u and the port labels of u they
are connected to. For clarity of presentation, the algorithm pseudocode allows for a node to
send messages to itself (via “port 0”) just as it sends messages to its neighbors, though in
reality these self-messages would be implemented with in-memory variable updates.

We refer to nodes that call Lock/Unlock as initiators and the nodes that are being
locked or unlocked as participants; it is possible for a node to be an initiator and participant
simultaneously. Initiators progress through a series of lock states associated with the state
variable; participants advance through the algorithm’s phases as indicated by the phase
variable. We first describe the algorithm from an initiator’s perspective and then describe
the complementary participants’ actions. A special CleanUp helper function ensures that
the nodes adapt to any disconnections affecting their variables that may have occurred since
they last acted, so we omit the handling of these disconnections in the following description.

When an initiator u calls Lock, it advances to the prepare state, sets L(u) to all nodes
in its closed neighborhood N [u], and then sends prepare() messages to all nodes of L(u).
Once it has received ready() responses from all nodes of L(u), it advances to the compete
state and joins the competitions for each node in L(u) by sending request-lock(p) messages
to all nodes of L(u), where p is a priority chosen uniformly at random from {0, . . . , K − 1}
for a fixed K = Θ(1). It then waits for the outcomes of these competitions. If it receives at

J. J. Daymude, A. W. Richa, and C. Scheideler 12:7

Algorithm 1 The Lock Operation: Preparation Phase for Node u.

1: InitLock: On Lock being called → ▷ Initiator initiates a lock request.
2: if state = ⊥ then ▷ Only one locking operation at a time.
3: CleanUp().
4: Set state← prepare and L← N [u].
5: for all ℓ ∈ L do Send(prepare(), ℓ).
6: ReceivePrepare: On receiving prepare() via port ℓ →
7: CleanUp().
8: if phase = compete then set H ← H ∪ {ℓ}. ▷ Put ℓ on hold if already competing.
9: else

10: Set A← A ∪ {ℓ} and phase← prepare. ▷ Add ℓ as an applicant otherwise.
11: Send(ready(), ℓ).
12: ReceiveReady: On receiving ready() via port ℓ →
13: CleanUp().
14: Set R← R ∪ {ℓ}.
15: CheckStart: (state = prepare) ∧ (R = L) → ▷ All ready() messages received.
16: CleanUp().
17: Set state← compete, R← ∅, and W ← ∅.
18: Choose priority p ∈ {0, . . . , K − 1} uniformly at random.
19: for all ℓ ∈ L do Send(request-lock(p), ℓ).
20: CleanUp: (phase ̸= ⊥) ∨ (state = unlock) →
21: CleanUp().
22: function CleanUp() ▷ Helper function for processing disconnections D.
23: for all ℓ ∈ D do
24: if lock = ℓ then lock← ⊥.
25: Remove ℓ from all sets: L← L \ {ℓ}, R← R \ {ℓ}, W ←W \ {(ℓ, ·)}, H ← H \ {ℓ},
26: A← A \ {ℓ}, C ← C \ {ℓ}, and P ← P \ {(ℓ, ·)}.
27: if C = ∅ then
28: for all ℓ ∈ H do Send(ready(), ℓ).
29: Set A← A ∪H and H ← ∅. ▷ All nodes on hold become applicants.
30: if A ̸= ∅ then set phase← prepare.
31: else set phase← ⊥.

least one win(false) message, it lost this competition and must compete again. Otherwise,
if all responses are win(true), it advances to the win state and sends set-lock() messages
to all nodes of L(u). Once it has received ack-lock() responses from all nodes of L(u), it
advances to the locked state indicating L(u) now represents the lock set L(u).

A participant v is responsible for coordinating the competition among all initiators that
want to lock v. To delineate successive competitions, v distinguishes among initiators that
are candidates in the current competition, applicants that may join the current competition,
and those that are on hold for the next competition. When v receives a prepare() message
from an initiator u, it either puts u on hold if a competition is already underway or adds
u as an applicant and replies ready() otherwise. Participant v promotes its applicants to
candidates when v receives their request-lock(p) messages. Once all such messages are
received from the competition’s candidates, v notifies the one with the unique highest priority
of its success and all others of their failure (or, in the case of a tie, all candidates fail). A
winning competitor is removed from the candidate set while all others remain to try again;
once the candidate set is empty, v promotes all initiators that were on hold to applicants.
Finally, when v receives a set-lock() message, it sets its lock variable accordingly and
acknowledges this with an ack-lock() response.

SAND 2022

12:8 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

Algorithm 2 The Lock Operation: Competition Phase for Node u.

1: ReceiveRequest: On receiving request-lock(p) via port ℓ →
2: CleanUp().
3: if ℓ ∈ A then set A← A \ {ℓ} and C ← C ∪ {ℓ}.
4: Set P ← P ∪ {(ℓ, p)} and phase← compete. ▷ Close competition.
5: CheckPriorities: (phase = compete) ∧ (|C| = |P |) → ▷ All priorities received.
6: CleanUp().
7: if lock = ⊥ and ∃(ℓ, p) ∈ P with a unique highest p then
8: Send(win(true), ℓ) and Send(win(false), ℓ′) for all ℓ′ ∈ C \ {ℓ}.
9: else Send(win(false), ℓ) for all ℓ ∈ C.

10: Reset P ← ∅. ▷ Competition is over.
11: ReceiveWin: On receiving win(b) via port ℓ →
12: CleanUp().
13: Set W ←W ∪ {(ℓ, b)}.
14: CheckWin: (state = compete) ∧ (|W | = |L|) → ▷ All win(b) replies received.
15: CleanUp().
16: if ∃(·, false) ∈W then ▷ Start new locking attempt.
17: Choose priority p ∈ {0, . . . , K − 1} uniformly at random.
18: for all ℓ ∈ L do Send(request-lock(p), ℓ).
19: else ▷ Succeeded in locking.
20: Set state← win and reset R← ∅.
21: for all ℓ ∈ L do Send(set-lock(), ℓ).
22: Reset W ← ∅.
23: ReceiveSetLock: On receiving set-lock() via port ℓ →
24: Set lock← ℓ and C ← C \ {ℓ}.
25: CleanUp().
26: Send(ack-lock(), ℓ).
27: ReceiveAckLock: On receiving ack-lock() via port ℓ →
28: CleanUp().
29: Set R← R ∪ {ℓ}.
30: CheckDone: (state = win) ∧ (R = L) → ▷ All lock acknowledgements received.
31: CleanUp().
32: Set state← locked and reset R = ∅.
33: return L. ▷ Locking complete.

4 Analysis

In this section, we prove the following theorem.

▶ Theorem 1. If all nodes start with the initial values given by Table 1, the algorithm satisfies
the mutual exclusion and lockout freedom properties under semi-synchronous concurrency,
requires O(∆) memory per node and messages of size Θ(1), and has at most two messages in
transit along any edge at any time.

The algorithm in Section 3 is written with respect to local port labels; for ease of
presentation, we use the corresponding nodes throughout this analysis and write Xi(u)
to denote the local variable X of node u at the start of round i. We begin with two
straightforward lemmas demonstrating the eventual execution of enabled actions.

▶ Lemma 2. Apart from CleanUp, every enabled action will eventually be executed.

J. J. Daymude, A. W. Richa, and C. Scheideler 12:9

Algorithm 3 The Unlock Operation for Node u.

1: InitUnlock: On Unlock being called → ▷ Initiator initiates an unlock.
2: if state = locked then ▷ Only one Unlock per successful Lock.
3: CleanUp().
4: Set state← unlock and reset R← ∅.
5: for all ℓ ∈ L do Send(release-lock(), ℓ).
6: ReceiveRelease: On receiving release-lock() via port ℓ →
7: CleanUp().
8: Set lock← ⊥ and Send(ack-unlock(), ℓ).
9: ReceiveAckUnlock: On receiving ack-unlock() via port ℓ →

10: CleanUp().
11: Set R← R ∪ {ℓ}.
12: CheckUnlocked: (state = unlock) ∧ (R = L) → ▷ All unlock acknowledgements received.
13: CleanUp().
14: Reset state← ⊥ and R = ∅. ▷ Unlocking complete.

Proof. Any enabled Receive* action whose guard depends only on the receipt of some
message must eventually be executed because it is assumed that every message in transit is
eventually processed (unless the edge is disconnected, at which point the message is lost and
the action is no longer enabled). Thus, it remains to consider the Check* actions.

Suppose CheckStart is enabled for a node u in some round i; i.e., statei(u) = prepare
and Ri(u) = Li(u). When state = prepare, only CheckStart can change the state
variable or reset R to ∅. Any execution of the CleanUp action does not change the state
variable and maintains R(u) = L(u) since it removes any disconnected neighbors from both
sets. So CheckStart remains continuously enabled and thus must eventually be executed
by the weakly fair adversary. An analogous argument also applies to CheckPriorities,
CheckWin, CheckDone, and CheckUnlocked. ◀

Lemma 2 shows that an enabled action will eventually be executed, but we also need
to know that the actions become enabled in the first place. One potential obstacle is that
Check* actions by a node u need to receive all responses from the nodes in L(u) before
becoming enabled. If some of nodes in L(u) disconnect and their corresponding response
messages are lost, the Check* action may be disabled indefinitely. This is one role of the
CleanUp action: removing disconnections from the algorithm’s variables so other actions
stop waiting for neighbors that no longer exist. We call such an action pre-enabled if it is
currently disabled but would become enabled after CleanUp is executed.

▶ Lemma 3. Every pre-enabled action eventually becomes enabled.

Proof. Suppose that CheckStart is pre-enabled for node u. Then state(u) = prepare
and u must have sent a prepare() message to itself in its execution of InitLock. So
ReceivePrepare is enabled for u, and by Lemma 2 it is eventually executed, updating
phase(u) = prepare. This enables CleanUp for u, and it will remain enabled until executed
because only CleanUp itself can reset phase to ⊥. Thus, CleanUp must eventually be
executed by the weakly fair adversary, enabling the pre-enabled CheckStart.

An analogous argument also applies to CheckPriorities, CheckWin, and CheckDone.
For CheckUnlocked, the condition state = unlock in the guard of CleanUp ensures
that CheckUnlocked is eventually enabled. ◀

SAND 2022

12:10 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

We continue our investigation of possible deadlocks resulting from actions remaining
disabled by considering concurrent competitions. An initiator node u is competing if and only
if state(u) = compete, i.e., if u has executed CheckStart but has not yet received all
win() messages needed to execute CheckWin. We model dependencies between competing
initiators and participants at the start of round i as a directed bipartite graph Di = (Ii∪Pi, Ei)
where Ii = {u : statei(u) = compete} is the set of competing initiators and Pi = {u :
∃v ∈ Ii s.t. u ∈ Li(v)} is the set of participants. We note that some nodes belong to both
partitions and consider their initiator and participant versions distinct. For nodes u ∈ Ii and
v ∈ Pi ∩ Li(u) for which u = v or (u, v) ∈ Gi (i.e., the edge exists in round i), the directed
edge (u, v) ∈ Ei if and only if u has not yet sent a request-lock() message to v in response
to the latest win() message from v; analogously, (v, u) ∈ Ei if and only if v has not yet sent
a win() message to u in response to the latest request-lock() message from u.

▶ Lemma 4. For all rounds i, Di is acyclic.

Proof. Initially, no node has yet called Lock and thus D0 is empty and trivially acyclic.
So suppose that Dj remains acyclic for all rounds 0 ≤ j ≤ i − 1 and consider the following
events that may occur in round i − 1 to form Di.

A node u executes CheckStart. Then (v, u) is added to Di for each v ∈ Li−1(u) that u

sends request-lock() messages to. But u is a sink, so Di remains acyclic.
A node u executes CheckWin. If there exists (·, false) ∈ Wi−1(u), then (u, v) is
removed from Di and (v, u) is added to Di for each v ∈ Li−1(u) that u once again sends
request-lock() messages to. As in the first case, this makes u a sink and Di remains
acyclic. Otherwise, if all (·, b) ∈ Wi−1(u) have b = true, u has won its competition and
sets statei(u) = win, meaning u ̸∈ Di. So Di remains acyclic in this case as well.
A node u executes CheckPriorities. Then (u, v) is removed from Di and (v, u) is
added to Di for each v ∈ Ci−1(u) that u sends win() messages to. For Di to be acyclic, it
suffices to show it does not contain any outgoing edges from u; i.e., there are no nodes w

such that u ∈ Li(w), w has sent u a request-lock() message, but u has not yet sent a
win() response to w. Such a node w could only have sent u a request-lock() message
if it had previously received a ready() message from u, which in turn could only have
been sent by u if u had included w as an applicant in A(u). Thus, on receipt of the
first request-lock() message from w, u would have promoted w to a candidate in C(u),
which is precisely the set that u responds to when executing CheckPriorities. So u

has no outgoing edges in Di, as desired.
An edge {u, v} is disconnected in the TVG G, for u ∈ Ii−1 and v ∈ Pi−1. This
disconnection is processed by the CleanUp helper function, removing v from L(u) and
thus any (u, v) edge from Di during the next execution of CheckWin by u; an analogous
statement holds for edges (v, u) in the next execution of CheckPriorities by v. As the
removal of an edge cannot create a cycle, Di remains acyclic.

Therefore, Di remains acyclic in all cases, as claimed. ◀

▶ Lemma 5. Every competing initiator eventually receives a win() response from its partic-
ipants; likewise, every participant eventually receives a request-lock() response from its
competing initiator(s).

Proof. Suppose to the contrary that there exists a competing initiator u that waits indef-
initely for a win() response from some participant v. Then the edge {u, v} must never
be disconnected in the TVG G and the directed edge (v, u) must remain indefinitely in D.
By Lemmas 2 and 3, v can only be prohibited from sending the requisite win() message

J. J. Daymude, A. W. Richa, and C. Scheideler 12:11

if CheckPriorities remains disabled for v indefinitely. This, in turn, is only possible if
v waits indefinitely for a request-lock() response from some competing initiator w ̸= u.
This implies that {v, w} is never disconnected in G and the directed edge (w, v) remains
indefinitely in D. As before, Lemmas 2 and 3 can be applied iteratively to show that each
node must be waiting on another. But since the set of nodes V is finite, some node must
eventually be revisited, establishing a directed cycle in D and contradicting Lemma 4. ◀

Lemma 5 directly implies the following corollary.

▶ Corollary 6. Every competition trial of a competing initiator eventually completes.

To demonstrate that our algorithm satisfies lockout freedom, it remains to show that
every competing initiator u eventually wins a competition trial by receiving all win(true)
responses from L(u). We first address the situation in which a competition trial of u is open,
meaning none of the nodes v ∈ L(u) are locked during the trial.

▶ Lemma 7. If K = Θ(1), then an initiator that competes in an open competition trial
infinitely often will eventually win a competition, with probability 1.

Proof. Consider any competing initiator u and any open competition trial of u. By the start
of its second competition trial, u ∈ C(v) for all v ∈ L(u), implying that phase(v) = compete
and no other nodes will be added to C(v) ∪ A(v) while u is still competing for v. Since
|L(u) \ {u}| ≤ ∆ and |C(v) ∪ A(v) \ {u}| ≤ ∆ for each v ∈ L(u) \ {u}, node u can be
competing against c ≤ ∆2 other nodes. Every node chooses its priority uniformly at random
from {0, . . . , K − 1}, so it follows from symmetry that the probability u has the highest
priority in a given trial is at least 1/∆2. In general,

Pr [p(u) highest | p(u) unique]
Pr [p(u) highest] =

∑K−1
p=0 Pr [p(u) = p ∧ ∀v ̸= u : p(v) ≤ p(u) | p(u) unique]∑K−1

p=0 Pr [p(u) = p ∧ ∀v ̸= u : p(v) ≤ p(u)]

=
∑K−1

p=0
1
K

(
p

K−1

)c∑K−1
p=0

1
K

(
p+1
K

)c ≥
∑K−1

p=0 pc∑K

p=1 pc
≥ (K − 1)c

2Kc
≥ (1− 1/K)∆2

2

Furthermore, the probability that u has a unique priority is (1 − 1/K)c ≥ (1 − 1/K)∆2 .
Thus, the probability that u has the unique highest priority in a given open trial is

Pr [p(u) highest ∧ p(u) unique] = Pr [p(u) highest | p(u) unique] · Pr [p(u) unique]

≥ (1 − 1/K)∆2

2∆2 · (1 − 1/K)∆2
= (1 − 1/K)2∆2

2∆2 > 0.

Since this probability is strictly positive, the probability that u never has the unique highest
priority in an infinite sequence of open competition trials is

lim
n→∞

(1 − Pr [p(u) highest ∧ p(u) unique])n ≤ lim
n→∞

(
1 − (1 − 1/K)2∆2

2∆2

)n

= 0.

Therefore, with probability 1 there must eventually be an open competition trial in which u

has the unique highest priority. Because the trial is open, all v ∈ L(u) have lock(v) = ⊥
and thus will send win(true) responses to u.2 ◀

2 This proof can be easily extended to show that if K > ∆2, u will win a competition within O(∆2) open
competition trials, in expectation. We chose to avoid this increase in message size requirements from
Θ(1) to O(log ∆) since time complexity is not a focus of this work.

SAND 2022

12:12 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

We next show that a competing initiator competes in an open trial infinitely often. Recall
from Section 2.2 that a Lock operation by node u succeeds once u obtains locks for its
persistent neighborhood, and once obtained, these locks are eventually released via Unlock.

▶ Lemma 8. Every competing initiator eventually wins a competition trial with probability 1.

Proof. Suppose to the contrary that a competing initiator u competes in an infinite number of
competition trials. Only a finite number of these trials can be open, since u would eventually
win one of an infinite number of open trials with probability 1 by Lemma 7. So an infinite
number of trials of u must be closed; i.e., there are an infinite number of trials in which at
least one v ∈ L(u) has lock(v) ̸= ⊥. Since |L(u) \ {u}| ≤ ∆, there must be a node v ∈ L(u)
that is locked infinitely often. But by the start of its second competition trial, u ∈ C(v) and
no other nodes will be added to C(v) ∪ A(v) while u is still competing for v. Thus, only the
nodes in C(v) ∪ A(v) and the node that had already locked v when u was added to C(v)
could possibly lock v. But whenever v sets its locks in ReceiveSetLock, it removes the
locking node from C(v). Moreover, any node that obtains locks must eventually release them,
by supposition. So the set of nodes that could lock v is monotonically decreasing and thus
nodes in C(v) ∪ A(v) \ {u} cannot lock v an infinite number of times, a contradiction. ◀

For an initiator u to benefit from eventual victory ensured by Lemma 8, it must become
competing in the first place; i.e., it must advance to state(u) = compete.

▶ Lemma 9. Every initiator eventually becomes competing.

Proof. Suppose to the contrary that an initiator u never becomes competing, i.e., it never
executes CheckStart. By Lemmas 2 and 3, this is only possible if CheckStart remains
disabled indefinitely. To be an initiator at all, u must have executed InitLock, set state(u) =
prepare, and sent prepare() messages to all nodes v ∈ L(u). So u must be waiting for a
ready() response from at least one v ∈ L(u) that remains connected to u indefinitely.

By Lemma 2, such a node v must eventually execute ReceivePrepare. During this
execution, it must be the case that phase(v) = compete and v adds u to H(v); otherwise,
v would have added u to A(v) and replied to u with a ready() message, a contradiction.
Only the CleanUp helper function can reset phase(v) to ⊥, but it only does so when
C(v) ∪ A(v) ∪ H(v) = ∅ which is not the case since u ∈ H(v). So the CleanUp action is
continuously enabled for v and is eventually executed by the weakly fair adversary. During
this execution, it must be the case that C(v) ̸= ∅; otherwise, v would have sent ready()
messages to all initiators on hold at v, including u, a contradiction. But for this situation
to occur indefinitely, there must exist some competitor in the finite set C(v) ∪ A(v) that
competes in an infinite number of trials, a contradiction of Lemma 8. ◀

Combining Corollary 6 with Lemmas 8 and 9 implies the following corollary.

▶ Corollary 10. The local mutual exclusion algorithm satisfies lockout freedom.

Recall from Section 2.2 that the mutual exclusion property is trivially satisfied by our
construction of the lock sets. Thus, we conclude the proof of Theorem 1 with the following
result regarding the algorithm’s memory and message size requirements.

▶ Lemma 11. The algorithm requires O(∆) memory per node and messages of size Θ(1),
and there are at most two messages in transit along any given edge at any time.

J. J. Daymude, A. W. Richa, and C. Scheideler 12:13

Proof. Table 1 shows that phase and state can be stored in Θ(1) bits each and lock can be
stored in log2 ∆ bits. The remaining variables can be represented as linear registers of length
∆, where port ℓ is in the set variable X if and only if the ℓ-th bit of register X is true. So
the memory bound of O(∆) follows. Similarly, there are a constant number of message types,
among which only request-lock() and win() carry additional data. A win() message
carries one bit signaling whether a competition trial was won or lost. A request-lock()
message carries a randomly chosen priority, which by Lemma 7 can be stored in Θ(1) bits.

To bound the number of messages in transit per edge per time, consider the execution of
a Lock operation by an initiator node u. The local mutual exclusion algorithm is structured
around pairs of initiator messages and participant responses: prepare()/ready() messages
in the preparation phase, request-lock()/win() messages in each competition trial, and
set-lock()/ack-lock() messages once a node has won a trial. In each scenario, only one
message per pair is in transit along {u, v} per time for each v ∈ L(u). Moreover, node u does
not advance to the next phase and send any additional messages until all messages of the
current phase are processed. An analogous argument applies to the Unlock operation with
its release-lock()/ack-unlock() message pairs. Thus, there can be at most one message
in transit per edge per time involved with any initiator’s Lock or Unlock operation.

Furthermore, an initiator u can execute at most one Lock or Unlock operation per
time since u can only start a Lock operation by executing InitLock if state(u) = ⊥,
implying it holds no locks; similarly, u can only start an Unlock operation by executing
InitUnlock if state(u) = locked, implying its previous Lock operation has succeeded.

Thus, the lemma follows since there are at most two initiators u and v per edge {u, v}. ◀

5 Extending to Asynchronous Concurrency

Section 4 proved Theorem 1 under semi-synchronous concurrency in which (i) topological
changes occur at discrete times in between rounds of action executions and (ii) the adversary
chooses any non-empty subset of nodes to act in each round and those nodes’ action executions
are guaranteed to end before the next round begins. In this section, we prove that Theorem 1
holds even in the more general asynchronous setting.

All assumptions from Section 2.1 about the time-varying graph G, the nodes, their
asynchronous message passing, and the structure of algorithms and their actions remain the
same. However, in an asynchronous schedule, the adversary can schedule action executions
over arbitrary finite time intervals, including those that are concurrent with topological
changes and span multiple TVG rounds. In this setting, our prior assumptions about
the disconnection detector now imply that any topological changes incident to u that are
concurrent with one of its action executions are not observed or processed by u until its next
action execution. We further assume for the asynchronous setting that any message sent by
node u during one of its action executions starting at time t1 is processed by a node v during
some other action execution starting at time t2 > t1 if and only if the edge {u, v} ∈ Gt

for all t ∈ [t1, t2]. This implies that when an edge is disconnected, all messages in transit
along that edge are immediately lost and no further messages can be sent or received by the
corresponding ports until the corresponding action executions have finished.

▶ Lemma 12. For any asynchronous schedule S, there exists a semi-synchronous schedule
S ′ containing the same action executions as in S that produces the same outcome for every
action execution in S.

SAND 2022

12:14 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

Proof. Consider any asynchronous schedule S of the local mutual exclusion algorithm and
let E be the set of all action executions in S. Analogous to Lamport [34], we define the causal
relation → on E as the smallest relation satisfying the following three conditions:

If α ∈ E is an execution by node u and β ∈ E is the next execution by u, then α → β.
If a message sent in α ∈ E is processed in β ∈ E , then α → β.
If α → β and β → γ, then α → γ.

Since all causal relations are naturally forward in time, it follows that the graph represented by
the causal relations on E forms a DAG. Thus, the action executions of E can be topologically
sorted in some order [α1, α2, . . .].

Now, consider the schedule Ŝ containing the same action executions starting at the same
times as those in S, but (i) each action execution takes 0 time and (ii) any set of action
executions starting at the same time as some edge changes is shifted before these edge changes
without changing the order of the action executions. Then Ŝ can be transformed into a
semi-synchronous schedule S ′ by adding filler time steps when no edges change so that each
node executes at most one action per round and all action executions between two time steps
start at the same time. Certainly, S ′ is still a valid schedule since all causal relations remain
forward in time and – by our assumption on asynchronous message processing – any message
sent by action execution α that is processed by action execution β in S can still be processed
by β in S ′. Furthermore, since the causal relations haven’t changed, the action executions in
S ′ can be sorted in the same order [α1, α2, . . .] as for S. Since any action execution can only
change a node’s state or send messages and, in both schedules, it only sees a snapshot of D

at its start, it follows by induction on the ordering of the action executions that for any i,
the outcome of αi is identical in S and S ′. ◀

As in the semi-synchronous setting, the mutual exclusion property is trivially satisfied in
the asynchronous setting. But suppose to the contrary that there exists an asynchronous
schedule in which at least one Lock operation never succeeds. Lemma 12 shows that there
must exist a semi-synchronous schedule in which at least one Lock operation never succeeds,
contradicting Theorem 1. So we have the following corollary.

▶ Corollary 13. The local mutual exclusion algorithm also satisfies the mutual exclusion and
lockout freedom properties under any asynchronous schedule.

6 Applications

We next establish how our algorithm for local mutual exclusion can be used to implement
key assumptions present in formal models of dynamic distributed systems. In particular, we
focus on the assumptions of independent pairwise interactions in population protocols [3] and
concurrency control operations in the canonical amoebot model of programmable matter [17].

Population Protocols. Inspired by passively mobile sensor networks, Angluin et al. [3]
proposed the population protocols model. Each agent in a population is assumed to have a
finite state and a transition function defining how that state evolves as a result of a pairwise
interaction with another agent. Agents cannot explicitly control their movements or who
they interact with; i.e., they are passively dynamic. Instead, it is typically assumed that a
sequential scheduler chooses one pair of agents to interact per time step. In reality, however,
many agents within interacting distance might exist concurrently (see, e.g., [16]), requiring a
mechanism to organize these agents into a matching of independent pairs.

J. J. Daymude, A. W. Richa, and C. Scheideler 12:15

This goal could be achieved directly using our algorithm for local mutual exclusion. Any
agent u that wants to interact must first call Lock. On success, u then chooses any locked
neighbor to interact with, if it has one; if desired, one could even generalize the usual pairwise
interactions to interactions among the full group of locked neighbors. Lockout freedom
ensures u will eventually be allowed to make this choice, and mutual exclusion ensures
this pairwise interaction is isolated from any others. After interacting, u then releases its
locks with Unlock. If the expected number of competing agents is high, an alternative
implementation of our algorithm could have u make its choice of interacting neighbor v first
and then try to lock only u and v to avoid a lengthy competition. On success, u would then
interact with v, isolated from any other interactions, and then unlock itself and v. In both
implementations, it is possible that all neighbors may move out of interaction range, leaving
u to lock only itself. In this situation, no interaction occurs and u simply unlocks itself.

Both implementations require O(∆) memory per agent and messages of size Θ(1). For
many applications of population protocols where ∆ is a fixed constant (e.g., proximity graphs
or IoT), these requirements are reduced to Θ(1). Thus, our algorithm for local mutual
exclusion could provide isolated pairwise interactions assumed by population protocols even
in the presence of underlying network dynamics and asynchronous concurrency.

The Canonical Amoebot Model. The amoebot model abstracts active programmable matter
as a collection of simple computational elements called amoebots that move and interact
locally to collectively achieve tasks of coordination and movement. Each amoebot is typically
assumed to be anonymous and have only constant-size memory, but can control its movements.
The canonical amoebot model [17] is an updated formalization that addresses concurrency
by partitioning amoebot functionality into a high-level application layer where algorithms
call various operations and a low-level system layer where those operations are executed via
asynchronous message passing. Two such operations are the concurrency control operations,
Lock and Unlock, which are used in a concurrency control framework to convert amoebot
algorithms that terminate in the sequential setting and satisfy certain conventions into
algorithms that exhibit equivalent behavior in the concurrent setting [17].

The canonical amoebot model treats the Lock and Unlock operations as black boxes
without giving an implementation. These operations facilitate amoebots gaining exclusive
access to themselves and their neighbors, much like our mutual exclusion property, and are
assumed to terminate (either successfully or in failure) in finite time. The asynchronous
extension of our local mutual exclusion algorithm presented in Section 5 could directly
implement these operations, ensuring isolation of concurrent amoebot actions even as connec-
tions between amoebots change due to their movements. One interesting feature of such an
implementation is that while the amoebot Lock operation is allowed to fail – which must
be taken into account by algorithm designers – our Lock operation always succeeds due to
lockout freedom, reducing complexity in algorithm design. Moreover, for the often-considered
geometric space variant in which an (expanded) amoebot can have at most eight neighbors,
our algorithm has Θ(1) amoebot memory and message size requirements.

7 Conclusion

We presented an algorithm for local mutual exclusion that enables weakly capable nodes to
isolate concurrent actions involving their persistent neighborhoods despite dynamic network
topology. Our algorithm ensures that nodes belong to at most one locked neighborhood at a
time (mutual exclusion) and that every lock request eventually succeeds (lockout freedom).

SAND 2022

12:16 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

It requires O(∆) memory per node and messages of size Θ(1) – where ∆ is the maximum
number of connections per node – and is compatible with anonymous, message passing nodes
that operate semi-synchronously or asynchronously. These weak requirements make our
algorithm suitable for a wide range of application domains such as overlay networks, IoT,
modular robots, and programmable matter. As two concrete examples, we demonstrated how
our algorithm could implement the pairwise interactions assumed by population protocols [3]
and the concurrency control operations assumed by the canonical amoebot model [17].

References

1 Karine Altisen, Stéphane Devismes, Anaïs Durand, Colette Johnen, and Franck Petit. Self-
stabilizing Systems in Spite of High Dynamics. In International Conference on Distributed
Computing and Networking 2021, pages 156–165, 2021. doi:10.1145/3427796.3427838.

2 Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W.
Richa. A stochastic approach to shortcut bridging in programmable matter. Natural Computing,
17(4):723–741, 2018. doi:10.1007/s11047-018-9714-x.

3 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006. doi:10.1007/s00446-005-0138-3.

4 Hagit Attiya, Alex Kogan, and Jennifer L. Welch. Efficient and Robust Local Mutual Exclusion
in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing, 9(3):361–375, 2010.
doi:10.1109/TMC.2009.137.

5 Baruch Awerbuch, Michael Luby, Andrew V. Goldberg, and Serge A. Plotkin. Network
decomposition and locality in distributed computation. In 30th Annual Symposium on
Foundations of Computer Science, pages 364–369, 1989. doi:10.1109/SFCS.1989.63504.

6 Roberto Baldoni, Antonino Virgillito, and Roberto Petrassi. A distributed mutual exclusion
algorithm for mobile ad-hoc networks. In Proceedings ISCC 2002 Seventh International
Symposium on Computers and Communications, pages 539–544, 2002. doi:10.1109/ISCC.
2002.1021727.

7 Mahfoud Benchaïba, Abdelmadjid Bouabdallah, Nadjib Badache, and Mohamed Ahmed-Nacer.
Distributed Mutual Exclusion Algorithms in Mobile Ad Hoc Networks: An Overview. ACM
SIGOPS Operating Systems Review, 38(1):74–89, 2004. doi:10.1145/974104.974111.

8 Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E.
Leiserson. Adversarial Contention Resolution for Simple Channels. In Proceedings of the
Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages
325–332, 2005. doi:10.1145/1073970.1074023.

9 Federico Cali, Marco Conti, and Enrico Gregori. IEEE 802.11 Protocol: Design and Perfor-
mance Evaluation of an Adaptive Backoff Mechanism. IEEE Journal on Selected Areas in
Communications, 18(9):1774–1786, 2000. doi:10.1109/49.872963.

10 John I. Capetanakis. Tree Algorithms for Packet Broadcast Channels. IEEE Transactions on
Information Theory, 25(5):505–515, 1979. doi:10.1109/TIT.1979.1056093.

11 Arnaud Casteigts. A Journey through Dynamic Networks (with Excursions), 2018. HDR,
available online at https://hal.archives-ouvertes.fr/tel-01883384/.

12 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-Varying
Graphs and Dynamic Networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012. doi:10.1080/17445760.2012.668546.

13 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow,
and Tim Wylie. Freezing Simulates Non-freezing Tile Automata. In DNA Computing and
Molecular Programming, volume 11145 of Lecture Notes in Computer Science, pages 155–172,
2018. doi:10.1007/978-3-030-00030-1_10.

https://doi.org/10.1145/3427796.3427838
https://doi.org/10.1007/s11047-018-9714-x
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1109/TMC.2009.137
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/ISCC.2002.1021727
https://doi.org/10.1109/ISCC.2002.1021727
https://doi.org/10.1145/974104.974111
https://doi.org/10.1145/1073970.1074023
https://doi.org/10.1109/49.872963
https://doi.org/10.1109/TIT.1979.1056093
https://hal.archives-ouvertes.fr/tel-01883384/
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/978-3-030-00030-1_10

J. J. Daymude, A. W. Richa, and C. Scheideler 12:17

14 Arjun Chandrasekhar, Deborah M. Gordon, and Saket Navlakha. A distributed algorithm to
maintain and repair the trail networks of arboreal ants. Scientific Reports, 8(1):9297, 2018.
doi:10.1038/s41598-018-27160-3.

15 Yu Chen and Jennifer L. Welch. Self-stabilizing dynamic mutual exclusion for mobile ad
hoc networks. Journal of Parallel and Distributed Computing, 65(9):1072–1089, 2005. doi:
10.1016/j.jpdc.2005.03.009.

16 Artur Czumaj and Andrzej Lingas. On Truly Parallel Time in Population Protocols. Available
online at arXiv:2108.11613, 2021.

17 Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler. The Canonical Amoebot
Model: Algorithms and Concurrency Control. In 35th International Symposium on Distributed
Computing (DISC 2021), volume 209 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 20:1–20:19, 2021. doi:10.4230/LIPIcs.DISC.2021.20.

18 Michael J. Demmer and Maurice P. Herlihy. The arrow distributed directory protocol. In Shay
Kutten, editor, Distributed Computing, volume 1499 of Lecture Notes in Computer Science,
pages 119–133, 1998. doi:10.1007/BFb0056478.

19 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Amoebot - a new model for programmable matter. In Proceedings
of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, pages 220–222,
2014. doi:10.1145/2612669.2612712.

20 E. W. Dijkstra. Solution of a problem in concurrent programming control. Communications
of the ACM, 8(9):569, 1965. doi:10.1145/365559.365617.

21 Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proceedings of
the 2013 ACM Symposium on Principles of Distributed Computing, pages 137–146, Montréal,
Québec, Canada, 2013. ACM. doi:10.1145/2484239.2484244.

22 Javier Esparza and Fabian Reiter. A Classification of Weak Asynchronous Models of Distributed
Computing. In 31st International Conference on Concurrency Theory (CONCUR 2020), volume
171 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.10.

23 Michael Feldmann, Christian Scheideler, and Stefan Schmid. Survey on Algorithms for
Self-stabilizing Overlay Networks. ACM Computing Surveys, 53(4):74:1–74:24, 2020. doi:
10.1145/3397190.

24 Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin. Resource allocation
with immunity to limited process failure. In 20th Annual Symposium on Foundations of
Computer Science (SFCS 1979), pages 234–254, 1979. doi:10.1109/SFCS.1979.37.

25 Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing
by Mobile Entities: Current Research in Moving and Computing, volume 11340 of Lecture
Notes in Computer Science. Springer International Publishing, Cham, 2019. doi:10.1007/
978-3-030-11072-7.

26 Mohsen Ghaffari, Cameron Musco, Tsvetomira Radeva, and Nancy Lynch. Distributed House-
Hunting in Ant Colonies. In Proceedings of the 2015 ACM Symposium on Principles of
Distributed Computing, pages 57–66, 2015. doi:10.1145/2767386.2767426.

27 Abdolhamid Ghodselahi and Fabian Kuhn. Dynamic Analysis of the Arrow Distributed
Directory Protocol in General Networks. In 31st International Symposium on Distributed
Computing (DISC 2017), volume 91 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1–22:16, 2017. doi:10.4230/LIPICS.DISC.2017.22.

28 Heiko Hamann. Swarm Robotics: A Formal Approach. Springer International Publishing,
Cham, 2018. doi:10.1007/978-3-319-74528-2.

29 Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems, 13(1):124–149, 1991. doi:10.1145/114005.102808.

30 Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed Computing, 13(4):189–206,
2000. doi:10.1007/PL00008918.

SAND 2022

https://doi.org/10.1038/s41598-018-27160-3
https://doi.org/10.1016/j.jpdc.2005.03.009
https://doi.org/10.1016/j.jpdc.2005.03.009
https://arxiv.org/abs/2108.11613
https://doi.org/10.4230/LIPIcs.DISC.2021.20
https://doi.org/10.1007/BFb0056478
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1145/365559.365617
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.4230/LIPIcs.CONCUR.2020.10
https://doi.org/10.1145/3397190
https://doi.org/10.1145/3397190
https://doi.org/10.1109/SFCS.1979.37
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1145/2767386.2767426
https://doi.org/10.4230/LIPICS.DISC.2017.22
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1145/114005.102808
https://doi.org/10.1007/PL00008918

12:18 Local Mutual Exclusion for Dynamic, Limited Message Passing Systems

31 Yuh-Jzer Joung. The congenial talking philosophers problem in computer networks. Distributed
Computing, 15(3):155–175, 2002. doi:10.1007/s004460100069.

32 Pankaj Khanchandani and Roger Wattenhofer. The Arvy Distributed Directory Protocol. In
The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages 225–235,
2019. doi:10.1145/3323165.3323181.

33 Fabian Kuhn, Yannic Maus, and Simon Weidner. Deterministic Distributed Ruling Sets of Line
Graphs. In Structural Information and Communication Complexity, volume 11085 of Lecture
Notes in Computer Science, pages 193–208, 2018. doi:10.1007/978-3-030-01325-7_19.

34 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commu-
nications of the ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

35 Mamoru Maekawa. A
√

N algorithm for mutual exclusion in decentralized systems. ACM
Transactions on Computer Systems, 3(2):145–159, 1985. doi:10.1145/214438.214445.

36 Othon Michail, George Skretas, and Paul G. Spirakis. Distributed Computation and Re-
configuration in Actively Dynamic Networks. Distributed Computing, 2021. doi:10.1007/
s00446-021-00415-5.

37 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed
stable network construction. Distributed Computing, 29(3):207–237, 2016. doi:10.1007/
s00446-015-0257-4.

38 Othon Michail and Paul G. Spirakis. Connectivity preserving network transformers. Theoretical
Computer Science, 671:36–55, 2017. doi:10.1016/j.tcs.2016.02.040.

39 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13(2):195–224, 2014. doi:10.1007/s11047-013-9379-4.

40 Benoit Piranda and Julien Bourgeois. Designing a quasi-spherical module for a huge modular
robot to create programmable matter. Autonomous Robots, 42:1619–1633, 2018. doi:10.1007/
s10514-018-9710-0.

41 Kerry Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Transactions
on Computer Systems, 7(1):61–77, 1989. doi:10.1145/58564.59295.

42 Michel Raynal and Gadi Taubenfeld. Mutual exclusion in fully anonymous shared memory
systems. Information Processing Letters, 158:105938, 2020. doi:10.1016/j.ipl.2020.105938.

43 Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM, 24(1):9–17, 1981. doi:10.1145/358527.358537.

44 Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking depending on
the chromatic number or the neighborhood growth. Theoretical Computer Science, 509:40–50,
2013. doi:10.1016/j.tcs.2012.09.004.

45 Bharti Sharma, Ravinder Singh Bhatia, and Awadhesh Kumar Singh. A Token Based Protocol
for Mutual Exclusion in Mobile Ad Hoc Networks. Journal of Information Processing Systems,
10(1):36–54, 2014. doi:10.3745/JIPS.2014.10.1.036.

46 Harisu Abdullahi Shehu, Md. Haidar Sharif, and Rabie A. Ramadan. Distributed Mutual
Exclusion Algorithms for Intersection Traffic Problems. IEEE Access, 8:138277–138296, 2020.
doi:10.1109/ACCESS.2020.3012573.

47 Mukesh Singhal. A Taxonomy of Distributed Mutual Exclusion. Journal of Parallel and
Distributed Computing, 18(1):94–101, 1993. doi:10.1006/jpdc.1993.1048.

48 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7(4):615–633, 2008. doi:
10.1007/s11047-008-9067-y.

49 Lili Su, Chia-Jung Chang, and Nancy Lynch. Spike-Based Winner-Take-All Computation:
Fundamental Limits and Order-Optimal Circuits. Neural Computation, 31(12):2523–2561,
2019. doi:10.1162/neco_a_01242.

50 Jennifer E. Walter, Jennifer L. Welch, and Nitin H. Vaidya. A Mutual Exclusion Algo-
rithm for Ad Hoc Mobile Networks. Wireless Networks, 7:585–600, 2001. doi:10.1023/A:
1012363200403.

https://doi.org/10.1007/s004460100069
https://doi.org/10.1145/3323165.3323181
https://doi.org/10.1007/978-3-030-01325-7_19
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/214438.214445
https://doi.org/10.1007/s00446-021-00415-5
https://doi.org/10.1007/s00446-021-00415-5
https://doi.org/10.1007/s00446-015-0257-4
https://doi.org/10.1007/s00446-015-0257-4
https://doi.org/10.1016/j.tcs.2016.02.040
https://doi.org/10.1007/s11047-013-9379-4
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1007/s10514-018-9710-0
https://doi.org/10.1145/58564.59295
https://doi.org/10.1016/j.ipl.2020.105938
https://doi.org/10.1145/358527.358537
https://doi.org/10.1016/j.tcs.2012.09.004
https://doi.org/10.3745/JIPS.2014.10.1.036
https://doi.org/10.1109/ACCESS.2020.3012573
https://doi.org/10.1006/jpdc.1993.1048
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1162/neco_a_01242
https://doi.org/10.1023/A:1012363200403
https://doi.org/10.1023/A:1012363200403

J. J. Daymude, A. W. Richa, and C. Scheideler 12:19

51 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science, pages 353–354, 2013.
doi:10.1145/2422436.2422476.

52 Weigang Wu, Jiebin Zhang, Aoxue Luo, and Jiannong Cao. Distributed Mutual Exclusion
Algorithms for Intersection Traffic Control. IEEE Transactions on Parallel and Distributed
Systems, 26(1):65–74, 2015. doi:10.1109/TPDS.2013.2297097.

53 Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark Moll, Hod Lipson, Eric
Klavins, and Gregory S. Chirikjian. Modular Self-Reconfigurable Robot Systems [Grand
Challenges of Robotics]. IEEE Robotics & Automation Magazine, 14(1):43–52, 2007. doi:
10.1109/MRA.2007.339623.

SAND 2022

https://doi.org/10.1145/2422436.2422476
https://doi.org/10.1109/TPDS.2013.2297097
https://doi.org/10.1109/MRA.2007.339623
https://doi.org/10.1109/MRA.2007.339623

Dynamic Size Counting in Population Protocols
David Doty # Ñ

University of California, Davis, CA, USA

Mahsa Eftekhari # Ñ

University of California, Davis, CA, USA

Abstract
The population protocol model describes a network of anonymous agents that interact asynchronously
in pairs chosen at random. Each agent starts in the same initial state s. We introduce the dynamic
size counting problem: approximately counting the number of agents in the presence of an adversary
who at any time can remove any number of agents or add any number of new agents in state s.
A valid solution requires that after each addition/removal event, resulting in population size n,
with high probability each agent “quickly” computes the same constant-factor estimate of the value
log2 n (how quickly is called the convergence time), which remains the output of every agent for
as long as possible (the holding time). Since the adversary can remove agents, the holding time is
necessarily finite: even after the adversary stops altering the population, it is impossible to stabilize
to an output that never again changes.

We first show that a protocol solves the dynamic size counting problem if and only if it solves
the loosely-stabilizing counting problem: that of estimating log n in a fixed-size population, but
where the adversary can initialize each agent in an arbitrary state, with the same convergence time
and holding time. We then show a protocol solving the loosely-stabilizing counting problem with
the following guarantees: if the population size is n, M is the largest initial estimate of log n, and
s is the maximum integer initially stored in any field of the agents’ memory, we have expected
convergence time O(log n + log M), expected polynomial holding time, and expected memory usage
of O(log2(s) + (log log n)2) bits. Interpreted as a dynamic size counting protocol, when changing
from population size nprev to nnext, the convergence time is O(log nnext + log log nprev).

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Models of computation

Keywords and phrases Loosely-stabilizing, population protocols, size counting

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.13

Related Version Full Version: https://arxiv.org/abs/2202.12864

Supplementary Material Software (Simulation Results with Colab Notebook):
https://github.com/eftekhari-mhs/population-protocols/tree/main/dynamic_counting

archived at swh:1:dir:a71288ec3836738d716285e3e6f6446978940c2f

Funding Supported by NSF award 1900931 and CAREER award 1844976.

1 Introduction

A population protocol [6] is a network of n anonymous and identical agents with finite memory
called the state. A scheduler repeatedly selects a pair of agents independently and uniformly
at random to interact. Each agent sees the entire state of the other agent in the interaction
and updates own state in response. Time complexity is measured by parallel time: the number
of interactions divided by the population size n, capturing the natural time scale in which
each agent has Θ(1) interactions per unit time. The agents collectively do a computation,
e.g., population size counting: computing the value n. Counting is a fundamental task in
distributed computing: knowing an estimate of n often simplifies the design of protocols
solving problems such as majority and leader election [1, 2, 4, 11,13–16,24,31,35].

© David Doty and Mahsa Eftekhari;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:doty@ucdavis.edu
https://web.cs.ucdavis.edu/~doty/
https://orcid.org/0000-0002-3922-172X
mailto:mhseftekhari@ucdavis.edu
https://eftekhari.cs.ucdavis.edu/
https://orcid.org/0000-0001-5680-2086
https://doi.org/10.4230/LIPIcs.SAND.2022.13
https://arxiv.org/abs/2202.12864
https://github.com/eftekhari-mhs/population-protocols/tree/main/dynamic_counting
https://github.com/eftekhari-mhs/population-protocols/tree/main/dynamic_counting
https://archive.softwareheritage.org/swh:1:dir:a71288ec3836738d716285e3e6f6446978940c2f;origin=https://github.com/eftekhari-mhs/population-protocols;visit=swh:1:snp:eaebac3f9ac66fd8998e5ac147f1e51ef6d4c587;anchor=swh:1:rev:36108bc5d89e93b463430ef55235972391ba9e53;path=/dynamic_counting/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Dynamic Size Counting in Population Protocols

A protocol is defined by a transition function with a pair of states as input and as output
(more generally to capture randomized protocols, a relation that can associate multiple
outputs to the same input). For example, consider the simple counting protocol with
transitions Li, Lj → Li+j , Fi+j , with every agent starting in L1. In population size n, this
protocol converges to a single agent in state Ln, with all other agents in state Fi for some i.
The additional transitions Fi, Fj → Fj , Fj for i < j propagate the output n to all agents.

The dynamic size counting problem

In contrast to most work, which assumes the population size n is fixed over time, we model an
adversary that can add or remove agents arbitrarily and repeatedly during the computation.
All agents start in the same state, including newly added agents. The goal is for each agent
to approximately count the population size n, which we define to mean that all agents should
eventually store the same output k in their states, which with high probability is within
a constant multiplicative factor of log n.1 Once all agents have the same output k, they
have converged. They maintain k as the output for some time called the holding time (after
which they might alter k even if the population size has not changed). In response to a
“significant” change in size from nprev to nnext, agents should re-converge to a new output
k′ of log nnext. (Agents are not “notified” about the change; instead they must continually
monitor the population to test whether their current output is accurate.) Note that if nprev
is close to nnext (within a polynomial factor), then k may remain an accurate estimate of
nnext, so agents may not re-converge in response to a small change.

Ideally the expected convergence time is small, and the expected holding time is large.
With a fixed size population, it is common to require the output to stabilize to a value that
never again changes after convergence, i.e., infinite holding time. However, this turns out to be
impossible with an adversary that can remove agents (Observation 3.4). When changing from
size nprev to nnext, our protocol achieves expected convergence time O(log nnext +log log nprev)
and expected holding time Ω(nc

next), where c can be made arbitrarily large. The number of
bits of memory used per agent is O(log2(s) + (log log n)2), where s is the maximum integer
stored in the agents’ memory after the change.

While it is common to measure population protocol memory complexity by counting
the number of states (which is exponentially larger than the number of bits required to
represent each state), that measure is a bit awkward here. Our protocol is uniform – the same
transition rules for every population size – so has an infinite number of producible states.
One could count expected number of states that will be produced, but this is a bit misleading:
in time t each agent visits O(t) states on average, so O(t · n) states total. Counting how
many bits are required is more accurate metric of the actual memory requirements.

The loosely-stabilizing counting problem

The dynamic size counting problem has an equivalent characterization: rather than removing
agents and adding them with a fixed initial state, the loosely-stabilizing adversary sets each
agent to an arbitrary initial state in a fixed-size population. A protocol solves the dynamic
size counting problem if and only if it solves the loosely-stabilizing counting problem, with
the same convergence and holding times (Lemma 3.5). Due to this equivalence, we analyze

1 Nonuniform protocols require agents to be initialized with an estimate k of log n in order to accomplish
other tasks, such as a “leaderless phase clock” [1]. The bound k = Θ(log n) is necessary and sufficient
for correctness and speed in most cases [1, 2, 4, 11, 13–16,24,31,35].

D. Doty and M. Eftekhari 13:3

our protocol assuming a fixed population size and adversarial initial states. In this case
our convergence time O(log n + log M) is measured as a function of the population size n

and the value M that is the maximum estimate value stored in agents’ memory. From the
perspective of the dynamic size counting problem, these “adversarial initial states” would
correspond to the agent states after correctly estimating the previous population size, just
prior to adding or removing agents.

1.1 Related work
Initialized counting with a fixed size population. In population protocols with fixed size,
there is work computing exactly or approximately the population size n. For a full review
see [19]. Such protocols reach a stable configuration from which the output cannot change.
Some of these counting protocols would still solve the counting problem in the presence of
an adversary who can only add agents (see Observation 3.3). However, these protocols fail
in the presence of an adversary who can also remove agents, since they work only in the
initialized setting and rely on reaching a stable configuration (see Observation 3.4).

Self-stabilizing counting with a fixed size population. A population protocol is self-
stabilizing if, from any initial configuration, it reaches to a correct stable configuration.
Self-stabilizing size counting has been studied [8–10,27], but provably requires adding a “base
station” agent that cannot be corrupted by the adversary. In these protocols the base station
is the only agent required to learn the population size. Aspnes, Beauquier, Burman, and
Sohier [8] showed a time- and space-optimal protocol that solves the exact counting problem
in O(n log n) time, using 1-bit memory for each non-base station agent.

Size regulation in a dynamically sized population. The model described by Goldwasser,
Ostrovsky, Scafuro, and Sealfon [25] is close to our setting. They consider the size regulation
problem: approximately maintaining a target size (hard-coded into each agent) using
O(log log n) bits of memory per agent, despite an adversary that (like ours) adds or removes
agents. That paper assumes a model variation in which:

The agents can replicate or self-destruct.
The computation happens through synchronized rounds of interactions. At each round
the scheduler selects a random matching of size k = O(n) agents to interact.
The adversary’s changes to the population size are limited. The adversary can insert or
delete a total of o(n1/4) agents within each round.

The latter two model differences above crucially rule out their protocol as useful for
our problem. We use the standard asynchronous scheduler, and much of the complexity of
our protocol is to handle drastic population size changes (e.g., removing n− log n agents).
Additionally, their protocol heavily relies on flipping coins of bias 1√

n
that we cannot utilize

since the agents don’t start with an estimate of n. Moreover, even when the agents compute
their estimate, the population size might change.

Loosely-stabilizing leader election. Sudo, Nakamura, Yamauchi, Ooshita, Kakugawa, and
Masuzawa [34] introduce loose-stabilization as a relaxation for the self-stabilizing leader
election problem in which the agents must know the exact population size to elect a leader.
The loosely stabilizing leader election guarantees that starting from any configuration, the
population will elect a leader within a short time. After that, the agents hold the leader
for a long time but not forever (in contrast with self-stabilization). On the positive side,
the agents no longer need to know the exact population size to solve the loosely-stabilizing

SAND 2022

13:4 Dynamic Size Counting in Population Protocols

leader election, but a rough upper bound suffices. Loosely-stabilizing leader election has
been studied, providing a time-optimal protocol that solves the leader election problem [33]
and a tradeoff between the holding and convergence times [26,36].

Computation with dynamically changing inputs. Alistarh, Töpfer, and Uznański [5]
consider the dynamic variant of the comparison problem. In the comparision problem, a
subset of population are in the input states X and Y and the goal is to compute if X > Y

or X < Y . In the dynamic variant of the comparision problem, they assume an adversary
who can change the counts of the input states at any time. The agents should compute
the output as long as the counts remain untouched for sufficiently long time. They propose
a protocol that solves the comparision problem in O(log n) time using O(log n) states per
agent, assuming |X| ≥ C2 · |Y | ≥ C1 log n for some constants C1, C2 > 1.

Berenbrink, Biermeier, Hahn, and Kaaser [12] consider the adaptive majority problem
(generalization of the comparison problem [5]). At any time every agent has an opinion from
{X, Y } or undecided and their opinions might change adversarially. The goal is to have
agreement in the population about the majority opinion. They introduce a non-uniform
loosely-stabilizing leaderless phase clock that that uses O(log n) states to solve the adaptive
majority problem. This is similar to having an adversary who can add or remove agents with
different opinion. However, all agents are assumed already to have an estimate of log n that
remains untouched. Thus it is not straightforward to use their protocol to solve our problem
of obtaining this estimate.

2 Definitions and Notation

A population protocol is a pair P = (Λ, ∆), where Λ is a finite set of states, and ∆ ⊆
(Λ×Λ)×(Λ×Λ) is the transition relation. (Often this is defined as a function δ : Λ×Λ→ Λ×Λ,
but we allow randomized transitions, where the same pair of inputs can randomly choose
among multiple outputs.)

A configuration c of a population protocol is a multiset over Λ of size n, giving the
states of the n agents in the population. For a state s ∈ Λ, we write c(s) to denote the
count of agents in state s. A transition is a 4-tuple, written α : r1, r2 → p1, p2, such that
((r1, r2), (p1, p2)) ∈ ∆. If an agent in state r1 interacts with an agent in state r2, then they
can change states to p1 and p2. This notation omits explicit probabilities; our main protocol’s
transitions can be implemented so as to always have either one or two possible outputs for
any input pair, with probability 1/2 of each output in the latter case.2 For every pair of
states r1, r2 without an explicitly listed transition r1, r2 → p1, p2, there is an implicit null
transition r1, r2 → r1, r2 in which the agents interact but do not change state. For our main
protocol, we specify transitions formally with pseudocode that indicate how agents alter each
independent field in their state. We say a configuration d is reachable from a configuration c
if applying 0 or more transitions to c results in d.

When discussing random events in a protocol of population size n, we say event E happens
with high probability if Pr [¬E] = O(n−c), where c is a constant that depends on our choice of
parameters in the protocol, where c can be made arbitrarily large by changing the parameters.

2 For the purpose of representation, we make an exception in our protocol, when we show agents generate
a geometric random variable in one line (see Protocol 6). However, we can assume a geometric random
variable is generated through O(log n) consecutive interactions with each selecting out of two possible
outputs (H or T).

D. Doty and M. Eftekhari 13:5

For concreteness, we will write a particular polynomial probability such as O(n−2), but in
each case we could tune some parameter (say, increasing the time complexity by a constant
factor) to increase the polynomial’s exponent.

To measure time we count the total number of interactions (including null transitions
such as a, b→ a, b in which the agents interact but do not change state), and divide by the
number of agents n.

In a uniform protocol (such as the main one of this paper), the transitions are independent
from the population size n (see [21] for a formal definition). In other words, a single protocol
computes the output correctly when applied on any population size. In contrast, in a
nonuniform protocol different transitions are applied for different population sizes.

A protocol stably solves a problem if the agents eventually reach a correct configuration
with probability 1, and no subsequent interactions can move the agents to an incorrect
configuration; i.e., the configuration is stable. A population protocol is self-stabilizing if from
any initial configuration, the agents stably solve the problem.

3 Dynamic Size Counting

In a population of size n, define C(n, ϵ1, ϵ2) to be the set of correct configurations c such
that every agent u in c obeys ϵ1 log n < u.estimate < ϵ2 log n. Let th be any time bound.
Moreover, we define L(n, th) ⊂ C(n, ϵ1, ϵ2) the subset of correct configurations such that
as the expected time for protocol P starting from a configuration l ∈ L(n, th) to stay in
C(n, ϵ1, ϵ2) is at least th(n).

▶ Definition 3.1. Let nprev and nnext denote the previous and next population size. A protocol
P solves the dynamic size counting problem if there are ϵ1, ϵ2 > 0, called the accuracy, such
that if the population size changes from nprev to nnext, the protocol reaches a configuration l
in L(nnext, th) with high probability. The time needed to do this is called the convergence
time. Moreover, th, the time that the population stays in C(nnext, ϵ1, ϵ2), is called the holding
time.

A population protocol is (tc(n), th(n))-loosely stabilizing if starting from any initial
configuration, the agents reach a correct configuration in tc(n) time and stay in the correct
configuration for additional th(n) time [33,34]. In contrast to self-stabilizing [7,17], subsequent
interactions can move the agents to an incorrect configuration; however, the agents recover
quickly from an incorrect configuration.

Given any starting configuration s ̸∈ C(n, ϵ1, ϵ2) of size n, we define fc(s, L(n, th)) as the
expected time to reach a correct configuration in L(n, th).

▶ Definition 3.2 ([34, Definition 2]). Let tc(n, M) and th(n) be functions of n, the largest
integer value M in the initial configuration s, and the set of correct configuration C(n, ϵ1, ϵ2).
A protocol P is a tc(n, M), th(n), ϵ1, ϵ2 loosely-stabilizing population size counting protocol if
there exists a set L(n, th) ⊂ C(n, ϵ1, ϵ2) of configurations satisfying:

For every n and every initial configuration s ̸∈ C(n, ϵ1, ϵ2) of size n, fc(s, L(n, th)) ≤
tc(n, M).

3.1 Basic properties of the dynamic size counting problem
We first observe that the key challenge in dynamic size counting is that the adversary may
remove agents. If the adversary can only add agents, the problem is straightforward to solve
with optimal convergence and holding times.

SAND 2022

13:6 Dynamic Size Counting in Population Protocols

▶ Observation 3.3. Suppose the adversary in the dynamic size counting problem only adds
agents. Then there is a protocol solving dynamic size counting with O(log n) convergence
time (in expectation and with probability ≥ 1−O(1/n)) and infinite holding time.

Proof. Each agent in the initial state s generates a geometric random variable. After the last
time that the adversary adds agents, resulting in n total agents, exactly n geometric random
variables will have been generated. Agents propagate the maximum by epidemic using
transition a, b→ max(a, b), max(a, b), taking 3 ln n time to reach all agents with probability
≥ 1− 1

n2 [17, Corollary 2.8]. The maximum of n i.i.d. geometric random variables is in
the range [log n− log ln n, 2 log n] with probability ≥ 1− 1

n [18, Lemma D.7]. ◀

In contrast, if the adversary can remove agents, then even if it is guaranteed to do this
exactly once, no protocol can be stabilizing, i.e., have infinite holding time.

▶ Observation 3.4. Suppose the adversary in the dynamic size counting problem will remove
agents exactly once. Then any protocol solving the problem has finite holding time.

Proof. Suppose otherwise. Let the initial population size be n and the later size be n′ < n.
The protocol must handle the case where the adversary never removes agents, since in
population size n this is equivalent to an adversary who starts with n + 1 agents and
immediately removes one of them. Thus if the adversary waits sufficiently long before the
removal, then all agents stabilize to output k = Θ(log n). In other words, no sequence of
transitions can alter the value, including transitions occurring only among any subpopulation
of size n′. So after the adversary removes n− n′ agents, the remaining n′ agents are unable
to alter the output k, a contradiction if n′ is sufficiently small compared to n such that the
output k is not a correct estimate for a population of size n′. ◀

Recall that we define M as the largest integer value the agents stored in the starting
configuration s. Lemma 3.5 shows that the dynamic size counting problem is equivalent to
the loosely-stabilizing counting problem. Due to this equivalence, our correctness proofs will
use the loosely-stabilizing characterization. The proof is given in the full version [20].

▶ Lemma 3.5. A protocol solves the dynamic size counting problem with convergence time
tc(n, M) and holding time th(n) if and only if it solves the loosely-stabilizing counting problem
with convergence time tc(n, M) and holding time th(n).

Proof sketch. Any states present in an adversarially prepared configuration c will be
produced in large quantities from any sufficiently large initial configuration of all initialized
states s [18, Lemma 4.2]. The dynamic size adversary can then remove agents to result in c,
which the protocol must handle, showing it can handle an arbitrary initial configuration. ◀

3.2 High-level overview of dynamic size counting protocol
This section briefly describes our protocol for solving the dynamic size counting, defined
formally in Section 3.3. By Lemma 3.5, it suffices to design a protocol solving the loosely-
stabilizing counting problem for a fixed population size n. Our protocol uses the “detection”
protocol of [3]. Consider a subset of states designated as a “source”. A detection protocol
alerts all agents whether a source state is present in the population.

D. Doty and M. Eftekhari 13:7

In Protocol 1, the population maintains several dynamic groups, with the agent’s group
stored as a positive integer field group. The group values are not fixed: each agent changes
its group field on every interaction, with equal probability either incrementing group or
setting it to 1. We show that, no matter the initial group values, after O(log n) time the group
values will be in the range [1, 8 log n] WHP. Furthermore, the distribution of group values
is very close to that of n i.i.d. geometric random variables, in the sense that each agent’s
group value is independent of every other, with expected n/2i agents having group = i if
each agent has had at least i interactions.3

The agents store an array of “signal” integers in their signals field to track the existing
group values in the population. Each agent in the i’th group is responsible for boosting the
signal associated with i. The goal is to have signals[i] > 0 for all agents if and only if some
agent has group = i.

The detection protocol of [3], explained below, provides a technique for agents to know
which groups are still present. Once a signal for group k fades out, the agents speculate that
there is no agent with group = k. Depending on the current value stored as estimate in
agents’ memory and the value k, this might cause re-calculating the population size. The
agents are constantly checking for the changes in the signals. They re-compute estimate
once there is a large gap between estimate and the first group i with signals[i] = 0. We
call i the first missing value (stored in the field FMV).

The signals array is updated as follows. An agent with group = k sets signals[k] to its
maximum possible value (3k + 1); we call this boosting. Other groups k are updated between
two agents u, v with u.signals[k] = a and v.signals[k] = b via propagation transitions
that set both agent’s signals[k] to max(a− 1, b− 1, 0). The paper [3] used a nonuniform
protocol where each agent already has an estimate of log n. They prove that if the state
being detected (in our case, a state with group = k) is absent and the current maximum
signal is c, then all agents will have signal 0 within Θ(c) time. However, if the state being
detected is present, then the boosting transitions (occurring every O(1) units of parallel
time on average in the worst case that its count is only 1) will keep the signal positive in all
agents with high probability. For this to hold, the maximum value set during boosting must
be Ω(log n); the nonuniform protocol of [3] uses its estimate of log n for this purpose.

Crucially, our protocol associates smaller maximum signal values to smaller group values
(so many are much smaller than log n), to ensure that a signal does not take abnormally long
to get to 0 when its associated group value is missing. Otherwise, if we set each signal value
to Ω(log n) (based on the agent’s current estimate of log n) during boosting, then it would
take time proportional to estimate (which could be much larger than the actual value of
log n) to detect the absence of a group value. Thus it is critical that we provide a novel
analysis of the detection protocol, showing that the signals for smaller group values k ≪ log n

remain present with high probability. This requires arguing that the boosting reactions for
such smaller values are happening with sufficiently higher frequency, due to the higher count
of agents with group = k, compensating for the smaller boosting signal values they use.

3.3 Formal description of loosely-stabilizing counting protocol

The DynamicCounting protocol (Protocol 1) divides agents among several groups via the
UpdateGroup subprotocol. The agents update their group from i to i + 1 with probability
1/2 or reset to group 1 with probability 1/2. The number of agents at each group and the

3 The difference is that a geometric random variable G obeys Pr [G = j] = 1/2j for all j ∈ N+, but after
i interactions an agent u can increment u.group by at most i, so Pr [u.group = j] = 0 if j ≫ i.

SAND 2022

13:8 Dynamic Size Counting in Population Protocols

total number of groups are both random variables dynamically changing through time. We
show that the total number of groups remains close to log n at all times with high probability.

The agents start with arbitrary (or even adversarial) group values but we show that
WHP the set of group values will converge to [1, 8 log n] within O(log n) time. Additionally,
each agent stores an array of O(log n) signal values in their signals field. The goal is to
maintain positive values in the signals[i] if some agent has group = i. The agents store
the index of the first group i with signals[i] = 0 in their FMV field. They use FMV as an
approximation of log n and constantly compare it with their estimate value.

Depending on the estimate value stored in agents’ memory, the agents maintain three
main phases of computation:

NormalPhase: An agent stays in the NormalPhase as long as there is a small gap between
estimate and FMV: 0.25 · estimate ≤ FMV ≤ 2.5estimate.

WaitingPhase: An agent switches from NormalPhase to WaitingPhase if it sees a large gap
between the FMV and estimate: FMV ̸∈ {0.25 ·estimate, . . . , 2.5 ·estimate}. The purpose
of WaitingPhase is to give enough time to the other agents so that by the end of the
WaitingPhase for one agent, with high probability every other agent has also noticed the
large gap between the FMV and estimate and entered WaitingPhase.

UpdatingPhase: During the UpdatingPhase, every agent uses a new geometric random
variable and propagates the maximum by epidemic. We set WaitingPhase long enough
so that with high probability when the first agent switches to the UpdatingPhase, the
rest of the population are all in WaitingPhase. By the end of UpdatingPhase, every agent
switches back to NormalPhase.

Below we explain each subprotocol in more detail.

Algorithm 1 DynamicCounting(u, v).

for agent ∈ {u, v} do
UpdateGroup(agent)

SignalPropagation(u, v)
for agent ∈ {u, v} do

UpdateMV(agent)
SizeChecker(agent)
if agent.phase ̸= NormalPhase then

TimerRoutine(agent)
PropagateMaxEst(u, v)
for agent ∈ {u, v} do

if agent.phase = NormalPhase then
agent.estimate← agent.GRV

In every interaction, both sender and receiver update their group according to the rules
of the UpdateGroup subprotocol. If we look at the distribution of the group values after
O(log n) time, there are about n/2 agents in group 1, n/4 agents in group 2, and n/2i

agents in group i (see Figure 1). Note that the number of agents in each group decreases
exponentially. Still, we ensure that agents with larger group values use stronger signals to
propagate, since there is less support for those groups.

To notify all agents about the set of all group values that are generated among the
population, we use the detection protocol of [3] that is also used as a synchronization scheme
in [12]. The agents store an integer for each group value that is generated by the population.
The signals is an array of length Θ(log n) such that a positive value in index i represents

D. Doty and M. Eftekhari 13:9

Algorithm 2 UpdateGroup(u).

u.group←

{
u.group + 1 with probability 1/2
1 with probability 1/2

some agents in the population have generated group = i. Note that, as an agent updates
its group, it boosts multiple signals based on its group value, e.g., an agent with group = i

helped boost all the indices 1, 2, 3, . . . , i of signals in its last i interactions. We use the
SignalPropagation protocol to keep the signal of group i positive as long as some agents have
generated group = i.

Algorithm 3 SignalPropagation(u, v).

▷ Boosting:
u.signals[u.group]← (3 · u.group) + 1
v.signals[v.group]← (3 · v.group) + 1
▷ Propagate signal:
for i ∈ {1, 2, . . . , Max(|u.signals|, |v.signals|} do

m← Max(u.signals[i], v.signals[i])
u.signals[i], v.signals[i]← Max(0, m− 1)

Regardless of the initial configuration, the distribution of group values changes
immediately (in O(log n) time), but it might take more time for the signals to get updated.
It takes O(i) time for signals[i] to hit zero. The larger the index i, signals[i] leaves the
population slower. Hence, the agents look at the first missing signal that they observe among
the array of all signals.

Algorithm 4 UpdateMV(u).

▷ Find the first appearance of a zero in u.signals beyond index ⌈log(u.estimate)⌉
s← ⌈log(u.estimate)⌉
u.FMV← min{i ∈ [s, |u.signals|] | u.signals[i] = 0}

Once there is a large gap between the first missing group (FMV) and the agents’ estimation
of log n (estimate), each agent individually moves to a waiting phase and waits for other
agents to catch the same gap between their estimate and FMV. Note that we time this phase
as a function of FMV and not the estimate since the estimate is not valid anymore and
might be much smaller or larger than the actual value of log n.

Eventually, all agents will notice the large discrepancy between FMV and estimate and
move to the WaitingPhase. The WaitingPhase is followed by the UpdatingPhase (explained
in the TimerRoutine). In the UpdatingPhase, all agents generate one geometric random
variable (stored in GRV) and propagate the maximum value. We assume the agents generate
a geometric random variable in one line (line 4 in Protocol 6) for simplicity.4

Once the UpdatingPhase is completed, all agents will update their estimate to the
maximum geometric random variable they have seen and switch to the NormalPhase again.
Recall that the agents remain in the NormalPhase as long as their FMV and estimate are
relatively close. They continue changing their group values and send group signals as
described earlier.

4 Alternatively, the agents could generate a geometric random variable through O(log n) consecutive
interactions, each selecting a random coin flip (H or T). In this alternative version, we should make the
WaitingPhase longer.

SAND 2022

13:10 Dynamic Size Counting in Population Protocols

Algorithm 5 SizeChecker(u).

if u.phase = NormalPhase and u.FMV ̸∈ {0.25 · u.estimate, . . . , 2.5 · u.estimate} then
u.phase←WaitingPhase ▷ Waiting for other agents to detect the size change

Algorithm 6 TimerRoutine(u).

u.timer← u.timer + 1
if u.timer > 12 · u.FMV then

if u.phase = WaitingPhase then
u.GRV←a new geometric random variable
u.timer← 0, u.phase← UpdatingPhase

if u.phase = UpdatingPhase then
u.estimate← u.GRV
u.timer← 0, u.phase← NormalPhase

Intuitively, for each group value, about n/2i agents will hold group = i, and boost
signals[i] by setting it to the max = Θ(i). As the value of i grows, the number of agents
with group = i decreases, but their signals get stronger since the agents enhance a group
signal i proportional to i. In a normal run of the protocol, the agents expect to have positive
values in signals[i] for group values between [log ln n, log n].

4 Analysis of Dynamic Counting Protocol

4.1 Bound on the group values
Recall that the agents calculate a dynamic group value by following the rules of Protocol 2.
As described in this protocol, the agents either move to the next group or return to group 1
with probability 1/2.5

In this part, we analyze the distribution of group values. Note that the group values
are rather chaotic at the beginning of the protocol since the agents might start holding any
arbitrary group values that are much larger than log n. However, after all agents reset back
to group = 1, we can show for each group = k, Pr [group = k] ≈ 1

2k .
In the rest of this section, we assume the initialized setting for simplicity. Later, we show

how we can generalize our results to any arbitrary initial configuration. We define Gu,t as the
group value of agent u at time t and I(t, u) to represent the number of interactions involving
this agent by the time t. Note that with this definition, Gu,t is equal to k (for k < I(t, u)) if
and only if agent u generates the sequence of [HTTT . . . T] (H followed by k − 1 Ts) during
its last k interactions. Thus, we have:

∀k ∈ N, 1 ≤ k < I(t, u) : Pr [Gu,t = k] = 1
2k

(1)

With this definition Gu,t is undefined for any agents that has not generated H yet. In other
words, the values Gu,t are “close to geometric” in the sense that they are independent and
have probability equal to a geometric random variable on all values k < I(t, u).

5 The truncated version of this Markov chain (mapping all states k + 1, k + 2, . . . to k + 1) is also known
as the “winning streak” [30].

D. Doty and M. Eftekhari 13:11

Algorithm 7 PropagateMaxEst(u, v).

if u.phase = v.phase & u.phase ̸= WaitingPhase then
u.GRV, v.GRV← max(u.GRV, v.GRV)

▶ Observation 4.1. For agents u1, u2, . . . , un, and the values ki < I(t, ui), for 1 ≤ i ≤ n:

Pr [Gu1,t = k1, Gu2,t = k2, . . . , Gun,t = kn] =
n∏

i=1
Pr [Gui,t = ki]

Next we bound the maximum group value that has been generated by any agent. Let
Mt = maxu∈A Gu,t be the maximum value of Gu,t across the population at time t. A proof
of the following lemma appears in the full version [20].

▶ Lemma 4.2. Let c ≥ 2 and let t be a time such that all agents have at least c log n

interactions. In a population of size n, 1
d log n ≤Mt with probability at least 1−exp

(
−n1−1/d

)
and Mt < c log n with probability at least 1− n1−c.

Note that the maximum group value has a large variance. However, we can prove a tight
bound for the first group value with no support; since to have FMV = k, for all values i that
are less than k, ∃u ∈ A such that u.group = i.

So, we analyze the bounds for the first group value with no support, i.e., the value
min{k ∈ N+ | (∀u ∈ A) u.group ̸= k}. Considering n i.i.d. geometric random variables, the
first missing value to be the smallest integer not appearing among the random variables.
The first missing value has been studied in the literature [28,29,32] as the “the first empty
urn” (see also “probabilistic counting” [23]) but for simplicity we use a loose bound for our
analysis. The proof appears in the full version [20].

▶ Lemma 4.3. Let δ > 0, 0 < ϵ < 1 and let t be a time such that all agents have at least
(1+δ) log n interactions. Define FMVt = min{k ∈ N | (∀u ∈ A) u.group ̸= k} at time t. Then,
FMVt > (1− ϵ) log n with probability at least (1− ϵ) log(n) · exp (−nϵ) and FMVt ≤ (1 + δ) log n

with probability at least 1−
(1

nδ/2

)(2+δ) log n.

4.2 Distribution of the groups
So far, we have proved bounds on the existing group values. However, in general, we need to
show that at a given time t = Ω(log n), there are about n

2k agents having group = k WHP.
The following lemma gives us a lower and upper bound for the number of agents in each
group:

▶ Lemma 4.4. Let c ≥ 2, 0 < ϵ < 1, 0 ≤ δ ≤ 1, and let t be a time such that all agents have
at least c log n interactions. Let 1 ≤ k ≤ (1− ϵ) log n, then, the number of agents who hold
group = k, is at least Lk = (1− δ) n

2k with probability at least 1− exp
(
− δ2·nϵ

2

)
and at most

Uk = (1 + δ) n
2k with probability at least 1− exp

(
− δ2·nϵ

3

)
.

Proof sketch. The fraction of agents with group = k is equal to the fraction of heads in of
a binomial distribution B

(
n, 2−k

)
with µ = n

2k , so the Chernoff bound applies. A complete
proof is given in the full version [20]. ◀

The following theorem summarizes what we will use later about the distribution of the
group values and the number of agents residing in each group at time t.

SAND 2022

13:12 Dynamic Size Counting in Population Protocols

0 5 10 15 20 25 30 35 40

101

103

105

107

Time step 300, n = 1000000000

Figure 1 Showing the distribution of group values after 300 parallel-time in a population of
size n = 109. The x-axis indicates the different group values while the y-axis indicates the number
of agents in each group. Note that, we are using log-scale for the y-axis. In this snapshot of the
population, FMV = 29. Even though, the maximum group value is 35 and is much larger than FMV.

▶ Theorem 4.5. Fix a time t ≥ d ln n for d > 30, let M∗
t and FMVt be the maximum group

value and the FMV at this time respectively. Then,
0.9 log n ≤M∗

t < 0.1d log n with probability at least 1− 2 · n1−d/10 − 2 · n1− 2d
3 .

0.9 log n ≤ FMVt < 3 log n with probability at least 1− 4 · n1− 2d
3 .

The number of agents who hold group = k for 1 ≤ k ≤ 0.9 log n, is in
[3·n

2k+2 , 5·n
2k+2

]
with

probability at least 1− 4 · n1− 2d
3 .

4.3 Group detection
In the previous section, we show that the set of present group values among the population
will quickly (in O(log n) time) enter a small interval of values ([1, 8 · log n]) consistent with
the population size. In this section, we will prove the following:

The agents agree about the presence of group values in [log ln n, 0.9 log n] after O(log n)
time WHP.
For a non-existing group value i, each agent will have signals[i] = 0 in O(i + log n) time
WHP.

We designed Protocol 3 such that each agent in the i’th group boosts the associated
signal value by setting signals[i] = Bi (recall Bi = Θ(i)). We will show by having at
least Li agents boosting signals[i], the whole population learns about the existence of the
i’th group in O(log n) time with high probability. Intuitively, although signals[i] starts
lower than signals[j] for i < j, so potentially dies out more quickly, it is also boosted
more often since more agents have group value i. Concretely, with Li agents responsible
to boost signal i, and for all indices log ln n < i < 0.9 log n in the signals of the agents,
Pr [signals[i] = 0] < exp

(
− 2Bi

n/Li

)
.

Intuitively, the next lemma shows that if the group values are distributed as in Lemma 4.4,
then the whole population will learn about all the present group values above log ln n within
O(log n) time. Note that Pr [u.signals[i] = j] is the probability that the agent u has value
j in the ith index of its signals. The following lemma is a restatement from [3, Section 5.1].
The proof appears in the full version [20].

▶ Lemma 4.6. In the execution of Protocol 3, suppose that for each group value log ln n <

i < 0.9 log n, at least Ai agents hold group = i. For every agent u ∈ A let u.signals[i] = ri

when u.group = i. Assuming each agent has at least ri interactions, then for a fixed agent u

and index i, Pr [u.signals[i] = 0] ≤
(
1− Ai

n

)2ri−1

.

D. Doty and M. Eftekhari 13:13

To use the previous lemma, we need to make sure that the agents wait for sufficiently long
time such that each agent has at least ri interactions. The next corollary uses Lemma 4.6 to
derive bounds for the entire protocol using bounds from Lemma 4.4 for the distribution of
the group values. Also, Corollary 4.7 takes a union bound over all agents and group values
i, and uses the concrete value ri = Bi = 3 · i + 1 used in our protocol. The proof appears in
the full version [20].

▶ Corollary 4.7. For all i > 0 and for every agent u ∈ A, assuming Bi = 3 · i + 1 let
u.signals[i] = Bi if u.group = i. Suppose that for each group value log ln n < i < 0.9 log n,
at least Li agents hold group = i. Let β ≥ 8; then after β log n time, we have:

Pr [(∃u ∈ A)(∃i ∈ {log ln n, . . . , 0.9 log n}) u.signals[i] = 0] ≤ 2 · n1−0.9β

Finally, we show that when there is no agent holding group = i, then signals[i] will
become zero in all agents “quickly” with an arbitrarily large probability. To be precise, with
no agent boosting signal i, Pr [u.signals[i] = 0] ≥ 1−n−α within Θ(Bi + α ln n) time WHP
in which Bi is the maximum value for signal i. The lemma is a restatement from [17, Lemma
3.3] and [3, Lemma 1].

▶ Lemma 4.8. For every agent u ∈ A let u.signals[i] = Bi when u.group = i. Assume
that no agent sets its group to i from this point on. Then for all α ≥ 1, all agents will have
signals[i] = 0 after 3n ln

(
nα · 3Bi

)
interactions with probability at least 1− n−α.

Proof. Set t = 3n ln
(
nα · 3Bi

)
and Rmax = Bi in the proof of [17, Lemma 3.3]. ◀

4.4 Dynamic size counting protocol analysis
Recall that estimate denote the estimate of log n in agents’ memory, and n is the true
population size. In the previous section, we show that the set of present group values among
the population will quickly (in O(log n) time) enter a small sub-interval of consecutive values
in [1, 3 · log n] consistent with the population size. This section will show that the group
values will remain in that interval (with high probability for polynomial time). Moreover,
the following two lemmas show how the agents update their estimate if it is far from log n.
The proofs appear in the full version [20].

Assuming the agents’ estimate is much smaller than log n, the next lemma shows that all
the agents will notice the large gap between estimate and FMV. Hence, they will re-calculate
their population size estimate.

▶ Lemma 4.9. Let M = maxu∈A u.estimate. Assuming M ≤ 0.22 log n, then the whole
population will enter WaitingPhase in O(log n) time with probability at least 1−O(n−2).

For the other direction, assume the population size estimate in agents’ memory is much
larger than log n. We prove in the following lemma that all the agents will notice the large gap
between estimate and FMV. Hence, they will re-calculate their population size estimation.

Note that in Corollary 4.7, we proved for all group values i for log ln n ≥ i, the signals[i]
will have a positive value in O(log n) time. However, we could not prove the same bound
for values less than log ln n. So, inevitably the agents ignore their signals for values that
are less than log ln n. Since the agents have no access to the value of log n, they have to
use estimate as an approximation of log n. Thus, they ignore indices that are less than
log M in signals: making FMV a function of max(log M, log n). For example, if the true
population size is n but M > 2n, then the agents should ignore the appearance of a zero
in their signals for all indices i that are ≤ log(M) = n. The correct FMV happens at index

SAND 2022

13:14 Dynamic Size Counting in Population Protocols

j = Θ(log n), but the agents stay in the NormalPhase as long as signals[i] for i ≥ n are
positive. In this scenario, it takes O(n) time for the agents to switch to WaitingPhase since
for each signals[i], it takes O(i) time to hit zero.

This scenario is inevitable with our current detection scheme since for indices i that are
less than log ln n, the event of signals[i] = 0 happens frequently.

▶ Lemma 4.10. Let M = maxu∈A u.estimate. Assuming M ≥ 7.5 · log n, then the whole
population will enter WaitingPhase in O(log n + log M) time with probability at least 1 −
O(n−2).

In the next theorem (full proof given in [20]), we will show once there is a large gap
between the maximum estimate among the population and the true value of log n, the
agents update their estimate in O(log n + log M) time.

▶ Theorem 4.11. Let M = maxu∈A u.estimate. Assuming estimate ≥ 7.5 log n or
estimate ≤ 0.2 log n, then every agent replaces its estimate with a new value that is
in [log n− log ln n, 2 log n] with probability 1−O(1/n) in O(log n + log M) time.

Proof sketch. By Lemmas 4.9 and 4.10, once an agent notices the large gap between
estimate and FMV, they switch to WaitingPhase. We set WaitingPhase long enough so when
the first agent moves to UpdatingPhase, there is no agent left in the NormalPhase. Thus,
they all re-generate a new geometric random variable and store the maximum as their
estimate. ◀

In the full version of the paper [20], we show that the holding time of our protocol is
polynomial. For the state complexity, recall that the adversary can initialize agents with
large integer values to arbitrarily increase memory usage. Therefore, we should calculate
the agents’ memory concerning the fields defined in our protocol and the value that the
adversary can set in them. Thus, we use s as the largest integer value that the adversary set
in the agents’ memory.

▶ Theorem 4.12. Let M = max u.estimate for all u ∈ A. There is a uniform leaderless
loosely-stabilizing population protocol that WHP:
1. If M > 7.5 log n or M < 0.2 log n reaches to a configuration with all agents set their

estimate with a value in [log n− log ln n, 2 log n] in O(log n + log M) parallel time.
2. If 0.75 log n < M < 2.25 log n, then the agents hold a stable estimate during the following

O(n15) parallel time.
3. Assuming for every agent u ∈ A, max(u.estimate, u.GRV, u.group, u.signals.size()) < s

in the initial configuration, then the protocol uses O(log2(s) + log n log log n) bits per
agent.

4.5 Space optimization
In this section, we explain how to reduce the space complexity of the protocol from O(log2(s)+
log n log log n) to O(log2(s) + (log log n)2) bits per agent.

In Protocol 1, the agents keep track of all the present group values using an array
of size O(log n) (stored in signals) by mapping every group = i to signals[i]. We can
reduce the space complexity of the protocol by reducing the signals’ size. Let the agents
map a group = i to signals[⌊log i⌋]. So, instead of monitoring all O(log n) group values,
they keep O(log log n) indices in their signals. Thus, reducing the space complexity to
O(log2(s) + (log log n)2) bits per agent.

D. Doty and M. Eftekhari 13:15

Recall that in Protocol 1, there are ≈ n
2i agents with group = i for i ≤ 0.9 log n that help

keep signals[i] positive. However, with this technique, there will be ≈
∑2j+1

i=2j
n
2i agents that

are helping signals[i] to stay positive. So, every lemma in Section 4.3 about Protocol 3
holds. Finally, we update Protocol 5 so that the agents compare their estimate with 2LFMV

in which LFMV is the smallest index i > log log M such that signals[i] = 0. On the negative
side of this optimization, we get a less sensitive protocol with respect to the gap between
agents’ estimate and log n.

▶ Theorem 4.13. Let M = max u.estimate for all u ∈ A. There is a uniform leaderless
loosely-stabilizing population protocol that WHP:

1. If M > 15 log n or M < 0.1 log n reaches to a configuration with all agents set their
estimate with a value in [log n− log ln n, 2 log n] in O(log n + log M) parallel time.

2. If 0.75 log n < M < 2.17 log n, then the agents hold a stable estimate during the following
O(n15) parallel time.

3. Assuming for every agent u ∈ A, max(u.estimate, u.GRV, u.group, u.signals.size()) < s

in the initial configuration, then the protocol uses O(log2(s) + (log log n)2) bits per agent.

5 Conclusion and open problems

In this paper, we introduced the dynamic size counting problem. Assuming an adversary
who can add or remove agents, the agents must update their estimate according to the
changes in the population size. There are several open questions related to this problem.

Reducing convergence time. Our protocol’s convergence time depends on both the
previous (nprev) and next (nnext) population sizes, though exponentially less on the former:
O(log nnext + log log nprev). Is there a protocol with optimal convergence time O(log nnext)?

Increasing holding time. Observation 3.4 states that the holding time must be finite, but
it is likely that much longer holding times than Ω(nc) for constant c are achievable. For the
loosely-stabilizing leader election problem, there is a provable tradeoff in the sense that the
holding time is at most exponential in the convergence time [26,36]. Does a similar tradeoff
hold for the dynamic size counting problem?

Reducing space. Our main protocol uses O(s+(log n)log n) states (equivalent to O(log2(s)+
log n log log n) bits). In Section 4.5, we showed how we can reduce the state complexity of
our protocol to o(nϵ) (equivalent to O(log2(s) + (log log n)2) bits) by mapping more than one
group to each index of the signals. With this trick, we reduce the size of the signals from
O(log n) to O(log log n). Another interesting idea is to replace our O(log n) detection scheme
to O(1) detection protocol of [22] which puts a constant threshold on the values stored in
each index. So, it may be possible to reduce the space complexity even more to O(cO(log n))
(with all O(log n) indices present) or O(cO(log log n)) = polylog(n) (using our optimization
technique to have O(log log n) indices in the signals).

However, the current protocol of [22] has a one-sided error that makes it hard to compose
with our protocol. With probability ϵ > 0, the agents might say signal i has disappeared
even though there exists agents with group = i in the population.

Additionally, in the presence of a uniform self-stabilizing synchronization scheme, one
could think of consecutive rounds of independent size computation. The agents update their
output if the new computed population size drastically differs from the previously computed

SAND 2022

13:16 Dynamic Size Counting in Population Protocols

population size. Note that the self-stabilizing clock must be independent of the population
size since we allow the adversary to change the value of log n by adding or removing agents.
To the best of our knowledge, there is no such synchronization scheme available to population
protocols.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L Rivest. Time-

space trade-offs in population protocols. In SODA 2017: Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2560–2579. SIAM, 2017.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In SODA 2018: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2221–2239. SIAM, 2018.

3 Dan Alistarh, Bartłomiej Dudek, Adrian Kosowski, David Soloveichik, and Przemysław
Uznański. Robust detection in leak-prone population protocols. In DNA Computing and
Molecular Programming, pages 155–171. Springer International Publishing, 2017.

4 Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population protocols.
In ICALP 2015: Proceedings, Part II, of the 42nd International Colloquium on Automata,
Languages, and Programming - Volume 9135, pages 479–491. Springer-Verlag, 2015. doi:
10.1007/978-3-662-47666-6_38.

5 Dan Alistarh, Martin Töpfer, and Przemysław Uznański. Fast and robust comparison in
population protocols. In PODC 2021: The ACM Symposium on Principles of Distributed
Computing, 2021.

6 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006.

7 Dana Angluin, James Aspnes, Michael J. Fischer, and Hong Jiang. Self-stabilizing population
protocols. ACM Trans. Auton. Adapt. Syst., 3(4):1–28, 2008. doi:10.1145/1452001.1452003.

8 James Aspnes, Joffroy Beauquier, Janna Burman, and Devan Sohier. Time and space optimal
counting in population protocols. In 20th International Conference on Principles of Distributed
Systems (OPODIS 2016), volume 70, pages 13:1–13:17, 2017.

9 Joffroy Beauquier, Janna Burman, Simon Clavière, and Devan Sohier. Space-optimal counting
in population protocols. In Distributed Computing, pages 631–646, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

10 Joffroy Beauquier, Julien Clement, Stephane Messika, Laurent Rosaz, and Brigitte Rozoy. Self-
stabilizing counting in mobile sensor networks with a base station. In Distributed Computing,
pages 63–76, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

11 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An O(log3/2 n) parallel time
population protocol for majority with O(log n) states. In PODC 2020: Proceedings of the 39th
Symposium on Principles of Distributed Computing, pages 191–199. Association for Computing
Machinery, 2020. doi:10.1145/3382734.3405747.

12 Petra Berenbrink, Felix Biermeier, Christopher Hahn, and Dominik Kaaser. Loosely-stabilizing
phase clocks and the adaptive majority problem. In SAND 2021: 1st Symposium on Algorithmic
Foundations of Dynamic Networks, 2021.

13 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and
Tomasz Radzik. A Population Protocol for Exact Majority with O(log5/3 n) Stabilization
Time and Theta(log n) States. In 32nd International Symposium on Distributed Computing
(DISC 2018), volume 121 of Leibniz International Proceedings in Informatics (LIPIcs), pages
10:1–10:18, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.DISC.2018.10.

https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1145/1452001.1452003
https://doi.org/10.1145/3382734.3405747
https://doi.org/10.4230/LIPIcs.DISC.2018.10

D. Doty and M. Eftekhari 13:17

14 Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader election
in population protocols. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, pages 119–129, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384312.

15 Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach. Simple and efficient
leader election. In SOSA 2018: The 1st Symposium on Simplicity in Algorithms, pages 9:1–9:11,
2018. doi:10.4230/OASIcs.SOSA.2018.9.

16 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief announcement:
Population protocols for leader election and exact majority with O(log2 n) states and O(log2 n)
convergence time. In PODC 2017: Proceedings of the ACM Symposium on Principles of
Distributed Computing, pages 451–453. Association for Computing Machinery, 2017. doi:
10.1145/3087801.3087858.

17 Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty, Thomas Nowak, Eric Severson,
and Chuan Xu. Time-optimal self-stabilizing leader election in population protocols. In PODC
2021: Proceedings of the ACM Symposium on Principles of Distributed Computing, pages
33–44. ACM, 2021. doi:10.1145/3465084.3467898.

18 David Doty and Mahsa Eftekhari. Efficient size estimation and impossibility of termination
in uniform dense population protocols. In PODC 2019: Proceedings of the ACM Symposium
on Principles of Distributed Computing, pages 34–42. Association for Computing Machinery,
2019. doi:10.1145/3293611.3331627.

19 David Doty and Mahsa Eftekhari. A survey of size counting in population protocols. Theoretical
Computer Science, 894:91–102, 2021. Building Bridges – Honoring Nataša Jonoska on the
Occasion of Her 60th Birthday. doi:10.1016/j.tcs.2021.08.038.

20 David Doty and Mahsa Eftekhari. Dynamic size counting in population protocols, 2022.
arXiv:2202.12864.

21 David Doty, Mahsa Eftekhari, Othon Michail, Paul G. Spirakis, and Michail Theofilatos. Brief
Announcement: Exact Size Counting in Uniform Population Protocols in Nearly Logarithmic
Time. In 32nd International Symposium on Distributed Computing (DISC 2018), volume
121 of Leibniz International Proceedings in Informatics (LIPIcs), pages 46:1–46:3, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
DISC.2018.46.

22 Bartłomiej Dudek and Adrian Kosowski. Universal protocols for information dissemination
using emergent signals. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 87–99, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3188745.3188818.

23 Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of computer and system sciences, 31(2):182–209, 1985.

24 Leszek Ga̧sieniec, Grzegorz Stachowiak, and Przemysław Uznański. Almost logarithmic-
time space optimal leader election in population protocols. In The 31st ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’19, pages 93–102. Association for
Computing Machinery, 2019. doi:10.1145/3323165.3323178.

25 Shafi Goldwasser, Rafail Ostrovsky, Alessandra Scafuro, and Adam Sealfon. Population
stability: regulating size in the presence of an adversary. In Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, pages 397–406. ACM, 2018.

26 Taisuke Izumi. On space and time complexity of loosely-stabilizing leader election. In Structural
Information and Communication Complexity, pages 299–312. Springer International Publishing,
2015.

27 Tomoko Izumi, Keigo Kinpara, Taisuke Izumi, and Koichi Wada. Space-efficient self-stabilizing
counting population protocols on mobile sensor networks. Theoretical Computer Science,
552:99–108, 2014. doi:10.1016/j.tcs.2014.07.028.

28 Guy Louchard and Helmut Prodinger. The moments problem of extreme-value related
distribution functions. Algorithmica, 2004.

SAND 2022

https://doi.org/10.1145/3357713.3384312
https://doi.org/10.4230/OASIcs.SOSA.2018.9
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1145/3465084.3467898
https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1016/j.tcs.2021.08.038
http://arxiv.org/abs/2202.12864
https://doi.org/10.4230/LIPIcs.DISC.2018.46
https://doi.org/10.4230/LIPIcs.DISC.2018.46
https://doi.org/10.1145/3188745.3188818
https://doi.org/10.1145/3323165.3323178
https://doi.org/10.1016/j.tcs.2014.07.028

13:18 Dynamic Size Counting in Population Protocols

29 Guy Louchard, Helmut Prodinger, and Mark Daniel Ward. The number of distinct values
of some multiplicity in sequences of geometrically distributed random variables. In Discrete
Mathematics and Theoretical Computer Science, pages 231–256. Discrete Mathematics and
Theoretical Computer Science, 2005.

30 László Lovász and Peter Winkler. Reversal of markov chains and the forget time. Combinatorics,
Probability and Computing, 7(2):189–204, 1998.

31 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In 14th IEEE International Symposium on Network
Computing and Applications, pages 35–42, 2015.

32 Helmut Prodinger. Philippe flajolet’s early work in combinatorics. arXiv preprint, 2021.
arXiv:2103.15791.

33 Yuichi Sudo, Ryota Eguchi, Taisuke Izumi, and Toshimitsu Masuzawa. Time-optimal loosely-
stabilizing leader election in population protocols. In DISC 2021: The 35th International
Symposium on Distributed Computing, 2021.

34 Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa. Loosely-stabilizing leader election in population protocol model.
In Structural Information and Communication Complexity, pages 295–308, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

35 Yuichi Sudo, Fukuhito Ooshita, Taisuke Izumi, Hirotsugu Kakugawa, and Toshimitsu
Masuzawa. Logarithmic expected-time leader election in population protocol model. In
Stabilization, Safety, and Security of Distributed Systems, pages 323–337. Springer International
Publishing, 2019.

36 Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K.
Datta, and Lawrence L. Larmore. Loosely-Stabilizing Leader Election with Polylogarithmic
Convergence Time. In 22nd International Conference on Principles of Distributed Systems
(OPODIS 2018), volume 125 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 30:1–30:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.OPODIS.2018.30.

http://arxiv.org/abs/2103.15791
https://doi.org/10.4230/LIPIcs.OPODIS.2018.30

Simulating 3-Symbol Turing Machines with
SIMD||DNA
David Doty # Ñ

University of California, Davis, CA, USA

Aaron Ong #

University of California, Davis, CA, USA

Abstract
SIMD||DNA [12] is a model of DNA strand displacement allowing parallel in-memory computation
on DNA storage. We show how to simulate an arbitrary 3-symbol space-bounded Turing machine
with a SIMD||DNA program, giving a more direct and efficient route to general-purpose information
manipulation on DNA storage than the Rule 110 simulation of Wang, Chalk, and Soloveichik [12].
We also develop software [10] that can simulate SIMD||DNA programs and produce SVG figures.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases DNA storage, strand displacement, parallel computation

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.14

Related Version Full Version: https://arxiv.org/abs/2105.08559

Supplementary Material Software (Simulator Source Code):
https://github.com/UC-Davis-molecular-computing/simd-dna

archived at swh:1:dir:95e293f1f2de0273fcdf5414a1f44848dd10685c

Funding The authors were supported by NSF grants 1900931 and 1844976.

1 Introduction

DNA storage typically encodes information in the choice of DNA sequences [1, 3, 7], so that
reading and writing require expensive sequencing (reading DNA) and synthesis (writing
DNA) steps. An alternative “nicked storage” scheme of Tabatabaei et al. [11] uses a single
long strand called a register, with a fixed sequence. Information is stored in the choice of
short complementary strands to bind to the register. This gives the potential to process the
stored information using DNA strand displacement (see Figure 1), which reconfigures which
DNA strands are bound, without changing their sequences. Thus manipulation of the stored
information (i.e., computation) can potentially be done in vitro with simpler lab steps than
DNA sequencing or synthesis.

Input strand Output strand

Figure 1 DNA strand displacement (see [9] for more details). An input DNA strand (turquoise)
binds to the short toehold region of a complementary strand (pink) and displaces the output strand
(purple). The toehold region is so-called because, although too short to bind stably, it allows
temporary binding of the input, giving it a “foot in the door” to begin the displacement process.

The SIMD||DNA model of Wang, Chalk, and Soloveichik [12] is an abstract model of
such a system. It allows parallel in-memory computation on several copies of the register;
each register may store different data. In the experimental implementation, each register
strand is attached to a magnetic bead, enabling elution: washing away strands not bound to

© David Doty and Aaron Ong;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:doty@ucdavis.edu
https://web.cs.ucdavis.edu/~doty/
https://orcid.org/0000-0002-3922-172X
mailto:aabong@ucdavis.edu
https://doi.org/10.4230/LIPIcs.SAND.2022.14
https://arxiv.org/abs/2105.08559
https://github.com/UC-Davis-molecular-computing/simd-dna
https://github.com/UC-Davis-molecular-computing/simd-dna
https://archive.softwareheritage.org/swh:1:dir:95e293f1f2de0273fcdf5414a1f44848dd10685c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Simulating 3-Symbol Turing Machines with SIMD||DNA

a register, while keeping the registers (and their bound strands) in the solution due to their
attachment to the bead. This motivates the “multi-stage” SIMD||DNA model of DNA strand
displacement, which at a high level works as follows. Each stage is called an instruction,
consisting of a set of strands to add to the solution. It is assumed that strand displacement
reactions proceed until the solution reaches equilibrium, at which point all strands and
complexes not attached to a register are washed away. The strands for the next instruction
are then added. A key aspect of the model is that the wash step can constrain what strand
displacement reactions are possible afterward, compared to “one-pot” strand displacement
schemes that mix all strands from the start. This gives the SIMD||DNA model potentially
more power than one-pot DNA strand displacement. Wang, Chalk, and Soloveichik [12]
showed SIMD||DNA programs for binary counting and simulating cellular automata Rule
110, and Chen, Solanki, and Riedel [2] showed SIMD||DNA programs for sorting, shifting
and searching in parallel. See Section 2 for a formal definition and [12] for more details and
motivation for the model.

A major theoretical result of [12] is a SIMD||DNA program that simulates a space-bounded
version of cellular automata Rule 110. When space is unbounded, Rule 110 is known to
be efficiently Turing universal, i.e., able to simulate any single-tape Turing machine [4]
with only a polynomial-time slowdown [5], though by an awkward indirect construction
and encoding with very large constant factors. We show how to simulate an arbitrary
3-symbol space-bounded single-tape Turing machine directly with a SIMD||DNA program.
Since custom manipulation of bits is much easier to program in a Turing machine than Rule
110, this gives a more direct, efficient, and conceptually simple method of general-purpose
information processing on nicked DNA storage. Although we have not worked out the details,
it seems likely that the construction can be extended straightforwardly to Turing machines
with alphabet sizes larger than 3. However, it is straightforward to simulate a larger-alphabet
Turing machine M with a 3-symbol Turing machine S, for example representing each of 16
non-blank symbols of M by 4 consecutive bits of S.

Our construction was designed and tested using software we developed [10] for simulating
the SIMD||DNA model. It is able to take a description of an arbitrary SIMD||DNA program:
a list of instructions, where each instruction is a set of DNA strands to add. It produces
figures indicating visually how the steps work, both with text printed on the command line
(for quickly testing ideas) and SVG figures, such as most of those in this paper.

2 Model

In this section we define the model of SIMD||DNA [12].
See Figure 2 for notational conventions in the SIMD||DNA model and an explanation

of the basic strand displacement reactions. The register strand is on the bottom in each
sub-figure, with a yellow round “magnetic bead” depicted on the left (bead not depicted in
subsequent figures). A DNA strand has an orientation, with one end called the 5′ end and
the other called the 3′ end; by convention strands are drawn as arrows with the arrowhead
on the 3′ end. The register strand has its 3′ end on the left and 5′ end on the right. The
model allows multiple registers to be present in solution at once, each possibly configured
differently. However, it is assumed that register strands are sufficiently dilute that they do
not interact with each other or with strands that have been displaced from other registers.
Thus all figures depict only a single register and instruction strands that interact with it.

The register strand is divided into cells, which are further divided into domains. Each
domain can be thought of as a fixed-length DNA sequence with relatively weak binding
(e.g., 5-7 bases). A strand is stably attached to the register strand only if it is bound by at

D. Doty and A. Ong 14:3

1 2 3 4 5 6 1 2 3 4 5 6

both strands
have domain 6

(a)

(b) attachment

(d) one-way displacement

cell 1 cell 2

(f) cooperative displacement

(e) toehold exchange displacement

(c) detachment

only right strand
has domain 3

Figure 2 Notational conventions and reactions in the SIMD||DNA model. The register strand is
on the bottom in each subfigure, with a yellow round “magnetic bead” depicted on the left (not
depicted in subsequent figures). Lightly shaded gray or pink regions denote bonds (double-stranded
regions), but later figures omit this and simply draw a forward strand (one with 5′ end on left and
3′ end on right) immediately above the domains to which it is bound on the register strand. (a)
Conventions for domain names of strands. Domains are numbered 1, . . . , d within each cell; d = 6
in Figure 2(a) and d = 18 in subsequent figures. The register strand has the starred versions of these
domains. If a top strand is horizontal over domain i, it has domain i. If it is diagonal over the whole
domain, it has an unlabelled domain distinct from all register domains (used as a toehold overhang
for detachment, see subfigure (c)). If two strands both partially cover a domain then they both have
that domain. (b) A forward instruction strand can attach if at least two complementary consecutive
domains are unbound on the register. (c) Reverse instruction strands can bind to toehold overhangs
on forward bound strands to detach them from the register. The fact that the (unlabelled) toeholds
are complementary is indicated by a diagonal bend in the reverse strand matching. (d) Forward
instruction strands can do toehold-mediated strand displacement, one-way if the displacing strand
contains all the domains of the displaced strand. (e) If the displacing strand is missing the last
domain of the displaced, displacement can also happen, known as toehold exchange. This is often
called “reversible” since it conserves the number of bound domains, but in the SIMD||DNA model,
instruction strands are added in large excess over registers, making it effectively irreversible due to
the entropic bias toward binding the instruction strand. Thus it is depicted with irreversible arrows
in the figure. (f) Two forward strands can cooperate to displace a single bound top strand, even if
neither has enough domains to displace on its own.

least two domains, but one domain is sufficiently long to act as a “toehold” to help initiate
strand displacement (Figure 2(c-f)). Within a cell with d domains, each domain is unique
and assumed to be named 1, 2, . . . , d. The register strand has the starred version of these
domains, e.g., 1∗, 2∗, 3∗, 4∗, 5∗, 6∗, 1∗, 2∗, 3∗, 4∗, 5∗, 6∗ reading from the register’s 3′ to 5′ end
(left to right) in Figure 2(a). All cells have the same ordered list of domains, so for example
in Figure 2(a), domain 5 in cell 1 is the same DNA sequence as domain 5 in cell 2.

An instruction is a set of strands that are added to the solution at once. Figure 2(b-f) shows
the various reactions that these strands might conduct to change the configuration of strands
attached to the register. Multiple reactions can occur in a cascade in a single instruction.1

1 See for example instruction 39 in Figure 8. In the right cell, an orange instruction strand displaces an
orange strand bound to the register via toehold exchange. This opens a toehold for a blue instruction
strand to displace the bound blue strand, resulting in the configuration shown at the beginning of
instruction 41.

SAND 2022

14:4 Simulating 3-Symbol Turing Machines with SIMD||DNA

In particular, the model is nondeterministic, and in general multiple reactions might be
possible. It is the job of the system designer to ensure that only one final configuration can
result no matter the order of reactions. Instruction strands can either be forward (3′ arrow
on right) or reverse (3′ arrow on left). Forward instruction strands can do attachment and
displacement reactions (Figure 2(b,d-f)) and reverse instruction strands can detach forward
strands previously bound to the register (Figure 2(c)).

Crucially, instruction strands are added in large excess over the register strands. Thus
even the toehold exchange displacement, which is often considered reversible due to being
enthalpically balanced (same number of domains bound before and after), is actually irrevers-
ible in the SIMD||DNA model, due to the entropic bias toward binding the new instruction
strand with much larger concentration than the strand it displaces.

The notation of [12] uses dashed lines for reverse strands used for detachment, as a visual
reminder that they do not bind to the register. We leave reverse strands as solid lines and rely
on the 3′ arrow to denote that the strand is reversed. We reserve the dashed line notation for
later figures to depict inert instruction strands: instruction strands that are shown above the
register where they would bind if possible, but where no reaction allows them to do so in the
current configuration. We also have a slightly different notation for strands with domains
mismatching the register: in [12], these are depicted by writing an explicit domain name.
In our convention, the drawing of that part of the strand as diagonal and lying entirely
above the register domain indicates that the top strand domain and register domain are not
complementary (Figure 2(a), cell 2, domain 3). To denote that two adjacent top strands
share the same domain, both of which can bind to the register (so they dynamically compete
with strand displacement), we draw both strands partially horizontal over the domain, and
partially diagonal (Figure 2(a), cell 1, domain 6).

Although these rules allow for nondeterministically competing reactions, our construction
is deterministic in the sense that there is only one sequence of reactions possible in any
instruction step.

After instruction strands are added and the described reactions go to completion, the
wash step removes all strands not bound to the register. This includes excess instruction
strands that never reacted, as well as strands that were displaced or complexes formed in a
detachment reaction.

3 Simulation of Turing machine in SIMD||DNA

In this section we describe how to simulate an arbitrary 3-symbol single-tape Turing machine
with SIMD||DNA instructions.

3.1 High-level overview of construction
Since the SIMD||DNA model as defined has no mechanism to grow the register strand, it can
only simulate a fixed-space-bound Turing machine (a.k.a., linear-bounded automaton), which
starts with s total tape cells and never moves the tape head off of them. A 3-symbol, space-s
Turing machine has three tape symbols: 0, 1, ⌞⌟. The binary input x ∈ {0, 1}<s is represented
by string x⌞⌟s−|x| on the tape in the initial configuration, i.e. x padded with enough blank
symbols to make s total tape cells. We use as a running example the 5-transition Turing
machine in Figure 3, which increments a binary number.

Each cell of the register represents a tape cell of the Turing machine. If the Turing
machine has t total transitions, then each cell uses d = 2t + 8 domains.

For each Turing machine, there is a fixed sequence of instructions that, after executing,
will update the register to represent the next configuration of the Turing machine.

D. Doty and A. Ong 14:5

0 , 1→R

␣→ L 0→ 1 , L

1→ 0 , L

a b h

Figure 3 Turing machine (start state a) that increments an integer represented in binary, with
the least significant bit on the right. This example is simulated in all subsequent figures.

The cell with the tape head is the only cell with uncovered register domains. Which
domains are uncovered (known as a transition region) represents both the current state of
the Turing machine and the symbol written on that tape cell. For all other cells, a disjoint
region (the symbol region) represents the symbol on that cell through its pattern of nicks.
On the cell with the tape head, the symbol region has no nicks (and represents no symbol)
since it is covered by a longer 8-domain strand.

3.2 Representation of Turing machine tape cell as a register cell
In the SIMD||DNA representation of a Turing machine, each register cell represents a single
Turing machine tape cell. We represent each Turing machine with tape alphabet Γ = {0, 1, ⌞⌟},
state set Q, and halt state h, as a set of transitions, where each transition (q, b) → (r, c, m)
means that if the Turing machine is in state q ∈ Q \ {h} reading symbol b ∈ Γ, it changes to
state r, writes symbol c, and moves one cell by m ∈ {L, R} (left or right). Since the Turing
machine is deterministic, for each state-symbol pair, there is at most one transition with
that pair on the left. (But some such pairs could be undefined, e.g., there is no (b, ⌞⌟) → . . .

transition in Figure 3.)

Representation of tape cell with tape head

(a,0) (b,0)(a,⎵) (b,1)

Transition regions

(a,1)

Symbol region

Figure 4 A SIMD||DNA cell where the tape head is presently located. The (a, 0) region is fully
exposed, indicating that the Turing machine is in state a and that the cell contains the symbol 0.
The other transition regions are fully covered, and the symbol region (rightmost 8 domains of the
cell) is covered by a single long strand, not encoding any symbol (which is encoded by the uncovered
transition region).

We take every state-symbol pair (q, σ) ∈ (Q\{h})×Γ (each possible left side of a transition)
and represent each as two consecutive domains in a SIMD||DNA register cell. See Figure 4.
Recall the binary incrementing Turing machine of Figure 3. It has five transitions: (a, 0) →
(a, 0, R), (a, 1) → (a, 1, R), (a, ⌞⌟) → (b, ⌞⌟, L), (b, 0) → (1, h, L), (b, 1) → (0, b, L).
We call the pair on the left the transition input. Each of the given transition inputs is
represented in the SIMD||DNA cell using two domains, requiring ten domains total for our
example. Since each register cell represents a cell in M , we must denote the presence of the
tape head on one of the cells. If the tape head is present on a given cell and if the current
Turing machine configuration has a valid transition, then the two domains that represent

SAND 2022

14:6 Simulating 3-Symbol Turing Machines with SIMD||DNA

that transition will have no top strand attached to them, leaving them exposed. For example,
if the tape head is on a cell with the 0 symbol, and the Turing machine is currently in state
a, then the region that represents (a, 0) in that cell will be exposed to serve as a toehold for
strand displacement. The other transition regions are fully covered by 2-domain strands.

Representation of tape cell without tape head

If the tape head is not present on a cell, or if no valid transitions exist for the current
configuration,2 then every transition region is covered by 2-domain strands. Eight additional
domains at the rightmost part of the cell, called the symbol region represent the current
symbol written on that cell.

0 (a,1) ⎵

0 strand pattern

⎵ strand pattern

1 strand pattern

0 1 (a,⎵)

full list of instructions

0 (b,1) ⎵

full list of instructions

Figure 5 High-level overview of construction. A Turing machine register currently in state a,
with the tape head on the second cell. The second cell contains the symbol 1. The leftmost cell
contains symbol 0. The inset above shows encodings for 1 and ⌞⌟. All the transition regions are fully
covered in cells lacking the tape head. After the full list of instructions in the SIMD||DNA program
are complete, the register represents the Turing machine configuration with state a and the tape
head moved to the rightmost cell with the ⌞⌟. The same full list of instructions updates the register
again, now representing the Turing machine configuration in state b with the tape head back on the
middle cell.

Whenever the tape head is present on a cell, the symbol region is covered by a single
8-domain strand that does not encode any symbol, since the symbol information is already
encoded in the transition region with an open toehold.

2 For example, if the machine has halted; see the bottom register configuration of Figure 9 for a case
where the state is non-halting but no valid transition exists.

D. Doty and A. Ong 14:7

1

(a,0) 1 0 1 ⎵

2

(a,0) 1 0 1 ⎵

3

(a,0) 1 0 1 ⎵

4

1 0 1 ⎵

5

1 0 1 ⎵

6

1 0 1 ⎵

7

0 1 ⎵

8

0 1 ⎵

9

0 1 ⎵

10

0 1 ⎵

11

0 1 ⎵

12

0 1 ⎵

13

0 1 ⎵

14

0 1 ⎵

15

0 1 ⎵

16

0 1 ⎵

17

0 1 ⎵

18

0 1 ⎵

19

0 0 1 ⎵

Figure 6 An overview of the first 19 instructions of the construction, which represent the
(a, 0) → (a, 0, R) transition of the Turing machine shown in Figure 3. Instructions marked with a
red cross are fully inert, meant for cases not exhibited by this register.

3.3 Detailed description of SIMD||DNA instructions simulating a Turing
machine

We designed an algorithm that converts Turing machine specifications from https://
turingmachine.io into SIMD||DNA representations, along with the equivalent instruc-
tions. Each transition τi has an associated sublist of instructions Li, and, not knowing which
transition is applicable to the current configuration, we simply add instruction strands in
order from L1, L2, For i ̸= j, to ensure that Lj instructions have no effect when the
current applicable transition is τi, we “plug” the open domains of other transition regions with
a strand and remove the plug strand once it’s time to process that transition. Because the
SIMD||DNA model allows parallel computation among multiple registers in the same solution,
this prevents instructions meant for one configuration from affecting registers currently not
in that configuration. In the beginning, all transition regions are plugged, where the order of
processing for the transitions is arbitrary.

SAND 2022

https://turingmachine.io
https://turingmachine.io

14:8 Simulating 3-Symbol Turing Machines with SIMD||DNA

Figure 7 On the left, the first instruction in the whole SIMD||DNA program covers the transition
region representing the next applicable transition. The two horizontal rows of strands have the
following interpretation: Bottom are strands bound to register, top are instruction strands. Dashed
instruction strands will not have an effect on the current cell (but to help verify correctness, they
are shown above where they would bind to the register). On the right, the last instruction in the
whole SIMD||DNA program, which removes the post-plug strands in each register. In the above
example, the post-plug strand covers the (a, 0) transition region, indicating the cell’s next Turing
machine transition. After this, the entire register is updated to appear as a configuration similar to
those in Figure 5.

Pre-plug and post-plug strands to protect instructions for inapplicable transitions
from affecting configuration

The full list of instructions to simulate a Turing machine transition works as follows. Recall
that in the “clean” configurations shown in Figure 5, the only exposed register domains
are on the cell representing the tape head. The first instruction in the entire list contains
pre-plug strands for each transition region. At the end of each instruction sublist Li, a
post-plug strand is also placed on the transition region that represents the Turing machine’s
next applicable transition. Examples of both can be seen in Figure 7. These strands act
like a “chemical protecting group” that prevents instruction sublists Li from modifying
the register unless they apply to the intended transition. The difference between the pre-
plug and post-plug strands is that pre-plug strands protect the configuration when using
instructions strands before the applicable transition, whereas post-plug strands protect the
configuration when using instructions strands after the applicable transition. In the left
part of Figure 7, because the register has a pre-plug strand in (a, ⌞⌟), it means that the
instruction sublist L(a,⌞⌟) has not been applied to it yet. Instruction sublists for the other
transitions (a, 0) → . . . , (a, 1) → . . . , (b, 0) → . . . , (b, 1) → . . . will be inert, not
affecting the register. The first instruction of L(a,⌞⌟) will remove this pre-plug strand so that
any register in the (a, ⌞⌟) configuration can be processed. The instruction sublists will result
in a configuration like that of the bottom of Figures 8 and 9. Figure 9 shows instructions
that affect the cell where the tape head was (right cell), not where it will be next (left cell),
which is why the left cell is the same in both Figures 8 and 9. This almost represents the
next Turing machine configuration, but with the appropriate transition region covered by a
post-plug strand. The final instruction in the entire list (Figure 7) removes this post-plug
strand, restoring the register configuration to be as shown in Figure 5.

The post-plug strand placed on the transition region at the end of simulating a transition
has a different purpose from the pre-plug strand placed in instruction 1. Its purpose is to
prevent the register from updating its state multiple times in the same instruction iteration.
For example, if a register has a post-plug strand on the (b, 1) region (indicating that it has
been processed and that its next transition is (b, 1)), and the instruction sublist that processes
(b, 1) comes after, the register will be unaffected by (b, 1)’s deprotecting instruction, keeping
it inert throughout. The final instruction in the entire iteration removes these post-plug
strands from the registers, as seen in Figure 7, preparing the registers for the next iteration
of the instruction set.

D. Doty and A. Ong 14:9

Note the duality between pre-plug and post-plug instructions. All pre-plug strands are
included in the first instruction, though only one of them will bind (the one matching the
applicable transition), and instruction strands removing all post-plug strands are included
as part of the last instruction, though only one will find its complementary post-plug strand
to remove. On the other hand, each pre-plug instruction is removed more specifically, by
adding a single complementary strand to remove it just prior to the sublist of instructions
corresponding to the applicable transition. Similarly, each post-plug strand is added by itself,
at the end of the instruction sublist corresponding to the applicable transition.

In the next section, we will describe the details of the instruction sublists that represent
the Turing machine transitions.

Sublist of instructions representing a single Turing machine transition

Figure conventions. For the figures explaining SIMD||DNA instructions that simulate a single
transition of the Turing machine (Figure 8 and beyond), we use the following conventions in
figures. Several register configurations are shown, but they are not necessarily consecutive.
Each is numbered with its absolute index in the list of all 86 instructions implementing the
Turing machine of Figure 3. If two adjacent configurations have non-consecutive instruction
indices, this means that the instructions not shown are inert: their strands do not affect
the register in that configuration. The instruction strands that have just been added are
always shown above the register, with a solid line if they will do a reaction as in Figure 2,
and with a dashed line if that instruction strand is inert for that configuration. The final
configuration in each figure does not show any instruction strands, but for all figures there is
a followup figure showing what happens next from that configuration (possibly the followup
is Figure 7, the final instruction in the entire program, removing the post-plug strand from
the next applicable transition region).

Each Turing machine transition is individually processed by a sublist of instructions.
The pre-plug strand is first removed by an instruction containing its complementary strand,
so that its corresponding transition region in the cell can be used as a toehold, such as
instruction 38 in Figure 8. The next instructions then update the contents of the current cell
to encode the symbol that the tape head writes. For example, in Figure 9, the transition
(a, ⌞⌟) → (b, ⌞⌟, L) is represented, and the strand encoding of ⌞⌟ is placed in the right cell after
the tape head writes on it and moves left. After that, the instructions check the contents
of the tape head’s new location and determine the Turing machine’s next configuration.
In Figure 8, the tape head moves to the left cell and finds a 1, and the Turing machine goes
to state b, so it leaves a post-plug strand on (b, 1)’s transition region to show that the register
has been processed for that instruction iteration, as seen in instruction 46.

Left versus right tape head moves

In the SIMD||DNA instructions implementing a single transition, there are two sublists: next-
cell instructions and previous-cell instructions. As their names indicate, next-cell instructions
update the contents of the tape head’s destination, while previous-cell instructions update
the contents of the tape head’s former location. Other factors such as the symbol to be
written on the current cell and the next applicable transition region only introduce minor
variations in the instruction strands.

For transitions moving the tape head left, the next-cell instructions precede the previous-
cell instructions (see Figures 8–11). For transitions moving the tape head right, this order is
reversed (see Figure 12 and Appendix A in the full version of the paper.).

SAND 2022

14:10 Simulating 3-Symbol Turing Machines with SIMD||DNA

Left tape head moves

Figure 8 shows the next-cell instructions for transition (a, ⌞⌟) → (b, ⌞⌟, L), for the special case
when the cell to the left of the tape head has the symbol 1. Figure 10 shows the next-cell
instructions for the same transition when the cell to the left of the tape head has the symbol
0, and Figure 11 shows the next-cell instructions when the cell to the left has the symbol
⌞⌟. Note that in any given configuration, the same instructions will result in exactly one
of the situations depicted in Figures 8, 10, and 11. Once these next-cell instructions are
applied, the leftmost domain of the previous cell will serve as a toehold for the previous-cell
instructions that follow in Figure 9.

38

39

41

43

44

45

46

(b,1)

1 (a,⎵)

Figure 8 First half of instructions (next-cell instructions) to implement transition a, ⌞⌟ → b, ⌞⌟, L,
in the case that the cell to the left (where the tape head will move) has a symbol 1. After instruction
46, the left cell (where the tape head will move next) now encodes the next state b and the symbol
1 on the new tape cell. Rather than show a red cross, inert instructions are instead omitted in
this figure and the following ones. Inert instructions (40,42,47,48) are used when the cell to the
left has a symbol 0 or ⌞⌟ on it instead. Figures 10 and 11 respectively show these cases. Figure 9
shows instructions completing the transition by writing ⌞⌟ over the right cell. In instruction 38, the
transition region is first unplugged to expose the toehold. The strands in instruction 39 cascade
until the left cell’s symbol region, allowing the instructions to branch out depending on the tape
content of the left cell. The remaining instructions process the left cell so that it encodes the next
configuration. In instruction 46, a special post-plug strand whose leftmost domain is orthogonal
is attached to the region that represents the next configuration; this strand will be removed once
all transitions have been processed. The angled dashed strands to the right of the register indicate
that no cells are present to the right of the rightmost cell; if there were another cell, then one more
domain of each of these strands would be horizontal, bound to the leftmost domain of the cell to the
right (just as with their solid counterparts to the left).

D. Doty and A. Ong 14:11

49

50

51

52

(b,1) ⎵

(b,1)

Figure 9 Second half (previous-cell instructions) of transition a, ⌞⌟ → b, ⌞⌟, L whose first 11
instructions are shown in Figure 8, Figure 10, and Figure 11; these instructions write ⌞⌟ over the old
cell (right of Figure 8) where the tape head was at the start of the transition. Slight variations of
instruction 15 write 0 or 1 instead of ⌞⌟.

Right tape head moves

For right transitions, the first three instructions are the previous-cell instructions, as shown
in Figure 12. The next-cell instructions follow, where the instructions strands that apply to
the register depend on the contents of the cell to the right of the tape head (a 0, 1, or ⌞⌟.)
The figures depicting these are shown in Appendix A of the full version of the paper.

Final deprotecting instruction

Figure 7 shows the final deprotecting instruction, which removes the post-plug strand put in
place during the last instruction of the non-inert instruction sublists. This puts the register
back into a “clean” configuration representing a Turing machine configuration, such as those
shown in Figure 5, opening up new toeholds for the next iteration of instructions.

3.4 Complexity of construction
A common metric of “complexity” of DNA systems is the number of unique domains they
require. Fewer is better because it is a nontrivial task to design orthogonal domains: domains
that, if they are not perfectly complementary, will have low binding affinity. Low domain
complexity is particular important in SIMD||DNA, where each domain is considered “toehold-
length”: sufficiently short (5-7 bases) that the off-rate of a strand bound by a single domain is
large enough to detach in a short amount of time. There are only 47 = 16384 DNA sequences
of length 7. In practice even fewer are available: half are complementary to the other
half, leaving only 8192 available to assign to the unstarred versions of each domain. DNA
sequence design heuristics such as the “3-letter code” (using only A,T,C for forward strands,
thus only A,T,G for the register and reverse strands) reduce this number to 37 = 2187.
Reasonable design constraints, e.g., avoiding almost equal domains such as 5′-AAAAAAG-3′

and 5′-AAAAAAA-3′, which both bind almost equally strongly to 3′-TTTTTTT-5′, further
limit the set of available domains.

SAND 2022

14:12 Simulating 3-Symbol Turing Machines with SIMD||DNA

38

39

40

42

(b,0)

0 (a,⎵)

Figure 10 The next-cell instructions of the transition in Figure 8 that are applicable when the
cell to the left of the tape head has a 0.

Our construction uses d = 2t+8 total unique DNA domains (which repeat throughout the
register), where t is the number of transitions of the simulated Turing machine. Each transition
is represented by 2 domains, assumed to be bound strongly enough not to spontaneously
dissociate. (The construction can be altered to use more domains, in case this assumption is
overly ideal.) To simulate a Turing machine with space bound s, the register has s “cells”,
where each cell is simply a copy of one each of the d domains 1, . . . d. Thus, if each domain
consists of k nucleotides, the register strand has k · s · (2t + 8) total nucleotides. There is an
11-state, 3-symbol universal Turing machine (directly simulating another Turing machine)
with 32 transitions [6], giving 2·32+8 = 72 total domains required in the worst case. However,
specialized non-universal Turing machines with a smaller number of transitions (for example
the 5-transition binary incrementor of Figure 5) could accomplish many computationally
sophisticated tasks.

Each Turing machine transition can be represented by approximately 16 SIMD||DNA
instructions. The exact number varies depending on the specific properties of the transition
in question, such as the the direction of the tape head, the symbol to be written, and whether
any of the possible next configurations are halting or not. This range has constant upper and
lower bounds, however, so the total number of instructions is in O(t), where t is the number
of transitions in the Turing machine. Because the size of the cell increases in O(t) due to the
transition regions, the number of DNA strands present in some instructions also scales by a
factor of O(t), most notably the instructions that cause a cascade of toehold exchanges.

4 Conclusion

Our construction, like the Rule 110 simulation of Wang, Chalk, and Soloveichik [12], is
not Turing universal because it simulates a space-bounded Turing machine. Truly universal
computation should be possible without advanced knowledge of the space requirement. An
interesting question (raised also in [12]) is whether a suitable augmentation of the SIMD||DNA
model could allow Turing-universal computation. This would require unbounded polymers

D. Doty and A. Ong 14:13

38

39

47

48

⎵

⎵ (a,⎵)

Figure 11 The next-cell instructions of the transition in Figure 8 that are applicable when the
cell to the left of the tape head has a ⌞⌟. Because no transition exists for the state-symbol pair
(b, ⌞⌟), the left cell is left unchanged.

such as those used in the two-stack machine DNA implementation of Qian, Soloveichik, and
Winfree [8]. That paper showed Turing universal computation in the case where only a single
copy of certain strands are permitted to exist in solution, simulating only a single stack
machine at a time, in contrast to the SIMD||DNA model, where we can operate on many
registers, each representing their own Turing machine, in parallel.

Technically the strand displacement reactions of the SIMD||DNA model are currently
powerful enough to grow arbitrarily large polymers from a fixed set of strands, as in [8],
by alternating top and bottom strands, making a long double-helix with nicks on the top
and bottom. However, it is difficult to see how to use the ability of SIMD||DNA to exploit
this to simulate a Turing machine represented in this way. If there are multiple bottom
strands, i.e., there is a nick on the bottom, then any strand displacement of top strands, upon
reaching this nick, would separate the polymer into two complexes to the left and right of
this nick, and the right polymer would be lost in the wash step. One could imagine, however,
augmenting the model to allow, for example, 3-arm junctions, which could be used to do
strand displacement that crosses over the boundary between two bottom strands without
separating them (since they would be joined to each other by a strong domain representing
the third arm “below” the main helix).

Although some of the toehold exchanges in the SIMD||DNA model are reversible based
on the principles of DNA strand displacement, we make the assumption that the applied
instructions are not undone by the displaced strands. This is based on the assumption
that the instruction strands are present in a sufficiently high concentration that reversal is
unlikely. Because multiple registers can be present in the same solution, another possibility
to consider is a displaced DNA strand from Register A binding to an open toehold in Register
B, such that the attachment is irreversible even with the presence of a high concentration of
instruction strands. One open question is to design a system that factors in these possibilities,
reducing the likelihood of unexpected strand displacement results.

SAND 2022

14:14 Simulating 3-Symbol Turing Machines with SIMD||DNA

2

3

4

5

00

0(a,0)

Figure 12 First half (previous-cell instructions) of transition a, 0 → a, 0, R. Instruction 3’s
strands cascade to the right side of the current cell, while instruction 4 removes the previously
introduced strands. Instruction 5 then covers up all the transition regions and adds the strands of
the symbol to be written on the current cell (0 in this example), but leaving the rightmost domain
exposed to act as a toehold for the next instructions.

Another open question is whether a more domain-efficient encoding exists for the Turing
machine construction. Given n transitions, 2n domains are required to represent them, which
has O(n) complexity. However, given d domains, there are 2d−1 possible nick patterns among
the attached strands, which makes O(log n) domain complexity possible in theory.

References
1 James Bornholt, Randolph Lopez, Douglas M Carmean, Luis Ceze, Georg Seelig, and Karin

Strauss. A DNA-based archival storage system. In ASPLOS 2016: Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 637–649, 2016.

2 Tonglin Chen, Arnav Solanki, and Marc Riedel. Parallel Pairwise Operations on Data Stored
in DNA: Sorting, Shifting, and Searching. In DNA 27: 27th International Conference on
DNA Computing and Molecular Programming, volume 205, pages 11:1–11:21, 2021. doi:
10.4230/LIPIcs.DNA.27.11.

3 George M Church, Yuan Gao, and Sriram Kosuri. Next-generation digital information storage
in DNA. Science, 337(6102):1628–1628, 2012.

4 Matthew Cook. Universality in elementary cellular automata. Complex systems, 15(1):1–40,
2004.

5 Turlough Neary and Damien Woods. P-completeness of cellular automaton Rule 110. In
ICALP 2006: International Colloquium on Automata, Languages, and Programming, pages
132–143. Springer, 2006.

6 Turlough Neary and Damien Woods. Small fast universal Turing machines. Theoretical
Computer Science, 362(1-3):171–195, 2006.

https://doi.org/10.4230/LIPIcs.DNA.27.11
https://doi.org/10.4230/LIPIcs.DNA.27.11

D. Doty and A. Ong 14:15

7 Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin,
Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien
Nguyen, Christopher N Takahashi, Sharon Newman, Hsing-Yeh Parker, Cyrus Rashtchian,
Kendall Stewart, Gagan Gupta, Robert Carlson, John Mulligan, Douglas Carmean, Georg
Seelig, Luis Ceze, and Karin Strauss. Random access in large-scale DNA data storage. Nature
Biotechnology, 36(3):242, 2018.

8 Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-universal computation
with DNA polymers. In International Workshop on DNA-Based Computers, pages 123–140.
Springer, 2010.

9 Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid
logic circuits. Science, 314(5805):1585–1588, 2006.

10 SIMD||DNA simulator.
Source code: https://github.com/UC-Davis-molecular-computing/simd-dna, 2021.

11 S Kasra Tabatabaei, Boya Wang, Nagendra Bala Murali Athreya, Behnam Enghiad, Al-
varo Gonzalo Hernandez, Christopher J Fields, Jean-Pierre Leburton, David Soloveichik,
Huimin Zhao, and Olgica Milenkovic. DNA punch cards for storing data on native DNA
sequences via enzymatic nicking. Nature Communications, 11(1):1–10, 2020.

12 Boya Wang, Cameron Chalk, and David Soloveichik. SIMD||DNA: Single instruction, multiple
data computation with DNA strand displacement cascades. In DNA 2019: International
Conference on DNA Computing and Molecular Programming, pages 219–235, 2019.

SAND 2022

https://github.com/UC-Davis-molecular-computing/simd-dna

Parameterized Temporal Exploration Problems
Thomas Erlebach #

Department of Computer Science, Durham University, UK

Jakob T. Spooner #

School of Computing and Mathematical Sciences, University of Leicester, UK

Abstract
In this paper we study the fixed-parameter tractability of the problem of deciding whether a
given temporal graph G admits a temporal walk that visits all vertices (temporal exploration)
or, in some problem variants, a certain subset of the vertices. Formally, a temporal graph is a
sequence G = ⟨G1, ..., GL⟩ of graphs with V (Gt) = V (G) and E(Gt) ⊆ E(G) for all t ∈ [L] and
some underlying graph G, and a temporal walk is a time-respecting sequence of edge-traversals.
For the strict variant, in which edges must be traversed in strictly increasing timesteps, we give
FPT algorithms for the problem of finding a temporal walk that visits a given set X of vertices,
parameterized by |X|, and for the problem of finding a temporal walk that visits at least k distinct
vertices in V , parameterized by k. For the non-strict variant, in which an arbitrary number of
edges can be traversed in each timestep, we parameterize by the lifetime L of the input graph and
provide an FPT algorithm for the temporal exploration problem. We also give additional FPT or
W[2]-hardness results for further problem variants.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability

Keywords and phrases Temporal graphs, fixed-parameter tractability, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.15

Funding Thomas Erlebach: Supported by EPSRC grants EP/S033483/2 and EP/T01461X/1.

1 Introduction

The problem of computing a series of consecutive edge-traversals in a static (i.e., classical
discrete) graph G, such that each vertex of G is an endpoint of at least one traversed edge, is
a fundamental problem in algorithmic graph theory, and an early formulation was provided
by Shannon [26]. Such a sequence of edge-traversals might be referred to as an exploration or
search of G and, from a computational standpoint, it is easy to check whether a given graph
G admits such an exploration and easy to compute one if the answer is yes – we simply carry
out a depth-first search starting at an arbitrary start vertex in V (G) and check whether
every vertex of G is reached. We consider in this paper a decidedly more complex variant
of the problem, in which we try to find an exploration of a temporal graph. A temporal
graph G = ⟨G1, ..., GL⟩ is a sequence of static graphs Gt such that V (Gt) = V (G) and
E(Gt) ⊆ E(G) for any timestep t ∈ [L] and some fixed underlying graph G.

A concerted effort to tackle algorithmic problems defined for temporal graphs has been
made in recent years. With the addition of time to a graph’s structure comes more freedom
when defining a problem. Hence, many studies have focused on temporal variants of classical
graph problems; for example, the travelling salesperson problem [21]; shortest paths [27];
vertex cover [3]; maximum matching [20]; network flow problems [1]; and a number of others.
For more examples, we point the reader to the works of Molter [23] or Michail [21]. One
seemingly common trait of the problems that many of these studies consider is the following:
Problems that are easy for static graphs often become hard on temporal graphs, and hard
problems for static graphs remain hard on temporal graphs. This certainly holds true for the
problem of deciding whether a given temporal graph G admits a temporal walk W – roughly

© Thomas Erlebach and Jakob T. Spooner;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.erlebach@durham.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:js933@leicester.ac.uk
https://orcid.org/0000-0003-3816-6308
https://doi.org/10.4230/LIPIcs.SAND.2022.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Parameterized Temporal Exploration Problems

speaking, a sequence of edges traversed consecutively and during strictly increasing timesteps
– such that every vertex of G is an endpoint of at least one edge of W (any temporal walk
with this property is known as an exploration schedule). Indeed, Michail and Spirakis [22]
showed that this problem, Temporal Exploration or TEXP for short, is NP-complete.
In this paper, we consider variants of the TEXP problem from a fixed-parameter perspective
and under both strict and non-strict settings. More specifically, we consider problem variants
in which we look for strict temporal walks that traverse each consecutive edge at a timestep
strictly larger than the previous, as well as variants that ask for non-strict temporal walks
that allow an unlimited but finite number of edges to be traversed in each timestep.

Contribution. In Section 2 we prove FPT-membership for two natural parameterized variants
of TEXP. Firstly, we parameterize by the size k of a fixed subset of the vertex set and ask
for an exploration schedule that visits at least these vertices, providing a O(2kkLn2)-time
algorithm. Secondly, we parameterize by only an integer k and ask that a computed solution
visits at least k arbitrary vertices – in this case we specify, for any ε > 0, a randomized
algorithm (based on the colour-coding technique first introduced by Alon et al. [4]) with
running time O((2e)kLn3 log 1

ε). A now-standard derandomization technique due to Naor
et al. [24] is then utilized in order to obtain a deterministic (2e)kkO(log k)Ln3 log n-time
algorithm.

In Section 3, we consider the non-strict variant known as Non-Strict Temporal
Exploration, or NS-TEXP, which was introduced in [17]. Here, a candidate exploration
schedule is permitted to traverse an unlimited but finite number of edges during each timestep,
and it is not too hard to see that this change alters the problem’s structure quite drastically
(more details in Section 3). We therefore use a different model of temporal graphs to the one
considered in Section 2, which we properly define later. For this problem, we parameterize by
the length L of the sequence of static graphs that comprises our input temporal graph, and
provide an O(L(L!)2n)-time recursive search-tree algorithm. We also consider a generalized
variant, Set NS-TEXP, in which we are supplied with m subsets of the input temporal
graph’s vertex set and are asked to decide whether there exists a non-strict temporal walk
that visits at least one vertex belonging to each set; this problem is shown to be W [2]-hard
via a reduction from Set Cover.

Related work. We refer the interested reader to Casteigts et al. [11] for a study of various
models of dynamic graphs, and to Michail [21] for an introduction to temporal graphs and
some of their associated combinatorial problems. Brodén et al. [8] consider the Temporal
Travelling Salesperson Problem for complete temporal graphs with n vertices. The
costs of edges are allowed to differ between 1 and 2 in each timestep. They show that when
an edge’s cost changes at most k times during the input graph’s lifetime, the problem is
NP-complete, but provide a (2 − 2

3k)-approximation. For the same problem, Michail and
Spirakis [22] prove APX-hardness and provide a (1.7 + ϵ)-approximation. Bui-Xuan et al. [9]
propose multiple objectives for optimisation when computing temporal walks/paths: e.g.,
fastest (fewest number of timesteps used) and foremost (arriving at the destination at the
earliest time possible). Michail and Spirakis [22] introduced the TEXP problem, which asks
whether or not a given temporal graph admits a temporal walk that visits all vertices at least
once. The problem is shown to be NP-complete when no restrictions are placed on the input,
and they propose considering the problem under the always-connected assumption as a means
of ensuring that exploration is possible (provided the lifetime of the input graph is sufficiently
long). Erlebach et al. [16] consider the problem of computing foremost exploration schedules

T. Erlebach and J. T. Spooner 15:3

under the always-connected assumption, proving O(n1−ε)-inapproximability (for any ε > 0)
amongst other results. Bodlaender and van der Zanden [6] examined the TEXP problem
when restricted to temporal graphs whose underlying graph has pathwidth at most 2 and that
are connected in each timestep, showing the problem to be NP-complete in this case. Akrida
et al. [2] consider a TEXP variant called Return-To-Base TEXP, in which the underlying
graph is a star and a candidate solution must return to the vertex from which it initially
departed (the star’s centre). They prove various hardness results and provide polynomial-time
algorithms for some special cases. Casteigts et al. [12] studied the fixed-parameter tractability
of the problem of finding temporal paths between a source and destination that wait no longer
than ∆ consecutive timesteps at any intermediate vertex. Bumpus and Meeks [10] considered,
again from a fixed-parameter perspective, a temporal graph exploration variant in which
the goal is no longer to visit all of the input graph’s vertices at least once, but to traverse
all edges of its underlying graph exactly once (i.e., computing a temporal Eulerian circuit).
The problem of Non-Strict Temporal Exploration was introduced and studied in [17].
Here, a computed walk may make an unlimited number of edge-traversals in each given
timestep. Amongst other things, NP-completeness of the general problem is shown, as well
as O(n1/2−ε) and O(n1−ε)-inapproximability for the problem of minimizing the arrival time
of a temporal exploration in the cases where the number of timesteps required to reach
any vertex v from any vertex u is bounded by c = 2 and c = 3, respectively. Notions of
strict/non-strict paths which respectively allow for a single edge/unlimited number of edge(s)
to be crossed in any timestep have been considered before, notably by Kempe et al. [19] and
Zschoche et al. [28].

Preliminaries. For a pair of integers x, y with x ≤ y we denote by [x, y] the set {z : x ≤ z ≤
y}; if x = 1 we write [y] instead. We use standard terminology from graph theory [14], and we
assume any static graph G = (V, E) to be simple and undirected. A parameterized problem
is a language L ⊆ Σ∗ × N, where Σ is a finite alphabet. For an instance (I, k) ∈ Σ∗ × N,
k is called the parameter. The problem is in FPT (fixed-parameter tractable) if there is an
algorithm that solves every instance in time f(k)× |I|O(1) for some computable function f .
A proof that a problem is hard for complexity class W[r] for some integer r ≥ 1 is seen as
evidence that the problem is unlikely to be contained in FPT. For more on parameterized
complexity, including definitions of the complexity classes W[r], we refer to [15, 13]. We
defer formal definitions of both the strict and non-strict variants of TEXP, as well as their
associated temporal graph models, to Sections 2 and 3 respectively.

2 Strict TEXP parameterizations

We begin with the definition of a temporal graph:

▶ Definition 1 (Temporal graph). A temporal graph G with underlying graph G = (V, E),
lifetime L and order n is a sequence of simple undirected graphs G = ⟨G1, G2, ..., GL⟩ such
that |V | = n and Gt = (V, Et) (where Et ⊆ E) for all t ∈ [L].

For a temporal graph G = ⟨G1, ..., GL⟩, the subscripts t ∈ [L] indexing the graphs in the
sequence are referred to as timesteps (or steps) and we call Gt the t-th layer. A tuple (e, t)
with e ∈ E(G) is an edge-time pair (or time edge) of G if e ∈ Et. Note that the size of any
temporal graph (i.e., the maximum number of time edges) is bounded by O(Ln2).

▶ Definition 2 (Strict temporal walk). A strict temporal walk W in G is a tuple W = (t0, S),
consisting of a start time t0 and an alternating sequence of vertices and edge-time pairs
S = ⟨v1, (e1, t1), v2, (e2, t2), ..., vl−1, (el−1, tl−1), vl⟩ such that ei = {vi, vi+1}, ei ∈ Gti

for
i ∈ [l − 1] and 1 ≤ t0 ≤ t1 < t2 < · · · < tl−1 ≤ L.

SAND 2022

15:4 Parameterized Temporal Exploration Problems

We say that a temporal walk W = (t0, S) visits any vertex that is included in S. Further,
W traverses edge ei at time ti for all i ∈ [l − 1] and is said to depart from (or start at)
v1 ∈ V (G) at timestep t0 and arrive at (or finish at) vl ∈ V (G) at the end of timestep tl−1
(or, equivalently, at the beginning of timestep tl−1 + 1). Its arrival time is defined to be
tl−1 + 1. It is assumed that W is positioned at v1 at the start of timestep t0 ∈ [t1] and waits
at v1 until edge e1 is traversed during timestep t1. The quantity |W | = tl−1 − t0 + 1 is called
the duration of W .

Throughout this section we denote by sp(u, v, t) the duration of a shortest (i.e., having
minimum arrival time) temporal walk in G that starts at u ∈ V (G) in timestep t and ends at
v ∈ V (G). (If u = v, sp(u, v, t) = 0.) We note that there is no guarantee that a walk between
a pair of vertices u, v exists; in such cases we let sp(u, v, t) = ∞. The algorithms that we
present in Sections 2.1 and 2.2 will repeatedly require us to compute such shortest walks for
specific pairs of vertices u, v ∈ V (G) and a timestep t ∈ [L] – the following theorem allows us
to do this:

▶ Theorem 3 (Wu et al. [27]). Let G = ⟨G1, ..., GL⟩ be an arbitrary temporal graph. Then,
for any u ∈ V (G) and t ∈ [L], one can compute in O(Ln2) time for all v ∈ V (G) a temporal
walk that starts at u, ends at v and has duration sp(u, v, t) (or determine that no such walk
exists).

The following two definitions will be used to describe the sets of candidate solutions for each
of the problems that we consider in this section:

▶ Definition 4 ((v, t, X)-tour). A (v, t, X)-tour W in a given temporal graph G is a strict
temporal walk that starts at some vertex v ∈ V (G) in timestep t and visits all vertices in
X ⊆ V (G). The arrival time α(W) of a (v, t, X)-tour W is the timestep after the timestep
at the end of which W has for the first time visited all vertices in X.

▶ Definition 5 ((v, t, k)-tour). A (v, t, k)-tour W in a given temporal graph G is a (v, t, X)-tour
for some subset X ⊆ V (G) that satisfies |X| = k. The arrival time α(W) of a (v, t, k)-tour
W is the timestep after the timestep at the end of which W has for the first time visited all
vertices in X.

A (v, t, X)-tour W ((v, t, k)-tour W ∗) in a temporal graph G is said to be foremost if
α(W) ≤ α(W ′) (α(W ∗) ≤ α(W ∗′)) for any other (v, t, X)-tour W ′ (any other (v, t, k)-tour
W ∗′). We now formally define this section’s two main problems of interest:

▶ Definition 6 (k-fixed TEXP). An instance of the k-fixed TEXP problem is given as a
tuple (G, s, X, k) where G = ⟨G1, ..., GL⟩ is an arbitrary temporal graph with underlying graph
G and lifetime L; s is a start vertex in V (G); and X ⊆ V (G) is a set of target vertices such
that |X| = k. The problem then asks that we decide if there exists an (s, 1, X)-tour W in G.

▶ Definition 7 (k-arbitrary TEXP). An instance of the k-arbitrary TEXP problem is
given as a tuple (G, s, k) where G = ⟨G1, ..., GL⟩ is an arbitrary temporal graph with underlying
graph G and lifetime L; s is a start vertex in V (G); and k ∈ N. The problem then asks that
we decide whether there exists an (s, 1, k)-tour W in G.

For yes-instances of k-fixed TEXP or k-arbitrary TEXP, a tour with minimum
arrival time (among all tours of the type sought) is called an optimal solution.

T. Erlebach and J. T. Spooner 15:5

2.1 An FPT algorithm for k-fixed TEXP
In this section we provide a deterministic FPT-time algorithm for k-fixed TEXP. Let
(G, s, X, k) be an instance of k-fixed TEXP. Our algorithm looks for an earliest arrival time
(s, 1, X)-tour of G via a dynamic programming (DP) approach. We note that the approach is
essentially an adaptation of an algorithm proposed (independently by Bellman [5] and Held
& Karp [18]) for the classic Travelling Salesperson Problem to the parameterized problem
for temporal graphs.

▶ Theorem 8. It is possible to decide any instance I = (G, s, X, k) of k-fixed TEXP, and
return an optimal solution if I is a yes-instance, in time O(2kkLn2), where n = |V (G)| and
L is G’s lifetime.

Proof. First we describe our algorithm before proving its correctness and analysing its
running time. We begin by specifying a dynamic programming formula for F (S, v), by which
we denote the minimum arrival time of any temporal walk in G that starts at vertex s ∈ V (G)
in timestep 1, visits all vertices in S ⊆ X, and finishes at vertex v ∈ S. One can compute
F (S, v) via the following formula:

F (S, v) =

1 + sp(s, v, 1) (|S| = 1)
min

u∈S−{v}
[F (S − {v}, u) + sp(u, v, F (S − {v}, u))] (|S| > 1) (1)

Note that to compute F (S, v) when |S| > 1, Equation (1) states that we need only consider
values F (S′, u) with u ∈ S′ and |S′| = |S| − 1, and so we begin by computing all values
F (S′, u) such that S′ ⊆ X satisfies |S′| = 1 and u ∈ S′, before computing all values such
that |S′| = 2 and u ∈ S′ and so on, until we have computed all values F (X, u) where u ∈ X

(i.e., values F (S′, u) with |S′| = k = |X|). Once all necessary values have been obtained,
computing the following value gives the arrival time of an optimal (s, 1, X)-tour:

F ∗ = min
v∈X

F (X, v). (2)

If, whenever we compute a value F (S, v) with |S| > 1, we also store alongside F (S, v) a
single pointer

p(S, v) = arg min
u∈S−{v}

[F (S − {v}, u) + sp(u, v, F (S − {v}, u))],

then once we have computed F ∗ we can use a traceback procedure to reconstruct the walk
with arrival time F ∗. More specifically, let u1 = arg minu∈X F (X, u) and ui = p(X −
{u1, ..., ui−2}, ui−1) for all i ∈ [2, k]. To complete the algorithm, we then check if F ∗ is
finite: If so, then there must be a (s, 1, X)-tour W in G with α(W) = F ∗ that visits the
vertices uk, ..., u1 in that order. We can reconstruct W by concatenating the k shortest walks
obtained by starting at s in timestep 1 and computing a shortest walk from s to uk, then
computing a shortest walk from uk to uk−1 starting at the timestep at which uk was reached,
and so on, until u1 is reached; once constructed, return W . If, on the other hand, F ∗ =∞
(which is possible by the definition of sp(u, v, t)) then return no.

Correctness. The correctness of Equation (1) can be shown via induction on |S|: The base
case (i.e., when |S| = 1) is correct since the arrival time of the foremost temporal walk that
starts at s in timestep 1 and ends at a specific vertex v ∈ X is clearly equal to one plus the
duration of the foremost temporal walk between s and v starting at timestep 1.

SAND 2022

15:6 Parameterized Temporal Exploration Problems

For the general case (when |S| > 1), assume first that the formula holds for any set
S′ such that |S′| = l and any vertex u ∈ S′. To see that the formula holds for all sets S

with |S| = l + 1 and vertices v ∈ S, consider any walk W that starts in timestep 1, visits
all vertices in some set S with |S| = l + 1 and ends at v. Let x1, ..., xl+1 be the order in
which the vertices xi ∈ S are reached by W for the first time; let x = xl+1 = v and x′ = xl.
Note that the subwalk W ′ of W that begins in timestep 1 and finishes at the end of the
timestep in which W arrives at x′ for the first time is surely an (s, 1, S − {v})-tour, since
W ′ visits every vertex in S − {x} = S − {v}. Then, by the induction hypothesis we have
α(W ′) ≥ F (S − {v}, x′) because |S − {v}| = l, and since W ends at v we have

α(W) ≥ α(W ′) + sp(x′, v, α(W ′))
≥ F (S − {v}, x′) + sp(x′, v, F (S − {v}, x′)).

More generally, we can say that any (s, 1, S)-tour W that starts at s in timestep 1, visits
all vertices in S (where |S| = l + 1), and finishes at v ∈ S satisfies the above inequality for
some x′ ∈ S − {v}. Note that for any u ∈ S − {v}, F (S − {v}, u) + sp(u, v, F (S − {v}, u))
corresponds to the arrival time of a valid (s, 1, S)-tour, obtained by concatenating an earliest
arrival time (s, 1, S − {v})-tour that ends at u and a shortest walk between u and v starting
at time F (S − {v}, u). Therefore, to compute F (S, v) it suffices to compute the minimum
value of F (S − {v}, u) + sp(u, v, F (S − {v}, u) over all u ∈ S − {v}; note that this is exactly
Equation (1) in the case that |S| > 1.

To establish the correctness of Equation (2) recall that, by Definition 4, the arrival time of
any (s, 1, X)-tour in G is equal to the timestep after the timestep in which it traverses a time
edge to reach the final unvisited vertex of X for the first time. Assume that I is a yes-instance
and let x∗ ∈ X be the k-th unique vertex in X that is visited by some foremost (s, 1, X)-tour
W ; then, by the analysis in the previous paragraph, we must have α(W) = F (X, x∗) since W

is foremost, so x∗ = arg minv∈X F (X, v) and thus α(W) = F (X, x∗) = minv∈X F (X, v) = F ∗,
as required.

The fact that the answer returned by the algorithm is correct follows from the correctness
of Equations (1) and (2) and the traceback procedure, together with the fact that I is a
no-instance if and only if F ∗ =∞. The details of this second claim are not difficult to see and
are omitted, but we note that it is indeed possible that F ∗ =∞ since F ∗ is the summation
of a number of values sp(u, v, t), some of which may satisfy sp(u, v, t) =∞ by definition.

Runtime analysis. Since we only compute values of F (S, v) such that v ∈ S and 1 ≤ |S| ≤ k,
in total we compute O(

∑k
i=1

(
k
i

)
i) = O(2kk) values. Note that, to compute any value F (S, v)

with |S| = i > 1, Equation (1) requires that we consider the values F (S − {v}, u) +
sp(u, v, F (S − {v}, u)) with u ∈ S − {v}, of which there are exactly i− 1. We therefore use
Theorem 3 to compute (and store temporarily), for each S′ with |S′| = i− 1 and x ∈ S′, in
O(Ln2) time the value of sp(x, y, F (S′, x)) for all y ∈ V (G) immediately after computing all
F (S′, x), and use these precomputed shortest walk durations to compute F (S, v) for any S

with |S| = i and v ∈ S in time O(i) = O(k). Thus, we spend O(k)+O(Ln2) = O(Ln2) (since
k ≤ n) time for each of O(2kk) values F (S, v). This yields an overall time of O(2kkLn2).
Note that F ∗ can be computed using Equation (2) in O(k) time since we take the minimum
of O(k) values; also note that a (v, 1, X)-tour with arrival time F ∗ can be reconstructed in
time O(kLn2) using the aforedescribed traceback procedure, since we need to recompute
O(k) shortest walks, spending O(Ln2) time on each walk. Hence the overall running time of
the algorithm is bounded by O(2kkLn2), as claimed. ◀

T. Erlebach and J. T. Spooner 15:7

We remark that k-fixed TEXP becomes TEXP if X = V , hence Theorem 8 also implies
an FPT algorithm for TEXP parameterized by the number of vertices. Furthermore, we
observe that TEXP is also FPT when parameterized by the lifetime L of the given temporal
graph: If L < n−1, the instance is clearly a no-instance, and if L ≥ n−1, the FPT algorithm
for TEXP with parameter n is also FPT for parameter L.

2.2 FPT algorithms for k-arbitrary TEXP
The main result of this section is a randomized FPT-time algorithm for k-arbitrary TEXP
that utilises the colour-coding technique originally presented by Alon, Yuster and Zwick [4].
There, they employed the technique primarily to detect the existence of a k-vertex simple
path in a given undirected graph G. More generally, it has proven useful as a technique
for finding fixed motifs (i.e., prespecified subgraphs) in static graphs/networks. We provide
a high-level description of the technique and the way that we apply it at the beginning
of Section 2.2.1. A standard derandomization technique (also originating from [4]) is then
utilised within Section 2.2.2 to obtain a deterministic algorithm for k-arbitrary TEXP
with a worse, but still FPT, running time.

2.2.1 A randomized algorithm
The algorithm of this section employs the colour-coding technique of Alon, Yuster and
Zwick [4]. First, we informally sketch the structure of the algorithm behind Theorem 9: We
colour the vertices of an input temporal graph uniformly at random, then by means of a
DP subroutine we look for a temporal walk that begins at some start vertex s in timestep 1
and visits k vertices with distinct colours by the earliest time possible. Notice that if such
a walk is found then it must be a (v, t, k)-tour, since the k vertices are distinctly coloured
and therefore must be distinct. Then, the idea is to repeatedly: (1) randomly colour the
input graph G’s vertices; then (2) run the DP subroutine on each coloured version of G. We
repeat these steps enough times to ensure that, with high probability, the vertices of an
optimal (s, 1, k)-tour are coloured with distinct colours at least once over all colourings – if
this happens then the DP subroutine will surely return an optimal (s, 1, k)-tour or one with
equal arrival time. With this high-level description in mind, we now present/analyse the
algorithm:

▶ Theorem 9. For every ε > 0, there exists a Monte Carlo algorithm that, with probability
1− ε, decides a given instance I = (G, s, k) of k-arbitrary TEXP, and returns an optimal
solution if I is a yes-instance, in time O((2e)kLn3 log 1

ε), where n = |V (G)| and L is G′s

lifetime.

Proof. Let V := V (G). We now describe our algorithm before proving it correct and
analysing its running time. Let c : V → [k] be a colouring of the vertices v ∈ V . Let a walk
W in G that starts at s and visits a vertex coloured with each colour in D ⊆ [k] be known
as a D-colourful walk; let the timestep after the timestep at the end of which W has for
the first time visited vertices with k distinct colours be known as the arrival time of W ,
denoted by α(W). The algorithm employs a subroutine that computes, should one exist, a
[k]-colourful walk W in G with earliest arrival time. Note that a D-colourful walk (D ⊆ [k])
in G is by definition an (s, 1, |D|)-tour in G.

SAND 2022

15:8 Parameterized Temporal Exploration Problems

Define H(D, v) to be the earliest arrival time of any D-colourful walk (where D ⊆ [k])
in G that ends at a vertex v with c(v) ∈ D. The value of H(D, v) for any D ⊆ [k] and v

with c(v) ∈ D can be computed via the following dynamic programming formula (within the
formula we denote by D−

c(v) the set D − {c(v)}):

H(D, v) =

1 + sp(s, v, 1) (|D| = 1)
min

u∈V :c(u)∈D−
c(v)

[H(D−
c(v), u) + sp(u, v, H(D−

c(v), u))] (|D| > 1) (3)

In order to compute H(D, v) for any D ⊆ [k] and vertex v with c(v) ∈ D, Equation (3)
requires that we consider values H(D − {c(v)}, u) such that c(u) ∈ D − {c(v)}, and so we
begin by computing H(D′, v) for all D′ with |D′| = 1 and v with c(v) ∈ D′, then for all D′

with |D′| = 2 and v with c(v) ∈ D′, and so on, until all values H([k], v) have been obtained.
The earliest arrival time of any [k]-colourful walk in G is then given by

H∗ = min
u∈V (G)

H([k], u). (4)

Once H∗ has been computed, we check whether its value is finite or equal to ∞. If H∗ is
finite then we can use a pointer system and traceback procedure (almost identical to those
used in the proof of Theorem 8) to reconstruct an (s, 1, k)-tour with arrival time H∗ if one
exists; otherwise we return no. This concludes the description of the dynamic programming
subroutine.

Let r = ⌈ 1
ε⌉ and let W ∗ initially be the trivial walk that starts and finishes at vertex s in

timestep 1. Perform the following two steps for ek ln r iterations:
1. Assign colours in [k] to the vertices of V uniformly at random and check if all k colours

colour at least one vertex of G; if not, start next iteration. If yes, proceed to step 2.
2. Run the DP subroutine in order to find an optimal [k]-colourful walk W in G if one

exists. If such a W is found then check if α(W) < α(W ∗) or W ∗ starts and ends at s in
timestep 1 (i.e., still has its initial value), and in either case set W ∗ = W ; otherwise the
DP subroutine returned no and we make no change to W ∗.

Once all iterations of the above steps are over, check if W ∗ is still equal to the walk that
starts and finishes at s in timestep 1; if not then return W ∗, otherwise return no. This
concludes the algorithm’s description.

Correctness. We focus on proving the randomized aspect of the algorithm correct and omit
correctness proofs for Equations (3) and (4) since the arguments are similar to those provided
in Theorem 8’s proof.

If I is a no-instance then in no iteration will the DP subroutine find an (s, 1, k)-tour in G.
Hence in the final step the algorithm will find that W ∗ is equal to the walk that starts and
ends at s in timestep 1 (by the correctness of Equations (3) and (4)) and return no, which
is clearly correct. Assume then that I is yes-instance. Let W be an (s, 1, k)-tour in G with
earliest arrival time, and let X ⊆ V be the set of k vertices visited by W . Then, if during
one of the ek ln r iterations of steps 1 and 2 we colour the vertices of V in such a way that
X is well-coloured (we say that a set of vertices U ⊆ V is well-coloured by colouring c if
c(u) ̸= c(v) for every pair of vertices u, v ∈ U), W will induce an optimal [k]-colourful walk
in G. The DP subroutine will then return W or some other optimal [k]-colourful walk W ′

with α(W) = α(W ′) that visits a well-coloured subset of vertices X ′; note that the arrival
time of the best tour found in any iteration so far will then surely be α(W), since W has
earliest arrival time.

T. Erlebach and J. T. Spooner 15:9

Observe that if we colour the vertices of V with k colours uniformly at random, then,
since |X| = k, there are kk ways to colour the vertices in X ⊆ V , of which k! constitute
well-colourings of X. Hence after a single colouring of V we have

Pr[X is well-coloured] = k!
kk

>
1
ek

,

where the inequality follows from the fact that k!/kk >
√

2πk
1
2 e

1
12k+1 /ek (this inequality is

due to Robbins [25] and is related to Stirling’s formula). Hence, after ek ln r colourings, we
have (using the standard inequality (1− 1

x)x ≤ 1
e for all x ≥ 1):

Pr[X is not well-coloured in any colouring] ≤
(

1− 1
ek

)ek ln r

≤ 1/r ≤ ε.

Thus, the probability that X is well-coloured at least once after ek ln r colourings is at least
1− ε. It follows that, with probability ≥ 1− ε, the earliest arrival [k]-colourful walk returned
by the algorithm after all iterations is in fact an optimal (s, 1, k)-tour in G, since either W or
some other (s, 1, k)-tour with equal arrival time will eventually be returned.

Runtime analysis. Note that the DP subroutine computes exactly the values H(D, v) such
that D ⊆ [k] and v satisfies c(v) ∈ D. Hence there are at most

(
k
i

)
n values H(D, v) such

that |D| = i, for all i ∈ [k]; this gives a total of
∑

i∈[k]
(

k
i

)
n = O(2kn) values. In order to

compute H(D, v) for any D with |D| = i > 1, Equation (3) requires us to consider the value of
H(D−{c(v)}, u)+sp(u, v, H(D−{c(v)}, u)) for all u such that c(u) ∈ D−{c(v)}. Therefore,
similar to the algorithm in the proof of Theorem 8, we compute and store, immediately after
computing each value H(D′, x) with |D′| = i−1 and c(x) ∈ D′, the value of sp(x, y, H(D′, x))
for all y ∈ V (G) in O(Ln2) time (Theorem 3). Note that there can be at most n vertices
u such that c(u) ∈ D − {c(v)}, and so in total we spend O(n) + O(Ln2) = O(Ln2) time
on each of O(2kn) values of H(D, v), giving an overall time of O(2kLn3). We can compute
H∗ in O(n) time since we take the minimum of O(n) values, and the traceback procedure
can be performed in O(kLn2) = O(Ln3) time since we concatenate k walks obtained using
Theorem 3. Thus the overall time spent carrying out one execution of the DP subroutine is
O(2kLn3).

Since the running time of each iteration of the main algorithm is dominated by the
running time of the DP subroutine and there are ek ln r = O(ek log 1

ε) iterations in total,
we conclude that the overall running time of the algorithm is O((2e)kLn3 log 1

ε), as claimed.
This completes the proof. ◀

2.2.2 Derandomizing the algorithm of Theorem 9
The randomized colour-coding algorithm of Theorem 9 can be derandomized at the expense of
incurring a kO(log k) log n factor in the running time. We employ a standard derandomization
technique, presented initially in [4], which involves the enumeration of a k-perfect family of
hash functions from [n] to [k]. The functions in such a family will be viewed as colourings of
the vertex set of the temporal graph given as input to the k-arbitrary TEXP problem.

Formally, a family H of hash functions from [n] to [k] is k-perfect if, for every subset
S ⊆ [n] with |S| = k, there exists a function f ∈ H such that f restricted to S is bijective
(i.e., one-to-one). The following theorem of Naor et al. enables one to construct such a family
H in time linear in the size of H:

SAND 2022

15:10 Parameterized Temporal Exploration Problems

▶ Theorem 10 (Naor, Schulman and Srinivasan [24]). A k-perfect family H of hash functions
fi from [n] to [k], with size ekkO(log k) log n, can be computed in ekkO(log k) log n-time.

We note that the value of fi(x) for any fi ∈ H and x ∈ [n] can be evaluated in O(1) time.
To solve an instance of k-Arbitrary TEXP, we can now use the algorithm from the

proof of Theorem 9, but instead of iterating over ek ln r random colourings, we iterate over
the ekkO(log k) log n hash functions in the k-perfect family of hash functions constructed using
Theorem 10. This ensures that the set X of k vertices visited by an optimal (s, 1, k)-tour is
well-coloured in at least one iteration, and we obtain the following theorem.

▶ Theorem 11. There is a deterministic algorithm that can solve a given instance (G, s, k)
of k-Arbitrary TEXP in (2e)kkO(log k)Ln3 log n time, where n = |V (G)|. If the instance
is a yes-instance, the algorithm also returns an optimal solution.

We remark that, since a temporal walk can visit at most L + 1 vertices in a temporal
graph with lifetime L, Theorem 11 also implies an FPT algorithm for the following problem,
parameterized by the lifetime L of the given temporal graph: Find a temporal walk that
visits as many distinct vertices as possible.

3 Non-Strict TEXP parameterizations

In this section we consider the non-strict version of TEXP, in which a walk is allowed to
traverse an unlimited number of edges in every timestep. As mentioned in the introduction,
this changes the nature of the problem significantly. In particular, it means that a temporal
walk positioned at a vertex v in timestep t is able to visit, during timestep t, any other vertex
contained in the same connected component C as v and move to an arbitrary vertex u ∈ C,
beginning timestep t + 1 positioned at vertex u. As such, it is no longer necessary to know
the edge structure of the input temporal graph during each timestep, and we can focus only
on the connected components of each layer. This leads to the following definition:

▶ Definition 12 (Non-strict temporal graph, G). A non-strict temporal graph G = ⟨G1, ..., GL⟩
with vertex set V := V (G) and lifetime L is an indexed sequence of partitions (layers)
Gt = {Ct,1, ..., Ct,st} of V for t ∈ [L]. For all t ∈ [L], each v ∈ V satisfies v ∈ Ct,j for a
unique j ∈ [st]. The integer st denotes the number of components in layer Gt; clearly we
have st ∈ [n].

A non-strict temporal walk is then defined as follows:

▶ Definition 13 (Non-strict temporal walk, W). A non-strict temporal walk W starting at
vertex v at time t1 in a non-strict temporal graph G = ⟨G1, ..., GL⟩ is a sequence W =
Ct1,j1 , Ct2,j2 , ..., Ctl,jl

of components Cti,ji
(i ∈ [l]) with 1 ≤ t1 ≤ tl ≤ L such that: ti + 1 =

ti+1 for all i ∈ [1, l − 1]; Cti,ji ∈ Gti and ji ∈ [sti] for all i ∈ [l]; Cti,ji ∩ Cti+1,ji+1 ≠ ∅ for
all i ∈ [l − 1]; and v ∈ Ct1,j1 .

Let W = Ct1,j1 , Ct2,j2 , ..., Ctl,jl
be a non-strict temporal walk in some non-strict temporal

graph G starting at some vertex s ∈ Ct1,j1 . We call l ∈ [L] the duration of W . The walk W is
said to start at vertex s ∈ Ct1,j1 in timestep t1 and finish at component Ctl,jl

(or sometimes
at some v ∈ Ctl,jl

) in timestep tl. Furthermore, W visits the set of vertices
⋃

i∈[l] Cti,ji
. Note

that W visits exactly one component in each of the l timesteps that make up its duration.
We call W non-strict exploration schedule starting at s with arrival time l if t1 = 1 and⋃

i∈[l] Cti,ji
= V (G). As FPT algorithms for k-fixed TEXP and k-arbitrary TEXP

for non-strict temporal graphs can be derived using similar techniques as in Section 2, we
instead consider the following two non-strict exploration problems in this section:

T. Erlebach and J. T. Spooner 15:11

▶ Definition 14 (Non-Strict Temporal Exploration (NS-TEXP)). An instance of
NS-TEXP is given as a tuple (G, s), where G is a non-strict temporal graph with lifetime L

and s ∈ V (G) is a start vertex. The problem then asks whether or not G admits an exploration
schedule that starts at s.

▶ Definition 15 (Set NS-TEXP). An instance of Set NS-TEXP is given as a tuple
(G, s,X), where G is a non-strict temporal graph with lifetime L, s ∈ V (G) is a start vertex,
and X = {X1, . . . , Xm} is a set of subsets Xi ⊆ V (G). The problem then asks whether or
not there exists a non-strict temporal walk in G that starts at s in timestep 1 and visits at
least one vertex contained in Xi for all i ∈ [m].

In the following two subsections we establish FPT-membership for NS-TEXP when para-
meterized by the lifetime L, then prove W[2]-hardness for the Set NS-TEXP problem when
the same parameter is considered.

3.1 An FPT algorithm for NS-TEXP with parameter L
Let NS-TEXP-L be the variant of NS-TEXP parameterized by the lifetime L of the input
temporal graph G; let an instance of NS-TEXP-L be given as a tuple (G, s, L). We prove
that NS-TEXP-L ∈ FPT by specifying a bounded search tree-based algorithm.

Let G = ⟨G1, . . . , GL⟩ be some non-strict temporal graph. Throughout this section we
let C(G) :=

⋃
t∈[L] Gt, i.e., C(G) is the set of all components belonging to some layer of G.

We implicitly assume that each component C ∈ C(G) is associated with a unique layer Gt of
G in which it is contained. If a component (seen as just a set of vertices) occurs in several
layers, we thus treat these occurrences as different elements of C(G) (or of any subset thereof)
because they are associated with different layers. If X is a set of components in C(G) that
are associated with distinct layers (i.e., no two components in X are associated with the
same layer Gt of G), then we say that the components in X originate from unique layers of G.
For a set X of components that originate from unique layers of G, we let D(X) :=

⋃
C∈X C

be the union of the vertex sets of the components in X. For any such set X, we also let
T (X) = {t ∈ [L] : there is a C ∈ X associated with layer Gt}.

Within the following, we assume that G admits a non-strict exploration schedule W :

▶ Observation 16. Let X (|X| ∈ [0, L − 1]) be a subset of the components visited by the
exploration schedule W . Then there exists C ∈ C(G)−X with C ∈ Gt (t ∈ [L]− T (X)) such
that |C −D(X)| ≥ (n− |D(X)|)/(L− |T (X)|).

Observation 16 follows since, otherwise, W visits at most L−|T (X)| components C ∈ C(G)−X

that each contain |C −D(X)| < (n− |D(X)|)/(L− |T (X)|) of the vertices v /∈ D(X), and so
the total number of vertices visited by W is strictly less than |D(X)|+ (L− |T (X)|) · (n−
|D(X)|)/(L− |T (X)|) = n, a contradiction.

We briefly outline the main idea of our FPT result: We use a search tree algorithm
that maintains a set X of components that a potential exploration schedule could visit,
starting with the empty set. Then the algorithm repeatedly tries all possibilities for adding a
component (from some so far untouched layer) that contains at least (n−|D(X)|)/(L−|T (X)|)
unvisited vertices (whose existence is guaranteed by Observation 16 if there exists an
exploration schedule). It is clear that the search tree has depth L, and the main further
ingredient is an argument showing that the number of candidates for the component to be
added is bounded by a function of L, namely, by (L− |T (X)|)2: This is because each of the
L− |T (X)| untouched layers can contain at most L− |T (X)| components that each contain
at least (n−|D(X)|)/(L−|T (X)|) unvisited vertices. We now proceed to describe the details
of the algorithm and its analysis.

SAND 2022

15:12 Parameterized Temporal Exploration Problems

▶ Lemma 17. Let G = ⟨G1, ..., GL⟩ be an arbitrary order-n non-strict temporal graph. Then,
for components Ct1,j1 ∈ Gt1 and Ct2,j2 ∈ Gt2 (with 1 ≤ t1 ≤ t2 ≤ L) one can decide, in
O((t2 − t1 + 1)n) time, whether there exists a non-strict temporal walk beginning at any
vertex contained in Ct1,j1 in timestep t1 and finishing at Ct2,j2 in timestep t2.

Proof. For any v ∈ V (G) and t ∈ [t1, t2], let c(v, t) denote the component Ct,j such that
v ∈ Ct,j during timestep t. First, precompute the values c(v, t) by, for every t ∈ [t1, t2],
scanning each component C ∈ Gt and setting c(v, t) = C if and only if v ∈ C. Next, let
Xt1 = {Ct1,j1} and then consider the timesteps t ∈ [t1 +1, t2] in increasing order, constructing
at each timestep t the set Xt = Xt−1 ∪ {c(v, t) : v ∈

⋃
C∈Xt−1

C}. Finally, check whether
Ct2,j2 ∈ Xt2 , returning yes if so and no otherwise.

The correctness of the algorithm is not hard to see. To see that the claimed running time
of O((t2 − t1 + 1)n) holds, note first that precomputing the values c(v, t) for any v ∈ V (G)
and any t ∈ [t1, t2] requires O((t2 − t1 + 1)n) time since, in each timestep t ∈ [t1, t2], we
simply iterate over the vertices (of which there are always n in total) contained in each
component C ∈ Gt . Then, to compute Xt for each t ∈ [t1 +1, t2], we add c(v, t) (which can be
evaluated in O(1) time due to our preprocessing step) to Xt for each vertex v ∈

⋃
C∈Xt−1

C,
of which there can be at most n. This second step of the algorithm also clearly requires
O((t2 − t1 + 1)n) time, and the lemma follows. ◀

Let X be a set of components originating from unique layers of G, and let W ?
G(s, X) = yes if

and only if there exists a non-strict temporal walk in G that starts at s ∈ V (G) in timestep 1
and visits at least the components contained in X, and no otherwise.

▶ Lemma 18. For any order-n non-strict temporal graph G = ⟨G1, ..., GL⟩, any s ∈ V (G),
and any set X of components originating from unique layers of G, W ?

G(s, X) can be computed
in O(Ln) time.

Proof. Let Cs1 , Cs2 , ..., Cs|X| be an an index-ordered sequence of the components in X, with
the indices si ∈ [L] satisfying Csi ∈ Gsi (for all i ∈ [|X|]) and si < si+1 (for all i ∈ [|X| − 1]).
Let Cs ∈ G1 be the unique component in layer 1 such that s ∈ Cs (note that we may have
Cs1 = Cs). Now, apply the algorithm of Lemma 17 with Ct1,j1 = Cs and Ct2,j2 = Cs1 , and
then with Ct1,j1 = Csi

and Ct2,j2 = Csi+1 for all i ∈ [|X| − 1]. If the return value of any
application of the algorithm of Lemma 17 is no, then we return W ?

G(s, X) = no; otherwise
we return W ?

G(s, X) = yes. This concludes the algorithm’s description.
Since each component Csi

can only be visited in timestep si it is clear that any walk
that visits all components of X must visit them in the specified order. The algorithm
sets W ?

G(s, X) = yes if the components of X can be visited in the specified order. On the
other hand, if Lemma 17 returns no for at least one pair of input components Csi

, Csi+1 (or
Cs, Cs1), then it must be that the components cannot be visited in this order, and thus the
algorithm sets W ?

G(s, X) = no. Thus, the algorithm’s correctness follows from the correctness
of Lemma 17’s algorithm. To see that the runtime of the algorithm is bounded by O(Ln),
recall that each application of Lemma 17’s algorithm to start/finish components Csi

and
Csi+1 takes c(si+1− si + 1)n time (for a constant c hidden in the bound of Lemma 17). Thus
the total amount of time spent over all applications is c(s1 − 1 + 1)n +

∑
i∈[|X|−1] c(si+1 −

si + 1)n = cn(s|X| + |X| − 1) ≤ cn(2L− 1) = O(Ln), where the last inequality holds since
|X|, s|X| ≤ L. ◀

Now, let G be some input graph, and let X be some set of components originating from
unique layers of G. For any s ∈ V (G), the recursive function g(G, s, X) (Algorithm 1) returns
yes if and only if there exists a non-strict exploration schedule of G that starts at s and
visits (at least) the components contained in X, and returns no otherwise. We prove the
correctness of Algorithm 1 in Lemma 19.

T. Erlebach and J. T. Spooner 15:13

Algorithm 1 Recursive function g(G, s, X).

1 if |X| = L or |D(X)| = n then
2 if |D(X)| = n then return W ?

G(s, X)
3 else return no
4 else
5 C ′ ← {C ∈ C(G)−X : |C −D(X)| ≥ (n− |D(X)|)/(L− |T (X)|)}
6 C∗ ← C ′ − {C ∈ C ′ : C ∈ Gt, t ∈ T (X)}.
7 if |C∗| = 0 then return no
8 for C ∈ C∗ do
9 if g(G, s, X ∪ {C}) = yes then return yes

10 end
11 return no
12 end

▶ Lemma 19. For any non-strict temporal graph G, any s ∈ V (G), and any set X (with
|X| ∈ [0, L]) containing components originating from unique layers of G, Algorithm 1 correctly
computes g(G, s, X).

Proof. We first show that g(G, s, X) is correct in the base case, i.e., when |X| = L or
|D(X)| = n. If we have |D(X)| = n, then any non-strict temporal walk that starts at s in
timestep 1 and visits all components in X is an exploration schedule. Thus, the correctness
of line 2 follows from the definition of the return value W ?

G(s, X) (which can be computed
using Lemma 18). If |X| = L and |D(X)| < n, i.e., we have reached line 3, then there must
exist no exploration schedule that visits each of the components in X, since any non-strict
temporal walk of duration at most L can visit at most L components, but at least one
additional component C /∈ X needs to be visited to cover at least one vertex v /∈ D(X) –
thus it is correct to return no in this case.

Otherwise, we have |X| < L and |D(X)| < n, and are in the recursive case. Then, by
Observation 16, any non-strict exploration schedule that visits all components in X must visit
at least one other component C ∈ C(G)−X such that |C−D(X)| ≥ (n−|D(X)|)/(L−|T (X)|).
Line 5 computes the set C ′ consisting of all such components, line 6 forms from C ′ the set
C∗ by removing from C ′ any components that originate from layers t such that C ∈ Gt for
some C ∈ X (since only one component can be visited in each timestep, and thus we want
X to be a set of components originating from unique layers of G). We remark that a more
efficient implementation could skip layers Gt with t ∈ T (X) already when constructing C ′ in
line 5, but the asymptotic running-time of the overall algorithm would not be affected by this
change. The correctness of line 7 follows from Observation 16. To complete the proof, we
claim that the value yes is returned by line 9 if and only if there exists a non-strict temporal
exploration schedule starting at s that visits all the components contained in X; we proceed
by reverse induction on |X|. Assume first that the return value of g(G, s, X ′) is correct for
any X ′ with |X ′| = k (k ∈ [L]) and let |X| = k − 1. Now assume that, during the execution
of g(G, s, X), line 9 returns yes; it follows that g(G, s, X ′) = yes for some X ′ = X ∪ C with
C ∈ C∗ and thus it follows from the induction hypothesis that there exists a non-strict
temporal exploration schedule that starts at s and visits all the components contained in X,
as required. In the other direction, assume that there exists some non-strict exploration
schedule W that starts at s in timestep 1 and visits all the components in X. Note that, since
the execution has reached line 9, we surely have |C∗| > 0; since we also have |X| < L and

SAND 2022

15:14 Parameterized Temporal Exploration Problems

|D(X)| < n it follows from Observation 16 that W visits at least one additional component
C ∈ C∗. Then, by the induction hypothesis, we must have g(G, s, X ∪{C}) = yes; thus when
the loop of lines 8–10 processes C ∈ C∗ the algorithm will return yes as required. ◀

▶ Theorem 20. It is possible to decide any instance I = (G, s, L) of NS-TEXP-L in
O(L(L!)2n) time.

Proof. The algorithm simply returns the value of function call g(G, s, ∅) (Algorithm 1).
By Lemma 19, g(G, v, X) returns yes if and only if G admits a non-strict exploration

schedule that starts at v and visits at least the components contained in the set X (which
contains |X| ∈ [0, L] components originating from unique layers of G), and returns no
otherwise. Thus the correctness of the above follows immediately.

In order to bound the running time of the above algorithm, it suffices to bound the
running time of Algorithm 1, i.e., the recursive function g. The initial call is g(G, s, ∅), and
each recursive call is of the form g(G, s, X) where X is a set of components with size one
more than the input set of the parent call. Hence, line 1 ensures that there are at most L

levels of recursion in total (not including the level containing the initial call). For a call at
level i ≥ 0, the set C∗ constructed in line 5 has size at most (L− i)2, since at most L− i

components can cover at least (n− |D(X)|)/(L− i) of the vertices in V (G)−D(X) during
each of the L− i steps t ∈ [L]− T (X). Thus each call at level i ≥ 0 makes at most (L− i)2

recursive calls. The tree of recursive calls thus has at most (L!)2 nodes at depth L, and hence
O((L!)2) nodes in total. It follows that the overall number of calls is bounded by O((L!)2).

Next, note that if some level-i call g(G, s, X) is such that |X| < L and |D(X)| < n, then
line 5 computes the set C ′, which can be achieved in O(Ln) time by, for each t ∈ [L], scanning
over the components C ∈ Gt (which collectively contain n vertices) and adding a component
C ∈ Gt to C ′ if and only if |C −D(X)| ≥ (n− |D(X)|)/(L− i). (Note that we can maintain
a map from V to {0, 1} that records for each vertex v whether v ∈ D(X), and hence the
value |C −D(X)| can be computed in O(|C|) time.) To compute the set C∗ in line 6 we can
follow a similar approach: for each t ∈ [L]− T (X) (|[L]− T (X)| = L− i), add a component
C ∈ Gt to C∗ if and only if it satisfies C ∈ C ′. This requires O((L− i)n) = O(Ln) time, and
thus lines 5–6 take O(Ln) time in total. Additionally, the return value of each recursive call
is checked by the foreach loop (line 9) of its parent call in O(1) time – this contributes an
extra O((L!)2) time over all recursive calls. On the other hand, if a call g(G, s, X) is such
that |X| = L or |D(X)| = n, then line 2 computes W ?

G(s, X) in O(Ln) time using Lemma 18.
Thus in all cases the overall work per recursive call is O(Ln), and the total amount of time
spent before g(G, s, ∅) is returned is O((L!)2) ·O(Ln) = O(L(L!)2n), as claimed. ◀

3.2 W[2]-hardness of Set NS-TEXP for parameter L
Our aim in this section is to show that the Set NS-TEXP problem is W[2]-hard when
parameterized by the lifetime L of the input graph. The reduction is from the well-known
Set Cover problem with parameter k – the maximum number of sets allowed in a candidate
solution. Set Cover is known to be W[2]-hard for this parameterization [7].

▶ Definition 21 (Set Cover). An instance of Set Cover is given as a tuple (U,S, k),
where U = {a1, . . . , an} is the ground set and S = {S1, . . . , Sm} is a set of subsets Si ⊆ U .
The problem then asks whether or not there exists a subset S ′ ⊆ S of size at most k such
that, for all i ∈ [n], there exists an S ∈ S ′ such that ai ∈ S.

For any instance I of Set Cover that we consider, we will w.l.o.g. assume that for each
i ∈ [n] we have ai ∈ Sj for some j ∈ [m].

T. Erlebach and J. T. Spooner 15:15

▶ Theorem 22. Set NS-TEXP parameterized by L (the lifetime of the input non-strict
temporal graph) is W[2]-hard.

Proof. Let I = (U = {a1, . . . , an},S = {S1, . . . , Sm}, k) be an arbitrary instance of Set
Cover parameterized by k. We construct a corresponding instance I ′ = (G, s,X) of
Set NS-TEXP as follows: Let V (G) = {s} ∪ {xj : j ∈ [m]} ∪ {yi,j : j ∈ [m], ai ∈ Sj}, and
define Xi = {yi,j ∈ V (G) : j ∈ [m]} (i ∈ [n]) and X =

⋃
i∈[n]{Xi}. We set the lifetime L of G

to L = 2k and specify the components for each timestep t ∈ [2k] as follows: In all odd steps let
one component be {s}∪{xj : j ∈ [m]} and let all other vertices belong to components of size 1.
In even steps, for each j ∈ [m] let there be a component {yi,j ∈ V (G) : i ∈ [n]} ∪ {xj} and
let s form a component of size 1. Since |V (G)| ≤ 1 + m + mn = O(mn), |

⋃
i∈[n] Xi| = O(mn)

and L = 2k we have that the size of instance I ′ is |I ′| = O(kmn) and the parameter L is
bounded solely by a function of instance I’s parameter k, as required. To complete the proof,
we argue that I is a yes-instance if and only if I ′ is a yes-instance:

(=⇒) Assume that I is a yes-instance; then there exists a collection of sets S ′ ⊆ S of
size |S ′| = k′ ≤ k and, for all i ∈ [n], there exists S ∈ S ′ with ai ∈ S. Let Sj1 , Sj2 , . . . , Sjk′

be an arbitrary ordering of the sets in S ′; note that ji ≤ m for all i ∈ [k′]. We construct a
non-strict temporal walk W in G as follows: Starting at vertex s, for every l ∈ [1, k′], during
timestep t = 2l − 1 visit all vertices in the current component then finish timestep 2l − 1
positioned at xjl

. The component occupied during step 2l will be the one containing xjl

– explore all vertices contained in that component and finish step 2l positioned at xjl
. If

k′ < k, then spend the steps of the interval [2k′ + 1, 2k] positioned in an arbitrary component.
We claim that W visits at least one vertex in Xi for all i ∈ [n]. To see this, first note that
for every i ∈ [n] there exists an Sj ∈ S ′ such that ai ∈ Sj . Hence, by our reduction, it
follows that a vertex yi,j is contained in the component containing xj during timestep 2l for
every l ∈ [k] and, by its construction, W visits the component containing xj (and thus visits
yi,j ∈ Xi) during timestep 2l∗ for some l∗ such that jl∗ = j. Since this holds for all i ∈ [n] it
follows that W is a feasible solution and I ′ is a yes-instance.

(⇐=) Assume that I ′ is a yes-instance and that we have some non-strict temporal walk
W that visits at least one vertex in Xi for all i ∈ [n]. We first claim that W visits any vertex
of the form yi,j for the first time during an even step. To see this, observe that every yi,j lies
disconnected in its own component in every odd step t, and so to visit any yi,j in an odd
step W would need to occupy the component containing yi,j during step t− 1 and finish step
t− 1 positioned at yi,j ; hence yi,j was already visited in step t− 1, which is even. Therefore,
in order for W to visit any yi,j it must be positioned, during at least one even step, at the
component containing xj . Now, to construct a collection of subsets S ′ ⊆ S with size x ≤ k,
let S ′ = {Sj : W visits the component containing xj during some even timestep}. To see
that S ′ is a cover of U with size x ≤ k, observe that W visits at least one vertex yi,j for every
i ∈ [n]; thus, by the reduction, for every i ∈ [n] the element ai is contained in set Sj for some
Sj ∈ S ′. It follows that the union of S ′’s elements covers U , and so I is a yes-instance. ◀

4 Conclusion

In this paper we have initiated the study of temporal exploration problems from the viewpoint
of parameterized complexity. For both strict and non-strict temporal walks, we have shown
several variants of the exploration problem to be in FPT. For the variant where we are given
a family of vertex subsets and need to visit only one vertex from each subset, we have shown
W[2]-hardness for the non-strict model for parameter L. (In the strict model, one can show
that W[2]-hardness holds for this problem even in the case where each layer of the temporal
graph is a complete graph.) An interesting question for future work is whether NS-TEXP is
in FPT if the parameter is the maximum number of components in any layer.

SAND 2022

15:16 Parameterized Temporal Exploration Problems

References
1 Eleni C. Akrida, Jurek Czyzowicz, Leszek Gąsieniec, Łukasz Kuszner, and Paul G. Spirakis.

Temporal flows in temporal networks. Journal of Computer and System Sciences, 103:46–60,
2019. doi:10.1016/j.jcss.2019.02.003.

2 Eleni C. Akrida, George B. Mertzios, and Paul G. Spirakis. The temporal explorer who returns
to the base. In Pinar Heggernes, editor, 11th International Conference on Algorithms and
Complexity (CIAC 2019), volume 11485 of Lecture Notes in Computer Science, pages 13–24.
Springer, 2019. doi:10.1007/978-3-030-17402-6_2.

3 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex
cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123,
2020. doi:10.1016/j.jcss.2019.08.002.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–856,
July 1995. doi:10.1145/210332.210337.

5 Richard Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM, 9(1):61–63, January 1962. doi:10.1145/321105.321111.

6 Hans L. Bodlaender and Tom C. van der Zanden. On exploring always-connected temporal
graphs of small pathwidth. Information Processing Letters, 142:68–71, 2019. doi:10.1016/j.
ipl.2018.10.016.

7 Bonnet, Édouard, Paschos, Vangelis Th., and Sikora, Florian. Parameterized exact and
approximation algorithms for maximum k-set cover and related satisfiability problems. RAIRO-
Theoretical Informatics and Applications, 50(3):227–240, 2016. doi:10.1051/ita/2016022.

8 Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Online and offline algorithms for
the time-dependent TSP with time zones. Algorithmica, 39(4):299–319, 2004. doi:10.1007/
s00453-004-1088-z.

9 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(2):267–285, 2003. doi:10.1142/S0129054103001728.

10 Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. In Paola
Flocchini and Lucia Moura, editors, 32nd International Workshop on Combinatorial Algorithms
(IWOCA 2021), volume 12757 of Lecture Notes in Computer Science, pages 107–121. Springer,
2021. doi:10.1007/978-3-030-79987-8_8.

11 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012. doi:10.1080/17445760.2012.668546.

12 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021. doi:
10.1007/s00453-021-00831-w.

13 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

14 Reinhard Diestel. Graph Theory. Springer-Verlag, 2000.
15 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in

Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.
16 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.

Journal of Computer and System Sciences, 119:1–18, 2021. doi:10.1016/j.jcss.2021.01.005.
17 Thomas Erlebach and Jakob T. Spooner. Non-strict temporal exploration. In Andrea Werneck

Richa and Christian Scheideler, editors, 27th International Colloquium on Structural Inform-
ation and Communication Complexity (SIROCCO 2020), volume 12156 of Lecture Notes in
Computer Science, pages 129–145. Springer, 2020. doi:10.1007/978-3-030-54921-3_8.

18 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing
problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.
doi:10.1137/0110015.

https://doi.org/10.1016/j.jcss.2019.02.003
https://doi.org/10.1007/978-3-030-17402-6_2
https://doi.org/10.1016/j.jcss.2019.08.002
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/321105.321111
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1016/j.ipl.2018.10.016
https://doi.org/10.1051/ita/2016022
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1007/s00453-004-1088-z
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1007/978-3-030-79987-8_8
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1007/978-3-030-54921-3_8
https://doi.org/10.1137/0110015

T. Erlebach and J. T. Spooner 15:17

19 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
doi:10.1006/jcss.2002.1829.

20 George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.
Computing maximum matchings in temporal graphs. In Christophe Paul and Markus Bläser,
editors, 37th International Symposium on Theoretical Aspects of Computer Science (STACS
2020), volume 154 of LIPIcs, pages 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.27.

21 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016. doi:10.1080/15427951.2016.1177801.

22 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016. doi:10.1016/j.tcs.2016.04.006.

23 Hendrik Molter. Classic graph problems made temporal – a parameterized complexity analysis.
PhD thesis, Technical University of Berlin, Germany, 2020. URL: https://nbn-resolving.
org/urn:nbn:de:101:1-2020120901012282017374.

24 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In IEEE 36th Annual Symposium on Foundations of Computer Science
(FOCS 1995), pages 182–191. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.492475.

25 Herbert Robbins. A remark on Stirling’s formula. The American Mathematical Monthly,
62(1):26–29, 1955.

26 Claude E. Shannon. Presentation of a maze-solving machine. In Neil James Alexander Sloane
and Aaron D. Wyner, editors, Claude Elwood Shannon: Collected Papers, pages 681–687. IEEE
Press, 1993.

27 Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. Path problems
in temporal graphs. Proceedings of the VLDB Endowment, 7(9):721–732, May 2014. doi:
10.14778/2732939.2732945.

28 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity
of finding small separators in temporal graphs. Journal of Computer and System Sciences,
107:72–92, 2020. doi:10.1016/j.jcss.2019.07.006.

SAND 2022

https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.4230/LIPIcs.STACS.2020.27
https://doi.org/10.1080/15427951.2016.1177801
https://doi.org/10.1016/j.tcs.2016.04.006
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://nbn-resolving.org/urn:nbn:de:101:1-2020120901012282017374
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.1016/j.jcss.2019.07.006

Bipartite Temporal Graphs and the Parameterized
Complexity of Multistage 2-Coloring
Till Fluschnik #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Pascal Kunz #

Algorithmics and Computational Complexity, Technische Universität Berlin, Germany

Abstract
We consider the algorithmic complexity of recognizing bipartite temporal graphs. Rather than
defining these graphs solely by their underlying graph or individual layers, we define a bipartite
temporal graph as one in which every layer can be 2-colored in a way that results in few changes
between any two consecutive layers. This approach follows the framework of multistage problems
that has received a growing amount of attention in recent years. We investigate the complexity of
recognizing these graphs. We show that this problem is NP-hard even if there are only two layers or
if only one change is allowed between consecutive layers. We consider the parameterized complexity
of the problem with respect to several structural graph parameters, which we transfer from the
static to the temporal setting in three different ways. Finally, we consider a version of the problem
in which we only restrict the total number of changes throughout the lifetime of the graph. We show
that this variant is fixed-parameter tractable with respect to the number of changes.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory of
computation → Parameterized complexity and exact algorithms; Theory of computation → Dynamic
graph algorithms

Keywords and phrases structural parameters, NP-hardness, parameterized algorithms, multistage
problems

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.16

Related Version Full Version: https://arxiv.org/abs/2111.09049

Funding Till Fluschnik: Supported by the DFG, project MATE (NI 369/17).
Pascal Kunz : Supported by the DFG Research Training Group 2434 “Facets of Complexity”.

1 Introduction

Bipartite graphs form a well-studied class of static graphs. A graph G = (V, E) is bipartite
if it admits a proper 2-coloring. A function f : V → {1, 2} is a proper 2-coloring of G if for
all edges {v, w} ∈ E it holds that f(v) ̸= f(w). In this work, we study the question of what
a bipartite temporal graph is and how fast we can determine whether a temporal graph is
bipartite. We approach this question through the prism of the novel program of multistage
problems. Thus, we consider the following decision problem:

▶ Problem 1. Multistage 2-Coloring (MS2C)
Input: A temporal graph G = (V, (Et)τ

t=1) and an integer d ∈ N0.
Question: Are there f1, . . . , fτ : V → {1, 2} such that ft is a proper 2-coloring for (V, Et)
for every t ∈ {1, . . . , τ} and |{v ∈ V | ft(v) ̸= ft+1(v)}| ≤ d for every t ∈ {1, . . . , τ − 1}?

In other words, (G, d) is a yes-instance if G admits a proper 2-coloring of each layer where
only d vertices change colors between any two consecutive layers.

© Till Fluschnik and Pascal Kunz;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:till.fluschnik@tu-berlin.de
https://orcid.org/0000-0003-2203-4386
mailto:p.kunz.1@tu-berlin.de
https://orcid.org/0000-0002-0787-8428
https://doi.org/10.4230/LIPIcs.SAND.2022.16
https://arxiv.org/abs/2111.09049
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Multistage 2-Coloring

There have been various approaches to transferring graph classes from static to temporal
graphs. If C is a class of static graphs, then the two most obvious ways of defining a
temporal analog to C are (i) including all temporal graphs whose underlying graph is in C or
(ii) including all temporal graphs that have all of their layers in C (see, for instance, [15]). Most
applied research that has employed a notion of bipartiteness in temporal graphs [1, 24, 34] has
defined it using the underlying graph, seeking to model relationships between two different
types of entities. This is certainly appropriate as long as the type of an entity is not itself
time-varying. Situations where entities can change their types require more sophisticated
notions of bipartiteness. With MS2C, we model situations where we expect few entities
to change their type between any two consecutive time steps. Later, in Section 5, we will
consider a model for settings where we expect few changes overall.

The issue with both of the aforementioned classical approaches to defining temporal graph
classes is that they do not take the time component into account when deciding membership
in a class. For example, if the order of the layers is permuted arbitrarily, then this has
no effect on membership in C in either approach. Defining bipartiteness in the manner we
propose does take the temporal order of the layers into consideration. It also leads to a
hierarchy of temporal graph classes that are inclusion-wise between the two classes defined
in the two aforementioned more traditional approaches: It is easy to see that (G, 0) is a
yes-instance for MS2C if and only if the underlying graph of G is bipartite. Conversely, if
any layer of G is not bipartite, then (G, d) is a no-instance no matter the value of d. The two
main drawbacks to defining temporal bipartiteness in this way are that (i) there is not one
class of bipartite temporal graphs, but an infinite hierarchy depending on the value of d and
(ii) as we will show, testing for bipartiteness in this sense is computationally much harder,
but we will attempt to partially remedy this by analyzing the problem’s parameterized
complexity for a variety of parameters.

Related work. The multistage framework is still young, but several problems have been
investigated in it, mostly in the last couple of years, including Matching [3, 7, 18], Knap-
sack [4], s-t Path [17], Vertex Cover [16], Committee Election [5], and others [2].
The framework has also been extended to goals other than minimizing the number of changes
in the solution between layers [19, 22]. Since these types of problems are NP-hard even in
fairly restricted settings, most research has focused on their parameterized complexity and
approximability. MS2C is most closely related to Multistage 2-SAT [13] (see Section 2).

Our contributions. We prove that MS2C remains NP-hard even if d = 1 or if τ = 2. We
then analyze three ways of transferring structural graph parameters to the multistage setting:
the maximum over the layers, the sum over all layers’ values, and its value on the underlying
graph plus τ . We provide several (fixed-parameter) intractability and tractability results
regarding these three notions of structural parameterizations (see Figure 1). Finally, we
show that a slightly modified version of the problem in which there is no restriction on the
number of changes between any two consecutive layers, but on the total number of changes
throughout the lifetime of the graph, is fixed-parameter tractable with respect to the number
of allowed changes. The proofs of statements marked with ⋆ are deferred to the full version.

Discussion and outlook. While we proved that MS2C is NP-hard even if τ = 2 or if d = 1,
we leave open whether it is fixed-parameter tractable for the combined parameter τ + d. We
introduce a framework for analyzing the parameterized complexity of multistage problems
regarding structural graph parameters. We resolve the parameterized complexity of MS2C

T. Fluschnik and P. Kunz 16:3

dccU+τ

dccΣ
(Thm. 27)

dc
c∞

cdiU+τ

cdiΣ
cd

i∞

∆U+τ

∆Σ

∆∞

dgnU+τ

dgnΣ

dg
n ∞

vcU+τ

vcΣ

vc∞
†

domU+τ
(Prop. 16)

domΣ

do
m∞

dclU+τ

dclΣ

dc
l∞

‡

isU+τ
(Prop. 15)

isΣ

is∞

twU+τ
(Prop. 17)

twΣ

tw
∞

dcoU+τ
(Prop. 16)

dcoΣ
(Prop. 29)

dc
o∞

fesU+τ
(Prop. 20)

fesΣ
(Prop. 29)

fes
∞
†

fvsU+τ

fvsΣ

fvs
∞

dbiU+τ

dbiΣ
db

i∞

clwU+τ

clwΣ

clw
∞

bwU+τ

bwΣ
(Prop. 31)

bw
∞
†

nccU+τ

nccΣ

nc
c∞

(P
ro

p. 24)

Figure 1 Overview of selected structural parameters and our results (green: in FPT; orange: XP
and W[1]-hard red: para-NP-hard; blue: XP and open whether FPT or W[1]-hard; gray: open).
[∆: maximum degree; bw: bandwidth; cdi: diameter of connected component; clw: clique-width;
dbi: distance to bipartite; dcc: distance to co-cluster; dcl: distance to clique; dco: distance to
cograph; dgn: degeneracy; dom: domination number; fes: feedback edge number; fvs: feedback
vertex number; is: independence number; ncc: number of connected components; tw: treewidth; vc:
vertex cover number; for definitions of these parameters, see Section 2 or [32].] † (Proposition 25)
‡ (no polynomial kernel unless NP ⊆ coNP / poly).

with respect to most of the parameters, but two cases are left open (cf. Figure 1). For
instance, we proved that MS2C is in XP when parameterized by bwU+τ , but we do not know
whether it is in FPT or W[1]-hard. Another interesting example is MS2C parameterized
by dccU+τ , for which we do not know whether it is contained in XP or para-NP-hard. Note
that we proved fixed-parameter tractability regarding dccΣ. Finally, we suspect that it may
also be worthwhile to investigate other multistage graph problem in our framework.

2 Preliminaries

We denote by N (N0) the natural number excluding (including) zero. We use standard
terminology from graph theory [9] and parameterized algorithmics [8].

Static and temporal graphs. We will frequently refer to graphs as static graphs in order to
avoid confusion with temporal graphs. A static graph G = (V, E) is 2-colorable if it admits a
proper 2-coloring. It is well-known that a static graph is 2-colorable if and only if contains
no odd cycle. This can be checked in O(|V |+ |E|) time by a simple search algorithm.

Let G = (V, E) be a static graph. The independence number (is(G)) is the size of a
largest set X ⊆ V such that G[X] is edgeless. The domination number (dom(G)) is the size
of a smallest set X ⊆ V such that every vertex in V \X has a neighbor in X. The maximum
degree (∆(G)) is the maximum number of edges incident to a single vertex. A set of X ⊆ V

is a connected component if there is a path between any two vertices in X and no edge

SAND 2022

16:4 Multistage 2-Coloring

between X and V \X. We denote the number of connected components in G by ncc(G). The
feedback edge number (fes(G)) is |E| − |V |+ ncc(G) or equivalently the size of a minimum
X ⊆ E such that G−X is acyclic. If Sn denotes the set of all permutations of {1, . . . , n} and
V = {v1, . . . , vn}, then the bandwidth (bw(G)) is minπ∈Sn max{vi,vj}∈E |π(i)− π(j)|. A tree
decomposition of G is a pair (T , {Xα | α ∈ V (T)}) where T is a tree with node set V (T) and
Xα ⊆ V for every α ∈ V (T) such that (i)

⋃
α∈V (T) Xα = V , (ii) for every {u, v} ∈ E there is

an α ∈ V (T) such that u, v ∈ Xα, and (iii) for every v ∈ V the node set {α ∈ V (T) | v ∈ Xα}
induces a subtree of T . The width of (T ,X) is maxα∈V (T)|Xα| − 1. The treewidth (tw(G))
is the minimum width of a tree decomposition of G. If C is a class of static graphs, then
X ⊆ V is a C-modulator in G if G −X ∈ C. The (i) distance to cograph, (ii) vertex cover
number, (iii) distance to bipartite, and (iv) distance to co-cluster are the size of a minimum
C-modulator where C is the set of all (i) cographs, (ii) edgeless graphs, (iii) bipartite graphs,
and (iv) co-clusters, respectively.

A temporal graph G = (V, (Et)τ
t=1) consists of a finite vertex set V and τ edge sets

E1, . . . , Eτ ⊆
(

V
2
)
. The underlying graph of G is the static graph GU := (V,

⋃τ
t=1 Et).

For t ∈ {1, . . . , τ}, the t-th layer of G is also a static graph, namely Gt := (V, Et). The
lifetime of G is τ , the number of layers.

If f1, f2 : X → Y are two functions that share a domain and a codomain, then δ(f1, f2) :=
|{x ∈ X | f1(x) ̸= f2(x)}| is the number of elements of X whose value under f1 differs from
the value under f2.

Preliminary results. There is a connection between MS2C and the Multistage 2-SAT
problem [13], which allows to transfer positive algorithmic results from the latter to the former.

▶ Observation 1. There is a polynomial time algorithm that, taking an instance of Mul-
tistage 2-Coloring, constructs an equivalent instance of Multistage 2-SAT with n

variables, 2m clauses, and d′ = d.

Proof. For each vertex v, construct a variable xv. For each edge {v, w} in a layer, construct
the clauses (xv ∨ xw), (xv ∨ xw). ◀

Results on Multistage 2-Sat [13] hence imply the following.

▶ Corollary 2. Multistage 2-Coloring is (i) polynomial-time solvable if d ∈ {0, n}, (ii) in
XP regarding n − d and τ + d, (iii) FPT regarding m + n − d and n, and (iv) admits a
polynomial kernel regarding m + τ and n + τ .

We briefly note the following:

▶ Observation 3. Given two 2-colorable graphs G = (V, E) and G′ = (V, E′), and two
2-colorings f of G and f ′ of G′, we can determine δ(f, f ′) in linear time.

We can strengthen the first statement in Corollary 2 with the following proposition:

▶ Proposition 4 (⋆). Multistage 2-Coloring is polynomial-time solvable if d ≥ 1
2 n.

Testing all sequences of functions f1, . . . , fτ : V → {1, 2} gives us the following:

▶ Observation 5. Multistage 2-Coloring can be decided in time O(2τn ·m) where τ is
the lifetime, n the number of vertices, and m the number of time edges in a temporal graph.

T. Fluschnik and P. Kunz 16:5

→

Figure 2 Illustration of Construction 1: The input graph G on the left hand-side (thick/red
edges indicate a solution) and the output temporal graph G on the right-hand side (thick/red edges
in the second layer indicate where a recoloring was made; gray/dotted lines help to match with
original edges from G).

3 NP-hard cases

We start by proving some complexity lower bounds for Multistage 2-Coloring. We will
show that the problem is NP-hard in two fairly restricted cases.

3.1 Few changes allowed
▶ Theorem 6 (⋆). Multistage 2-Coloring is NP-hard even for d = 1 and restricted to
temporal graphs where each layer contains just three edges and has maximum degree one.

The proof is deferred to the full version.

3.2 Few stages
▶ Theorem 7 (⋆). Multistage 2-Coloring is NP-hard on temporal graphs with at least
two layers each of which is a forest.

To prove Theorem 7, we give a polynomial-time many-one reduction from the NP-complete [35]
Edge Bipartization problem defined by:

▶ Problem 2. Edge Bipartization
Input: An undirected graph G = (V, E) and k ∈ N0.
Question: Is there a set of edges E′ ⊆ E with |E′| ≤ k such that G− E′ is bipartite?

▶ Construction 1. Let G = (V, E) be a graph and let k ∈ N0. We assume that V =
{v1, . . . , vn}. We construct an instance (G, d) of MS2C with G := (V ′, E1, E2) and d := k as
follows (see Figure 2 for an illustrative example).

The underlying graph of G is obtained by subdividing each edge in G twice. Let ue
i

and ue
j be the two vertices obtained by subdividing e = {vi, vj} where ue

i is adjacent
to vi and ue

j to vj . Then, V ′ := V ∪ {ue
i , ue

j | e = {vi, vj} ∈ E}. The first layer of G
has edge set E1 := {{vi, ue

i} | i ∈ {1, . . . , n}, e ∈ E, vi ∈ e}. The second layer has edge
set E2 := {{ue

i , ue
j} | e = {vi, vj} ∈ E}. ⌟

▶ Lemma 8 (⋆). Instance (G, k) is a yes-instance for Edge Bipartization if and only if
instance (G, d) output by Construction 1 is a yes-instance for Multistage 2-Coloring.

The reduction also implies the following:

SAND 2022

16:6 Multistage 2-Coloring

▶ Proposition 9. Unless the ETH fails, Multistage 2-Coloring admits no O(2o(n+m))-
time algorithm, where n is the number of vertices and m is the number of time edges in a
temporal graph, even for τ = 2.

Proof. Unless the ETH fails, Edge Bipartization cannot be solved in time O(2o(n)), where
n is the number of vertices. This follows from the corresponding lower bound for Maximum
Cut [27]. The instance output by Construction 1 contains n+2m vertices. The claim follows
by Lemma 8. ◀

4 Parameterized complexity

In the previous section we showed that Multistage 2-Coloring is NP-hard, even for
constant values of τ and d. In this section, we study the parameterized complexity of Mul-
tistage 2-Coloring. To begin with, we will now show that Multistage 2-Coloring is
fixed-parameter tractable with respect to n− d. This is in contrast to Multistage 2-SAT,
which is W[1]-hard with respect to this parameter [13, Theorem 3.6].

▶ Proposition 10. Multistage 2-Coloring is fixed-parameter tractable regarding n− d.

Proof. If d ≥ n
2 , the problem can be solved in polynomial time (see Proposition 4). If d < n

2 ,
then it follows that n < 2(n − d). Hence, the fixed-parameter tractability of MS2C with
respect to n (see Corollary 2) implies fixed-parameter tractability with respect to n− d. ◀

Additionally, we note the following kernelization lower bound.

▶ Proposition 11 (⋆). Unless NP ⊆ coNP / poly, Multistage 2-Coloring admits no
problem kernel of size polynomial in the number n of vertices.

In the following, we will consider the parameterized complexity of Multistage 2-
Coloring with respect to structural graph parameters. Research on the parameterized
complexity of multistage problems has thus far mostly focused on the parameters that are
given as part of the input such as d or τ . Although Fluschnik et al. [17] considered the
vertex cover number and maximum degree of the underlying graph, there has been no
systematic study of multistage problems concerned with structural parameters of the input
temporal graph. We seek to initiate this line of research in the following. It follows the
call by Fellows et al. [10, 12] to investigate problems’ “parameter ecology” in order to fully
understand what makes them computationally hard. We will begin with a short discussion of
how graph parameters can be applied to multistage problems. This question is closely related
to issues that arise when applying such parameters to temporal graph problems (see [14]
and [26, Sect. 2.4]).

A (temporal) graph parameter p is a function that maps any (temporal) graph G to a
nonnegative integer p(G). We will consider three ways of transferring graph parameters to
temporal graphs. If p is a graph parameter, G = (V, (Et)τ

t=1) is a temporal graph, Gt := (V, Et)
its t-th layer, and GU := (V,

⋃τ
t=1 Et) its underlying graph, then we define:

p∞(G) := max
t∈{1,...,τ}

p(Gt), (maximum parameterization)

pΣ(G) :=
τ∑

t=1
max{1, p(Gt)}, and (sum parameterization)

pU+τ (G) := p(GU) + τ. (underlying graph parameterization)

T. Fluschnik and P. Kunz 16:7

We will briefly explain our choice to define these parameters in this manner and describe
the relationship between the parameters. For any two (temporal) graph parameters p1
and p2, the first parameter p1 is larger than p2, written p1 ⪰ p2 or p2 ⪯ p1, if there is
a function f : N0 → N0 such that f(p1(G)) ≥ p2(G) for all (temporal) graphs G. Such
relationships between parameters are useful because, if p1 ⪰ p2, then any problem that is
fixed-parameter tractable with respect to p2 is also fixed-parameter tractable with respect
to p1. The ⪰-relation between static graph parameters is well-understood [21, 30, 31, 32, 33].
We will use these relationships implicitly and explicitly throughout this article. Many of
the results claimed in Figure 1 will not be explicitly proved, because they are immediate
consequences of other results and the ⪰-relation. The relationships under ⪰ between selected
graph parameters are pictured in that figure.

When it comes to transferring graph parameters from the static to the multistage setting,
the parameters p∞ and pU+τ simply apply the graph parameter to the individual layers
and to the underlying graph, respectively, and were used in a similar manner by Fluschnik
et al. [14] and Molter [26]. The reasoning behind the definition of the sum parameterization
may not be quite as obvious. It seems natural to consider the sum of the parameters over
all layers. The issue with this is that it may not preserve the ⪰-relation. For example, it
is well-known that feedback vertex number is a larger parameter (in the sense of ⪰) than
treewidth. However, consider a temporal graph where each layer is a forest. Then, the sum
of the feedback vertex numbers of the layers is 0, but the sum of the layers’ treewidths is τ .
Hence, treewidth is no longer bounded from above by the feedback vertex number. Our
definition gets around this problem. In fact, all three aforementioned ways of transferring
parameters from the static to the multistage setting preserve the ⪰-relation:

▶ Proposition 12. Let p and q be graph parameters with p ⪰ q. Then, pα ⪰ qα for
any α ∈ {∞, Σ, U + τ}.

Proof. Let f : N0 → N0 be a function such that f(p(G)) ≥ q(G) for all static graphs G.
Without loss of generality, we may assume that (i) f is monotonically increasing, that
is, f(a) ≥ f(b) if a ≥ b, and (ii) f(a) ≥ a for every a ∈ N0 (consider f ′(a) := a +
maxb∈{1,...,a} f(b), a ∈ N0, for instance).

Let G be an arbitrary temporal graph. Then:

f(p∞(G)) = f

(
max

t∈{1,...,τ}
p(Gt)

)
(i)= max

t∈{1,...,τ}
f(p(Gt)) ≥ max

t∈{1,...,τ}
q(Gt) = q∞(G)

For n ∈ N, let Part(n) denote the set of all partitions of n, that is all possible ways of
writing n as n = n1 + n2 + . . . + nr for r ≥ 1 and ni ∈ N. Let g : N0 → N0 with:

g(0) := 0, g(n) := max
{

r∑
i=1

f(ni)
∣∣∣ (n1, . . . , nr) ∈ Part(n)

}
if n > 0.

The maximum is well-defined, because Part(n) is finite. Then, any temporal graph G satisfies:

g(pΣ(G)) = g

(
τ∑

t=1
max{1, p(Gt)}

)
≥

τ∑
t=1

f(max{1, p(Gt)})
(i)=

τ∑
t=1

max{f(1), f(p(Gt))}

(ii)
≥

τ∑
t=1

max{1, q(Gt)} = qΣ(G).

(Note that the first inequality relies on the fact that every term in the sum is at least 1, since
a partition can only be composed of positive summands. Therefore, this argument would not
apply, if we defined the sum parameterization as simply the sum over the parameters of the
individual layers.)

SAND 2022

16:8 Multistage 2-Coloring

Lastly, for any temporal graph G, we have:

g(pU+τ (G)) = g(p(GU) + τ) ≥ f(p(Gu)) + f(τ)
(ii)
≥ q(GU) + τ = qU+τ (G). ◀

Finally, we will briefly consider the relationship between p∞, pΣ, and pU+τ . We will say
that a graph parameter p is monotonically increasing if for any two static graphs G = (V, E)
and G′ = (V, E′) with the same vertex set, it is the case that E ⊆ E′ implies p(G) ≤ p(G′).
Conversely, it is monotonically decreasing if E ⊆ E′ implies p(G) ≥ p(G′).

▶ Proposition 13. Let p be a graph parameter. Then:
(i) p∞ ⪯ pΣ,
(ii) pΣ ⪯ pU+τ , if p is monotonically increasing, and
(iii) pΣ ⪰ pU+τ , if p is monotonically decreasing.

Proof.
(i) Obvious.
(ii) Let G be a temporal graph. Note that since Gt ⊆ GU , it follows that p(Gt) ≤ p(GU) for

all t ∈ {1, . . . , τ}. Hence:

pΣ(G) =
τ∑

t=1
max{1, p(Gt)} ≤ τ +

τ∑
t=1

p(Gt) ≤ τ + τ · p(GU)

≤ (τ + p(GU))2 = pU+τ (G)2.

(iii) Let G be a temporal graph. Note that since Gt ⊆ GU , it follows that p(Gt) ≥ p(GU) for
all t ∈ {1, . . . , τ}. If τ = 1 or p(GU) ≤ 1, the claim is obvious. Otherwise, we have that:

pΣ(G) =
τ∑

t=1
max{1, p(Gt)} ≥

τ∑
t=1

max{1, p(GU)} ≥
τ∑

t=1
p(GU)

= τ · p(GU) ≥ pU+τ (G). ◀

We will now investigate the problem’s parameterized complexity with respect to the three
types of parameterizations. Figure 1 gives an overview of our results and of the abbreviations
we use for the parameters. Our choice of parameters is partly motivated by Sorge and
Weller’s compendium [32] on graph parameters, but we limit our attention to those that are
most interesting in the context of MS2C. For full definitions of the parameters, we refer the
reader to Sorge and Weller’s manuscript [32] or Section 2.

4.1 Underlying graph parameterization
▶ Lemma 14. If G = (V, (Et)τ

t=1) is a temporal graph and every layer Gt = (V, Et) of G is
bipartite for t ∈ {1, . . . , τ}, then isU+τ (G) ≥ 2−τ |V |.

Proof. (By induction on τ .) If τ = 1, then GU is bipartite and the larger color class in
any 2-coloring of GU forms an independent set containing at least 1

2 |V | vertices. Suppose
the claim holds for τ − 1. Then, the underlying graph of G′ = (V, (Et)τ−1

t=1) contains an
independent set X ⊆ V of size at least 2−(τ−1)|V |. The graph (X,

(
X
2
)
∩ Eτ) is bipartite

since it is a subgraph of (V, Eτ). Hence, it contains an independent set Y of size at least
1
2 |X| ≥ 2−τ |V |. Then, Y is also an independent set in GU . ◀

▶ Proposition 15. Multistage 2-Coloring is fixed-parameter tractable regarding isU+τ .

T. Fluschnik and P. Kunz 16:9

Proof. If any layer of G is not bipartite, then the input can be immediately rejected.
Otherwise, let GU be the underlying graph of G. By Observation 5, MS2C can be solved in
time O∗(2τ ·|V |) ≤ O∗(2τ ·isU+τ (G)·2τ). ◀

▶ Proposition 16 (⋆). Multistage 2-Coloring is NP-hard even if τ = 4, dom(GU) ≤ 2,
and dco(GU) = 0. Hence, the problem is para-NP-hard with respect to domU+τ and dcoU+τ .

▶ Proposition 17 (⋆). Multistage 2-Coloring can be solved in O∗(2τ ·twU+τ (G) · (d+1)2τ)
time. Hence, the problem is in XP when parameterized by twU+τ .

The proof of this proposition utilizes a standard dynamic programming approach for problems
parameterized by treewidth, extending it to the multistage context. Note that the running
time of this algorithm also implies that Multistage 2-Coloring is fixed-parameter tractable
with respect to τ + d + twU+τ .

▶ Proposition 18 (⋆). Multistage 2-Coloring is NP-hard even if τ = 3 and ∆(G) = 3.
Hence, the problem is para-NP-hard with respect to ∆U+τ .

▶ Proposition 19 (⋆). Multistage 2-Coloring is NP-hard even if τ = 3 and dbiU+τ = 2.

Next, we will prove that Multistage 2-Coloring is W[1]-hard with respect to fesU+τ .
In fact, we will prove the following slightly stronger statement:

▶ Proposition 20 (⋆). Multistage 2-Coloring is W[1]-hard when parameterized by τ ,
even if the feedback edge number fes(GU) of the underlying graph is one.

We already showed that MS2C is XP regarding twU+τ , so Proposition 20 implies that it
is XP and W[1]-hard when parameterized by twU+τ , fvsU+τ , and fesU+τ , since tw ⪯ fvs ⪯ fes.
The proof of Proposition 20 is a little more involved than most of the previous hardness
proofs. Our reduction is from the following:

▶ Problem 3. Multicolored Clique (MC)
Input: A k-colored static graph G = (V, E) with V = V1 ⊎ . . . ⊎ Vk.
Question: Does G contain a clique X ⊆ V such that |X ∩ Vi| = 1 for all i ∈ {1, . . . , k}?

Multicolored Clique is W[1]-hard when parameterized by k [11, 28].

▶ Construction 2. Let (G = (V, E), k) with V = V1 ⊎ . . . ⊎ Vk be an instance of Multi-
colored Clique. We may assume that |V1| = . . . = |Vk| = n (if color classes do not have
the same size, we can add isolated vertices), that all Vi are independent, and that |E| ≥

(
k
2
)

(otherwise, this is clearly a no-instance). Let Vi = {vi
0, . . . , vi

n−1}.
We will now describe an instance (G = (V ′, (Et)τ

t=1), d) of Multistage 2-Coloring
with fes(GU) = 2 (see Figure 3 for an illustration). We let τ := 2k(k − 1) + 3 and d := |E|.

The general idea behind the reduction is as follows. We consider the steps between
consecutive layers and the number of changes to the coloring in those steps. The value of τ

implies that there are 2k(k − 1) + 2 steps in total. There are 2k − 2 such steps for each color
class in G, while the final two steps do not correspond to any color class. Of the 2k− 2 steps
that correspond to c ∈ {1, . . . , k}, two will be used to verify adjacency to each of the k − 1
other color classes. In order to be able to refer to these steps easily, we will use the following
notation for any c, c′ ∈ {1, . . . , k}, c ̸= c′:

T (c→ c′) :=
{

2(c− 1)(k − 1) + c′, if c > c′,

2(c− 1)(k − 1) + c′ − 1, if c < c′,
and

T (c⇒ c′) := T (c→ c′) + k − 1

SAND 2022

16:10 Multistage 2-Coloring

...
...

· · ·

V1

...
...

· · ·

V2

· · · ...
...

· · ·

Vk

... ...
...

...

V 1,j
i,i′

... ...
...

...

V j,j′
a,b

· · ·
...

...

V j′,j′′

a′,b′

· · ·

· · ·

· · ·
· · ·

...

...

· · ·

· · ·

· · ·
· · ·

...

...

x3
x2

x1
· · ·

...
...

· · ·

V1

...
...

· · ·

V2

· · · ...
...

· · ·

Vk

... ...
...

...

V 1,j
i,i′

... ...
...

...

V j,j′
a,b

· · ·
...

...

V j′,j′′

a′,b′

· · ·

· · ·

· · ·
· · ·

...

...

· · ·

· · ·

· · ·
· · ·

...

...

x3
x2

x1

...
...

· · ·

V1

...
...

· · ·

V2

· · · ...
...

· · ·

Vk

... ...
...

...

V 1,j
i,i′

... ...
...

...

V j,j′
a,b

· · ·
...

...

V j′,j′′

a′,b′

· · ·

· · ·

· · ·
· · ·

...

...

· · ·

· · ·

· · ·
· · ·

...

...

x3
x2

x1
· · ·

...
...

· · ·

V1

...
...

· · ·

V2

· · · ...
...

· · ·

Vk

... ...
...

...

V 1,j
i,i′

... ...
...

...

V j,j′
a,b

· · ·
...

...

V j′,j′′

a′,b′

· · ·

· · ·

· · ·
· · ·

...

...

· · ·

· · ·

· · ·
· · ·

...

...

x3
x2

x1

...
...

· · ·

V1

...
...

· · ·

V2

· · · ...
...

· · ·

Vk

... ...
...

...

V 1,j
i,i′

... ...
...

...

V j,j′
a,b

· · ·
...

...

V j′,j′′

a′,b′

· · ·

· · ·

· · ·
· · ·

...

...

· · ·

· · ·

· · ·
· · ·

...

...

x3
x2

x1

Figure 3 Illustration of Construction 2. Shown are the first layer (left), the two layers when
transitioning from the phase regarding V2 to the phase regarding V3 (middle), the last two layers
(right). In the gray area, the waste-budget gadget is depicted. In this example, the edge {v1

i , vj
i′ } is

chosen into the clique. Note that many vertices (those from paths and stars) are not depicted.

We will use several gadgets. The first gadget maintains its coloring throughout most of
the lifetime of the instance. We use it to enforce a particular, predictable coloring on vertices
in other gadgets at certain points. The second type of gadget represents the selection of a
vertex in a certain color class. If the vertex vi

j is to be added to the clique, it forces any
multistage 2-coloring to make j changes in the first k − 1 steps corresponding to the color
class i and n− j − 1 changes in the following k − 1 steps corresponding to this class. There
is a third type of gadget. Its purpose is to verify that the vertices selected by the first gadget
type are pairwise adjacent. There are numerous additional vertices whose sole purpose is to
ensure that the coloring of vertices cannot change in unexpected ways. More specifically,
when we say that a vertex v is blocked in time step t, we mean that we add d vertices that
are adjacent to v in the (t− 1)-st and t-th layers and isolated in all other layers. There are
also further vertices designed to use up extraneous budget for changes during certain time
steps.

We start by describing the first gadget, whose purpose is to maintain a predictable
coloring so it can be used to enforce a certain coloring on other parts of the instance at
particular points in time. This gadget contains the vertices x1, x2, x3. The edge {x1, x2} is
present in every layer of G. The edge {x2, x3} exists only in the first layer, while {x1, x3} is
present in all layers but the first. The vertices x1 and x2 are blocked in every step.

Next, we define the second type of gadget, which models the selection of a vertex in
a color class. The gadget representing a certain color class Vc, c ∈ {1, . . . , k}, consists of
(n−1)(k−1) vertices wc

i,j for i ∈ {1, . . . , n−1}, j ∈ {1, . . . , k−1}. The vertex wc
i,j is blocked

in all time steps except for the step T (c → j) and the step T (c ⇒ j). There is an edge
between wc

i,j and wc
i,j+1 in the layers from T (c→ j + 1) to T (c⇒ 1) and from T (c⇒ j) to

T (c+1→ 1). Additionally, in the very first and in the final layer of G, all edges {wc
i,j , wc

i,j+1}
are present and there is an edge from x3 to wc

i,1 for all c ∈ {1, . . . , k} and i ∈ {1, . . . , n− 1}.
Moreover, for every c ∈ {1, . . . , k}, there is an edge from x3 to wc

i,1 for all i ∈ {1, . . . , n− 1}
in all layers of index larger than T (c ⇒ c′), with c′ = max{1, . . . , k} \ {c}. This gadget is
illustrated in the top part of Figure 4.

Next, we will describe the gadget that verifies that vertices selected in the previous
gadget are pairwise adjacent. There is one such gadget for every edge e = {vc

j , vc′

j′} ∈ E,
1 ≤ c < c′ ≤ k, j, j′ ∈ {0, . . . , n− 1}. The gadget consists of a root vertex ue

0 and four paths.
The root is blocked in every step except for the final two. There is an edge between ue

0 and

T. Fluschnik and P. Kunz 16:11

V1

· · · · · ·

e1,21,3

· · ·

e1,31,1

· · ·

e1,41,2

...

recolor:
1 in V1

3 in e1,21,3

V1

· · · · · ·

e1,21,3

· · · · · ·

...

recolor:
1 in V1

3 in e1,31,1

V1

· · · · · ·

· · ·

e1,31,1

· · ·

...

recolor:
1 in V1

3 in e1,41,2

V1

· · · · · ·

· · · · · ·

e1,41,2

...

recolor:
3 in V1

1 in e1,21,3

V1

· · · · · ·

e1,21,3

· · · · · ·

...

recolor:
3 in V1

1 in e1,31,1

V1

· · · · · ·

· · ·

e1,31,1

· · ·

...

recolor:
3 in V1

1 in e1,41,2

V1

· · · · · ·

· · · · · ·

e1,41,2

...

Figure 4 Illustrative example of the recolorings in Construction 2. Here, n = 5, k = 4,
e1,2

1,3 := {v1
1 , v2

3}, e1,3
1,1 := {v1

1 , v3
1}, and e1,4

1,2 := {v1
1 , v4

2}. The recolorings here represents the case that
vertex v1

1 is chosen into the clique, together with its incident edges to v2
3 , v3

1 , and v4
2 .

x3 in the first and the (τ − 2)nd layer. The first vertex of each of the four paths is adjacent
to ue

0 in the first and in the final layer. The edges of the paths are present in every layer.
These paths consist of n− 1− j, j, n− 1− j′, and j′ vertices, respectively. The vertices on
the path of size n− 1− j are blocked in every time step except for step T (c→ c′). Those on
the path of size j are blocked except for step T (c ⇒ c′). The vertices on the path of size
n − 1 − j′ are blocked except for step T (c′ → c). Finally, those on the path of size j′ are
blocked except for step T (c′ ⇒ c).

Finally, there is a gadget whose purpose is to waste extraneous budget for changes. It
consists of τ − 2 paths. There are τ − 4 paths P3, . . . , Pτ−2 containing d− (n− 1) vertices
each, one path P2 that consists of d−n vertices, and one path Pτ that consists of

(
k
2
)

vertices.
For each i ∈ {2, . . . , τ} \ {τ − 1}, the first vertex in Pi is adjacent to x3 exactly in the first
and ith layer, where in all but the ith layer, all vertices from Pi are blocked. ⌟

The proof of the correctness of this reduction is deferred to the full version. We will briefly
sketch a high-level description of this proof. All vertices in the gadget for a color class c

must be re-colored at some point. Some number i(k − 1) is re-colored in the first k − 1 steps
corresponding to the color class and the remaining (n− i−1)(k−1) are re-colored during the
subsequent k− 1 steps (see Figure 4 for an illustration). That is, vertex vc

i from color class c

is added to the clique. In the final step, only |E| −
(

k
2
)

vertices ue
0 can be re-colored. The

other
(

k
2
)

vertices correspond to edges that have both endpoints in the clique. The adjacency
verification gadget ensures that, if ue

0 is not re-colored in the final step, then its endpoints
must be selected to be part of the clique. This works because the four paths in this gadget
must be re-colored in steps that belong to the color classes of the edge’s endpoints.

▶ Lemma 21 (⋆). The input instance to Construction 2 is a yes-instance for Multi-
colored Clique if and only if the output instance is a yes-instance for Multistage
2-Coloring.

Finally, fixed-parameter tractability with respect to vcU+τ can be proved using Theorem 27
(see Section 4.3) and the interplay between the different parameters (cf. Propositions 12
and 13).

▶ Proposition 22 (⋆). Multistage 2-Coloring is fixed-parameter tractable regard-
ing vcU+τ .

SAND 2022

16:12 Multistage 2-Coloring

4.2 Maximum parameterization
We turn our attention to the parameterized complexity of Multistage 2-Coloring with
respect to several structural parameters under the maximum parameterization. We begin
with ncc∞, the maximum number of connected components over all layers. Observe that
under any proper 2-coloring the color of a single vertex determines the coloring of its entire
connected component.

▶ Observation 23. Every 2-colorable static graph with N connected components admits
exactly 2N different proper 2-colorings.

This implies that MS2C is fixed-parameter tractable with respect to ncc∞.

▶ Proposition 24. Multistage 2-Coloring admits an O(4ncc∞(G)τ)-time algorithm.

Proof. Let N := ncc∞(G). We create an auxiliary static directed graph in the following
manner. For each layer of G, we include a node for every one of the at most 2N many
2-colorings of this layer. There is a directed edge from a node representing a coloring of Gt

to a node representing a coloring of Gt+1 if the recoloring cost between the two is at most
d. Finally, add two nodes s, t and connect s to every node corresponding to a coloring of
the first layer and connect every node that corresponds to a coloring of the final layer to t.
Then, (G, d) is a yes-instance if and only if the auxiliary graph contains a path from s to t.
Moreover, the auxiliary graph contains at most O(4ncc∞(G)τ) edges. ◀

This result is essentially a stronger version of the statement in Corollary 2 that Multi-
stage 2-Coloring is fixed-parameter tractable with respect to n, the number of vertices.
However, ncc and larger parameters are the only structural parameters that yield fixed-
parameter tractability with respect to the maximum parameterization.

▶ Proposition 25 (⋆). Multistage 2-Coloring is NP-hard even for constant values
of vc∞, fes∞, and bw∞.

We note that Proposition 11 implies that MS2C does not admit a polynomial kernel for
any parameter p listed in Figure 1 under the maximum parameterization, since n ⪰ p∞ for
all of these parameters.

4.3 Sum parameterization
We start with the parameterized complexity of Multistage 2-Coloring with respect to
several structural parameters under the sum parameterization. For nccΣ, fixed-parameter
tractability follows from that for ncc∞.

We start by proving that MS2C is fixed-parameter tractable with respect to the distance
to co-cluster under the sum parameterization. This stands in contrast to the maximum
parameterization (see Proposition 25). A graph is a co-cluster if and only if it does not
contain K2 +K1 as an induced subgraph. By a general result obtained by Cai [6], this implies
that the problem of determining whether dcc(G) ≤ k for a static graph G is fixed-parameter
tractable with respect to k. We will make use of the following fact:

▶ Observation 26. If G is a co-cluster, then G is edgeless or connected.

▶ Theorem 27. Multistage 2-Coloring is fixed-parameter tractable regarding dccΣ.

T. Fluschnik and P. Kunz 16:13

If G = (V, E) is a graph, then a function f̃ : V → {1, 2,⊥} is a proper partial 2-coloring if the
restriction of f̃ to V ′ := {v ∈ V | f̃(v) ̸= ⊥} is a proper 2-coloring of G[V ′]. If f̃ is a proper
partial and f is a proper 2-coloring of G, then f is an extension of f̃ , if f̃(v) ∈ {⊥, f(v)} for
every v ∈ V . We will use the following as an intermediate problem.

▶ Problem 4. Multistage 2-Coloring Extension (MS2CE)
Input: A temporal graph G = (V, (Et)τ

t=1), proper partial 2-colorings f̃1, . . . , f̃τ : V →
{1, 2,⊥}, and an integer d ∈ N0.

Question: Are there f1, . . . , fτ : V → {1, 2} such that ft is an extension of f̃t and a proper
2-coloring of (V, Et) for every t ∈ {1, . . . , τ} and δ(ft, ft+1) ≤ d for every t ∈ {1, . . . , t− 1}?

We have the following immediate reduction rule for MS2CE.

▶ Reduction Rule 1. If an edge e has two colored endpoints, then delete e.

▶ Lemma 28. Multistage 2-Coloring Extension is polynomial-time solvable if the
input does not contain any edges.

Proof. We reduce Multistage 2-Coloring Extension with no edges to the following job
scheduling problem:

▶ Problem 5. (1 | rj , pj = 1 | Lmax) Scheduling
Input: A list of jobs j1, . . . , jn, where each job ji = (ri, di) has a release date ri ∈ N0 and a

due date di ∈ N0, and a maximum lateness L ∈ N0.
Question: Is there a schedule s : {j1, . . . , jn} → N0 such that (i) s(ji) ̸= s(ji′) if i ̸= i′,
(ii) s(ji) ≥ ri for all i ∈ {1, . . . , n}, and (iii) s(ji)− di ≤ L for all i ∈ {1, . . . , n}?

Horn [20, Sect. 2] showed that this scheduling problem can be solved by a polynomial-time
greedy algorithm that always schedules the available job with the earliest due date. Let
(G = (V, (∅)τ

t=1), f̃1, . . . , f̃τ , d) be an instance for MS2CE. We will say that vertex v ∈ V

between t1, t2 ∈ {1, . . . , τ} is forced to be re-colored i ∈ {1, 2} if: (i) t1 < t2 and there is no
t3 with t1 < t3 < t2 such that f̃t3(v) ̸= ⊥, (ii) f̃t2(v) = i ∈ {1, 2}, and (iii) f̃t1(v) = 3 − i.
Let R ⊆ V × {1, . . . , τ − 1} × {2, . . . , τ} × {1, 2} be the set of all forced re-colorings.
Specifically, (v, t1, t2, i) ∈ R if and only if v is forced to be re-colored i between t1 and t2.

In the machine scheduling model, only one job can be performed per time step, but,
in a solution for an MS2C instance, up to d vertices can be re-colored. Hence, we fill
each transition between two layers with d time slots. For t ∈ {1, . . . , τ − 1}, the time slots
d(t− 1) + 1, . . . , dt correspond to changes in the coloring between the layers t and t + 1. For
any forced re-coloring (v, t1, t2, c) ∈ R, we create a job ji with release date ri = d(t1 − 1) + 1
and due date di = dt2. We will show that the given instance of MS2CE admits a solution if
and only if this set of jobs admits a schedule with maximum lateness 0.

(⇒) Suppose that f1, . . . , fτ is a solution to the instance that extends f̃1, . . . , f̃τ . It is
easy to see that, if (v, t1, t2, i) ∈ R, then ft1(v) ̸= ft2(v). Hence, there must be a t with
ft(v) ̸= ft+1(v) and t ∈ {t1, . . . , t2− 1}. Then, a machine schedule for the instance described
above can be constructed by scheduling the job corresponding to (v, t1, t2, i) in one of the
slots d(t− 1) + 1, . . . , dt. Since δ(ft, ft+1) ≤ d, there are enough slots.

(⇐) Suppose that we are given a machine schedule with maximum lateness 0 for the
aforementioned instance. We construct an initial coloring f1 by assigning each vertex v

the color i, if there is a t ∈ {1, . . . , τ} such that f̃t(v) = i ∈ {1, 2} and f̃t′(v) = ⊥ for all
t′ < t. If f̃t(v) = ⊥ for all t ∈ {1, . . . , τ}, then we assign f1(v) arbitrarily. We iteratively

SAND 2022

16:14 Multistage 2-Coloring

Algorithm 1 FPT-algorithm regarding dccΣ on input G = (V, (Et)τ
t=1), d ∈ N0.

1 T +, T − ← ∅;
2 foreach t ∈ {1, . . . , τ} do
3 Xt ← a minimum set such that Gt −Xt is a co-cluster;
4 if Gt −Xt is connected then T + ← T + ∪ {t} else T − ← T − ∪ {t};
5 foreach g1 : X1 → {1, 2}, . . . , gτ : Xτ → {1, 2} do // ≤ 2dccΣ many
6 foreach t ∈ {1, . . . , τ} do
7 if t ∈ T − then while ∃ {u, v} ∈ Et s.t. gt(u) = i and gt(v) is undefined, let

gt(v)← 3− i;
8 if t ∈ T + then Ft ← {g1

t , g2
t } with the two possible proper 2-colorings g1

t , g2
t

of Gt −Xt;
9 foreach (g′

t1
, . . . , g′

t|T −|
) ∈×t∈T − Ft do // ≤ 2τ many

10 Let f̃t ← gt if t ∈ T − and f̃t ← gt ∪ g′
t if t ∈ T +;

11 if f̃1, . . . , f̃τ are proper partial colorings then
12 if (G, f̃1, . . . , f̃τ , d) is a yes-instance for MS2CE then
13 return yes // decidable in polynomial time (Lemma 28)

14 return no

construct f2, . . . , fτ as follows. We let ft+1(v) = 3 − ft(v) if the given schedule assigns
a job ji corresponding to a forced re-coloring (v, t1, t2, 3 − ft(v)) ∈ R to a slot between
d(t− 1) + 1 and dt. Otherwise, we let ft+1(v) = ft(v). ◀

The idea in the proof of Theorem 27 is as follows. After computing a distance-to-co-cluster
set for each layer, we check for all possible colorings of these sets, and then propagate the
colorings. We finally arrive at an instance of MS2CE with no edges, which is decidable in
polynomial time.

Proof of Theorem 27. Let I = (G, d) be an instance of Multistage 2-Coloring. Let
G = (V, (Et)τ

t=1) and Gt := (V, Et) be the t-th layer of G. Let k :=
∑τ

t=1 dcc(Gt). The
following algorithm is summarized in pseudocode in Algorithm 1.

For each t ∈ {1, . . . , τ}, using Cai’s algorithm [6], we can compute in 2O(k) · |Gt|O(1)

time a minimum set Xt ⊆ V such that Gt −Xt is a co-cluster. Let (T +, T −) be a partition
of {1, . . . , τ} such that t ∈ T + if and only if Gt − Xt is connected (see Observation 26).
For t ∈ T +, let Vt := V (Gt−Xt), and for t ∈ T −, let Vt := {v ∈ V (Gt−Xt) | degGt

(v) > 0}
be the vertices in Gt −Xt incident to at least one edge in Gt. We then iterate over all the at
most 2k possible partial 2-colorings of (X1, . . . , Xτ). For every t ∈ T + there are only two
possible proper 2-colorings of Gt−Xt. We iterate over all the at most 2τ possible 2-colorings
of these layers. For every t ∈ T −, if there is an uncolored vertex v with a neighbor w

colored i ∈ {1, 2}, then color v with color 3 − i. Note that this colors all vertices in Vt.
Let f̃1, . . . , f̃τ be the resulting partial coloring. The important thing to note is that for
every t ∈ {1, . . . , τ} and every edge in Et both its endpoints are colored by f̃t. If one of
f̃1, . . . , f̃τ is not proper, we reject the coloring, otherwise we proceed as follows.

Construct the instance Ĩ = (G, (f̃t)τ
t=1, d) of Multistage 2-Coloring Extension.

Since every edge has two colored endpoints, applying Reduction Rule 1 exhaustively results in
an instance Ĩ ′ = (G′, (f̃t)τ

t=1, d) of Multistage 2-Coloring Extension where G′ contains
no edge. Hence, due to Lemma 28, we can solve Ĩ ′ in polynomial-time. Thus, the overall
running time is in

∑τ
t=1 2O(k) · |Gt|O(1) + 2k+τ |G|O(1).

T. Fluschnik and P. Kunz 16:15

Clearly, if Ĩ ′ is a yes-instance in one choice, then I is a yes-instance of MS2C. That the
opposite direction is correct too is also not hard not see. Note that every solution f1, . . . , fτ

induces a proper partial coloring f̃1, . . . , f̃τ , where f̃t is induced on Vt ∪ Xt for every t ∈
{1, . . . , τ}, that we will eventually check. Moreover, the resulting input to MS2CE is clearly
a yes-instance: f1, . . . , fτ is a solution to (G, (f̃t)τ

t=1, d). ◀

▶ Proposition 29 (⋆). Multistage 2-Coloring is NP-hard even for constant values of
(i) dcoΣ, (ii) fesΣ, and (iii) ∆Σ.

Our final result on structural parameters concerns bwΣ, that is, bandwidth with the sum
parameterization. We first briefly note the following:

▶ Observation 30. Let G be an undirected graph. If every connected component in G contains
at most k vertices, then bw(G) ≤ k − 1.

We can use this observation to show that Multistage 2-Coloring is para-NP-hard when
parameterized by bwΣ.

▶ Proposition 31 (⋆). Multistage 2-Coloring is NP-hard even if bwΣ is constant.

5 Global budget

The problem we have considered so far is the multistage version of 2-Coloring with a local
budget. Heeger et al. [19] started the parameterized research of multistage graph problems
on a global budget where there is no restriction on the number of changes between any two
consecutive layers, but instead a restriction on the total number of changes made throughout
the lifetime of the instance. All graph problems studied by Heeger et al. are NP-hard even
for constant values of the global budget parameter. By contrast, we will show that a global
budget version of Multistage 2-Coloring is fixed-parameter tractable with respect to the
budget. Formally, the global budget version of Multistage 2-Coloring is:

▶ Problem 6. Multistage 2-Coloring on a Global Budget (MS2CGB)
Input: A temporal graph G = (V, (Et)τ

t=1) and an integer D ∈ N0.
Question: Are there f1, . . . , fτ : V → {1, 2} such that ft is a proper 2-coloring of (V, Et) for
every t ∈ {1, . . . , τ} and

∑τ−1
t=1 δ(ft, ft+1) ≤ D?

We start by pointing out that MS2CGB is NP-hard. This follows from Theorem 7, since
there is no distinction between a local and a global budget if τ = 2.

▶ Observation 32. Multistage 2-Coloring on a Global Budget is NP-hard.

In order to show that Multistage 2-Coloring on a Global Budget is fixed-parameter
tractable, we will prove the existence of a parameter-preserving transformation to the Almost
2-SAT problem, which is defined by:

▶ Problem 7. Almost 2-SAT (A2SAT)
Input: A Boolean formula φ in 2-CNF and an integer k.
Question: Can φ be made satisfiable by removing at most k clauses?

Razgon and O’Sullivan [29] prove that A2SAT is fixed-parameter tractable when param-
eterized by k, but the fastest presently known algorithm runs in O∗(2.3146k) and is due
to Lokshtanov et al. [25]. Kratsch and Wahlström [23] show that this problem admits a
randomized polynomial kernel.

SAND 2022

16:16 Multistage 2-Coloring

▶ Proposition 33 (⋆). Multistage 2-Coloring on a Global Budget parameterized
by D admits a parameter-preserving transformation to Almost 2-SAT parameterized by k.

The proof is deferred to the full version. The basic idea behind the reduction is that we
use D + 1 copies of the same two clauses to express that no edge should be monochromatic.
At least one of these clause pairs must survive the deletion. Moreover, we add clauses stating
that vertices are not re-colored. At most D of these clauses can be deleted. This directly
implies the following:

▶ Corollary 34. Multistage 2-Coloring on a Global Budget parameterized by D is
fixed-parameter tractable and admits a randomized polynomial kernel.

We note that the approach described here for MS2C can be used to reduce a global budget
version of the more general Multistage 2-SAT to Almost 2-SAT, proving the following:

▶ Observation 35. Multistage 2-SAT on a Global Budget parameterized by the
number of changes is fixed-parameter tractable and admits a randomized polynomial kernel.

References
1 Shorouq Al-Eidi, Yuanzhu Chen, Omar Darwishand, and Ali M. S. Alfosool. Time-ordered

bipartite graph for spatio-temporal social network analysis. In Proceedings of the 2020
International Conference on Computing, Networking and Communications (ICNC), pages
833–838, 2020. doi:10.1109/ICNC47757.2020.9049668.

2 Evripidis Bampis, Bruno Escoffier, and Alexander V. Kononov. LP-based algorithms for multi-
stage minimization problems. In Proceedings of the 18th International Workshop on Approxima-
tion and Online Algorithms (WAOA), pages 1–15, 2020. doi:10.1007/978-3-030-80879-2_1.

3 Evripidis Bampis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. Multistage
matchings. In Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT), pages 7:1–7:13, 2018. doi:10.4230/LIPIcs.SWAT.2018.7.

4 Evripidis Bampis, Bruno Escoffier, and Alexandre Teiller. Multistage knapsack. In Proceedings
of the 44th International Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 22:1–22:14, 2019. doi:10.4230/LIPIcs.MFCS.2019.22.

5 Robert Bredereck, Till Fluschnik, and Andrzej Kaczmarczyk. Multistage committee election.
arXiv, 2020. arXiv:2005.02300.

6 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

7 Markus Chimani, Niklas Troost, and Tilo Wiedera. Approximating multistage matching
problems. In Proceedings of the 32nd International Workshop on Combinatorial Algorithms
(IWOCA), pages 558–570, 2021. doi:10.1007/978-3-030-79987-8_39.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Reinhard Diestel. Graph Theory. Springer, 5th edition, 2017. doi:10.1007/
978-3-662-53622-3.

10 Michael Fellows, Daniel Lokshtanov, Neeldhara Misra, Matthias Mnich, Frances Rosa-
mond, and Saket Saurabh. The complexity ecology of parameters: An illustration us-
ing bounded max leaf number. Theory of Computing Systems, 45(4):822–848, 2009.
doi:10.1007/s00224-009-9167-9.

https://doi.org/10.1109/ICNC47757.2020.9049668
https://doi.org/10.1007/978-3-030-80879-2_1
https://doi.org/10.4230/LIPIcs.SWAT.2018.7
https://doi.org/10.4230/LIPIcs.MFCS.2019.22
http://arxiv.org/abs/2005.02300
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/978-3-030-79987-8_39
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/s00224-009-9167-9

T. Fluschnik and P. Kunz 16:17

11 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

12 Michael R. Fellows, Bart M.P. Jansen, and Frances Rosamond. Towards fully multivariate
algorithmics: Parameter ecology and the deconstruction of computational complexity. European
Journal of Combinatorics, 34(3):541–566, 2013. doi:10.1016/j.ejc.2012.04.008.

13 Till Fluschnik. A multistage view on 2-satisfiability. In Proceedings of the 12th International
Conference on Algorithms and Complexity (CIAC), pages 231–244, 2021. doi:10.1007/
978-3-030-75242-2_16.

14 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche. As
time goes by: Reflections on treewidth for temporal graphs. In Fedor V. Fomin, Stefan Kratsch,
and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms: Essays Dedicated to
Hans L. Bodlaender on the Occasion of His 60th Birthday, pages 49–77. Springer International
Publishing, Cham, 2020. doi:10.1007/978-3-030-42071-0_6.

15 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020. doi:10.1016/j.tcs.2019.03.031.

16 Till Fluschnik, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. Multistage vertex
cover. In Proceedings of the 14th International Symposium on Parameterized and Exact
Computation (IPEC), pages 14:1–14:14, 2019. doi:10.4230/LIPIcs.IPEC.2019.14.

17 Till Fluschnik, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. Multistage s-t
path: Confronting similarity with dissimilarity in temporal graphs. In Proceedings of the 31st
International Symposium on Algorithms and Computation (ISAAC), pages 43:1–43:16, 2020.
doi:10.4230/LIPIcs.ISAAC.2020.43.

18 Anupam Gupta, Kunal Talwar, and Udi Wieder. Changing bases: Multistage optimization for
matroids and matchings. In Proceedings of the 41st International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 563–575, 2014. doi:10.1007/978-3-662-43948-7_
47.

19 Klaus Heeger, Anne-Sophie Himmel, Frank Kammer, Rolf Niedermeier, Malte Renken, and
Andrej Sajenko. Multistage graph problems on a global budget. Theoretical Computer Science,
868:46–64, 2021. doi:10.1016/j.tcs.2021.04.002.

20 W. A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21(1):177–
185, 1974. doi:10.1002/nav.3800210113.

21 Bart M. P. Jansen. The Power of Data Reduction: Kernels for Fundamental Graph Problems.
PhD thesis, Utrecht University, 2013. URL: http://dspace.library.uu.nl/handle/1874/
276438.

22 Leon Kellerhals, Malte Renken, and Philipp Zschoche. Parameterized algorithms for diverse
multistage problems. In Proceedings of the 29th Annual European Symposium on Algorithms
(ESA), pages 55:1–55:17, 2021. doi:10.4230/LIPIcs.ESA.2021.55.

23 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. Journal of the ACM, 67(3), June 2020. doi:10.1145/3390887.

24 Matthieu Latapy, Clémence Magnien, and Tiphaine Viard. Weighted, bipartite, or directed
stream graphs for the modeling of temporal networks. In Petter Holme and Jari Saramäki,
editors, Temporal Network Theory, pages 49–64. Springer International Publishing, Cham,
2019. doi:10.1007/978-3-030-23495-9_3.

25 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms, 11(2):1–31, 2014. doi:10.1145/2566616.

SAND 2022

https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1016/j.ejc.2012.04.008
https://doi.org/10.1007/978-3-030-75242-2_16
https://doi.org/10.1007/978-3-030-75242-2_16
https://doi.org/10.1007/978-3-030-42071-0_6
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.4230/LIPIcs.IPEC.2019.14
https://doi.org/10.4230/LIPIcs.ISAAC.2020.43
https://doi.org/10.1007/978-3-662-43948-7_47
https://doi.org/10.1007/978-3-662-43948-7_47
https://doi.org/10.1016/j.tcs.2021.04.002
https://doi.org/10.1002/nav.3800210113
http://dspace.library.uu.nl/handle/1874/276438
http://dspace.library.uu.nl/handle/1874/276438
https://doi.org/10.4230/LIPIcs.ESA.2021.55
https://doi.org/10.1145/3390887
https://doi.org/10.1007/978-3-030-23495-9_3
https://doi.org/10.1145/2566616

16:18 Multistage 2-Coloring

26 Hendrik Molter. Classic Graph Problems Made Temporal: A Parameterized Complexity
Analysis. PhD thesis, Technische Universität Berlin, 2020. doi:10.14279/depositonce-10551.

27 Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of the homo-
morphism problem in string graphs. Journal of Computer and System Sciences, 109:126–144,
2020. doi:10.1016/j.jcss.2019.12.004.

28 Krzysztof Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and System
Sciences, 67(4):757–771, 2003. doi:10.1016/S0022-0000(03)00078-3.

29 Igor Razgon and Barry O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of
Computer and System Sciences, 75(8):435–450, 2009. doi:10.1016/j.jcss.2009.04.002.

30 Róbert Sasák. Comparing 17 graph parameters. Master’s thesis, University of Bergen, 2010.
URL: https://bora.uib.no/bora-xmlui/handle/1956/4329.

31 Johannes Schröder. Comparing graph parameters. Bachelor’s thesis, Technische Universität
Berlin, 2019. URL: http://fpt.akt.tu-berlin.de/publications/theses/BA-Schröder.
pdf.

32 Manuel Sorge and Mathias Weller. The graph parameter hierarchy. Unpublished manuscript,
2019. URL: https://manyu.pro/assets/parameter-hierarchy.pdf.

33 Martin Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.
URL: https://www.ii.uib.no/~martinv/Papers/MartinThesis.pdf.

34 Tsunghan Wu, Sheau-Harn Yu, Wanjiun Liao, and Cheng-Shang Chang. Temporal bipartite
projection and link prediction for online social networks. In Proceedings of the 2014 IEEE
International Conference on Big Data (Big Data), pages 52–59, 2014. doi:10.1109/BigData.
2014.7004444.

35 Mihalis Yannakakis. Node- and edge-deletion NP-complete problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing (STOC), pages 253–264, 1978.
doi:10.1145/800133.804355.

https://doi.org/10.14279/depositonce-10551
https://doi.org/10.1016/j.jcss.2019.12.004
https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/10.1016/j.jcss.2009.04.002
https://bora.uib.no/bora-xmlui/handle/1956/4329
http://fpt.akt.tu-berlin.de/publications/theses/BA- Schr�der.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA- Schr�der.pdf
https://manyu.pro/assets/parameter-hierarchy.pdf
https://www.ii.uib.no/~martinv/Papers/MartinThesis.pdf
https://doi.org/10.1109/BigData.2014.7004444
https://doi.org/10.1109/BigData.2014.7004444
https://doi.org/10.1145/800133.804355

Temporal Connectivity: Coping with Foreseen and
Unforeseen Delays
Eugen Füchsle #

Faculty IV, Algorithmics and Computational Complexity, TU Berlin, Germany

Hendrik Molter #

Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Rolf Niedermeier #

Faculty IV, Algorithmics and Computational Complexity, TU Berlin, Germany

Malte Renken #

Faculty IV, Algorithmics and Computational Complexity, TU Berlin, Germany

Abstract
Consider planning a trip in a train network. In contrast to, say, a road network, the edges are
temporal, i.e., they are only available at certain times. Another important difficulty is that trains,
unfortunately, sometimes get delayed. This is especially bad if it causes one to miss subsequent
trains. The best way to prepare against this is to have a connection that is robust to some number
of (small) delays. An important factor in determining the robustness of a connection is how far
in advance delays are announced. We give polynomial-time algorithms for the two extreme cases:
delays known before departure and delays occurring without prior warning (the latter leading to
a two-player game scenario). Interestingly, in the latter case, we show that the problem becomes
PSPACE-complete if the itinerary is demanded to be a path.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory
of computation → Problems, reductions and completeness; Mathematics of computing → Discrete
mathematics

Keywords and phrases Paths and walks in temporal graphs, static expansions of temporal graphs,
two-player games, flow computations, dynamic programming, PSPACE-completeness

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.17

Related Version Full Version: https://arxiv.org/abs/2201.05011 [15]

Funding Hendrik Molter : Supported by the ISF, grant No. 1070/20.
Malte Renken: Supported by the DFG, project MATE (NI 369/17).

1 Introduction

Computing temporal paths is one of the back-bone algorithmic problems in the context of
temporal graphs, that is, graphs whose edges are present only at certain, known points in
time [3, 26]. Temporal graphs are specified by a set V of vertices and a set E of time arcs,
where each time arc (v, w, t, λ) ∈ E consists of a start vertex v, an end vertex w, a time label t,
and a traversal time λ; then there is a (direct) connection from v to w starting at time t and
arriving at time t + λ. Temporal graphs model numerous real-world scenarios [16, 17, 5, 20]:
Social, communication, transportation, and many other networks are usually not static but
vary over time.

The added dimension of time causes many aspects of connectivity to behave quite
differently from static (i.e., non-temporal) graphs. Thus, the flow of items through a
temporal network has to be time-respecting. More specifically, it follows a temporal walk (or
path, if every vertex is visited at most once), i.e., a sequence of time arcs (vi, wi, ti, λi)ℓ

i=1

© Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fuechsle@campus.tu-berlin.de
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
mailto:rolf.niedermeier@tu-berlin.de
https://orcid.org/0000-0003-1703-1236
mailto:m.renken@tu-berlin.de
https://orcid.org/0000-0002-1450-1901
https://doi.org/10.4230/LIPIcs.SAND.2022.17
https://arxiv.org/abs/2201.05011
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

where vi+1 = wi and ti+1 ≥ ti + λi for all i < ℓ. While inheriting many properties from static
walks, temporal walks exhibit certain characteristics that add a further level of difficulty
to algorithmic problems centered around them. For example, temporal connectivity is not
transitive: the existence of a temporal walk from vertex u to v and a temporal walk from v

to w does not imply the existence of a temporal walk from u to w. Moreover, the temporal
setting naturally leads to several notions of what an “optimal” temporal path could be [2, 3].

Computation of temporal paths and walks has already been studied intensively [26, 3],
including specialized settings that are novel to temporal graphs: For example, Bentert
et al. [2] and Casteigts et al. [6] studied temporal walks and paths that are only allowed to
have limited waiting time at any vertex.

In this work, we investigate another natural, inherently temporal connectivity problem.
It addresses delays. In many real-world temporal networks such as transport networks (e.g.
trains, shipping routes), individual edges may get delayed for various reasons. Thus it is an
important question whether connectivity between a start and a target node is fragile, i.e.,
easily disrupted by delays, or whether it is robust.

An important aspect in this matter is the time at which delays become known. The
earlier they are announced, the easier one can still adapt the chosen route. In this work, we
study the two endpoints of this spectrum: one where all delays are known up front, and one
where delays occur without any prior warning.

We now briefly describe our models for these two problems, beginning with the problem
variant in which all delays are announced before the start of the journey, and the question is
whether the designated target remains reachable even in a worst-case scenario. Herein, a
D-delayed temporal path refers to a temporal path that remains valid when the time arcs in
D ⊆ E have been delayed by some fixed amount δ each. A more formal definition will be
given in Section 2.

Delay-Robust Connection
Input: A temporal graph G = (V, E), two vertices s, z ∈ V , and x, δ ∈ N.
Question: Is there, for every delay set D ⊆ E of size |D| ≤ x, a D-delayed temporal path

from s to z in G?

In contrast, if the delays occur during the journey without prior warning, then the
resulting problem is best modeled as a two-player game, which we call the Delayed-Routing
Game. The first player (the traveler) starts at vertex s and has to decide at each turn which
time arc they want to traverse next. The other player (the adversary) then gets to decide
whether that time arc is delayed or not. As before, there is a bound x on the overall number
of time arcs that can be delayed. The traveler wins if they reach the target vertex z. A
winning strategy for the traveler is a strategy that guarantees that they will reach their
target.

Delayed-Routing Game
Input: A temporal graph G = (V, E), two vertices s, z ∈ V , and x, δ ∈ N.
Question: Does the traveler have a winning strategy for the Delayed-Routing Game?

The difference between the two models Delay-Robust Connection and Delayed-
Routing Game is illustrated in Figure 1.

Finally, we want to consider a variant of Delayed-Routing Game, in which the traveler
may not visit any vertex more than once. We refer to this as Delayed-Routing Path
Game.

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:3

s

a

b

z

(1, 1)

(1, 1)

(2, 1)

(2, 1)

Figure 1 An example temporal graph, time arcs are labeled by (t(e), λ(e)). For x = 1 and δ = 1,
this is a yes-instance of Delay-Robust Connection: If the time arc from s to a is delayed then
there is a temporal path from s to z via b. Otherwise, if that time arc is not delayed, then the
temporal path via a is available. However, the same setting is a no-instance of Delayed-Routing
Game: If the traveler picks the time arc from s to a, then the adversary will delay it, rendering the
traveler stuck at a since they reach it at time 3. If the traveler picks the time arc from s to b, then
the situation is analogous.

Related Work. There has been extensive research on many other connectivity-related
problems on temporal graphs [4, 11, 19, 21, 9, 10, 12, 27, 18]. Delays in temporal graphs
have been considered in terms of manipulating reachability sets [7, 22]. An individual delay
operation considered in the mentioned work delays a single time arc and is similar to our
notion. Typically, the computational problems in this context are NP-hard and can be also
considered as computing “robustness measures” for the connectivity in temporal graphs.

In companion work [14] we investigate a problem located somewhat “between” Delay-
Robust Connection and Delayed-Routing Game in which the delays become known
after the sequence of vertices to be traversed from s to z is fixed, but before the exact time
arcs to be traversed are chosen. There, we show that this problem is NP-hard and further
study its parameterized complexity.

Our Contribution. We introduce two computational problems related to testing connectivity
between two terminal vertices in the presence of delays. We give polynomial-time algorithms
for Delay-Robust Connection (Section 3) and Delayed-Routing Game (Section 4.1),
but prove PSPACE-completeness for Delayed-Routing Path Game (Sections 4.2 and 4.3),
the variant of the second problem in which no vertex may be visited twice. Due to space
constraints, the PSPACE-hardness proof for Delayed-Routing Path Game is partially
deferred to a full version [15].

2 Preliminaries

We abbreviate {1, 2, . . . , n} as [n] and {n, n + 1, . . . , m} as [n, m]. The Iverson bracket [P]
is 1 if property P holds and 0 otherwise. For a time arc e = (v, w, t, λe), we denote the
starting and ending vertices as start(e) = v and end(e) = w, the time label as t(e) = t, and
the traversal time as λ(e) = λe. For a vertex v, τv denotes the set of time steps where v has
incoming or outgoing time arcs.

Delays. When a time arc e gets delayed, then its traversal time λ(e) is increased by some
fixed amount δ. For a given set D ⊆ E of delayed arcs, a sequence of time arcs (vi, wi, ti, λi)ℓ

i=1
is called a D-delayed temporal walk if it is a temporal walk in the temporal graph obtained
from G by applying delays to all time arcs in D. (We omit D when it is clear from the
context.)

SAND 2022

17:4 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

s a

b

z(1, 1)
(2, 1)

(3, 1)

(4, 1) (5, 1)

Figure 2 A temporal graph which, for x = δ = 1, forms a yes-instance of Delayed-Routing
Game but a no-instance of Delayed-Routing Path Game. In the former, a winning strategy for
the traveler is to take the thick blue time arc to a. If it is not delayed, then they can directly go to
z. If it is delayed, then there are no remaining delays. Thus, after returning to s, the target vertex
z can be reached via b.

As an example consider the temporal walk (a, b, 1, 1), (b, c, 3, 1):

a b c
(1, 1) (3, 1)

When delaying the first time arc by 1, i.e. having δ = 1 and D = {(a, b, 1, 1)}, then this is
also a delayed temporal walk: Due to the delay, the first time arc arrives in b at time step
2 + δ = 3 which is still not later than the departure of the second time arc. However, if we
instead set δ = 2 and D = {(a, b, 1, 1)}, then it is no longer a delayed temporal walk, because
the first time arc only reaches b at time 4.

Clearly, from any temporal walk one can obtain a temporal path by eliminating all
circular subwalks. Thus, for any delay set D, if there is a D-delayed temporal walk from s

to z, then there is also a D-delayed temporal path. This is the reason why we did not define
a separate version of Delay-Robust Connection for temporal walks.

Note that this equivalence does not extend to Delayed-Routing Game as Figure 2
proves.

Static expansion. Sometimes, a problem on a temporal graph G is transformed to problems
on a non-temporal “time-expanded” graph, a static expansion of G. The idea is to model
each temporal occurrence of every vertex in the temporal graph as a distinct vertex of the
static expansion.

Formally, we say that a digraph H = (W, A) is a static expansion of the temporal
graph G = (V, E) if

(i)
⋃

v∈V

({v} × τv) ⊆W ⊆ V × N, and

(ii) A = A1 ∪A2 with

A1 =
{

(v, t), (v, t′)
∣∣∣∣ (v, t) ∈W ∧ t′ = arg min

t′′>t
{(v, t′′) ∈W}

}
,

A2 = {((v, t), (w, t + λ)) | (v, w, t, λ) ∈ E} .

The arcs in A1 are often called waiting arcs while the arcs in A2 are in one-to-one corre-
spondence to the time arcs of G. We call the arcs in A2 arcs corresponding to E. The static
expansion with the minimal set of vertices is called the reduced static expansion.

The main virtue of static expansions is that they model temporal walks as (non-temporal)
paths. More precisely, we have the following lemma.

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:5

▶ Lemma 1. If (v, t) and (w, u) are two vertices of a static expansion H of G, then there
is a path from (v, t) to (w, u) if and only if G contains a temporal walk from v to w which
starts at time t or later and arrives at time u or earlier.

The proof of Lemma 1 is folklore; we omit it, as well as the proof of the following easy
observation.

▶ Observation 2. If H = (W, A) is a static expansion of G = (V, E), E′ ⊆ E is a set of time
arcs and A′ ⊆ A the set of arcs corresponding to E′, then (W, A \A′) is a static expansion
of (V, E \ E′).

3 Delay-Robust Connection

In this section, we present an algorithm (Algorithm 1) which solves Delay-Robust Con-
nection in polynomial time. The core idea is to reduce the problem to the computation
of a maximum flow problem in a static expansion. There are three steps in this algorithm.
First, we construct a new temporal graph G∗ in which the removal of a time arc has the same
effect as delaying the respective time arc in the original input graph G = (V, E). Second,
we construct a static expansion H of G∗. Finally, we compute the maximum flow from the
start vertex s to the target vertex z in H. We will show that the value of this flow equals
the number of delays required to break temporal connectivity between s and z in G.

For the first step, define G∗ = (V, E ∪ E∗) where E∗ = {(v, w, t, λ + δ) | (v, w, t, λ) ∈ E}.
Then we can observe the following property of G∗.

▶ Lemma 3. Let G = (V, E) be a temporal graph, s, z ∈ V , D ⊆ E, and G∗ = (V, E ∪ E∗)
as defined above. There is a D-delayed temporal (s, z)-walk in G if and only if there is a
temporal (s, z)-walk in G∗

D := (V, (E \D) ∪ E∗).

Proof.
(⇒): Let W = (e1, e2, . . . , ek) be a D-delayed walk from s to z in G with ei = (vi, wi, ti, λi)
for i ∈ [k]. This means that v1 = s, wk = z, and for all ℓ ∈ [k − 1] it holds that wℓ = vℓ+1
and tℓ + λℓ + [eℓ ∈ D] · δ ≤ tℓ+1. We construct the temporal walk Ŵ = (ê1, ê2, . . . , êk) in G∗

D

with êi = (vi, wi, ti, λi + [ei ∈ D] · δ) for i ∈ [k]. Then t(êℓ) + λ(êℓ) ≤ t(êℓ+1) holds for all
ℓ ∈ [k − 1], thus Ŵ is a temporal walk from s to z in G∗

D.

(⇐): Let W = (e1, e2, . . . , ek) be a temporal (s, z)-walk in G∗
D with ei = (vi, wi, ti, λi). This

means that v1 = s, wk = z and for all ℓ ∈ [k − 1], it holds that wℓ = vℓ+1 and tℓ + λℓ ≤ tℓ+1.
We construct a delayed temporal walk Ŵ = (ê1, ê2, . . . , êk) in G for the delay set D with

êi =
{

ei, if ei ∈ E \D

(vi, wi, ti, λi − δ), otherwise

for i ∈ [k]. Note that êi ∈ E: If ei /∈ E \D, then ei ∈ E∗, and thus êi = (vi, wi, ti, λi−δ) ∈ E

by construction of E∗. We then have for all ℓ ∈ [k − 1] that

t(êℓ) + λ(êℓ) + [êℓ ∈ D] · δ = t(eℓ) + λ(eℓ) ≤ t(eℓ+1) = t(êℓ+1)

holds, hence Ŵ is a D-delayed temporal walk in G. ◀

The algorithm for Delay-Robust Connection is given as pseudo-code in Algorithm 1.
See also Figure 3 for an illustration of the graph H. We now show the correctness of the
algorithm.

SAND 2022

17:6 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

Algorithm 1 Delay-Robust Connection.

Input: G = (V, E), s, z ∈ V, x, δ ∈ N
Output: Is (G, s, z, x, δ) a yes-instance of Delay-Robust Connection?

1: H ← reduced static expansion of G∗

2: Define c : E(H)→ {1,∞} by c(e) =
{

1 if e corresponds to a time arc in E

∞ otherwise
3: T ← arg maxt{(z, t) ∈ V (H)}
4: Compute the value f of a maximum flow from (s, 0) to (z, T) in H with capacities c

5: if f ≤ x then
6: return “NO”
7: else
8: return “YES”

v1

v2

v3

v4

(1, 1)

(1, 2)

(1, 1)(1, 2)

(2, 1)(2, 2)

(2, 1)

(2, 2)

(a) The temporal graph G∗. The black part of
the figure shows G, while the red time arcs are
in E∗.

v1, 1

v2, 2 v2, 3

v3, 2 v3, 3

v4, 3 v4, 4

(b) The reduced static expansion of G∗. The
dashed arcs are waiting arcs and the black part
forms a static expansion of G. Note that the
capacity function c assigns 1 exactly to the solid
black edges.

Figure 3 Example depiction of G∗ and its reduced static expansion (δ = 1).

▶ Lemma 4. Algorithm 1 solves Delay-Robust Connection.

Proof. By Lemma 3, the given instance of Delay-Robust Connection is a no-instance
if and only if there exists a set D ⊆ E of size |D| ≤ x such that G∗

D contains no temporal
(s, z)-walk. By Lemma 1 and Observation 2, this is equivalent of there being a set D′ ⊆ E(H)
of edges in the static expansion H of G∗ such that

(i) |D′| ≤ x and the edges in D′ all correspond to edges in E, and
(ii) H −D′ contains no walk from (s, 0) to (z, T) where T is the largest integer for which

H contains the vertex (z, T).
Note that ii is equivalent to D′ forming a cut set that separates (s, 0) and (z, T). Also, by
definition of the capacity function c, i is equivalent to the total capacity

∑
e∈D′ c(e) being at

most x.
Therefore, by the Max-Flow-Min-Cut-Theorem [13, 8], the given instance is a no-instance

if and only if the maximum flow from (s, 0) to (z, T) in the graph H with edge capacities c

is at most x. ◀

Next, we analyze Algorithm 1’s running time.

▶ Lemma 5. Algorithm 1 has a running time of O(|E|2).

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:7

Proof. In the first step, the algorithm constructs the reduced static expansion H of the
temporal graph G∗. The size of H is in O(|E|) and the construction can be done in time
linear to its size. Constructing c and T can also be done in O(|E|) time.

Next, we need to compute the value of a maximum flow in H. Actually, it suffices to
only test whether that value exceeds x (and we may assume x ≤ |E|). This test is possible
in O(|E|2) time, for example by using the classic method of Ford & Fulkerson [13]. ◀

Finally, Lemmas 4 and 5 give us the following theorem.

▶ Theorem 6. Delay-Robust Connection can be solved in O(|E|2) time.

4 Delayed-Routing Games

In this section, we analyze the problems Delayed-Routing Game and Delayed-Routing
Path Game, which ask whether a traveler can reach their destination when an adversary
can delay time arcs while the traveler is traversing them. More formally, the traveler and
the adversary are players in a given game instance of the two-player game Delayed-Routing
Game or Delayed-Routing Path Game, respectively, and we ask whether the traveler has a
winning strategy. Starting at a start vertex s at time step 0, the traveler selects an out-going
time arc from the current vertex, while the adversary can then delay a selected time arc
by δ time units. However, the number of delays of the adversary is limited to x, thus they
cannot always apply a delay. The traveler wins when they reach the target vertex z. In the
Delayed-Routing Path Game the traveler can visit each vertex at most once, whereas no
such restriction applies in the Delayed-Routing Game.

We present a dynamic program to solve Delayed-Routing Game in O(|V | · |E| ·x) time.
We later use a slightly modified version of the algorithm to show that Delayed-Routing
Path Game is in PSPACE. Furthermore, using a polynomial-time many-one reduction from
QBF Game we prove that Delayed-Routing Path Game is PSPACE-hard. Hence, we
can conclude that Delayed-Routing Path Game is PSPACE-complete.

4.1 A dynamic program for Delayed-Routing Game
A key observation for our dynamic program is that there are only polynomially many game
states in Delayed-Routing Game. Furthermore, the available moves from a node of the
game tree1 and the determination of the winner only depend on the current node/game
state and not on its predecessors. Hence, once we have computed whether the traveler has
a winning strategy for any given game state, we can save this information in a dynamic
programming table.

Let I = (G = (V, E), s, z ∈ V, δ, x ∈ N) be an instance of Delayed-Routing Game.
Starting at vertex s at time step 0 and with the adversary having a budget of x delays, the
goal for the traveler is to reach the target vertex z. On the traveler’s turn, they can select a
time arc incident to the current vertex that occurs at the current time step or later. The
adversary can then decide whether they delay this time arc by δ, thus reducing their number
of remaining delays by 1. Once the current vertex is the target vertex z, the game ends with
the traveler as the winner. If at any point there are no available time arcs, then the game
ends with the adversary as the winner. If the game runs indefinitely, then the adversary
also wins the game (since G is finite, this can only occur if the traveler follows a cycle with
traversal time 0).

1 The game tree consists of all possible game states linked by the successor relationship [25].

SAND 2022

17:8 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

At the traveler’s turn, the game state can be fully described by the 3-tuple (v, t, y), where
v ∈ V is the current vertex, t ∈ N is the current time step, and y ∈ [0, x] is the number of
remaining delays. We may take t to be from the set T := {1, t(e)+λ(e), t(e)+λ(e)+δ | e ∈ E}.
The starting game state is (s, 1, x).

We define a dynamic programming table F : V × T × [−1, x] → {true, false} where
F (v, t, y) = true if the traveler has a winning strategy from the game state (v, t, y). Note that
we allow the delay budget to reach −1 for technical reasons, but we will define F (v, t,−1) =
true for all v ∈ V , t ∈ T . This can be interpreted as allowing the adversary to “cheat” by
exceeding their budget of delays, at the cost of immediately losing. Since this option is never
beneficial for the adversary, providing it does not change the game in any significant way.

Denote by Et(v) := {(v, w, t′, λ) ∈ E | t′ ≥ t} the set of all time arcs that are available at
v ∈ V at time t or later. Then we have the following.

▶ Lemma 7. For all v ∈ V \ {z}, t ∈ T , and y ∈ [0, x] it holds that

F (z, t, y) = true (1)
F (v, t,−1) = true (2)

F (v, t, y) =
∨

e∈Et(v)

(
F (end(e), t(e) + λ(e), y) ∧ F (end(e), t(e) + λ(e) + δ, y − 1)

)
(3)

where the empty disjunction evaluates to false.

Proof. Equation (1) is trivially correct, since the traveler has reached their destination
vertex z. Equation (2) holds by definition as noted above.

It remains to prove (3). By the rules of the game, the traveler may choose any time arc
e ∈ Et(v) when they are in game state (v, t, y). If the adversary opts to delay that time arc,
then the resulting game state is F (end(e), t(e) + λ(e) + δ, y − 1). Otherwise, the resulting
game state is F (end(e), t(e) + λ(e), y). If, for some e ∈ Et(v), the traveler has winning
strategies for both of these game states, then they can win from (v, t, y) by picking e and
then proceeding from either of the two resulting game states according to their respective
winning strategy. Conversely, if all of the time arcs in Et(v) lead to a game state from which
the adversary has a winning strategy, then the traveler clearly cannot win. ◀

In principle, we would like to use Lemma 7 to compute all values of F . However, in the
presence of arcs with traversal time zero, Lemma 7 might not suffice to completely determine
all values of F . Consider the example instance given in Figure 4. For all v ∈ V , t ∈ T ,
and y ∈ {0, 1} we clearly have

F (b, t, y) = [t ≤ 2] and F (a, t, 0) = [t ≤ 2]

by (3). Note that we can compute

F (a, 2, 0) = F (b, 2, 0) ∨ F (s, 2, 0) = true ∨ F (s, 2, 0) = true

without needing the value of F (s, 2, 0). However, F (s, 1, 1) and F (a, 1, 1) depend on each
other through (3):

F (s, 1, 1) =
(
F (a, 1, 1) ∧ F (a, 2, 0)

)
∨

(
F (a, 2, 1) ∧ F (a, 3, 0)

)
= F (a, 1, 1) and

F (a, 1, 1) =
(
F (s, 1, 1) ∧ F (s, 2, 0)

)
∨

(
F (s, 2, 1) ∧ F (s, 3, 0)

)
∨

(
F (b, 2, 1) ∧ F (b, 3, 0)

)
= F (s, 1, 1).

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:9

s a b z

1
2

1
2

2 2

Figure 4 A Delayed-Routing Game instance in which the traveler cycles between s and a forever.
All traversal times are 0 (omitted in the figure), and δ = x = 1. Edges with multiple labels occur at
multiple times.

If the value of a table entry is not determined through (1)–(3), then we call this value
hung. As we have seen, it can occur that a subset of all table entries remains hung, even
when all other entries have been computed. This is precisely the case when in each clause
appearing in the disjunction (3) at least one of the two referenced entries is is either false
or hung itself. In other words, from a hung state, the traveler only has the options to move
to a losing state or to another hung state. In particular, the traveler can play on forever but
never reach a winning state. Thus, in accordance with our rule that the adversary shall win
if the game continues forever, we may set all hung table entries to false in this case.

We summarize this in the following lemma.

▶ Lemma 8. If every value of F has either been computed or depends, through (3), on
another still uncomputed value, then the traveler does not have a winning strategy from any
of the game states whose values are still uncomputed.

Next, we determine the time required to fill the dynamic programming table.

▶ Lemma 9. All entires of F can be computed in O(|V | · |E| · x) time.

Proof. The number of table entries is N := |V | · |T | · (x + 2) ∈ O(|V | · |E| · x). For any t ∈ T ,
denote by t+ the smallest element of T strictly larger than t. Begin by observing that (3)
can be replaced with the following equivalent formula.

F (v, t, y) = F (v, t+, y) ∨∨
e∈Et(v)\Et+ (v)

(
F (end(e), t(e) + λ(e), y) ∧ F (end(e), t(e) + λ(e) + δ, y − 1)

)
(4)

We compute the table entries using Lemma 7 as follows. Start with the entries given
by (1). Whenever an entry F (v, t, y) is set to true, check whether any of the entries directly
depending on F (v, t, y) through (4) can be also computed (i.e., set to true, as (4) contains
no negations). Note that there are three ways of how another entry F (v′, t′, y′) can directly
depend on F (v, t, y):

(i) v = v′, y = y′, and t = t′+,
(ii) y′ = y and there is a time arc (v′, v, t̂, λ) with t′ ≤ t̂ < t′+ and t̂ + λ = t, or
(iii) y′ = y + 1 and there is a time arc (v′, v, t̂, λ) with t′ ≤ t̂ < t′+ and t̂ + λ + δ = t.
In particular, each time arc causes a direct dependency only between about 2x pairs of
entries through (ii) and (iii). The number of dependencies through (i) is clearly at most N .
Thus, the overall number of checks to be performed is at most 2x · |E|+ N and each of these
checks can be done in constant time.

Afterwards, all remaining entries must be either false or hung: Since (4) contains
no negations, setting entries to false can never cause other entries to become true. By
Lemma 8, we can thus set all remaining entries to false. Hence, the entire table can be
filled in O(x · |E|+ N) ⊆ O(|V | · |E| · x) time. ◀

SAND 2022

17:10 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

To solve Delayed-Routing Game, we can now evaluate F and check whether F (s, 1, x) =
true. Hence, Lemma 9 gives us the following.

▶ Theorem 10. Delayed-Routing Game can be solved in O(|V | · |E| · x) time.

4.2 PSPACE-hardness of Delayed-Routing Path Game
We now present a polynomial-time reduction from the PSPACE-complete QBF Game to
Delayed-Routing Path Game. QBF Game is a game formulation of the problem QBF
that asks whether a given quantified boolean formula is true. In the game variant, Player 1
and Player 2 choose truth assignments for existentially and universally quantified variables,
respectively. Player 1 wins when the formula is satisfied, otherwise Player 2 wins. If Player 1
has a winning strategy, then it is a yes-instance. QBF and QBF Game are equivalent and
known to be PSPACE-complete [1].

In QBF Game, we are given a quantified boolean formula Φ = Q1x1.Q2x2. . . . Qnxn.φ

with Qi ∈ {∃, ∀} and φ being a boolean formula. The game then consists of n rounds. In
the i-th round, if Q1 = ∃, then Player 1 selects a truth value for xi. Else if Q1 = ∀, then
Player 2 selects a truth value for xi. If after the n-th round φ is satisfied under the selected
truth assignment, then Player 1 wins, otherwise Player 2 is the winner.

QBF Game
Input: A quantified boolean formula Φ = Q1x1.Q2x2. . . . Qnxn.φ with Qi ∈ {∃, ∀}.
Question: Is there a winning strategy for Player 1?

Given a QBF Game-instance Φ = Q1x1.Q2x2. . . . Qnxn.φ, we construct an instance
(G = (V, E), s, z ∈ V, x, δ ∈ N) of Delayed-Routing Path Game, so that Player 1
has a winning strategy for Φ if and only if the traveler has a winning strategy for the
Delayed-Routing Path Game-instance. Without loss of generality, we assume that φ is
in conjunctive normal form and has three literals per clause.

The main idea for our reduction is the following. The temporal graph G we create in
our reduction consists of n chained selection gadgets, one for each quantified variable, and
m− 1 validation gadgets where m is the number of clauses of φ. In a selection gadget for
a variable quantified by an existential quantifier, the traveler can freely choose one of two
paths, corresponding to a truth assignment of this variable. A delay by the adversary has no
effect in this gadget. In a selection gadget for a variable quantified by a universal quantifier,
a delay of the adversary forces the traveler to take a specific path, corresponding to a truth
assignment of this variable. If not taking this enforced path, the traveler gets immediately
stuck and loses the game. The gadget is constructed in a way that the adversary needs
to use exactly one delay per universal quantified variable. Using no delay lets the traveler
immediately win, while using more than one delay is no better for the adversary than a
single delay.

In the validation gadgets, the adversary can force the traveler to take one of two paths,
one corresponding to selecting the corresponding clause of φ, the other leading to the next
validation gadget. In this way, the adversary can select one clause of φ. After traversing
either all validation gadgets or selecting a specific clause, the adversary has no remaining
delays.

Finally, if there is a literal in the clause which is satisfied under the truth assignment
corresponding to the path taken in the selection gadgets, then the traveler can traverse back
to a vertex in the selection gadget. From this vertex, the traveler can then reach the target
vertex. Otherwise, if all literals in the clause are unsatisfied, then all vertices reachable with
a time arc have already been visited when traversing the selection gadgets. Thus the traveler
becomes stuck.

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:11

si

xi

x̄i

si+1
o

i +1

oi+
1

oi+
2

o
i +2

z′

z

on+m+1

on+m+1 o
n

+
m

+
1

Figure 5 Selection gadget for the existentially quantified variable xi. The traveler can choose
freely whether the upper or lower path to si+1 is taken. The adversary has no incentive to apply any
delays. Dwelling in xi or x̄i to get to z′ is no option for the traveler as long as there are delays left.

Now we describe the reduction more formally. All time arcs in the constructed temporal
graph G have a traversal time of 0, thus we write time arcs as 3-tuples (v, w, t) ∈ E and omit
the traversal time in figures. We set the number of delays x := n′ + m− 1, where n′ ≤ n is
the number of universal quantifiers in Φ. Furthermore, we set δ := 1. The start and target
vertices of the game are s1 and z, respectively, which are added during the construction of
the temporal graph. The gadgets use an offset oi, starting with o1 = 0. The other offsets are
computed while constructing the gadgets. Initially, we add the vertices s1, s2, . . . , sn+1, z′,
and z to V , and we add the time arc

z′ on+m+1−−−−−→ z.

The time step on+m + 1 is the largest time step of the constructed temporal graph.

Selection Gadgets

The selection gadget is used to assign a truth value to the quantified variable Qixi. The
gadget depends on the type of quantifier:

Case 1. Qixi = ∃xi; the variable xi is existentially quantified.
We add the vertices xi and x̄i to V . Furthermore, we add the following time arcs

si
oi+1−−−→ xi

oi+2−−−→ si+1 and si
oi+1−−−→ x̄i

oi+2−−−→ si+1.

corresponding to assigning xi to true and false, respectively. The traveler can choose whether
to reach si+1 over the vertex xi or x̄i. A delay of the adversary will have no effect.

Additionally, we add the time arcs

xi
om+n+1−−−−−→ z′ and x̄i

om+n+1−−−−−→ z′;

however, when traversing this gadget, if the traveler dwells in xi or x̄i to take the time arc
to z′, then the adversary can use a delay that makes the only outgoing time arc to z at time
step om+n + 1 unavailable.

We set the offset oi+1 := oi + 2. An example of a selection gadget for existentially
quantified variables can be seen in Figure 5.

SAND 2022

17:12 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

si s′
i

x̄i x̄
(1)
i

. . . x̄
(n′+m−i′−2)
i

xi

si+1
oi+1

oi+1 oi+1

oi+2

oi+
2

oi+2

oi+3

oi+3

oi+4

oi+n′+m−i′−1

oi+n′+m−i′ oi+n ′+m−i ′

z′

z

on+m+1

on
+m

+1

o
n

+
m

+
1

oi+
1

Figure 6 Selection gadget for the universally quantified variable xi. Let i′ be the number of
universally quantified variables before the i-th variable. The traveler enters with n′ + m − i′ − 1
delays left. If the adversary delays the first (thick, blue) time arc, only the upper path to si+1 is
available for the traveler. The remaining n′ + m − i′ − 2 delays are not enough to make the traveler
stuck, and the adversary has no incentive to use any further delays. If the adversary does not delay
the first (thick, blue) time arc, then the traveler is forced to take the lower path to si+1, since if the
adversary applies all n′ + m − i′ − 1 delays on the upper time arcs, then the traveler gets stuck. The
adversary will have to apply one delay on the lower time arcs, otherwise the traveler can take the
time arc from si+1 to z.

Case 2. Qixi = ∀xi; the variable xi is universally quantified.
Let i′ be the number of universally quantified variables before the i-th variable. We add

the vertices s′
i, xi, x̄i, and x̄

(1)
i , x̄

(2)
i , . . . , x̄

(n′+m−i′−2)
i to V . Furthermore, we add a time arc

si
oi+1−−−→ s′

i, and the three time arcs

s′
i

oi+1−−−→ xi
oi+1−−−→
oi+2

si+1,

corresponding to setting xi to true, and

si
oi+2−−−→ x̄i

oi+2−−−→
oi+3

x̄
(1)
i

oi+3−−−→
oi+4

x̄
(2)
i . . .

oi+n′+m−i′−1−−−−−−−−−−→
oi+n′+m−i′

x̄
(n′+m−i′−2)
i

oi+n′+m−i′

−−−−−−−−→ si+1,

corresponding to setting xi to false. Finally, we add a time arc si+1
oi+1−−−→ z directly to the

end vertex z.
By not delaying the time arc si

oi+1−−−→ s′
i, the adversary forces the traveler to take the

path through vertex xi, since the path si → x̄i → x̄
(1)
i → . . . → x̄

(n′+m−i′−2)
i → si+1 can

be broken by applying all remaining n′ + m− i′ − 1 delays. The adversary is still enforced
to apply one delay in s′

i → xi → si+1, otherwise the traveler can take si+1
oi+1−−−→ z and

directly wins. By delaying the time arc si
oi+1−−−→ s′

i, the adversary forces the traveler to take
the path through vertex x̄i, since the time arc si

oi+1−−−→ xi becomes unavailable. However,
the remaining n′ + m − i′ delays are not enough to break the path si → x̄i → x̄

(1)
i →

x̄
(2)
i . . . x̄

(n′+m−i′)
i → si+1.

Additionally, we add the time arcs

xi
om+n+1−−−−−→ z′ and x̄i

om+n+1−−−−−→ z′,

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:13

however when traversing this gadget, if the traveler dwells in xi or x̄i to take the time arc to
z′, then the adversary can use a delay that makes the only outgoing time arc to z at time
step om+n + 1 unavailable.

We set the offset oi+1 := oi + n′ + m− i′. An example of a selection gadget for universally
quantified variables can be seen in Figure 6.

Validation Gadgets

The validation gadgets are used to check whether the formula φ is satisfied for the truth
assignment chosen in the selection gadgets. By using all m−1 remaining delays, the adversary
can force the traveler to visit a vertex corresponding to a specific clause of φ. For the clauses
c1, c2, . . . , cm−1 there is a validation gadget. By placing a single delay, the adversary can
force the traveler to take one of two junctions, where one corresponds to selecting the clause,
and the other leads to the next validation gadget. (For the m− 1-st validation gadget the
other junction corresponds to the m-th clause.) From there, the traveler can reach z only if
there is a satisfied literal in the clause.

For each clause ci ∈ {c1, c2, . . . , cm−1}, we add the vertices vi, v
(l,k)
i for k ∈ [m− i], and

v
(r,k)
i for k ∈ [m− i]. For i ∈ [2, m− 1], we add the time arc

v
(r,m−(i−1))
i−1

on+i+1−−−−−→ vi,

connecting the i-th validation gadget with the (i− 1)-st validation gadget. For i = 1, we add
the time arc

sn+1
on+1+1−−−−−→ vi,

connecting the last selection gadget with the first validation gadget.
For the branch corresponding to selecting the i-th clause, we add the time arcs

vi
on+i+1−−−−−→ v

(l,1)
i

on+i+2−−−−−→ v
(l,2)
i

on+i+3−−−−−→ . . .
on+i+m−i−−−−−−−→ v

(l,m−i)
i .

Furthermore, for all v
(l,k)
i with k ∈ [m− i], we add a time arc

v
(l,k)
i

on+i+k−−−−−→ z,

which enforces the adversary to place delays on all time arcs above, so the traveler cannot
directly go to vertex z and win the game. This ensures that all delays are used after
reaching v

(l,m−i)
i , which corresponds to selecting the i-th clause.

For the branch corresponding to not selecting the i-th clause, we add the time arc

vi
on+i+2−−−−−→ v

(r,1)
i ,

the time arcs

v
(r,k)
i

on+i+k+1−−−−−−−→
on+i+k+2

v
(r,k+1)
i ,

for k ∈ [m− i− 1], and the time arc

v
(r,m−i)
i

on+i+m−i+1−−−−−−−−−→ v
(r,m−i+1)
i .

Delaying all m− i time arcs from vi to v
(r,m−i)
i will break the connection from v

(r,m−i)
i →

v
(r,m−i+1)
i ; however, if there is one delay less, then the adversary does not get any better by

using delays. We set the next offset on+i+1 := on+i + m− i + 2.

SAND 2022

17:14 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

Finally, we add time arcs for the literals in the clauses. Let the i-th clause be

(l(1)
i ∨ l

(2)
i ∨ l

(3)
i).

For all i ∈ [m− 1] and all j ∈ [3], if l
(j)
i = xk, then we add the time arc

v
(l,m−i)
i

on+m+1−−−−−→ x̄k,

and if l
(j)
i = x̄k, then we add the time arc

v
(l,m−i)
i

on+m+1−−−−−→ xk,

where k ∈ [n]. For the last clause cm and for all j ∈ [3], if l
(j)
i = xk, we add the time arc

v
(r,2)
m−1

on+m+1−−−−−→ x̄k,

and if l
(j)
i = x̄k, then we add the time arc

v
(r,2)
m−1

on+m+1−−−−−→ xk,

where k ∈ [n]. At this point there are no delays remaining, and for all k ∈ [n], the time arcs

xk
on+m+1−−−−−→ z′ on+m+1−−−−−→ z or x̄k

on+m+1−−−−−→ z′ on+m+1−−−−−→ z,

which have been added previously in the selection gadgets, can be traversed.
Due to space constraints, we defer a visualization of the validation gadget and the

remaining details of the proof which leads to the following theorem to the full version.

▶ Theorem 11. Delayed-Routing Path Game is PSPACE-hard.

4.3 PSPACE-containment of Delayed-Routing Path Game
Complementing the PSPACE-hardness of Delayed-Routing Path Game from the previous
section, we now show that Delayed-Routing Path Game is containted in PSPACE, which
lets us conclude PSPACE-completeness of Delayed-Routing Path Game.

We show this by modifying the dynamic program for Delayed-Routing Game (Sec-
tion 4.1) to also save the set of vertices that already has been visited for every state. This
will cause the dynamic programming table to have exponential size; however, we can evaluate
it recursively, that is, recomputing every entry when needed. In this way we only require
polynomial space. Formally, we adapt the recursive formula as follows.

Let I = (G = (V, E), s, z ∈ V, δ, x ∈ N) be an instance of Delayed-Routing Path
Game. A game state can be fully described by the 4-tuple (v, t, y, V ′), where v ∈ V is
the current vertex, t ∈ N is the current time step, y ∈ [0, x] is the number of remaining
delays, and V ′ ⊆ V the set of visited vertices. We may take t to be from the set T :=
{1, t(e) + λ(e), t(e) + λ(e) + δ | e ∈ E}. The starting game state is (s, 1, x, ∅).

We define F : V × T × [−1, x] × 2V → {true, false} to indicates for each game state
whether the traveler has a winning strategy from that game state. Denote by Et(v) :=
{(v, w, t′, λ) ∈ E | t′ ≥ t} the set of all time arcs that are available at v ∈ V at time t or
later. Then, for all v ∈ V \ {z}, t ∈ T , y ∈ [0, x], and V ′ ⊆ V \ {z} the following holds:

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:15

F (z, t, y, V ′) = true, (5)
F (v, t,−1, V ′) = true, (6)

F (v, t, y, V ′) =
∨

e∈Et(v)

(
end(e) /∈ V ′ ∧ F (end(e), t(e) + λ(e), y, V ′ ∪ {v}) ∧

F (end(e), t(e) + λ(e) + δ, y − 1, V ′ ∪ {v})
)
, (7)

where the empty disjunction evaluates to false.
Using (5)–(7), we get the following result by evaluating it in a depth-first-search fashion

from the starting configuration.

▶ Proposition 12. Delayed-Routing Path Game is contained in PSPACE.

Proof. The correctness of our approach can be shown in a way analogous to Lemma 7. Note
that since the set V ′ of visited vertices is growing with each move of the traveler, the game
cannot run infinitely. Thus, all entries can be computed by means of (5)–(7).

Instead of storing all (exponentially many) entries, we evaluate F in a depth-first-search
fashion from the starting configuration (s, 1, x, ∅). This only requires us to keep the current
branch of the search tree in memory. Since each game state requires polynomial space and
there are at most O(|V |) moves in a game of Delayed-Routing Path Game (every vertex
can be visited at most once), we only require polynomial space. ◀

From Theorem 11 and Proposition 12 we can now conclude that Delayed-Routing
Path Game is PSPACE-complete.

▶ Corollary 13. Delayed-Routing Path Game is PSPACE-complete.

5 Conclusion and Outlook

On the spectrum of delay-related routing problems, we have studied two extreme (but natural)
cases in terms of when information about the delays is made available. Interestingly, both
are polynomial-time solvable, whereas a “middle ground” case studied in companion work
turned out NP-hard.

It might also seem surprising that Delayed-Routing Game is efficiently solvable
while Delayed-Routing Path Game is PSPACE-complete. However, this situation is
not unprecedented. For example, deciding whether a temporal path under waiting time
constraints exists (∆-Restless Temporal Path) is NP-complete [6], while finding temporal
walks under waiting time constraints can be done in polynomial time [2]. Similarly, counting
foremost temporal paths is #P-hard [23], while counting of foremost temporal walks can be
done in polynomial time [24].

We remark that instead of delaying edges by increasing their traversal time, it is also
sensible to instead delay their time label. It can be shown that our results on Delay-Robust
Connection transfer also to this modified version. For Delayed-Routing Game the
situation is more complicated, we leave this open for future work.

Even more different notions of delays could also be explored. While in our definitions up
to x ∈ N time arcs can be delayed by a fixed integer δ each, one could also define an overall
“budget” ∆ which can be distributed among all time arcs. Thus, a time arc could be delayed
by more than δ or more than x time arcs could be delayed by less than δ each.

SAND 2022

17:16 Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge

University Press, 2009.
2 Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient

computation of optimal temporal walks under waiting-time constraints. Applied Network
Science, 5(1):73, 2020. doi:10.1007/s41109-020-00311-0.

3 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(02):267–285, 2003. doi:10.1142/S0129054103001728.

4 Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic aspects
of temporal betweenness. In Proceedings of the 26th SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 2084–2092, 2020. doi:10.1145/3394486.3403259.

5 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012. doi:10.1080/17445760.2012.668546.

6 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. Algorithmica, 83(9):2754–2802, 2021. doi:
10.1007/s00453-021-00831-w.

7 Argyrios Deligkas and Igor Potapov. Optimizing reachability sets in temporal graphs by
delaying. In Proceedings of the 34th Conference on Artificial Intelligence (AAAI), pages
9810–9817, 2020. doi:10.1609/aaai.v34i06.6533.

8 Peter Elias, Amiel Feinstein, and Claude E. Shannon. A note on the maximum flow through a
network. IRE Transactions on Information Theory, 2(4):117–119, 1956. doi:10.1109/TIT.
1956.1056816.

9 Jessica Enright, Kitty Meeks, George B. Mertzios, and Viktor Zamaraev. Deleting edges
to restrict the size of an epidemic in temporal networks. Journal of Computer and System
Sciences, 119:60–77, 2021. doi:10.1016/j.jcss.2021.01.007.

10 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability
in temporal graphs. Journal of Computer and System Sciences, 115:169–186, 2021. doi:
10.1016/j.jcss.2020.08.001.

11 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.
Journal of Computer and System Sciences, 119:1–18, 2021. doi:10.1016/j.jcss.2021.01.005.

12 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020. doi:10.1016/j.tcs.2019.03.031.

13 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

14 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Delay-robust routes in
temporal graphs. In 39th International Symposium on Theoretical Aspects of Computer Science
(STACS 2022), volume 219 of Leibniz International Proceedings in Informatics (LIPIcs), pages
30:1–30:15, 2022. doi:10.4230/LIPIcs.STACS.2022.30.

15 Eugen Füchsle, Hendrik Molter, Rolf Niedermeier, and Malte Renken. Temporal connectivity:
Coping with foreseen and unforeseen delays, 2022. arXiv:2201.05011.

16 Petter Holme. Modern temporal network theory: a colloquium. The European Physical
Journal B, 88(9):234, 2015. doi:10.1140/epjb/e2015-60657-4.

17 Petter Holme and Jari Saramäki, editors. Temporal Network Theory. Springer, 2019. doi:
10.1007/978-3-030-23495-9.

18 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
doi:10.1006/jcss.2002.1829.

19 Nina Klobas, George B. Mertzios, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche.
Interference-free walks in time: Temporally disjoint paths. In Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI), pages 4090–4096, 2021.
doi:10.24963/ijcai.2021/563.

https://doi.org/10.1007/s41109-020-00311-0
https://doi.org/10.1142/S0129054103001728
https://doi.org/10.1145/3394486.3403259
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1609/aaai.v34i06.6533
https://doi.org/10.1109/TIT.1956.1056816
https://doi.org/10.1109/TIT.1956.1056816
https://doi.org/10.1016/j.jcss.2021.01.007
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2020.08.001
https://doi.org/10.1016/j.jcss.2021.01.005
https://doi.org/10.1016/j.tcs.2019.03.031
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.4230/LIPIcs.STACS.2022.30
http://arxiv.org/abs/2201.05011
https://doi.org/10.1140/epjb/e2015-60657-4
https://doi.org/10.1007/978-3-030-23495-9
https://doi.org/10.1007/978-3-030-23495-9
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.24963/ijcai.2021/563

E. Füchsle, H. Molter, R. Niedermeier, and M. Renken 17:17

20 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams
for the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61, 2018.
doi:10.1007/s13278-018-0537-7.

21 George B Mertzios, Othon Michail, and Paul G Spirakis. Temporal network optimization
subject to connectivity constraints. Algorithmica, 81(4):1416–1449, 2019. doi:10.1007/
s00453-018-0478-6.

22 Hendrik Molter, Malte Renken, and Philipp Zschoche. Temporal reachability minimization:
Delaying vs. deleting. In Proceedings of the 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 76:1–76:15, 2021. doi:10.4230/LIPIcs.
MFCS.2021.76.

23 Amir Afrasiabi Rad, Paola Flocchini, and Joanne Gaudet. Computation and analysis of
temporal betweenness in a knowledge mobilization network. Computational Social Networks,
4(1):1–22, 2017. doi:10.1186/s40649-017-0041-7.

24 Maciej Rymar, Hendrik Molter, André Nichterlein, and Rolf Niedermeier. Towards classifying
the polynomial-time solvability of temporal betweenness centrality. In Proceedings of the
47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages
219–231, 2021. doi:10.1007/978-3-030-86838-3_17.

25 Aaron N. Siegel. Combinatorial game theory. American Mathematical Society, 2013.
26 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient

algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016. doi:10.1109/TKDE.2016.2594065.

27 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity
of finding small separators in temporal graphs. Journal of Computer and System Sciences,
107:72–92, 2020. doi:10.1016/j.jcss.2019.07.006.

SAND 2022

https://doi.org/10.1007/s13278-018-0537-7
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.1007/s00453-018-0478-6
https://doi.org/10.4230/LIPIcs.MFCS.2021.76
https://doi.org/10.4230/LIPIcs.MFCS.2021.76
https://doi.org/10.1186/s40649-017-0041-7
https://doi.org/10.1007/978-3-030-86838-3_17
https://doi.org/10.1109/TKDE.2016.2594065
https://doi.org/10.1016/j.jcss.2019.07.006

Fully Dynamic Four-Vertex Subgraph Counting
Kathrin Hanauer #

Faculty of Computer Science, University of Vienna, Austria

Monika Henzinger #

Faculty of Computer Science, University of Vienna, Austria

Qi Cheng Hua
Faculty of Computer Science, University of Vienna, Austria

Abstract
This paper presents a comprehensive study of algorithms for maintaining the number of all connected
four-vertex subgraphs in a dynamic graph. Specifically, our algorithms maintain the number of paths
of length three in deterministic amortized O(m 1

2) update time, and any other connected four-vertex
subgraph which is not a clique in deterministic amortized update time O(m 2

3). Queries can be
answered in constant time. We also study the query times for subgraphs containing an arbitrary
edge that is supplied only with the query as well as the case where only subgraphs containing a
vertex s that is fixed beforehand are considered. For length-3 paths, paws, 4-cycles, and diamonds
our bounds match or are not far from (conditional) lower bounds: Based on the OMv conjecture we
show that any dynamic algorithm that detects the existence of paws, diamonds, or 4-cycles or that
counts length-3 paths takes update time Ω(m1/2−δ).

Additionally, for 4-cliques and all connected induced subgraphs, we show a lower bound of Ω(m1−δ)
for any small constant δ > 0 for the amortized update time, assuming the static combinatorial
4-clique conjecture holds. This shows that the O(m) algorithm by Eppstein et al. [9] for these
subgraphs cannot be improved by a polynomial factor.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Dynamic Graph Algorithms, Subgraph Counting, Motif Search

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.18

Related Version Full Version: https://arxiv.org/abs/2106.15524 [11]

Funding This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019564, “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)”), as well as
from the Austrian Science Fund (FWF) and netIDEE SCIENCE project P 33775-N.

Acknowledgements The authors want to thank Leonhard Paul Sidl for careful proofreading.

1 Introduction

Detecting or counting subgraphs is an important question in social network analysis, where
dense subgraphs usually represent communities, as well as in telecommunication network
surveillance, and computational biology. This can also be seen in a recent study by Sahu
et al. [21]: finding and counting fixed subgraphs was the fourth most popular graph computa-
tion in practice, only superseded by finding connected components, computing shortest paths,
and answering queries about the degree of neighbors. Furthermore the same study showed
that the dynamic setting is important in practice as 65% of the graphs were dynamic. Thus,
the goal of this paper is to advance the study of subgraph counting problems in dynamic
graphs.

© Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kathrin.hanauer@univie.ac.at
https://orcid.org/0000-0002-5945-837X
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0002-5008-6530
https://doi.org/10.4230/LIPIcs.SAND.2022.18
https://arxiv.org/abs/2106.15524
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Fully Dynamic Four-Vertex Subgraph Counting

Algorithmic problems in dynamic graphs are usually modeled by the following data
structure question. Given a potentially non-empty initial graph and a fixed subgraph pattern
P (such as a k-clique) maintain a data structure that allows the following updates to the
current graph G:

Insert(u, v): Insert the edge {u, v} into G.
Delete(u, v): Delete the edge {u, v} from G.
Query(): Return the number of subgraphs of pattern P in G.

Given a subgraph pattern P that is not a clique, there are two variants of this problem:
One variant, called induced subgraph counting, counts a subgraph if it is exactly equivalent
to P and does not contain any additional edges. In the non-induced version, a subgraph
is counted if it contains P and potentially additional edges (but not additional vertices).
Eppstein and Spiro [10] studied subgraph counting for all possible connected three-vertex
patterns in both the induced and the non-induced variant and gave a dynamic algorithm
with amortized update time O(h), where h is the h-index of G, i.e., the maximum number
such that the graph contains h vertices of degree at least h. Note that h is O(

√
m), where m

always is the current number of edges in the graph.
There are six connected graphs on four vertices, which we refer to as length-3 path ,

claw , paw , 4-cycle , diamond , and 4-clique . Eppstein et al. [9] extended the
method of [10] to maintain counts of any (induced and non-induced) connected four-vertex
subgraph in amortized time O(h2) = O(m) and O(mh2) space. This paper contains a
comprehensive study of the complexity of dynamically counting all possible connected four-
vertex subgraphs. We present new improved dynamic algorithms and give the first conditional
lower bounds.

Upper bounds. We show how to maintain the number of any connected four-vertex non-
induced subgraph that is not a clique (such as a paw, a 4-cycle, or a diamond) in update
time O(m2/3) and at most O(nm) space. For graphs with an h-index larger than O(m1/3),
our algorithms are hence faster than the O(h2) algorithm by Eppstein et al. [9]. Besides, our
data structure can also be used to count all s-triangles, i.e., triangles that contain a fixed
vertex s, in O(m1/2) update time, constant query time, and O(n) space, and likewise for
s-length-3 paths. The update time is in O(m2/3) for s-4-cycles, s-paws, and s-diamonds,
with O(n2) space, and O(m) for s-4-cliques with constant space. For ε ∈ [0, 1], our data
structure supports queries on the number of triangles containing an arbitrary vertex or edge
in O(min(m2ε, n2)) or O(min(m1−ε, n)) worst-case time, respectively, with an update time
of O(mmax(ε,1−ε)) or O(mε), respectively, and O(n2) space. We also show how to maintain
length-3 paths in time O(m1/2), but this result was already stated in [9]. See Table 1 for an
overview. All our algorithms are deterministic and the running time bounds are amortized
unless stated otherwise.

Lower bounds. We also give the first conditional lower bounds for counting various four-
vertex subgraphs based on two popular hypotheses: the Online Boolean Matrix-Vector
Multiplication (OMv) conjecture [12] and the Combinatorial k-Clique hypothesis. In the
OMv conjecture we are given a Boolean n × n matrix M that can be preprocessed. Then, an
online sequence of vectors v1, . . . , vn is presented and the goal is to compute each Boolean
product Mvi (using conjunctions and disjunctions) before seeing the next vector vi+1.

▶ Conjecture 1 (OMv). For any constant δ > 0, there is no O(n3−δ)-time algorithm that
solves OMv with error probability at most 1/3 in the word-RAM model with O(log n) bit
words.

K. Hanauer, M. Henzinger, and Q. C. Hua 18:3

Table 1 Upper and conditional lower bounds on the time per update and query for counting
different subgraphs, where δ > 0 is an arbitrarily small constant and h ∈ O(

√
m). Update times are

amortized, query times are worst-case. Results in blue are new or improved.
∗ Read: For polynomial preprocessing time and O(·) query time, the update time is Ω(·).
† The previous space complexity for 3-cycles and length-3 paths was O(mh) with amortized update time
O(h) [10] and O(m) with amortized update time O(m

1
2) for 3-cycles [14]; for (other) 4-vertex subgraphs,

it was O(mh2) with amortized update time O(h2) [9].
a Thm 4, b Thm 5, c Cor. 19, d Thm 20, e Thm 21, f Cor. 25, g Thm 26, α [10], β [9], ζ [7].

Lower Bounds∗ Update Time Query Time Space†

Subgraph Update Query ours previous all e ∈ E

Non-induced subgraphs and s-subgraphs

connected, n = 4 O(m)a O(1) O(1)a O(1)/O(m)a

claw Ω(1) O(1) O(1) O(1)αβ O(1) O(1) O(1)
length-3 path Ω(m 1

2 −δ)g O(m1−δ)g O(m 1
2)b O(h)αβ O(1) O(m 1

2)b O(min(n2, m1.5))b

paw Ω(m 1
2 −δ)g O(m1−δ)g O(m 2

3)b O(h2)β O(1) O(m 2
3)b O(n2)b

3-cycle Ω(m 1
2 −δ)g O(m1−δ)g O(m 1

2)c O(h)α O(1) O(m 1
2)c O(min(n2, m1.5))c

4-cycle Ω(m 1
2 −δ)g O(m1−δ)g O(m 2

3)b O(h2)β O(1) O(m 2
3)b O(n2)b

k-cycle, k ≥ 5 Ω(m 1
2 −δ)g O(m1−δ)g

diamond Ω(m 1
2 −δ)g O(m1−δ)g O(m 2

3)b O(h2)β O(1) O(m 2
3)b O(min(nm, m

5
3))b

4-clique Ω(m1−δ)e O(m2−δ)e O(m)ζ O(h2)β O(1) O(m)ζ O(1)

s-claw Ω(1) O(1) O(1)d O(1)d O(1)d

s-length-3-path Ω(m 1
2 −δ)g O(m1−δ)g O(m 1

2)d O(1)d O(n)d

s-paw Ω(m 1
2 −δ)g O(m1−δ)g O(m 2

3)d O(1)d O(n2)d

s-3-cycle Ω(m 1
2 −δ)g O(m1−δ)g O(m 1

2)d O(1)d O(n)d

s-4-cycle O(m 2
3)d O(1)d O(n2)d

s-k-cycle, k ≥ 5, odd Ω(m 1
2 −δ)g O(m1−δ)g

s-diamond Ω(m 1
2 −δ)g O(m1−δ)g O(m 2

3)d O(1)d O(n2)d

s-4-clique Ω(m 1
2 −δ)g O(m1−δ)g O(m)d O(1)d O(1)d

Induced subgraphs

connected, n = 4 Ω(m1−δ)e O(m2−δ)e O(m)f O(h2)β O(1) O(1)f

Based on the OMv conjecture we show that detecting (with probability at least 2/3 in the
word-RAM model with O(log n) bit words) the existence of (non-induced) paws, diamonds,
4-cliques, or k-cycles for any k ≥ 3 in a graph with edge insertions and deletions takes
amortized update time Ω(m1/2−δ) or query time Ω(m1−δ) if only polynomial preprocessing
time is allowed. This lower bound applies also to the worst-case update time of any insertions-
only or deletions-only algorithm. Note that this lower bound does not only apply to counting
the number of such subgraphs but already to detecting whether such a subgraph exists. Let
s be a fixed vertex in the graph. The same lower bounds apply to algorithms that detect
whether a diamond, 4-clique, or k-cycle with odd k containing s exists. Finally, we also show
a lower bound for counting the number of length-3 paths and length-3 s-paths. We remark
that the conditional lower bounds for (s-)3-cycles were already known before [12].

We also use the Combinatorial k-Clique hypothesis which is defined as follows and has
become popular in recent years (e.g. [20, 1, 5, 4]).

▶ Conjecture 2 (Combinatorial k-Clique). For any constant δ > 0, for an n-vertex graph
there is no O(nk−δ) time combinatorial algorithm for k-clique detection with error probability
at most 1/3 in the word-RAM model with O(log n) bit words.

SAND 2022

18:4 Fully Dynamic Four-Vertex Subgraph Counting

Let δ > 0 be a small constant. Based on the 4-clique conjecture we show that (with
probability at least 2/3 in the word-RAM model with O(log n) bit words) there does not
exist a combinatorial algorithm that counts any connected induced four-vertex subgraph in
a dynamic graph with amortized update time O(n4−2δ/m), which is O(m1−δ), and query
preprocessing time O(n4−2δ). This bound applies also to any insertions-only algorithm. The
bound can be extended to any k-clique with k > 4 showing that the amortized update time
is Ω(nk−2δ/m) with Ω(nk−2δ) preprocessing and query time.

Technical contribution. For the upper bounds we extend and improve upon Eppstein
et al. [9] both with respect to running time and space. The high-level idea is as follows:
We partition the vertices into (few) high-degree and (many) low-degree vertices and then
maintain for each vertex, vertex pair, or vertex triple certain information in a data structure
such as the number of certain paths up to length 3 that contain low-degree vertices. When
an edge {u, v} is updated, four-vertex subgraphs that contain u, v, and two other low-degree
vertices can be quickly counted using the information in the data structure. On the other
side, subgraphs that contain a high-degree vertex in addition to u and v can often be counted
“from scratch” after each update as there are few high-degree vertices. The more challenging
case is the situation where relationships involving two or more high-degree vertices in the
subgraph need to be checked or maintained. How to deal with this depends on the subgraph
to count. For diamonds, e.g., this requires to keep certain information about triples of
vertices.

For the conditional lower bounds based on the combinatorial k-clique conjecture we first
directly deduce the lower bound for incremental 4-clique counting. Then we use the fact
that (a) we have a lower bound for 4-cliques, (b) we developed algorithms with O(m2/3)
update time for all non-induced subgraphs, and (c) there exist “counting formulas” that
allow to compute the number of any induced subgraph based on the number of 4-cliques
and the number of non-induced subgraphs. Thus, if the number of an induced subgraph
pattern could be computed in O(m1−δ) time per update for some small δ > 0 then we could
use the corresponding counting formula and our algorithms for non-induced subgraphs to
dynamically maintain the number of 4-cliques, contradicting our dynamic lower bound for
4-cliques.

For the conditional lower bounds based on the OMv conjecture we construct for each
subgraph pattern P based on an 1-uMv instance (which is a variant of OMv) a suitable graph
based on P with O(n) vertices and O(n2) edges such that detecting the existence of the
(non-induced) version of P in the graph equals finding the answer for the 1-uMv instance.
Then the lower bound follows as in [12]. The challenge is to construct such a graph. We
show how to do this for detecting non-induced (s)-paws, (s)-diamonds, (s)-4-cliques, and
(s)-k-cycles for k ≥ 3 and for counting non-induced length-3 (s)-paths.

Our paper gives in Section 2 the preliminaries, in Section 3 our new algorithms, and in
Section 4 our lower bounds. Some proofs had to be omitted due to space and are given in
the full version [11].

2 Preliminaries

Basic Definitions

We consider an undirected dynamic graph G = (V, E) and use n to denote the number of
vertices and m for the current number of edges. Two vertices u ̸= v are adjacent if there is
an edge e = {u, v} ∈ E. In this case, u and v are incident to e. The neighborhood N(v) of

K. Hanauer, M. Henzinger, and Q. C. Hua 18:5

a vertex v is defined as {u | {u, v} ∈ E} and v’s degree is deg(v) = |N(v)|. As a shorthand
notation to exclude just one vertex, we use Nw̄(v) = N(v) \ {w} and degw̄(v) = |Nw̄(v)|, i.e.,
degw̄(v) = deg(v) − 1 if w ∈ N(v) and degw̄(v) = deg(v) otherwise. A k-path (also length-k
path) is a sequence of distinct edges ⟨{v0, v1}, {v1, v2}, . . . , {vk−1, vk}⟩ of length k, where
vi ̸= vj for all 0 ≤ i, j ≤ k. A k-cycle is a k-path where as an only exception the first vertex
equals the last, i.e., v0 = vk. A 3-cycle is also called triangle. A claw is a graph consisting
of a vertex x, called the central vertex, and three edges incident to it. A paw is a graph
consisting of a triangle together with an additional edge attached to one of the vertices of
the triangle. This vertex is called the central vertex of the paw and the additional edge the
arm. A diamond is a 4-cycle with a chord, i.e., an additional edge connecting one of the
two pairs of non-adjacent vertices, which creates two triangles sharing the chordal edge. A
k-clique is the complete graph Kk on k vertices.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. A subgraph G′ = (V ′, E′)
is said to be induced if E′ = {{u, v} ∈ E | u, v ∈ V ′}. The term non-induced subgraph or just
subgraph without an adjective refers to all subgraphs, induced and not. For a static graph P ,
also called pattern, we denote by c(G, P) the number of (non-induced) subgraphs of G that
are isomorphic to P , and by cI(G, P) the number of induced subgraphs that are isomorphic
to P, in each case divided by the number of automorphisms of P. For a vertex s ∈ V , we
further denote by c(G, P, s) the number of non-induced subgraphs of G that are isomorphic
to P and contain s. We denote by Pk the set of connected subgraphs on k vertices. There are
six connected graphs in P4, which we refer to as length-3 path , claw , paw , 4-cycle ,
diamond , and 4-clique .

Given a pattern P , we study the problem of maintaining the number of occurrences of P
as a subgraph or induced subgraph of G, called the non-induced subgraph count c(G, P) or
the induced subgraph count cI(G, P), respectively, of P in G, and the analogous problem of
maintaining the count of non-induced subgraphs containing a specific predefined vertex v ∈ V

or edge e ∈ E, c(G, P, v) or c(G, P, e), respectively. Unless stated otherwise, maintaining a
count implies that we can retrieve it by a query in constant time. We also study the closely
related problem of querying the number of subgraphs containing a specific vertex or edge
that is given only with the query.

Further Related Work

Detecting (or counting) subgraphs, also known as the subgraph isomorphism problem,
generalizes the clique or Hamiltonian cycle problem and is hence N P-hard. Nevertheless, it
can be solved efficiently if the subgraphs to detect or count are restricted.

Static algorithms. Algorithms counting numbers of subgraphs and solving related problems
have been studied extensively for static graphs. Alon, Yuster and Zwick [2] developed an
algorithm to count the number of triangles and other circles (up to seven vertices) in a
graph in time O(nω), where n denotes the number of vertices and ω < 2.373 [19] is the fast
matrix multiplication exponent, i.e., the smallest value such that two n × n matrices can
be multiplied in O(nω) time. Kloks, Kratsch and Müller [16] showed how to compute the
number of 4-cliques in time O(m(ω+1)/2) (m denotes the number of edges) and the number
of any other subgraph of size 4 in time O(nω + m(ω+1)/2). There is also a large body of work
on parallel algorithms for counting subgraphs (see e.g. [18]) and to develop approximate
algorithms in the streaming setting (see e.g. [6, 3]).

SAND 2022

18:6 Fully Dynamic Four-Vertex Subgraph Counting

Dynamic algorithms. A more recent development is counting subgraph numbers for dynamic
graphs. Kara et al. [14] provided an algorithm for counting triangles in amortized time
O(

√
m) per update and O(m) space, which can also enumerate them with constant time delay.

Dhulipala et al. [7] extended it to a batch-dynamic parallel algorithm with O(∆
√

∆ + m)
amortized work and O(polylog(∆ + m)) depth w.h.p. for a batch of ∆ updates. Based on
a static algorithm to enumerate cliques, they show how to obtain a dynamic algorithm for
maintaining the number of k-cliques for a fixed k > 3 with expected O(∆(m + ∆)αk−4) work
and O(log−2 n) depth w.h.p. per update and O(m + ∆) space, where α ∈ O(

√
m) is the

arboricity of the graph. They also give a parallel fast matrix multiplication algorithm with
O(min(∆m(2k−1)ωp/(3ωp+3), (∆ + m)2(k+1)ωp/(3ωp+3))) amortized work and O(log(∆ + m))
depth, with parallel matrix multiplication constant ωp. Eppstein et al. [9] also count all
three-vertex subgraphs in directed graphs in amortized time O(h). For specific graph classes,
namely bounded expansion graphs, Dvorak and Tuma [8] gave a different algorithm for
maintaining counts for arbitrary graph patterns P of k vertices the number of induced
subgraphs of pattern P in amortized time O(log(k2−k)/2−1 n) and in amortized time O(nϵ)
for any constant ϵ > 0 in no-where dense graphs.

In recent subsequent work [13], it was shown that counting 4-cycles is hard also in random
graphs, i.e., with Ω(m1/2−δ) update time or Ω(m1−δ) query time.

3 New Counting Algorithms for Subgraphs on Four Vertices

Counting the number of claws [10] and 4-cliques is fairly straightforward [7]. The latter
extends to 4-vertex subgraphs in general, where all work is either done during the updates
or queries.

▶ Observation 3 ([10]). Let G = (V, E) be a dynamic graph and P be the claw . Then,
c(G, P) =

∑
v∈V,deg(v)≥3

(deg(v)
3

)
. The count can be initialized in O(n) time and maintained

in constant time and space. We can query c(G, P, {u, v}) for an arbitrary edge {u, v} ∈ E in
constant time.

▶ Theorem 4. Let G = (V, E) be a dynamic graph and P ∈ P4. We can
(i) maintain c(G, P) in worst-case O(m) update time and constant space.
(ii) query c(G, P, {u, v}) for an arbitrary edge {u, v} ∈ E in worst-case O(m) time, with

constant update time and space.
(iii) query c(G, P, {u, v}) for an arbitrary edge {u, v} ∈ E in worst-case constant time, with

O(m) worst-case update time and O(m) space.

For connected 4-vertex subgraphs other than the claw and the clique, we can invest space
to achieve speedups in running time. In the following, we present our data structure and
show how to update it efficiently. We then use different parts of the data structure to count
different subgraphs. Specifically, we prove the following result:

▶ Theorem 5. Let G be a dynamic graph and P ∈ P4. We can maintain c(G, P) in
(i) amortized O(

√
m) update time with O(min(m1.5, n2)) space and query c(G, P, e) for

an arbitrary edge e ∈ E in worst-case O(
√

m) time if P is the length-3 path ,
(ii) amortized O(m2/3) update time with O(n2) space and query c(G, P, e) for an arbitrary

edge e ∈ E in worst-case O(m2/3) time if P is the paw or the 4-cycle ,
(iii) amortized O(m2/3) update time with O(min(nm, m5/3)) space and query c(G, P, e) for

an arbitrary edge e ∈ E in worst-case O(m2/3) time if P is the diamond .

K. Hanauer, M. Henzinger, and Q. C. Hua 18:7

vLV t uLv uLLv cLV pLL uHv cL

Figure 1 Subgraph structures of Dε. Small and filled vertices have low degree, large and empty
vertices high degree, medium-sized and shaded vertices can have either high or low degree. Anchors
are marked by arrows.

Our algorithm makes use of a standard technique in dynamic graph algorithms that
partitions vertices into high-degree and low-degree vertices. We adapt it to our needs as
follows: Let m0 be the number of edges of G at construction or when recomputing from
scratch and let M = 2m0. A recomputation from scratch and re-initialization of the partition
is triggered whenever the current number of edges m < ⌊ M

4 ⌋ or m ≥ M . Initially and at
each recomputation from scratch, a vertex v ∈ V is classified as high-degree and added to
partition H if deg(v) ≥ θ and otherwise as low-degree and added to partition L := V \ H, for
some threshold θ. As G evolves, a high-degree vertex v is reclassified as low and moved to
L only if deg(v) < 1

2 θ. Vice-versa, a low-degree vertex v is reclassified as high and moved
to H only if deg(v) ≥ 3

2 θ. We call such a partition (H, L) a dynamic vertex partition with
threshold θ. If θ = Mε for some ε ∈ [0, 1], we call the partition an ε-partition.

▶ Theorem 6 (ε-Partition [15]). Let ε ∈ [0, 1] and consider an ε-partition (H, L) for a
dynamic graph G = (V, E). Then, |H| ∈ O(m1−ε). The partition can be constructed in O(n)
time and maintained in amortized constant time per update with amortized O(m−ε) changes
to the partition per update and Ω(m) updates between two recomputations from scratch. The
required space is O(n).

Data Structure Dε

We assume that the algorithm can access the degree of a vertex v in constant time and, for
each pair of vertices u, v determine in constant time whether {u, v} ∈ E. In addition, we
maintain the following data structure Dε or a subset of it, if we are not only interested in
counting some specific subgraphs on four vertices. All subgraph structures that are part of
Dε are non-induced. See Figure 1 for visualizations.

an ε-partition (H, L)
For each vertex v ∈ V : vLV[v]: the number of 2-paths ⟨{v, x}, {x, y}⟩ with x ∈ L
For each vertex v ∈ H: t[v]: the number of 3-cycles ⟨{v, x}, {x, y}, {y, v}⟩
For each distinct, unordered pair of vertices u, v ∈ V :

uLv[u, v]: the number of 2-paths ⟨{u, x}, {x, v}⟩ with x ∈ L
uLLv[u, v]: the number of length-3 paths ⟨{u, x}, {x, y}, {y, v}⟩ with x, y ∈ L
cLV[u, v]: the number of claws with a central vertex x ∈ L, u ̸= x ̸= v

pLL[u, v]: the number of paws with a central vertex x ∈ L, u ̸= x ̸= v, u or v at the
other end of the arm, and fourth vertex y ∈ L

For each distinct, unordered pair of vertices u, v ∈ H: uHv[u, v]: the number of length-2
paths ⟨{v, x}, {x, v}⟩ with x ∈ H
For each distinct, unordered triple of vertices u, v, w ∈ V : cL[u, v, w]: the number of
claws with a fourth vertex x ∈ L at the center

SAND 2022

18:8 Fully Dynamic Four-Vertex Subgraph Counting

For each auxiliary subgraph whose count is maintained by the data structure, we call vertices
of the set that acts as key anchors, e.g., u and v are anchors for the 2-paths ⟨{u, x}, {x, v}⟩
with x ∈ L, which are counted by uLv[u, v]. We use hash tables with O(1) amortized access
time and only store non-zero counts. Note that uLv, uLLv, pLL, and cL correspond to s2, s3,
s5, and s7, respectively, in the algorithm by Eppstein et al. [9], whereas vLV, t, and cLV are
modifications of s0, s1, and s4, and uHv has no equivalent at all. However, Eppstein et al. [9]
use a different partitioning scheme, where there are at most O(h) vertices of degree Ω(h),
whereas in our case, there are at most O(m1−ε) vertices of degree Ω(mε), which requires a
different running time analysis also for the common auxiliary counts.

We generally assume that in case of an edge insertion, the auxiliary counts are updated
immediately before the counts of interest, and in reverse order for an edge deletion. The
update of the ε-partition can either happen first or last (but not in between). We also assume
that we start with an empty graph and all counts are initialized to zero.

Maintaining the Data Structure Dε

Given a dynamic graph G = (V, E) and ε ∈ [0, 1], we show how the components of the data
structure Dε can be updated after an edge insertion or deletion and if a vertex changes
partition. We start with a helper lemma:

▶ Lemma 7. Let aux be an auxiliary subgraph count in Dε with worst-case update time
Eaux after an edge insertion or deletion, worst-case update time Vaux after a vertex changes
partition, and Saux space. Then, Dε with aux can be maintained in amortized update time
O(Eaux + Vaux · m−ε) with O(n + Saux) space.

Proof. By Theorem 6, the ε-partition can be maintained in O(n) space and such that there
are Ω(m) updates between two recomputations of the partition from scratch. After each such
complete repartitioning, we set aux to zero and re-insert all edges one-by-one. The total
recomputation time hence is O(m · Eaux) and amortization over Ω(m) edge updates results
in an amortized edge update time of O(Eaux). By Theorem 6, there are amortized O(m−ε)
vertices changing partition per edge update, hence the claim follows. ◀

As the insertion and deletion operations are entirely symmetric and only differ in whether
a certain amount is added or subtracted from the stored counts, we only give the details for
edge insertions in the following. Similarly, we only consider the case that a vertex v changes
from L to H; the other case is symmetric. Note that if v is about to change partitions,
deg(v) ∈ Θ(mε).

▶ Lemma 8. Dε with vLV can be maintained in amortized O(mε) update time and O(n)
space.

Proof. Let {u, v} be the newly inserted edge. If u ∈ L (v ∈ L), increase vLV[w] by one for
each w ∈ Nv̄(u) (w ∈ Nū(v)) and increase vLV[v] by deg(u) − 1 (vLV[u] by deg(v) − 1).
This takes O(mε) time.

If a vertex v ∈ L changes to H, this affects all length-2 paths where v is the central,
low-degree vertex. For each neighbor w ∈ N(v), decrease vLV[w] by deg(v)−1. The running
time is O(deg(v)) = O(mε).

As each vertex may be adjacent to at least one low-degree vertex, the space requirement
is O(n). By Lemma 7, Dε with vLV can hence be maintained in O(mε) amortized update
time and O(n) space. ◀

K. Hanauer, M. Henzinger, and Q. C. Hua 18:9

▶ Lemma 9. Dε with uLv can be maintained in amortized O(mε) time per update and
O(min(m1+ε, n2)) space.

Proof. Let {u, v} be the newly inserted edge. If u ∈ L (v ∈ L), increment uLv[v, w]
(uLv[u, w]) by one for each w ∈ Nv̄(u) (w ∈ Nū(v)). This takes O(mε) time.

If a vertex v ∈ L changes to H, this affects all length-2 paths where v is the central,
low-degree vertex. For each pair of distinct neighbors x, y ∈ N(v), decrease uLv[x, y] by 1.
The running time is O(deg(v)2) = O(m2ε).

Each edge may be incident to at least one low-degree vertex v and form O(mε) length-2
paths with the other edges incident to v. The space requirement hence is O(min(m1+ε, n2)).
By Lemma 7, Dε with uLv can hence be maintained in O(mε + m2εm−ε) = O(mε) amortized
update time and O(min(m1+ε, n2)) space. ◀

▶ Lemma 10. Dε with t can be maintained in amortized O(mmax(1−ε,ε)) time per update
and O(min(m1+ε, n2)) space.

Proof. Let {u, v} be the newly inserted edge. For each h ∈ H, increment t[h] by one if
h is adjacent to both u and v. If u ∈ H (v ∈ H): Increment t[u] (t[v]) by one for each
h ∈ H that is adjacent to both u and v, and increment t[u] (t[v]) by uLv[u, v]. This takes
O(|H|) = O(m1−ε) time.

If a vertex v ∈ L changes to H, then for each pair of distinct neighbors x, y ∈ N(v) such
that {x, y} ∈ E, we increase t[v] by one. Otherwise, if v changes from H to L, set t[v] := 0.
The running time is O(deg(v)2) = O(m2ε).

By Lemma 9, Dε with uLv can be maintained in amortized O(mε) update time and
O(min(m1+ε, n2)) space. As |H| ∈ O(m1−ε), the space requirement for t is O(min(m1+ε, n2)).
By Lemma 7, Dε with t can be maintained in O(m1−ε +m2εm−ε)+O(mε) = O(mmax(1−ε,ε))
amortized update time and O(min(m1+ε, n2)) space. ◀

▶ Lemma 11. Dε with uLLv can be maintained in amortized O(m2ε) time per update and
O(min(m1+2ε, n2)) space.

Proof. Let {u, v} be the newly inserted edge. If u ∈ L (v ∈ L), we count the length-3
paths starting/ending with {u, v} as follows: For each low-degree neighbor w ∈ Nv̄(u) ∩ L
(w ∈ Nū(v) ∩ L), increment uLLv[v, x] (uLLv[u, x]) by one for each x ∈ N(w) \ {u, v}. This
takes O(m2ε) time. If both u ∈ L and v ∈ L, we additionally count the length-3 paths having
{u, v} as centerpiece in O(deg(u)2) = O(m2ε) time: For each pair of distinct vertices x, y

with x ∈ Nv̄(u), y ∈ Nū(v), increment uLLv[x, y] by one.
If a vertex v ∈ L changes to H, we iterate over all pairs of distinct vertices y, w, where

y ∈ Nv̄(x) for some low-degree neighbor x ∈ N(v) ∩ L and w ∈ Nx̄(v), and decrease
uLLv[w, y] by one. As v has O(m2ε) pairs of neighbors and each low-degree neighbor has in
turn O(mε) neighbors, the running time is in O(m3ε).

Each edge may be incident to two low-degree vertices and hence form O(m2ε) length-3
paths with the other edges incident to the end vertices. The space requirement hence is
O(min(m1+2ε, n2)). By Lemma 7, Dε with uLLv can be maintained in O(m2ε + m3εm−ε) =
O(m2ε) amortized update time and O(min(m1+2ε, n2)) space. ◀

▶ Lemma 12. Dε with cLV can be maintained in amortized O(m2ε) time per update and
O(n min(n, m2ε)) space.

Proof. Let {u, v} be the newly inserted edge. If u ∈ L (v ∈ L), we update the number
of claws where u (v) is the central vertex as follows: For each pair of distinct neighbors
x, y ∈ Nv̄(u) (x, y ∈ Nū(v)), increment cLV[x, y] by one. This accommodates for the claws

SAND 2022

18:10 Fully Dynamic Four-Vertex Subgraph Counting

where v (u) is not an anchor vertex and takes O(m2ε) time. For the other case, increment
cLV[v, w] (cLV[u, w]) by deg(u) − 2 (deg(v) − 2) for each w ∈ Nv̄(u) (w ∈ Nū(v)) in O(mε)
time.

If a vertex v ∈ L changes to H, we decrease cLV[x, y] by deg(v) − 2 for each pair of
distinct neighbors x, y ∈ N(v) in total O(deg(v)2) = O(m2ε) time.

As each vertex may be adjacent to at least one low-degree vertex and we store the count
for all pairs, the space requirement is in O(n2). On the other hand, each low-degree vertex
has at most O(m2ε) neighbors that can serve as anchors, which yields a space requirement
of O(nm2ε). By Lemma 7, Dε with cLV can be maintained in O(m2ε + m2εm−ε) = O(m2ε)
amortized update time and O(n min(n, m2ε)) space. ◀

▶ Lemma 13. Dε with pLL can be maintained in amortized O(m2ε) time per update and
O(min(n2, nm2ε)) space.

Proof. Let {u, v} be the newly inserted edge.
If u ∈ L (v ∈ L): First, we update all paws where u (v) is the central vertex and v (u)

is the anchor vertex at the arm: For each ordered pair of distinct neighbors x, y ∈ Nv̄(u)
(x, y ∈ Nū(v)) such that x ∈ L and {x, y} ∈ E, increment pLL[v, y] (pLL[u, y]) by one. This
can be done in O(m2ε) time. Second, we update all paws where u (v) is the central vertex
and v (u) is the anchor vertex in the triangle: For each ordered pair of distinct neighbors
x, y ∈ Nv̄(u) (x, y ∈ Nū(v)) such that x ∈ L and {x, v} ∈ E ({x, u} ∈ E), increment
pLL[v, y] (pLL[u, y]) by one. This again can be done in O(m2ε) time. Third, we update
all paws where u (v) is the non-anchor, non-central vertex in the triangle and v (u) is the
anchor vertex in the triangle: For each neighbor x ∈ Nv̄(u) (x ∈ Nū(v)) with x ∈ L and
{v, x} ∈ E ({u, x} ∈ E), increment pLL[v, y] (pLL[u, y]) by one for each y ∈ N(x) \ {u, v}.
The running time is in O(m2ε), as u, x ∈ L.

If both u ∈ L and v ∈ L, we update all paws where {u, v} connects the central vertex to
the non-anchor vertex in the triangle: For each ordered pair of distinct neighbors x, y ∈ Nv̄(u)
with {x, v} ∈ E and each ordered pair of distinct neighbors x, y ∈ Nū(v) with {x, u} ∈ E,
increment pLL[x, y] by one. The running time is in O(deg(u)2 + deg(v)2) = O(m2ε).

If a vertex v ∈ L changes to H: For all paws where v was the central vertex, we iterate
over all unordered pairs of neighbors y, z ∈ N(v) and every neighbor x ∈ N(v) ∩ L such
that y ≠ x ̸= z. If {x, y} ∈ E, we decrease pLL[y, z] by one, and if {x, z} ∈ E, we also
decrease pLL[y, z] by one. For all paws where v was the low-degree, non-central vertex in
the triangle, we iterate over all pairs of distinct neighbors x, y ∈ N(v) such that {x, y} ∈ E

and x ∈ L, and, for each z ∈ N(x) \ {v, y}, decrease pLL[y, z] by one. In this case,
{x, z} forms the arm. As deg(x) ∈ O(mε) in the second case, the total running time is
O(deg(v)3 + deg(v)2 · mε) = O(m3ε).

The argument for the space requirement is the same as for to cLV and O(n min(n, m2ε))
by Lemma 12. By Lemma 7, Dε with pLL can be maintained in O(m2ε + m3εm−ε) = O(m2ε)
amortized update time and O(n min(n, m2ε)) space. ◀

▶ Lemma 14. Dε with uHv can be maintained in amortized O(mmax(1−ε,ε)) time per update
and O(n + min(n2, m2−2ε)) space.

Proof. Let {u, v} be the newly inserted edge. If u, v ∈ H, we iterate over all h ∈ H \ {u, v}.
If h is adjacent to u (v), increment uHv[h, v] (uHv[u, h]), respectively, by one. The running
time is O(|H|) = O(m1−ε).

If a vertex v ∈ L changes to H (analogously vice-versa): For each pair of distinct high-
degree neighbors x, y ∈ N(v) ∩ H, increment uHv[x, y] by one in total O(deg(v)2) = O(m2ε)
time. Only if v changes from L to H: For every high-degree neighbor w ∈ N(v) ∩ H, we

K. Hanauer, M. Henzinger, and Q. C. Hua 18:11

u v

1(a)

u v

x

y

1(b)

u

v

2(a)

u

v

h2(b)

u

v

h

2(c)

u

v

h

2(d)

Figure 2 Counting the number of diamonds that contain an edge {u, v}. Green, dashed edges
belong to paths that are considered via auxiliary counts, whereas dotted edges are edges whose
presence is looked up by the algorithm. As before, small and filled vertices have low degree, large and
empty vertices high degree, medium-sized and shaded vertices can have either high or low degree.

iterate over all h ∈ H and increase uHv[v, h] by one if {w, h} ∈ E in total O(deg(v) · |H|) =
O(mε · m1−ε) = O(m) time. Only if v changes from H to L, we set uHv[v, h] := 0 for each
h ∈ H in total O(|H|) = O(m1−ε) time. The overall time is hence O(mmax(2ε,1)).

There are O(min(n, m1−ε)) high-degree vertices, which results in O(min(n2, m2−2ε)) pairs
of anchor vertices. Dε with uHv can hence be maintained in O(m1−ε + mmax(2ε,1)m−ε) =
O(mmax(1−ε,ε)) amortized update time and O(n + min(n2, m2−2ε)) space by Lemma 7. ◀

▶ Lemma 15. Dε with cL can be maintained in amortized O(m2ε) time per update and
O(min(n3, nm3ε, m1+2ε)) space.

Proof. Let {u, v} be the newly inserted edge. If u ∈ L (v ∈ L), increment cL[v, x, y]
(cL[u, x, y]) by one for each pair of distinct neighbors x, y ∈ Nv̄(u) (x, y ∈ Nū(v)). This
takes O(m2ε) time.

If a vertex v ∈ L changes to H: For each triple of distinct neighbors x, y, z ∈ N(v), we
decrease cL[x, y, z] by one in total O(deg(v)3) = O(m3ε) time.

As each edge may be incident to a low-degree vertex v, the number of triples with non-zero
count for cL is in O(min(n3, nm3ε, m1+2ε)). By Lemma 7, Dε with cL can be maintained in
O(m2ε + m3ε−ε) = O(m2ε) amortized update time and O(min(n3, m1+2ε)) space. ◀

Non-Induced Subgraph Counts

We are now ready to prove Theorem 5 and show for each connected subgraph on four vertices
how to count it using the data structure Dε.

▶ Lemma 16. Let G = (V, E) be a dynamic graph, ε ∈ [0, 1], and P be the diamond .
We can query c(G, P, {u, v}) for an arbitrary edge {u, v} ∈ E in O(min(mmax(1−ε,2ε), n2))
worst-case time if we maintain the data structure Dε with auxiliary counts uLv, pLL, uHv,
and cL.

Proof. Edge {u, v} can either be the chord of the diamond or be part of the 4-cycle. See
Figure 2 for an illustration.

For the first case, where {u, v} is the chord: (a) If u, v ∈ H, we can obtain the number
of length-2 paths p between u and v as p = uLv[u, v] + uHv[u, v]. As each pair of length-2
paths forms a diamond with {u, v}, the total number of diamonds is

(
p
2
)
. (b) Otherwise,

{u, v} ∩ L ̸= ∅. W.l.o.g., u ∈ L. We then iterate over all distinct, unordered pairs of
neighbors x, y ∈ Nv̄(u) in O(deg(u)2) = O(min(m2ε, n2)) time. For each such pair with
{x, v}, {y, v} ∈ E, we count one diamond.

For the second case, where {u, v} is part of the cycle, we distinguish between the degrees
of the other two vertices. (a) The number of diamonds where the other two vertices have
low degree is given by pLL[u, v]. Note that either u or v is incident to the chord. (b) The
number of diamonds where the other vertex incident to the chord has low degree and

SAND 2022

18:12 Fully Dynamic Four-Vertex Subgraph Counting

the fourth vertex has high degree can be obtained by iterating over all h ∈ H \ {u, v} in
O(|H|) = O(min(m1−ε, n)) time. If either {h, u} ∈ E or {h, v} ∈ E, we have cL[u, v, h] more
diamonds. If both {h, u}, {h, v} ∈ E, we add 2cL[u, v, h] to the number of diamonds. (c,
d) The number of diamonds where the other vertex incident to the chord has high degree can be
obtained as follows: (c) If u ∈ H (v ∈ H), the number of diamonds where the chord is incident
to u (v) can be obtained by iterating over all h ∈ H\{u, v} in O(|H|) = O(min(m1−ε, n)) time.
For each such vertex h, we check whether {u, h}, {v, h} ∈ E and add uLv[u, h]+uHv[u, h]−1
(uLv[v, h]+uHv[v, h]−1) to the count. The correction by 1 is necessary because the auxiliary
counts also contain the path ⟨{u, v}, {v, h}⟩ (⟨{h, u}, {u, v}⟩). (d) If u ∈ L (v ∈ L), we iterate
over all high-degree neighbors h ∈ Nv̄(u) ∩ H (h ∈ Nū(v) ∩ H) and in each case over all
x ∈ N(u) \ {v, h} (x ∈ N(v) \ {u, h}) in total O(min(m2ε, n2)) time and count one diamond
each if {h, x}, {h, v} ∈ E ({h, x}, {h, u} ∈ E). ◀

▶ Lemma 17. Let G = (V, E) be a dynamic graph and P be the diamond . We can
maintain c(G, P) in amortized O(m2/3) update time and O(min(nm, m

5
3)) space. We can

query c(G, P, e) for an arbitrary edge e ∈ E in worst-case O(m2/3) time.

Proof. After an edge {u, v} was inserted or before an edge {u, v} is removed, the number
of diamonds containing it can be obtained in O(min(mmax(1−ε,2ε), n2)) time worst-case
time by Lemma 16 if Dε with auxiliary counts uLv, pLL, uHv, and cL is maintained. By
Lemma 9, Lemma 13, Lemma 14, and Lemma 15, this can be done in amortized O(mε +
mmax(1−ε,ε) + m2ε) = O(mmax(1−ε,2ε)) time and O(min(n3, max(n2, nm3ε, m2−2ε, m1+2ε)))
space. Together with the cost for the query, this yields a total amortized update time
of O(mmax(1−ε,2ε)) = O(m 2

3) for ε = 1
3 and O(min(nm, m

5
3)) space. By Lemma 16, the

worst-case time to query c(G, P, e) for an arbitrary edge e ∈ E then is O(m2/3). ◀

Queries with Vertices and Edges and Non-Induced s-Subgraph Counts

With similar techniques, we can count non-induced triangles containing a specified vertex or
edge as well as maintain s-subgraph counts for patterns with up to four vertices.

▶ Theorem 18. Let G = (V, E) be a dynamic graph, P be the 3-cycle , and ε ∈ [0, 1]. We
can query c(G, P, a) for an arbitrary vertex or edge a in

(i) worst-case O(min(m2ε, n2)) time with O(mmax(ε,1−ε)) amortized update time and
O(min(n2, m1+ε)) space if a ∈ V ,

(ii) worst-case time O(min(m1−ε, n)) with O(mε) amortized update time and
O(min(n2, m1+ε)) space if a ∈ E.

▶ Corollary 19. Let G = (V, E) be a dynamic graph and P the 3-cycle . We can maintain
c(G, P) with an amortized update time of O(

√
m) and O(min(n2, m1.5)) space and query

c(G, P, e) for e ∈ E arbitrary in worst-case O(
√

m) time. We can query c(G, P, v) for
arbitrary v ∈ V in worst-case O(m2/3) time with an amortized update time of O(m2/3) and
O(min(n2, m4/3)) space.

▶ Theorem 20. Let G = (V, E) be a dynamic graph, s ∈ V , and P be a connected subgraph.
We can maintain the non-induced s-subgraph count c(G, P, s) in

(i) worst-case constant update time and constant space if P is the claw ,
(ii) amortized update time O(

√
m) and O(n) space if P is the 3-cycle or the length-3

path ,
(iii) amortized update time O(m2/3) and O(n2) space if P is the paw , the 4-cycle , or

the diamond ,
(iv) worst-case update time O(m) and constant space if P is the 4-clique .

K. Hanauer, M. Henzinger, and Q. C. Hua 18:13

4 Lower Bounds

We give new lower bounds for detecting and counting induced and non-induced subgraphs.

Induced Subgraph Counts

Our results for counting induced subgraphs on four vertices are conditioned on the combina-
torial k-clique conjecture:

▶ Theorem 21. Let G be a dynamic graph, P ∈ P4, and let γ > 0 be a small constant. There
is no incremental or fully dynamic combinatorial algorithm with preprocessing time O(m2−γ)
for maintaining cI(G, P) in amortized update time O(m1−γ) and query time O(m2−γ), unless
the k-clique conjecture fails.

Before we turn to the proof, we recall the following relations between subgraph counts.

▶ Lemma 22 ([9]). For each pair P, P ′ ∈ P4, the non-induced subgraph count c(P, P ′) = 1
if P = P ′ and otherwise nonzero only in the following cases:

c(,) = 2, c(,) = 4, c(,) = 6, c(,) = 12,

c(,) = 1, c(,) = 2, c(,) = 4, c(,) = 4,

c(,) = 12, c(,) = 1, c(,) = 3, c(,) = 6.

▶ Proposition 23 ([17]). Let G, P be graphs and let k be the number of vertices of P. Then,
c(G, P) =

∑
P ∈Pk

cI(G, P) · c(P, P).

▶ Lemma 24. Let G = (V, E) be a graph. The following relationships between induced and
non-induced subgraph counts hold:

cI(G,) = c(G,)
cI(G,) = c(G,) − 6cI(G,)
cI(G,) = c(G,) − c(G,) + 3cI(G,)
cI(G,) = c(G,) − 4c(G,) + 12cI(G,)
cI(G,) = c(G,) − c(G,) + 2c(G,) − 4cI(G,)
cI(G,) = c(G,) − 2c(G,) − 4c(G,) + 6c(G,) − 12cI(G,)

Proof. Let P ∈ P4. The statement follows from Proposition 23 and Lemma 22 by substituting
equations and solving them for cI(G, P) in the order as listed. ◀

▶ Corollary 25. Let G = (V, E) be a dynamic graph and P ∈ P4. We can maintain cI(G, P)
with O(m) worst-case update time and constant space.

Proof of Theorem 21. First consider the case that P = . Suppose there is an incremental
or fully dynamic algorithm A that maintains cI(G, P) in time O(m1−γ) with query time
O(m2−γ) for some γ > 0. Construct an algorithm A′ for static 4-clique detection as follows:
Run A on an initially empty graph, insert all edges one-by-one in total O(m2−γ) time, and
query the result in O(m2−γ) time. As O(m2−γ) = O(n4−2γ) this contradicts Conjecture 2.

For the remaining five induced four-vertex subgraphs, let P be such a subgraph. We
construct a deterministic algorithm A′ for static 4-clique detection as follows: A′ executes
the above operations for our non-induced subgraph counting algorithm from Sect. 3, which
can maintain the number of all connected subgraphs on four vertices with O(m2/3) amortized
update time and O(1) query time by Theorem 5. It thus takes O(m5/3) time in total to
compute c(G, P ′) for all P ′ ∈ P4\{ }. Assume by contradiction that there exists an algorithm

SAND 2022

18:14 Fully Dynamic Four-Vertex Subgraph Counting

M =
(

1 0 1 0
0 1 1 0
0 1 1 1

)
u⊤ = (1 1 0)
v⊤ = (0 1 1 0)

l
(g)
1

l
(g)
2

l
(g)
3

r
(h)
1

r
(h)
2

r
(h)
3

r
(h)
4

l
(1)
1

l
(1)
2

l
(1)
3

l
(0)
1

l
(0)
2

l
(0)
3

r
(1)
1

r
(1)
2

r
(1)
3

r
(1)
4

r
(0)
1

r
(0)
2

r
(0)
3

r
(0)
4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

l
(1)
1

l
(1)
2

l
(1)
3

r
(h)
1

r
(1)
2

r
(1)
3

r
(1)
4

l
(0)
1

l
(0)
2

l
(0)
3

r
(0)
1

r
(0)
2

r
(0)
3

r
(0)
4

s

l
(1)
1

l
(1)
2

l
(1)
3

r
(h)
1

r
(0)
2

r
(0)
3

r
(0)
4

l
(0)
1

l
(0)
2

l
(0)
3

s

Figure 3 Construction of GM,g,h and G for u⊤Mv for (s)-5-cycle and (s)-diamond detection.

A∗ that maintains cI(G, P) in update time O(m1−γ) and query time O(m2−γ). Then A′

also executes the same operations with A∗ to compute cI(G, P). Using the formula for P in
Lemma 24, A′ can solve the static 4-clique detection problem in time O(mmax(5/3,2−γ)) ⊆
O(n4−δ) time for δ = min(2γ, 2/3) > 0, a contradiction to Conjecture 2. ◀

Non-Induced Subgraph Counts

In this section, we give new lower bounds for detecting (and thus counting) cycles of arbitrary
length, paws, diamonds, and 4-cliques1, as well as counting length-3 paths. Our results are
based on the OMv conjecture. In [12] it is proven that instead of reducing from OMv directly
it suffices to reduce from the following 1-uMv version: For any positive integer parameters n1,
n2, given an n1 × n2 matrix M , there is no algorithm with preprocessing time polynomial
in n1 and n2 that computes for an n1-dimensional vector u and an n2-dimensional vector
v the product u⊤Mv in time O(n1n1−δ

2 + n1−δ
1 n2) for any small constant δ > 0 with error

probability of at most 1
3 in the word-RAM model with O(log n) bit words.

▶ Theorem 26. Let G be a partially dynamic graph and let P be the paw , the diamond ,
the 4-clique , or a k-cycle with k ≥ 3. On condition of Conjecture 1, there is no partially
dynamic algorithm to maintain whether c(G, P) > 0 with polynomial preprocessing time and
worst-case update time O(m1/2−δ) and query time O(m1−δ) with an error probability of at
most 1/3 for any δ > 0. This also holds for fully dynamic algorithms with amortized update
time and for paws, diamonds, 4-cliques, or odd k-cycles containing a specific vertex s, as
well as for maintaining the number of length-3 paths and the number of length-3 paths
containing a specific vertex s.

Our constructions build on the following graph (see Figure 3 for an example).

▶ Definition 27 (GM,g,h). Given a matrix M ∈ {0, 1}n1×n2 and two integers g, h ≥ 0, we
denote by GM,g,h = (

⋃
0≤p≤g

L(p) ∪
⋃

0≤q≤h

R(q), EL ∪ ER ∪ EM) the (g + h + 2)-partite graph with

L(p) =
{

l
(p)
1 , . . . , l(p)

n1

}
, 0 ≤ p ≤ g; EL =

{
(l(p)

i , l
(p+1)
i) | 1 ≤ i ≤ n1 ∧ 0 ≤ p < g

}
R(q) =

{
r

(q)
1 , . . . , r(q)

n2

}
, 0 ≤ q ≤ h; ER =

{
(r(q)

j , r
(q+1)
j) | 1 ≤ j ≤ n2 ∧ 0 ≤ q < h

}
and EM = {(l(g)

i , r
(h)
j) | Mij = 1}. GM,g,h has (g + 1) · n1 + (h + 1) · n2 vertices and at most

n1n2 + g · n1 + h · n2 edges. All vertices x in L(p) for 1 ≤ p < g and in R(q) for 1 ≤ q < h

have deg(x) = 2, whereas all vertices y in L(0) and in R(0) have deg(y) = 1.
For convenience, we set L := L(0), R := R(0), li := l

(0)
i , and rj := r

(0)
j .

▶ Observation 28. Every cycle in GM,g,h is even and has length at least 4.

1 Theorem 21 applies also to 4-cliques, but it is based on a different assumption.

K. Hanauer, M. Henzinger, and Q. C. Hua 18:15

Let s be a fixed vertex in the graph. The s-k-cycle detection problem requires the
algorithm to detect whether a k-cycle containing s exists. We use the same notation for the
other subgraphs as well.

▶ Lemma 29. Given a partially dynamic algorithm A for one of the problems listed below,
one can solve 1-uMv with parameters n1 and n2 by running the preprocessing step of A on a
graph with O(m +

√
m · k) edges and Θ(

√
m · k) vertices, and then making O(

√
m) insertions

(or O(
√

m) deletions) and 1 query, where m is such that n1 = n2 =
√

m. The problems are
(a) (s-)k-Cycle Detection for odd k

(b) (s-)Paw Detection
(c) (s-)Diamond Detection

(d) (s-)k-Clique Detection for k = 4
(e) (s-)length-k Path Counting for k = 3
(f) k-Cycle Detection

Proof of Case (c). We only prove the decremental case. Consider a 1-uMv problem with
n1 = n2 =

√
m. Given M , we construct the tripartite graph G from GM,1,0 by adding to it

a vertex s and connecting it by an edge to every vertex in GM,1,0. Thus, the total number of
edges is at most n1n2 + 3n1 + n2 = O(m). Once u and v arrive, we delete {s, li} and {s, l

(1)
i }

iff ui = 0 and delete {rj , s} iff vj = 0. See Figure 3 for an example.
Consider the case that G contains a diamond with chord e. As every triangle must be

incident to s by Observation 28, e = {s, x} for some x ∈ L ∪ L(1) ∪ R. Furthermore, all
vertices in L have degree at most two and x has degree at least three, so x ̸∈ L. If x = rj ∈ R,
then by construction, x must have two neighbors l

(1)
i , l

(1)
i′ ∈ L(1) such that there are edges

{s, l
(1)
i } and {s, l

(1)
i′ } in G. Again by construction, there are thus also edges {s, li} and {s, li′}

and a diamond {s, li, l
(1)
i , x = rj} with chord {s, l

(1)
i }. As each vertex in L(1) is adjacent to

exactly one vertex in L, every diamond must contain a vertex r ∈ R and the edge {r, s}.
Hence, we have u⊤Mv = 1 iff there is a diamond in G iff there is a diamond incident to s.
In total, we need to do 2n1 + n2 = O(

√
m) updates and 1 query. ◀

5 Conclusion

Our focus in this work was especially on non-induced and induced four-vertex subgraphs. We
gave improved both upper and lower bounds for detecting or counting four-vertex subgraphs
in the dynamic setting, thereby closing the gap (w.r.t. improvements by a polynomial factor)
for counting non-induced length-3 paths and narrowing it considerably for non-induced paws,
4-cycles, and diamonds. For counting induced subgraphs, we showed that the update time of
the algorithm by Eppstein et al. [9] cannot be improved by a polynomial factor, but that a
better space complexity can be achieved in the worst case.

Many of our lower bounds also apply to subgraphs with more than four vertices, but
to the best of our knowledge, only algorithms for cliques have been considered here so far.
Hence, besides closing the gap for four-vertex subgraphs, the complexity of detecting and
counting subgraphs with five or more vertices would be an interesting field for future work.

We also investigated the complexity of querying the number of subgraphs containing
a specific edge, as such queries are relevant, e.g., to measure the similarity of graphs via
histograms. This can similarly be done for vertices. As a by-product of our results for
four-vertex subgraphs, we showed for 3-cycles that such vertex queries can be answered in
O(m 2

3). The complexity of vertex queries for larger subgraphs remains an open question.
Further interesting lines to follow regard the complexity of approximate counting, counting

all approximately densest subgraphs, as well as the complexity of enumerating subgraphs.
Our work was strongly motivated also by the practical relevance of counting subgraphs

in the dynamic setting. For this reason, we consider an experimental evaluation of dynamic
subgraph counting algorithms a relevant and very interesting task for future work.

SAND 2022

18:16 Fully Dynamic Four-Vertex Subgraph Counting

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is valiant’s parser. SIAM Journal on Computing, 47(6):2527–2555,
2018.

2 N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3):209–223, March 1997. doi:10.1007/BF02523189.

3 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 623–632, USA, 2002. Society
for Industrial and Applied Mathematics.

4 Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska
Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-
additive spanners. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1836–1855.
SIAM, 2021. doi:10.1137/1.9781611976465.110.

5 Karl Bringmann, Nick Fischer, and Marvin Künnemann. A fine-grained analogue of schaefer’s
theorem in p: Dichotomy of ∃k∀-quantified first-order graph properties. In 34th Computational
Complexity Conference, pages 1–27. Schloss Dagstuhl, 2019.

6 Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Proceedings of the Twenty-Fifth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’06, pages 253–262, New York, NY, USA, 2006. Association for Computing Machinery. doi:
10.1145/1142351.1142388.

7 Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. Parallel batch-dynamic
k-clique counting. CoRR, abs/2003.13585, 2020. arXiv:2003.13585.

8 Zdeněk Dvořák and Vojtěch Tůma. A dynamic data structure for counting subgraphs in sparse
graphs. In Frank Dehne, Roberto Solis-Oba, and Jörg-Rüdiger Sack, editors, Algorithms and
Data Structures, pages 304–315, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

9 David Eppstein, Michael T. Goodrich, Darren Strash, and Lowell Trott. Extended dynamic
subgraph statistics using h-index parameterized data structures. Theor. Comput. Sci., 447:44–
52, 2012. doi:10.1016/j.tcs.2011.11.034.

10 David Eppstein and Emma S. Spiro. The h-index of a graph and its application to dynamic
subgraph statistics. J. Graph Algorithms Appl., 16(2):543–567, 2012. doi:10.7155/jgaa.
00273.

11 Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. Fully dynamic four-vertex subgraph
counting. CoRR, abs/2106.15524, 2021. arXiv:2106.15524.

12 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM Symposium on
Theory of Computing, pages 21–30, 2015.

13 Monika Henzinger, Andrea Lincoln, and Barna Saha. The complexity of average-case dynamic
subgraph counting. In Proceedings of the Thirty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022, Alexandria, Virginia, USA, January 9-12, 2022. SIAM,
2022. to appear.

14 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Counting
Triangles under Updates in Worst-Case Optimal Time. In Pablo Barcelo and Marco Calautti,
editors, 22nd International Conference on Database Theory (ICDT 2019), volume 127 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 4:1–4:18, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICDT.2019.4.

15 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining
triangle queries under updates. ACM Trans. Database Syst., 45(3):11:1–11:46, 2020. doi:
10.1145/3396375.

https://doi.org/10.1007/BF02523189
https://doi.org/10.1137/1.9781611976465.110
https://doi.org/10.1145/1142351.1142388
https://doi.org/10.1145/1142351.1142388
http://arxiv.org/abs/2003.13585
https://doi.org/10.1016/j.tcs.2011.11.034
https://doi.org/10.7155/jgaa.00273
https://doi.org/10.7155/jgaa.00273
http://arxiv.org/abs/2106.15524
https://doi.org/10.4230/LIPIcs.ICDT.2019.4
https://doi.org/10.1145/3396375
https://doi.org/10.1145/3396375

K. Hanauer, M. Henzinger, and Q. C. Hua 18:17

16 T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced subgraphs efficiently.
In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, pages 14–23, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg.

17 William L Kocay. Some new methods in reconstruction theory. In Combinatorial Mathematics
IX, pages 89–114. Springer, 1982.

18 Tamara G. Kolda, Ali Pinar, Todd Plantenga, C. Seshadhri, and Christine Task. Counting
triangles in massive graphs with mapreduce. SIAM Journal on Scientific Computing, 36(5):S48–
S77, 2014. doi:10.1137/13090729X.

19 F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, K. Nagasaka,
F. Winkler, and Á. Szántó, editors, International Symposium on Symbolic and Algebraic
Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–303. ACM, 2014. doi:
10.1145/2608628.2608664.

20 Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest
cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1236–1252. SIAM, 2018.

21 Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu. The
ubiquity of large graphs and surprising challenges of graph processing: extended survey. VLDB
J., 29(2-3):595–618, 2020. doi:10.1007/s00778-019-00548-x.

SAND 2022

https://doi.org/10.1137/13090729X
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1007/s00778-019-00548-x

Temporal Unit Interval Independent Sets
Danny Hermelin #

Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Yuval Itzhaki #

Faculty IV, Algorithmics and Computational Complexity, TU Berlin, Germany

Hendrik Molter #

Department of Industrial Engineering and Management,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

Rolf Niedermeier #

Faculty IV, Algorithmics and Computational Complexity, TU Berlin, Germany

Abstract
Temporal graphs have been recently introduced to model changes to a given network that occur
throughout a fixed period of time. We introduce and investigate the Temporal ∆ Independent
Set problem, a temporal variant of the well known Independent Set problem. This problem is
e.g. motivated in the context of finding conflict-free schedules for maximum subsets of tasks, that
have certain (changing) constraints on each day they need to be performed. We are specifically
interested in the case where each task needs to be performed in a certain time-interval on each day
and two tasks are in conflict on a day if their time-intervals overlap on that day. This leads us to
considering Temporal ∆ Independent Set on the restricted class of temporal unit interval graphs,
i.e., temporal graphs where each layer is unit interval.

We present several hardness results for this problem, as well as two algorithms: The first is
a constant-factor approximation algorithm for instances where τ , the total number of time steps
(layers) of the temporal graph, and ∆, a parameter that allows us to model some tolerance in the
conflicts, are constants. For the second result we use the notion of order preservation for temporal
unit interval graphs that, informally, requires the intervals of every layer to obey a common ordering.
We provide an FPT algorithm parameterized by the size of minimum vertex deletion set to order
preservation.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Fixed parameter tractability; Mathematics of computing → Discrete mathematics

Keywords and phrases Temporal Graphs, Vertex Orderings, Order Preservation, Interval Graphs,
Algorithms and Complexity

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.19

Funding D. Hermelin and H. Molter are supported by the ISF, grant No. 1070/20.

Acknowledgements The authors want to thank anonymous SAND reviewers for their constructive
comments.

1 Introduction

Suppose there are n postdocs, each requesting access to your lab in the next τ days for
conducting their experiments. Each postdoc submitted at the beginning of the semester an
application form which specifies a τ -day schedule for lab experiments, where in each day, the
postdoc’s schedule specifies a single uninterrupted time-interval for their experiment. All of
the n postdocs are very promising, and you wish to make sure that at least k of them are
able to conduct their research throughout the entire time period of τ days. However, since
the lab is small, it is preferable that no two postdocs share it at the same time. How can
you find out if the lab can accept the application of at least k postdocs?

© Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermelin@bgu.ac.il
mailto:itzhaki@campus.tu-berlin.de
mailto:molterh@post.bgu.ac.il
mailto:rolf.niedermeier@tu-berlin.de
https://doi.org/10.4230/LIPIcs.SAND.2022.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Temporal Unit Interval Independent Sets

This problem can be classically modeled as an Independent Set problem on an
undirected graph G with n vertices, one for each postdoc, by which two vertices are connected
by an edge if at any day the lab sessions of the two corresponding postdocs overlap. Given
such a graph G with a vertex set V and an edge set E, a solution to Independent Set
will comprise a subset of vertices V ′ ⊆ V such that no two vertices in V ′ are connected by
an edge in E. In case that there exists an independent set V ′ with a cardinality at least k,
there exist k postdocs whose research projects can be scheduled over the next τ days such
that there are no conflicting lab sessions on any day.

However, by considering the static graph G comprising all conflicts on its own, we lose
all the daily information of each postdoc. This can be a serious hindrance if we are willing
to allow some leeway in the way we schedule the lab sessions. For example, given that
practically every postdoc in the group is known to skip their lab session every once in a
while, one might want to allow some overlaps in the schedule. Thus, one could assume that
if the experiments of two postdocs do not overlap in more than ∆ consecutive days, then
they can still be scheduled together. This leads us to the Temporal ∆ Independent Set
problem which we introduce below.

If we wish to retain the daily information of each postdoc, we naturally have to generalize
our graph to a temporal graph. Temporal graphs generalize static graphs by adding a discrete
temporal dimension to the edge set. Formally, a temporal graph G = (V, E , τ) is an ordered
triple consisting of a set V of vertices, a set E ⊆

(
V
2
)

× {1, 2, . . . , τ} of time-edges, and a
maximal time label τ ∈ N. A temporal graph can be regarded as a set of τ consecutive time
steps, in which each step is a static graph. For t ∈ {1, . . . , τ}, we define the t-th layer as
Gt = (V, Et), where Et = {{u, v} : ({u, v}, t) ∈ E}. We refer to Casteigts et al. [6], Flocchini
et al. [13], Kostakos [29], Latapy et al. [30] and Michail [34] for a more detailed background
on temporal graphs.

We next extend the notion of independent sets to temporal graphs. We say a vertex
set V ′ is a ∆-independent set in a temporal graph G = (V, E , τ) if V ′ is an independent set in
the edge-intersection graph of every ∆ consecutive time steps of G. That is, for any pair of
distinct vertices u ̸= v ∈ V ′ and t ∈ {1, . . . , τ − ∆ + 1}, there exists a t′ ∈ {t, . . . , t + ∆ − 1}
such that {u, v} /∈ Et′ . We call this edge-intersection graph of every ∆ consecutive time

steps G = (V,
τ−∆+1⋃

i=1

i+∆−1⋂
j=i

Ej) the conflict graph. With this notion in mind, we can now

introduce the main problem we deal with in this paper. We give an example in Figure 1.

Temporal ∆ Independent Set
Input: A temporal graph G = (V, E , τ) and two integers k, ∆ ∈ N.
Question: Is there set V ′ ⊆ V of vertices such that |V ′| ≥ k and V ′ is an independent set in

the conflict graph G = (V,
τ−∆+1⋃

i=1

i+∆−1⋂
j=i

Ej)?

Temporal interval graphs. Recall our initial problem of allocating lab space to the
n postdocs. Observe that in this setting, each daily conflict graph Gt (corresponding
to layer t of the input temporal graph) can also be represented by a set of n intervals, where
each each interval indicates a lab session’s time-interval of the corresponding scientist on day t.
Such a representation is called an interval representation of Gt, and it is a unique property
of interval graphs. As first defined by Hajós [21], a graph belongs to the class of interval
graphs if there exists a mapping of its vertices to a set of intervals over a line such that two
vertices are adjacent if and only if their corresponding intervals overlap. Interval graphs are
used to model many natural phenomena which occur along the line of a one-dimensional
axis, and have various applications in scheduling [3], computational biology [26], and more.

D. Hermelin, Y. Itzhaki, H. Molter, and R. Niedermeier 19:3

G

G1 v1

v2

v3v4

v5

G2 v1

v2

v3v4

v5

G3 v1

v2

v3v4

v5

G v1

v2

v3v4

v5

Figure 1 An example of Temporal ∆ Independent Set instance with a temporal graph G
with three layers and ∆ = 2. The graph G is the conflict graph of the instance. The vertex
subset V ′ = {v1, v4, v5} is a maximum sized solution for this instance.

An important subclass of interval graphs is the class of unit interval graphs: A graph G is
a unit interval graph if it has interval representation where all intervals are of the same length.
It is well-known that this graph class is equivalent to the class of proper interval graphs,
graphs with interval representation where no interval is properly contained in another [36].
The restriction to unit interval graphs is quite natural for our lab allocation problem, since
in many cases one can assume that all experiments take roughly the same time. Thus, we
will also focus on the Temporal ∆ Independent Set problem restricted to temporal unit
interval graphs.

We focus in this paper on temporal interval graphs, that is temporal graphs G where
each layer is an interval graph. More specifically, most of our work is focused on temporal
unit interval graphs, i.e., the case where each layer is a unit interval graph. It should be
clear at this point that assuming that all lab sessions take the same amount of time, our lab
allocation problem is precisely the Temporal ∆ Independent Set problem restricted to
temporal unit interval graphs.

Geometric interpretation. The restriction of Temporal ∆ Independent Set to temporal
interval graphs gives rise to an elegant and useful geometric interpretation. Let us first
consider the case of ∆ = 1. A t-track (unit) interval is a union of t (unit) intervals, one
each from t parallel lines, and a family of t-track (unit) intervals is a set of t-track (unit)
intervals which have intervals all from the same t parallel lines. Clearly, the set of all τ

intervals corresponding to a single vertex in G can be represented by a τ -track interval, and
so for ∆ = 1, the conflict graph G of G is an intersection graph of a family of τ -track unit
intervals. For ∆ > 1, we need to use hyperrectangles and hypercubes instead of intervals
and unit intervals. We define t-track hyperrectangles (hypercubes) and families of t-track
hyperrectangles (hypercubes) in the natural manner. In this way, we get that our conflict
graph G is an intersection graph of a family of (τ − ∆ + 1)-track ∆-dimensional hypercubes.

SAND 2022

19:4 Temporal Unit Interval Independent Sets

Order-preserving temporal interval graphs. Considering our introductory example, it may
be a reasonable assumption that some postdocs generally prefer to conduct their experiments
in the morning while others prefer to work in the evenings. In this scenario, we have a natural
ordering on the time-intervals of the postdocs that stays the same or at least does not change
much over the time period of τ days. We use the notion of order-preserving temporal graphs
to formalize this setting. Order preservation on temporal interval graphs was first introduced
by Fluschnik et al. [14]. A temporal interval graph is said to be order-preserving if it admits a
vertex ordering <V such that each of its time steps can be represented by an interval model
such that both the right-endpoints and left-endpoints are ordered by <V . Fluschnik et al. [14]
show that the recognition of order-preserving temporal unit interval graphs can be done in
linear time, and also offer a metric to measure the distance of a temporal interval graph
from being order-preserving, which they call the “shuffle number”. It measures the maximum
pairwise disagreements in the vertex ordering of any two consecutive layers. We propose an
alternative metric to measure the distance to order preservation. Our distance is simply the
minimum number k of vertices to be deleted in order to obtain an order-preserving temporal
interval graph, and we call it the order-preserving vertex deletion (OPVD) metric.

1.1 Our results
We present both hardness results and positive results regarding Temporal ∆ Independent
Set in temporal unit interval graphs. Our initial hardness results in Section 2.2 are based
on adaptations of the hardness result of Marx [31] for Independent Set on axis parallel
squares in the plane, and Jiang [25] for Independent Set on t-track graphs. These hardness
results apply for quite restricted instances of temporal interval graphs. For instance, we show
that our problem is NP-hard even for τ = 2.

In Section 3, we present an approximation algorithm for Maximum Temporal ∆
Independent Set (the canonical optimization variant of Temporal ∆ Independent Set
where we want to maximize the independent set size) restricted to temporal unit interval
graphs. The algorithm exploits the geometric interpretation of the problem discussed above
to achieve an approximation factor of (τ − ∆ + 1) · 2∆ in polynomial time, and can also be
extended to the weighted case.

In Section 4, we turn to discuss order-preserving temporal unit interval graphs. As
mentioned above, this concept was introduced by Fluschnik et al. [14] for temporal interval
graphs. We show that computing the OPVD set (i.e., the set of vertices whose removal leaves
an order-preserving graph) of a unit interval temporal graph is NP-hard. We complement
this result by providing an FPT algorithm for computing an OPVD set when parameterized
by the solution size. This leads to an FPT algorithm for ∆ Independent Set in temporal
unit interval graph when parameterized by minimum OPVD set.

1.2 Related Work
By now, there is already a significant body of research related to temporal graphs in general [6,
13, 29, 34], as well as graph problems cast onto the temporal setting [2, 4, 14, 23, 39, 33, 32].
To the best of our knowledge, the problem of Temporal ∆ Independent Set has not
been studied previously, but our definition is highly inspired by the Temporal ∆ Clique
problem [4, 23, 39].

The classical static Independent Set problem is clearly a special case of Temporal
∆ Independent Set when τ = 1. While Independent Set is NP-complete for general
undirected graphs [15], it is solvable in linear time on interval graphs and some of their

D. Hermelin, Y. Itzhaki, H. Molter, and R. Niedermeier 19:5

generalizations [16, 24, 37]. Thus, Temporal ∆ Independent Set on temporal interval
graph is linear time solvable when τ = 1. Moreover, for larger values of τ , the Temporal 1
Independent Set problem is a special case of Independent Set in τ -interval graphs [19].
Bar-Yehuda et al. [3] presented a 2τ approximation algorithm for Independent Set in
τ -interval graphs, while Fellows et al. [12] and Jiang [25] studied this problem from the
perspective of parameterized complexity.

When τ = ∆, Temporal ∆ Independent Set is a special case of Independent Set on
intersection graphs of τ -dimensional hyperrectangles. Marx [31] showed that Independent
Set is NP-complete and W[1]-hard with respect to the solution size when restricted to the
intersection graphs of axis-parallel unit squares in the plane. Chlebík and Chlebíková [8]
proved, for instance, that Maximum Independent Set is APX-hard for intersection graphs of
d-dimensional rectangles, yet on such graphs the optimal solution can be approximated within
a factor of d [1]. On intersection graphs of d-dimensional squares Maximum Independent
Set admits a polynomial time approximation scheme (PTAS) for a constant d [7, 22, 28].

2 Preliminaries and Basic Results

In this section, we first introduce all temporal graph notation used in this work and then
present some basic hardness results for our problem. We use standard notation and termino-
logy from parameterized complexity theory [10].

2.1 Notation and Definitions
Let a, b ∈ N such that a < b. We use the notation [a : b] as shorthand for {x | x ∈ N ∧ a ≤
x ≤ b}. We denote [a : b] by [b] when a = 1. For a, b ∈ R such that a < b we denote
with [a, b] ⊆ R the set of real numbers {x | x ∈ R ∧ a ≤ x ≤ b}.

Let G = (V, E) denote an undirected graph, where V denotes the set of vertices and E ⊆
{{v, w} | v, w ∈ V, v ̸= w} denotes the set of edges. For a graph G, we also write V (G)
and E(G) to denote the set of vertices and the set of edges of G, respectively. We denote
n := |V |. Given an ordering <V over the vertices V of a graph G = (V, E) in which vi is
the i-th vertex in the ordering, we denote by V[a:b] the set {vi | i ∈ [a : b]} and by G[a:b] the
graph induced by V[a:b]. We use the notation index<V

(v) to return the ordinal position of v

in <V .
An undirected temporal graph G = (V, E , τ) is an ordered triple consisting of a set V

of vertices, a set E ⊆
(

V
2
)

× [τ] of time-edges, and a maximal time label τ ∈ N. Given a
temporal graph G = (V, E , τ), we denote by Et the set of all edges that are available at time t,
that is, Et := {{v, w} | ({v, w}, t) ∈ E} and by Gt the t-th layer of G, that is, Gt := (V, Et).
We also denote by

G1 ∩ G2 the edge-intersection graph of G1 and G2, formally G1 ∩ G2 := (V, E1 ∩ E2),
G1 ∪ G2 the edge-union graph of G1 and G2, formally G1 ∪ G2 := (V, E1 ∪ E2), and
G − V ′ the temporal graph induced by V \ V ′, formally G − V ′ := (V \ V ′, E ′, τ) with E ′ =
{({v, u}, t) | v, u ∈ V \ V ′ ∧ ({v, u}, t) ∈ E}.

Interval graphs. An undirected graph is an interval graph if there exists a mapping from
its vertices to intervals on the real line so that two vertices are adjacent if and only if their
intervals intersect [17]. Such a representation is called an intersection model or an interval
representation. Formally, given a graph G = (V, E), an interval representation is a mapping
ρ : V → I ⊆ R of each vertex v ∈ V to an interval ρ(v) such that E = {{v, u} | v, u ∈
V ∧ ρ(v) ∩ ρ(u) ̸= ∅}. We denote by rightρ(u) and by leftρ(u) the real value of the right and

SAND 2022

19:6 Temporal Unit Interval Independent Sets

left endpoints of v’s associated interval on the interval representation ρ; the subscript ρ will
be omitted if it is clear from the context to which representation we refer. We denote by
ρ(G) the entire representation of G.

Unit interval graphs. An interval graph is a unit interval graph if it has an interval
representation in which all intervals have exactly the same length. It is exactly the class of
interval graphs which have a proper interval representation, a representation in which no
interval is properly contained within another [36].

2.2 Basic Hardness Results

Since Temporal ∆ Independent Set generalizes the classic Independent Set problem,
it is clearly NP-hard [27], W[1]-hard when parameterized by the solution size k [10], and
does not admit any efficient approximation algorithms as well. In this section, we show that
Temporal ∆ Independent Set remains computationally hard when restricted to temporal
unit interval graphs with a constant number of layers.

We begin with the case that ∆ = 1. Here the conflict graph is simply the union of all
layers of G. Thus, as mentioned in Section 1, the class of all possible conflict graphs is
precisely the class of τ -track unit intervals. Thus, the following hardness result directly
follows from the known hardness results for Independent Set in 2-track unit interval
graph [3, 12, 25].

▶ Proposition 1. Temporal ∆ Independent Set on temporal unit interval graphs is
NP-hard, APX-hard, and W[1]-hard with respect to the solution size k for τ ≥ 2 and ∆ = 1.

Now that we have seen hardness for τ ≥ 2 and ∆ = 1, we proceed with case of ∆ = τ ,
by which the class of all conflict graphs is precisely the class of τ -dimensional hypercubes
(intersection) graphs. Marx [31] showed that Independent Set on axis-parallel unit squares
in the plane is NP-hard and W[1]-hard with respect to the solution size. For our setting, this
result implies the following.

▶ Proposition 2. Temporal ∆ Independent Set on temporal unit interval graphs is
NP-hard and W[1]-hard with respect to the solution size k for τ = ∆ ≥ 2.

Note however, that the problem admits a PTAS in this case, whenever τ = ∆ = O(1) [11].

3 Approximation Algorithms

In this section, we present our polynomial-time approximation algorithm for Weighted
Maximum Temporal ∆ Independent Set on temporal unit interval graphs. We will
use the geometric representation of our conflict graph discussed in Section 1. Recall that
the conflict graph G has a (τ − ∆ + 1)-track ∆-dimensional hypercube representation.
This geometric property of the conflict graph can be exploited in the development of an
approximation algorithm, since we can upper-bound the size of the largest independent set
in the neighborhood of any vertex of G.

▶ Lemma 3. Let G be the conflict graph of Maximum Temporal ∆ Independent Set
on a temporal unit interval graph. For each vertex it holds that the largest independent set in
the graph induced by N [v] has at most 2∆(τ − ∆ + 1) vertices.

D. Hermelin, Y. Itzhaki, H. Molter, and R. Niedermeier 19:7

v1
i

. . .

vt
i

. . .
vτ

i

Figure 2 A set of τ axis parallel ∆-hypercubes cannot be intersected by more than 2∆τ disjoint
axis parallel ∆ hypercubes.

Proof. Let ρ(G) denote the τ − ∆ + 1-track ∆-dimensional hypercube family representation
of G. Furthermore, for a vertex v of G, let ρ(v) ∈ ρ(G) denote the τ − ∆ + 1-track
∆-dimensional hypercube corresponding to v in ρ(G). Consider a single hypercube C of
ρ(v). Observe that any other hypercube in ρ(G) intersecting C must include a corner of C.
Consequently, there are at most 2∆ disjoint hypercubes in ρ(G) intersecting C, and so at
most 2∆(τ − ∆ + 1) disjoint τ − ∆ + 1-track hypercubes intersect ρ(v) (see Figure 2). The
lemma thus follows. ◀

Lemma 3 allows to adopt a greedy approach for solving Weighted Maximum Temporal
∆ Independent Set on temporal unit interval graphs. We iteratively put the largest-weight
vertex into the independent set and remove its neighborhood afterwards. This gives rise to
Algorithm 1 below.

Algorithm 1 Maximum Neighborhood Weight Algorithm.

Input: An undirected graph G = (V, E)
Output: An independent set

while V is not empty do
Pick vertex v with maximum w(v) and add it to S.
Remove N [v] from V .

end while
return S

We show that the greedy strategy described in Algorithm 1 terminates within O(n2) time,
and achieves an approximation factor of (τ − ∆ + 1) · 2∆.

▶ Theorem 4. Weighted Maximum Temporal ∆ Independent Set can be approximated
within a factor of (τ − ∆ + 1) · 2∆ in O(n2) time on temporal unit interval graphs.

Proof. Let G be the input temporal unit interval graph of Weighted Maximum Temporal
∆ Independent Set. We can compute the conflict graph G in linear time. We know that
G is a (τ − ∆ + 1)-track ∆-dimensional hypercube intersection graph. Given G = (V, E) with
weight function w as an input, the output of Algorithm 1 will be obviously an independent
set. From Lemma 3 we know that it cannot have smaller weight than 2∆(τ − ∆ + 1) times of
the optimal solution’s weight. This is due to the fact that at each step of Lemma 3 we add
one vertex to the solution and remove its neighbors from the candidate set. The optimal
solution is of course an independent set, hence at each step we remove from the candidate set
no more than 2∆(τ − ∆ + 1) vertices which are members of the optimal solution. Since we

SAND 2022

19:8 Temporal Unit Interval Independent Sets

pick in each step a maximum weight vertex, assuming the worst case in which we throw out
a 2∆(τ − ∆ + 1)-sized set of vertices with equal weight, we cannot have our solution’s weight
smaller than this ratio. Suppose that Algorithm 1 terminated after p steps, this means that
there are p vertices in the solution and no more than 2∆p(τ − ∆ + 1) vertices in the optimal
solution. ◀

4 Order-Preserving Temporal Interval Graphs

In this section, we investigate the computational complexity of Temporal ∆ Independent
Set on so-called order-preserving temporal unit interval graphs. The concept of order
preservation was introduced by Fluschnik et al. [14]. In Section 4.1, we show that Temporal
∆ Independent Set can be solved in polynomial time on order-preserving temporal graphs
and along the way we generalize the concept to temporal (non-unit) interval graphs. In
Section 4.2, we show how to solve Temporal ∆ Independent Set on non-order-preserving
temporal interval graphs via a “distance-to-triviality” parameterization [18]. To this end, we
also give an FPT algorithm to compute a minimum vertex deletion set to order preservation
with the set size as a parameter. Finally in Section 4.3, we show that computing a minimum
vertex deletion set to order preservation is NP-hard.

4.1 A Polynomial-Time Algorithm for Order-Preserving Temporal
Interval Graphs

We say an interval graph agrees on or is compatible with a total order if has an interval
intersection model where the right endpoints of the intervals agree with the total order.
Formally, an interval graph G agrees on <V if there exists an interval representation ρ

for G such that for every two vertices ∀v, u ∈ V whose ranking fulfills v <V u, it holds that
rightρ(v) < rightρ(u). We call such ordering right-endpoints (RE) orderings. Clearly, any
right-endpoints ordering is also a left-endpoints ordering of the mirrored intersection model.

▶ Definition 5. A temporal interval graph is order-preserving if all of its layers agree on a
single RE ordering.

Order-preserving temporal unit interval graphs can be recognized in linear time and a
corresponding vertex ordering can be computed in linear time as well [14]. The computational
complexity of recognizing order-preserving temporal interval graphs remains open.

In the following, we show that RE orderings are preserved under both intersection and
union of interval graphs. This means that the conflict graph of an RE order-preserving
temporal graph is an interval graph that as well agrees on the RE ordering. We demonstrate
this claim for interval graphs in Lemmas 6 and 7. We start with showing that the intersection
of two interval graphs that agree on an RE ordering is again an interval graph that agrees
on the ordering.

▶ Lemma 6. Let G1 and G2 be interval graphs that agree on the total ordering <V . Then
G1 ∩ G2 is an interval graph that agrees on <V .

Proof. Given two interval graphs which agree on an RE ordering, we can normalize their
representations such that for each vertex, the right endpoints in both representations are
the same. To compute an intersection model for their intersection graph, we can map each
vertex to the intersection of their intervals in both representations. We then show that this
mapping is an interval representation of the edge intersection graph.

D. Hermelin, Y. Itzhaki, H. Molter, and R. Niedermeier 19:9

Let V be a vertex set of size n and let <V be a total ordering on V such that for
all i, j ∈ [n] it holds j < i ⇔ vj<V vi. Since both G1 and G2 agree on <V , we can normalize
their interval representations so that the right endpoint of the interval associated with
each vertex lies on a natural number between 1 and n according to its ordinal position
in <V , formally index<V

(vi) = i. Alternatively, we can say that for an interval graph Gt an
interval representation ρt exists such that each v ∈ V is mapped to an interval of the form
ρt(v) = [av, index<V

(v)] with av ∈ R. In this normalized representation, the left endpoint of
the interval lies on the real line between two natural numbers and is by definition smaller
than the right endpoint, that is, av < index<V

(v).
Let ρ be a mapping from the vertex set V to a set of points on R such that it holds ρ(v) =

ρ1(v) ∩ ρ2(v). To show that ρ is an interval representation of G1 ∩ G2 we first show that ρ(v)
is a continuous interval for any v ∈ V , and that for any two vertices v, u ∈ V it holds that
ρ(v) ∩ ρ(u) ̸= ∅ ⇔ ρ1(v) ∩ ρ1(u) ̸= ∅ ∧ ρ2(v) ∩ ρ2(u) ̸= ∅.

By definition ρ1(v) and ρ2(v) are both intervals on the real line, they are therefore convex
sets. As the mapping ρ(v) is an intersection of two convex sets, it must as well be a convex
set and therefore it is interval on the real line.

Let vj <V vi, we show that if ρ(vi) ∩ ρ(vj) ̸= ∅ then both ρ1(vi) ∩ ρ1(vj) ̸= ∅ and
ρ2(vi)∩ρ2(vj) ̸= ∅ must hold. As the interval representations ρ1 and ρ2 are both normalized, it
immediately follows that rightρ1

(vi) = rightρ2
(vi) = i. Since both are closed intervals we know

that either ρ1(v) ⊆ ρ2(v) or ρ2(v) ⊆ ρ1(v). Without loss of generality, let ρ1(v) ⊆ ρ2(v); it
follows that ρ(v) = ρ1(v). This means that if ρ2(vi)∩ρ2(vj) = ∅, then also ρ1(vi)∩ρ1(vj) = ∅
and therefore ρ(vi) ∩ ρ(vj) = ∅. Regardless, it must hold that j ∈ ρ1(vj) ∩ ρ2(vj) as both
interval representations of vj have j as the right endpoint; it follows that j ∈ ρ(vj). This
shows that if j ∈ ρ(vi) then j ∈ ρ1(vi) and j ∈ ρ2(vi). Therefore, for any vj <V vi, if
ρ(vi) ∩ ρ(vj) ̸= ∅, then both ρ1(vi) ∩ ρ1(vj) ̸= ∅ and ρ2(vi) ∩ ρ2(vj) ̸= ∅.

Suppose that ρ(vi) ∩ ρ(vj) = ∅, but both ρ1(vi) ∩ ρ1(vj) ̸= ∅ or ρ2(vi) ∩ ρ2(vj) ̸= ∅.
This contradicts that vj <V vi because if ρ1(vi) contains any point a ∈ ρ1(vj) with a < j,
then it must contain also j because ρ1(vi) is convex.

We have therefore an interval representation ρ which represents the graph G1 ∩G2 because
ρ(v) ∩ ρ(u) ⇔ {v, u} ∈ E1 ∧ {v, u} ∈ E2 for any v, u ∈ V . Notice that G1 ∩ G2 agrees on <V

because rightρ(vi) = i. ◀

Next, we show that the union of two interval graphs agreeing on an RE ordering yields
an interval graph that also agrees on the ordering.

▶ Lemma 7. Let G1 and G2 be interval graphs that agree on the total ordering <V . The
union G = G1 ∪ G2 is an interval graph that agrees on <V .

Proof. The main concept of the proof is analogous to the one for Lemma 6. Given two
interval graphs which agree on an RE ordering, we can normalize their representations
such that for each vertex, the right endpoints in both representations are the same. To
compute an intersection model for their union graph, we can map each vertex to the union
of their intervals in both representations. We then show that this mapping is an interval
representation of the edge-union graph.

Let ρ be a mapping from the vertex set V to a set of points on R such that it holds ρ(v) =
ρ1(v) ∪ ρ2(v). To show that ρ is an interval representation of G1 ∪ G2 we first show that ρ(v)
is a continuous interval for any v ∈ V , and that for any two vertices v, u ∈ V it holds that
ρ(v) ∩ ρ(u) ̸= ∅ ⇔ ρ1(v) ∩ ρ1(u) ̸= ∅ ∨ ρ2(v) ∩ ρ2(u) ̸= ∅.

By definition ρ1(v) and ρ2(v) are both closed and normalized intervals on the real line
such that rightρ1

(vi) = rightρ2
(vi) = i. As we observed in Lemma 6, since both intervals

have the same right endpoint it holds that either ρ1(v) ⊆ ρ2(v) or ρ2(v) ⊆ ρ1(v). Without
loss of generality, assume that ρ2(v) ⊆ ρ1(v), it follows that ρ(v) = ρ1(v) = ρ1(v) ∪ ρ2(v).

SAND 2022

19:10 Temporal Unit Interval Independent Sets

v1

v2

v3v4

v5

v6

(a) Graph representations of the two inter-
val graphs

v3
v2

v1
v5

v6

(b) Two intersection models of G1 −{v4} and G2 −{v4}
which are compatible with <V ′

Figure 3 Two interval graphs, G1 (thick) and G2 (thin), that do not have a common RE ordering.
The vertex subset {v4} is an OPVD set of the temporal graph G = [G1, G2] as both G1 − {v4}
and G2 − {v4} agree on <V ′ = [v3, v2, v1, v5, v6]. Two compatible interval representations are
illustrated in (b).

Suppose that ρ(vi) ∩ ρ(vj) ̸= ∅, but both ρ1(vi) ∩ ρ1(vj) = ∅ or ρ2(vi) ∩ ρ2(vj) = ∅.
This contradicts that vj <V vi because if ρ(vi) contains any point a ∈ ρ(vj) with a < j, then
it must contain also j because ρ(vi) is convex. If j ∈ ρ(vi) then trivially j ∈ ρ1(vi).

If ρ(vi) ∩ ρ(vj) = ∅ but either ρ1(vi) ∩ ρ1(vj) ̸= ∅ or ρ2(vi) ∩ ρ2(vj) ̸= ∅, then it
contradicts the fact that either ρ1(vi) ⊆ ρ2(vi) = ρ(vi) or that ρ2(vi) ⊆ ρ1(vi) = ρ(vi).

We have therefore an interval representation ρ which represents the graph G1 ∪G2 because
ρ(v) ∩ ρ(u) ⇔ {v, u} ∈ E1 ∨ {v, u} ∈ E2 for any v, u ∈ V . Notice that G1 ∪ G2 agrees on <V

because rightρ(vi) = i. ◀

Using both Lemmas 6 and 7 we arrive at the following corollary.

▶ Corollary 8. Let G be an order-preserving temporal interval graph of a Temporal ∆
Independent Set instance. Then the conflict graph of G is an interval graph.

Since Independent Set can be solved in linear time on interval graphs [16, 37], we
immediately arrive at our main result of this subsection.

▶ Theorem 9. Temporal ∆ Independent Set on order-preserving temporal interval
graphs is solvable in linear time.

4.2 An FPT-Algorithm for Vertex Deletion to Order Preservation
Now we generalize Theorem 9 and show how to solve Temporal ∆ Independent Set
on almost order-preserving temporal unit interval graphs, that is, graphs that most of their
vertices agree on a common ordering. To this end, we define a distance of a temporal graph
to order preservation. This distance is measured by the size of the minimum vertex set that
obstructs the compatibility of a total RE order of a temporal interval graph. We define it as
follows and give an illustration in Figure 3.

▶ Definition 10 (OPVD). Let G = (V, E , τ) be a temporal interval graph. A vertex deletion set
for order preservation (OPVD) is a set of vertices V ′ ⊆ V such that G−V ′ is order-preserving.

D. Hermelin, Y. Itzhaki, H. Molter, and R. Niedermeier 19:11

The size of the minimum OPVD set measures how many vertices obstruct a total RE
order for a temporal interval graph. We denote the cardinality of the minimum OPVD by ℓ.
A brute-force algorithm checks every subset of the vertex set to find a solution to Temporal
∆ Independent Set. Given an ℓ-sized OPVD set we can brute-force the power set of the
OPVD (which has size 2ℓ) and then check against the rest of the order-preserving graph in
polynomial time.

▶ Theorem 11. Temporal ∆ Independent Set can be decided in 2ℓ · nO(1) time when
given a size-ℓ OPVD set of the input temporal graph.

Proof. The idea is as follows. Given an order-preserving vertex deletion set S of size ℓ, we
brute-force its power set. Let Gop be the conflict graph of G − S. The graph Gop is, by
definition, an interval graph. For each subset X of S we compute GX as Gop − NGop(X),
the neighbors of X from the conflict interval graph. As GX is an interval graph, we can
compute a maximum independent set V ′ of GX in linear time, then check in quadratic time
whether X ∪ V ′ is an independent set of size k in the conflict graph of G. If X ∪ V ′ is an
independent set of size at least k, then we have a yes-instance.

Any independent set of size k must clearly be divisible into two subsets, a subset of
X ⊆ S (that includes the trivial subset) and a subset of V \ S. Any independent set on G
must be also an independent set on the subgraph induced by V \ S. If we exhaust all of the
subsets of S and do not find an independent set of size at least k − |X| on G − (S ∪ NGop [X])
for X ⊆ S, then we can conclude that such set does not exist. In such case the instance is a
no-instance. The power set of S is of size 2ℓ, which means it takes 2ℓ · nO(1) time to exhaust
all subsets of S. ◀

Since the FPT algorithm for Temporal ∆ Independent Set parameterized by the
minimum OPVD ℓ behind Theorem 11 requires access to an ℓ-sized OPVD set, we present
an FPT-algorithm to compute a minimum OPVD for a given temporal unit interval graph.
We do this by providing a reduction to the so-called Consecutive Ones Submatrix by
Column Deletions problem, for which efficient algorithms are known [9, 35].

Before we describe the reduction, we give an alternative characterization of order-
preserving temporal unit interval graphs. We will use this characterization in our FPT-
algorithm to compute a minimum OPVD. As we show in the next lemma, a temporal unit
interval graph G is order-preserving if and only if its vertices vs. maximal cliques matrix has
the so-called consecutive ones property1 (C1P). Note that it is known that the vertices vs.
neighborhoods matrix also has the consecutive ones property in this case [14].

▶ Lemma 12. A temporal unit interval graph is order-preserving if and only if its vertices
vs. maximal cliques matrix has the consecutive ones property.

Proof. Testing for the consecutive ones property for a matrix can be done in linear time [38].
To test a temporal unit interval graph for order preservation we compute its vertices vs.
maximal cliques matrix and test it for the consecutive ones property. We say that G’s set of
maximal cliques C is the union of sets of maximal cliques of each layer of G. The vertices vs.
maximal cliques matrix M is a binary matrix in which Mi,j = 1 if and only if the vertex
vi ∈ V is a member of Cj ∈ C. It is left to show that a temporal unit interval graph G is
order-preserving if and only if its vertices vs. maximal cliques matrix has the consecutive
ones property.

1 A 0-1-matrix has the consecutive ones property if there exists a permutation of the columns such that in
each row all ones appear consecutively.

SAND 2022

19:12 Temporal Unit Interval Independent Sets

(⇒) If G is order-preserving, then there exists an ordering <V such that every layer
has an interval representation ρ in which the right endpoints of all intervals agree on <V .
Let M ’s columns be ordered by <V . If M is not in its petrie form 2, then it must mean
that there exists a clique C in C whose members are not consecutive in <V . In other
words, there exist u, v, w ∈ V such that u <V w <V v, for which u, v ∈ C and w /∈ C.
Since u and v are adjacent and u <V v, we know that left(v) < right(u). We know also
that the length of ρ(v) is exactly 1. This definitely means that v and w intersect because
right(w) ∈ [right(u), right(v)]. However since w /∈ C, w and u cannot be adjacent. This is a
contradiction since right(v)−right(u) < 1 and right(w)− left(w) = 1. If G is order-preserving,
then M must have the consecutive ones property.

(⇐) If M has the consecutive ones property, then there exists an ordering <V so
that the vertices vs. maximal cliques matrix Mt of every layer Gt ∈ G is in its pet-
rie form, when its columns are permuted according to <V . Let It(v) be the union of
all maximal cliques in layer Gt which contain v. We know that for every v ∈ V the
vertices of It(v) are consecutive in <V [5]. Let index(v) be the index of v in <V and
let ρGt(v) = [min{index(u) | u ∈ It(v)} − 1 + index(v) · ε, index(v)], for some 0 < ε < 1/|V |.
First, note that no two intervals are contained in each other. This means that there is an
equivalent interval representation where all intervals have unit length [36].

By showing {u, v} ∈ Et ⇔ ρt(v) ∩ ρt(u) ̸= ∅ we effectively show that ρGt
is an interval

representation of Gt. If {u, v} ∈ Et, then there must exist a maximal clique C so that
u, v ∈ C and thus u ∈ It(v) and v ∈ It(u). Assume u <V v, then leftρGt

(v) ≤ rightρGt
(u)

and by that ρGt(u) ∩ ρGt(v) ̸= ∅. If {u, v} /∈ Et then there is no clique C so that u, v ∈ C.
Assume that u <V v, then ρGt

(u) ∩ ρGt
(v) ̸= ∅ if and only if leftρGt

(v) ≤ rightρGt
(u). This

cannot be because leftρGt
(v) is exactly the right endpoint of v’s lowest neighbors in <V . If

rightρGt
(u) is right of v’s lowest neighbor’s right endpoint, then the vertices of It(v) are not

consecutive in <V . This contradicts the fact that M has the consecutive ones property. ◀

Since there is a bijection between the columns of the vertices vs. maximal cliques matrix M

of G and G’s vertices, we can use M as input for the Consecutive Ones Submatrix by
Column Deletions problem and apply existing algorithms for that problem [9, 35] to
obtain a vertex-maximal temporal subgraph of G that is order-preserving. This allows us to
obtain the following result.

▶ Theorem 13. A minimum OPVD for a given temporal unit interval graph can be computed
in 10ℓnO(1) time, where ℓ is the size of a minimum OPVD.

Proof. In Lemma 12 we have shown that a temporal unit interval graph is order-preserving
if and only if its vertices vs. maximal cliques matrix has the consecutive ones property.
We provide a reduction to the Consecutive Ones Submatrix by Column Deletions
problem. Formally, in Consecutive Ones Submatrix by Column Deletions we are
given a binary matrix M ∈ {0, 1}m×n and are asked whether there exists a submatrix M ′

with the consecutive ones property, such that M ′ is obtained with not more than ℓ column
deletions from M . Consecutive Ones Submatrix by Column Deletions is known
to be FPT with respect to the column deletion set size and it can be decided in 10ℓnO(1)

time [9, 35].
Let G = (V, E) be a temporal unit interval graph with C as maximal cliques set. Let M

be the vertices vs. maximal cliques matrix of G. If M does not have the consecutive ones
property, then we can find a set of ℓ columns in 10ℓnO(1) time so that when deleted from M ,

2 A 0-1-matrix is in its petrie form (if it has one) if the columns are permuted in a way such that the
ones appear consecutively in all rows.

D. Hermelin, Y. Itzhaki, H. Molter, and R. Niedermeier 19:13

the resulting matrix M ′ has the consecutive ones property. The columns of M are mapped
to vertices of V , the image of the deleted columns V ′ is the OPVD set. We can find in linear
time an ordering <′

V of M ′ columns such that M ′ is in its petrie form. All layers of the
graph G − V ′ agree on <′

V . ◀

This provides us with an efficient algorithm for Temporal ∆ Independent Set on
“almost” ordered temporal unit interval graph. Namely, find in 10ℓnO(1) time a minimum
OPVD set in the input temporal unit interval graph using Theorem 13, then decide in 2ℓnO(1)

time if we have a yes-instance of Temporal ∆ Independent Set using Theorem 11.
Overall, we arrive at the following result.

▶ Corollary 14. Temporal ∆ Independent Set can be decided in 10ℓ · nO(1) time if the
input temporal graph is a temporal unit interval graph, where ℓ is the size of a minimum
OPVD of the input temporal graph.

4.3 NP-Hardness of Vertex Deletion to Order Preservation
Finally, we show that computing a minimum OPVD for a given temporal unit interval graph
is NP-hard. This complements Theorem 13 as it implies that we presumably cannot improve
Theorem 13 to a polynomial-time algorithm.

▶ Theorem 15. Computing a minimum OPVD for a given temporal unit interval graph is
NP-hard.

Proof. To show NP-hardness, we present a polynomial time many-one reduction from the
NP-complete Consecutive Ones Submatrix by Column Deletions problem [20] to
the problem of computing an OPVD of size at most ℓ for a given temporal unit interval
graph. Note that this implies NP-hardness of the optimization problem of finding a minimum
OPVD.

Formally, in Consecutive Ones Submatrix by Column Deletions we are given a
binary matrix M ∈ {0, 1}m×n and are asked whether there exists a submatrix M ′ with the
consecutive ones property, such that M ′ is obtained with not more than ℓ column deletions
from M . Note that we can assume w.l.o.g. that there are at least two ones in each row of M ,
otherwise we can delete the row since its ones are consecutive for all permutations of the
columns.

Our reduction works as follows. Given a binary matrix M ∈ {0, 1}m×n with m rows
and n columns, we create a temporal graph G with n vertices V = {1, . . . , n}, one for each
column, and m layers, one for each row. In each layer Gt for 1 ≤ t ≤ m, we add an edge
between vertices i and j if Mt,i = 1 and Mt,j = 1. This finished the construction of G, which
can clearly be done in polynomial time.

Next, we argue that G is a temporal unit interval graph. To this end, note that every
layer Gt of G is a single clique (consisting of vertices i with Mt,i = 1) and some isolated
vertices (the vertices i with Mt,i = 0). Hence, we can clearly find a unit interval representation
for every layer Gt of G.

To prove the correctness of the reduction, we first observe that M is the vertices vs.
maximal cliques matrix of G: there is exactly one non-trivial maximal clique in each layer Gt

containing the vertices i with Mt,i = 1. We show ℓ columns can be deleted from M such
that the remaining matrix M ′ has the consecutive ones property if and only if G admits an
OPVD of size ℓ.

SAND 2022

19:14 Temporal Unit Interval Independent Sets

(⇒) Assume there are ℓ columns that can be deleted from M such that the remaining
matrix M ′ has the consecutive ones property. Then M ′ corresponds to vertices vs. maximal
cliques matrix of G′ which is obtained from G by removing the ℓ vertices corresponding to
the deleted columns of M . By Lemma 12 we have that G′ is an order-preserving temporal
unit interval graph. It follows that the removed vertices form an OPVD of size ℓ for G.

(⇐) Assume G admits an OPVD X of size ℓ. Then let M ′ be the matrix obtained from M

by deleting the ℓ columns corresponding to the vertices in X. Now we have that M ′ is
the vertices vs. maximal cliques matrix of G − X, which is an order-preserving temporal
unit interval graph. By Lemma 12 we have that M ′ has the consecutive ones property
and hence that (M, ℓ) is a yes-instance of Consecutive Ones Submatrix by Column
Deletions. ◀

5 Conclusion

We introduced a naturally motivated temporal version of the classic Independent Set
problem, called Temporal ∆ Independent Set, and investigated its computational
complexity. Herein, we focused on the case where all layers of the input temporal graph
are unit interval graphs. After establishing computational hardness results, we showed that
Maximum Temporal ∆ Independent Set admits a polynomial-time (τ − ∆ + 1) · 2∆-
approximation. Furthermore, we presented a polynomial-time algorithm for Temporal ∆
Independent Set when restricted to so-called order-preserving temporal interval graphs
and generalized it to an FPT-algorithm for the vertex deletion distance to order preservation.
The latter heavily relies on our result that order preservation is retained under edge-union
and edge-intersection, which is of independent interest since it may also be useful in the
context of related problem such as Temporal ∆ Clique [4, 23, 39].

An immediate future work direction is to generalize our results for temporal (non-unit)
interval graphs. For most of our results this question remains open. We believe that our
approximation algorithm does not easily adapt. In fact even for two layers it is unclear
how to approximate Maximum Temporal ∆ Independent Set. Our FPT-algorithm for
Temporal ∆ Independent Set parameterized by the vertex deletion distance to order
preservation generalizes to the non-unit interval case assuming the deletion set is part of the
input. We leave for future research how to efficiently compute a minimum vertex deletion set
to order preservation for temporal interval graphs.

References
1 Karhan Akcoglu, James Aspnes, Bhaskar DasGupta, and Ming-Yang Kao. Opportunity

cost algorithms for combinatorial auctions. In Computational Methods in Decision-Making,
Economics and Finance, pages 455–479. Springer, 2002.

2 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex
cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123,
2020.

3 Reuven Bar-Yehuda, Magnús M. Halldórsson, Joseph Naor, Hadas Shachnai, and Irina Shapira.
Scheduling split intervals. SIAM Journal on Computing, 36(1):1–15, 2006.

4 Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier, and
René Saitenmacher. Listing all maximal k-plexes in temporal graphs. Journal of Experimental
Algorithmics (JEA), 24:1–27, 2019.

5 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System
Sciences, 13(3):335–379, 1976.

D. Hermelin, Y. Itzhaki, H. Molter, and R. Niedermeier 19:15

6 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

7 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46(2):178–189, 2003.

8 Miroslav Chlebík and Janka Chlebíková. Approximation hardness of optimization problems in
intersection graphs of d-dimensional boxes. In Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’05), pages 267–276. SIAM, 2005.

9 Michael Dom, Jiong Guo, and Rolf Niedermeier. Approximation and fixed-parameter algorithms
for consecutive ones submatrix problems. Journal of Computer and System Sciences, 76(3-
4):204–221, 2010.

10 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013.

11 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.

12 Michael R. Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009.

13 Paola Flocchini, Bernard Mans, and Nicola Santoro. On the exploration of time-varying
networks. Theoretical Computer Science, 469:53–68, 2013.

14 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020.

15 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.

16 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974.

17 Paul C. Gilmore and Alan J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canadian Journal of Mathematics, 16:539–548, 1964.

18 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Proceedings of the 1st International Workshop on Parameterized
and Exact Computation (IWPEC ’04), pages 162–173. Springer, 2004.

19 András Gyárfás and Douglas West. Multitrack interval graphs. Congressus Numerantium 109,
1995.

20 Mohammad Taghi Hajiaghayi and Yashar Ganjali. A note on the consecutive ones submatrix
problem. Information processing letters, 83(3):163–166, 2002.

21 György Hajós. Über eine Art von Graphen. Internationale Mathematische Nachrichten, 11(65),
1957.

22 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic Approximate Maximum
Independent Set of Intervals, Hypercubes and Hyperrectangles. In Proceedings of the 36th
International Symposium on Computational Geometry (SoCG ’20), volume 164 of LIPIcs,
pages 51:1–51:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

23 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the
Bron–Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1):35:1–35:16, 2017.

24 Wen-Lian Hsu and Jeremy P. Spinrad. Independent sets in circular-arc graphs. Journal of
Algorithms, 19(2):145–160, 1995.

25 Minghui Jiang. On the parameterized complexity of some optimization problems related to
multiple-interval graphs. Theoretical Computer Science, 411(49):4253–4262, 2010.

26 Deborah Joseph, Joao Meidanis, and Prasoon Tiwari. Determining DNA sequence similarity
using maximum independent set algorithms for interval graphs. In Proceedings of the 3rd
Scandinavian Workshop on Algorithm Theory (SWAT ’92), pages 326–337. Springer, 1992.

SAND 2022

19:16 Temporal Unit Interval Independent Sets

27 Richard M Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

28 Sanjeev Khanna, Shan Muthukrishnan, and Mike Paterson. On approximating rectangle
tiling and packing. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, volume 95, page 384. SIAM, 1998.

29 Vassilis Kostakos. Temporal graphs. Physica A: Statistical Mechanics and its Applications,
388(6):1007–1023, 2009.

30 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams for
the modeling of interactions over time. Social Network Analysis and Mining, 8(1):61:1–61:29,
2018.

31 Dániel Marx. Efficient approximation schemes for geometric problems? In Proceedings of the
13th Annual European Symposium on Algorithms (ESA ’05), pages 448–459. Springer, 2005.

32 George B. Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.
Computing maximum matchings in temporal graphs. In Proceedings of the 37th International
Symposium on Theoretical Aspects of Computer Science (STACS ’20), volume 154 of LIPIcs,
pages 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

33 George B. Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph
coloring. Journal of Computer and System Sciences, 120:97–115, 2021.

34 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016.

35 N.S. Narayanaswamy and R. Subashini. Obtaining matrices with the consecutive ones property
by row deletions. Algorithmica, 71(3):758–773, 2015.

36 Fred S. Roberts. Indifference graphs. Proof techniques in graph theory. In Proceedings of the
Second Ann Arbor Graph Conference, Academic Press, New York, 1969.

37 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

38 Alan Tucker. A structure theorem for the consecutive 1’s property. Journal of Combinatorial
Theory, Series B, 12(2):153–162, 1972.

39 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245–252, 2016.

Search by a Metamorphic Robotic System in a
Finite 3D Cubic Grid
Ryonosuke Yamada #

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka, Japan

Yukiko Yamauchi #

Faculty of Information Science and Electrical Engineering,
Kyushu University, Fukuoka, Japan

Abstract
We consider search in a finite 3D cubic grid by a metamorphic robotic system (MRS), that consists
of anonymous modules. A module can perform a sliding and rotation while the whole modules
keep connectivity. As the number of modules increases, the variety of actions that the MRS can
perform increases. The search problem requires the MRS to find a target in a given finite field.
Doi et al. (SSS 2018) demonstrate a necessary and sufficient number of modules for search in a
finite 2D square grid. We consider search in a finite 3D cubic grid and investigate the effect of
common knowledge. We consider three different settings. First, we show that three modules are
necessary and sufficient when all modules are equipped with a common compass, i.e., they agree
on the direction and orientation of the x, y, and z axes. Second, we show that four modules are
necessary and sufficient when all modules agree on the direction and orientation of the vertical axis.
Finally, we show that five modules are necessary and sufficient when all modules are not equipped
with a common compass. Our results show that the shapes of the MRS in the 3D cubic grid have
richer structure than those in the 2D square grid.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computer
systems organization → Robotic autonomy

Keywords and phrases Distributed system, metamorphic robotic system, search, and 3D cubic grid

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.20

Funding This work was supported by JSPS KAKENHI Grant Numbers JP18H03202 and JST
SICORP Grant Number JPMJSC1806, Japan.

1 Introduction

Swarm intelligence has shed light to collective behavior of autonomous entities with simple
rules, such as ant, boid, and particles. The notion is applied to a collection of robots and
swarm robotics has attracted much attention in the past two decades. Each autonomous
element of the system is called a robot, module, agent, process, and sensor, and a variety of
swarm robot systems have been investigated such as the autonomous mobile robot system [16],
the population protocol model [3], the programmable particles [5], Kilobot [15], and 3D
Catoms [17]. Dumitrescu et al. considered the metamorphic robotic system (MRS), that
consists of a collection of modules in the infinite 2D square grid [10, 9]. The modules are
anonymous, i.e., they are indistinguishable. They are autonomous and uniform, i.e., each
module autonomously decides its movement by a common algorithm. They are oblivious, i.e.,
each module has no memory of past. Thus, each module decides its behavior by observing
other modules in nearby cells. Each module can perform a sliding to a side-adjacent cell and
a rotation by 90 degrees around a cell. The modules must keep connectivity, which is defined
by side-adjacency of cells occupied by modules. The authors considered reconfiguration, that
requires the MRS to change the initial shape to a specified final shape [10]. They showed
that any horizontally convex connected initial shape of an MRS can be transformed to any

© Ryonosuke Yamada and Yukiko Yamauchi;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yamada.ryonosuke.000@s.kyushu-u.ac.jp
mailto:yamauchi@inf.kyushu-u.ac.jp
https://doi.org/10.4230/LIPIcs.SAND.2022.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

convex final shape via a straight chain shape. Later Dumitrescu and Pach showed that any
connected initial shape can be transformed to any connected final shape via a straight chain
shape [8]. In other words, the MRS has the ability of “universal reconfiguration.”

Reconfiguration can generate dynamic behavior of the MRS. Dumitrescu et al. demon-
strated that the MRS can move forward by repeating a reconfiguration [9]. They showed a
reconfiguration that realizes the fastest locomotion. Doi et al. pointed out that the oblivious
modules can use the shape of the MRS as global memory and the MRS can solve more
complicated problems as the number of modules increases. They investigated search in a
finite 2D square grid, that requires the MRS to find a target cell in a finite rectangle field [7].
Each module does not know the position of the target cell or the initial configuration of
the MRS. They showed that if the modules agree on the cardinal directions (i.e., north,
south, east and west), three modules are necessary and sufficient, otherwise five modules
are necessary and sufficient. Nakamura et al. considered evacuation of the MRS from a
finite rectangular field in the 2D square grid [14]. There is a hole (i.e., two side-adjacent
cells) on the wall of the field, and the MRS is required to exit from it from an arbitrary
initial position and arbitrary initial shape. They showed that two modules are necessary and
sufficient when the modules agree on the cardinal directions, otherwise four modules are
necessary and sufficient.

In this paper, we investigate the effect of common knowledge on search by the MRS
in the 3D cubic grid. We consider the following three cases: (i) modules equipped with
a common compass (i.e., they agree on the direction and orientation of x, y, and z axes).
(ii) modules equipped with a common vertical axis (i.e., they agree on the direction and
orientation of z axis), and (iii) modules not equipped with a common compass (i.e., they
have no agreement on directions and orientations). We demonstrate that three modules are
necessary and sufficient when the modules are equipped with a common compass and five
modules are necessary and sufficient when the modules are not equipped with a common
compass. The numbers of sufficient modules in the 3D cubic grid are the same as those in
the 2D square grid [7] because the MRS has more states in the 3D cubic grid than in the
2D square grid. For the intermediate case with a common vertical axis, we demonstrate
that four modules are necessary and sufficient. Thus, our results in the 3D cubic grid show
a smooth trade-off between the computational power of the MRS and common knowledge
among modules, that the previous results in the 2D square grid could not find. We present
search algorithms for these three settings and show the necessity by examining the state
transition graph of the MRS.

Related work. Reconfiguration of swarm robot systems have been discussed for the
MRS [8, 10], autonomous mobile robots [11, 16] and programmable particles [6, 12]. Michail
et al. considered the programmable matter system, that is similar to the MRS and investigated
reconfiguration by rotations only and that by rotations and slidings [13]. They showed
that the combination of rotations and slidings guarantees universal reconfiguration, while
rotations only cannot. They also presented O(n2)-time reconfiguration algorithm by rotations
and slidings, where n is the number of computing entities. Almethen et al. considered
reconfiguration by line-pushing, where each module is equipped with the ability of pushing
a line of modules [2]. They presented O(n log n)-time universal reconfiguration algorithm
that does not promise connectivity of intermediate shapes and O(n

√
n)-time reconfiguration

algorithm that transforms a diagonal line into a straight chain with preserving connectivity.
The same authors later showed that their programmable matter system has the ability of
universal reconfiguration and O(n

√
n)-time reconfiguration algorithm together with Ω(n log n)

lower bound [1].

R. Yamada and Y. Yamauchi 20:3

Little has been discussed for memory complexity of swarm robot systems. The autonomous
mobile robot system consider extreme cases, where all robots are equipped with either no
memory or unlimited memory [16]. Das et al. introduced the luminous robot model, where
each robot is equipped with a light [4]. A luminous robot can change the color of its light
and the color of the light can be observed by other robots. Thus, a luminous robot has a
state. The authors showed that the robots can be synchronized by a constant number of
colors. Doi. et al. pointed out that the number of memory-less modules of the MRS can
be considered as an indicator of memory complexity [7]. The existing two papers [7, 14]
demonstrated the relationship between search and evacuation in 2D square grid. Finally, the
programmable particle system [5] consider computing entities with constant-size memory.

2 Preliminary

We consider a metamorphic robotic system (MRS) in a finite 3D cubic grid. A metamorphic
robotic system consists of a collection of anonymous (i.e., indistinguishable) modules. A
module can observe the positions of other modules in nearby cells, computes its next movement
with a common algorithm, and performs the movement.

Each cell of the 3D cubic grid can adopt at most one module at a time. Cell (x, y, z) is the
cell surrounded by grid points (x, y, z), (x + 1, y, z), (x, y + 1, z), (x, y, z + 1), (x + 1, y + 1, z),
(x + 1, y, z + 1), (x, y + 1, z + 1), and (x + 1, y + 1, z + 1). Cells (x + 1, y, z), (x, y + 1, z),
(x, y, z + 1), (x − 1, y, z), (x, y − 1, z), (x, y, z − 1) are side-adjacent to cell (x, y, z). We
consider the positive x direction as East, the positive y direction as North, and the positive
z direction as Up.

The MRS moves in a finite field, which is a cuboid of width w, depth d and height h with
its two diagonal cells being (0, 0, 0) and (w − 1, d − 1, h − 1). We consider two types of planes;
the first type is a set of cells forming a plane perpendicular to one of the x, y, and z axes.
The second type is a set of cells parallel to one of the x, y, and z axes and diagonal to the
remaining two axes. For example, {(x, y, z)|y = s} for some s ∈ Z is a plane of the first type
and {(x, y, z)|x + y = s′} for some s′ ∈ Z is a plane of the second type. A line of cells is a set
of cells forming a horizontal or vertical line on a plane. For example, {(x, y, z)|y = u, z = v}
for some u, v ∈ Z is a line and {(x, y, z)|x + y = u′, z = v′} for some u′, v′ ∈ Z is a line.

The field is surrounded by six planes, which we call walls. More precisely, the walls are
{(x, y, z)|x = −1} (the West wall), {(x, y, z)|y = −1} (the South wall), {(x, y, z)|z = −1}
(the Bottom wall), {(x, y, z)|x = w} (the East wall), {(x, y, z)|y = d} (the North wall), and
{(x, y, z)|z = h} (the Top wall).

All modules synchronously perform observation, computation, and movement in each
discrete time t = 0, 1, 2, A configuration of the MRS is the set of cells occupied by the
modules. We say two modules are side-adjacent if they are in the two side-adjacent cells. We
also say that a module m is side-adjacent to cell c if the cell occupied by m is side-adjacent
to c. Given a configuration of the MRS, consider a graph where each vertex corresponds
to a module and there is an edge between two vertices if the corresponding modules are
side-adjacent. If this graph is connected, we say the MRS is connected.

A module can perform two types of movements, sliding and rotation.
1. Sliding: When two modules mi and mj are side-adjacent, another module mk can move

from a cell side-adjacent to mi to an empty cell side-adjacent to mk and mj along mi

and mj . During the movement, mi and mj cannot perform any movement. See Figure 1
as an example.

SAND 2022

20:4 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

Figure 1 Sliding and rotation. The red modules perform movements.

Figure 2 Example of an observation at the red module with a local coordinate system.

2. Rotation: When two modules mi and mj are side-adjacent, mi can move to a cell side-
adjacent to mj by rotating π/2 in some direction. There are six cells side-adjacent to mj

and mi can move to four of them by rotation. During the movement, mj cannot move
and the cells that mi passes must be empty. See Figure 1 as an example.

Note that several modules can move at the same time as long as their moving tracks do not
overlap. The modules must keep two types of connectivity at each time step.
1. At the beginning of each time step, the modules must be connected.
2. At each time step, the modules that do not move must be connected.

We assume that each module obtains the result of an observation and moves to the next
cell in its local x-y-z coordinate system. We assume that the origin of the local coordinate
system of a module is its current cell and all local coordinate systems are right-handed.
In this paper, we consider three types of MRSs with different degree of agreement on the
coordinate system. When all modules agree on the directions and orientations of x, y, and z

axes, we say the MRS is equipped with a common compass. When all modules do not agree
on the directions or orientations of x, y, and z axes, we say the MRS is not equipped with a
common compass. Hence, local coordinate systems are not consistent among the modules.
As an intermediate model, we consider modules that agree on the direction and orientation of
the vertical axis. In this case, we say the MRS is equipped with a common vertical axis. The
state of the MRS is its local shape. If the modules are equipped with a common compass or
a common vertical axis, the state of the MRS contains common directions and orientations.
Otherwise the state of the MRS does not contain any directions and orientations.

The search problem requires the MRS to find a target placed at one cell in the field from
a given initial configuration. We call the cell containing the target the target cell. The MRS
finds a target when one of its modules enters the target cell.

When a module executes the common algorithm, the input is the observation of cells in a
cube of size (2k+1)×(2k+1)×(2k+1) centered at the module (i.e., its k-neighborhood). The
value of k is fixed by the algorithm. A module detects whether each cell in its k-neighborhood
is a wall cell or not and whether it is occupied by a module or not. Let Cm be the set of cells
occupied by some modules, Cw be the set of wall cells, and Ce be the set of the remaining
(i.e., empty) cells of an observation. More precisely, each set of cells is a set of coordinates of
the corresponding cells observed in the local coordinate system of the module. For example,
in Figure 2, the result of an observation at the red module is Cm = {(0, −1, 0), (1, −1, 0)},
Cw = ∅, and Ce is the remaining cells. When a common algorithm outputs coordinate (a, b, c)
at a module, the module moves to (a, b, c) in its local coordinate system.

R. Yamada and Y. Yamauchi 20:5

When we describe an algorithm, the elements of Cm, Cw, and Ce are specified in a
“canonical coordinate system,” i.e., the global coordinate system. When the modules are
equipped with a common compass, without loss of generality, we assume that the common
compass is identical to the global coordinate system. Thus, each module computes its
movement by checking Cm, Cw, and Ce. When the modules agree on a common vertical axis,
without loss of generality, we assume that the vertical axis is identical to z axis of the global
coordinate system. Each module computes its movement by rotating the current observation
by π/2, π, 3π/2, and 2π around the common vertical axis and comparing the results with
Cm, Cw, and Ce. It selects an output with a movement and if there are multiple outputs with
movement it nondeterministically selects one of them. When the modules are not equipped
with a common compass, a module checks 24 rotations of the current observation and selects
an output in the same way as the above case.

3 Search algorithms for an MRS in a finite 3D cubic grid

In this section, we present search algorithms with small number of modules. Our proposed
algorithms are based on a common strategy. Since the MRS does not know the position of
the target cell, we make the MRS visit all cells of the field. The proposed algorithms slice
the field into planes and the MRS visits the cells of each plane by sweeping each row or
column of the plane. Thus, the proposed algorithms are extensions of the search algorithms
by Doi et al. in a finite 2D square grid [7].

3.1 Search with a common compass
We show the following theorem by a search algorithm for the MRS of three modules equipped
with a common compass.

▶ Theorem 1. The MRS of three modules equipped with a common compass can solve the
search problem in a finite 3D cubic grid from any initial configuration.

The proposed algorithm considers planes that is parallel to the z-axis and the angles
between it and each of x-axis and y-axis are π/2. Each plane is represented as {(x, y, z)|x+y =
s} for s = 1, 2, The MRS moves along each line parallel to the x-y plane {(x, y, z)|x+y =
s, z = t} for t = 0, 1, 2, Figure 3 shows a moving track of the proposed algorithm.

Figure 3 Search by three modules equipped with a common compass.

The MRS continues to search each plane until it reaches the northeasternmost plane.
Then, it moves along the edges of the field so that it returns to the southwesternmost plane.
It starts searching each plane again to visit all cells of the field.

The MRS moves forward or turns by repeating a sequence of movements, that we call a
move sequence. The proposed algorithm consists of the following move sequences.

SAND 2022

20:6 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

Move sequence MNW (Figure 4). The blue module is in cell (x, y, z) at first. By this
move sequence, the green module reaches cell (x − 1, y + 1, z). By repeating MNW n

times, some modules visit the cells (x − k, y + k, z)(0 ≤ k ≤ n). That is, it visits all the
cells of the horizontal line {(x, y, z)|x + y = s, z = t}.
Move sequence MT urnNW (Figure 5). By this move sequence, the MRS changes its move
sequence from MNW to MSE .
Move sequence MSE (Figure 6). The blue module is in cell (x, y, z) at first. By this move
sequence, the green module reaches cell (x + 1, y − 1, z). By repeating MSE n times, some
modules visit the cells (x + k, y − k, z)(0 ≤ k ≤ n). That is, it visits all the cells of the
horizontal line {(x, y, z)|x + y = s, z = t}.
Move sequence MT urnSE (Figure 7). By this move sequence, the MRS changes its move
sequence from MSE to MNW .
Move sequence MT (Figure 8). By this move sequence, the MRS changes its move
sequence from MSE to MD.
Move sequence MD (Figure 9). The blue module is in cell (x, y, z) at first. By this move
sequence, the green module reaches cell(x, y, z − 1). By repeating MD n times, some
modules visit the cells (x, y, z − k)(0 ≤ k ≤ n). That is, it visits all the cells of the line
{(x, y, z)|x = s, y = t}.
Move sequence MB (Figure 10). By this move sequence, the MRS changes its move
sequence from MD to MNW .
Move sequence MNECorner (Figure 11). By this move sequence, the MRS changes its
move sequence from MD to MW allBottom.
Move sequence MW allBottom (Figure 12). The blue module is in cell (x, y, 0) at first.
By this move sequence, the green module reaches cell (x, y − 1, 0) along the edge. By
repeating MW allBottom n times, some modules visit the cells (x, y − k, 0)(0 ≤ k ≤ n).
That is, it visits all the cells of the line {(x, y, z)|x = s, z = 0}.
Move sequence MSW Corner (Figure 13). By this move sequence, the MRS changes its
move sequence from MW allBottom to MUp.
Move sequence MUp. (Figure 14) The blue module is in cell (0, 0, z) at first. By this
move sequence, the green module reaches cell (0, 0, z + 1). By repeating MUp n times,
some modules visit the cells (0, 0, k)(0 ≤ k ≤ n). That is, it visits all the cells of the line
{(x, y, z)|x = 0, y = 0}.

The proposed algorithm consists of the following seven steps.
Step 1 The MRS repeats MNW , that makes it move in the northwest direction along a

horizontal line on a plane {(x, y, z)|x + y = s} for some s.
Step 2 When the MRS reaches the north or west wall, it changes the moving direction to

southeast by MT urnNW .
Step 3 The MRS repeats MSE , that makes it move in the southeast direction along a

horizontal line on {(x, y, z)|x + y = s}. This movement makes the MRS move along the
same horizontal line as Step 1.

Step 4 If the MRS is adjacent to the top wall it moves to the plane {(x, y, z)|x + y = s + 1}
Then, it repeats MD shown in Figure 9, that makes it move down along the south wall
or east wall until it reaches the bottom wall. Then, it leaves the wall by MB. It starts
searching the new plane by repeating Steps 1, 2, 3, and 4. Otherwise, it proceeds to
Step 5.

Step 5 When the MRS reaches the south or east wall, it moves to the row above by MT urnSE .
Then, it repeats Steps 1, 2, and 3 so that it visits all cells on the new horizontal line.

R. Yamada and Y. Yamauchi 20:7

Figure 4 Move to northwest. In each figure, the red module moves. When the blue module is in
cell (x, y, z), after this move sequence, the green module reaches cell (x − 1, y + 1, z).

Figure 5 Turn on the north or west wall. In the first figue, the red module moves.

Figure 6 Move to southeast. In each figure, the red module moves. When the blue module is in
cell (x, y, z), after this move sequence, the green module reaches (x + 1, y − 1, z).

Figure 7 Turn on the south or east wall. In each figure, the red module moves.

Figure 8 Move around the top of the north or east wall. In each figure, the red module moves.

Figure 9 Move down on the north or east wall. In each figure, the red module moves. When the
blue module is in cell (x, y, z), after this move sequence, the green module reaches cell (x, y, z − 1).

SAND 2022

20:8 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

Figure 10 Leaving the bottom of the north or east wall. In each figure, the red module moves.

Figure 11 Move on the northeast corner. In the first figure, the red module moves.

Figure 12 Move along the bottom of the wall. In each figure, the red module moves. When the
blue module is in cell (x, y, 0), after this move sequence, the green module reaches cell (x, y − 1, 0).

Figure 13 Move on the southwest corner. In the first figure, the red module moves.

Figure 14 Move up on the southwest corner. In each figure, the red module moves. When the
blue module is in cell (0, 0, z), after this move sequence, the green module reaches cell (0, 0, z + 1).

R. Yamada and Y. Yamauchi 20:9

Figure 15 States of the MRS of three modules equipped with a common compass.

Step 6 When the MRS reaches the northeast corner of the top wall, the algorithm sends the
MRS back to the southwest corner, where the MRS starts searching by repeating Steps 1
to 5. It moves along the northeast edge until it reaches the northeast corner of the bottom
wall by MD. Then, it moves along the east edge of the bottom wall until it reaches
the south east corner of the bottom wall by MNECorner and repeating MW allBottom. It
moves along the south edge of the bottom wall until it reaches the southwest corner of
the bottom wall by repeating MW allBottom. . Finally, it moves along the southeast edge
until it reaches the southwest corner of the top wall by MSW Corner and repeating MUp.
Then, the MRS returns to Step 4.

Table 1 and 2 show the input and the output of the proposed algorithm. Each element
specifies a part of the input (especially, Cw and Ce), and the MRS does not care whether
other cells than those specified are walls or not.

We briefly address the correctness of the proposed algorithm. When the MRS is on a
plane {(x, y, z)|x + y = s} for some s, it visits all cells in the horizontal line {(x, y, z)|x + y =
s, z = t} for some t by repeating Steps 1, 2, and 3. Then, it proceeds to the horizontal line
{(x, y, z)|x + y = s, z = t + 1} by Step 5. By repeating Steps 1, 2, 3, and 5, it eventually
reaches the top wall. Then, it starts searching for cells in {(x, y, z)|x + y = s + 1} by Step 4
and 6.

Repeating the above movement, the MRS eventually reaches the northeast corner of the
top wall. At this point, it may have not yet visited the cells near the south west corner.
Steps 6 enables the MRS visit these cells by moving it to the southwest corner of the top
wall and starting Step 1 again.

There exist initial configurations that satisfies no condition of Table 1 and 2. We add
exceptional transformation rules from such initial configurations. Figure 15 shows all states
of three modules equipped with a common compass. Observe that any configuration can be
transformed to another one in one time step. (Note that more than one module can move in
one time.) Hence, even if the initial state of the MRS does not match any entry of Table 1
and 2, the MRS can be transformed into one of the entries and the MRS can start search
from any initial configuration.

3.2 Search with a common vertical axis

We show the following theorem by a search algorithm for the MRS of four modules equipped
with a common vertical axis.

▶ Theorem 2. The MRS of four modules with a common vertical axis can solve a search
problem in a finite 3D grid if no pair of modules have an identical observation in an initial
configuration.

SAND 2022

20:10 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

Table 1 Search algorithm for the MRS equipped with a common compass (Former part).

Cm Cw Ce Output
MSE (0, 0, 1),(1, 0, 1) (2, 0, 0) (1, 0, 0)

(1, 0, 0),(1, 0, −1) (1, −1, 0)
(0, 0, 1),(0, −1, 1) (0, −2, 0) (0, −1, 0)

(0, −1, 0),(0, −1, −1) (1, −1, 0)
MT urnSE (0, 0, 1),(1, 0, 1) (2, 0, 0) (0, −1, 0) (−1, 0, 1)

(1, 0, 0),(2, 0, 0) (0, 0, −1), (1, 0, 1)
(0, 0, 1)

(0, 0, 1),(0, −1, 1) (0, −2, 0) (0, 1, 1)
(0, −1, 0),(0, −2, 0) (0, 0, −1) (0, −1, 1)

MNW (−1, 0, 0),(−1, 0, 1) (0, −1, 0) (−1, 1, 0)
(0, 0, −1),(0, 1, −1) (0, 2, 0) (0, 1, 0)

(0, 1, 0),(0, 1, 1) (1, 0, 0) (−1, 1, 0)
(0, 0, −1),(−1, 0, −1) (−2, 0, 0) (−1, 0, 0)

MT urnNW (0, −1, 0),(0, −1, 1) (0, 1, 0) (0, 0, 1)
(1, 0, 0),(1, 0, 1) (−1, 0, 0) (0, 0, 1)

MT (0, 0, 1),(1, 0, 1) (2, 0, 0),(0, 0, 2) (1, 0, 0)
(1, 0, 0),(1, 0, −1) (2, 0, 0),(0, 0, 1) (1, 1, 0)
(0, 0, 1),(0, 1, 1) (1, 0, 0),(0, 0, 2) (0, 1, 0)

(0, 0, 1),(0, −1, 1) (0, 0, 2),(0, −2, 0) (0, −1, 0)
(0, −1, 0),(0, −1, −1) (0, 0, 1),(0, −2, 0) (1, −1, 0)

(0, 0, 1),(1, 0, 1) (0, 0, 1),(0, −1, 0) (1, 0, 0)
MD (0, 1, 0),(0, 1, −1) (1, 0, 0) (0, 0, −1)

(0, 1, 0),(0, 1, 1) (1, 0, 0) (0, 0, −1) (0, 1, −1)
(0, 0, −1),(0, 0, −2) (1, 0, 0) (0, −1, −1)
(1, 0, 0),(1, 0, −1) (0, −1, 0) (0, 0, −1)
(1, 0, 0),(1, 0, 1) (0, −1, 0) (0, 0, −1) (1, 0, −1)

(0, 0, −1),(0, 0, −2) (0, −1, 0) (−1, 0, −1)

We prove Theorem 2 by a search algorithm.
The proposed algorithm considers planes that is parallel to the x-z plane or the y-z plane.

Each plane is represented as x = s for s = 0, 1, 2, . . . and y = s′ for s′ = 0, 1, 2, The
MRS moves along each vertical line {(x, y, z)|x = s, y = t} when it is on the plane x = s for
t = 0, 1, 2, . . . and {(x, y, z)|x = t′, y = s′} when it is on the plane y = s′ for t′ = 0, 1, 2,
Figure 16 shows an execution of the proposed algorithm.

The MRS continues to search each plane perpendicular to the x-axis until it reaches the
east wall. Then, it starts to search each plane perpendicular to the y-axis. Repeating the
process four times, it returns to its initial position.

The proposed algorithm consists of the following move sequences. We omit the detailed
description and figures due to the page limitation.

Move sequence MDown. By this move sequence, the MRS visits all the cells of the
horizontal line {(x, y, z)|x = s, y = t}.
Move sequence MUp. By this move sequence, the MRS visits all the cells of the horizontal
line {(x, y, z)|x = s, y = t}.
Move sequence MT urnU . By this move sequence, the MRS changes its move sequence
from MUp to MDown.

R. Yamada and Y. Yamauchi 20:11

Table 2 Search algorithm for the MRS equipped with a common compass (Latter part).

Cm Cw Ce Output
MB (0, 1, 0),(0, 1, 1) (1, 0, 0),(0, 0, −1) (0, −1, 0), (−1, 1, 0)

(0, 2, 0)
(0, 0, −1),(−1, 0, −1) (1, 0, 0),(0, 0, −2) (0, −1, 0) (−1, 0, 0)

(1, 0, 0),(1, 0, 1) (0, −1, 0),(0, 0, −1) (1, 1, 0)
(0, 0, −1),(0, 1, −1) (0, −1, 0),(0, 0, −2) (0, 1, 0)

MNECorner (0, 0, −1),(0, −1, −1) (0, 1, 0),(1, 0, 0), (−1, 0, −1)
(0, 0, −2)

MW allBottom (1, 0, 0),(1, −1, 0) (0, 0, −1) (0, −1, 0)
(1, 0, 0),(1, 1, 0) (0, 0, −1) (0, −1, 0) (1, −1, 0)

(0, −1, 0),(0, −2, 0) (0, 0, −1) (−1, −1, 0)
(0, −1, 0),(−1, −1, 0) (0, 0, −1),(0, −2, 0) (−1, 0, 0)
(0, −1, 0),(1, −1, 0) (0, 0, −1) (−1, 0, 0) (−1, −1, 0)
(−1, 0, 0),(−2, 0, 0) (0, 0, −1) (−1, 1, 0)

MSW Corner (−1, 0, 0),(−1, 1, 0) (0, 0, −1),(−2, 0, 0), (−1, 0, 1)
(0, −1, 0)

MUp (0, −1, 0),(0, −1, 1) (−1, 0, 0),(0, −2, 0) (0, 0, 1)
(0, −1, 0),(0, −1, −1) (−1, 0, 0),(0, −2, 0) (0, 0, 1) (0, −1, 1)

(0, 0, 1),(0, 0, 2) (−1, 0, 0),(0, −1, 0) (0, 1, 1)
Otherwise Otherwise Otherwise (0, 0, 0)

Figure 16 Example of a search by four modules.

Move sequence MT urnD. By this move sequence, the MRS changes its move sequence
from MDown to MUp.
Move sequence MB1. By this move sequence, the MRS changes its move sequence from
MDown to MB2.
Move sequence MB2. By this move sequence, the MRS visits all the cells of the horizontal
line {(x, y, z)|y = s, z = 0}.
Move sequence MB3. By this move sequence, the MRS changes its move sequence from
MB2 to MUp.
Move sequence MCorner. By this move sequence, the MRS changes its move sequence
from MDown to MB1.

The proposed algorithm consists of the following six steps. We use north, south, east,
and west for explanation, however each module does not need to know these directions.

SAND 2022

20:12 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

Step 1 By MDown, the MRS moves down along a vertical line on a plane {(x, y, z)|y = s}
for some s.

Step 2 When the MRS reaches the bottom wall, it changes the direction by MT urnD.
Step 3 By MUp, the MRS moves up along the same vertical line as Step 1.
Step 4 If the MRS is adjacent to the bottom of west wall, it moves to the next plane

{(x, y, z)|y = s − 1} by MB1. Then it moves along the bottom wall in the east direction
by MB2. When the MRS reaches the east wall, it performs MB3 and starts searching the
next plane by repeating Step 1. Otherwise, it proceeds to Step 5.

Step 5 When the MRS reaches the top wall, it moves west by one row by MT urnU . Then it
repeats Step 1 again.

Step 6 When the MRS reaches southwest corner, it performs MCorner and starts searching
on a plane perpendicular to the previous search plane. Thus, a search plane is first
perpendicular to the x axis and moves to east, second it is perpendicular to the y axis
and moves to north, third it is perpendicular to the x axis and moves to west, and finally,
it is perpendicular to the y axis and moves to south.
Depending on its initial state, MRS may start from the middle of the above track.

We omit the description like Table 1 and 2 due to the page limitation.
We briefly address the correctness of the proposed algorithm. The MRS visits all cells

on a vertical line {(x, y, z)|x = t, y = s} by Steps 1, 2, and 3. Then, it proceeds to the
next vertical line by Step 5. By repeating Steps 1, 2, 3, and 5, it visits all cells on plane
y = s. By Step 4, it starts searching the next plane y = s − 1. By repeating Steps 1 to 5, it
eventually reaches the southwest corner of the bottom wall. It starts searching the vertical
line {{(x, y, z)|x = 1, y = d − 2}} by Step 6. By repeating Step 1 to 6 four times, the MRS
visits all cells of the field.

3.3 Search without a common compass
We show the following theorem by a search algorithm for the MRS of five modules not
equipped with a common compass.

▶ Theorem 3. The MRS of five modules not equipped with a common compass can solve a
search problem in a finite 3D grid if no pair of modules have an identical observation in an
initial configuration.

We prove Theorem 3 by a search algorithm for the MRS of three modules not equipped
with a common compass.

The proposed algorithm considers each plane perpendicular to one of the x, y, and z axes.
The choice of the axis depends on the initial configuration of the MRS, and the modules do
not need to know the global coordinate system. In the following, without loss of generality,
we assume that the MRS considers planes perpendicular to the x axis, i.e., x = s(y = s,z = s,
respectively) for s = 0, 1, 2, It moves along each vertical line {(x, y, z)|x = s, y = t, z = u}
or horizontal line {(x, y, z)|x = s, y = u, z = t} for u = 0, 1, 2, . . . on the plane. Figure 17
shows an execution of the algorithm.

The MRS continues to search each plane perpendicular to the x-axis until it reaches the
east wall. Then, it changes the search direction from the positive x direction to the negative
x direction and it starts to search each plane perpendicular to the x-axis until it reaches the
west wall.

The proposed algorithm consists of the following move sequences. We omit the detailed
description and figures due to the page limitation.

R. Yamada and Y. Yamauchi 20:13

Figure 17 Example of a search with five modular robots.

Move sequence MF orward. By this move sequence, the MRS visits all the cells of the
horizontal line {(x, y, z)|x = s, y = t}.
Move sequence MBack. By this move sequence, the MRS visits all the cells of the
horizontal line {(x, y, z)|x = s, y = t}.
Move sequence MT urnB . By this move sequence, the MRS changes its move sequence
from MF orward to MBack.
Move sequence MT urnF . By this move sequence, the MRS changes its move sequence
from MBack to MF orward.
Move sequence MEdge. By this move sequence, the MRS changes its move sequence from
MF orward to MT urnB .
Move sequence MCorner. By this move sequence, the MRS changes its move sequence
from MF orward to MT urnB .

The proposed algorithm consists of the following six steps. We use down direction for
explanation, but each module does not need to know the down direction.

Step 1 By MF orward, the MRS moves to the down direction along a vertical line on a plane
{(x, y, z)|x = s} for some s.

Step 2 When the MRS reaches the bottom wall, it changes the direction to up by MT urnB .
Step 3 By MBack, the MRS moves up along a vertical line followed in Step 1.
Step 4 If the MRS is adjacent to the bottom wall, it moves to plane {(x, y, z)|x = s + 1} by

MT urnF , and starts searching the new plane by repeating Steps 1,2, and 3.
Step 5 When the MRS reaches the top or bottom wall, it moves to the southern row by

MEdge. Then it repeats Steps 1, 2, and 3 again.
Step 6 When the MRS reaches a corner of the field, it perform MCorner and changes the

search direction from the positive x direction to the negative x direction.

We omit the description like Table 1 and 2 due to the page limitation.
We briefly address the correctness of the proposed algorithm. The MRS visits all the

cells on line {(x, y, z)|x = s, y = t} by Steps 1, 2, and 3. Then, it proceeds to the next line
by Step 5. By repeating Steps 1, 2, 3, and 5, it visits all cells on plane x = s. By Step 4, it
starts searching a new plane x = s + 1. By repeating Steps 1 to 5, it eventually reaches the
corner adjacent to the south wall and the east wall. By Step 6, it starts searching west wall.
By repeating Steps 1 to 6 twice, the MRS visits all cells of the field.

You can find demonstration videos of the proposed algorithms in [18].

SAND 2022

20:14 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

Figure 18 State transition graph for a MRS consisting of 3 modules with common vertical axis.

4 Necessary number of modules

We show that the three algorithms presented in Section 3 use the minimum number of
modules for each setting.

▶ Theorem 4. The MRS of less than three modules equipped with a common compass cannot
solve the search problem in a finite 3D cubic grid.

Due to the page limitation, we show a sketch of the proof.
A single module cannot perform any movement because there is no static module during

the movement.
Two modules can perform rotations and we can show that the MRS can move straight

to one direction by repeating rotations. Thus, when both modules cannot observe any wall
(i.e., in the middle area of the field), the MRS moves straight. Assume that the straight
movement of the MRS is parallel to x axis. When the field is large enough, the MRS cannot
move along some lines parallel to the x axis because the MRS cannot count.

We next show the necessary number of modules equipped with a common vertical axis.

▶ Theorem 5. The MRS of less than four modules equipped with a common vertical axis
cannot solve the search problem in a finite 3D cubic grid.

Proof. In the case of one module, the MRS cannot move because it cannot perform any
sliding or rotation.

In the case of two modules, there are two possible states of the MRS. Let SA be the state,
where the two modules form a vertical line, and SB be the state, where the two modules
form a horizontal line. There exists only one horizontal line state because the modules do not
agree on x axis or y axis. In SA, one of the two modules can perform a rotation because they
agree on a common vertical axis. Any rotation in SA results in SB. In SB, both modules
obtain the same observation if their local coordinate systems are symmetric against their
midpoint, and if one of them moves then the other also moves. Thus, the two modules cannot
perform any movement. Consequently, the two modules cannot move to any direction.

In the case of three modules, we check possible movements of the MRS by the state trans-
ition graph shown in Figure 18. State S3

a cannot be transformed to any other configuration
because both endpoint modules obtain the same observation. Therefore, it is necessary to
move only by S3

b , S3
c , S3

d , and S3
e . However, no matter which transformation of the S3

b , S3
c , S3

d ,
and S3

e , the MRS cannot move in the east, west, south or south direction. Therefore, when
there is no wall in the visibility, the MRS cannot move, thus it cannot search the whole
field. ◀

R. Yamada and Y. Yamauchi 20:15

Figure 19 State transition graph for the MRS of 4 modules not equipped with a common compass.

We finally show the necessary number of modules not equipped with a common compass.

▶ Theorem 6. The MRS of less than five modules not equipped with a common compass
cannot solve the search problem in a finite 3D cubic grid.

Due to the page limitation, we show a sketch of the proof.
A single module cannot perform any movement because there is no static module during

the movement.
Two modules not equipped with a common compass cannot perform any movement,

because if one module moves then the other module also moves.
Three modules have two states, i.e., the “L”-shape and the “I”-shape. In the L-shape, no

module can perform a movement because of the symmetry. In the I-shape, two endpoint
modules can perform rotations and a new state is an L-shape or I-shape. The MRS does not
move after these rotations. Consequently, the MRS cannot move to any direction.

Four modules have eight states. By the state transition graph of the four modules shown
in Figure 19, we can show that the MRS cannot move to any direction.

5 Conclusion and future work

In this paper, we considered search by the single MRS in the finite 3D cubic grid. We
demonstrated a trade-off between the common knowledge and the necessary and sufficient
number of modules for search. We finally note that the proposed algorithms depend on
parallel movements, i.e., they are not designed for the centralized scheduler.

Our future goal is a distributed coordination theory for the MRS. First, reconfiguration
and locomotion of a single MRS in the 3D cubic grid have not been discussed yet. Second,
it is important to consider interaction among multiple MRSs such as rendezvous, collision
avoidance, and collective search. Finally, the MRS is expected to solve more complicated
tasks by interaction with the environment.

SAND 2022

20:16 Search by a Metamorphic Robotic System in a Finite 3D Cubic Grid

References
1 Abdullah Almethen, Othon Michail, and Igor Potapov. On efficient connectivity-preserving

transformations in a grid. In Proc. of ALGOSENSORS 2020, pages 76–91, 2020.
2 Abdullah Almethen, Othon Michail, and Igor Potapov. Pushing lines helps: Efficient universal

centralised transformations for programmable matter. Theoretical Computer Science, 830-
831:43–59, 2020.

3 Dana Angluin, Zoë Diamadi James Aspnes, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. In Proc. of PODC 2004, pages 290–299,
2004.

4 Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Masafumi Yamashita.
Autonomous mobile robots with lights. Theoretical Computer Science, 609:171–184, 2016.

5 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot - a new model for programmable matter.
In Proc. of SPAA 2014, pages 220–222, 2014.

6 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proc. of NANOCOM 2015, pages 21:1–21:2, 2015.

7 Keisuke Doi, Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita. Exploration of finite
2d square grid by a metamorphic robotic system. In Proc. of SSS 2018, pages 96–110, 2018.

8 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006.

9 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Formations for fast locomotion of
metamorphic robotic systems. The International Journal of Robotics Research, 23(6):583–593,
2004.

10 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for metamorphic
systems: feasibility, decidability, and distributed reconfiguration. IEEE Transactions on
Robotics, 20(3):409–418, 2004.

11 Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masafumi Yamashita.
Pattern formation by oblivious asynchronous mobile robots. SIAM Journal on Computing,
44(3):740–785, 2015.

12 Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, 33(1):69–101,
2020.

13 Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability of
feasible mechanisms for programmable matter. Journal of Computer and System Sciences,
102:18–39, 2019.

14 Junya Nakamura, Sayaka Kamei, and Yukiko Yamauchi. Evacuation from a finite 2d square
grid field by a metamorphic robotic system. In Proc. of CANDAR 2020, pages 69–78, 2020.

15 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799, 2014.

16 Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999.

17 Pierre Thalamy, Benoît Piranda, and Julien Bourgeois. Distributed self-reconfiguration using
a deterministic autonomous scaffolding structure. In Proc. of AAMAS 2019, pages 140–148,
2019.

18 Ryonosuke Yamada. MRS demonstration videos. URL: http://tcs.inf.kyushu-u.ac.jp/
~yamauchi/MRSdemonstrations.html.

http://tcs.inf.kyushu-u.ac.jp/~yamauchi/MRSdemonstrations.html
http://tcs.inf.kyushu-u.ac.jp/~yamauchi/MRSdemonstrations.html

Brief Announcement: Cooperative Guarding in
Polygons with Holes
John Augustine # Ñ

Department of Computer Science & Engineering, Indian Institute of Technology Madras, India

Srikkanth Ramachandran #

Department of Computer Science & Engineering, Indian Institute of Technology Madras, India

Abstract
We study the Cooperative Guarding problem for polygons with holes in a mobile multi-agents setting.
Given a set of agents, initially deployed at a point in a polygon with n vertices and h holes, we
require the agents to collaboratively explore and position themselves in such a way that every point
in the polygon is visible to at least one agent and that the set of agents are visibly connected. We
study the problem under two models of computation, one in which the agents can compute exact
distances and angles between two points in its visibility, and one in which agents can only compare
distances and angles. In the stronger model, we provide a deterministic O(n) round algorithm to
compute such a cooperative guard set while not requiring more than n+h

2 agents and O(log n) bits
of persistent memory per agent. In the weaker model, we provide an O(n4) round algorithm, that
does not require more than n+2h

2 agents.

2012 ACM Subject Classification Computing methodologies → Self-organization

Keywords and phrases Mobile Agents, Art Gallery Problem, Cooperative Guarding

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.21

Related Version Full Version: https://arxiv.org/abs/2202.13719

Funding John Augustine: DST/SERB MATRICS under Grant MTR/2018/001198; Exploratory
Research Grant at IIT Madras; Cryptography, Cybersecurity, & Distributed Trust prospective
Centre of Excellence under the Institute of Eminence Scheme.
Srikkanth Ramachandran: Exploratory Research Grant at IIT Madras; Cryptography, Cybersecurity,
& Distributed Trust prospective Centre of Excellence under the Institute of Eminence Scheme.

Acknowledgements We thank Barath Ashok and Suman Sourav for helpful discussions and the
anonymous reviewers for their useful feedback.

1 Introduction

The Art Gallery Problem is a classical computational geometry problem which asks for the
minimum number of guards required to completely guard the interior of a given art gallery.
The art gallery is modelled as a simple polygon and guards are points on or inside the
polygon. A set of guards is said to guard the art gallery, if every point in the art gallery is
visible to at least one guard. This problem was first posed by Klee in 1973 and since then the
problem has been of interest to researchers. The problem and its many variations have been
well-studied over the years. Chvátal [4] was the first to show that ⌊ n

3 ⌋ guards are sufficient
and sometimes necessary to guard a polygon with n vertices. Fisk [5] proved the same result
via an elegant coloring argument, which also leads to an O(n) algorithm.

We study a variant of the classical Art Gallery Problem known as the Cooperative Guards
problem in polygons with holes from a distributed multi-agents perspective. The Cooperative
Guards problem is similar to the Art Gallery Problem with the additional constraint that
the visibility graph of the guards, i.e., the graph with guards as vertices and edges between
guards that can see each other, should form a single connected component. This implies that
if the guards can communicate through line of sight, then any two guards can communicate

© John Augustine and Srikkanth Ramachandran;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 21; pp. 21:1–21:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:augustine@cse.iitm.ac.in
http://www.cse.iitm.ac.in/~augustine/
https://orcid.org/0000-0003-0948-3961
mailto:cs21s019@smail.iitm.ac.in
https://orcid.org/0000-0003-2392-1999
https://doi.org/10.4230/LIPIcs.SAND.2022.21
https://arxiv.org/abs/2202.13719
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Cooperative Guarding in Polygons with Holes

with each other (either directly or indirectly through intermediate guards). The Cooperative
Guards problem was first introduced by Liaw et al. in 1993 [6], in which they show that this
variant of the Art Gallery Problem is also NP-hard.

The pursuit of solving the Cooperative Guards problem for us is primarily motivated
by the search for distributed multi-agent exploration algorithms for agents deployed in the
polygon. One of the easiest ways to explore the polygon is by maintaining connectivity
through line of sight and having the agents cooperatively send exploratory agents and expand
the area of the polygon that they can collectively see. Such an algorithm would require the
agents to be visibly connected and if at the end they are collectively able to see the entire
polygon, then they form a solution to the Cooperative Guards problem. This lead us to
first tackle the Cooperative Guards problem in the centralized setting and adapt it to the
distributed multi-agent model. Once the agents are positioned to cooperatively guard the
polygon, they have sufficient information to solve several computational geometry problems
on the polygon by executing a distributed algorithm on their visibility graph. Hence our
algorithm can also serve as an initial pre-processing step for distributed multi-agents to solve
other problems on the polygon, for example they can compute the number of vertices of
the polygon, diameter of the polygon etc. Our focus throughout this paper is to find time
optimal algorithms for computing a set of cooperative guards on the polygon (not necessarily
minimum). Analogous to Fisk’s [5] coloring argument, we provide an efficient algorithm that
computes a set of visibly connected guards using no more than n+h−2

2 guards.

2 Our Contributions

We first present a centralized algorithm for the Cooperative Guards problem in polygonal
region with n vertices and h holes, that does not require more than n+2h−2

2 guards and runs
in O(n log n) time. We then use an observation from Zylinski [8] to reduce the number of
guards to n+h−2

2 . The reduction uses the method of Sachs and Souvaine [3] to reduce the
problem to a simple polygon with n + h vertices and no holes.

We propose two distributed models of computation, one in which the agents can perceive
exact distances (which we call depth perception) and hence can compute co-ordinates (with
respect to some common reference frame) to map out the polygon, and another in which the
agents receive only a combinatorial view of their visibility. In the former model we assume
that the agents are positioned in an [0, nc] × [0, nc] grid so that their coordinates can be
evaluated within O(log n) bits.

We present a distributed algorithm (in the stronger depth perception model) that runs in
O(n) rounds and does not require more than ⌊ n+h−2

2 ⌋ agents. Our distributed algorithm
emulates the centralized algorithms presented except that the polygon is not known in
advance. We simultaneously explore and incrementally construct a triangulation.

Finally, we present a distributed algorithm for the weaker proximity perception model,
which takes O(n4) rounds, but requires n+2h−2

2 agents. These results improve upon the
works by Obermeyer, Ganguli and Buffon [7] (which requires n+2h−2

2 guards in the worst
case and O(n2) communication rounds) and Ashok et al. [1] (which requires O(n) rounds but
works only for polygons without holes). A summary of our results is presented in Table 1.
The full version [2] of the paper contains all the details.

3 Open Problems

We discuss about further improvements and some closely related open problems below.

J. Augustine and S. Ramachandran 21:3

Table 1 A summary of our results.

Model & Algorithm Rounds Broadcasts Persistent Memory Guards
Depth Perception O(n) O(n) O(n log n) (n + h − 2)/2
(Large memory)

Depth Perception O(n) O(n log n) O(log n) (n + 2h − 2)/2
(Small memory)

Depth Perception O(n) O(n(h + log n)) O(log n) (n + h − 2)/2
(Improving guards)

Proximity Perception O(n4) O(n4) O(log n) (n + 2h − 2)/2

▶ Open Problem 1. How many co-operative guards are required for a polygon with n vertices
and h holes? What if guards are restricted to be on the vertices of the polygon?

Our construction requires at most n+h−2
2 co-operative guards, however we have not been

able to construct polygons requiring so many guards. For h ≤ 1, the problem has been solved
by Zylinski [8], but for h ≥ 2, the problem remains open. We have not been able to provide a
better upper bound than n+2h−2

2 guards when the guards are restricted to the vertices of the
polygon as well as provide examples of polygons that need more than n+h−2

2 such guards.

▶ Open Problem 2. Is there a more efficient centralized algorithm to compute a cooperative
guard set with n+h−2

2 guards?

The centralized algorithm proposed runs in O(n2) time, whereas we are able to construct
a cooperative guard set using no more than n+2h−2

2 agents in O(n log n) time. Is it possible
to bridge the gap in the running time?

▶ Open Problem 3. Is it possible to construct O(poly(D)) time algorithms where D is the
hop diameter of the polygon, when agents have limited persistent memory?

The hop diameter of the polygon is the minimum number of straight line segments required
to connect any two vertices of the polygon. In simple polygons, it is easy to construct such
algorithms, however in polygons with holes, the problem appears to be more challenging.

References
1 B. Ashok, J. Augustine, A. Mehekare, S. Ragupathi, S. Ramachandran, and S. Sourav.

Guarding a polygon without losing touch. In SIROCCO, pages 91–108, 2020.
2 J. Augustine and S. Ramachandran. Cooperative guarding in polygons with holes. arXiv:

2202.13719.
3 I. Bjorling-Sachs and D. L. Souvaine. An efficient algorithm for guard placement in polygons

with holes. Discrete & Computational Geometry, 13(1):77–109, January 1995. doi:10.1007/
bf02574029.

4 V. Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory,
Series B, 18(1):39–41, 1975.

5 Steve Fisk. A short proof of chvátal’s watchman theorem. Journal of Combinatorial Theory,
Series B, 24(3):374, 1978.

6 B. Liaw, N. Huang, and Richard C. T. Lee. The minimum cooperative guards problem on
k-spiral polygons. In CCCG, 1993.

7 K. J. Obermeyer, A. Ganguli, and F. Bullo. Multi-agent deployment for visibility coverage in
polygonal environments with holes. International Journal of Robust and Nonlinear Control,
21(12):1467–1492, 2011.

8 P. Zylinski. Cooperative guards in art galleries with one hole. Balkan Journal of Geometry
and Its Applications, 10(2):142, 2005.

SAND 2022

http://arxiv.org/abs/2202.13719
http://arxiv.org/abs/2202.13719
https://doi.org/10.1007/bf02574029
https://doi.org/10.1007/bf02574029

Brief Announcement: The Temporal Firefighter
Problem
Samuel D. Hand #

School of Computing Science, University of Glasgow, UK

Jessica Enright #

School of Computing Science, University of Glasgow, UK

Kitty Meeks #

School of Computing Science, University of Glasgow, UK

Abstract
The Firefighter problem asks how many vertices can be saved from a fire spreading over the vertices
of a graph. At timestep 0 a vertex begins burning, then on each subsequent timestep a non-burning
vertex is chosen to be defended, and the fire then spreads to all undefended vertices that it neighbours.
The problem is NP-Complete on arbitrary graphs, however existing work has found several graph
classes for which there are polynomial time solutions. We introduce Temporal Firefighter,
an extension of Firefighter to temporal graphs. We show that Temporal Firefighter is
also NP-Complete, and remains so on all but one of the underlying classes of graphs on which
Firefighter is known to have a polynomial-time solution. This motivates us to explore restrictions
on the temporal structure of the graph, and we find that Temporal Firefighter is fixed parameter
tractable with respect to the temporal graph parameter vertex-interval-membership-width.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Temporal graphs, Spreading processes, Parameterised complexity

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.22

Related Version Full Version: https://arxiv.org/abs/2202.12599 [4]

Funding Samuel D. Hand: Supported by an EPSRC doctoral training account.
Jessica Enright: Supported by EPSRC grant EP/T004878/1.
Kitty Meeks: Supported by EPSRC grant EP/T004878/1.

1 Problem Definition and Restrictions on the Underlying Graph

The Firefighter problem considers a fire spreading over a connected, undirected, loop-free,
rooted graph [5]. At time 0 the fire begins burning at the root. Then, at each subsequent
time, a chosen vertex is defended, and the fire then spreads to all undefended vertices adjacent
to the fire. Once a vertex is burning or defended it remains so until the process is over,
which happens once the fire can no longer spread. The decision problem then asks whether
it is possible to save k vertices on a rooted graph (G, r). This problem is NP-Complete on
arbitrary graphs, although progress has been made on identifying graph classes for which it
can be solved in polynomial time [2, 3].

We introduce Temporal Firefighter, an extension of Firefighter to temporal
graphs, using the definition of temporal graph first introduced by Kempe et al. [6]. Here a
temporal graph is a pair (G, λ), where G is an underlying static graph and λ : E(G) → 2N is
a labeling function mapping edges of the graph to the set of timesteps at which they are
active. We refer to the maximum timestep at which any edge of such a graph is active as
the lifetime Λ. Furthermore, we say that two vertices v1 and v2 are temporally adjacent at
time i if there is an edge between them active at time i, that is if i ∈ λ(v1, v2). Temporal
Firefighter is then defined analogously to Firefighter except the fire can only spread to
vertices to which it is temporally adjacent.

© Samuel D. Hand, Jessica Enright, and Kitty Meeks;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 22; pp. 22:1–22:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.hand.1@research.gla.ac.uk
https://orcid.org/0000-0001-8021-249X
mailto:jessica.enright@glasgow.ac.uk
https://orcid.org/0000-0002-0266-3292
mailto:kitty.meeks@glasgow.ac.uk
https://orcid.org/0000-0001-5299-3073
https://doi.org/10.4230/LIPIcs.SAND.2022.22
https://arxiv.org/abs/2202.12599
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Brief Announcement: The Temporal Firefighter Problem

Temporal Firefighter is NP-Complete on arbitrary graphs, as we can assign times in a
rooted temporal graph ((G, λ), r) such that Temporal Firefighter simulates Firefighter
for any rooted graph (G, r). This is achieved by setting λ(e) = {1, ..., |V (G)| − 1} for every
edge e. By time |V (G)| − 1 every vertex would have been defended, so the process must be
over. Thus, for the entirety of the time during which the fire can spread, every edge is active,
just as in Firefighter. In this respect we can view Firefighter to be a special case of
Temporal Firefighter. Noting that the above reduction preserves the underlying graph
class we then have that for every class C of graphs for which Firefighter is NP-Complete,
Temporal Firefighter is NP-Complete on the class of temporal graphs with the graphs
of C as the underlying graphs.

Firefighter has polynomial time solutions on interval graphs, permutation graphs, Pk-
free graphs for k > 5, split graphs, cographs, and graphs of maximum degree three providing
the root is of degree two [2, 3]. We find that Temporal Firefighter is NP-Complete
when the underlying graph belongs to any of these classes except the last, for which there is
a polynomial time algorithm. Every class except the last contains arbitrarily large cliques,
and we find that Temporal Firefighter is NP-Complete when the underlying graph is a
clique. This can be shown by reduction from Firefighter by assigning times to the edges
in a static graph G so that they will be active at all times up until |V (G)| − 1, at which
point the fire can certainly no longer spread. We then add further edges to make the graph
a clique, and have them only active from time |V (G)| − 1 onwards such that they will not
affect the spread of the fire. Temporal Firefighter on such a clique will then simulate
Firefighter on G.

We also find the stronger result, that Temporal Firefighter is NP-Complete when
the underlying graph is a clique of size n, even when the lifetime of the graph is upper
bounded by n

1
c for any constant c ∈ N. This can be shown by a similar reduction, in which

|G|c − |G| vertices are added to the static graph G in such a way that they will all burn
on the first timestep. All defences then take place on a clique constructed in the manner
described above.

In the positive direction we find that there is a polynomial time algorithm for Temporal
Firefighter on temporal graphs where the underlying graph has maximum degree three
and the root has degree two. This algorithm works in a very similar manner to that for
Firefighter as given by Finbow et al. [2].

2 Restrictions on the Temporal Structure

Our analysis of the complexity of Temporal Firefighter when restricting the underlying
graph class shows that for most known graph classes C where Firefighter is polytime
solvable, Temporal Firefighter is NP-Complete on the class of temporal graphs {(G, λ) :
G ∈ C}. This naturally leads us to consider whether the problem might be tractable when
restricting the temporal structure of the graph.

We show that Temporal Firefighter is fixed parameter tractable when parameterised
by vertex-interval-membership-width, a temporal graph parameter defined by Bumpus and
Meeks [1]. Begin by letting mintime(v) denote the minimum timestep upon which an incident
edge of v is active for all vertices v. Define maxtime equivalently for the maximum timestep.
Vertex-interval-membership-width is then defined as follows.

▶ Definition 1 (Vertex Interval Membership Width). The vertex interval membership sequence
of a temporal graph (G, λ) is the sequence (Ft)t∈[Λ] of vertex-subsets of G where Ft = {v ∈
V (G) : mintime(v) ≤ t ≤ maxtime(v)} and Λ is the lifetime of (G, λ). The vertex-interval-
membership-width of a temporal graph (G, λ) is then the integer ω = maxt∈[Λ] |Ft|.

S. D. Hand, J. Enright, and K. Meeks 22:3

To simplify our analysis in showing that Temporal Firefighter is in FPT, we actually
use the related problem Temporal Firefighter Reserve. This is the temporal extension
of the Firefighter Reserve problem described by Fomin et al. [3]. In Temporal
Firefighter Reserve, it is not required to make a defensive move every timestep. Rather,
defences may be delayed, adding to a budget that can be used on future timesteps. Allowing
the defence to build up a reserve in this manner does not affect the number of vertices that
can be saved, and the proof for this fact works identically to that for the static case as given
by Fomin et al. [3]. We note that in Temporal Firefighter Reserve there is always an
optimal strategy that only defends temporally adjacent to the fire, as any defence can be
delayed until the turn upon which the defended vertex would burn.

The algorithm for Temporal Firefighter Reserve iterates over the vertex interval
membership sequence of the input graph, and considers every possible set of defences
adjacent to the fire for each timestep. In particular it recursively computes a sequence of sets
Li ∈ P(Fi) × P(Fi) × {1, 2, ..., Λ} × {1, 2, ..., n}. An element of Li is a 4-tuple (D, B, g, c)
where D is a set of defended vertices in Fi, B is a set of burnt vertices in Fi, g is the budget
that will be available on timestep i + 1, and c is the total count of vertices that have burnt at
time i. The problem can then be answered by checking if there is any entry (D, B, g, c) ∈ LΛ
where Λ is the lifetime of the graph, such that |V (G)| − c ≥ k.

We observe that |Li| = O(4ωωΛ2), and that there at most 2ω defences to consider on
each timestep. The overall complexity can then be seen to be O(8ωωΛ3).

▶ Theorem 2. It is possible to solve Temporal Firefighter in time O(8ωωΛ3) for a
rooted temporal graph ((G, λ), r) where Λ is the lifetime of the graph, and ω is the vertex-
interval-membership-width.

We suggest investigating the complexity of Temporal Firefighter when parameterised
by similar temporal parameters as future work. For example, it would be worthwhile
investigating parameterising by interval-membership-width, which is also defined by Bumpus
and Meeks [1].

References
1 Benjamin Merlin Bumpus and Kitty Meeks. Edge exploration of temporal graphs. CoRR,

abs/2103.05387, 2021. arXiv:2103.05387.
2 Stephen Finbow, Andrew D. King, Gary MacGillivray, and Romeo Rizzi. The firefighter

problem for graphs of maximum degree three. Discret. Math., 307(16):2094–2105, 2007.
doi:10.1016/j.disc.2005.12.053.

3 Fedor V. Fomin, Pinar Heggernes, and Erik Jan van Leeuwen. The firefighter problem on
graph classes. Theor. Comput. Sci., 613:38–50, 2016. doi:10.1016/j.tcs.2015.11.024.

4 Samuel Hand, Jessica Enright, and Kitty Meeks. Making life more confusing for firefighters,
2022. arXiv:2202.12599.

5 Bert Hartnell. Firefighter! an application of domination. In the 24th Manitoba Conference on
Combinatorial Mathematics and Computing, University of Minitoba, Winnipeg, Cadada, 1995,
1995.

6 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. J. Comput. Syst. Sci., 64(4):820–842, 2002. doi:10.1006/jcss.2002.1829.

SAND 2022

http://arxiv.org/abs/2103.05387
https://doi.org/10.1016/j.disc.2005.12.053
https://doi.org/10.1016/j.tcs.2015.11.024
http://arxiv.org/abs/2202.12599
https://doi.org/10.1006/jcss.2002.1829

Brief Announcement: Fault-Tolerant Shape
Formation in the Amoebot Model
Irina Kostitsyna #

Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

Christian Scheideler #

Department of Computer Science, Paderborn University, Germany

Daniel Warner #

Department of Computer Science, Paderborn University, Germany

Abstract
The amoebot model is a distributed computing model of programmable matter. It envisions
programmable matter as a collection of computational units called amoebots or particles that utilize
local interactions to achieve tasks of coordination, movement and conformation. In the geometric
amoebot model the particles operate on a hexagonal tessellation of the plane. Within this model,
numerous problems such as leader election, shape formation or object coating have been studied. One
area that has not received much attention so far, but is highly relevant for a practical implementation
of programmable matter, is fault tolerance. The existing literature on that aspect allows particles
to crash but assumes that crashed particles do not recover. We propose a new model in which a
crash causes the memory of a particle to be reset and a crashed particle can detect that it has
crashed and try to recover using its local information and communication capabilities. We propose
an algorithm that solves the hexagon shape formation problem in our model if a finite number of
crashes occur and a designated leader particle does not fail. At the heart of our solution lies a
fault-tolerant implementation of the spanning forest primitive, which, since other algorithms in the
amoebot model also make use of it, is also of general interest.

2012 ACM Subject Classification General and reference → General conference proceedings

Keywords and phrases Programmable matter, Geometric amoebot model, Fault tolerance, Shape
formation

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.23

1 Introduction

Model extension

In our work we extend the amoebot model by introducing particle crashes. In order to gain
initial insights into useful strategies towards fault tolerance in our model and motivate further
work in this direction, we focus on the problem of shape formation in the geometric amoebot
model using the hexagon shape formation problem as basis. We assume that the adversarial
scheduler may arbitrarily crash particles. A crash of a particle p has the following effects:
The scheduler sets the state in p’s local memory to crashed, enabling p and its neighbours
to detect that it has crashed, and resets the rest of p’s local memory. The faulty particle p

can then try to recover its local memory by using its local information and communication
capabilities.

Problem description

For any two nodes u, v ∈ V△ of the triangular lattice G△ the distance δ(u, v) ∈ N0 between u

and v is defined as the length of a shortest path from u to v in G△. For a node v ∈ V△ and
i ∈ N0 let B(v, i) := { u ∈ V△ | δ(u, v) = i }. We call a set V ⊆ V△ a hexagon with centre
v ∈ V if there is a k ∈ N0 and a subset S ⊆ B(v, k) such that V = S ∪

⋃
i<k B(v, i). We

© Irina Kostitsyna, Christian Scheideler, and Daniel Warner;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 23; pp. 23:1–23:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:i.kostitsyna@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:scheideler@upb.de
https://orcid.org/0000-0002-5278-528X
mailto:dwarner@upb.de
https://orcid.org/0000-0002-9423-6094
https://doi.org/10.4230/LIPIcs.SAND.2022.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Brief Announcement: Fault-Tolerant Shape Formation in the Amoebot Model

define the hexagon shape formation problem HEX: We assume that the system of particles
initially forms a single connected component of contracted particles, has a unique leader,
called the seed particle, and that all other particles are idle. The goal is to reach a stable
configuration in which the set of nodes occupied by particles is a hexagon with the seed in
its centre.

2 Main results

We propose an algorithm HexagonFT that solves the hexagon shape formation problem HEX
in our model under the presence of particle crashes. Our two main results are:

▶ Lemma 1. If a finite number of crashes occur during the execution of algorithm HexagonFT
and m particles are faulty after the last crash, then a non-faulty configuration is reached
within O(mn) rounds after the last crash.

▶ Theorem 2. If a finite number of crashes occur, then the algorithm HexagonFT solves the
hexagon shape formation problem HEX in worst-case O(n2) work (total number of moves
executed by all particles). From the time when no more crashes occur and the configuration
is non-faulty, the algorithm needs O(n) rounds until termination.

As long as no crashes occur, HexagonFT behaves like the classical hexagon shape formation
algorithm introduced in [1] (compare Figure 1).

(a) (b) (c) (d) (e)

Figure 1 An example run of our hexagon shape formation algorithm HexagonFT with 19 particles
without crashes. Particles have to assume the shape of a hexagon (but for the outer layer, which
may not be completely full). The hexagon is built in a spiral ring in clockwise direction around the
seed as follows: (a) All particles except of the seed are initially idle (black dots). (b) Particles
adjacent to finished particles (seed or retired) become root particles, and follower particles
form parent-child relationships with root or follower particles. (c)–(e) root particles traverse
the forming hexagon counter-clockwise, becoming retired when reaching the position marked by
the last retired particle. follower particles follow root particles via a series of handovers.

Due to space limitations, we address two algorithmic challenges that arise due to particle
crashes (Figure 2): Firstly, we must ensure that particles within the hexagon formed so far
do not become follower particles. If this is not ensured, particles could leave the hexagon,
which in turn could lead to disconnection of the particles. We use a safety primitive (Figure 3)
to ensure that particles inside the hexagon cannot become follower particles. Secondly, we
need to ensure that when a crashed particle chooses a follower as parent, this does not
lead to disconnection of the particles. In order to avoid disconnection, we use a validation
primitive (Figure 4) that determines for a faulty particle which of the follower parent
candidates it can attach to without closing a cycle.

I. Kostitsyna, C. Scheideler, and D. Warner 23:3

(a) (b) (c) (d)

Figure 2 (a)–(b) Crashed particles inside the hexagon have become followers. Some of these
followers follow their root, causing them to leave the hexagon, which eventually leads to a disconnec-
tion of the particles. (c)–(d) A Crashed particle attaches itself to an arbitrary follower pointing
away from it, closing a cycle and leading to irreversible disconnection of the particles.

(a) (b) (c)

Figure 3 Safety primitive: Crashed particles will become either safe or unsafe . Crashed
particles connected to a finished particle via one or two line segments in G△ become unsafe,
otherwise safe by the propagation of safeFlags. Only a safe particle may become a follower.

(a) (b) (c) (d) (e) (f) (g)

Figure 4 Validation primitive: (a) A faulty particle needs to ensure that there is a path to
a root before following a particle. (b) The faulty particle sends invalidate tokens to possible
parent candidates. (c) invalidate is propagated upwards, causing particles on the path to become
invalid . (d)–(e) An invalidate that reaches an error particle is stored by it, an invalidate

that reaches a root is consumed by it. The root generates a valid token which is propagated
downwards along the invalid particles, causing them to become valid. (f)–(g) A safe particle
may become a follower of a valid follower parent candidate. After the recovery of the particle,
the invalidate token previously stored by it will then again be propagated upwards.

References
1 Zahra Derakhshandeh, Robert Gmyr, Andréa W Richa, Christian Scheideler, and Thim

Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, pages 1–2, 2015.

SAND 2022

Brief Announcement: Barrier-1 Reachability for
Thermodynamic Binding Networks Is
PSPACE-Complete
Austin Luchsinger
The University of Texas at Austin, TX, USA

Abstract
Chemical and molecular systems exist in a world between kinetics and thermodynamics. Engineers
of such systems often design them to perform computation solely by following particular kinetic
pathways. That is, just like silicon computation, these systems are intentionally designed to run
contrary to the natural thermodynamic driving forces of the system. The thermodynamic binding
networks (TBN) model is a relatively new model that is particularly well-equipped to investigate
this dichotomy between kinetics and thermodynamics. The kinetic TBN model uses reconfiguration
energy barriers to inform kinetic pathways. This work shows that deciding if two TBN configurations
have a barrier-1 pathway between them is PSPACE-complete. This result comes via a reduction
from nondeterministic constraint logic (NCL).

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Thermodynamic Binding Networks, Nondeterministic Constraint Logic,
NP-complete, PSPACE-complete

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.24

Acknowledgements The author would like to thank the reviewers for their detailed reading and
constructive feedback.

1 Introduction and Preliminaries

The thermodynamic binding networks model, first presented in [5], was introduced in order to
better study the connection between thermodynamic equilibrium and desired computational
pathways. A TBN system, shown in Figure 1(Right), is simply a collection of monomer
types which consist of complementary binding sites. Configurations of a TBN system are
partitions of the monomers into polymers. A TBN configuration is said to be saturated
if the bond count is maximized and said to be stable if it is saturated and the polymer
count is maximized. Some recent work has been done on computing properties of stable
configurations (i.e., at thermodynamic equilibrium) [3, 6]. Of particular interest to this
announcement is the study of energy barriers along kinetic pathways in the TBN model [2]
(described by merging and splitting polymers). In other words, how far away from equilibrium
do these kinetic paths require the system to be (i.e., how many merges are required before
a polymer may be split)? The 1-barrier reachability problem states: Given two saturated
TBN configurations, does there exist a saturated kinetic path between them with barrier at
most 1? This announcement shows that this problem is PSPACE-complete by a reduction
from constraint logic.

Constraint logic, shown in Figure 1(Left), is a very simple model where orientations
are assigned to edges on a graph such that each vertex has minimum total inflow above a
certain value (canonically inflow 2). Several questions have been studied in this model, but
this announcement focuses on the nondeterministic constraint logic. The nondeterministic
constraint logic (NCL) problem (a.k.a. NCL configuration reachability) asks if a goal
configuration can be reached from an initial configuration through a sequence of edge

© Austin Luchsinger;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 24; pp. 24:1–24:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SAND.2022.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Brief Announcement: Barrier-1 Reachability Is PSPACE-Complete

orientation reversals such that no vertex’s inflow constraint is ever unsatisfied. This problem
was shown to be PSPACE-complete in [7]. Constraint logic has been used to show hardness
for several problems including various games [7, 4], and motion planning [9, 1].

Figure 1 (Left) An example constraint graph G = (V,E) (where V = {a, b, c, d} and E =
{λ, δ, γ, ψ, π, ω}) and satisfied state Gs. This graph consists of constraint-2 vertices, weight-2 edges
(blue) and weight-1 edges (red). It is satisfied because all vertices have inflow of at least two. (Right)
An example TBN T and saturated (and stable) configuration S. The dotted-line box in configuration
S indicates that monomers {a, b} and {a∗, b∗} are part of the same polymer (in this case, satisfying
bonds a-a∗ and b-b∗). S is saturated because all starred domains are bound (bonds are maximized),
and it is stable because polymer count is maximized.

2 Complexity Result

Below is a brief explanation of how to transform a constraint graph into a TBN, followed by
the outline for the PSPACE-completeness proof.

2.1 Transforming constraint graph into TBN

Figure 2 (Left) An example constraint graph G and corresponding TBN T . (Right) Satisfied
state Gs and corresponding saturated configuration S.

Figure 2 illustrates the technique for constructing a TBN given a constraint graph. The
primary idea is to construct two “types” of monomers: (1) a constraint monomer in the
TBN which contains one starred domain per edge and two starred domains per vertex in
the constraint graph and (2) two edge monomers per edge in the constraint graph (for each
edge direction), each with an edge domain and vertex domain(s) dictated by edge weight. It
should be noted that this reduction allows for a rather simple proof that a TBN constructed
in this way has a saturated configuration with at least |E| + 1 polymers if and only if the
given constraint graph is satisfiable (both previously know NP-complete problems shown
in [3] and [7], respectively).

2.2 Barrier-1 Reachability is PSPACE-complete
Figure 3 is provided as a visual aid to accompany the intuition given in the proof sketch.

A. Luchsinger 24:3

Figure 3 An example constraint logic edge flip along with the equivalent TBN merge/split path.

▶ Theorem 1. The 1-barrier reachability problem is PSPACE-complete.

A sketch of the proof is as follows: PSPACE-hardness is shown via a reduction from
nondeterministic constraint logic reachability. Specifically, there exists a barrier-1 kinetic
path between two saturated configurations in the TBN if and only if there exists a valid
move sequence between the satisfied constraint logic configurations. The key idea is that
a satisfied constraint logic state is represented by a stable TBN configuration with |E| + 1
polymers, and a valid edge flip can be simulated by single merge followed by a split operation
in the TBN while invalid edge flips require at least two sequential merges. The converse
is proven similarly. A simple argument then shows membership in NPSPACE which, by
Savitch’s theorem [8], means the problem is in PSPACE and thus PSPACE-complete.

References
1 Aaron Becker, Erik D. Demaine, Sándor P. Fekete, Golnaz Habibi, and James McLurkin.

Reconfiguring massive particle swarms with limited, global control. In International Symposium
on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics,
pages 51–66. Springer, 2013.

2 Keenan Breik, Cameron Chalk, David Haley, David Doty, and David Soloveichik. Programming
substrate-independent kinetic barriers with thermodynamic binding networks. IEEE/ACM
transactions on computational biology and bioinformatics, 2019.

3 Keenan Breik, Chris Thachuk, Marijn Heule, and David Soloveichik. Computing properties
of stable configurations of thermodynamic binding networks. Theoretical Computer Science,
785:17–29, 2019.

4 Boris De Wilde, Adriaan W. Ter Mors, and Cees Witteveen. Push and rotate: a complete
multi-agent pathfinding algorithm. Journal of Artificial Intelligence Research, 51:443–492,
2014.

5 David Doty, Trent A. Rogers, David Soloveichik, Chris Thachuk, and Damien Woods. Ther-
modynamic binding networks. In Robert Brijder and Lulu Qian, editors, DNA Computing
and Molecular Programming, pages 249–266, Cham, 2017. Springer International Publishing.

6 David Haley and David Doty. Computing properties of thermodynamic binding networks: An
integer programming approach. arXiv preprint, 2020. arXiv:2011.10677.

7 Robert A. Hearn and Erik D. Demaine. Games, puzzles, and computation. CRC Press, 2009.
8 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

Journal of Computer and System Sciences, 4(2):177–192, 1970.
9 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion planning.

The International Journal of Robotics Research, 35(14):1750–1759, 2016.

SAND 2022

http://arxiv.org/abs/2011.10677

	p000-Frontmatter
	Preface
	Organization

	p001-Hanauer
	1 Introduction
	2 Preliminaries
	2.1 Conditional Lower Bounds

	3 Fully Dynamic Graph Algorithms
	3.1 (Strongly) Connected Components and BFS/DFS Trees
	3.2 Minimum Weight Spanning Trees
	3.3 Cycle Detection and Topological Ordering
	3.4 (Weighted) Matching
	3.5 k-Core Decomposition
	3.6 Motif Search and Motif Counting
	3.7 Diameter
	3.8 Independent Set and Vertex Cover
	3.9 Shortest Paths
	3.10 Maximum Flows and Minimum Cuts
	3.11 Graph Clustering
	3.12 Centralities
	3.13 Graph Partitioning

	4 Dynamic Graph Systems
	5 Methodology

	p002-Spirakis
	p003-Wattenhofer
	p004-Adamik
	1 Introduction
	2 Atomic Splittable Flow Over Time Games
	3 Temporal Information Only
	4 Information on Exit Times
	5 Further Research

	p005-Adamson
	1 Introduction
	2 Cycles with bounded number of chords
	3 Underlying graphs with (r,b)-divisions
	3.1 Tools
	3.2 Applications
	3.2.1 Bounded treewidth graphs
	3.2.2 Planar graphs

	4 Subcubic planar graphs

	p006-Alaniz
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions

	2 Definitions
	2.1 Building Blocks
	2.2 The Tile Automata Model
	2.3 Limited Model Reference

	3 State Space Lower Bounds
	4 String Unpacking
	4.1 Deterministic Transitions
	4.1.1 Overview
	4.1.2 States
	4.1.3 Affinity Rules/Placing Section
	4.1.4 Transition Rules/Indexing A column
	4.1.5 Look up
	4.1.6 Arbitrary Base

	4.2 Nondeterministic Single-Transition Systems
	4.2.1 Index States and Look Up States
	4.2.2 Bit Gadget Look Up

	4.3 General Nondeterministic Transitions
	4.3.1 Overview

	5 Rectangles
	5.1 States
	5.2 Transition Rules / Single Tile Half Adder
	5.3 Walls and Stopping
	5.4 Arbitrary Bases

	6 Squares
	7 Future Work

	p007-Berenbrink
	1 Introduction
	2 Population Model and Problem Definitions
	3 Clock Algorithm
	4 Maintenance: Proof of thm:synchronousphaseclock
	5 Recovery: Proof of thm:looselystabilizing
	6 Adaptive Majority Problem
	6.1 Our Protocol
	6.2 Analysis

	p008-Caballero
	1 Introduction
	1.1 Previous work

	2 Definitions
	3 Producibility Hardness
	3.1 Overview
	3.2 Macroblocks
	3.3 Computing Clauses

	4 Unique Assembly Verification is coNP^{NP}-complete
	4.1 Reduction Overview
	4.2 SAT Assembly
	4.3 Test Assembly
	4.4 Sink

	5 1D Verification
	6 Future Work

	p009-Casteigts
	1 Introduction
	1.1 Contributions
	1.2 Organization of the document

	2 Definitions and preliminary observations
	2.1 Basic definitions
	2.2 Preliminary observations

	3 Robustness of the diameter is hard
	4 Robustness of pairwise distances
	4.1 Two-terminal series-parallel graphs (TTSPs)
	4.2 Characterization of TTSPs in terms of excluded rooted minor
	4.3 Robust distance in terms of rooted diamonds
	4.4 An efficient recognition algorithm for distance-preserving TTSPs

	5 Concluding remarks and open questions

	p010-Charron-Bost
	1 Introduction
	1.1 Asymptotic average consensus
	1.2 Contribution
	1.3 Related works

	2 Preliminaries
	2.1 Mathematical toolbox
	2.2 Computing model

	3 Recurrence rules for consensus
	3.1 Affine recurrence rules
	3.2 Consensus and average consensus rules

	4 The MaxMetropolis algorithm
	4.1 A symmetric affine rule
	4.2 Temporal complexity of the MaxMetropolis algorithm

	5 Conclusion

	p011-Czerner
	1 Introduction
	2 Preliminaries
	3 Population Computers
	4 Overview and Main Results
	5 Previous Constructions: Angluin et al. and Blondin et al.
	6 Succinct Bounded Population Computers for Presburger Predicates
	6.1 Population computers for remainder predicates
	6.2 Population computers for threshold predicates
	6.3 Population computers for all Presburger predicates

	7 Converting Population Computers to Population Protocols
	7.1 Removing multiway transitions
	7.2 Converting output functions to marked-consensus output functions
	7.3 Removing helpers
	7.4 A O(n^3) bound on the expected interactions

	8 Rapid Population Computers: Proving a O(n^2) Bound
	9 Conclusions

	p012-Daymude
	1 Introduction
	2 Preliminaries
	2.1 Computational Model
	2.2 Local Mutual Exclusion

	3 Algorithm for Local Mutual Exclusion
	4 Analysis
	5 Extending to Asynchronous Concurrency
	6 Applications
	7 Conclusion

	p013-Doty
	1 Introduction
	1.1 Related work

	2 Definitions and Notation
	3 Dynamic Size Counting
	3.1 Basic properties of the dynamic size counting problem
	3.2 High-level overview of dynamic size counting protocol
	3.3 Formal description of loosely-stabilizing counting protocol

	4 Analysis of Dynamic Counting Protocol
	4.1 Bound on the group values
	4.2 Distribution of the groups
	4.3 Group detection
	4.4 Dynamic size counting protocol analysis
	4.5 Space optimization

	5 Conclusion and open problems

	p014-Doty
	1 Introduction
	2 Model
	3 Simulation of Turing machine in SIMD||DNA
	3.1 High-level overview of construction
	3.2 Representation of Turing machine tape cell as a register cell
	3.3 Detailed description of SIMD||DNA instructions simulating a Turing machine
	3.4 Complexity of construction

	4 Conclusion

	p015-Erlebach
	1 Introduction
	2 Strict TEXP parameterizations
	2.1 An FPT algorithm for k-fixed TEXP
	2.2 FPT algorithms for k-arbitrary TEXP
	2.2.1 A randomized algorithm
	2.2.2 Derandomizing the algorithm of Theorem 9

	3 Non-Strict TEXP parameterizations
	3.1 An FPT algorithm for NS-TEXP with parameter L
	3.2 W[2]-hardness of Set NS-TEXP for parameter L

	4 Conclusion

	p016-Fluschnik
	1 Introduction
	2 Preliminaries
	3 NP-hard cases
	3.1 Few changes allowed
	3.2 Few stages

	4 Parameterized complexity
	4.1 Underlying graph parameterization
	4.2 Maximum parameterization
	4.3 Sum parameterization

	5 Global budget

	p017-Fuchsle
	1 Introduction
	2 Preliminaries
	3 Delay-Robust Connection
	4 Delayed-Routing Games
	4.1 A dynamic program for Delayed-Routing Game
	4.2 PSPACE-hardness of Delayed-Routing Path Game
	4.3 PSPACE-containment of Delayed-Routing Path Game

	5 Conclusion and Outlook

	p018-Hanauer
	1 Introduction
	2 Preliminaries
	3 New Counting Algorithms for Subgraphs on Four Vertices
	4 Lower Bounds
	5 Conclusion

	p019-Hermelin
	1 Introduction
	1.1 Our results
	1.2 Related Work

	2 Preliminaries and Basic Results
	2.1 Notation and Definitions
	2.2 Basic Hardness Results

	3 Approximation Algorithms
	4 Order-Preserving Temporal Interval Graphs
	4.1 A Polynomial-Time Algorithm for Order-Preserving Temporal Interval Graphs
	4.2 An FPT-Algorithm for Vertex Deletion to Order Preservation
	4.3 NP-Hardness of Vertex Deletion to Order Preservation

	5 Conclusion

	p020-Yamada
	1 Introduction
	2 Preliminary
	3 Search algorithms for an MRS in a finite 3D cubic grid
	3.1 Search with a common compass
	3.2 Search with a common vertical axis
	3.3 Search without a common compass

	4 Necessary number of modules
	5 Conclusion and future work

	p021-Augustine
	1 Introduction
	2 Our Contributions
	3 Open Problems

	p022-Hand
	1 Problem Definition and Restrictions on the Underlying Graph
	2 Restrictions on the Temporal Structure

	p023-Kostitsyna
	1 Introduction
	2 Main results

	p024-Luchsinger
	1 Introduction and Preliminaries
	2 Complexity Result
	2.1 Transforming constraint graph into TBN
	2.2 Barrier-1 Reachability is PSPACE-complete

