
A Practical Algorithm for Chess Unwinnability
Miguel Ambrona #

Independent Researcher, Madrid, Spain

Abstract
The FIDE Laws of Chess establish that if a player runs out of time during a game, they lose unless
there exists no sequence of legal moves that ends in a checkmate by their opponent, in which case
the game is drawn. The problem of determining whether or not a given chess position is unwinnable
for a certain player has been considered intractable by the community and, consequently, chess
servers do not apply the above rule rigorously, thus unfairly classifying many games.

We propose, to the best of our knowledge, the first algorithm for chess unwinnability that is
sound, complete and efficient for practical use. We also develop a prototype implementation and
evaluate it over the entire Lichess Database (containing more than 3 billion games), successfully
identifying all unfairly classified games in the database.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Software and its engineering → Software libraries and repositories

Keywords and phrases chess, helpmate, unwinnability, timeout, dead position

Digital Object Identifier 10.4230/LIPIcs.FUN.2022.2

Related Version Full Version: https://chasolver.org/FUN22-full.pdf

Supplementary Material https://github.com/miguel-ambrona/D3-Chess

Acknowledgements Special thanks to Pooya Farshim, for very fruitful discussions and all his feedback;
Elena Gutiérrez, for all her help and comments; Antonio Nappa, for providing the hardware; the
Lichess Team; the Stockfish Team; and many others: https://chasolver.org/acks.html. I would
also like to express my sincere gratitude to Andrew Buchanan and Andrey Frolkin, for sharing with
me and letting me include two original compositions, and for all the feedback. Finally, I would like
to thank Maarten Loeffler, for having found a gap in an earlier version of the proof of Lemma 8,
and for all his comments. I am also very thankful to the other anonymous reviewers of FUN 2022,
for their valuable time and careful reading of this manuscript.

1 Introduction

Chess clocks have been used since 1883 [14] and are an essential tool in (tournament) chess to
enforce game termination. They introduce a reliable upper-bound on the duration of games,
ensuring that players will not excessively delay the match. This is crucial for designing and
respecting tournament schedules.

A chess clock consists of two adjacent and entangled (countdown) timers that can never
run simultaneously. Each player is responsible for one of the timers and must complete the
game before their timer gets down to zero. Otherwise the player would “flag”, i.e., lose on
time. During the game, the player with the turn must press the clock’s button after making
a move (this is not necessary in online chess). This action, which concludes the player’s turn,
will stop their timer and resume their opponent’s timer, who now has the turn and must
proceed analogously.

There exists a wide variety of time controls that specify the initial allotted time and
(optionally) a time bonus after every prescribed number of moves, ranging from several hours
(or even days) to just 15 seconds to complete the entire game [1]. What is common to all
time controls is that running out of time leads to a defeat. But not always! The clock is

© Miguel Ambrona;
licensed under Creative Commons License CC-BY 4.0

11th International Conference on Fun with Algorithms (FUN 2022).
Editors: Pierre Fraigniaud and Yushi Uno; Article No. 2; pp. 2:1–2:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mac.ambrona@gmail.com
https://orcid.org/0000-0001-5927-9235
https://doi.org/10.4230/LIPIcs.FUN.2022.2
https://chasolver.org/FUN22-full.pdf
https://github.com/miguel-ambrona/D3-Chess
https://chasolver.org/acks.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 A Practical Algorithm for Chess Unwinnability

just a tool to guarantee that the game will finish, but actual game position is given a higher
priority than the clock state. For example, if your last move has checkmated your opponent,
you win, even if your timer got down to zero while executing it [7, Article 5.1.1]. Or if you
just have the king (because all your other pieces were captured), you cannot win anymore,
not even on time! This folklore rule is a particular case of the following more general rule
described in Article 6.9 of the FIDE Laws of Chess [7].

... if a player does not complete the prescribed number of moves in the allotted
time, the game is lost by that player. However, the game is drawn if the position is
such that the opponent cannot checkmate the player’s king by any possible series of
legal moves.

1.1 The problem

Thus, in order to rigorously apply Article 6.9, one must be able to tell whether or not a given
position can be won by the player who still has time on their clock.

▶ Remark 1. A position being winnable does not mean that a certain player can force a victory.
Rather, it refers to the existence of a sequence of legal moves that ends in a checkmate by
the player. Such sequence, which typically contains a poor choice of moves, is sometimes
referred to as a helpmate [22].

Deciding whether or not a position is unwinnable, i.e. whether a helpmate does not exist,
is usually relatively simple for a human. For example, it is not very hard to realize that no
player can deliver checkmate in Position 1 (it is a so-called dead position), since the pawn
wall is blocked and the bishops are not useful to make any progress. According to the FIDE
Laws of Chess [7, Article 5.2.2] the game is finished as soon as the position becomes dead.
No further moves are permitted and would be considered illegal.1

However, other such positions can be more involved. For example, it is not so easy to
understand/prove why Position 2 is also dead (White to move).2 Interestingly, if in Position 2
the pawn on a4 were on a5, the position would be winnable for White. Indeed, the following
is a possible helpmate sequence in that case:

1 Ka6 Ke8 2 Bb7 Kd8 3 Bc8 Ke8 4 Bd7+ Kd8 5 Be8 Kc8 6 Bf7 Kd8 7
Bg8 Ke8 8 Kb7 Kd8 9 g5 Ke8 10 Kc8 a4 11 Bf7#

Note how the pawn being on a5 gave Black an additional tempo on move 10; without it,
Black would have been in stalemate. This position, devised by the prominent chess composer
Andrew Buchanan3, evidences the hardness of deciding unwinnability, as very subtle changes
in the position can alter the result.

1 This rule was introduced on July 1, 1997, and gave birth to a completely new genre of chess compositions
called dead reckoning [3, 4, 20]. See Appendix C for two original compositions of this kind.

2 The player to move is indicated by either a white or a black box adjacent to the diagram.
3 The original composition asks: What was the last move? (In Position 2). Since it is White to move, the

last move must have been either . . . Ke8–d8 or . . . a5–a4, but only one of these moves comes from a
position that is not dead. It’s instructive to guess which one is the case here!

M. Ambrona 2:3

8 0Z0Z0Z0Z
7 ZpZ0ZkZ0
6 pOpZ0ZpZ
5 O0OpZpOp
4 0ZbO0O0O
3 Z0Z0AKZ0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 1 Lichess game tLUsotyi.

8 Ba0j0a0Z
7 aKo0o0o0
6 0oPZPZPZ
5 ZPZ0Z0Z0
4 pZ0Z0ZPZ
3 O0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 2 A. Buchanan, StrateGems 2002.

1.2 Related work
Online chess. Chess servers are an important point of reference to understand what the
current state-of-the-art with respect to chess unwinnability is. It turns out that given
the apparent complexity of deciding unwinnability, chess servers only analyze whether the
intended winner has sufficient material to checkmate. Indeed, the three most popular chess
servers adjudicate timeouts to date as follows.

Chess.com, currently the Internet’s biggest online chess server, declares a position as drawn
if, after a timeout, the player with time on the clock has insufficient material [5, 16,17].
Namely, if they have (i) a lonely king, (ii) a king and a bishop, (iii) a king and a knight,
(iv) a king and two knights. This decision is supported by the claim that they do not
follow the FIDE Laws of Chess for adjudicating timeouts and instead follow the USCF
rules, which specify that the game is drawn (in case of insufficient material) if there is no
forced mate by the intended winner.
Lichess.org, one of the most popular chess websites in the world while remaining 100%
free/libre and open-source, focuses on positions without pawns. Unlike other servers,
Lichess never declares a position as unwinnable when it is indeed winnable. (Although it
fails to identify all unwinnable positions.) In particular, Lichess correctly classifies all
insufficient material positions that do not contain pawns. For example, KQ vs KB (king
and queen vs king and bishop) positions are (correctly) declared as unwinnable for the
player holding the bishop (see Lemma 6).
Chess24 seems to proceed as Chess.com does. As an example, see Position 3. It corresponds
to a Chess24 game that, according to FIDE rules, was unfairly classified as a draw after
Black ran out of time. White has only a bishop, but there is still a chance for White
to checkmate Black (of course not by force) if Black promoted to a knight and trapped
themself in a corner!

We do not advocate following the FIDE Laws of Chess over other choices. Every chess
server should have the right to choose their own rules, especially for situations that occur
infrequently and do not significantly impact the experience of chess players. However, we
believe that the approach followed by Lichess is more satisfactory: in case unwinnability
cannot be determined by the system’s logic, declare the position as winnable. Otherwise, very
unfair situations may arise. For example, using only the above-mentioned material rules

FUN 2022

https://lichess.org/tLUsotyi#107
https://www.chess.com/home
https://lichess.org
https://chess24.com

2:4 A Practical Algorithm for Chess Unwinnability

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0o0Z0Z0Z
5 ZBZ0j0Z0
4 0Z0Z0oKZ
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 3 Black ran out of time. White can
still helpmate with under promotion to a knight.
(Chess24 game VO1NB3MGSYqXv3BhVsCBkA [8].)

8 0Z0Z0Z0Z
7 Z0Z0ZkZK
6 0Z0Z0Z0O
5 Z0Z0ZnZ0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 4 White ran out of time.
Black can force a victory with just a knight.
(Lichess game HaTT3dsU.)

in Position 4, after White ran out of time, would lead to classifying the game as drawn.
However, not only can Black helpmate in that position, but Black can also force a victory,
for example, with the following forced sequence.4

1 Kh8 Nh4 2 Kh7 Ng2 3 Kh8 Nf4 4 Kh7 Ne6 5 Kh8 Nf8 6 h7 Ng6#

An absurd situation arises: In Position 4, White is completely lost. However, White
can still draw the game by letting their time run out (if they are playing on a server that
adjudicates timeouts by following simple rules based on the amount of material) [9].

Existing tools for unwinnability. Labelle [12] performed a computer search over a database of
2M+ over the board games (from 1998 to 2011), searching for dead drawn positions by forced
insufficient material or forced stalemate where players continued making moves (illegal moves,
according to [7, Article 5.2.2]). This demonstrates that dead positions occur in professional
chess and can be easily missed by chess arbiters.

Varmose [21] implemented an algorithm that identifies blocked positions that only involve
bishops and pawns, which only misses some corner cases. This is a non-trivial step towards
solving unwinnability, but the tool cannot identify all unwinnable positions.

Other tools for solving helpmate problems, such as the analyzer by Paliulionis [18] or the
solver by Dugovic [6] can potentially identify any unwinnable position as they perform an
exhaustive search over the tree of moves. Nevertheless, such tools can hardly be utilized to
decide unwinnability, they would incur a prohibitive cost for most positions [15].

This state of affairs leaves the problem of automatically checking whether or not a position
can be won by a given player inadequately addressed. Given the intractability of a simple
brute force approach, we ask:

How can we rule out all sequences of legal moves without actually exploring them all?

4 The trick is to always watch the g6 square when the white king is on h8, preventing White from
stalemating themself by pushing the pawn. This has to be done while maneuvering the knight to f8
from where it controls g6 as before as well as h7, thus forcing White to push the pawn.

https://chess24.com/en/game/VO1NB3MGSYqXv3BhVsCBkA
https://lichess.org/HaTT3dsU#124

M. Ambrona 2:5

On the complexity of chess unwinnability. Chess unwinnability for an appropriate general-
ization of chess over an n×n board has been studied by Brunner, Demaine, Hendrickson,
and Wellman [2]. The authors prove, via a reduction from a one-player game called Subway
Shuffle [10], that chess unwinnability is PSPACE-complete.

Their generalization of chess does not impose any restriction on the length of games. A
natural alternative generalization, motivated by the 75-moves rule5, would be to impose
a polynomial bound on the round complexity of the game. In that case, it would follow
from the results of Brunner et al. that chess unwinnability is coNP-complete under such
generalization. These intractability results, however, do not apply to the (constant) case
n = 8, our goal in this paper.

1.3 Our contributions

We pursue the study of chess unwinnability and establish several results that, together, form
an algorithm which is sound, complete and computationally practical.

Static analysis. Our main contribution is a mechanism for statically determining that a
position is unwinnable without explicitly exploring game variations (Section 3), which we
believe, can be of independent interest and applicable to other board games. This algorithm
is particularly effective on blocked positions, e.g. Position 1, where players have access to
limited and disjoint regions of the board and can make no progress. Our static analysis is
performed in two steps: (i) identifying what pieces can move and all the squares that each
can potentially reach; (ii) based on the previous information and based on the number of
pieces that can check and constrain the movement of the intended loser’s king, our analysis
may conclude that checkmate is impossible.

The problem associated to (i), that we coin the mobility problem, is arguably the most
challenging part of the analysis. In Section 3.1, we provide an algorithm (Figure 7) that over-
approximates the true solution to the mobility problem on the given position (Corollary 9).
(Informally, the solution provided by our algorithm is always greater than or equal to the
actual solution.) We then show (Lemma 11) that our routine for addressing our second
step (ii), described in Figure 8, is sound when given as input the true solution to the mobility
problem. (It is never wrong when its output is “unwinnable”.) Furthermore, we argue that
this routine is monotone (Lemma 10), which allows us to conclude that it is also sound when
given an over-approximation to the actual mobility solution (Theorem 12). Consequently,
the composition of our two routines leads to a (static) unwinnability algorithm which is
sound (but not complete).

Search of variations. We propose an algorithm for exploring variations, enhanced with
a transposition table and selected heuristics for deciding what moves to explore further
(Section 2.2, Figure 5). This building block is combined with our static analysis to build an
algorithm for chess unwinnability (Section 4, Figure 9) that is sound and complete.

Implementation. We implement our algorithm and evaluate it over the entire database of
Lichess standard rated games [13], successfully identifying all the games that were unfairly
classified after a timeout (Section 5). These results evidence that the algorithms developed
in this work are suitable for practical use and could be adopted by real-world chess servers.

5 Establishing that a game is drawn if 75 full moves are completed without captures or pawn movements.

FUN 2022

2:6 A Practical Algorithm for Chess Unwinnability

2 Preliminaries

We assume the reader to be familiar with the basic rules of chess, including piece movement
and game completion. Nevertheless, we establish a formal notation, which facilitates a
rigorous description of our main algorithms and results.

Let S := {a1, b1, . . . , h8} be the set of all 64 squares on a chessboard. Let the set of
piece types be T := {K,Q,R,B,N,P}. A position pos is a collection of pieces, i.e., triples
(t, c, s) ∈ T × {w, b} × S where t is a piece type, c is the piece color and s is a square. Given
a piece P := (t, c, s) we define P.type = t, P.side = c and P.sq = s.

A position is valid if for every distinct P, P ′ ∈ pos, it holds that P.sq ̸= P ′.sq. A position
is said to be legal if it can be reached from the initial position of a chess game by a sequence
of legal moves. We define the king-distance between two squares as the number of moves that
it takes for a king to go from one to the other over an empty board. We define knight-distance
analogously. We say that two squares are adjacent if they are at king-distance 1. A rank is
a row of 8 squares, whereas a file is a column of 8 squares. Unless specified otherwise, we
measure the depth of a variation (a sequence of moves) in halfmoves or plies.

For every square s ∈ S, we denote by (s) the set of squares that share a border with s

(that is, adjacent squares of a different color) and by (s) the squares that are diagonally
adjacent to s (i.e., adjacent squares of the same color). We define (s) := (s) ∪ (s). We
also denote by (s) the set of squares that are at knight-distance 1 from s. The empty or
singleton set containing the adjacent square to s from which a white (respectively, black)
pawn could move to s in one non-capturing move is denoted by (s) (respectively, (s)).
Finally, we denote by (s) (respectively, (s)) the set of squares from which a white
(respectively, black) pawn attacks s.

▶ Definition 2 (Unwinnability). We say that a position is unwinnable for a given player if
there does not exists a sequence of legal moves that ends in a checkmate by the player.

Our goal is to build an algorithm for solving chess unwinnability, which given a position
and an intended winner, after a finite number of steps always outputs a binary value in
{Unwinnable, Winnable}, indicating unwinnability. Ideally, when the position is declared as
Winnable, we would like our algorithm to also provide a helpmate sequence, i.e., a witness of
non-unwinnability. We require our algorithm to be sound.

▶ Definition 3 (Soundness). We say an algorithm for solving chess unwinnability is sound if
it is never wrong when its output is Unwinnable.

Another desirable property is completeness, meaning that the algorithm will be able to
identify all unwinnable positions.

▶ Definition 4 (Completeness). We say an algorithm for solving chess unwinnability is
complete if it is never wrong when its output is Winnable.

Since chess is finite, it is not hard to implement a chess unwinnability algorithm that is
both sound and complete, by performing an exhaustive search over the tree of variations. The
challenge here, however, is to achieve efficiency while preserving soundness and completeness.
Note that an exhaustive search would terminate relatively quickly in most positions, since it
just needs to find a helpmate sequence for the intended winner. However, in positions where
no checkmate is possible, the whole tree of variations would need to be exhausted before
unwinnability could be concluded.

Our starting point will be a routine that performs an exhaustive search, enhanced with
a transposition table and with heuristics for selecting what moves to explore first (see
Section 2.2). We will first establish some preliminary results that ensure unwinnability in
positions that contain no pawns.

M. Ambrona 2:7

Find-Helpmatec(pos, depth, maxDepth): Global variables: table, cnt, nodesBound

Inputs: position, depth (int), maxDepth (int)
Output: bool (true if a checkmate sequence was found, false otherwise)

1: if the intended winner is checkmating their opponent in pos then return true
2: if the intended winner has just the king or the position is unwinnable according

to Lemma 5 or Lemma 6 or the position is stalemate or the intended winner is
receiving checkmate in the position then return false

3: increase cnt and set d := maxDepth - depth
4: if cnt > nodesBound ∨ d < 0 then return false ▷ The search limits are exceeded
5: if (pos, D) ∈ table with D ≥ d then return false ▷ pos was already analyzed
6: store (pos, d) in table
7: for every legal move m in pos do:
8: let inc = match Score(pos, m) with Normal→ 0 | Reward→ 1 | Punish→ −2
9: if Find-Helpmatec(pos.move(m), depth + 1, maxDepth + inc) then return true

10: return false ▷ No mate was found after exploring every legal move

Figure 5 Find-Helpmatec routine, returns true if a checkmate sequence for player c ∈ {w, b}, the
intended winner, is found or false otherwise. The base call should be done on depth = 0, cnt = 0,
and an empty table. The value of maxDepth and nodesBound can be chosen to set the limits of the
search. See the full version of this paper for details about the Score routine.

2.1 Preliminary results
We say a position is pawn-free if it does not contain pawns of any color. We refer to the full
version of this paper for a formal a proof of the following lemmas.

▶ Lemma 5. A pawn-free position is unwinnable for a player with just a knight if their
opponent does not have knights, bishops or rooks.

▶ Lemma 6. A pawn-free position is unwinnable for a player with just bishops of one square
color if their opponent does not have knights or bishops of the opposite square color.

2.2 Search of variations
We propose a dedicated search of variations, enhanced with a transposition table and
heuristics that reward some variations, which will be explored further before others (described
in Figure 5). This routine, called Find-Helpmatec, constitutes an important building block
of our main algorithm for chess unwinnability, described in Section 4, where it is combined
with our static analysis (see Section 3).

Find-Helpmatec is a recursive algorithm that outputs true only when it has found a
checkmate position for the intended winner. Otherwise, the algorithm will output false based
on several criteria:

The game is over, but the intended winner did not checkmate their opponent.
The conditions of Lemma 5 or Lemma 6 apply.
The position was found in the transposition table (a table storing all positions that have
been explored so far), so it is not necessary to repeat the search that starts from it.
All legal moves have been explored without having found a checkmate.
The search limits were reached.

FUN 2022

2:8 A Practical Algorithm for Chess Unwinnability

If the final output of Find-Helpmatec on the given position is false, and the search limits
were not reached in any of its recursive calls, the position is truly unwinnable.

The search limits include a maximum depth for the variations being explored and a limit
on the total number of explored positions. Before exploring the position after a legal move,
we determine with our Score heuristic (described in the full version of this paper) whether
the maximum depth limit will be increased (rewarded), decreased (punished) or remain the
same in the analysis of the variation associated with the move.

We refer to Section 4 for details of how Find-Helpmatec is integrated into our chess
unwinnability algorithm via iterative deepening [11].

3 Static algorithm

The search of variations provided by Find-Helpmatec (Figure 5), which is enhanced with a
transposition table and our heuristics for selecting what moves to explore first, will potentially
terminate on any position, correctly classifying it with respect to unwinnability if the search
limits were sufficiently large. However, in blocked positions, the search space can become
prohibitively large. For example, in Position 1 the search would need to iterate over and store
the (more than) 80K positions that can arise from that board configuration before deciding
that the position is unwinnable. This would greatly exceed the maximum computation time
that we should dedicate to a single position if we want our algorithm to be competitive and
suitable for its integration in real-world chess servers, which usually handle tens of games
terminating every second.

In order to offload unnecessary computations from our main routine in blocked positions,
we design a mechanism that allows us to conclude that certain positions are unwinnable
without explicitly exploring all variations. Our algorithm is divided into two phases:

(i) Identifying what pieces can move and all the squares that each can potentially reach.
(ii) Identifying the king’s region, defined as the set of all squares that can be reached by

the intended loser’s king, as well as identifying all the intended winner’s pieces that can
move inside the king’s region, the so-called intruders. Based on the number of intruders
and their piece type, our algorithm may conclude that checkmate is impossible.

▶ Remark 7. This algorithm does not need to be complete, since it is backed by our main
search routine. In fact, as evidenced by [2] or by the example in Position 2, deciding
unwinnability without exploring variations may be an impossible task. Nevertheless, we
require that our static algorithm be sound in the sense that it can be fully trusted when it
classifies a position as unwinnable.

Performing step (i) is arguably the most challenging part of the analysis. For every
P ∈ pos and every s ∈ S, we need to decide whether or not piece P , currently on square P.sq,
can potentially go to square s after a sequence of legal moves. Define M∗

P →s as 1 if the above
displacement is possible and 0 otherwise. Our mobility algorithm will try to approximate the
correct value of M∗

P →s in the given position for every piece and every target square.

3.1 Mobility algorithm
We consider binary variables MP →s ∈ {0, 1} for every P ∈ pos and every s ∈ S, encoding
the output of our mobility algorithm. Since the function associated to solving step (ii) is
monotone (see Lemma 10), any over-approximation of the actual solution is acceptable
for the static algorithm to be sound. Namely, we allow for solutions MP →s that satisfy
MP →s ≥ M∗

P →s, coined admissible solutions. Intuitively, this is possible because wrongly

M. Ambrona 2:9

concluding that a piece can move more than what it really can is not harmful (in the sense
that it may lead to the conclusion that the position is winnable when it is actually unwinnable,
but not vice versa). However, we hope for an approximation that is as close as possible
to the actual solution. (Observe that a degenerate output of MP →s = 1 for all P and s is
admissible, but not useful, because step (ii) would simply return “possibly winnable”.)

We also define additional variables representing square reachability and clearance. This
is useful to model pawn captures and king movements more accurately. More concretely, we
consider the following binary variables: MP →s for every P ∈ pos and every s ∈ S; CP for
every P ∈ pos; and Rc

s for every s ∈ S and every c ∈ {w, b}, defined as follows:
MP →s indicates if piece P , currently on P.sq, can eventually move to square s.
Rc

s indicates if square s can eventually be reached by a non-king piece of color c (or if it
is currently occupied by such a piece).
CP indicates if piece P can be cleared from its current square (by moving or being
captured).

Given a piece P and a square s, we define the P -predecessors of s, denoted by predP (s),
as the squares that are at king-distance 1 from s (except for knight predecessors, which are
at king-distance 2), from which a piece of type P.type can reach s in one non-capture move
over an empty board. More concretely,

predP (s) =



(s) if P = (P, w, _)
(s) if P = (P, b, _)

(s) if P.type =N
(s) if P.type =B
(s) if P.type =R
(s) if P.type ∈ {Q,K}

pred-captP (s) =

 (s) if P = (P, w, _)
(s) if P = (P, b, _)

predP (s) otherwise

prom(P) =

 {a8, . . . , h8} if P = (P, w, _)
{a1, . . . , h1} if P = (P, b, _)
∅ otherwise

We define pos.attackers(s) as the set {P ∈ pos : P.sq ∈ pred-captP (s)}. The mobility
algorithm from Figure 7 greedily activates the mobility (reachability and clearance) variables
as soon as it is possible (i.e. not forbidden by the logic of the implications from Figure 6).
For example, if P is a knight and there is some piece P ′ of the same color as P , currently
on h8, MP →h8 can be set to true as soon as (MP →g6 = 1 or MP →f7 = 1) and CP ′ = 1. But
it cannot be set to true otherwise: for the knight to reach h8, it must first reach a direct
predecessor of h8 and the ally piece on h8 must first be cleared.

▶ Lemma 8 (Mobility Soundness). Let pos be a position where no player has castling rights
and en passant is not possible. Let M ← Mobility(pos) (see Figure 7). If MP →s = 0 for
some piece P ∈ pos and some square s, then there is no sequence of legal moves after which
piece P , starting from pos, can reach square s.

Proof. The result follows from the fact that all implications from Figure 6 are sound, in the
sense that they are all satisfied by the true solution to the mobility problem.

We will prove a more general result, involving the extra variables for reachability and
clearance. Let ({MP →s}P,s, {CP }P , {Rc

s}s,c), for P ∈ pos, s ∈ S, c ∈ {w, b}, be the final
state of the execution of Mobility(pos). We will argue that, for all n ∈ N:
(a) If there exists a sequence of n legal halfmoves (plies) after which piece P ∈ pos ends at

square s, then MP →s = 1.
(b) If there exists a sequence of n legal halfmoves after which a square s is occupied by a

non-king piece of color c, then Rc
s = 1.

(c) If there exists a sequence of n legal halfmoves after which a piece P ∈ pos is cleared from
its current square P.sq, then CP = 1.

FUN 2022

2:10 A Practical Algorithm for Chess Unwinnability

Move. If a piece can move to square s, it must pass first by a predecessor of s:

∀P ∈ pos : P.type ̸=P,

∀s ∈ S \ {P.sq}. MP →s =⇒
∨

u∈predP (s)

MP →u

Pawn move. For pawn captures we require that the capturing square can be reached
by a (non-king) opponent piece. Pawns that promote may go everywhere:

∀P ∈ pos : P.type =P,

∀s ∈ S \ {P.sq}. MP →s =⇒
∨

u∈predP (s)∪prom(P)

MP →u ∨
∨

u∈pred-captP (s)

(
MP →u ∧R¬P.side

s

)
Clearance. A piece can be cleared from its square by moving or being captured:

∀P ∈ pos. CP =⇒
∨

s∈S\{P.sq}

MP →s ∨
∨

P ′∈pos
P ′.side ̸=P.side

MP ′→P.sq

Reachability. A square can be reached if some piece can move to it or it is occupied:

∀s ∈ S,

∀c ∈ {w, b}. Rc
s =⇒

∨
P ∈pos

P.side=c ∧ P.type̸=K

MP →s

King attackers. Direct opponent attackers must be cleared before a king can move:

∀P ∈ pos : P.type =K,

∀s ∈ S \ {P.sq}. MP →s =⇒
∧

P ′∈pos.attackers(s)
P ′.side̸=P.side

CP ′

Not self-capture. A piece must be cleared from a square before other of the same
color can move to it:

∀P, P ′ ∈ pos, P ̸= P ′

with P.side = P ′.side.
MP →P ′.sq =⇒ CP ′

Figure 6 Logical implications for the static algorithm.

We proceed by induction on n. Assume n = 0, it is easy to see that (a) will hold, because
the Mobility algorithm sets MP →P.sq to 1 in step (2), for every piece P . (Note that the
algorithm never changes the value of a variable to 0 after it has been set to 1.) To see that
(b) holds, note that the reachability rule from Figure 6 will set RP.side

P.sq to 1 for all P ∈ pos,
but those are exactly the squares that can be reached in no halfmoves by pieces of the
corresponding color. Finally, (c) holds trivially, because there is no sequence of 0 halfmoves
that allows a piece to be cleared from their current square.

Now, assume that the result is true for sequences of halfmoves of length n. We will argue
that it must also be true for sequences of n+1 halfmoves. We start with (a). Consider a
piece P ∈ pos and a square s such that MP →s = 0. We distinguish four cases depending on
the piece type of P :

If P.type =N, then there are at most two rules in Figure 6 of the form MP →s =⇒ f ,
the move rule, with f1 =

∨
u∈predP (s) MP →u; and possibly the not self-capture rule, with

f2 = CP ′ (if there was a piece P ′ of the same color as P originally at s). Because variable

M. Ambrona 2:11

Mobility(pos):

Inputs: a position
Output: mobility solution {MP →s}P ∈pos,s∈S

1: set MP →s := 0, CP := 0, Rc
s := 0 for all P ∈ pos, s ∈ S and c ∈ {w, b} and let X⃗ be

the state containing all these variables
2: set MP →P.sq := 1, for all P ∈ pos ▷ Every piece can “move” to its current square
3: for every variable V in X⃗ that is still set to 0 do
4: if for every rule from Figure 6 of the form “V ⇒ f”, formula f evaluates to true

on the current state of variables X⃗ then set V to 1 in X⃗

5: repeat steps 3 and 4 until no new variables are set to 1
6: return {MP →s}P ∈pos,s∈S

Figure 7 Mobility algorithm.

MP →s was not set to 1 in any iteration of steps 3-4 from Figure 7, clause f1 (or clause
f2 when applicable) must evaluate to false on the final state. Applying the induction
hypothesis, this means that in n halfmoves P did not have time to reach any of the
P -predecessors of s, or that there was a piece P ′ of the same color as P initially on square
s that did not have time to be cleared from s. Therefore, it is impossible for piece P to
reach s in one more halfmove, as desired.
If P.type ∈ {B,R,Q}, the sliding pieces, we will argue that MP →s = 0 implies that
for every sliding direction starting at s in which P can potentially move, it must hold
that every square t in the direction (counting from s) satisfies MP →t = 0, until there is
(possibly) a square t∗ such that CP ′ = 0 with P ′.sq = t∗ and P ′.side = P.side for some
P ′ ̸= P . If we can show that, the induction hypothesis gives us that piece P cannot reach
in n halfmoves any square in the relevant sliding directions of s, unless there is a piece of
the same color as P between the square and s, which cannot be cleared in n halfmoves.
In that case we can safely conclude that P cannot reach s in n+1 halfmoves, as desired.
The above claim can be proved by induction on the sliding direction. Let t be the
predecessor of s in a certain direction. As before, if MP →t was not set to 1 in any
iteration of steps 3-4 from Figure 7, we know that either MP →u = 0 for all P -predecessors
of t (and in particular for the next square in the direction!) or CP ′ = 0 for some piece
of the same color as P with P ′.sq = t. If the first case is true, we can continue the
induction on the direction from the next square. If the second case is true, we can stop
the induction since we have already found an ally blocker in the direction, as desired.
If P.type =K, we can proceed as before but this time there is one extra rule that comes
into play, the king attackers rule. Again, by applying the induction hypothesis, we can
conclude that in n halfmoves it was impossible for P to reach a P -predecessor of s, or
that there was an ally piece on s that did not have time to be cleared, or that there was at
least an enemy directly attacking s that did not have time to be cleared.6 Consequently,
we conclude that it is impossible for king P to reach s in one extra move.
Finally, if P.type =P a similar reasoning, now involving rules pawn move and not self-
capture, applies. By the induction hypothesis we can conclude that in just n halfmoves,
either (i) it was impossible for P to reach a P -predecessor of s7 and it was impossible for

6 Direct enemies cannot be blocked, so the only way they stop attacking s is by moving or being captured.
7 For double pawn pushes we need to argue as for sliding pieces over the jumped square, but a similar

technique applies.

FUN 2022

2:12 A Practical Algorithm for Chess Unwinnability

pawn P to reach a promoting square and it was impossible for P to reach a P -capture-
predecessor of s while at the same time having a (non-king) enemy piece reaching s; or
(ii) it was impossible for an ally initially at s to be cleared from s in n halfmoves. This
makes it impossible for pawn P to reach s in one extra move.

To see (b), let s be an arbitrary square, let c ∈ {w, b} and assume that Rc
s = 0. Note

that variable Rc
s only appears in one rule from Figure 7, the reachability rule. Since Rc

s has
not been activated, we conclude that MP →s = 0 for all P ∈ pos such that P.side = c and
P.type ̸= K. As we have shown above, this means none of the non-king pieces of color c

could have reached s in a sequence of n+1 halfmoves, as desired.
Finally, to see (c), let P be any piece in the position and assume that CP = 0. Note that

CP only appears in the clearance rule. Because CP has not been activated, we can conclude
that MP →s = 0 for all s ∈ S \ {P.sq} and that MP ′→P.sq = 0 for all P ′ ∈ pos such that
P ′.side ̸= P.side. As we have shown above, this means that there is no sequence of n+1 legal
halfmoves after which piece P could have left square P.sq and it is also impossible (in n+1
halfmoves) that any enemy piece could have reached P.sq, capturing P . We can conclude
that piece P must still be at its initial square in pos after n+1 halfmoves as desired. ◀

The following is an immediate consequence of Lemma 8. Observe that, whenever MP →s = 0
for some P ∈ pos, s ∈ S, the lemma guarantees that there is no sequence of legal moves that
allows P to reach s, so the true solution to the mobility problem will also satisfy M∗

P →s = 0.

▶ Corollary 9. Let pos be a position where no player has castling rights and en passant is not
possible. Let M∗ be the true solution to the mobility problem of pos and let M ← Mobility(pos).

M∗
P →s ≤MP →s ∀P ∈ pos, s ∈ S .

3.2 Declaring unwinnability from a mobility problem solution

The second step of our static algorithm is described in Figure 8. It is based on the idea that
a position is unwinnable if there is no good candidate mating square. Namely, if for every
square in the board, (i) either the square cannot be reached by the intended loser’s king,
or (ii) the square cannot be attacked by the intended winner, or (iii) its adjacent squares
(escaping squares for the intended loser’s king) cannot all be blocked by defender pieces or
covered/attacked by the intended winner pieces at the same time.

▶ Lemma 10. The function induced by algorithm UnwinnableSS from Figure 8 is monotone
in the following sense. For every pos, c ∈ {w, b} and any two mobility solutions M , M ′:

∀P ∈ pos, s∈S. MP →s ≤M ′
P →s =⇒ UnwinnableSS(pos, c, M) ≥8 UnwinnableSS(pos, c, M ′) .

We refer to the full version of this paper for a formal proof.

▶ Lemma 11. Let pos be a position and let c ∈ {w, b}. Let M∗ be the true solution to the
mobility problem on pos. If UnwinnableSS(pos, c, M∗) returns true, the position is indeed
unwinnable for player c.

8 By convention, true > false.

M. Ambrona 2:13

UnwinnableSS(pos, c, {MP →s}p∈pos,s∈S):

Inputs: position, intended winner, solution to the mobility problem
Output: bool (true if position is declared unwinnable, false otherwise)

1: if en passant is possible or a player has castling rights in pos then return false
2: for every piece P ∈ pos, define region(P) := {s ∈ S |MP →s = 1}
3: let Kc (resp. K¬c) be the intended winner’s king (resp. intended loser’s king)
4: set intruders := {P ∈ pos | P.side = c ∧ region(P) ∩ region(K¬c) ̸= ∅}
5: if ∃P ∈ intruders with P.type ̸=B then return false
6: if ∃P, P ′ ∈ intruders with color(P.sq) ̸= color(P ′.sq) then return false
7: for P ∈ pos, define att-region(P) := {s ∈ S | pred-captP (s) ∩ region(P) ̸= ∅}
8: for s ∈ S, let blockers(s) := {P ∈ pos | P.side ̸= c ∧ region(P) ∩ (s) ̸= ∅}a

9: for s ∈ S, define assistants(s) := {P ∈ pos | P.side = c ∧ att-region(P) ∩ (s) ̸= ∅}
10: if ∃s ∈ region(K¬c) such that |blockers(s)|+ |assistants(s)| ≥ | (s)| and ∃P ∈ pos

satisfying s ∈ att-region(P) ∧ P.side = c then return false
11: return true ▷ The position must be unwinnable
a We could design a more complete check that looks at all neighbours of s, but the condition on

step 10 would be significantly more involved (to ensure monotonicity).

Figure 8 Statically unwinnable algorithm, which may conclude that a position is unwinnable for
an intended winner based on an admissible solution to the mobility problem.

Proof. Since UnwinnableSS did not return any value in step 5 or step 6, the set of pieces
that can check the intended loser’s king is empty or formed entirely by same-colored bishops.
Furthermore, every square s in the board is such that: (i) the intended loser’s king cannot
reach it, or (ii) the square cannot be attacked by the intended winner, or (iii) its adjacent
squares cannot not all be blocked by defenders or covered by attackers at the same time.
Therefore, the intended loser will always have at least a legal move when they are in check. ◀

Since the mobility algorithm (Figure 7) always provides admissible solutions, since the
static check (Figure 8) is sound on the true solution of the mobility problem, and because the
static check is a (decreasing) monotone function, the composition of the mobility algorithm
with the static check constitutes an algorithm for chess unwinnability that is sound.

▶ Theorem 12. Let pos be a position and let c ∈ {w, b}. If UnwinnableSS(pos, c, Mobility(pos))
outputs true, then the position is unwinnable for player c.

Proof. Let M ← Mobility(pos) and let M∗ be the true solution to the mobility problem on
pos. If UnwinnableSS(pos, c, M) = true, then en passant is not possible and no player has
castling rights in pos (see step 1 of Figure 8), so we can apply Corollary 9 and conclude that
M∗ ≤M . We can now apply Lemma 10 and get:

true = UnwinnableSS(pos, c, M) ≤ UnwinnableSS(pos, c, M∗) .

Hence we must have UnwinnableSS(pos, c, M∗) = true. By virtue of Lemma 11, pos must be
unwinnable for player c, as desired. ◀

FUN 2022

2:14 A Practical Algorithm for Chess Unwinnability

Unwinnablefull(pos, c):

Inputs: position, intended winner
Output: Unwinnable or Winnable (definite solution to the chess unwinnability problem)

1: if true ← UnwinnableSS(pos, c, Mobility(pos)) then return Unwinnable
2: for every d ∈ N do ▷ Iterative deepening
3: set bd ← Find-Helpmatec(pos, 0, maxDepth = d) (global nodesBound = bound(d))
4: if bd = true then return Winnable
5: else if the search was not interrupted (in step 4 of Figure 5) then
6: return Unwinnable

Figure 9 Main routine for deciding chess unwinnability. It is based on our static algorithm
(Figure 8) and our search routine (Figure 5) integrated via iterative deepening. Function bound must
be increasing on d for the algorithm to be complete. The transposition table used by Find-Helpmatec

should be initialized to empty at the beginning, but it can be shared between different calls to
Find-Helpmatec in step 3. On the other hand, the global counter cnt should be initialized to 0 on
every base call to Find-Helpmatec in step 3.

4 Unwinnability algorithms

We present our main routine for solving chess unwinnability in Figure 9. Our algorithm
consists of a search of variations (Figure 5), preceded by a static analysis (Figure 8) on the
given position. Such analysis will prevent the search routine from exploring large trees of
variations exhaustively, whenever it concludes that the given position is unwinnable via our
alternative and much lighter mechanism described in Section 3. Our main routine achieves:

Soundness: Given that it combines a search of variations with our static algorithm for
identifying blocked positions, it is sound by virtue of Theorem 12.
Completeness: This is due to the fact that the search over variations is exhaustive for a
sufficiently large maxDepth limit, and this in turn will be eventually reached during the
iterative deepening loop (step 2 of Figure 9).
Efficiency: As evidenced by the experimental results from Section 5, our algorithm is
practical. We identified all the unfairly classified games from the Lichess Database [13].

4.1 An alternative quicker version of our algorithm
We propose a significantly more efficient chess unwinnability algorithm, inspired by the fact
that most (if not all) unwinnable positions can be classified in the following two categories:

Imminently terminating positions, where the tree of variations is very small. This is
usually due to the existence of forced lines, which never end on a checkmate by the
intended winner (all variations end in either stalemate, checkmate by the intended loser,
or insufficient mating material for the intended winner.) An example is Position 15.
Blocked positions, where players can maneuver over limited and disjoint regions of the
board, what prevents their interaction (and thus any possible checkmate). (See Position 1.)

The quick version of our algorithm is described in Figure 10. It performs a depth-first
search over the tree of variations and stops if a certain (small) depth D is reached, with the
hope that it will be sufficient to exhaustively explore the tree of variations of imminently

M. Ambrona 2:15

Unwinnablequick(pos, c):

Inputs: position, intended winner
Output: Unwinnable, Winnable, or PossiblyWinnable

1: advance the position as long as there is only one legal move
2: perform a depth-first search over the tree of variations of pos and interrupt the

search if (i) checkmate is found for player c or (ii) depth D is reached
3: if checkmate was found on the previous search then return Winnable
4: else if the search was not interrupted then return Unwinnable
5: else if the position only contains pieces of typeP,B,K and there are no semi-open

files in the position then
6: if true ← UnwinnableSS(pos, c, Mobility(pos)) then return Unwinnable
7: return PossiblyWinnable ▷ Unwinnability could not be determined

Figure 10 Quick routine for analyzing unwinnability.

terminating positions. Note that this search will be almost instantaneous in most positions,
because it is interrupted as soon as depth D can be reached.

After that, and if the previous search did not conclude unwinnability, our quick algorithm
simply performs a call to our static routine (Figure 8). But this is done only if the position
is such that there exists no semi-open files (files with pawns of only one color) and the only
existing pieces are kings, pawns and/or bishops. This heuristic is supported by the fact that
positions that do not satisfy these properties will very likely be non-blocked.

Our quick algorithm is extremely light, requiring only a few microseconds on average per
position. It is also sound, but not complete. However, as we detail in Section 5, with an
(empirically chosen) depth bound of D = 9, all unfairly classified games from the Lichess
Database except three were correctly identified by Unwinnablequick.

5 Experimental results

We have implemented all the algorithms described in this work and evaluated their perform-
ance in real-world games from the Lichess Database [13]. Our source code is written in C++
and leverages the code of the open-source chess engine Stockfish [19] for move generation
and chess-related functions. Our implementation is publicly available as open-source and
can be found on this link: https://github.com/miguel-ambrona/D3-Chess.

The Lichess Database of standard rated games includes 3,099,534,127 games up to date.
We have applied our algorithm from Figure 9 to the final position of all games that ended in
a victory by timeout. In total, 981,467,875 games (31% of all games) were analyzed in about
88 hours of CPU time (323 µs per position on average). All experiments were performed on
a 3.5GHz Intel-Core i9-9900X CPU with 32GB of RAM, running Ubuntu 20.04 LTS.

Our analysis led to identifying a total of 84,100 games that were unfairly classified.
Namely, games that were lost by the player who ran out of time, but their opponent could
not have checkmated them by any possible sequence of legal moves. We refer to Appendix A
for some remarkable positions of unfairly classified games; the remaining can be found
on the following link (where our tool can also be tried interactively without installation):
https://chasolver.org.

FUN 2022

https://github.com/miguel-ambrona/D3-Chess
https://chasolver.org

2:16 A Practical Algorithm for Chess Unwinnability

Table 1 Performance of the Full and Quick versions of our algorithm when applied to all games
from January 2022 that ended in a victory by timeout. (A total of 32,599,280 games.)

Full Algorithm (Figure 9) vs Quick Algorithm (Figure 10)

2700 average # positions per second 200,000+
370 µs average time per position 4.96 µs

1270 µs standard deviation 9.06 µs
141 ms maximum time per position 586 µs

2462 (100%) unwinnable positions identified 2462 (100%)
3 h 21 min total execution time 2 min 42 s

Our analysis identified all the unfairly classified games in the database. In all other
games, the tool provided a checkmate sequence for the player who did not run out of time.

5.1 Comparison between the full and quick routines
Here we perform a comparison between our full algorithm, described in Figure 9 (we use
bound(d) = 10, 000)9, and our quicker version, described in Figure 10 (we use D = 9).

The latter is designed to be significantly faster, but it is not complete. Note that the quick
version may terminate without having found a help mating sequence, declaring the position
as “probably winnable”. Consequently, the quick version may fail to find all unwinnable
positions. In fact, out of the exactly 84,100 games that were unfairly classified (identified
with the full version of our tool), the quick version can identify 84,097 of them, missing
only 3 positions in the entire database. These three positions are: FKr42ZRT (Position 12),
bKHPqNEw (Position 13) and f6c1lu7R (Position 14).

In Table 1, we present a comparison of the performance of the two versions of our tool
when analyzing all Lichess games from January 2022 that ended in a victory after a timeout.
We also present in Figure 11 the execution times of this analysis (for the quick algorithm).

5.2 Conclusions and future work
We believe that our algorithms are suitable for practical use and in particular chess servers
(and chess software) can leverage them to accurately classify games after a timeout, following
Article 6.9 of the FIDE Laws of Chess [7]. Furthermore, given the results of Figure 11, chess
servers could also apply our tools after every single move during games, to terminate games
as soon as a dead position is achieved, correctly applying [7, Article 5.2.2].

Although our tool successfully solved all positions from the Lichess Database, we note
that there exist artificial positions that are not efficiently captured by our logic and the
tool could take a long time to analyze. Indeed, Position 12 with several additional black
dark-squared bishops is an example.

A very interesting direction for future work would be to equip our mobility algorithm
with extra rules (see Figure 6), that increase its scope. That way, the quick algorithm could
potentially identify all unfairly classified games from the Lichess Database. Out of the three
positions that our quick version cannot currently handle, Position 13 could be solved by
setting D = 14 (instead of D = 9 as in the experiments above; see Figure 10), but that would

9 Note that bound should technically be an increasing function on d for the algorithm to be complete. In
practice this is not necessary and a constant amount of 10K nodes per iteration seems empirically good.

https://lichess.org/FKr42ZRT#125
https://lichess.org/bKHPqNEw#81
https://lichess.org/f6c1lu7R#164

M. Ambrona 2:17

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Execution times (in microseconds)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
e
q

u
e
n
ci

e
s

(i
n
 m

ill
io

n
s)

1e6

Figure 11 Quick analysis of 32,599,280 Lichess positions from January 2022.

significantly affect its performance. Positions 12 and 14, which look surprisingly similar, are
harder to address. Our mobility algorithm would need to “understand” that although the
pawn on g2 (of both positions) can be captured, that would leave White with no legal moves.

Finally, it would be very interesting to explore whether the ideas presented in this paper
can be applied to other games that require similar analyses.

References
1 Lichess Blog. Announcing instant chess!, 2017. URL: https://lichess.org/blog/WN7V-jAA

AAdH8ITR/announcing-instant-chess.
2 Josh Brunner, Erik D. Demaine, Dylan Hendrickson, and Julian Wellman. Complexity of

retrograde and helpmate chess problems: Even cooperative chess is hard, 2020. arXiv:
2010.09271.

3 Andrew Buchanan. Dead reckoning, 2001. URL: http://anselan.com/tutorial.html.
4 Andrew Buchanan. Dead reckoning: Castling & en passant. StrateGems. U.S. Chess Problem

Magazine, 2001. URL: http://anselan.com/DRSGtext.html.
5 Chess.com. Game 13251713497. URL: https://www.chess.com/game/live/13251713497.
6 Daniel Dugovic. Helpmate solver, 2020. URL: https://github.com/ddugovic/Stockfish/bl

ob/master/src/types.h#L159.
7 International Chess Federation. FIDE Laws of Chess Handbook, 2018. URL: https://handbo

ok.fide.com/chapter/E012018.
8 Chess24. Community Feedback. Time ran out but insufficient material to mate - sufficient

material, actually!, 2020. URL: https://chess24.com/en/community/feedback/time-ran-o
ut-but-insufficient-material-to-mate---sufficient-material--actually.

9 Chess.com. Forums. Is the best move to let your time run out?, 2021. URL: https://www.ch
ess.com/forum/view/endgames/is-the-best-move-to-let-your-time-run-out.

10 Robert A. Hearn. Games, puzzles, and computation. PhD thesis, Massachusetts Institute of
Technology, 2006.

11 Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985. doi:10.1016/0004-3702(85)90084-0.

FUN 2022

https://lichess.org/blog/WN7V-jAAAAdH8ITR/announcing-instant-chess
https://lichess.org/blog/WN7V-jAAAAdH8ITR/announcing-instant-chess
http://arxiv.org/abs/2010.09271
http://arxiv.org/abs/2010.09271
http://anselan.com/tutorial.html
http://anselan.com/DRSGtext.html
https://www.chess.com/game/live/13251713497
https://github.com/ddugovic/Stockfish/blob/master/src/types.h#L159
https://github.com/ddugovic/Stockfish/blob/master/src/types.h#L159
https://handbook.fide.com/chapter/E012018
https://handbook.fide.com/chapter/E012018
https://chess24.com/en/community/feedback/time-ran-out-but-insufficient-material-to-mate---sufficient-material--actually
https://chess24.com/en/community/feedback/time-ran-out-but-insufficient-material-to-mate---sufficient-material--actually
https://www.chess.com/forum/view/endgames/is-the-best-move-to-let-your-time-run-out
https://www.chess.com/forum/view/endgames/is-the-best-move-to-let-your-time-run-out
https://doi.org/10.1016/0004-3702(85)90084-0

2:18 A Practical Algorithm for Chess Unwinnability

12 François Labelle. Illegal moves by grandmasters, 2011. URL: https://wismuth.com/chess/
illegal-moves.html.

13 Lichess. Open database, 2022. URL: https://database.lichess.org/.
14 J.I. Minchin, J. Zukertort, and W. Steinitz. London International Chess Tournament 1883.

ISHI Press, 2012. URL: https://books.google.es/books?id=QEqyNAEACAAJ.
15 Ornicar/lila. Issue number 6804. Detect all positions without a legal sequence of moves to

checkmate, 2020. URL: https://github.com/ornicar/lila/issues/6804#issuecomment-7
24002709.

16 Chess.com. The Rules of Chess. My opponent ran out of time. Why was it a draw? URL: https:
//support.chess.com/article/268-my-opponent-ran-out-of-time-why-was-it-a-draw.

17 Chess.com. The Rules of Chess. What does ‘insufficient mating material’ mean? URL: https:
//support.chess.com/article/128-what-does-insufficient-mating-material-mean.

18 Viktoras Paliulionis. Helpmate analyzer. URL: http://helpman.komtera.lt.
19 Stockfish. Open source chess engine, 2022. URL: https://stockfishchess.org/.
20 Ronald Turnbull. Dead reckoning: a new discovery in problem chess. The Problemist, pages

140–141, July 2001. URL: http://anselan.com/DRtPturnbull.html.
21 Jakob Varmose. Deadposition2. URL: https://github.com/jakobvarmose/deadposition2.
22 Wikipedia. Helpmate, 2021. URL: https://en.wikipedia.org/wiki/Helpmate.

https://wismuth.com/chess/illegal-moves.html
https://wismuth.com/chess/illegal-moves.html
https://database.lichess.org/
https://books.google.es/books?id=QEqyNAEACAAJ
https://github.com/ornicar/lila/issues/6804#issuecomment-724002709
https://github.com/ornicar/lila/issues/6804#issuecomment-724002709
https://support.chess.com/article/268-my-opponent-ran-out-of-time-why-was-it-a-draw
https://support.chess.com/article/268-my-opponent-ran-out-of-time-why-was-it-a-draw
https://support.chess.com/article/128-what-does-insufficient-mating-material-mean
https://support.chess.com/article/128-what-does-insufficient-mating-material-mean
http://helpman.komtera.lt
https://stockfishchess.org/
http://anselan.com/DRtPturnbull.html
https://github.com/jakobvarmose/deadposition2
https://en.wikipedia.org/wiki/Helpmate

M. Ambrona 2:19

A Positions from unfairly classified Lichess games

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0o
5 Z0Z0ZpZP
4 0Z0Z0o0J
3 Z0Z0ZPo0
2 0Z0Z0ZPZ
1 Z0Z0Zka0

a b c d e f g h

Position 12 Lichess game FKr42ZRT.

8 0j0Z0Z0Z
7 ZPZ0Z0Zp
6 BO0Z0o0Z
5 ZPZ0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0OKO
1 Z0Z0Z0Z0

a b c d e f g h

Position 13 Lichess game bKHPqNEw.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0o
5 Z0Z0ZpZP
4 0Z0Z0o0J
3 Z0Z0ZPo0
2 0Z0Z0ZPZ
1 ZkZ0Z0Z0

a b c d e f g h

Position 14 Lichess game f6c1lu7R.

8 0Z0Z0s0j
7 Z0Z0Z0O0
6 0Z0Z0Z0J
5 Z0Z0ZqZ0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 15 Lichess game OawUhnkq.

8 0Z0Z0Z0Z
7 Z0Z0O0Zp
6 0o0Z0Z0Z
5 Z0ZQZPZ0
4 0ZpZ0ZBZ
3 OkZ0Z0Z0
2 0O0Z0Z0Z
1 ZKZ0ZrZ0

a b c d e f g h

Position 16 Lichess game ZNBhS4pz.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 pZ0Z0Z0Z
5 OPZ0Z0Z0
4 KZ0Z0Z0Z
3 ZRZ0Z0Z0
2 0S0Z0Z0Z
1 j0Z0Z0Z0

a b c d e f g h

Position 17 Lichess game 3y8e8sCm.

FUN 2022

https://lichess.org/FKr42ZRT#125
https://lichess.org/bKHPqNEw#81
https://lichess.org/f6c1lu7R#164
https://lichess.org/OawUhnkq#101
https://lichess.org/ZNBhS4pz#74
https://lichess.org/3y8e8sCm#121

2:20 A Practical Algorithm for Chess Unwinnability

B Puzzles: Are the following positions dead?

8 0ZbZ0Z0Z
7 ZpZ0Z0Z0
6 pOpZ0ZkZ
5 Z0OpZ0Zp
4 PZ0OpApO
3 Z0Z0O0O0
2 0Z0Z0J0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 18 Is this a dead position?
Lichess game QRvIMh3z.

8 kZbJ0Z0Z
7 ZpZpZ0Z0
6 0O0OpZ0Z
5 ZpZ0OpZ0
4 0o0Z0O0Z
3 ZPZ0ZPZ0
2 0Z0Z0O0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 19 Is this a dead position?
Miguel Ambrona (Spain).

C Original compositions based on dead reckoning

We present two original compositions, by Andrew Buchanan and Andrey Frolkin, that the
authors kindly offered to be included in this article. (Solutions available in the full version.)

In both problems the objective is to determine what the last move was. Solving them
requires a clever retrograde analysis based on the fact that, by virtue of the FIDE Laws of
Chess [7, Article 5.2.2], a game is finished as soon as a dead position is reached and no more
moves are permitted. This genre of chess compositions is known as dead reckoning and can
lead to unique motifs that cannot be enforced otherwise.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0OpZ0Z0Z
5 o0Z0Z0Z0
4 PZpZ0Z0Z
3 OpOpZ0Z0
2 bspO0Z0Z
1 jbJ0Z0Z0

a b c d e f g h

Position 20 It is Black’s turn. Last move?
A. Buchanan (Singapore).
Original.

8 0Z0Z0Z0Z
7 Z0ONZ0Z0
6 POkOBZ0Z
5 J0Z0A0Z0
4 NOPZ0Z0Z
3 Z0SPZ0Z0
2 0O0ZRZ0Z
1 Z0Z0Z0Z0

a b c d e f g h

Position 21 Whose turn is it? Last move?
A. Frolkin (Ukraine) & A. Buchanan (Singa-
pore). Original.

https://lichess.org/QRvIMh3z#117
https://chasolver.org/FUN22-full.pdf

	1 Introduction
	1.1 The problem
	1.2 Related work
	1.3 Our contributions

	2 Preliminaries
	2.1 Preliminary results
	2.2 Search of variations

	3 Static algorithm
	3.1 Mobility algorithm
	3.2 Declaring unwinnability from a mobility problem solution

	4 Unwinnability algorithms
	4.1 An alternative quicker version of our algorithm

	5 Experimental results
	5.1 Comparison between the full and quick routines
	5.2 Conclusions and future work

	A Positions from unfairly classified Lichess games
	B Puzzles: Are the following positions dead?
	C Original compositions based on dead reckoning

