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—— Abstract

The notion of synchronization of finite automata is connected to one of the long-standing open
problems in combinatorial automata theory, which is Cerny’s Conjecture. In this paper, we focus
on so-called synchronization games. We will discuss how to present synchronization questions in a
playful way. This leads us to study related complexity questions on certain classes of finite automata.
More precisely, we consider weakly acyclic, commutative and k-simple idempotent automata. We
encounter a number of complexity classes, ranging from L up to PSPACE.
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1 Introduction

“Gamification” is a catchword that describes, in a broader sense, how to teach or to explain
possibly complicated concepts via games. In a narrower sense, we are discussing educational
games. It is tempting to use this idea to explain ideas from combinatorics or complexity
theory. For instance, one can play The Hamiltonian Circuit on one’s smartphone®. As
a predecessor, clearly Hamilton’s Icosian Game is to be mentioned?. This has been done
(not necessarily with didactical motivations) when combining ideas from game theory with
graph-theoretic models of real-world phenomena, with vertex cover games [15] serving as
one example. An alternative (but complementing) route is to analyze the combinatorial or
computational complexity nature of games, which has been one of the driving themes of the
FUN conference series; a certain overview on this ever-growing area can be found in [9, 16].

One drawback of many notions from combinatorics, in particular from graph theory, is
that they have a rather static nature. This makes it rather difficult to define meaningful
games based on these notions. The picture changes if dynamics enters the scene. One of
the easiest ways to induce dynamics into graphs is when interpreting edge-labeled directed
graphs as finite automata, because reading a word by a finite automaton infuses action into
the otherwise static graph objects.

See https://apps.apple.com/us/app/the-hamiltonian-circuit/id1484345208. In fact, there are
also game variations of the Hamiltonian Circuit (“Maker-Breaker” games, see [24]) that are close to the
ideas followed in this paper concerning combinatorial automata theory.

See https://www.puzzlemuseum.com/month/picm02/200207icosian.htm, this has also interesting con-
nections to quaternions, as explained in [3].
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This then allows to explain important notions like synchronization, which is linked
to an intriguing long-standing open combinatorial question in automata theory, namely,
whether or not each synchronizable deterministic finite-state automaton possesses a so-called
synchronizing word of a length quadratic in its number of states. This is (basically) also
known as Cerny’s Conjecture.> A 2-person game called synchronization game, where Alice
plays against Bob, was introduced in [13]. This game was indeed motivated by a gamification
approach to software testing; see [4]. Fominykh, Martyugin and Volkov showed that whether
or not Alice or Bob have a winning strategy is indeed a computationally hard question in
general. In this paper, we look into this question, restricted to several classes of automata.*

Coming back to the idea of gamification, this game (and its analysis) can be seen as a
playful doorway into a number of concepts that are prominent in Computer Science:

graphs and automata are the most obvious concepts, as this is how a typical game

would look like, although one could also think of designs that look more like classical
board-games (see below) and hence obfuscate this possibly “too abstract” presentation
by graphs;

combinatorial questions and combinatorial thinking are at the heart of many mathematical

reasonings in Computer Science and are also at the source of this game;

computational complexity is another area that is touched and about which a player might

get a feel, as the “game complexity” is somehow related to this concept.

The paper is structured as follows. In Section 2, we briefly describe the necessary
background for the technical parts of the paper. We also shortly discuss the class of weakly
acyclic finite automata as a simple example of a subclass of finite automata and also to
illustrate the questions considered throughout the paper. In Section 3, we return to the
question of board designs for automata games in general, which also motivates our major
technical theme of this paper, which is to look at synchronization and synchronization games
from the perspective of their complexity on special classes of automata. In Section 4, we give
an overview over the situation in terms of complexity for general deterministic finite automata.
Already here, a certain span of complexity classes from NL to PSPACE shows up. Then, in
Section 5, we consider commutative automata. The span of complexity classes now contains
L, P, NP, and IIJ. Again another class of automata is considered in Section 6: k-simple
idempotent ones. Here, as a main result, we also show a full understanding about when
Alice can win the synchronization game. In Section 7, we briefly discuss monotonic automata
that are different from the previously considered classes in terms of complexity insofar as
synronizability is different from Alice having a winning strategy on a given automaton. In
the last section, we discuss several other aspects, including the question of level design for
synchronization games.

2 Preliminaries

An alphabet is a finite, non-empty set whose elements are called letters. As usual, ¥* denotes
the set of all words over the alphabet X, including the empty word €. Let u € ¥* be a
word and @ € ¥. By |u], we denote the number of times the symbol a occurs in u. Let

As it is often the case with famous mathematical conjectures, this question has quite some history. We
are not diving into this here, but only mention that a few years ago, a special issue of a journal was
dedicated to this question, see [38]; there, also English translations of the first papers of this topic can
be found, which were written in Slovak and in German back in the 1960s.

It should be noted that two different games have been suggested in the literature in connection with
synchronization: a l-person game [2] and a stochastic 2-person game [20], but we only discuss the
synchronization game introduced in [13] in this paper.
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w = wyws - - w, be a word consisting of n subsequent letters. Then, n is also called the
length of w. In this paper, a deterministic finite automaton, or DFA for short, is specified as
o =(Q,%,0), where ¥ is the input alphabet, @) is the state alphabet, and § : Q x ¥ — @Q is
the (total) transition function;® § is then extended to § : Q@ x ¥* — @Q by 6(¢,¢) = ¢ and
§(q,ua) = 6(6(g,u),a) for a € . Likewise, § is also extended to ¢ : 2¢ x ¥* — 29, A word
w € ¥* is called synchronizing for </ if there exists a synchronizing state gsync so that, for

each ¢ € Q, d(¢,w) = gsync. A DFA is called synchronizing if it admits a synchronizing word.

A state o is called a sink state if, for all input letters a, (o, a) = 0. Whether or not a DFA is

synchronizing can be checked by considering a restricted variation of the power-set automaton.

For a DFA o = (Q, X, 0), its pair automaton is defined as Po(o) = (Qp,, 2, dp,) with state
set Qp, = {{s,t}s,t € QAs#t}U{L} = (g) U{L} and transition function

_ {{5(s,a),5(t,a)} if §(s,a) # 0(t,a)
1L

57’2({87t}7a’) if (5(570/) = 6(t7a)

Moreover, dp,(L,a) = L. In other words, L is a sink state that is entered via symbol a

whenever the two states s, of the original automaton are synchronized when reading a.

Apart from |, a pair automaton can be viewed as a sub-automaton of the well-known
powerset automaton. The mentioned check is based on the following result that is well-known
in the area of synchronizing automata, compare the surveys [32, 37

» Lemma 2.1. &/ = (Q, %, 9) is synchronizing if and only if for each unordered pair of states
{s,t} € (g), there exists a word w € ¥* such that dp,({s,t},w) = L.

States {s,t} € Qp, with dp,({s,t},a) = L are therefore also called synchronizing pairs.
Next, we describe a related 2-persons game, the synchronization game. There are two
players, Alice (Synchronizer) and Bob (Desynchronizer), whose moves alternate. They
play on a DFA & = (Q,X,0). Alice who plays first wants to synchronize </, while Bob
aims to prevent synchronization or, if synchronization is unavoidable, to delay it as long as
possible. More formally, at the beginning, all states are active, or, more pictorially, all states
hold coins. Alice starts by playing the first letter wy. After her move, only the states in
Q1 = 6(Q,w1) hold coins. Then, Bob plays the second letter wsq, so that then, the states in

Q2 = 6(Q, wrwz) = 6(Q1,w2) hold coins, etc. Alice wins if there is some ¢ such that |Q:| = 1.

Then, wyws - --ws is a synchronizing word, and ¢; with {¢:} = Q: is the corresponding
synchronizing state. Provided that both players play optimally, the outcome of such a game
depends only on &7. But who can enforce a win, and if so, how does a winning strategy
look like? This game was introduced in [13], where also several complexity results have been
established, see Section 4. The following result is of particular importance when analyzing
winning strategies. It clearly bears some similarities with Lemma 2.1.

» Lemma 2.2 ([13]). Alice has a winning strategy in the synchronization game on a DFA iff
she has a winning strategy in every position in which only two states of the DFA hold coins.

Therefore, we could alternatively start a synchronization game by having Bob choose two
states on which he places one coin each. Alice would win if she can synchronize these two
states, although Bob will try to prevent this from happening. In particular, we could say
that Bob has won when he manages to have two coins on the same two states twice when he

5 We do not need to speak about initial or final states in this paper. Sometimes, this variant of automata
is also called semi-automata.
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is about to move. In this paper, we are looking for further conditions under which one can
tell if Alice or Bob will win the synchronization game. Therefore, we will look into special
cases of the synchronization game that can be described by special classes of finite automata.
Therefore, we are introducing DFAs with several special properties in the following.

Let o = (Q,%,9) be a DFA. Extending the definition of simple idempotent letters given
in [29], we call a letter a € X k-simple idempotent if [6(Q,a)| = |Q| — k and (g, a) = ¢ for all
q € 0(Q,a). We say that o is a cyclic automaton with a k-simple idempotent over a binary
alphabet ¥ if there exists a k-simple idempotent letter a € 3 and b € ¥ permutes all states
cyclically. States are numbered in clockwise order in relation to b. We say that two states
q,p € Q are neighbors if §(¢,b) = p. The b-distance of two states g, p is the number k of
b-transitions between them, that is k = min{¢ € N | §(¢,b") = p V 6(p, b") = q}.

We call & = (Q,X,0) connected if the undirected simple graph G = (V, E) with vertex
set V =@ and edge set E = {{p,q} |p#qgATa€X:0(p,a) =qV d(g,a)=p} is connected
(note that this is different from the way connectedness is defined for automata in [5]).

Let & = (Q,%,9) and p,q € Q. We say that the state ¢ is reachable from p, written
p 3 g, if there exists a word u € ¥* such that ¢ = §(p,u). Note that this relation yields a
quasiorder on the states and it induces a partial order on the equivalence classes where two
states p,q € @ are equivalent if p = g and ¢ =3 p. The equivalence classes are precisely the
strongly connected components in the automaton graph. A DFA is called weakly acyclic if
each =-equivalence class contains only one element. Hence, the quasi-order X is in fact a
partial order. This is why these automata are sometimes called partially ordered. In general,
a DFA with a sink state o is synchronizing if and only if the sink state is reachable from
each other state; in this case, the sink state is also the synchronizing state.

We consider weakly acyclic automata as a warm-up for this paper. Synchronization
problems on this class of DFA have been investigated in [18, 30]. The following result shows
that the question whether or not Alice has a winning strategy is particularly easy for this type
of DFA. Compare this with Theorem 5.2, which gives the same for commutative automata;
we will refer to this theorem here also in the proof, as this theorem serves rather as an
appetizer for the technical parts of this paper.

» Theorem 2.3. For a weakly acyclic automaton o = (Q,%,9), the following are equivalent:
1. & has a unique sink state,

2. o is synchronizing,

3. Alice has a winning strategy on <f .

Proof. (1) implies (2): As every maximal state is a sink state, by uniqueness, there exists a
unique maximal state (with respect to 3). By definition of the reachability relation, there
exists a word mapping every state to this unique maximal sink state. Then the automaton is
synchronizing with the same argument as in the proof of Theorem 5.2.

(2) implies (3): Let o = (Q, X, d) be synchronizing and weakly acyclic. By definition, there
is a partial ordering on the state set @ = {q1,...,¢n} such that ¢; = ¢; implies ¢ < j. Then,
qn is a sink state and hence the synchronizing state. Also, there is a letter a; and some j; > i
with §(gi,a;) = ¢;, for i =1,...,n — 1. Therefore, Alice can win after she made at most
n — 1 moves, as she can shorten the distance to the sink state in each move.

(3) implies (1): If Alice has a winning strategy, there exists a synchronizing word u. Every
maximal state ¢ is a sink state, so there exists at least one. However, if &7 is synchronizing,
then only one sink state can exist, as one cannot reach a sink state from another one. <«

Hence, checking if Alice has a winning strategy is the same as checking if the DFA is
synchronizing, which is in NL, while both complexities differ in general, see Theorem 4.1.
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(1) A board design with d(p,e) = ¢ and (g, w) = p. (2) A racing track design

Figure 1 Designing boards for the synchronization game: two different proposals.

3 On Board Designs

How can we present a synchronization game in a compact and attractive fashion? This is the
question we like to discuss in this section. Clearly, every finite automaton can be presented
by a transition table or by its automaton graph. However, we claim that more traditional
designs like those known from traditional board games like chess or like games with racing
tracks that are also popular children’s games may be more appealing than the ones usually
applied in automata theory. Notice that we cannot represent every automaton this way,
but notice that the proposed board designs do relate to the classes of automata studied
throughout this paper.

Referring to Example (1) in Figure 1, we can interpret such a board design as a finite
automaton over the input alphabet {e,n,s,w} (with the letters denoting the east, north,
south and west directions of movement) as follows:

Each cell represents a state of the automaton.

The input letters let us move through the board as expected: e moves one step “east”,

i.e., to the right, etc.

If the move would hit a wall, indicated by a thicker drawn line, then the direction

indicated by the arrow in the current state should be “executed.” Therefore, in our

picture, §(r,wsss) = p = §(r, esss) = 6(r, nsss).

If a wall is hit but no arrow is drawn, then the direction is inverted, i.e., if one bumps

against the wall by moving east, a west move is executed, as §(p, w) = q and 6(p, sn) = r.5
An exception is the cell in the right lower corner: here the open walls indicate that this is a
“way out.” More formally, there is one more state to be reached this way (by moving either
south or east), a sink state o, which must be synchronizing. Hence, §(q, eceeeee) = o.
Notice that apart from the exceptions that have been worked out above, the automaton
behaves as a commutative automaton, e.g., (¢, nw) = d(q, wn). This is also partially
true for our rules at the walls, e.g., §(p, se) = d(p,es) = d(q,n). However, §(p,sn) =
0(p,nn) # 0(p,ns) = p. But without the walls and in particular the “special walls” built
in the middle of the board, the game might appear to be a bit boring.

Also notice that board designs often (but not necessarily) lead to automata whose graphs
are planar. Also such automata have been previously studied in our setting; see [25].

6 An alternative might be to get stuck when bumping against a wall; this would correspond to considering
incomplete deterministic automata. Then, we arrive at different synchronization problems, and we like
to avoid discussions in this direction in this paper.
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The goal of the game is as in the general case and can also be played with just two pieces
(or coins) on the board. The two players move both of them at the same time according to
one of the letters a, e, n,w. While player one will try to move both coins on the same cell
of the board, player two will try to prevent this from happening. To make the game more
interesting, it is suitable to introduce the additional rule that is it prohibited to enter the
same configuration twice.

Such a board design is quite compact: The example above denotes a 36-state DFA, whose
formal transition function is clearly less intuitive than this board presentation. Also when
comparing it to a classical automaton graph representation, the suggested presentation has
an edge, mainly because of the implicit transition arcs and implicit arc labels. Additionally,
if one tries to draw an automaton graph as small as the board can be drawn without losing
readability, the letters that need to be written on the arcs will be hard to decipher.

One can also use such a board to define a single-player game as follows. First, specify
three positions p, g, on the board (an example is shown in Figure 1 on the left side, but
in general you can think of special tasks that a player draws from a pile of tasks at the
beginning of the game), plus a number n. The question to solve is to find a sequence of
movements, i.e., a word z of length at most n over the alphabet {e,n, s, w}, such that for the
transition function ¢ that can be associated to the board, we find that d(p, z) = d(q,z) = r.
With the positions shown in Figure 1, it is not possible to find any such word. This is
due to the fact that one can show that, assuming that the two pieces stay on the board,
the Manhattan distance between the two pieces on the board (ignoring walls) will always
be an odd number. In general, this specific form of a synchronizability question could be
interesting as a single-player game, although it is polynomial-time solvable (without the
length restriction), mainly because of facts: (a) as discussed above, boards can be used as
quite compact representations of DFA; (b) although words that synchronize two states are of
quadratic size only, see Lemma 2.1, this might mean that the player might have to look for a
synchronizing word of a length like 100 even for the small board displayed in Figure 1. This
makes this question quite challenging for a human player.

A second example is shown in Figure 1 (2). Here, the underlying automaton is a cyclic
one over a binary alphabet with a k-simple idempotent. The b-cycle of such an automaton is
interpreted as kind of a racing track, where each state of the automaton coresponds to a
square. There are two coins in the game. Players can only move both of them at the same
time and in clockwise order. The goal for player one is for both coins to end up on the same
square, while the opponent tries to prevent exactly that. Resembling a game of tag. In each
round players can choose between either moving both coins forward by one or, if they are
positioned on a field with one or more red arrows, move the number of steps indicated by
the number of arrows on the square. In this case, if there are no arrows on a square, a coin
positioned on this square does not move. Obviously, this is equivalent to the synchronization
game by Lemma 2.2.

Apart from being more similar to board games, this perspective on finite automata is
also motivated by robot navigation problems; see [26]. Conceptually, it is interesting to
note that this particular paper talks about homing sequences, a notion quite akin to that
of synchronizing words, cf. the exposition of Sandberg [32]. Of course, one could think of
different puzzles played on such a board: the traditional SHORT SYNCHRO problem would
lead to a one-person game, while the synchronization game itself is a two-persons game.
Further variations (or possibly levels) can be designed by introducing further special “effects”
(or board cell symbols). For instance, one could introduce cells where the directions are
rather interpreted as knight moves, etc.
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4 General Complexity Considerations

The concept of synchronization has been studied quite intensively also in the light of
complexity theory. In the following, we assume acquaintance with the basic complexity
concepts behind on side of the reader. Our main questions are the following ones:
SYNCHRO: Given a DFA 7, is &/ synchronizing?
SHORT SYNCHRO: Given a DFA ¢ and an integer k& > 0, does &7 possess a synchronizing
word of length at most k7
SYNCHROGAME: Given a DFA o/, does Alice possess a winning strategy on .o/7
SHORT SYNCHROGAME: Given a DFA & and an integer k > 0, can Alice enforce a win
on & in at most k moves?
It is possible to explain four important classical complexity classes with these problems.

» Theorem 4.1. Under logspace-reductions, we can state the following:
SYNCHRO is NL-complete.
SHORT SYNCHRO is NP-complete.
SYNCHROGAME is P-complete.
SHORT SYNCHROGAME is PSPACE-complete.

In the following proof, we reduce from the P-complete AND/OR GRAPH ACCESSIBILITY
PROBLEM, or AGAP for short, that was first introduced in [19]; we follow the presentation
of Sudborough [35] as a pebble game, as it makes the connection to SYNCHROGAME more
transparent. The input is a directed acyclic graph G = (V, E) and a labelling function
f:V — {V,A} such that there are no edges in between V-labeled and no edges in between
A-labeled vertices.” The rules of this pebble game are simple: (1) one can always place a
pebble on a node which has no outgoing edges, and (2a) one can place a pebble on node z,
when f(z) = A and all nodes to which an edge is directed from node x contain pebbles, and
(2b) one can place a pebble on node z, when f(z) =V and at least one node to which an
edge is directed from node x contains a pebble. The question is whether a pebble can be
placed on one of the nodes of indegree zero by playing the pebble game. It is possible to
restrict one’s attention to directed acyclic graphs that have exactly one vertex t of outdegree

zero and one vertex s of indegree zero. Then, we also say that t is reachable from s in G.

Notice that then conditions (1) and (2a) mean the same if f(¢) = A. Moreover, the labelled
directed acyclic graph G can be transformed into a labelled directed acyclic bipartite graph

G’ that has outdegree at most two by replacing a larger number of outgoing edges by a tree.

Notice that AGAP is basically equivalent to the non-emptiness problem of alternating finite
automata introduced in [7, 8]

Proof. The NL-completeness of SYNCHRO is somewhat folklore, it is based on the similarity

of the condition of Lemma 2.1 to reachability in graphs. We also refer to [17, Theorem 5].

The NP-completeness of SHORT SYNCHRO was shown at least three times independently
from each other in the literature, with nearly identical proofs; see [27, 10, 14] in chronological
order. The PSPACE-completeness of SHORT SYNCHROGAME was proved in [13].

We are now proving that SYNCHROGAME is P-complete, a result that nicely complements
earlier findings, because it shows two effects that can be observed already from the previous
list of results: (a) the “game variant” of the synchronization problem is harder than the
classical variant; (b) the length-bounded variant is harder than the unbounded variation.

7 The classical exposition does not require this bipartiteness condition, but it is not hard to see that
bipartiteness can be enforced with a logspace machine.
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The following reduction is inspired by that of [17, Theorem 5]. We start from a labelled
directed acyclic bipartite graph G = (V, E) that has outdegree at most two, with one vertex ¢
of outdegree zero, labeled like f(t) = A, and one vertex s of indegree zero. We construct a
DFA o = (Q, %, ) such that Alice can win on & if and only if ¢ is reachable from s in G.
Let ¥ = {a,b,c}. We can assume that s is an A-vertex (otherwise, put a new vertex before s
that is a A-vertex and has only one transition to s). Set @ = V U {s'}, where s’ ¢ V. Now,
for each vertex, if two edges go out, label one with a and the other one with b, and if only a
single edge emanates, label this one with a and b, i.e., add two transitions, and if no edge
leaves, add two self-loops for a and b. Furthermore, set §(s’,a) = 0(s',b) = d(s’,¢) = s. For
every other vertex ¢ € Q \ {s'}, set d(g,¢) =t if ¢ corresponds to a A-vertex (where Bob
has a choice later) and (g, c) = s if ¢ corresponds to a V-vertex. By the choice of ¢, if it is
Alice’s turn (where she lands on a V-vertex) she never chooses ¢ (except at the beginning to
set everything to either s or t), because this would “destroy” her progress, i.e., reset to her
starting position where only s and t are “active” states. If it is Bob’s turn (on the A-vertices)
he also never chooses ¢ (or at least we do not have to consider those moves in the following),
as this would instantly map everything to ¢t and Alice wins.

Recall that due to Lemma 2.2, we only need to discuss what happens if there are only two
coins left in the game. In fact, this led to the discussion of a variation of the pair automaton
in [13, Theorem 4] that keeps (additionally) track of whether it is Alice’s turn or Bob’s turn.
On this automaton, a marking algorithm is presented that works exactly like the pebble game
described above. The discussion in the previous paragraph shows that we need not consider
this whole pair automaton for the synchronization game that we constructed, only the state
pairs reachable from {s, ¢} matter. However, now it can be observed that the automaton .o/
described above is isomorphic to the pair automaton of &7, restricted to state pairs reachable
from {s,t}. The reasoning of [13, Theorem 4] hence shows that Alice has a winning strategy
on & if and only if ¢ is reachable from s in G. <

» Corollary 4.2. On weakly acyclic DFAs, SYNCHRO and SYNCHROGAME are NL-complete.

Proof. By the previous theorem, checking if Alice has a winning strategy is the same as
checking if the automaton is synchronizing, which is in NL. Hardness can be shown by a
reduction similar as the one used in Theorem 4.1 to show P-completeness, but using the
ordinary acyclic graph reachability (GAP), which is NL-complete. |

5 Commutative Automata

The DFA & = (Q, %, 0) is commutative, if for each ¢ €  and a,b € ¥, we have d(q, ab) =
d(q,ba). Every unary DFA, i.e., if |[X| =1, is commutative. See Figure 2 for two examples.

5.1 Combinatorial and Structural Results

It is easy to construct connected automata with several sink states. However, for a commu-
tative automaton, we can only have at most one sink state.

» Lemma 5.1. Let & = (Q,%,0) be a commutative DFA. If the DFA < is connected and
has a sink state, then this sink state is unique and reachable from every other state.

With Lemma 5.1, we can prove the following for synchronizing commutative DFAs.

» Theorem 5.2. For a commutative automaton <f, the following are equivalent:
1. & is connected and contains a sink state (which must be unique),

2. o is synchronizing (and the synchronizing state is the unique sink state),

3. Alice has a winning strategy when playing on < .
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Figure 2 Left: A commutative synchronizing automaton with synchronizing word aab. Right: A
commutative automaton that is not synchronizing.

Proof. Let & = (Q,X,d) be a commutative automaton.

(1) implies (2): Assume &/ is connected and let sy be the sink state. By Lemma 5.1, it is
unique and reachable from every other state. Write @ = {qo,q1,...,¢»}. Then, for each
number ¢ € {0,1,...,n} there exists u; € X* such that d(¢;,u;) = sy. Hence, the word
U = uguy - - - U, synchronizes 7. Note that this simple arguments gives a quadratic upper
bound for a synchronizing word. However, for commutative DFA the better bound n — 1 is
known [28]. That the synchronizing state is a unique sink state was shown in [12, Lemma 20].

(2) implies (3): Let w = uy---u, € ¥* be a synchronizing word with u; € ¥ for each

i € {1,...,n}. Then, if Alice plays u; in her i-th move, the will win after at most n
moves. For if Bob chooses the letter by,...,b,_1 after the i-th move of Alice, we have, by
commutativity,

3(Q, urbiugbs - - - Up—1bp—1uy) = 6(Q, urts - - - Upbiby - - -byp—1) = 06(6(Q,u),b1ba - - bp—1)

and the latter set is a singleton set, as §(Q,u) is a singleton set.

(3) implies (1): Similar to Theorem 2.3. <

In Theorem 5.2 it was shown that if @7 is synchronizing, then Alice has a winning strategy
by using a synchronizing word directly as a winning strategy. Combined with the fact that
a shortest synchronizing word in a commutative n-state automaton has length n — 1, first
proven in [28] and reproven by a combinatorial analysis in [12], we find the next bound for
the shortest number of moves that Alice has to perform in a winning strategy.

» Proposition 5.3. Let &7 be a commutative automaton with n states on which Alice can
win. Then she can win performing at most n — 1 mowves and this bound is best possible.
5.2 Complexity-Theoretical Results

With Theorem 5.2, we can show that testing synchronizability of commutative automata
is L-complete. Furthermore, contrary to Theorem 4.1, the “gamified” variant has the same
complexity on commutative automata, i.e., is L-complete.

» Theorem 5.4. For commutative automata </, the problems SYNCHRO and SYNCHROGAME
are L-complete (even for a fived unary alphabet).
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In [11, Theorem 3| a reduction from HITTINGSET to a DFA is given that, in fact, yields
a commutative automaton (with an unbounded alphabet) and shows that this problem is
NP-hard on this class. Hence, SHORT SYNCHRO is NP-complete on commutative automata.

Given & = (Q,X,0), a permutational letter a € ¥ is a letter such that ¢ — 6(q,a) is a
permutation, i.e., a bijective mapping. The problems are SHORT SYNCHROCOMMPERMCHAR
and SHORT SYNCHROGAMECOMMPERMCHAR are defined as SHORT SYNCHRO and SHORT
SYNCHROGAME but with the input restricted to commutative automata having at least one
permutational letter. This letter can be used by Bob to “delay” an eventual win of Alice on a
synchronizing commutative automaton, as mapping at least two states to a single state might
help Alice. Note that commutativity is crucial here, as then we can move Bob’s choices to
the beginning, and they do not interfere with the moves from Alice, i.e., do not make the
word longer (as is possible in the non-commutative setting by evading states that might get
synchronized, i.e., mapped to a single state, by Alice). With this idea, we can show the next
theorem.

» Theorem 5.5. The following problems are equivalent under logspace-reductions:
1. SHORT SYNCHRO on commutative automata,

2. SHORT SYNCHROCOMMPERMCHAR,

3. SHORT SYNCHROGAMECOMMPERMCHAR.

and so they are all NP-complete (with the remarks preceding this statement).

Proof. The first two problems are obviously reducible to each other: The second is a
restriction of the first, and if we have an instance of the first, we can add an “idle”-letter, i.e.,
a letter a such that (¢, a) = g for each state g and this letter never appears in a shortest
synchronizing word and it is a permutational letter.

Now for the equivalence of the latter two problems. Let &/ = (Q, %, d) be a commutative
automaton with permutational letter b € ¥. Then & has a synchronizing word of length < k
if and only if Alice can win in at most k£ moves on /. Suppose Alice can win in at most &
moves. In particular, she can win in case Bob always chooses the letter b. More specifically,
consider a game with k& rounds where Bob always chooses the letter b and Alice wins, i.e., a
game

airbasb- - - ap_1bay.

Observe that we have §(Q,b*) = Q, as b is a permutational letter. Hence, we have
§(Q, arbagb- - -ap_1bay) = §(Q, b tajas - - ap_1a) = §(Q, araz - - - ax_1ax) and so the word
aiasg - - - ap_1ax synchronizes <.

Conversely, if u € ¥* is synchronizing with v = uy - - - ug, u; € X, then Alice simply
has to choose the letter w; at her i-th move. This works because when the sequence
of moves is u1bjusbs - - - byu, after Alice has following this strategy, where the b; indicate
Bob’s moves, then, by commutativity, 6(Q, u1b1usbs - - - byuy) = §(Q, b1bs - - - bpugug - - - uy,) C
0(Q,ujus - - - up) and the latter set is a singleton set as u is a synchronizing word. So Alice
has won. |

As SHORT SYNCHROCOMMPERMCHAR is a special case of SHORT SYNCHROGAME on
commutative automata, we get the next corollary to Theorem 5.5.

» Corollary 5.6. The problem SHORT SYNCHROGAME is NP-hard on commutative automata.

For general commutative input automata, we do not know if this problem is also in NP.
The best we can show here is that the problem is in H;D, a complexity class from the second
level of the polynomial-time hierarchy (see [34]). This poses the natural (open) question if
SHORT SYNCHROGAME is complete for any well-known class between NP and ]_[5
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» Theorem 5.7. SHORT SYNCHROGAME 1is in Hf for commutative input automata.

Proof. Let o7 = (Q,X, ) be a commutative automaton and k& > 0. We claim that Alice has
a winning strategy within at most & moves if and only if, for every word u with |u| <k — 1,
there exists a word v with |v| = k such that

0(Q, wv)| = 1.

First, suppose Alice has a winning strategy of length at most k£ and let v € ¥* with
u = uy---up_1 and u; € X. Then, there exists v = vy - - - v; such that, when Bob plays u,
Alice reacts to u; with v;41, and

|(5(Q, v1uU1v2 - - - uk_lvk)\ =1.

By commutativity, 6(Q,uv) = 0(Q, v1uivs -+ - Ug—1Vk).

Conversely, consider an arbitrary game, played till the i-th round with i < k, having a
sequence of moves a1byasbs - - - b;_oa;_1b;_1. Then there exists a letter a; € X such that after
having played for k& rounds, the word

arbrasby - - ap_1bg_1ax

synchronizes 7, as for v = by1by---bi_1 there exists a word v = ajas---ag such that
|0(Q,uv)| =1 and by commutativity 6(Q,a1biasbs - - - ag_1bg—1ax) = 6(Q, uv).

Note that we can assume |u| = k — 1 by commutativity.

Lastly, given a word and an automaton, it can be checked in logarithmic space [17,
Theorem 4] if this word synchronizes a given automaton. Hence, the formula

Yug - up—1 €Y Jug, .., vp €20 |0(Q,ur - up—qvr - vg)| =1

can be checked by an alternating non-deterministic polynomial-time Turing machine that

starts in a universal state, guesses the sequence w1, ..., ur—1 and then switches to a existential
state, from which it guesses the remaining words and finally checks if the guessed word
synchronizes /. This shows containment in Hf |

6 Cyclic Automata with a k-Simple Idempotent over a Binary
Alphabet

Recall the definition of cyclic DFAs with a k-simple idempotent over a binary alphabet
¥ ={a,b}: There is one k-simple idempotent letter a € X, while the letter b € ¥ permutes
all states cyclically. Notice that there is always a race-track design for cyclic DFAs with a
k-simple idempotent as introduced in Section 3.

6.1 Combinatorial and Structural Results
The idempotency immediately leads to our first result. For simplicity, we call synchronizing
pairs {q,¢'}, {p,p'} € Qp, with dp,({q,¢'},b) = {p,p’} a double synchronizing pair.

» Theorem 6.1. Let o be a cyclic DFA with a k-simple idempotent. Bob has a winning
strategy for < if there is no double synchronizing pair in its pair automaton Po(<).

Proof. As a consequence of Lemma 2.2 it is sufficient to consider only the last two coins
left in the synchronization game. On the respective pair automaton, this means that there
is one coin left which Bob wants to keep from reaching L. Whenever it is Bob’s turn
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on a non-synchronizing pair {s,t} where choosing b would lead into a synchronizing pair,
choosing a will lead to a non-synchronizing pair. Otherwise, &/ would not be cyclic with
a k-simple idempotent. Furthermore, whenever it is Bob’s turn on a synchronizing pair,
choosing b will lead to a non-synchronizing state. Bob can therefore always prevent that
Alice’s turn starts in a synchronizing pair, keeping her from winning. <

Since there can only ever be one synchronizing pair in the pair automaton of a 1-simple
idempotent automaton, the next corollary follows immediately.

» Corollary 6.2. Bob has a winning strategy on every cyclic DFA with a 1-simple idempotent.

To get a better feel for this newly introduced class of DFAs, we continue by looking at
cyclic DFAs with a 2-simple idempotent before getting back to the general case. The proof
of the following theorem (which is based on some case distinction) leads to a nice result,
as it allows us to determine who has a winning strategy on a cyclic DFA with a 2-simple
idempotent by simply looking at the DFA in question.

» Theorem 6.3. Let o7 = (Q,%,6) be a cyclic DFA with a 2-simple idempotent with
Y = {a,b} and a single b-cycle. Alice has a winning strategy on the synchronizing game
on & if and only if 6(¢i+1 mod n, @) = ¢i and 6(¢i+2 mod n, @) = ¢; for any i € {0,1,...,n— 1}
and n > 4.

» Corollary 6.4. Let o be a cyclic automaton with a k-simple idempotent. Bob has a winning
strategy for o/ if there is no double synchronizing pair in its pair automaton Po(2f) which is
reachable from every state ¢ € Qp, .

By a similar argument as in the proof of Theorem 6.1, Bob can prevent Alice from
leaving a cycle in the pair automaton. A cycle can consist of both a- and b-transitions. To
leave a cycle, Alice needs two states {s,t},{s’,t'} € P2(«) that both have an a-transition
leaving the cycle. Bob can also not stop her from leaving if there exists a synchronizing pair
preceded or followed by a state with an a-transition leaving the cycle. Otherwise, Alice could
synchronize.

» Corollary 6.5. Let <7 be a cyclic DFA with a k-simple idempotent. Bob has a winning
strategy in the synchronization game on <f if there is a cycle in its pair automaton that does
not include a double synchronizing pair and which Bob can prevent Alice from leaving.

Combining the previous results, we conclude with the following theorem.

» Theorem 6.6. Alice has a winning strategy in the synchronization game on a cyclic DFA of

with a k-simple idempotent if and only if

1. There is at least one double synchronizing pair in its pair automaton P2(&/) that is
reachable from every state {q,q'} € Pa(),

2. There is no cycle in Py() that does not contain a double synchronizing pair and which
Bob can prevent Alice from leaving.

Proof. If there is no double synchronizing pair in the pair automaton that is reachable from
every {q,q'} € P2(&) or there is a cycle without a double synchronizing pair which Bob can
prevent Alice from leaving, Bob wins by Theorem 6.1 and Corollaries 6.4 and 6.5.

If there is a double synchronizing pair that is reachable from every {q,q’} € P2(/), Bob
needs an a-transition either skipping or leading away from the double synchronizing pair to
keep Alice from synchronizing. Since there is a path from every state in the pair automaton
to the synchronizing pair in question, this always creates a cycle. If Alice cannot leave this
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cycle and there is no other synchronizing pair within this cycle, then Bob wins. If there is a
synchronizing pair that Bob cannot avoid, then Alice wins. If there is a synchronizing pair
which Bob can avoid, then the argument repeats itself. |

6.2 Complexity-Theoretical Results

A k-simple idempotent DFA is a DFA such that every letter either is a k-simple idempotent
letter or permutes the states (called a permutational letter in Section 5). Next, we show
that for k-simple idempotent automata with an unbounded alphabet, the problem SHORT
SYNCHRO is NP-complete. However, we do not know if the problem remains hard for a fixed
alphabet, or for cyclic automata with a k-simple idempotent over a binary alphabet. More
precisely, we prove the following result.

» Theorem 6.7. SHORT SYNCHRO is NP-complete for the class of k-simple idempotent DFAs,
for each k > 3, even if no letter induces a permutation.

In [22, Proposition 6.1], it was already shown that for 1-simple idempotent automata
SHORT SYNCHRO is NP-complete. By adding "dummy” states ending at the synchronizing
state in the construction from [22], it can be adapted to k-simple idempotent automata.
However, note that the used reduction from SAT uses an unbounded number of permutations
(corresponding to variables) and an unbounded number of 1-simple idempotent letters
(corresponding to the clauses). Contrary, our reduction, by using a special variant of SAT,
uses no permutations at all (and adding permutations can be achieved easily) and only
k-simple idempotent letters. As we were concerned with bounding the number of letters in
the previous subsection, our new reduction that is presented in the long version of the paper
is of interest in this context.

7 Monotonic Automata

An automaton &/ = (Q,X,d) is monotonic if there exists a linear ordering of the states
Q ={q0,q1,-..,qn—1} such that if ¢; < g;, i.e., 4 < j, then §(g;,z) < 6(g;, ) for each z € 3.
Monotonic automata were introduced by Ananichev & Volkov [1] (the monotonic au-
tomata as introduced earlier by Eppstein [10] are more general, as they are only required to
respect a cyclic order and were called oriented automata by Ananichev & Volkov). In [31],
further problems related to (subset) synchronization problems on monotonic automata were
investigated. An open problem from [1] was investigated in [33]. Checking if a given DFA is
monotonic is NP-complete [36]. Note that monotonic DFAs also appeared in the context of
games previously in [21], were they describe winning conditions on certain infinite games.

The problem SHORT SYNCHRO is solvable in polynomial time on monotonic automata.
This follows from the more general result that this problem is solvable in polynomial
time on oriented automata as shown in [10] (recall the remark above that what Eppstein
calls monotonic was later renamed to oriented). However, we do not know the precise
computational complexity for SHORT SYNCHROGAME on monotonic DFAs.

Note that if u € ¥* and ¢ € @, then either ¢ < §(q,u) or d(q,u) < g. The first case
implies ¢ < §(q,u) < 6(q,u?) < ... and so, if ¢ = §(q,u’) for some i > 0, then ¢ = 6(q, u)
and similarly in the second case. So, no word can permute a subset of states non-trivially
and every monotonic automaton is counter-free in the sense of [23].

The DFA in Figure 3 is synchronizable by the word aaa. Yet, Alice has no winning
strategy on this automaton. For if {qo, 1} C 6(Q,u) and it is Bob’s turn, he can choose a,
and if {g2,93} C 0(Q,u), he can choose b. Doing so, when it is Alice’s turn, we have
{q1,¢2} C 0(Q, ux) and in the next turn Bob is faced with one of the two situations outlined
above. As {q1,¢2} C @, we can conclude inductively that Alice cannot synchronize this DFA.
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Figure 3 A synchronizable monotonic automaton for which Alice has no winning strategy.

In [25], the authors outlined a modeling of synchronization games by accessiblity games
as used in software testing [4]. An accessiblity game is a tuple (G, v, A) where G is a finite
directed graph, v a vertex and A a subset of vertices. At the start a token is placed on v and
then the two players Alice and Bob successively move the token around among neighboring
vertices and the goal of Alice is to move the token to a vertex in A, whereas Bob tries to
prevent exactly this. Now, in [25] it was shown that every accessibility game can be modelled
as a synchronization game started from a single subset containing two states (in [25], the
authors generalize the synchronization game to arbitrary starting set instead of the whole
state set, but this generalization is also implicit in the pair criterion from Lemma 2.2) and
this conversion can be done in polynomial time. The authors also give a conversion of a
synchronization game into a accessibility game. However, this conversion involves all subsets
of the starting set (which, in our context, is always the full set of states @) and is not doable
in polynomial time. Next, we show that the synchronization game for every monotonic
automaton can be converted into an equivalent accessibility game in polynomial time.

» Proposition 7.1. For a given monotonic automaton, we can construct in polynomial time
an accessiblity game equivalent to the synchronization game (even for the generalization that
the starting set is not the full state set).

Proof. Let &/ = (Q,X,d) be a monotonic automaton with linear ordering of the states given
by a numbering @ = {qo0,¢1,.-.,¢n-1}. Then, as for each ¢; € Q, 1 € {0,1...,n— 1}, and
u € ¥* we have (qo,u) < 6(gi,u) < 6(gn—1,u), we find that |§(Q,u)| = 1 if and only if
8(qo,w) = 6(qn—1,u). Construct the graph G with vertex set {{q,q’'} | ¢,¢' € Q} and edge set
{{q,d}{d".¢"}) |3z €2 :6({q,¢'},x) = {¢",¢""}}. Then Alice has a winning strategy in
the synchronization game on 7 if and only if she has a winning strategy in the accessibility
game on (G, {qo,qn—1},{{q} | ¢ € @}).

Lastly, note that the argument works with any subset S C @ as a starting set, but instead
of qo, gn—1 we use the minimal state and the maximal state in S. |

8 Discussions

We have studied conditions that allow us to tell if Alice or Bob have a winning strategy in a
synchronization game. Concludingly, we discuss some of the consequences that our studies
may have on the design of an implementation of a synchronization game. In our eyes, the
consequences are mostly concerning the design of different levels for this game. Namely,
assume that the game is played between two persons (one of them could be replaced by a
computer). Then, it seems to make a difference which DFAs are chosen to be synchronized.
Hence, we propose to choose DFAs from the classes that we studied here in order to design
lower levels of the game. In particular, commutative DFAs seem to lead to quite simple
games. Also, they can be nicely visualized, as explained in Section 3. Then, with growing
experience, automata can be proposed that are more complicated, not only in terms of their
number of states, but also concerning the classes of automata that they belong to. Another
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possibility for level design comes with the aspect of time, here best measured in terms of an
upper bound on the length of the synchronizing word: if less time is permitted, then Alice has
a harder time to sychronize the DFA. Notice that the corresponding basic decision problem
(given a DFA & and an integer k, is there a synchronizing word of length at most k?) is
NP-complete even for seemingly easy classes of DFAs; we refer here to [27, 10, 22, 6], in
chronological order. This step-bounded game variant is proven to be even PSPACE-complete
in [13].

There is one further aspect concerning this level design: one could view the task of Alice
in particular as that of extending a “current word” to some synchronizing word by appending
letters. As mentioned above, the question if a word can be extended in such a way at all is a
particular case of an extension problem as studied in [12]. As in general extension problems
in this context depend on the chosen ordering on the words, we could increase the level of
difficulty in the synchronization game by changing the partial order. For instance, instead of
extending a word to the right (corresponding to a prefix ordering), one could also extend it
to the left (i.e., using a suffix ordering), or to both sides (corresponding to an infix ordering)
or anywhere in the word (corresponding to a subsequence ordering). One might even give
different rules for Alice or Bob. This also opens room for further studies concerning winning
strategies for these game variations.
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