
International Research School in
Artificial Intelligence in Bergen

AIB 2022, June 7–11, 2022, University of Bergen, Norway

Edited by

Camille Bourgaux
Ana Ozaki
Rafael Peñaloza

OASIcs – Vo l . 99 – AIB 2022 www.dagstuh l .de/oas i c s

Editors

Camille Bourgaux
DI ENS, ENS, CNRS, PSL University & Inria, France
Camille.Bourgaux@ens.fr

Ana Ozaki
University of Bergen, Norway
Ana.Ozaki@uib.no

Rafael Peñaloza
University of Milano-Bicocca, Italy
rafael.penalozanyssen@unimib.it

ACM Classification 2012
Computing methodologies → Knowledge representation and reasoning; Computing methodologies →
Machine learning

ISBN 978-3-95977-228-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-228-0.

Publication date
June, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.AIB.2022.0

ISBN 978-3-95977-228-0 ISSN 1868-8969 https://www.dagstuhl.de/oasics

https://orcid.org/0000-0002-8806-6682
mailto:Camille.Bourgaux@ens.fr
https://orcid.org/0000-0002-3889-6207
mailto:Ana.Ozaki@uib.no
https://orcid.org/0000-0002-2693-5790
mailto:rafael.penalozanyssen@unimib.it
https://www.dagstuhl.de/dagpub/978-3-95977-228-0
https://www.dagstuhl.de/dagpub/978-3-95977-228-0
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.AIB.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-228-0
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

AIB 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza . 0:vii

Organization
. 0:ix

Invited Papers

Knowledge Graphs: A Guided Tour
Aidan Hogan . 1:1–1:21

Reasoning in Knowledge Graphs
Ricardo Guimarães and Ana Ozaki . 2:1–2:31

Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces
Zied Bouraoui, Víctor Gutiérrez-Basulto, and Steven Schockaert 3:1–3:30

Combining Embeddings and Rules for Fact Prediction
Armand Boschin, Nitisha Jain, Gurami Keretchashvili, and Fabian Suchanek 4:1–4:30

Learning and Reasoning with Graph Data: Neural and Statistical-Relational
Approaches

Manfred Jaeger . 5:1–5:42

Automating Moral Reasoning
Marija Slavkovik . 6:1–6:13

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

These proceedings present the tutorial papers accompanying the lectures of the First In-
ternational Research School Artificial Intelligence in Bergen, AIB 2022, held during June
7–11 2022 in Bergen, Norway. The Artificial Intelligence in Bergen research school aims at
disseminating recent advances on AI. It is mainly intended for masters and Ph.D. students,
postdocs, and researchers wishing to learn more about the theme of the research school, and
is co-located with a workshop where participants are invited to present their work. The
broad theme of the school this year was

“Knowledge Graphs and Machine Learning”.

Knowledge graphs have gained a lot of popularity as a flexible way of modeling data
at large scale. In addition to classical, symbolic, reasoning methods based on ontologies,
recent years have seen an increasing trend of using machine learning techniques to complete,
correct, or reason with knowledge graphs. The six lectures by renowned researchers given at
AIB 2022 provide an overview of the various research topics related to knowledge graphs,
with a particular focus on reasoning and the combination of machine learning and symbolic
methods.

We would like to thank those who contributed to this first edition of AIB. First and
foremost the lecturers and their co-authors. Second, the program committee members for
their reviews of these lecture notes. Finally, we are grateful to the organizing committee
for the local organization and the website. We also thank the Research Council of Norway,
project numbers 316022 and 332921, the Meltzer Research Fund, and the University of Bergen.

March 2022
Camille Bourgaux, Ana Ozaki, Rafael Peñaloza

AIB 2022 co-chairs

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Organization

Program chairs

Camille Bourgaux (CNRS, DI ENS)
Ana Ozaki (University of Bergen)
Rafael Peñaloza (University of Milano-Bicocca)

Program committee

Roberto Confalonieri (Free University of Bozen-Bolzano)
Julien Corman (Free University of Bozen-Bolzano)
Jesse Davis (Katholieke Universiteit Leuven)
Jeff Horty (University of Maryland)
Yazmin A. Ibanez-Garcia (School of Informatics and Computer Science, Cardiff University)
Egor Kostylev (University of Oslo)
Özgür Lütfü Özcep (Institute of Information Systems, University of Lübeck)
Matteo Palmonari (University of Milan-Bicocca)
Jeff Z. Pan (University of Edinburgh)
Nico Potyka (Universitaet Stuttgart)
Felix Weitkämper (Ludwigs-Maximilians-Universität München)
Lu Zhou (Kansas State University)

Organizing committee

Ana Ozaki
Ricardo Guimarães
Cosimo Persia
Philip Turk
Victor Botelho

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Knowledge Graphs: A Guided Tour
Aidan Hogan # Ñ

DCC, University of Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile

Abstract
Much has been written about knowledge graphs in the past years by authors coming from diverse
communities. The goal of these lecture notes is to provide a guided tour to the secondary and tertiary
literature concerning knowledge graphs where the reader can learn more about particular topics. In
particular, we collate together brief summaries of relevant books, book collections, book chapters,
journal articles and other publications that provide introductions, primers, surveys and perspectives
regarding: knowledge graphs in general; graph data models and query languages; semantics in
the form of graph schemata, ontologies and rules; graph theory, algorithms and analytics; graph
learning, in the form of knowledge graph embeddings and graph neural networks; and the knowledge
graph life-cycle, which incorporates works on constructing, refining and publishing knowledge graphs.
Where available, we highlight and provide direct links to open access literature.

2012 ACM Subject Classification Information systems → Graph-based database models; Information
systems → Information integration; Computing methodologies → Artificial intelligence

Keywords and phrases knowledge graphs

Digital Object Identifier 10.4230/OASIcs.AIB.2022.1

Category Invited Paper

Funding Aidan Hogan: Supported by Fondecyt Grant No. 1181896 and by ANID – Millennium
Science Initiative Program – Code ICN17_002.

Acknowledgements I wish to thank Camille Bourgaux, Ana Ozaki and Rafael Peñaloza for providing
the idea for these lecture notes.

1 Introduction

Knowledge graphs have gained significant attention in recent years, both in industry and
academia, as a way to integrate and leverage data and knowledge from diverse sources at large
scale. Though the term “knowledge graph” had been used as far back as the 70’s [60], it was
the announcement of the Google Knowledge Graph [65] in 2012 around which a community
began to crystallise [11]. The Google Knowledge Graph (in uppercase) was intended to be a
proper name: the name, specifically, of a large, internal, graph-structured knowledge base
housed within Google, which aimed to enhance Google’s semantic search capabilities. Per
the original blog post, Google envisaged using the knowledge graph as a way to shift from
search based on “strings” to search based on “things” (or entities). Rather than performing
string matching on searches like “taj mahal”, the goal was to understand that this search
likely refers to a thing – an entity: a mausoleum in Agra, India, on the bank of the river
Yamuna (represented, in turn, by a node in the Google Knowledge Graph).

Arguably the greatest impact of the Google Knowledge Graph, however, was unanticipated.
Other companies began to adopt the phrase “knowledge graph” in order to describe similar
initiatives. Announcements of knowledge graphs by other well-known companies, such as
Airbnb [16], Amazon [43], eBay [54], Facebook [51], IBM [18], LinkedIn [28], Microsoft [63],
Uber [25], to name but a few, began to emerge. Meanwhile, “knowledge graphs” began to
gain more and more traction in the academic literature [55, 70, 46]. Questions began to
arise regarding how knowledge graphs relate to existing concepts such as graph databases,

© Aidan Hogan;
licensed under Creative Commons License CC-BY 4.0

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza; Article No. 1; pp. 1:1–1:21

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahogan@dcc.uchile.cl
http://aidanhogan.com
https://orcid.org/0000-0001-9482-1982
https://doi.org/10.4230/OASIcs.AIB.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

1:2 Knowledge Graphs: A Guided Tour

RDF graphs, ontologies, semantic networks, etc.; questions also began to arise about what,
specifically, a “knowledge graph” even was [19, 14, 10, 11]. Ambivalent to such concerns,
knowledge graphs continued to firmly establishing themselves in both industry and academia.

Some authors prefer to define a knowledge graph as “a graph-structured knowledge
base” [50, 62]. Other authors go further, and assert additional necessary conditions that a
knowledge graph must satisfy to be called as such, including the presence of a schema [53],
the description of multiple domains [53], the use of an ontology and a reasoner to derive
new knowledge [19], the presence of inference rules [10], etc. But perhaps the most accepted
modern definition of a knowledge graph is as a “graph whose nodes represent entities and
whose edges represent relationships between those entities” [70, 46, 51], sometimes adding the
qualifier that the “graph intends to collect and convey knowledge” [33]. This latter definition
is inclusive enough to embrace the diverse ways in which knowledge graphs have been used
and studied, and is also the definition we adopt for the purposes of these lecture notes.

Why, then, have knowledge graphs gained so much traction and attention in practice,
and in the literature? In practice, knowledge graphs have proven to be a useful abstraction
for representing, integrating, managing and exploiting diverse data at large scale. Typical
use-cases for knowledge graphs involve the extraction and accumulation of data from diverse
sources within a unified graph-based representation. As Noy et al. [51] put it, “knowledge
graphs and similar structures usually provide a shared substrate of knowledge within an
organization, allowing different products and applications to use similar vocabulary and to
reuse definitions and descriptions that others create. Furthermore, they usually provide a
compact formal representation that developers can use to infer new facts and build up the
knowledge” [51]. Such use-cases have given rise to the announcement not only of a broad
range of enterprise knowledge graphs [65, 16, 43, 54, 51, 18, 28, 63, 25], internal to particular
companies, but also open knowledge graphs [45, 13, 68, 31] available to the public.

In the academic setting, the use of graphs to represent both data and knowledge is far
from a novel idea [24]; however, Knowledge Graphs, as an area, is remarkable in the degree
to which it has brought together researchers from distinct communities that had previously
been exploring graph-structured data, knowledge and analytics in isolation. In particular,
the Database community has long explored graph query languages and databases as a way to
query data stored as graphs; the Semantic Web community has long explored graph data
and ontologies as a way to represent, integrate, interlink and reason over data on the Web;
the Graph Theory and Algorithms community has long explored fundamental properties of
graphs, and how different types of graph analytics can be used to understand and extract
patterns from graphs (or networks); the Natural Language Processing and Information
Extraction communities have long used text graphs, semantic networks, and other graph-
based representations to induce structure from natural language. Notably, however, the
area of Knowledge Graphs has also gained attention in communities where graphs have not
traditionally been a mainstream topic; for example, within the Machine Learning community,
the topics of graph embeddings and graph neural networks have recently gained significant
traction, yielding novel machine learning techniques that can be applied natively over graphs.
All these communities are now working on interrelated topics under the common umbrella
of “knowledge graphs”, which gives rise to a number of open questions regarding how such
diverse techniques relate to or can complement each other [32].

Much has been written about knowledge graphs in the past decade, and in particular
in the last five years, including a variety of books (e.g., [52, 56, 20, 40, 33]) and surveys
of specific aspects of knowledge graphs (e.g., [53, 69]). Indeed the author of these lecture
notes has recently co-authored a book [33] (among other contributions [32, 34]) on the topic.

A. Hogan 1:3

The volume of literature published in recent years has become somewhat overwhelming, in
fact. Rather than providing yet another introduction to knowledge graphs, the goal of these
lecture notes is to provide a roadmap of the existing literature on knowledge graphs and
related topics, guiding the reader towards literature where they can learn more about the
area in general, or about specific sub-topics of interest to them.

Thus our goal herein is to collate and summarise the secondary and tertiary literature
that provides introductions, primers, surveys, perspectives, etc., regarding knowledge graphs
and related topics. Specifically, we consider the following types of literature:

Books with global authorship (excludes edited collections).
Collections of edited book chapters on a specific topic (excludes proceedings).
Book chapters published in a collection not otherwise mentioned.
Articles published in journals.
Miscellaneous publications in conferences, workshops, or in preprint or online form.

Within each topic and category, we order papers by year and subsequently by author. We
use the icon to indicate an open access (OA) publication, and to indicate a publication
with an open access preprint or alternative version in a persistent repository (e.g., on arXiv).
In the digital version of these notes, one can click on these icons to directly access the OA
version. For the purposes of formatting, we may also abbreviate long titles, where we refer
the reader to the bibliographic citation for the full details of the publication.

In terms of topics, we divide the literature into:

General: covering the broader topic of knowledge graphs.
Data: covering graph data models, databases and query languages.
Semantics: covering graph schemata, rules and ontologies.
Analytics: covering graph theory, algorithms, measures and frameworks.
Learning: covering knowledge graph embeddings, graph neural networks, etc.
Lifecycle: covering knowledge graph completion, refinement and publication.

The topics tend to become more technical as the lecture notes progress, so we recommend
newcomers to check out some of the literature in the “General” category before proceeding. In
the case of publications that cover multiple topics, we assign them to the topic that it places
the most focus on. We include a range of different types of literature to suit different tastes,
ranging from hands-on walkthroughs to theoretical treatments, from industry use-cases to
academic conceptualisations, from high-level discussion to detailed definitions, etc.

Let’s begin.

2 General: Knowledge Graphs

Here we cover literature providing a broad overview of the emerging area of Knowledge
Graphs, including discussion of data, semantics, analytics, learning, and the knowledge graph
lifecycle. The literature here provides a good starting point for newcomers.

Books

The Knowledge Graph Cook Book: Recipes That Work [12] (Blumauer & Nagy, 2020)
introduces knowledge graphs in terms of data models, core concepts, and application
scenarios. The book delves into organisational issues regarding enterprise knowledge
graphs, before discussing specific aspects of (RDF) graph data, taxonomies and ontologies,

AIB 2022

1:4 Knowledge Graphs: A Guided Tour

and how knowledge graphs can be constructed. It concludes with discussion of enterprise
knowledge graph architectures and services, set of interviews from industry leaders, and
discussion of the future for knowledge graphs. The book is largely enterprise focussed.

Knowledge Graphs: Methodology, Tools & Selected Use Cases [20] (Fensel et al., 2020)
first introduces knowledge graphs from a conceptual and practical viewpoint (contrasting
open and enterprise/proprietary knowledge graphs), and then discusses how they can be
constructed (knowledge graph creation, hosting, curation, and deployment) and used (AI
use-cases, semantics, and dialogue systems). The final part of the book is dedicated to
applications, and discussion of domains in which knowledge graphs can – and have been –
deployed. The focus of the book is on building and maintaining knowledge graphs.

Knowledge Graphs: Data in Context for Responsive Businesses [8] (Barrasa et al., 2021)
provides a practical introduction to knowledge graphs written by authors from Neo4j,
targeted towards chief data officers. After motivating and defining knowledge graphs, the
authors discuss how they can be modelled, and the role that taxonomies and ontologies
play. The authors then compare actioning knowledge graphs vs. decisioning knowledge
graphs, where the key focus is on data management and data analytics, respectively. The
importance of context (for AI) is discussed, before the book concludes with an outlook.
The book thus introduces and motivates knowledge graphs from an enterprise perspective.

Knowledge Graphs [33] (Hogan et al., 2021) provides a broad, conceptual introduction
to knowledge graphs, covering graph data models and query languages, different forms
of graph schema, contextual representations, ontologies and rules, and graph learning;
it further discusses the creation, enrichment, quality, refinement, and publication of
knowledge graphs. A brief survey of specific open and enterprise knowledge graphs,
and their applications, is also provided. An appendix delves into the historical setting
that gives rise to knowledge graphs. The presentation is mostly example-based. Formal
definitions are provided, but can be skipped by the uninterested reader.

Knowledge Graphs: Fundamentals, Techniques & Applications [40] (Kejriwal et al., 2021)
provides a broad introduction to knowledge graphs, covering popular graph-based data
models, knowledge graph construction, knowledge graph completion, methods for querying
and reasoning over knowledge graphs, and areas in which knowledge graphs have been
successfully deployed. Aside from more general aspects, a major focus of the book is on
creating knowledge graphs from text and other semi-structured sources, and subsequently
refining the knowledge graph using (in particular) learning techniques.

Knowledge Graph [57] (Qi et al., 2022) is – at the time of writing – an upcoming book
that is not yet available for download. According to the book’s synopsis, it provides a
systematic and comprehensive overview of knowledge graphs, their theoretical foundations,
key techniques, methodologies, and applications. A key focus of the book is on the
construction and management of knowledge graphs, including information extraction
from text, as well as key techniques for knowledge fusion and reasoning.

Collections

Exploiting Linked Data and Knowledge Graphs in Large Organizations [52] (Pan et al.,
eds., 2017) is a collection of chapters, starting with an introduction to knowledge graphs,
covering related standards, architectures for enterprise knowledge graphs, knowledge graph
construction, ways in which knowledge graphs can be summarised and explored, question
answering, and more besides. The book concludes with a discussion of applications and
future directions. Overall the book is largely focussed on the Semantic Web.

https://kgbook.org

A. Hogan 1:5

Knowledge Graphs: New Directions for KR on the Semantic Web [14] (Bonatti et al.,
eds., 2018) collects together a number of short reports resulting from the discussions at
Dagstuhl Seminar 18371. These reports summarise discussions among participants on
a wide range of topics relating to knowledge graphs, including evolution and dynamics,
scholarly knowledge graphs, logic and learning, knowledge graph creation and management,
symbolic reasoning, multilingualism, privacy and access control, graph analytics, etc.

Knowledge Graphs and Big Data Processing [35] (Janev et al., eds., 2020) is an open
access collection of chapters that provide a general introduction to knowledge graphs,
and their application for processing and managing data at large scale. Various authors
have contributed chapters on both Knowledge Graphs and Big Data, covering, in the
former case, an introduction to graph-based knowledge representation, the creation of
knowledge graphs, data exchange using knowledge graphs, knowledge graph embeddings
and their applications, and more. A key focus of the book is on how knowledge graphs
can be leveraged for the purposes of Big Data applications.

Knowledge Graphs for eXplainable Artificial Intelligence [67] (Tiddi et al., eds., 2020) is
a collection of chapters that introduce knowledge graphs more from an AI perspective.
Earlier chapters cover knowledge graphs on the Web, embeddings, explainability in
the context of knowledge graphs, and benchmarks. Chapters on applications include
recommender systems, natural language processing, context understanding, explanations,
transfer learning, and predictive analytics. The book concludes with an outlook to the
future, as well as ethical and social issues surrounding knowledge graphs and explainable
AI. The book thus largely focuses on knowledge graphs in the context of learning and AI.

Book chapters

Knowledge Graphs: Research Directions [32] (Hogan, 2020) is a book chapter providing a
more technical introduction to knowledge graphs, including formal definitions of concepts
such as graph models, queries, ontologies, rules, context, embeddings, and graph neural
networks. A key aim of the chapter is to synthesise a set of research problems that arise
from how these concepts potentially relate and complement each other, presenting a list
of nine research topics that intersect different areas.

Articles

Knowledge Graphs [24] (Gutierrez and Sequeda, 2021) is an article discussing the his-
tory of knowledge graphs, and the phenomena that influenced them and led to their
popularisation. The paper traces knowledge graphs back to ancient traditions of repres-
enting knowledge in diagrammatic form, taking a journey through the advent of logic,
information retrieval, semantic networks, knowledge representation, the Web, and finally
knowledge graphs. The focus of the article is on setting knowledge graphs in a broader
historical perspective relating to data and knowledge.

Knowledge Graphs [34] (Hogan et al., 2021) is an article providing a tutorial on some of
the key concepts and techniques underlying knowledge graphs. The article first motivates
knowledge graphs, and then discusses graph data models, graph query languages, shapes
for validation, and contextual representations. An introduction to ontologies and reasoning
is then followed by discussion of graph analytics, knowledge graph embeddings, graph
neural networks, and symbolic learning. The article concludes with future directions.1

1 This article was extended into the book of the same name, mentioned previously [33].

AIB 2022

https://drops.dagstuhl.de/opus/volltexte/2019/10328/pdf/dagrep_v008_i009_p029_18371.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-53199-7.pdf
https://cacm.acm.org/magazines/2021/3/250711-knowledge-graphs/fulltext
https://dl.acm.org/doi/pdf/10.1145/3447772

1:6 Knowledge Graphs: A Guided Tour

Knowledge Graphs 2021: A Data Odyssey [71] (Weikum, 2021) is a position paper that
begins with a brief overview of open and enterprise knowledge graphs, their applications,
and the challenges they pose. The paper then poses a number of positions, namely that
knowledge graphs are more than simple graphs (often they consider higher-arity relations,
provenance, constraints, etc.), and that knowledge graphs should prioritise precision
(correctness) over recall (coverage), and thus should be constructed from select sources
and incremental processes. The paper concludes with a list of open research challenges
and problems that could be addressed with techniques from the area of Databases.

Machine Knowledge: Creation and Curation of Comprehensive Knowledge Bases [72]
(Weikum et al., 2021) is a comprehensive article (comprising 380 pages) discussing the
creation and curation, more generally, of knowledge bases. However, much of the con-
tent relates both directly and indirectly to knowledge graphs, which are also explicitly
mentioned in various sections. The article covers key concepts relating to knowledge
bases, methods for knowledge integration, techniques for knowledge base construction
and curation, for schema construction, and for resolving entities. The article concludes
with discussion of open and enterprise knowledge graphs, and an outlook to the future.

Miscellaneous

Towards a Definition of Knowledge Graphs [19] (Ehrlinger and Wöß, 2016) investigates
the concept of knowledge graphs and the various – and sometimes incompatible or even
contradictory – definitions attributed to them. They highlight that the differences between
knowledge bases, knowledge graphs and ontologies remain unclear. Applying a terminolo-
gical analysis, they arrive at the definition that “A knowledge graph acquires and integrates
information into an ontology and applies a reasoner to derive new knowledge” [19].2

3 Data: Models and Query Languages

This section pertains to literature that discusses graph data models and graph query languages.
Much of the literature comes from the (Graph) Database and Semantic Web communities,
which have traditionally been hot spots for research on graph data management techniques.

Books

Graph Databases [58] (Robinson et al., 2015) provides a practical introduction to graph
data models and graph databases. The book walks through various examples using the
Neo4j graph database, and the Cypher query language for graphs. The authors discuss the
creation of applications on top of a graph database, and real-world use-cases where such
databases are deployed. Techniques implemented by graph databases (specifically Neo4j)
are also discussed. The final chapter concludes with a discussion of graph algorithms,
focusing particularly on graph search (depth- and breadth-first search, Dijkstra, A*, etc.).
The book has a practical focus using concrete examples from Neo4j/Cypher.

Querying Graphs [15] (Bonifati et al., 2018) provides a technical introduction and overview
of the state-of-art with respect to graph databases and graph query languages. The
book focuses on the property graph model and its variants. Different formal fragments

2 This definition was contested by later authors [34], given that it would exclude many initiatives
surrounding knowledge graphs not involving ontologies, such as works in the machine learning community
on graph representation, and (seemingly) the Google Knowledge Graph itself, which gave origin to the
modern use of the phrase; in these settings, ontologies are not (always) used.

http://www.vldb.org/pvldb/vol14/p3233-weikum.pdf
https://arxiv.org/pdf/2009.11564.pdf
http://ceur-ws.org/Vol-1695/paper4.pdf

A. Hogan 1:7

of query languages are introduced, including regular path queries, unions of conjunctive
queries, relational queries, regular queries, etc. Graph constraints are introduced in
terms of functional and entity dependencies. The book then discusses query specification,
which incorporates the paradigms of query-by-example and reverse-engineering of queries.
The latter part of the book turns to implementation issues, including representation,
compression, indexing, query processing, physical operators, and cardinality estimation.
It concludes with some open research challenges. The book is targeted at a more academic
audience, providing formal definitions and theoretical discussion throughout.

Graph Databases in Action [9] (Bechberger and Perryman, 2020) gives a practical guide
to graph databases with concrete examples provided in the Gremlin graph traversal
language. The book first discusses graph data modelling from a practical viewpoint. It
then discusses how to run graph traversals, insertions, deletions, paths, filters, subgraph
extraction and graph analytics over graphs using Gremlin. Practical issues, such as
application development and performance pitfalls, are further discussed. The book has a
practical focus and is principally targeted at software developers.

Collections

Graph Data Management: Fundamental Issues & Recent Developments [21] (Fletcher
et al., eds., 2018) collates six chapters relating to graph data management. The first
chapter provides a general introduction to graph data management. Next, techniques for
graph visualisation are discussed, including planarisation, energy-based approaches, and
approaches for large graphs. The third chapter discusses methods for discovering motifs
(frequently-occurring subgraph patterns) in graphs. The following chapter describes query
relaxation and approximation in the context of flexible query processing for graphs. The
fifth chapter provides an overview of parallel processing frameworks for graphs. The final
chapter concludes with a survey of benchmarks for graph processing systems.

Book chapters

Storing and Querying Semantic Data in the Cloud [36] (Janke and Staab, 2018) offers
lecture notes on techniques for storing and querying RDF graphs in local, distributed and
cloud environments. After some preliminary definitions on RDF graphs and SPARQL
queries, the lecture notes describe different architectures for RDF stores in local, cloud-
based, distributed, peer-to-peer and federated settings. The notes describe partitioning
and replication strategies for RDF graphs, popular indexing techniques, distributed query
processing strategies, fault tolerance, and available (RDF/SPARQL) benchmarks.

Articles

Survey of Graph Database Models [5] (Angles et al., 2008) is a survey of a variety of graph-
based data models that have been proposed in the literature down through the years.
After a general introduction to the history, main concepts and applications driving graph-
based data modelling, the paper enumerates different graph database models, ranging
from straightforward models with simple nodes and edges, to more complex models that
support hypernodes (with nested elements), attributes on nodes and edges, relations
viewed as entities, derivation and inheritance, nested relations, constraints, schema, etc.
The survey also covers query languages proposed for such models.

Query Languages for Graph Databases [73] (Wood, 2012) provides an overview and
formal definition of the different primitives – specifically conjunctive queries, regular
path queries, conjunctive regular path queries, and extended conjunctive regular path

AIB 2022

https://eprints.soton.ac.uk/423451/1/tex_reasoningWeb2018_main_cr_v2.pdf
https://sigmodrecord.org/publications/sigmodRecord/1203/pdfs/08.principles.wood.pdf

1:8 Knowledge Graphs: A Guided Tour

queries – underlying graph query languages. A brief survey is provided of graph query
languages and the features they support, including also path comparisons, aggregation
operators, node creation, approximate matching, ranking, etc. The article concludes with
a discussion of the expressive power of different fragments of graph query languages.

Foundations of Modern Query Languages for Graph Databases [4] (Angles et al., 2017)
covers popular data models and graph query languages from a conceptual point of view.
The article specifically covers the directed edge-labelled graph (e.g., RDF) and property
graph models. It then delves into the core primitives and semantics underlying graph
query languages, including basic graph patterns, path queries, and relational algebra.
Examples in concrete query languages – specifically SPARQL, Cypher and Gremlin – are
presented. More advanced querying primitives, featuring recursion, are also covered.

RDF Data Storage and Query Processing Schemes: A Survey [75] (Wylot et al., 2018)
surveys data management techniques for RDF graphs, including techniques for indexing
and processing queries over large-scale RDF graphs. The survey covers the storage and
indexing of RDF graphs both on individual machines, as well as in distributed settings over
multiple machines (using NoSQL, Hadoop, Spark, etc.). Federated query processing is also
discussed. The paper concludes with a survey of different SPARQL-based benchmarks.

A Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs [2] (Ali
et al., 2021) is a detailed survey on systems for querying RDF graphs. After some
preliminaries on RDF/SPARQL, the survey discusses different storage schemes and index-
ing techniques that enable efficient access over RDF graphs. Thereafter, both traditional
and more modern join processing techniques are described, followed by query processing
techniques involving other relational operators and paths. Different partitioning strategies
are studied and compared. An appendix includes a survey of over one hundred distributed
RDF stores and SPARQL query engines, and the techniques they use.

Miscellaneous

Querying in the Age of Graph Databases & Knowledge Graphs [6] (Arenas et al., 2021)
provides notes for a tutorial on querying graphs in the era of knowledge graphs. The
paper begins by studying the growth in popularity surrounding knowledge graphs, finding
fewer than one hundred papers on the topic in DBLP in 2015, which grows to almost
one thousand in 2020. The paper asks: what is new about knowledge graphs and how do
they relate to graph databases? A brief discussion is provided on data vs. information
vs. knowledge, graph data and querying, and traditions in which graphs have been used
to model knowledge (semantic networks, graph databases, semantic web). The authors
outline their perspective on knowledge graphs, characterised by knowledge representation,
integration and production using graphs. The paper then formalises different graph
data models and query language features, and concludes that the popularity of graphs
for representing knowledge is due to their being a “simple, flexible and extensible data
structure”, while also being a “a deep-rooted form of representing human knowledge”.

4 Semantics: Schemata, Rules and Ontologies

Explicit representations of semantics play an important role in many knowledge graphs. Here
we provide pointers to literature covering the topics of graph schemata (in various forms),
rules, and ontologies. Much of this literature comes from the Knowledge Representation and
Semantic Web communities, who have long studied and debated these topics.

https://arxiv.org/pdf/1610.06264.pdf
https://arxiv.org/pdf/2102.13027.pdf

A. Hogan 1:9

Books

Foundations of Semantic Web Technologies [30] (Hitzler et al., 2010) introduces key Se-
mantic Web standards and concepts using a mix of formal definitions and examples in
concrete syntax. The book begins with a general motivation and historical perspective
with respect to semantics, knowledge and reasoning. The book then describes the RDF
data model, the RDFS schema language, and their formal semantics. The book continues
with an in-depth treatment of OWL, covering its syntax, features, and formal semantics.
Rules are introduced and their relation with ontologies discussed. Query languages for
RDF (including SPARQL) are presented. The book concludes with discussion on ontology
engineering topics and applications of Semantic Web concepts and standards. The book
uses a mix of formal definitions and examples in concrete syntax, separating introductory
material from more advanced concepts. It includes exercises for students.

Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL [3]
(Allemang and Hendler, 2011) provides a pragmatic introduction to the Semantic Web;
the importance of semantics; various key standards including RDF, RDFS, OWL, SKOS,
and SPARQL, and how they can be used on the Web. A particular focus of the book is
on how these standards can be used to model data and semantics, and how they enable
reasoning and querying, both in local and decentralised (Web) settings. The book also
touches on the importance of semantic modelling, in terms of human communication,
explanation, prediction, and integrating heterogeneous data. The focus is on the use
of lightweight ontology features for semantic modelling. The discussion, though often
conceptual, is largely example-based, using concrete syntaxes. Thus the book is suitable
both for an academic audience, as well as practitioners interested in semantic modelling.

An Introduction to Description Logic [7] (Baader et al., 2017) provides a comprehensive
introduction to the area of Description Logics, which studies decidable fragments of first
order logic that form the basis of ontology languages like OWL, and can be used to
define the semantics of knowledge graphs. The book first introduces basic description
logics, and then describes how to define their semantics with model theory. Reasoning
algorithms for expressive description logics based on tableau are introduced, and the
complexity of reasoning problems is studied. The latter part of the book is dedicated to
more practical aspects of description logics, including tractable profiles, query answering,
concrete ontology languages, and applications. The book is primarily aimed at an
academic audience, and uses formal definitions alongside examples to introduce concepts.

Validating RDF Data [22] (Labra Gayo et al., 2017) discusses the use of shapes and shape
languages (including SHACL and ShEx) for validating RDF graphs. Such languages
allow for specifying constraints over a graph, for encapsulating and combining multiple
constraints as a “shape”, for targeting specific nodes of the graph with particular shapes,
and for validating graphs with respect to the shapes defined. Thus, shape languages
can be seen as a form of validating schema for graphs. The book begins by introducing
RDF graphs, issues relating to data quality, and the key concepts underlying shape
languages. It then covers the ShEx and SHACL languages. The book concludes by
discussing applications for shapes, and comparing the ShEx and SHACL languages. The
discussion is example driven, using concrete syntax, and suitable for a broad audience.

An Introduction to Ontology Engineering [38] (Keet, 2018) provides a general introduc-
tion to the titular area. The book begins by discussing the notion of an ontology in
Computer Science, and how ontologies are used. It then describes the logical foundation of
ontologies, covering first-order logic, description logics and the OWL 2 ontology language.
The next section of the book is devoted to ontology development, covering methodolo-

AIB 2022

https://book.validatingrdf.com/
https://open.umn.edu/opentextbooks/formats/978

1:10 Knowledge Graphs: A Guided Tour

gies, tools, top-down approaches and bottom-up approaches. The book concludes with
discussion of modern ontology engineering topics, including ontology-based data access,
natural language in ontologies, contextual frameworks for representing uncertainty and
temporal validity, and finally ontology modularisation. The book uses a mix of formal
and example-driven presentation, with exercises provided for students.

Ontology Engineering [41] (Kendall and McGuinness, 2019) provides a pragmatic introduc-
tion to ontology engineering, with an emphasis on modelling. After an introduction to
foundational aspects of ontologies, the book provides an overview of some key concepts,
such as domain analysis, levels of abstraction, ontology evaluation, ontology design pat-
terns, etc. The book then describes how to collect requirements and analyse use-cases.
The following chapter introduces the importance of terminology for ontology engineering,
and how to collect and curate domain terms. The book wraps up with discussion on
conceptual modelling, including ontology reuse, naming conventions, metadata, etc. The
book has a practical focus, relying on a more informal, didactic presentation.

The Web of Data [32] (Hogan, 2020) offers a comprehensive discussion of the Semantic
Web standard, the Linked Data principles, and how they come together to realise a Web
of Data. The book offers a general motivation for the Web of Data, before providing a
detailed discussion of how graphs (RDF), semantic schemata (RDFS), ontologies (OWL),
query languages (SPARQL), shapes (SHACL), and publishing principles (Linked Data)
combine to enable data, and not just documents, to be interlinked on the Web. Each
chapter provides a general motivation, examples in concrete syntax, as well as formal
definitions, such that it can serve as both an introductory text book, and a reference
book. Examples are included throughout for students to test their learning.

Collections

Ontology Engineering in a Networked World [66] (Suárez-Figueroa et al., eds., 2012) is a
collection of book chapters relating to the topic of ontology engineering. The chapters
broach a wide range of topics, including concrete methodologies for ontology engineering,
ontology design patterns, requirements specification, ontology localisation, modularisation
of ontologies, ontology evolution, and ontology matching. The book concludes with some
more practice-oriented chapters based on the NeOn ontology engineering toolkit.

Applications and Practices in Ontology Design, Extraction, and Reasoning [17] (Cota et
al., eds., 2020) collects together thirteen chapters relating to ontologies and rules. The
diverse topics covered include ontology modularisation and reuse, FAIR principles, know-
ledge creation through mapping languages, probabilistic and preferential description
logics, axiom pinpointing, defeasible reasoning, querying and reasoning via rules, as well
as applications of ontologies within the humanities, the scholarly domain, and music.

Book Chapters

Foundations of Description Logics [59] (Rudolph, 2011) provides lecture notes on the the-
oretical foundations of description logics. The notes begin with a general introduction
to description logics and the Semantic Web. The semantics of description logics are
formally defined through model theory. Different description logics, and the features they
support, are introduced. A number of semantic relations are introduced, namely concept
equivalence, ontology equivalence and emulation. A primer is provided on modelling
with description logics, showing how transitivity, cardinality constraints, etc., can be
axiomatised; the open and closed world assumptions are also discussed. Reasoning tasks

A. Hogan 1:11

relating to satisfiability and entailment are described, and reasoning algorithms are
sketched. Finally the concrete OWL language is introduced and mapped to description
logics. The book offers a mostly formal treatment (with examples) of the topic.

5 Analytics: Theory, Algorithms, Measures & Frameworks

Graphs have long been used to conceptualise networks and interactions in a variety of
domains. Analytics such as centrality, community detection, spectral analysis, etc., can then
glean important insights about the respective domains from such graphs. Here we discuss
literature regarding the graph theory, algorithms and measures that underlie such analytics,
and the frameworks used to compute them. The literature here mainly stems from the Graph
Theory and (various) Network Analysis communities, with graph processing frameworks
studied by the Big Data, Database, Distributed Systems, and other related communities.

Books

Graphs, Algorithms and Optimization [42] (Kocay and Kreher, 2005) provides a general
introduction to graphs, graph algorithms, and optimisation techniques. After some
preliminaries on graphs, the book introduces paths, walks, and algorithms to find shortest
(weighted) paths. Special classes of graphs are introduced, including bipartite graphs, line
graphs, Moore graphs, and Euler tours. The book discusses trees and cycles, including
algorithms for spanning trees, tree encodings, etc. Next, connectivity is discussed,
including the notion of blocks, and algorithms to detect them. The book continues by
introducing concepts relating to alternating paths, matchings, network flows, Hamilton
cycles, digraphs, graph colourings, planar graphs, and graph embeddings on surfaces.
Optimisation techniques are introduced in the form of linear programming, discrete
linear programming, and related algorithms. The book thus provides a quite formal and
technical introduction to graph theory, algorithms and optimisation.

Systems for Big Graph Analytics [76] (Yan et al., 2017) discusses parallel frameworks for
distributed processing and analytics over large-scale graphs. The book introduces three
main computational models for processing graphs in a distributed or parallel setting:
vertex-based, block-based, subgraph-based and matrix-based. Vertex-based computation
involves message passing between vertices of the graph, which then perform computations
on the messages received. Block-based computation partitions vertices into densely-
connected blocks, and defines separate communication and computation within and
between blocks. In subgraph-based computation, (possibly overlapping) subgraphs are
grown dynamically from seed vertices during the computation. Matrix-based computa-
tion views the graph as an adjacency or incidence matrix, and applies computation in
terms of linear algebra operations. The book discusses technical concepts relating to
communication and load balancing, out-of-core computation, fault tolerance, on-demand
querying, shared memory abstractions, partitioning, and more besides. Systems such as
Pregel, Giraph, GraphX, GraphLab, BigGraph@CUHK, Blogel, G-Thinker, PEGASUS,
GBASE, SystemML, etc., are discussed throughout in relation to these concepts.

Graph Algorithms [49] (Needham and Hodler, 2019) features concrete examples of how to
implement a variety of graph algorithms in Apache Spark and Neo4j. The book first
contrasts transactional (OLTP) and analytical (OLAP) workloads, and describes use-cases
for graph analytics. A primer on graph theory is provided, including properties of graphs
(random, small-world, scale-free, etc.), different graph models, etc. Graph processing
frameworks are introduced. The book then delves into specific graph algorithms and

AIB 2022

1:12 Knowledge Graphs: A Guided Tour

measures (and their implementation) for graph search/path finding, centrality measures
and community detection. Practical use-cases are presented. The book concludes by
discussing the relation between graph analytics and machine learning techniques. The
book adopts a hands-on approach to introducing different graph algorithms.

The Practitioner’s Guide to Graph Data [23] (Gosnell and Broecheler, 2020) provides a
hands-on guide to modelling data as graphs and implementing various types of analytics
and algorithms over those graphs using Gremlin, Cassandra, among other tools. After
an introduction to graph data modelling, and an example use-case, the book delves into
traversals using Gremlin, the use of Cassandra to index graphs, as well as techniques for
navigating hierarchical data modelled as trees, graph search and path finding algorithms,
collaborative filtering for recommendations, and entity resolution. The book concludes
with discussion of graph algorithms, distributed graphs, graph theory and network theory.
The book thus blends practical examples with more conceptual discussion.

Collections

Managing and Mining Graph Data [1] (Aggarwal and Wang, eds., 2010) is a collection of
book chapters on graph data management and mining. The chapters of the book cover
a variety of topics including graph data models, formal properties of graphs, graph
generators, graph query languages, graph indexing, path queries and graph pattern
matching, graph matching, keyword search on graphs, clustering algorithms, dense
subgraph discovery, graph classification through kernels and boosting, frequent subgraph
mining, streaming graphs, privacy for graphs, etc. The latter part of the book focuses
on graph mining for use-cases in specific domains including the Web, social networks,
software, biology, and chemistry. The collection largely targets an academic audience,
with formal definitions and technical discussion found throughout its different chapters.

6 Learning: Embeddings and Architectures

One of the key sub-areas of Knowledge Graphs has been representation learning for graphs.
Key techniques here include graph embeddings, which involve learning numerical representa-
tions for nodes (entities), edge labels (relations), and graphs themselves; and graph neural
networks, which layer learned functions and message passing over the topology of the graph.
The literature here is predominantly from the Machine Learning community.

Books

Graph Representation Learning [26] (Hamilton, 2020) is a book covering a broad range
of topics relating to learning over graphs. The book begins by introducing different graphs
models, and different abstract machine learning tasks one can consider over graphs. Next,
different graph measures and algorithms are presented, along with spectral graph theory.
The book then delves into the technical details of node embeddings and graph neural
networks. It concludes with discussion of generative graph models.

Deep Learning on Graphs [47] (Ma and Tang, 2021) focuses on deep learning techniques
for graphs. After a general introduction to and motivation for the topic, the authors
discuss graph models, metrics, computational frameworks, and spectral graph theory.
A similar introduction is provided for deep learning, including feedforward networks,
convolutional and recurrent neural networks, autoencoders, and training methodologies.
The book then focuses on graph embeddings, graph neural networks, and other deep
learning models applied over graphs. It concludes with discussion of applications of

https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf
https://web.njit.edu/~ym329/dlg_book/dlg_book.pdf

A. Hogan 1:13

graph neural networks for natural language processing, computer vision, data mining,
and biochemistry. The book concludes with advanced topics, such as the expressivity of
graph neural networks, combinatorial optimisation on graphs, etc.

Articles

Representation Learning on Graphs: Methods and Applications [27] (Hamilton et al.,
2017) is an article reviewing techniques and applications relating to learning over graphs.
The review primarily focuses on node and subgraph embeddings. The survey covers
techniques for node embeddings based on factorisation, random walks, encoder–decoder ar-
chitectures, and more besides; applications for node embeddings, such as pattern discovery,
community detection, node classification and link prediction, are discussed. Techniques
surveyed for subgraph embeddings include convolutional approaches, graph-coarsening,
and graph neural networks; applications discussed for subgraph embeddings include sub-
graph classification, drug discovery, molecular classification, image classification, computer
programme verification, and logical reasoning.

Knowledge Graph Embedding: A Survey of Approaches and Applications [69] (Wang et
al., 2017) provides a comprehensive survey on knowledge graph embeddings, divided into
translational models (TransE and related embeddings, Gaussian embeddings, etc.), and
semantic matching models (RESCAL and related embeddings, neural-based embeddings,
etc.). Within each category, specific embeddings are defined in terms of their entity
embeddings, relation embeddings, plausibility scoring function, and constraints. The
survey then discusses model training, and how negative examples can be extracted from
knowledge graphs for training (under an open/closed world assumption). Embeddings
are compared in terms of time and space complexity. The survey discusses how models
can encode additional information, such as entity types, paths, text, rules, attributes,
temporal metadata, and graph structures. The paper wraps-up with discussion of
applications internal (link prediction, triple/entity classification, entity resolution) and
external (relation extraction, question answering, recommendations) to the knowledge
graph.

A Comprehensive Survey on Graph Neural Networks [74] (Wu et al., 2021) provides a
detailed survey of advances on graph neural networks. After a general introduction, brief
history, and preliminary definitions, the authors present a taxonomy of different graph
neural networks that includes recurrent graph neural networks, convolutional graph neural
networks, graph autoencoders, and spatio-temporal graph neural networks. They also
identify tasks at different levels – node-level, edge-level and graph-level – and different
learning paradigms – semi-supervised, supervised and unsupervised (embeddings). Within
each category, the survey lists the specific graph neural networks that have been proposed,
their inputs, their pooling and readout operations, and their time complexity. Theoretical
aspects, such as VC dimension, expressivity with respect to graph isomorphism tests,
universal approximation, etc., are also briefly discussed. The survey concludes with
discussion of datasets, tasks, applications, and future directions.

A Survey on Knowledge Graphs: Representation, Acquisition, and Applications [37]
(Ji et al., 2022) is a survey article that focuses primarily on representation learning and
knowledge acquisition in the context of knowledge graphs. The survey first provides a
technical introduction to representational concepts such as knowledge graph embeddings,
plausibility scoring functions, encoding models, and contextual embeddings. In terms
of knowledge acquisition, techniques for knowledge graph completion, entity discovery,
and relation extraction are discussed. Temporal aspects are considered, along with
applications relating to language models, question answering, and recommender systems.

AIB 2022

http://sites.computer.org/debull/A17sept/p52.pdf
https://arxiv.org/pdf/1901.00596.pdf
https://arxiv.org/pdf/2002.00388.pdf

1:14 Knowledge Graphs: A Guided Tour

Miscellaneous

Graph Neural Networks Meet Neural-Symbolic Computing: Survey & Perspective [44]
(Lamb et al., 2020) provides a concise overview of graph neural networks in the broader
context of neural-symbolic computing, and how the two interrelate. The paper first
recaps different classifications of neural-symbolic computing frameworks, classifying graph
neural networks as a type 1 system, i.e., based on standard deep learning techniques
(arguably not even neural-symbolic given the lack of symbolic representations). The
paper discusses developments leading up to graph convolutional networks, graph neural
networks, message-passing neural networks, and graph attention networks. Thereafter,
the paper highlights the promise of combining graph neural networks with neural-symbolic
reasoning through applications relating to relational learning and reasoning, combinatorial
optimisation, and constraint satisfaction problems.

7 Lifecycle: Construction, Refinement, Publication

The final collection of literature that we consider relates to what we broadly call the
“lifecycle” of knowledge graphs, encompassing knowledge graph construction, refinement, and
publication. The literature discussed here comes primarily from the Database, Information
Extraction, Machine Learning, and Semantic Web communities.

Books

Linked Data: Evolving the Web into a Global Data Space [29] (Heath and Bizer, 2011)
describes how RDF graphs and Linked Data principles can combine to form a Web
of Data that can be conceived of as a decentralised knowledge graph that spans the
Web. The core concept is to use RDF as a graph-structured data model in which Web
identifiers – URIs or IRIs – form the nodes and edge labels of the graph. Performing a
HTTP lookup on these identifiers resolves – or dereferences – to a potentially remote
RDF graph providing further data about the entity or relation (type) identified. Though
they pre-date the modern popularisation of knowledge graphs, these principles have been
used to publish a variety of important open knowledge graphs on the Web, including
DBpedia, Freebase, Wikidata, YAGO, amongst (many) others. The book thus introduces
principles and best practices for publishing graph-structured data on the Web.

Domain-Specific Knowledge Graph Construction [39] (Kejriwal, 2019) provides a brief
general introduction to knowledge graphs along with some domain-specific examples.
The book then focuses on a number of specific topics relating to the construction and
refinement of knowledge graphs, specifically information extraction techniques, entity
resolution, and knowledge graph completion. The book concludes with a discussion of
ecosystems in which knowledge graphs have been broadly deployed, such as Linked Data,
Google Knowledge Graphs, and Schema.org.

Designing and Building Enterprise Knowledge Graphs [61] (Sequeda & Lassila, 2021) gives
a general introduction to different types of data that can be found in an enterprise setting,
and the benefits of mapping data to knowledge graphs. A core focus of the book is on
mapping relational databases to knowledge graphs, where it covers relevant mapping
languages and mapping design patterns. The book further discusses the people, processes
and tools involved in building and maintaining an enterprise knowledge graph.

Web Data APIs for Knowledge Graphs [48] (Meroño-Peñuela et al., 2021) discusses tech-
niques and standards by which the content of (open) knowledge graphs can be published
on the Web and accessed through APIs. After introducing knowledge graphs, the Linked

https://www.ijcai.org/proceedings/2020/0679.pdf

A. Hogan 1:15

Data principles, RDF, SPARQL and GraphQL, the book discusses how knowledge graphs
can be accessed using HTTP requests, REST APIs, and SPARQL services, further
discussing a number of tools to define REST APIs based on SPARQL queries, and to
transform the response for SPARQL queries. The book is thus of particular interest to
readers interested in publishing knowledge graphs on the Web.

Articles

Quality Assessment for Linked Data: A Survey [77] (Zaveri et al., 2016) collates a set
of quality dimensions for Linked Datasets collected from the literature. Given that Linked
Data refers to a set of principles for publishing graph-structured (RDF) data on the
Web, many (though not all) dimensions apply for knowledge graphs [34]. The dimensions
are organised into four high-level categorisations. Accessibility encompasses dimensions
relating to how data can be accessed such as availability, licensing, interlinking, security,
and performance. Intrinsic dimensions refer to potential issues within the data, such as
syntactic validity, semantic accuracy, consistency, conciseness, and completeness. Contex-
tual dimensions depend on a particular purpose, and include relevancy, trustworthiness,
understandability, and timeliness. Representational dimensions deal with how data are
represented, and include conciseness, interoperability, interpretability, and versatility.
The paper includes discussion of measures for dimensions, as well as tools to detect issues.

Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods [53]
(Paulheim, 2017) provides a comprehensive overview of techniques for refining knowledge
graphs. The article first introduces the notion of a knowledge graph in the context
of the Semantic Web, surveying prominent open and enterprise knowledge graphs. A
categorisation of knowledge graph refinement approaches are then presented, based on
whether they aim to complete or detect errors in the knowledge graph, what elements of
the knowledge graph they target, and whether or not they depend on external sources.
A categorisation of evaluation methods is also presented, including partial goal stand-
ards, using the knowledge graph itself as a silver standard, retrospective evaluation, and
performance evaluation. Under techniques for knowledge graph completion, the survey
considers methods that complete type assertions, and that predict relations. Techniques
considered for error detection include binary classification (correct/incorrect), statistical
techniques, reasoning, etc. The survey concludes with a summary of its findings.

Miscellaneous

Knowledge Graph Lifecycle: Building & Maintaining Knowledge Graphs [64] (Simsek
et al., 2021) defines a lifecycle for knowledge graphs involving four stages: knowledge
creation, knowledge hosting, knowledge curation (incorporating assessment, cleaning
and enrichment), and knowledge deployment. Knowledge creation can involve manual
processes or mappings from legacy sources. Knowledge hosting primarily refers to storing
the graph in a database, enabling it to be queried. Knowledge curation involves three
sub-phases: assessment aims to gather information about the quality of the knowledge
graph; cleaning aims to pinpoint and address specific quality issues; enrichment aims to
improve the completeness of the knowledge graph. Finally, knowledge deployment refers
to the use of the knowledge graph for (e.g., end-user) applications. The paper concludes
with lessons learnt from practical deployments of knowledge graphs.

AIB 2022

http://www.semantic-web-journal.net/system/files/swj773.pdf
http://www.semantic-web-journal.net/system/files/swj1167.pdf
http://ceur-ws.org/Vol-2873/paper12.pdf

1:16 Knowledge Graphs: A Guided Tour

8 Conclusions

Knowledge graphs have been the subject of a vast amount of publications in recent years.
Our goal in these lecture notes has been to provide the reader with some orientation on how
to approach this literature: on where to learn more about knowledge graphs in general, or
about topics relating to data, semantics, analytics, learning, or the knowledge graph lifecycle.
Our hope is that by the time you have read this far, you will have deviated from these notes
in order to go out and explore some of the literature mentioned.

Much of the literature discussed herein deals with state-of-the-art techniques, tools,
languages, etc., relating to general or specific aspects of knowledge graphs. But what about
the future of Knowledge Graphs as a research area? As discussed in the introduction to
these lecture notes, we expect Knowledge Graphs to establish itself as a research area in its
own right, complete with its own conferences, journals, etc. This area will ideally serve as a
confluence point for researchers coming from different constituent communities to pursue
novel ideas relating to the use of a graph abstraction to collate and deploy knowledge at
large scale. In this sense, the future of Knowledge Graphs should hopefully see combinations
of techniques from different areas, such as graph representation learning that can consider
semantics expressed as ontologies or rules, or combinations of graph querying and analytics
in the form of hybrid languages and query processing tools, etc. For more discussion on
possible future research directions for knowledge graphs, we refer the interested reader to
the lecture notes “Knowledge Graphs: Research Directions” [32].

References
1 Charu C. Aggarwal and Haixun Wang, editors. Managing and Mining Graph Data, volume 40

of Advances in Database Systems. Springer, 2010. doi:10.1007/978-1-4419-6045-0.
2 Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga Ngomo. A

Survey of RDF Stores & SPARQL Engines for Querying Knowledge Graphs. VLDB Journal,
2021. doi:10.1007/s00778-021-00711-3.

3 Dean Allemang and James A. Hendler. Semantic Web for the Working Ontologist - Effective
Modeling in RDFS and OWL, Second Edition. Morgan Kaufmann, 2011. URL: http://www.
elsevierdirect.com/product.jsp?isbn=9780123859655.

4 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgoc. Foundations of Modern Query Languages for Graph Databases. ACM Computing
Surveys, 50(5):68:1–68:40, 2017. doi:10.1145/3104031.

5 Renzo Angles and Claudio Gutiérrez. Survey of graph database models. ACM Computing
Surveys, 40(1):1:1–1:39, 2008. doi:10.1145/1322432.1322433.

6 Marcelo Arenas, Claudio Gutiérrez, and Juan F. Sequeda. Querying in the Age of Graph Data-
bases and Knowledge Graphs. In Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivast-
ava, editors, SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, pages 2821–2828. ACM, 2021. doi:10.1145/3448016.3457545.

7 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, Cambridge, United Kingdom, 2017. doi:10.1017/
9781139025355.

8 Jesus Barrasa, Amy E. Hodler, and Jim Webber. Knowledge Graphs: Data in Context for
Responsive Businesses. O’Reilly Media, 2021.

9 Dave Bechberger and Josh Perryman. Graph Databases in Action. Manning, 2020.
10 Luigi Bellomarini, Daniele Fakhoury, Georg Gottlob, and Emanuel Sallinger. Knowledge

Graphs and Enterprise AI: The Promise of an Enabling Technology. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages 26–37.
IEEE Computer Society, 2019. doi:10.1109/icde.2019.00011.

https://doi.org/10.1007/978-1-4419-6045-0
https://doi.org/10.1007/s00778-021-00711-3
http://www.elsevierdirect.com/product.jsp?isbn=9780123859655
http://www.elsevierdirect.com/product.jsp?isbn=9780123859655
https://doi.org/10.1145/3104031
https://doi.org/10.1145/1322432.1322433
https://doi.org/10.1145/3448016.3457545
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1109/icde.2019.00011

A. Hogan 1:17

11 Michael K. Bergman. A Common Sense View of Knowledge Graphs. Adaptive Information,
Adaptive Innovation, Adaptive Infrastructure Blog, July 2019. URL: http://www.mkbergman.
com/2244/a-common-sense-view-of-knowledge-graphs/.

12 Andreas Blumauer and Helmut Nagy. The Knowledge Graph Cook Book: Recipes That Work.
monochrom, 2020.

13 Kurt Bollacker, Patrick Tufts, Tomi Pierce, and Robert Cook. A platform for scalable,
collaborative, structured information integration. In Ullas Nambiar and Zaiqing Nie, editors,
Intl. Workshop on Information Integration on the Web (IIWeb’07), 2007. URL: https:
//www.aaai.org/Papers/Workshops/2007/WS-07-14/WS07-14-004.pdf.

14 Piero Andrea Bonatti, Stefan Decker, Axel Polleres, and Valentina Presutti. Knowledge Graphs:
New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371).
Dagstuhl Reports, 8(9):29–111, 2018. URL: https://drops.dagstuhl.de/opus/volltexte/
2019/10328/pdf/dagrep_v008_i009_p029_18371.pdf.

15 Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets. Querying
Graphs. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2018.
doi:10.2200/S00873ED1V01Y201808DTM051.

16 Spencer Chang. Scaling Knowledge Access and Retrieval at Airbnb. AirBnB Medium Blog,
September 2018. URL: https://medium.com/airbnb-engineering/scaling-knowledge-
access-and-retrieval-at-airbnb-665b6ba21e95.

17 Giuseppe Cota, Marilena Daquino, and Gian Luca Pozzato, editors. Applications and Practices
in Ontology Design, Extraction, and Reasoning, volume 49 of Studies on the Semantic Web.
IOS Press, 2020. doi:10.3233/SSW49.

18 Deepika Devarajan. Happy Birthday Watson Discovery. IBM Cloud Blog, December 2017. URL:
https://www.ibm.com/blogs/bluemix/2017/12/happy-birthday-watson-discovery/.

19 Lisa Ehrlinger and Wolfram Wöß. Towards a Definition of Knowledge Graphs. In Michael
Martin, Martí Cuquet, and Erwin Folmer, editors, Joint Proceedings of the Posters and Demos
Track of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the 1st
International Workshop on Semantic Change & Evolving Semantics (SuCCESS’16) co-located
with the 12th International Conference on Semantic Systems (SEMANTiCS 2016), Leipzig,
Germany, September 12-15, 2016, volume 1695 of CEUR Workshop Proceedings. Sun SITE
Central Europe (CEUR), September 2016. URL: http://ceur-ws.org/Vol-1695/paper4.pdf.

20 Dieter Fensel, Umutcan Simsek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra Panas-
iuk, Ioan Toma, Jürgen Umbrich, and Alexander Wahler. Knowledge Graphs: Methodology,
Tools and Selected Use Cases. Springer, 2020. doi:10.1007/978-3-030-37439-6.

21 George H. L. Fletcher, Jan Hidders, and Josep Lluís Larriba-Pey, editors. Graph Data
Management: Fundamental Issues and Recent Developments. Data-Centric Systems and
Applications. Springer, 2018. doi:10.1007/978-3-319-96193-4.

22 José Emilio Labra Gayo, Eric Prud’hommeaux, Iovka Boneva, and Dimitris Kontokostas.
Validating RDF Data. Synthesis Lectures on the Semantic Web: Theory and Technology.
Morgan & Claypool Publishers, 2017. doi:10.2200/S00786ED1V01Y201707WBE016.

23 Denise Gosnell and Matthias Broecheler. The Practitioner’s Guide to Graph Data. O’Reilly
Media, 2020.

24 Claudio Gutiérrez and Juan F. Sequeda. Knowledge graphs. Commun. ACM, 64(3):96–104,
2021. doi:10.1145/3418294.

25 Ferras Hamad, Isaac Liu, and Xian Xing Zhang. Food Discovery with Uber Eats: Building a
Query Understanding Engine. Uber Engineering Blog, June 2018. URL: https://eng.uber.
com/uber-eats-query-understanding/.

26 William L. Hamilton. Graph Representation Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2020. doi:10.2200/
S01045ED1V01Y202009AIM046.

AIB 2022

http://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/
http://www.mkbergman.com/2244/a-common-sense-view-of-knowledge-graphs/
https://www.aaai.org/Papers/Workshops/2007/WS-07-14/WS07-14-004.pdf
https://www.aaai.org/Papers/Workshops/2007/WS-07-14/WS07-14-004.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10328/pdf/dagrep_v008_i009_p029_18371.pdf
https://drops.dagstuhl.de/opus/volltexte/2019/10328/pdf/dagrep_v008_i009_p029_18371.pdf
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95
https://medium.com/airbnb-engineering/scaling-knowledge-access-and-retrieval-at-airbnb-665b6ba21e95
https://doi.org/10.3233/SSW49
https://www.ibm.com/blogs/bluemix/2017/12/happy-birthday-watson-discovery/
http://ceur-ws.org/Vol-1695/paper4.pdf
https://doi.org/10.1007/978-3-030-37439-6
https://doi.org/10.1007/978-3-319-96193-4
https://doi.org/10.2200/S00786ED1V01Y201707WBE016
https://doi.org/10.1145/3418294
https://eng.uber.com/uber-eats-query-understanding/
https://eng.uber.com/uber-eats-query-understanding/
https://doi.org/10.2200/S01045ED1V01Y202009AIM046
https://doi.org/10.2200/S01045ED1V01Y202009AIM046

1:18 Knowledge Graphs: A Guided Tour

27 William L. Hamilton, Rex Ying, and Jure Leskovec. Representation Learning on Graphs:
Methods and Applications. IEEE Data Eng. Bull., 40(3):52–74, 2017. URL: http://sites.
computer.org/debull/A17sept/p52.pdf.

28 Qi He, Bee-Chung Chen, and Deepak Agarwal. Building The LinkedIn Knowledge Graph.
LinkedIn Blog, October 2016. URL: https://engineering.linkedin.com/blog/2016/10/
building-the-linkedin-knowledge-graph.

29 Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space
(1st Edition), volume 1 of Synthesis Lectures on the Semantic Web: Theory and Technology.
Morgan & Claypool, 2011.

30 Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web
Technologies. Chapman and Hall/CRC Press, 2010.

31 Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Edwin Lewis-Kelham, Gerard de
Melo, and Gerhard Weikum. YAGO2: Exploring and querying world knowledge in time, space,
context, and many languages. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar,
M. P. Ravindra, Elisa Bertino, and Ravi Kumar, editors, Proceedings of the 20th International
Conference on World Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011
(Companion Volume), pages 229–232. ACM Press, March 2011.

32 Aidan Hogan. Knowledge Graphs: Research Directions. In Marco Manna and Andreas Pieris,
editors, Reasoning Web. Declarative Artificial Intelligence - 16th International Summer School
2020, Oslo, Norway, June 24-26, 2020, Tutorial Lectures, volume 12258 of Lecture Notes in
Computer Science, pages 223–253. Springer, 2020.

33 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier,
Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen,
Juan Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. Synthesis
Lectures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021. doi:
10.2200/S01125ED1V01Y202109DSK022.

34 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier,
Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen,
Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. ACM
Computing Surveys, 54(4):71:1–71:37, 2021. doi:10.1145/3447772.

35 Valentina Janev, Damien Graux, Hajira Jabeen, and Emanuel Sallinger, editors. Knowledge
Graphs and Big Data Processing, volume 12072 of Lecture Notes in Computer Science. Springer,
2020. doi:10.1007/978-3-030-53199-7.

36 Daniel Janke and Steffen Staab. Storing and Querying Semantic Data in the Cloud. In Claudia
d’Amato and Martin Theobald, editors, Reasoning Web. Learning, Uncertainty, Streaming, and
Scalability - 14th International Summer School 2018, Esch-sur-Alzette, Luxembourg, September
22-26, 2018, Tutorial Lectures, volume 11078 of Lecture Notes in Computer Science, pages
173–222. Springer, 2018. doi:10.1007/978-3-030-00338-8.

37 Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A Survey on
Knowledge Graphs: Representation, Acquisition, and Applications. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–21, 2021. doi:10.1109/TNNLS.2021.3070843.

38 C. Maria Keet. An Introduction to Ontology Engineering. College Publications, 2018. URL:
https://open.umn.edu/opentextbooks/textbooks/590.

39 Mayank Kejriwal. Domain-Specific Knowledge Graph Construction. Springer Briefs in Com-
puter Science. Springer, 2019. doi:10.1007/978-3-030-12375-8.

40 Mayank Kejriwal, Craig A. Knoblock, and Pedro Szekely, editors. Knowledge Graphs: Funda-
mentals, Techniques, and Applications. The MIT Press, 2021.

41 Elisa F. Kendall and Deborah L. McGuinness. Ontology Engineering. Synthesis Lectures
on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers, 2019. doi:
10.2200/S00834ED1V01Y201802WBE018.

http://sites.computer.org/debull/A17sept/p52.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1145/3447772
https://doi.org/10.1007/978-3-030-53199-7
https://doi.org/10.1007/978-3-030-00338-8
https://doi.org/10.1109/TNNLS.2021.3070843
https://open.umn.edu/opentextbooks/textbooks/590
https://doi.org/10.1007/978-3-030-12375-8
https://doi.org/10.2200/S00834ED1V01Y201802WBE018
https://doi.org/10.2200/S00834ED1V01Y201802WBE018

A. Hogan 1:19

42 William L. Kocay and Donald L. Kreher. Graphs, algorithms and optimization. Chap-
man&Hall/CRC Press, 2005.

43 Arun Krishnan. Making search easier: How Amazon’s Product Graph is helping customers
find products more easily. Amazon Blog, August 2018. URL: https://blog.aboutamazon.
com/innovation/making-search-easier.

44 Luís C. Lamb, Artur S. d’Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pedro H. C. Avelar,
and Moshe Y. Vardi. Graph Neural Networks Meet Neural-Symbolic Computing: A Survey
and Perspective. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pages 4877–4884. ijcai.org, 2020.
doi:10.24963/ijcai.2020/679.

45 Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian
Bizer. DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic Web Journal, 6(2):167–195, 2015.

46 Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Blai Bonet and Sven Koenig, editors,
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA, pages 2181–2187. AAAI Press, August 2015.

47 Yao Ma and Jiliang Tang. Deep Learning on Graphs. Cambridge University Press, 2021. URL:
https://web.njit.edu/~ym329/dlg_book/.

48 Albert Meroño-Peñuela, Pasquale Lisena, and Carlos Martinez-Ortiz. Web Data APIs for
Knowledge Graphs: Easing Access to Semantic Data for Application Developers. Synthesis
Lectures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021. doi:
10.2200/S01114ED1V01Y202107DSK021.

49 Mark Needham and Amy E. Hodler. Graph Algorithms. O’Reilly Media, 2019.
50 Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A Review of

Relational Machine Learning for Knowledge Graphs. Proceedings of the IEEE, 104(1):11–33,
2016.

51 Natasha F. Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and Jamie
Taylor. Industry-scale Knowledge Graphs: Lessons and Challenges. ACM Queue, 17(2):20,
2019.

52 Jeff Z. Pan, Guido Vetere, José Manuél Gómez-Pérez, and Honghan Wu, editors. Exploiting
Linked Data and Knowledge Graphs in Large Organisations. Springer, 2017. doi:10.1007/978-
3-319-45654-6.

53 Heiko Paulheim. Knowledge graph refinement: A survey of approaches and evaluation methods.
Semantic Web Journal, 8(3):489–508, 2017. doi:10.3233/SW-160218.

54 R. J. Pittman, Amit Srivastava, Sanjika Hewavitharana, Ajinkya Kale, and Saab Mansour.
Cracking the Code on Conversational Commerce. eBay Blog, April 2017. URL: https:
//www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/.

55 Jay Pujara, Hui Miao, Lise Getoor, and William W. Cohen. Knowledge graph identification.
In Harith Alani, Lalana Kagal, Achille Fokoue, Paul T. Groth, , Josian Xavier Parreira, Lora
Aroyo, Natasha Fridman Noy, Christopher A. Welty, and Krzysztof Janowicz, editors, The
Semantic Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW,
Australia, October 21-25, 2013, Proceedings, Part I, volume 8218 of Lecture Notes in Computer
Science, pages 542–557. Springer, October 2013. doi:10.1007/978-3-642-41335-3_34.

56 Guilin Qi, Huajun Chen, Kang Liu, Haofen Wang, Qiu Ji, and Tianxing Wu. Knowledge
Graph. Springer, 2020. (to appear).

57 Guilin Qi, Huajun Chen, Kang Liu, Haofen Wang, Qiu Ji, and Tianxing Wu. Knowledge
Graph. Springer Singapore, 2022.

58 Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases, 2nd Edition. O’Reilly Media,
2015.

AIB 2022

https://blog.aboutamazon.com/innovation/making-search-easier
https://blog.aboutamazon.com/innovation/making-search-easier
https://doi.org/10.24963/ijcai.2020/679
https://web.njit.edu/~ym329/dlg_book/
https://doi.org/10.2200/S01114ED1V01Y202107DSK021
https://doi.org/10.2200/S01114ED1V01Y202107DSK021
https://doi.org/10.1007/978-3-319-45654-6
https://doi.org/10.1007/978-3-319-45654-6
https://doi.org/10.3233/SW-160218
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://doi.org/10.1007/978-3-642-41335-3_34

1:20 Knowledge Graphs: A Guided Tour

59 Sebastian Rudolph. Foundations of Description Logics. In Axel Polleres, Claudia d’Amato,
Marcelo Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossowski, and Peter F. Patel-
Schneider, editors, Reasoning Web. Semantic Technologies for the Web of Data - 7th Interna-
tional Summer School 2011, Galway, Ireland, August 23-27, 2011, Tutorial Lectures, volume
6848 of Lecture Notes in Computer Science, pages 76–136. Springer, August 2011.

60 Edward W. Schneider. Course Modularization Applied: The Interface System and Its Im-
plications For Sequence Control and Data Analysis. In Association for the Development of
Instructional Systems (ADIS), Chicago, Illinois, April 1972, 1973.

61 Juan Sequeda and Ora Lassila. Designing and Building Enterprise Knowledge Graphs. Synthesis
Lectures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021. doi:
10.2200/S01105ED1V01Y202105DSK020.

62 Stephan Seufert, Patrick Ernst, Srikanta J. Bedathur, Sarath Kumar Kondreddi, Klaus
Berberich, and Gerhard Weikum. Instant Espresso: Interactive Analysis of Relationships in
Knowledge Graphs. In Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks,
and Ben Y. Zhao, editors, Proceedings of the 25th International Conference on World Wide
Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion Volume, pages 251–254.
ACM Press, April 2016.

63 Saurabh Shrivastava. Bring rich knowledge of people, places, things and local busi-
nesses to your apps. Bing Blogs, July 2017. URL: https://blogs.bing.com/search-
quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-
local-businesses-to-your-apps.

64 Umutcan Simsek, Kevin Angele, Elias Kärle, Juliette Opdenplatz, Dennis Sommer, Jürgen
Umbrich, and Dieter Fensel. Knowledge Graph Lifecycle: Building and Maintaining Knowledge
Graphs. In David Chaves-Fraga, Anastasia Dimou, Pieter Heyvaert, Freddy Priyatna, and
Juan F. Sequeda, editors, Proceedings of the 2nd International Workshop on Knowledge Graph
Construction co-located with 18th Extended Semantic Web Conference (ESWC 2021), Online,
June 6, 2021, volume 2873 of CEUR Workshop Proceedings. CEUR-WS.org, 2021. URL:
http://ceur-ws.org/Vol-2873/paper12.pdf.

65 Amit Singhal. Introducing the Knowledge Graph: things, not strings. Google Blog, May
2012. URL: https://www.blog.google/products/search/introducing-knowledge-graph-
things-not/.

66 Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta, and Aldo Gangemi,
editors. Ontology Engineering in a Networked World. Springer, 2012. doi:10.1007/978-3-
642-24794-1.

67 Ilaria Tiddi, Freddy Lécué, and Pascal Hitzler, editors. Knowledge Graphs for eXplainable
Artificial Intelligence: Foundations, Applications and Challenges, volume 47 of Studies on
the Semantic Web. IOS Press, 2020. URL: http://ebooks.iospress.nl/volume/knowledge-
graphs-for-explainable-artificial-intelligence-foundations-applications-and-
challenges.

68 Denny Vrandečić and Markus Krötzsch. Wikidata: A Free Collaborative Knowledgebase.
Communications of the ACM, 57(10):78–85, 2014.

69 Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge Graph Embedding: A Survey
of Approaches and Applications. IEEE Transactions on Knowledge and Data Engineering,
29(12):2724–2743, December 2017. doi:10.1109/TKDE.2017.2754499.

70 Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge Graph Embedding by
Translating on Hyperplanes. In Carla E. Brodley and Peter Stone, editors, Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada, pages 1112–1119. AAAI Press, July 2014.

71 Gerhard Weikum. Knowledge Graphs 2021: A Data Odyssey. Proc. VLDB Endow., 14(12):3233–
3238, 2021. URL: http://www.vldb.org/pvldb/vol14/p3233-weikum.pdf.

https://doi.org/10.2200/S01105ED1V01Y202105DSK020
https://doi.org/10.2200/S01105ED1V01Y202105DSK020
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
http://ceur-ws.org/Vol-2873/paper12.pdf
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.1007/978-3-642-24794-1
https://doi.org/10.1007/978-3-642-24794-1
http://ebooks.iospress.nl/volume/knowledge-graphs-for-explainable-artificial-intelligence-foundations-applications-and-challenges
http://ebooks.iospress.nl/volume/knowledge-graphs-for-explainable-artificial-intelligence-foundations-applications-and-challenges
http://ebooks.iospress.nl/volume/knowledge-graphs-for-explainable-artificial-intelligence-foundations-applications-and-challenges
https://doi.org/10.1109/TKDE.2017.2754499
http://www.vldb.org/pvldb/vol14/p3233-weikum.pdf

A. Hogan 1:21

72 Gerhard Weikum, Xin Luna Dong, Simon Razniewski, and Fabian M. Suchanek. Machine
Knowledge: Creation and Curation of Comprehensive Knowledge Bases. Found. Trends
Databases, 10(2-4):108–490, 2021. doi:10.1561/1900000064.

73 Peter T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50–60, 2012.
doi:10.1145/2206869.2206879.

74 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu.
A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Networks Learn.
Syst., 32(1):4–24, 2021. doi:10.1109/TNNLS.2020.2978386.

75 Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. RDF Data
Storage and Query Processing Schemes: A Survey. ACM Computing Surveys, 51(4):84:1–84:36,
2018. doi:10.1145/3177850.

76 Da Yan, Yuanyuan Tian, and James Cheng. Systems for Big Graph Analytics. Springer Briefs
in Computer Science. Springer, 2017. doi:10.1007/978-3-319-58217-7.

77 Amrapali Zaveri, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann, and Sören
Auer. Quality assessment for Linked Data: A Survey. Semantic Web Journal, 7(1):63–93,
2016.

AIB 2022

https://doi.org/10.1561/1900000064
https://doi.org/10.1145/2206869.2206879
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1145/3177850
https://doi.org/10.1007/978-3-319-58217-7

Reasoning in Knowledge Graphs
Ricardo Guimarães #

University of Bergen, Norway

Ana Ozaki #

University of Bergen, Norway

Abstract
Knowledge Graphs (KGs) are becoming increasingly popular in the industry and academia. They
can be represented as labelled graphs conveying structured knowledge in a domain of interest, where
nodes and edges are enriched with metaknowledge such as time validity, provenance, language,
among others. Once the data is structured as a labelled graph one can apply reasoning techniques
to extract relevant and insightful information. We provide an overview of deductive and inductive
reasoning approaches for reasoning in KGs.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases Knowledge Graphs, Description Logics, Knowledge Graph Embeddings

Digital Object Identifier 10.4230/OASIcs.AIB.2022.2

Category Invited Paper

Funding Ricardo Guimarães: The first author is supported by the ERC project “Lossy Preprocessing”
(LOPRE), grant number 819416, led by Prof. Saket Saurabh.
Ana Ozaki: The second author is supported by the NFR project “Learning Description Logic
Ontologies”, grant number 316022.

Acknowledgements Part of this work has been done in the context of CEDAS (Center for Data
Science, University of Bergen, Norway).

1 Introduction

Knowledge Graphs (KGs) [55, 61, 111, 119] are becoming increasingly popular in the industry
and academia. They can be represented as labelled graphs conveying structured knowledge in
a domain of interest, where nodes and edges are enriched with metaknowledge. Provenance
and time validity are the most common kinds of metaknowledge. Since facts in KGs usually
come from multiple datasources, it is important to record the provenance information, which
is often in the format of an URL (or multiple URLs). Facts may happen multiple times and,
therefore, a temporal dimension with time validity is important to record such information.
Other kinds of metaknowledge include contextual information and language.

One of the most popular methods to model KGs consists in representing them as directed
edge-labelled graphs [55, 61]. In this model, each entity in the domain of interest (people,
places) are represented as nodes, while the different relations between pairs of these entities
are expressed as as directed edges with a label that specifies the type of the relationship.
Figure 1 depicts an example of such graph using entities such as Artur Ávila and Brazil, and
relationships such as citizenship.

In addition to data models, there are concrete languages and systems which implement
KGs. The Resource Description Framework (RDF) [79] is one of the most prominent of
these languages. In fact, RDF is the W3C standard for writing KGs. A KG written
in RDF, that is an RDF graph, is a collection of triples (subject, predicate, object) that
indicate that a relationship (given by the predicate) holds between the entities given as

© Ricardo Guimarães and Ana Ozaki;
licensed under Creative Commons License CC-BY 4.0

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza; Article No. 2; pp. 2:1–2:31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardo.guimaraes@uib.no
https://orcid.org/0000-0002-9622-4142
mailto:ana.ozaki@uib.no
https://orcid.org/0000-0002-3889-6207
https://doi.org/10.4230/OASIcs.AIB.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 Reasoning in Knowledge Graphs

Artur ÁvilaHuman

Brazil

France Country

Math Olympiad

instance of

citizenship

citizenship instance of

participatedIn

Figure 1 Example of directed edge-labelled graph.

subject and object. Example 1 depicts the RDF graph corresponding to the directed edge-
labelled graph from Figure 1. Here, we will also refer to triples using a prefixed notation:
predicate(subject, object), which is closer to the logical formalisations discussed in Section 2.

▶ Example 1. We present below the RDF graph using Terse RDF Syntax, known as “Turtle”,
each line corresponds to a triple. The relationships (predicates) with prefix rdf and rdfs
are imported from existing vocabularies that define the intended meaning of the terms.

1 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
2 @prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
3 @prefix : <http :// www. example .org/> .
4
5 # "Artur Avila" "is a" "Human"
6 : ArturAvila rdf:type :Human .
7 # "Artur Avila" "has country of citizenship " " France "
8 : ArturAvila : citizenship : France .
9 # "Artur Avila" "has country of citizenship " " Brazil "

10 : ArturAvila : citizenship : Brazil .
11 # " France " "is a" " Country "
12 : France rdf:type : Country .
13 # "Artur Avila" " participated in" "Math Olympiad "
14 : ArturAvila : participatedIn : MathOlympiad .

As example of well-known KGs, we have Wikidata [112], a KG which contains much of
the information displayed on Wikipedia. Example 2 discusses an excerpt of the Wikidata
about Artur Avila.

▶ Example 2. Figure 2 contains some information about the mathematician Artur Ávila.
Binary relations, such as participantIn, serve as labels to edges connecting nodes in
the graph. In this example, the nodes would be the mathematician, the International
Mathematical Olympiad, and the Fields medal. The fact that he participated in this event
can be represented with the triple participantIn(ArturAvila, MathOlympiad). There is
temporal metaknowledge associated with this fact which is the year of the participation, 1995.
As we can see in Figure 2, not every fact is annotated with all the relevant metaknowledge,
such as provenance information. The fact that Artur Ávila won the Fields medal is annotated
with both temporal information and provenance (in the format of URLs).

Once the data is structured as a labelled graph one can apply reasoning techniques to
extract relevant and insightful information. The three main classical types of reasoning are
deduction, induction, and abduction:

in deduction, we assume that a proposition or a formula α holds and, if α→ β is valid,
we can deduce β;

R. Guimarães and A. Ozaki 2:3

Figure 2 Excerpt of the Wikidata page of Artur Ávila (Q715043).

in induction, we have that α and β holds and attempt to generalize the facts and generate
a rule, which is an expression of the form α→ β (or β → α);
finally, in abduction, we assume that a proposition or a formula β holds and, if α→ β is
valid, we attempt to find an explanation α for β.

▶ Example 3. Consider the rule “if someone is a participant of an event then this person
attended the event”, which can be expressed in First Order logic (FOL) with the sentence
∀x, y(participantIn(x, y)→ attendant(x, y)) (and in Description Logic with the role inclu-
sion participantIn ⊑ attendant). Given the triple in Example 2 and the rule, we can deduce
that Artur Ávila attended the event, in symbols, attendant(ArturAvila, MathOlympiad).
If, instead of the rule, we have attendant(ArturAvila, MathOlympiad) and the triple in
Example 2, then an inductive procedure could attempt to generalize the fact and gener-
ate the rule ∀x, y(participantIn(x, y) → attendant(x, y)) (or ∀x, y(attendant(x, y) →
participantIn(x, y)), which can happen since inductive procedures can make wrong gener-
alizations). Finally, given the rule and the fact attendant(ArturAvila, MathOlympiad), an
abductive procedure could attempt to find the triple in Example 2 as an explanation for the
fact attendant(ArturAvila, MathOlympiad).

While reasoning can often empower information retrieval [14, 63] and reasoners can work
as query mechanisms, our focus is on reasoning rather than data retrieval. Pure database-like
retrieval is strictly more constrained, as nothing that is not asserted can be derived (except
in the case that the missing data is treated immediately as false). Yet, the line between the
two is sometimes blurry [61]. Here, we focus on the main approaches commonly regarded
as reasoning. We provide an overview of deductive (Section 2) and inductive (Section 3)
reasoning approaches for reasoning in KGs. We do not cover query languages such as
SPARQL [90], even though one can enrich SPARQL queries with reasoning capabilities. We
conclude in Section 5.

AIB 2022

2:4 Reasoning in Knowledge Graphs

2 Deductive Reasoning

Deductive reasoning in KGs is commonly performed by mapping its contents to a logic-based
formalism. With this transformation in place, users and designers can apply reasoners for
extracting logical consequences from the information specified in a KG. In this section, we
discuss three of the most popular formalisms for deductive reasoning with KGs: Description
Logics, Datalog and SHACL. Description Logics underpin the Web Ontology Language,
OWL 2 [84], which is the current W3C standard for ontologies. Datalog corresponds to a family
of languages inspired by the logical programming language Prolog, whose computational
properties makes it attractive in many use-cases. Finally, SHACL is a more recent W3C
recommendation designed to validate constraints in RDF graphs.

2.1 Description Logics
Description logics (DLs) are a family of knowledge representation formalisms [7]. Each DL
has its own language with its own expressivity and, thus, different computational costs for
different tasks. As already mentioned, DLs underpin OWL (including the current version
OWL 2). Thus, the field of DL flourished together with the popularisation of ontologies as a
way of sharing knowledge in disciplines such as Medicine and Biology. While the use-cases
of ontologies and KGs diverge, the two are, nevertheless, related. KGs such as DBPedia
incorporate ontologies [71] that help users and developers to understand the data.

In the following, whenever we refer to a DL ontology or a knowledge base, we mean a
finite set of formulas (or axioms) in a DL. Despite their differences, these languages are very
similar in the way which they are used to describe knowledge. Moreover, most DLs have
decidable reasoning problems and are tailored for specific applications making DL ontologies
valuable tools for deductive reasoning with KGs, even if DLs cannot capture everything that
a KG can represent. In all DLs, the main ideas of the domain of interest are described via
concept descriptions. These concept descriptions essentially create classes to which one can
assign the elements of the domain. Then, a DL ontology will contain statements (formulas)
that, among other things, determine how these concept descriptions relate to each other. We
will discuss more about representing knowledge with DLs next.

Given a domain of interest, the first step is to determine the key notions to be described,
which will then form a set of terms. These terms can be either concept names, role names
or individual names. Concept names determine the basic groups to which elements of the
domain may belong, role names the basic relationships between these elements and individual
names refer to (some) elements of the domain. The set of terms in an ontology is called
signature, composed of three pairwise disjoint sets: concept names (NC), role names (NR)
and individual names (NI).

▶ Example 4. If we are modelling knowledge on notable scientists, following Figure 2, we
could have among the atomic concepts in our signature Scientist, Award and University.
We could also have roles such as receivedAward and participantIn. Finally, we would
need individual names to refer to particular elements of the domain, such as ArturAvila,
FieldsMedal and MathOlympiad.

These are just the fundamental building blocks, as it is possible to build complex concept
descriptions (and sometimes even complex roles) by using a set of constructors, which varies
according to the DL selected. Many DLs allow the ontology engineer to represent the con-
junction (intuitively, the intersection) of two concepts, for instance, Scientist ⊓ Brazilian
to refer to Brazilian scientists. Table 1 lists the concept constructors allowed in the DL ALC.

R. Guimarães and A. Ozaki 2:5

Table 1 Complex concepts in ALC. C, D are concept expressions and r ∈ NR.

Name Syntax Semantic

Conjunction C ⊓ D CI ∩ DI

Disjunction C ⊔ D CI ∪ CI

Negation ¬C ∆I \ CI

Existential Restriction ∃r.C {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}
Value Restriction ∀r.C {x ∈ ∆I | ∀y.(x, y) ∈ rI → y ∈ CI}

Using concepts, roles and individuals, one can write formulas which express the constraints
about the domain of interest. These formulas, or axioms, also vary according to the DL at
hand. Regardless of the DL, ontologies are often split into two parts, the TBox and the ABox.
The TBox contains the terminological knowledge, that is, the relationships between concepts
and between roles, while the ABox contains the assertions, which concern characteristics
of individuals. Table 2 lists the types of axioms allowed in ALC. Concept inclusions and
equalities are TBox axioms, while concept and role assertions are ABox axioms.

Table 2 Axioms in ALC, a, b ∈ NI.

Name Syntax Semantics

Concept inclusion C ⊑ D CI ⊆ DI

Concept equality C ≡ D CI = DI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

Now, we make additional notes about the relationship between KGs and DL ontologies.
As we mentioned in the beginning of this section, KGs may have ontologies associated to
them. In this context, the “ontology” usually refers to the part of KG that corresponds to
a TBox, while the remaining part of the KG corresponds to an ABox [61]. There are also
components in KGs in general, even when considering RDF alone, that cannot be mapped
into DL axioms (such as metadata, as discussed in Section 1). Example 5 continues our
running example, with a simple ALC ontology which describes some constraints about the
domain.

▶ Example 5.

Scientist ⊑ Human

Human ⊑ ¬University

PhD ⊑ ∃educatedAt.University

Scientist(ArturAvila)
participantIn(ArturAvila, MathOlympiad)

In the ontology above, the first axiom states that every scientist is a human, and the second
says that no human is a university. The third axiom says that everyone with a PhD title
should have been educated at some university. The last two are assertions: one states that
Artur Ávila is a scientist and the other that he participated in the International Mathematical
Olympiad.

AIB 2022

2:6 Reasoning in Knowledge Graphs

In DLs, interpretations act as the most popular form of semantics. An interpretation is a
pair (∆I , ·I) where ∆I is an arbitrary set of elements and ·I is a function which maps each
concept to a subset of ∆I , each role to a subset of ∆I ×∆I , and each individual name to
an element of ∆I . Each axiom in an ontology places a new constraint on interpretations
that satisfy the ontology. Tables 1 and 2 describe how each axiom constrains the possible
interpretations of an ontology. If an interpretation I complies with every requirement
specified by an ontology O, we say that I satisfies O, in symbols I |= O. Example 6 clarifies
this notion with an interpretation for the ontology in Example 5.

▶ Example 6. Consider the following interpretation J = (∆J , ·J) such that

∆J = {ArturAvila, Bob, IMO1995, UFRJ};
HumanJ = {ArturAvila, Bob};

ScientistJ = {ArturAvila};
PhDJ = {ArturAvila};

UniversityJ = {UFRJ};
educatedAtJ = {(ArturAvila, UFRJ)};

participantInJ = {(ArturAvila, IMO1995)};
ArturAvilaJ = ArturAvila; and

MathOlympiadJ = IMO1995.

The interpretation J satisfies the ontology in Example 5.

2.1.1 Attributed DLs

While DLs provide an important advantage when reasoning with OWL ontologies, there
are important features seen in real-world KGs that cannot be captured in a useful way in
traditional DLs. OWL and RDF were designed using a directed edge-labelled model, which
enforces every piece of data to be either a node (an entity or literal) or a relation. However,
not only there are RDF graphs (and even OWL features) that cannot be expressed in DLs,
but there are other graph data models which allow nodes and edges to be enriched with
annotations. In a property graph (used for instance in Neo4J), each node and relation may
have a map from keys to values as annotations. The Wikidata model is even more flexible,
as whole statements (already more complex than assertions) may have different annotations
(called qualifiers), with multiple values for the same type of qualification. For example, in
Figure 2 the year 1995 is the value for the qualifier “point in time” for the statement “Artur
Ávila participated in the International Mathematical Olympiad”.

Attributed DLs [21,22, 65, 68, 85] add non-functional attribute-value pairs to DL axioms
(not only assertions) with the goal of representing annotations. This extension presupposes a
set of variables NV which can be used to build specifiers. These are expressions representing
sets of annotations.

▶ Definition 7. The set of specifiers S is the smallest set containing the following expressions:
variables: X;
closed specifiers: [a1 : v1, . . . , an : vn]; and
open specifiers: ⌊a1 : v1, . . . , an : vn⌋;
where X ∈ NV is a variable, n ∈ N, ai ∈ NI and vi ∈ NI ∪ {+} ∪X.c with c ∈ NI.

R. Guimarães and A. Ozaki 2:7

The symbol “+” has the meaning “at least one”. A closed specifier is satisfied iff the set
of annotations matches exactly the specification, while an open specifier requires only that
the annotations appear (others might occur as well).

▶ Example 8. Consider the statements in Figure 2. Using attributed DLs, we can express
specifically the statement about Ávila’s participation as follows:

participantIn(ArturAvila, mathOlympiad)@[pointInTime : 1995].

However, to express the Fields medal award, an assertion with an open specifier would
be preferred, to account for other annotations (e.g. provenance):

awardReceived(ArturAvila, FieldsMedal)@⌊pointInTime : 2014⌋.

Given a classical, non-attributed, DL L (e.g. ALC), its attributed version, L@+ (e.g.
ALC@+), has essentially the same concept expressions as L except that concept and role
names are associated with a specifier. For instance, since in ALC A ⊓B is a valid concept
expression, we have that A@S ⊓ B@S′ is a valid concept expression in ALC@+, in which
S, S′ are specifiers as in Definition 7. Note that we can use an empty open specifier ⌊⌋ if we
do not want to constrain annotations.

▶ Example 9. The following are valid concept and role expressions in ALC@+:
Brazilians: Brazilian@⌊⌋
Doctors of Philosophy whose only annotation is start time 1995: PhD@[startTime : 1995]
The “membership” relation with some starting time memberOf@⌊startTime : +⌋

In Example 9, we deliberately omitted specifiers of the form X.c as they are more intricate.
We will clarify their meaning later when we discuss axioms in attributed DLs. Regarding
concept and role expressions, given a standard DL L, its attributed extension L@+ allows
the following axioms:
L@+ concept assertions are A(a)@S;
L@+ role assertions are r(a, b)@S; and
L@+ concept inclusions are X1 : S1, . . . , Xn : Sn(C ⊑ D);

where A ∈ NC, r ∈ NR, a, b ∈ NI, C and D are L@+ concept expressions, S is a specifier that
is not a set variable, X1, . . . , Xn ∈ NV and S1, . . . , Sn are specifiers.

▶ Example 10. If we consider the DL ALC, and its attributed version ALC@+ we can express
the following statements:

PhD(ArturAvila)@⌊reference : +⌋
memberOf(ArturAvila, USNAS)@[startTime : 2019]
X : ⌊reference : +⌋(PhD@[reference : X.reference] ⊑

∃educatedAt@⌊reference : X.reference⌋.University)

The semantics is also similar to standard DLs and it is given by interpretations, but
modified to include annotation sets. Hence, terms are interpreted as follows:

AI ⊆ ∆I × Pf (∆I ×∆I);
rI ⊆ (∆I ×∆I)× Pf (∆I ×∆I);
aI ∈ ∆I ;

where Pf (S) is the set of all finite subsets of a set S. Example 11 clarifies the meaning of
interpreting terms alone (that is, without considering complex concepts nor specifiers).

AIB 2022

2:8 Reasoning in Knowledge Graphs

▶ Example 11.
ArturAvilaJ = ArturAvila

CarlosChagasJ = CarlosChagas

PhDJ = {(ArturAvila, {(pointInTime, 2001)}), (CarlosChagas, ∅)}
memberOfJ = {((ArturAvila, USNAS), {(startTime, 2019),

(subjectRole, ForeignAssociate)})}
BrazilianJ = {(ArturAvila, {(reference, cv)}), (CarlosChagas, ∅)}
FrenchJ = {(ArturAvila, {(reference, cv)})}

The semantics of specifiers and other expressions containing free variables is defined using
a variable assignment. A variable assignment is a function, Z : NV 7→ Pf (∆I ×∆I)

XI,Z := {Z(X)};

[a : b]I,Z := {{(aI , bI)}};

[a : X.b]I,Z := {{(aI , δI) | ∃δ ∈ ∆I : (bI , δ) ∈ Z(X)}};

[a : +]I,Z := {{(aI , δ1), . . . , (aI , δℓ)} | ℓ ≤ 1 and δi ∈ ∆I}};

[a1 : v1, . . . , an : vn]I,Z := {∪n
i=1ψi | ψi ∈ [ai : vi]I,Z

, 1 ≤ i ≤ n};

⌊a1 : v1, . . . , an : vn⌋I,Z := {ψ ∈ Pf (∆I ×∆I) | ψ ⊇ ϕ for some ϕ ∈ [ai : vi]I,Z}.

Given the semantics of terms and specifiers, concept names and role names with non-empty
specifiers are interpreted as follows:

A@SI,Z := {δ ∈ ∆I | (δ, ψ) ∈ AI for some ψ ∈ SI,Z};
r@SI,Z := {(δ1, δ2) ∈ ∆I ×∆I | (δ1, δ2, ψ) ∈ rI for some ψ ∈ SI,Z}.

The concept constructors in an attributed DL are inherited from its standard counterpart,
with the semantics extended to accommodate the annotations. Intuitively, a specifier will
reduce the extension of a concept or role, that is, if t ∈ NC ∪ NR and S is a specifier, then,
for any interpretation I: t@SI ⊆ t@⌊⌋I .

▶ Example 12. Consider the interpretation J from Example 11. Below we list the in-
terpretation of the concept and role expressions from Example 9 in J using Z(X) =
{(startTime : 2000, startTime : 2019, reference : cv)}.

Brazilian@⌊⌋J ,Z = {ArturAvila}

PhD@[startTime : 1995]J ,Z = ∅

memberOf@⌊startTime : +⌋J ,Z = {(ArturAvila, USNAS)}

French@[reference : X.reference]J ,Z = {ArturAvila}

The main drawback of attributed DLs is that even ALC@+ is undecidable, preventing the
development of sound and complete reasoning mechanisms. Krötzsch et al. [68] proved that
ALCH@ is still decidable, although its satisfiability problem lies in 2ExpTime. Bourgaux
and Ozaki [21] proved that reasoning in a more restricted DL, called DL-LiteR

@ , is in PSpace.

R. Guimarães and A. Ozaki 2:9

2.1.2 Description Logic Reasoners
Reasoning in DLs refers to obtaining implicit knowledge from explicit data. The formal
semantics discussed before allows us to derive new information which respects the constraints
defined in a DL ontology. For example, if we specify that “PhDs are humans” by adding
to an ontology the axiom PhD ⊑ Human, then from the assertion PhD(ArturAvila) we can
conclude Human(ArturAvila), that is, that since Artur Ávila has a PhD title, he is a human.

Reasoning with DL ontologies is a mature and active field of study. There are already
many well-known reasoners such as ELK [59], HermiT [100], Pellet [101], FaCT++ [107],
Konclude [102] and RDFox [82] used in academia and in the industry. Some of these
reasoners are benchmarked in standard reasoning tasks so that both users and developers
can have an overview of the empirical state-of-art [89, 97]. There are also many prototypical
implementations, which are tailored to specific extensions of DLs which still do not have a
widespread adoption.

The DL reasoners differ in a number of factors, for example, ELK can only handle
OWL 2 EL ontologies, which are restricted to the DL EL++. Besides differing according to
their target language (e.g. EL++), they may also be based on different reasoning techniques
(e.g. tableaux, hyper-tableaux, consequence-based reasoning) [7]. Other reasoners specialise
in performance, for instance, by giving approximate results such as the case of TrOWL [105].

2.2 Datalog
Datalog is a query language derived from the logical programming language Prolog [30]. It was
actively studied in the late 80s an early 90s, in the database community as an implementation
of recursive queries. More recently, its interest has been revived for applications for querying
graph-like data structures in ontology-based data access [14] and query answering [3, 27].
Besides the ability to express recursive queries, Datalog has polynomial complexity for many
reasoning tasks which relate to queries and motivate its use today for querying databases,
ontologies, and KGs. There are many extensions of Datalog [26,27,44,94] but here we will
focus on “pure” Datalog and its relevant modifications for handling KGs and ontologies.

2.2.1 Syntax
We begin the formalisation of Datalog with the signature. We assume three pairwise disjoint
sets of symbols: a set of variables V, a set of constants C, and a set of predicates P. Each
predicate is represented as P/n where P is its name and n its arity. A term in Datalog is
either a variable or a constant. An atom is an expression of the form P (x1, . . . , xn) where
P/n ∈ P and xi ∈ C ∪V for 1 ≤ i ≤ n. Using atoms we can write rules. A rule r is an
expression of the form H ← B1, . . . , Bm where H is the head atom and B1, . . . , Bn are body
atoms or subgoals [2, 108]. In Datalog, these rules must be safe, that is, each variable that
appears in the head of the rule appears in its body. A finite collection of safe rules constitutes
a Datalog program.

▶ Example 13. The following rule says that if someone teaches at a university then he/she
is a lecturer:

Lecturer(x)← TeachesAt(x, y), University(y).

The rule above is safe because the variable x appears both in the head and in the body. As
an example of an unsafe rule, consider a rule which says that a worker is someone who works
at some place:

WorksAt(x, y)← Worker(x).

AIB 2022

2:10 Reasoning in Knowledge Graphs

If an atom has no variables we call it a fact, for instance, we can state that Artur Ávila
is a PhD with PhD(ArturAvila). A Datalog database instance is a finite collection of facts.
The safety constraint for rules and the requirement that every database contains only facts
ensures that the logical derivations in a Datalog system are finite. Meaning that, in a finite
number of applications of the rules over the database instance, one can derive every possible
fact that is entailed.

▶ Example 14. In this example, we want to use Datalog to know if Artur Ávila has an Erdős
number. The following rules are useful for knowing if someone has an Erdős number

HasErdosNumber(x)← HasErdosNumber(y), CoAuthor(x, y).
CoAuthor(x, y)← CoAuthor(y, x).

And then, we can state some basic facts

HasErdosNumber(PaulErdos).
CoAuthor(ArturAvila, BarrySimon).
CoAuthor(VilmosTotik, BarrySimon).
CoAuthor(VilmosTotik, PaulErdos).
CoAuthor(ArturAvila, WellingtonDeMelo).

Example 14 shows one interesting feature of Datalog: recursion. In the first rule, for
example, the predicate HasErdosNumber/1 appears both in the head and in the body of the
same rule. In pure Datalog, recursion does not complicate the semantics much, and in many
cases a recursive program can be rewritten without it [2]. However, some complications occur
in Datalog extensions (as some mentioned later in this section).

2.2.2 Semantics
Semantics in Datalog can be defined in many ways: with a model-theoretic approach, via
fixpoint semantics, or based on proofs. Here, we introduce the first of these, as it relates
more closely to the semantics of Description Logics introduced in Section 2.1. To understand
the semantics, we must first map each rule to a sentence in FOL. Given a Datalog rule
H ← B1, . . . , Bn, its corresponding FOL sentence is:

∀x1, . . . , xm ((B1(u1) ∧ · · · ∧Bn(un))→ H(uh))

where uh is the sequence of variables that appear in H, ui is the sequence of variables that
appear in Bi, and x1, . . . , xm are the variables occurring in the rule. Moreover, each fact
corresponds to an atomic formula in FOL.

Then, we will need to consider only Herbrand interpretations. A Herbrand interpretation
maps each constant to its own name and each n-ary predicate to a subset of Cn. In this
way, a Herbrand interpretation can be identified with the set of facts that it satisfies. An
interpretation I satisfies a database instance I, if I ⊆ I. An interpretation I satisfies a
rule H ← B1, . . . , Bn if for every variable substitution by constants θ, {B1θ, . . . , Bnθ} ⊆ I
implies Hθ ∈ I. Finally, an interpretation satisfies a program P if it satisfies every rule. We
denote the satisfaction relation with an infix operator |=, where I |= X indicates that the
interpretation I satisfies X, where X can be a fact, a database instance, a rule, a program,
or a set combining those.

R. Guimarães and A. Ozaki 2:11

▶ Example 15. Consider the two following Herbrand interpretations:

I1 = {PhD(ArturAvila),
Scientist(ArturAvila),
educatedAt(ArturAvila, UFRJ),
participantIn(ArturAvila, MathOlympiad) }

I2 = (I1 ∪ {University(UFRJ)}) \ {Scientist(ArturAvila)}.

The interpretation I1 satisfies the fact Scientist(ArturAvila), but it does not satisfy
University(UFRJ), which is only satisfied by I2. Moreover, the rule

University(y)← educatedAt(x, y) ∧ PhD(x),

is only satisfied by I2 as University(UFRJ) ̸∈ I1. The rule PhD(x)← Scientist(x) is satis-
fied by both interpretations. I1 satisfies both PhD(ArturAvila) and Scientist(ArturAvila),
and I2 satisfies the rule vacuously because Scientist(ArturAvila) ̸∈ I2.

Example 15 shows that we can have multiple interpretations for a given Datalog program
and database instance. We can associate each pair of Datalog program and database instance
(P, I) with the set of all Herbrand interpretations that satisfy them HI(P, I). Interestingly,
we can take the intersection of these models (even if there are infinitely many) and obtain the
minimal Herbrand interpretation for (P, I) [30]. This allows to assign the following meaning
to the consequences (cons) of a program P with database instance I in terms of all possible
Herbrand models as follows

cons(P, I) =
⋂

I∈HI(P,I)

I

The semantics as presented here confer Datalog an interesting property: the unique name
assumption (UNA). The name of each constant identifies it uniquely. In DLs, the convention
is that there is no UNA, which can cause confusion regarding the possible interpretations of
an ontology. Arguably, UNA matches the intended meaning in database applications [2].

2.2.3 Datalog Extensions
Pure Datalog, as we have presented, often lacks expressive power to represent more complex
rules (or queries in a database point of view). To cover these gaps, many extensions of
Datalog have been developed [2, 26,44].

Many Datalog extensions allow rule atoms to appear negated, which gives the possibility
to express interesting relationships. However, these Datalog variants have to deal with two
issues that arise from negation. The first concerns groundings, replacements of variables by
constants, on infinite domains. The second regards the actual semantics of Datalog programs
and happens because the intersection of Herbrand interpretations ceases to characterise
the consequences of Datalog with negation in a meaningful way. There are many different
approaches to circumvent both issues [2], sometimes using semantics that differ considerably
from the one presented here for pure Datalog. In other cases, the issues are solved by employing
a similar semantics but placing syntactic restrictions on the usage of negation [2, 30]. A
complete categorisation of the different possibilities (and thus, of Datalog variants) is beyond
the scope of this work, and we refer the reader to classical references on Datalog for the
details [2, 108].

AIB 2022

2:12 Reasoning in Knowledge Graphs

Many Datalog implementations also include built-in predicates which represent, for
example, arithmetic operations (e.g. sum, subtraction) and numeric comparisons (such as
less than, <). These elements may also induce infinite groundings, so their syntactic use is
usually constrained in a similar way as it happens with negation.

There are also Datalog extensions which focus on temporal reasoning [23,34,51]. Nowadays,
temporal extensions of Datalog, and associated reasoners, often address the Stream Reasoning
paradigm [38, 113]. In Stream Reasoning, the goal is to perform inferences of a (usually)
rapid stream of data. In [11], for example, the authors employ DatalogMTL to formalise
reasoning tasks that must account for time. Such tasks involve calculating or counting values
over a period of time, for instance, to compute the revenue per year of a company [11].

2.2.4 Datalog and Description Logics

Datalog and Description Logics are not completely disjoint fields. There have been many
studies on how these two formalisms relate [43, 67, 94, 95], in particular because Datalog
materialisation, a form of inferring new facts, is very efficient and can be applied to reasoning
problems involving ontologies [27,28] and KGs [110].

Datalog±, for instance, is a family of Datalog variants designed to capture the expressivity
of Description Logics in the DL-Lite family. DL-Lite is composed mostly of lightweight
DLs tailored for querying large collections of assertional data, while the concept inclusions
are kept relatively simple. In fact, Datalog± is strictly more expressive than DL-Lite [27].
Krötzsch, Rudolph and Schmitt [67] investigated fragments of Description Logics (such as
ALC and SROIQ) that can be captured in Datalog, while Rosati [94] proposes a framework
for integrating DLs with Datalog¬∨, that is, Datalog extended with negation in the body
and boolean disjunction in the head.

The Semantic Web Rule Language (SWRL) [57] closely relates DLs and Datalog. More
specifically, this language is based both on OWL DL (a fragment of the first OWL proposal)
and RuleML (which is essentially a fragment of Datalog. The resulting language is very
expressive, so much that reasoning with SWRL with very expressive DLs such as SROIQ
is undecidable. There are, however, subsets of SWRL that retain decidability, even when
combined with SROIQ, the so called DL rules [66].

2.2.5 Reasoning with Datalog

There are numerous implementations of Datalog embedded in database management systems
and inference engines (e.g. RDFox [82], Apache JENA1) or available as libraries (e.g. pyData-
log2, Datalog in Racket3). The implementations vary regarding the extensions implemented,
the semantics adopted, and the actual syntax of the Datalog rules. Next, we discuss some of
the most recent reasoning systems to perform inferences in Datalog rules and KGs.

RDFox [82] is a column store which employs a parallel materialisation method for Datalog
reasoning. Materialisation is a popular strategy to save time in reasoning systems. Every
entailment computed is stored instead of being discarded after each query, saving costs in
subsequent calls. RDFox is designed to manage large volumes of RDF data and provide
reasoning services using Datalog extensions tailored for this use case.

1 https://jena.apache.org/
2 https://sites.google.com/site/pydatalog/
3 https://docs.racket-lang.org/datalog/

https://jena.apache.org/
https://sites.google.com/site/pydatalog/
https://docs.racket-lang.org/datalog/

R. Guimarães and A. Ozaki 2:13

Another notable Datalog system built with KGs as its primary use case is Vadalog [12]. It
focusses on Warded Datalog±, a variant of Datalog with the three highly desirable properties:
(1) ability to express recursive patterns, (2) enough expressivity to capture queries over KGs
in fragments of DL-Lite (more precisely, SPARQL queries with OWL 2 QL entailment), and
(3) polynomial data complexity.

Carral et al. [29] devised a rule engine with reasoning services based on Datalog ma-
terialisation. The engine is designed for an extension of Datalog similar to Datalog± and
targets KGs as its main use-cases. One of the aspects that distinguishes this tool from other
approaches mentioned here is the ability to easily integrate with data sources in different
formats such as OWL ontologies, SPARQL endpoints, and RDF stores.

As we mentioned in the previous sections, KGs often include uncertain information and
time-sensitive data. Chekol et al. [32] devised a framework combining Markov Logic Networks
(MLNs) [92] and Datalog extended with inequalities to facilitate time-aware maintenance of
KGs. MLNs are a Statistical Relational Learning approach which combines First-Order Logic
and probabilities to represent dependencies between events, while they still remain uncertain.
In a similar vein, Bellomarini et al. [10] extend the Vadalog system to express probabilistic
rules. Recently, Wang et al. [114] developed a DatalogMTL reasoner by combining traditional
reasoning methods for Datalog (materialisation) and automata-based methods.

Leone et al. [73] adapted the DLV2 answer set programming system, which already had
Datalog capabilities, to handle large KGs (in the paper, the authors focus on DBPedia). These
improvements concern mostly scalability, reducing processing time and memory consumption.

2.3 SHACL
The Shape Constraint Language (SHACL) is a W3C recommendation [62] whose purpose is
to validate RDF graphs. Each SHACL constraint is called a shape which specifies to which
nodes it applies and what conditions such nodes must satisfy. Given a KG in RDF, one can
use different tools to check that the KG complies with a set of shapes. KGs generally lack
a schema when compared with a database. Therefore, constraints are crucial for quality
assessment and maintenance of large KGs [88]. SHACL and similar languages, such as
ShEx [17], are tailored for the particular task of constraint validation, whereas OWL is
tailored for modelling domains of knowledge and for reasoning. However, as we discuss later
in this section, one can define reasoning problems and perform inference using SHACL. Next,
we illustrate the capabilities of SHACL with an example.

▶ Example 16. The RDF graph below, written in terse triple notation, describes a single
shape using SHACL (we omit the prefixes’ declarations here).

1 : HumanShape rdf:type sh: NodeShape ;
2 sh: targetClass :Human; # applies to all humans
3 sh: property [
4 sh:path : birthDate ; # predicate for the date of birth
5 sh: maxCount 1 ; # must have at most 1
6 sh: minCount 1 ; # must have at least 1
7 sh: datatype xsd:date ; # must be a date
8];
9 sh: property [

10 sh:path : citizenship ; # citizenship predicate
11 sh: minCount 1 ; # must have at least 1
12 sh:node [a sh: NodeShape ;
13 sh:class : Country]; # must be a country
14] .

AIB 2022

2:14 Reasoning in Knowledge Graphs

The first defines the name of the shape (:HumanShape). The shape targets the nodes
whose type (rdf:type) is the node :Human (Line 2). It also specifies that each such node
must have exactly one birth date and it must be a valid date (lines 3 to 8). Lines 9 to 14
state that the target nodes must (1) be related via :citizenship to at least one node and
(2) be related by :citizenship only to objects of type :Country (this specification is done
by using an anonymous shape in lines 12 and 13).

Programs called SHACL processors check whether an RDF graph complies with a set of
shapes. These programs generate a validation report for a given graph and set of shapes,
indicating which nodes and constraints are violated, if any. Example 17 depicts an example
of validation report.

▶ Example 17. A SPARQL processor receiving shapes from Example 16 and the RDF graph
from Example 1 could produce the validation report below4.

1 [
2 a sh: ValidationResult ;
3 sh: resultSeverity sh: Violation ;
4 sh: sourceConstraintComponent sh: MinCountConstraintComponent ;
5 sh: sourceShape _:n51;
6 sh: focusNode <http :// www. example .org/ArturAvila >;
7 sh: resultPath <http :// www. example .org/birthDate >;
8 sh: resultMessage "Less than 1 values ";
9] .

10 [
11 a sh: ValidationResult ;
12 sh: resultSeverity sh: Violation ;
13 sh: sourceConstraintComponent sh: NodeConstraintComponent ;
14 sh: sourceShape _:n52;
15 sh: focusNode <http :// www. example .org/ArturAvila >;
16 sh:value <http :// www. example .org/Brazil >;
17 sh: resultPath <http :// www. example .org/ citizenship >;
18 sh: resultMessage "Value does not have shape Blank node _:n53 ";
19] .

The report specifies two violations: one says that the RDF graph does not include a birth
date for :ArturAvila (lines 1 to 9) and the other (lines 10 to 19) indicates that the graph
does not guarantee that :Brazil is a country.

2.3.1 DL-like Syntax for SHACL
Since we are interested in SHACL from the point of view of reasoning, we will look at the
SHACL formalisation by Jakubowski and Van den Bussche [16] which adapts the one by
Corman, Reutter and Savković [35]. This alternative syntax is much closer to that presented
for Description Logics in Section 2.1, and it will aid us in describing SHACL’s semantics and
its connections to the DLs.

First, we need three pairwise disjoint sets of node names (NN), shape names (NS) and
property names (NP). A signature Σ is be subset of NN ∪ NS ∪ NP. Using these terms, one
can define path expressions which are either property names or built as in Table 3 (these
path expressions essentially come from SPARQL [35, 62]). Finally, we can consider shape
expressions: terms in NS or expressions using the constructors in Table 4.

4 The validation report was generated at https://shacl.org/playground/.

https://shacl.org/playground/

R. Guimarães and A. Ozaki 2:15

Table 3 Syntax and semantics of abstract SHACL path expressions [16].

Name Syntax Semantics

Inverse p− {(a, b) | (b, a) ∈ pI}
Union E1 ∪ E2 E1

I ∪ E2
I

Composition E1 ◦ E2 {(a, b) | ∃c.(a, c) ∈ E1
I ∧ (c, b) ∈ E2

I}
Reflexive closure E? EI ∪ {(a, a) | a ∈ ∆I}

Reflexive-transitive Closure E∗ The ⊆-minimal S with E?I ⊆ S and
(a, b), (b, c) ∈ S implies (a, c) ∈ S

Table 4 Syntax and semantics of abstract SHACL shape expressions [16]. I is an interpretation
defined over the signature Σ, E is a path expression, p ∈ NP, s ∈ NS, c ∈ NN n ∈ N, Q ⊆ NP and
ϕ1, ϕ2 are shape expressions. Also, R(a) denotes the set {b | (a, b) ∈ R}, where R is a binary relation.

Name Syntax Semantics

Top ⊤ ∆I

Atomic Shape s sI

Nominal {c} cI

Conjunction ϕ1 ∧ ϕ2 ϕI
1 ∩ ϕI

2

Disjunction ϕ1 ∨ ϕ2 ϕI
1 ∪ ϕI

2

Complement ¬ϕ1 ∆I \ ϕI
1

Minimum cardinality ≥ nE.ϕ1 {a ∈ ∆I | (#(ϕI
1 ∩ EI(a))) ≥ n}

Equality eq(p, E) {a ∈ ∆I | pI(a) = EI(a)}
Disjointness disj(p, E) {a ∈ ∆I | pI(a) ∩ EI(a) = ∅}
Closed shape closed(Q) {a ∈ ∆I | pI(a) = ∅ for every p ∈ Σ \ Q}

We can regard a set of shapes, as the one in Example 16, as a set of statements relating
shape expressions. These statements can be of two types shape definitions and shape
constraints. Shape definitions are expressions of the form s ≡ ϕs with s ∈ NS and ϕs a shape
expression. Shape constraints are statements of the form ϕ1 ⊑ ϕ2. A set of shapes can be
represented as a pair of sets (D,T) called shape schema [6], in which D is a set of shape
definitions and T a set of shape constraints. The shape schema must satisfy some syntactical
requirements to ensure that it represents a valid SHACL document, we refer the reader
to [6, 16] for more details.

▶ Example 18. This is a translation of the SHACL constraints over the citizenship relation
in Example 16.

¬(≥ 1.citizenship.¬({country})) ∧ (≥ 1.citizenship.⊤)

The first conjunct states that the target can only be related via citizenship to countries
Country. The second specifies that there must be at least one object to which the target
relates to via citizenship.

2.3.2 Semantics
When considering SHACL semantics, we have to make distinctions similar to the Datalog
case. However, in this case the distinction concerns recursion. A shape is recursive if it refers
to itself directly or indirectly, otherwise, it is non-recursive. The W3C recommendation [62]

AIB 2022

2:16 Reasoning in Knowledge Graphs

describes the language precisely enough to specify the meaning of validation against non-
recursive shapes, however, the semantics of validation containing recursive shapes is open.
This gap in SHACL’s semantics sparked a number of distinct approaches attempting to
clarify the validation of recursive SHACL [6,15,35].

For the purposes of this work, it will be enough to consider the semantics for non-recursive
SHACL alone. Here, we will also focus on the formalisation proposed by Bogaerts, Jakubowski
and Van den Bussche [16]. Thus, we will present the semantics using interpretations, which
is also similar to the ones seen in Section 2.1. However, before we proceed, we remark two
key differences between standard DL (and OWL) reasoning and SHACL reasoning. The first
is the presence of the UNA in SHACL [62]. This means that every term in NN ∪ NP must be
mapped to a different element of the domain in SHACL [16], similarly to the case of many
Datalog semantics [2]. Furthermore, even blank nodes in a RDF graph (i.e. those who do
not have an IRI) must be mapped into distinct elements of the domain [35].

The second main difference is that relations in SHACL are closed, meaning that if the
graph does not have a triple (subject, predicate, object), then it is assumed to be false. More
precisely, each triple can be seen as a fact (similar to the meaning in Datalog) or an assertion
(as in DL ABoxes). For example, the triple (Artur Ávila, memberOf, USNAS) represents
the fact that Artur Ávila is member of the United States’ National Academy of Science
(USNAS). If such triple would not be present in the Wikidata’s KG, then SHACL would
assume that Artur Ávila is not a member of the USNAS when validating the KG against a
set of shapes. This is not the case in standard OWL and DL reasoning which follows the
Open World Assumption (OWA). With the OWA, unless there is a statement or its negation
(either asserted or inferred), the status of any triple is assumed to be unknown. As Bogaerts,
Jakubowski and Van den Bussche [16] remark, this does not mean that SHACL presupposes
the Closed World Assumption (CWA) completely. Triples about unknown entities could still
be true or false. For instance, if the KG did not include any reference to Artur Ávila, then the
status of the triple (Artur Ávila, memberOf, USNAS) would be “unknown”, thus there could
be an interpretation for that KG in which the triple is true, while another interpretation
would consider it false.

Now, for the actual semantics, we consider that a KG G is a finite set of triples (subject,
predicate, object), or equivalently, facts of the form predicate(subject, object). Given a
KG G, we write NG to denote the set of nodes (entities that appear as subject or object)
that occur in G, and pG to represent the set {(a, b) | (a, p, b) ∈ G}. One can build an
interpretation I(G) = (∆I(G), ·I(G)) over NN ∪ NP based on the KG G that preserves the
intended meaning of the triples and shapes as follows [16]

∆I(G) = NN;
cI(G) = c, for all c ∈ NN; and
pI(G) = pG, for all p ∈ NP.

The semantics for complex path expressions follows the rules stated in Table 3. Shapes
are mapped to subsets of ∆I(G) using the rules described in Table 4.

2.3.3 Reasoning with SHACL
The main reasoning task in SHACL is validation of constraints, that is, given an RDF graph
which acts as an interpretation, one must decide whether it satisfies a set of constraints
defined by shapes. As mentioned earlier, there are programs called SHACL processors
which are either standalone programs [47], or embedded in larger systems for managing
KGs, such as RDFox [82]. We list the most prominent of these reasoning tasks below (see
also [5, 72,87,88]).

R. Guimarães and A. Ozaki 2:17

Shape containement: given two shapes ϕ1 and ϕ2, decide whether every target node that
complies with ϕ1 will also comply with ϕ2. If so then we say that ϕ1 is contained in ϕ2.

SHACL satisfiability: given a set of shapes S, decide whether there exists G that complies
with all shapes in S.

Explanation for Violations: Given a set of shapes S and a KG G, decide whether (B,A)
with B ⊆ G and A ∩G = ∅ is such that (G \B) ∪A complies with S.

Leinberger et al. [72] studies the decision problem of shape containment through DLs
using the abstract formalisation of SHACL proposed by Corman, Reutter and Savković [35]
that we presented here. More precisely, they map the problem of shape containment to
concept subsumption, a well known decision problem in DLs [7]. The problem of shape
containment was later generalised by Pareti et al. [88]. The authors studied the containment
problem between sets of shapes and also proposed and investigated SHACL satisfiability
and a more restricted version, constraint satisfiability. The tasks studied were restricted to
non-recursive SHACL, but they are also being extended to consider recursive shapes [87].

While explanation finding and associated tasks are classified as abductive reasoning, we
find it convenient to mention here the work due to Ahmetaj et al. [5]. The authors define and
investigate the computational complexity of many reasoning problems related to explanations
in SHACL, as the one we mentioned before. Their theoretical framework rely on a primarily
deductive approach which is also underpinned by the DL abstraction of SHACL.

3 Inductive Reasoning

Inductive reasoning in KGs can be performed with different approaches. One of the main
goals of this task is to “complete” the KGs. KG completion is the task of inferring new facts
which are plausible based on patterns already present in a given KG. In this section, we
discuss classical approaches for KG completion, namely, knowledge graph embeddings [20]
(see [55] for some approaches using graph neural networks).

3.1 Knowledge Graph Embeddings
An embedding in Representation Learning (a subarea of Machine Learning) corresponds to a
mapping from a collection of objects to a vector space model, often low-dimensional ones.
The first approaches for knowledge graph embeddings mapped both objects (corresponding
to nodes in the KG) and relations to vectors into a low-dimensional latent space encoding
regularities in the KG [20]. These methods also have a score function that determines if a
given triple is likely to be true or not, given the embeddings learned. Here we will assume,
without loss of generality, that the higher the score, the more likely the triple is to be true.
The score function is also the main component of the loss function that should be minimised
during the training phase.

▶ Example 19. Consider a KG G that contains the entities ArturAvila, CarlosChagas,
NiedeGuidon, archelogist, biologist and mathematician; and the relation occupation.
Ideally, an embedding method should learn vector representations (embeddings) for entity
and relations that allows us to infer new and correct triples. For instance, suppose that G con-
tains (ArturAvila, occupation,mathematician) and (CarlosChagas, occupation, biologist),
but does not include (NiedeGuidon, occupation, archeologist). If the KG also includes
NiedeGuidon in other triples, then we would expect that we could derive the missing triple
by looking at the embeddings for NiedeGuidon, occupation and archeologist. For instance,
if we use TransE [20] and it generates the embeddings (0.5, 0.2) for NiedeGuidon, (0.25, 0.5)

AIB 2022

2:18 Reasoning in Knowledge Graphs

for (archeologist), and (−0.3,−0.2) for the relation occupation, then we could expect to
infer the triple (NiedeGuidon, occupation, archeologist), as TransE gives high scores for a
triple (s, p, o) if ||(s + p) − o||ℓ ≈ 0, where s, p and o are, respectively, the embeddings
learned for s, p and o, and ||.||ℓ denotes the ℓ-norm.

Even today, this is the standard approach when designing KG embedding models, despite
the variety of strategies: some rely on geometric-based mappings [20,103], others on expressing
the graph as products of tensors [106], and more recent methods rely on neural networks [40].

This representation is shown to be not suitable for encoding rules, in particular, concept
and role inclusions present in ontologies [53,58,118]. For example, we could have a concept
inclusion that states that every mathematician is a scientist, but traditional embedding
methods would not be able to use this information when learning embeddings, nor would
guarantee that such constraint would be respected. They also do not take into account
the time dimension, which may be central in some KGs that contain inconsistencies if we
disregard the temporal annotations. Since there is already a fairly recent survey on KG
embedding methods in general due to Dai et al. [36], we will focus on the approaches which
propose embedding models which focus on compliance with ontological constraints or on
representing the time dimension.

3.1.1 KG Embeddings and Ontological Constraints
There are different approaches to incorporate ontological constraints in KG embeddings. The
goal is to improve the accuracy of these methods in KG completion tasks and also reduce the
amount of data required to achieve a reasonable performance during training, particularly
when the KG has sparse relations [46]. Moreover, compliance with ontological constraints
might also lead to models that capture the semantics of the relations and entities included.

Fatemi, Ravanbakhsh and Poole [46] modify the SimplE embedding model so that it
complies with additional constraints which express concept and role inclusions by enforcing
inequality constraints on the score function of affected triples. More precisely, to express
the role inclusion r ⊑ s, the model enforces that the score function f is such that f(x, r, y) ≤
f(x, s, y) while also requiring every coordinate of every embedding to be non-negative.
The strategy for concept inclusions is analogous, but involves transforming the pertinence
relation to each class (i.e. the relation rdf:type) into a new relation. The resulting variant,
named Simple+ performs similarly to SimplE, and with faster convergence when taxonomic
information is available. It also retains the same theoretical qualities of the original model.

In [37], the authors introduce two KG embedding models, TransOWL and TransROWL,
which employs a knowledge injection approach. The two models proposed consist in adaptions
of TransE [20] and TransR [77] in which the loss function is enriched with terms expressing
ontological constraints expressing class and property hierarchies and equivalences, and inverse
properties. The empirical evaluation shown reductions on the false positive rates, but also
that there is still room for improvement.

BoxE [1] is a geometric KG embedding model designed to cope with patterns between
relations such as symmetry, inversion and composition, as well as one-to-many and many-to-
many relations. The ability to expresses those complex relationship patterns is a common
short-coming in translation-based embedding models [1, 103], which can damper the benefits
of their comparatively more explainable formal framework. In addition, BoxE employs
knowledge injection to guarantee that the outcome always satisfies a rule. The authors prove
that BoxE can be injected with rules in a language that combines the union, symmetry,
hierarchy and intersection constraints. There were previous approaches to rule injection, but
with more limited languages [41,93].

R. Guimarães and A. Ozaki 2:19

There are also other approaches which rely directly on existing reasoners. Wiharja et
al. [118] investigate iterative strategies for KG completion using a combination of meth-
ods that involves deductive reasoning (classical reasoners) and inductive reasoning (KG
embeddings). In addition to showing that traditional KG embeddings do not comply with
ontological constraints specified in OWL or in SHACL. In their iterative approach they
employ an incomplete, but highly efficient reasoning procedure to detect triples that violate
the constraints. The wrong triples are deleted, and the correct triples are added to the
current KG, and the process is repeated until a fixpoint or other convergence condition is
reached. ReasonKGE is a similar iterative approach proposed by Jain et al. [58] that relies
on the use of deductive reasoning as an intermediate step. The main difference is that the
wrong triples (that is, the ones that violate the ontological constraints) are not discarded,
they are added to the set of negative samples for training the internal embedding model.

Gutiérrez-Basulto and Schockaert [53] introduce geometric models, where relations are
mapped to convex regions, rather than vectors. This principled solution is suitable for a
large fragment of the first-order Horn rule language, called quasi-chained. This language also
corresponds to the chain-Datalog variant, which also places constraints on the negation (in
particular, in combination with recursion) [109]. In this approach using convex regions [53],
any triple predicted by that embedding model will not only be consistent with the quasi-
chained ontology at hand, but it will also be a logical consequence of that same ontology.
However, the geometric model based on convex-region, as introduced in the mentioned
work, does not capture negation beyond the ability of expressing disjointness [86]. This is
investigated in a new semantics for representing relations which allows full negation, called
cone semantics [86]. In cone semantics, an interpretation maps each concept name to an
axis-aligned, convex, cone (henceforth, simply cone). The authors then focus on the DL ALC
and extend the semantics to all of its concept expressions (i.e. those built using the concept
constructors in Table 1) so that those are also mapped to cones.

To conclude this discussion on KG embeddings and ontological constraints, we remark
that there are still open questions regarding the ability of embedding models in capturing
the semantics of entities and relations in a way that is logically consistent. The main
argument for focussing on these questions remains to be able to verify that the embeddings
capture connections between entities, concepts and relations. Therefore, there is still
work to be done if we consider different languages and other forms of building defining
interpretations using embeddings, as even the most principled approaches in this direction
still have drawbacks [53,58,86].

3.1.2 KG Embeddings and Temporal Information
There are two prominent aspects in KGs that invoke time-awareness. First, as discussed
earlier, KGs often include facts annotated with time validity [39]. For instance, the fact that
Artur Ávila is member of the USNAS is only valid from 2019 onwards. The second aspect
is the dynamic nature of KGs [60,99]. KGs can be edited both by humans and programs,
receiving constant updates, which also require constant repair. Hence, the KG itself changes
with time. When performing reasoning, for instance via KG completion with embeddings,
it might be crucial to take into account time validity and changes over time. These needs
fostered KG embedding proposals that give a particular attention to temporal information.
This is still a very recent and active area of research, and as such, we only briefly summarise
some approaches in this field while presenting some of the characteristics that differentiate
these methods from usual (atemporal) KG embedding strategies. We refer the reader to the
survey due to Kazemi et al. [60] for a more detailed and thorough overview of temporal KG
embedding approaches (and other time-aware Representation Learning methods for KGs).

AIB 2022

2:20 Reasoning in Knowledge Graphs

Many approaches for temporal embeddings depart from atemporal KG embedding methods
and modify the models to accommodate time [98] or devise frameworks in which traditional
KG embedding methods are seen as components [120, 125]. Moreover, the strategies for
creating this models often fall into the same three categories as traditional embedding models:
geometric models [96, 115,116,122], tensor factorisation models [31, 50, 76, 98] and models
based on neural networks [74]. HyTE [39], for example, was one of the first embedding
models to encode time into the embeddings. HyTE represents the dynamic KG as a series
of snapshots, each snapshot being a static KG at a specific point in time. In this model,
translation-based embedding models, such as TransE, are modified with the specification of
hyperplanes that indicate the time component of a fact. Wang and Li [116] employed the
same hyperplane-based approach and extended TransD.

SEDE [127] also departs from TransE and uses the same snapshot-modelling intuition
as HyTE. However the adaption for accommodating temporal information is inspired by
strategies used in semantic word evolution. QCHyTE is another model based on HyTE which
view the changes over time as gradual rather than abrupt, using a probabilistic approach [33].
Other methods that also model changes as gradual processes using probabilities include the
frameworks due to Liao et al. [75] and ATiSE model [123]. TKGFrame [126] quantifies and
models the temporal dependencies between relations over the same individual. TKGFrame is
able to quantify, for example, that a transition from bornIn to marriedTo requires more
“time” than the transition from bornIn to diedIn [126].

The existing models for temporal KG embeddings also differ regarding on whether they
focus on events (individual time points), such as DE-SimplE [50], or if they are able to handle
intervals, as is the case of TeRo [122]. Granularity of time intervals and precision of time
points is also relevant to time-sensitive applications and it has been explored in the context
of KG embeddings [70, 83, 124]. The TDG2E model [104], for instance, extends TransE
with temporal information and uses a recurrent neural network to encode the dependencies
between different snapshots and address issues related to the sparsity of temporal annotations.
Li et al. [74] also use recurrent neural networks to represent temporal dependencies, but
without using a geometric model underneath. The strategy relies primarily on an application
of recurrence structures with graph convolutional networks [74]. The TIME2BOX model [25]
is particularly expressive as it can deal with facts with unspecified time validity, open intervals
and closed intervals (including left/right-open).

We note that some challenges that remain ubiquitous to KG embedding models in general
are also being addressed in the temporal subfield. As usual, computational performance,
in terms of resource usage, is an eminent concern [121], as well KG completion quality
under adverse conditions, such as relations that occur in few facts in a KG [81]. Ensuring
that the semantics of entities and relations is captured adequately (and ideally, with formal
guarantees) is also a major concern and an active research problem in this field [78]. Models
such as RETRA [117] and the approach due to Lie et al. [78] focus on contexts of facts
defined by sharing of entities and relations.

Bourgaux, Ozaki and Pan [22]’s proposal also addresses the problem of capturing temporal
aspects and ontological constraints. More precisely, the authors extended the geometric
models as proposed by Gutiérrez-Basulto and Schockaert [53] from the classical DL setting
to attributed DLs (as presented in Section 2.1.1). Then, they include the time dimension by
enriching the attributed DL obtained with temporal operators. These operators allow a user
to specify temporal dependencies such as “before”, “until” and “during”. Furthermore, the
authors identify a fragments of the resulting language that ensure that a convex geometric
model exists capturing its semantics.

R. Guimarães and A. Ozaki 2:21

4 Extracting Rules

Association Rule Mining (ARM) [4] and Formal Concept Analysis (FCA) [49] are two
approaches for extracting rules from data. Initially, these techniques were applied for data
structured in the format of databases. More recently, there has been increased interest in
applying ARM and FCA for extracting rules from KGs [18,19,48,52,54,69].

ARM is a practical and highly scalable approach for extracting rules from KGs. One of
the most prominent tools to extract rules from KGs based on ARM is AMIE [48]. Current
versions of this tool can extract rules from large KGs in a few minutes [69]. This approach
uses two measures, called support and confidence, to guide the search of rules and to identify
significant patterns to be extracted. In this context, the support of a rule is the number
of true predictions of a rule in a KG. The authors of AMIE point out that for many real
world KGs the support measure drastically decreases for the vast majority of the rules with
more than 4 predicates in the body of the rule. Since low support for a rule means that
the rule would only be applicable to few objects, this implies that, in most cases, long and
difficult to interpret rules (with more than 4 predicates) can be discarded. Moreover, many
combinations of 2 or 3 predicates already results in low suport.

▶ Example 20. Consider a rule with the binary predicate “teachesAt” in its body. The
first argument of this predicate can only refer to educators while the second can only refer
to educational institutions, which already significantly limits the possible combinations of
predicates that can result in a rule with high support.

So the search space can be drastically reduced by applying the support measure to guide the
search for significant patterns in the data. The main difficulty with the ARM approach is that,
in order to achieve high scalability, the structure of the rules can be radically limited and that
it does not provide theoretical guarantees regarding the extracted rules. In particular, this
approach does not guarantee that all relevant rules in a certain rule language are extracted.
It is also the case that the number of rules extracted can be very large (even though the size
of each rule is limited).

The FCA approach addresses the difficulties of ARM, in particular, it gives theoretical
guarantees for the rules extracted. The classical setting focuses on propositional Horn theory.
In the DL context, there are e.g. works applying FCA to compute all concept inclusions of
the EL ontology language (this language corresponds to the ALC description logic without
negation, disjunction, and value restriction, see Table 1) that hold in a dataset [42, 52].
FCA also focus on succinctness, in particular, on constructing a set of rules that is minimal,
called the Duquenne-Guigues base or stem base. The main challenges in applying FCA for
extracting rules from KGs are (1) scalability, (2) the presence of a significant portion of
erroneus information, and (3) the fact that rules generated with FCA can be complex and
difficult to interpret. One way of dealing with challenges (1) and (2) is to combine FCA and
ARM. A simple way of dealing with challenge (3) is by limiting the size of rules extracted, as
it is the case in ARM.

5 Conclusion

In this work, we discussed different forms of inductive and deductive reasonings on Knowledge
Graphs. Deductive and inductive reasoning have different strengths and shortcomings.
Combining those to provide efficient and explainable reasoning is one of the current challenges
in Artificial Intelligence. Besides deductive and inductive reasoning, there is also a third
modality: abductive reasoning, which we briefly discuss next.

AIB 2022

2:22 Reasoning in Knowledge Graphs

This third form of reasoning also aims at inferring facts, but from another perspective.
Instead of focusing on new consequences that can be discovered, abductive reasoning concerns
finding explanations for entailments already known or the lack of expected entailments. For
example, suppose that we find out using inductive reasoning that the Wikidata KG implies
that Artur Ávila is European. An abductive reasoning procedure could then be used to
identify, among the numerous facts in Wikidata, which are strictly necessary to reach this
conclusion. That is, we would like to find an explanation for that conclusion. Similarly, we
might be interested in adding facts, axioms or rules to our KG or reasoning system to reach
a particular conclusion without explicitly stating it.

Abduction in DLs, for instance, is a rich area of research with many different applic-
ations [13, 45, 64, 91]. One of them is debug and repair of DL ontologies via explanations
and “explanation-like” objects, such as justifications [56], MinAs [9] and others [80]. The
main goal is to find the explanations for undesired consequences and transform the ontology
(or KG) so that it does not entail those anymore. Also, in the context of repair, we might
be interested in finding the largest portions of the KG that do not entail a certain fact or
present a particular behaviour. Such sets, and similar constructions, appear under many
names in the Ontology Repair literature such as MaNAs [9], repairs [8], among others [80].
Some studies relate abductive reasoning and Datalog, either solving this problem for Datalog
programs [24] or using Datalog to perform abduction in other languages. Additionally, as we
mentioned in Section 2.3, there are also works on explanations for SHACL violations [5].

To conclude, we note that the approaches presented and mentioned here differ regarding
the treatment of the KG and the reasoning problems they aim to solve. Understanding their
advantages and disadvantages is key to devising better solutions for the existing challenges
in reasoning with KGs.

References

1 Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe:
A box embedding model for knowledge base completion. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.
neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html.

2 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley,
1994.

3 Serge Abiteboul and Victor Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43:62–124, 1991.

4 Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between
sets of items in large databases. Special Interest Group on Management Of Data SIGMOD,
22(2):207–216, June 1993.

5 Shqiponja Ahmetaj, Robert David, Magdalena Ortiz, Axel Polleres, Bojken Shehu, and
Mantas Šimkus. Reasoning about explanations for non-validation in SHACL. In Proceedings
of the Eighteenth International Conference on Principles of Knowledge Representation and
Reasoning. International Joint Conferences on Artificial Intelligence Organization, September
2021. doi:10.24963/kr.2021/2.

6 Medina Andresel, Julien Corman, Magdalena Ortiz, Juan L. Reutter, Ognjen Savkovic, and
Mantas Simkus. Stable Model Semantics for Recursive SHACL. In Proceedings of The Web
Conference 2020. ACM, April 2020. doi:10.1145/3366423.3380229.

7 Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://doi.org/10.24963/kr.2021/2
https://doi.org/10.1145/3366423.3380229

R. Guimarães and A. Ozaki 2:23

8 Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and Rafael Peñaloza. Making repairs
in description logics more gentle. In Michael Thielscher, Francesca Toni, and Frank Wolter,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, pages
319–328. AAAI Press, 2018. URL: https://aaai.org/ocs/index.php/KR/KR18/paper/view/
18056.

9 Franz Baader and Rafael Peñaloza. Axiom pinpointing in general tableaux. J. Log. Comput.,
20(1):5–34, 2010. doi:10.1093/logcom/exn058.

10 Luigi Bellomarini, Eleonora Laurenza, Emanuel Sallinger, and Evgeny Sherkhonov. Reasoning
under uncertainty in knowledge graphs. In Rules and Reasoning, pages 131–139. Springer
International Publishing, 2020. doi:10.1007/978-3-030-57977-7_9.

11 Luigi Bellomarini, Markus Nissl, and Emanuel Sallinger. Monotonic aggregation for temporal
datalog. In Ahmet Soylu, Alireza Tamaddoni-Nezhad, Nikolay Nikolov, Ioan Toma, Anna
Fensel, and Joost Vennekens, editors, Proceedings of the 15th International Rule Challenge,
7th Industry Track, and 5th Doctoral Consortium @ RuleML+RR 2021 co-located with 17th
Reasoning Web Summer School (RW 2021) and 13th DecisionCAMP 2021 as part of Declarative
AI 2021, Leuven, Belgium (virtual due to Covid-19 pandemic), 8 - 15 September, 2021, volume
2956 of CEUR Workshop Proceedings. CEUR-WS.org, 2021. URL: http://ceur-ws.org/
Vol-2956/paper30.pdf.

12 Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The vadalog system. Proceedings of
the VLDB Endowment, 11(9):975–987, May 2018. doi:10.14778/3213880.3213888.

13 Meghyn Bienvenu. Complexity of abduction in the EL family of lightweight description logics.
In Gerhard Brewka and Jérôme Lang, editors, Principles of Knowledge Representation and
Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia,
September 16-19, 2008, pages 220–230. AAAI Press, 2008. URL: http://www.aaai.org/
Library/KR/2008/kr08-022.php.

14 Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data
access: A study through disjunctive datalog, CSP, and MMSNP. In Richard Hull and Wenfei
Fan, editors, Proceedings of the 32nd Symposium on Principles of Database Systems (PODS’13),
pages 213–224. ACM, 2013.

15 Bart Bogaerts and Maxime Jakubowski. Fixpoint Semantics for Recursive SHACL. Electronic
Proceedings in Theoretical Computer Science, 345:41–47, September 2021. doi:10.4204/eptcs.
345.14.

16 Bart Bogaerts, Maxime Jakubowski, and Jan Van den Bussche. SHACL: A Description Logic
in Disguise. In Proceedings of the 33rd Benelux Conference on Artificial Intelligence and the
30th Belgian Dutch Conference on Machine Learning (BNAIC/BENELEARN 2021), August
2021. arXiv:2108.06096.

17 Iovka Boneva, José Emilio Labra Gayo, and Eric G. Prud’hommeaux. Semantics and validation
of shapes schemas for RDF. In Claudia d’Amato, Miriam Fernández, Valentina A. M. Tamma,
Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff Heflin,
editors, The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference,
Vienna, Austria, October 21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes in
Computer Science, pages 104–120. Springer, 2017. doi:10.1007/978-3-319-68288-4_7.

18 Daniel Borchmann. Learning terminological knowledge with high confidence from erroneous
data. PhD thesis, Higher School of Economics, 2014.

19 Daniel Borchmann and Felix Distel. Mining of EL-GCIs. In The 11th IEEE International
Conference on Data Mining Workshops, Vancouver, Canada, 2011.

20 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In Advances in neural information
processing systems, pages 2787–2795, 2013.

21 Camille Bourgaux and Ana Ozaki. Querying attributed dl-lite ontologies using provenance
semirings. In AAAI, pages 2719–2726. AAAI Press, 2019.

AIB 2022

https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://doi.org/10.1093/logcom/exn058
https://doi.org/10.1007/978-3-030-57977-7_9
http://ceur-ws.org/Vol-2956/paper30.pdf
http://ceur-ws.org/Vol-2956/paper30.pdf
https://doi.org/10.14778/3213880.3213888
http://www.aaai.org/Library/KR/2008/kr08-022.php
http://www.aaai.org/Library/KR/2008/kr08-022.php
https://doi.org/10.4204/eptcs.345.14
https://doi.org/10.4204/eptcs.345.14
http://arxiv.org/abs/2108.06096
https://doi.org/10.1007/978-3-319-68288-4_7

2:24 Reasoning in Knowledge Graphs

22 Camille Bourgaux, Ana Ozaki, and Jeff Z. Pan. Geometric models for (temporally) attributed
description logics. In Martin Homola, Vladislav Ryzhikov, and Renate A. Schmidt, editors,
Proceedings of the 34th International Workshop on Description Logics (DL 2021) part of
Bratislava Knowledge September (BAKS 2021), Bratislava, Slovakia, September 19th to 22nd,
2021, volume 2954 of CEUR Workshop Proceedings. CEUR-WS.org, 2021. URL: http:
//ceur-ws.org/Vol-2954/paper-7.pdf.

23 Sebastian Brandt, Elem Güzel Kalayci, Roman Kontchakov, Vladislav Ryzhikov, Guohui
Xiao, and Michael Zakharyaschev. Ontology-based data access with a horn fragment of
metric temporal logic. In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,
California, USA, pages 1070–1076. AAAI Press, 2017. URL: http://aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/14881.

24 F. Buccafurri, N. Leone, and P. Rullo. Enhancing Disjunctive Datalog by constraints. IEEE
Transactions on Knowledge and Data Engineering, 12(5):845–860, 2000. doi:10.1109/69.
877512.

25 Ling Cai, Krzysztof Janowicz, Bo Yan, Rui Zhu, and Gengchen Mai. Time in a Box. In
Proceedings of the 11th on Knowledge Capture Conference. ACM, December 2021. doi:
10.1145/3460210.3493566.

26 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. Datalog±. In Proceedings of the
12th International Conference on Database Theory - ICDT '09. ACM Press, 2009. doi:
10.1145/1514894.1514897.

27 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. Journal of Web Semantics, 14:57–83, July 2012.
doi:10.1016/j.websem.2012.03.001.

28 Andrea Calì, Georg Gottlob, and Andreas Pieris. Query answering under non-guarded rules
in Datalog+/-. In Pascal Hitzler and Thomas Lukasiewicz, editors, Proceedings of the 4th
International Conference on Web Reasoning and Rule Systems (RR 2010), volume 6333 of
LNCS, pages 1–17. Springer, 2010.

29 David Carral, Irina Dragoste, Larry González, Ceriel Jacobs, Markus Krötzsch, and Jacopo
Urbani. VLog: A rule engine for knowledge graphs. In Lecture Notes in Computer Science,
pages 19–35. Springer International Publishing, 2019. doi:10.1007/978-3-030-30796-7_2.

30 S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog (and
never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166,
March 1989. doi:10.1109/69.43410.

31 Melisachew Wudage Chekol. Tensor decomposition for link prediction in temporal knowledge
graphs. In Proceedings of the 11th on Knowledge Capture Conference. ACM, December 2021.
doi:10.1145/3460210.3493558.

32 Melisachew Wudage Chekol, Giuseppe Pirrò, Joerg Schoenfisch, and Heiner Stuckenschmidt.
Marrying uncertainty and time in knowledge graphs. In Satinder P. Singh and Shaul Markovitch,
editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA, pages 88–94. AAAI Press, 2017. URL: http:
//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14730.

33 Shuo Chen, Lin Qiao, Biqi Liu, Jue Bo, Yuanning Cui, and Jing Li. Knowledge Graph
Embedding Based on Hyperplane and Quantitative Credibility. In Machine Learning and
Intelligent Communications, pages 583–594. Springer International Publishing, 2019. doi:
10.1007/978-3-030-32388-2_50.

34 Jan Chomicki and Tomasz Imielinski. Temporal deductive databases and infinite objects. In
Chris Edmondson-Yurkanan and Mihalis Yannakakis, editors, Proceedings of the Seventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 21-23,
1988, Austin, Texas, USA, pages 61–73. ACM, 1988. doi:10.1145/308386.308416.

http://ceur-ws.org/Vol-2954/paper-7.pdf
http://ceur-ws.org/Vol-2954/paper-7.pdf
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14881
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14881
https://doi.org/10.1109/69.877512
https://doi.org/10.1109/69.877512
https://doi.org/10.1145/3460210.3493566
https://doi.org/10.1145/3460210.3493566
https://doi.org/10.1145/1514894.1514897
https://doi.org/10.1145/1514894.1514897
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.1007/978-3-030-30796-7_2
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/3460210.3493558
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14730
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14730
https://doi.org/10.1007/978-3-030-32388-2_50
https://doi.org/10.1007/978-3-030-32388-2_50
https://doi.org/10.1145/308386.308416

R. Guimarães and A. Ozaki 2:25

35 Julien Corman, Juan L. Reutter, and Ognjen Savković. Semantics and validation of recursive
SHACL. In Lecture Notes in Computer Science, pages 318–336. Springer International
Publishing, 2018. doi:10.1007/978-3-030-00671-6_19.

36 Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wenzhong Guo. A survey on knowledge
graph embedding: Approaches, applications and benchmarks. Electronics, 9(5):750, May 2020.
doi:10.3390/electronics9050750.

37 Claudia d’Amato, Nicola Flavio Quatraro, and Nicola Fanizzi. Injecting Background Knowledge
into Embedding Models for Predictive Tasks on Knowledge Graphs. In The Semantic Web,
pages 441–457. Springer International Publishing, 2021. doi:10.1007/978-3-030-77385-4_
26.

38 Ariyam Das, Sahil M. Gandhi, and Carlo Zaniolo. ASTRO: A datalog system for advanced
stream reasoning. In Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava,
Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan, Alexandros Lab-
rinidis, Assaf Schuster, and Haixun Wang, editors, Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, October
22-26, 2018, pages 1863–1866. ACM, 2018. doi:10.1145/3269206.3269223.

39 Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha P. Talukdar. HyTE: Hyperplane-
based Temporally aware Knowledge Graph Embedding. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - Novem-
ber 4, 2018, pages 2001–2011. Association for Computational Linguistics, 2018. doi:
10.18653/v1/d18-1225.

40 Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional
2d knowledge graph embeddings. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 1811–1818. AAAI Press, 2018. URL: https:
//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366.

41 Boyang Ding, Quan Wang, Bin Wang, and Li Guo. Improving knowledge graph embed-
ding using simple constraints. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 110–121. Association
for Computational Linguistics, 2018. doi:10.18653/v1/P18-1011.

42 Felix Distel. Learning description logic knowledge bases from data using methods from formal
concept analysis. PhD thesis, Dresden University of Technology, 2011.

43 Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-log:
Integrating datalog and description logics. Journal of Intelligent and Cooperative Information
Systems, 10(3):227–252, 1998.

44 Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Transactions
on Database Systems, 22(3):364–418, September 1997. doi:10.1145/261124.261126.

45 Corinna Elsenbroich, Oliver Kutz, and Ulrike Sattler. A case for abductive reasoning over
ontologies. In Bernardo Cuenca Grau, Pascal Hitzler, Conor Shankey, and Evan Wallace,
editors, Proceedings of the OWLED*06 Workshop on OWL: Experiences and Directions,
Athens, Georgia, USA, November 10-11, 2006, volume 216 of CEUR Workshop Proceedings.
CEUR-WS.org, 2006. URL: http://ceur-ws.org/Vol-216/submission_25.pdf.

46 Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. Improved knowledge graph embedding
using background taxonomic information. In AAAI, pages 3526–3533. AAAI Press, 2019.

47 Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. Trav-SHACL: Efficiently validating
networks of SHACL constraints. In Proceedings of the Web Conference 2021. ACM, April
2021. doi:10.1145/3442381.3449877.

AIB 2022

https://doi.org/10.1007/978-3-030-00671-6_19
https://doi.org/10.3390/electronics9050750
https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.1007/978-3-030-77385-4_26
https://doi.org/10.1145/3269206.3269223
https://doi.org/10.18653/v1/d18-1225
https://doi.org/10.18653/v1/d18-1225
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://doi.org/10.18653/v1/P18-1011
https://doi.org/10.1145/261124.261126
http://ceur-ws.org/Vol-216/submission_25.pdf
https://doi.org/10.1145/3442381.3449877

2:26 Reasoning in Knowledge Graphs

48 Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast rule mining in
ontological knowledge bases with AMIE+. VLDB J., 24(6):707–730, 2015.

49 Bernhard Ganter and Rudolph Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1997.

50 Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. Diachronic
Embedding for Temporal Knowledge Graph Completion. Proceedings of the AAAI Conference
on Artificial Intelligence, 34(04):3988–3995, April 2020. doi:10.1609/aaai.v34i04.5815.

51 Georg Gottlob, Erich Grädel, and Helmut Veith. Datalog LITE: a deductive query language
with linear time model checking. ACM Trans. Comput. Log., 3(1):42–79, 2002. doi:10.1145/
504077.504079.

52 Ricardo Guimarães, Ana Ozaki, Cosimo Persia, and Baris Sertkaya. Mining EL bases with
adaptable role depth. In AAAI, pages 6367–6374. AAAI Press, 2021.

53 Víctor Gutiérrez-Basulto and Steven Schockaert. From knowledge graph embedding to ontology
embedding? an analysis of the compatibility between vector space representations and rules.
In Proceedings of KR, 2018.

54 Tom Hanika, Maximilian Marx, and Gerd Stumme. Discovering implicational knowledge in
wikidata. In Diana Cristea, Florence Le Ber, and Baris Sertkaya, editors, ICFCA, volume
11511 of Lecture Notes in Computer Science, pages 315–323. Springer, 2019.

55 Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio
Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier,
Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen,
Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge graphs. ACM Comput.
Surv., 54(4):71:1–71:37, 2021.

56 Matthew Horridge. Justification based explanation in ontologies. PhD thesis, University of
Manchester, 2011.

57 Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin N. Grosof, and
Mike Dean. SWRL: A Semantic Web Rule Language. W3C Member Submission, 21 May 2004.
Available at http://www.w3.org/Submission/SWRL/.

58 Nitisha Jain, Trung-Kien Tran, Mohamed H. Gad-Elrab, and Daria Stepanova. Improving
Knowledge Graph Embeddings with Ontological Reasoning. In Andreas Hotho, Eva Blomqvist,
Stefan Dietze, Achille Fokoue, Ying Ding, Payam M. Barnaghi, Armin Haller, Mauro Dragoni,
and Harith Alani, editors, ISWC, volume 12922 of Lecture Notes in Computer Science, pages
410–426. Springer, 2021.

59 Yevgeny Kazakov, Markus Krötzsch, and František Simančík. ELK reasoner: Architecture
and evaluation. In Ian Horrocks, Mikalai Yatskevich, and Ernesto Jimenez-Ruiz, editors,
Proceedings of the OWL Reasoner Evaluation Workshop 2012 (ORE’12), volume 858 of CEUR
Workshop Proceedings. CEUR-WS.org, 2012.

60 Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,
and Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn.
Res., 21:70:1–70:73, 2020. URL: http://jmlr.org/papers/v21/19-447.html.

61 Mayank Kejriwal, Craig A. Knoblock, and Pedro Szekely. Knowledge Graphs. The MIT Press,
March 2021. URL: https://www.ebook.de/de/product/39993807/mayank_kejriwal_craig_
a_knoblock_pedro_szekely_knowledge_graphs.html.

62 Holger Knublauch and Dimitris Kontokostas, editors. Shapes Constraint Language (SHACL).
W3C Recommendation, 20 July 2017. Available at http://www.w3.org/TR/shacl/.

63 Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to ontology-based data access. In Toby Walsh, editor, Proceedings of
the 22nd International Joint Conference on Artificial Intelligence (IJCAI’11), pages 2656–2661.
AAAI Press/IJCAI, 2011.

64 Patrick Koopmann, Warren Del-Pinto, Sophie Tourret, and Renate A. Schmidt. Signature-
based abduction for expressive description logics. In Diego Calvanese, Esra Erdem, and
Michael Thielscher, editors, Proceedings of the 17th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020,
pages 592–602, 2020. doi:10.24963/kr.2020/59.

https://doi.org/10.1609/aaai.v34i04.5815
https://doi.org/10.1145/504077.504079
https://doi.org/10.1145/504077.504079
http://www.w3.org/Submission/SWRL/
http://jmlr.org/papers/v21/19-447.html
https://www.ebook.de/de/product/39993807/mayank_kejriwal_craig_a_knoblock_pedro_szekely_knowledge_graphs.html
https://www.ebook.de/de/product/39993807/mayank_kejriwal_craig_a_knoblock_pedro_szekely_knowledge_graphs.html
http://www.w3.org/TR/shacl/
https://doi.org/10.24963/kr.2020/59

R. Guimarães and A. Ozaki 2:27

65 Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost. Attributed description
logics: Reasoning on knowledge graphs. In Jérôme Lang, editor, IJCAI, pages 5309–5313.
ijcai.org, 2018.

66 Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Description logic rules. In Malik
Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis, and Nikos Avouris, editors, Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI’08), pages 80–84. IOS Press,
2008.

67 Markus Krötzsch, Sebastian Rudolph, and Peter H. Schmitt. On the semantic relationship
between datalog and description logics. In Pascal Hitzler and Thomas Lukasiewicz, editors,
Proceedings of the 4th International Conference on Web Reasoning and Rule Systems (RR
2010), volume 6333 of LNCS, pages 88–102. Springer, 2010.

68 Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost. Attributed description
logics: Ontologies for knowledge graphs. In Lecture Notes in Computer Science, pages 418–435.
Springer International Publishing, 2017. doi:10.1007/978-3-319-68288-4_25.

69 Jonathan Lajus, Luis Galárraga, and Fabian M. Suchanek. Fast and exact rule mining with
AMIE 3. In Andreas Harth, Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim,
Anisa Rula, Anna Lisa Gentile, Peter Haase, and Michael Cochez, editors, ESWC, volume
12123 of Lecture Notes in Computer Science, pages 36–52. Springer, 2020.

70 Julien Leblay, Melisachew Wudage Chekol, and Xin Liu. Towards Temporal Knowledge Graph
Embeddings with Arbitrary Time Precision. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. ACM, October 2020. doi:10.1145/
3340531.3412028.

71 Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian
Bizer. DBpedia – A large-scale, multilingual knowledge base extracted from Wikipedia.
Semantic Web, 6:167–195, 2015. doi:10.3233/SW-140134.

72 Martin Leinberger, Philipp Seifer, Tjitze Rienstra, Ralf Lämmel, and Steffen Staab. Decid-
ing SHACL shape containment through description logics reasoning. In Lecture Notes in
Computer Science, pages 366–383. Springer International Publishing, 2020. doi:10.1007/
978-3-030-62419-4_21.

73 Nicola Leone, Carlo Allocca, Mario Alviano, Francesco Calimeri, Cristina Civili, Roberta
Costabile, Alessio Fiorentino, Davide Fuscà, Stefano Germano, Giovanni Laboccetta, Bernardo
Cuteri, Marco Manna, Simona Perri, Kristian Reale, Francesco Ricca, Pierfrancesco Veltri,
and Jessica Zangari. Enhancing DLV for large-scale reasoning. In Logic Programming and
Nonmonotonic Reasoning, pages 312–325. Springer International Publishing, 2019. doi:
10.1007/978-3-030-20528-7_23.

74 Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang,
and Xueqi Cheng. Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning. In Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and
Tetsuya Sakai, editors, SIGIR ’21: The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages
408–417. ACM, 2021. doi:10.1145/3404835.3462963.

75 Siyuan Liao, Shangsong Liang, Zaiqiao Meng, and Qiang Zhang. Learning Dynamic Embed-
dings for Temporal Knowledge Graphs. In Proceedings of the 14th ACM International Confer-
ence on Web Search and Data Mining. ACM, March 2021. doi:10.1145/3437963.3441741.

76 Lifan Lin and Kun She. Tensor decomposition-based temporal knowledge graph embedding.
In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI).
IEEE, November 2020. doi:10.1109/ictai50040.2020.00151.

77 Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Blai Bonet and Sven Koenig, editors,
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA, pages 2181–2187. AAAI Press, 2015. URL: http://www.aaai.org/
ocs/index.php/AAAI/AAAI15/paper/view/9571.

AIB 2022

https://doi.org/10.1007/978-3-319-68288-4_25
https://doi.org/10.1145/3340531.3412028
https://doi.org/10.1145/3340531.3412028
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/978-3-030-62419-4_21
https://doi.org/10.1007/978-3-030-62419-4_21
https://doi.org/10.1007/978-3-030-20528-7_23
https://doi.org/10.1007/978-3-030-20528-7_23
https://doi.org/10.1145/3404835.3462963
https://doi.org/10.1145/3437963.3441741
https://doi.org/10.1109/ictai50040.2020.00151
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571

2:28 Reasoning in Knowledge Graphs

78 Yu Liu, Wen Hua, Jianfeng Qu, Kexuan Xin, and Xiaofang Zhou. Temporal knowledge
completion with context-aware embeddings. World Wide Web, 24(2):675–695, March 2021.
doi:10.1007/s11280-021-00867-6.

79 Frank Manola and Eric Miller, editors. Resource Description Framework (RDF): Primer. W3C
Recommendation, 10 February 2004. Available at http://www.w3.org/TR/rdf-primer/.

80 Vinícius Bitencourt Matos, Ricardo Ferreira Guimarães, Yuri David Santos, and Renata
Wassermann. Pseudo-contractions as gentle repairs. In Carsten Lutz, Uli Sattler, Cesare Tinelli,
Anni-Yasmin Turhan, and Frank Wolter, editors, Description Logic, Theory Combination,
and All That - Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday,
volume 11560 of Lecture Notes in Computer Science, pages 385–403. Springer, 2019. doi:
10.1007/978-3-030-22102-7_18.

81 Mehrnoosh Mirtaheri, Mohammad Rostami, Xiang Ren, Fred Morstatter, and Aram Galstyan.
One-shot learning for temporal knowledge graphs. In Danqi Chen, Jonathan Berant, An-
drew McCallum, and Sameer Singh, editors, 3rd Conference on Automated Knowledge Base
Construction, AKBC 2021, Virtual, October 4-8, 2021, 2021. doi:10.24432/C55K56.

82 Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. RDFox:
A highly-scalable RDF store. In The Semantic Web - ISWC 2015, pages 3–20. Springer
International Publishing, 2015. doi:10.1007/978-3-319-25010-6_1.

83 Runyu Ni, Zhonggui Ma, Kaihang Yu, and Xiaohan Xu. Specific Time Embedding for
Temporal Knowledge Graph Completion. In 2020 IEEE 19th International Conference on
Cognitive Informatics & Cognitive Computing (ICCI∗CC). IEEE, September 2020. doi:
10.1109/iccicc50026.2020.9450214.

84 W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation, 27 october 2009. Available at http://www.w3.org/TR/owl2-overview/.

85 Ana Ozaki, Markus Krötzsch, and Sebastian Rudolph. Temporally attributed description
logics. In Carsten Lutz, Uli Sattler, Cesare Tinelli, Anni-Yasmin Turhan, and Frank Wolter,
editors, Description Logic, Theory Combination, and All That - Essays Dedicated to Franz
Baader on the Occasion of His 60th Birthday, volume 11560 of Lecture Notes in Computer
Science, pages 441–474. Springer, 2019.

86 Özgür Lütfü Özçep, Mena Leemhuis, and Diedrich Wolter. Cone semantics for logics with
negation. In Christian Bessiere, editor, IJCAI, pages 1820–1826. ijcai.org, 2020.

87 Paolo Pareti, George Konstantinidis, and Fabio Mogavero. Satisfiability and containment of
recursive SHACL. CoRR, abs/2108.13063, 2021. arXiv:2108.13063.

88 Paolo Pareti, George Konstantinidis, Fabio Mogavero, and Timothy J. Norman. SHACL
satisfiability and containment. In Lecture Notes in Computer Science, pages 474–493. Springer
International Publishing, 2020. doi:10.1007/978-3-030-62419-4_27.

89 Bijan Parsia, Nicolas Matentzoglu, Rafael S. Gonçalves, Birte Glimm, and Andreas Steig-
miller. The OWL reasoner evaluation (ORE) 2015 competition report. Journal of Automated
Reasoning, 59(4):455–482, February 2017. doi:10.1007/s10817-017-9406-8.

90 Eric Prud’hommeaux and Andy Seaborne, editors. SPARQL Query Language for RDF. W3C
Recommendation, 15 January 2008. Available at http://www.w3.org/TR/rdf-sparql-query/.

91 Júlia Pukancová and Martin Homola. Abductive Reasoning with Description Logics: Use Case
in Medical Diagnosis. In Diego Calvanese and Boris Konev, editors, Proceedings of the 28th
International Workshop on Description Logics, Athens,Greece, June 7-10, 2015, volume 1350 of
CEUR Workshop Proceedings. CEUR-WS.org, 2015. URL: http://ceur-ws.org/Vol-1350/
paper-60.pdf.

92 Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, January 2006. doi:10.1007/s10994-006-5833-1.

93 Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge
into embeddings for relation extraction. In Rada Mihalcea, Joyce Yue Chai, and Anoop
Sarkar, editors, NAACL HLT 2015, The 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 1119–1129. The Association for Computational
Linguistics, 2015. doi:10.3115/v1/n15-1118.

https://doi.org/10.1007/s11280-021-00867-6
http://www.w3.org/TR/rdf-primer/
https://doi.org/10.1007/978-3-030-22102-7_18
https://doi.org/10.1007/978-3-030-22102-7_18
https://doi.org/10.24432/C55K56
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1109/iccicc50026.2020.9450214
https://doi.org/10.1109/iccicc50026.2020.9450214
http://www.w3.org/TR/owl2-overview/
http://arxiv.org/abs/2108.13063
https://doi.org/10.1007/978-3-030-62419-4_27
https://doi.org/10.1007/s10817-017-9406-8
http://www.w3.org/TR/rdf-sparql-query/
http://ceur-ws.org/Vol-1350/paper-60.pdf
http://ceur-ws.org/Vol-1350/paper-60.pdf
https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.3115/v1/n15-1118

R. Guimarães and A. Ozaki 2:29

94 Riccardo Rosati. DL+log: A tight integration of description logics and disjunctive datalog. In
Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning (KR’06),
pages 68–78. AAAI Press, 2006.

95 Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Description logic reasoning with
decision diagrams: Compiling SHIQ to disjunctive datalog. In Amit Sheth, Steffen Staab, Mike
Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, and Krishnaprasad Thirunarayan,
editors, Proceedings of the 7th International Semantic Web Conference (ISWC’08), volume
5318 of LNCS, pages 435–450. Springer, 2008.

96 Ali Sadeghian, Mohammadreza Armandpour, Anthony Colas, and Daisy Zhe Wang. ChronoR:
Rotation Based Temporal Knowledge Graph Embedding. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 6471–6479. AAAI
Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/16802.

97 Floriano Scioscia, Michele Ruta, Ivano Bilenchi, Filippo Gramegna, Eugenio Di Sciascio, and
Davide Loconte. Owl reasoner evaluation results, 2021. doi:10.5281/ZENODO.5013799.

98 Pengpeng Shao, Dawei Zhang, Guohua Yang, Jianhua Tao, Feihu Che, and Tong Liu. Tucker
decomposition-based temporal knowledge graph completion. Knowledge-Based Systems,
238:107841, February 2022. doi:10.1016/j.knosys.2021.107841.

99 Umang Sharan and Jennifer Neville. Temporal-relational classifiers for prediction in evolving
domains. In 2008 Eighth IEEE International Conference on Data Mining. IEEE, December
2008. doi:10.1109/icdm.2008.125.

100 Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A Highly-Efficient OWL Reasoner. In
Catherine Dolbear, Alan Ruttenberg, and Ulrike Sattler, editors, OWLED, volume 432 of
CEUR Workshop Proceedings. CEUR-WS.org, 2008.

101 Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pellet:
A practical OWL-DL reasoner. Journal of Web Semantics, 5(2):51–53, 2007.

102 Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude: System description.
Journal of Web Semantics, 27-28:78–85, August 2014. doi:10.1016/j.websem.2014.06.003.

103 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
URL: https://openreview.net/forum?id=HkgEQnRqYQ.

104 Xiaoli Tang, Rui Yuan, Qianyu Li, Tengyun Wang, Haizhi Yang, Yundong Cai, and Hengjie
Song. Timespan-Aware Dynamic Knowledge Graph Embedding by Incorporating Temporal
Evolution. IEEE Access, 8:6849–6860, 2020. doi:10.1109/access.2020.2964028.

105 Edward Thomas, Jeff Z. Pan, and Yuan Ren. TrOWL: Tractable OWL 2 reasoning infrastruc-
ture. In Lecture Notes in Computer Science, pages 431–435. Springer Berlin Heidelberg, 2010.
doi:10.1007/978-3-642-13489-0_38.

106 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In Maria-Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and
Conference Proceedings, pages 2071–2080. JMLR.org, 2016. URL: http://proceedings.mlr.
press/v48/trouillon16.html.

107 Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System description.
In Ulrich Furbach and Natarajan Shankar, editors, Proceedings of the 3rd International Joint
Conference on Automated Reasoning (IJCAR’06), volume 4130 of LNCS, pages 292–297.
Springer, 2006.

108 Jeffrey Ullman. Principles of database and knowledge-base systems. Computer Science Press,
Rockville, Md, 1988.

AIB 2022

https://ojs.aaai.org/index.php/AAAI/article/view/16802
https://doi.org/10.5281/ZENODO.5013799
https://doi.org/10.1016/j.knosys.2021.107841
https://doi.org/10.1109/icdm.2008.125
https://doi.org/10.1016/j.websem.2014.06.003
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.1109/access.2020.2964028
https://doi.org/10.1007/978-3-642-13489-0_38
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html

2:30 Reasoning in Knowledge Graphs

109 Jeffrey D. Ullman and Allen Van Gelder. Parallel complexity of logical query programs.
Algorithmica, 3(1-4):5–42, November 1988. doi:10.1007/bf01762108.

110 Jacopo Urbani, Ceriel Jacobs, and Markus Krötzsch. Column-oriented datalog materializa-
tion for large knowledge graphs. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI’15). AAAI Press, 2016. To appear.

111 Boris Villazón-Terrazas, Nuria García-Santa, Yuan Ren, Alessandro Faraotti, Honghan Wu,
Yuting Zhao, Guido Vetere, and Jeff Z. Pan. Knowledge graph foundations. In Jeff Z. Pan,
Guido Vetere, José Manuél Gómez-Pérez, and Honghan Wu, editors, Exploiting Linked Data
and Knowledge Graphs in Large Organisations, pages 17–55. Springer, 2017.

112 Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative knowledgebase.
Commun. ACM, 57(10), 2014.

113 Przemyslaw Andrzej Walega, Mark Kaminski, and Bernardo Cuenca Grau. Reasoning over
streaming data in metric temporal datalog. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
3092–3099. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33013092.

114 Dingmin Wang, Pan Hu, Przemyslaw Andrzej Walega, and Bernardo Cuenca Grau. Meteor:
Practical reasoning in datalog with metric temporal operators. CoRR, abs/2201.04596, 2022.
arXiv:2201.04596.

115 Jingbin Wang, Wang Zhang, Xinyuan Chen, Jing Lei, and Xiaolian Lai. 3DRTE: 3D Rotation
Embedding in Temporal Knowledge Graph. IEEE Access, 8:207515–207523, 2020. doi:
10.1109/access.2020.3036897.

116 Zhihao Wang and Xin Li. Hybrid-TE: Hybrid Translation-Based Temporal Knowledge Graph
Embedding. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI). IEEE, November 2019. doi:10.1109/ictai.2019.00205.

117 Simon Werner, Achim Rettinger, Lavdim Halilaj, and Jürgen Lüttin. RETRA: Recur-
rent transformers for learning temporally contextualized knowledge graph embeddings.
In The Semantic Web, pages 425–440. Springer International Publishing, 2021. doi:
10.1007/978-3-030-77385-4_25.

118 Kemas Wiharja, Jeff Z. Pan, Martin J. Kollingbaum, and Yu Deng. Schema aware iterative
knowledge graph completion. Journal of Web Semantics, 65:100616, December 2020. doi:
10.1016/j.websem.2020.100616.

119 Honghan Wu, Ronald Denaux, Panos Alexopoulos, Yuan Ren, and Jeff Z. Pan. Understanding
knowledge graphs. In Jeff Z. Pan, Guido Vetere, José Manuél Gómez-Pérez, and Honghan Wu,
editors, Exploiting Linked Data and Knowledge Graphs in Large Organisations, pages 147–180.
Springer, 2017.

120 Jiapeng Wu, Yishi Xu, Yingxue Zhang, Chen Ma, Mark Coates, and Jackie Chi Kit Cheung.
TIE: A framework for embedding-based incremental temporal knowledge graph completion.
In Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya
Sakai, editors, SIGIR ’21: The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 2021, pages
428–437. ACM, 2021. doi:10.1145/3404835.3462961.

121 Tianxing Wu, Arijit Khan, Huan Gao, and Cheng Li. Efficiently embedding dynamic knowledge
graphs. CoRR, abs/1910.06708, 2019. arXiv:1910.06708.

122 Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens Lehmann.
TeRo: A time-aware knowledge graph embedding via temporal rotation. In Proceedings of
the 28th International Conference on Computational Linguistics. International Committee on
Computational Linguistics, 2020. doi:10.18653/v1/2020.coling-main.139.

123 Chenjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Hamed Yazdi, and Jens Lehmann. Temporal
Knowledge Graph Completion Based on Time Series Gaussian Embedding. In Lecture Notes
in Computer Science, pages 654–671. Springer International Publishing, 2020. doi:10.1007/
978-3-030-62419-4_37.

https://doi.org/10.1007/bf01762108
https://doi.org/10.1609/aaai.v33i01.33013092
http://arxiv.org/abs/2201.04596
https://doi.org/10.1109/access.2020.3036897
https://doi.org/10.1109/access.2020.3036897
https://doi.org/10.1109/ictai.2019.00205
https://doi.org/10.1007/978-3-030-77385-4_25
https://doi.org/10.1007/978-3-030-77385-4_25
https://doi.org/10.1016/j.websem.2020.100616
https://doi.org/10.1016/j.websem.2020.100616
https://doi.org/10.1145/3404835.3462961
http://arxiv.org/abs/1910.06708
https://doi.org/10.18653/v1/2020.coling-main.139
https://doi.org/10.1007/978-3-030-62419-4_37
https://doi.org/10.1007/978-3-030-62419-4_37

R. Guimarães and A. Ozaki 2:31

124 Yonghui Xu, Shengjie Sun, Huiguo Zhang, Chang’an Yi, Yuan Miao, Dong Yang, Xiaonan
Meng, Yi Hu, Ke Wang, Huaqing Min, Hengjie Song, and Chuanyan Miao. Time-Aware Graph
Embedding: A Temporal Smoothness and Task-Oriented Approach. ACM Transactions on
Knowledge Discovery from Data, 16(3):1–23, June 2022. doi:10.1145/3480243.

125 Youri Xu, Haihong E, Meina Song, Wenyu Song, Xiaodong Lv, Haotian Wang, and Jinrui Yang.
RTFE: A Recursive Temporal Fact Embedding Framework for Temporal Knowledge Graph
Completion. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-
Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou,
editors, Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, pages 5671–5681. Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.naacl-main.451.

126 Jiasheng Zhang, Yongpan Sheng, Zheng Wang, and Jie Shao. TKGFrame: A Two-Phase
Framework for Temporal-Aware Knowledge Graph Completion. In Web and Big Data, pages
196–211. Springer International Publishing, 2020. doi:10.1007/978-3-030-60259-8_16.

127 Yujing Zhou, Jia Peng, Lei Wang, Daren Zha, and Nan Mu. SEDE: semantic evolution-based
dynamic knowledge graph embedding. Aust. J. Intell. Inf. Process. Syst., 16(4):64–73, 2019.
URL: http://ajiips.com.au/papers/V16.4/v16n4_68-77.pdf.

AIB 2022

https://doi.org/10.1145/3480243
https://doi.org/10.18653/v1/2021.naacl-main.451
https://doi.org/10.18653/v1/2021.naacl-main.451
https://doi.org/10.1007/978-3-030-60259-8_16
http://ajiips.com.au/papers/V16.4/v16n4_68-77.pdf

Integrating Ontologies and Vector Space
Embeddings Using Conceptual Spaces
Zied Bouraoui #

CRIL Laboratory, Université d’Artois, Arras, France

Víctor Gutiérrez-Basulto #

School of Computer Science & Informatics, Cardiff University, UK

Steven Schockaert #

School of Computer Science & Informatics, Cardiff University, UK

Abstract

Ontologies and vector space embeddings are among the most popular frameworks for encoding
conceptual knowledge. Ontologies excel at capturing the logical dependencies between concepts in a
precise and clearly defined way. Vector space embeddings excel at modelling similarity and analogy.
Given these complementary strengths, there is a clear need for frameworks that can combine the
best of both worlds. In this paper, we present an overview of our recent work in this area. We
first discuss the theory of conceptual spaces, which was proposed in the 1990s by Gärdenfors as
an intermediate representation layer in between embeddings and symbolic knowledge bases. We
particularly focus on a number of recent strategies for learning conceptual space representations
from data. Next, building on the idea of conceptual spaces, we discuss approaches where relational
knowledge is modelled in terms of geometric constraints. Such approaches aim at a tight integration
of symbolic and geometric representations, which unfortunately comes with a number of limitations.
For this reason, we finally also discuss methods in which similarity, and other forms of conceptual
relatedness, are derived from vector space embeddings and subsequently used to support flexible
forms of reasoning with ontologies, thus enabling a looser integration between embeddings and
symbolic knowledge.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases Conceptual Spaces, Ontologies, Vector Space Embeddings, Learning and
Reasoning

Digital Object Identifier 10.4230/OASIcs.AIB.2022.3

Category Invited Paper

Funding This work has been supported by a grant from the Leverhulme Trust (project RPG-2021-
140).

1 Introduction

In Artificial Intelligence (AI), the traditional approach for encoding knowledge about concepts
has been to use logic-based representations, typically in the form of a rule base. Such a rule
base is often called an ontology in this context.

© Zied Bouraoui, Víctor Gutiérrez-Basulto, and Steven Schockaert;
licensed under Creative Commons License CC-BY 4.0

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza; Article No. 3; pp. 3:1–3:30

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zied.bouraoui@cril.fr
mailto:gutierrezbasultov@cardiff.ac.uk
https://orcid.org/0000-0002-6117-5459
mailto:schockaerts1@cardiff.ac.uk
https://orcid.org/0000-0002-9256-2881
https://doi.org/10.4230/OASIcs.AIB.2022.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

▶ Example 1. Consider the following rules:

expertInAI(X)← authorOf(X, Y), hasTopic(Y, artificialIntelligence)
hasTopic(X, artificialIntelligence)← hasTopic(X, knowledgeRepresentation)
hasTopic(X, artificialIntelligence)← hasTopic(X, machineLearning)
hasTopic(X, artificialIntelligence)← hasTopic(X, multiAgentSystems)
hasTopic(X, artificialIntelligence)← hasTopic(X, naturalLanguageProcessing)

Here we have used the notational conventions from logic programming, where the conclusion
of the rule is shown on the left-hand side and “,” denotes conjunction. The first rule intuitively
asserts that somebody who has published a paper on an AI topic is an expert in AI. The
remaining rules encode that knowledge representation, machine learning, multi-agent systems
and natural language processing are sub-fields of AI. Along with the ontology, we are usually
given a set of facts, e.g.:

{authorOf(bob, p), hasTopic(p, knowledgeRepresentation)}

Given this set of facts, together with the aforementioned rules, we can conclude that
hasTopic(p, artificialIntelligence) holds and thus also that expertInAI(bob) holds.

Using ontologies for encoding conceptual knowledge has at least two key advantages. First,
the formal semantics of the underlying logic ensures that knowledge can be encoded in a
precise and unambiguous way. This, in turn, ensures that different applications can rely on a
shared understanding of the meaning of the concepts involved. Second, ontologies enable
us to capture knowledge in a transparent and interpretable way1, which makes it relatively
straightforward to update knowledge and to support decisions with meaningful explanations.
But ontologies, and symbolic approaches to knowledge representation more generally, also
have important drawbacks. A first issue stems from the fact that the knowledge which is
captured in an ontology is rarely complete. For instance, consider the following set of facts:

{authorOf(alice, q), hasTopic(q, planning)}

As none of the available rules express that planning is a sub-field of AI, we cannot infer that
expertInAI(alice) holds. Nonetheless, to a human observer, it seems clear that this would
be a valid inference, even without a precise understanding of what the predicate expertInAI
is supposed to capture. Essentially, standard frameworks for modelling ontologies lack a
mechanism for inductive reasoning [28]. This is not something which can be easily addressed,
as inductive arguments rely on graded notions such as similarity and typicality [58, 50, 66, 51].
Another issue is that many concepts are difficult to characterise in a satisfactory way using
logical rules. For instance, somebody with a single published paper in AI would not normally
be considered to be an AI expert, except perhaps if the work was particularly influential
or groundbreaking, but formalising such notions using rules is challenging. Probabilistic
extensions of standard ontology languages [36, 15] may alleviate some of the aforementioned
issues, but such frameworks still do not allow us to model similarity, or aspects that are a
matter of degree (e.g. being an expert in AI).

1 It should be noted, however, that the extent to which a given ontology is interpretable will depend on
its size and the way it has been encoded. Symbolic rules that have been learned from data can often be
difficult to interpret, for instance.

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:3

The most common alternative to ontologies is to encode conceptual knowledge using
vector space representations. Most work on vector representations of conceptual knowledge
has focused on knowledge graphs (KGs), which are sets of triples of the form (e, r, f), where
e and f are entities and r is a binary relation. Note that both individuals and attribute
values are typically regarded as entities in this context. As an example, we may consider the
following knowledge graph:

K = {(bob, authorOf, p), (p, hasTopic, knowledgeRepresentation),
(p, hasTopic, artificialIntelligence), (bob, hasProperty, expertInAI)}

Approaches for Knowledge graph embedding (KGE) learn a vector representation e ∈ Rn for
each entity e and a scoring function ϕr : Rn × Rn → R for each relation type r, such that
ϕr(e, f) captures the plausibility of the triple (e, r, f), i.e. the plausibility that the relation r

holds between the entities e and f [14, 75, 70, 69]. The vector e is called the embedding of
entity e. The purpose of KGE is at least two-fold. First, it is hoped that this embedding
will uncover some of the underlying semantic dependencies in the KG, and that as a result,
we will be able to identify plausible triples that are missing from the given KG. Second, by
encoding the information that is captured in the knowledge graph using vectors, it becomes
easier to exploit this information in neural network models.

Figure 1 shows a vector encoding of the paper p and some of the considered subject areas.
For this example, we assume that the dot product between p and a subject area indicates
how relevant that subject area is to p, i.e. we have ϕhasTopic(e, f) = e · f . Let us write vML,
vAI, vNLP and vKR for the vector representations of the different subject areas, and p for
the representation of p. According to this embedding, we have p ·vML ≈ p ·vNLP > p ·vKR,
which captures the knowledge that p is more closely related to machine learning and natural
language processing than to knowledge representation. Moreover, note how the norm of vAI
is larger than the norms of vML, vNLP and vKR. This intuitively captures the knowledge
that the term artificial intelligence is broader in meaning. For instance, we can encode the
knowledge that machine learning is a sub-discipline of AI by ensuring that for every vector
x ∈ R2 it holds that:

vML · x < vAI · x

Note that in this example, we have only focused on one relation (i.e. hasTopic). In general,
we can model multiple relations by using higher-dimensional vectors, together with scoring
functions that depend on relation-specific parameters (see Section 2.3 for more details).
When it comes to modelling conceptual knowledge, an important advantage of KGE is that
it naturally supports inductive inferences. Moreover, such representations are better suited
for modelling graded notions such as similarity than symbolic representations. However,
the extent to which “rule-like” knowledge can be captured is limited. As we saw in the
aforementioned example, we can model the fact that one concept is subsumed by another,
but it is not clear how more complex rules can be encoded using vector space embeddings.
Moreover, KGE models lack the transparency of symbolic representations, which makes it
harder to generate meaningful explanations or to update representations (e.g. to correct
mistakes, add new knowledge, or take account of changes in the world).

It is thus clear that ontologies and vector space embeddings have complementary strengths
and weaknesses when it comes to modelling conceptual knowledge. Accordingly, various
authors have proposed strategies for combining these two paradigms. For instance, rules are
sometimes used to regularise neural networks [24, 74, 43], to generate supplementary training
data [7], or to determine the structure of a neural network [59, 67]. Other approaches use rules

AIB 2022

3:4 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Figure 1 Illustration of a simple knowledge graph embedding, in which the dot product between
p and a subject area indicates how relevant that subject area is to p.

to reason about the predictions of neural networks [44, 77], or treat rules as latent variables
which are inferred by a neural network [56]. Note, however, how in the aforementioned
research lines, rules and vector representation are treated as fundamentally distinct. Rules are
either used as a supervision signal for learning neural networks (or vector space embeddings)
or they are used for reasoning in a way that is largely decoupled from the neural networks
or vector space embeddings themselves. Another observation is that rules essentially play a
supportive role, to help overcome the limitations of some neural network model.

The first question we address in this paper is whether a tighter integration of rules and
vector representations is possible. The main idea is to view symbolic knowledge as qualitative
constraints on some underlying geometric model. This idea was developed in the 1990s by
Gärdenfors in his theory of conceptual spaces [27]. The key characteristic of conceptual spaces
is that concepts are represented as regions, rather than vectors. A rule A(x)← B(x), C(x)
can then be viewed as the constraint that the intersection of the regions representing B and
C should be included in the region representing A. While the theory of conceptual spaces
offers an elegant solution to the question of how symbolic and vector representation could be
integrated, it has two limitations that have hampered its adoption within AI:

In practice, it is often difficult to learn region-based representations of concepts from
data.
Conceptual space representations cannot be used for modelling relational knowledge, e.g.
rules involving binary predicates.

These two limitations, and strategies for addressing them, are discussed in Sections 3 and 4.
The second question we discuss is how vector space representations can be used in a

supportive role, to help overcome some of the limitations of symbolic reasoning with ontologies.
Here, the starting point is that some of the aforementioned shortcomings can be alleviated
within a purely symbolic setting, for instance by relying on default reasoning [42, 20, 32],
analogical reasoning [31, 54, 61], or qualitative versions of similarity based reasoning [65, 63].
The main problem with implementing such strategies in practice comes from the fact that they
often rely on types of background knowledge which is not usually available in symbolic form
(e.g. qualitative similarity relations). However, in some cases, this background knowledge
can be obtained from vector space embeddings. In this case, we still have a loose integration
between vector representations and rules, but rather than trying to improve neural network
learning, as in the works described above, now the focus is on making symbolic reasoning

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:5

Figure 2 Illustration of a conceptual space of animals.

more flexible and adding some kind of inductive reasoning capability. For instance, in the
setting from Example 1, if we know that the vector representation of planning is highly similar
to the vector representation of knowledgeRepresentation, we can plausibly infer the following
rule:

hasTopic(X, artificialIntelligence)← hasTopic(X, planning)

In Section 5, we discuss a number of strategies that build on this idea, focusing on how such
plausible inferences can be integrated with standard deductive reasoning.

2 Background

In this section, we briefly introduce the main concepts that we will build on in the following
sections. First, Section 2.1 discusses the theory of conceptual spaces. In Section 2.2 we
then cover two standard formalisms for encoding ontological rules: existential rules and the
EL-family of description logics. Finally, Section 2.3 provides an introduction into Knowledge
Graph Embedding.

2.1 Conceptual Spaces
Similar to vector-space embeddings, conceptual spaces [27] are geometric representations
of the entities from a given domain of discourse. However, conceptual spaces differ from
standard embeddings in two important ways: (i) properties and concepts are represented as
regions and (ii) the dimensions of a conceptual space correspond to semantically meaningful
features. These two differences enable conceptual spaces to act as an interface between
neural representations, on the one hand, and symbolic knowledge, on the other hand. This
is illustrated in Figure 2, which shows a conceptual space of animals. Specific animals are
represented as points in this space. Concepts such as mammal and properties such as scary
are represented as regions. The dimensions capture the ordinal features dangerous and large.
In this representation, the region modelling mammal is included in the region modelling
vertebrate, which intuitively captures the rule vertebrate(X)← mammal(X), i.e. all mammals
are vertebrates. Note how this representation can also capture semantic dependencies that
are harder to encode using rules, e.g. the fact that large spiders are scary.

AIB 2022

3:6 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

While it is convenient to think about conceptual spaces as vector space embeddings with
some added structure, conceptual spaces do not necessarily have the structure of a vector
space. A conceptual space is defined from a set of quality dimensions Q1, ..., Qn. Each of
these quality dimensions captures a primitive feature. As a standard example, the conceptual
space of colours is built from three quality dimensions, representing hue, saturation and
intensity. A distinction is made between integral and separable quality dimensions. Intuitively,
separable quality dimensions are those that have a meaning on their own. For instance, size
could be seen as a separable dimension. On the other hand, hue is not separable, as we
cannot imagine the hue of a colour without also specifying its saturation and intensity. This
distinction between integral and separable dimensions plays an important role in cognitive
theories, as it affects how similarity is perceived. For instance, Euclidean distance is normally
used when integral dimensions need to be combined, whereas Manhattan distance is used
when separable dimensions need to be combined [49, 27]. Quality dimensions are partitioned
into so-called domains, where dimensions that belong to the same domain are assumed to be
integral, while dimensions from different domains are assumed to be separable. For instance,
a conceptual space of physical objects may be composed of three domains: the colour domain
(containing the hue, saturation and intensity quality dimensions), the size domain (containing
only a single quality dimension) and the shape domain (containing several dimensions).

We can view domains as Cartesian products of quality dimensions. For instance, if
Di is composed of the quality dimensions Q1, ..., Qk then the elements of Di are tuples
(x1, ..., xk) ∈ Q1 × ... × Qk. We can thus intuitively think of domains as vector spaces,
although in general it is not required that domains satisfy the axioms of a vector space. An
individual (e.g. a specific apple) is represented as an element (x1, ..., xk) of a given domain,
whereas we can think of properties (e.g. green) as regions. One of the central assumptions
in the theory of conceptual spaces is that each natural property corresponds to a convex
region in some domain. A concept is characterised in terms of a set of natural properties,
along with information about how these properties are correlated. To define this notion of
convexity, we have to assume that each domain Di is equipped with a ternary betweenness
relation beti ⊆ Di ×Di ×Di. A region R ⊆ Di is then said to be convex iff

∀a, b, c ∈ Di . a ∈ Di ∧ c ∈ Di ∧ beti(a, b, c)⇒ b ∈ Di

In this paper, our focus will be on learning conceptual spaces from data. In this case,
we will only consider domains that correspond to Euclidean spaces, where the notion of
convexity can be interpreted in the standard way. Our focus will be on (i) learning region
based representations of properties and concepts (ii) identifying quality-dimensions and (iii)
grouping these quality-dimensions into domains.

2.2 Ontology Languages
We next look at two of the most popular Horn-like formalisms to encode ontologies, namely
existential rules [10, 35] and the EL-family of description logics [8]. Informally, an existential
rule is a datalog-like rule (i.e. a logic programming rule of the kind we used in Example 1)
with existentially quantified variables in the head, i.e. it extends traditional datalog with
value invention. As a consequence, existential rules describe not only constraints on the
currently available knowledge or data, but also intensional knowledge about the domain of
discourse. Likewise, the EL-family of description logics can be used for modelling intentional
knowledge. In fact, some expressive members of the EL-family are restrictions of existential
rules to unary and binary relations.

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:7

Existential Rules

Syntax. Let C, N and V be infinite disjoint sets of constants, (labelled) nulls and variables,
respectively. A term t is an element in C ∪ N ∪ V; an atom α is an expression of the
form R(t1, . . . , tn), where R is a relation name (or predicate) with arity n and terms ti. An
existential rule σ is an expression of the form

∃X1, . . . , Xj .H1 ∧ . . . ∧Hk ← B1 ∧ . . . ∧Bn, (1)

where n ≥ 0, k ≥ 1, B1, . . . Bn and H1, . . . , Hk are atoms with terms in C ∪ V, and
X1, ..., Xj ∈ V. From here on, we assume w.l.o.g. that k = 1 [21] and we omit the subscript
in H1. We further allow negative constraints (also simply called constraints), which are
expressions of the form ⊥ ← B1 ∧ . . . ∧Bn, where the Bis are as above and ⊥ denotes the
truth constant false. A finite set Σ of existential rules and constraints is called an ontology.
Let R be a set of relation names. A database D is a finite set of facts over R, i.e. atoms with
terms in C. A knowledge base (KB) K is a pair (Σ, D) with Σ an ontology and D a database.

Semantics. An interpretation I over R is a (possibly infinite) set of atoms over R with
terms in C ∪N. An interpretation I is a model of Σ if it satisfies all rules and constraints:
{B1, . . . , Bn} ⊆ I implies {H} ⊆ I for every existential rule σ in Σ, where existential
variables can be witnessed by constants or labelled nulls, and {B1, . . . , Bn} ̸⊆ I for all
constraints defined as above in Σ; it is a model of a database D if D ⊆ I; it is a model of a
KB K = (Σ, D), written I |= K, if it is a model of Σ and D. We say that a KB K is satisfiable
if it has a model. We refer to elements in C ∪N simply as objects, call atoms α containing
only objects as terms ground, and denote with O(I) the set of all objects occurring in I.

▶ Example 2. Let D = {wife(anna), wife(marie)} be a database and Σ an ontology composed
by the following existential rules:

husband(Y)← wife(X) ∧married(X, Y) (2)
∃X . husband(X) ∧married(X, Y)← wife(Y) (3)

⊥ ← husband(X) ∧ wife(X) (4)

Then, an example of a model of K = (Σ, D) is the set of atoms

D ∪ {husband(o1), husband(o2), married(o1, anna), married(o2, marie)}

where oi are labelled nulls. Note that e.g. {married(anna, marie), husband(marie)} is not
included in any model of K due to (4).

EL-family

We introduce some basic notions about description logics, focusing on EL⊥, one of the most
commonly used logics from the EL-family. The interested reader can find more details on
description logics in [9].

Syntax. Consider countably infinite but disjoint sets of concept names NC and role names
NR. These concept and role names are combined to EL⊥ concepts, in accordance with the
following grammar, where A ∈ NC and r ∈ NR:

C, D := ⊤ | ⊥ | A | C ⊓D | ∃r.C

AIB 2022

3:8 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

For instance, A ⊓ (∃r.(B ⊓ C)) is an example of a well-formed EL⊥ concept, assuming
A, B, C ∈ NC and r ∈ NR. The fragment of EL⊥ in which ⊥ is not used is known as EL. An
EL⊥ TBox (ontology) T is a finite set of concept inclusions (CIs) of the form C ⊑ D, where
C, D are EL⊥ concepts.

▶ Example 3. The ontology in Example 2 can be expressed using the following EL concept
inclusions

∃married.Wife ⊑ Husband (5)
Wife ⊑ ∃married.Husband (6)

Husband ⊓Wife ⊑ ⊥ (7)

Semantics. The semantics of description logics are usually given in terms of first-order
interpretations (∆I , ·I). Such interpretations consist of a nonempty domain ∆I and an
interpretation function ·I , which maps each concept name A to a subset AI ⊆ ∆I and each
role name r to a binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I is extended
to complex concepts as follows:

(⊤)I = ∆I , (⊥I) = ∅ (C ⊓D)I = CI ∩DI ,

(∃r.C)I = {d ∈ ∆I | ∃d′ ∈ CI , (d, d′) ∈ rI}.

We now introduce two classical reasoning tasks. An interpretation I satisfies a concept
inclusion C ⊑ D if CI ⊆ DI ; it is a model of a concept C if CI ̸= ∅; it is a model of a TBox
T if it satisfies all CIs in T . A concept C subsumes a concept D relative to a TBox T if
every model I of T satisfies C ⊑ D. We denote this by writing T |= C ⊑ D. A concept C is
satisfiable w.r.t. T if there is a common model of C and T .

2.3 Knowledge Graph Embedding
Let a set of entities E and a set of binary relations R be given. A knowledge graph (KG)
is a subset of E ×R× E . In other words, a knowledge graph is a set of triples of the form
(e, r, f). These triples encode the fact that the relation r holds between the entities e and
f . For instance, we may have a triple such as (london, capitalOf, uk), encoding that London
is the capital of the UK. A knowledge graph is thus essentially a set of relational facts,
with the limitation that all relations are binary. Note, however, that the set of entities E
typically includes both individuals (i.e. constants referring to specific objects, e.g. london)
and attribute values, which allow us to encode unary predicates. For instance, the relational
fact scary(lion) Could be encoded as the KG triple (lion, hasAttribute, scary).

The aim of Knowledge Graph Embedding (KGE) is to learn a vector encoding e ∈ Rn

for each e ∈ E and a scoring function ϕr : Rn × Rn → R for each ∈ R. The vector e is
usually referred to as the embedding of e. The scoring function is designed such that ϕr(e, f)
indicates how likely it is that (e, r, f) is a valid triple, i.e. that the relational fact r(e, f) is
true. We may assume, for instance, that for each r ∈ R we also have a threshold λr such that
(e, r, f) is considered to be valid iff ϕr(e, f) ≥ λr. A comprehensive overview of knowledge
graph embedding models is beyond the scope of this paper; please refer to [72, 60] for more
complete introductions. To illustrate the main concepts, we discuss a number of popular
models. TransE [14] was one of the first KGE models. Relations in this model are viewed
as translations. In particular, each relation r ∈ R is represented by a vector r ∈ Rn. The
corresponding scoring function ϕr is given by:

ϕr(e, f) = −d(e + r, f)

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:9

with d either Euclidean or Manhattan distance. Another popular choice is to use a bilinear
scoring function. In this case, r is parametrised by a matrix Mr and we have:

ϕr(e, f) = eT Mr f

Different models differ in which constraints they put on the matrix Mr. For instance, in the
RESCAL model [47] this matrix is unconstrained, whereas DistMult [76] only allows diagonal
matrices. In recent years, several authors have focused on designing models that make it
easier to capture certain relational structures. For instance, embeddings based on hyperbolic
geometry have been used to make it easier to model hierarchical structures, such as is-a
and part-of hierarchies [48]. Region-based models, e.g. representing entities as boxes or
cones, have been used for their ability to model both hierarchies and intersections [1, 52, 79].
In [68] a model is proposed in which relations are viewed as rotations, to facilitate modelling
relational composition, as well as properties such as symmetry. It should be noted, however,
that while these models can capture certain relational dependencies to some extent, in
most models there is no explicit link between a given knowledge graph embedding and the
relational dependencies it captures. Moreover, relatively little is known about which kinds
of dependencies different models are capable of capturing (or, more generally, which sets of
dependencies can be jointly captured). Of course, this first requires us to formalise what it
means for an embedding to capture a relational dependency. We will return to this question
in Section 4.

3 Learning Conceptual Space Representations

If we want to use conceptual spaces as an interface between symbolic ontologies and vectors
space embeddings, a crucial question is whether it is possible to learn conceptual spaces from
data. What matters in this context is (i) whether we can learn region-based representations
of concepts and (ii) whether we can learn vector representations in which dimensions are
meaningful and organised into domains. These two issues are discussed in Sections 3.1 and
3.2 respectively.

3.1 Modelling Concepts as Regions
Learning Gaussian Representations. In learned vector space embeddings, the objects from
some domain of interest are represented as points or vectors, as in conceptual spaces. Most
embedding models do not learn region-based representations of concepts. However, if we
have access to a number of instances c1, ..., cn of a given concept C, we can aim to learn
a region-based representation of C from embeddings of these instances. The potential of
this strategy stems from the fact that in many embedding models, these instances can
be expected to appear clustered together in the vector space. To illustrate this, consider
Figure 3, which shows the first two principal components of a 300-dimensional embedding of
BabelNet concepts [46] using NASARI vectors2, which have been learned from Wikipedia
and are linked to BabelNet [22]. In the figure, the red points correspond to entities that are
instances of the concept Artist, while the blue points correspond to entities that are instances
of Painter. For instance, the embeddings of Edouard Manet, Vanessa Bell and Claude Monet
appear close to the centre of the blue point cloud. As can be seen, painters appear as a
distinct cluster in this vector space embedding.

2 Downloaded from http://lcl.uniroma1.it/nasari/.

AIB 2022

http://lcl.uniroma1.it/nasari/

3:10 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Figure 3 First two principal components of a vector space embedding of BabelNet entities, where
blue points correspond to instances of the concept Artist and red points correspond to instances of
the concept Painter, according to Wikidata.

When attempting to learn a region-based concept representation, we are faced with two
challenges: (i) we typically only have access to positive examples and (ii) the number of
available instances is often much smaller than the number of dimensions in the vector space.
This means that we inevitably have to make some simplifying assumptions to make learning
possible. A natural choice is to represent concepts as Gaussians. This has the advantage
that concept representations can be learned in a principled way, as the problem of estimating
Gaussians from observations, either with or without prior knowledge, has been well-studied.
Representing concepts using probability distributions, rather than hard regions, also fits
well with the view that concept boundaries tend to be fuzzy and ill-defined more often than
not. Note that in neural models, concepts are typically represented as vectors, with concept
membership determined in terms of dot products, e.g. σ(e · c) is often used to estimate the
probability that the entity e (with embedding e) is an instance of concept C (with embedding
c), with σ the sigmoid function. This choice effectively means that concepts are represented
as spherical regions in the vector space. When using Gaussians, we relax this modelling
choice, allowing concepts to be represented using ellipsoidal regions instead.

To deal with the (typically) small number of instances that are available for learning
a concept, [17] only considered Gaussians with diagonal covariance matrices. In this case,
the problem simplifies to learning a number of univariate Gaussians, i.e. one per dimension.
Moreover, a Bayesian formulation with a flat prior was used for estimating the Gaussians.
As a consequence, concepts are actually represented using Student t-distributions. The
practical implication is that slightly wider ellipsoidal regions are learned than those that
would be obtained when using maximum likelihood estimates. Some contours of the learned
distribution for the concept Painter are shown in Figure 3.

Bayesian learning with prior knowledge. As mentioned above, [17] used a Bayesian for-
mulation for learning Gaussian concept representations. While a flat (i.e. non-informative)
prior was used in that paper, the same formulation can be used with informative priors,
which offers a natural strategy for incorporating prior knowledge about the concept C being
modelled. Such prior knowledge is particularly important when the number of available
instances of C is very small (or, in an extreme case, when no instances of C are given at all).
This idea was developed in [18], where two sources of prior knowledge were used: ontologies

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:11

and vector space embeddings of the concept names. In both cases, the prior knowledge
allows us to relate the target concept C to other concepts. However, in practice we typically
do not yet have a representation of these other concepts, i.e. we are trying to jointly learn
a representation of all concepts of interest. This creates circular dependencies, e.g. the
representation of concept A provides us with a prior on the representation of concept B, but
the representation of concept B also provides us with a prior on the representation of A.
This can be addressed using Gibbs sampling; we refer to [18] for the details.
Priors on Mean. Suppose we have concept inclusions of the form (C ⊑ D1),...,(C ⊑ Dk), and
suppose we have a Gaussian representation of the concepts D1, ..., Dk. Then we can induce
a prior on the mean of the Gaussian representing C based on the idea that the mean of C

should have a high probability in the Gaussians modelling D1, ..., Dk. This can be achieved
efficiently by taking advantage of the fact that the product of k Gaussians is proportional
to another Gaussian. In addition to ontologies, we can also use vector space embeddings of
the (names of the) concepts C, D1, ..., Dk. Specifically, [18] proposed a strategy based on the
view that there should be a fixed vector offset between the embedding of a concept C and
the mean of the Gaussian that represents it.
Priors on Variance. To obtain a prior on the variance of the Gaussian representing C, we
take the view that this variance should be similar to that of the concepts that are most
similar to C. To find such concepts, we could take the siblings of C in an ontology, the
concepts whose vector space embedding is most similar to the embedding of C, or we could
use a hybrid strategy where we select the siblings whose embedding is most similar to that
of C. We again refer to [18] for details.

Exploiting contrast sets. A common strategy for learning conceptual space representations
is to associate each concept with a single point, which intuitively represents its prototype [30].
The region representing a given concept C then consists of all points that are closer to
the prototype of C than to the prototype of any other concept, i.e. concept regions are
obtained as the Voronoi tessellation of a set of prototype points. This strategy is appealing,
because it allows us to learn concept regions with a much wider extension than when learning
Gaussians, especially in cases where we only have a few instances per concept. The main
idea is illustrated in Figure 4, where we are interested in learning a region for the concept C.
When using Gaussians, we would end up with ellipsoidal regions (contours) similar to the
ones displayed in the figure. As a result, most points of the space are not assigned to any of
the concepts. In contrast, if we construct prototypes by averaging the embeddings of the
instances of a concept, and compute the resulting Voronoi tessellation, we essentially carve
up the space, as also illustrated in the figure. To see why this can be beneficial in practice,
Figure 5 shows the vector representations of the instances of three concepts: Songbook,
Brochure and Guidebook. Now consider the left-most test instance of Songbook. If we are
only given the training instances of this concept, this test instance is unlikely to be covered
by the resulting representation. In contrast, if we instead attempt to carve up the space into
regions corresponding to Songbook, Brochure and Guidebook, then this test instance would
be classified correctly. The problem with implementing the aforementioned idea is that it
only works if we are given a set of concepts that form a contrast set [33], i.e. a set of mutually
exclusive natural categories that exhaustively cover some sub-domain. For example, the set of
all common color names, the set {Fruit, Vegetable} and the set {NLP, IR, ML} can intuitively
be thought of as contrast sets. We say that two concepts are conceptual neighbours if they
belong to the same contrast set and compete for coverage (i.e. are adjacent in the resulting
Voronoi tessellation).

AIB 2022

3:12 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Figure 4 Estimating concept regions based on conceptual neighbourhood.

Figure 5 Instances of three BabelNet categories which intuitively can be seen as conceptual
neighbors. The figure shows the first two principal components of the NASARI vectors.

Existing ontologies do not typically describe contrast sets or conceptual neighbourhood.
To deal with this, [16] introduced a strategy for learning conceptual neighbourhood from
data, i.e. for discovering pairs of concepts that are conceptual neighbours. Note that they
focus on conceptual neighbourhood rather than contrast sets, as the need for contrast sets to
be exhaustive is difficult to guarantee. The method then relies on the simplifying assumption
that the target concept C, along with its known conceptual neighbours N1, ..., Nk forms
a contrast set. To represent the concept C, first a Gaussian is learned by pooling the
instances of C, N1, ..., Nk together. The ellipsoidal contours of this Gaussian are then carved
up into sub-regions for C, N1, ..., Nk by learning logistic regression classifiers. Specifically,
the region representing C is obtained by training logistic regression classifiers that separate
the instances of C and Ni, for each i ∈ {1, ..., k}. To learn conceptual neighbourhood from
data, the first step of the strategy from [16] consists in generating weakly supervised training
examples. To this end, they start with two concepts A and B that are siblings in a given
taxonomy (i.e. concepts that have the same parent) and for which a sufficiently large number
of instances is given. They then compare the performance of the following two types of
concept representations:

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:13

Table 1 Selected examples of siblings A–B which are predicted to be conceptual neighbours with
high and medium confidence.

High confidence Medium confidence
Actor – Comedian Cruise ship – Ocean liner

Journal – Newspaper Synagogue – Temple
Club – Company Mountain range – Ridge

Novel – Short story Child – Man
Tutor – Professor Monastery – Palace

Museum – Public aquarium Fairy tale – Short story
Lake – River Guitarist – Harpsichordist

1. Learn a Gaussian representation of A and B from their given instances.

2. Learn a Gaussian representation from the combined instances of A and B, and then split
the resulting region by training a logistic regression classifier that separates A-instances
from B-instances.

If the second representations perform (much) better at classifying held-out instances, we
can assume that A and B are conceptual neighbours. If the second representations perform
much worse, then we can assume that A and B are not conceptual neighbours. In case
the performance is similar, then the pair A, B is disregarded when constructing the weakly
labelled training set. Table 1 shows some examples of pairs of concepts A, B that were
predicted to be conceptual neighbours using this process. Given the resulting training set,
we can then train a standard text classifier on sentences that mention both A and B from
some text corpus. Consider, for instance, the concepts Hamlet and Village, and the following
sentence 3:

In British geography, a hamlet is considered smaller than a village and ...

The sentence suggests that hamlet and village are conceptual neighbors as it makes clear
that these concepts are closely related but different. Once a classifier is trained, based on
the weakly supervised training set, we can then apply it to other concepts. To learn the
representation of a given target concept C (e.g. a concept with only few known instances),
we can then use the text classifier to identify which of its siblings, in a given taxonomy, are
most likely to be conceptual neighbours, and determine the representation of C accordingly.
Tables 2 and 3 show some examples of the top conceptual neighbor predicted by the text
classifier, for different target concepts. In particular, Table 3 shows examples where the
resulting concept representations (i.e. the representations of the target concepts obtained
by exploiting the predicted conceptual neighbourhood) were of high quality, as measured
in terms of F1 score for held-out entities. Similarly, Table 2 shows examples where the
resulting concept representations were of low quality. As can be seen, the predicted conceptual
neighbours in Table 3 are clearly more meaningful than the predicted neighbours in Table 2.
This illustrates how the quality of the concept representations is closely linked to our ability
to find meaningful conceptual neighbours. Overall, the experiments in [16] showed that using
predicted conceptual neighbourhood, on average, led to much better concept representations
than when estimating Gaussians from the known instances of the target concept.

3 https://en.wikipedia.org/wiki/Hamlet_(place)

AIB 2022

https://en.wikipedia.org/wiki/Hamlet_(place)

3:14 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Table 2 Top conceptual neighbors selected for categories associated with a low F1 score.

Concept Top neighbor F1
Bachelor’s degree Undergraduate degree 34
Episodic video game Multiplayer gamer 34
501(c) organization Not-for-profit arts organization 29
Heavy bomber Triplane 41
Ministry United States government 33

Table 3 Top conceptual neighbors selected for categories associated with a high F1 score.

Concept Top neighbor F1
Amphitheater Velodrome 67
Proxy server Application server 61
Ketch Cutter 74
Quintet Brass band 67
Sand dune Drumlin 71

3.2 Learning Quality Dimensions
The dimensions of learned vector spaces do not normally correspond to semantically meaning-
ful properties. This is an important difference with conceptual spaces, which severely limits
the interpretability of learned vector space representations. In this section, we review work
that has focused on mitigating this issue, by identifying interpretable directions in learned
vector spaces. These interpretable directions can then play the role of quality dimensions.
This is illustrated in Figure 6, which shows a two-dimensional projection of an embedding of
movies from [25]. Along with the embedding of the movies themselves, the figure also shows
two directions that have been identified: one direction which ranks the movies from least
to most scary, and another direction which ranks the movies from least to most romantic.
Formally, we say that the direction of some vector v models a property P , such as scary, if
for entities e1 and e2, with embeddings e1 and e2, we have e1 · v > e2 · v if entity e1 has the
property P to a greater extent than entity e2.

Identifying quality dimensions. Assume that a set of entities E is given, together with a
vector space embedding e ∈ Rn for each entity e ∈ E . To find interpretable directions, [25]
proposed a simple strategy which relies on the assumption that a text description De is
available for each entity e. Let V be the set of all words (or common multi-word expressions
such as “New York”) that appear in these descriptions De. For v ∈ V , we say that the word
v is relevant for the entity e if v appears at least once in the description De. It was proposed
in [25] to learn a linear classifier in the embedding space, for each v ∈ V , separating the
entities for which v is relevant from those for which this is not the case. If this classifier is
able to separate these entities well, the assumption is that the word v must be important,
i.e. that it describes an aspect that is captured by the embedding space. In this case, the
normal vector v of the hyperplane that was learned by the classifier is treated as a candidate
direction. These candidate directions are then clustered, and the each cluster is treated as a
quality dimension. This clustering step has the advantage that quality dimensions become
easier to interpret, as we have a set of words to describe them, rather than a single word, and
it ensures that different quality dimensions are sufficiently different. We refer to [2] for an
extensive evaluation of the resulting quality dimensions. We illustrate the main findings with
some examples. First, some of the clusters that are found closely correspond to the intuition
of quality dimensions. For instance, the following clusters were found in [25], starting from a
vector space embedding of movies:

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:15

Figure 6 Interpretable directions within a vector space embedding of movies.

touching, inspirational, warmth, dignity, sadness, heartwarming, ...
clever, schemes, satire, smart, witty dialogue, ingenious, ...
bizarre, odd, twisted, peculiar, lunacy, surrealism, obscure, ...
predictable, forgettable, unoriginal, formulaic, implausible, contrived, ...
tragic, anguish, sorrow, fatal, misery, bitter, heartbreaking, ...
romantic, lovers, romance, the chemistry, kisses, true love, ...
eerie, paranoid, spooky, impending doom, dread, ominous, ...
scary, shivers, chills, creeps, frightening, the dark, goosebumps, ...
cheesy, camp, corny, tacky, laughable, a guilty pleasure, ...
hilarious, humorous, really funny, a very funny movie, amusing, ...
wonderful, fabulous, a joy, gem, delighted, happy, perfect, great, ...

Arguably, all these directions correspond to clear and salient semantic attributes of movies.
On the other hand, many other clusters rather corresponded to movie themes, e.g.:

horror movies, zombie, much gore, slashers, vampires, scary monsters, ...
killer, stabbings, a psychopath, serial killer, ...
supernatural, a witch, ghost stories, mysticism, a demon, the afterlife, ...
scientist, experiment, the virus, radiation, the mad scientist, ...
criminal, the mafia, robbers, parole, the thieves, the mastermind, ...

While these directions express semantically meaningful properties, it would be more
natural to represent such properties as regions than as quality dimensions. The fact that such
thematic properties cannot be distinguished from the semantic attributes mentioned above
is clearly a limitation of the method from [25]. In [2], it was found that the nature of the
clusters, i.e. whether they intuitively correspond to quality dimensions rather than thematic
properties, to some extent depends on the scoring function that is used for evaluating the
linear classifiers. However, regardless of the scoring function that is used, a mixture of

AIB 2022

3:16 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

different types of properties is found. One possible solution could be to require that clusters
which correspond to quality dimensions should contain a sufficient proportion of adjectives,
as clusters consisting mostly of nouns are more likely to be thematic properties. On the other
hand, it is not clear that having thematic “quality dimensions” is necessarily problematic.
While it makes the resulting representation different from a conceptual space, it still allows
us to “disentangle” the vector representation into different aspects (e.g. genre, sentiment,
emotion). Furthermore, a cluster of terms related to horror movies could still be viewed as a
quality dimension if we view it as ranking movies based on how “horror-like” they are.

A number of improvements to the basic method from [25] have been explored. In [3]
a fine-tuning strategy is introduced, which modifies the initial vector space based on the
discovered quality dimensions, while [6] suggests to learn quality dimensions in a hierarchical
fashion, with the top-level dimensions essentially partitioning the vector space into thematic
domains, and the lower-level dimensions intuitively corresponding to quality dimensions
within each of these thematic domains. In terms of how the resulting quality dimensions
could be useful, the main focus has so far been on their ability to support interpretable
classifiers, with [25] introducing a rule based classifier, which compares entities with training
examples along a small number of quality dimensions, and [3, 6] using the quality dimensions
as features for low-depth decision trees.

Organising quality dimensions into domains. The quality dimensions of a conceptual
space are organised into domains. Accordingly, as we have seen in the previous section, the
quality dimensions that can be identified in learned vector spaces also intuitively belong
to different kinds. It would be of interest to group quality dimensions of the same kind
together, to learn a structure which is akin to conceptual space domains. For instance, in
the movies domain, we could imagine one group of quality dimensions about the emotion
a movie evokes, as well as groups about the genre, the cinematographic style, etc. We will
refer to these groups of learned quality dimensions as facets, rather than domains, to avoid
confusion (e.g. domain can also refer to the domain-of-discourse, such as movies, or to the
domain of a description logic interpretation) and to highlight the fact that there are still
important differences between these facets and conceptual space domains. In addition to
grouping quality dimensions that are concerned with the same aspect of meaning, we also
want to learn a corresponding lower-dimensional vector space for each facet. In other words,
the central aim is to decompose the given vector space into a number of lower-dimensional
spaces, each of which captures a different aspect of meaning.

Note that we cannot learn these facets by simply clustering the quality dimensions. For
instance, thriller and scary may be represented by similar directions in the vector space,
but they should be assigned to different facets. In contrast, romance and horror would
be represented by dissimilar directions but nonetheless belong to the same facet. The key
solution, which was developed in [5] and [4], is to rely on word embeddings to identify words
that describe properties of the same kind. For instance, the word embeddings of different
movie genres tend to be similar, because such words tend to appear in similar contexts. In
the same way, different adjectives describing emotions tend to be represented using similar
word vectors. This suggests a simple strategy for learning facets: (i) cluster the word vectors
of the words associated with the quality dimensions that were identified in the given vector
space; and (ii) represent the facet by the vector space that is spanned by quality dimensions
that are assigned to it. Unfortunately, this strategy was found to perform poorly in [5]. The
main reason is that in many areas there is one dominant facet, such as the genre in the
case of movies. When applying the aforementioned strategy, what happens is that each of

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:17

the resulting facet-specific vector spaces mostly models the dominant facet. To address this
issue, [5] proposed an iterative strategy, in which the dominant facet is first identified and then
explicitly disregarded when determining the second facet, etc. Another practical challenge
is that the overall method is computationally demanding, especially the fact that a linear
classifier has to be learned for each word from the vocabulary, to identify the interpretable
directions (in the overall space and in each of the lower-dimensional facet-specific spaces). To
address this issue, [4] introduced a model that directly learns facet-specific vector spaces from
bag-of-words representations of the entities, using a mixture-of-experts model to generalize
the GloVe [53] word embedding model. Using this approach, facet-specific vector spaces can
be learned much more efficiently, and moreover the resulting embeddings tend to be of a
higher quality. The main limitation, however, is that this model assumes that suitable vector
spaces can be learned from bag-of-words representations (rather than being agnostic to how
the initial vector space embedding is learned) and that GloVe is a suitable embedding model
for learning these vector spaces.

The resulting facet-specific embeddings can be used in a number of different ways. Perhaps
the most immediate application of such representations is that they facilitate concept learning.
For instance, suppose we want to represent each concept as a Gaussian. Furthermore, suppose
that only one of the facet-specific vector spaces is relevant for modelling the considered
concept. If we learn a Gaussian in each of the factor-specific vector spaces, we should end up
with Gaussian with a large variance for the irrelevant facets, and a Gaussian with a much
lower variance in the vector space corresponding to the relevant facet. This advantage of
facet-specific vector spaces was empirically confirmed in [4]. Moreover, they found that even
strategies that only rely on the resulting quality dimensions, e.g. learning low-depth decision
trees, were benefiting from learning facet-specific vector spaces, as the lower-dimensional
nature of each vector space acts as a regulariser.

4 Modelling Relations with Conceptual Spaces

Conceptual spaces act as an interface between vector space embeddings and symbolic
knowledge. However, because conceptual spaces do not capture relational knowledge, they
are essentially limited to capturing Horn rules with unary predicates. In this section, we
explore whether the framework of conceptual spaces can be generalised to encode rules with
binary and higher arity relations. We focus on the analysis presented in [37] but use a
construction that is somewhat more intuitive than the one used in the latter paper. The
main idea is to view a k-ary relation as a convex region in the Cartesian product of k

conceptual spaces. For simplicity, in this section we will assume that conceptual spaces
correspond to Euclidean spaces. Each individual a is then represented as a vector a ∈ Rn. A
tuple (a1, ..., ak) is represented as the concatenation of the vectors representing a1, ..., ak, i.e.
(a1, ..., ak) is represented as the n · k-dimensional vector a1 ⊕ ...⊕ ak, where we write ⊕ for
vector concatenation.

The main idea is illustrated in Figure 7. In this toy example, we assume that individuals
are represented in a one-dimensional conceptual space. Unary predicates such as herbivore
then correspond to intervals, while binary predicates such as eats correspond to convex
regions in R2. In this figure, the tuple (lion, zebra) corresponds to a point in the region
encoding the eats predicate. This captures the knowledge that lions eat zebras. Moreover,
we can now also model dependencies between unary and binary predicates. For instance, the
representation captures the following rule:

carnivore(X)← eats(X, Y), animal(Y)

AIB 2022

3:18 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Figure 7 Illustration of a relational conceptual space.

This can be seen as follows. Consider a point p ∈ R2 in the region representing eats, such
that its projection on the Y-axis lies in the interval representing animal. For each such a
point p, it holds that its projection on the X-axis lies in the interval representing carnivore.
We can think of each point p as the representation of a possible instantiation of the tuple
(X, Y). The aforementioned observation about p then corresponds to the view that every
tuple satisfying the body of the rule also satisfies its head. In a similar way, we can also
model rules with existential quantifiers, e.g.:

∃Y.eats(X, Y) ∧ animal(Y)← carnivore(X)

To see why this rule is satisfied for the configuration depicted in Figure 7, consider a value
x ∈ R which lies in the interval representing carnivore. Then we can always find a coordinate
y ∈ R such that the point p = (x, y) lies in the region for eats and such that y lies in the
interval modelling animal. In Section 4.1 we discuss these intuitions in more detail. We also
provide a characterisation about the kinds of relational rules that can be modelled using
convex regions. Subsequently, in Section 4.2 we discuss the relationship with knowledge
graph embedding models.

4.1 Geometric Models of Relational Rules
We consider geometric interpretations η, which map each individual a to a point η(a) ∈ Rn

and each k-ary relation r to a convex region η(r) in Rk·n. These geometric interpretations
can intuitively be seen as defining a relational counterpart to conceptual spaces. We now
discuss what it means for a geometric interpretation η to satisfy different kinds of relational
knowledge. First, a relational fact of the form r(a1, ..., ak) is satisfied if the representation of
the tuple (a1, ..., ak) lies in the region representing r, i.e.:

η(a1)⊕ ...⊕ η(ak) ∈ η(r)

Now we consider a basic relational entailment of the following form:

r(X1, ..., Xk)← s(X1, ..., Xk)

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:19

This rule is satisfied if the region modelling s is included in the region modelling r, i.e. it
corresponds to the following geometric constraint:

η(s) ⊆ η(r)

Conjunctions in the body of a rule can be modelled using intersections. For instance, consider
the following rule:

r(X1, ..., Xk)← s(X1, ..., Xk), t(X1, ..., Xk) (8)

The corresponding geometric constraint is as follows:

η(s) ∩ η(t) ⊆ η(r)

This simple geometric characterisation only works because each relation is applied to the
same tuple (X1, ..., Xk). To see how we can model more general rules, let us consider a rule
of the following form:

r(X, Z)← s(X, Y), t(Y, Z) (9)

The main idea is to view this rule as a special case of (8). In particular, let us consider ternary
relations r∗, s∗ and t∗ defined as follows: r∗(X, Y, Z) ≡ r(X, Z), s∗(X, Y, Z) ≡ s(X, Y) and
t∗(X, Y, Z) ≡ t(Y, Z). Then clearly (9) is equivalent to:

r∗(X, Y, Z)← s∗(X, Y, Z), t∗(X, Y, Z)

whose geometric characterisation is given by η(s∗) ∩ η(t∗) ⊆ η(r∗). This is illustrated in
Figure 8, where the relationship between the two-dimensional regions η(r), η(s), η(t) and
the three-dimensional regions η(r∗), η(s∗), η(t∗) is shown. To explain how the regions η(r∗),
η(s∗), η(t∗) relate to η(r), η(s), η(t) more formally, we have to introduce some notations.
Let I = {i1, ..., il} ⊆ {1, ..., k} be a set of indices. For a point (x1, ..., xk·n) ∈ Rk·n, we define
its restriction to I as follows

(x1, ..., xk·n) ↓ I =
⊕
i∈I

(xn·i+1, ..., xn·i+n)

For instance if n = 2, k = 4 and I = {1, 4} we have (x1, ..., x8) ↓ I = (x1, x2, x7, x8). In
particular, note that when (x1, ..., xk·n) is the representation of a tuple (a1, ..., ak), and
(b1, ..., bl) is obtained from (a1, ..., ak) be only keeping the arguments at the positions in I,
then η(b1, ..., bl) = η(a1, ..., ak) ↓ I. We define the notion of cylindrical extension as follows.
Let R be a region in Rl·n with l < k and let I = {i1, ..., il} ⊆ {1, ..., k} Then we define:

extk
I (R) = {x ∈ Rk·n |x ↓ I ∈ R}

Let us now return to the problem of modelling the rule (9). We have η(r∗) = ext3
{1,3}(η(r)),

η(s∗) = ext3
{1,2}(η(s)) and η(t∗) = ext3

{2,3}(η(t)). We thus find that the rule (9) corresponds
to the following geometric constraint:

ext3
{1,2}

(
η(s)

)
∩ ext3

{2,3}
(
η(t)

)
⊆ ext3

{1,3}
(
η(r)

)
While the rule (9) only involves binary relations, clearly we can apply the same strategy to
rules involving relations of other arities, and to rules with more than two atoms in the body.

AIB 2022

3:20 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Figure 8 Illustration of the constraint η(s∗) ∩ η(t∗) ⊆ η(r∗).

Finally, we discuss how rules with existential quantifiers can be modelled. Let us consider
the following example:

∃Y . r(X, Y) ∧ s(Y, Z)← t(X, Z) (10)

The key challenge is to characterise the region that models the head of this rule. Note
that, as before, r(X, Y) ∧ s(Y, Z) can be modelled by treating r and s as ternary relations.
Relying again on the cylindrical extension, we find that this conjunction can be modelled as
ext3

{1,2}(η(r))∩ ext3
{2,3}(η(s)). To model the existential quantifier, we can then simply remove

the coordinates pertaining to the variable Y . In other words, the rule (10) corresponds to
the following geometric constraint:

η(t) ⊆
(

ext3
{1,2}

(
η(r)

)
∩ ext3

{2,3}
(
η(s)

))
↓ {1, 3}

In this way, using a combination of cylindrical extensions and projections, any relational rule
can be translated into a corresponding geometric constraint. It is worth pointing out that a
similar treatment of rules was already proposed by Zadeh [78] in his theory of approximate
reasoning. The main difference with the aforementioned approach is that relations in the
latter case are modelled as fuzzy sets.

A central question is which kinds of rules can be faithfully4 modelled in terms of the
aforementioned geometric constraints. The answer depends on which kinds of regions we
allow as the geometric interpretation η(r) of a relation r. Without any restrictions, arbitrary
sets of relational rules can be modelled correctly. However, in practice, it makes sense to
require η(r) to be convex. While the cognitive plausibility of this assumption is unclear, in

4 Note that we use this notion of faithfulness informally here; we refer to [37] for a formal treatment of
geometric models.

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:21

(a) TransE. (b) DistMult.

Figure 9 Region based view of knowledge graph embedding models.

practice we can only hope to learn region-based representations in high-dimensional spaces
by making drastic simplifying assumptions, as we also saw in Section 3. For this reason,
most strategies for modelling relational knowledge end up learning convex representations;
this will be discussed in more detail in Section 4.2. With this convexity assumption, however,
clearly some sets of rules cannot be jointly modelled. For instance we cannot model the rule
⊥ ← r1(X, Y), r2(X, Y), capturing that relations r1 and r2 are disjoint, together with the
following facts: r1(a, a), r1(b, b), r2(a, b), r2(b, a). Indeed, if η(r1) and η(r2) are convex, from
η(a)⊕ η(a) ∈ η(r1), η(b)⊕ η(b) ∈ η(r1), η(a)⊕ η(b) ∈ η(r2) and η(b)⊕ η(a) ∈ η(r2), we find:

(η(a) + η(b))
2 ⊕ (η(a) + η(b))

2 ∈ η(r1) ∩ η(r2)

and thus r1 and r2 are not disjoint in the geometric interpretation η. However, in [37] it was
shown that many sets of relational rules can still be faithfully captured by geometric models.
In particular, consider a relational rule of the following form:

∃Y1, ..., Yr.H1 ∧ ... ∧Hs ← B1, ..., Bt

where H1, ..., Hs, B1, ..., Bt are atoms. We say that such a rule is quasi-chained, if every atom
Bi appearing in the body shares at most 1 variable with the atoms B1, ..., Bi−1. It can be
shown that any set of quasi-chained rules with a finite model can be faithfully captured by a
geometric model in which every relation is represented as a convex region [37]. Some open
questions remain, however, including the following:

Is there a larger fragment of existential rules that can be faithfully modelled using
geometric interpretations with convex regions?

Is there a way to relax the convexity assumption, such that arbitrary existential rules
can be captured, while keeping representations simple enough to be learnable?

Finally, it should be noted that the restriction to arbitrary convex regions means that
negation and disjunction cannot easily be modelled. Some authors have proposed geometric
models that were specifically designed with such logical connectives in mind, including the
use of axis aligned cones [52]. Recently, the ability of convex regions to model temporally
attributed description logics has also been studied [19].

AIB 2022

3:22 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

4.2 Link with Knowledge Graph Embedding
Thus far, we have not discussed how region-based representations of relations may be learned
from data. In the last few years, there has been an increasing interest in region based
representations, as already mentioned in Section 3.1. Most approaches, however, only use
regions for modelling concepts, and deal with relations in an ad hoc way. For instance, the
approach from [79] represents entities using cones, but uses a feed-forward neural network
for modelling relations. Similarly, [52] propose a cone based model for embedding ALC
ontologies, but they refrain from modelling roles in the same way. However, in [1] a knowledge
graph embedding model is proposed in which relations are explicitly modelled as hyperboxes.
More generally, many of the standard knowledge graph embedding models can be interpreted
as region based models. In particular, for a relation r with scoring function fr we can consider
the following region:

η(r) = {e⊕ f | fr(e, f) ≥ λr}

with λr some threshold. Figure 9 illustrates how TransE and DistMult can be viewed as
region-based models in this way. However, viewed as region based models, TransE and
bilinear models such as DistMult are severely limited in which kinds of existential rules they
can capture; we refer to [37] for more details.

5 Plausible Symbolic Reasoning using Vector Space Embeddings

Leaving aside the difficulties of tightly integrating geometric and symbolic representations,
it is highly relevant for the development of robust AI systems to understand how symbolic
approaches to AI can be made more flexible by equipping them with inductive capabilities,
i.e. making it possible to infer likely concept inclusions (or rules) by using the knowledge of
the ontology in combination with the additional background knowledge provided by vector
representations. In other words, one would like symbolic systems to incorporate mechanisms
to use predictions made by neural approaches, informing about plausible situations witnessed
in the data, in a principled way. In the rest of this section we will discuss ways in which this
idea can be implemented.

One of the most natural solutions is to use vector representations to implement a form
of similarity based reasoning [23, 13]. For instance, we could have a KB with factual
knowledge stating that strawberries are instances of the concept berries, Berry(strawberry),
and ontological knowledge stating that berries are healthy, Berry ⊑ Healthy. Clearly, this
KB entails that strawberries are healthy. Further, using a standard word embedding [45],
we can find out that strawberry and raspberry are highly similar. Now, using the KB and
the additional similarity information, we can infer that it is plausible that raspberries are
berries and, therefore, healthy. This same idea could be lifted to find the similarity between
concept names (classes) and find plausible rules. For instance, assume that strawberries
and raspberries are concept names and that our ontology specifies that strawberries are
healthy, i.e. Strawberry ⊑ Healthy. Using the similarity between strawberries and raspberries,
we could then infer that the concept inclusion Raspberry ⊑ Healthy is plausible. However,
implementing this strategy in a principled way is difficult, because it is unclear how we can
formally relate degrees of similarity to the plausibility of the inferred rules, i.e. if we can infer
using standard deduction that C1 ⊑ X, how similar does concept C2 needs to be to C1 to
accept the plausible inference C2 ⊑ X? For this reason, rather than focusing on similarity
based reasoning, it has been proposed to focus on interpolative reasoning instead [64]. The

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:23

main difference is that instead of focusing on the similarity between two entities, we focus
on how one entity relates to a group of entities. For instance, we say that the concept
Raspberry is conceptually between the concepts Strawberry, Blackberry and Cherry. Intuitively,
this means that we accept that any (natural) property that holds for each of the concepts
Strawberry, Blackberry, Cherry is likely to hold for Raspberry as well. In addition to using
similarity based strategies, humans also rely on analogies for inferring plausible knowledge.
Analogical reasoning can be particularly powerful, as it allow us to make predictions about
concepts that may themselves not be similar to any other concepts. Recent models from the
field of Natural Language Processing make it possible to discover analogies with a high level
of accuracy [71]. It is thus of interest to explore whether analogy based reasoning processes
could be used as another mechanism for exploiting knowledge from neural representations
for symbolic reasoning. We now discuss in more detail how interpolative and analogical
reasoning can be formalised in the context of description logics.

5.1 Interpolative Reasoning
We start by illustrating how the interpolation pattern works [26, 64]. Assume that we have
the following knowledge about some concept C:

Strawberry ⊑ C Orange ⊑ C

Intuitively, even if we know nothing else about C, we could still make the following inductive
inference:

Raspberry ⊑ C (11)

This conclusion relies on background knowledge about strawberries, oranges and raspberries,
in particular the fact that raspberries are expected to have all the natural properties that
strawberries and oranges have in common (e.g. being high in vitamin C). In such a case, we say
that raspberries are conceptually between strawberries and oranges. Importantly, knowledge
about conceptual betweenness can be derived from data-driven representations. For instance,
[25] found that geometric betweenness closely corresponds to conceptual betweenness in
vector spaces learned with multi-dimensional scaling.

The notion of naturalness plays a central role, as it is clear that the conclusion in (11)
can only be justified by making certain assumptions on the concept C. If C could be an
arbitrary concept, e.g. a concept representing the union of Orange and Strawberry, there is
no reason to believe that the inference is valid, but for natural properties the inference seems
intuitively plausible. This idea that only some properties admit inductive inferences has been
extensively studied in philosophy [34, 57, 27]. In the context of conceptual spaces, “natural
properties” are those which are modelled as convex regions, as explained in Section 2.1. To
determine which concepts, in a given ontology, are likely to be natural, a useful heuristic is
to consider the concept name: concepts that correspond to standard natural language terms
are normally assumed to be natural [29].

The extension EL ▷◁ of EL was designed based on the above intuitions, with the aim of
enabling reasoning about conceptual betweenness and natural concepts, and thus supporting
interpolative reasoning. Syntactically, EL is extended with the in-between constructor, which
allows us to describe the set of objects that are between two concepts: we write C ▷◁ D to
denote all objects that are between the concepts C and D. We further assume that NC
contains a distinguished infinite set of natural concept names NNat

C . The syntax of EL ▷◁

concepts C, D is thus defined by the following grammar, where A ∈ NC, A′ ∈ NNat
C and

r ∈ NR:

AIB 2022

3:24 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

C, D := ⊤ | A | C ⊓D | ∃r.C | N N, N ′ := A′ | N ⊓N ′ | N ▷◁ N ′

Concepts of the form N, N ′ are called natural concepts.

▶ Example 4. Using the following EL ▷◁ TBox T , we can now model the situation described
above:

Strawberry ⊑ Healthy (12)
Orange ⊑ Healthy (13)

Raspberry ⊑ Strawberry ▷◁ Orange (14)
Healthy ⊑ ∃improves.QualityOfLife (15)

such that Strawberry, Orange, Raspberry, Healthy ∈ NNat
C .

The semantics of EL ▷◁ needs to adequately characterise natural concepts and concept
betweenness, and thus support interpolation, i.e.: such that from A ⊑ B1 ▷◁ B2, B1 ⊑ C and
B2 ⊑ C, we can derive A ⊑ C, provided that C is natural. To this end, Ibáñez-García et
al. [41] proposed two semantics: a feature-enriched semantics inspired by formal concept
analysis [73] and a geometric semantics inspired by conceptual spaces. In the former, at the
semantic level a set of features is associated with each concept. Note that these features are
semantic constructs, which have no direct counterpart at the syntactic level. A concept is then
natural if it is completely characterized by these features, while B is between A and C if the
set of features associated with B contains the intersection of the sets associated with A and C.
In the second semantics, concepts are interpreted as regions from a vector space. A concept is
then natural if it is interpreted as a convex region, while B is between A and C if the region
corresponding to B is geometrically between the regions corresponding to A and C (i.e. in the
convex hull of their union). We refrain from giving the full technical details, but invite the
interested reader to look at [41]. Ibáñez-García et al. [41] also investigate the complexity of
reasoning with interpolation, and show that under both semantics the concept subsumption
problem becomes computationally more costly than in pure EL: coNP-complete under the
feature semantics and PSpace-hard under the geometric semantics.

One of the main drawbacks of the feature semantics is that it is too restrictive and cannot
support interpolation in an adequate way if the ⊥ construct is present. To address this
shortcoming, Schockaert et al. [62] recently introduced a new semantics based on an abstract
ternary betweenness relation bet over elements of the domain, such that that bet(a, b, c) if
b is between a and c. We then have that A ⊑ B1 ▷◁ B2 is satisfied in an interpretation I if
every element in AI is between some individual from BI

1 and some element from BI
2 . A

central result from [62] shows that the feature-enriched semantics from [41] can essentially
be seen as a special case, where the betweenness relation bet fulfills certain properties. The
results in [62] are preliminary, leaving open for example, the complexity of reasoning under
this new semantics.

The logic EL ▷◁ is built on the idea of conceptual betweenness. This ensures that the
semantics remains close to cognitive models of category based induction, and information
about conceptual betweenness can moreover be readily obtained from embeddings. However,
an important open question is whether it is possible to develop meaningful forms of rule
interpolation that go beyond this idea of conceptual betweenness. For instance, consider the
following rules:

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:25

burglary(L, T)← burglary(L, T − 2), burglary(L, T − 1)
burglary(L, T)← burglary(L, T − 1), burglary(L1, T − 1), burglary(L2, T − 1), n(L, L1),

n(L, L2), L1 ̸= L2

burglary(L, T)← burglary(L, T − 2), burglary(L1, T − 1), burglary(L2, T − 1), n(L, L1),
n(L, L2), L1 ̸= L2

Intuitively, these rules partially characterise the spatio-temporal diffusion pattern of crime
hotspots. For instance, the first rule asserts that if there has been a burglary at time points
T − 1 and T − 2 at a given location (e.g. during the two previous days), then it is likely that
there will be a burglary at time point T in the same location. The other two rules include
the predicate n to encode information about neighbouring locations. Given these rules, the
following rule also seems plausible:

burglary(L, T)← burglary(L1, T − 2), burglary(L2, T − 2), burglary(L, T − 1), n(L, L1),
n(L, L2), L1 ̸= L2

However, it is unclear how the underlying principle could be formalised, and how the
associated background information could be obtained.

5.2 Analogical Reasoning
Reasoning by analogy has been extensively studied in cognitive science, philosophy, and
artificial intelligence [31, 38, 39, 12, 55, 11]. In the context of AI, the formalisation of
analogical reasoning typically builds on analogical proportions, i.e. statements of the form
“A is to B what C is to D” [12, 55, 11]. For instance, a notable result in this area has been
the development of analogical classifiers, which are based on the principle that whenever
the features of four examples are in an analogical proportion, then their class labels should
be in an analogical proportion as well [12, 40]. Somewhat surprisingly, analogical reasoning
was only recently considered for completing ontologies [61]. Schockaert et al. [61] took
inspiration from analogical classifiers to infer plausible concept inclusions. The resulting
inference pattern is called rule extrapolation; it is illustrated in the next example.

▶ Example 5 ([61], Rule Extrapolation). Suppose we have an ontology with the following
concept inclusions:

Young ⊓ Cat ⊑ Cute (16)
Adult ⊓WildCat ⊑ Dangerous (17)

Young ⊓ Dog ⊑ Cute (18)

Suppose we are furthermore given that “Cat is to WildCat what Dog is to Wolf”. Trivially,
we also have that “Young is to Adult what Young is to Adult” and “Cute is to Dangerous what
Cute is to Dangerous”. Using rule extrapolation, we can then infer the following:

Adult ⊓Wolf ⊑ Dangerous (19)

The knowledge inferred by analogical reasoning could also be used to transfer knowledge
from one domain to another:

AIB 2022

3:26 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

▶ Example 6 ([61], Rule translation). Suppose we are given the following knowledge:

Program ⊑ ∃specifies.Software (20)

and the fact that “Program is to Plan what Software is to Building”. Then we can plausibly
infer:

Plan ⊑ ∃specifies.Building (21)

Rule translation is useful as ontologies are often developed using “templates” to encode
knowledge from different domains (e.g. knowledge about different professions). The strategy
from Example 6 then allows us to complete the ontology by introducing additional domains.

As in the case of interpolative reasoning, the main objective of Schockaert et al. [61]
was to establish the principles for incorporating analogical reasoning and, in particular, to
develop a model-theoretic semantics. To this end, the description logic ELana

⊥ is introduced,
which extends EL ▷◁

⊥ with so-called analogy assertions. Formally, ELana
⊥ concepts C, D are

defined by the following grammar, where A ∈ NC, A′ ∈ NNat
C , r ∈ NR and r′ ∈ NInt

R :

C, D := ⊤ | ⊥ | A | C ⊓D | ∃r.C | N
N, N ′ := A′ | N ⊓N ′ | N ▷◁ N ′ | ∃r′.N

Note how ELana
⊥ concepts extend EL▷◁

⊥ concepts by allowing existential restrictions over
so-called intra-domain roles, i.e. roles from the designated set NInt

R , as natural concepts. An
ELana

⊥ TBox is a finite set containing two types of assertions: (i) ELana
⊥ concept inclusions,

and (ii) analogy assertions of the form C1▷D1::C2▷D2, where C1, C2, D1, D2 are natural
ELana

⊥ concepts.
The semantics of ELana

⊥ builds on the feature-enriched semantics of EL ▷◁
⊥ . Recall that

analogies involve transferring knowledge from one application domain to another domain,
e.g. from software engineering to architecture. Hence, at the semantic level these domains
will be associated with subsets of features F . In particular, interpretations will specify a
partition [F1, ...,Fk] of F , defining the different domains of interest. To capture the intuition
of analogies, some of the partition classes will be viewed as being analogous, in the sense
that there is some kind of structure-preserving mapping between them. We again refrain
from giving the full technical details. We point out that Schockaert et al. [61] formally show
that the analogical patterns exemplified above are supported under the proposed semantics.

The investigation by Schockaert et al. [61] leaves open several interesting questions such
as establishing the computational complexity of reasoning in ELana

⊥ . For the practical uptake
of ELana

⊥ , it would be also important to consider nonmonotonic extensions, as analogical
assertions might introduce conflicts with the existing ontological knowledge.

6 Conclusions

Combining symbolic reasoning with sub-symbolic learning is an important and widely studied
challenge for AI research. To enable such a combination in a principled way, a key question
is how we can unify the two rather distinct types of representations that are involved, i.e.
symbols and vectors. In this paper, we discussed a number of strategies that are inspired
by the theory of conceptual spaces. First, we looked at the possibility of achieving a tight
integration between symbolic and vector representations based on the idea that concepts
can be viewed as regions in vector space embeddings. Moreover, we also explored the idea
that meaningful “quality dimensions” can be identified in learned embeddings, adding more

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:27

structure and a degree of interpretability to the vector representations themselves. However,
we also argued that the use of region based representations has some inherent limitations
when it comes to modelling relational knowledge. For this reason, we finally discussed a
number of settings in which vectors and symbols are combined in a looser way. Essentially, the
underlying idea is to exploit the similarity structure captured by the vector space to identify
symbolic knowledge that plausibly, but not deductively, follows from a given knowledge base.

References

1 Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. BoxE: A
box embedding model for knowledge base completion. In NeurIPS, 2020.

2 Thomas Ager. Disentangling low-dimensional vector space representations of text documents.
PhD thesis, Cardiff University, 2021.

3 Thomas Ager, Ondrej Kuzelka, and Steven Schockaert. Modelling salient features as directions
in fine-tuned semantic spaces. In CoNLL, pages 530–540, 2018.

4 Rana Alshaikh, Zied Bouraoui, Shelan S. Jeawak, and Steven Schockaert. A mixture-of-experts
model for learning multi-facet entity embeddings. In COLING, pages 5124–5135, 2020.

5 Rana Alshaikh, Zied Bouraoui, and Steven Schockaert. Learning conceptual spaces with
disentangled facets. In CoNLL, pages 131–139, 2019.

6 Rana Alshaikh, Zied Bouraoui, and Steven Schockaert. Hierarchical linear disentanglement of
data-driven conceptual spaces. In IJCAI, pages 3573–3579, 2020.

7 Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, and Sunita Sarawagi. Learning from rules
generalizing labeled exemplars. In ICLR, 2020.

8 Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In IJCAI,
pages 364–369, 2005.

9 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

10 Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with
existential variables: Walking the decidability line. Artif. Intell., 175(9-10):1620–1654, 2011.

11 Nelly Barbot, Laurent Miclet, and Henri Prade. Analogy between concepts. Artificial
Intelligence, 275:487–539, 2019.

12 Sabri Bayoudh, Laurent Miclet, and Arnaud Delhay. Learning by analogy: A classification
rule for binary and nominal data. In IJCAI, pages 678–683, 2007.

13 Islam Beltagy, Cuong Chau, Gemma Boleda, Dan Garrette, Katrin Erk, and Raymond J.
Mooney. Montague meets Markov: Deep semantics with probabilistic logical form. In *SEM,
pages 11–21, 2013.

14 Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, pages 2787–2795, 2013.

15 Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Recent advances in querying
probabilistic knowledge bases. In IJCAI, pages 5420–5426, 2018.

16 Zied Bouraoui, José Camacho-Collados, Luis Espinosa Anke, and Steven Schockaert. Modelling
semantic categories using conceptual neighborhood. In AAAI, pages 7448–7455. AAAI Press,
2020.

17 Zied Bouraoui, Shoaib Jameel, and Steven Schockaert. Inductive reasoning about ontologies
using conceptual spaces. In AAAI, pages 4364–4370, 2017.

18 Zied Bouraoui and Steven Schockaert. Learning conceptual space representations of interrelated
concepts. In Jérôme Lang, editor, IJCAI, pages 1760–1766, 2018.

19 Camille Bourgaux, Ana Ozaki, and Jeff Z. Pan. Geometric models for (temporally) attributed
description logics. In Martin Homola, Vladislav Ryzhikov, and Renate A. Schmidt, editors,
DL, 2021.

AIB 2022

3:28 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

20 Katarina Britz, Thomas Meyer, and Ivan Varzinczak. Semantic foundation for preferential
description logics. In Australasian Joint Conference on Artificial Intelligence, pages 491–500.
Springer, 2011.

21 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

22 José Camacho-Collados, Mohammad Taher Pilehvar, and Roberto Navigli. Nasari: Integrating
explicit knowledge and corpus statistics for a multilingual representation of concepts and
entities. Artificial Intelligence, 240:36–64, 2016.

23 Claudia d’Amato, Nicola Fanizzi, Bettina Fazzinga, Georg Gottlob, and Thomas Lukasiewicz.
Ontology-based semantic search on the web and its combination with the power of inductive
reasoning. Ann. Math. Artif. Intell., 65(2-3):83–121, 2012.

24 Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. Lifted rule injection for relation
embeddings. In EMNLP, pages 1389–1399, 2016.

25 Joaquín Derrac and Steven Schockaert. Inducing semantic relations from conceptual spaces:
A data-driven approach to plausible reasoning. Artif. Intell., 228:66–94, 2015.

26 Didier Dubois, Henri Prade, Francesc Esteva, Pere Garcia, and Lluis Godo. A logical approach
to interpolation based on similarity relations. International Journal of Approximate Reasoning,
17(1):1–36, 1997.

27 Peter Gärdenfors. Conceptual spaces: The geometry of thought. MIT press, 2000.
28 Peter Gärdenfors. How to make the semantic web more semantic. In A.C. Varzi and L. Vieu,

editors, Formal Ontology in Information Systems, pages 19–36. IOS Press, 2004.
29 Peter Gärdenfors. The geometry of meaning: Semantics based on conceptual spaces. MIT

press, 2014.
30 Peter Gärdenfors and Mary-Anne Williams. Reasoning about categories in conceptual spaces.

In IJCAI, pages 385–392, 2001.
31 Dedre Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive science,

7(2):155–170, 1983.
32 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. Semantic

characterization of rational closure: From propositional logic to description logics. Artificial
Intelligence, 226:1–33, 2015.

33 Robert L Goldstone. Isolated and interrelated concepts. Memory & Cognition, 24(5):608–628,
1996.

34 Nelson Goodman. Fact, fiction, and forecast. Harvard University Press, 1955.
35 Georg Gottlob, Michael Morak, and Andreas Pieris. Recent advances in datalog±. In Reasoning

Web, volume 9203 of Lecture Notes in Computer Science, pages 193–217, 2015.
36 Víctor Gutiérrez-Basulto, Jean Christoph Jung, Carsten Lutz, and Lutz Schröder. Probabilistic

description logics for subjective uncertainty. J. Artif. Intell. Res., 58:1–66, 2017.
37 Víctor Gutiérrez-Basulto and Steven Schockaert. From knowledge graph embedding to ontology

embedding? an analysis of the compatibility between vector space representations and rules.
In KR, pages 379–388, 2018.

38 Douglas R Hofstadter, Melanie Mitchell, et al. The copycat project: A model of mental fluidity
and analogy-making. Advances in Connectionist and Neural Computation Theory, 2:205–267,
1995.

39 Keith J Holyoak and Paul Thagard. The analogical mind. American psychologist, 52(1):35–44,
1997.

40 Nicolas Hug, Henri Prade, Gilles Richard, and Mathieu Serrurier. Analogical classifiers: A
theoretical perspective. In ECAI, pages 689–697, 2016.

41 Yazmín Ibáñez-García, Víctor Gutiérrez-Basulto, and Steven Schockaert. Plausible reasoning
about el-ontologies using concept interpolation. In KR, pages 506–516, 2020.

42 Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial intelligence, 44(1-2):167–207, 1990.

Z. Bouraoui, V. Gutiérrez-Basulto, and S. Schockaert 3:29

43 Tao Li and Vivek Srikumar. Augmenting neural networks with first-order logic. In ACL, pages
292–302, 2019.

44 Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. DeepProbLog: Neural probabilistic logic programming. In NeurIPS, pages 3753–3763,
2018.

45 Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In NAACL-HLT, pages 746–751, 2013.

46 Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic construction, evaluation
and application of a wide-coverage multilingual semantic network. Artificial Intelligence,
193:217–250, 2012.

47 Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, pages 809–816, 2011.

48 Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represent-
ations. NIPS, 30:6338–6347, 2017.

49 Robert M Nosofsky. Choice, similarity, and the context theory of classification. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 10(1):104–114, 1984.

50 Daniel N Osherson, Edward E Smith, Ormond Wilkie, Alejandro Lopez, and Eldar Shafir.
Category-based induction. Psychological Review, 97(2):185–200, 1990.

51 Matías Osta-Vélez and Peter Gärdenfors. Category-based induction in conceptual spaces.
Journal of Mathematical Psychology, 96, 2020.

52 Özgür Lütfü Özçep, Mena Leemhuis, and Diedrich Wolter. Cone semantics for logics with
negation. In IJCAI, pages 1820–1826, 2020.

53 Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors for
word representation. In EMNLP, pages 1532–1543, 2014.

54 Henri Prade and Gilles Richard, editors. Computational Approaches to Analogical Reasoning:
Current Trends, volume 548 of Studies in Computational Intelligence. Springer, 2014.

55 Henri Prade and Gilles Richard. From analogical proportion to logical proportions: A survey. In
Computational Approaches to Analogical Reasoning: Current Trends, pages 217–244. Springer,
2014.

56 Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. Rnnlogic:
Learning logic rules for reasoning on knowledge graphs. In ICLR, 2020.

57 W.V. Quine. From a Logical Point of View. Harvard University Press, 1953.
58 Lance J Rips. Inductive judgments about natural categories. Journal of Verbal Learning and

Verbal Behavior, 14(6):665–681, 1975.
59 Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In NIPS, pages

3788–3800, 2017.
60 Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo.

Knowledge graph embedding for link prediction: A comparative analysis. ACM Transactions
on Knowledge Discovery from Data, 15(2):1–49, 2021.

61 Steven Schockaert, Yazmín Ibáñez-García, and Víctor Gutiérrez-Basulto. A description logic
for analogical reasoning. In IJCAI, pages 2040–2046. ijcai.org, 2021.

62 Steven Schockaert, Yazmín Angélica Ibáñez-García, and Víctor Gutiérrez-Basulto. Modelling
concept interpolation in description logics using abstract betweenness relations. In DL, 2021.

63 Steven Schockaert and Henri Prade. Solving conflicts in information merging by a flexible
interpretation of atomic propositions. Artif. Intell., 175(11):1815–1855, 2011.

64 Steven Schockaert and Henri Prade. Interpolative and extrapolative reasoning in propositional
theories using qualitative knowledge about conceptual spaces. Artif. Intell., 202:86–131, 2013.

65 Mikhail Sheremet, Dmitry Tishkovsky, Frank Wolter, and Michael Zakharyaschev. A logic for
concepts and similarity. Journal of Logic and Computation, 17(3):415–452, 2007.

66 Steven A Sloman. Feature-based induction. Cognitive Psychology, 25(2):231–280, 1993.

AIB 2022

3:30 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

67 Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezný, Steven Schockaert, and Ondrej Kuzelka.
Lifted relational neural networks: Efficient learning of latent relational structures. J. Artif.
Intell. Res., 62:69–100, 2018.

68 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. In ICLR, 2018.

69 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. RotatE: Knowledge graph
embedding by relational rotation in complex space. In ICLR, 2019.

70 Théo Trouillon, Christopher R. Dance, Éric Gaussier, Johannes Welbl, Sebastian Riedel, and
Guillaume Bouchard. Knowledge graph completion via complex tensor factorization. J. Mach.
Learn. Res., 18:130:1–130:38, 2017.

71 Asahi Ushio, José Camacho-Collados, and Steven Schockaert. Distilling relation embeddings
from pretrained language models. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih, editors, EMNLP, pages 9044–9062, 2021.

72 Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engineering,
29(12):2724–2743, 2017.

73 Rudolf Wille. Restructuring lattice theory: An approach based on hierarchies of concepts. In
Ordered Sets, pages 445–470. Springer, 1982.

74 Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In ICML, pages 5498–5507, 2018.

75 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In ICLR, 2015.

76 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In ICLR, 2015.

77 Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer
set programming. In IJCAI, pages 1755–1762, 2020.

78 LA Zadeh. Calculus of fuzzy restrictions. In Fuzzy Sets and Their Applications to Cognitive
and Decision Processes: Proceedings of the US–Japan Seminar on Fuzzy Sets and Their
Applications, Held at the University of California, Berkeley, California, July 1-4, 1974, pages
1–39, 1975.

79 Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. ConE: Cone embeddings
for multi-hop reasoning over knowledge graphs. NeurIPS, 2021.

Combining Embeddings and Rules
for Fact Prediction
Armand Boschin #

Télécom Paris, Institut Polytechnique de Paris, France

Nitisha Jain #

Hasso Plattner Institute, University of Potsdam, Germany

Gurami Keretchashvili #

Télécom Paris, Institut Polytechnique de Paris, France

Fabian Suchanek # Ñ

Télécom Paris, Institut Polytechnique de Paris, France

Abstract
Knowledge bases are typically incomplete, meaning that they are missing information that we would
expect to be there. Recent years have seen two main approaches to guess missing facts: Rule Mining
and Knowledge Graph Embeddings. The first approach is symbolic, and finds rules such as “If
two people are married, they most likely live in the same city”. These rules can then be used to
predict missing statements. Knowledge Graph Embeddings, on the other hand, are trained to predict
missing facts for a knowledge base by mapping entities to a vector space. Each of these approaches
has their strengths and weaknesses, and this article provides a survey of neuro-symbolic works that
combine embeddings and rule mining approaches for fact prediction.

2012 ACM Subject Classification Information systems → Information systems applications

Keywords and phrases Rule Mining, Embeddings, Knowledge Bases, Deep Learning

Digital Object Identifier 10.4230/OASIcs.AIB.2022.4

Category Invited Paper

Funding This work was partially funded by ANR-20-CHIA-0012-01 (“NoRDF”).

1 Introduction

A knowledge base (KB) is a computer-processable collection of knowledge about the world.
KBs typically contain real-world entities (such as organizations, people, movies, or locations)
and their relationships (who was born where, which movie plays where, etc.). Thousands of
such KBs are publicly available, including, e.g., Wikidata [60], DBpedia [4], and YAGO [53].
These KBs contain millions of entities and relationships between them, saying, e.g., who
was born in which city, which actor acted in which movie, or which city is located in which
country. Such KBs are used for question answering, Web search, text understanding, personal
assistants, and other AI applications [66].

KBs are usually never complete; there are always facts that are missing from the KB. This
is due to the way in which KBs are constructed: Some of them are constructed automatically
by extracting facts from Web sources. Such an extraction may fail to extract all information,
and the underlying sources can be incomplete themeselves. Other KBs are fed by a community,
and may be incomplete simply because not all facts have yet been added. Fact prediction is
the task of predicting facts that are true in the real world, but missing in the KB. Although

© Armand Boschin, Nitisha Jain, Gurami Keretchashvili, and Fabian Suchanek;
licensed under Creative Commons License CC-BY 4.0

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza; Article No. 4; pp. 4:1–4:30

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:armand.boschin@telecom-paris.fr
mailto:Nitisha.Jain@hpi.de
mailto:gkeretch@ip-paris.fr
mailto:suchanek@telecom-paris.fr
https://suchanek.name
https://doi.org/10.4230/OASIcs.AIB.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Combining Embeddings and Rules for Fact Prediction

x

y

z

livesIn

married

live
sIn

Rule Mining Embeddings

lives
In(r)

x + r = zx

z

Figure 1 Rule Mining and Embeddings.

this may never make the KB complete, it will at least add facts that were missing. There are
two major approaches to this end: Rule Mining and Knowledge Graph Embeddings. Rule
mining is a symbolic approach. It finds rules such as the following in a KB:

married(x, y) ∧ livesIn(x, z) ⇒ livesIn(y, z)

This rule means that if some person x is married to some person y, and x lives in a city z,
then y also lives in that city. Such rules are usually not true in all instances, and typically
come with a confidence score. Modern systems [30, 34, 40] can find such rules automatically
on KBs of millions of entities. These rules can then be used to predict missing facts: If we
know that some person lives in some city, but we do not know the place of residence of their
spouse, we can use the rule to predict that, with high likelihood, the spouse lives in the same
city.

The other methods to predict missing facts are embedding-based methods. These methods
are a gift of the renaissance of neural networks in the 2010’s. They project the entities
and facts of a KB into a vector space. In its simplest variant, an entity x is mapped to
its embedding, the vector x⃗. A relationship r, likewise, is mapped to a vector r⃗. These
embeddings have the following property: If r⃗ is the vector for the livesIn relationship, then we
can walk from the embedding x⃗ of a person x to the embedding z⃗ of their place of residence
z by computing z⃗ = x⃗ + r⃗. This gives us another way of guessing the place of residence for
some person y: We just find the city whose embedding is closest to y⃗ + r⃗.

Each of these methods has its advantages and disadvantages: While rules are easy to
understand for humans (and embeddings are less intuitively accessible), embeddings can
take into account signals from all facts in which an entity occurs (and not just the ones
mentioned in the rule, which are typically few). Therefore, recent years have seen fruitful
endeavors to combine neural methods with symbolic methods. Both rule mining techniques
and embedding techniques have been surveyed in recent articles [62, 9, 46, 73], among which
is our own previous tutorial article [54]. Hence, in this tutorial, we survey approaches that
combine both techniques.

The article is structured as follows: Section 2 introduces knowledge bases, rule mining
techniques, and embedding techniques, following largely [54]. Section 3 discusses embeddings
in more detail. Section 4 discusses embedding techniques that use rule mining techniques.
Section 5, vice versa, discusses rule mining techniques that use embedding techniques. We
conclude in Section 6.

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:3

2 Preliminaries

2.1 Knowledge Bases
Knowledge Bases. To define a knowledge base [54], we need a set I of entities. An entity is
anything that can be an object of thought [67]. General-purpose KBs are typically concerned
with entities such as places (e.g., Paris, or India), people (such as politicians, scientists,
or actors), organizations (such as companies or associations), or artworks (such as movies,
books, etc.). But knowledge bases can also be concerned with biomedical entities, geological
formations, scientific articles, or any other type of entities.

In what follows, we assume a set R of binary relation names (also called relations,
relationships, or predicates). For example, the relation locatedIn holds between a city and a
country; the relation actedIn holds between an actor and a movie; and the relation president-
Of holds between a person and a country. Finally, we need a set L of literals. These are
strings or numbers. A fact (or an assertion, triple, or statement) is then of the form ⟨s, r, o⟩
with a subject s ∈ I, a relation r ∈ R and an object o ∈ I ∪ L [30]1. An example of a fact is
⟨Paris, locatedIn, France⟩. The inverse of a relation r is a relation r−, so that ⟨x, r, y⟩ holds
if and only if ⟨y, r−, x⟩ holds. For example, the inverse of hasNationality is hasCitizen. A
knowledge base K over the sets I, R, L is then a set of facts over these sets. Whenever K is
clear from the context, we write ⟨s, r, o⟩ to mean ⟨s, r, o⟩ ∈ K.

Taxonomies. Knowledge bases typically also define classes. Intuitively, a class can be
understood as a set of entities, its instances. For example, the class of capital cities contains
the city of Paris, the city of Beijing, etc. Many formalisms use unary predicates to express
class membership, stating, e.g., city(Paris). If every instance of some class y is also an
instance of some class y′, then y is called a subclass of y′. For example, the class capitalCity
is a subclass of the class city, which is itself a subclass of geographicLocation. This gives us a
hierarchy of classes – the taxonomy. Figure 2 shows an example of a taxonomy of classes.

Many KBs express the taxonomy by binary relations. To say that an entity x belongs to
a class y, the KB adds the triple ⟨x, type, y⟩. To say that a class y is a subclass of a class y′,
we add ⟨y, subclassOf, y’⟩. However, a taxonomy has an inherent semantics that is different
from other facts that hold between entities, and therefore, one is usually ill-advised to treat
the link ⟨Paris, type, city⟩ in the same way as ⟨Paris, locatedIn, France⟩.

Axioms. KBs typically come with a set of logical constraints. For example, we can impose
that if x is an instance of a class y, and if y is a subclass of the class y′, then x must also be
an instance of y′:

⟨x, type, y⟩ ∧ ⟨y, subclassOf, y′⟩ ⇒ ⟨x, type, y′⟩

Typical axioms are the following:
Domain and Range Constraints say that the subject (resp. object) of a relation must
belong to a certain class, as in “People are born in places (and not, say, in organizations)”.
Cardinality Constraints say that the number of objects per subject for a certain
relation is restricted, as in “People can have at most one birth place”.
Symmetry, transitivity, and inverse constraints say that a relation is symmetric,
transitive, or the inverse of another relationship.
Disjointness constraints say that two classes cannot have instances in common, e.g.,
places and people.

1 For our purpose, in line with the other works [17, 18, 40], we do not consider blank nodes.

AIB 2022

4:4 Combining Embeddings and Rules for Fact Prediction

Animals

Without BackboneWith Backbone

Arthropoda Annelida PoriferaWarm-blooded Cold-blooded

Birds

Mammals

Reptiles

Fish

Figure 2 Taxonomy Example.

Such axioms exist in packages of different complexity: The Resource Description Framework
Schema RDFS is a system of basic axioms that are concerned mainly with class membership.
The axioms are so basic that they cannot result in contradictions. The Web Ontology
Language OWL is a system of axioms that exists in several flavors – from the simple to
the undecidable [54]. Such packages of axioms, together with the taxonomy, are sometimes
called ontology or schema. Automated reasoners can be used to (1) predict facts that follow
logically from these axioms and (2) determine whether a KB is inconsistent with respect to
these axioms.

Fact Prediction. In what follows, we will assume an ideal knowledge base K∗, which
contains all facts of the real world (see [44] for a discussion of such a KB). One typically
assumes that all facts in some given KB K are also true in the real world, i.e., K ⊆ K∗.
However, the KBs are typically incomplete, i.e., there are facts in the real world that are not
in the KB (i.e., K ⊊ K∗). Predicting a fact f that is true in the real world, but not yet in
the KB, is called the problem of fact prediction.

World Assumptions. Fact prediction is complicated by the fact that the KBs typically
do not store negative information [43]. That is: while a KB may store that Elvis Presley
has sung the song “All Shook Up”, it will not store the fact that he did not sing the song
“The Winner Takes It All”. This raises the question what we should do if the KB does not
contain certain statements (e.g., the KB does not contain the fact that Elvis sang “Always
on my mind”, which is true in the real world). In a database, one would assume that any
fact that does not appear in our data is not true in the real world – an assumption known
as the Closed World Assumption. This assumption, however, is usually false for KBs, as
KBs are highly incomplete and miss many facts from the real world. Hence, it is more
appropriate to make the Open World Assumption, which says that if an assertion is not
in the KB, it may or may not be true in the real world. Thus, in our example, if the
KB does not contain the assertion that Elvis sang “Always on my mind”, we would not be
entitled to conclude that this assertion would be false in the real world (which it is indeed not).

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:5

Negative assertions. A negative assertion is a statement that is known to be false. Such
statements are essential as counter-examples in rule mining and fact prediction, so as to
avoid an over-generalization. For example, Woody Allen married his step-daughter. If we
find 10 other people who married their step-daughter, and no person who is not married to
their step-daughter, we would conclude that people in general marry their step-daughters.
The problem is now that KBs do not contain negative assertions. No KB tells us that Elvis
Presley was not married to his step-daughter. And the Open World Assumption prevents us
from assuming this negative assertion from the facts that are in the KB. This means that we
have, in theory, no way to generate counter-examples for rule mining and fact prediction.
Hence, we could mine the rule “Everybody is married to their step-daughter” without any
obstruction.

Several remedies have been proposed. One is the Partial Completeness Assumption, or
Local Closed World Assumption [17]. It says that if a KB contains the facts ⟨s, r, o1⟩, ...,
⟨s, r, on⟩, then any fact ⟨s, r, o′⟩ with o′ ̸∈ {o1, ..., on} must be false in the real world. The
rationale is that if some contributor made the effort to add the objects o1, ..., on, they would
for sure also have added any remaining object o′. It can be shown that this assumption is
generally true for relations that have few objects, such as hasBirthDate or hasNationality [18].
Indeed, in most KBs, the relations are designed in such a way that the average number of
objects per subject is lower than the average number of subjects per object [18]. For example,
a KB is more likely to contain the relation hasNationality (one person has few nationalities)
rather than hasCitizen (one country has millions of citizens). A relation that has a higher
average number of objects per subject than subjects per object can simply be replaced by its
inverse [18]. With this, the PCA works generally well.

The method can be used as follows to generate a large number of negative examples: take
any fact ⟨s, r, o⟩ from the KB, replace o by a randomly chosen object o′ such that ⟨s, r, o′⟩ is
not in the KB, and assume that ⟨s, r, o′⟩ is a negative assertion. The assertion ⟨s, r, o′⟩ is
called a corrupted variant of ⟨s, r, o⟩. The method is also often applied in the same way to
the subjects of the triples. This, however, creates a problem: Since relations generally have
more subjects per object than vice versa, the PCA is much less plausible in this setting. For
example, while it is, under the PCA, safe to assume that if some person Mary is American,
she is not French, it is not safe to assume there are no more Americans than those in the
KB. This is why the original PCA is applied only to the objects.

2.2 Rule Mining

Rules and Axioms. We have already seen that KBs can come with axioms, such as the
symmetry of a relation. These axioms are usually defined manually, and they allow no
exceptions. In what follows, we will be concerned with rules. These also express constraints
on the data, but different from axioms, they are not imposed on the data, but automatically
mined from the data. As such, they also allow for exceptions. For example, we can find that
marriedTo is “usually” symmetric in the data of a given KB, meaning that for most couples,
the marriedTo fact holds in both directions – although there are some couples for which the
relation holds only in one direction, presumably because of missing data. This is why such
rules are also called soft rules (as opposed to the “hard” axioms). Let us now make this idea
more formal.

AIB 2022

4:6 Combining Embeddings and Rules for Fact Prediction

Atoms and Rules. An atom is an expression of the form ⟨α, r, β⟩, where r is a relation and
α, β are either entities or variables [30] (we write variables in lower case, and entities in
upper case). For example, ⟨x, livesIn, Berlin⟩ is an atom with one variable, x. An atom is
instantiated if at least one of its arguments is an entity. If both arguments are entities, the atom
is grounded and tantamount to a fact. A conjunction of atoms B1, ..., Bn is of the form B1∧...∧
Bn. For example, we can build the conjunction ⟨x, livesIn, Paris⟩∧⟨x, wasBornIn, Berlin⟩,
which, intuitively, designates all people x who were born in Berlin and live in Paris. To make
this intuition more formal, we need the notion of a substitution. A substitution σ is a partial
mapping from variables to entities. Substitutions can be straightforwardly extended to atoms
and conjunctions. For example, the substitution σ = {x → Mary} can be applied to our
conjunction above, and it yields ⟨Mary, livesIn, Paris⟩ ∧ ⟨Mary, wasBornIn, Berlin⟩.

A (Horn) rule is a formula of the form B1 ∧ ... ∧ Bn ⇒ H, where the B1 ∧ ... ∧ Bn is a
conjunction of body atoms, and H is the head atom. An example for a rule is

⟨x, married, y⟩ ∧ ⟨x, livesIn, z⟩ ⇒ ⟨y, livesIn, z⟩

Let us call this rule R∗ in what follows. Two atoms A, A′ are connected if they have common
variables. It is common [17, 18, 40] to impose that all atoms in a rule are transitively
connected and that rules are closed. A rule is closed if every variable in the head appears in
at least one atom in the body. A rule is grounded if all of its atoms are grounded.

Predictions. Given a rule R = B1∧...∧Bn ⇒ H and a substitution σ, we can apply σ to both
the body and the head of R, and obtain an instantiation of R, which we denote by σ(R). In our
example, we could instantiate the above rule R∗ by σ = {x → Mary, y → Bob, z → Paris},
and obtain σ(R∗) as

⟨Mary, married, Bob⟩ ∧ ⟨Mary, livesIn, Paris⟩ ⇒ ⟨Bob, livesIn, Paris⟩

If σ(Bi) ∈ K ∀i ∈ {1, ..., n}, we call σ(H) a prediction of R from K, and we write K∧R |= σ(H).
Suppose, e.g., that we have a KB K = {⟨Paris, locatedIn, France⟩, ⟨Mary, married, Bob⟩,
⟨Mary, livesIn, Paris⟩}. Here, our example rule R∗ can be instantiated as before by
σ = {x → Mary, y → Bob, z → Paris}. Then, all body atoms of the instantiated rule σ(R∗)
appear in K. Hence, the rule predicts the head atom of σ(R∗), which is ⟨Bob, livesIn, Paris⟩.
Hence, we write K ∧ R∗ |= ⟨Bob, livesIn, Paris⟩.

Mining Rules. Inductive Logic Programming (ILP) is the task of finding rules automatic-
ally [54]. Typically, one provides a set of positive examples (i.e., facts that the rules shall
predict), and a set of negative examples (facts that the rules must not predict). In the
context of KBs, ILP faces several challenges: First, KBs usually do not provide negative
examples. We have discussed a method to generate negative examples above, the Partial
Completeness Assumption (Section 2.1). Another challenge is that a strict application of
the definition of ILP to rule mining would find only rules that are true in all instantiations.
However, in real-world KBs, there can be exceptions to rules, e.g., due to faulty or missing
data. Hence, rule mining typically aims for rules that have a high support (the number of
positive examples predicted by the rule), and a high confidence (the proportion of examples
it predicts that are positive). In this way, the methods can find rules even if they do not
apply in all instances, such as “If two people are married, then the children of one of them
are also the children of the other”.

AMIE [17] was one of the first rule mining systems for large KBs under the Open World
Assumption. It starts with the most general rules (such as “everybody is married with
each other”), and refines them until their confidence is high enough (e.g., “if two people are

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:7

parents of the same children, they are most likely married”). This relies on the observation
that the support of a rule decreases monotonically when a rule is made more specific. The
RuDiK system [40] can mine logical rules like AMIE, but brings a number of improvements:
First, RuDiK can also mine negative rules, such as “If two people are siblings, they are not
married”. Second, RuDiK can mine relations between literals, such as “Someone’s birth date
is always before someone’s death date”. Finally, RuDiK removes facts that have been covered
by a rule, so that subsequent rules are forced to predict facts that have not already been
predicted. This allows not just for some optimizations of the mining algorithm, but also to
mine rules that predict more unknown facts correctly.

The AnyBURL system [34] is a bottom-up rule mining system: It starts with path rules
that are specific to one instance, and generalizes them to achieve good support. A particular
advantage of the system is that the user can trade running time for rule quality, i.e., get
better rules by waiting longer.

The DRUM system [49] is a linear formulation of the rule mining problem using one-
hot-encoding vectors for entities and adjacency matrices for relations. As it is linear, the
problem is fully differentiable and can then be solved using gradient descent techniques. This
solving appraoch proved to be very good for predictions involving previously unseen entities
or relations.

Let us now turn to the second family of methods that can be used to predict missing
facts: Knowledge Graph Embeddings.

2.3 Embeddings
Embeddings. An embedding for a group of objects (e.g. words, relations, or entities) is an
injective function that maps each object to a real-valued vector, so that the intrinsic relations
between the objects are maintained [54]. In the case of KBs, we are looking to embed entities
and relations. In particular, given a KB, we would want the entities that are semantically
similar in the KB to be mapped to vectors that are close to each other in the vector space.

The most basic embeddings [7] are designed so that, for a fact ⟨s, r, o⟩, we have s⃗ + r⃗ ≈ o⃗,
where ·⃗ is the embedding vector of the underlying entity or relation. For example, if we know
⟨Elvis, marriedTo, Priscilla⟩, then we would want the vector

−−−→
Elvis +

−−−−−−−−→
marriedTo to be close

to the vector
−−−−−−→
Priscilla. An embedding with these properties has several advantages: First,

the embedding allows us to feed entities and relations into machine learning methods that
work on vectors (e.g., classification algorithms). The vectors are typically low in dimension
(e.g., a few hundred), which makes them particularly suited for such applications. Second,
the embedding provides a natural way of grouping together similar entities, so that given
one entity, we can find its peers by scanning the vector space. In our example, we would
expect Elvis to be close in the vector space to other singers. Finally, the embeddings allow
for link prediction: If we do not know the spouse of Elvis, we can just compute the vector−−−→
Elvis +

−−−−−−−−→
marriedTo and propose that the person that we find there is the spouse. If the

embedding is well designed, that would actually work.

Terminology. In the literature about KB embeddings, the KB is often called a knowledge
graph (KG) instead of a knowledge base. This is because embedding approaches typically
project away literals and facts with literals. Consequently, fact prediction is known as link
prediction in this scenario. Furthermore, the approaches typically do not deal with classes,
taxonomies, or axioms. What remains is then a graph where the nodes are entities, and the
edges are relations. In this scenario, facts are usually called triples, the subject is called the
head of the triple, and the object is called the tail.

AIB 2022

4:8 Combining Embeddings and Rules for Fact Prediction

Link prediction with embeddings. Knowledge graph embeddings are created by trainable
machine-learning models, typically neural networks. We will discuss these methods in detail
in Section 3. All of these models take as input a fact ⟨h, r, t⟩, and output a score of its
likelihood of being true: the higher the score, the more likely the model believes the fact
to be. This score is typically denoted by f(⟨h, r, t⟩) or fr⃗ (⃗h, t⃗). To train such a model,
we need a KB of true facts. We train the model to give a high score to these facts. To
avoid over-generalization, we also have to train the model with counter-examples. These are
typically generated by corrupting the facts from the KB (Section 2.1), i.e., by taking a fact
⟨h, r, t⟩ from the KB and replacing the tail by a random entity t′. The model is then trained
to give the true triples from the input KB a higher score than the corrupted triples.

We can then use the models for link prediction as follows: We take a partially-filled triple
for which we would like to know the head or tail entity, e.g., ⟨Elvis, marriedTo, ?⟩. We try
out all possible tail entities from the KB, and score the resulting triple using the scoring
function. The predicted entity is intuitively the one with the highest resulting score. All
entities can be sorted according to the scores of their triple. Each entity is then associated
to its prediction rank, i.e., to the position that it has in the ranked list of predictions.

In the supervised setting, we often know the true answer (Priscilla), and we can compute
its prediction rank PR⟨Elvis,marriedTo,?⟩(Priscilla). Several metrics are computed from the
prediction ranks of head and tail entities. If T the set of known true facts, the metrics are
the following:

Mean Rank (MR): the average prediction ranks of the correct entities

MR = 1
2 |T |

 ∑
(h,r,t)∈T

PR⟨?,r,t⟩(h) + PR⟨h,r,?⟩(t)

Mean Reciprocal Rank (MRR): the average of the inverse of the prediction ranks

MRR = 1
2 |T |

 ∑
(h,r,t)∈T

1
PR⟨?,r,t⟩(h) + 1

PR⟨h,r,?⟩(t)

Hit at k (Hit@k): proportion of the tests in which the prediction rank is better than k

(typical values for k are 1, 3 and 10)

Hit@k = 1
2 |T |

 ∑
(h,r,t)∈T

1{PR⟨?,r,t⟩(h) ≤ k} + 1{PR⟨h,r,?⟩(t) ≤ k}

Both MRR and Hit@k have values between 0 and 1, higher values indicate better results. In
some cases, multiple entities can be correct answers (e.g. for 1-N relations) and the model
should not be penalized for predicting another true answer that is simply more likely than
the one at hand. Those metrics are usually computed in a filtered setting in which prediction
ranks are computed by removing the other true entities ranked better than the one at hand.

3 Embedding Models

In the last decade, numerous methods for computing knowledge graph embeddings have been
proposed. The methods differ from one another in terms of how they relate the entities and
relations of the KG in the latent space. The existing models can be categorized as geometric,
tensor-based or convolutional. In this section, we introduce and discuss a few popular models
from each category.

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:9

In the following, let us consider a KG with n entities E = {e1, . . . en} and m relations
R = {r1 . . . rm} that is to be embedded in a d-dimensional vector space. R (resp. C) is the
field of real (resp. complex) numbers.

3.1 Geometric models
Geometric models interpret relations as geometric operations in the vector space. The earliest
of these models is TransE, which we now describe in detail.

TransE [7] is a translation-based model, i.e., it uses a geometric distance to measure the
similarity of the entities. Given a fact ⟨h, r, t⟩, its goal is to find vectors h⃗, r⃗, t⃗, so that
h⃗ + r⃗ ≈ t⃗.
One way to do that is to design a neural network [54]. We first create a vocabulary, i.e.,
an ordered list of all entities in the KG. Then we create, for each entity, its one-hot
encoding. This is simply a vector that has as many dimensions as there are entities. Every
element of the vector is set to zero, and only the ith element is set to one, where i is the
position of the entity in the vocabulary. The same is done for the relations. Then we
design a network as follows: The input is the one-hot encoding of the head, the one-hot
encoding of the relation, and the the one-hot encoding of the tail of a given fact from
the KB. That is, if n is the number of entities, and m is the number of relations, the
network has m + 2 × n input neurons. The first hidden layer of the network then maps
each of these vectors to a d-dimensional real vector in Rd. An entity e is mapped to a
vector e⃗, and a relation r is mapped to r⃗. The further layers then reduce these vectors to
a single output that scores the input assertion. More precisely, the network computes, for
an input fact ⟨h, r, t⟩ from the KB, the function fr⃗ (⃗h, t⃗) = −||⃗h + r⃗ − t⃗|| (where || · || is
either the 1-norm or the 2-norm). The network is then trained with facts from the KB to
maximize this score for these facts. It is trained with negative assertions to minimize this
score. This leads to embeddings that verify the simple arithmetic equation h⃗ + r⃗ ≈ t⃗ [54].
The important thing here is that the later hidden layers take their decision based solely
on the output of the first hidden layer. The vectors computed by the first layer thus
contain all the necessary information to assess the truth value of an assertion – and this
is what we want from a good embedding. Thus, we will use the vectors that the first
layer outputs as the embeddings of the input entities.
One limitation of TransE is the inability to model symmetric relationships [65]: if r is
symmetric (i.e. ⟨h, r, t⟩ true implies ⟨t, r, h⟩ to be true as well), then r tends to have
an embedding vector close to 0⃗ because minimizing both ||⃗h + r⃗ − t⃗||2 and ||⃗t + r⃗ − h⃗||2
simultaneously happens if and only if r⃗ = 0⃗. Another problem appears with one-to-
many relations. Consider for example the facts ⟨ElonMusk, founderOf, SpaceX⟩ and
⟨ElonMusk, founderOf, Tesla⟩. TransE would give very similar embeddings to both
SpaceX and Tesla, and thus fail to differentiate between the two companies. TransE also
has problems modeling many-to-one, reflexive, and transitive relations, and to capture
multiple semantics of a relation.

TransH [65] tries to alleviate some limitations of TransE by allowing an entity to have
different representations in the embedding space depending on the relation it is involved
with. Each relation r is represented not only by a vector r⃗, but also by an hyperplane
(i.e. a sub-space of one dimension less than the embedding space). Algebraically an
hyperplane can be defined by a single vector, namely the vector that is orthogonal to it.
Thus, each relation r is associated with a set of two vectors: r⃗ for the relation itself, and
h⃗r for its hyperplane.

AIB 2022

4:10 Combining Embeddings and Rules for Fact Prediction

To compute the score of a triple ⟨h, r, t⟩, the embeddings h⃗, t⃗ of the entities are first
projected onto the hyperplane defined by h⃗r, and they are then connected by the
translation vector r⃗ of the relation. Given a relation r, let pr be the linear orthogonal
projection on the hyperplane defined by h⃗r. Then the loss function of TransH can be
written as f(⟨h, r, t⟩) = fr⃗ (⃗h, t⃗) = −||pr (⃗h) + r⃗ − pr (⃗t)||22.
This is designed to solve the limitations of TransE: a reflexive relation r can have a
translation vector r⃗ close to 0⃗, since all information is contained in h⃗r. For relations with
several objects, likewise, the objects can be embedded in the same place in the hyperplane
only for that specific relation.

TransR [31] extends the idea of sub-space projection of TransH by proposing that the
projection step is now done on any sub-space of a given dimension. Let d be the
dimension of the embedding space and d′ the dimension of the relation-specific sub-spaces.
Algebraically a linear projection from a vector space of dimension d into one of its
sub-spaces of dimension d′ is simply represented by a matrix of dimension d × d′. Each
relation r is then represented by a vector r⃗ and a projection matrix Mr. Thus, TransR is
simply an evolution of TransH that increases the expressiveness of the model by increasing
the number of parameters. Intuitively, this should allow the model to learn a greater
amount of useful information from the known facts it is trained on. CTransR [31] is
an extension of TransR, which operates by clustering diverse head-tail entity pairs into
groups and learning distinct relation vectors for each group.

TransD [25] in turn proposes to keep the idea of projecting on any possible sub-space but
reduces the number of parameters compared to TransD in order to limit the risk of
overfitting. This is done by allowing only the sub-space projections that are defined by a
low-rank matrix: that is a matrix that can be decomposed as a product of vectors.

Several other improvements have also been proposed in the direction of translation embedding
methods, including TransG [68], TransF [16], and KG2E [21]. Other geometric models
perform rotation-like transformations in the vector space instead of pure translations. Its
most prominent examples are RotatE [55] and HAKE [72].
RotatE [55] aims to be particularly suited for relations that are symmetric, anti-symmetric,

inverses of each other, and compositions of each other, which are typical for KGs. For
instance, the relation marriedTo is a symmetric relation: ⟨x, marriedTo, y⟩ implies ⟨y,
marriedTo, x⟩. Further, many relations such as familial relations are compositional. For
example, ⟨x, hasParent, y⟩ and ⟨y, hasParent, z⟩ imply ⟨x, hasGrandParent, z⟩. RotatE
captures these relation patterns by defining each relation as a rotation from the head
entity to the tail entity in the vector space. Specifically entities and relations are now
embedded in Cd and for any relation r, the modulus of each component r⃗i is 1. For a
triple ⟨x, r, y⟩, the model then tries to achieve y⃗ ≈ x⃗ ◦ r⃗, where ◦ is the element-wise
product. Intuitively, a relation r applies a coordinate-wise rotation on the head entity
so as to come close to the tail entity. The score function is then ||x⃗ ◦ r⃗ − y⃗||. A relation
is symmetric if and only if its embedding belongs to {−1, +1}d (i.e. coordinate-wise
rotations of 0 or π radians), r1 and r2 are are symmetric if and only if their embeddings
are complex conjugates, and a relation r3 is the composition of two relations r1 and r2
if and only if r⃗3 = r⃗1 ◦ r⃗2 (i.e., the coordinate-wise rotations of r3 are the successive
rotations of r1 and r2).

HAKE [72] extends the RotatE embeddings by taking into account and preserving the
semantic hierarchies of the entities in the KGs. For example, the entity Paris is part of
France, which is a part of the EU. Such hierarchies between entities are quite common in
most KGs such as Yago and Freebase. To model these relations between entities, HAKE
represents an entity e (and a relation r) in the vector space in two parts: as e⃗m and r⃗m

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:11

in the modulus part and as e⃗p and r⃗p in the phase part. The modulus part is aimed at
differentiating entities at different hierarchies from each other, such as Paris from France,
while the phase part distinguishes the different entities at the same hierarchy level, e.g.
Paris and Lyon. In this manner, HAKE is able to represent the semantic hierarchies
associated with KGs, and outperform other techniques by learning better embeddings.

3.2 Semantic Matching models

Another common category of embedding methods compares the vector of the subject and
the vector of the object directly in order to assess how likely the fact is to be true.
RESCAL [38] is the simplest model in this category. Entities are represented as vectors and

relations become bilinear functions (simply represented as square matrices). A triple
⟨h, r, t⟩ is then scored by the application of the relation-specific bilinear function to the
entity embeddings: f(⟨h, r, t⟩) = h⃗t · Mr · t⃗, where h⃗ (resp. t⃗) is the embedding of h

(resp. t) and Mr ∈ Rd×d is the representing matrix of r. Intuitively, this bi-linear scoring
function can be interpreted as some sort of scalar product between the entities in some
relation-specific distortion of the embedding space. This is simply an intuition as no
sufficient constraints are imposed on the relation matrices to make them scalar products.
Precisely, they are not forced to be symmetric nor positive definite.

DistMult [69] is a variation of the RESCAL models where the relation matrices are all
forced to be diagonal. This simplifies the computations, and reduces the parameter
space. As a drawback, DistMult gives the same score for the triples ⟨h, r, t⟩ and ⟨t, r, h⟩.
Thus, it is unable to model asymmetric relations such as sonOf, actedIn etc. Despite
these limitations, DistMult has been recently shown to perform as well as many recently
proposed models, presumably due to its simplicity and scalability [48].

ComplEx [58] improves upon the DistMult model by using the same diagonal constraint,
but with complex-valued embedding vectors. Entities and relations are then simply
represented as vectors in Cd and the Hermitian product is used instead of the bi-linear
product in the scoring function. This allows the approach to take into account asymmetric
relations in the KGs, as in the triple ⟨Paris, capitalOf, France⟩ (where France is not the
capital of Paris). The scoring function is defined as f(⟨h, r, t⟩) = Re(⃗h · MR · ¯⃗t) where
Re(c) is the real part of c ∈ C and Mr is the diagonal matrix with r⃗ on its diagonal. The
fact that the Hermitian product is not commutative solves the problem of representing
asymmetric relations and switching to complex vector space doubles the number of
parameters thus increasing the expressiveness of the model.

SimplE [27] proposes to extend one of the most generic multiplicative methods: Canonical
Polyadic (CP) decomposition [22]. This method is used for decomposing tensors into a
sum of products. It can be applied to KG embeddings because a KG with n entities and
m relations is simply represented as a 3-dimensional adjacency tensor T ∈ {0, 1}n×n×m:
T [i, j, k] = 1 if ⟨ei, rk, ej⟩ is true and 0 else. As explained in [27], CP decomposition
represents entities e with two vectors (h⃗e, t⃗e) ∈ (Rd)2 and relations r with a vector
r⃗ ∈ Rd where d is the dimension of the embedding. These vectors are learned in
order to be able to reconstruct the tensor T by estimating T̂ [i, j, k] = ⟨h⃗ei

, t⃗ej
, r⃗k⟩ =∑

ℓ=1..d h⃗ei
[l] × t⃗ej

[l] × r⃗k[l]. This estimation is used in the case of KG embeddings as a
scoring function of triples. SimplE just proposes to represent relations r with two vectors
r⃗ and ⃗r−1, the scoring function being now f(ei, r, ej) = 1

2 (⟨h⃗ei
, t⃗ej

, r⃗⟩ + ⟨h⃗ej
, t⃗ei

, ⃗r−1⟩).
The authors show that their model is fully expressive, meaning that if given enough
embedding dimensions it can exactly represent any KG. It is then argued that simple
logical constraints can be implemented in the model by applying constraints on the
relation embeddings. We will later see one such application in Section 4.3.

AIB 2022

4:12 Combining Embeddings and Rules for Fact Prediction

3.3 Deep Models
Deeper neural architectures have also been introduced for KB embeddings, with the hope that
hidden layers can capture more complex interaction patterns between entities and relations
(and then estimate more complex scoring functions). In such models, the first part of the
network (which, in shallow networks, just maps facts to their embeddings or their projections)
now adds additional layers (possibly numerous) that receive as inputs the embeddings, and
produce as outputs some extracted features. The second part of the network now computes
the scoring function from the features extracted by the first part of the network, and not
directly from the embedding (or its projection) as in shallow models. The scoring function
also becomes a parameter of the model (to be trained) and is not defined a priori anymore.
This often entails that we lose the interpretability of the scoring function [54]. There are
many deep neural network based models that have been proposed over the years, early
examples of such models are SME, NTN and MLP [6, 52, 13].

NTN [52] was introduced by Socher et al. as a generalization of the RESCAL model. It
employs a combination of linear transformations and nonlinear activation functions to
obtain head and tail embeddings. As such, while this is a more expressive model, it is also
quite complex with a large number of parameters that are harder to train. Better and
lightweight architectures have been since proposed, such as MLP, where the paramaters
are shared among all the relations.

ConvE and ConvKB [11, 10] are popular examples of models that are based on convolutional
neural networks (CNN). These can learn complex nonlinear features of the entities and
relations with fewer parameters by using 2D convolutions over embeddings. ConvE has
been shown to be particularly effective for complex graph with nodes having a high
number of incoming edges. The model introduced the 1-N scoring scheme where for a
given triple ⟨h, r, t⟩ where t is to be predicted, the matching is performed with all the
tail entities at the same time, leading to speedier training. ConvE has proven to be
a competitive embedding model and a popular baseline for more recent deep learning
approaches.

Graph Convolutional Networks (GCNs) have recently gained popularity for performing link
prediction in knowledge graphs in tandem with standard embedding techniques. GCNs
are a form of message passing multi-layer neural networks, first introduced by [28] for
semi-supervised node classification on graph structured datasets. One layer of GCN
encodes information about the immediate neighbours of a node in feature vector, and k

layers stacked on top of each other can encode the information of the neighbourhood k

hops away. GCNs can overcome the limitations of knowledge graph embedding models
in terms of neglecting the attributes of the entities and ignoring the graph structure by
encoding the entities based on their neighbours in the graph. Several extensions of GCNs
have been suggested for multi-relational knowledge graphs.

Relational GCNs (R-GCNs) [50] are GCNs for graphs with a large number of relations, which
makes them particularly suitable for knowledge graphs. Link prediction is essentially an
auto-encoder framework: An encoder creates the feature representations for the entities
from its neighbours (these features are generated from relation-specific transformations
that are dependent on the type and direction of the relations). A decoder (in this case,
DistMult factorization) is a scoring function to predict the labelled edges. R-GCNs show
improvements compared to DistMult, HolE and ComplEx for the link prediction task.
While R-GCN extended the GCN models on knowledge graphs by including the different
types of relations during the generation of entity representations, they do not represent
relations themselves.

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:13

VR-GCN [70] is an extension of the R-GCN model that generates both entity and relation
embeddings explicitly. It ensures relation representation and different entity roles (head or
tail in different triples), and it conforms to the translation representation from translational
embeddings where h⃗ + r⃗ ≈ t⃗. While the primary goal of this technique is to enable graph
alignment, the performance of VR-GCN is also discussed in terms of the link prediction
task, with VR-GCN acting as the encoder and DistMult as the decoder for scoring the
triples.

SACN [51] leverages a variant of the existing knowledge graph embeddings ConvE and TransE
as decoder along with a variant of GCN (weighted GCN) as encoder. The weighted
GCN encoder learns representations for the entities in the graph by utilizing the graph
structure, node attributes and the associated relations while weighing different relations
differently and learning these weights during the training. The entity representations are
given to the decoder, which is a combination of ConvE and TransE (based on ConvE but
having the translational property of TransE model) that performs better than the ConvE
model. The encoder and decoder are trained jointly to learn the entity representations
and score triples to verify and improve the representations.

CompGCN [59] generalizes previous GCN methods by jointly learning the representation
of the nodes and the relations in the multi-relational KGs while leveraging composition
functions from embedding approaches. CompGCN is able to scale well with the increasing
number of relations and outperforms several previous models including TransE, DistMult,
ComplEx, R-GCN and SACN.

3.4 Evaluation of Embedding Methods

3.4.1 Evaluation Protocol

Evaluation. Rule methods are typically evaluated under the open world assumption, i.e.,
any fact that is predicted is manually evaluated to see whether it holds in the real world
or not. Thus, even a fact that does not appear in the KB can be counted as correct. This
evaluation is obviously very labor-intensive, but it targets what rule mining is interested
in: the prediction of yet-unknown facts. KB embedding models, in contrast, are typically
evaluated under the closed world assumption: Given a KB, one removes a certain portion of
it to obtain a training KB. One then trains the embeddings on this reduced KB, and uses the
embeddings to predict facts. If these facts appear in the original KB, they count as correct,
otherwise they count as incorrect.

Datasets. Three very common KBs for evaluating embedding approaches are FB15k [7],
WN18 [6] and Yago3-10 [11]. FB15k and WN18 were both proposed by Bordes et al.
respectively in 2013 and 2014. FB15k is an extraction from Freebase where entities were
selected based on the number of citations in the original KB. WN18 is a subset of Wordnet
in which entities are synsets, that is semantic senses of words (selected on their popularity in
the KB) and predicates are lexical relations between those senses. Yago3-10 was proposed by
Dettmers et al. in 2018 as a subset of Yago3 [33] in which most of the facts describe people
(e.g., by citizenship, gender, and profession). The three KBs have been initially randomly
split into training, validation and test subsets and those splits always stay the same. Table 1
shows some statistics about these datasets.

AIB 2022

4:14 Combining Embeddings and Rules for Fact Prediction

Table 1 Details on the various KBs used for embedding evaluation.

Dataset Number
of entities

Number
of relations

Number of
training facts

Number of
evaluation facts

Number of
test facts

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
Yago3-10 123,182 37 1,079,040 5,000 5,000

3.4.2 Shortcomings of Benchmarks
While embedding models have gained popularity for the link prediction task and obtained
state-of-the-art results, several studies have recently taken a critical look at the performance
and evaluation aspects of these models. The benchmark datasets on which the embedding
models are trained have also been scrutinized.

Toutanova et al. [57] were the first to find data leakage issues in the FB15k dataset. More
precisely, the authors noted that, for certain relations r, the inverse relation r− was also
present in the data. This makes the prediction of a fact ⟨x, r, y⟩ trivial if the fact ⟨y, r−, x⟩
is already there. As a remedy, the authors constructed the dataset FB15k-237 by removing
the inverse triples and keeping only one relation out of the reverse relations. Dettmers et
al. [11] similarly found issues with the WN18 dataset and created the WN18RR dataset.
Table 1 shows the statistics about these datasets. With the introduction of these new
datasets and their adoption for the evaluation of newer embedding models, it could be
ensured that the models are not just learning trivial entailment, but learning to correctly
predict non-trivial facts that require actual inference. However, most papers still showed
the results for the evaluation of new models on both the old and new version of the
datasets.

Akrami et al. [2] conducted a further detailed study questioning the performance of embed-
ding models in the presence of data leakage and data redundancy. The study found a
sizeable percentage of inverse, duplicate, and Cartesian product relations in the popular
datasets FB15k, WNRR and Yago3-10. Duplicate relations are relations with different
names that share the same facts (e.g., hasCitizenship and hasNationality). Cartesian
product relations are relations that hold between all instances of a class (e.g., sameSpe-
ciesAs). Such relations can be predicted trivially. Hence, the authors argued, the
performance of these models would be significantly worse for link prediction on actual
unseen data in realistic settings. Their experiments analysed various popular embeddings
models including TransE, TransH, TransR, TransD, DistMult, ComplEx, ConvE, Tucker,
and RotatE and showed substantial drops in performance with different datasets after
removing the unrealistic triples, so much so that simple rule based techniques could
achieve better accuracy than complex embedding techniques. The authors therefore
strongly advocated the need to re-evaluate existing embedding approaches to find an
effective solution for the link prediction task.

Rossi et al. [47] take a critical look at the properties of the entities in the benchmark datasets
that are used to evaluate link prediction performance of embedding models. They focused
on the Freebase and Wordnet datasets and performed a detailed experimental analysis of
the features of these datasets and their limiting effect on the performance of embedding
models. For instance, the authors showed that embedding models perform artificially

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:15

better for the most frequent entities in the dataset. In FB15k, the entity United States
appears in a lot of triples, and therefore, the TransE and DistMult models show better
scores while predicting this entity as the missing entity. If the most frequent entities
were removed from these datasets, the model performance (counter-intuitively) improved,
indicating the over-fitting of the models on the most representative entities. Therefore,
the authors advocated that better benchmarking practices and metrics are needed to
determine the capability and fairness of the models.

Pujara et al. [42] performed an interesting study on the effect of sparsity and unreliable data
on the performance of embeddings. Existing curated KGs like Wordnet and Freebase were
modified in different experiments to introduce sparsity (in terms of relations or entities)
and unreliable or corrupted triples, so that they resemble real-world KGs derived from text
(such as NELL [8]). The authors found that performance is closely linked with sparsity,
i.e. embeddings work well for relations and entities that have a dense representation and
sparsity adversely affects their performance. Experiments showed that unreliable triples
also degraded the performance. However, the authors made an interesting conclusion,
namely that corrupted triples still improved embeddings marginally, therefore it is better
to have a large noisy KG rather than a small set of very high quality triples.

These studies helped in bringing into focus the flaws that are inherent in all the popular
benchmark datasets due to which global metrics for the evaluation of embedding models are
proved to be insufficient and misleading. Thus, there is a need for careful and fine-grained
evaluation of the performance of embedding models for their application in realistic use cases.

3.4.3 Shortcomings of the protocol
Several works have studied the shortcomings of the evaluation protocol for KB embeddings.
Pezeshkpour et al. [41] focused on the evaluation metrics and pointed out the need and

importance of calibration of the embedding models before they can be deployed in
real-world scenarios. For example, if the model says with 0.5 confidence that a triple
is true, then the actual probability of the triples with this confidence should also be
0.5. In particular, they found that the model calibration as well as the ranking metrics
were highly susceptible to the choice of negative sampling during training, with random
replacement of subject or object entity (Random-N) leading to worst results. In order to
improve the evaluation techniques, the authors proposed the CarefulN method to select
negative samples. Here, the highest scoring negative sample having an entity type which
is different from the target entity type is selected as a negative sample. E.g. given a triple
⟨Barack Obama, presidentOf, USA⟩, if USA is the target entity to be predicted, and the
ranked list of predicted entities is (USA, Hawaii, United Nations, Michelle Obama, . . .),
then we choose ⟨Barack Obama, presidentOf, Michelle Obama⟩ as the negative sample
since the type for Michelle Obama is different from USA. This technique explicitly ensures
that the negative sample being generated is a true negative. Following this technique,
they derived a new benchmark dataset Yago3-TC for evaluating KG completion that
consists of both true and false facts for facilitating the correct measurement of triple
classification accuracy.

Sun et al. [56] looked into the very specific issue of the recent neural-networks based em-
bedding models showing inconsistent performance gains across different datasets such
as FB15k-237 and WNRR18. They investigated in detail the models ConvKB [10] and
CapsE [61] and found an unusual score distribution to be the reason for this discrepancy.
For instance, many negatively sampled triples were given the same score as the correct

AIB 2022

4:16 Combining Embeddings and Rules for Fact Prediction

triple. To break ties for the triples with the same score, they proposed a RANDOM
evaluation protocol, i.e. if multiple triples have the same score, one of them is chosen
randomly. Experiments demonstrated that recent deep models such as ConvKB, and
CapsE were indeed affected by different evaluation protocols (unlike other models like
ConvE and RotatE) and this could be detected with the proposed RANDOM protocol.

Kadlec et al. [26] were among the first to question the performance gains achieved by the
newly proposed model architectures. The authors were able to perform suitable fine
tuning the hyper-parameters for DistMult, one of the first embedding models proposed,
and outperform several new models. This raised concerns on the performance gains by the
newer models, advocating for a closer inspection of the training practices and objectives.

Ruffinelli et al. [48] re-implemented several existing models and performed extensive analysis
of the performance of these models to compare them on a common ground. Going
beyond previous works such as [36] (which studied the loss functions) and [29] (which
looked into the negative sampling strategies), this paper performed a comprehensive and
empirical evaluation of the effect of different training strategies and parameters such as
the regularizer, optimizer and loss functions on a number of new and old embedding
models. Their analysis indicated that the training parameters play a major role in
the embedding performance. With a systematic fine tuning of these parameters, even
the older model architectures such as RESCAL can match or outperform the recently
introduced improved models. This work makes a strong point of the need for re-assessing
the individual benefits claimed by recent and newer embedding models in light of the
older models. The authors caution that the performance gain reported by newer models
could be mitigated by merely fine tuning of the training strategies and therefore, this
warrants close inspection.

Jain et al. [23] raised questions regarding the very semantic representation learned by the
embeddings models in the first place. They performed classification and clustering
experiments on the embeddings in order to analyse their semantic capability. The authors
challenge the common notion that entities having similar meaning (i.e. belonging to
the same class or type) such as politicians, actors etc. would be represented by similar
vectors. They constructed a dataset with entities belonging to different levels of the
taxonomy for Yago3-10 and DBpedia datasets, such as from person to artist to painter.
Detailed experiments demonstrated that both clustering and classification showed poor
results for entities having fine-grained classes. This means that embeddings are unable
to capture the semantics of entities beyond the top level classes (person, organization,
places in Yago). These surprising results indicated that though embeddings might show
good performance on the link prediction task, their utility for other semantic tasks such
as reasoning etc. should be carefully examined.

Wang et al. [64] inspected the evaluation protocol of the embedding techniques for the
KB completion task. They argue that the Entity Ranking (ER) protocol, where the
missing head or tail entity is predicted for a triple, is more suitable for evaluating a
question answering task, but not for the KB completion task. This is due to the fact
that the context of the missing information in terms of a head or tail entity would not be
available when attempting to find new missing triples of the form ⟨?, r, ?⟩. With the ER
protocol, the models may not be penalized for ranking certain incorrect triples higher
since they are not encountered at all. The paper instead proposes a Pairwise Ranking
(PR) protocol where all possible entity pairs are considered and ranked with respect to a
particular relation. Extensive experiments show that popular embedding models provide
worse performance with PR protocol than with the ER protocol, even on seemingly easy
datasets.

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:17

These studies have emphasized the need for better evaluation protocols and a critical look at
the training strategies of the embedding models for the task of KB completion in realistic
settings.

4 Embedding Methods with Logical Components

4.1 Rationale
Rule mining methods and embedding methods are complementary for the purpose of link
prediction:

Rule mining produces patterns that can be understood by humans. Thus, their predictions
can be explained and justified.
Rule mining can, in principle, work together with the schema of the KB, axioms, and
other types of logical constraints.
Rule mining methods can deal with literals and numerical values, while embedding
methods typically project these away. Rule mining can find, e.g., that the death date is
always later than the birth date.
Rule mining is typically evaluated under the open world assumption: it is explicitly
designed to predict facts that are not yet in the KB. Embedding methods, in turn, are
typically tuned to predict what is already there.
On the flip-side, rule mining methods typically predict based on a single rule; it is harder
to predict facts with several rules that reinforce or contradict each other.
Rule mining methods do not have a holistic view on an entity, with all its relations; they
are restricted to the relations that appear in the rules.
Rule mining methods often generate rules with a low confidence, i.e., with a high rate of
false predictions.

For these reasons, several works have taken to combine symbolic and embedding methods.
Here, the symbolic component does not necessarily come from Rule Mining, but can also
come from the logical axioms of the ontology of the input KB. The existing approaches fall
into three classes:

Adding simple axioms. Some approaches constrain the embeddings by simple ax-
ioms, which concern inverse, symmetric, or equivalent relations. We discuss them in
Sections 4.2 [12], 4.3 [15], and 4.4 [35].
Complex constraints. Other approaches support more general and complex logical
constraints on the embeddings. We discuss them in Section 4.5 [23], 4.6 [14], and 4.7 [63].
Joint learning. Finally, a number of approaches jointly embeddings and confidences for
rules. We discuss them in Section 4.8 [19] and 4.9 [20, 71].

4.2 Improving Knowledge Graph Embeddings Using Simple Constraints
A first simple combination of logical rules and embeddings is presented by Ding et al. [12].
The authors focus on relation entailments, i.e., rules of the form ⟨x, r, y⟩ ⇒ ⟨x, r′, y⟩ that can
also be denoted as r ⇒ r′. For example, if two people are married, then they also know each
other: marriedTo ⇒ knows. Such entailments can either be axioms from the ontology, or
they can be soft rules, i.e., rules with a confidence score that do not hold in all instantiations.
For example, a soft rule can be: If a person is born in a country, then the person probably
has the citizenship of that country. This is very often the case though not always. Such soft
rules can be mined by a rule mining system, and from now on, a set of such entailments is
assumed to be available.

AIB 2022

4:18 Combining Embeddings and Rules for Fact Prediction

If it is known that a relation r entails a relation r′ and that ⟨x, r, y⟩ holds for some entities
x, y, then ⟨x, r′, y⟩ holds. Thus, the score that an embedding model gives to the fact ⟨x, r, y⟩
should not be larger than the score it gives to ⟨x, r′, y⟩:

f(⟨x, r, y⟩) ≤ f(⟨x, r′, y⟩) (1)

The authors enforce this condition on the ComplEx model (see Section 3) by imposing that
for a given entity x, all the real parts of the components of the embedding vector x⃗ ∈ Cd

have to be non-negative, and all the imaginary parts have to be smaller than or equal to one.
Given an entity x, d the embedding dimension, the constraints are formalized in Equation 2
where Re(·) (resp. Im(·)) returns the real (resp. imaginary) part of a complex number and
x⃗i is the ith component of the vector x⃗.

∀i ∈ {1, . . . , d} : Re(x⃗i) ≥ 0 ∧ Im(x⃗i) ≤ 1 (2)

This constraint can be intuitively justified by seeing each component of x⃗ as a feature, whose
value is zero if the feature does not apply to the entity x, and greater than 0 if the feature
applies to x, but never below zero. The constraint on the imaginary component serves as a
kind of normalization. With this non-negativity constraint, the desideratum of Equation 1
can be achieved by requiring:

∀i ∈ {1, . . . , d} : Re(r⃗i) ≤ Re(r⃗′
i) ∧ Im(r⃗i) = Im(r⃗′

i) (3)

If the entailment does not hold strictly, but only with a certain confidence, the condition can
be relaxed by introducing a real-valued confidence level λ and vector slack variables α⃗, β⃗,
which turn Equation 3 into

∀i ∈ {1, . . . , d} : λ × (Re(r⃗i) − Re(r⃗′
i)) ≤ α⃗i, λ × (Im(r⃗i) − Im(r⃗′

i))2 ≤ β⃗i (4)

The larger the confidence level λ, and the smaller the slack variables α⃗ and β⃗, the more
Equation 4 resembles the hard constraint of Equation 3.

When these constraints are imposed on the ComplEx model, then the model is forced to
give a high score to facts that are logically entailed by other facts to which it gave a high
score. The authors then show that this improves the performance of link prediction over the
original model.

4.3 Improved Knowledge Graph Embedding Using Background
Taxonomic Information

Fatemi et al [15] introduce another way to improve knowledge graph embeddings, which uses
the taxonomy of the KB. For example, a knowledge base might contain the information that
Emmanuel Macron is a president, but it does not contain information that he is a mammal,
because it is implied by taxonomical knowledge. With this knowledge, if we know that
mammals are warm-blooded, we can conclude that Emmanuel Macron is warm-blooded as
well, without having explicit facts about this relation in the KG. Going one step further than
relation entailment, this work leverages the subsumption property of the relations as well as
the classes in KG. For example, the relation presidentOf is a sub-property of managerOf,
which in turn is a sub-property of employedBy. Formally, if a relation r1 is a sub-property of
a relation r2, then ∀x, y : ⟨x, r1, y⟩ ⇒ ⟨x, r2, y⟩. To represent class subsumption, the authors
model the entities as the characteristic functions of the class they belong to. This means that
if entity e is in class C i.e. ⟨e, type, C⟩, then the characteristic function between e and C is

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:19

true – written as ⟨e, C, true⟩. Hence, class subsumption can be expressed as a special case
of relation subsumption. For instance, if president is subclass of mammal in the taxonomy,
then ⟨EmmanuelMacron, president, true⟩ ⇒ ⟨EmmanuelMacron, mammal, true⟩.

The proposed framework is a modification of the SimplE [27] embedding model (see
Section 3.2), which makes use of these axioms. SimplE considers two embeddings for each
relation: one embedding r+ for relation itself and another r− for its inverse relation. Similarly,
there are two embeddings for each entity: one as a head entity e+, and another as the tail
entity e−. These embeddings are concatenated to obtain the final embedding for a relation
or entity. The proposed modification of this model is restricting the entity embeddings to be
element-wise non-negative.

In order to enforce the axiom that a relation r is a sub-relation of a relation s (∀x, y :
⟨x, r, y⟩ ⇒ ⟨x, s, y⟩), the model adds an equality constraint as r⃗ = s⃗ − δ⃗r where δ⃗r is a
non-negative vector, which expresses how r is different from s. This vector is learned during
training. With this, the function µ (that maps embeddings to the probability of a triple)
obeys the constraint µ⟨x, s, y⟩ ≥ µ⟨x, r, y⟩.

Thus, the resulting SimpleE+ model is able to enforce subsumption properties for entities
and relations and therefore, incorporate taxonomic knowledge in the embeddings to learn
more interpretable representation for words [37]. The experimental evaluation shows that
the proposed model is able to outperform traditional SimplE for the KG completion task
and also has a faster convergence rate when taxonomic information is available.

4.4 Regularizing Knowledge Graph Embeddings via Equivalence and
Inversion Axioms

We have so far seen approaches that concentrate on subproperty axioms. We shall now look
into two other types of axioms [35]: Given two relations r1 and r2, an equivalence axiom
r1 ≡ r2 means that r1 and r2 are semantically equivalent though distinct in the KB (e.g.,
part of and component of). An inverse axiom r2 ≡ r̄2 means that r1 is the inverse predicate
of r2 (e.g., part of and has part). The approach assumes that these axioms are defined in
the ontology of the input KB.

Given the two sets of equivalence and inversion axioms, constraints are enforced in the
training of the models. Let r1 ≡ r2 be an equivalence (resp. inversion) axiom. This means
that relations r1 and r2 are equivalent (resp. inverse) and then the scoring function f of
an embedding model should verify f(⟨h, r, t⟩) = f(⟨h, r2, t⟩) (resp. f(⟨h, r, t⟩) = f(⟨t, r2, h⟩))
given any entities h and t.

In the case of equivalence, this is simply implemented by forcing the embeddings of
r1 and r2 to be the identical. In the case of an inversion axiom, the constraint has to be
specified for each model in the form of a model-dependent function Φ such that the constraint
r⃗2 = Φ(r⃗1) results in f(⟨h, r1, t⟩) = f(⟨t, r2, h⟩). For example, in the case of TransE [7], using
Φ : r⃗2 7→ −r⃗1, one gets f(⟨h, r1, t⟩) = ||⃗h + r⃗1 − t⃗|| = || − h⃗ − r⃗1 + t⃗|| (by homogeneity of the
norm) and then f(⟨h, r1, t⟩) = ||⃗t + Φ(r⃗1) − h⃗|| = f(⟨t, r2, h⟩). Note that Φ needs to be an
involution, i.e., ∀r, Φ(Φ(r)) = r.

These constraints are called hard constraints because they entirely determine some
embeddings. Another possibility is to use soft constraints in order to enforce axioms that
are not entirely true. For example married with and partner of are not entirely semantic
equivalents but their embeddings are similar to one another. Intuitively the objective of
soft constraints is to nudge the model to adopt some desired properties rather than enforce
hard-coded requirements. This is done by adding two weighted terms to the usual training
loss: L̂ = L + λ

[∑
r1≡r2

||r⃗1 − r⃗2||22 +
∑

r1≡r̄2
||r⃗2 − Φ(r⃗1)||22

]
where λ is an hyper-parameter

that needs to be determined during training.

AIB 2022

4:20 Combining Embeddings and Rules for Fact Prediction

Standard Negative
SamplingKG

Positive
Samples

Negative
Samples

Embedding Training Fact Prediction Predicted
Triples

Consistency
Checking

Ontology

Inconsistent
Predicted

Triples
Generalization

1 2 3

45

Figure 3 ReasonKGE Framework.

4.5 Improving Knowledge Graph Embeddings with Ontological
Reasoning

Until now, we have concentrated mainly on very simple types of axioms to improve embeddings.
ReasonKGE [24] is a method that can use complex constraints as well. The idea is to use
symbolic reasoning to find predictions by the model that are logically inconsistent, and to
feed these as negative samples into a retraining step. Traditionally, embedding methods
generate negative triples by randomly replacing the head entity or tail entity in a triple
from the KB (Section 2). This method, however, has two problems: First, as we have
already discussed, it does not work as well for the head entities (Section 2.1). Furthermore,
traditional methods do not necessarily create negative statements that violate domain and
range constraints. For example, a triple such as ⟨Elvis, hasNationality, Priscilla⟩ cannot be
true since hasNationality requires a country as object. If such triples are not generated as
negative examples, the model may produce them as predictions. Therefore, ReasonKGE sets
out to generate negative examples by axioms – inspired by the NELL system [8], which also
uses axioms for the generation of examples.

The framework of the proposed method is shown in Figure 3. The inputs of the framework
are the KG and its ontology, whereas the outputs are negative samples, which can then be
used for training the model in the next iteration. The first iteration simply generates the
baseline model with a default sampling method. Here, traditional sampling methods are
used to generate the negative facts, and the model is trained based on positive and negative
facts to obtain the predictions. The predicted triples are checked for inconsistencies with
respect to the underlying ontology with the help of a reasoner. The inconsistent triples
are then generalized to other semantically similar triples which would also cause the same
inconsistencies. Lastly, all the generated negative samples are fed back to the model for
the next iteration of training. With each round of training, the model learns to identify
inconsistencies and therefore make more consistent predictions.

The consistency checking procedure (step 4) is one of the main steps, that detects
which predictions made by embedding model are inconsistent with the original KG (G) and
ontology O. For computational purposes, this check is done only on the subset of relevant
facts. The relevant set is defined as follows:

Relv(α, G) = {α} ∪ {β ∈ G|Ent(β) ∩ Ent(α) ̸= ∅} (5)

Here, α is the predicted triple and β are triples in the KG. For example, consider α =
⟨Samsung, locatedIn, Emmanuel Macron⟩. For this prediction the relevant set could consist
of the following triples:

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:21

Relv(α, G) = {⟨Emmanuel Macon, livesIn, France⟩,
⟨Emmanuel Macron, spouse, Brigitte Macron⟩,
⟨Emmanuel Macron, type, person⟩,
⟨Samsung, type, company⟩}

It is sufficient to perform consistency checking on Relv(α, G) ∪ O, instead of α ∪ G ∪ O. In
our example, a reasoner would flag this prediction as inconsistent, because the ontology tells
us that locatedIn requires a location, and hence ⟨Samsung, locatedIn, Emmanuel Macron⟩
implies that the type of Emmanuel Macron is location. That contradicts the fact ⟨Emmanuel
Macron, type, person⟩, together with the axiom that states that people and locations are
disjoint. Thus, this triple can serve as a negative sample.

Further, in Step 5, the negative samples obtained via consistency checking are fed to
a generalization module to obtain multiple similar inconsistent facts that have a similar
structure within KG. This is beneficial in 2 ways: firstly, by generating several negative
samples that cause the same inconsistency, the model would be able to learn the inconsistency
pattern and thus, the prediction of similar incorrect triples in next training iterations would
be avoided. Secondly, it enables us to obtain sufficient number of negative samples for a given
triple during the training of the model. The generalization of inconsistent predictions is done
in the following way: in an inconsistent predicted fact ⟨h, r, t⟩, t can be replaced with another
entity k that has similar triples. For example, if α = ⟨Samsung, locatedIn, Emmanuel Macron⟩
is a predicted inconsistent triple, then we can take α = ⟨Samsung, locatedIn, Joe Biden⟩ as
another negative example if Joe Biden has the same neighbour triples as Emmanuel Macron,
i.e. ⟨Joe Biden, type, person⟩.

The authors show experimentally that ReasonKGE achieved better results on the link
prediction task as compared to traditional methods (TransE, ComplEx). Experiments
conducted on the Yago3-10 dataset were particularly significant, as the model achieved
more than 10% improvement for all the measures as compared to TransE. Additionally,
ReasonKGE reduced the ratio of inconsistent predictions over the test set when compared
to other models that employ static or random sampling techniques. A limitation of this
method is the use of DL-Lite [3] ontologies, due to which, theoretically, not all possible
similar negative samples will be obtained based on a given inconsistent prediction in the
generalization step.

4.6 Injecting Background Knowledge into Embedding Models for
Predictive Tasks on Knowledge Graphs

Similar to ReasonKGE, this paper proposes to improve KG embeddings by injecting available
background knowledge in the form of ontological axioms [14]. The authors propose TransOWL
and TransROWL models, as improved versions of the traditional embedding methods TransE
and TransR respectively.

The injection of background knowledge during the training phase involves two main
components - reasoning to add negative samples and Background Knowledge (BK) injection
to add constraints on the scoring function.

During reasoning, negative samples are generated by leveraging the ontological properties
such as domain, range, disjointWith, functionalProperty with the help of the Apache Jena
framework. For example, if a particular entity type (or concept in ontology terminology),
let’s say location is disjoint with another type e.g. person, then negative samples are
generated by replacing the person entity in a triple with all location entities present in the

AIB 2022

4:22 Combining Embeddings and Rules for Fact Prediction

KG. Thus, for a triple ⟨Samsung, locatedIn, South Korea⟩, a list of negative samples can
be generated by replacing South Korea with Joe Biden, Barack Obama, John Smith

and so on.
During BK injection, ontological properties such as equivalentClass, equivalentProp-
erty, inverseOf and subClassOf are applied for the definition of additional constraints
on the scoring function such that resulting embedding vectors can reflect these prop-
erties. New triples corresponding to these properties are generated and added to the
training set of the model. For example, for the equivalentClass property, if class A
is equivalent to class B, then for a triple ⟨entity1, type, A⟩, it is possible to generate
another triple ⟨entity1, type, B⟩ as well. Similarly this is performed for other properties as
well and a considerable number of additional triples is generated before training the model.

The basic loss function for TransE is defined as∑
⟨h,r,t⟩∈∆,⟨h′,r,t′⟩∈∆′

[γ + fr(t, h) − fr(t′, h′)] (6)

here γ ≥ 0 is the hyperparameter margin. For TransOWL, this loss function is more complex
due to the additional constraints from the axioms. For example, the addition of the the
inverseOf axiom would add a term to the loss function as∑

⟨t,s,h⟩∈∆,⟨t′,s,h′⟩∈∆′

[γ + fs(t, h) − fq(t′, h′)] (7)

where f is the scoring function, ∆ refers to the set of additional triples generated by a reasoner
and s is the inverse relation of r. Similarly, the constraints are added in the loss function for
the other axioms as well. Experimental evaluation shows that the models generated through
this procedure show improvement for link prediction as well as triple classification in KGs as
compared to the original TransE and TransR models.

4.7 Knowledge Base Completion Using Embeddings and Rules
In [63], the authors propose to constrain knowledge graph embeddings by an altogether
different type of axioms: cardinality axioms. This is done by an Integer Linear Programming
problem: the objective function is computed using the scoring function of an embedding
model under the constraints from the symbolic axioms.

Let the E = {e1, e2, . . . , en} and R = {r1, r2, . . . , rm} be the sets of entities and relations
in a KG at hand. The linear problem is defined with mn2 decision variables {xk

i,j , 1 ≤ i, j ≤
n, 1 ≤ k ≤ m} such that xk

i,j indicates whether the fact ⟨ei, rk, ej⟩ is true or false. The weight
of a triple is computed using the scoring function f of an embedding model. This results in
an objective function of the form:

max
xk

i,j

∑
i

∑
j

∑
k

f(⟨ei, rk, ej⟩) · xk
i,j

The constraints of this optimization problem are derived from four types of rules:
Type 1: noisy observation. Observed triples are very likely to be true but KBs are
prone to noise. In order to take into account the rare cases in which an observed fact is
false, slack variables ϵk

i,j are introduced for each observed triple and the R1 constraint is
added along with a penalization term in the objective function. This is a classical method
in linear programming, which allows the easy identification of noisy triples.

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:23

Type 2: argument type expectation. Some predicate-specific type constraints should
be respected by the head and tail entities. This results in the R2 constraint in which Sk

(resp. Ok) contain the indexes of the entities that have the type of the head (resp. tail)
of the relation rk.
Type 3: at-most-one restraint. Some relations can handle at most one head per
tail (many-to-one) or one tail per head (one-to-many). For example, the relation city-
LocatedInCountry is a one-to-many relation meaning that a city can be located in at most
one country. Other relations are one-to-one. Those three types of relations result in three
constraints R3.1, R3.2 and R3.3 in which R1−M , RM−1 and R1−1 are respectively the
sets of one-to-many, many-to-one and one-to-one relations.
Type 4: simple implication. A relation r1 can imply another relation r2, if ⟨x, r1, y⟩ ⇒
⟨x, r2, y⟩ for any entities x and y. It is denoted r1 ⇒ r2. This gives us the constraint R4.

With this, the final Integer Logic Program is:

max
xk

i,j

∑
i

∑
j

∑
k

f(⟨ei, rk, ej⟩) · xk
i,j

(R1) xk
i,j + ϵk

i,j = 1, ∀(i, j, k) : ⟨ei, rk, ek⟩ is observed
(R2) xk

i,j = 0, ∀k, ∀i : ei /∈ Sk, ∀j : ej /∈ Ok

(R3.1)
∑

i

xk
i,j ≤ 1, ∀k : rk ∈ R1−M , ∀j

(R3.2)
∑

j

xk
i,j ≤ 1, ∀k : rk ∈ RM−1, ∀i

(R3.3)
∑

i

xk
i,j ≤ 1,

∑
j

xk
i,j ≤ 1, ∀k : rk ∈ R1−1, ∀i, ∀j

(R4) xk1
i,j ≤ xk2

i,j , ∀k1, k2 s.t. rk1 ⇒ rk2

where xk
i,j ∈ {0, 1}, ∀i, j, k; ϵk

i,j ∈ {0, 1}, ∀(i, j, k) : ⟨ei, rk, ek⟩ is observed

In spite of their promising results, the authors highlight two main limitations to this approach.
First, constraints do not take into account the possible many-to-many relations, possibly
missing out some ontology information. Second, solving the integer linear programming
problem is time consuming and the approach then lacks scalability. In this regard, the
authors propose a divide-and-conquer strategy for future work.

4.8 Jointly embedding KGs and Rules
So far, we have constrained embeddings by axioms. There are, however, also approaches that
use soft rules instead of axioms, and that learn embeddings jointly with confidence scores
for these soft rules. The first of these [19] improves the training procedure of the TransE
model [7] by a new training loss that integrates both observed triples and groundings of some
logical rules. The method focuses on rules of only two shapes: ∀x, y, ⟨x, r1, y⟩ ⇒ ⟨x, r2, y⟩
and ∀x, y, ⟨x, r1, y⟩ ∩ ⟨y, r2, z⟩ ⇒ ⟨x, r3, z⟩, where r1, r2 and r3 are relations from the graph.

Following Rocktäschel et al. [45], the truth value of a grounded rule is computed from
the truth values of the constituent triples and t-norm logic principles. For this, the truth
value of a single triple is first defined as:

f(⟨x, r, y⟩) = 1 − 1
3
√

d
||x⃗ + r⃗ − y⃗||

AIB 2022

4:24 Combining Embeddings and Rules for Fact Prediction

Soft Rules

Soft Label Prediction

Embedding
Rectification

Labeled Triples

Unlabeled Triples

Em
beddingsSo

ft
La

be
ls

Figure 4 RUGE.

This is simply a normalization of the TransE [7] scoring function. To compute the truth
value of more complicated logical formulae, this definition has to be broaden to negation,
conjunction, and disjunction. The truth value of a negated triple ¬p is simply 1 − f(p).
The truth value of a conjunction is given by a t-norm, i.e., a function that is commutative,
associative, and monotonous, and that has 1 as the identity element. The work of [19] uses
simply the product as the t-norm, i.e., f(p ∧ q) = f(p) × f(q). With this, the truth value f

of an implication is

f(p ⇒ q) = f(¬p ∨ q) = f(¬(p ∧ ¬q))
= 1 − f(p) × (1 − f(q))
= 1 − f(p) + f(p) × f(q)

The only question left is how to generate the logical rules that are taken as input of this
improved training procedure. A natural method could be to run a logical approach such
as AMIE or RuDiK [17, 40]. The authors of [19] have a different approach that uses their
method of scoring rule groundings to select the best ranking rules in a greedy manner.

4.9 Knowledge Graph Embedding with Iterative Guidance from Soft
Rules (RUGE)

The Rule-Guided Embedding (RUGE) algorithm [20] is another method that learns embed-
dings jointly with confidence scores for logical rules. Its main steps are shown in Figure 4.
The system starts out with soft rules (top of the figure), mined by the AMIE system [17].
These are instantiated to make predictions (see Section 2.1) – each with a confidence. The
Embedding Step (bottom of the figure) takes as input the predictions of the rules as well as
labeled triples from the KB. The embedding is trained on these two sources. This allows
the prediction of new facts, which will in turn predict new facts by help of the rules. This
process is iterated, thereby amplifying automatically the number of labeled examples.

The rule mining system gives each rule a confidence. However, this confidence concerns
the rule as a whole, not an individual grounded variant of the rule, where all variables are
instantiated. To compute the confidence of an individual grounded rule, the approach uses
the scores ϕ(·) of the embeddings of the facts that appear in the rule, as well as the score
s(·) of the fact that the rule predicts, and proceeds according to the definitions of t-norm
based fuzzy logics, in much the same way as [19].

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:25

Rule Mining KGGenerated Soft Rules
with Confidence

Forward Chaining
Reasoning

Groundings

Embedding Learning
Joint Loss

Embedding 1 Embedding 2

Facts

Figure 5 SoLE Architecture (stage 1 in yellow, stage 2 in blue).

The approach then aims to find a scoring function s(·) that is as close as possible to
the current scoring function ϕ(·), while at the same time making the confidences π(·) of
all grounded rules as close as possible to 1 (the maximum). This is done by solving an
optimization problem. This yields scores s(·) for facts that are predicted by the rules.

In the second step, the approach then corrects its embeddings ϕ(·) so that they mirror (1)
the truth value of facts that appear already in the KB and (2) the score s(·) for facts that
do not appear in the KB, but were predicted by the rules. This updated embedding is then
fed again into the rules, and the process is iterated. Experiments show that this method
achieves significant improvements in link prediction task on Freebase and YAGO.

A variant of this approach is the SoLE system [71] (“Soft Logical rules enhanced Embed-
dings”), whose architecture is shown in Figure 5. Like RUGE, SoLE takes as input a KB
and rules. It uses the rules to predict new facts in an iterative manner until no more facts
can be predicted (a technique called forward chaining). The rules are then grounded, and a
confidence score is computed for each grounded rule, not unlike this is done in RUGE as well.
Different from RUGE, SoLE then minimizes a joint loss so as to find embeddings that can
(1) predict the labels of triples contained the KB, while also (2) imitating the confidences of
rules.

5 Rule Mining with embedding techniques

In the previous section, we have discussed several embedding methods that use logical
techniques to improve their performance. The other direction is much less common: there are
few methods that use embedding models in order to improve logical rule mining techniques.
We will now present the most prominent ones.

5.1 ILP Rule Mining
A first small application of embeddings for rule mining is presented in an extension of
RuDiK [40] by Ahmadi et al. [1]. The new system can also mine rules about class membership,
such as “Politicians are not married to officeholders of a different party”:

[⟨x, party, xp⟩ ∧ ⟨y, party, yp⟩ ∧ xp ̸= yp

∧ ⟨x, type, Politician⟩ ∧ ⟨y, type, Office Holder⟩] ⇒ ¬⟨x, spouse, y⟩

AIB 2022

4:26 Combining Embeddings and Rules for Fact Prediction

The question is now what classes should be considered in such rules. Considering all classes
may lead to rules that are too fine-grained. It would also be inefficient. Using only the
top-level classes, in contrast, may miss out on useful rules that hold in a subclass.

RuDiK therefore clusters the instances of the KB. The method of choice here are entity
embedding methods. The authors observe that the clusters obtained this way are more
uniform in what concerns the structural similarity of entities (i.e., the outgoing relations that
they share) than class membership. This is because two entities with different relations can
belong to the same class, and entities with the same relations can belong to different classes.
The embedding, in contrast, groups entities by their relations, which is more amenable to
the rule mining.

It turns out that entities with popular classes, such as Person, can be spread across
multiple clusters, but classes with finer granularity, such as Politician and OfficeHolder are
grouped together. For each cluster, RuDiK then determines a class (e.g., the class that most
entities in the cluster belong to). This class is then used for mining rules such as the one
above.

5.2 Few-shot learning for label propagation

As stated in Section 2.1, a recurrent problem when working on KBs is the lack of negative
statements. That makes it difficult to classify a prediction of any model. In an ideal situation,
an operator would be available during training in order to manually tag generated facts as
positive or negative. This is rarely the case because it is very costly but it could be very
useful in the generation of false statements for example. This problem of manually tagging
samples (here triples) is not specific to KB processing and it has given birth to a field of
research called few-shot learning. This is the study of learning algorithms that work on a
very small number of samples. It often applies in fields were the creation of supervision labels
is costly, for example computer vision.

In [32] the authors propose a few-shot rule-based knowledge validation framework that
uses an embedding model (HypER [5]) in order to propagate the decisions of a human
operator to whom triples to tag are submitted. The goal of the method is to enrich the KB
with positive and negative examples that allow a better evaluation of a set of rules. The
proposed propagation method relies on a measure of similarity between facts. To compute
the similarity, a vector representing each triple is computed by concatenating the embeddings
of the entities. The propagation of manual labels is done locally to triples sharing the same
relation, and so their embedding is omitted in the concatenation. For example, let’s say that
an operator labeled the fact ⟨Barack Obama, marriedTo, Sasha Obama⟩ as false, this label
is going to be propagated to triples involving Barack Obama and MarriedTo or MarriedTo
and Sasha Obama that are similar enough to the initial one. Eventually the set of manually
labeled triples along with the automatically labeled ones improve the evaluation process of
the rules. The authors apply their method to rules mined with AMIE [17] and RuDiK [40].
The proposed method uses HypER as embedding model but the authors insist on the fact
that any model can be used for this task.

5.3 Approximate algorithms

AMIE [17] is an exhaustive rule mining system, i.e., it finds all rules above user-specified
confidence and support thresholds. This makes AMIE quite heavy to run on large knowledge
bases. AMIE+ [18] improved the runtime by approximating the computation of the confidence
value of rules. This comes at a minor cost in the precision of the algorithm but allows
reducing the computation time by several orders of magnitude.

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:27

Another way to speed up the rule mining is by sampling. The underlying intuition is
that a rule of the form ⟨e, r1, e1⟩ ∧ ⟨e1, r2, e2⟩ ∧ · · · ∧ ⟨en, rn+1, e′⟩ ⇒ ⟨e, r, e′⟩ can be seen as
the co-occurrence in the knowledge graph (KG) of two paths from e to e′: one of length 1
(passing through the relation r), and one of length 2n + 1 (through the entities e1, e2, . . . ,
en and the relations r1, r2, . . . , rn+1). Exploring the possible rules then comes down to
finding possible paths from one entity to another. This graph exploration is computationally
expensive, and so the authors of [39] propose a two-step acceleration of the graph exploration
and of the evaluation of the rules.

First, the size of the graph is reduced by sampling the KG. Given a relation r that should
appear in the head atom of the rule and a maximum length l ≥ 2, the neighborhood of r

is computed iteratively. We start from a set E0, which includes any entity involved in a
fact with r. We then compute Ei for 1 ≤ i ≤ l − 2 by including entities linked to some
entity of Ei−1 by any predicate. The neighborhood of r is then defined as N (r) = ∪l−2

i=0Ei

and it includes all entities relevant to find paths of maximum length l and then rules
involving l atoms in the body and p in the head.
Subsequently, instead of exhaustively exploring all the possible paths in the neighborhood
of the relation r, the authors suggest to use a bilinear embedding model to learn matrix
representations of relations (see Section 3.2). A relation path r1, r2, . . . , rl in the graph
can then be represented as the product of the matrices of the relations Mr1 ·Mr2 · · · · · Mrl

.
The similarity between the path (corresponding to the body of the potential rule) and r

is computed using the matrix Frobenius norm sim(r, [r1, r2, . . . , rl]) = exp(−||Mr − Mr1 ·
Mr2 · · · · · Mrl

||F).
The authors compare their approach to AMIE+, and show that the new approach mines
more rules, and rules of better quality in terms of confidence. Furthermore, the process is
much faster for rules that have the shape of paths.

6 Conclusion

Knowledge Bases (KBs) find many uses in AI applications, such as personal assistants,
question answering systems, or text analysis. And yet, KBs are usually incomplete and miss
facts. Two avenues of research have taken to predict missing facts: a symbolic one, based
on rule mining, and a neural one, based on embeddings. Each of them has their respective
strengths, and in this article we have presented an overview of both. We have also discussed
recent studies on the criticism of the benchmark and protocols used during evaluation of
embedding models. We have then presented approaches that successfully combine both
symbolic and neural methods to perform fact prediction in KBs. While there are several
approaches that use rules in order to improve embeddings, there are rather few approaches
that use embeddings to improve rule mining. This may thus be an interesting direction for
further research.

References

1 Naser Ahmadi, Viet-Phi Huynh, Vamsi Meduri, Stefano Ortona, and Paolo Papotti. Mining
expressive rules in knowledge graphs. Journal of Data and Information Quality (JDIQ),
12(2):1–27, 2020.

2 Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai Li.
Realistic re-evaluation of knowledge graph completion methods: An experimental study. In
ACM SIGMOD, 2020.

AIB 2022

4:28 Combining Embeddings and Rules for Fact Prediction

3 Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
dl-lite family and relations. Journal of artificial intelligence research, 36:1–69, 2009.

4 Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In ISWC, 2007.

5 Ivana Balažević, Carl Allen, and Timothy M Hospedales. Hypernetwork knowledge graph
embeddings. In ICANN, 2019.

6 Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic matching
energy function for learning with multi-relational data. Machine Learning, 94(2):233–259,
2014.

7 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NeurIPS, 2013.

8 Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka, and
Tom M Mitchell. Toward an architecture for never-ending language learning. In AAAI, 2010.

9 Yuanfei Dai, Shiping Wang, Neal N Xiong, and Wenzhong Guo. A survey on knowledge graph
embedding: Approaches, applications and benchmarks. Electronics, 9(5):750, 2020.

10 Tu Dinh Nguyen Dai Quoc Nguyen, Dat Quoc Nguyen, and Dinh Phung. A novel embedding
model for knowledge base completion based on convolutional neural network. In NAACL,
2018.

11 Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional
2d knowledge graph embeddings. In AAAI, 2018.

12 Boyang Ding, Quan Wang, Bin Wang, and Li Guo. Improving knowledge graph embedding
using simple constraints. arXiv preprint, 2018. arXiv:1805.02408.

13 Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach to
probabilistic knowledge fusion. In ACM SIGKDD, 2014.

14 Claudia d’Amato, Nicola Flavio Quatraro, and Nicola Fanizzi. Injecting background knowledge
into embedding models for predictive tasks on knowledge graphs. In ESWC, 2021.

15 Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. Improved knowledge graph embedding
using background taxonomic information. In AAAI, volume 33, 2019.

16 Jun Feng, Minlie Huang, Mingdong Wang, Mantong Zhou, Yu Hao, and Xiaoyan Zhu.
Knowledge graph embedding by flexible translation. In KR, 2016.

17 Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Amie: Association
rule mining under incomplete evidence in ontological knowledge bases. In WWW, 2013.

18 Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast Rule Mining
in Ontological Knowledge Bases with AMIE+. In VLDBJ, 2015.

19 Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge
graphs and logical rules. In EMNLP, 2016.

20 Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Knowledge graph embedding
with iterative guidance from soft rules. In AAAI, 2018.

21 Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. Learning to represent knowledge graphs
with gaussian embedding. In CIKM, 2015.

22 Frank Lauren Hitchcock. The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics, 6:164–189, 1927.

23 Nitisha Jain, Jan-Christoph Kalo, Wolf-Tilo Balke, and Ralf Krestel. Do embeddings actually
capture knowledge graph semantics? In ESWC, 2021.

24 Nitisha Jain, Trung-Kien Tran, Mohamed H Gad-Elrab, and Daria Stepanova. Improving
knowledge graph embeddings with ontological reasoning. In ISWC, 2021.

25 Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph embedding
via dynamic mapping matrix. In ACL, 2015.

26 Rudolf Kadlec, Ondřej Bajgar, and Jan Kleindienst. Knowledge base completion: Baselines
strike back. In RepL4NLP, 2017.

http://arxiv.org/abs/1805.02408

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:29

27 Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge
graphs. In NeurIPS, 2018.

28 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint, 2016. arXiv:1609.02907.

29 Bhushan Kotnis and Vivi Nastase. Analysis of the impact of negative sampling on link
prediction in knowledge graphs. arXiv preprint, 2017. arXiv:1708.06816.

30 Jonathan Lajus, Luis Galárraga, and Fabian M. Suchanek. Fast and Exact Rule Mining with
AMIE 3. In ESWC, 2020.

31 Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI, 2015.

32 Michael Loster, Davide Mottin, Paolo Papotti, Jan Ehmüller, Benjamin Feldmann, and Felix
Naumann. Few-shot knowledge validation using rules. In TheWebConf, 2021.

33 Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. YAGO3: A Knowledge
Base from Multilingual Wikipedias. In CIDR, 2015.

34 Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt.
An introduction to anyburl. In KI, 2019.

35 Pasquale Minervini, Luca Costabello, Emir Muñoz, Vít Nováček, and Pierre-Yves Vanden-
bussche. Regularizing knowledge graph embeddings via equivalence and inversion axioms. In
ECML PKDD, 2017.

36 Sameh K Mohamed, Vít Novácek, Pierre-Yves Vandenbussche, and Emir Muñoz. Loss functions
in knowledge graph embedding models. DL4KG@ ESWC, 2377:1–10, 2019.

37 Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning effective and interpretable
semantic models using non-negative sparse embedding. In COLING, 2012.

38 Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, 2011.

39 Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. An embedding-based approach to
rule learning in knowledge graphs. IEEE Transactions on Knowledge and Data Engineering,
33(4):1348–1359, 2021.

40 Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. Robust discovery of
positive and negative rules in knowledge bases. In ICDE, 2018.

41 Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. Revisiting evaluation of knowledge base
completion models. In AKBC, 2020.

42 Jay Pujara, Eriq Augustine, and Lise Getoor. Sparsity and noise: Where knowledge graph
embeddings fall short. In EMNLP, 2017.

43 Simon Razniewski, Hiba Arnaout, Shrestha Ghosh, and Fabian M. Suchanek. Completeness,
Recall, and Negation in Open-World Knowledge Bases. In VLDB, 2021.

44 Simon Razniewski, Fabian M. Suchanek, and Werner Nutt. But What Do We Actually Know?
In AKBC workshop, 2016.

45 Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge
into embeddings for relation extraction. In NAACL, 2015.

46 Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo.
Knowledge graph embedding for link prediction: A comparative analysis. ACM Transactions
on Knowledge Discovery from Data (TKDD), 15(2):1–49, 2021.

47 Andrea Rossi and Antonio Matinata. Knowledge graph embeddings: Are relation-learning
models learning relations? In EDBT/ICDT, 2020.

48 Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks!
on training knowledge graph embeddings. In ICLR, 2019.

49 Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum:
End-to-end differentiable rule mining on knowledge graphs. In NeurIPS, 2019.

50 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.

AIB 2022

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1708.06816

4:30 Combining Embeddings and Rules for Fact Prediction

51 Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-end
structure-aware convolutional networks for knowledge base completion. In AAAI, 2019.

52 Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. In NeurIPS, 2013.

53 Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago - A Core of Semantic
Knowledge . In WWW, 2007.

54 Fabian M. Suchanek, Jonathan Lajus, Armand Boschin, and Gerhard Weikum. Knowledge
Representation and Rule Mining in Entity-Centric Knowledge Bases. In RW, 2019.

55 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. In ICLR, 2018.

56 Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming Yang. A
re-evaluation of knowledge graph completion methods. In ACL, 2020.

57 Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and
text inference. In CVSC workshop, 2015.

58 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In ICML, 2016.

59 Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In ICLR, 2019.

60 Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.
Commun. ACM, 57(10):78–85, 2014.

61 Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung, et al. A capsule network-based
embedding model for knowledge graph completion and search personalization. In NAACL,
2019.

62 Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engineering,
29(12):2724–2743, 2017.

63 Quan Wang, Bin Wang, and Li Guo. Knowledge base completion using embeddings and rules.
In ICOAI, 2015.

64 Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, Samuel Broscheit, and Christian Meilicke.
On evaluating embedding models for knowledge base completion. In RepL4NLP, 2019.

65 Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, 2014.

66 Gerhard Weikum, Luna Dong, Simon Razniewski, and Fabian M. Suchanek. Machine Know-
ledge: Creation and Curation of Comprehensive Knowledge Bases. In Foundations and Trends
in Databases, 2021.

67 Alfred North Whitehead and Bertrand Russell. Principia mathematica. Cambridge University
Press, 1913.

68 Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan Zhu. Transg: A generative mixture model for
knowledge graph embedding. arXiv preprint, 2015. arXiv:1509.05488.

69 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint, 2014. arXiv:1412.6575.

70 Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. A vectorized relational
graph convolutional network for multi-relational network alignment. In IJCAI, 2019.

71 Jindou Zhang and Jing Li. Enhanced knowledge graph embedding by jointly learning soft
rules and facts. Algorithms, 12(12):265, 2019.

72 Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. Learning hierarchy-aware
knowledge graph embeddings for link prediction. In AAAI, 2020.

73 Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang, and Fabian M. Suchanek. An Experimental
Study of State-of-the-Art Entity Alignment Approaches . In TKDE, 2020.

http://arxiv.org/abs/1509.05488
http://arxiv.org/abs/1412.6575

Learning and Reasoning with Graph Data: Neural
and Statistical-Relational Approaches
Manfred Jaeger #

Aalborg University, Denmark

Abstract
Graph neural networks (GNNs) have emerged in recent years as a very powerful and popular
modeling tool for graph and network data. Though much of the work on GNNs has focused on
graphs with a single edge relation, they have also been adapted to multi-relational graphs, including
knowledge graphs. In such multi-relational domains, the objectives and possible applications of
GNNs become quite similar to what for many years has been investigated and developed in the field
of statistical relational learning (SRL). This article first gives a brief overview of the main features of
GNN and SRL approaches to learning and reasoning with graph data. It analyzes then in more detail
their commonalities and differences with respect to semantics, representation, parameterization,
interpretability, and flexibility. A particular focus will be on relational Bayesian networks (RBNs) as
the SRL framework that is most closely related to GNNs. We show how common GNN architectures
can be directly encoded as RBNs, thus enabling the direct integration of “low level” neural model
components with the “high level” symbolic representation and flexible inference capabilities of SRL.

2012 ACM Subject Classification Computing methodologies → Logical and relational learning;
Computing methodologies → Neural networks

Keywords and phrases Graph neural networks, Statistical relational learning

Digital Object Identifier 10.4230/OASIcs.AIB.2022.5

Category Invited Paper

1 Introduction

Learning and reasoning with graph and network data has developed as an area of increasing
importance over recent years. Social networks, knowledge graphs, sensor and traffic networks
are only some of the examples where graph structured data arises in important applications.
Much of the attention currently focuses on graph neural networks (GNNs) as the technology
for solving the challenges posed by this kind of data. While often very powerful in terms of
scalability and predictive performance, graph neural networks suffer from the same drawbacks
as other deep learning methods: lack of interpretability, limited support for the integration
of prior domain knowledge, lack of robustness, and the inability to support more flexible
reasoning than performing a specific task of prediction or synthetic graph generation. The
field of statistical relational learning (SRL) has been concerned with learning and reasoning
with graph and network data for over 20 years. Here the use of logic-based, symbolic
representations and inference techniques, probabilistic graphical models, and relational
database technology supports the construction of interpretable models via a combination of
expert knowledge and machine learning, as well as a wide range of inference tasks, such as
prediction and (most probable) explanations for varying and incomplete amounts of input
data. On the other hand, SRL techniques lag behind GNNs in terms of scalability and
predictive power in scenarios where the availability of extensive training data enables the
training of the highly parameterized GNN models.

Combining the respective strengths of GNN and SRL technology is an emergent research
area [49, 59, 69, 15]. Some works emphasize the complementarity of SRL and GNN approaches,
and propose techniques that combine them in order to leverage the strengths of both [49, 59].

© Manfred Jaeger;
licensed under Creative Commons License CC-BY 4.0

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza; Article No. 5; pp. 5:1–5:42

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jaeger@cs.aau.dk
https://orcid.org/0000-0002-5641-8153
https://doi.org/10.4230/OASIcs.AIB.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Learning and Reasoning with Graph Data

Table 1 Overview of notation.

G = (V, E) Graph with vertices (a.k.a. domain) V and edges E

n Cardinality of V

Ni Neighbors of node i ∈ V

A signature of node attributes
A n × |A| matrix (table) of attribute values
R signature of relations of varying arities
G(V, R) Set of all graphs for signature R over domain V

hk(i) Representation vector at level (layer) k for node i ∈ V

nk Dimension of vectors hk(i)
m Number of hidden layers
{| . . . |} Delimiters for multisets
PV Distribution over all graphs (for a given signature R) with domain

(vertex set) V

Fr(X1,...,Xk) Probability formula defining the (conditional) probabilities for the k-ary
relation r

In contrast, [69] directly uses relational logic as a high-level and flexible specification tool for
neural architectures with a generic underlying training technique, thus essentially showing
how a logic-based framework subsumes (graph) neural technology. In this article we, too,
shall emphasize the overlap rather than the complementarity of SRL and GNN technology.
We first give a brief overview of key aspects of modeling graph data using SRL and GNN
approaches. Looking more closely at their respective semantics we then obtain a basis
for establishing a direct correspondence between GNNs and some types of SRL models
(Section 6), which gives rise to a direct encoding of GNNs as relational Bayesian networks
(Section 7 and 9). We illustrate by examples the benefits of such an embedding of GNNs in
a general SRL framework with regard to

neuro-symbolic integration: the ability to combine symbolically specified (expert) know-
ledge with numerical optimization in neural architectures.
flexible reasoning capabilities: the support provided by SRL frameworks for probabilistic
reasoning beyond solving a fixed prediction task.

We consider in greater detail selected central themes that have played an important role
in GNN and SRL research:

Expressivity: what are the capabilities and limitations for the discriminative power of
GNN/SRL models (Section 8)?
Homophily: how do different approaches model and exploit the typical homophily proper-
ties in (social) networks?
Aggregation: what operations can be used to aggregate information provided by related
entities in a graph (Section 11)?

2 Graph Data

In its most basic form, graph data simply consists of a graph

G = (V, E) (1)

defined by a set of vertices V , and a set of (directed or undirected) edges E. We shall
limit ourselves to graphs with finite V , and use n = |V | to denote its cardinality. We can
then also assume that 1, . . . , n are unique identifiers for the vertices, and we simply use

M. Jaeger 5:3

Node color
1 blue
2 blue
3 green
4 red

(a)

Node c_blue c_green c_red
1 1 0 0
2 1 0 0
3 0 1 0
4 0 0 1

(b) (c)

Figure 1 Three representations of node attributes: (a) categorical attribute table, (b) one-hot
attribute table, (c) multi-relational representation with binary attribute relation c(olor) distinguished
from original l(ink) relation.

i, j, . . . ∈ {1, . . . , n} to refer to elements of V . In an attributed graph the nodes are labeled
with a set of attributes, which can be either Boolean, categorical or numeric. In a social
network whose nodes represent people, for example, node attributes could be gender and
age. We can write a graph whose nodes are labeled with k different attributes as

G = (V, E, A), (2)

where A is an n× k attribute matrix whose ith row contains the attribute vector for vertex i.
The term “matrix” here is used in a loose sense: when some of the attributes are categorical,
then corresponding columns in the matrix have symbolic values, and A would somewhat more
appropriately be referred to as an attribute “table”. Using one-hot encodings of categorical
attributes one can obtain a purely numerical attribute matrix A ∈ Rn×k′ . Figure 1 (a) and
(b) illustrates these two alternative representations.

In many cases, graph models for real world networks require multiple edge relations. In a
social network, for instance, there may be separate friend and follower connections between
users. In a sensor or computer network, different types of connections (wireless, cable, . . .)
can be represented by different edge relations. This leads us to multi-relational graphs with
several distinct edge relations. We write multi-relational graphs as

G = (V, E, A), (3)

where now E = (E1, . . . , Er) is a tuple of different edge relations. In the basic sense, edges
are just either ’present’ or ’absent’, i.e., have a Boolean value. However, an edge labeling
can also attach a categorical or numerical value to the edges, so that just like attributes,
edge relations can be either Boolean, categorical, or numeric. Multi-relational graphs also
provide an opportunity to represent node attributes as relations between the original graph
vertices and attribute values that are materialized as additional nodes. This representation
is illustrated in Figure 1 (c).

Going beyond binary edge relations, we can consider (directed) hyperedges E ⊆ V k for
any k ≥ 3. With few exceptions (e.g. [51]) hyperedges have not been considered in the
GNN literature. From the predicate logic perspective of SRL, on the other hand, attributes,
edges and hyperedges all are just relations with a certain arity k ≥ 1. Under this uniform
perspective of predicate logic, we can write an attributed, multi-relational hypergraph as

G = (V, R) (4)

AIB 2022

5:4 Learning and Reasoning with Graph Data

where R = (R1, . . . , Rr) is a tuple of relations with arities ai ∈ {0, 1, 2, 3, . . .} (i = 1, . . . , r),
all of which can be of type Boolean, categorical, or numeric. We use relations of arity 0 as
representations of global graph properties such as connected, or a label like toxic for a graph
representing a chemical molecule.

Knowledge Graphs
Knowledge graphs are often presented as a set KG of triplets of the form (source, relation,

target). Each such triplet describes a specific relationship between a source and a target entity.
There are several ways to cast such a collection of triplets as a graph in one of the forms
considered above. A first option is to consider each triplet as a hyperedge of a single relation of
arity 3. For illustrative purposes, we may call this single relation the fact relation, and expand
the triplet notation to explicitly write fact(source, relation, target). In this view, relations are
also treated as nodes (entities). While this perspective is somewhat encouraged by the triplet
notation for knowledge graphs, it is usually not the one that underlies graphical representations
of knowledge graphs, where typically a triplet is illustrated by two nodes for the source and
target entities, connected by an edge labeled with relation. The underlying graph model then
is that of a multi-relational graph with binary relations, and the perhaps more appropriate
notation for a triplet is the classical form of writing relation(source, target). Moreover,
expressing everything as triplets also requires a representation of node attributes in the
form illustrated in Figure 1 (c), i.e. in the form of relations attribute(entity, attribute_value).
A specific feature of knowledge graphs compared to other multi-relational graphs is the
number of distinct relations, which can easily lie in the thousands. Multi-relational graphs
representing more specif domains (such as bibliographic or social networks), in contrast,
mostly contain only a relatively small number of relations. When considering the application
of machine learning solutions for graph data to knowledge graphs, one must therefore consider
not only the ability of a solution to deal with multi-relational graphs, but also their scalability
in terms of the number of relations.

3 Graph Neural Networks

We here give a high-level summary of some key features of graph neural networks. For more
complete and details surveys also covering types of GNNs not considered here (e.g. graph
auto-encoders), the reader is referred to [74, 79].

Graph neural networks compute representations of the nodes as real valued vectors. Also
often referred to as embeddings or feature vectors, these representations can then be the
basis for supervised tasks like node classification, graph classification and link prediction,
or unsupervised tasks such as graph clustering. Often the representations are learned in
an “end-to-end” fashion to support a particular task, but they can also be constructed in
a stand-alone process in order to support a variety of downstream applications (e.g. the
unsupervised version of GraphSAGE [24]).

In the following, we first assume that G = (V, E, A) is an attributed graph as in
equation (2). In a very general, abstract form, the computation of the node representations
proceeds in multiple steps, starting with initial representations

h0(i) ∈ Rn0 (i ∈ V). (5)

The initial representations can be collected in an n× n0 matrix, denoted H0. Using H0[i, •]
to denote the ith row of H0, we then have h0(i) = H0[i, •]. This gives us a bit of notational
redundancy, which can be quite convenient, however. We will consider the choice of initial
representations in more detail below. For now it may be helpful to think of the attribute
vector h0(i) = A[i, •] as the initial representation.

M. Jaeger 5:5

Then, given a representation Hk computed in the kth step, the (k + 1)th representation
is obtained as a function

Hk+1 = F k(Hk, G) (6)

of the previous representation and the graph structure G. In most GNN architectures,
the computation of the representation hk+1(i) for node i only depends on the rows of Hk

corresponding to i itself, and its neighbors. Then (6) can be expressed as follows:

hk+1(i) = F k(hk(i), {|hk(j)|j ∈ Ni|}, G), (7)

where Ni denotes the set of graph neighbors of i, and the delimiters {| . . . |} indicate that
this is a multiset. Based on this dependence of the representation update of a node i on its
neighbors, the basic GNN computations have been described using information diffusion or
message passing metaphors [67, 21]. A fundamental distinction arises according to whether
the updates (7) are performed in a recurrent or fixed architecture. In the former, the
update function F k is the same for all k, and updates are performed until a fixed point
Hk+1 = Hk is reached (e.g.[67]). In the latter, updates are performed for a fixed number
of steps k = 0, . . . , m , and each step may be defined by a different update function F k. In
this article we focus on fixed architectures, which also constitute the majority of current
GNN frameworks. In any case, a final node representation Hm is used to compute an output
function. In node classification applications, an output is computed for each node i, based
on that node’s representation:

o(i) = O(hm(i)). (8)

When the task is graph classification, then an output is computed based on the representations
of all nodes in the graph. This particular type of function is usually referred to as a readout:

r = R({|h(i)|i ∈ V |}). (9)

Figure 2 gives a schematic illustration of the computation graph for a fixed architecture
with m = 2 steps, both for a node classification and a graph classification scenario.

Link prediction tasks can be addressed by GNNs in several ways. The most direct one is
to use a GNN architecture as shown in Figure 2, but without the final output or readout
layers. Instead, link prediction is directly performed based on the representations of the
nodes, for example simply using the dot product hm(i) · hm(j) as a predictive score for
the existence of a link between i and j [68]. A very different approach is to turn the link
prediction problem into a graph classification problem for the “enclosing subgraph” of the
candidate edge [78].

Equation (7) is only an abstract description of the computation of Hk+1. All concrete
functions implementing this description need to deal with the multiset argument {|hk(j)|j ∈
Ni|} which differs in cardinality for different nodes i. In order to turn this into a fixed
dimensional input an aggregation function such as sum or mean is usually applied. Making
this aggregation step explicit, we can re-write (7) as

hk+1(i) = F k
1 (hk(i), agg{|F k

2 (hk(j), G)|j ∈ Ni|}, G), (10)

which also allows that the representations hk(j) are transformed by a function F k
2 before

aggregation.This transformation may also depend on the graph structure G. This, for
example, enables a scaling of hk(j) before aggregation by a factor 1/

√
dj with dj the degree

AIB 2022

5:6 Learning and Reasoning with Graph Data

Figure 2 Computation graphs for basic fixed architecture showing the representation vectors
hk at each step, and indicating the relations edge, identity and/or all between nodes that defines
the dependence of a representation at the next step on representations/output at the previous step.
Left: architecture for node classification with one output per node; right: architecture for graph
classification, with one global readout output function.

of j in G, which is required to cover the original graph convolutional network [41] within the
formulation of (10). In most cases, the dependence of F k

1 , F k
2 on G will only be through the

degrees of the nodes i, j, and often there is no such dependence at all.

The abstract functions F k
1 , F k

2 are defined in reality by neural network layers. These are
usually quite simple in nature, and typically just consist of a linear function (layer) followed
by a non-linear activation function.

Multi-Relational GNNs

The largest part of the GNN literature focuses on the case of attributed graphs with a single
edge relation (2). Statistical relational learning, on the other hand, is concerned with rich
structures as described by (4). In many applications, however, multi-relational graphs (3)
are sufficient, and GNNs can quite easily be adapted to also deal with these [56, 68, 48]. The
functional form (10) then becomes

hk+1(i) = F k
1 (hk(i), agg{|F k

2,1(hk(j), G)|j ∈ NE1
i |}, . . . ,

agg{|F k
2,r(hk(j), G)|j ∈ NEr

i |}, G), (11)

where now NEh
i denotes the set of i’s neighbors according to relation Eh.

We note here that we have limited our exposition to the most fundamental forms of GNN
“message passing” architectures. This basic form has seen modifications and generalizations
in many directions, including the addition of attention mechanisms[71], or skip connections
that make computations at one layer dependent not only on the output of the previous layer.
Most of the following considerations on the relationship between GNN and SRL models carry
over to such more general forms of GNNs.

M. Jaeger 5:7

4 Statistical Relational Learning

Statistical relational learning (SRL) [20, 60] is a fairly diverse field encompassing different
approaches to combine elements of relational logic representations, probabilistic graphical
models, logic programming, and relational databases, for probabilistic reasoning and learning
about entities and their relationships. SRL frameworks use the language of relational logic
to represent basic facts in the form of atomic expressions, or atoms for short:

friend(lars, giovanni), color_green(emerald), connected(X, router_48264), . . .

Generally, an atom is a relation symbol followed by a list of arguments with a length
corresponding to the relation’s arity. Arguments can be constants representing specific
entities, or variables. A usual convention is that variables start with upper-case letters,
whereas constants start with lower-case letters. Thus, in our examples above, X is a variable,
and all other arguments are constants. An atom that only contains constants as arguments
is called ground. It represents a specific fact that can either be true or false. In a pure
predicate logic interpretation, atoms can only evaluate to Boolean values. Thus, the color
of an entity would need to be represented in the form color_green(X) or color(X, green),
as in Figure 1 (b) or (c). However, in SRL frameworks this can often be loosened to also
allow categorical atoms such as color(X) ∈ {red, green, blue}, or numerical atoms such as
length(X) ∈ R. It is thus apparent that the fundamental building blocks of SRL frameworks
describe multi-relational hypergraphs as in (4). However, depending on the SRL context
and background, these kinds of structures also go by very different names, such as Herbrand
interpretations [12], or possible worlds [62]. In order to maintain a close connection with
the preceding sections, we shall here continue to speak about graphs (which always are
understood to be multi-relational hypergraphs).

SRL frameworks define probability distributions over graphs. More specifically, consider
a fixed set R of relations (of different arities). We also call R a signature of relation symbols.
Let V be a finite set of vertices (more commonly referred to as a domain in SRL contexts),
and let G(V,R) be the set of all graphs with vertex set V for the relations R. An SRL model
then defines a mapping that assigns to every finite set V a probability distribution over
G(V,R) [34].

▶ Example 1. Classic random graph models such as the basic Erdős-Rényi model [17], the
stochastic blockmodel [27], or the preferential attachment model [3], are SRL models in our
sense with a signature R consisting of a single binary edge(X, Y) relation (however, this
does not mean that every SRL framework as detailed below is necessarily able to capture
all of these random graph models). All these models define for every cardinality |V | = n a
probability distribution over all graphs with n nodes.

We call an SRL framework any specific system of representation and inference tools for
SRL models. More specifically, an SRL framework provides:

Syntax and semantics: a formal language for the specification of SRL models, and a
semantic specification of the probability distribution that is defined by the model.
Inference: general algorithms for computing for a given vertex set V , and two sub-
sets A, B ⊆ G(V,R), the conditional probability PV (A|B) under the distribution PV

defined by the model for the domain V . Different frameworks will differ in how the
subsets A, B can be defined, but all will usually allow to specify sets by ground atoms:
PV (republican(mary)|friends(mary,carl) will then stand for PV (A|B), with A the set of
all graphs where the (Boolean) attribute republican is true for entity mary, and B the

AIB 2022

5:8 Learning and Reasoning with Graph Data

set of all graphs where the relation friends holds between the entities mary and carl
(assuming that V contains entities mary and carl, and that the signature R contains the
relations republican and friends).
Learning: methods for statistical learning of an SRL model from data. One here
distinguishes parameter learning and structure learning. The latter refers to learning the
high-level, symbolic part of the model specification, and the former to fitting numeric
parameters of the model.

Within the very diverse landscape of SRL frameworks, one can identify a number of major
paradigms, which we briefly survey in the following (a slightly more detailed exposition along
similar lines can be found in [32]). For the following we assume that all relations are Boolean
or categorical, which is the original and main focus of SRL frameworks.

Bayesian Network Constructors
Here the actual distribution PV for a given V is eventually represented by a Bayesian
network whose nodes are all the ground atoms that can be formed from relations in R with
entities from V . The SRL model provides a general blueprint for how such a Bayesian model
representation is constructed for any domain V . Languages for defining such blueprints fall
into two main categories: rule based and graphical templates. The basic building blocks of
rule based approaches are logical implications between atoms, such as

infected(X)← contact(X, Y) (12)

which are further annotated with quantitative probabilistic information. The qualitative
parts of the rules (as shown in (12)) then define the graphical dependency structure in
the Bayesian network for PV , whereas the probabilistic annotations (not shown) define the
quantitative conditional probability specifications. As (12) illustrates, the rules will usually
only contain variable symbols, not constants referring to specific entities, and thereby are
applicable to arbitrary domains V . This brand of SRL frameworks has its roots in what
originally was called knowledge-based model construction [7, 53], and is further represented
by Bayesian logic programs [37] and relational Bayesian networks [29].

As illustrated by (12), the directed dependencies expressed by the rules often coincide
with causal dependencies. However, it is not generally necessary that the rules have a causal
background, or even that they comply with an existing causal direction (it would be perfectly
valid, if rather counter-intuitive, to construct a model including a rule infected(X)← fever(X)
that inverts the causal direction).

Template-based frameworks follow essentially the same modeling paradigm, but using
graphical representations of Bayesian network fragments as the basic representational build-
ing block [46, 45]. Another paradigm for abstract graphical representations that can be
compiled into Bayesian networks is based on entity-relationship diagrams as used in relational
databases [18, 25].

Markov Network Constructors
This type of SRL frameworks is mostly represented by Markov logic networks [62], which are
closely related to exponential random graph models that have a long history in statistics and
discrete mathematics. Markov logic networks also use logic-based representations to specify
blueprints for the construction of a probabilistic graphical model for a specific distribution
PV . However, the target model now is an undirected Markov network, rather than a directed
Bayesian network. Instead of directed implications, the logical building blocks are disjunctions
(a.k.a. clauses) of atoms (possibly negated):

M. Jaeger 5:9

¬friends(X, Y) ∨ ¬republican(X) ∨ republican(Y), (13)

which also are annotated with numerical weights. Such a clause represents a Boolean
feature of entity pairs (X, Y), and the associated weight specifies whether graphs in which
this feature holds for many concrete entity pairs are more or less probable. Instead of
directed dependencies as in Bayesian networks, these features can now specify undirected,
symmetric (non-causal) dependencies. The clause in (13), for example, can be rewritten as
friends(X, Y)→ (republican(X)→ republican(Y)), and thus expresses a homophily features:
friends are likely to have the same political leanings.

Probabilistic Logic Programming
Another major line of SRL developments is rooted in logic programming, and the machine
learning tradition of inductive logic programming. A logic program such as

edge(a, b)
edge(b, c)
path(X, Y)← edge(X, Y)
path(X, Y)← edge(X, Z), path(Z, Y)

(14)

defines a unique least Herbrand model, which in our terminology is just a multi-relational
graph. For the program (14) this is the graph over V = {a, b, c} in which the relation edge
contains the tuples (a, b), (b, c), and the relation path contains the tuples (a, b), (b, c), (a, c).
In probabilistic logic programming the clauses are annotated with probabilities. Randomly
selecting clauses according to their probabilities then induces a probability distribution over
logic programs, and hence a probability distribution PV over Herbrand models over V . As
described here, (14) would only define a probability distribution PV over the fixed domain
V = {a, b, c}, and thus lack the generality we required of an SRL framework. However,
concrete constants are usually only included in listings of simple ground facts, whereas general
modeling rules are formulated at the generic level using only variables. This makes the
framework still modular, and by substituting other sets of ground facts, the generic model can
be applied to arbitrary domains V . Early examples of this probabilistic logic programming
approach are [66, 58]. A more recent system at a very mature level of development is the
ProbLog framework [39].

Inference
All the frameworks outlined above support to compute conditional probabilities of the form

PV (q|e1, . . . , em), (15)

where q, e1, . . . , em all are ground atoms. There is no fundamental conceptual difference
between graph classification, node classification, or link prediction, which are only distin-
guished by the arity of the query atom q.

▶ Example 2. Let V be a domain of n individuals. For some individuals we have made
observations on the infected attribute, as well as on contact relations. For an individual
mary we want to predict whether she is infected. This would be accomplished by computing
the node classification query

PV (infected(mary)|contact(mary, john), contact(john, anne), infected(john),¬infected(anne))

AIB 2022

5:10 Learning and Reasoning with Graph Data

In this example the input information for the query atom infected(mary) only consists of the
observations of four ground atoms related to entities in V . However, it may very well be the
case that much more about the graph is known. For example, the contact relation might be
fully observed, in which case the query would be conditioned on the whole contact graph.

Suppose, conversely, that we have comprehensive observations of the infected attribute,
and want to infer the contact relations. This would lead to link prediction queries such as

PV (contact(john, anne)|infected(mary),¬infected(john),¬infected(anne)).

Note that the model used for answering this query is the same generative model PV as in
the node classification query before. Finally, suppose we have a predicate spreading that
represents for the whole population V whether the infection is currently spreading in V . A
probabilistic model for spreading might be based on the number of pairs of individuals in V

that are in contact, and one of which is infected. Then a query like

PV (spreading()|infected(mary),¬infected(john), contact(john, anne), contact(mary, john))

would predict the spreading status of the whole domain (this query in a realistic scenario
would be conditioned on much more comprehensive input observations than shown here). To
emphasize the view of the query predicate as a relation of arity 0, we write it here in the
format spreading().

SRL frameworks in the Bayesian or Markov network constructor classes can use existing
inference algorithms for these types of probabilistic graphical models for the computation of
arbitrary queries (15). However, constructing the graphical model for the full distribution
PV in order to compute the query probability (15), which often only refers to a small subset
of the entities in V , may be very wasteful. Significant effort, therefore, has been spent
on the question whether inference could be performed more directly on the basis of the
high-level SRL model specification, instead of its compilation into a standard graphical
model [30, 57, 13]. However, decisive breakthroughs in this area of so-called lifted inference
remain elusive.

Inference for probabilistic logic programming frameworks is somewhat different in nature.
Here the probability of the query atom q will depend on which of the possible randomly
sampled programs support the derivation of the query atom q. The calculation of the query
probability therefore is essentially based on the construction of all possible proofs of q from
the rules and facts in the probabilistic logic program, and then a calculation of the probability
that a given proof is actually supported by a randomly sampled subset of the facts and rules.

Learning

Learning of SRL models can be separated into learning the structure of the high-level symbolic
component of the model, and learning numerical parameters. For the parameter learning
task often quite effective methods exist. In many cases, also learning from incomplete data
is supported by statistical learning techniques like expectation-maximization. Structure
learning, on the other hand, amounts to a search in a complex combinatorial space of symbolic
representations. Full structure learning without any prior constraints provided by (expert)
domain knowledge is certainly not a solved problem at this point. We will come back to this
issue in Section 12.

M. Jaeger 5:11

Figure 3 Transductive and inductive scenarios. (a): transductive, learnable from node identifiers;
(b): inductive, learnable from node attributes; (c): inductive, learnable from graph structure. Graphs
for training and (transductive) prediction in the top row; new test graphs underneath.

5 Transductive and Inductive Inference

Before we investigate at greater depth the relationship between GNN and SRL models we
briefly discuss the difference between transductive and inductive inference settings. Roughly
speaking, the former describes scenarios where at the time of model learning the nodes for
which predictions are going to be made are already known. The latter describes scenarios
where a predictive model is learned from training data, and that predictive model later is
applied to formerly unknown nodes, or completely new graphs. Figure 3 illustrates this
difference. In all graphs the target of prediction is a class label with values ’red’ and ’black’.
Figure 3 (a) shows a partially labeled graph where nodes do not have attributes other than
the class label. Unlabeled nodes are shown in gray. For the particular unlabeled nodes in
this graph one could learn to predict that a node is red if it is at most 3 hops away from
node ’26’. This model makes its predictions based on the relationship to a specific node in
the training graph, and therefore does not generalize to other graphs. The learning scenario
and the constructed model hence are transductive. The top of Figure 3 (b) shows a partially
labeled graph where nodes also have an attribute color with values ’yellow’ and ’blue’. This
attribute here is assumed to be observed for all nodes. One could here learn a model that
predicts a node to be ’red’ if it is at most 2 hops away from a blue node. This model can
be used to both classify the unlabeled nodes in the training graph shown in the top of the
figure, as well as the nodes in a completely new and unlabeled graph shown underneath.
The ability for inductive generalization is not always dependent on the existence of node
attributes. Figure 3 (c) (top) shows a partially labeled graph without any node attributes.
In this case one could learn to predict a node to be red if it is at most 2 hops away from a
node that has a degree ≥ 5. This model would again be able to classify nodes in completely
new and unlabeled graphs, like the one shown at the bottom or Figure 3 (c).

SRL models as we have described them in Section 4 are inductive in nature: they define
for arbitrary new node sets V a probability distribution (and hence a prediction model)
over G(V,R). This implies that SRL models cannot be defined in terms of particular node

AIB 2022

5:12 Learning and Reasoning with Graph Data

identifiers such as “node 26” in Figure 3 (a), which is reflected in syntax rules according to
which elements like (12) or (13) can not contain constants denoting specific domain entities
(and recall that in a slightly modified form, this constraint also applies to probabilistic logic
programming models (14)). This focus on inductive models is more a historic convention
than a necessary feature of SRL models: for example, a version of a rule like (12)

blue(X)← edge(X, Y1) ∧ edge(Y1, Y2) ∧ edge(Y2, node26)

that contains references to a specific node would be able to express our transductive model
for Figure 3 (a).

Whether a GNN model is inductive or transductive essentially depends on the initial
representations h0(i) used as inputs to the model. If these initial representations are node
attribute vectors (as tacitly assumed in Section 3) then the resulting model will be inductive
and able to handle scenarios like the one in Figure 3 (b). However, GNNs can also operate
on initial node representations that are one-hot-encodings of node identifiers, which then
leads to transductive models suitable to handle the situation in Figure 3 (a). In scenarios
as depicted in Figure 3 (c), neither node identifiers nor node attributes would be available
as initial representations. In this case one an think of h0(i) as consisting of a constant not
depending on i. The representation h1(i) obtained after one round of aggregation would
then already be able to encode the degree of the node i, which with two additional layers
then enables our predictive model for Figure 3 (c).

In the following detailed comparison of SRL and GNN models we focus on inductive
versions for both types of modeling frameworks, noting that the analogies we obtain in the
inductive setting will carry over to transductive scenarios when for SRL frameworks we
permit the use of node identifiers.

6 Semantics: a comparison

For SRL frameworks we have identified a common, well-defined semantics. Denoting the
set of probability distributions over G(V,R) as ∆G(V,R), we can write this semantics as a
mapping

V 7→ ∆G(V,R). (16)

▶ Example 3. Consider a relational signature R = follower, influencer, where follower is a
Boolean binary relation, and influencer is a Boolean node attribute. Let V be any fixed,
finite domain. A distribution PV ∈ ∆G(V,R) can be defined by first defining the distribution
over the follower relation, and then the conditional distribution of the influencer attribute
given the follower relation, i.e., factorizing the joint distribution over both relations as

PV (follower, influencer) = PV (follower) · PV (influencer|follower). (17)

The simplest way to define PV (follower) is via an Erdős-Rényi random graph model, according
to which each edge follower(i, j) has a constant probability p ∈ [0, 1] of being true, regardless
of the cardinality of V :

PV (follower(i, j)) = p. (18)

Observe here the subtle difference: PV (follower(i, j)) in (18) denotes the probability for
the single ground atom (i.e., Boolean random variable) follower(i, j), whereas PV (follower)
in (17) denotes the distribution over the whole follower relation, i.e., the joint distribution
over all follower(i, j) atoms with i, j ∈ V .

M. Jaeger 5:13

Assuming that follower(i, j) means that i is a follower of j, then the probability of
influencer(i) given the follower relation could be defined as a function of i’s in-degree
(number of incoming edges) in this relation, which we denote as din,follower

i . For example,
one could define

PV (influencer(i)|follower) = 1− qdin,follower
i , (19)

for some q ∈ [0, 1]. Again note that the left side of (19) denotes the conditional probability
of the ground atom influencer(i) given the complete specification of the follower relation
over the whole domain. For the specification on the right side of (19) we extract from the
follower relation the in-degrees of nodes as relevant features. (19) is a standard noisy-or
model for independent causal influences. The combined model composed of (18) and (19)
would be supported by almost every SRL framework in the Bayesian network constructor
family. Also a GNN implementing (18) as a link prediction model would be easy to construct.
(19) is based on an underlying probabilistic interpretation, which leads to aggregation by
multiplication, rather than summation. This would typically not be supported by standard
GNN architectures. However, a slightly different function such as

PV (influencer(i)|follower) = σ(din,follower
i), (20)

where σ denotes the sigmoid function, can be easily implemented as a node classification
GNN.

The preceding example has illustrated how the definition of a generative SRL model can
be accomplished by the specification of several conditional probability distributions, each
of which resembles a node classification or link prediction model, similar to what can be
implemented in the form of a GNN. In the following we analyze this relationship more closely.

GNNs tend to be defined in terms of their computational architecture, rather than a
semantic specification of the types of functions they compute. For our purpose, however, it is
important to clarify the mathematical structure of GNN functions. The nature of the output
computed by a GNN depends on their use for a node classification, link prediction, or graph
classification application. In all cases, however, a node-level representation is the crucial
(intermediate) output of a GNN (i.e. the representations H2 in Figure 2). More critical than
the question of what outputs a GNN computes is the question on what class of inputs it can
operate. For now we shall limit our considerations to the case of GNNs operating on simple
attributed graphs G = (V, E, A). Let A denote a fixed set of attributes. For a given set V

we then denote by G(V, E ,A) the set of all graphs with node set V , and attributes A.
Figure 2 may suggest that the inputs to a GNN are feature vectors H0[i, •] for all nodes i.

The GNN would then accept as inputs all graphs (V, E, A) with fixed V, E, but arbitrary
node attribute values A. This is also consistent with the functional representations (7),(8),
respectively (7),(9), if one interprets the occurrence of G here as fixed parameters of the
function, not as inputs that can be varied freely. To obtain a clearer picture, we have to leave
the high level of abstraction adopted in Section 3, and consider the specific functions usually
implementing the function pattern (7) (or the already slightly more specific version (10)).
The most basic form of this function is

hk+1(i) = f

W khk(i) + Uk
∑

j∈Ni

hk(j) + bk

 (21)

where W k, Uk are (nk+1 × nk)-dimensional matrices, bk is a nk+1-dimensional (bias) vector
(where nk denotes the dimension of the node representations at step k), and f is an element-
wise activation function (cf. e.g. [23, Equation (5.7)], [4, Equation (2)]).

AIB 2022

5:14 Learning and Reasoning with Graph Data

In the multi-relational version (11) this becomes

hk+1(i) = f

W khk(i) +
m∑

h=1
Uk

h

∑
j∈N

Eh
i

hk(j) + bk

 , (22)

which captures the essence of e.g. [56, Equation 4] or [68, Equation 2] (but omitting
normalization operations in the aggregations).

The learnable model parameters here are the W k, Uk, bk. If these matrices/vectors
have dimensions that do not depend on n = |V |, a trained model can be applied to graphs
(V, E, A) with arbitrary V and E. A case where these matrices may actually be specific for a
particular |V | is when the initial representation h0 is a one-hot-encoding of node identifiers.
This, however, only makes sense in a transductive learning setting. In inductive scenarios,
the model must be able to generalize to graphs of sizes other than the size of the training
graph, and the G arguments in (7),(10) must be seen as free inputs of the GNN model.
Assuming now such an inductive setting, and focusing on the node embedding functionality
of GNNs, one can describe the semantics of GNNs that can take (multi-relational) graphs
with arbitrary V as inputs as a mapping⋃

V

G(V,R)→
⋃

n≥1
Rn×nm , (23)

such that an attributed graph (V, E, A) or multi-relational graph (V, R) is mapped to an
output in R|V |×nm (nm being the dimension of the final node embedding vectors). If one
rather considers the end-to-end semantics of a GNN as a node classifier, link predictor, or
graph classifier, then the semantics becomes⋃

V

G(V,R)→
⋃

n≥1
Rnc×k, (24)

where c = 1 for node classification, c = 2 for link prediction, c = 0 for graph classification,
and k is the number of possible (node/edge/graph) classes.

Comparing SRL semantics (16) and inductive GNN semantics (23) or (24), we already
observe that both are functions defined on (finite) multi-relational graphs for a given signature,
i.e. the space

⋃
V G(V,R). However, an SRL model computes for an input graph (V, R) a

probability PV (R), whereas on the right-hand side of (24) we find a matrix of feature vectors
for nodes, edges, or the whole graph. To bring these two types of function values together,
we take a closer look at how probability distributions on G(V,R) can be defined following
the factorization strategy already illustrated in Example 3.

Given a fixed V , a multi-relational relational graph G = (V, R) is determined by the
definitions of the relations R = R1, . . . , Rr over V . Let PV denote the probability distribution
over ∆G(V,R) defined by an SRL model. Then PV can be factored according to the chain
rule [44, Sec. 2.1.2.2] as

PV (R) = PV (R1) ·PV (R2|R1) · . . . ·PV (Rh|R1, . . . , Rh−1) · . . . ·PV (Rr|R1, . . . , Rr−1). (25)

Equation (25) is a probabilistic law that holds for any distribution PV ∈ ∆G(V,R), no
matter how PV is defined or learned. In the following we write R1:k for the tuple of relations
R1, . . . , Rk, and R1:k for the corresponding signature of relation symbols. For the class of SRL
frameworks that we have described as ’Bayesian network constructors’, the chain rule also
serves as the core of the representation strategy: in these SRL frameworks, the specification of

M. Jaeger 5:15

the distribution PV is decomposed into specifications of conditional probability distributions.
This decomposition need not be performed at the level of whole relations as in (25). Often
one rather factors the distribution at the level of the ground atoms: a definition of relation
Rh over V is equivalent to a truth assignments to all ground atoms Rh(i) 7→ {true, false}
(i ∈ V arity(Rh); for the case of Rh being a Boolean relation). Furthermore, also the definition
of a relation-level factor PV (Rh|R1:h−1) can most easily be done at the level of ground atoms
in the form

PV (Rh|R1:h−1) :=
∏

i∈V arity(Rh)

PV (Rh(i)|R1:h−1). (26)

Note that (26) now is based on the assumption that ground atoms in the relation Rh are
conditionally independent given the relations R1:h−1. In the form (26) the specification of
PV (Rh|R1:h−1) becomes a mapping of the form

G(V,R1:h−1)→ [0, 1]n
arity(Rh)

. (27)

This is still assuming that Rh is Boolean, and thus PV (Rh(i)|R1:h−1) is given by a single
probability value for Rh(i) being true. With a little additional notation, this generalizes
to arbitrary categorical Rh. The factorization strategy employed by an SRL model for PV ,
and the specification of PV (Rh|R1:h−1) will be uniform across different V . We can therefore
also say that an SRL framework in the Bayesian network constructor class defines for each
relation Rh a mapping⋃

V

G(V,R1:h−1)→
⋃

n≥1
[0, 1]n

arity(Rh)
, (28)

which now is almost identical to (24). It becomes completely identical, if we assume that the
GNN uses softmax normalization on its output to also generate a probability distribution
over node or link labels.

To summarize: the specification of a generative distribution PV can be accomplished
via (25) as a series of probabilistic node classification and link prediction operations (and
possibly predictions of relations of arity higher than 2, if such are present in R). If one
further assumes that predictions for the atoms of each relation are independent of each
other, then an SRL model that uses the chain rule as its underlying representation paradigm
essentially consists of r functions, each of which is equivalent to a GNN function.

In this section we have focused on a comparison of the SRL generative models with
(discriminative) GNN models that are designed for specific prediction tasks. GNN models
have also been proposed for graph generation [42, 76, 47, 11], and one may wonder whether
these are not a more natural point of reference for comparison with SRL frameworks. This is
not the case, however: most of the proposed generative GNN models are in the tradition
of classic random graph models, and their primary purpose is to learn GNN models from
which random graphs can be effectively sampled, such that the distribution of key graph
statistics (e.g., degree distribution, clustering coefficients) in the randomly sampled graphs
matches the distribution in the training data. This is different from the typical SRL scenario,
where the purpose is not to generate full graphs according the distribution PV , but to answer
queries of the form (15). Thus, the objectives for which generative SRL models are built are
much more aligned with the objectives of predictive GNN models, than with the objectives
of generative GNN models. An exception to this observation is [42] where the generative
model is applied to link prediction. This, however, is in a transductive setting where the
generative model is only fitted to a single graph for which then missing links are predicted,
thus again being very different in nature from SRL.

AIB 2022

5:16 Learning and Reasoning with Graph Data

7 RBNs

We now review the SRL framework of relational Bayesian networks (RBNs) [29, 34], which
directly follows the representation paradigm outlined by (25) and (26). The RBN language
consists of a syntax for logic-functional expressions called probability formulas for the
specification of the conditional probabilities PV (Rh(i)|R1, . . . , Rh−1) appearing in (26). We
here give a description of the RBN language that uses a slightly more verbose syntax than the
one introduced in the original papers. The difference is entirely cosmetic, however, and consists
of little more than an alternative choice of terminal symbols in the grammar. The language
of probability formulas consists of four different syntactic constructs. For each construct we
define the syntax, and the semantics that defines how for a tuple i ∈ V arity(Rh) in a graph
G = (V, R1, . . . , Rh−1) the formula evaluates to the probability PV (Rh(i)|R1, . . . , Rh−1). In
the following, F denotes a probability formula, and eval(F, i, G) the probability value it
defines for i in G.

Constants

For a real number q ∈ [0, 1]

F ≡ q (29)

is a probability formula. eval(F, i, G) = q for all i, G.

Atoms

For a relation Rj with j ∈ 1, . . . , h− 1, and variable symbols Y1, . . . , Yarity(Rj)

F ≡ Rj(Y1, . . . , Yarity(Rj)) (30)

is a probability formula with the semantics

eval(F, i, G) =
{

1 if Rj(i) is true in G

0 if Rj(i) is false in G
(31)

This innocuous definition is quite significant, as it transforms logic-symbolic information
represented by a relation Rj into numeric data.

WIF-THEN-ELSE

Assume that F1, F2, F3 are probability formulas. Then

F ≡ WIF F1 THEN F2 ELSE F3 (32)

is a probability formula. ’WIF’ here stands for “weighted if”. The semantics is a weighted
mixture of probabilities:

eval(WIF F1 THEN F2 ELSE F3, i, G) =
eval(F1, i, G)eval(F2, i, G) + (1 − eval(F1, i, G))eval(F3, i, G). (33)

Before we move on to the fourth and most important construct for probability formulas,
we illustrate the use of the ones introduced so far.

M. Jaeger 5:17

Figure 4 A small graph for two relations.

▶ Example 4. Figure 4 shows a small graph G for two relations consisting of a node attribute
R1 = red, and a binary relation R2 = edge. Here the color black is just the negation of the
Boolean attribute red. As always in SRL frameworks, relations are defined on ordered tuples,
that means edges are directed.

Let now positive be a new Boolean node attribute. Associating with positive the constant
probability formula Fpositive(X) ≡ 0.3 would define a probability distribution according to
which each node i has a constant probability of 0.3 of being positive. If new_edge is a new
binary relation, then, similarly, Fnew_edge(X,Y) ≡ 0.3 would define a distribution over the
new_edge relation according to which new_edge(X, Y) is true with probability 0.3 for each
pair i, j ∈ {1, . . . , 7}.

For a slightly more interesting example, let

Fpositive(X) ≡ WIF red(X) THEN 0.3 ELSE 0.9.

Then eval(Fpositive(X), i, G)=0.3 for the red nodes i=3, 4, 6 of G, and eval(Fpositive(X), i, G) =
0.9 for the non-red nodes. For new_edge we could also define

Fnew_edge(X,Y) ≡ WIF edge(Y, X) THEN 0.5 ELSE 0.

This specification would add for every edge (j, i) in the existing edge relation with probability
0.5 the reverse edge (i, j) to the new_edge relation. We can add the condition that in the
existing edge the source node must be red in order for the reverse edge to be generated:

Fnew_edge(X,Y) ≡ WIF edge(Y, X) THEN WIF red(Y)
THEN 0.5
ELSE 0

ELSE 0

We can allow some “syntactic sugar” to make expressions like this more compact and
readable, and write

Fnew_edge(X,Y) ≡ WIF edge(Y, X) ∧ red(Y) THEN 0.5 ELSE 0,

with the understanding that this is not a proper extension of the representation language,
but only a shorthand for expressions that are constructed according to the existing syntax
rules.

The three constructs introduced so far allow to condition the probability of Rh(i) on
Boolean combinations of properties of i according to the relations R1, . . . , Rh−1. The fourth
and central syntactic construct enables us to condition probabilities for i on properties of
other entities j. This construct requires the distinction between input relations Rin and
probabilistic relations Rprob described at the end of Section 6.

AIB 2022

5:18 Learning and Reasoning with Graph Data

Combination Functions

Assume that F1, . . . , Ft are probability formulas.

F ≡ COMBINE F1, . . . , Ft

WITH < combination function >

FORALL < variables >

WHERE < Boolean Rin condition >

(34)

is a probability formula. This syntax rule is dependent on a few supplementary specifications:
< variables > is simply a list of variable names. A < Boolean Rin condition > is a Boolean
expression built from atomic expressions that can be either atoms R(Y) with R ∈ Rin, or
equalities Y = Z between variables (again, no identifiers for specific entities i are allowed).
A < combination function >, according to the original definition of [29], is any function that
maps multisets of probability values {|p1, . . . , pK |} to a probability value. The most important
such combination functions are

noisy-or{|p1, . . . , pK |} = 1−
K∏

i=1
(1− pi) (35)

mean{|p1, . . . , pK |} = 1
K

K∑
i=1

pi (36)

One can relax the condition that both input and output values always have to be probabilities,
and also allow e.g. summation:

sum{|p1, . . . , pK |} =
K∑

i=1
pi. (37)

However, when such constructs are used which can generate numbers outside of [0, 1], then
for the eventual specification of the conditional probability PV (Rh(i)|R1, . . . , Rh−1) these
numbers have to be brought back into the [0, 1] interval. The most useful tool for this is the
combination function which by a slight abuse of terminology we call the logistic-regression
function:

logistic-regression{|p1, . . . , pK |} = 1
1 + exp(−

∑K
i=1 pi)

(38)

Note that we have overloaded the term ’combination function’ to both denote the probability
formula (34), and the concrete numerical combination functions at its core. A full formal
specification of the semantics of a combination function construct requires some care regarding
the variables that appear in different components of the formula, and how substitutions
of domain entities for these variables are performed. However, the basic principle can be
described quite easily: suppose that < variables >≡ Y1, . . . , Yk. Then, for a given graph
(V, R1, . . . , Rh−1, Rin), and a tuple i, the < Boolean Rin condition > defines the set of all
j ∈ V k that make the condition true when one substitutes jl for Yl (l = 1, . . . , k), and
the elements of i for other designated variables appearing in the Boolean condition. Let
J(i) be the set of these satisfying k-tuples of domain elements. For each j ∈ J(i), and
each Fm (m = 1, . . . , t) the value eval(Fm, i, j, G) is already defined. Then the value of the
formula (34) is

eval(F, i, G) = comb{|eval(Fm, i, j, G)|m = 1, . . . , t; j ∈ J(i)|} (39)

where comb is the combination function declared in the WITH clause of (34).

M. Jaeger 5:19

▶ Example 5. Consider again the graph of Figure 4. Assume now that edge ∈ Rin is an
input relation, whereas red ∈ Rprob is probabilistic. Then we can define the conditional
probability for the positive node attribute by

Fpositive(X) ≡ COMBINE 0.7 · red(Y)
WITH noisy-or
FORALL Y

WHERE edge(Y, X).

(40)

The product 0.7 · red(Y) in the COMBINE clause here again is a syntactic shorthand for what
in principle is another product combination function. This formula expresses a standard
causal model according to which each red source node of an edge causes the target node to
be positive with probability 0.7. For each i ∈ {1, . . . , 7} here J(i) is just the set of nodes j

with edge(j, i). We obtain

eval(Fpositive(X), i, G) =

0 for i = 1, 3, 6
1− (1− 0.7) = 0.7 for i = 4, 5, 7
1− (1− 0.7)2 = 0.91 for i = 2

If we want to prevent self-loops of red nodes from being possible causes for that node to
be positive (as happens for node 4 in the example), we can strengthen the WHERE clause to
edge(Y, X) ∧ Y ̸= X.

The formula is an example of a typical model for information or causal influence propaga-
tion along edge relations, and is closely related to the message passing principle in GNNs.
However, combination functions are not limited to this pattern of information diffusion. If
we modify the WHERE clause to be just the logical constant true, then J(i) = {1, . . . , 7} and
eval(Fpositive(X), i, G) = 1 − (1 − 0.7)3 for all i. Thus, the probability for positive(i) now
depends uniformly for all i on the global graph feature of the total number of red nodes.
Exactly the same formula could then also be employed to define the probability for a global
graph label class(). Going in the opposite direction, we could use still the same formula to
define the probabilities for the binary new_edge relation (defining an Erdős-Rényi random
graph model where the edge probability is a function of the number of red nodes in the
graph). Generally, a probability formula with k “free variables” (k = 1 in (40), and k = 0
when the WHERE clause is changed to true) can be used to define conditional probabilities
for relations of arities ≥ k.

8 Expressivity

In Section 6 we have identified at an abstract level the similarities between what GNNs and
SRL frameworks represent and compute. The high-level semantic analogies do not mean that
the concrete functions that are supported by GNN or SRL models have much in common.
However, already Example 5 has indicated that there are some commonalities between the
message passing operations in GNNs, and probabilistic combination operations in SRL,
especially RBNs. In this and the next section we will establish strong correspondences
between the concrete modeling capacities of GNNs and RBNs.

The question of expressivity has been investigated for SRL frameworks [31], and also
has received considerable attention in recent years for GNNs [75, 51, 4, 64, 19]. We start by
looking a bit deeper into the expressivity of GNNs.

AIB 2022

5:20 Learning and Reasoning with Graph Data

Figure 5 Indistinguishable nodes and graphs.

8.1 GNN expressivity
Broadly speaking, here expressivity relates to a GNNs capability to differentiate between
different inputs. The focus can be on differentiating between different input graphs, or
between nodes in graphs. In both cases, the ability to differentiate between inputs is a
pre-condition for being able to support a rich class of predictive functions.

The node-level version of expressivity can be cast as the following question: for what graphs
G = (V, E), G′ = (V ′, E′), and nodes i ∈ V, i′ ∈ V ′, can a particular GNN architecture (or a
certain class of architectures) learn representations hm(i), hm(i′), such that hm(i) ̸= hm(i′)?
At graph level, the question becomes for which pairs of graphs G, G′, the value of the readout
function (9) can be different. Since (9) depends on node representations as input, the
discrimination capabilities at node and graph level are tightly linked.

▶ Example 6. Figure 5 (adapted from [1]) shows three graphs G1, G2, G3. The nodes here
do not have any attributes or identifiers, so the initial representations h0(i) would be the
same constant for all nodes i in all three graphs. In a computation of h1 by any form of
message-passing update (7), each node i will also obtain the same representation h1(i),
because all nodes sum identical h0 representations for exactly two neighbors j. By induction,
representations hk(i), hk(j) for i ̸= j can never become different at any step k. At the
graph level, however, the three graphs could be distinguished by a final readout aggregator
(9), because that would receive as input multisets of different cardinalities for the three
graphs. Finally, if one considers the graph G4 = G1 ∪G2, then this graph would no longer
be distinguishable from G3, because now (9) receives as input for the both graphs multisets
of the same cardinality of identical node representations.

Many different approaches have been proposed to make GNNs more expressive than what
can be achieved by the basic form of message passing (21) that we assumed in Example 6. One
possible strategy is to consider node identifiers: it is clear that when unique node identifiers
are used as initial representations, then already the initial representation distinguishes all
nodes, and our expressivity question at the node level becomes moot (though graph-level
discrimination is not immediately solved by node identifiers). However, as discussed in
Section 6, the use of node identifiers would severely limit inductive generalization capabilities
of models that depend on them (cf. Figure 3). A few papers have studied the use of randomly
generated initial attributes as a means to combine some benefits of identifiers with (still
somewhat limited) generalization abilities [65, 1]. A full review of these approaches is beyond
the scope of this article. However, the following example (inspired by [65]) illustrates the
main traits of these approaches.

▶ Example 7. Consider again the graphs in Figure 5. We shall see that by assigning
random initial node attributes, we can construct a GNN, which otherwise follows the simple
architecture (21), that can identify nodes that lie on a cycle of length 3, and hence can
distinguish the nodes in G1 from the nodes in G2 and G3. Due to the probabilistic nature of
the construction, this will only be guaranteed with a certain probability 1− δ that can be
brought arbitrarily close to 1.

M. Jaeger 5:21

Let N be an integer that one should think of as being significantly larger than the
cardinalities n of our input graphs. For a graph G = (V, E), and node i ∈ V we generate a
random initial N -dimensional h0(i) in the form of a random one-hot vector (i.e., h0(i) has a
1 in one randomly chosen position, and 0s everywhere else). Let idx(i) ∈ 1, . . . , N denote
the index at which h0(i) is 1. For a given δ > 0 we can choose an N , such that for graphs
with |V | ≤ n with probability at least 1− δ the idx(i) are different for all nodes i ∈ V . The
h0(i) then can be seen as random node identifiers. For k = 1, 2, 3 let the dimension of hk be
2N . We use the first N components of these representations to just copy the initial random
identifiers h0. The last N components are used to represent which nodes are reachable by
a path of length k. This can be accomplished by functions of the form (21) as follows: for
k = 1 let W 0 be the 2N ×N matrix that consists of an N ×N identity matrix in the upper
half, and is zero in the lower half. Similarly, U0 is the 2N ×N matrix that has the identity
matrix in the lower half. With b0 = 0 and f the identity function, then h1(i) will contain a
copy of i’s random initial one-hot vector in the first N components, and h1(i)[N + idx(j)] = 1
iff (i, j) ∈ E, i.e., j is reachable from i by a path of length 1. The construction for k = 2, 3 is
almost the same, with minor modifications: the matrices W k−1, Uk−1 are now 2N × 2N

matrices that have N × N identity matrices in the upper left and lower right quadrant,
respectively. The argument vector of f() in (21) can now have integer values > 1 in some of
the components N + idx(j) if there exist multiple paths from i to j. This can be brought back
to a pure 0/1-valued indicator vector for the existence of paths by using for f the truncated
Relu function f(x) = min(1, Relu(x)).

Node i now lies on a cycle of length 3 iff h3(i) has a 1 both in components idx(i) and
N +idx(i) (i.e. i is reachable from itself by a path of length 3). Defining h4(i) = Relu(h3(i)[1 :
N]− h3(i)[N + 1 : 2N]− 1) ∈ RN (which still fits the functional form (21)) then gives an
N -dimensional representation of i that has a single 1 in component idx(i) if i lies on a cycle
of length 3, and is 0 everywhere otherwise. A final summation h5(i) =

∑N
h=1 h4(i)[h] then

gives a scalar that classifies i as lying on a length 3 cycle or not.

Example 7 is quite representative of the general results of [65, 1] in that:
the random initial features are exploited by otherwise standard GNN architectures;
high-dimensional representations hk are required;
for a given level 1− δ of confidence in the correctness of the outcomes, the set of possible
inputs has to be constrained, and thus the inductive generalization capabilities are limited.

Several other approaches have been proposed for increasing the expressivity of GNNs:
the use of higher order GNNs in which representations are not associated with single
nodes, but with tuples or sets of nodes [51, 72].
more sophisticated functions than simple summation as in (21) for aggregating represent-
ations of neighbor nodes. These functions ideally are injective, i.e., map distinct multiset
inputs to distinct outputs, and thereby preserve discriminative information provided by
graph neighbors to the highest possible extent [75]. We return to this in Section 11.2.

8.2 The ACR architecture and first-order logic
A relatively simple approach to increase the expressivity of the basic message passing archi-
tecture (7) was proposed in [4], based on the observation that with (7) node representations
hk(i) are limited to information that is visible within a k-hop neighborhood of i. This can
easily be remedied by already allowing in the computation of node representations global
readout aggregations (9). The abstract representation update function then becomes

AIB 2022

5:22 Learning and Reasoning with Graph Data

hk+1(i) = F k(hk(i), {|hk(j)|j ∈ Ni|}, {|hk(j)|j ∈ V |}, G), (41)

which can be instantiated to a concrete form analogous to (21):

hk+1(i) = f

W khk(i) + Uk
∑

j∈Ni

hk(j) + Rk
∑
j∈v

hk(j) + bk

 . (42)

For the resulting aggregate-combine-readout (ACR) GNN architecture, [4] then derive an
expressivity analysis using first-order predicate logic. We shall here not give a full review of
first-order logic (FOL) (standard references are [63, Chapter 8], [16]), but only illustrate the
main issues by examples.

A first-order formula ϕ(X) with one free variable X can define properties of nodes in a
graph. For example, the formula

ϕ(X) ≡ ∃Y1, Y2, Y3 : (E(X, Y1)∧E(X, Y2)∧E(X, Y3)∧¬Y1 = Y2∧¬Y1 = Y3∧¬Y2 = Y3) (43)

says that X is connected to three nodes Y1, Y2, Y3 that are all different, i.e., X has a degree
of at least 3. Assuming that the nodes in the graph have color attributes red,green and blue
(also allowing that several of these attributes are true at the same time for a single node),
then

ϕ(X) ≡ blue(X) ∧ ∃Y : red(Y) (44)

says that X is blue, and there exists at least one node Y that is red. The two-variable
fragment of FOL, denoted FOL2, consists of all formulas that contain at most 2 distinct
variables. Thus, (44) belongs to FOL2, while (43) does not. An extension of the syntax of
FOL is by counting quantifiers ∃≥k that directly state that there exist at least k different
entities with a certain property. Using counting quantifiers, one can rephrase (43) as

ϕ(X) ≡ ∃≥3Y : E(X, Y). (45)

This formula is equivalent to (43), but now it only makes use of two distinct variables: (45)
is an element of the two-variable fragment with counting quantifiers, denoted FOLC2.

First-order logic and each of its fragments or extensions has a certain ability to discriminate
nodes in a graph. Specifically, consider the set of graphs G(·, E ,A) := ∪V G(V, E ,A) where
the signature A only contains Boolean attributes. A (Boolean) node property for this set of
graphs is a mapping ρ that takes a graph G = (V, E, A) ∈ G(·, E ,A) and a node i ∈ V as
input, and returns 0 or 1. A node property is captured by a logic formula ϕ(X) if ρ(G, i) = 1
iff ϕ(X) evaluates to true for X = i. A central result of [4] then is

▶ Theorem 8 ([4, Theorem 5.1]). If a node property ρ is captured by a formula in FOLC2,
then ρ can be computed by an ACR-GNN of the form (42) with f the truncated Relu activation
function, and the node attribute vectors A[i, •] as initial representations.

This result is remarkably similar to an expressivity result for RBNs given in [29]. Adapted
to our current context, that result can be stated as

▶ Theorem 9 ([29, Theorem 1]). If a node property ρ is captured by a formula in FOL, then
there exists a probability formula Fρ(X) that only uses the noisy-or combination function,
such that eval(Fρ(X), i, G) = ρ(G, i).

M. Jaeger 5:23

The proof of Theorem 8 is non-trivial, and depends on an alternative characterization of
FOLC2 as a special modal logic. The proof of Theorem 9, on the other hand, is straightforward,
as the construction of a probability formula corresponding to a given FOL formula ϕ can
simply follow the structure of ϕ, using wif-then-else constructs to capture Boolean operations,
and noisy-or combination functions to capture existential quantification.

Theorem 9 is somewhat stronger than Theorem 8, as FOL is more expressive than FOLC2.
Moreover, the original theorem of [29] is more general than what is stated in Theorem 9, as
beyond node properties it also covers properties of whole graphs, and of k-tuples (k ≥ 2) of
nodes. The ability to express features of k-tuples of nodes via probability formulas with k

free variables is key for the high flexibility and expressivity of RBNs and many other SRL
frameworks (using, of course, somewhat different representation techniques than probability
formulas). This also ensures that probability formulas are still more powerful than higher
order GNNs mentioned above.

Theoretical expressivity analyses are mostly based on classes of properties that can be
expressed in a formal framework, such as logic characterizations that we have focused on here,
or classes of Weisfeiler-Lehman (WL) graph isomorphism tests, which have played a central
role in the expressivity analysis of GNNs [64]. However, in reality a GNN or SRL model will
rather need to represent complex noisy relationships, not clear-cut logical properties. In the
next section we will show that RBNs can also represent all functions that do not represent
logic properties, and which can be represented by standard GNN architectures.

9 RBN encodings of GNNs

In this section we show how an ACR-GNN composed of layers of the form (42) can be
encoded as a probability formula as introduced in Section 7. Let N be an ACR-GNN defined
by matrices/vectors W k, Uk, Rk, bk (k = 1, . . . , m), as well as a final output (8) or readout
(9) layer. Assume, for now, that the function f in (42) is the sigmoid activation function.
Also assume that all node attributes A are Boolean, represented by one-hot encodings in h0.
We show that for each k, and each l = 1, . . . , nk, there exists a probability formula Fhk[l](X),
such that for all attributed graphs G = (V, E, A), and all i ∈ V :

hk(i)[l] = eval(Fhk[l], i, G). (46)

First consider k = 0 and 1 ≤ l ≤ n0. Then there exists an attribute A ∈ A, and a
truth value τ ∈ {true, false}, such that h0(i)[l] is the 0,1-valued indicator for whether node i

has value τ for A. For our Boolean attributes A this somewhat redundant encoding could
obviously be reduced to a single 0,1-valued input, using 0 for τ = false, and 1 for τ = true.
A “mechanical” application of one-hot encodings will give us this redundant two component
encoding, however. We then define

Fh0[l](X) ≡
{

A(X) if τ = true
¬A(X) if τ = false (47)

where ¬A(X) is a shorthand for WIF A(X) THEN 0 ELSE 1. Now assume that formulas Fhk[l]
have been constructed for some k ≥ 0. We then can first define formulas that compute the
two sums in (42). For the first sum over the neighbor representations, we can use

F∑
E(·,X)

hk[l](X) ≡ COMBINE Fhk[l](Y)

WITH sum
FORALL Y

WHERE E(Y, X).

(48)

AIB 2022

5:24 Learning and Reasoning with Graph Data

A similar formula F∑
V

hk[nk]() is used to represent the second sum ranging over all nodes
j ∈ V . In that formula the WHERE clause simply is the Boolean true constant, and the
formula then does not depend on the node X. Let us abbreviate the first sum in (42) by hk

i

(this one depends on i), and the second sum by hk (no dependence on i). Then

hk+1(i)[l] = f(W k[l, •] · hk(i) + Uk[l, •] · hk
i

+ Rk[l, •] · hk + bk[l]). (49)

Expanding the dot products between nk-dimensional vectors contained in this expression, we
can write this as the probability formula

Fhk+1[l](X) ≡ COMBINE W k[l, 1] · Fhk[1](X),
...
W k[l, nk] · Fhk[nk](X),

Uk[l, 1] · F∑
E(·,X)

hk[1](X),

...
Uk[l, nk] · F∑

E(·,X)
hk[nk](X),

Rk[l, 1] · F∑
V

hk[1](),

...
Rk[l, nk] · F∑

V
hk[nk](),

bk[l]
WITH logistic regression
FORALL

WHERE true

(50)

The products appearing here are products of scalar quantities defined by probability formulas,
and strictly speaking another shorthand for formulas of the form WIF F1 THEN F2 ELSE 0.
Formula (50) is a degenerate combination function in the sense that it does not aggregate
over any entities, as visible from the empty FORALL clause (the following WHERE clause then
is somewhat redundant). Aggregation here only is over the fixed number of t = 3nk + 1
sub-formulas. Since the logistic-regression combination function sums its arguments, and
then applies the sigmoid function, (50) computes exactly (48), when f there is the sigmoid.

In a similar manner, also probability formulas representing the components of an output
(8) or readout (9) layer can be constructed. To accommodate other activation functions, such
as Relu or truncated Relu, corresponding combination functions have to be used.

In terms of representation size, the encoding of (42) by probability formulas clearly leads
to a significant blow-up, as the matrix-vector multiplications are decomposed down to the
level of operations on scalars. It is important to realize, however, that mathematically the
encoding is faithful: the evaluation of the probability formulas leads to exactly the same basic
multiplication, addition, and sigmoid application operations, as in a “forward propagation”
evaluation of the neural network layers. More importantly, also gradient-descent based
learning of the parameters W k, Uk, Rk, bk using a standard algorithm like LBFGS [54]
or ADAM [40] leads to exactly the same algorithmic steps, assuming that equivalent loss
functions for the final output of the probability formula, respectively the ACR-GNN, are
used (cf. Section 12.2).

M. Jaeger 5:25

We have here shown how GNNs can be represented as RBNs (focusing on ACR-GNNs, but
similar constructions can be done for other GNN architectures). The central message-passing
paradigm of GNNs can also be captured by other SRL frameworks than RBNs, especially
frameworks in the Bayesian network constructor class, which all contain conditioning on
relational neighbors as a central modeling tool. However, RBNs are specifically well-suited
for a direct encoding of GNN architectures, because of the following features:

The translation of symbolic to numeric data performed by the semantics (31) of atomic
probability formulas directly bridges the gap between symbolic SRL and numeric GNN
approaches.
The recursive syntax definition of probability formulas directly corresponds to the “deep”
structure of GNN architectures.

Obviously, just encoding a GNN as an RBN serves little purpose if one then solves identical
tasks using the RBN representation, as one would solve with a GNN. Indeed, this would be a
rather bad idea, because even though the RBN representation is, in principle, mathematically
and algorithmically equivalent to the GNN model, it is in practice computationally much
less efficient. A main reason for this is that GNNs only permit aggregation operations over a
node’s neighbors (or, for a readout, over all nodes in the graph), and this corresponds to
simple matrix-vector multiplications involving the adjacency matrix. RBNs, on the other
hand, support aggregations over all kinds of sets of tuples of nodes that can be defined with
a Boolean condition in the WHERE clause of a combination function. The retrieval of the
relevant tuples is implemented by what amounts to a general database query function. Even
the simple queries ’FORALL Y WHERE E(Y, X)’ we encounter in the RBN encoding of a GNN
are then a bit more involved to compute than simply retrieving row X of E’s adjacency
matrix. Encoding a GNN model in an RBN can be beneficial, however, if one then leverages
capabilities of SRL models that are not provided by a GNN:

Solving inference tasks other than the single prediction task for which a GNN is trained.
Combining low-level “neural” model components with higher level symbolic representa-
tions, e.g. expressing expert domain knowledge.

We will illustrate the first point in Example 11 below. First we consider an example for
ACR-GNNs in their original form, however.

▶ Example 10. Barceló et al. [4] considered logically defined Boolean class labels for nodes
in attributed graph over a signature of color attributes A = {blue, green, yellow, red, purple}.
The simplest label definition considered in [4] is expressed by the FOLC2 formula

α1(X) ≡ ∃[8,10]Y (blue(Y) ∧ ¬edge(X, Y)), (51)

where ∃[8,10] is shorthand for ∃≥8...∧¬∃≥11.... Using the property α1 defined by this formula,
a more complex property α2 is defined by

α2(X) ≡ ∃[10,20]Y (α1(Y) ∧ ¬edge(X, Y)). (52)

According to Theorem 8, the node properties (51), (52) can be captured by ACR-GNNs.
For (51) it is sufficient to use an ACR-GNN with a single ACR layer (42) of dimension
n1 = 2: the parameters W 1, U1, R1, b1 can be set such that h1(i)[0] becomes a 0,1-valued
indicator for whether node i has at least 8 blue non-neighbors, and h1(i)[1] indicates whether
this number is no more than 10. Based on this representation, an output layer (8) can then
provide an exact classification of (51). Similarly, (52) can be represented by a two-layer
ACR-GNN with n1 = n2 = 2.

AIB 2022

5:26 Learning and Reasoning with Graph Data

Table 2 ACR-GNN accuracies for α2.

ni =
m 2 4 16 64 128
1 0.756|0.407 0.698|0.697 0.830|0.713 0.831|0.716 0.833|0.714
2 0.696|0.502 0.683|0.649 0.833|0.704 0.891|0.886 0.869|0.795

Using the ACR-GNN implementation provided by the authors of [4] 1 we can re-create
and extend some of their experiments. Table 2 shows the accuracies for the property α2
that are obtained by ACR-GNN models trained on randomly generated graphs of sizes
40 ≤ n ≤ 50. To test the generalization capabilities of the learned models, they are tested
on graphs in the same size range, and also on a test set of slightly larger graphs with sizes
ranging in 51 ≤ n ≤ 60. In Table 2 the accuracies for these two different test sets are shown
in the format < small graph accuracy > | < large graph accuracy >. In our experiment we
vary the number of layers m = 1 or m = 2, and their dimensions ni (for m = 2, always
n1 = n2). The base frequency of nodes with the α2 property is 0.643 and 0.396 for the small
and large graphs test sets, respectively. One can see that even though the architecture with
m = 2 and ni = 2 is sufficient to capture α2 in principle, the stochastic gradient optimization
here does not succeed to construct a model with an accuracy that is notably better than
a baseline predictor. To obtain higher accuracies, a significant over-parameterization is
required (ni = 64 corresponds to the experimental setting of [4]). We will return to the
benefits of over-parameterization in neural network learning in Section 12.3. For the simpler
property α1, a similar experiment leads to perfect accuracies of 1.0 in all settings, and for
both test sets.

▶ Example 11. We now consider RBN models for the simpler target α1 (51). We consider
three different models:

RBN-manual: a manually designed RBN that directly encodes the logical formula α1
following the construction behind Theorem 9.
RBN-gnn-learned: an RBN encoding of an ACR-GNN with one hidden layer of dimension
4, following the construction described in Section 9. As described in Example 10, this is
(more than) enough to represent a precise model for α1. Parameters learned from training
data using stochastic gradient descent.
RBN-gnn-manual: the same RBN structure as the previous, but parameters set manually
to encode α1 (most of the manually set parameters are zeros, since only two of the four
dimensions are actually needed).

For all three models we can consider a discriminative model where the attribute blue is
assumed to be a fixed input (as it would be for a GNN model), and a generative version
where we also take blue to be probabilistic. This is easily effected by adding to the RBN a
very simple formula

Fblue(X) ≡ 0.26

that specifies the marginal probability for a node to be blue. The value 0.26 is the empirical
probability of blue in the training data, which in our two manual models is set manually,
and in the learned model is learned jointly with the other model parameters. Note that the
edge relation still is assumed to be given as input, so we still do not have a fully generative
model for graphs, but only a conditional model for the attributes given the graph structure.

1 https://github.com/juanpablos/GNN-logic

https://github.com/juanpablos/GNN-logic

M. Jaeger 5:27

Figure 6 Most probable explanations in Example 11.

Evaluated on two test sets with different graph sizes, as described in Example 10, all three
discriminative models achieve an accuracy of 1.0 for both test sets (recall that the same was
observed for ACR-GNNs on the simple α1 target). Using the generative models, we now can
also consider queries beyond the prediction of α1. One interesting type of query is to turn
the role of input attribute blue and target α1 around, and assume that given observed α1
labels, we want to predict the (now) unobserved attribute blue. One particularly interesting
version of this question is to ask for the most probable explanation (MPE) of the observed
α1 values, i.e. to find the assignment of blue attributes that makes the observed α1’s most
probable.

Figure 6 on the left shows a small graph with 21 nodes where nodes with the observed α1
label are marked by an orange color segment. Edges here are shown as directed, but this
direction is ignored by the models. From any of our generative models we can now calculate
an MPE assignment vector b for the blue attribute that maximizes the probability PV (α1|b)
(this is a non-trivial optimization problem, which is tractable for this small example). Figure 6
in the middle shows the MPE assignment of blue that is obtained from either of the two
manual RBN models. In this explanation, there is a total of 9 blue nodes, and nodes have the
α1 label iff they are connected to at most one of these blue nodes, i.e., (51) holds. Performing
MPE inference for the RBN-gnn-learned model yields the assignment of the blue attribute
shown in the right graph of Figure 6. This explanation is inconsistent with the logical
definition of the α1 label, since here there are only 4 blue nodes in the domain, which implies
that α1 should be false for all nodes, contrary to the given observation. This indicates that
the learned model does not generalize to this MPE inference task.

The reason for this failure of the learned model could be twofold: 1) the model, even
though perfectly accurate on test sets that are very similar or only slightly larger than the
training examples, does not generalize to our MPE query graph, which is smaller than the
training examples, and may also exhibit different connectivity patterns of the edge relation;
2) the training objective is not appropriate for solving MPE tasks. Turning to point 2)
first: as we will show in Section 12.2 below, the objective function we use for training
the RBN is equivalent to the classification loss function used for training an ACR-GNN
classifier. However, both are equivalent to maximizing the log-likelihood, which can be seen
as a “universal” objective for learning a generative probabilistic model for all probabilistic
inference tasks. This means that even if right from the beginning we had intended our model
to be used for MPE inference as considered here, our training objective would not have
been different. That indeed point 1) seems to be the issue is revealed when we now consider
our original classification task for the graph of Figure 6: we use this graph with the blue
attribute set as in the middle graph of Figure 6. For this input graph the learned model

AIB 2022

5:28 Learning and Reasoning with Graph Data

only achieves an accuracy of 0.47 for classifying the α1 label for the 21 nodes. Thus, the
learned model does not capture the logical nature (51) of the target well enough in order to
generalize to input graphs that are rather different in size (and possibly structure) from the
training examples.

Lastly, we consider an RBN model that combines domain knowledge with learning:
suppose it is known that the α1 label depends on the number of blue non-neighbors, but
the exact bounds [8, 10] in (51) are unknown. Our qualitative knowledge then is captured
by the logical form of the probability formulas in RBN-manual. The missing quantitative
information corresponds to unknown values of the numeric constants in these formulas.
Learning these parameters gives us a model RBN-manual-learned with manually defined
structure and learned parameters. This model then turns out to perform perfectly well both
on our classification and MPE tasks.

10 Dealing with Homophily

A key property in network data is the phenomenon of homophily: connected entities tend
to be similar. This phenomenon is particularly well documented for social networks, where,
e.g., a friendship relation between two people is indicative of similar political leanings, social
status, and other properties (cf. (13)). Similar in other types of networks: in bibliographic
networks, papers citing each other are likely to be in the same subject area. In sensor or
traffic networks, entities that are connected by a spatial proximity relation tend to have
similar properties. When a given class label exhibits homophily, it will be important to
exploit this for classification. Taking homophily into account has two different aspects:

Collective classification: the prediction of class labels for entities should be done jointly
for all (unlabeled) entities, such that the joint labeling exhibits homophily.
Autoregression: the prediction of a class label depends on observed labels for some entities.

These two aspects are non-exclusive, but distinct. For illustration, consider the two
small graphs in Figure 7. In the graph on the left an attribute with possible values ’yellow’
and ’blue’ is observed for all nodes, whereas the class label with values ’red’ and ’black’ is
unobserved for all nodes. In the graph on the right, the class label is observed for three
nodes. Assuming that the class label exhibits homophily (maybe this is learned from some
other labeled training graphs), one would want to assign to all the nodes belonging to one of
the two cliques in the graph the same label. This would be a case of collective classification,
where the label assigned to one node constrains what label we assign to other nodes. In the
graph on the right, homophily would indicate that the nodes in the clique at the top should
be labeled ’red’, and the nodes in the bottom clique be labeled ’black’. This would then
require an autoregressive component in the classification. Homophily mostly plays a role in
transductive problem settings, as illustrated by the graph on the right.

Among SRL frameworks, the Markov network constructor and probabilistic logic pro-
gramming types are able to model homophily most easily. For Markov logic networks an
example is already given by (13): the undirected nature of these logical feature specifications
and the Markov network semantics fit very well mutual, symmetric dependencies between
attributes due to homophily. Probabilistic logic programs can represent autocorrelation via
clauses like

republican(X)← friends(X, Y) ∧ republican(Y).

The least fixed-point semantics of the logic program then allows to propagate the republican
label from some observed republicans to other unlabeled entities (the probabilistic component
of the program would make this propagation probabilistic). For SRL frameworks of the

M. Jaeger 5:29

Figure 7 Homophily challenge.

Bayesian network constructor type the required acyclicity of probabilistic dependencies is a
certain hurdle for a direct modeling of homophily. We will show below how this hurdle can
be overcome.

GNNs encounter inherent challenges for dealing with homophily. A GNN for predicting a
node class label is relying on node features other than the label for making this prediction.
If nodes are indistinguishable based on the available features, they can only be assigned
the same label (cf. Section 8). For our example in Figure 7 on the right this means that a
predictive model for the class label that only is a function of the observed color attribute
and edge relation must give identical labels to the nodes in the sets {1, 4, 6, 8}, {5, 7} and
{2, 3, 9, 10}, respectively, because nodes in these sets are pairwise indistinguishable based on
these two relations. This limitation of GNNs has motivated the combination of GNNs with
Markov logic networks in [59].

A standard strategy in probabilistic modeling for representing dependencies that cannot
be explained by observed features is the introduction of latent variables. For RBNs, modeling
with latent numeric relations has been introduced in [36]. Originally mostly motivated by
applications in community detection, the same technique also applies to classification under
homophily.

▶ Example 12. A numeric k-ary relation r simply is an assignment of a real number to
ground atoms r(i1, . . . , ik) (ij ∈ V). Numeric relations can represent actual observable
numeric data, such as numeric node attributes or edge weights. We use numeric relations as
latent features that are not observed, and that are not part of the generative model. For the
simple scenario as depicted in Figure 7 we may assume that both the edge relation and the
class label depend on an unobserved node feature that determines both the propensity of
nodes to connect by an edge, and the likely value of their class label. Representing this node
feature by a latent numeric attribute latent(X), we can model the edge and class relation by
the two formulas

Fclass(X) ≡ COMBINE latent(X) WITH logistic regression
Fedge(X,Y) ≡ COMBINE latent(X) · latent(Y) WITH logistic regression

(53)

Assuming that all i ∈ V are assigned a value latent(i) ∈ R, the probability for class(i) then
simply is 1/(1 + e−latent(i)), and the probability for edge(i, j) is 1/(1 + e−(latent(i)·latent(j))
(we omit the color attribute here, since it is not instrumental for the prediction of the class
label). The extremely simplistic model (53) could be refined by allowing more than one
latent attribute (i.e., a latent feature vector, rather than a latent scalar value), and refining
the functions that map latent feature values to probabilities.

AIB 2022

5:30 Learning and Reasoning with Graph Data

Table 3 Latent feature values and predicted probabilities from model (53).

i 1 2 3 4 5 6 7 8 9 10
latent(i) 1.49 1.52 1.49 1.52 1.15 −1.49 −1.15 −1.49 −1.52 −1.49
P (class(i) = red) 0.81 [1.0] 0.81 [1.0] 0.75 0.18 0.24 0.18 [0.0] 0.18

Given observed edge and class data, one can learn values for the latent attribute that
best explain the data based on the maximum likelihood principle (cf. Section 12.2 below).
Importantly, learning latent numerical relations in this manner is treated just as part of the
general parameter learning problem, and does not require any special purpose algorithms.
Learning the latent values and predicting the class labels for the 10 nodes gives the result
shown in Table 3. We see that nodes 1-5 in the upper clique are clearly classified as red, and
those in the lower clique as black.

Somewhat analogous to the latent variable modeling approach we have taken here within
the RBN setting are the auto-encoders in neural networks, and especially graph auto-encoders
for graph data [42]. Graph auto-encoders also construct latent feature representations of
nodes that are calibrated to explain observed edges with a function corresponding to our
Fedge(X,Y) in (53) (this type of model actually has a longer history in statistical graph
analysis [26]). Originally proposed in the context of link prediction tasks, graph autoencoders
could also be a basis for node classification under homophily.

11 Aggregation

11.1 Invariance and Sum Aggregation
The core element both in GNN and SRL models of relational data is the aggregation of
features of neighboring nodes. Since there is no defined order on the neighbors of a node, such
an aggregation should not be based on any assumed ordering. In our definitions, such as (7)
for GNNs, and the definition for combination functions in Section 7 for RBNs, this has been
taken into account by specifying that the aggregation must be a function of a representation
of the neighbors as a multiset. Aggregation by summation as in (21) is consistent with such
a multiset view of the inputs, because the sum does not depend on the order of summation.
In practice, however, graphs are usually represented by adjacency matrices or adjacency lists
that induce an (arbitrary) order on the nodes.

In the case of GNNs, matrix and vector representations of graphs and neighbor lists are
often assumed in the basic definitions of the models (e.g. [41, 79, 74], whereas e.g. [24]
uses set notation in the model specification). The requirement that the implicit ordering of
nodes induced by these representations does not affect the results is then often just implicitly
taken into account by only considering order independent operations like summation, or the
maximum or minimum operators. A more explicit and systematic consideration of admissible
aggregation operations on vector representations of multisets has been initiated in [77]. We
here briefly review these initial results. Reformulating the definitions of [77] slightly, we
formalize our requirement as follows.

▶ Definition 13. Let X be a set (to be thought of as a set of possible feature values). A
function

f :
⋃

n∈N
Xn → R

M. Jaeger 5:31

is called an X -tuple aggregator. The function f is permutation invariant, if for all n and all
permutations π of {1, . . . , n}, and all x1, . . . , xn ∈ X

f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) (54)

holds.

We note that regardless of the nature of X , the value of the aggregator here is required
to be a real number. This is somewhat contrary to the idea that an aggregator of values
from X should return another value in X . However, often X will itself just be R, or a subset
of R, in which case the return value of f lies in the same space as the values it aggregates.
The following is then proposed as Theorem 2 in [77], and here given in a generalized form as
described in Appendix A.3 in [73].

▶ Theorem 14 ([77, 73]). Let X be countable. Then an X -tuple aggregator f is permutation
invariant iff there exist functions ϕ : X → R and ρ : R→ R, such that

f(x1, . . . , xn) = ρ(
∑

i

ϕ(xi)). (55)

The restriction of this theorem to countable X has caused some concern already in [77],
and amplified in [73]. However, countability of X per se is not a major problem: in reality,
initial (node) features will be categorical attributes (or one-hot encodings thereof), or finite
precision numerical attributes. Thus, a countable X , in principle, is sufficient to represent
such initial features. Importantly, then, if X is countable, then so is

⋃
n∈N Xn, and hence

the range of f in R. This means that countability of the feature space Xk at the kth GNN
layer will be guaranteed, if the input feature space is countable.

The implications of Theorem 14 have sometimes been overstated: by appealing to universal
function approximation properties of neural networks [28] it is suggested that it is sufficient
to use summation for aggregation, in combination with additional perceptron layers that are
trained to implement ρ and ϕ (e.g.[23, Section 5.2.2], [75]). However, as already pointed out
in [73], the function approximation properties of neural networks are not sufficient in this
case. To illustrate this point, we here reproduce the proof of Theorem 14 as given in [73].

Proof of Theorem 14. Let x1, x2, . . . be an enumeration of X . Let p1, p2, . . . be an enu-
meration of all prime numbers. Define ϕ(xi) := − log pi. Then, by the unique prime
factorization property of the integers, for any tuple x = (xi1 , . . . , xin

) ∈ Xn the sum∑n
j=1 ϕ(xi) = log 1∏n

j=1
pij

is an R-valued code Φ(x) for x, such that the encoding Φ is

injective on
⋃

n∈N Xn, and hence invertible. One can now simply define ρ(r) := f(Φ−1(r))
to obtain a representation of f in the form (55). ◀

The functions ϕ, ρ as constructed in this proof are outside the scope of the universal
representation theorems for neural networks, which only apply to functions that are defined
on a compact subset of the reals, and are continuous. To even be able to consider continuity
in the sense of the representation theorems, the function ϕ would need to be defined on R
(or Rm, for some m > 1), not on X . This, however, can be overcome by assuming (without
much loss of generality) that X ⊂ R, and that ϕ actually is defined on all of R. However,
then an extension to R of ϕ as constructed in the proof can either not be continuous (if X
has an accumulation point in R), or not be limited to a compact set (if X is unbounded
in R). Due to these limitations of Theorem 14 there is still a need to consider aggregators
outside the class defined by (55). Possibilities include the use of a fixed selection of standard
aggregators [10], or the use of a parametric family of aggregators whose trainable parameters
can be optimized to learn customized aggregation functions for each learning task [55].

AIB 2022

5:32 Learning and Reasoning with Graph Data

11.2 Injectivity and Expressivity
The key element of the proof of Theorem 14 is the construction of an injective function Φ(x)
on the space of multisets x. The problem of constructing injective functions on multisets of
feature values has been a key element in the study of the expressiveness of GNNs, also outside
the context of investigating the universality properties of sum-aggregation (e.g.[75, 64]).
An injective aggregation function would allow to preserve the full information of a node’s
neighbors’ features {|hk(j)|j ∈ Ni|} in the updated node representation hk+1(i), and thereby
enable the construction of maximally discriminative node (or graph) classifiers. However,
classic results in mathematics impose strict limits to the endeavor of implementing injective
aggregation functions using continuous functions as provided by neural network layers. For
our purpose, we can formulate this as follows:

▶ Theorem 15 ([8, 70]). There does not exist a continuous injective function from Rn to
Rm if n > m.

In our context, n in this theorem would be the cardinality of a multiset of real numbers,
and usually m = 1 as the target dimension for the aggregator. We now have to be a little
bit careful, since our desired permutation invariance (54) actually says that we want our
aggregator not to be injective on Rn, but only to return distinct values for different multisets.
We can use ordered vectors as unique representatives for multisets: defining

Rn,≤ := {(r1, . . . , rn) ∈ Rn|ri ≤ ri+1, i = 1, . . . , n− 1}, (56)

we obtain a one-to-one correspondence of multisets of cardinality n and Rn,≤. We can now
re-state Theorem 15 as

▶ Theorem 16 ([8, 70]). There does not exist a continuous injective function from Rn,≤ to
Rm if n > m.

This theorem imposes limits on the possibility of constructing general and expressive
aggregation function for the feature space X = R already in the case of a fixed cardinality of
multisets. However, the theorem does not exclude the possibility of continuous functions on
Rn,≤ that are injective on a countable subset Xn ⊂ Rn, which, as argued above, may be all
we need. In fact, as the following example shows, this can be done.

▶ Example 17. Let X = N. We construct a function f : ∪n∈NRn → R, such that:
(i) the restrictions of f to arguments of fixed dimensions n are continuous;
(ii) f is permutation invariant;
(iii) f is injective for multisets of values from X .

We first map vectors in R to their ordered representatives in Rn,≤:

ford : ∪n∈NRn → ∪n∈NRn,≤.

In procedural terms, ford(r) is the application of a sorting algorithm to r ∈ Rn. Seen as
mapping from Rn to Rn,≤ this is a function that satisfies properties (i)–(iii). In fact, ford is
not only continuous, but also differentiable. For vectors in r ∈ Rn,≤ we now define

fprime : r 7→
n∏

j=1
p

rj

j ,

where, as in the proof of Theorem 14, pj is the j’th prime number. As in that proof, the
unique prime factorization of integers implies that the restriction of fprime to ∪n∈NXn,≤

is injective. Since fprime also is continuous, we then obtain that f = fprime ◦ ford satisfies
(i)–(iii).

M. Jaeger 5:33

Table 4 Learning in GNN and SRL: a summary of correspondences.

GNN SRL
St

ru
ct

ur
e

Space NN architectures (Logical) model structure
Manual specification by NN engineers SRL experts, domain ex-

perts
Learned by Optimization/search in com-

binatorial spaces

Pa
ra

m
et

er
s Space High-dimensional Low-dimensional

Manual specification Never Possible
Objective Loss function (cross-

entropy, MSE, . . .)
Likelihood (plain, condi-
tional, pseudo-, . . .)

In theoretical terms, the function f we have constructed has all the properties one could
desire. In addition to (i)-(iii) it also has the important property that for r ∈ Nn the value
f(r) is again an element of N, so that the same f can be used over multiple iterations
of aggregation. The requirement that the initial input features are in N is not a serious
(theoretical) limitation, since any countable X could be mapped into an integer encoding.
Note that a mapping of an initial input feature space X to an integer encoding is not subject
to the continuity concerns that we otherwise have, since it can be implemented as a data
preprocessing step, and need not be computed by internal (continuous) neural network
functions.

In practical terms, however, f is unmanageable, due to the very large numbers produced
by fprime, which would soon cause numeric overflow in an implementation. Furthermore,
fprime again does not fulfill the requirements of the universal approximation results for neural
networks. It appears to be an open question whether a function f with (i)-(iii) can be
constructed that is numerically manageable, such that it can be approximated by standard
neural architectures.

Theoretical questions about permutation invariance, canonical forms (based on summation
as the core aggregation step), and expressivity of aggregation functions that have arisen in
the field of GNNs have not been considered previously in analogous lines of investigation
in SRL, even though aggregating (or combining) information from related entities also is
a core element of SRL modeling. There are several reasons for this: first, permutation
invariance only becomes an issue when one represents graphs by adjacency matrices. The
logic-based background of SRL, and the associated “possible worlds” view of multi-relational
graphs, favors a representation of graphs as the set of ground atoms that are true. When,
in this manner, all fundamental definitions about syntax and semantics of SRL models are
based on sets (or multisets) rather than matrices and vectors, permutation invariance never
becomes an issue. The characterization of general, canonical forms of aggregation, however,
would still be of interest at least for those SRL frameworks that include explicit aggregation
or combination operators: these are most, if not all, of the frameworks that fall into the
Bayesian network constructor category, as exemplified by the combination function construct
in RBNs. Markov network constructors and probabilistic logic programming approaches, on
the other hand, perform aggregation more implicitly through a single, fixed multiplicative
mechanism (based on products, rather than sums as in (55).

AIB 2022

5:34 Learning and Reasoning with Graph Data

12 Parameter and Structure Learning

In this section we discuss the role of structure and parameters in SRL and GNN learning. A
summary of some of the correspondences we find is given in Table 4.

12.1 Structure
An SRL model consists of a “structure” that is given by dependency relations expressed
using a logic-based or graphical representation, and numeric parameters that are needed
to quantitatively define a probability distribution. The learning task for SRL models then
consists of the two parts of learning the structure, and learning the parameters. In Markov
logic networks, for example, the structure consists of all the logical clauses (13), and the
parameters of the numeric weights attached to these clauses. In the ProbLog probabilistic
logic programming language, the structure consists of clauses of the form (14), together
with probabilities assigned to certain ground facts. In RBNs, the structure consists of
the functional form of probability formulas, and parameters are the constants (29) of the
formula. Since the structure represents interpretable, meaningful dependencies between
different relations and attributes, it may also be elicited (at least in part) by domain experts.

▶ Example 18. Consider again the scenario of Example 3, and suppose one wants to create
an SRL model for predicting whether a person should be labeled as an influencer. A social
network expert would probably be able to say that whether or not a person is an influencer
depends (maybe among other factors) on the number of his/her followers. In a probabilistic
logic programming framework, this would lead us to include the clause

influencer(X)← follower(Y, X) (57)

in our model. The clauses in Markov logic networks do not represent directed implications
like (57) but undirected logical properties or features that are deemed relevant for the
probability of a possible world. Our knowledge about a connection between the influencer
attribute and the follower relation can be incorporated into the model by constructing several
features that express combinations of these two:

influencer(X) ∨ follower(Y, X)
influencer(X) ∨ ¬follower(Y, X)
¬influencer(X) ∨ follower(Y, X)
¬influencer(X) ∨ ¬follower(Y, X)

(58)

The fact that a greater number of followers increases the probability for being an influencer
would here be encoded not already through the structure of the model, but by the relative
magnitudes of the numeric weights associated with these four different features. Relational
Bayesian networks again encode directed dependencies. Here our knowledge would imply
that the probability formula for the influencer attribute should include the construct

Finfluencer(X) ≡ . . .

COMBINE < probability formula >

WITH < combination function >

FORALL Y

WHERE follower(Y, X)
. . .

(59)

M. Jaeger 5:35

This is only a partial specification of the probability formula for influencer, which leaves
open the details of how the dependency on the number of followers should be aggregated in
the combination function construct, and what other dependencies of the influencer attribute
need to be encoded in its probability formula.

There is an apparent decrease in the ease-of-use from the logic programming via the
Markov network to the RBN framework for encoding expert knowledge in the model structure.
The first two frameworks allow modular specifications where different pieces of knowledge
can be represented by separate logic-based representations. In the case of RBNs, all relev-
ant knowledge for the attribute influencer needs to be collected in the single probability
formula Finfluencer(X). If additional knowledge was provided that the influencer attribute
also depends on a known has_youtube_channel attribute, then in a probabilistic logic or
Markov logic framework this could be incorporated by adding new clauses, leaving the
existing (57)(58) untouched. In RBNs, on the other hand, the additional knowledge regard-
ing has_youtube_channel needs to be integrated with the previous knowledge inside the
formula (59).

However, modular specifications, though intuitive on the surface, pose their own challenges.
In pure logic, the total knowledge expressed by a set of formulas is simply the conjunction
of the knowledge expressed by each single formula. In a logic-based, modular specification
of a generative probabilistic model, the semantic contribution of each model component
to the overall probability distribution defined by the model can not be defined by a “local
semantics” of the component. The impact of each component on the probabilities defined
always depends on the full model that it is part of. In short, syntactic modularity here does
not translate into semantic modularity.

It should be apparent, now, that even though SRL frameworks support the integration
of domain knowledge into the model construction process, this can not happen without a
thorough understanding of the semantics and algorithmics of the SRL framework being used.
Thus, expert-driven model development here requires both a domain and an SRL expert.

This example has highlighted the ability to (partially) construct the structure of an
SRL model manually based on domain knowledge. It is, of course, a central objective
to also use machine learning for determining the structure of a model, which leads to
search and optimization problems in very large combinatorial spaces of possible model
structures. For probabilistic logic programming frameworks, often search techniques from
the field of inductive logic programming are adapted (e.g.[5]). Structure learning for Markov
logic networks has received a particularly large amount of attention. Here inductive logic
programming techniques have also been exploited [43, 50]. Other approaches (e.g. [38])
exploit more novel machine learning techniques, but still include an element of heuristic
(beam) search over possible clauses. For RBNs in the structure learning problem has only
been addressed in the context of a somewhat simplified framework [33].

A (graph) neural network model also consists of a structure (here often called the
architecture) and its parameters. However, the balance between the tasks of structure design,
or structure learning, on the one hand, and parameter learning on the other hand, is quite
different. Whereas in SRL structure learning is perhaps the greatest and most fundamental
challenge, one would typically view the learning problem of a GNN almost exclusively as a
parameter optimization task. The network architecture may either be taken to be a given
“standard solution”, or obtained from a manageable set of candidate architectures via tuning
such hyperparameters as the number and dimensions of network layers. The increasing
complexity and variability of available neural components, however, also has given rise to
the field of neural architecture search [14], which begins to share some characteristics with
SRL structure learning.

AIB 2022

5:36 Learning and Reasoning with Graph Data

12.2 Parameter learning
An SRL model usually contains only a moderate number of numerical parameters (the bound
< 100 parameters probably covers a large fraction of SRL models presented in the literature).
When these parameters have a clear, interpretable, statistical meaning then even parameters
may be amenable to specification by domain experts. For example, in the probability formula

Finfluencer(X) ≡ WIF has_youtube_channel(X) THEN 0.35 ELSE 0.01

the parameters 0.35 and 0.01 correspond to the statistical frequencies of influencers among
people who do, respectively do not, own a Youtube channel. In the absence of adequate
training data, such parameters could be assessed (approximately) by human experts. In
most cases, however, parameters of an SRL model should be learned from data.

Suppose, then, that an SRL structure has been fixed, and that this structure is para-
meterized by k real-valued parameters. Then a parameter vector θ ∈ Rk defines an SRL
model, i.e., for each domain V we have the probability distribution P θ

V on G(V,R) (the
signature R always being fixed). Training data consists of a number of observed graphs
(V1, R1), . . . , (VN , RN). The domains of the training graphs may be different, may be all the
same V1 = . . . , VN , or the data may only consist of a single graph (N = 1). In all cases, we
can score θ by the log-likelihood:

L(θ) =
N∑

i=1
log P θ

Vi
(Ri). (60)

In the case of Markov logic networks, the exact probabilities P θ
Vi

(Ri) are intractable to com-
pute, and an approximate pseudo-likelihood is used instead. We note that our objective (60)
does not contain a regularization term. This is because the problem of overfitting can arise
(and must be dealt with) already at the stage of structure learning/design.

A major strength of probabilistic generative models lies in their ability to learn from in-
complete data. Suppose our data consists of partially observed graphs (V1, R̃1), . . . , (VN , R̃N)
where the domains Vi are fully observed, but for the relations we have only partial observa-
tions R̃i, meaning that for R ∈ R and entities h, j ∈ Vi the atom R(h, j) may have values
true, false and unknown. Being a generative model, our current parameters then define for
each possible completion Ri of R̃i the probability

P θ
Vi

(Ri|R̃i). (61)

Taking the probability distribution over complete observations thus defined as an imputed
complete dataset, one can then apply optimization techniques for complete datasets to
optimize the parameter θ. Iterating the steps of imputing the expected complete data,
and maximizing the likelihood function for the imputed data gives the famous Expectation-
Maximization (EM) algorithm for learning from incomplete data. The EM algorithm is a
general paradigm of almost universal applicability in statistical learning. However, in order
to be feasible in practice for a particular model class (SRL or other), efficient techniques have
to be developed for that particular model class to implement the computation of expected
completions, and the subsequent optimization of the parameters. The expectation step often
is computationally quite expensive, which means that learning from incomplete data usually
is significantly more time consuming than learning from complete data.

GNN parameters are learned by minimizing a loss function. When the task for which
a GNN is trained is classification, then usually the cross-entropy loss is used. Assume, for
example, that the task is classification of a Boolean node label C(X), and that we use a GNN

M. Jaeger 5:37

architecture along the lines shown in Figure 2 on the left, where the output layer applies a
softmax function to guarantee that the outputs represent a probability distribution over the
possible class labels. Training data will consist of labeled nodes, which in general could be
given by training examples

(V1, C(j1), R1), . . . , (VN , C(jN), RN)

where ji is a node in Vi, and C(ji) ∈ {true, false} is the observed label. Again, a fixed
signature R for attributes and relations (other than the class label C) is given, and Ri

consists of complete observations of R for Vi. Often, all examples will come from a single
graph, i.e. V1 = . . . = VN and R1 = . . . , RN . Let θ be a setting for the weights in the
network. Then the network produces outputs oθ(ji) that are 2-dimensional non-negative
vectors for which oθ(ji)[0] + oθ(ji)[1] = 1. Assuming that the first output component is
associated with the label true, and the second with the label false, we then obtain the
cross-entropy loss

−

 ∑
i:C(ji)=true

log oθ(ji)[0] +
∑

i:C(ji)=false

log oθ(ji)[1]

 . (62)

Under the probabilistic interpretation of the outputs, and the assumption that all training
examples are independent, this is the negative log-likelihood. In particular, considering the
case (Vi, Ri) = (Vi′ , Ri′), (62) incorporates the conditional independence assumption (26)
for the distribution PV (C|R). Thus, the loss minimization objective of GNN training here is
exactly the same as the likelihood maximization objective in learning an SRL model for the
conditional distribution PV (C|R), if the SRL model makes assumption (26). The latter is the
case, for example, when PV (C|R) is specified by an RBN consisting of a single probability
formula FC(X). Parameter (weight) vectors θ of GNNs are usually much larger than those of
SRL models, and overfitting can also occur as a result of pure parameter learning. Therefore,
the cross-entropy loss (62) will often be combined with a regularization term for θ.

12.3 From sparse to over-parameterizations
As noted in the preceding sections, SRL and GNN models are typically distinguished by huge
differences in the size of their parameterizations. SRL models combine structure that encodes
relevant features and dependencies with a sparse parameterization that quantifies these
dependencies. GNNs follow the deep learning philosophy that feature discovery is automated
as a part of the parameter learning problem [22, Chapter 1]. The use of high-dimensional
parameter spaces in GNN architectures serves two distinct purposes:

Model capacity: providing a rich hypothesis space that can capture complex relevant
features.
Facilitating optimization: gradient descent is more effective in higher-dimensional spaces.

We speak of over-parameterization when a model architecture contains more tunable
parameters than are actually required to perfectly capture a target concept. As we have
observed in Example 10, neural network training can be more effective in overparameterized
than ’minimally sufficient’ model architectures. This somewhat counter-intuitive observation
has been made and studied by many authors, e.g. [52, 9]. A partial explanation is provided
by consideration of the limit case where the dimensions of hidden layers (and number of
weight parameters) goes to infinity [6, 2]. In this limiting case, the last hidden layer will

AIB 2022

5:38 Learning and Reasoning with Graph Data

contain sufficiently rich features (regardless of the weight settings at lower layers) such that
learning can be reduced to a convex optimization problem for the weights at the output
layer [6].

13 Conclusion and Outlook

We have studied similarities and differences in graph and network analysis using the tools of
statistical relational learning and graph neural networks. We have emphasized the common-
alities of these two paradigms, especially with regard to SRL frameworks of the Bayesian
network constructor type. In particular for the relational Bayesian network framework we
demonstrated the capability to directly encode GNNs without modifications or additions to
the original RBN framework. This directly enables forms of neuro-symbolic integration by
RBN models that combine neural encoding components with higher-level symbolic repres-
entations. As we have seen in Section 9, this can be exploited to tackle a larger variety of
inference tasks, and to combine learning with expert-driven model specifications. However,
in order to obtain maximal benefits from such combinations, several challenges have still to
be met:

Interpretability: symbolic representations are typically more interpretable for a human
user than a neural network model. However, an RBN component that directly encodes a
GNN module is not more interpretable than the original GNN. A challenge therefore is
whether a learned RBN containing over-parameterized GNN components can be reduced
to a smaller and more interpretable model, e.g. by some form of model distillation.
In contrast to other approaches towards interpretability via surrogate model learning
(e.g. [61]), the original and the simplified model here would live both in the same hypothesis
space of RBNs.
Trading structure learning for parameter learning: the success of GNN technology
indicates that the overall strategy of reducing the learning problem as much as possible to
a parameter learning problem has advantages over the SRL strategy that places primary
importance on the structure of a model. This leads to the question of whether structure
learning can be reduced to parameter learning. A very small-scale and simplistic instance
of this was already presented in [35], where it was suggested to learn the appropriate
combination function in a model by learning a mixture model over several candidate
combination functions, and then selecting the one with the dominant coefficient in the
learned mixture.
Closing the efficiency gap: as discussed in Section 9, an RBN encoding of a GNN is
mathematically equivalent, and, in principle, has the same parameter learning complexity
as the original GNN. In practice, however, there is a significant gap, because the general
purpose RBN algorithms do not automatically leverage the limited functional structures
encountered in GNN encodings.

References
1 Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising

power of graph neural networks with random node initialization. In Proceedings of IJCAI
2021, 2021.

2 Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal
of Machine Learning Research, 18(1):629–681, 2017.

3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

M. Jaeger 5:39

4 Pablo Barceló, Egor Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo
Silva. The logical expressiveness of graph neural networks. In 8th International Conference on
Learning Representations (ICLR 2020), 2020.

5 Elena Bellodi and Fabrizio Riguzzi. Structure learning of probabilistic logic programs by
searching the clause space. Theory and Practice of Logic Programming, 15(2):169–212, 2015.

6 Yoshua Bengio, Nicolas Le Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte.
Convex neural networks. Advances in neural information processing systems, 18:123, 2006.

7 J. S. Breese, R. P. Goldman, and M. P. Wellman. Introduction to the special section on
knowledge-based construction of probabilistic decision models. IEEE Transactions on Systems,
Man, and Cybernetics, 24(11), 1994.

8 Luitzen EJ Brouwer. Beweis der Invarianz des n-dimensionalen Gebiets. Mathematische
Annalen, 71(3):305–313, 1911.

9 Alon Brutzkus and Amir Globerson. Why do larger models generalize better? a theoretical
perspective via the xor problem. In International Conference on Machine Learning, pages
822–830. PMLR, 2019.

10 Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33, 2020.

11 Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative
modeling for sparse graphs. In International Conference on Machine Learning, pages 2302–2312.
PMLR, 2020.

12 L. De Raedt. Logical and Relational Learning. Springer, 2008.
13 R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic inference. In

Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05),
pages 1319–1325, 2005.

14 Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

15 Varun Embar, Sriram Srinivasan, and Lise Getoor. A comparison of statistical relational
learning and graph neural networks for aggregate graph queries. Machine Learning, pages
1–20, 2021.

16 Herbert B Enderton. A mathematical introduction to logic. Elsevier, 2001.
17 Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci, 5(1):17–60, 1960.
18 N. Friedman, Lise Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models.

In Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
1999.

19 Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pages 3419–3430.
PMLR, 2020.

20 L. Getoor and B. Taskar, editors. Introduction to Statistical Relational Learning. MIT Press,
2007.

21 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

22 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL:
http://www.deeplearningbook.org.

23 William L Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence
and Machine Learning, 14(3):1–159, 2020.

24 William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 1024–1034, 2017. URL: http://papers.nips.cc/paper/
6703-inductive-representation-learning-on-large-graphs.

AIB 2022

http://www.deeplearningbook.org
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs

5:40 Learning and Reasoning with Graph Data

25 D. Heckerman, C. Meek, and D. Koller. Probabilistic entity-relationship models, PRMs, and
plate models. In L. Getoor and B. Taskar, editors, Introduction to Statistical Relational
Learning. MIT Press, 2007.

26 Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social
network analysis. Journal of the American Statistical Association, 97(460):1090–1098, 2002.

27 Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

28 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

29 Manfred Jaeger. Relational Bayesian networks. In Dan Geiger and Prakash Pundalik Shenoy,
editors, Proceedings of the 13th Conference of Uncertainty in Artificial Intelligence (UAI-13),
pages 266–273, Providence, USA, 1997. Morgan Kaufmann.

30 Manfred Jaeger. On the complexity of inference about probabilistic relational models. Artificial
Intelligence, 117:297–308, 2000.

31 Manfred Jaeger. Model-theoretic expressivity analysis. In L. De Raedt, K. Frasconi, P.and Ker-
sting, and S.H. Muggleton, editors, Probabilistic Inductive Logic Programming, volume 4911 of
LNCS, pages 325–339. Springer, 2008.

32 Manfred Jaeger. Probabilistic logic and relational models. In Reda Alhajj and Jon Rokne,
editors, Encyclopedia of Social Network Analysis and Mining, pages 1–15. Springer New York,
New York, NY, 2017. doi:10.1007/978-1-4614-7163-9_157-1.

33 Manfred Jaeger, Marco Lippi, Andrea Passerini, and Paolo Frasconi. Type extension trees
for feature construction and learning in relational domains. Artificial Intelligence, 204:30–55,
2013. doi:10.1016/j.artint.2013.08.002.

34 Manfred Jaeger. Complex probabilistic modeling with recursive relational Bayesian networks.
Annals of Mathematics and Artificial Intelligence, 32:179–220, 2001.

35 Manfred Jaeger. Parameter learning for relational Bayesian networks. In Proceedings of the
24th International Conference on Machine Learning (ICML), 2007.

36 Jiuchuan Jiang and Manfred Jaeger. Numeric input relations for relational learning with
applications to community structure analysis. CoRR, abs/1506.05055, 2015. arXiv:1506.
05055.

37 K. Kersting and L. De Raedt. Towards combining inductive logic programming and Bayesian
networks. In Proceedings of the Eleventh International Conference on Inductive Logic Pro-
gramming (ILP-2001), Springer Lecture Notes in AI 2157, 2001.

38 Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude Shavlik. Learning Markov logic
networks via functional gradient boosting. In 2011 IEEE 11th international conference on
data mining, pages 320–329. IEEE, 2011.

39 Angelika Kimmig, Bart Demoen, L De Raedt, V. Santos Costa, and Ricardo Rocha. On
the implementation of the probabilistic logic programming language ProbLog. Theory and
Practice of Logic Programming, 11(2-3):235–262, 2011. doi:10.1017/S1471068410000566.

40 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint, 2014. arXiv:1412.6980.

41 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint, 2016. arXiv:1609.02907.

42 Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint, 2016.
arXiv:1611.07308.

43 Stanley Kok and Pedro Domingos. Learning the structure of markov logic networks. In
Proceedings of the 22nd international conference on Machine learning, pages 441–448, 2005.

44 Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

45 Kathryn Blackmond Laskey. MEBN: A language for first-order Bayesian knowledge bases.
Artificial Intelligence, 172(2-3):140–178, 2008. doi:10.1016/j.artint.2007.09.006.

https://doi.org/10.1007/978-1-4614-7163-9_157-1
https://doi.org/10.1016/j.artint.2013.08.002
http://arxiv.org/abs/1506.05055
http://arxiv.org/abs/1506.05055
https://doi.org/10.1017/S1471068410000566
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308
https://doi.org/10.1016/j.artint.2007.09.006

M. Jaeger 5:41

46 Kathryn Blackmond Laskey and Suzanne M. Mahoney. Network fragments: Representing
knowledge for constructing probabilistic models. In Proceedings of the 13th Annual Conference
on Uncertainty in Artificial Intelligence (UAI–97), pages 334–341, San Francisco, CA, 1997.
Morgan Kaufmann Publishers.

47 Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep
generative models of graphs. arXiv preprint, 2018. arXiv:1803.03324.

48 Yao Ma, Suhang Wang, Chara C Aggarwal, Dawei Yin, and Jiliang Tang. Multi-dimensional
graph convolutional networks. In Proceedings of the 2019 SIAM International Conference on
Data Mining, pages 657–665. SIAM, 2019.

49 Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. Advances in Neural
Information Processing Systems, 31:3749–3759, 2018.

50 Lilyana Mihalkova and Raymond J Mooney. Bottom-up learning of Markov logic network
structure. In Proceedings of the 24th international conference on Machine learning, pages
625–632, 2007.

51 Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 4602–4609,
2019.

52 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The
role of over-parametrization in generalization of neural networks. In International Conference
on Learning Representations, 2018.

53 L. Ngo and P. Haddawy. Probabilistic logic programming and Bayesian networks. In Algorithms,
Concurrency and Knowledge (Proceedings ACSC95), Springer Lecture Notes in Computer
Science 1023, pages 286–300, 1995.

54 Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of
computation, 35(151):773–782, 1980.

55 Giovanni Pellegrini, Alessandro Tibo, Paolo Frasconi, Andrea Passerini, and Manfred Jaeger.
Learning aggregation functions. In Proceedings of the Thirty International Joint Conference
on Artificial Intelligence (IJCAI-21). International Joint Conferences on Artificial Intelligence,
2021.

56 Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Column networks for collective
classification. In Thirty-first AAAI conference on artificial intelligence, 2017.

57 D. Poole. First-order probabilistic inference. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-03), 2003.

58 David Poole. The independent choice logic for modelling multiple agents under uncertainty.
Artificial Intelligence, 94(1-2):7–56, 1997.

59 Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph Markov neural networks. In
International conference on machine learning, pages 5241–5250. PMLR, 2019.

60 Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational
artificial intelligence: Logic, probability, and computation. Synthesis lectures on artificial
intelligence and machine learning, 10(2):1–189, 2016.

61 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

62 M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-2):107–136,
2006.

63 S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson, third edition
edition, 2010.

64 Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint, 2020.
arXiv:2003.04078.

AIB 2022

http://arxiv.org/abs/1803.03324
http://arxiv.org/abs/2003.04078

5:42 Learning and Reasoning with Graph Data

65 Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph
neural networks. In Proceedings of the 2021 SIAM International Conference on Data Mining
(SDM), pages 333–341. SIAM, 2021.

66 T. Sato. A statistical learning method for logic programs with distribution semantics. In
Proceedings of the 12th International Conference on Logic Programming (ICLP’95), pages
715–729, 1995.

67 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

68 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European
semantic web conference, pages 593–607. Springer, 2018.

69 Gustav Šourek, Filip Železnỳ, and Ondřej Kuželka. Beyond graph neural networks with lifted
relational neural networks. Machine Learning, pages 1–44, 2021.

70 J. van Mill. Domain invariance. Encyclopedia of Mathematics. URL: http://
encyclopediaofmath.org/index.php?title=Domain_invariance&oldid=16623.

71 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning Repres-
entations, 2018.

72 Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant
graph neural networks with structural message-passing. In NeurIPS, 2020.

73 Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne.
On the limitations of representing functions on sets. In International Conference on Machine
Learning, pages 6487–6494. PMLR, 2019.

74 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2021.

75 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

76 Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models. In International conference on
machine learning, pages 5708–5717. PMLR, 2018.

77 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/
paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

78 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
Neural Information Processing Systems, 31:5165–5175, 2018.

79 Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

http://encyclopediaofmath.org/index.php?title=Domain_invariance&oldid=16623
http://encyclopediaofmath.org/index.php?title=Domain_invariance&oldid=16623
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf

Automating Moral Reasoning
Marija Slavkovik # Ñ

University of Bergen, Norway

Abstract
Artificial Intelligence ethics is concerned with ensuring a nonnegative ethical impact of researching,
developing, deploying and using AI systems. One way to accomplish that is to enable those AI
systems to make moral decisions in ethically sensitive situations, i.e., automate moral reasoning.
Machine ethics is an interdisciplinary research area that is concerned with the problem of automating
moral reasoning. This tutorial presents the problem of making moral decisions and gives a general
overview of how a computational agent can be constructed to make moral decisions. The tutorial is
aimed for students in artificial intelligence who are interested in acquiring a starting understanding
of the basic concepts and a gateway to the literature in machine ethics.

2012 ACM Subject Classification Computing methodologies → Philosophical/theoretical foundations
of artificial intelligence

Keywords and phrases Machine ethics, artificial morality, artificial moral agents

Digital Object Identifier 10.4230/OASIcs.AIB.2022.6

Category Invited Paper

1 Introduction

Artificial intelligence (AI) is concerned with the problem of using computation to automate
tasks that require intelligence [13]. Artificial intelligence, since 1956 when it was named and
established [35], has been increasingly contributed towards automating tasks that require
manipulation of information, production line tasks (robotics) and most recently pattern
identification and learning [15].

In a society, we all affect each other with our activities and decisions. Ethics (or moral
philosophy) is concerned with understanding and recommending right and wrong behaviours
and decisions [25]. The right decisions being characterised by taking into consideration
not only ones own interest, but also the interest of others [29]. The more computationally
automated tasks are used to complement or replace people’s tasks, the more concerns we
have to ensure that the resulting actions and choices are not only correct and rational, but
also do not have a negative ethical impact on society. As Rosalind Picard puts it “The
greater the freedom of a machine, the more it will need moral standards” [42]. AI Ethics is a
new, interdisciplinary, sub-field of AI that aims to address precisely this issue.

One way to ensure that AI has a non-negative ethical impact on society is to ensure
that we do have an insight into, and measures to control the impact AI has [22]. Various
different research approaches are being developed towards this end, in computer science,
but also in philosophy, organisational science, law etc. Algorithmic accountability studies
how to ensure that society and stakeholders can establish the right relationship with the
people who research, develop, deploy and use AI algorithms [53]. Transparency is concerned
with ensuring that the adequate type of information about how an AI system works is
made available to a given stakeholder [20, 54]. Fairness is concerned with ensuring that like
individuals and groups are treated alike by decision-making algorithms [17]. Explainable AI
is concerned with the problem of finding ways to extract information from AI algorithms
that justifies the choices that algorithm takes and use that information to adequately explain
that information to a given stakeholder [34, 28].

© Marija Slavkovik;
licensed under Creative Commons License CC-BY 4.0

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza; Article No. 6; pp. 6:1–6:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marija.slavkovik@uib.no
https://www.uib.no/en/persons/Marija.Slavkovik
https://orcid.org/0000-0003-2548-8623
https://doi.org/10.4230/OASIcs.AIB.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2 Automating Moral Reasoning

Another way to ensure AI has a non-negative ethical impact is to consider that moral
reasoning is itself a cognitive task that we can consider automating. Machine ethics, or
artificial morality, is a sub-field in AI that is researching this approach. In general, machine
ethics is “is concerned with the behaviour of machines towards human users and other
machines” [5]. The problem of automating moral reasoning can be considered as a problem of
moral philosophy, whereas one is interested in questions such as: should machines be enabled
with ethical reasoning [24, 8], which norms should machines follow [33], can machines ever
be moral agents [16], etc. As a problem of computer science, machine ethics focuses on the
question of how to automate moral reasoning [6, 51].

Here we are concerned with the question of how to automate moral reasoning. Although
this problem, and machine ethics in general, have been raised since 2006 [5], it is an extremely
difficult problem that requires a lot of improvement in the state of the art in AI and moral
philosophy. We discuss the basic approaches in machine ethics, the advantages and challenges
of each. These lecture notes are structured as follows.

We start with Section 2 in which we discuss what is decision making and how decision-
making is distinguished from moral decision-making. Decisions are made by an agent. In
Section 3 we discuss what computational agents are, what does it mean for a computational
agent to be autonomous and what kind of moral agents can computational agents be. One
way to automate moral reasoning is to follow a specific moral theory. In Section 4 we give a
very quick overview of what is a moral theory and some of the more known moral theories
from moral philosophy. In Section 5 we discuss two general approaches to building artificial
moral agents, we discuss open research problems and challenges. In Section 6, we end with a
discussion on how to find out more about machine ethics, beyond the scope of this tutorial.

2 Moral decision making

Decision-making is a cognitive process that is studied from many disciplines including
cognitive science, neuroscience, psychology, and economy. Decision theory is a field which
studies the choices that an agent does (descriptive decision theory) and should (prescriptive
decision theory) make when faced with a formally specified decision problem [41]. Artificial
Intelligence typically follows the model of decision-making from economy since the goal
typically is to automate rational decision-making [45]. We summarise that model.

As [31] put forward, decision-making is taken to comprise of at least four steps:
1. identify the problem for which a decision needs to be made,
2. evaluate the objectives and preferences that apply,
3. analyze the decision problem and its constraints, and develop or identify the possible

options from which to choose,
4. choose from the identified options following some reasoning.

To put this into perspective, consider an example. In step one, I as an agent recognise
that I am hungry and that this is a problem. Next, I evaluate my objectives and preferences.
So my objective here are to stop being hungry which means get something to eat. My
preference would be to eat a hot meal but not cook and at the same time, to eat something
soon. Thus my problem becomes finding a place to buy food from. I now (step 3) have to
identify the constraints: how much I want to spend, how far I am willing to go and which
establishments are open today. These constraints help me make a list of possible restaurants
to choose from. In the last step I choose from among the alternatives using some type of
reasoning, like for example the closest and cheapest Indian food restaurant.

M. Slavkovik 6:3

Decisions are taken by an agent. In computer science artificial intelligence1, the require-
ment of what constitutes an agent is very low. Anything that has the ability to perceive
its environment through sensors and can act upon that environment through actuators is
considered to be an agent [45]. For a computational agent the environment is essentially a
data construct consisting of lists of information with “sensors” being various dynamic inputs
that change, add or remove data available to the agent. The source of that input can be an
actual device that measures aspects of the environment and converts it into data or it can
be a human inputting the data directly. An actuator is a device that produces motion and
changes a physical environment in that way. For a computational agent, the “actuators” are
its ability to change its own environment, namely its ability to alter data that is available to
not only themselves but also some other person or agent.

The difference between a computational agent and an embodied agent (such as a robot)
is perhaps best illustrated by considering as an example a program that plays chess. While
the chess playing program does not “see” a chess board, or physically move chess pieces, it
still plays chess which is considered an activity that requires intelligence. The environment
it works with is a digital representation of the chess board and the changes on it. What is
important in playing a move is not that the chess piece is physically moved on the board,
but to make the choice of which chess piece to move in order to win.

The problem identification, the evaluation of objectives, preferences and constraints that
apply is part of situational awareness and for most computational agents this is supplied
as data. Situational awareness is the perception of one’s environment, the events in that
environment with respect to time or space, internalisation and utilization of that perception
as information, and the projection of the future state of the environment and its elements.
The available options and their characteristics are often also made available with the agent
expected to do the evaluation of the options towards finding the optimal choice with respect
to the given objectives, preferences and constraints. While people are capable of reiterating
steps 3 and 4 of the decision-making process by identifying missing information and procuring
it, those same activities, as well as situational awareness in general, are a hard problem
in AI [45].

What is the difference between decision-making and moral decision-making? The difference
is in whose objectives, preferences and constraints we choose to apply. As we can see from the
four step model, decision-making is a process that only considers the objectives, preferences
and constraints of the agent that makes the decision. Moral decision making requires us to
consider the objectives, preferences and constraints of others. For example, when making
a list of options, the environmental impact of different food options can be considered.
Although I strongly prefer meat to tofu, I can choose to rank the vegan options over the
meat options because sourcing that food does not cause suffering to animals.

It is, of course, in general not clear how that information on the objectives, preferences
and constraints of others is to be sourced, to which extent it should be considered etc. In
moral philosophy, numerous different approaches to answering these questions for human
decision-makers have been discussed and we will give a brief overview of some of the dominant
ones in Section 4. In the next section, we will consider artificial moral agency: to which
extent can a computational agent make moral decisions given that they do not have full
agency to do so due to the lack of situational awareness and other constraints on information
processing capabilities.

1 Artificial Intelligence can be studying in other fields than computer science such as philosophy

AIB 2022

6:4 Automating Moral Reasoning

Before we move on, although it is not directly relevant here, for completeness, it is
important to mention the relationship between economy and moral philosophy. Rational
decision-making is studied in economy, whereas what are good and bad decisions is studied
in moral philosophy. One dominant perspective on moral decision making in economy is
that of Sen [46]. In economy, a decision problem is represented with a set of available
alternatives, and the agent’s preference order over those alternatives. The decision-making
process is then choosing the alternative that maximizes the expected utility for the agent.
Sen [46, 47] attempts to model morality by assuming morality to be an ordering over the
agent’s preference of alternatives, namely an ordering over orderings. So a moral decision is
then to choose which preference order over the available alternatives to follow.

Dietrich and List [21] also present a decision-theoretic consideration of moral decision
making. They show how to represent a moral theory in terms of two parameters: “(i) a
specification of which properties of the objects of moral choice matter in any given context,
and (ii) a specification of how these properties matter.” We discuss what moral theories are
in Section 4.

3 Artificial Moral Agents

Autonomy is the ability of an agent to govern itself, which includes its ability to identify
problems and make decisions to resolve them. Both [36] and [51], some of the pioneers of
machine ethics, observe that the extent to which an artificial agent would be able to do
moral decision-making depends on the extent of autonomy of the agent. We typically do not
talk about the autonomy of artificial agents, but the level of autonomy of a system, which
we then refer as an autonomous system. Before introducing the different types of artificial
moral agents that [36] and [51] have proposed, we introduce the levels of autonomy of an
autonomous system.

An autonomous system is a system, software or device alike, that is capable of some
degree of operation without human control. Systems that do not have autonomy are divided
into: controlled, supervised and automatic. Controlled systems are systems that have no
autonomy and require continuous human control to operate. An example of a controlled
system is the standard electrical iron for clothes: for the iron to be used, a person must hold
plug it in, hold it and move it. Supervised systems are systems that are capable of some short
periods of unsupervised activity, but require a human operator to both start and end that
period of activity. An example of a supervised system is the standard washing machine. A
person needs to load it and choose a program, and it operates without oversight executing the
washing program, and the human operator needs to unloaded after the program is completed.
Automatic systems are able to operate without any human supervision, but they can execute
only a very limited range of activities in a fully controlled environment: all their choices are
pre-programmed. An example of an automatic system is an elevator. It responds to a human
input in a specified way, but it operates (moves up, down, stops, opens and closes doors)
without the oversight of human operator.

Autonomous systems are systems that are able to operate without human oversight for
long periods of time, they are able to process signals from the environment, use them to
reason about their choices and actions, and be able to perform actions that have an effect on
the environment. In autonomous systems we discern, according to Parasuraman et al. [40],
ten levels of autonomy of decision and action selection (ranked here from high to low), listed
as follows.

M. Slavkovik 6:5

Figure 1 Degrees of artificial morality [51, Chapter2].

1. The system decides everything, acts autonomously and can ignore human input and
control

2. Informs the human about its choices only if it, the system chooses to do so
3. Informs the human about its choices only if asked
4. Executes its decisions autonomously/automatically and then necessarily informs the

human about the decision-making process
5. Allows the human a limited time to veto a decision made autonomously before execution,

or
6. Executes the decision only if the human approves it, or
7. Suggest a decision (an alternative) to the human
8. Narrows the selection of options to choose from to a human, or
9. The system offers a complete set of decision/action alternatives, or

10. The system does not make any decision-making, the human must make all the decisions
and actions.

Wallach and Allen [51] observe that the ability of computational agents to make moral
decisions is restricted by their autonomy and by their ethical sensitivity2. They offer a graph
of different types of artificial moral agency, which we reproduce in Figure 1.

[51] define operational morality as the morality of the artificial agents for which “the
moral significance of their actions lies entirely in the humans involved in their design and use”.
This means that the artificial agent itself does not make moral decisions, but (in matters
of morality) follows the instructions of a human operator. Functional morality is defined

2 [51] do not explicitly define ethical sensitivity, but it is understood that it refers to the ability of the
artificial agent to take into account the objectives, preferences and constraints of other when making
decisions.

AIB 2022

6:6 Automating Moral Reasoning

as the property of artificial agents who have the ability to make moral decisions without
direct instructions from humans. It is understood that this ability is contextual, namely
only applies under given circumstances. Full moral agency is the ability to have situational
awareness and fully autonomously make moral decisions.

[36] also offers a four tier distinction between artificial moral agents, but does not base it
explicitly on levels of autonomy or “ethical sensitivity” of the agent. Instead, he considers
choice making artificial agents whose operation affects others in society in a positive or a
negative way. For these agents he considers whether the agent uses moral choice relevant
information at all, and if it does whether it sources it itself or it is in some way provided.
[36] discerns: ethical impact agents, implicit ethical agents, explicit ethical agents and fully
ethical agents.

Ethical impact agents are artificial agents which by virtue of existing bring about positive
or negative impact on the lives of people. An ethical impact agent is an autonomous system
or an AI system that is a disruptive technology, namely it changes society, and makes life
better or worse for people in it by changing how certain tasks or operations are executed. An
ethical impact agent does not itself make moral decisions at all or considers the objectives,
preferences or constraints of others in its decision-making.

Implicit ethical agents implicitly do moral decision making. Namely, they are either fully
constrained from choosing unethical options or the options they are considering are made
available already evaluated with respect to how they affect the objectives, preferences and
constraints of others. The evaluation of what is right and what is wrong thus is performed
entirely by the human designers or operators of the artificial agent.

Explicit ethical agents do explicit moral decision making. This means that they are able
to evaluate if an option is more or less ethical than another, possibly by also sourcing their
own information for this evaluation. The degree to which they can perform moral decision
making, would of course depend on the limited abilities of the artificial agent and might
also be contextual. The evaluation of what is right and what is wrong is still by a large
extent determined by the information supplied by the human designers or operators, but the
artificial agent also contributes.

Fully ethical agents for Moor [36], just like for Wallach and Allen [51], are agents who
have situational awareness and fully autonomously make moral decisions.

The definitions of Moor [36] are not meant to be operational. It is in general very difficult
to evaluate the impact of an artificial agent, and also to draw a line to indicate which agents
have and which do not have such impact. A mobile phone can be considered an ethical
impact agent: it helps to solve crimes (a net positive impact) and it eases surveillance of
people (a net negative impact3). To be able to ascertain whether an agent is an implicit or
explicit moral agent one necessarily needs to have access to the agent’s programming. [23]
propose to refine the taxonomy of [36] towards making it more operational.

[23] propose that implicit can be considered those agents who engage in moral decision
making without using their own autonomy. For ethically sensitive contexts, implicit ethical
agents defer to the human operator, either directly or by accessing information made available.
Explicit ethical agents do use the autonomy they have to make moral decision. Both explicit
and implicit ethical agents thus have sufficient situational awareness to recognise that moral
decision making is needed. However, implicit agents, do not use their autonomy, even if it is
high. Their moral choices are either constraint or otherwise governed by a human operator.
In contrast, explicit moral agents do use the autonomy they have to make moral choices.

3 Personal opinion

M. Slavkovik 6:7

One idea on how to develop implicit or explicit ethical agents is having their moral choices
be governed by theories developed by moral philosophy. The alternative is that the artificial
agents are informed directly by a person or societies views on what is right and wrong, see
for example [39, 11, 44].

4 Moral philosophy

A detailed overview of moral philosophy is outside of the scope of this lecture. Perhaps
choosing which moral philosophy works to present and which to ignore in a short list, itself
is a moral choice. Instead we give a definition of what a moral theory is and what the main
types of moral theories have been considered in moral philosophy. Each of the theories have
strengths and weaknesses. Furthermore, every theory is developed to be applied by a human
agent.

Moral philosophy is considered to include three main areas of study: meta-ethics, norm-
ative ethics and applied ethics [25]. Meta-ethics is concerned with the concepts of right and
wrong themselves and how the validity of these concepts can be established. Normative
ethics is concerned with developing means to identify what are the right and wrong decisions,
actions, states of the world etc. Applied ethics is concerned with issuing recommendations
of what is the right thing to do for a specific person in a specific situation. An example
of applied ethics are the biomedical ethics rules that govern the conduct of, among others,
medical doctors [12].

In machine ethics, we are primarily interested in normative moral philosophy and the
moral theories developed within it. A moral theory is an explanation of what makes an
action right, or what makes an entity good [50]. It is a reasoning system that can be used to
establish the righteousness of an action or the goodness of an entity etc. The moral theories
that are concerned with the discerning between good and bad entities are called theories of
value, whereas those concerned with discerning between good and bad choices or actions are
called theories of obligation.

Many moral theories have been proposed. Vaughn [50] argues that for a theory of
reasoning about right and wrong to be usable, it needs to satisfy the following basic criteria.
It needs to be consistent with considered judgments and our moral experience. Considered
judgements are morally relevant preferences or decisions society has already made by carefully
considering the complexity of a given problem and the intended and unintended consequences
of alternative options. Our own moral experience vaguely describes what most people have
been raised to intuitively consider right or wrong in most situations, such as for example
stealing or betraying a confidence. Further, a moral theory should be useful in moral problem
solving and it should be coherent. Usefulness means that anyone can apply it to make moral
decisions, whereas coherence means that it should identify the same moral choices when
presented with the same problem features.

When a decision is made, three aspects of the decision can be considered to be most
relevant for identifying if that decision is good or bad. These are: the agent that makes the
decision (their intentions, objectives and incentives included), the decision itself and available
alternatives, and lastly the consequences of that decision.

Moral theories that put most relevance on the properties of the agent that makes the
decisions are called virtue theories. The theories which place most relevance on the decision
and alternatives are called deontological theories. Consequentialist theories deem that what
ultimately decides whether an action is good or bad is the consequences of that action.

AIB 2022

6:8 Automating Moral Reasoning

Virtue theories prescribe not how to make a decision but what intentions, objectives and
preferences, i.e. virtues, the agent should have in order to choose right. The moral conduct
of the agent emerges from their moral virtues. A virtue is a stable disposition to act and
feel according to some ideal model of excellence. A notable virtue theory is Aristotelian
ethics. Aristotle claimed that intellectual virtues can be taught but that moral virtues can be
learned only through practice. He argued that for an agent to be virtuous they have to aim to
achieve the golden mean which is finding a balance between two behavioural extremes. While
at first glance it may seem that virtue theories are not particularly suited for developing
artificial ethical agents, this is not necessarily the case. For example, [48] argues how virtue
ethics can be taken from theory to implementation.

Deontological theories prescribe that the righteousness of a decision should be based on
whether the chosen option is itself right or wrong under a series of rules, rather than on
who is executing it [2]. Deontological theories typically prescribe obligations, permissions,
prohibitions that the agent should follow when choosing between alternatives. Deontological
theories also prescribe ethical values or ethical principles that one should follow in order to
identify the right choices. In a very abstract way, they can be seen as providing heuristics
for what are the objectives, preferences and constraints of others that the agent should taken
into consideration during moral decision-making.

A notable deontological theory is Kantian ethics. Kant argued that reason alone leads us
to the right and the good. According to him, moral law is a set of imperatives one should
follow: hypothetical or categorical. A hypothetical imperative tells us what we should do if
we have certain duties (obligations), while a a categorical imperative tells us what we should
do regardless of our wants and needs. For example, [43] and [14] argue how Kantian ethics
can be used to develop artificial moral agents. It should also be noticed that deontic logic
has been developed to formalise reasoning about obligations and norms [26].

Consequentialist theories are perhaps the first thing that does come to mind when one
considered moral theories. These theories prescribe that a decision is moral if it is motivated
by assessing the consequences of the available options, namely what kind of states of affairs
they bring about [2].

The most notable consequentialist group of theories is utilitarian ethics. Utilitarianism
is the theory asserting that the morally right action is the one that produces the most
favourable balance of good over evil, everyone considered [50]. Act-utilitarianism is the
theory that the morally right actions are those that directly produce the greatest overall good,
everyone considered. Given that it is not always practical to assess the consequences of each
available alternative, sometimes rules can be developed to identify the actions that typically
have desirable consequences. Rule-utilitarianism is the theory that the morally right action
is the one covered by a rule that if generally followed would produce the most favourable
balance of good over evil, everyone considered [50]. Since utilitarianism essentially prescribes
quantifying the goodness of an action and reduces moral decision-making to maximising the
utility of an option, the idea that this moral theory can be implemented in an artificial agent
is not strange and has been considered early on, see for example Gips [27] and Anderson and
Andrson[4].

5 Top down and bottom up automation

How should one go about developing an artificial moral agent? The first choice is to asses to
which degree can we predict the moral decision-making problems that the artificial agent
is expected to handle and what is the impact of the choices that the agent will make on

M. Slavkovik 6:9

the environment. This assessment will inform us towards whether we need to build an
implicit or an explicit ethical agent. Beyond this choice, Wallach, Allen and Smit [52] argue
that artificial moral agents can be built either by following a top-down or a bottom-up
approach, not excluding hybrids of these two approaches as well. Top-down and bottom-up
approaches are typical heuristics in problem solving deployed in engineering. Both top-down
and bottom-up approaches can be executed for both implicit and explicit agents.

Following the top-down approach, a problem is iteratively broken down into smaller
problems until we reach a problem small enough that we know how to solve. The solutions of
those smaller problems combined constitute the solution of our original problem. Procedural
programming operates following the top-down approach, where an algorithm breaks down
the problem into a set of basic instructions that the computer can execute.

Following the bottom-up approach, we start by describing the features or criteria of
the solution of the problem. Different actions are then pieced together, possibly in a
trial-and-error fashion, until a solution is reached that satisfies the prescribed criteria.
Declarative programming operates following a bottom-up approach where we describe the
sought information or alternative by giving constraints and preferences that should apply to it.

Using the top-down to build an explicit ethical agent means answering the question: how
can we build the artificial agent to follow a given moral theory? To build an implicit agent
top-down means to answer the question: how can we follow a given moral theory to build an
artificial agent? Both explicit and implicit agent construction requires facing the challenge of
choosing a moral theory. Virtually all of the theories from moral philosophy can be difficult
even for people to follow. For each of them there exist examples of situations, called moral
dilemmas, in which the theory does not provide a satisfactory method to choose what to do.
The approach then is not to attempt to fully implement a moral theory, or expect that the
artificial agent will succeed in implementing it where humans have failed.

Building explicit top-down agents requires difficult AI problems to be solved, such as
situational awareness, prediction of consequences of ones actions. So it is the state of the art
in AI that is also a limitation to the abilities of artificial moral agents of this kind. Building
implicit top-down agents is somewhat more attainable, but requires that the agent is given a
pre-determine set of rules, built by a human operator following a moral theory, that they
should apply when making moral decisions. This in turn, is only possible when the human
operator can to a large degree predict the problems the artificial agents will face and the
choices that would be available.

The advantage of the top-down approach is that the resulting agent, whether implicit
or explicit, will follow a “tried and tested” theory. This makes it possible to test if the
agent is making the correct choices according to some theory. Top-down approaches are also
verifiable [19].

When building artificial moral agents, it is not sufficient to enable them to make moral
decisions. We need to also be able to prove that we have done a good job. We need to be
able to test whether the end behaviour we obtain is indeed ethical and correct with respect
to some specification of correctness. For top-down agents testing and verification is made
easier by knowing what their moral choices should be compared to. The top-down reasoning
of the agent also allows itself to be formally verified [19, 18].

The motivation behind the bottom-up approach in building artificial agents draws from
the observation that people typically make moral decisions without following a specific moral
theory. We have a sense of right and wrong which we have developed over years of interactions
with people, by observing how our decisions affect others and how we are affected by the
decisions of others. The bottom-up approach aims to enable an artificial agent to learn little
by little to discern right from wrong, emulating what people do.

AIB 2022

6:10 Automating Moral Reasoning

To build a bottom up explicit ethical agent, one needs to figure out how to build an agent
that learns to behave morally. In contrast, to build a bottom up implicit agent, one needs to
figure out how to build an agent that given examples of right and wrong learns to identify
moral choices correctly.

The advantages of the bottom-up approach are, clearly that one avoids the problem of
choosing and implementing a specific moral theory. The approach is robust in the sense that
it does not run the risk of running into a situation for which a moral decision cannot be
made because the moral theory is under-specified. This robustness can also be a limitation
of the bottom-up approach. As agents learn the moral behaviour they may end up learning
something which we as humans do not recognise as moral. Examples are not hard to imagine,
but we have already been able to witness some of them. Consider for example Tay4. Tay
was a chatter-bot developed by Microsoft that was supposed to learn how to interact with
people on Twitter, but was taken down after “learning” to post offensive tweets.

A limitation for explicit ethical bottom-up agent is also the dependence of its success on
solving hard AI problems, just like the explicit ethical top-down agents. A specific limitation
of the implicit ethical bottom-up agents is that they require reliable examples of right and
wrong. This type of data is not readily available and it needs to be purposefully created. One
challenge to creating this data set is that it would be an expensive undertaking. Another
challenge is moral: who gets to supply the examples? How do we determine what are the
representative examples of teachers of right and wrong for machines?

This shortage of examples has caused that deep learning, despite being the driver of much
of the commercial success of recent AI [15], is virtually not used at all in machine ethics.
Jiang et al [30] can perhaps be considered an exception. Jiang et al. use deep learning to
build a question answering system that evaluates the morality of certain actions, however
this system is not meant to be used by machines but by humans. Examples of bottom-up
artificial agents either rely on symbolic learning, e.g., Anderson and Anderson [7] or on
reinforcement learning [38, 9, 1]. The challenge of taking the reinforcement learning approach
then becomes how to specify the objective function for the bottom-up artificial agent. This
opens up again the problems of who gets to supply this information.

Lastly, compared to the top-down approach, the bottom-up approach does not lend itself
as easy for testing and verification. What should the decisions of the artificial agent be
compared to? Two moral agents might make two different choices in a moral decision making
situation because they interpret the situation differently, and it is hard to claim that one
choice is moral and the other is not.

The Ethical Turing test has been proposed [3] as a possible way to asses whether the
artificial agent makes moral choices. This test would work as the original Turing test. An
artificial moral agent would be given examples of decision problems and its answers will be
compared to that of a moral philosopher or other expert in ethical decision making [7, 32].
Arguments have also been put forwards towards why the Ethical Turing test is not an
adequate approach to testing if moral behavior in an artificial agent has been attained [10].

6 Beyond this tutorial

In this tutorial so far we had not discussed specific examples of artificial moral agents. This
tutorial is not intended to be a systematic review of implemented machine ethics systems.
Two such reviews exist and the reader can consult [49] and [37]. A very practical reason for

4 https://en.wikipedia.org/wiki/Tay_(bot)

https://en.wikipedia.org/wiki/Tay_(bot)

M. Slavkovik 6:11

avoiding discussing implementations of artificial agents here is that these implementations
vary vastly in the approaches they use and considerable background knowledge in various
reasoning and learning methods would be necessary to understand the implementations.
Throughout the text, however, numerous references are given to these specific systems and
the interested reader can follow them and explore them for learning more.

It has to be mentioned that a considerable challenge to learn and conduct research in
machine ethics is that research articles in machine ethics appear in a variety of AI venues, but
also in volumes in engineering, decision theory, organisation theory and of course, philosophy.

References
1 David Abel, James MacGlashan, and Michael L Littman. Reinforcement learning as a

framework for ethical decision making. In Workshops at the thirtieth AAAI conference on
artificial intelligence, 2016.

2 Larry Alexander and Michael Moore. Deontological Ethics. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Winter
2021 edition, 2021.

3 Colin Allen, Gary Varner, and Jason Zinser. Prolegomena to any future artificial moral
agent. Journal of Experimental & Theoretical Artificial Intelligence, 12(3):251–261, 2000.
doi:10.1080/09528130050111428.

4 Michael Anderson and Susan Leigh Anderson. Machine ethics: Creating an ethical intelligent
agent. AI magazine, 28(4), 2007.

5 Michael Anderson and Susan Leigh Anderson. The status of machine ethics: A report from the
aaai symposium. Minds Mach., 17(1):1–10, March 2007. doi:10.1007/s11023-007-9053-7.

6 Michael Anderson and Susan Leigh Anderson, editors. Machine Ethics. Cambridge University
Press, 2011.

7 Michael Anderson and Susan Leigh Anderson. Geneth: A general ethical dilemma analyzer. In
Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada, pages 253–261.
AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/
8308.

8 Susan Leigh Anderson. Asimov’s "three laws of robotics" and machine metaethics. AI Soc.,
22(4):477–493, 2008. doi:10.1007/s00146-007-0094-5.

9 Stuart Armstrong. Motivated value selection for artificial agents. In Workshops at the
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

10 Thomas Arnold and Matthias Scheutz. Against the moral turing test: Accountable design and
the moral reasoning of autonomous systems. Ethics and Inf. Technol., 18(2):103–115, June
2016. doi:10.1007/s10676-016-9389-x.

11 Seth D. Baum. Social choice ethics in artificial intelligence. AI Soc., 35(1):165–176, 2020.
doi:10.1007/s00146-017-0760-1.

12 Tom L. Beauchamp and James F. Childress. Principles of Biomedical Ethics. Oxford University
Press, USA, 2001.

13 Richard E. Bellman. An Introduction to Artificial Intelligence: Can Computers Think? Boyd
& Fraser Publishing Company, 1978.

14 Oliver Bendel, Kevin Schwegler, and Bradley Richards. Towards kant machines. In 2017
AAAI Spring Symposia, Stanford University, Palo Alto, California, USA, March 27-29, 2017.
AAAI Press, 2017. URL: http://aaai.org/ocs/index.php/SSS/SSS17/paper/view/15278.

15 Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for AI. Communications of
the ACM, 64(7):58–65, June 2021. doi:10.1145/3448250.

16 Bartosz Brożek and Bartosz Janik. Can artificial intelligences be moral agents? New Ideas in
Psychology, 54:101–106, 2019. doi:10.1016/j.newideapsych.2018.12.002.

17 Alexandra Chouldechova and Aaron Roth. A snapshot of the frontiers of fairness in machine
learning. Commun. ACM, 63(5):82–89, 2020. doi:10.1145/3376898.

AIB 2022

https://doi.org/10.1080/09528130050111428
https://doi.org/10.1007/s11023-007-9053-7
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8308
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8308
https://doi.org/10.1007/s00146-007-0094-5
https://doi.org/10.1007/s10676-016-9389-x
https://doi.org/10.1007/s00146-017-0760-1
http://aaai.org/ocs/index.php/SSS/SSS17/paper/view/15278
https://doi.org/10.1145/3448250
https://doi.org/10.1016/j.newideapsych.2018.12.002
https://doi.org/10.1145/3376898

6:12 Automating Moral Reasoning

18 Louise A. Dennis, Martin Mose Bentzen, Felix Lindner, and Michael Fisher. Verifiable machine
ethics in changing contexts. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI
2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pages 11470–11478. AAAI Press, 2021. URL:
https://ojs.aaai.org/index.php/AAAI/article/view/17366.

19 Louise A. Dennis, Michael Fisher, Marija Slavkovik, and Matt Webster. Formal verification of
ethical choices in autonomous systems. Robotics Auton. Syst., 77:1–14, 2016. doi:10.1016/j.
robot.2015.11.012.

20 Nicholas Diakopoulos. Transparency. In Markus D. Dubber, Frank Pasquale, and Sunit
Das, editors, The Oxford Handbook of Ethics of AI. Oxford University Press, July 2020.
doi:10.1093/oxfordhb/9780190067397.013.11.

21 Franz Dietrich and Christian List. What matters and how it matters: a choice-theoretic
representation of moral theories. Philosophical Review, 126(4):421–479, 2017.

22 Virginia Dignum. Responsible Artificial Intelligence - How to Develop and Use AI in a
Responsible Way. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, 2019.
doi:10.1007/978-3-030-30371-6.

23 Sjur Dyrkolbotn, Truls Pedersen, and Marija Slavkovik. On the distinction between implicit
and explicit ethical agency. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, AIES ’18, pages 74–80, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3278721.3278769.

24 Amitai Etzioni and Oren Etzioni. Incorporating ethics into artificial intelligence. The Journal
of Ethics, 21:403–418, 2017.

25 James Fieser. Ethics. In Michael Boylan, editor, Internet Encyclopedia of Philosophy. ISSN
2161-0002, 2021.

26 Dov Gabbay, John Horty, and Xavier Parent. Handbook of Deontic Logic and Normative
System. College Publications, UK, 2013.

27 James Gips. Toward the ethical robot. In Kenneth M. Ford, C. Glymour, and Patrick Hayes,
editors, Android Epistemology, pages 243–252. MIT Press, USA, 1994.

28 David Gunning and David Aha. Darpa’s explainable artificial intelligence (XAI) program. AI
Magazine, 40(2):44–58, June 2019. doi:10.1609/aimag.v40i2.2850.

29 R. M. Hare. Community and Communication, pages 109–115. Macmillan Education UK,
London, 1972. doi:10.1007/978-1-349-00955-8_9.

30 Liwei Jiang, Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Maxwell Forbes, Jon
Borchardt, Jenny Liang, Oren Etzioni, Maarten Sap, and Yejin Choi. Delphi: Towards machine
ethics and norms. CoRR, abs/2110.07574, 2021. arXiv:2110.07574.

31 Gregory E Kersten and Stan Szpakowicz. Decision making and decision aiding: defining the
process, it representations, and support. Group Decision and Negotiation, 3(2):237–261, 1994.

32 Hyeongjoo Kim and Sunyong Byun. Designing and Applying a Moral Turing Test. Advances
in Science, Technology and Engineering Systems Journal, 6(2):93–98, 2021. doi:10.25046/
aj060212.

33 Bertram F. Malle, Paul Bello, and Matthias Scheutz. Requirements for an artificial agent
with norm competence. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, AIES ’19, pages 21–27, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3306618.3314252.

34 Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial
Intelligence, 267:1–38, 2019. doi:10.1016/j.artint.2018.07.007.

35 James Moor. The dartmouth college artificial intelligence conference: The next fifty years. AI
Magazine, 27(4):87, December 2006. doi:10.1609/aimag.v27i4.1911.

36 James H. Moor. The nature, importance, and difficulty of machine ethics. IEEE Intelligent
Systems, 21(4):18–21, July 2006. doi:10.1109/MIS.2006.80.

37 Vivek Nallur. Landscape of machine implemented ethics. Sci. Eng. Ethics, 26(5):2381–2399,
2020. doi:10.1007/s11948-020-00236-y.

https://ojs.aaai.org/index.php/AAAI/article/view/17366
https://doi.org/10.1016/j.robot.2015.11.012
https://doi.org/10.1016/j.robot.2015.11.012
https://doi.org/10.1093/oxfordhb/9780190067397.013.11
https://doi.org/10.1007/978-3-030-30371-6
https://doi.org/10.1145/3278721.3278769
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1007/978-1-349-00955-8_9
http://arxiv.org/abs/2110.07574
https://doi.org/10.25046/aj060212
https://doi.org/10.25046/aj060212
https://doi.org/10.1145/3306618.3314252
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1609/aimag.v27i4.1911
https://doi.org/10.1109/MIS.2006.80
https://doi.org/10.1007/s11948-020-00236-y

M. Slavkovik 6:13

38 Ritesh Noothigattu, Djallel Bouneffouf, Nicholas Mattei, Rachita Chandra, Piyush Madan,
Kush R. Varshney, Murray Campbell, Moninder Singh, and Francesca Rossi. Teaching ai
agents ethical values using reinforcement learning and policy orchestration. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages
6377–6381. International Joint Conferences on Artificial Intelligence Organization, July 2019.
doi:10.24963/ijcai.2019/891.

39 Ritesh Noothigattu, Snehalkumar (Neil) S. Gaikwad, Edmond Awad, Sohan Dsouza, Iyad
Rahwan, Pradeep Ravikumar, and Ariel D. Procaccia. A voting-based system for ethical
decision making. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pages 1587–1594. AAAI Press, 2018. URL: https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17052.

40 Raja Parasuraman, Tom .B. Sheridan, and Christopher D. Wickens. A model for types and
levels of human interaction with automation. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 30(3):286–297, 2000. doi:10.1109/3468.844354.

41 Martin Peterson. An Introduction to Decision Theory. Cambridge Introductions to Philosophy.
Cambridge University Press, 2 edition, 2017. doi:10.1017/9781316585061.

42 Rosalind W. Picard. Affective Computing. MIT Press, 1997.
43 Thomas M. Powers. Prospects for a kantian machine. In Michael Anderson and Susan LeighEd-

itors Anderson, editors, Machine Ethics, pages 464–475. Cambridge University Press, 2011.
doi:10.1017/CBO9780511978036.031.

44 Iyad Rahwan. Society-in-the-loop: programming the algorithmic social contract. Ethics and
Information Technology, 20(1):5–14, March 2018. doi:10.1007/s10676-017-9430-8.

45 Steward Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 4 edition, 2020.

46 Amartya Sen. Choice, orderings and morality. In Stephan Körner, editor, Practical Reason,
pages 54–67. Camalot Press, Oxford, 1974.

47 Amartya K. Sen. Rational fools: A critique of the behavioral foundations of economic
theory. Philosophy & Public Affairs, 6(4):317–344, 1977. URL: http://www.jstor.org/
stable/2264946.

48 Jakob Stenseke. Artificial virtuous agents: from theory to machine implementation. AI &
SOCIETY, 2021. doi:10.1007/s00146-021-01325-7.

49 Suzanne Tolmeijer, Markus Kneer, Cristina Sarasua, Markus Christen, and Abraham Bernstein.
Implementations in machine ethics: A survey. CoRR, abs/2001.07573, 2020. arXiv:2001.
07573.

50 Lewis Vaughn. Beginning Ethics: An Introduction to Moral Philosophy. W. W. Norton &
Company, New York City, 2014.

51 Wendell Wallach and Colin Allen. Moral Machines: Teaching Robots Right from Wrong.
Oxford University Press, Inc., USA, 2008.

52 Wendell Wallach, Colin Allen, and Iva Smit. Machine morality: bottom-up and top-down
approaches for modelling human moral faculties. AI & SOCIETY, 22(4):565–582, 2008.
doi:10.1007/s00146-007-0099-0.

53 Maranke Wieringa. What to account for when accounting for algorithms: A systematic
literature review on algorithmic accountability. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, FAT* ’20, pages 1–18, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3351095.3372833.

54 Alan F. T. Winfield, Serena Booth, Louise A. Dennis, Takashi Egawa, Helen Hastie, Naomi
Jacobs, Roderick I. Muttram, Joanna I. Olszewska, Fahimeh Rajabiyazdi, Andreas Theodorou,
Mark A. Underwood, Robert H. Wortham, and Eleanor Watson. Ieee p7001: A proposed
standard on transparency. Frontiers in Robotics and AI, 8:225, 2021. doi:10.3389/frobt.
2021.665729.

AIB 2022

https://doi.org/10.24963/ijcai.2019/891
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17052
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17052
https://doi.org/10.1109/3468.844354
https://doi.org/10.1017/9781316585061
https://doi.org/10.1017/CBO9780511978036.031
https://doi.org/10.1007/s10676-017-9430-8
http://www.jstor.org/stable/2264946
http://www.jstor.org/stable/2264946
https://doi.org/10.1007/s00146-021-01325-7
http://arxiv.org/abs/2001.07573
http://arxiv.org/abs/2001.07573
https://doi.org/10.1007/s00146-007-0099-0
https://doi.org/10.1145/3351095.3372833
https://doi.org/10.3389/frobt.2021.665729
https://doi.org/10.3389/frobt.2021.665729

	p000-Frontmatter
	Preface
	Organization

	p001-Hogan
	1 Introduction
	2 General: Knowledge Graphs
	3 Data: Models and Query Languages
	4 Semantics: Schemata, Rules and Ontologies
	5 Analytics: Theory, Algorithms, Measures & Frameworks
	6 Learning: Embeddings and Architectures
	7 Lifecycle: Construction, Refinement, Publication
	8 Conclusions

	p002-Guimaraes
	1 Introduction
	2 Deductive Reasoning
	2.1 Description Logics
	2.1.1 Attributed DLs
	2.1.2 Description Logic Reasoners

	2.2 Datalog
	2.2.1 Syntax
	2.2.2 Semantics
	2.2.3 Datalog Extensions
	2.2.4 Datalog and Description Logics
	2.2.5 Reasoning with Datalog

	2.3 SHACL
	2.3.1 DL-like Syntax for SHACL
	2.3.2 Semantics
	2.3.3 Reasoning with SHACL

	3 Inductive Reasoning
	3.1 Knowledge Graph Embeddings
	3.1.1 KG Embeddings and Ontological Constraints
	3.1.2 KG Embeddings and Temporal Information

	4 Extracting Rules
	5 Conclusion

	p003-Bouraoui
	1 Introduction
	2 Background
	2.1 Conceptual Spaces
	2.2 Ontology Languages
	2.3 Knowledge Graph Embedding

	3 Learning Conceptual Space Representations
	3.1 Modelling Concepts as Regions
	3.2 Learning Quality Dimensions

	4 Modelling Relations with Conceptual Spaces
	4.1 Geometric Models of Relational Rules
	4.2 Link with Knowledge Graph Embedding

	5 Plausible Symbolic Reasoning using Vector Space Embeddings
	5.1 Interpolative Reasoning
	5.2 Analogical Reasoning

	6 Conclusions

	p004-Boschin
	1 Introduction
	2 Preliminaries
	2.1 Knowledge Bases
	2.2 Rule Mining
	2.3 Embeddings

	3 Embedding Models
	3.1 Geometric models
	3.2 Semantic Matching models
	3.3 Deep Models
	3.4 Evaluation of Embedding Methods
	3.4.1 Evaluation Protocol
	3.4.2 Shortcomings of Benchmarks
	3.4.3 Shortcomings of the protocol

	4 Embedding Methods with Logical Components
	4.1 Rationale
	4.2 Improving Knowledge Graph Embeddings Using Simple Constraints
	4.3 Improved Knowledge Graph Embedding Using Background Taxonomic Information
	4.4 Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms
	4.5 Improving Knowledge Graph Embeddings with Ontological Reasoning
	4.6 Injecting Background Knowledge into Embedding Models for Predictive Tasks on Knowledge Graphs
	4.7 Knowledge Base Completion Using Embeddings and Rules
	4.8 Jointly embedding KGs and Rules
	4.9 Knowledge Graph Embedding with Iterative Guidance from Soft Rules (RUGE)

	5 Rule Mining with embedding techniques
	5.1 ILP Rule Mining
	5.2 Few-shot learning for label propagation
	5.3 Approximate algorithms

	6 Conclusion

	p005-Jaeger
	1 Introduction
	2 Graph Data
	3 Graph Neural Networks
	4 Statistical Relational Learning
	5 Transductive and Inductive Inference
	6 Semantics: a comparison
	7 RBNs
	8 Expressivity
	8.1 GNN expressivity
	8.2 The ACR architecture and first-order logic

	9 RBN encodings of GNNs
	10 Dealing with Homophily
	11 Aggregation
	11.1 Invariance and Sum Aggregation
	11.2 Injectivity and Expressivity

	12 Parameter and Structure Learning
	12.1 Structure
	12.2 Parameter learning
	12.3 From sparse to over-parameterizations

	13 Conclusion and Outlook

	p006-Slavkovik
	1 Introduction
	2 Moral decision making
	3 Artificial Moral Agents
	4 Moral philosophy
	5 Top down and bottom up automation
	6 Beyond this tutorial

