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Abstract

Ontologies and vector space embeddings are among the most popular frameworks for encoding
conceptual knowledge. Ontologies excel at capturing the logical dependencies between concepts in a
precise and clearly defined way. Vector space embeddings excel at modelling similarity and analogy.
Given these complementary strengths, there is a clear need for frameworks that can combine the
best of both worlds. In this paper, we present an overview of our recent work in this area. We
first discuss the theory of conceptual spaces, which was proposed in the 1990s by Gärdenfors as
an intermediate representation layer in between embeddings and symbolic knowledge bases. We
particularly focus on a number of recent strategies for learning conceptual space representations
from data. Next, building on the idea of conceptual spaces, we discuss approaches where relational
knowledge is modelled in terms of geometric constraints. Such approaches aim at a tight integration
of symbolic and geometric representations, which unfortunately comes with a number of limitations.
For this reason, we finally also discuss methods in which similarity, and other forms of conceptual
relatedness, are derived from vector space embeddings and subsequently used to support flexible
forms of reasoning with ontologies, thus enabling a looser integration between embeddings and
symbolic knowledge.
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1 Introduction

In Artificial Intelligence (AI), the traditional approach for encoding knowledge about concepts
has been to use logic-based representations, typically in the form of a rule base. Such a rule
base is often called an ontology in this context.
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3:2 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

▶ Example 1. Consider the following rules:

expertInAI(X)← authorOf(X, Y ), hasTopic(Y, artificialIntelligence)
hasTopic(X, artificialIntelligence)← hasTopic(X, knowledgeRepresentation)
hasTopic(X, artificialIntelligence)← hasTopic(X, machineLearning)
hasTopic(X, artificialIntelligence)← hasTopic(X, multiAgentSystems)
hasTopic(X, artificialIntelligence)← hasTopic(X, naturalLanguageProcessing)

Here we have used the notational conventions from logic programming, where the conclusion
of the rule is shown on the left-hand side and “,” denotes conjunction. The first rule intuitively
asserts that somebody who has published a paper on an AI topic is an expert in AI. The
remaining rules encode that knowledge representation, machine learning, multi-agent systems
and natural language processing are sub-fields of AI. Along with the ontology, we are usually
given a set of facts, e.g.:

{authorOf(bob, p), hasTopic(p, knowledgeRepresentation)}

Given this set of facts, together with the aforementioned rules, we can conclude that
hasTopic(p, artificialIntelligence) holds and thus also that expertInAI(bob) holds.

Using ontologies for encoding conceptual knowledge has at least two key advantages. First,
the formal semantics of the underlying logic ensures that knowledge can be encoded in a
precise and unambiguous way. This, in turn, ensures that different applications can rely on a
shared understanding of the meaning of the concepts involved. Second, ontologies enable
us to capture knowledge in a transparent and interpretable way1, which makes it relatively
straightforward to update knowledge and to support decisions with meaningful explanations.
But ontologies, and symbolic approaches to knowledge representation more generally, also
have important drawbacks. A first issue stems from the fact that the knowledge which is
captured in an ontology is rarely complete. For instance, consider the following set of facts:

{authorOf(alice, q), hasTopic(q, planning)}

As none of the available rules express that planning is a sub-field of AI, we cannot infer that
expertInAI(alice) holds. Nonetheless, to a human observer, it seems clear that this would
be a valid inference, even without a precise understanding of what the predicate expertInAI
is supposed to capture. Essentially, standard frameworks for modelling ontologies lack a
mechanism for inductive reasoning [28]. This is not something which can be easily addressed,
as inductive arguments rely on graded notions such as similarity and typicality [58, 50, 66, 51].
Another issue is that many concepts are difficult to characterise in a satisfactory way using
logical rules. For instance, somebody with a single published paper in AI would not normally
be considered to be an AI expert, except perhaps if the work was particularly influential
or groundbreaking, but formalising such notions using rules is challenging. Probabilistic
extensions of standard ontology languages [36, 15] may alleviate some of the aforementioned
issues, but such frameworks still do not allow us to model similarity, or aspects that are a
matter of degree (e.g. being an expert in AI).

1 It should be noted, however, that the extent to which a given ontology is interpretable will depend on
its size and the way it has been encoded. Symbolic rules that have been learned from data can often be
difficult to interpret, for instance.
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The most common alternative to ontologies is to encode conceptual knowledge using
vector space representations. Most work on vector representations of conceptual knowledge
has focused on knowledge graphs (KGs), which are sets of triples of the form (e, r, f), where
e and f are entities and r is a binary relation. Note that both individuals and attribute
values are typically regarded as entities in this context. As an example, we may consider the
following knowledge graph:

K = {(bob, authorOf, p), (p, hasTopic, knowledgeRepresentation),
(p, hasTopic, artificialIntelligence), (bob, hasProperty, expertInAI)}

Approaches for Knowledge graph embedding (KGE) learn a vector representation e ∈ Rn for
each entity e and a scoring function ϕr : Rn × Rn → R for each relation type r, such that
ϕr(e, f) captures the plausibility of the triple (e, r, f), i.e. the plausibility that the relation r

holds between the entities e and f [14, 75, 70, 69]. The vector e is called the embedding of
entity e. The purpose of KGE is at least two-fold. First, it is hoped that this embedding
will uncover some of the underlying semantic dependencies in the KG, and that as a result,
we will be able to identify plausible triples that are missing from the given KG. Second, by
encoding the information that is captured in the knowledge graph using vectors, it becomes
easier to exploit this information in neural network models.

Figure 1 shows a vector encoding of the paper p and some of the considered subject areas.
For this example, we assume that the dot product between p and a subject area indicates
how relevant that subject area is to p, i.e. we have ϕhasTopic(e, f) = e · f . Let us write vML,
vAI, vNLP and vKR for the vector representations of the different subject areas, and p for
the representation of p. According to this embedding, we have p ·vML ≈ p ·vNLP > p ·vKR,
which captures the knowledge that p is more closely related to machine learning and natural
language processing than to knowledge representation. Moreover, note how the norm of vAI
is larger than the norms of vML, vNLP and vKR. This intuitively captures the knowledge
that the term artificial intelligence is broader in meaning. For instance, we can encode the
knowledge that machine learning is a sub-discipline of AI by ensuring that for every vector
x ∈ R2 it holds that:

vML · x < vAI · x

Note that in this example, we have only focused on one relation (i.e. hasTopic). In general,
we can model multiple relations by using higher-dimensional vectors, together with scoring
functions that depend on relation-specific parameters (see Section 2.3 for more details).
When it comes to modelling conceptual knowledge, an important advantage of KGE is that
it naturally supports inductive inferences. Moreover, such representations are better suited
for modelling graded notions such as similarity than symbolic representations. However,
the extent to which “rule-like” knowledge can be captured is limited. As we saw in the
aforementioned example, we can model the fact that one concept is subsumed by another,
but it is not clear how more complex rules can be encoded using vector space embeddings.
Moreover, KGE models lack the transparency of symbolic representations, which makes it
harder to generate meaningful explanations or to update representations (e.g. to correct
mistakes, add new knowledge, or take account of changes in the world).

It is thus clear that ontologies and vector space embeddings have complementary strengths
and weaknesses when it comes to modelling conceptual knowledge. Accordingly, various
authors have proposed strategies for combining these two paradigms. For instance, rules are
sometimes used to regularise neural networks [24, 74, 43], to generate supplementary training
data [7], or to determine the structure of a neural network [59, 67]. Other approaches use rules

AIB 2022



3:4 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Figure 1 Illustration of a simple knowledge graph embedding, in which the dot product between
p and a subject area indicates how relevant that subject area is to p.

to reason about the predictions of neural networks [44, 77], or treat rules as latent variables
which are inferred by a neural network [56]. Note, however, how in the aforementioned
research lines, rules and vector representation are treated as fundamentally distinct. Rules are
either used as a supervision signal for learning neural networks (or vector space embeddings)
or they are used for reasoning in a way that is largely decoupled from the neural networks
or vector space embeddings themselves. Another observation is that rules essentially play a
supportive role, to help overcome the limitations of some neural network model.

The first question we address in this paper is whether a tighter integration of rules and
vector representations is possible. The main idea is to view symbolic knowledge as qualitative
constraints on some underlying geometric model. This idea was developed in the 1990s by
Gärdenfors in his theory of conceptual spaces [27]. The key characteristic of conceptual spaces
is that concepts are represented as regions, rather than vectors. A rule A(x)← B(x), C(x)
can then be viewed as the constraint that the intersection of the regions representing B and
C should be included in the region representing A. While the theory of conceptual spaces
offers an elegant solution to the question of how symbolic and vector representation could be
integrated, it has two limitations that have hampered its adoption within AI:

In practice, it is often difficult to learn region-based representations of concepts from
data.
Conceptual space representations cannot be used for modelling relational knowledge, e.g.
rules involving binary predicates.

These two limitations, and strategies for addressing them, are discussed in Sections 3 and 4.
The second question we discuss is how vector space representations can be used in a

supportive role, to help overcome some of the limitations of symbolic reasoning with ontologies.
Here, the starting point is that some of the aforementioned shortcomings can be alleviated
within a purely symbolic setting, for instance by relying on default reasoning [42, 20, 32],
analogical reasoning [31, 54, 61], or qualitative versions of similarity based reasoning [65, 63].
The main problem with implementing such strategies in practice comes from the fact that they
often rely on types of background knowledge which is not usually available in symbolic form
(e.g. qualitative similarity relations). However, in some cases, this background knowledge
can be obtained from vector space embeddings. In this case, we still have a loose integration
between vector representations and rules, but rather than trying to improve neural network
learning, as in the works described above, now the focus is on making symbolic reasoning
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Figure 2 Illustration of a conceptual space of animals.

more flexible and adding some kind of inductive reasoning capability. For instance, in the
setting from Example 1, if we know that the vector representation of planning is highly similar
to the vector representation of knowledgeRepresentation, we can plausibly infer the following
rule:

hasTopic(X, artificialIntelligence)← hasTopic(X, planning)

In Section 5, we discuss a number of strategies that build on this idea, focusing on how such
plausible inferences can be integrated with standard deductive reasoning.

2 Background

In this section, we briefly introduce the main concepts that we will build on in the following
sections. First, Section 2.1 discusses the theory of conceptual spaces. In Section 2.2 we
then cover two standard formalisms for encoding ontological rules: existential rules and the
EL-family of description logics. Finally, Section 2.3 provides an introduction into Knowledge
Graph Embedding.

2.1 Conceptual Spaces
Similar to vector-space embeddings, conceptual spaces [27] are geometric representations
of the entities from a given domain of discourse. However, conceptual spaces differ from
standard embeddings in two important ways: (i) properties and concepts are represented as
regions and (ii) the dimensions of a conceptual space correspond to semantically meaningful
features. These two differences enable conceptual spaces to act as an interface between
neural representations, on the one hand, and symbolic knowledge, on the other hand. This
is illustrated in Figure 2, which shows a conceptual space of animals. Specific animals are
represented as points in this space. Concepts such as mammal and properties such as scary
are represented as regions. The dimensions capture the ordinal features dangerous and large.
In this representation, the region modelling mammal is included in the region modelling
vertebrate, which intuitively captures the rule vertebrate(X)← mammal(X), i.e. all mammals
are vertebrates. Note how this representation can also capture semantic dependencies that
are harder to encode using rules, e.g. the fact that large spiders are scary.

AIB 2022



3:6 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

While it is convenient to think about conceptual spaces as vector space embeddings with
some added structure, conceptual spaces do not necessarily have the structure of a vector
space. A conceptual space is defined from a set of quality dimensions Q1, ..., Qn. Each of
these quality dimensions captures a primitive feature. As a standard example, the conceptual
space of colours is built from three quality dimensions, representing hue, saturation and
intensity. A distinction is made between integral and separable quality dimensions. Intuitively,
separable quality dimensions are those that have a meaning on their own. For instance, size
could be seen as a separable dimension. On the other hand, hue is not separable, as we
cannot imagine the hue of a colour without also specifying its saturation and intensity. This
distinction between integral and separable dimensions plays an important role in cognitive
theories, as it affects how similarity is perceived. For instance, Euclidean distance is normally
used when integral dimensions need to be combined, whereas Manhattan distance is used
when separable dimensions need to be combined [49, 27]. Quality dimensions are partitioned
into so-called domains, where dimensions that belong to the same domain are assumed to be
integral, while dimensions from different domains are assumed to be separable. For instance,
a conceptual space of physical objects may be composed of three domains: the colour domain
(containing the hue, saturation and intensity quality dimensions), the size domain (containing
only a single quality dimension) and the shape domain (containing several dimensions).

We can view domains as Cartesian products of quality dimensions. For instance, if
Di is composed of the quality dimensions Q1, ..., Qk then the elements of Di are tuples
(x1, ..., xk) ∈ Q1 × ... × Qk. We can thus intuitively think of domains as vector spaces,
although in general it is not required that domains satisfy the axioms of a vector space. An
individual (e.g. a specific apple) is represented as an element (x1, ..., xk) of a given domain,
whereas we can think of properties (e.g. green) as regions. One of the central assumptions
in the theory of conceptual spaces is that each natural property corresponds to a convex
region in some domain. A concept is characterised in terms of a set of natural properties,
along with information about how these properties are correlated. To define this notion of
convexity, we have to assume that each domain Di is equipped with a ternary betweenness
relation beti ⊆ Di ×Di ×Di. A region R ⊆ Di is then said to be convex iff

∀a, b, c ∈ Di . a ∈ Di ∧ c ∈ Di ∧ beti(a, b, c)⇒ b ∈ Di

In this paper, our focus will be on learning conceptual spaces from data. In this case,
we will only consider domains that correspond to Euclidean spaces, where the notion of
convexity can be interpreted in the standard way. Our focus will be on (i) learning region
based representations of properties and concepts (ii) identifying quality-dimensions and (iii)
grouping these quality-dimensions into domains.

2.2 Ontology Languages
We next look at two of the most popular Horn-like formalisms to encode ontologies, namely
existential rules [10, 35] and the EL-family of description logics [8]. Informally, an existential
rule is a datalog-like rule (i.e. a logic programming rule of the kind we used in Example 1)
with existentially quantified variables in the head, i.e. it extends traditional datalog with
value invention. As a consequence, existential rules describe not only constraints on the
currently available knowledge or data, but also intensional knowledge about the domain of
discourse. Likewise, the EL-family of description logics can be used for modelling intentional
knowledge. In fact, some expressive members of the EL-family are restrictions of existential
rules to unary and binary relations.
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Existential Rules

Syntax. Let C, N and V be infinite disjoint sets of constants, (labelled) nulls and variables,
respectively. A term t is an element in C ∪ N ∪ V; an atom α is an expression of the
form R(t1, . . . , tn), where R is a relation name (or predicate) with arity n and terms ti. An
existential rule σ is an expression of the form

∃X1, . . . , Xj .H1 ∧ . . . ∧Hk ← B1 ∧ . . . ∧Bn, (1)

where n ≥ 0, k ≥ 1, B1, . . . Bn and H1, . . . , Hk are atoms with terms in C ∪ V, and
X1, ..., Xj ∈ V. From here on, we assume w.l.o.g. that k = 1 [21] and we omit the subscript
in H1. We further allow negative constraints (also simply called constraints), which are
expressions of the form ⊥ ← B1 ∧ . . . ∧Bn, where the Bis are as above and ⊥ denotes the
truth constant false. A finite set Σ of existential rules and constraints is called an ontology.
Let R be a set of relation names. A database D is a finite set of facts over R, i.e. atoms with
terms in C. A knowledge base (KB) K is a pair (Σ, D) with Σ an ontology and D a database.

Semantics. An interpretation I over R is a (possibly infinite) set of atoms over R with
terms in C ∪N. An interpretation I is a model of Σ if it satisfies all rules and constraints:
{B1, . . . , Bn} ⊆ I implies {H} ⊆ I for every existential rule σ in Σ, where existential
variables can be witnessed by constants or labelled nulls, and {B1, . . . , Bn} ̸⊆ I for all
constraints defined as above in Σ; it is a model of a database D if D ⊆ I; it is a model of a
KB K = (Σ, D), written I |= K, if it is a model of Σ and D. We say that a KB K is satisfiable
if it has a model. We refer to elements in C ∪N simply as objects, call atoms α containing
only objects as terms ground, and denote with O(I) the set of all objects occurring in I.

▶ Example 2. Let D = {wife(anna), wife(marie)} be a database and Σ an ontology composed
by the following existential rules:

husband(Y )← wife(X) ∧married(X, Y ) (2)
∃X . husband(X) ∧married(X, Y )← wife(Y ) (3)

⊥ ← husband(X) ∧ wife(X) (4)

Then, an example of a model of K = (Σ, D) is the set of atoms

D ∪ {husband(o1), husband(o2), married(o1, anna), married(o2, marie)}

where oi are labelled nulls. Note that e.g. {married(anna, marie), husband(marie)} is not
included in any model of K due to (4).

EL-family

We introduce some basic notions about description logics, focusing on EL⊥, one of the most
commonly used logics from the EL-family. The interested reader can find more details on
description logics in [9].

Syntax. Consider countably infinite but disjoint sets of concept names NC and role names
NR. These concept and role names are combined to EL⊥ concepts, in accordance with the
following grammar, where A ∈ NC and r ∈ NR:

C, D := ⊤ | ⊥ | A | C ⊓D | ∃r.C

AIB 2022
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For instance, A ⊓ (∃r.(B ⊓ C)) is an example of a well-formed EL⊥ concept, assuming
A, B, C ∈ NC and r ∈ NR. The fragment of EL⊥ in which ⊥ is not used is known as EL. An
EL⊥ TBox (ontology) T is a finite set of concept inclusions (CIs) of the form C ⊑ D, where
C, D are EL⊥ concepts.

▶ Example 3. The ontology in Example 2 can be expressed using the following EL concept
inclusions

∃married.Wife ⊑ Husband (5)
Wife ⊑ ∃married.Husband (6)

Husband ⊓Wife ⊑ ⊥ (7)

Semantics. The semantics of description logics are usually given in terms of first-order
interpretations (∆I , ·I). Such interpretations consist of a nonempty domain ∆I and an
interpretation function ·I , which maps each concept name A to a subset AI ⊆ ∆I and each
role name r to a binary relation rI ⊆ ∆I ×∆I . The interpretation function ·I is extended
to complex concepts as follows:

(⊤)I = ∆I , (⊥I) = ∅ (C ⊓D)I = CI ∩DI ,

(∃r.C)I = {d ∈ ∆I | ∃d′ ∈ CI , (d, d′) ∈ rI}.

We now introduce two classical reasoning tasks. An interpretation I satisfies a concept
inclusion C ⊑ D if CI ⊆ DI ; it is a model of a concept C if CI ̸= ∅; it is a model of a TBox
T if it satisfies all CIs in T . A concept C subsumes a concept D relative to a TBox T if
every model I of T satisfies C ⊑ D. We denote this by writing T |= C ⊑ D. A concept C is
satisfiable w.r.t. T if there is a common model of C and T .

2.3 Knowledge Graph Embedding
Let a set of entities E and a set of binary relations R be given. A knowledge graph (KG)
is a subset of E ×R× E . In other words, a knowledge graph is a set of triples of the form
(e, r, f). These triples encode the fact that the relation r holds between the entities e and
f . For instance, we may have a triple such as (london, capitalOf, uk), encoding that London
is the capital of the UK. A knowledge graph is thus essentially a set of relational facts,
with the limitation that all relations are binary. Note, however, that the set of entities E
typically includes both individuals (i.e. constants referring to specific objects, e.g. london)
and attribute values, which allow us to encode unary predicates. For instance, the relational
fact scary(lion) Could be encoded as the KG triple (lion, hasAttribute, scary).

The aim of Knowledge Graph Embedding (KGE) is to learn a vector encoding e ∈ Rn

for each e ∈ E and a scoring function ϕr : Rn × Rn → R for each ∈ R. The vector e is
usually referred to as the embedding of e. The scoring function is designed such that ϕr(e, f)
indicates how likely it is that (e, r, f) is a valid triple, i.e. that the relational fact r(e, f) is
true. We may assume, for instance, that for each r ∈ R we also have a threshold λr such that
(e, r, f) is considered to be valid iff ϕr(e, f) ≥ λr. A comprehensive overview of knowledge
graph embedding models is beyond the scope of this paper; please refer to [72, 60] for more
complete introductions. To illustrate the main concepts, we discuss a number of popular
models. TransE [14] was one of the first KGE models. Relations in this model are viewed
as translations. In particular, each relation r ∈ R is represented by a vector r ∈ Rn. The
corresponding scoring function ϕr is given by:

ϕr(e, f) = −d(e + r, f)
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with d either Euclidean or Manhattan distance. Another popular choice is to use a bilinear
scoring function. In this case, r is parametrised by a matrix Mr and we have:

ϕr(e, f) = eT Mr f

Different models differ in which constraints they put on the matrix Mr. For instance, in the
RESCAL model [47] this matrix is unconstrained, whereas DistMult [76] only allows diagonal
matrices. In recent years, several authors have focused on designing models that make it
easier to capture certain relational structures. For instance, embeddings based on hyperbolic
geometry have been used to make it easier to model hierarchical structures, such as is-a
and part-of hierarchies [48]. Region-based models, e.g. representing entities as boxes or
cones, have been used for their ability to model both hierarchies and intersections [1, 52, 79].
In [68] a model is proposed in which relations are viewed as rotations, to facilitate modelling
relational composition, as well as properties such as symmetry. It should be noted, however,
that while these models can capture certain relational dependencies to some extent, in
most models there is no explicit link between a given knowledge graph embedding and the
relational dependencies it captures. Moreover, relatively little is known about which kinds
of dependencies different models are capable of capturing (or, more generally, which sets of
dependencies can be jointly captured). Of course, this first requires us to formalise what it
means for an embedding to capture a relational dependency. We will return to this question
in Section 4.

3 Learning Conceptual Space Representations

If we want to use conceptual spaces as an interface between symbolic ontologies and vectors
space embeddings, a crucial question is whether it is possible to learn conceptual spaces from
data. What matters in this context is (i) whether we can learn region-based representations
of concepts and (ii) whether we can learn vector representations in which dimensions are
meaningful and organised into domains. These two issues are discussed in Sections 3.1 and
3.2 respectively.

3.1 Modelling Concepts as Regions
Learning Gaussian Representations. In learned vector space embeddings, the objects from
some domain of interest are represented as points or vectors, as in conceptual spaces. Most
embedding models do not learn region-based representations of concepts. However, if we
have access to a number of instances c1, ..., cn of a given concept C, we can aim to learn
a region-based representation of C from embeddings of these instances. The potential of
this strategy stems from the fact that in many embedding models, these instances can
be expected to appear clustered together in the vector space. To illustrate this, consider
Figure 3, which shows the first two principal components of a 300-dimensional embedding of
BabelNet concepts [46] using NASARI vectors2, which have been learned from Wikipedia
and are linked to BabelNet [22]. In the figure, the red points correspond to entities that are
instances of the concept Artist, while the blue points correspond to entities that are instances
of Painter. For instance, the embeddings of Edouard Manet, Vanessa Bell and Claude Monet
appear close to the centre of the blue point cloud. As can be seen, painters appear as a
distinct cluster in this vector space embedding.

2 Downloaded from http://lcl.uniroma1.it/nasari/.
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3:10 Integrating Ontologies and Vector Space Embeddings Using Conceptual Spaces

Figure 3 First two principal components of a vector space embedding of BabelNet entities, where
blue points correspond to instances of the concept Artist and red points correspond to instances of
the concept Painter, according to Wikidata.

When attempting to learn a region-based concept representation, we are faced with two
challenges: (i) we typically only have access to positive examples and (ii) the number of
available instances is often much smaller than the number of dimensions in the vector space.
This means that we inevitably have to make some simplifying assumptions to make learning
possible. A natural choice is to represent concepts as Gaussians. This has the advantage
that concept representations can be learned in a principled way, as the problem of estimating
Gaussians from observations, either with or without prior knowledge, has been well-studied.
Representing concepts using probability distributions, rather than hard regions, also fits
well with the view that concept boundaries tend to be fuzzy and ill-defined more often than
not. Note that in neural models, concepts are typically represented as vectors, with concept
membership determined in terms of dot products, e.g. σ(e · c) is often used to estimate the
probability that the entity e (with embedding e) is an instance of concept C (with embedding
c), with σ the sigmoid function. This choice effectively means that concepts are represented
as spherical regions in the vector space. When using Gaussians, we relax this modelling
choice, allowing concepts to be represented using ellipsoidal regions instead.

To deal with the (typically) small number of instances that are available for learning
a concept, [17] only considered Gaussians with diagonal covariance matrices. In this case,
the problem simplifies to learning a number of univariate Gaussians, i.e. one per dimension.
Moreover, a Bayesian formulation with a flat prior was used for estimating the Gaussians.
As a consequence, concepts are actually represented using Student t-distributions. The
practical implication is that slightly wider ellipsoidal regions are learned than those that
would be obtained when using maximum likelihood estimates. Some contours of the learned
distribution for the concept Painter are shown in Figure 3.

Bayesian learning with prior knowledge. As mentioned above, [17] used a Bayesian for-
mulation for learning Gaussian concept representations. While a flat (i.e. non-informative)
prior was used in that paper, the same formulation can be used with informative priors,
which offers a natural strategy for incorporating prior knowledge about the concept C being
modelled. Such prior knowledge is particularly important when the number of available
instances of C is very small (or, in an extreme case, when no instances of C are given at all).
This idea was developed in [18], where two sources of prior knowledge were used: ontologies
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and vector space embeddings of the concept names. In both cases, the prior knowledge
allows us to relate the target concept C to other concepts. However, in practice we typically
do not yet have a representation of these other concepts, i.e. we are trying to jointly learn
a representation of all concepts of interest. This creates circular dependencies, e.g. the
representation of concept A provides us with a prior on the representation of concept B, but
the representation of concept B also provides us with a prior on the representation of A.
This can be addressed using Gibbs sampling; we refer to [18] for the details.
Priors on Mean. Suppose we have concept inclusions of the form (C ⊑ D1),...,(C ⊑ Dk), and
suppose we have a Gaussian representation of the concepts D1, ..., Dk. Then we can induce
a prior on the mean of the Gaussian representing C based on the idea that the mean of C

should have a high probability in the Gaussians modelling D1, ..., Dk. This can be achieved
efficiently by taking advantage of the fact that the product of k Gaussians is proportional
to another Gaussian. In addition to ontologies, we can also use vector space embeddings of
the (names of the) concepts C, D1, ..., Dk. Specifically, [18] proposed a strategy based on the
view that there should be a fixed vector offset between the embedding of a concept C and
the mean of the Gaussian that represents it.
Priors on Variance. To obtain a prior on the variance of the Gaussian representing C, we
take the view that this variance should be similar to that of the concepts that are most
similar to C. To find such concepts, we could take the siblings of C in an ontology, the
concepts whose vector space embedding is most similar to the embedding of C, or we could
use a hybrid strategy where we select the siblings whose embedding is most similar to that
of C. We again refer to [18] for details.

Exploiting contrast sets. A common strategy for learning conceptual space representations
is to associate each concept with a single point, which intuitively represents its prototype [30].
The region representing a given concept C then consists of all points that are closer to
the prototype of C than to the prototype of any other concept, i.e. concept regions are
obtained as the Voronoi tessellation of a set of prototype points. This strategy is appealing,
because it allows us to learn concept regions with a much wider extension than when learning
Gaussians, especially in cases where we only have a few instances per concept. The main
idea is illustrated in Figure 4, where we are interested in learning a region for the concept C.
When using Gaussians, we would end up with ellipsoidal regions (contours) similar to the
ones displayed in the figure. As a result, most points of the space are not assigned to any of
the concepts. In contrast, if we construct prototypes by averaging the embeddings of the
instances of a concept, and compute the resulting Voronoi tessellation, we essentially carve
up the space, as also illustrated in the figure. To see why this can be beneficial in practice,
Figure 5 shows the vector representations of the instances of three concepts: Songbook,
Brochure and Guidebook. Now consider the left-most test instance of Songbook. If we are
only given the training instances of this concept, this test instance is unlikely to be covered
by the resulting representation. In contrast, if we instead attempt to carve up the space into
regions corresponding to Songbook, Brochure and Guidebook, then this test instance would
be classified correctly. The problem with implementing the aforementioned idea is that it
only works if we are given a set of concepts that form a contrast set [33], i.e. a set of mutually
exclusive natural categories that exhaustively cover some sub-domain. For example, the set of
all common color names, the set {Fruit, Vegetable} and the set {NLP, IR, ML} can intuitively
be thought of as contrast sets. We say that two concepts are conceptual neighbours if they
belong to the same contrast set and compete for coverage (i.e. are adjacent in the resulting
Voronoi tessellation).
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Figure 4 Estimating concept regions based on conceptual neighbourhood.

Figure 5 Instances of three BabelNet categories which intuitively can be seen as conceptual
neighbors. The figure shows the first two principal components of the NASARI vectors.

Existing ontologies do not typically describe contrast sets or conceptual neighbourhood.
To deal with this, [16] introduced a strategy for learning conceptual neighbourhood from
data, i.e. for discovering pairs of concepts that are conceptual neighbours. Note that they
focus on conceptual neighbourhood rather than contrast sets, as the need for contrast sets to
be exhaustive is difficult to guarantee. The method then relies on the simplifying assumption
that the target concept C, along with its known conceptual neighbours N1, ..., Nk forms
a contrast set. To represent the concept C, first a Gaussian is learned by pooling the
instances of C, N1, ..., Nk together. The ellipsoidal contours of this Gaussian are then carved
up into sub-regions for C, N1, ..., Nk by learning logistic regression classifiers. Specifically,
the region representing C is obtained by training logistic regression classifiers that separate
the instances of C and Ni, for each i ∈ {1, ..., k}. To learn conceptual neighbourhood from
data, the first step of the strategy from [16] consists in generating weakly supervised training
examples. To this end, they start with two concepts A and B that are siblings in a given
taxonomy (i.e. concepts that have the same parent) and for which a sufficiently large number
of instances is given. They then compare the performance of the following two types of
concept representations:
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Table 1 Selected examples of siblings A–B which are predicted to be conceptual neighbours with
high and medium confidence.

High confidence Medium confidence
Actor – Comedian Cruise ship – Ocean liner

Journal – Newspaper Synagogue – Temple
Club – Company Mountain range – Ridge

Novel – Short story Child – Man
Tutor – Professor Monastery – Palace

Museum – Public aquarium Fairy tale – Short story
Lake – River Guitarist – Harpsichordist

1. Learn a Gaussian representation of A and B from their given instances.

2. Learn a Gaussian representation from the combined instances of A and B, and then split
the resulting region by training a logistic regression classifier that separates A-instances
from B-instances.

If the second representations perform (much) better at classifying held-out instances, we
can assume that A and B are conceptual neighbours. If the second representations perform
much worse, then we can assume that A and B are not conceptual neighbours. In case
the performance is similar, then the pair A, B is disregarded when constructing the weakly
labelled training set. Table 1 shows some examples of pairs of concepts A, B that were
predicted to be conceptual neighbours using this process. Given the resulting training set,
we can then train a standard text classifier on sentences that mention both A and B from
some text corpus. Consider, for instance, the concepts Hamlet and Village, and the following
sentence 3:

In British geography, a hamlet is considered smaller than a village and ...

The sentence suggests that hamlet and village are conceptual neighbors as it makes clear
that these concepts are closely related but different. Once a classifier is trained, based on
the weakly supervised training set, we can then apply it to other concepts. To learn the
representation of a given target concept C (e.g. a concept with only few known instances),
we can then use the text classifier to identify which of its siblings, in a given taxonomy, are
most likely to be conceptual neighbours, and determine the representation of C accordingly.
Tables 2 and 3 show some examples of the top conceptual neighbor predicted by the text
classifier, for different target concepts. In particular, Table 3 shows examples where the
resulting concept representations (i.e. the representations of the target concepts obtained
by exploiting the predicted conceptual neighbourhood) were of high quality, as measured
in terms of F1 score for held-out entities. Similarly, Table 2 shows examples where the
resulting concept representations were of low quality. As can be seen, the predicted conceptual
neighbours in Table 3 are clearly more meaningful than the predicted neighbours in Table 2.
This illustrates how the quality of the concept representations is closely linked to our ability
to find meaningful conceptual neighbours. Overall, the experiments in [16] showed that using
predicted conceptual neighbourhood, on average, led to much better concept representations
than when estimating Gaussians from the known instances of the target concept.

3 https://en.wikipedia.org/wiki/Hamlet_(place)
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Table 2 Top conceptual neighbors selected for categories associated with a low F1 score.

Concept Top neighbor F1
Bachelor’s degree Undergraduate degree 34
Episodic video game Multiplayer gamer 34
501(c) organization Not-for-profit arts organization 29
Heavy bomber Triplane 41
Ministry United States government 33

Table 3 Top conceptual neighbors selected for categories associated with a high F1 score.

Concept Top neighbor F1
Amphitheater Velodrome 67
Proxy server Application server 61
Ketch Cutter 74
Quintet Brass band 67
Sand dune Drumlin 71

3.2 Learning Quality Dimensions
The dimensions of learned vector spaces do not normally correspond to semantically meaning-
ful properties. This is an important difference with conceptual spaces, which severely limits
the interpretability of learned vector space representations. In this section, we review work
that has focused on mitigating this issue, by identifying interpretable directions in learned
vector spaces. These interpretable directions can then play the role of quality dimensions.
This is illustrated in Figure 6, which shows a two-dimensional projection of an embedding of
movies from [25]. Along with the embedding of the movies themselves, the figure also shows
two directions that have been identified: one direction which ranks the movies from least
to most scary, and another direction which ranks the movies from least to most romantic.
Formally, we say that the direction of some vector v models a property P , such as scary, if
for entities e1 and e2, with embeddings e1 and e2, we have e1 · v > e2 · v if entity e1 has the
property P to a greater extent than entity e2.

Identifying quality dimensions. Assume that a set of entities E is given, together with a
vector space embedding e ∈ Rn for each entity e ∈ E . To find interpretable directions, [25]
proposed a simple strategy which relies on the assumption that a text description De is
available for each entity e. Let V be the set of all words (or common multi-word expressions
such as “New York”) that appear in these descriptions De. For v ∈ V , we say that the word
v is relevant for the entity e if v appears at least once in the description De. It was proposed
in [25] to learn a linear classifier in the embedding space, for each v ∈ V , separating the
entities for which v is relevant from those for which this is not the case. If this classifier is
able to separate these entities well, the assumption is that the word v must be important,
i.e. that it describes an aspect that is captured by the embedding space. In this case, the
normal vector v of the hyperplane that was learned by the classifier is treated as a candidate
direction. These candidate directions are then clustered, and the each cluster is treated as a
quality dimension. This clustering step has the advantage that quality dimensions become
easier to interpret, as we have a set of words to describe them, rather than a single word, and
it ensures that different quality dimensions are sufficiently different. We refer to [2] for an
extensive evaluation of the resulting quality dimensions. We illustrate the main findings with
some examples. First, some of the clusters that are found closely correspond to the intuition
of quality dimensions. For instance, the following clusters were found in [25], starting from a
vector space embedding of movies:
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Figure 6 Interpretable directions within a vector space embedding of movies.

touching, inspirational, warmth, dignity, sadness, heartwarming, ...
clever, schemes, satire, smart, witty dialogue, ingenious, ...
bizarre, odd, twisted, peculiar, lunacy, surrealism, obscure, ...
predictable, forgettable, unoriginal, formulaic, implausible, contrived, ...
tragic, anguish, sorrow, fatal, misery, bitter, heartbreaking, ...
romantic, lovers, romance, the chemistry, kisses, true love, ...
eerie, paranoid, spooky, impending doom, dread, ominous, ...
scary, shivers, chills, creeps, frightening, the dark, goosebumps, ...
cheesy, camp, corny, tacky, laughable, a guilty pleasure, ...
hilarious, humorous, really funny, a very funny movie, amusing, ...
wonderful, fabulous, a joy, gem, delighted, happy, perfect, great, ...

Arguably, all these directions correspond to clear and salient semantic attributes of movies.
On the other hand, many other clusters rather corresponded to movie themes, e.g.:

horror movies, zombie, much gore, slashers, vampires, scary monsters, ...
killer, stabbings, a psychopath, serial killer, ...
supernatural, a witch, ghost stories, mysticism, a demon, the afterlife, ...
scientist, experiment, the virus, radiation, the mad scientist, ...
criminal, the mafia, robbers, parole, the thieves, the mastermind, ...

While these directions express semantically meaningful properties, it would be more
natural to represent such properties as regions than as quality dimensions. The fact that such
thematic properties cannot be distinguished from the semantic attributes mentioned above
is clearly a limitation of the method from [25]. In [2], it was found that the nature of the
clusters, i.e. whether they intuitively correspond to quality dimensions rather than thematic
properties, to some extent depends on the scoring function that is used for evaluating the
linear classifiers. However, regardless of the scoring function that is used, a mixture of
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different types of properties is found. One possible solution could be to require that clusters
which correspond to quality dimensions should contain a sufficient proportion of adjectives,
as clusters consisting mostly of nouns are more likely to be thematic properties. On the other
hand, it is not clear that having thematic “quality dimensions” is necessarily problematic.
While it makes the resulting representation different from a conceptual space, it still allows
us to “disentangle” the vector representation into different aspects (e.g. genre, sentiment,
emotion). Furthermore, a cluster of terms related to horror movies could still be viewed as a
quality dimension if we view it as ranking movies based on how “horror-like” they are.

A number of improvements to the basic method from [25] have been explored. In [3]
a fine-tuning strategy is introduced, which modifies the initial vector space based on the
discovered quality dimensions, while [6] suggests to learn quality dimensions in a hierarchical
fashion, with the top-level dimensions essentially partitioning the vector space into thematic
domains, and the lower-level dimensions intuitively corresponding to quality dimensions
within each of these thematic domains. In terms of how the resulting quality dimensions
could be useful, the main focus has so far been on their ability to support interpretable
classifiers, with [25] introducing a rule based classifier, which compares entities with training
examples along a small number of quality dimensions, and [3, 6] using the quality dimensions
as features for low-depth decision trees.

Organising quality dimensions into domains. The quality dimensions of a conceptual
space are organised into domains. Accordingly, as we have seen in the previous section, the
quality dimensions that can be identified in learned vector spaces also intuitively belong
to different kinds. It would be of interest to group quality dimensions of the same kind
together, to learn a structure which is akin to conceptual space domains. For instance, in
the movies domain, we could imagine one group of quality dimensions about the emotion
a movie evokes, as well as groups about the genre, the cinematographic style, etc. We will
refer to these groups of learned quality dimensions as facets, rather than domains, to avoid
confusion (e.g. domain can also refer to the domain-of-discourse, such as movies, or to the
domain of a description logic interpretation) and to highlight the fact that there are still
important differences between these facets and conceptual space domains. In addition to
grouping quality dimensions that are concerned with the same aspect of meaning, we also
want to learn a corresponding lower-dimensional vector space for each facet. In other words,
the central aim is to decompose the given vector space into a number of lower-dimensional
spaces, each of which captures a different aspect of meaning.

Note that we cannot learn these facets by simply clustering the quality dimensions. For
instance, thriller and scary may be represented by similar directions in the vector space,
but they should be assigned to different facets. In contrast, romance and horror would
be represented by dissimilar directions but nonetheless belong to the same facet. The key
solution, which was developed in [5] and [4], is to rely on word embeddings to identify words
that describe properties of the same kind. For instance, the word embeddings of different
movie genres tend to be similar, because such words tend to appear in similar contexts. In
the same way, different adjectives describing emotions tend to be represented using similar
word vectors. This suggests a simple strategy for learning facets: (i) cluster the word vectors
of the words associated with the quality dimensions that were identified in the given vector
space; and (ii) represent the facet by the vector space that is spanned by quality dimensions
that are assigned to it. Unfortunately, this strategy was found to perform poorly in [5]. The
main reason is that in many areas there is one dominant facet, such as the genre in the
case of movies. When applying the aforementioned strategy, what happens is that each of
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the resulting facet-specific vector spaces mostly models the dominant facet. To address this
issue, [5] proposed an iterative strategy, in which the dominant facet is first identified and then
explicitly disregarded when determining the second facet, etc. Another practical challenge
is that the overall method is computationally demanding, especially the fact that a linear
classifier has to be learned for each word from the vocabulary, to identify the interpretable
directions (in the overall space and in each of the lower-dimensional facet-specific spaces). To
address this issue, [4] introduced a model that directly learns facet-specific vector spaces from
bag-of-words representations of the entities, using a mixture-of-experts model to generalize
the GloVe [53] word embedding model. Using this approach, facet-specific vector spaces can
be learned much more efficiently, and moreover the resulting embeddings tend to be of a
higher quality. The main limitation, however, is that this model assumes that suitable vector
spaces can be learned from bag-of-words representations (rather than being agnostic to how
the initial vector space embedding is learned) and that GloVe is a suitable embedding model
for learning these vector spaces.

The resulting facet-specific embeddings can be used in a number of different ways. Perhaps
the most immediate application of such representations is that they facilitate concept learning.
For instance, suppose we want to represent each concept as a Gaussian. Furthermore, suppose
that only one of the facet-specific vector spaces is relevant for modelling the considered
concept. If we learn a Gaussian in each of the factor-specific vector spaces, we should end up
with Gaussian with a large variance for the irrelevant facets, and a Gaussian with a much
lower variance in the vector space corresponding to the relevant facet. This advantage of
facet-specific vector spaces was empirically confirmed in [4]. Moreover, they found that even
strategies that only rely on the resulting quality dimensions, e.g. learning low-depth decision
trees, were benefiting from learning facet-specific vector spaces, as the lower-dimensional
nature of each vector space acts as a regulariser.

4 Modelling Relations with Conceptual Spaces

Conceptual spaces act as an interface between vector space embeddings and symbolic
knowledge. However, because conceptual spaces do not capture relational knowledge, they
are essentially limited to capturing Horn rules with unary predicates. In this section, we
explore whether the framework of conceptual spaces can be generalised to encode rules with
binary and higher arity relations. We focus on the analysis presented in [37] but use a
construction that is somewhat more intuitive than the one used in the latter paper. The
main idea is to view a k-ary relation as a convex region in the Cartesian product of k

conceptual spaces. For simplicity, in this section we will assume that conceptual spaces
correspond to Euclidean spaces. Each individual a is then represented as a vector a ∈ Rn. A
tuple (a1, ..., ak) is represented as the concatenation of the vectors representing a1, ..., ak, i.e.
(a1, ..., ak) is represented as the n · k-dimensional vector a1 ⊕ ...⊕ ak, where we write ⊕ for
vector concatenation.

The main idea is illustrated in Figure 7. In this toy example, we assume that individuals
are represented in a one-dimensional conceptual space. Unary predicates such as herbivore
then correspond to intervals, while binary predicates such as eats correspond to convex
regions in R2. In this figure, the tuple (lion, zebra) corresponds to a point in the region
encoding the eats predicate. This captures the knowledge that lions eat zebras. Moreover,
we can now also model dependencies between unary and binary predicates. For instance, the
representation captures the following rule:

carnivore(X)← eats(X, Y ), animal(Y )
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Figure 7 Illustration of a relational conceptual space.

This can be seen as follows. Consider a point p ∈ R2 in the region representing eats, such
that its projection on the Y-axis lies in the interval representing animal. For each such a
point p, it holds that its projection on the X-axis lies in the interval representing carnivore.
We can think of each point p as the representation of a possible instantiation of the tuple
(X, Y ). The aforementioned observation about p then corresponds to the view that every
tuple satisfying the body of the rule also satisfies its head. In a similar way, we can also
model rules with existential quantifiers, e.g.:

∃Y.eats(X, Y ) ∧ animal(Y )← carnivore(X)

To see why this rule is satisfied for the configuration depicted in Figure 7, consider a value
x ∈ R which lies in the interval representing carnivore. Then we can always find a coordinate
y ∈ R such that the point p = (x, y) lies in the region for eats and such that y lies in the
interval modelling animal. In Section 4.1 we discuss these intuitions in more detail. We also
provide a characterisation about the kinds of relational rules that can be modelled using
convex regions. Subsequently, in Section 4.2 we discuss the relationship with knowledge
graph embedding models.

4.1 Geometric Models of Relational Rules
We consider geometric interpretations η, which map each individual a to a point η(a) ∈ Rn

and each k-ary relation r to a convex region η(r) in Rk·n. These geometric interpretations
can intuitively be seen as defining a relational counterpart to conceptual spaces. We now
discuss what it means for a geometric interpretation η to satisfy different kinds of relational
knowledge. First, a relational fact of the form r(a1, ..., ak) is satisfied if the representation of
the tuple (a1, ..., ak) lies in the region representing r, i.e.:

η(a1)⊕ ...⊕ η(ak) ∈ η(r)

Now we consider a basic relational entailment of the following form:

r(X1, ..., Xk)← s(X1, ..., Xk)
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This rule is satisfied if the region modelling s is included in the region modelling r, i.e. it
corresponds to the following geometric constraint:

η(s) ⊆ η(r)

Conjunctions in the body of a rule can be modelled using intersections. For instance, consider
the following rule:

r(X1, ..., Xk)← s(X1, ..., Xk), t(X1, ..., Xk) (8)

The corresponding geometric constraint is as follows:

η(s) ∩ η(t) ⊆ η(r)

This simple geometric characterisation only works because each relation is applied to the
same tuple (X1, ..., Xk). To see how we can model more general rules, let us consider a rule
of the following form:

r(X, Z)← s(X, Y ), t(Y, Z) (9)

The main idea is to view this rule as a special case of (8). In particular, let us consider ternary
relations r∗, s∗ and t∗ defined as follows: r∗(X, Y, Z) ≡ r(X, Z), s∗(X, Y, Z) ≡ s(X, Y ) and
t∗(X, Y, Z) ≡ t(Y, Z). Then clearly (9) is equivalent to:

r∗(X, Y, Z)← s∗(X, Y, Z), t∗(X, Y, Z)

whose geometric characterisation is given by η(s∗) ∩ η(t∗) ⊆ η(r∗). This is illustrated in
Figure 8, where the relationship between the two-dimensional regions η(r), η(s), η(t) and
the three-dimensional regions η(r∗), η(s∗), η(t∗) is shown. To explain how the regions η(r∗),
η(s∗), η(t∗) relate to η(r), η(s), η(t) more formally, we have to introduce some notations.
Let I = {i1, ..., il} ⊆ {1, ..., k} be a set of indices. For a point (x1, ..., xk·n) ∈ Rk·n, we define
its restriction to I as follows

(x1, ..., xk·n) ↓ I =
⊕
i∈I

(xn·i+1, ..., xn·i+n)

For instance if n = 2, k = 4 and I = {1, 4} we have (x1, ..., x8) ↓ I = (x1, x2, x7, x8). In
particular, note that when (x1, ..., xk·n) is the representation of a tuple (a1, ..., ak), and
(b1, ..., bl) is obtained from (a1, ..., ak) be only keeping the arguments at the positions in I,
then η(b1, ..., bl) = η(a1, ..., ak) ↓ I. We define the notion of cylindrical extension as follows.
Let R be a region in Rl·n with l < k and let I = {i1, ..., il} ⊆ {1, ..., k} Then we define:

extk
I (R) = {x ∈ Rk·n |x ↓ I ∈ R}

Let us now return to the problem of modelling the rule (9). We have η(r∗) = ext3
{1,3}(η(r)),

η(s∗) = ext3
{1,2}(η(s)) and η(t∗) = ext3

{2,3}(η(t)). We thus find that the rule (9) corresponds
to the following geometric constraint:

ext3
{1,2}

(
η(s)

)
∩ ext3

{2,3}
(
η(t)

)
⊆ ext3

{1,3}
(
η(r)

)
While the rule (9) only involves binary relations, clearly we can apply the same strategy to
rules involving relations of other arities, and to rules with more than two atoms in the body.
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Figure 8 Illustration of the constraint η(s∗) ∩ η(t∗) ⊆ η(r∗).

Finally, we discuss how rules with existential quantifiers can be modelled. Let us consider
the following example:

∃Y . r(X, Y ) ∧ s(Y, Z)← t(X, Z) (10)

The key challenge is to characterise the region that models the head of this rule. Note
that, as before, r(X, Y ) ∧ s(Y, Z) can be modelled by treating r and s as ternary relations.
Relying again on the cylindrical extension, we find that this conjunction can be modelled as
ext3

{1,2}(η(r))∩ ext3
{2,3}(η(s)). To model the existential quantifier, we can then simply remove

the coordinates pertaining to the variable Y . In other words, the rule (10) corresponds to
the following geometric constraint:

η(t) ⊆
(

ext3
{1,2}

(
η(r)

)
∩ ext3

{2,3}
(
η(s)

))
↓ {1, 3}

In this way, using a combination of cylindrical extensions and projections, any relational rule
can be translated into a corresponding geometric constraint. It is worth pointing out that a
similar treatment of rules was already proposed by Zadeh [78] in his theory of approximate
reasoning. The main difference with the aforementioned approach is that relations in the
latter case are modelled as fuzzy sets.

A central question is which kinds of rules can be faithfully4 modelled in terms of the
aforementioned geometric constraints. The answer depends on which kinds of regions we
allow as the geometric interpretation η(r) of a relation r. Without any restrictions, arbitrary
sets of relational rules can be modelled correctly. However, in practice, it makes sense to
require η(r) to be convex. While the cognitive plausibility of this assumption is unclear, in

4 Note that we use this notion of faithfulness informally here; we refer to [37] for a formal treatment of
geometric models.
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(a) TransE. (b) DistMult.

Figure 9 Region based view of knowledge graph embedding models.

practice we can only hope to learn region-based representations in high-dimensional spaces
by making drastic simplifying assumptions, as we also saw in Section 3. For this reason,
most strategies for modelling relational knowledge end up learning convex representations;
this will be discussed in more detail in Section 4.2. With this convexity assumption, however,
clearly some sets of rules cannot be jointly modelled. For instance we cannot model the rule
⊥ ← r1(X, Y ), r2(X, Y ), capturing that relations r1 and r2 are disjoint, together with the
following facts: r1(a, a), r1(b, b), r2(a, b), r2(b, a). Indeed, if η(r1) and η(r2) are convex, from
η(a)⊕ η(a) ∈ η(r1), η(b)⊕ η(b) ∈ η(r1), η(a)⊕ η(b) ∈ η(r2) and η(b)⊕ η(a) ∈ η(r2), we find:

(η(a) + η(b))
2 ⊕ (η(a) + η(b))

2 ∈ η(r1) ∩ η(r2)

and thus r1 and r2 are not disjoint in the geometric interpretation η. However, in [37] it was
shown that many sets of relational rules can still be faithfully captured by geometric models.
In particular, consider a relational rule of the following form:

∃Y1, ..., Yr.H1 ∧ ... ∧Hs ← B1, ..., Bt

where H1, ..., Hs, B1, ..., Bt are atoms. We say that such a rule is quasi-chained, if every atom
Bi appearing in the body shares at most 1 variable with the atoms B1, ..., Bi−1. It can be
shown that any set of quasi-chained rules with a finite model can be faithfully captured by a
geometric model in which every relation is represented as a convex region [37]. Some open
questions remain, however, including the following:

Is there a larger fragment of existential rules that can be faithfully modelled using
geometric interpretations with convex regions?

Is there a way to relax the convexity assumption, such that arbitrary existential rules
can be captured, while keeping representations simple enough to be learnable?

Finally, it should be noted that the restriction to arbitrary convex regions means that
negation and disjunction cannot easily be modelled. Some authors have proposed geometric
models that were specifically designed with such logical connectives in mind, including the
use of axis aligned cones [52]. Recently, the ability of convex regions to model temporally
attributed description logics has also been studied [19].
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4.2 Link with Knowledge Graph Embedding
Thus far, we have not discussed how region-based representations of relations may be learned
from data. In the last few years, there has been an increasing interest in region based
representations, as already mentioned in Section 3.1. Most approaches, however, only use
regions for modelling concepts, and deal with relations in an ad hoc way. For instance, the
approach from [79] represents entities using cones, but uses a feed-forward neural network
for modelling relations. Similarly, [52] propose a cone based model for embedding ALC
ontologies, but they refrain from modelling roles in the same way. However, in [1] a knowledge
graph embedding model is proposed in which relations are explicitly modelled as hyperboxes.
More generally, many of the standard knowledge graph embedding models can be interpreted
as region based models. In particular, for a relation r with scoring function fr we can consider
the following region:

η(r) = {e⊕ f | fr(e, f) ≥ λr}

with λr some threshold. Figure 9 illustrates how TransE and DistMult can be viewed as
region-based models in this way. However, viewed as region based models, TransE and
bilinear models such as DistMult are severely limited in which kinds of existential rules they
can capture; we refer to [37] for more details.

5 Plausible Symbolic Reasoning using Vector Space Embeddings

Leaving aside the difficulties of tightly integrating geometric and symbolic representations,
it is highly relevant for the development of robust AI systems to understand how symbolic
approaches to AI can be made more flexible by equipping them with inductive capabilities,
i.e. making it possible to infer likely concept inclusions (or rules) by using the knowledge of
the ontology in combination with the additional background knowledge provided by vector
representations. In other words, one would like symbolic systems to incorporate mechanisms
to use predictions made by neural approaches, informing about plausible situations witnessed
in the data, in a principled way. In the rest of this section we will discuss ways in which this
idea can be implemented.

One of the most natural solutions is to use vector representations to implement a form
of similarity based reasoning [23, 13]. For instance, we could have a KB with factual
knowledge stating that strawberries are instances of the concept berries, Berry(strawberry),
and ontological knowledge stating that berries are healthy, Berry ⊑ Healthy. Clearly, this
KB entails that strawberries are healthy. Further, using a standard word embedding [45],
we can find out that strawberry and raspberry are highly similar. Now, using the KB and
the additional similarity information, we can infer that it is plausible that raspberries are
berries and, therefore, healthy. This same idea could be lifted to find the similarity between
concept names (classes) and find plausible rules. For instance, assume that strawberries
and raspberries are concept names and that our ontology specifies that strawberries are
healthy, i.e. Strawberry ⊑ Healthy. Using the similarity between strawberries and raspberries,
we could then infer that the concept inclusion Raspberry ⊑ Healthy is plausible. However,
implementing this strategy in a principled way is difficult, because it is unclear how we can
formally relate degrees of similarity to the plausibility of the inferred rules, i.e. if we can infer
using standard deduction that C1 ⊑ X, how similar does concept C2 needs to be to C1 to
accept the plausible inference C2 ⊑ X? For this reason, rather than focusing on similarity
based reasoning, it has been proposed to focus on interpolative reasoning instead [64]. The
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main difference is that instead of focusing on the similarity between two entities, we focus
on how one entity relates to a group of entities. For instance, we say that the concept
Raspberry is conceptually between the concepts Strawberry, Blackberry and Cherry. Intuitively,
this means that we accept that any (natural) property that holds for each of the concepts
Strawberry, Blackberry, Cherry is likely to hold for Raspberry as well. In addition to using
similarity based strategies, humans also rely on analogies for inferring plausible knowledge.
Analogical reasoning can be particularly powerful, as it allow us to make predictions about
concepts that may themselves not be similar to any other concepts. Recent models from the
field of Natural Language Processing make it possible to discover analogies with a high level
of accuracy [71]. It is thus of interest to explore whether analogy based reasoning processes
could be used as another mechanism for exploiting knowledge from neural representations
for symbolic reasoning. We now discuss in more detail how interpolative and analogical
reasoning can be formalised in the context of description logics.

5.1 Interpolative Reasoning
We start by illustrating how the interpolation pattern works [26, 64]. Assume that we have
the following knowledge about some concept C:

Strawberry ⊑ C Orange ⊑ C

Intuitively, even if we know nothing else about C, we could still make the following inductive
inference:

Raspberry ⊑ C (11)

This conclusion relies on background knowledge about strawberries, oranges and raspberries,
in particular the fact that raspberries are expected to have all the natural properties that
strawberries and oranges have in common (e.g. being high in vitamin C). In such a case, we say
that raspberries are conceptually between strawberries and oranges. Importantly, knowledge
about conceptual betweenness can be derived from data-driven representations. For instance,
[25] found that geometric betweenness closely corresponds to conceptual betweenness in
vector spaces learned with multi-dimensional scaling.

The notion of naturalness plays a central role, as it is clear that the conclusion in (11)
can only be justified by making certain assumptions on the concept C. If C could be an
arbitrary concept, e.g. a concept representing the union of Orange and Strawberry, there is
no reason to believe that the inference is valid, but for natural properties the inference seems
intuitively plausible. This idea that only some properties admit inductive inferences has been
extensively studied in philosophy [34, 57, 27]. In the context of conceptual spaces, “natural
properties” are those which are modelled as convex regions, as explained in Section 2.1. To
determine which concepts, in a given ontology, are likely to be natural, a useful heuristic is
to consider the concept name: concepts that correspond to standard natural language terms
are normally assumed to be natural [29].

The extension EL ▷◁ of EL was designed based on the above intuitions, with the aim of
enabling reasoning about conceptual betweenness and natural concepts, and thus supporting
interpolative reasoning. Syntactically, EL is extended with the in-between constructor, which
allows us to describe the set of objects that are between two concepts: we write C ▷◁ D to
denote all objects that are between the concepts C and D. We further assume that NC
contains a distinguished infinite set of natural concept names NNat

C . The syntax of EL ▷◁

concepts C, D is thus defined by the following grammar, where A ∈ NC, A′ ∈ NNat
C and

r ∈ NR:
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C, D := ⊤ | A | C ⊓D | ∃r.C | N N, N ′ := A′ | N ⊓N ′ | N ▷◁ N ′

Concepts of the form N, N ′ are called natural concepts.

▶ Example 4. Using the following EL ▷◁ TBox T , we can now model the situation described
above:

Strawberry ⊑ Healthy (12)
Orange ⊑ Healthy (13)

Raspberry ⊑ Strawberry ▷◁ Orange (14)
Healthy ⊑ ∃improves.QualityOfLife (15)

such that Strawberry, Orange, Raspberry, Healthy ∈ NNat
C .

The semantics of EL ▷◁ needs to adequately characterise natural concepts and concept
betweenness, and thus support interpolation, i.e.: such that from A ⊑ B1 ▷◁ B2, B1 ⊑ C and
B2 ⊑ C, we can derive A ⊑ C, provided that C is natural. To this end, Ibáñez-García et
al. [41] proposed two semantics: a feature-enriched semantics inspired by formal concept
analysis [73] and a geometric semantics inspired by conceptual spaces. In the former, at the
semantic level a set of features is associated with each concept. Note that these features are
semantic constructs, which have no direct counterpart at the syntactic level. A concept is then
natural if it is completely characterized by these features, while B is between A and C if the
set of features associated with B contains the intersection of the sets associated with A and C.
In the second semantics, concepts are interpreted as regions from a vector space. A concept is
then natural if it is interpreted as a convex region, while B is between A and C if the region
corresponding to B is geometrically between the regions corresponding to A and C (i.e. in the
convex hull of their union). We refrain from giving the full technical details, but invite the
interested reader to look at [41]. Ibáñez-García et al. [41] also investigate the complexity of
reasoning with interpolation, and show that under both semantics the concept subsumption
problem becomes computationally more costly than in pure EL: coNP-complete under the
feature semantics and PSpace-hard under the geometric semantics.

One of the main drawbacks of the feature semantics is that it is too restrictive and cannot
support interpolation in an adequate way if the ⊥ construct is present. To address this
shortcoming, Schockaert et al. [62] recently introduced a new semantics based on an abstract
ternary betweenness relation bet over elements of the domain, such that that bet(a, b, c) if
b is between a and c. We then have that A ⊑ B1 ▷◁ B2 is satisfied in an interpretation I if
every element in AI is between some individual from BI

1 and some element from BI
2 . A

central result from [62] shows that the feature-enriched semantics from [41] can essentially
be seen as a special case, where the betweenness relation bet fulfills certain properties. The
results in [62] are preliminary, leaving open for example, the complexity of reasoning under
this new semantics.

The logic EL ▷◁ is built on the idea of conceptual betweenness. This ensures that the
semantics remains close to cognitive models of category based induction, and information
about conceptual betweenness can moreover be readily obtained from embeddings. However,
an important open question is whether it is possible to develop meaningful forms of rule
interpolation that go beyond this idea of conceptual betweenness. For instance, consider the
following rules:
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burglary(L, T )← burglary(L, T − 2), burglary(L, T − 1)
burglary(L, T )← burglary(L, T − 1), burglary(L1, T − 1), burglary(L2, T − 1), n(L, L1),

n(L, L2), L1 ̸= L2

burglary(L, T )← burglary(L, T − 2), burglary(L1, T − 1), burglary(L2, T − 1), n(L, L1),
n(L, L2), L1 ̸= L2

Intuitively, these rules partially characterise the spatio-temporal diffusion pattern of crime
hotspots. For instance, the first rule asserts that if there has been a burglary at time points
T − 1 and T − 2 at a given location (e.g. during the two previous days), then it is likely that
there will be a burglary at time point T in the same location. The other two rules include
the predicate n to encode information about neighbouring locations. Given these rules, the
following rule also seems plausible:

burglary(L, T )← burglary(L1, T − 2), burglary(L2, T − 2), burglary(L, T − 1), n(L, L1),
n(L, L2), L1 ̸= L2

However, it is unclear how the underlying principle could be formalised, and how the
associated background information could be obtained.

5.2 Analogical Reasoning
Reasoning by analogy has been extensively studied in cognitive science, philosophy, and
artificial intelligence [31, 38, 39, 12, 55, 11]. In the context of AI, the formalisation of
analogical reasoning typically builds on analogical proportions, i.e. statements of the form
“A is to B what C is to D” [12, 55, 11]. For instance, a notable result in this area has been
the development of analogical classifiers, which are based on the principle that whenever
the features of four examples are in an analogical proportion, then their class labels should
be in an analogical proportion as well [12, 40]. Somewhat surprisingly, analogical reasoning
was only recently considered for completing ontologies [61]. Schockaert et al. [61] took
inspiration from analogical classifiers to infer plausible concept inclusions. The resulting
inference pattern is called rule extrapolation; it is illustrated in the next example.

▶ Example 5 ([61], Rule Extrapolation). Suppose we have an ontology with the following
concept inclusions:

Young ⊓ Cat ⊑ Cute (16)
Adult ⊓WildCat ⊑ Dangerous (17)

Young ⊓ Dog ⊑ Cute (18)

Suppose we are furthermore given that “Cat is to WildCat what Dog is to Wolf”. Trivially,
we also have that “Young is to Adult what Young is to Adult” and “Cute is to Dangerous what
Cute is to Dangerous”. Using rule extrapolation, we can then infer the following:

Adult ⊓Wolf ⊑ Dangerous (19)

The knowledge inferred by analogical reasoning could also be used to transfer knowledge
from one domain to another:
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▶ Example 6 ([61], Rule translation). Suppose we are given the following knowledge:

Program ⊑ ∃specifies.Software (20)

and the fact that “Program is to Plan what Software is to Building”. Then we can plausibly
infer:

Plan ⊑ ∃specifies.Building (21)

Rule translation is useful as ontologies are often developed using “templates” to encode
knowledge from different domains (e.g. knowledge about different professions). The strategy
from Example 6 then allows us to complete the ontology by introducing additional domains.

As in the case of interpolative reasoning, the main objective of Schockaert et al. [61]
was to establish the principles for incorporating analogical reasoning and, in particular, to
develop a model-theoretic semantics. To this end, the description logic ELana

⊥ is introduced,
which extends EL ▷◁

⊥ with so-called analogy assertions. Formally, ELana
⊥ concepts C, D are

defined by the following grammar, where A ∈ NC, A′ ∈ NNat
C , r ∈ NR and r′ ∈ NInt

R :

C, D := ⊤ | ⊥ | A | C ⊓D | ∃r.C | N
N, N ′ := A′ | N ⊓N ′ | N ▷◁ N ′ | ∃r′.N

Note how ELana
⊥ concepts extend EL▷◁

⊥ concepts by allowing existential restrictions over
so-called intra-domain roles, i.e. roles from the designated set NInt

R , as natural concepts. An
ELana

⊥ TBox is a finite set containing two types of assertions: (i) ELana
⊥ concept inclusions,

and (ii) analogy assertions of the form C1▷D1::C2▷D2, where C1, C2, D1, D2 are natural
ELana

⊥ concepts.
The semantics of ELana

⊥ builds on the feature-enriched semantics of EL ▷◁
⊥ . Recall that

analogies involve transferring knowledge from one application domain to another domain,
e.g. from software engineering to architecture. Hence, at the semantic level these domains
will be associated with subsets of features F . In particular, interpretations will specify a
partition [F1, ...,Fk] of F , defining the different domains of interest. To capture the intuition
of analogies, some of the partition classes will be viewed as being analogous, in the sense
that there is some kind of structure-preserving mapping between them. We again refrain
from giving the full technical details. We point out that Schockaert et al. [61] formally show
that the analogical patterns exemplified above are supported under the proposed semantics.

The investigation by Schockaert et al. [61] leaves open several interesting questions such
as establishing the computational complexity of reasoning in ELana

⊥ . For the practical uptake
of ELana

⊥ , it would be also important to consider nonmonotonic extensions, as analogical
assertions might introduce conflicts with the existing ontological knowledge.

6 Conclusions

Combining symbolic reasoning with sub-symbolic learning is an important and widely studied
challenge for AI research. To enable such a combination in a principled way, a key question
is how we can unify the two rather distinct types of representations that are involved, i.e.
symbols and vectors. In this paper, we discussed a number of strategies that are inspired
by the theory of conceptual spaces. First, we looked at the possibility of achieving a tight
integration between symbolic and vector representations based on the idea that concepts
can be viewed as regions in vector space embeddings. Moreover, we also explored the idea
that meaningful “quality dimensions” can be identified in learned embeddings, adding more
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structure and a degree of interpretability to the vector representations themselves. However,
we also argued that the use of region based representations has some inherent limitations
when it comes to modelling relational knowledge. For this reason, we finally discussed a
number of settings in which vectors and symbols are combined in a looser way. Essentially, the
underlying idea is to exploit the similarity structure captured by the vector space to identify
symbolic knowledge that plausibly, but not deductively, follows from a given knowledge base.
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