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Abstract
Graph neural networks (GNNs) have emerged in recent years as a very powerful and popular
modeling tool for graph and network data. Though much of the work on GNNs has focused on
graphs with a single edge relation, they have also been adapted to multi-relational graphs, including
knowledge graphs. In such multi-relational domains, the objectives and possible applications of
GNNs become quite similar to what for many years has been investigated and developed in the field
of statistical relational learning (SRL). This article first gives a brief overview of the main features of
GNN and SRL approaches to learning and reasoning with graph data. It analyzes then in more detail
their commonalities and differences with respect to semantics, representation, parameterization,
interpretability, and flexibility. A particular focus will be on relational Bayesian networks (RBNs) as
the SRL framework that is most closely related to GNNs. We show how common GNN architectures
can be directly encoded as RBNs, thus enabling the direct integration of “low level” neural model
components with the “high level” symbolic representation and flexible inference capabilities of SRL.
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1 Introduction

Learning and reasoning with graph and network data has developed as an area of increasing
importance over recent years. Social networks, knowledge graphs, sensor and traffic networks
are only some of the examples where graph structured data arises in important applications.
Much of the attention currently focuses on graph neural networks (GNNs) as the technology
for solving the challenges posed by this kind of data. While often very powerful in terms of
scalability and predictive performance, graph neural networks suffer from the same drawbacks
as other deep learning methods: lack of interpretability, limited support for the integration
of prior domain knowledge, lack of robustness, and the inability to support more flexible
reasoning than performing a specific task of prediction or synthetic graph generation. The
field of statistical relational learning (SRL) has been concerned with learning and reasoning
with graph and network data for over 20 years. Here the use of logic-based, symbolic
representations and inference techniques, probabilistic graphical models, and relational
database technology supports the construction of interpretable models via a combination of
expert knowledge and machine learning, as well as a wide range of inference tasks, such as
prediction and (most probable) explanations for varying and incomplete amounts of input
data. On the other hand, SRL techniques lag behind GNNs in terms of scalability and
predictive power in scenarios where the availability of extensive training data enables the
training of the highly parameterized GNN models.

Combining the respective strengths of GNN and SRL technology is an emergent research
area [49, 59, 69, 15]. Some works emphasize the complementarity of SRL and GNN approaches,
and propose techniques that combine them in order to leverage the strengths of both [49, 59].
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5:2 Learning and Reasoning with Graph Data

Table 1 Overview of notation.

G = (V, E) Graph with vertices (a.k.a. domain) V and edges E

n Cardinality of V

Ni Neighbors of node i ∈ V

A signature of node attributes
A n × |A| matrix (table) of attribute values
R signature of relations of varying arities
G(V, R) Set of all graphs for signature R over domain V

hk(i) Representation vector at level (layer) k for node i ∈ V

nk Dimension of vectors hk(i)
m Number of hidden layers
{| . . . |} Delimiters for multisets
PV Distribution over all graphs (for a given signature R) with domain

(vertex set) V

Fr(X1,...,Xk) Probability formula defining the (conditional) probabilities for the k-ary
relation r

In contrast, [69] directly uses relational logic as a high-level and flexible specification tool for
neural architectures with a generic underlying training technique, thus essentially showing
how a logic-based framework subsumes (graph) neural technology. In this article we, too,
shall emphasize the overlap rather than the complementarity of SRL and GNN technology.
We first give a brief overview of key aspects of modeling graph data using SRL and GNN
approaches. Looking more closely at their respective semantics we then obtain a basis
for establishing a direct correspondence between GNNs and some types of SRL models
(Section 6), which gives rise to a direct encoding of GNNs as relational Bayesian networks
(Section 7 and 9). We illustrate by examples the benefits of such an embedding of GNNs in
a general SRL framework with regard to

neuro-symbolic integration: the ability to combine symbolically specified (expert) know-
ledge with numerical optimization in neural architectures.
flexible reasoning capabilities: the support provided by SRL frameworks for probabilistic
reasoning beyond solving a fixed prediction task.

We consider in greater detail selected central themes that have played an important role
in GNN and SRL research:

Expressivity: what are the capabilities and limitations for the discriminative power of
GNN/SRL models (Section 8)?
Homophily: how do different approaches model and exploit the typical homophily proper-
ties in (social) networks?
Aggregation: what operations can be used to aggregate information provided by related
entities in a graph (Section 11)?

2 Graph Data

In its most basic form, graph data simply consists of a graph

G = (V, E) (1)

defined by a set of vertices V , and a set of (directed or undirected) edges E. We shall
limit ourselves to graphs with finite V , and use n = |V | to denote its cardinality. We can
then also assume that 1, . . . , n are unique identifiers for the vertices, and we simply use
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Node color
1 blue
2 blue
3 green
4 red

(a)

Node c_blue c_green c_red
1 1 0 0
2 1 0 0
3 0 1 0
4 0 0 1

(b) (c)

Figure 1 Three representations of node attributes: (a) categorical attribute table, (b) one-hot
attribute table, (c) multi-relational representation with binary attribute relation c(olor) distinguished
from original l(ink) relation.

i, j, . . . ∈ {1, . . . , n} to refer to elements of V . In an attributed graph the nodes are labeled
with a set of attributes, which can be either Boolean, categorical or numeric. In a social
network whose nodes represent people, for example, node attributes could be gender and
age. We can write a graph whose nodes are labeled with k different attributes as

G = (V, E, A), (2)

where A is an n× k attribute matrix whose ith row contains the attribute vector for vertex i.
The term “matrix” here is used in a loose sense: when some of the attributes are categorical,
then corresponding columns in the matrix have symbolic values, and A would somewhat more
appropriately be referred to as an attribute “table”. Using one-hot encodings of categorical
attributes one can obtain a purely numerical attribute matrix A ∈ Rn×k′ . Figure 1 (a) and
(b) illustrates these two alternative representations.

In many cases, graph models for real world networks require multiple edge relations. In a
social network, for instance, there may be separate friend and follower connections between
users. In a sensor or computer network, different types of connections (wireless, cable, . . . )
can be represented by different edge relations. This leads us to multi-relational graphs with
several distinct edge relations. We write multi-relational graphs as

G = (V, E, A), (3)

where now E = (E1, . . . , Er) is a tuple of different edge relations. In the basic sense, edges
are just either ’present’ or ’absent’, i.e., have a Boolean value. However, an edge labeling
can also attach a categorical or numerical value to the edges, so that just like attributes,
edge relations can be either Boolean, categorical, or numeric. Multi-relational graphs also
provide an opportunity to represent node attributes as relations between the original graph
vertices and attribute values that are materialized as additional nodes. This representation
is illustrated in Figure 1 (c).

Going beyond binary edge relations, we can consider (directed) hyperedges E ⊆ V k for
any k ≥ 3. With few exceptions (e.g. [51]) hyperedges have not been considered in the
GNN literature. From the predicate logic perspective of SRL, on the other hand, attributes,
edges and hyperedges all are just relations with a certain arity k ≥ 1. Under this uniform
perspective of predicate logic, we can write an attributed, multi-relational hypergraph as

G = (V, R) (4)

AIB 2022



5:4 Learning and Reasoning with Graph Data

where R = (R1, . . . , Rr) is a tuple of relations with arities ai ∈ {0, 1, 2, 3, . . .} (i = 1, . . . , r),
all of which can be of type Boolean, categorical, or numeric. We use relations of arity 0 as
representations of global graph properties such as connected, or a label like toxic for a graph
representing a chemical molecule.

Knowledge Graphs
Knowledge graphs are often presented as a set KG of triplets of the form (source, relation,

target). Each such triplet describes a specific relationship between a source and a target entity.
There are several ways to cast such a collection of triplets as a graph in one of the forms
considered above. A first option is to consider each triplet as a hyperedge of a single relation of
arity 3. For illustrative purposes, we may call this single relation the fact relation, and expand
the triplet notation to explicitly write fact(source, relation, target). In this view, relations are
also treated as nodes (entities). While this perspective is somewhat encouraged by the triplet
notation for knowledge graphs, it is usually not the one that underlies graphical representations
of knowledge graphs, where typically a triplet is illustrated by two nodes for the source and
target entities, connected by an edge labeled with relation. The underlying graph model then
is that of a multi-relational graph with binary relations, and the perhaps more appropriate
notation for a triplet is the classical form of writing relation(source, target). Moreover,
expressing everything as triplets also requires a representation of node attributes in the
form illustrated in Figure 1 (c), i.e. in the form of relations attribute(entity, attribute_value).
A specific feature of knowledge graphs compared to other multi-relational graphs is the
number of distinct relations, which can easily lie in the thousands. Multi-relational graphs
representing more specif domains (such as bibliographic or social networks), in contrast,
mostly contain only a relatively small number of relations. When considering the application
of machine learning solutions for graph data to knowledge graphs, one must therefore consider
not only the ability of a solution to deal with multi-relational graphs, but also their scalability
in terms of the number of relations.

3 Graph Neural Networks

We here give a high-level summary of some key features of graph neural networks. For more
complete and details surveys also covering types of GNNs not considered here (e.g. graph
auto-encoders), the reader is referred to [74, 79].

Graph neural networks compute representations of the nodes as real valued vectors. Also
often referred to as embeddings or feature vectors, these representations can then be the
basis for supervised tasks like node classification, graph classification and link prediction,
or unsupervised tasks such as graph clustering. Often the representations are learned in
an “end-to-end” fashion to support a particular task, but they can also be constructed in
a stand-alone process in order to support a variety of downstream applications (e.g. the
unsupervised version of GraphSAGE [24]).

In the following, we first assume that G = (V, E, A) is an attributed graph as in
equation (2). In a very general, abstract form, the computation of the node representations
proceeds in multiple steps, starting with initial representations

h0(i) ∈ Rn0 (i ∈ V ). (5)

The initial representations can be collected in an n× n0 matrix, denoted H0. Using H0[i, •]
to denote the ith row of H0, we then have h0(i) = H0[i, •]. This gives us a bit of notational
redundancy, which can be quite convenient, however. We will consider the choice of initial
representations in more detail below. For now it may be helpful to think of the attribute
vector h0(i) = A[i, •] as the initial representation.
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Then, given a representation Hk computed in the kth step, the (k + 1)th representation
is obtained as a function

Hk+1 = F k(Hk, G) (6)

of the previous representation and the graph structure G. In most GNN architectures,
the computation of the representation hk+1(i) for node i only depends on the rows of Hk

corresponding to i itself, and its neighbors. Then (6) can be expressed as follows:

hk+1(i) = F k(hk(i), {|hk(j)|j ∈ Ni|}, G), (7)

where Ni denotes the set of graph neighbors of i, and the delimiters {| . . . |} indicate that
this is a multiset. Based on this dependence of the representation update of a node i on its
neighbors, the basic GNN computations have been described using information diffusion or
message passing metaphors [67, 21]. A fundamental distinction arises according to whether
the updates (7) are performed in a recurrent or fixed architecture. In the former, the
update function F k is the same for all k, and updates are performed until a fixed point
Hk+1 = Hk is reached (e.g.[67]). In the latter, updates are performed for a fixed number
of steps k = 0, . . . , m , and each step may be defined by a different update function F k. In
this article we focus on fixed architectures, which also constitute the majority of current
GNN frameworks. In any case, a final node representation Hm is used to compute an output
function. In node classification applications, an output is computed for each node i, based
on that node’s representation:

o(i) = O(hm(i)). (8)

When the task is graph classification, then an output is computed based on the representations
of all nodes in the graph. This particular type of function is usually referred to as a readout:

r = R({|h(i)|i ∈ V |}). (9)

Figure 2 gives a schematic illustration of the computation graph for a fixed architecture
with m = 2 steps, both for a node classification and a graph classification scenario.

Link prediction tasks can be addressed by GNNs in several ways. The most direct one is
to use a GNN architecture as shown in Figure 2, but without the final output or readout
layers. Instead, link prediction is directly performed based on the representations of the
nodes, for example simply using the dot product hm(i) · hm(j) as a predictive score for
the existence of a link between i and j [68]. A very different approach is to turn the link
prediction problem into a graph classification problem for the “enclosing subgraph” of the
candidate edge [78].

Equation (7) is only an abstract description of the computation of Hk+1. All concrete
functions implementing this description need to deal with the multiset argument {|hk(j)|j ∈
Ni|} which differs in cardinality for different nodes i. In order to turn this into a fixed
dimensional input an aggregation function such as sum or mean is usually applied. Making
this aggregation step explicit, we can re-write (7) as

hk+1(i) = F k
1 (hk(i), agg{|F k

2 (hk(j), G)|j ∈ Ni|}, G), (10)

which also allows that the representations hk(j) are transformed by a function F k
2 before

aggregation.This transformation may also depend on the graph structure G. This, for
example, enables a scaling of hk(j) before aggregation by a factor 1/

√
dj with dj the degree

AIB 2022



5:6 Learning and Reasoning with Graph Data

Figure 2 Computation graphs for basic fixed architecture showing the representation vectors
hk at each step, and indicating the relations edge, identity and/or all between nodes that defines
the dependence of a representation at the next step on representations/output at the previous step.
Left: architecture for node classification with one output per node; right: architecture for graph
classification, with one global readout output function.

of j in G, which is required to cover the original graph convolutional network [41] within the
formulation of (10). In most cases, the dependence of F k

1 , F k
2 on G will only be through the

degrees of the nodes i, j, and often there is no such dependence at all.

The abstract functions F k
1 , F k

2 are defined in reality by neural network layers. These are
usually quite simple in nature, and typically just consist of a linear function (layer) followed
by a non-linear activation function.

Multi-Relational GNNs

The largest part of the GNN literature focuses on the case of attributed graphs with a single
edge relation (2). Statistical relational learning, on the other hand, is concerned with rich
structures as described by (4). In many applications, however, multi-relational graphs (3)
are sufficient, and GNNs can quite easily be adapted to also deal with these [56, 68, 48]. The
functional form (10) then becomes

hk+1(i) = F k
1 (hk(i), agg{|F k

2,1(hk(j), G)|j ∈ NE1
i |}, . . . ,

agg{|F k
2,r(hk(j), G)|j ∈ NEr

i |}, G), (11)

where now NEh
i denotes the set of i’s neighbors according to relation Eh.

We note here that we have limited our exposition to the most fundamental forms of GNN
“message passing” architectures. This basic form has seen modifications and generalizations
in many directions, including the addition of attention mechanisms[71], or skip connections
that make computations at one layer dependent not only on the output of the previous layer.
Most of the following considerations on the relationship between GNN and SRL models carry
over to such more general forms of GNNs.
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4 Statistical Relational Learning

Statistical relational learning (SRL) [20, 60] is a fairly diverse field encompassing different
approaches to combine elements of relational logic representations, probabilistic graphical
models, logic programming, and relational databases, for probabilistic reasoning and learning
about entities and their relationships. SRL frameworks use the language of relational logic
to represent basic facts in the form of atomic expressions, or atoms for short:

friend(lars, giovanni), color_green(emerald), connected(X, router_48264), . . .

Generally, an atom is a relation symbol followed by a list of arguments with a length
corresponding to the relation’s arity. Arguments can be constants representing specific
entities, or variables. A usual convention is that variables start with upper-case letters,
whereas constants start with lower-case letters. Thus, in our examples above, X is a variable,
and all other arguments are constants. An atom that only contains constants as arguments
is called ground. It represents a specific fact that can either be true or false. In a pure
predicate logic interpretation, atoms can only evaluate to Boolean values. Thus, the color
of an entity would need to be represented in the form color_green(X) or color(X, green),
as in Figure 1 (b) or (c). However, in SRL frameworks this can often be loosened to also
allow categorical atoms such as color(X) ∈ {red, green, blue}, or numerical atoms such as
length(X) ∈ R. It is thus apparent that the fundamental building blocks of SRL frameworks
describe multi-relational hypergraphs as in (4). However, depending on the SRL context
and background, these kinds of structures also go by very different names, such as Herbrand
interpretations [12], or possible worlds [62]. In order to maintain a close connection with
the preceding sections, we shall here continue to speak about graphs (which always are
understood to be multi-relational hypergraphs).

SRL frameworks define probability distributions over graphs. More specifically, consider
a fixed set R of relations (of different arities). We also call R a signature of relation symbols.
Let V be a finite set of vertices (more commonly referred to as a domain in SRL contexts),
and let G(V,R) be the set of all graphs with vertex set V for the relations R. An SRL model
then defines a mapping that assigns to every finite set V a probability distribution over
G(V,R) [34].

▶ Example 1. Classic random graph models such as the basic Erdős-Rényi model [17], the
stochastic blockmodel [27], or the preferential attachment model [3], are SRL models in our
sense with a signature R consisting of a single binary edge(X, Y ) relation (however, this
does not mean that every SRL framework as detailed below is necessarily able to capture
all of these random graph models). All these models define for every cardinality |V | = n a
probability distribution over all graphs with n nodes.

We call an SRL framework any specific system of representation and inference tools for
SRL models. More specifically, an SRL framework provides:

Syntax and semantics: a formal language for the specification of SRL models, and a
semantic specification of the probability distribution that is defined by the model.
Inference: general algorithms for computing for a given vertex set V , and two sub-
sets A, B ⊆ G(V,R), the conditional probability PV (A|B) under the distribution PV

defined by the model for the domain V . Different frameworks will differ in how the
subsets A, B can be defined, but all will usually allow to specify sets by ground atoms:
PV (republican(mary)|friends(mary,carl) will then stand for PV (A|B), with A the set of
all graphs where the (Boolean) attribute republican is true for entity mary, and B the

AIB 2022



5:8 Learning and Reasoning with Graph Data

set of all graphs where the relation friends holds between the entities mary and carl
(assuming that V contains entities mary and carl, and that the signature R contains the
relations republican and friends).
Learning: methods for statistical learning of an SRL model from data. One here
distinguishes parameter learning and structure learning. The latter refers to learning the
high-level, symbolic part of the model specification, and the former to fitting numeric
parameters of the model.

Within the very diverse landscape of SRL frameworks, one can identify a number of major
paradigms, which we briefly survey in the following (a slightly more detailed exposition along
similar lines can be found in [32]). For the following we assume that all relations are Boolean
or categorical, which is the original and main focus of SRL frameworks.

Bayesian Network Constructors
Here the actual distribution PV for a given V is eventually represented by a Bayesian
network whose nodes are all the ground atoms that can be formed from relations in R with
entities from V . The SRL model provides a general blueprint for how such a Bayesian model
representation is constructed for any domain V . Languages for defining such blueprints fall
into two main categories: rule based and graphical templates. The basic building blocks of
rule based approaches are logical implications between atoms, such as

infected(X)← contact(X, Y ) (12)

which are further annotated with quantitative probabilistic information. The qualitative
parts of the rules (as shown in (12)) then define the graphical dependency structure in
the Bayesian network for PV , whereas the probabilistic annotations (not shown) define the
quantitative conditional probability specifications. As (12) illustrates, the rules will usually
only contain variable symbols, not constants referring to specific entities, and thereby are
applicable to arbitrary domains V . This brand of SRL frameworks has its roots in what
originally was called knowledge-based model construction [7, 53], and is further represented
by Bayesian logic programs [37] and relational Bayesian networks [29].

As illustrated by (12), the directed dependencies expressed by the rules often coincide
with causal dependencies. However, it is not generally necessary that the rules have a causal
background, or even that they comply with an existing causal direction (it would be perfectly
valid, if rather counter-intuitive, to construct a model including a rule infected(X)← fever(X)
that inverts the causal direction).

Template-based frameworks follow essentially the same modeling paradigm, but using
graphical representations of Bayesian network fragments as the basic representational build-
ing block [46, 45]. Another paradigm for abstract graphical representations that can be
compiled into Bayesian networks is based on entity-relationship diagrams as used in relational
databases [18, 25].

Markov Network Constructors
This type of SRL frameworks is mostly represented by Markov logic networks [62], which are
closely related to exponential random graph models that have a long history in statistics and
discrete mathematics. Markov logic networks also use logic-based representations to specify
blueprints for the construction of a probabilistic graphical model for a specific distribution
PV . However, the target model now is an undirected Markov network, rather than a directed
Bayesian network. Instead of directed implications, the logical building blocks are disjunctions
(a.k.a. clauses) of atoms (possibly negated):



M. Jaeger 5:9

¬friends(X, Y ) ∨ ¬republican(X) ∨ republican(Y ), (13)

which also are annotated with numerical weights. Such a clause represents a Boolean
feature of entity pairs (X, Y ), and the associated weight specifies whether graphs in which
this feature holds for many concrete entity pairs are more or less probable. Instead of
directed dependencies as in Bayesian networks, these features can now specify undirected,
symmetric (non-causal) dependencies. The clause in (13), for example, can be rewritten as
friends(X, Y )→ (republican(X)→ republican(Y )), and thus expresses a homophily features:
friends are likely to have the same political leanings.

Probabilistic Logic Programming
Another major line of SRL developments is rooted in logic programming, and the machine
learning tradition of inductive logic programming. A logic program such as

edge(a, b)
edge(b, c)
path(X, Y )← edge(X, Y )
path(X, Y )← edge(X, Z), path(Z, Y )

(14)

defines a unique least Herbrand model, which in our terminology is just a multi-relational
graph. For the program (14) this is the graph over V = {a, b, c} in which the relation edge
contains the tuples (a, b), (b, c), and the relation path contains the tuples (a, b), (b, c), (a, c).
In probabilistic logic programming the clauses are annotated with probabilities. Randomly
selecting clauses according to their probabilities then induces a probability distribution over
logic programs, and hence a probability distribution PV over Herbrand models over V . As
described here, (14) would only define a probability distribution PV over the fixed domain
V = {a, b, c}, and thus lack the generality we required of an SRL framework. However,
concrete constants are usually only included in listings of simple ground facts, whereas general
modeling rules are formulated at the generic level using only variables. This makes the
framework still modular, and by substituting other sets of ground facts, the generic model can
be applied to arbitrary domains V . Early examples of this probabilistic logic programming
approach are [66, 58]. A more recent system at a very mature level of development is the
ProbLog framework [39].

Inference
All the frameworks outlined above support to compute conditional probabilities of the form

PV (q|e1, . . . , em), (15)

where q, e1, . . . , em all are ground atoms. There is no fundamental conceptual difference
between graph classification, node classification, or link prediction, which are only distin-
guished by the arity of the query atom q.

▶ Example 2. Let V be a domain of n individuals. For some individuals we have made
observations on the infected attribute, as well as on contact relations. For an individual
mary we want to predict whether she is infected. This would be accomplished by computing
the node classification query

PV (infected(mary)|contact(mary, john), contact(john, anne), infected(john),¬infected(anne))

AIB 2022
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In this example the input information for the query atom infected(mary) only consists of the
observations of four ground atoms related to entities in V . However, it may very well be the
case that much more about the graph is known. For example, the contact relation might be
fully observed, in which case the query would be conditioned on the whole contact graph.

Suppose, conversely, that we have comprehensive observations of the infected attribute,
and want to infer the contact relations. This would lead to link prediction queries such as

PV (contact(john, anne)|infected(mary),¬infected(john),¬infected(anne)).

Note that the model used for answering this query is the same generative model PV as in
the node classification query before. Finally, suppose we have a predicate spreading that
represents for the whole population V whether the infection is currently spreading in V . A
probabilistic model for spreading might be based on the number of pairs of individuals in V

that are in contact, and one of which is infected. Then a query like

PV (spreading()|infected(mary),¬infected(john), contact(john, anne), contact(mary, john))

would predict the spreading status of the whole domain (this query in a realistic scenario
would be conditioned on much more comprehensive input observations than shown here). To
emphasize the view of the query predicate as a relation of arity 0, we write it here in the
format spreading().

SRL frameworks in the Bayesian or Markov network constructor classes can use existing
inference algorithms for these types of probabilistic graphical models for the computation of
arbitrary queries (15). However, constructing the graphical model for the full distribution
PV in order to compute the query probability (15), which often only refers to a small subset
of the entities in V , may be very wasteful. Significant effort, therefore, has been spent
on the question whether inference could be performed more directly on the basis of the
high-level SRL model specification, instead of its compilation into a standard graphical
model [30, 57, 13]. However, decisive breakthroughs in this area of so-called lifted inference
remain elusive.

Inference for probabilistic logic programming frameworks is somewhat different in nature.
Here the probability of the query atom q will depend on which of the possible randomly
sampled programs support the derivation of the query atom q. The calculation of the query
probability therefore is essentially based on the construction of all possible proofs of q from
the rules and facts in the probabilistic logic program, and then a calculation of the probability
that a given proof is actually supported by a randomly sampled subset of the facts and rules.

Learning

Learning of SRL models can be separated into learning the structure of the high-level symbolic
component of the model, and learning numerical parameters. For the parameter learning
task often quite effective methods exist. In many cases, also learning from incomplete data
is supported by statistical learning techniques like expectation-maximization. Structure
learning, on the other hand, amounts to a search in a complex combinatorial space of symbolic
representations. Full structure learning without any prior constraints provided by (expert)
domain knowledge is certainly not a solved problem at this point. We will come back to this
issue in Section 12.



M. Jaeger 5:11

Figure 3 Transductive and inductive scenarios. (a): transductive, learnable from node identifiers;
(b): inductive, learnable from node attributes; (c): inductive, learnable from graph structure. Graphs
for training and (transductive) prediction in the top row; new test graphs underneath.

5 Transductive and Inductive Inference

Before we investigate at greater depth the relationship between GNN and SRL models we
briefly discuss the difference between transductive and inductive inference settings. Roughly
speaking, the former describes scenarios where at the time of model learning the nodes for
which predictions are going to be made are already known. The latter describes scenarios
where a predictive model is learned from training data, and that predictive model later is
applied to formerly unknown nodes, or completely new graphs. Figure 3 illustrates this
difference. In all graphs the target of prediction is a class label with values ’red’ and ’black’.
Figure 3 (a) shows a partially labeled graph where nodes do not have attributes other than
the class label. Unlabeled nodes are shown in gray. For the particular unlabeled nodes in
this graph one could learn to predict that a node is red if it is at most 3 hops away from
node ’26’. This model makes its predictions based on the relationship to a specific node in
the training graph, and therefore does not generalize to other graphs. The learning scenario
and the constructed model hence are transductive. The top of Figure 3 (b) shows a partially
labeled graph where nodes also have an attribute color with values ’yellow’ and ’blue’. This
attribute here is assumed to be observed for all nodes. One could here learn a model that
predicts a node to be ’red’ if it is at most 2 hops away from a blue node. This model can
be used to both classify the unlabeled nodes in the training graph shown in the top of the
figure, as well as the nodes in a completely new and unlabeled graph shown underneath.
The ability for inductive generalization is not always dependent on the existence of node
attributes. Figure 3 (c) (top) shows a partially labeled graph without any node attributes.
In this case one could learn to predict a node to be red if it is at most 2 hops away from a
node that has a degree ≥ 5. This model would again be able to classify nodes in completely
new and unlabeled graphs, like the one shown at the bottom or Figure 3 (c).

SRL models as we have described them in Section 4 are inductive in nature: they define
for arbitrary new node sets V a probability distribution (and hence a prediction model)
over G(V,R). This implies that SRL models cannot be defined in terms of particular node
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identifiers such as “node 26” in Figure 3 (a), which is reflected in syntax rules according to
which elements like (12) or (13) can not contain constants denoting specific domain entities
(and recall that in a slightly modified form, this constraint also applies to probabilistic logic
programming models (14)). This focus on inductive models is more a historic convention
than a necessary feature of SRL models: for example, a version of a rule like (12)

blue(X)← edge(X, Y1) ∧ edge(Y1, Y2) ∧ edge(Y2, node26)

that contains references to a specific node would be able to express our transductive model
for Figure 3 (a).

Whether a GNN model is inductive or transductive essentially depends on the initial
representations h0(i) used as inputs to the model. If these initial representations are node
attribute vectors (as tacitly assumed in Section 3) then the resulting model will be inductive
and able to handle scenarios like the one in Figure 3 (b). However, GNNs can also operate
on initial node representations that are one-hot-encodings of node identifiers, which then
leads to transductive models suitable to handle the situation in Figure 3 (a). In scenarios
as depicted in Figure 3 (c), neither node identifiers nor node attributes would be available
as initial representations. In this case one an think of h0(i) as consisting of a constant not
depending on i. The representation h1(i) obtained after one round of aggregation would
then already be able to encode the degree of the node i, which with two additional layers
then enables our predictive model for Figure 3 (c).

In the following detailed comparison of SRL and GNN models we focus on inductive
versions for both types of modeling frameworks, noting that the analogies we obtain in the
inductive setting will carry over to transductive scenarios when for SRL frameworks we
permit the use of node identifiers.

6 Semantics: a comparison

For SRL frameworks we have identified a common, well-defined semantics. Denoting the
set of probability distributions over G(V,R) as ∆G(V,R), we can write this semantics as a
mapping

V 7→ ∆G(V,R). (16)

▶ Example 3. Consider a relational signature R = follower, influencer, where follower is a
Boolean binary relation, and influencer is a Boolean node attribute. Let V be any fixed,
finite domain. A distribution PV ∈ ∆G(V,R) can be defined by first defining the distribution
over the follower relation, and then the conditional distribution of the influencer attribute
given the follower relation, i.e., factorizing the joint distribution over both relations as

PV (follower, influencer) = PV (follower) · PV (influencer|follower). (17)

The simplest way to define PV (follower) is via an Erdős-Rényi random graph model, according
to which each edge follower(i, j) has a constant probability p ∈ [0, 1] of being true, regardless
of the cardinality of V :

PV (follower(i, j)) = p. (18)

Observe here the subtle difference: PV (follower(i, j)) in (18) denotes the probability for
the single ground atom (i.e., Boolean random variable) follower(i, j), whereas PV (follower)
in (17) denotes the distribution over the whole follower relation, i.e., the joint distribution
over all follower(i, j) atoms with i, j ∈ V .



M. Jaeger 5:13

Assuming that follower(i, j) means that i is a follower of j, then the probability of
influencer(i) given the follower relation could be defined as a function of i’s in-degree
(number of incoming edges) in this relation, which we denote as din,follower

i . For example,
one could define

PV (influencer(i)|follower) = 1− qdin,follower
i , (19)

for some q ∈ [0, 1]. Again note that the left side of (19) denotes the conditional probability
of the ground atom influencer(i) given the complete specification of the follower relation
over the whole domain. For the specification on the right side of (19) we extract from the
follower relation the in-degrees of nodes as relevant features. (19) is a standard noisy-or
model for independent causal influences. The combined model composed of (18) and (19)
would be supported by almost every SRL framework in the Bayesian network constructor
family. Also a GNN implementing (18) as a link prediction model would be easy to construct.
(19) is based on an underlying probabilistic interpretation, which leads to aggregation by
multiplication, rather than summation. This would typically not be supported by standard
GNN architectures. However, a slightly different function such as

PV (influencer(i)|follower) = σ(din,follower
i ), (20)

where σ denotes the sigmoid function, can be easily implemented as a node classification
GNN.

The preceding example has illustrated how the definition of a generative SRL model can
be accomplished by the specification of several conditional probability distributions, each
of which resembles a node classification or link prediction model, similar to what can be
implemented in the form of a GNN. In the following we analyze this relationship more closely.

GNNs tend to be defined in terms of their computational architecture, rather than a
semantic specification of the types of functions they compute. For our purpose, however, it is
important to clarify the mathematical structure of GNN functions. The nature of the output
computed by a GNN depends on their use for a node classification, link prediction, or graph
classification application. In all cases, however, a node-level representation is the crucial
(intermediate) output of a GNN (i.e. the representations H2 in Figure 2). More critical than
the question of what outputs a GNN computes is the question on what class of inputs it can
operate. For now we shall limit our considerations to the case of GNNs operating on simple
attributed graphs G = (V, E, A). Let A denote a fixed set of attributes. For a given set V

we then denote by G(V, E ,A) the set of all graphs with node set V , and attributes A.
Figure 2 may suggest that the inputs to a GNN are feature vectors H0[i, •] for all nodes i.

The GNN would then accept as inputs all graphs (V, E, A) with fixed V, E, but arbitrary
node attribute values A. This is also consistent with the functional representations (7),(8),
respectively (7),(9), if one interprets the occurrence of G here as fixed parameters of the
function, not as inputs that can be varied freely. To obtain a clearer picture, we have to leave
the high level of abstraction adopted in Section 3, and consider the specific functions usually
implementing the function pattern (7) (or the already slightly more specific version (10)).
The most basic form of this function is

hk+1(i) = f

W khk(i) + Uk
∑

j∈Ni

hk(j) + bk

 (21)

where W k, Uk are (nk+1 × nk)-dimensional matrices, bk is a nk+1-dimensional (bias) vector
(where nk denotes the dimension of the node representations at step k), and f is an element-
wise activation function (cf. e.g. [23, Equation (5.7)], [4, Equation (2)]).
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In the multi-relational version (11) this becomes

hk+1(i) = f

W khk(i) +
m∑

h=1
Uk

h

∑
j∈N

Eh
i

hk(j) + bk

 , (22)

which captures the essence of e.g. [56, Equation 4] or [68, Equation 2] (but omitting
normalization operations in the aggregations).

The learnable model parameters here are the W k, Uk, bk. If these matrices/vectors
have dimensions that do not depend on n = |V |, a trained model can be applied to graphs
(V, E, A) with arbitrary V and E. A case where these matrices may actually be specific for a
particular |V | is when the initial representation h0 is a one-hot-encoding of node identifiers.
This, however, only makes sense in a transductive learning setting. In inductive scenarios,
the model must be able to generalize to graphs of sizes other than the size of the training
graph, and the G arguments in (7),(10) must be seen as free inputs of the GNN model.
Assuming now such an inductive setting, and focusing on the node embedding functionality
of GNNs, one can describe the semantics of GNNs that can take (multi-relational) graphs
with arbitrary V as inputs as a mapping⋃

V

G(V,R)→
⋃

n≥1
Rn×nm , (23)

such that an attributed graph (V, E, A) or multi-relational graph (V, R) is mapped to an
output in R|V |×nm (nm being the dimension of the final node embedding vectors). If one
rather considers the end-to-end semantics of a GNN as a node classifier, link predictor, or
graph classifier, then the semantics becomes⋃

V

G(V,R)→
⋃

n≥1
Rnc×k, (24)

where c = 1 for node classification, c = 2 for link prediction, c = 0 for graph classification,
and k is the number of possible (node/edge/graph) classes.

Comparing SRL semantics (16) and inductive GNN semantics (23) or (24), we already
observe that both are functions defined on (finite) multi-relational graphs for a given signature,
i.e. the space

⋃
V G(V,R). However, an SRL model computes for an input graph (V, R) a

probability PV (R), whereas on the right-hand side of (24) we find a matrix of feature vectors
for nodes, edges, or the whole graph. To bring these two types of function values together,
we take a closer look at how probability distributions on G(V,R) can be defined following
the factorization strategy already illustrated in Example 3.

Given a fixed V , a multi-relational relational graph G = (V, R) is determined by the
definitions of the relations R = R1, . . . , Rr over V . Let PV denote the probability distribution
over ∆G(V,R) defined by an SRL model. Then PV can be factored according to the chain
rule [44, Sec. 2.1.2.2] as

PV (R) = PV (R1) ·PV (R2|R1) · . . . ·PV (Rh|R1, . . . , Rh−1) · . . . ·PV (Rr|R1, . . . , Rr−1). (25)

Equation (25) is a probabilistic law that holds for any distribution PV ∈ ∆G(V,R), no
matter how PV is defined or learned. In the following we write R1:k for the tuple of relations
R1, . . . , Rk, and R1:k for the corresponding signature of relation symbols. For the class of SRL
frameworks that we have described as ’Bayesian network constructors’, the chain rule also
serves as the core of the representation strategy: in these SRL frameworks, the specification of
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the distribution PV is decomposed into specifications of conditional probability distributions.
This decomposition need not be performed at the level of whole relations as in (25). Often
one rather factors the distribution at the level of the ground atoms: a definition of relation
Rh over V is equivalent to a truth assignments to all ground atoms Rh(i) 7→ {true, false}
(i ∈ V arity(Rh); for the case of Rh being a Boolean relation). Furthermore, also the definition
of a relation-level factor PV (Rh|R1:h−1) can most easily be done at the level of ground atoms
in the form

PV (Rh|R1:h−1) :=
∏

i∈V arity(Rh)

PV (Rh(i)|R1:h−1). (26)

Note that (26) now is based on the assumption that ground atoms in the relation Rh are
conditionally independent given the relations R1:h−1. In the form (26) the specification of
PV (Rh|R1:h−1) becomes a mapping of the form

G(V,R1:h−1)→ [0, 1]n
arity(Rh)

. (27)

This is still assuming that Rh is Boolean, and thus PV (Rh(i)|R1:h−1) is given by a single
probability value for Rh(i) being true. With a little additional notation, this generalizes
to arbitrary categorical Rh. The factorization strategy employed by an SRL model for PV ,
and the specification of PV (Rh|R1:h−1) will be uniform across different V . We can therefore
also say that an SRL framework in the Bayesian network constructor class defines for each
relation Rh a mapping⋃

V

G(V,R1:h−1)→
⋃

n≥1
[0, 1]n

arity(Rh)
, (28)

which now is almost identical to (24). It becomes completely identical, if we assume that the
GNN uses softmax normalization on its output to also generate a probability distribution
over node or link labels.

To summarize: the specification of a generative distribution PV can be accomplished
via (25) as a series of probabilistic node classification and link prediction operations (and
possibly predictions of relations of arity higher than 2, if such are present in R). If one
further assumes that predictions for the atoms of each relation are independent of each
other, then an SRL model that uses the chain rule as its underlying representation paradigm
essentially consists of r functions, each of which is equivalent to a GNN function.

In this section we have focused on a comparison of the SRL generative models with
(discriminative) GNN models that are designed for specific prediction tasks. GNN models
have also been proposed for graph generation [42, 76, 47, 11], and one may wonder whether
these are not a more natural point of reference for comparison with SRL frameworks. This is
not the case, however: most of the proposed generative GNN models are in the tradition
of classic random graph models, and their primary purpose is to learn GNN models from
which random graphs can be effectively sampled, such that the distribution of key graph
statistics (e.g., degree distribution, clustering coefficients) in the randomly sampled graphs
matches the distribution in the training data. This is different from the typical SRL scenario,
where the purpose is not to generate full graphs according the distribution PV , but to answer
queries of the form (15). Thus, the objectives for which generative SRL models are built are
much more aligned with the objectives of predictive GNN models, than with the objectives
of generative GNN models. An exception to this observation is [42] where the generative
model is applied to link prediction. This, however, is in a transductive setting where the
generative model is only fitted to a single graph for which then missing links are predicted,
thus again being very different in nature from SRL.

AIB 2022



5:16 Learning and Reasoning with Graph Data

7 RBNs

We now review the SRL framework of relational Bayesian networks (RBNs) [29, 34], which
directly follows the representation paradigm outlined by (25) and (26). The RBN language
consists of a syntax for logic-functional expressions called probability formulas for the
specification of the conditional probabilities PV (Rh(i)|R1, . . . , Rh−1) appearing in (26). We
here give a description of the RBN language that uses a slightly more verbose syntax than the
one introduced in the original papers. The difference is entirely cosmetic, however, and consists
of little more than an alternative choice of terminal symbols in the grammar. The language
of probability formulas consists of four different syntactic constructs. For each construct we
define the syntax, and the semantics that defines how for a tuple i ∈ V arity(Rh) in a graph
G = (V, R1, . . . , Rh−1) the formula evaluates to the probability PV (Rh(i)|R1, . . . , Rh−1). In
the following, F denotes a probability formula, and eval(F, i, G) the probability value it
defines for i in G.

Constants

For a real number q ∈ [0, 1]

F ≡ q (29)

is a probability formula. eval(F, i, G) = q for all i, G.

Atoms

For a relation Rj with j ∈ 1, . . . , h− 1, and variable symbols Y1, . . . , Yarity(Rj)

F ≡ Rj(Y1, . . . , Yarity(Rj)) (30)

is a probability formula with the semantics

eval(F, i, G) =
{

1 if Rj(i) is true in G

0 if Rj(i) is false in G
(31)

This innocuous definition is quite significant, as it transforms logic-symbolic information
represented by a relation Rj into numeric data.

WIF-THEN-ELSE

Assume that F1, F2, F3 are probability formulas. Then

F ≡ WIF F1 THEN F2 ELSE F3 (32)

is a probability formula. ’WIF’ here stands for “weighted if”. The semantics is a weighted
mixture of probabilities:

eval(WIF F1 THEN F2 ELSE F3, i, G) =
eval(F1, i, G)eval(F2, i, G) + (1− eval(F1, i, G))eval(F3, i, G). (33)

Before we move on to the fourth and most important construct for probability formulas,
we illustrate the use of the ones introduced so far.
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Figure 4 A small graph for two relations.

▶ Example 4. Figure 4 shows a small graph G for two relations consisting of a node attribute
R1 = red, and a binary relation R2 = edge. Here the color black is just the negation of the
Boolean attribute red. As always in SRL frameworks, relations are defined on ordered tuples,
that means edges are directed.

Let now positive be a new Boolean node attribute. Associating with positive the constant
probability formula Fpositive(X) ≡ 0.3 would define a probability distribution according to
which each node i has a constant probability of 0.3 of being positive. If new_edge is a new
binary relation, then, similarly, Fnew_edge(X,Y ) ≡ 0.3 would define a distribution over the
new_edge relation according to which new_edge(X, Y ) is true with probability 0.3 for each
pair i, j ∈ {1, . . . , 7}.

For a slightly more interesting example, let

Fpositive(X) ≡ WIF red(X) THEN 0.3 ELSE 0.9.

Then eval(Fpositive(X), i, G)=0.3 for the red nodes i=3, 4, 6 of G, and eval(Fpositive(X), i, G) =
0.9 for the non-red nodes. For new_edge we could also define

Fnew_edge(X,Y ) ≡ WIF edge(Y, X) THEN 0.5 ELSE 0.

This specification would add for every edge (j, i) in the existing edge relation with probability
0.5 the reverse edge (i, j) to the new_edge relation. We can add the condition that in the
existing edge the source node must be red in order for the reverse edge to be generated:

Fnew_edge(X,Y ) ≡ WIF edge(Y, X) THEN WIF red(Y )
THEN 0.5
ELSE 0

ELSE 0

We can allow some “syntactic sugar” to make expressions like this more compact and
readable, and write

Fnew_edge(X,Y ) ≡ WIF edge(Y, X) ∧ red(Y ) THEN 0.5 ELSE 0,

with the understanding that this is not a proper extension of the representation language,
but only a shorthand for expressions that are constructed according to the existing syntax
rules.

The three constructs introduced so far allow to condition the probability of Rh(i) on
Boolean combinations of properties of i according to the relations R1, . . . , Rh−1. The fourth
and central syntactic construct enables us to condition probabilities for i on properties of
other entities j. This construct requires the distinction between input relations Rin and
probabilistic relations Rprob described at the end of Section 6.
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Combination Functions

Assume that F1, . . . , Ft are probability formulas.

F ≡ COMBINE F1, . . . , Ft

WITH < combination function >

FORALL < variables >

WHERE < Boolean Rin condition >

(34)

is a probability formula. This syntax rule is dependent on a few supplementary specifications:
< variables > is simply a list of variable names. A < Boolean Rin condition > is a Boolean
expression built from atomic expressions that can be either atoms R(Y ) with R ∈ Rin, or
equalities Y = Z between variables (again, no identifiers for specific entities i are allowed).
A < combination function >, according to the original definition of [29], is any function that
maps multisets of probability values {|p1, . . . , pK |} to a probability value. The most important
such combination functions are

noisy-or{|p1, . . . , pK |} = 1−
K∏

i=1
(1− pi) (35)

mean{|p1, . . . , pK |} = 1
K

K∑
i=1

pi (36)

One can relax the condition that both input and output values always have to be probabilities,
and also allow e.g. summation:

sum{|p1, . . . , pK |} =
K∑

i=1
pi. (37)

However, when such constructs are used which can generate numbers outside of [0, 1], then
for the eventual specification of the conditional probability PV (Rh(i)|R1, . . . , Rh−1) these
numbers have to be brought back into the [0, 1] interval. The most useful tool for this is the
combination function which by a slight abuse of terminology we call the logistic-regression
function:

logistic-regression{|p1, . . . , pK |} = 1
1 + exp(−

∑K
i=1 pi)

(38)

Note that we have overloaded the term ’combination function’ to both denote the probability
formula (34), and the concrete numerical combination functions at its core. A full formal
specification of the semantics of a combination function construct requires some care regarding
the variables that appear in different components of the formula, and how substitutions
of domain entities for these variables are performed. However, the basic principle can be
described quite easily: suppose that < variables >≡ Y1, . . . , Yk. Then, for a given graph
(V, R1, . . . , Rh−1, Rin), and a tuple i, the < Boolean Rin condition > defines the set of all
j ∈ V k that make the condition true when one substitutes jl for Yl (l = 1, . . . , k), and
the elements of i for other designated variables appearing in the Boolean condition. Let
J(i) be the set of these satisfying k-tuples of domain elements. For each j ∈ J(i), and
each Fm (m = 1, . . . , t) the value eval(Fm, i, j, G) is already defined. Then the value of the
formula (34) is

eval(F, i, G) = comb{|eval(Fm, i, j, G)|m = 1, . . . , t; j ∈ J(i)|} (39)

where comb is the combination function declared in the WITH clause of (34).
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▶ Example 5. Consider again the graph of Figure 4. Assume now that edge ∈ Rin is an
input relation, whereas red ∈ Rprob is probabilistic. Then we can define the conditional
probability for the positive node attribute by

Fpositive(X) ≡ COMBINE 0.7 · red(Y )
WITH noisy-or
FORALL Y

WHERE edge(Y, X).

(40)

The product 0.7 · red(Y ) in the COMBINE clause here again is a syntactic shorthand for what
in principle is another product combination function. This formula expresses a standard
causal model according to which each red source node of an edge causes the target node to
be positive with probability 0.7. For each i ∈ {1, . . . , 7} here J(i) is just the set of nodes j

with edge(j, i). We obtain

eval(Fpositive(X), i, G) =


0 for i = 1, 3, 6
1− (1− 0.7) = 0.7 for i = 4, 5, 7
1− (1− 0.7)2 = 0.91 for i = 2

If we want to prevent self-loops of red nodes from being possible causes for that node to
be positive (as happens for node 4 in the example), we can strengthen the WHERE clause to
edge(Y, X) ∧ Y ̸= X.

The formula is an example of a typical model for information or causal influence propaga-
tion along edge relations, and is closely related to the message passing principle in GNNs.
However, combination functions are not limited to this pattern of information diffusion. If
we modify the WHERE clause to be just the logical constant true, then J(i) = {1, . . . , 7} and
eval(Fpositive(X), i, G) = 1 − (1 − 0.7)3 for all i. Thus, the probability for positive(i) now
depends uniformly for all i on the global graph feature of the total number of red nodes.
Exactly the same formula could then also be employed to define the probability for a global
graph label class(). Going in the opposite direction, we could use still the same formula to
define the probabilities for the binary new_edge relation (defining an Erdős-Rényi random
graph model where the edge probability is a function of the number of red nodes in the
graph). Generally, a probability formula with k “free variables” (k = 1 in (40), and k = 0
when the WHERE clause is changed to true) can be used to define conditional probabilities
for relations of arities ≥ k.

8 Expressivity

In Section 6 we have identified at an abstract level the similarities between what GNNs and
SRL frameworks represent and compute. The high-level semantic analogies do not mean that
the concrete functions that are supported by GNN or SRL models have much in common.
However, already Example 5 has indicated that there are some commonalities between the
message passing operations in GNNs, and probabilistic combination operations in SRL,
especially RBNs. In this and the next section we will establish strong correspondences
between the concrete modeling capacities of GNNs and RBNs.

The question of expressivity has been investigated for SRL frameworks [31], and also
has received considerable attention in recent years for GNNs [75, 51, 4, 64, 19]. We start by
looking a bit deeper into the expressivity of GNNs.

AIB 2022



5:20 Learning and Reasoning with Graph Data

Figure 5 Indistinguishable nodes and graphs.

8.1 GNN expressivity
Broadly speaking, here expressivity relates to a GNNs capability to differentiate between
different inputs. The focus can be on differentiating between different input graphs, or
between nodes in graphs. In both cases, the ability to differentiate between inputs is a
pre-condition for being able to support a rich class of predictive functions.

The node-level version of expressivity can be cast as the following question: for what graphs
G = (V, E), G′ = (V ′, E′), and nodes i ∈ V, i′ ∈ V ′, can a particular GNN architecture (or a
certain class of architectures) learn representations hm(i), hm(i′), such that hm(i) ̸= hm(i′)?
At graph level, the question becomes for which pairs of graphs G, G′, the value of the readout
function (9) can be different. Since (9) depends on node representations as input, the
discrimination capabilities at node and graph level are tightly linked.

▶ Example 6. Figure 5 (adapted from [1]) shows three graphs G1, G2, G3. The nodes here
do not have any attributes or identifiers, so the initial representations h0(i) would be the
same constant for all nodes i in all three graphs. In a computation of h1 by any form of
message-passing update (7), each node i will also obtain the same representation h1(i),
because all nodes sum identical h0 representations for exactly two neighbors j. By induction,
representations hk(i), hk(j) for i ̸= j can never become different at any step k. At the
graph level, however, the three graphs could be distinguished by a final readout aggregator
(9), because that would receive as input multisets of different cardinalities for the three
graphs. Finally, if one considers the graph G4 = G1 ∪G2, then this graph would no longer
be distinguishable from G3, because now (9) receives as input for the both graphs multisets
of the same cardinality of identical node representations.

Many different approaches have been proposed to make GNNs more expressive than what
can be achieved by the basic form of message passing (21) that we assumed in Example 6. One
possible strategy is to consider node identifiers: it is clear that when unique node identifiers
are used as initial representations, then already the initial representation distinguishes all
nodes, and our expressivity question at the node level becomes moot (though graph-level
discrimination is not immediately solved by node identifiers). However, as discussed in
Section 6, the use of node identifiers would severely limit inductive generalization capabilities
of models that depend on them (cf. Figure 3). A few papers have studied the use of randomly
generated initial attributes as a means to combine some benefits of identifiers with (still
somewhat limited) generalization abilities [65, 1]. A full review of these approaches is beyond
the scope of this article. However, the following example (inspired by [65]) illustrates the
main traits of these approaches.

▶ Example 7. Consider again the graphs in Figure 5. We shall see that by assigning
random initial node attributes, we can construct a GNN, which otherwise follows the simple
architecture (21), that can identify nodes that lie on a cycle of length 3, and hence can
distinguish the nodes in G1 from the nodes in G2 and G3. Due to the probabilistic nature of
the construction, this will only be guaranteed with a certain probability 1− δ that can be
brought arbitrarily close to 1.
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Let N be an integer that one should think of as being significantly larger than the
cardinalities n of our input graphs. For a graph G = (V, E), and node i ∈ V we generate a
random initial N -dimensional h0(i) in the form of a random one-hot vector (i.e., h0(i) has a
1 in one randomly chosen position, and 0s everywhere else). Let idx(i) ∈ 1, . . . , N denote
the index at which h0(i) is 1. For a given δ > 0 we can choose an N , such that for graphs
with |V | ≤ n with probability at least 1− δ the idx(i) are different for all nodes i ∈ V . The
h0(i) then can be seen as random node identifiers. For k = 1, 2, 3 let the dimension of hk be
2N . We use the first N components of these representations to just copy the initial random
identifiers h0. The last N components are used to represent which nodes are reachable by
a path of length k. This can be accomplished by functions of the form (21) as follows: for
k = 1 let W 0 be the 2N ×N matrix that consists of an N ×N identity matrix in the upper
half, and is zero in the lower half. Similarly, U0 is the 2N ×N matrix that has the identity
matrix in the lower half. With b0 = 0 and f the identity function, then h1(i) will contain a
copy of i’s random initial one-hot vector in the first N components, and h1(i)[N + idx(j)] = 1
iff (i, j) ∈ E, i.e., j is reachable from i by a path of length 1. The construction for k = 2, 3 is
almost the same, with minor modifications: the matrices W k−1, Uk−1 are now 2N × 2N

matrices that have N × N identity matrices in the upper left and lower right quadrant,
respectively. The argument vector of f() in (21) can now have integer values > 1 in some of
the components N + idx(j) if there exist multiple paths from i to j. This can be brought back
to a pure 0/1-valued indicator vector for the existence of paths by using for f the truncated
Relu function f(x) = min(1, Relu(x)).

Node i now lies on a cycle of length 3 iff h3(i) has a 1 both in components idx(i) and
N +idx(i) (i.e. i is reachable from itself by a path of length 3). Defining h4(i) = Relu(h3(i)[1 :
N ]− h3(i)[N + 1 : 2N ]− 1) ∈ RN (which still fits the functional form (21)) then gives an
N -dimensional representation of i that has a single 1 in component idx(i) if i lies on a cycle
of length 3, and is 0 everywhere otherwise. A final summation h5(i) =

∑N
h=1 h4(i)[h] then

gives a scalar that classifies i as lying on a length 3 cycle or not.

Example 7 is quite representative of the general results of [65, 1] in that:
the random initial features are exploited by otherwise standard GNN architectures;
high-dimensional representations hk are required;
for a given level 1− δ of confidence in the correctness of the outcomes, the set of possible
inputs has to be constrained, and thus the inductive generalization capabilities are limited.

Several other approaches have been proposed for increasing the expressivity of GNNs:
the use of higher order GNNs in which representations are not associated with single
nodes, but with tuples or sets of nodes [51, 72].
more sophisticated functions than simple summation as in (21) for aggregating represent-
ations of neighbor nodes. These functions ideally are injective, i.e., map distinct multiset
inputs to distinct outputs, and thereby preserve discriminative information provided by
graph neighbors to the highest possible extent [75]. We return to this in Section 11.2.

8.2 The ACR architecture and first-order logic
A relatively simple approach to increase the expressivity of the basic message passing archi-
tecture (7) was proposed in [4], based on the observation that with (7) node representations
hk(i) are limited to information that is visible within a k-hop neighborhood of i. This can
easily be remedied by already allowing in the computation of node representations global
readout aggregations (9). The abstract representation update function then becomes
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hk+1(i) = F k(hk(i), {|hk(j)|j ∈ Ni|}, {|hk(j)|j ∈ V |}, G), (41)

which can be instantiated to a concrete form analogous to (21):

hk+1(i) = f

W khk(i) + Uk
∑

j∈Ni

hk(j) + Rk
∑
j∈v

hk(j) + bk

 . (42)

For the resulting aggregate-combine-readout (ACR) GNN architecture, [4] then derive an
expressivity analysis using first-order predicate logic. We shall here not give a full review of
first-order logic (FOL) (standard references are [63, Chapter 8], [16]), but only illustrate the
main issues by examples.

A first-order formula ϕ(X) with one free variable X can define properties of nodes in a
graph. For example, the formula

ϕ(X) ≡ ∃Y1, Y2, Y3 : (E(X, Y1)∧E(X, Y2)∧E(X, Y3)∧¬Y1 = Y2∧¬Y1 = Y3∧¬Y2 = Y3) (43)

says that X is connected to three nodes Y1, Y2, Y3 that are all different, i.e., X has a degree
of at least 3. Assuming that the nodes in the graph have color attributes red,green and blue
(also allowing that several of these attributes are true at the same time for a single node),
then

ϕ(X) ≡ blue(X) ∧ ∃Y : red(Y ) (44)

says that X is blue, and there exists at least one node Y that is red. The two-variable
fragment of FOL, denoted FOL2, consists of all formulas that contain at most 2 distinct
variables. Thus, (44) belongs to FOL2, while (43) does not. An extension of the syntax of
FOL is by counting quantifiers ∃≥k that directly state that there exist at least k different
entities with a certain property. Using counting quantifiers, one can rephrase (43) as

ϕ(X) ≡ ∃≥3Y : E(X, Y ). (45)

This formula is equivalent to (43), but now it only makes use of two distinct variables: (45)
is an element of the two-variable fragment with counting quantifiers, denoted FOLC2.

First-order logic and each of its fragments or extensions has a certain ability to discriminate
nodes in a graph. Specifically, consider the set of graphs G(·, E ,A) := ∪V G(V, E ,A) where
the signature A only contains Boolean attributes. A (Boolean) node property for this set of
graphs is a mapping ρ that takes a graph G = (V, E, A) ∈ G(·, E ,A) and a node i ∈ V as
input, and returns 0 or 1. A node property is captured by a logic formula ϕ(X) if ρ(G, i) = 1
iff ϕ(X) evaluates to true for X = i. A central result of [4] then is

▶ Theorem 8 ([4, Theorem 5.1]). If a node property ρ is captured by a formula in FOLC2,
then ρ can be computed by an ACR-GNN of the form (42) with f the truncated Relu activation
function, and the node attribute vectors A[i, •] as initial representations.

This result is remarkably similar to an expressivity result for RBNs given in [29]. Adapted
to our current context, that result can be stated as

▶ Theorem 9 ([29, Theorem 1]). If a node property ρ is captured by a formula in FOL, then
there exists a probability formula Fρ(X) that only uses the noisy-or combination function,
such that eval(Fρ(X), i, G) = ρ(G, i).
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The proof of Theorem 8 is non-trivial, and depends on an alternative characterization of
FOLC2 as a special modal logic. The proof of Theorem 9, on the other hand, is straightforward,
as the construction of a probability formula corresponding to a given FOL formula ϕ can
simply follow the structure of ϕ, using wif-then-else constructs to capture Boolean operations,
and noisy-or combination functions to capture existential quantification.

Theorem 9 is somewhat stronger than Theorem 8, as FOL is more expressive than FOLC2.
Moreover, the original theorem of [29] is more general than what is stated in Theorem 9, as
beyond node properties it also covers properties of whole graphs, and of k-tuples (k ≥ 2) of
nodes. The ability to express features of k-tuples of nodes via probability formulas with k

free variables is key for the high flexibility and expressivity of RBNs and many other SRL
frameworks (using, of course, somewhat different representation techniques than probability
formulas). This also ensures that probability formulas are still more powerful than higher
order GNNs mentioned above.

Theoretical expressivity analyses are mostly based on classes of properties that can be
expressed in a formal framework, such as logic characterizations that we have focused on here,
or classes of Weisfeiler-Lehman (WL) graph isomorphism tests, which have played a central
role in the expressivity analysis of GNNs [64]. However, in reality a GNN or SRL model will
rather need to represent complex noisy relationships, not clear-cut logical properties. In the
next section we will show that RBNs can also represent all functions that do not represent
logic properties, and which can be represented by standard GNN architectures.

9 RBN encodings of GNNs

In this section we show how an ACR-GNN composed of layers of the form (42) can be
encoded as a probability formula as introduced in Section 7. Let N be an ACR-GNN defined
by matrices/vectors W k, Uk, Rk, bk (k = 1, . . . , m), as well as a final output (8) or readout
(9) layer. Assume, for now, that the function f in (42) is the sigmoid activation function.
Also assume that all node attributes A are Boolean, represented by one-hot encodings in h0.
We show that for each k, and each l = 1, . . . , nk, there exists a probability formula Fhk[l](X),
such that for all attributed graphs G = (V, E, A), and all i ∈ V :

hk(i)[l] = eval(Fhk[l], i, G). (46)

First consider k = 0 and 1 ≤ l ≤ n0. Then there exists an attribute A ∈ A, and a
truth value τ ∈ {true, false}, such that h0(i)[l] is the 0,1-valued indicator for whether node i

has value τ for A. For our Boolean attributes A this somewhat redundant encoding could
obviously be reduced to a single 0,1-valued input, using 0 for τ = false, and 1 for τ = true.
A “mechanical” application of one-hot encodings will give us this redundant two component
encoding, however. We then define

Fh0[l](X) ≡
{

A(X) if τ = true
¬A(X) if τ = false (47)

where ¬A(X) is a shorthand for WIF A(X) THEN 0 ELSE 1. Now assume that formulas Fhk[l]
have been constructed for some k ≥ 0. We then can first define formulas that compute the
two sums in (42). For the first sum over the neighbor representations, we can use

F∑
E(·,X)

hk[l](X) ≡ COMBINE Fhk[l](Y )

WITH sum
FORALL Y

WHERE E(Y, X).

(48)
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A similar formula F∑
V

hk[nk]() is used to represent the second sum ranging over all nodes
j ∈ V . In that formula the WHERE clause simply is the Boolean true constant, and the
formula then does not depend on the node X. Let us abbreviate the first sum in (42) by hk

i

(this one depends on i), and the second sum by hk (no dependence on i). Then

hk+1(i)[l] = f(W k[l, •] · hk(i) + Uk[l, •] · hk
i

+ Rk[l, •] · hk + bk[l]). (49)

Expanding the dot products between nk-dimensional vectors contained in this expression, we
can write this as the probability formula

Fhk+1[l](X) ≡ COMBINE W k[l, 1] · Fhk[1](X),
...
W k[l, nk] · Fhk[nk](X),

Uk[l, 1] · F∑
E(·,X)

hk[1](X),

...
Uk[l, nk] · F∑

E(·,X)
hk[nk](X),

Rk[l, 1] · F∑
V

hk[1](),

...
Rk[l, nk] · F∑

V
hk[nk](),

bk[l]
WITH logistic regression
FORALL

WHERE true

(50)

The products appearing here are products of scalar quantities defined by probability formulas,
and strictly speaking another shorthand for formulas of the form WIF F1 THEN F2 ELSE 0.
Formula (50) is a degenerate combination function in the sense that it does not aggregate
over any entities, as visible from the empty FORALL clause (the following WHERE clause then
is somewhat redundant). Aggregation here only is over the fixed number of t = 3nk + 1
sub-formulas. Since the logistic-regression combination function sums its arguments, and
then applies the sigmoid function, (50) computes exactly (48), when f there is the sigmoid.

In a similar manner, also probability formulas representing the components of an output
(8) or readout (9) layer can be constructed. To accommodate other activation functions, such
as Relu or truncated Relu, corresponding combination functions have to be used.

In terms of representation size, the encoding of (42) by probability formulas clearly leads
to a significant blow-up, as the matrix-vector multiplications are decomposed down to the
level of operations on scalars. It is important to realize, however, that mathematically the
encoding is faithful: the evaluation of the probability formulas leads to exactly the same basic
multiplication, addition, and sigmoid application operations, as in a “forward propagation”
evaluation of the neural network layers. More importantly, also gradient-descent based
learning of the parameters W k, Uk, Rk, bk using a standard algorithm like LBFGS [54]
or ADAM [40] leads to exactly the same algorithmic steps, assuming that equivalent loss
functions for the final output of the probability formula, respectively the ACR-GNN, are
used (cf. Section 12.2).
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We have here shown how GNNs can be represented as RBNs (focusing on ACR-GNNs, but
similar constructions can be done for other GNN architectures). The central message-passing
paradigm of GNNs can also be captured by other SRL frameworks than RBNs, especially
frameworks in the Bayesian network constructor class, which all contain conditioning on
relational neighbors as a central modeling tool. However, RBNs are specifically well-suited
for a direct encoding of GNN architectures, because of the following features:

The translation of symbolic to numeric data performed by the semantics (31) of atomic
probability formulas directly bridges the gap between symbolic SRL and numeric GNN
approaches.
The recursive syntax definition of probability formulas directly corresponds to the “deep”
structure of GNN architectures.

Obviously, just encoding a GNN as an RBN serves little purpose if one then solves identical
tasks using the RBN representation, as one would solve with a GNN. Indeed, this would be a
rather bad idea, because even though the RBN representation is, in principle, mathematically
and algorithmically equivalent to the GNN model, it is in practice computationally much
less efficient. A main reason for this is that GNNs only permit aggregation operations over a
node’s neighbors (or, for a readout, over all nodes in the graph), and this corresponds to
simple matrix-vector multiplications involving the adjacency matrix. RBNs, on the other
hand, support aggregations over all kinds of sets of tuples of nodes that can be defined with
a Boolean condition in the WHERE clause of a combination function. The retrieval of the
relevant tuples is implemented by what amounts to a general database query function. Even
the simple queries ’FORALL Y WHERE E(Y, X)’ we encounter in the RBN encoding of a GNN
are then a bit more involved to compute than simply retrieving row X of E’s adjacency
matrix. Encoding a GNN model in an RBN can be beneficial, however, if one then leverages
capabilities of SRL models that are not provided by a GNN:

Solving inference tasks other than the single prediction task for which a GNN is trained.
Combining low-level “neural” model components with higher level symbolic representa-
tions, e.g. expressing expert domain knowledge.

We will illustrate the first point in Example 11 below. First we consider an example for
ACR-GNNs in their original form, however.

▶ Example 10. Barceló et al. [4] considered logically defined Boolean class labels for nodes
in attributed graph over a signature of color attributes A = {blue, green, yellow, red, purple}.
The simplest label definition considered in [4] is expressed by the FOLC2 formula

α1(X) ≡ ∃[8,10]Y (blue(Y ) ∧ ¬edge(X, Y )), (51)

where ∃[8,10] is shorthand for ∃≥8...∧¬∃≥11.... Using the property α1 defined by this formula,
a more complex property α2 is defined by

α2(X) ≡ ∃[10,20]Y (α1(Y ) ∧ ¬edge(X, Y )). (52)

According to Theorem 8, the node properties (51), (52) can be captured by ACR-GNNs.
For (51) it is sufficient to use an ACR-GNN with a single ACR layer (42) of dimension
n1 = 2: the parameters W 1, U1, R1, b1 can be set such that h1(i)[0] becomes a 0,1-valued
indicator for whether node i has at least 8 blue non-neighbors, and h1(i)[1] indicates whether
this number is no more than 10. Based on this representation, an output layer (8) can then
provide an exact classification of (51). Similarly, (52) can be represented by a two-layer
ACR-GNN with n1 = n2 = 2.
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Table 2 ACR-GNN accuracies for α2.

ni =
m 2 4 16 64 128
1 0.756|0.407 0.698|0.697 0.830|0.713 0.831|0.716 0.833|0.714
2 0.696|0.502 0.683|0.649 0.833|0.704 0.891|0.886 0.869|0.795

Using the ACR-GNN implementation provided by the authors of [4] 1 we can re-create
and extend some of their experiments. Table 2 shows the accuracies for the property α2
that are obtained by ACR-GNN models trained on randomly generated graphs of sizes
40 ≤ n ≤ 50. To test the generalization capabilities of the learned models, they are tested
on graphs in the same size range, and also on a test set of slightly larger graphs with sizes
ranging in 51 ≤ n ≤ 60. In Table 2 the accuracies for these two different test sets are shown
in the format < small graph accuracy > | < large graph accuracy >. In our experiment we
vary the number of layers m = 1 or m = 2, and their dimensions ni (for m = 2, always
n1 = n2). The base frequency of nodes with the α2 property is 0.643 and 0.396 for the small
and large graphs test sets, respectively. One can see that even though the architecture with
m = 2 and ni = 2 is sufficient to capture α2 in principle, the stochastic gradient optimization
here does not succeed to construct a model with an accuracy that is notably better than
a baseline predictor. To obtain higher accuracies, a significant over-parameterization is
required (ni = 64 corresponds to the experimental setting of [4]). We will return to the
benefits of over-parameterization in neural network learning in Section 12.3. For the simpler
property α1, a similar experiment leads to perfect accuracies of 1.0 in all settings, and for
both test sets.

▶ Example 11. We now consider RBN models for the simpler target α1 (51). We consider
three different models:

RBN-manual: a manually designed RBN that directly encodes the logical formula α1
following the construction behind Theorem 9.
RBN-gnn-learned: an RBN encoding of an ACR-GNN with one hidden layer of dimension
4, following the construction described in Section 9. As described in Example 10, this is
(more than) enough to represent a precise model for α1. Parameters learned from training
data using stochastic gradient descent.
RBN-gnn-manual: the same RBN structure as the previous, but parameters set manually
to encode α1 (most of the manually set parameters are zeros, since only two of the four
dimensions are actually needed).

For all three models we can consider a discriminative model where the attribute blue is
assumed to be a fixed input (as it would be for a GNN model), and a generative version
where we also take blue to be probabilistic. This is easily effected by adding to the RBN a
very simple formula

Fblue(X) ≡ 0.26

that specifies the marginal probability for a node to be blue. The value 0.26 is the empirical
probability of blue in the training data, which in our two manual models is set manually,
and in the learned model is learned jointly with the other model parameters. Note that the
edge relation still is assumed to be given as input, so we still do not have a fully generative
model for graphs, but only a conditional model for the attributes given the graph structure.

1 https://github.com/juanpablos/GNN-logic

https://github.com/juanpablos/GNN-logic
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Figure 6 Most probable explanations in Example 11.

Evaluated on two test sets with different graph sizes, as described in Example 10, all three
discriminative models achieve an accuracy of 1.0 for both test sets (recall that the same was
observed for ACR-GNNs on the simple α1 target). Using the generative models, we now can
also consider queries beyond the prediction of α1. One interesting type of query is to turn
the role of input attribute blue and target α1 around, and assume that given observed α1
labels, we want to predict the (now) unobserved attribute blue. One particularly interesting
version of this question is to ask for the most probable explanation (MPE) of the observed
α1 values, i.e. to find the assignment of blue attributes that makes the observed α1’s most
probable.

Figure 6 on the left shows a small graph with 21 nodes where nodes with the observed α1
label are marked by an orange color segment. Edges here are shown as directed, but this
direction is ignored by the models. From any of our generative models we can now calculate
an MPE assignment vector b for the blue attribute that maximizes the probability PV (α1|b)
(this is a non-trivial optimization problem, which is tractable for this small example). Figure 6
in the middle shows the MPE assignment of blue that is obtained from either of the two
manual RBN models. In this explanation, there is a total of 9 blue nodes, and nodes have the
α1 label iff they are connected to at most one of these blue nodes, i.e., (51) holds. Performing
MPE inference for the RBN-gnn-learned model yields the assignment of the blue attribute
shown in the right graph of Figure 6. This explanation is inconsistent with the logical
definition of the α1 label, since here there are only 4 blue nodes in the domain, which implies
that α1 should be false for all nodes, contrary to the given observation. This indicates that
the learned model does not generalize to this MPE inference task.

The reason for this failure of the learned model could be twofold: 1) the model, even
though perfectly accurate on test sets that are very similar or only slightly larger than the
training examples, does not generalize to our MPE query graph, which is smaller than the
training examples, and may also exhibit different connectivity patterns of the edge relation;
2) the training objective is not appropriate for solving MPE tasks. Turning to point 2)
first: as we will show in Section 12.2 below, the objective function we use for training
the RBN is equivalent to the classification loss function used for training an ACR-GNN
classifier. However, both are equivalent to maximizing the log-likelihood, which can be seen
as a “universal” objective for learning a generative probabilistic model for all probabilistic
inference tasks. This means that even if right from the beginning we had intended our model
to be used for MPE inference as considered here, our training objective would not have
been different. That indeed point 1) seems to be the issue is revealed when we now consider
our original classification task for the graph of Figure 6: we use this graph with the blue
attribute set as in the middle graph of Figure 6. For this input graph the learned model
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only achieves an accuracy of 0.47 for classifying the α1 label for the 21 nodes. Thus, the
learned model does not capture the logical nature (51) of the target well enough in order to
generalize to input graphs that are rather different in size (and possibly structure) from the
training examples.

Lastly, we consider an RBN model that combines domain knowledge with learning:
suppose it is known that the α1 label depends on the number of blue non-neighbors, but
the exact bounds [8, 10] in (51) are unknown. Our qualitative knowledge then is captured
by the logical form of the probability formulas in RBN-manual. The missing quantitative
information corresponds to unknown values of the numeric constants in these formulas.
Learning these parameters gives us a model RBN-manual-learned with manually defined
structure and learned parameters. This model then turns out to perform perfectly well both
on our classification and MPE tasks.

10 Dealing with Homophily

A key property in network data is the phenomenon of homophily: connected entities tend
to be similar. This phenomenon is particularly well documented for social networks, where,
e.g., a friendship relation between two people is indicative of similar political leanings, social
status, and other properties (cf. (13)). Similar in other types of networks: in bibliographic
networks, papers citing each other are likely to be in the same subject area. In sensor or
traffic networks, entities that are connected by a spatial proximity relation tend to have
similar properties. When a given class label exhibits homophily, it will be important to
exploit this for classification. Taking homophily into account has two different aspects:

Collective classification: the prediction of class labels for entities should be done jointly
for all (unlabeled) entities, such that the joint labeling exhibits homophily.
Autoregression: the prediction of a class label depends on observed labels for some entities.

These two aspects are non-exclusive, but distinct. For illustration, consider the two
small graphs in Figure 7. In the graph on the left an attribute with possible values ’yellow’
and ’blue’ is observed for all nodes, whereas the class label with values ’red’ and ’black’ is
unobserved for all nodes. In the graph on the right, the class label is observed for three
nodes. Assuming that the class label exhibits homophily (maybe this is learned from some
other labeled training graphs), one would want to assign to all the nodes belonging to one of
the two cliques in the graph the same label. This would be a case of collective classification,
where the label assigned to one node constrains what label we assign to other nodes. In the
graph on the right, homophily would indicate that the nodes in the clique at the top should
be labeled ’red’, and the nodes in the bottom clique be labeled ’black’. This would then
require an autoregressive component in the classification. Homophily mostly plays a role in
transductive problem settings, as illustrated by the graph on the right.

Among SRL frameworks, the Markov network constructor and probabilistic logic pro-
gramming types are able to model homophily most easily. For Markov logic networks an
example is already given by (13): the undirected nature of these logical feature specifications
and the Markov network semantics fit very well mutual, symmetric dependencies between
attributes due to homophily. Probabilistic logic programs can represent autocorrelation via
clauses like

republican(X)← friends(X, Y ) ∧ republican(Y ).

The least fixed-point semantics of the logic program then allows to propagate the republican
label from some observed republicans to other unlabeled entities (the probabilistic component
of the program would make this propagation probabilistic). For SRL frameworks of the
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Figure 7 Homophily challenge.

Bayesian network constructor type the required acyclicity of probabilistic dependencies is a
certain hurdle for a direct modeling of homophily. We will show below how this hurdle can
be overcome.

GNNs encounter inherent challenges for dealing with homophily. A GNN for predicting a
node class label is relying on node features other than the label for making this prediction.
If nodes are indistinguishable based on the available features, they can only be assigned
the same label (cf. Section 8). For our example in Figure 7 on the right this means that a
predictive model for the class label that only is a function of the observed color attribute
and edge relation must give identical labels to the nodes in the sets {1, 4, 6, 8}, {5, 7} and
{2, 3, 9, 10}, respectively, because nodes in these sets are pairwise indistinguishable based on
these two relations. This limitation of GNNs has motivated the combination of GNNs with
Markov logic networks in [59].

A standard strategy in probabilistic modeling for representing dependencies that cannot
be explained by observed features is the introduction of latent variables. For RBNs, modeling
with latent numeric relations has been introduced in [36]. Originally mostly motivated by
applications in community detection, the same technique also applies to classification under
homophily.

▶ Example 12. A numeric k-ary relation r simply is an assignment of a real number to
ground atoms r(i1, . . . , ik) (ij ∈ V ). Numeric relations can represent actual observable
numeric data, such as numeric node attributes or edge weights. We use numeric relations as
latent features that are not observed, and that are not part of the generative model. For the
simple scenario as depicted in Figure 7 we may assume that both the edge relation and the
class label depend on an unobserved node feature that determines both the propensity of
nodes to connect by an edge, and the likely value of their class label. Representing this node
feature by a latent numeric attribute latent(X), we can model the edge and class relation by
the two formulas

Fclass(X) ≡ COMBINE latent(X) WITH logistic regression
Fedge(X,Y ) ≡ COMBINE latent(X) · latent(Y ) WITH logistic regression

(53)

Assuming that all i ∈ V are assigned a value latent(i) ∈ R, the probability for class(i) then
simply is 1/(1 + e−latent(i)), and the probability for edge(i, j) is 1/(1 + e−(latent(i)·latent(j))
(we omit the color attribute here, since it is not instrumental for the prediction of the class
label). The extremely simplistic model (53) could be refined by allowing more than one
latent attribute (i.e., a latent feature vector, rather than a latent scalar value), and refining
the functions that map latent feature values to probabilities.
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Table 3 Latent feature values and predicted probabilities from model (53).

i 1 2 3 4 5 6 7 8 9 10
latent(i) 1.49 1.52 1.49 1.52 1.15 −1.49 −1.15 −1.49 −1.52 −1.49
P (class(i) = red) 0.81 [1.0] 0.81 [1.0] 0.75 0.18 0.24 0.18 [0.0] 0.18

Given observed edge and class data, one can learn values for the latent attribute that
best explain the data based on the maximum likelihood principle (cf. Section 12.2 below).
Importantly, learning latent numerical relations in this manner is treated just as part of the
general parameter learning problem, and does not require any special purpose algorithms.
Learning the latent values and predicting the class labels for the 10 nodes gives the result
shown in Table 3. We see that nodes 1-5 in the upper clique are clearly classified as red, and
those in the lower clique as black.

Somewhat analogous to the latent variable modeling approach we have taken here within
the RBN setting are the auto-encoders in neural networks, and especially graph auto-encoders
for graph data [42]. Graph auto-encoders also construct latent feature representations of
nodes that are calibrated to explain observed edges with a function corresponding to our
Fedge(X,Y ) in (53) (this type of model actually has a longer history in statistical graph
analysis [26]). Originally proposed in the context of link prediction tasks, graph autoencoders
could also be a basis for node classification under homophily.

11 Aggregation

11.1 Invariance and Sum Aggregation
The core element both in GNN and SRL models of relational data is the aggregation of
features of neighboring nodes. Since there is no defined order on the neighbors of a node, such
an aggregation should not be based on any assumed ordering. In our definitions, such as (7)
for GNNs, and the definition for combination functions in Section 7 for RBNs, this has been
taken into account by specifying that the aggregation must be a function of a representation
of the neighbors as a multiset. Aggregation by summation as in (21) is consistent with such
a multiset view of the inputs, because the sum does not depend on the order of summation.
In practice, however, graphs are usually represented by adjacency matrices or adjacency lists
that induce an (arbitrary) order on the nodes.

In the case of GNNs, matrix and vector representations of graphs and neighbor lists are
often assumed in the basic definitions of the models (e.g. [41, 79, 74], whereas e.g. [24]
uses set notation in the model specification). The requirement that the implicit ordering of
nodes induced by these representations does not affect the results is then often just implicitly
taken into account by only considering order independent operations like summation, or the
maximum or minimum operators. A more explicit and systematic consideration of admissible
aggregation operations on vector representations of multisets has been initiated in [77]. We
here briefly review these initial results. Reformulating the definitions of [77] slightly, we
formalize our requirement as follows.

▶ Definition 13. Let X be a set (to be thought of as a set of possible feature values). A
function

f :
⋃

n∈N
Xn → R
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is called an X -tuple aggregator. The function f is permutation invariant, if for all n and all
permutations π of {1, . . . , n}, and all x1, . . . , xn ∈ X

f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) (54)

holds.

We note that regardless of the nature of X , the value of the aggregator here is required
to be a real number. This is somewhat contrary to the idea that an aggregator of values
from X should return another value in X . However, often X will itself just be R, or a subset
of R, in which case the return value of f lies in the same space as the values it aggregates.
The following is then proposed as Theorem 2 in [77], and here given in a generalized form as
described in Appendix A.3 in [73].

▶ Theorem 14 ([77, 73]). Let X be countable. Then an X -tuple aggregator f is permutation
invariant iff there exist functions ϕ : X → R and ρ : R→ R, such that

f(x1, . . . , xn) = ρ(
∑

i

ϕ(xi)). (55)

The restriction of this theorem to countable X has caused some concern already in [77],
and amplified in [73]. However, countability of X per se is not a major problem: in reality,
initial (node) features will be categorical attributes (or one-hot encodings thereof), or finite
precision numerical attributes. Thus, a countable X , in principle, is sufficient to represent
such initial features. Importantly, then, if X is countable, then so is

⋃
n∈N Xn, and hence

the range of f in R. This means that countability of the feature space Xk at the kth GNN
layer will be guaranteed, if the input feature space is countable.

The implications of Theorem 14 have sometimes been overstated: by appealing to universal
function approximation properties of neural networks [28] it is suggested that it is sufficient
to use summation for aggregation, in combination with additional perceptron layers that are
trained to implement ρ and ϕ (e.g.[23, Section 5.2.2], [75]). However, as already pointed out
in [73], the function approximation properties of neural networks are not sufficient in this
case. To illustrate this point, we here reproduce the proof of Theorem 14 as given in [73].

Proof of Theorem 14. Let x1, x2, . . . be an enumeration of X . Let p1, p2, . . . be an enu-
meration of all prime numbers. Define ϕ(xi) := − log pi. Then, by the unique prime
factorization property of the integers, for any tuple x = (xi1 , . . . , xin

) ∈ Xn the sum∑n
j=1 ϕ(xi) = log 1∏n

j=1
pij

is an R-valued code Φ(x) for x, such that the encoding Φ is

injective on
⋃

n∈N Xn, and hence invertible. One can now simply define ρ(r) := f(Φ−1(r))
to obtain a representation of f in the form (55). ◀

The functions ϕ, ρ as constructed in this proof are outside the scope of the universal
representation theorems for neural networks, which only apply to functions that are defined
on a compact subset of the reals, and are continuous. To even be able to consider continuity
in the sense of the representation theorems, the function ϕ would need to be defined on R
(or Rm, for some m > 1), not on X . This, however, can be overcome by assuming (without
much loss of generality) that X ⊂ R, and that ϕ actually is defined on all of R. However,
then an extension to R of ϕ as constructed in the proof can either not be continuous (if X
has an accumulation point in R), or not be limited to a compact set (if X is unbounded
in R). Due to these limitations of Theorem 14 there is still a need to consider aggregators
outside the class defined by (55). Possibilities include the use of a fixed selection of standard
aggregators [10], or the use of a parametric family of aggregators whose trainable parameters
can be optimized to learn customized aggregation functions for each learning task [55].
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11.2 Injectivity and Expressivity
The key element of the proof of Theorem 14 is the construction of an injective function Φ(x)
on the space of multisets x. The problem of constructing injective functions on multisets of
feature values has been a key element in the study of the expressiveness of GNNs, also outside
the context of investigating the universality properties of sum-aggregation (e.g.[75, 64]).
An injective aggregation function would allow to preserve the full information of a node’s
neighbors’ features {|hk(j)|j ∈ Ni|} in the updated node representation hk+1(i), and thereby
enable the construction of maximally discriminative node (or graph) classifiers. However,
classic results in mathematics impose strict limits to the endeavor of implementing injective
aggregation functions using continuous functions as provided by neural network layers. For
our purpose, we can formulate this as follows:

▶ Theorem 15 ([8, 70]). There does not exist a continuous injective function from Rn to
Rm if n > m.

In our context, n in this theorem would be the cardinality of a multiset of real numbers,
and usually m = 1 as the target dimension for the aggregator. We now have to be a little
bit careful, since our desired permutation invariance (54) actually says that we want our
aggregator not to be injective on Rn, but only to return distinct values for different multisets.
We can use ordered vectors as unique representatives for multisets: defining

Rn,≤ := {(r1, . . . , rn) ∈ Rn|ri ≤ ri+1, i = 1, . . . , n− 1}, (56)

we obtain a one-to-one correspondence of multisets of cardinality n and Rn,≤. We can now
re-state Theorem 15 as

▶ Theorem 16 ([8, 70]). There does not exist a continuous injective function from Rn,≤ to
Rm if n > m.

This theorem imposes limits on the possibility of constructing general and expressive
aggregation function for the feature space X = R already in the case of a fixed cardinality of
multisets. However, the theorem does not exclude the possibility of continuous functions on
Rn,≤ that are injective on a countable subset Xn ⊂ Rn, which, as argued above, may be all
we need. In fact, as the following example shows, this can be done.

▶ Example 17. Let X = N. We construct a function f : ∪n∈NRn → R, such that:
(i) the restrictions of f to arguments of fixed dimensions n are continuous;
(ii) f is permutation invariant;
(iii) f is injective for multisets of values from X .

We first map vectors in R to their ordered representatives in Rn,≤:

ford : ∪n∈NRn → ∪n∈NRn,≤.

In procedural terms, ford(r) is the application of a sorting algorithm to r ∈ Rn. Seen as
mapping from Rn to Rn,≤ this is a function that satisfies properties (i)–(iii). In fact, ford is
not only continuous, but also differentiable. For vectors in r ∈ Rn,≤ we now define

fprime : r 7→
n∏

j=1
p

rj

j ,

where, as in the proof of Theorem 14, pj is the j’th prime number. As in that proof, the
unique prime factorization of integers implies that the restriction of fprime to ∪n∈NXn,≤

is injective. Since fprime also is continuous, we then obtain that f = fprime ◦ ford satisfies
(i)–(iii).
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Table 4 Learning in GNN and SRL: a summary of correspondences.

GNN SRL
St

ru
ct

ur
e

Space NN architectures (Logical) model structure
Manual specification by NN engineers SRL experts, domain ex-

perts
Learned by Optimization/search in com-

binatorial spaces

Pa
ra

m
et

er
s Space High-dimensional Low-dimensional

Manual specification Never Possible
Objective Loss function (cross-

entropy, MSE, . . . )
Likelihood (plain, condi-
tional, pseudo-, . . . )

In theoretical terms, the function f we have constructed has all the properties one could
desire. In addition to (i)-(iii) it also has the important property that for r ∈ Nn the value
f(r) is again an element of N, so that the same f can be used over multiple iterations
of aggregation. The requirement that the initial input features are in N is not a serious
(theoretical) limitation, since any countable X could be mapped into an integer encoding.
Note that a mapping of an initial input feature space X to an integer encoding is not subject
to the continuity concerns that we otherwise have, since it can be implemented as a data
preprocessing step, and need not be computed by internal (continuous) neural network
functions.

In practical terms, however, f is unmanageable, due to the very large numbers produced
by fprime, which would soon cause numeric overflow in an implementation. Furthermore,
fprime again does not fulfill the requirements of the universal approximation results for neural
networks. It appears to be an open question whether a function f with (i)-(iii) can be
constructed that is numerically manageable, such that it can be approximated by standard
neural architectures.

Theoretical questions about permutation invariance, canonical forms (based on summation
as the core aggregation step), and expressivity of aggregation functions that have arisen in
the field of GNNs have not been considered previously in analogous lines of investigation
in SRL, even though aggregating (or combining) information from related entities also is
a core element of SRL modeling. There are several reasons for this: first, permutation
invariance only becomes an issue when one represents graphs by adjacency matrices. The
logic-based background of SRL, and the associated “possible worlds” view of multi-relational
graphs, favors a representation of graphs as the set of ground atoms that are true. When,
in this manner, all fundamental definitions about syntax and semantics of SRL models are
based on sets (or multisets) rather than matrices and vectors, permutation invariance never
becomes an issue. The characterization of general, canonical forms of aggregation, however,
would still be of interest at least for those SRL frameworks that include explicit aggregation
or combination operators: these are most, if not all, of the frameworks that fall into the
Bayesian network constructor category, as exemplified by the combination function construct
in RBNs. Markov network constructors and probabilistic logic programming approaches, on
the other hand, perform aggregation more implicitly through a single, fixed multiplicative
mechanism (based on products, rather than sums as in (55).
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12 Parameter and Structure Learning

In this section we discuss the role of structure and parameters in SRL and GNN learning. A
summary of some of the correspondences we find is given in Table 4.

12.1 Structure
An SRL model consists of a “structure” that is given by dependency relations expressed
using a logic-based or graphical representation, and numeric parameters that are needed
to quantitatively define a probability distribution. The learning task for SRL models then
consists of the two parts of learning the structure, and learning the parameters. In Markov
logic networks, for example, the structure consists of all the logical clauses (13), and the
parameters of the numeric weights attached to these clauses. In the ProbLog probabilistic
logic programming language, the structure consists of clauses of the form (14), together
with probabilities assigned to certain ground facts. In RBNs, the structure consists of
the functional form of probability formulas, and parameters are the constants (29) of the
formula. Since the structure represents interpretable, meaningful dependencies between
different relations and attributes, it may also be elicited (at least in part) by domain experts.

▶ Example 18. Consider again the scenario of Example 3, and suppose one wants to create
an SRL model for predicting whether a person should be labeled as an influencer. A social
network expert would probably be able to say that whether or not a person is an influencer
depends (maybe among other factors) on the number of his/her followers. In a probabilistic
logic programming framework, this would lead us to include the clause

influencer(X)← follower(Y, X) (57)

in our model. The clauses in Markov logic networks do not represent directed implications
like (57) but undirected logical properties or features that are deemed relevant for the
probability of a possible world. Our knowledge about a connection between the influencer
attribute and the follower relation can be incorporated into the model by constructing several
features that express combinations of these two:

influencer(X) ∨ follower(Y, X)
influencer(X) ∨ ¬follower(Y, X)
¬influencer(X) ∨ follower(Y, X)
¬influencer(X) ∨ ¬follower(Y, X)

(58)

The fact that a greater number of followers increases the probability for being an influencer
would here be encoded not already through the structure of the model, but by the relative
magnitudes of the numeric weights associated with these four different features. Relational
Bayesian networks again encode directed dependencies. Here our knowledge would imply
that the probability formula for the influencer attribute should include the construct

Finfluencer(X) ≡ . . .

COMBINE < probability formula >

WITH < combination function >

FORALL Y

WHERE follower(Y, X)
. . .

(59)
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This is only a partial specification of the probability formula for influencer, which leaves
open the details of how the dependency on the number of followers should be aggregated in
the combination function construct, and what other dependencies of the influencer attribute
need to be encoded in its probability formula.

There is an apparent decrease in the ease-of-use from the logic programming via the
Markov network to the RBN framework for encoding expert knowledge in the model structure.
The first two frameworks allow modular specifications where different pieces of knowledge
can be represented by separate logic-based representations. In the case of RBNs, all relev-
ant knowledge for the attribute influencer needs to be collected in the single probability
formula Finfluencer(X). If additional knowledge was provided that the influencer attribute
also depends on a known has_youtube_channel attribute, then in a probabilistic logic or
Markov logic framework this could be incorporated by adding new clauses, leaving the
existing (57)(58) untouched. In RBNs, on the other hand, the additional knowledge regard-
ing has_youtube_channel needs to be integrated with the previous knowledge inside the
formula (59).

However, modular specifications, though intuitive on the surface, pose their own challenges.
In pure logic, the total knowledge expressed by a set of formulas is simply the conjunction
of the knowledge expressed by each single formula. In a logic-based, modular specification
of a generative probabilistic model, the semantic contribution of each model component
to the overall probability distribution defined by the model can not be defined by a “local
semantics” of the component. The impact of each component on the probabilities defined
always depends on the full model that it is part of. In short, syntactic modularity here does
not translate into semantic modularity.

It should be apparent, now, that even though SRL frameworks support the integration
of domain knowledge into the model construction process, this can not happen without a
thorough understanding of the semantics and algorithmics of the SRL framework being used.
Thus, expert-driven model development here requires both a domain and an SRL expert.

This example has highlighted the ability to (partially) construct the structure of an
SRL model manually based on domain knowledge. It is, of course, a central objective
to also use machine learning for determining the structure of a model, which leads to
search and optimization problems in very large combinatorial spaces of possible model
structures. For probabilistic logic programming frameworks, often search techniques from
the field of inductive logic programming are adapted (e.g.[5]). Structure learning for Markov
logic networks has received a particularly large amount of attention. Here inductive logic
programming techniques have also been exploited [43, 50]. Other approaches (e.g. [38])
exploit more novel machine learning techniques, but still include an element of heuristic
(beam) search over possible clauses. For RBNs in the structure learning problem has only
been addressed in the context of a somewhat simplified framework [33].

A (graph) neural network model also consists of a structure (here often called the
architecture) and its parameters. However, the balance between the tasks of structure design,
or structure learning, on the one hand, and parameter learning on the other hand, is quite
different. Whereas in SRL structure learning is perhaps the greatest and most fundamental
challenge, one would typically view the learning problem of a GNN almost exclusively as a
parameter optimization task. The network architecture may either be taken to be a given
“standard solution”, or obtained from a manageable set of candidate architectures via tuning
such hyperparameters as the number and dimensions of network layers. The increasing
complexity and variability of available neural components, however, also has given rise to
the field of neural architecture search [14], which begins to share some characteristics with
SRL structure learning.
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12.2 Parameter learning
An SRL model usually contains only a moderate number of numerical parameters (the bound
< 100 parameters probably covers a large fraction of SRL models presented in the literature).
When these parameters have a clear, interpretable, statistical meaning then even parameters
may be amenable to specification by domain experts. For example, in the probability formula

Finfluencer(X) ≡ WIF has_youtube_channel(X) THEN 0.35 ELSE 0.01

the parameters 0.35 and 0.01 correspond to the statistical frequencies of influencers among
people who do, respectively do not, own a Youtube channel. In the absence of adequate
training data, such parameters could be assessed (approximately) by human experts. In
most cases, however, parameters of an SRL model should be learned from data.

Suppose, then, that an SRL structure has been fixed, and that this structure is para-
meterized by k real-valued parameters. Then a parameter vector θ ∈ Rk defines an SRL
model, i.e., for each domain V we have the probability distribution P θ

V on G(V,R) (the
signature R always being fixed). Training data consists of a number of observed graphs
(V1, R1), . . . , (VN , RN ). The domains of the training graphs may be different, may be all the
same V1 = . . . , VN , or the data may only consist of a single graph (N = 1). In all cases, we
can score θ by the log-likelihood:

L(θ) =
N∑

i=1
log P θ

Vi
(Ri). (60)

In the case of Markov logic networks, the exact probabilities P θ
Vi

(Ri) are intractable to com-
pute, and an approximate pseudo-likelihood is used instead. We note that our objective (60)
does not contain a regularization term. This is because the problem of overfitting can arise
(and must be dealt with) already at the stage of structure learning/design.

A major strength of probabilistic generative models lies in their ability to learn from in-
complete data. Suppose our data consists of partially observed graphs (V1, R̃1), . . . , (VN , R̃N )
where the domains Vi are fully observed, but for the relations we have only partial observa-
tions R̃i, meaning that for R ∈ R and entities h, j ∈ Vi the atom R(h, j) may have values
true, false and unknown. Being a generative model, our current parameters then define for
each possible completion Ri of R̃i the probability

P θ
Vi

(Ri|R̃i). (61)

Taking the probability distribution over complete observations thus defined as an imputed
complete dataset, one can then apply optimization techniques for complete datasets to
optimize the parameter θ. Iterating the steps of imputing the expected complete data,
and maximizing the likelihood function for the imputed data gives the famous Expectation-
Maximization (EM) algorithm for learning from incomplete data. The EM algorithm is a
general paradigm of almost universal applicability in statistical learning. However, in order
to be feasible in practice for a particular model class (SRL or other), efficient techniques have
to be developed for that particular model class to implement the computation of expected
completions, and the subsequent optimization of the parameters. The expectation step often
is computationally quite expensive, which means that learning from incomplete data usually
is significantly more time consuming than learning from complete data.

GNN parameters are learned by minimizing a loss function. When the task for which
a GNN is trained is classification, then usually the cross-entropy loss is used. Assume, for
example, that the task is classification of a Boolean node label C(X), and that we use a GNN
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architecture along the lines shown in Figure 2 on the left, where the output layer applies a
softmax function to guarantee that the outputs represent a probability distribution over the
possible class labels. Training data will consist of labeled nodes, which in general could be
given by training examples

(V1, C(j1), R1), . . . , (VN , C(jN ), RN )

where ji is a node in Vi, and C(ji) ∈ {true, false} is the observed label. Again, a fixed
signature R for attributes and relations (other than the class label C) is given, and Ri

consists of complete observations of R for Vi. Often, all examples will come from a single
graph, i.e. V1 = . . . = VN and R1 = . . . , RN . Let θ be a setting for the weights in the
network. Then the network produces outputs oθ(ji) that are 2-dimensional non-negative
vectors for which oθ(ji)[0] + oθ(ji)[1] = 1. Assuming that the first output component is
associated with the label true, and the second with the label false, we then obtain the
cross-entropy loss

−

 ∑
i:C(ji)=true

log oθ(ji)[0] +
∑

i:C(ji)=false

log oθ(ji)[1]

 . (62)

Under the probabilistic interpretation of the outputs, and the assumption that all training
examples are independent, this is the negative log-likelihood. In particular, considering the
case (Vi, Ri) = (Vi′ , Ri′), (62) incorporates the conditional independence assumption (26)
for the distribution PV (C|R). Thus, the loss minimization objective of GNN training here is
exactly the same as the likelihood maximization objective in learning an SRL model for the
conditional distribution PV (C|R), if the SRL model makes assumption (26). The latter is the
case, for example, when PV (C|R) is specified by an RBN consisting of a single probability
formula FC(X). Parameter (weight) vectors θ of GNNs are usually much larger than those of
SRL models, and overfitting can also occur as a result of pure parameter learning. Therefore,
the cross-entropy loss (62) will often be combined with a regularization term for θ.

12.3 From sparse to over-parameterizations
As noted in the preceding sections, SRL and GNN models are typically distinguished by huge
differences in the size of their parameterizations. SRL models combine structure that encodes
relevant features and dependencies with a sparse parameterization that quantifies these
dependencies. GNNs follow the deep learning philosophy that feature discovery is automated
as a part of the parameter learning problem [22, Chapter 1]. The use of high-dimensional
parameter spaces in GNN architectures serves two distinct purposes:

Model capacity: providing a rich hypothesis space that can capture complex relevant
features.
Facilitating optimization: gradient descent is more effective in higher-dimensional spaces.

We speak of over-parameterization when a model architecture contains more tunable
parameters than are actually required to perfectly capture a target concept. As we have
observed in Example 10, neural network training can be more effective in overparameterized
than ’minimally sufficient’ model architectures. This somewhat counter-intuitive observation
has been made and studied by many authors, e.g. [52, 9]. A partial explanation is provided
by consideration of the limit case where the dimensions of hidden layers (and number of
weight parameters) goes to infinity [6, 2]. In this limiting case, the last hidden layer will
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contain sufficiently rich features (regardless of the weight settings at lower layers) such that
learning can be reduced to a convex optimization problem for the weights at the output
layer [6].

13 Conclusion and Outlook

We have studied similarities and differences in graph and network analysis using the tools of
statistical relational learning and graph neural networks. We have emphasized the common-
alities of these two paradigms, especially with regard to SRL frameworks of the Bayesian
network constructor type. In particular for the relational Bayesian network framework we
demonstrated the capability to directly encode GNNs without modifications or additions to
the original RBN framework. This directly enables forms of neuro-symbolic integration by
RBN models that combine neural encoding components with higher-level symbolic repres-
entations. As we have seen in Section 9, this can be exploited to tackle a larger variety of
inference tasks, and to combine learning with expert-driven model specifications. However,
in order to obtain maximal benefits from such combinations, several challenges have still to
be met:

Interpretability: symbolic representations are typically more interpretable for a human
user than a neural network model. However, an RBN component that directly encodes a
GNN module is not more interpretable than the original GNN. A challenge therefore is
whether a learned RBN containing over-parameterized GNN components can be reduced
to a smaller and more interpretable model, e.g. by some form of model distillation.
In contrast to other approaches towards interpretability via surrogate model learning
(e.g. [61]), the original and the simplified model here would live both in the same hypothesis
space of RBNs.
Trading structure learning for parameter learning: the success of GNN technology
indicates that the overall strategy of reducing the learning problem as much as possible to
a parameter learning problem has advantages over the SRL strategy that places primary
importance on the structure of a model. This leads to the question of whether structure
learning can be reduced to parameter learning. A very small-scale and simplistic instance
of this was already presented in [35], where it was suggested to learn the appropriate
combination function in a model by learning a mixture model over several candidate
combination functions, and then selecting the one with the dominant coefficient in the
learned mixture.
Closing the efficiency gap: as discussed in Section 9, an RBN encoding of a GNN is
mathematically equivalent, and, in principle, has the same parameter learning complexity
as the original GNN. In practice, however, there is a significant gap, because the general
purpose RBN algorithms do not automatically leverage the limited functional structures
encountered in GNN encodings.
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